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Preface 

CIARP 2005 (10th Iberoamerican Congress on Pattern Recognition, X CIARP) is the 10th 
event in the series of pioneer congresses on pattern recognition in the Iberoamerican 
community, which takes place in La Habana, Cuba. As in previous years, X CIARP 
brought together international scientists to promote and disseminate ongoing research and 
mathematical methods for pattern recognition, image analysis, and applications in such 
diverse areas as computer vision, robotics, industry, health, entertainment, space 
exploration, telecommunications, data mining, document analysis, and natural language 
processing and recognition, to name a few.  Moreover, X CIARP was a forum for 
scientific research, experience exchange, share of new knowledge and increase in 
cooperation between research groups in pattern recognition, computer vision and related 
areas. 

The 10th  Iberoamerican Congress on Pattern Recognition was organized by the 
Cuban Association for Pattern Recognition (ACRP) and sponsored by the Institute of 
Cybernetics, Mathematics and Physics (ICIMAF), the Advanced Technologies 
Application Center (CENATAV), the University of Oriente (UO), the Polytechnic 
Institute “José A Echevarria” (ISPJAE), the Central University of Las Villas (UCLV), 
the Ciego de Avila University (UNICA), as well as the Center of Technologies 
Research on Information and Systems (CITIS-UAEH) in Mexico. 

The conference was also co-sponsored by the Portuguese Association for Pattern 
Recognition (APRP), the Spanish Association for Pattern Recognition and Image 
Analysis (AERFAI), the Special Interest Group of the Brazilian Computer Society 
(SIGPR-SBC), and the Mexican Association for Computer Vision, Neurocomputing 
and Robotics (MACVNR). X CIARP was endorsed by the International Association 
for Pattern Recognition (IAPR).  

The number of papers and interest in the congress grow every year, and on this 
occasion we received more than 200 papers from 29 countries. Of these, 107 were 
accepted for publication in these proceedings and for presentation at the conference. 
The review process was carried out by the Scientific Committee, on all contributions, 
double blind, and assessed by at least two reviewers who prepared an excellent 
selection dealing with outgoing research. We are especially indebted to them for their 
efforts and the quality of the reviews. 

The conference was organized in four tutorials, three keynote addresses, and oral 
and poster presentations, that took place on November 15–18, 2005. The keynote 
addresses dealt with topics on computer vision, image annotation and computational 
geometry, with distinguished lectures by Dr. Josef Kittler, professor at the School of 
Electronics and Physical Sciences, University of Surrey, United Kingdom, Dr. 
Alberto Del Bimbo University of Florence, Italy, and Dr. Eduardo Bayro Corrochano, 
Computer Science Department, Center of Research and Advanced Studies, 
Guadalajara, Mexico. 
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We would like to thank the members of the Organizing Committee for their 
enormous effort that allowed for an excellent conference and proceedings. We hope 
that this congress was a fruitful precedent for future CIARP events. 

November 2005 Manuel Lazo 
 Alberto Sanfeliu 
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Abstract. Registration of CT and PET thoracic images has to cope
with deformations of the lungs during breathing. Possible tumors in the
lungs usually do not follow the same deformations, and this should be
taken into account in the registration procedure. We show in this paper
how to introduce tumor-based constraints into a non-linear registration
of thoracic CT and PET images. Tumors are segmented by means of a
semi-automatic procedure and they are used to guarantee relevant defor-
mations near the pathology. Results on synthetic and real data demon-
strate a significant improvement of the combination of anatomical and
functional images for diagnosis and for oncology applications.

1 Introduction

Computed Tomography (CT) and Positron Emission Tomography (PET), par-
ticularly dealing with thoracic and abdominal regions, furnish complementary
information about the anatomy and the metabolism of human body. Their com-
bination has a significant impact on improving medical decisions for diagnosis
and therapy [3] even with the combined PET/CT devices where registration
remains necessary to compensate patient respiration and heart beating. In par-
ticular, accuracy is fundamental when there is pathology.

Registration of these two modalities is a challenging application due to the
poor quality of the PET image and the large deformations involved in these
regions.

Most of the existing methods have as a limitation that regions placed inside
or near the main structures will be deformed more or less according to the
registration computed for the latter, depending on how local is the deformation.
A critical example of this situation occurs when a tumor is located inside the
lungs and there is a large volume difference between CT and PET images (due
to the breathing). In this case, the tumor can be registered according to the
transformation computed for the lungs, taking absurd shapes, such as shown
in Figure 1. Therefore, the aim of this paper is to avoid this undesired tumor
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misregistrations in order to preserve tumor geometry and, in particular, intensity
since it is critical for clinical studies, for instance based on SUV (Standardized
Uptake Value).

In Section 2, we summarize existing work related to this subject and we
provide an overview of the proposed approach. In Section 3, we describe the
segmentation of the targeted structures, i.e., the body, the lungs and the tumors.
The introduction of tumor-based constraints into the registration algorithm is
detailed in Section 4. Section 5 presents some results obtained on synthetic and
real data. Finally, conclusions and future works are discussed in Section 6.

Fig. 1. Axial and coronal slices in CT (first row) and in PET (second row). Result of
the non-linear registration without tumor-based constraints (third row). The absence
of these constraints leads to undesired and irrelevant deformations of the pathology.
On the images of the first and third columns, the cursor is positioned on the tumor
localization in PET data, while in the second and fourth columns, it is positioned
on the tumor localization in CT data. This example shows an erroneous positioning
of the tumor and illustrates the importance of tumor segmentation and the use of
tumor-specific constraints.

2 Related Work and Overview of the Proposed Approach

Some approaches have already been developed for registration of multimodality
images in pathological cases (pulmonary nodules, cancer), such as in [5]. However
these approaches compute a rigid (or affine) registration for all the structures
and they do not take into account the local nature of the deformations.

Rohlfing and Maurer [9] have developed a method of non-rigid registration
based on B-spline Free-Form Deformations as in [1], but they have added some
incompressibility constraints (using the properties of the Jacobian) which only
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guarantee the preservation of the volume of the structures but not their shape.
Loeckx et al. [10] have added a local rigidity constraint and they have obtained
very promising results.

A different approach, that we consider closer to physical reality of human
body, is based on the combination of rigid and non-rigid deformations, as sug-
gested by Little et al. [7] and Huesman et al. [6]. These methods are based on the
use of point interpolation techniques, together with a weighting of the deforma-
tion according to a distance function. Castellanos et al. [8] developed a slightly
different methodology, in which local non-rigid warpings are used to guarantee
the continuity of the transformation.

The advantage of the approach by Little is that it takes into account rigid
structures and the deformations applied to the image are continuous and smooth.
The method we propose is inspired by this one and adapted to develop a regis-
tration algorithm for the thoracic region in the presence of pathologies.

The data consist of 3D CT and PET images of pathological cases, exhibit-
ing tumors in the lungs. We assume that the tumor is rigid and thus a linear
transformation is sufficient to cope with its movements between CT and PET
images. This hypothesis is relevant and in accordance with the clinicians’ point
of view, since tumors are often a compact mass of pathological tissue. In order
to guarantee a good registration of both normal and pathological structures, the
first step consists of a segmentation of all structures which are visible in both
modalities. Then we define two groups of landmarks in both images, which cor-
respond to homologous points, and will guide the deformation of the PET image
towards the CT image. The positions of the landmarks are therefore adapted to
anatomical shapes. This is an important feature and one of the originalities of
our method. The deformation at each point is computed using an interpolation
procedure based on the landmarks, on the specific type of deformation of each
landmark depending on the structure it belongs to, and weighted by a distance
function, which guarantees that the transformation will be continuous.

The proposed approach has two main advantages:

1. As the transformation near the tumor is reduced by using the distance
weight, even if we have some small errors in the tumor segmentation (of-
ten quite challenging, mainly in CT), we will obtain a consistent and robust
transformation.

2. In the considered application, one important fact is that the objects to reg-
ister are not the same in the two images. For instance, the volume of the
“anatomical” tumor in CT is not necessarily the same as the volume of the
“functional” tumor in PET because the two modalities highlight different
characteristics of the objects. The registration of these two views of the tu-
mor must preserve these local differences, which can be very useful because
we could discover a part of the anatomy that is touched by the pathology
and could not be seen in the CT image. This also advocates in favor of a
rigid local registration.
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3 Segmentation

The first stage of our method consists in segmenting the most relevant structures
that can be observed in both modalities. In this paper, we have segmented the
body contours and the lungs. The body is segmented using automatic thresh-
olding and mathematical morphology operators. Lung segmentation is achieved
using the procedure introduced in [2] based on a hierarchical method that uses
mathematical morphology guided by the previously segmented structures. These
structures will be the base for our algorithm as landmarks will lean on them.

Nevertheless, the most important objects to segment are the tumors. In a
first approach, tumors have been segmented by a semi-interactive segmentation
algorithm, using the coordinates furnished by a “click” of an expert inside the
pathology. More precisely, the interaction consists for the physician in defining
a seed-point in the tumor of interest (in both CT and PET images). Next, both
selected points are used as the input to a relaxation region growing algorithm
[4]. This semi-interactive approach has been chosen due to the complexity of a
fully automatic tumor segmentation method, mainly in CT images. In addition,
this very reduced interaction is well accepted by the users, and even required
because it is faster than any non-supervised method and it assures consistent
results.

The segmented tumors in CT and PET images are used in the following in
order to:

1. calculate the rigid transformation (translation) of the tumor from PET image
(source image) to CT image (target image);

2. calculate the distance map to the tumor in PET that will constrain the
deformation to be rigid inside the tumor and increasingly non-rigid away
from it.

Figure 2 shows some results of the body contour, lungs and tumor segmen-
tations.

Fig. 2. Segmentation results. First and third columns: original CT and PET images
(axial and coronal views). Second and fourth columns: results of the segmentation of
the body contour, the lungs and the tumor in both modalities.
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4 Combining Rigid and Non-linear Deformations Using a
Continuous Distance Function

Based on pairs of corresponding landmarks in both images, the transformation
is interpolated through the whole image using the approach in [7]. We introduce
the rigid structure constraint so that the non-rigid transformation is gradually
weighted down in the proximity of predefined rigid objects.

In this paper, we apply this theoretical framework to a particular 3D case
dealing with just one rigid structure (only one tumor is present in each image).

4.1 Point-Based Displacement Interpolation

The first step in a point-based interpolation algorithm concerns the selection of
the landmarks guiding the transformation. Thus, homologous structures in both
images are registered based on landmarks points defined on their surface. The
resulting deformation will be exact at these landmarks and smooth elsewhere,
which is achieved by interpolation.

Let us denote by ti the n landmarks on the source image that we want to
transform to new sites ui (the homologous landmarks) in the target image.

The deformation at each point t in the image is defined as:

f(t) = L(t) +
n∑

j=1

BT
j σ(t, tj) (1)

under the constraints
∀i, ui = f(ti). (2)

The first term, L(t), represents the linear transformation of every point t in the
source image. The second term represents the non-linear transformation which
is, for a point t, the sum of n terms, one for each landmark. Each term is the
product of the coefficients of a matrix B (that will be computed in order to
satisfy the constraints on the landmarks) with a function σ(t, tj), depending on
the distance between t and tj :

σ(t, tj) = |t− tj |. (3)

This form has favorable properties for image registration [11]. However, different
functions can be used as the one described in [7].

With the constraints given by Equation 2, we can calculate the coefficients B
of the non-linear term by expressing Equation 1 for t = ti. The transformation
can then be defined in a matricial way:

ΣB + L = U (4)

where U is the matrix of the landmarks ui in the target image (the constraints),
Σij = σ(ti, tj) (given by Equation 3), B is the matrix of the coefficients of the
non-linear term and L represents the application of the linear transformation to
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the landmarks in the source image, ti. In our specific case, this linear transfor-
mation L is the translation of the tumor (between PET and CT images) found
in the preprocessing.

From Equation 4, the matrix B is obtained as:

B = Σ−1(U − L). (5)

Once the coefficients of B are found, we can calculate the general interpola-
tion solution for every point in R

3 as shown in Equation 1.

4.2 Introducing Rigid Structures

In this section, we show how to introduce the constraint imposed by the rigid
structures in the images. As mentioned in Section 2, the tumor has not exactly
the same size nor the same shape in PET and CT images. However, we know
that they correspond to the same structure and we register them in a linear way
(translation defined by the difference of their centers of mass).

To add the influence of the rigid structure O, we have redefined the function
σ(t, tj) as σ′(t, tj) in the following way:

σ′(t, tj) = d(t, O)d(ti, O)σ(t, tj) (6)

where d(t, O) is a distance function from point t to object O. It is equal to zero
for t ∈ O (inside the rigid structure) and takes small values when t is near the
structure. This distance function is continuous over R

3 and it weights the func-
tion σ(t, tj) (see Equation 3). So the importance of the non-linear deformation
will be controlled by the distance to the rigid object in the following manner:

– d(t, O) makes σ′(t, tj) tend towards zero when the point for which we are
calculating the transformation is close to the rigid object;

– d(ti, O) makes σ′(t, tj) tend towards zero when the landmark tj is near the
rigid object. This means that the landmarks close to the rigid structure will
hardly contribute to the non-linear transformation computation.

Equation 4 is then rewritten by replacing Σ by Σ′, leading to a new matrix
B′. Finally, we can calculate the general interpolation solution for every point
in R

3 as in Equation 1.

5 Results

We present in this section some results that we have obtained on synthetic
images, on segmented images and, finally, on real images.

5.1 Synthetic Images

This first experiment on synthetic images aims at checking that the rigid struc-
tures are transformed rigidly, that the landmarks are correctly translated too
and, finally, that the transformation elsewhere is consistent and smooth.
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This simulation was designed to be similar to the effect we can find with
real images. The rigid structure is the “tumor” and it is just translated. The
frame of our synthetic images simulate the contour of the body and the internal
black square replace the lungs. As we are taking the PET image as the one to
be deformed (source image), we simulate an expansive transformation because
the lungs in PET are usually smaller than in CT images. This is due to the fact
that the CT image is often acquired in maximal inspiration of the patient. The
result in this case is shown in the second row of Figure 3.

Fig. 3. Results on synthetic images. First row: effects of shrinking a frame (in grey in
the figure) and translating the “tumor” (in white in the figure). Second row: effects of
expanding a frame and translating the “tumor”. Source images (with a grid) are shown
on the left, target images are in the middle and the results of the transformation on
the right. The landmarks are located on the internal and external edges of the frame
in grey (on the corners and in the middle of the sides). The total number of landmarks
is 16 in both examples.

In order to observe the transformation all over the image, we have plotted
a grid on it. To illustrate the effect of the transformation we have simulated
a compression and an expansion of a frame and a simple translation of the
“tumor”. It can be seen in Figure 3 that the results with our synthetic images are
satisfactory as the shape of the rigid structure (the “tumor”) is conserved and the
landmarks are translated correctly. The frame, on which the landmarks are put,
is deformed in a continuous and smooth way. If we do not apply the constraints
on the rigid structure we obtain an undesired transformation as illustrated in
Figure 4 (the tumor is expanded).
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Fig. 4. Result on a synthetic image without constraints on the rigid structure when
we apply an expansion to the frame using 16 landmarks. Source image (with a grid) is
shown on the left, target image is in the middle and the result of the transformation
on the right.

However, it must be noticed that the edges of the frame are not totally
straight after the transformation. In general, the more landmarks we have, the
better the result will be. The positions of the landmarks are important too. Here
we have chosen to spread them uniformly over the internal and external edges
of the frame.

The algorithm has also been tested on 3D synthetic images with similar
results. We only show here the results on bi-dimensional images for the sake of
simplicity.

5.2 Segmented Images

In order to appreciate more clearly the effect of the transformation, we have first
used the results of the segmentation to create the simplified real images. They
are not only useful to analyze the deformation but it is also easier to define the
landmarks on them.

Landmarks have to correspond to the same anatomical reality in both images.
Thus we have decided to place them (uniformly distributed) on the surfaces of
the lungs.

Figure 5 shows some results on the simplified images. A grid is superimposed
on the segmented PET image for better visualization. In these cases, we have
fixed the corners of the images to avoid undesired deformations. In Figure 6,
we can see the undesired effect produced if there is no landmark to retain the
borders of the image.

For any number of landmarks, the tumor is registered correctly with a rigid
transformation. Nevertheless, the quality of the result depends on the quantity
of landmarks and their positions. If the number of landmarks is too low, the
algorithm does not have enough constraints to find the desired transformation.

Here the results are obtained by applying the direct transformation in order
to better appreciate the influence of the deformation in every region of the image.
However it is clear that the final result should be based on the computation of
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Fig. 5. Results on simplified images. First column: segmented PET images with a
grid for visualization purpose (landmarks are also marked in white). Second column:
segmented CT images with the corresponding landmarks. Third column: results of the
registration of the simplified PET and CT images. In the first row 4 landmarks have
been used (fixed on the corners of the image). Then additional landmarks are chosen
on the walls of the lungs (uniformly distributed): 4 in the second line, 8 in the third
one and 12 in the last one. In all the images the cursor is centered on the tumor in the
CT image.
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Fig. 6. Result on the simplified images. This is the kind of result we obtain if we do
not fix the corners of the image. Here we have only 8 landmarks on the walls of the
lungs.

Fig. 7. Results on real images. The CT image and the original PET image are shown in
the first column. Second and third columns, from left to right and from top to bottom:
superimposition of the CT image with the deformed PET image with 0 (only global
translation), 4, 12 and 16 landmarks.

the inverse transformation at each point of the result image in order to avoid
unassigned points.

5.3 Real Images

Figure 7 shows the results on real images. As happened with the simplified
images, we have to fix the corners of the images to avoid misregistrations.
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As previously, the tumor is registered correctly with a rigid transformation
in all the cases. However, the accuracy of the registration depends on the num-
ber and the distribution of the landmarks. If the number of landmarks is not
sufficient there are errors. It can be seen that with an appropriate number of
landmarks the registration is very satisfactory. Figure 7 shows that with only 16
landmarks in CT and in PET, the results are good and the walls of the lungs
are perfectly superimposed. The results are considerably improved, compared to
those obtained with 4 or 12 landmarks.

This shows that the minimal number of landmarks does not need to be very
large if the landmarks are correctly distributed, i.e., if they are located on the
points that suffer the most important deformations.

6 Conclusion and Future Work

We have developed a CT/PET registration method adapted to pathological
cases. It consists in computing a deformation of the PET image guided by a
group of landmarks and with tumor-based constraints. Our algorithm avoids
undesired tumor misregistrations and it preserves tumor geometry and inten-
sity.

One of the originalities of our method is that the positions of the landmarks
are adapted to anatomical shapes. In addition to this, as the transformation near
the tumor is reduced by the distance weight, even if the tumor segmentation is
not perfect, the registration remains consistent and robust. Moreover, the tumor
in CT and PET has not necessarily the same size and shape, therefore the
registration of these two modalities is very useful because all the information of
the PET image is preserved. This is very important in order to know the true
extension of the pathology for diagnosis and for the treatment of the tumor with
radiotherapy, for example.

Future work will focus on the automatic selection of the landmarks in order
to furnish a consistent distribution on the surfaces of the structures and to
guarantee a satisfactory registration.

A comparison with other methods (as Loeckx’s one) will provide some con-
clusions on the limits of each method and their application fields.

Although validation is a common difficulty in registration [12], we plan an
evaluation phase in collaboration with clinicians.
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Abstract. This paper presents a new approach to the question of sur-
face grading based on soft colour-texture descriptors and well known clas-
sifiers. These descriptors come from global image statistics computed in
perceptually uniform colour spaces (CIE Lab or CIE Luv). The method
has been extracted and validated using a statistical procedure based on
experimental design and logistic regression. The method is not a new the-
oretical contribution, but we have found and demonstrate that a simple
set of global statistics softly describing colour and texture properties, to-
gether with well-known classifiers, are powerful enough to meet stringent
factory requirements for real-time and performance. These requirements
are on-line inspection capability and 95% surface grading accuracy. The
approach is also compared with two other methods in the surface grad-
ing literature; colour histograms [1] and centile-LBP [8]. This paper is
an extension and in-depth development of ideas reported in a previous
work [11].

1 Introduction

There are many industries manufacturing flat surface materials that need to split
their production into homogeneous series grouped by the global appearance of
the final product. These kinds of products are used as wall and floor coverings.
Some of them are natural products such as marble, granite or wooden boards,
and others are artificial, such as ceramic tiles. At present, the industries rely
on human operators to carry out the task of surface grading. Human grading is
subjective and often inconsistent between different graders [7]. Thus, automatic
and reliable systems are needed. Capacity to inspect overall production at on-line
rates is also an important consideration.

In recent years many approaches to surface grading have been developed (see
Table 1). Boukouvalas et al [1][2][3] proposed colour histograms and dissimilarity
measures of these distributions to grade ceramic tiles.

Other works consider specific types of ceramic tiles; polished porcelain tiles,
which imitate granite. These works include texture features. Baldrich et al [4]
proposed a perceptual approximation based on the use of discriminant features
defined by human classifiers at factory. These features mainly concerned grain
distribution and size. The method included grain segmentation and features

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 13–23, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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measurement. Lumbreras et al [5] joined colour and texture through multires-
olution decompositions on several colour spaces. They tested combinations of
multiresolution decomposition schemes (Mallat’s, àtrous and wavelet packets),
decomposition levels and colour spaces (Grey, RGB, Otha and Karhunen-Loève
transform). Peñaranda et al [6] used the first and second histogram moments of
each RGB space channel.

Kauppinnen [7] developed a method for grading wood based on the Percentile
(or centile) features of histograms calculated for RGB channels. Kyllönen et al´s
[8] approach used colour and texture features. They chose centiles for colour,
and LBP (Local Binary Pattern) histograms for texture description.

Lebrun and Macaire [9] described the surfaces of the Portuguese ”Rosa Au-
rora” marble using the mean colour of the background and mean colour, absolute
density and contrast of marble veins. They achieved good results but their ap-
proach is very dependent on the properties of this marble. Finally, Kukkonen
et al [10] presented a system for grading ceramic tiles using spectral images.
Spectral images have the drawback of producing great amounts of data.

Table 1. Summary of surface grading literature

ground truth features time study accuracy %
Boukouvalas ceramic tiles colour no -
Baldrich polished tiles colour/texture no 92.0
Lumbreras polished tiles colour/texture no 93.3
Peñaranda polished tiles colour/texture yes -
Kauppinen wood colour yes 80.0
Kyllönen wood colour/texture no -
Lebrun marble colour/texture no 98.0
Kukkonen ceramic tiles colour no 80.0

Many of these approaches specialized in a specific type of surface, others
were not accurate enough, and others did not take into account time restrictions
in a real inspection at factory. Thus, we think surface grading is still an open
research field and in this paper present a generic method suitable for use in
a wide range of random surfaces. The approach uses what we call soft colour-
texture descriptors, which are simple and fast [to compute] global colour and
texture statistics. The method achieves good results with a representative data
set of ceramic tiles. Furthermore, the approach is appropriate for use in systems
with real-time requirements.

The final approach based on soft colour-texture descriptors (the proposed
method) was extracted from a statistical procedure used to determine the best
combination of quantitative/categorical factors in terms of a set of experiments
that maximize or minimize one response variable also involved in the experi-
ments. We used the accuracy rate of classifications as response variable. The
statistical procedure is a combination of experimental design [13] and logistic
regression [14] methods which have also been used for the literature approaches.
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2 Literature Methods

For comparison purposes we selected two methods from the literature: colour
histograms [1] and centile-LBP [8]. They are similar to ours, both are generic
solutions with low computational costs. Colour histograms are 3D histograms
(one axis per space channel) which are compared using dissimilarity measures.
In [1] the authors used the chi square test and the linear correlation coefficient.

χ2 =
∑

i
(Ri−Si)2

Ri+Si
r =

�
i(xi−x̄)(yi−ȳ)√�

i(xi−x̄)
√�

i(yi−ȳ)

When comparing two binned data sets with the same number of data points
the chi square statistic (χ2) is defined as above, where Ri is the number of
events in bin i for the first data set, and Si is the number of events in the same
bin for the second data set. The linear correlation coefficient (r) measures the
association between random variables for pairs of quantities (xi,yi), i = 1,...,N.
The mean of the xi values is x̄ and ȳ is the mean of the yi values.

The Centiles, are calculated from a cumulative histogram Ck(x), which is
defined as a sum of all the values smaller than x or equal to x in the normalized
histogram Pk(x), corresponding to the colour channel k. The percentile value
gives x when Ck(x) is known, so an inverse function of Ck(x) is required. Let
Fk(y) be the percentile feature, then Fk(y) = C−1

k (y) = x, where y is a value of
the cumulative histogram in the range [0%,100%].

The Local Binary Pattern (LBP) is a texture operator where the original 3x3
neighbourhood is thresholded by the value of the centre pixel (Figure 1b). Pixel
values in the thresholded neighbourhood are multiplied by the weights given
to the corresponding pixels (Figure 1c). Finally, the values of the eight pixels
are summed to obtain the number of this texture unit. Using LBP there are 28

possible combinations of texture numbers, then a histogram collects the LBP
texture description of an image.
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Fig. 1. Computation of local binary pattern (LBP)

In [8] centile and LBP features were combined in one measure of distance and
then used the k-NN classifier. The Euclidean distance in the feature space was
used for centile features. For LBP they used a log-likelihood measure: L(S,R) =
−
∑N−1

n=0 SnlnRn, where N is the number of bins. Sn and Rn are the sample
and reference probabilities of bin n. The distances were joined by simply adding
them. Previously both distances were normalized using the min and max values
of all the distances found in the training set.
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3 Soft Colour-Texture Descriptors

The presented method is simple, a set of statistical features describing colour and
texture properties are collected [15]. The features are computed in a perceptually
uniform colour space (CIE Lab or CIE Luv). These statistics form a feature
vector used in the classification stage where the well known k-NN and leaving-
one-out methods [16] were chosen as classifiers.

CIE Lab and CIE Luv were designed to be perceptually uniform. The term
’perceptual’ refers to the way that humans perceive colours, and ’uniform’ im-
plies that the perceptual difference between two coordinates (two colours) will
be related to a measure of distance, which commonly is the Euclidean distance.
Thus, colour differences can be measured in a way close to the human per-
ception of colours. These spaces were chosen to provide accuracy and perceptual
approach to colour difference computation. As the data set images were acquired
originally in RGB, conversion to CIE Lab or CIE Luv coordinates was needed.
This conversion is performed using the standard RGB to CIE Lab and RGB to
CIE Luv transformations [17] as follows.

RGB to XYZ:X
Y
Z

 =

0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

R
G
B


XYZ to CIE Lab: XYZ to CIE Luv:

L = 116(Y/Yn)1/3 − 16 L = 116(Y/Yn)1/3 − 16

a = 500((X/Xn)1/3 − (Y/Yn)1/3) u = 13L(u, − u,
n)

b = 200((Y/Yn)1/3 − (Z/Zn)1/3) v = 13L(v, − v,
n)

where
u, = 4X/X + 15Y + 3Z v, = 9X/X + 15Y + 3Z
u,

n = 4Xn/Xn + 15Yn + 3Zn v,
n = 9Xn/Xn + 15Yn + 3Zn

Xn, Yn, and Zn are the values of X , Y and Z for the illuminant (reference
white point). We followed the ITU-R Recommendation BT.709, and used the
illuminant D65, where [Xn Yn Zn] = [0.95045 1 1.088754].

We proposed several statistical features for describing surface appearance.
For each channel we chose the mean and the standard deviation. Also, by com-
puting the histogram of each channel, we were able to calculate histogram mo-
ments. The nth moment of z about the mean is defined as

µn(z) =
L∑

i=1

(zi −m)np(zi)

where z is the random variable, p(zi), i = 1, 2, ... , L the histogram, L the num-
ber of different variable values and m the mean value of z.
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Colour histograms can easily collect 80,000 bins (different colours) which are
all used to compute histogram dissimilarities. Centile-LBP approach uses 171
centile measures to compile colour property, and LBP histograms of 256 com-
ponents to collect texture property. We can consider that these approaches use
’hard’ colour and texture descriptors in comparison to our method which only
uses the mean, standard deviation and histogram moments from 2nd to 5th to
compile colour and texture properties (a maximum feature vector of 18 compo-
nents). By comparison we named the proposed method soft colour-texture de-
scriptors. This assertion is even more acceptable if we revise classical approaches
to texture description in the literature.

4 Experiments and Results

All the experiments were carried out using the same data set. The ground truth
was formed by the digital RGB images of 960 tiles acquired from 14 different
models, each one with three different surface classes given by specialized graders
at factory (see Table 2 and Figure 2). For each model two classes were close and
one was far away. Models were chosen representing the extensive variety that
factories can produce, a catalogue of 700 models is common. But, in spite of this
great number of models, almost all of them imitate one of the following mineral
textures; marble, granite or stone.

Table 2. Ground truth formed by 14 models of ceramic tiles

classes tiles/class size (cm) aspect
Agata 13, 37, 38 16 33x33 marble
Antique 4, 5, 8 14 23x33 stone
Berlin 2, 3, 11 24 16x16 granite
Campinya 8, 9, 25 30 20x20 stone
Firenze 9, 14, 16 20 20x25 stone
Lima 1, 4, 17 24 16x16 granite
Marfil 27, 32, 33 14 23x33 marble
Mediterranea 1, 2, 7 30 20x20 stone
Oslo 2, 3, 7 24 16x16 granite
Petra 7, 9, 10 28 16x16 stone
Santiago 22, 24, 25 28 19x19 stone
Somport 34, 35, 38 28 19x19 stone
Vega 30, 31, 37 20 20x25 marble
Venice 12, 17, 18 20 20x25 marble

Digital images of tiles were acquired using a spatially and temporally uniform
illumination system. Spatial and temporal uniformity is important in surface
grading [1,4,6] because variations in illumination can produce different shades
for the same surface and then misclassifications. The illumination system was
formed by two special high frequency fluorescent lamps with uniform illuminance
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Fig. 2. Samples from the ground truth. From up to down; three samples of petra and
marfil models, each one corresponding to a different surface grade.

along their length. To overcome variations along time, the power supply was
automatically regulated by a photoresistor located near the fluorescents.

In order to study the feasibility of the soft colour-texture descriptors on
perceptually uniform colour spaces we carried out a statistical experiment design.
Our aim was to test several factors to determine which combination gave the
best accuracy results. These factors related to colour spaces, classifiers, and sets
of soft colour-texture descriptors. Colour space: CIE Lab, CIE Luv, RGB and
Grey scale. Classifier: k-NN (k=1,3,5,7) and leaving-one-out (k=1,3,5,7). Soft
colour-texture descriptors: mean, standard deviation and 2nd to 5th histogram
moments.

The factors and their possible values defined 4096 different classification ex-
periments for each tile model. As the ground truth was formed by 14 tile models,
57,344 experiments had to be carried out. We decided to use a statistical tool,
the experiment design [13], in order to manage the large quantity of experiments
and results. This tool, in combination with the logistic-regression [14] method,
provides a methodology for finding the best combination of factors in a set of
experiments that maximize or minimize one response variable. In our case, we
were looking to maximize classification accuracy rates. This methodology follows
the plan presented in Figure 3.

When we want to perform a complex experiment or set of experiments effi-
ciently we need a scientific approach to planning the experiment. Experimental
design is a statistical tool which refers to the process of planning experiments
so that appropriate data can be collected for analysis with statistical methods.
This would lead to objective and valid conclusions. We chose to use a complete
factorial approach in the design of our experiment. This is the most advisable
approach for dealing with several factors [13]. Complete factorial design means
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Fig. 3. Block diagram representing the statistical procedure for extracting the best
combinations of factor values in a set of experiments or experimental design

that we select a fixed number of possible values for each factor and then carry out
experiments with all the possible combinations of them. In our case, each com-
bination of factors is a single experiment with a classification of surface grades.
By varying the factor values in a nested way independence between factors, it-
erations and experiments is achieved, guaranteeing that simple and interaction
effects are orthogonal.

From the set of performed experiments we computed the logistic model using
a logistic regression [14]. The achieved mean accuracy of all models is used as
the output variable (response variable). Thus, we summarize the 14 groups of
4096 experiments for tile models in a single set of 4096 experiments. We used
a logistic (logarithmic) approach rather than a linear one because the output
variable is probabilistic and the logarithmic method fits the extracted model
better. Using the extracted logistic model, y = β0 +

∑
βiXi, we compute the

predicted accuracy rate for each combination of factors using p = ey

1+ey . Then
we can sort the combinations by their predicted accuracies. The one with the
best accuracy will reveal the best combination of factors.

The best predicted accuracy rate in the experimental design carried out for
soft colour-texture descriptors was 97.36% with a confidence interval at 95%
[96.25%, 98.36%]. This result was achieved using CIE Lab colour space, 1 leaving-
one-out classifier and all the proposed soft colour-texture descriptors (mean,
standard deviation and 2nd to 5th histogram moments). The measured accuracy
with this combination was 96.7%.

Figure 4 shows that CIE Lab and CIE Luv spaces featured strongly in the
best sets of factor combinations. RGB space achieved almost null presence in
the 1000 best combinations rising to 11.9% and 16.3% in 1500 and 2000 combi-
nations. The Grey scale (with no colour information) was not among the best
combinations. Thus, perceptually uniform colour spaces show clearly better per-
formance than RGB with the soft colour-texture descriptors method. Also, this
figure suggests that best classifiers are derived from the leaving-one-out method.

A similar experimental design was performed for the literature methods. In
this case, we used the following factors and possible values. Colour space: CIE
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Fig. 4. Presence percentage of colour spaces and classifiers in the best combinations
sets ordered by the predicted accuracy rate in the experimental design performed for
soft colour-texture descriptors

Lab, CIE Luv, RGB and Grey scale. Classifier: k-NN (k=1,3,5,7) and leaving-
one-out (k=1,3,5,7). Distance measure: chi square test, linear correlation coef-
ficient, log-likelihood measure. Distance measures are used in these methods to
determine colour histograms and LBP histograms dissimilarities. In a study sim-
ilar to the one in Figure 4 it was concluded that RGB was the best space for
the colour histograms approach closely followed by CIE Lab. Nevertheless, in
centile-LBP, CIE Lab was the best followed by RGB. Chi square test was the
best distance in colour histograms, and linear correlation performed better in
centile-LBP. In both methods the leaving-one-out classifiers again showed the
best performance. Table 3 shows the best results achieved in each surface grading
method and its corresponding combination of factors.

In all methods the achieved performance is very good and quite similar. For
all of them predicted accuracy and confidence interval exceed factory demands
of 95%. Differences between the methods arose in terms of timing costs.

Figure 5 presents a comparison of the methods by timing costs (measured
on a common PC) for nine of the fourteen tile models. The soft colour-texture

Table 3. Best result of each surface grading approach

factors predicted c.i. 95% measured
accuracy accuracy

Soft colour-texture CIE Lab, 1-loo, 97.36% [96.25%, 98.36%] 96.7%
descriptors all descriptors

Colour histograms RGB, 1-loo 97.82% [96.50%, 98.54%] 98.67%
chi square

Centile-LBP CIE Lab, 1-loo, 98.26% [97.27%, 99.03%] 98.25%
linear correlation
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Fig. 5. Timing comparison of surface grading approaches using the corresponding best
combination of factors in each method

descriptors method provides the best performance, closely followed by centile-
LBP. The colour histograms approach compile by far the worst timing despite
the fact that this method does not need to translate the image data, originally
in RGB, into CIE Lab or CIE Luv spaces. Also, this method presents irregular
timing for the same data size. The berlin, lima and oslo models share data
size (tile and image size) but the method achieves significant timing differences
among them. This effect is due to the use of binary trees to store the colour
histograms of images. Images with larger numbers of different colours need larger
trees and more time to compute the differences between histograms. This timing
dependence related to data values does not appear in the other two methods
whose computational costs only depend on image size and the algorithm; Θ(n)+
C where n is the image size and C is a constant related to the algorithm used
for implementing the approach.

5 Conclusions

In this paper we present a new approach for the purpose of surface grading. This
approach is based on the use of soft colour-texture descriptors and perceptually
uniform colour spaces. Two statistics tools, experimental design and logistic
regression, has been used to study and determine the best combination of factors
providing the best accuracy rates using a ground truth composed of 14 ceramic
tile models. The best combination was: CIE Lab colour space, 1 leaving-one-out
classifier and all the soft colour-texture descriptors.

For comparison purposes, a similar study was performed for two literature
methods; colour histograms and centile-LBP. In this study we used the factor
of inter-histograms distance measures instead of soft colour-texture descriptors.
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Best combinations of factors were RGB colour space, 1 leaving-one-out classi-
fier and chi square distance for the colour histograms method, and CIE Lab, 1
leaving-one-out classifier and linear correlation for centile-LBP.

All the approaches achieved factory compliance exceeding the 95% of mini-
mum accuracy. The achieved percentages of all methods vary in less than 1%,
thus the accuracy results are quite similar. The differences among the methods
arose more clearly when we studied the timing costs. The best in timing was the
method based on soft colour-texture descriptors closely followed by centile-LBP.
Colour histograms performed worse and irregularly due to binary trees which
are used to efficiently store the histograms.

In a work recently reported [12] we studied and demonstrate the on-line
inspection capability of soft colour-texture descriptors carrying out a study of
real-time comliance and parallelization based on MPI-cluster technology.
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[6] J. A. Peñaranda, L. Briones and J. Florez. Color machine vision system for process
control in ceramics industry. SPIE. 3101:182–192, 1997.

[7] H. Kauppinen. Development of a color machine vision method for wood surface
inspection. Phd Thesis, Oulu University, 1999.
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Abstract. This paper proposes a novel multiclass support vector ma-
chine with Huffman tree architecture to quicken decision-making speed
in pattern recognition. Huffman tree is an optimal binary tree, so the
introduced architecture can minimize the number of support vector ma-
chines for binary decisions. Performances of the introduced approach are
compared with those of the existing 6 multiclass classification methods
using U.S. Postal Service Database and an application example of radar
emitter signal recognition. The 6 methods includes one-against-one, one-
against-all, bottom-up binary tree, two types of binary trees and directed
acyclic graph. Experimental results show that the proposed approach is
superior to the 6 methods in recognition speed greatly instead of decreas-
ing classification performance.

1 Introduction

Support vector machine (SVM), developed principally by Vapnik [1], provides a
novel means of classification using the principles of structure risk minimization.
The subject of SVM covers emerging techniques that have been proven to be
successful in many traditional neural network-dominated applications [2]. SVM
is primarily designed for binary classification problems. In real world, there are
many multiclass classification problems. So how to extend effectively it to mul-
ticlass classification is still an ongoing research issue [3]. The popular methods
are that multiclass classification problems are decomposed into many binary-
class problems and these binary-class SVMs are incorporated in a certain way
[4]. Some experimental results [3-9] verify that the combination of several bi-
nary SVMs is a valid and practical way for solving muticlass classification prob-
lems. Currently, there are mainly 6 methods for combining binary-class SVMs.
They are respectively one-against-all (OAA) [3,5], one-against-one (OAO) [3,6],
directed acyclic graph (DAG) [3,7], bottom-up binary tree (BUBT) [8,9], two
types of binary trees labeled as BT1 and BT2 [10]. For an N -class classification
problem, these methods need test at least log 2N binary SVMs for classification

� This work was supported by the National EW Laboratory Foundation
(NEWL51435QT220401)

�� Student Member, IEEE

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 24–33, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Support Vector Machines with Huffman Tree Architecture 25

decision. To decrease the number of binary SVMs needed in testing procedure, a
novel multiclass SVM with Huffman tree architecture (HTA) is proposed in this
paper. The outstanding characteristic of the introduced method lies in faster
recognition speed than OAA, OAO, DAG, BUBT, BT1 and BT2 instead of
lowering classification capability.

2 Support Vector Machines

For many practical problems, including pattern matching and classification, func-
tion approximation, optimization, data clustering and forecasting, SVMs have
drawn much attention and been applied successfully in recent years [1-9]. An
interesting property of SVM is that it is an approximate implementation of the
structure risk minimization induction principle that aims at minimizing a bound
on the generation error of a model, rather than minimizing the mean square er-
ror over the data set [2]. SVM is considered as a good learning method that can
overcome the internal drawbacks of neural network [1].

The main idea of SVM classification is to construct a hyperplane to separate
the two classes (labelled y ∈ {−1,+1}) [1]. Let the decision function be

f(x) = sign(w · x + b) (1)

where w is weighting vector, and b is bias and x is sample vector. The following
optimization problem is given to maximize the margin [1], i.e. to minimize the
following function

φ(w, ξ) =
1
2
||w||2 + C

l∑
i=1

ξi (2)

Subject to
yi((w · xi) + b) ≥ 1− ξi

ξi ≥ 0 i = 1, 2, · · · , l (3)

In (4) and (5), yi is the label of the ith sample vector xi; ξi and l are the
ith relax variable of the ith sample vector and the dimension of sample vector,
respectively [1].

The dual optimization problem of the above optimization problem is repre-
sented as

W (α) =
l∑

i=1

αi −
1
2

l∑
i,j=1

yiyjαiαjK(xi,xj) (4)

Subject to

0 ≤ αi ≤ C,

l∑
i=1

αiyi, i = 1, 2, · · · , l (5)

where K(xi,xj) is a kernel function. xi and xj are the ith sample vector and
the jth sample vector, respectively. α is a coefficient vector,α = [α1, α2, · · · , αl]
[1]. The decision function of the dual optimization problem becomes the form:
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f(x) = sign[(
l∑

i=1

αiyiK(xi,xj) + b)] (6)

3 SVM with HTA

On the basis of fast-speed and powerful-function computers, various methods for
signal recognition, character recognition and image recognition were presented
[11]. However, comparing with human brain, the methods are obviously too slow.
One of the most important reasons is that man identifies objects or patterns in
an unequal probability way and most of the existing pattern recognition methods
are based on a consideration: all patterns appear in an equal probability. How-
ever, in some applications such as radar emitter signal recognition, handwritten
digit recognition in postal service and letter recognition in natural text, some
patterns may come up frequently, while the others emerge rarely. If all patterns
are recognized equiprobably, the efficiency may be very low. On the contrary, if
the patterns with high probability are classified preferentially, the speed of rec-
ognizing all patterns can be quickened greatly. According to this idea, Huffman
tree architecture is introduced to combine multiple binary-SVMs for multiclass
classification problems.

An example of HTA with 8 nodes is given in Fig.1. HTA solves an N -class
pattern recognition problem with a hierarchical binary tree, of which each node
makes binary decision with an SVM. Using different probabilities of occurrence of
different patterns, Huffman tree can be constructed using the following algorithm
[12,13].

Step 1. According to N probability values {p1, p2, · · · , pN} given, a set F =
{T1, T2, · · · , TN} of N binary trees is constructed. For every binary tree Ti (i =
1, 2, · · · , N) , there is only one root node with probability value pi and its both
left-child tree and right-child tree are empty.

Step 2. Two trees in which root nodes have the minimal probability values
in F are chosen as left and right child trees to construct a new binary tree. The
probability value of root node in the new tree is summation of the probability
values of root nodes of its left and right child trees.

Step 3. In step 2, the two trees chosen in F are deleted and the new binary
tree constructed is added to the set F .

Step 4. Step 2 and step 3 are repeated till only one tree left in F . The final
tree is Huffman tree.

Huffman tree is an optimal binary tree [13], which can minimize the number
of SVMs for binary decisions. Once the probabilities of all nodes are given, the
structure of HTA is determinate and unique. The SVM-HTA classifier takes
advantage of both the efficient computation of HTA and the high classification
accuracy of SVMs.

To bring into comparison, the performances of the 7 methods including
OAA, OAO, DAG, BUBT, BT1, BT2 and HTA are analyzed in the following
description.
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Fig. 1. Huffman tree architecture with 8 nodes

OAA is perhaps the simplest scheme for combining binary SVMs to solve mul-
ticlass problems. In OAA, every class need train to distinguish the rest classes,
so there are N binary SVMs to be trained for an N -class classification problem,
while in testing procedure, Max Wins strategy is usually used to classify a new
example and consequently N binary decision functions are required to solve. The
Max Wins strategy is

f(x) = arg max
i

(wi · x + bi) (7)

Another scheme called pairwise is used in OAO, DAG and BUBT. In this ap-
proach, each binary SVM separates a pair of classes and N(N − 1)/2 binary
SVMs in total are trained when there are N classes. In decision phase, there
is much difference among the three methods. OAO uses traditional Max Wins
strategy and need test N(N − 1)/2 SVMs. DAG employs directed acyclic graph
in which every class is eliminated step by step from the list composed of all
classes. Thus, for a problem with N classes, N − 1 binary SVMs will be tested
in order to drive an answer. In BUBT, a bottom-up binary tree architecture is
introduced to incorporate N(N − 1)/2 binary SVMs trained and a tournament
strategy is used to classify a new example. Similar to DAG, BUBT also need
test (N − 1) binary SVMs for the classification decision. BT1 and BT2 use a
hierarchical scheme that a multiclass classification problem is decomposed into
a series of binary classification sub-problems. The difference between BT1 and
BT2 lies in different decomposition method. BT1 separates one class from the
rest classes with an SVM. In every step of decomposition, there is at least one
terminal node between two siblings. Thus, for an N -class problem, BT1 need
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train (N − 1) binary SVMs and (N2 + N − 2)/(2N) binary decision functions
are required to solve in testing procedure. While BT2 usually decomposes an
N -class problem in a peer-to-peer way into (N − 1) binary classification sub-
problems. So there are (N − 1) binary SVMs to train in training procedure and
only log 2N binary SVMs need test in decision phase.

According to the above analysis, OAA, OAO, DAG, BUBT, BT1 and BT2
need train at least (N−1) SVMs and require to test at least log 2N SVMs for an
N -class classification problem. While in HTA illustrated in Fig.1, only (N − 1)
binary SVMs need be trained for N -class problem. Because Huffman tree is the
optimal binary tree that has the minimal average depth, HTA need test much
smaller than log 2N SVMs for the classification decision. For example, in Fig.1,
if the probability values of node 1 to node 8 are 0.135, 0.048, 0.058, 0.39, 0.039,
0.23, 0.067 and 0.033, respectively, HTA need test 2537 SVMs and BT2 need
test 3000 SVMs when the number of testing samples is 1000. So among the 7
multiclass SVM classifiers, HTA need the minimal SVMs both in training and
in testing procedures.

4 Simulations

4.1 Performance Test

HTA is evaluated on the normalized handwritten digit data set, automatically
scanned from envelops by U.S. Postal Service (USPS) [7,14,15]. The USPS
database contains zipcode samples from actual mails. This database is com-
posed of separate training and testing sets. The USPS digit data consists of 10
classes (the integer 0 through 9), whose inputs are pixels of a scaled image. The
numbers 0 through 9 have 1194, 1005, 731, 658, 652, 556, 664, 645, 542, 644
training samples respectively and have 359, 264, 198, 166, 200, 160, 170, 147,
166, 177 testing samples respectively. Thus, there are totally 7291 samples in
training set and 2007 samples in the testing set. Every sample is made up of 256
features. The difference of the number of the 10 integers extracted from actual
mails verifies that the 10 integers occur in an unequal probability. To be con-
venient for testing, the occurring probabilities of the 10 classes 0 through 9 in
testing set are used to construct a Huffman tree. The probabilities of 0 through
9 are respectively 0.1789, 0.1315, 0.0987, 0.0827, 0.0997, 0.0797, 0.0847, 0.0732,
0.0827 and 0.0882. The constructed Huffman tree architecture is illustrated in
Fig.2.

Seven approaches OAA, OAO, DAG, BUBT, BT1, BT2 and HTA are used
to make comparison experiments. The computational experiments are done on
a Pentium IV-2.0 with 512 MB RAM using MATLAB implementation by Steve
Gunn. Gaussian kernel function K(xi,xj)

K(xi,xj) = e
|xi−xj |2

2σ (8)

and the same parameter C and σ are used in 7 SVM classifiers. We use similar
stop-ping criteria that the KKT violation is less than 10−3. For each class, 504
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Fig. 2. Huffman tree architecture for digit recognition

samples selected randomly from its training set are used to train the SVM classi-
fiers. The criterions for evaluating the performances of the 7 classifiers are their
error rate and recognition efficiency including training time and testing time. All
samples in the testing set are used to test the performances of the 7 classifiers.
Statistical results of many experiments using the 7 classifiers respectively are
given in Table 1.

Table 1 shows the results of experiments. HTA, BT1, BT2 and OAA consume
much shorter training time than OAO, DAG and BUBT. Because HTA, BT1
and BT2 need train the same number of binary SVMs, the training time of
the three methods has small difference. Similarly, the three methods including
OAA, BUBT and DAG consume nearly same training time because they train
the same number of SVMs. In the 7 methods, the testing time of HTA is the
shortest. In Table 1, HTA consumes 445.44 seconds of testing time, which is a
litter shorter than that of BT1 and BT2 and much shorter than that of OAA,
OAO, DAG and BUBT. From the recognition error rate, HTA is much superior
to OAA and OAO; HTA is a little superior to BUBT and BT1; HTA is not

Table 1. Experimental results of digit recognition

Methods Training Time (sec.) Testing time (sec.) Error rate (%)
HTA 8499.21 445.44 3.42
OAA 9470.81 1391.57 95.59
OAO 44249.48 6068.75 89.57
DAG 43153.70 1217.69 2.32
BUBT 44938.34 1255.61 3.52
BT1 8397.35 641.14 4.83
BT2 8125.30 463.57 3.40
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inferior to DAG and BT2. In a word, experimental results indicate that HTA
has high recognition efficiency and good classification capability.

4.2 Application

In this subsection, an application example of radar emitter signal recognition is
applied to make the comparison experiments of OAA, OAO, DAG, BUBT, BT1,
BT2 and HTA. In the example, there are 8 modulation radar emitter signals (la-
beled as RES1, RES2, RES3, RES4, RES5, RES6, RES7, RES8, respectively).
Some features of these radar emitter signals have been extracted in our prior
work [21,22]. Two features obtained by the feature selection method [23] are
used to recognize the 8 modulation radar emitter signals. In experiments, ev-
ery radar emitter signal uses 360 training samples and thereby there are 2880
training samples in total. The training samples are employed to draw a feature
distribution graph shown in Fig.3 to illustrate distribution of radar emitter signal
features in feature space.

According to experts’ experiences, the occurrence probabilities of the 8 mod-
ulation signals can be approximately considered as 0.135, 0.048, 0.058, 0.39,
0.039, 0.23, 0.067 and 0.033, respectively. Thus, the Huffman tree architecture
constructed using 8 radar emitter signals is shown in Fig.1. In testing phase,
there are 8000 testing samples in total and the number of testing samples of 8
radar emitter signals is computed in the proportion of 13.5%, 4.8%, 5.8%, 39%,
3.9%, 23%, 6.7% and 3.3%, respectively. Both training samples and testing sam-
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Table 2. Experimental results of RES recognition

Methods Training Time (sec.) Testing time (sec.) Error rate (%)
HTA 1917.70 85.55 12.28
OAA 2154.95 255.08 45.64
OAO 8007.84 815.58 84.83
DAG 8151.94 199.75 13.40
BUBT 7737.49 238.01 12.25
BT1 1951.73 134.31 26.85
BT2 1910.94 112.59 22.00

ples are extracted from radar emitter signals when signal-to-noise (SNR) varies
from 5 dB to 20 dB. Experimental results of OAA, OAO, DAG, BUBT, BT1,
BT2 and HTA are given in Table 2.

Figure 3 shows that there are some overlaps between RES 7 and RES 8 and
there is much confusion among RES 1, RES 2 and RES 3. This brings many
difficulties to correct recognition. Also, the features of 8 radar emitter signals
have good clustering. Table 2 presents the results of comparing 7 multiclass
SVM classifiers. Although HTA is appreciably inferior to BUBT in recognition
error rate and it needs a little more training time than BT2, HTA has higher
recognition efficiency than OAA, OAO, BUBT, DAG and BT1. Especially, HTA
is the best among the 7 methods for the testing time and it achieves lower
recognition error rate than OAA, OAO, DAG, BT1 and BT2.

The experimental results of digit recognition and radar emitter signal recog-
nition are consistent with theoretical analysis in Section 3. In pattern recognition
including radar emitter signal recognition and USPS digit recognition, training
is off-line operation, while testing is usually on-line operation. So the testing
speed of classifiers is more important, especially in radar emitter signal recogni-
tion. Experimental results verify that HTA is the fastest among the 7 multiclass
SVM classifiers instead of decreasing classification performance. This benefit is
especially useful when the number of classes is very large.

5 Concluding Remarks

In the methods for combining multiple binary SVMs to solve multiclass classi-
fication problems, binary tree architecture is a good one because it needs small
binary SVMs both in training phase and in testing phase. However, how to
choose the root nodes in each layer is a very important issue in engineering
applications when binary tree architecture is used to combine multiple binary-
support-vector-machines. From the view of intelligent aspects of human brain
in pattern recognition, this paper introduces Huffman tree architecture to de-
sign a multiclass classifier. For a real problem, the Huffman tree architecture
is unique. The outstanding characteristic of the introduced architecture lies in
faster recognition speed than the existing 6 methods. Though, this paper dis-
cusses the technique for quickening recognition speed only from the architecture
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for combining support vector machines. In fact, the recognition speed has also
relation to the number of support vectors obtained in training phase of support
vector machines. This problem will be further discussed in later paper.
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Abstract. An effective algorithm for automatic removal impulse noise from 
highly corrupted monochromatic images is proposed. The method consists of 
two steps. Outliers are first detected using local spatial relationships between 
image pixels. Then the detected noise pixels are replaced with the output of a 
rank-order filter over a local spatially connected area excluding the outliers, 
while noise-free pixels are left unaltered. Simulation results in test images show 
a superior performance of the proposed filtering algorithm comparing with 
conventional filters. The comparisons are made using mean square error, mean 
absolute error, and subjective human visual error criterion. 

1   Introduction 

Digital images are often corrupted by impulse noise due to a noise sensor or channel 
transmission errors. The major objective of impulse noise removal is to suppress the 
noise while preserving the image details. Various algorithms have been proposed for 
impulse noise removal [1-5]. Basically the most of these algorithms are based on the 
calculation of rank-order statistics [6]. If filters are implemented uniformly across an 
image then they tend to modify pixels that are undisturbed by noise. Moreover, they 
are prone to edge jitter when the percentage of impulse noise is large. Consequently, 
suppression of impulses is often at expense of blurred and distorted features. Effective 
techniques usually consist of two steps. First a filter detects corrupted pixels and then 
a noise cancellation scheme is applied only to detected noisy pixels. Recently 
nonlinear filters for monochrome images with a signal-dependent shape of the moving 
window have been proposed [7]. In this paper, we extend this approach to automatic 
suppressing the impulse noise in highly corrupted images. First outliers are detected 
using local spatial relationships between image pixels. Then the detected noise pixels 
are replaced with the output of an appropriate rank-order filter computed over a local 
spatially connected area excluding the outliers from the area. In the case of 
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independent impulse noise, the proposed detector greatly reduces the miss probability 
of impulse noise. The performance of the proposed filter is compared with that of 
conventional algorithms. 

The presentation is organized as follows. In Section 2, we present a new efficient 
algorithm for automatic detection of noise impulses. A modified filtering algorithm 
using the proposed detector is also described. In Section 3, with the help of computer 
simulation we test the performance of the conventional and proposed filters. Section 4 
summarizes our conclusions. 

2   Automatic Detection and Removal Impulse Noise 

In impulse noise models, corrupted pixels are often replaced with values near to the 
maximum and minimum of the dynamic range of a signal. In our experiments, we 
consider a similar model in which a noisy pixel can take a random value either from 
sub-ranges of the maximum or the minimum values with a given probability. The 
distribution of impulse noise in the sub-ranges can be arbitrary. To detect impulse 
noise in an image, we use the concept of a spatially connected neighborhood (SCN). 
An underlying assumption is as follows: image pixels geometrically close to each 
other belong to the same structure or detail. The spatially connected neighborhood is 
defined as a subset of pixels {vn,m} of a moving window, which are spatially 
connected with the central pixel of the window, and whose values deviate from the 
value of the central pixel vk,l at most predetermined quantities -εv and +εv [7]: 

 ( ) { }( )k ,l n ,m k ,l v n,m k ,l vSCN v CON v : v v vε ε= − ≤ ≤ + , (1) 

where CON(X) denotes four- or eight-connected region including the central pixel of 
the moving window. The size and shape of a spatially connected neighborhood are 
dependent on characteristics of image data and on parameters, which define measures 
of homogeneity of pixel sets. So the spatially connected neighborhood is a spatially 
connected region constructed for each pixel, and it consists of all the spatially 
connected pixels, which satisfy a property of similarity with the central pixel.  

We assume that the size of the SCN of a noise cluster is relatively small comparing 
to that of details of image to be processed. Therefore impulsive noise can be detected 
by checking the size of the cluster; that is, if S  M then the impulse is detected. Here 
S=SIZE(SCN) is the number of pixels included in the SCN constructed around the 
central pixel of the moving window with the parameter εv for adjacent pixels, M is a 
given threshold value for detection of noise clusters. Actually the detection depends 
on two integer parameters; that is, εv and M. Extensive computer simulations have 
shown that the best value of M, which yields minimum detection errors of noise 
clusters for various noise distributions, can be expressed as a function of a given noise 
distribution and a chosen value of εv. Let us consider model of impulsive noise. A test 
gray scale image has Q=256 quantization levels and N pixels. The probability of 
independent corruption of image pixels by impulse noise at the level q is equal to P(q) 
(0 q Q-1). The probability of noise impulse occurring can be calculated as 

 ( )
1

0

Q

q

p P q
−

=

= ,  (2) 
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and the expected number of impulses in the image is given by 

 impN pN= .  (3) 

For the considering detector, if the absolute difference between the noise impulse and 
pixels of neighborhood is less or equal to a chosen value of εv then the impulse is 
invisible for the detector. Therefore the total number of detectable impulses is less 
than Nimp in Eq. (3). In this case the expected number of outliers is given by 

 ( )
1

0

Q

imp
q

N N P q
−

=

=% % , (4) 

where ( )P q%  is the probability of detection of an impulse at the level q. If the 

distribution of the image signal is spatially homogeneous then the probability of noise 
impulse detection can be approximately estimated with the help of the histogram of 
uncorrupted test image, 
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where {hq} is the histogram of uncorrupted image, [.] denotes the following function: 
1, if the statement in brackets is true and 0, otherwise. 

Since the histogram of the uncorrupted image is usually inaccessible then the 
estimation of this histogram can be written as  
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where { }qh%  is the available histogram of the observed noisy image. 

The proposed detector of impulse noise takes into account the size of the SCN. 
Now we know how many impulses can be detected by the detector. Obviously, such 
detector omits impulses with the size greater than M. The probability Pr(M) of 
occurrence of four-connected noise clusters of the size M can be computed using the 
formulas given in the papers [8, 9]. In this way the expected number and the 
probability of occurrence of all clusters of the size greater than M can be obtained. 
We can state that if the expected number of clusters of the size greater than M (for a 
given image and a noise distribution) is less than unity then the value of the threshold 
M is optimal. Formally the statement can be written as 

 
1

1 1

  1
S S

imp S imp imp
m m

M S if N N N Pr( m ) N N Pr( m )
−

>
= =

= = − < ≤ −   (7) 

where imp SN >  is the expected number of clusters of the size greater than S pixels. 

The probability of occurrence of a four-connected noise cluster of the size M in a 
moving window can be computed using the addition formula of probabilities. The 
noise cluster occurs simultaneously with one of the mutually exclusive events H1,…, 
HN. Here Hk is the event denoting that there is a noise cluster of the size exactly M 
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noise impulses surrounded by uncorrupted image pixels. The probability of 
occurrence of a noise cluster of the size M at a given image pixel is given as [8, 9]  

  ( )
1

N

k
k

Pr( M ) Pr H
=

= ,      (8) 

where the probability of the event Hk is ( )1 kE ( M )M
kPr( H ) P P= − , Ek(M) is the 

number of surrounded uncorrupted image pixels. Taking into account that some of the 
probabilities Pr(Hk) are equal, the Eq.(8) is computationally simplified to 

 ( )( )
1

1 k

K ( M )
E ( M )M

k
k

Pr( M ) p C M p
=

= − ,     (9) 

where K(M) is the number of groups, each of them contains Ck(M) events Hk with the 
equal probabilities Pr(Hk), k=1,...K(M). Ck(M), Ek(M) are coefficients determined 
from the geometry (binary region of support) of the cluster of noise. For example, the 
number of groups with M=2 is K(2)=1, and the number of surrounding four-
connected uncorrupted pixels is E1(M)=6. The number of the events is C1(M)=4 (four 
possible variants of the noise cluster on the grid including the given pixel). These 
coefficients are provided in Table 1. 

Table 1. Coefficients for calculating the probability of impulsive clusters 

Size of 
cluster M 

K(M) k Ck(M) Ek(M) 

1 1 1 1 4 
2 1 1 4 6 
3 2 1 

2 
12 
6 

7 
8 

4 3 1 
2 
3 

36 
32 
8 

8 
9 

10 
5 5 1 

2 
3 
4 
5 

5 
100 
140 
60 
10 

8 
9 

10 
11 
12 

With the help of Table 1 and Eq. (9), the probability of occurrence of a four-
connected impulse noise cluster of the size M can be easily calculated. Table 2 
presents the probability of occurrence of impulse cluster of size M versus the 
probability of impulse noise on a rectangular grid. We see that when the probability of 
impulse noise is high, the occurrence of impulse cluster is very likely.  
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Table 2. The probability of occurrence of impulse clusters of the size M versus the probability 
p of impulse noise 

Finally the proposed algorithm of impulse noise detection consists of the following 
steps.  

• Choose two initial values for εv∈[1,(Q-1)], say εv max and εv min, and then 
calculate εv=(εv max+εv min)/2. 

• Compute impN%  and M using Eqs. (4)-(7), noise distribution and threshold εv. 

• Form the SCN with εv and calculate the number of detected impulses, say D. 

• Compare D with impN% , and if (D= impN%  or εv =εv max or εv=εv min) then the 

optimal pair of εv and M is found, else go to the next step. 

• If D> impN%  then set εv min=εv, else set εv max=εv. Calculate εv=(εv max+εv min)/2 and 

go to the second step. 

Computer experiments with test images corrupted by various kinds of impulse noise 
have showed that the integer function D(εv) is monotonically decreasing. Thus the 
solution of the proposed iterative algorithm with respect to εv is unique. Since εv max, 
εvmin, and εv are integer then the number of iterations for Q=256 is limited by 7. 

When the map of detected impulses with the calculated parameters is obtained, the 
noisy pixels are replaced with the output of any appropriate filter. In our case the 
median value of at least 3 uncorrupted neighboring pixels is used. 

3   Computer Experiments 

Signal processing of an image degraded due to impulse noise is of interest in a variety 
of tasks. Computer experiments are carried out to illustrate and compare the 
performance of conventional and proposed algorithms. In this paper, we will base our 
comparisons on the mean square error (MSE), the mean absolute error (MAE), and a 
subjective visual criterion. The empirical normalized mean square error is given by  
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1 1
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1 1
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−
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Probability of impulse noise  M 
p=0.01 p=0.1 p=0.2 

0 0.99 0.9 0.8 
1 5.6x10-3 6.5x10-2 8.2x10-2 

2 3.7x10-4 2.1x10-2 4.2x10-2 

3 1.7x10-5 8.3x10-3 2.8x10-2 

4 7x10-7 3x10-3 1.8x10-2 

5 2.8x10-8 1.1x10-3 1.1x10-2 



 Automatic Removal of Impulse Noise from Highly Corrupted Images 39 

where {vn,m} and { }n,mv̂  are the original image and its estimate (filtered image), 

respectively. In our simulations, Nx=256, My=256 (256x256 image resolution), and 
each pixel has 256 levels of quantization. The empirical normalized mean absolute 
error is defined as 

 1 1

1 1

yx

yx

MN

n,m,k n,m,k
n m

MN

n,m,k
n m

ˆv v
MAE

v

= =

= =

−
= .   (11) 

The use of these error measures allows us to compare the performance of each filter. 
Fig. 1 shows a test image. The test image degraded due to impulsive noise is shown in 
Fig. 2.  

  

Fig. 1. Original image Fig. 2. Noisy image 

The probability of independent noise impulse occurrence is 0.2. In computer 
simulation, the values of impulses were set to 0-15 or 240-255 with equal probability. 
Table 3 shows the errors under the MSE and MAE criteria for the median filter 
(MED) of 3x3 pixels, fuzzy technique (FF) [5], and the proposed filter. 

Table 3. Impulse noise suppression with different filters 

Measured Errors 
Type of Filters MSE MAE 
Noisy image 0.17 0.162 

MED 3x3 0.065 0.012 
FF algorithm 0.023 0.009 

Proposed algorithm 0.019 0.005 

The parameters M and εv are automatically calculated with the proposed algorithm 
described in Section 2. We see that in this case the proposed filter has the best 
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performance with respect to the MSE and MAE. Now we carry out visual comparison 
of the filtering results with the median and the proposed filters. Figures 3 and 4 show 
the filtered images obtained from the noisy image with the median filter and the 
proposed filter, respectively. The proposed filter using the spatial pixel connectivity 
has a strong ability in impulse noise suppression and a very good preservation of fine 
structures and details. The visual comparison shows that the filtered image with the 
median filter is much smoother than the output image after filtering with proposed 
method. 

  

Fig. 3. Filtered image by MED filter Fig. 4. Filtered image by the proposed method 

4   Conclusion 

In this paper, we have presented a new algorithm for automatic detection and 
suppression of impulse noise in highly corrupted images. The filter utilizes an explicit 
use of spatial relations between image elements. When the input image is degraded 
due impulse noise, extensive testing has shown that the proposed spatially adaptive 
filter outperforms conventional filters in terms of the mean square error, the mean 
absolute error, and the subjective visual criterion. 
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Smoothing of Polygonal Chains for 2D Shape
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Abstract. We have developed a G2-continuous cubic A-spline, suitable
for smoothing polygonal chains used in 2D shape representation. The
proposed A-spline scheme interpolates an ordered set of data points in
the plane, as well as the direction and sense of tangent vectors asso-
ciated to these points. We explicitly characterize curve families which
are used to construct the A-spline sections, whose members have the re-
quired interpolating properties and possess a minimal number of inflec-
tion points. The A-spline considered here has many attractive features:
it is very easy to construct, it provides us with convenient geometric
control handles to locally modify the shape of the curve and the error of
approximation is controllable. Furthermore, it can be rapidly displayed,
even though its sections are implicitly defined algebraic curves.

Keywords: Algebraic cubic splines, polygonal chain, data interpolation
and fitting, 2D shape representation.

Mathematics Subject Classification: 65D07(splines), 65D05 (interpo-
lation), 65D17 (Computer Aided Design).

1 Introduction

Several geometry processing tasks use polygonal chains for 2D shape representa-
tion. Digital image contouring, snakes, fitting from ”noisy” data, interactive
shape or font design and level set methods (see for instance [5], [7], [10], [11])
are some illustrating examples. Suppose a curve is sampled within some error
band of width 2 ε around the curve. Since the sampled point sequence S could
be dense, a simplification step is often used to obtain coarser or multiresolution
representations. A polygonal chain C approximating the points of S is cons-
tructed, with the property that all points in S are within an ε-neighborhood of
the simplified polygonal chain C.

Prior work on using algebraic curve spline in data interpolation and fitting
focus on using bivariate barycentric BB-form polynomials defined on plane trian-
gles ([1], [5],[8],[9]) Some other authors use tensor product A-splines ([2]).
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M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 42–50, 2005.
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Fig. 1. Sequence of polygonal chains

2 Some Notations and Preliminaries

These A-spline functions are easy to construct. The coefficients of the bivari-
ate polynomial that define the curve are explicitly given. There exist convenient
geometric control handles to locally modify the shape of the curve, essential for
interactive curve design. Each curve section of the A-spline curve has either
no inflection points if the corresponding edge is convex, or one inflection point
otherwise, therefore the A-spline sections have a minimal number of inflection
points. Since their degree is low, the A-spline sections can be evaluated and
displayed very fast. Moreover, some of them are also ε-error controllable.

All that features make these error-bounded A-spline curves promising in
the above mentioned applications, which happen to be equivalent to the inter-
polation and/or approximation a polygonal chain of line segments with error
bounds.

Given an input polygonal chain C, we use a cubic A-spline curve A to
smoothly approximate the polygon by interpolating the vertices as well as the
direction and sense of the given tangent vectors at the vertices. We also inter-
polate curvatures at the polygon vertices to achieve G2-continuity.

The present work is a natural generalization of [5], where once the contour of
digital image data has been extracted, the algorithm computes the breakpoints
of the A-spline, i.e the junction points for the sections that make up the A-
spline curve. Inflection points are also added to the set of junction points
of the A-spline. Tangent lines at the junction points are computed using a
weighted least square linear fit (fitting line), instead of the classical techniques.
This G1-continuous A-spline scheme interpolates the junction points along with
the tangent directions and least-squares approximates the given data between
junction points.

The A-spline curve A discussed in this paper consists of a chain of curve sections
Ai. Each section is defined as the zero contour of a bivariate BB-polynomial
of degree 3. We show that these curve sections are convex, connected and
nonsingular in the interior of the regions of interest.
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Fig. 2. Selecting the tangent vector using: 1. Fitting line, 2. Interpolation parabola, 3.
Fourth degree interpolation polynomial

2.2 Convexity of an Edge

2.1 Derivative Data

On each vertex Qi of the polygonal chain C, we assume that the slope of the
tangent line ti as well as the curvature κi of A at Qi are given. The values ti
can be estimated from the given dense sample data S by means of a weighted
least square linear fit (fitting line) technique, such as proposed in [5], which has
a better performance as the ones usually recommended in the literature (see for
instance [1] or [2]). Figure 2 illustrates the performance of different methods.
The direction of vector −→vi may be determined by the estimated value ti.

To compute the curvature values κi, we propose the following procedure.
Among all (implicitly defined) plane quadratic curves f(x, y) = 0passing through
Qi, such that the tangent line of f at Qi has slope ti, compute the quadratic
curve with implicit equation f∗(x, y) = 0 minimizing the weighted sum

Wi :=
∑

k

(
f(P k

i )
dk

i

)2

where P k
i are points in S which are in a neighborhood of Qi, P k

i �= Qi, and
dk

i := ‖Qi−P k
i ‖. Then, set κi equal to the curvature of f∗(x, y) = 0 at Qi. The

computation of f∗(x, y) = 0 reduces to a linear least squares problem, hence it
is not expensive.

Definition 1 Given two consecutive vertices of C, we call the edge passing
through them convex if the associated tangent vectors point to opposite sides
of the edge. Otherwise, we call the edge non convex (see Fig. 3).

.

In the non convex case, in an analogous way as explained in [5], we insert
to C a new intermediate vertex for the position of the inflection point and the
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3 Polygonal Chain Approximation by Cubic A-Spline
Curves

3.1 Triangle Chain

2.3 ε-Error Controllability

Fig. 3. Examples of convex and non convex cases
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tangent line at this new vertex is computed using a weighted least square linear
fit. Further, the corresponding curvature value is set equal to 0, since it happens
to be an inflection point. In this way we reduce a non convex edge of C to the
union of two consecutive convex edges.

Definition 2 Given a magnitude ε > 0, we call an A-spline ε-controllable if
the points of each section Ai are at most at distance ε to the corresponding edge
A.

We show that the proposed A-spline scheme is ε-controllable. Note that if we
use barycentric coordinates (u, v) with respect to a triangle, such that the edge
Ei corresponds to the line v = 0, then Ai is ε-controllable iff |v| ≤ εi, for some
0 ≤ εi depending on ε and of the geometry of the triangle.

Given an ordered set of n points in the plane C and prescribed tangent vectors
at these points, we want to construct a cubic G2-continuous A-spline curve A,
interpolating these points, as well as the direction and sense of their prescribed
tangent vectors.

Abusing of notation, let us introduce a new sequence of points Qi
j. First, set

Qi
0 := Qi and Qi

2 := Qi+1. Each pair of consecutive points Qi
0, Q

i
2 ∈ C with

their tangent directions define a triangle Ti, with vertices Qi
0, Q

i
1, Q

i
2 , where Qi

1

.
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is the point of intersection of the tangent directions at Qi
0 and Qi

2. In order to
obtain a continuous curve A, we must require that Qi

2 = Qi+1
0 for i = 1, ...n− 1.

Additionally, to construct a closed curve, it is necessary that Qn
2 = Q1

0.

Ai may be written in barycentric coordinates (u, v, w), w = 1 − u − v with
respect to the vertices of Ti as,

Ai : fi (u, v) =
3∑

j=0

3−j∑
k=0

ai
kju

kvjw3−k−j = 0 (1)

Note that after introducing barycentric coordinates the vertex Qi
0 is trans-

formed in the point (1, 0), while the vertex Qi
2 is transformed in the point (0, 0).

It is well known that Ai interpolates Qi
0 and Qi

2 if the coefficients ai
0,0 and

ai
3,0 in (1) vanish. Furthermore, the tangent lines to Ai at Qi

0 and Qi
2 are the

corresponding sides of the triangle Ti iff ai
0,1 and ai

2,1 vanish. Assuming that the
previous restrictions on the coefficients of are satisfied, thenA is G1−continuous.

Since the section Ai is traced out from the initial point Qi
0 to the point Qi

2 then,
according to the sense of vector −→vi associated to Qi

0 we must consider two cases
(see Fig. 5):

• Inner case: −→vi points out to the halfplane containing Qi
0.

• Outer case: −→vi does not point out to the halfplane containing Qi
0.

In the inner case, section Ai is the zero contour of the cubic curve with
equation

Ii(u, v) : −v3 + (1−2ui)3

2u3
i

uw2 + (1−2ui)3

2u3
i

u2w − ki
2

(1−2ui)3

2u3
i

v2w

− ki
0

(1−2ui)3

2u3
i

uv2 + (ki
2 + ki

0)
(1−2ui)4

2u4
i

uvw = 0

3.2 G1-Continuity

3.3 Explicit Expressions for Ai

Fig. 4. Interpolating points Qi with their prescribed tangent vectors −→vi
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In the outer case, section Ai is the zero contour of the cubic curve with
equation

Oi(u, v) : −v3 − (1−2ui)3

2u3
i

uw2 − (1−2ui)3

2u3
i

u2w + ki
2

(1−2ui)3

2u3
i

v2w

+ ki
0

(1−2ui)3

2u3
i

uv2 + (ki
2 + ki

0)
(1−2ui)4

2u4
i

uvw = 0

In the next theorem we show that Ai is contained in the plane region
Ωi. In the inner case, Ωi is the interior of the triangle T with vertices
(0, 0), (1, 0), (0, 1) otherwise, Ωi is equal to R = {(u, v) : −0.5 < v < 0, 0 <
u < 1− u− v}.

Theorem 1 The plane cubiccurves Ii(u, v), Oi(u, v), satisfy the followingproper-
ties:

1. They interpolate the points Qi
0, Q

i
2. Their tangent lines at Qi

0 and Qi
2 are

the corresponding sides of Ti.

2. At Qi
0 they have curvature κi

2 = ki
2∆i

(gi
2)3 and at Qi

2 have curvature κi
0 = ki

0∆i

(gi
0)3 .

Here gi
j = ‖Qi

j −Qi
1‖ and ∆i denotes the area of Ti.

3. Geometric handles: The curves Ii interpolate the point with barycentric
coordinates (ui, 1 − 2ui) while the curves Oi interpolate the point with
barycentric coordinates ( ui

4ui−1 ,
2ui−1
4ui−1). Recall that these interpolation

points lay on the line 1− 2u− v = 0.

4. In Ωi, Ii and Oi are non singular, connected and convex.

5. If εi ≥ 1 then, curves Ii and Oi are εi-controllable. Otherwise, for 0 ≤
ui ≤ 1−εi

2−εi
, Ii are εi-controllable and for 0 ≤ ui ≤ εi−1

3εi−2 , Oi are
εi-controllable.

The proof of this theorem is somewhat long and due page limitation could
not be completely included. We will present some arguments:

1. See the section G1-continuity.

Fig. 5. Interpolating the sense of tangent vectors. (a) Inner case (b) Outer case.

.

2. See [6].
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3. It is a straightforward computation.

4. For the inner case, see [1], [6] and [8]. For the outer case, the techniques
used in the inner case do not apply, furthermore, the curves Oi have not
been studied before. Considering the pencil L of lines passing through Qi

1,
the value of the v-coordinate of the intersection of each line l ∈ L with
any of the curves Oi satisfies a cubic equation, that rewritten in BB-form
permits, using range analysis such as in [4], to ensure that inside ofR, l and
each curve have only one intersection point, counting multiplicity. Hence
these new curves are connected and non singular inside R. Assuming the
existence of an inflection point in R, since the curves Oi are connected
and additionally they are convex in a neighborhood of Qi

0 as well as of Qi
2,

then there are at least two inflection points inR. Thus considering the line
passing through two consecutive inflexion points inR, it is straightforward
to show that this line cuts the curve at least in 4 points, but the curves
are cubic, a contradiction to Bezout Theorem.

5. For each of the curves Ii, Oi, let us denote them as f i(u, v) = 0, it was com-
puted their partial derivatives with respect to the variable u, f i

u(u, v) = 0
and using elimination theory, we eliminated the variable u from the sys-
tem of equations {f i(u, v) = 0, f i

u(u, v) = 0}, obtaining a polynomial
pi(v, ui, k

i
0, k

i
2), such that for fixed values of the parameters (ui, k

i
0, k

i
2),

the roots v of pi(v, ui, k
i
0, k

i
2) = 0 correspond to the v-coordinate of the

relative extremes of v = v(u) on the graph of curve f i(u, v) = 0. Con-
sidering the limit cases (ki

j = 0 and ki
j → ∞, j = 0, 2), we obtained the

above mentioned intervals for the parameter ui in order to ensure |v| ≤ εi.

We already have shown that A is G1-continuous. The above proposed cubic
sections Ai have, by construction, free parameters ki

j , j = 0, 2 that permit us to
set the curvature value of Ai at Qi equal to the curvature values κi estimated
at each vertex Qi ∈ C in the above section Derivative data. Hence, A is
G2-continuous.

Given a polygonal chain C, for each section Ai we have a free parameter, which
plays the role of a shape control handle: the selection of an additional point
in the interior of the region of interest Ωi to be interpolated. If one wishes to
choose this point (with barycentric coordinates (ui, vi) ) in a non supervised
way, we propose the following procedure: compute the barycentric coordinates
(uc

i , v
c
i ) of the center of mass of all points in Ωi, and set ui := 2+uc

i−2vc
i

5 , hence
the interpolating point is the point on the line 1 − 2u − v = 0 with minimal
distance to the points in Ωi.

3.4 G2-Continuity

3.5 Shape Control Handles
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The algorithm proposed in this paper was successfully applied to the approxi-
mation of the contours of magnetic resonance images (MRI) of a human head
(from Rendering test data set, North Carolina University, ftp.cs.unc.edu). In
the same plot, the figure shows the A-splines which approximate 25 contours.
Each contour was obtained from a previous processing of a digital image that
corresponds to a cross section of the human head. The results were obtained
from a MATLAB program that constructs and displays the A-spline curve ap-
proximating the contour data.

In comparison to [2], the A-spline proposed in the present work achieves G2-
continuity with the minimal degree (3) and we do not impose restrictions for the
interpolation of tangent vectors. On the other hand, we interpolate not only the
directions of the tangent vectors but also their sense, which is a completely new
feature in this context. Moreover, the high flexibility of our A-spline scheme
facilitates, with few adaptations, to solve efficiently another related problems

3.6 Curve Evaluation and Display

3.7 Numerical Examples

Fig. 6. Approximation of the contours of MRI of a human head

3.8 Conclusions

For intensive evaluation of the curve, a quadtree subdivision process on the
triangle Ti could be used . On each sub-triangle, by means of blossom principle
for triangular BB-functions, the BB-net corresponding to the sub-triangle is
computed and we discard those sub-triangles on which the BB-polynomials have
only positive or negative coefficients. After few recursion steps, we obtain a set
of sub-triangles providing us a set of pixels, whose centers are approximately on
the curve. See [4] for more details.



50 S. Behar et al.

References

[1] Bajaj C., Xu G. A-Splines (1999), Local Interpolation and Approximation us-
ing Gk-Continuous Piecewise Real Algebraic Curves, Computer Aided Geometric
Desing, 16: 557-578.

[2] Bajaj C., Xu G. (2001), Regular algebraic curve sections (III) - Applications
in interactive design and data fitting. Computer Aided Geometric Desing, 18:
149-173.

[3] Behar S., Hernández V., Alvarez L., Estrada J., Computing a revolution shell using
a G2-continuous A-spline and a semidiscrete method for the EDPs, Proceedings
IV, ITLA, 2001, 241-250, ISBN: 959-7056-13-5.

[4] Estrada, J. , Mart́ınez D., León, D., Theisel, H. , Solving Geometric Problems
using Subdivision Methods and Range Analysis, in: Mathematical Methods for
Curves and Surfaces: Tromso 2004, M. Daehlen, K. Morken and L.L. Shumaker
(eds.), 2005, 101-114, Nashboro Press, Brentwood, TN.

[5] Hernández, V., Mart́ınez D., Estrada J. (2002), Fitting a conic A-spline to contour
image data, Revista Investigación Operacional, Vol. 29, 55-64.

[6] Hernández, V., Behar, S., Estrada J., Geometric design by means of a G2 con-
tinuous A-spline, Approximation, Optimization and Mathematical Economics,
Physica-Verlag, Heidelberg, 2001, 133-145.

[7] Kass,M., Witkin, A., Terzopoulos, D. (1988), Snakes: active contour models, In-
ternational. J. Comput. Vision, 321-331.

[8] Paluszny M, Patterson R., G2-continuous cubic algebraic splines and their effi-
cient display , Curves and Surfaces II , P.J. Laurent , A. Le Méhauté , and L.L.
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Abstract. In this paper, a robust statistical model-based brain MRI image seg-
mentation method is presented. The MRI images are modeled by Gaussian mix-
ture model. This method, based on the statistical model, approximately finds the 
maximum a posteriori estimation of the segmentation and estimates the model 
parameters from the image data. The proposed strategy for segmentation is 
based on the EM and FCM algorithm. The prior model parameters are estimated 
via EM algorithm. Then, in order to obtain a good segmentation and speed up 
the convergence rate, initial estimates of the parameters were done by FCM al-
gorithm. The proposed image segmentation methods have been tested using 
phantom simulated MRI data. The experimental results show the proposed 
method is effective and robust. 

1   Introduction 

Automatic and robust brain tissue classification from magnetic resonance images 
(MRI) is of great importance for anatomical imaging in brain research. Segmentation 
brain images can be used in the three-dimensional visualization and quantitative 
analysis of brain morphometry and functional cortical structures. Segmentation of the 
brain MRI image into different tissues, such as the gray matter (GM), the white matter 
(WM), the cerebrospinal fluid (CSF).Now, brain segmentation methods can be cate-
gorized as manual methods and semi automated and automated methods. In the study 
of brain disorders, a large amount of data is necessary but in most clinical applica-
tions, the manual slice segmentation is the only method of choice and is time consum-
ing. Even if experts do it, these types of segmentation stays subjective and show some 
intra and inter variability. Fully automatic, robust tissue classification is required for 
batch processing the data from large-scale, multi-site clinical trials or research pro-
jects.  

The automatic segmentation of brain MR images, however, remains a persistent 
difficult problem. The main artifacts affecting brain MRI scans such as Intensity non-
uniformity, and image Noise and Partial volume effect. Currently available methods 
for MR image segmentation can be categorized into Region-based and clustering-
based techniques[1]. Region-based techniques include the use of standard image  
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processing techniques such as threshold-based, and mathematical morphology-based, 
and probability-based, and clustering-based, and prior knowledge-based and neural 
network-based techniques [2-8]. 

This paper aims to develop an algorithm for the automatic estimation of the statis-
tics of the main tissues of the brain [the gray matter (GM), the white matter (WM), 
the cerebrospinal fluid (CSF)] from MRI images. These statistics can be used for 
segmenting the brain from its surrounding tissues for 3-D visualization or for a quan-
titative analysis of the different tissues. Segmentation of MR brain images was carried 
out on original images using the Gaussian mixture model models (GMMS)[9-10] and 
fuzzy c-means [2] techniques. The segmentation method presented in this work mod-
els the intensity distributions of MRI images as a mixture of Gaussians. The prior 
model parameters are estimated via EM algorithm [8]. Then, in order to obtain a good 
segmentation and speed up the convergence rate, initial estimates of the parameters 
were done by FCM algorithm.  The performance of the algorithm is evaluated using 
phantom images. The experiments on simulated MR images prove that our algorithm 
is insensitive to noise and can more precisely segment brain MRI images into differ-
ent tissues: the gray matter, the white matter and the cerebrospinal fluid. 

2   Image Model 

 In this section, we derive a model for the tissues of the brain. For this purpose, we 
consider a normal human brain consists of three types of tissues: the white matter 
(WM), the gray matter (GM) and the cerebrospinal fluid (CSF). It is simplified in the 
case where only T1 weight images are considered. The image is defined by 

),( Iiyy i ∈=  where iy  denotes the image intensity as the voxel indexed by i . We 

assume only one class of tissue occupies the spatial volume of each voxel. Let the 
total number of tissue classes in the image be K  and each of them be represented by 
a label from },2,1{ K⋅⋅⋅=Λ  and ix represents the tissue class of voxel at the image 

site kxi i =, denote an assignment of the kth  tissue class to the site i . A segmenta-

tion of the image is given by );( Iixx ii ∈= . The process of segmentation is to find x, 

which represents the correct tissue class at each voxel of image y., our attempt was to 

find ∗= xx which represents optimal segmentation is given by: 

)|(maxarg yxpx
x

=∗                                                       (1) 

From Baye’s theorem, the posterior probability of segmentation )|( yxp  can be 

written as:  

)()|(),()|( xpxypyxpyxp =∝                                              (2) 

where )|( xyp  is the conditional probability of the image y  given the segmentation 

x  and )(xp is the prior density of x .our attempt is to find the maximum a posteri-

ori(MAP)estimate by modeling )|( xyp the measurement model. Each tissue class 

has a signature, or mean intensity and variance at a particular site. For each tissue 
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class, a gaussian distribution is assumed and the entire image can be assumed as a 
Gaussian mixture density. A tissue can be modeled by a multivatiate Gaussian density 
with mean vector µ  and covariance matrix Σ , i.e.;      

))()(
2

1
exp()2()|( 12/12/

iik
t

kik
M xxxp µµπθ −Σ−−⋅Σ= −−−                                 (3) 

Where ),( kk Σ= µθ  is the vector of parameters associated with each type of tissue 

k , t
kMkkk ),,,( 21 µµµµ ⋅⋅⋅=  is the mean vector, and ]))([( ′−−=Σ kikik xxE µµ  is the 

covariance matrix associated with class ckk ≤≤1, where c  is the number of classes. 
In our case, since the input is intensity at a given point i , the dimension is one, and 
the number of classes 3=K  corresponding to the gray matter(GM),the white mat-
ter(WM) and the cerebrospibal fluid.(CSF).    

3   MR Image Segmentation Framework 

3.1   Initial Parameter Estimation 

The choice of initial parameter is very important. The initial classification can be 
obtained either directly through the thresholding or through ML estimation with those 
known parameters .In this work; we use a modified FCM algorithm [11] for initial 
classification. The modified fuzzy c-means (FCM) algorithm is the best known and 
the most widely used fuzzy clustering technique. This algorithm iteratively minimizes 
the following objective function: 
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Where iju is the membership value at pixel j  in the class i such that 
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].,0[  is interpreted as “probability” of all the pix-

els. ),(2
ij cxd is the standard Euclidian distance and the fuzziness index m is a 

weighting coefficient on each fuzzy membership. 

3.2   Parameters Estimation  

Now that we have defined a model for our data, the problem is to estimate the differ-
ent parameters of the mixture. The aim of estimation is find the parameters that 
maximize the likelihood of the GMM, given the image },,,{ 21 TyyyY ⋅⋅⋅=  the GMM 

likelihood can be written as    

)|()|(
1

∏
=

=
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i

iypYp θθ                                                 (5) 
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if )|( θYp  is a well behaved, differentiable of θ , then θ  can be found by the standard 
methods of differential calculus.  This expression is a nonlinear function of the pa-
rameters θ  and direct maximization is not possible. However, ML parameter esti-
mates can be obtained iteratively using a special case of the expectation-maximization 
(EM) algorithm. 

The EM algorithm estimates the maximum likelihood parameter θ ,we seek: 

)|(logmaxargˆ θθ
θ

yp=                                         (6) 

The EM algorithm is an iterative procedure for finding the ML estimate of the pa-
rameters. Each iteration consists of two steps: 

E-Step: Find   ],|),([log)|( )()( tt yxfEQ θθθθ =                                        (7) 

     M-Step:Find )},({maxarg )()1( tt Q θθθ
θ

=+                                                    (8) 

The EM algorithm begins with an initial model θ , and estimates a new model θ̂ , 

such that )|()ˆ|( θθ YpYp ≥ . The new model then becomes the initial model for the 

next iteration and the process is repeated until some convergence threshold is reached 
.In the case of the univariate normal mixture, the maximum likelihood estimates iŵ  

of the mixture coefficients, iµ̂  of the mean and iΣ  of the variance are expressed as 

fllows: 
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In our work, as mentioned earlier a three-tissue gaussian model was assumed to 
characterize the gray matter, the white matter and the cerebrospinal fluid. The EM 
algorithm was used to estimate the parameters of the gaussian mixture. Improved 
segmentation resulted when images were used. The convergence of EM algorithm 
was faster when initial estimates of the parameters were done by Fuzzy c- means. 
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4   Experimental Results 

In this section we describe the performance of our method to the segmentation of 
the brain into white matter and gray matter and CSF. To validate the performance 
of our method, we use the Brainweb MRI simulator(http://www.bic.mni.mcgill.ca/ 
brainweb),which consists of 3-dimensional MR data simulated using TI weight 
image, each data set is composed of voxels of 181X217X181, the slice thickness is 
1mm.The 2-D images are slice from the 3-D data sets.2-D segmentation is the 
clustering of the slice images,3-D segmentation is the clustering of the whole 3-D 
data sets. We use several simulated MRI acquisitions of this phantom including RF 
non-uniformities and noise levels. Segment has been done on MR images contain-
ing 3, 5 and 9% noise and of 20% RF non-uniformity. The brain data were classi-
fied into three clusters: gray matter, white matter and cerebrospinal fluid. Fig.1- 
 

   

                      (a)                              (b)                             (c) 

   

                                      (d)                                    (e)     

Fig. 1. Segmentation Result under 3% noise (a) T1 weight image (b)-(d) GM, WM and CSF 
posterior functions computed by our method respectively (e) segmentation result 
 

Fig.3 show the segmentation results on the simulated MRI images with different 
noise level. Although the images with 9%, 5% noise look much worse than the 
images with 3% noise, there is noticeable difference on the segmentation images 
by the proposed method as shown in Fig.2-Fig.3.Fig.4 shows the final 3D render-
ing of the gray matter and white matter volume using the proposed segmentation 
method. 
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(a)                                (b)                               (c) 

   

                 (d)                                  (e) 

Fig. 2. Segmentation Result under 5% noise: (a) T1 weight image (b)-(d) GM, WM and CSF 
posterior functions computed by our method respectively (e) segmentation result 
 

     

                          (a)                                  (b)                                 (c) 

   

                                              (d)                                (e) 

Fig. 3. Segmentation Result under 9% noise: (a) T1 weight image (b)-(d) GM, WM and CSF 
posterior functions computed by our method respectively (e) segmentation result 



 A Robust Statistical Method for Brain Magnetic Resonance Image Segmentation 57 

 
 

 

Fig. 4. 3D rendering of the gray matter and white matter 

5   Conclusions 

We have presented an approach combining Gaussian mixture model finite mixture 
model and FCM clustering algorithm. The parameters initialization using Fuzzy c- 
means algorithms. The proposed image segmentation methods have been tested using 
phantom simulated MRI data and real MRI brain data. The experiments on simulated 
MR T1-Weight brain images prove that our algorithm is insensitive to noise and can 
more precisely segment brain MRI images into different tissues: gray matter, white 
matter and cerebrospinal fluid. 
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Abstract. A new version of the RPNI algorithm, called RPNI2, is pre-
sented. The main difference between them is the capability of the new one
to extend the training set during the inference process. The effect of this
new feature is specially notorious in the inference of languages generated
from regular expressions and Non-deterministic Finite Automata (NFA).
A first experimental comparison is done between RPNI2 and DeLeTe2,
other algorithm that behaves well with the same sort of training data. 1

1 Introduction

One of the best known algorithms for regular language identification, RPNI
(Regular Positive and Negative Inference) [9], converges to the minimal Deter-
ministic Finite Automaton (DFA) of the target language. It finds equivalence
relations in the data from the prefix tree acceptor of the sample.

Recently an algorithm called DeLeTe2 [3] that outputs Non-deterministic
Finite Automata (NFA) instead of DFAs has been proposed. DeLeTe2 looks
for a special type of NFA called RFSA (Residual Finite State Automata), whose
states represent residuals of the target language. Every regular language is recog-
nized by a unique minimal RFSA, called the canonical RFSA. Canonical RFSA
consists only of prime residual states (i.e. states that can not be obtained as
union of other residuals).

The basis of DeLeTe2 algorithm is to obtain RFSAs by looking for inclusion
relations in the residuals of the target language using the prefix tree acceptor of
the data. Its authors have shown that when the target automaton is a randomly
generated DFA [8], the probability of occurrence of inclusion relation between

� Work partially supported by Spanish CICYT under TIC2003-09319-C03-02
1 A two pages abstract presented in the Tenth International Conference on Implemen-

tation and Application of Automata [5] gives a shallow description of this work.

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 59–70, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



60 P. Garćıa et al.

states is very small and then, the size of the canonical RFSA and the minimal
DFA of a language are the same. Hence, in this case, DeLeTe2 behaves worse
than RPNI. On the other hand, when the target languages are generated using
random regular expressions or NFAs, the experiments in [3] show that DeLeTe2
performs better than RPNI.

In this work we propose a modification of RPNI algorithm, called RPNI2.
It extends RPNI by finding inclusion relations among residuals aiming to pre-
dict whether the prefixes of the data belong to the target language or to its
complement.

RPNI2 outputs a DFA and converges to the minimal DFA of the target
language. When the source of the learning data is a non-deterministic model,
its performance is very similar to DeLeTe2 performance. However, the average
descriptive complexity of the hypothesis that RPNI2 obtains is substantially
smaller than the one obtained by DeLeTe2.

Next sections have the following structure: section 2 reminds useful defini-
tions, notation and algorithms. Section 3 presents the RPNI2 algorithm, a brief
example is shown in section 4. The experimental results are in section 5 and
finally, section 6 contains the conclusions.

2 Definitions and Notation

Definitions not contained in this section can be found in [7,10]. Definitions and
previous works concerning RFSAs can be found in [1,2,3].

Let A be a finite alphabet and let A∗ be the free monoid generated by A with
concatenation as the internal operation and ε as neutral element. A language L
over A is a subset of A∗. The elements of L are called words. The length of a
word w ∈ A∗ is noted |w|. Given x ∈ A∗, if x = uv with u, v ∈ A∗, then u
(resp. v) is called prefix (resp. suffix ) of x. Pr(L) (resp. Suf(L)) denotes the set
of prefixes (resp. suffixes) of L. The product of two languages L1, L2 ⊆ A∗ is
defined as: L1 ·L2 = {u1u2|u1 ∈ L1∧u2 ∈ L2}. Sometimes L1 ·L2 will be notated
simply as L1L2. Throughout the paper, the lexicographical order in A∗ will be
denoted as �. Assuming that A is totally ordered by < and given u, v ∈ A∗

with u = u1 . . . um and v = v1 . . . vn, u� v if and only if (|u| < |v|) or (|u| = |v|
and ∃j, 1 ≤ j ≤ n,m such that u1 . . . uj = v1 . . . vj and uj+1 < vj+1).

A Non-deterministic Finite Automaton (NFA) is a 5-tuple A = (Q,A, δ,Q0,
F ) where Q is the (finite) set of states, A is a finite alphabet, Q0 ⊆ Q is the set
of initial states, F ⊆ Q is the set of final states and δ is a partial function that
maps Q×A in 2Q. The extension of this function to words is also denoted δ. A
word x is accepted by A if δ(Q0, x) ∩ F �= ∅. The set of words accepted by A is
denoted by L(A).

Given a finite set of words D+, the prefix tree acceptor of D+ is defined as
the automaton A = (Q,A, δ, q0, F ) where Q = Pr(D+), q0 = ε, F = D+ and
δ(u, a) = ua, ∀u, ua ∈ Q.

A Moore machine is a 6-tuple M = (Q,A,B, δ, q0, Φ), where A (resp. B) is
the input (resp. output) alphabet, δ is a partial function that maps Q × A in
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Q and Φ is a function that maps Q in B called output function. Throughout
this paper B = {0, 1, ?}. A nondeterministic Moore machine is defined in a
similar way except for the fact that δ maps Q × A in 2Q and the set of initial
states is I. The automaton related to a Moore machine M = (Q,A,B, δ, I, Φ)
is A = (Q,A, δ, I, F ) where F = {q ∈ Q : Φ(q) = 1}. The restriction of M to
P ⊆ Q is the machine MP defined as in the case of automata.

The behavior of M is given by the partial function tM : A∗ → B defined as
tM (x) = Φ(δ(q0, x)), for every x ∈ A∗ such that δ(q0, x) is defined.

Given two disjoint finite sets of words D+ and D−, we define the (D+, D−)-
Prefix Tree Moore Machine (PTMM(D+, D−)) as the Moore machine having
B = {0, 1, ?}, Q = Pr(D+∪D−), q0 = ε and δ(u, a) = ua if u, ua ∈ Q and a ∈ A.
For every state u, the value of the output function associated to u is 1, 0 or ?
(undefined) depending whether u belongs to D+, to D− or to Q − (D+ ∪D−)
respectively. The size of the sample (D+, D−) is

∑
w∈D+∪D− |w|.

A Moore machine M = (Q,A, {0, 1, ?}, δ, q0, Φ) is consistent with (D+, D−)
if ∀x ∈ D+ we have Φ(x) = 1 and ∀x ∈ D− we have Φ(x) = 0.

2.1 Residual Finite State Automata (RFSA)

The derivative of a language L by a word u, also called residual language of
L associated to u is u−1L = {v ∈ A∗ : uv ∈ L}. A residual language u−1L is
composite if u−1L = ∪v−1L�u−1Lv

−1L. A residual language is prime if it is not
composite.

If A = (Q,A, δ, I, F ) is an NFA and q ∈ Q, we define the language accepted
in automaton A from state q as L(A, q) = {v ∈ A∗ : δ(q, v) ∩ F �= ∅}.

A Residual Finite State Automata RFSA [2] is an automatonA = 〈Q,A, δ, I,
F 〉 such that, for each q ∈ Q, L(A, q) is a residual language of the language L
recognized by A. So ∀q ∈ Q,∃u ∈ A∗ such that L(A, q) = u−1L. In other words,
a Residual Finite State Automaton (RFSA) A is an NFA such that every state
defines a residual language of L(A).

Two operators are defined [2] on RFSAs that preserve equivalence. The satu-
ration and reduction operators. Given A = (Q,A, δ, I, F ) the saturated automa-
ton of A is the automaton As = (Q,A, δs, Is, F ), where Is = {q ∈ Q : L(A, q) ⊆
L(A)} and ∀q ∈ Q, ∀a ∈ A, δs(q, a) = {q′ ∈ Q : L(A, q′) ⊆ a−1L(A, q)}. If in
automaton A all the residual languages (not only the prime ones) are considered
as states, the new automata is known as saturated RFSA of the minimal DFA
for L. The reduction operator allows to eliminate from an automaton As the
composite states and the transitions related to them. Both operations are useful
to get the canonical RFSA associated with A: first the saturation operator is
applied to A, later the reduction operator is applied to the result. It is known
[2] that every regular language L is recognized by a unique reduced saturated
RFSA, the canonical RFSA of L.

Formally, given a language L ⊆ A∗ the canonical RFSA of L is the automaton
A = (Q,A, δ, I, F ) where:
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– Q = {u−1L : u−1L is prime, u ∈ A∗}
– A is the alphabet of L
– δ(u−1L, a) = {v−1L ∈ Q : v−1L ⊆ (ua)−1L}
– I = {u−1L ∈ Q : u−1L ⊆ L}
– F = {u−1L ∈ Q : ε ∈ u−1L}

Two relations defined in the set of states of an automaton link RFSAs with
grammatical inference. Let D = (D+, D−) be a sample, let u, v ∈ Pr(D+). We
say that u ≺ v if no word w exists such that uw ∈ D+ and vw ∈ D−. We say
that u � v 2 if u ≺ v and v ≺ u.

Example of RFSAs. The following example has been taken from [2]. Let
A = {0, 1} and let L = A∗0A. L can be recognized by the three automata of
Figure 1. States that output 1 (resp. 0) are drawn using thick (resp. thin) lines.
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Fig. 1. A1 is an automaton recognizing L = A∗0A which is neither a NFA nor a RFSA.
A2 is a DFA recognizing L which is also RFSA. A3 is the canonical RFSA for L.

– The first one A1 is neither DFA nor RFSA. The languages associated with
states are: L(A1, 1) = A∗0A, L(A1, 2) = A and L(A1, 3) = ε. One can see
that L(A1, 3) = ε and � ∃u ∈ A∗ such that L(A1, 3) = u−1L.

– Automaton A2 is a minimal automaton recognizing L and thus, is a RFSA,
in this case L(A2, 1) = A∗0A, L(A2, 2) = A∗0A+A, L(A2, 3) = A∗0A+A+ε,
L(A2, 4) = A∗0A + ε.

– Automaton A3 is the L’s canonical RFSA, which is not a DFA. The lan-
guages associated with states are: L(A3, 1) = ε−1L, L(A3, 2) = 0−1L and
L(A3, 3) = 01−1L.

2.2 The RPNI Algorithm

The aim of grammatical inference is to obtain a description of a language L
by means of a sample (a set of words labelled as belonging to L or to its com-
plement). Throughout this work we will assume that the target language L is
regular; then, the description we will look for is an automaton.
2 This relation is known in the terminology set up by Gold as not obviously different

states. Other authors call it compatible states.
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We will use the convergence criterion called identification in the limit, intro-
duced by Gold [6].

The RPNI algorithm [9] is used for inference of regular languages. It receives
as input a sample of the target language and outputs, in polynomial time, a
DFA consistent with the input. RPNI converges to the minimal automaton of
the target language in the limit.

Algorithm RPNI (D+, D−) starts from the PTMM(D+, D−), and recursively
merges every state with the previous ones to keep a deterministic automaton under
the condition that it does not accept a negative sample. State merging is done by
the function detmerge(M,p, q) shown in Algorithm 1, which merges states p and q
in M if they are compatible. If one of the merging states is undefined and the other
is not, the merged state takes the value of the latter state.

Algorithm 1 Function detmerge

detmerge(M, p, q) //p � q in lexicographical order//
M′ := M
list := {(p, q)}
while list′ �= ∅

(r, s) := first(list)
M1 := merge(M′, r, s)
if M1 = M′

Return M
else

M′ := M1
for a ∈ A

if δ(p, a) and δ(q, a) are defined
list := append(list,(δ(p, a), δ(q, a)))

endif
endfor

endif
endwhile
Return M′

The merging process is recursively repeated with the successors of the merged
states until either the nondeterminism disappears or the algorithm tries to merge
incompatible states. In the former case, the output of the algorithm is the deter-
ministic automaton resulting of merging states, whereas in the latter the output
of detmerge(M,p, q) is M .

2.3 DeLeTe2 Algorithm

The DeLeTe and DeLeTe2 algorithms output residual nondeterministic finite au-
tomata (RFSA). The algorithms look for inclusion relations between the residual
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languages and reflect those situations in the automaton using the saturation op-
erator. As it can be expected, the method becomes more interesting when the
target automaton contains many composite residual languages, because then
may exist many inclusion relations between states that make the size of the hy-
pothesis to decrease. Otherwise, if most of the residual languages of the target
automaton are prime the output automaton would have a size similar to the size
of the minimal DFA [3].

It is known [3] that DeLeTe2 is an improvement to DeLeTe algorithm (algo-
rithm 2) it solves the eventual lack of consistency with the sample of DeLeTe,
unfortunately the details of this improvement have not been published yet.

Algorithm 2 Algorithm DeLeTe

DeLeTe(D+, D−)
let Pref be the set of prefixes of D+ in lexicographical order
Q := ∅; I := ∅; F := ∅; δ := ∅; u := ε
stop := false
while not stop

if ∃u′|u � u′

delete uA∗ from Pref
else

Q := Q ∪ {u}
if u ≺ u′

I := I ∪ {u}
endif
if u ∈ D+

F := F ∪ {u}
endif
δ := δ ∪ {(u′, x, u)|u′ ∈ Q, u′x ∈ Pref, u ≺ u′x}∪

{(u, x, u′)|u′ ∈ Q, ux ∈ Pref, u′ ≺ ux}
endif
if u is the last word of Pref or
A = 〈Q,A, I, F, δ〉 is consistent with D+, D−

stop := true
else

u := next word in Pref
endif

endwhile
Return A = 〈Q, A, I, F, δ〉

3 The RPNI2 Algorithm

The idea behind RPNI2 is to try to establish the possible inclusion relation
between states that can not be merged. Sometimes this will allow us to define
the output associated to states that were previously undefined.
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The following definitions are useful to understand functions tryInclusion
and defineStates shown in Algorithms 4 and 5 respectively. These functions
are used in RPNI2 to represent the new ideas stated above. Algorithm RPNI2
is shown in Algorithm 3.

Algorithm 3 Algorithm RPNI2

RPNI2(D+, D−)
M := PTMM(D+, D−)
list := {u0, u1, . . . , ur} //states of M in lexicographical order, u0 = λ//
list′ := {u1, . . . , ur}
q := u1
while list′ �= ∅

for p ∈ list and p � q (in lexicographical order)
if detmerge(M, p, q) = M

defineStates(M,p,q)
else

M := detmerge(M, p, q)
exit for

endif
endfor
list := Delete from list the states which are not in M
list′ := Delete from list′ the states which are not in M
q := first(list′)

endwhile
Return M

Definition 1. States p and q are non-comparable (for inclusion relations) in a
Moore machine if there exist u, v ∈ A∗ such that Φ(δ(p, u)) = 1 ∧ Φ(δ(q, u)) = 0
and Φ(δ(p, v)) = 0 ∧ Φ(δ(q, v)) = 1.

Definition 2. Given p, q ∈ Q, we say that state p is potentially lesser than
state q if they are not non-comparable and there does not exist u ∈ A∗ such that
Φ(δ(p, u)) = 1 ∧ Φ(δ(q, u)) = 0.

When states p and q can not be merged while running RPNI, that is, when
detmerge(M,p, q) = M , the new algorithm tries to define the output for the
undefined states using the function defineStates shown in Algorithm 5.

To explain the behavior of the function defineStates we will use the Moore
machine M in Fig. 2; in this figure and the next ones the output value of each
state q will be represented as a thin circle if Φ(q) = 0, a thick one if Φ(q) =
1 and a dashed one if Φ(q) =?. Following the algorithm it is possible to see
that defineStates(M, 1, 2) = M , since otherwise the negative sample 1000010
should be accepted.
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Algorithm 4 Function tryInclusion

tryInclusion(M, p, q)
M′ := M
while p and q are not non-comparable

for any u common successor of p and q
if φ(δ(p, u)) = 1 ∧ φ(δ(q, u)) =?

φ(δ(q,u)) = 1; Update M′

endif
if φ(δ(p, u)) =? ∧ φ(δ(q,u)) = 0

φ(δ(p,u)) = 0; Update M′

endif
endfor

endwhile
if p and q are non-comparable

Return M
else

Return M’

Algorithm 5 Function defineStates

defineStates(M, p, q)
if p and q are non-comparable

Return M
else

if p is potentially lesser than q
tryInclusion(M,p,q)

endif
if q is potentially lesser than p

tryInclusion(M,q,p)
endif

endif

In the tree in Fig. 3, the signs preceding the state name represent its output
value; for example: (+2, 11) means Φ(2) = 1 and Φ(11) =?. Since the states of
the same node do not have different labels named ”+” and ”-”, states 1 and 2
are not non-comparable with respect to inclusion.

Executing tryInclusion(M, 1, 2) returns M ; otherwise the node (4,−13)
would imply Φ(4) = 0 and at the same time the node (+1, 4) would imply Φ(4) =
1. However, executing tryInclusion(M, 2, 1) changes the output of states 4
and 8 and then the function defineStates(M, 1, 2) changes M to Φ(4) = 1 and
Φ(8) = 1. Notice that the change of the output value of a state from ? (indefinite)
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Fig. 2. Initial Moore machine used to describe the behavior of function defineStates
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Fig. 3. Scheme used to compare states in function defineStates

to 0 or 1 is equivalent to suppose that a new word is present in the input sample.
Hence, this process can be seen as an enlargement of the training set.

4 Example

We are going to describe the behavior of algorithm RPNI2 using the sam-
ple D+ = {0, 001, 000011, 0101010} and D− = {01000010} that gives different
outputs for the three algorithms. We also show the automata that RPNI and
DeLeTe2 output. The Prefix Tree Moore machine is depicted in Fig. 4.

1 2 3 5 8 11 14

4 6

7

9 12 15 17 19

10 13 16 18

0 0 0 0 1 1

1 1

0

1

0

0 0 1 0

0 1 0

Fig. 4. Prefix Tree Moore machine of the sample

With this sample as input, RPNI2 first merges states 1 and 2, then tries to
merge 1 and 4. These states can not be merged, but the function defineStates
changes the value of states 7 and 13 to positive. The same happens with states 4
and 7. The function defineStates changes now the value of states 9, 10, 12 and
15 to positive. Finally, the algorithm merges states 4 and 9 and then it merges
states 1 and 10.
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Fig. 5 depicts the outputs given by algorithms RPNI, DeLeTe2 and RPNI2
when using the above sample input. It should be noted that during the execution
of RPNI2, states 7, 9, 10, 12, 13 and 15 are labelled as positive.

RPNI DeLeTe2 RPNI2

1 1 0

1

00

1 0

1

0 1

1

1

0
0

1

0

Fig. 5. Output automata given by the three algorithms compared in this work on input
D+ = {0, 001, 000011, 0101010} and D− = {01000010}

5 Results

The aim of the experiments is to analyze the behaviour of RPNI2 and to com-
pare it with the DeLeTe2 algorithm. Both the training/test samples and the
DeLeTe2 program used in this experimentation are provided by their authors
and are available in Aurélien Lemay’s web page http://www.grappa.univ-
lille3.fr/∼lemay/. The samples have the following features [3]:

– The target language are regular expressions or NFAs.
– The probability distribution of the sample generation methods are different

in each case: NFAs or regular expressions.
– The NFAs sample generation method chooses randomly the states number

n, the alphabet size |Σ|, the transitions number per state nδ and the initial
and final state probabilities (pI and pF respectively) for each state. Each
state has exactly nδ successors. The symbol and destination state of each
transition are chosen randomly. Once the automaton is trimmed some states
will have fewer than nδ transitions. The parameter values used in these
experiments were: n = 10, |Σ| = 2, nδ = 2, pI = pF = 0.5.

– The regular expressions generation method consider a set of operators Op =
{∅, 0, 1, ∗, ·,+}. An upper bound nop for the number of operators used is
chosen and a probability distribution p on Op is defined. The root operator is
chosen by means of the distribution p. If the operator is 0-ary the expression
ends, if it is 1-ary the procedure is called recursively with parameter nop− 1
and if it is binary, it is called twice with parameters �nop/2� and �(nop−1)/2�.
The parameter values used in these experiments are: nop = 100, pε = 0.02,
p0 = p1 = 0.05, p∗ = 0.13, p· = 0.5 and p+ = 0.25.

Two kinds of experiments are reported in table 1, depending on the source
of the training and test samples: er * if they come from regular expressions and
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nfa * from NFAs. The number in the identifier of the experiment represents the
number of training samples. Each experiment consist of 30 different languages to
be learned. Each experiment has 1000 test samples. Table 1 reports the recog-
nition rate and the average size of the inferred hypothesis. These results are
calculated as follows: each test sample is presented to the inference program,
the program tags the sample as belonging to the target language or not, if this
classification agrees with the real sample tag, the sample is considered correct
and increases a counter; at the end, the number of correct samples is divided by
1000 (the total of test samples) and this value is reported as recognition rate.
The average size is computed adding up the number of states of the 30 hypoth-
esis generated in each experiment and dividing by 30. As it can be seen in Table
1, the error rate of the new algorithm RPNI2 is better than the previous RPNI
but slightly worse than DeLeTe2. The opposite happens with the description
complexity (i.e. states number) of the output hypothesis: the results obtained
by RPNI2 are then better than those of DeLeTe2.

It should be noted that the results obtained with our implementation of RPNI
slightly differ from those obtained in [3] with the same data, maybe because of
different implementations of the algorithm. To be more specific about the cause
of these differences would be required to know the code used by the authors. The
results corresponding to DeLeTe2 execution, are slightly different too, although
they were generated with their own program.

Table 1. Inference results with RPNI, RPNI2 and DeLeTe2 algorithms

RPNI RPNI2 DeLeTe2
Iden. Recogn. rate Avg. size Recogn. rate Avg. size Recogn. rate Avg. size
er 50 76.36% 9.63 80.03% 16.32 81.68% 32.43
er 100 80.61% 14.16 88.68% 19.24 91.72% 30.73
er 150 84.46% 15.43 90.61% 26.16 92.29% 60.96
er 200 91.06% 13.3 93.38% 27.37 95.71% 47.73
nfa 50 64.8% 14.3 66.43% 30.64 69.80% 71.26
nfa 100 68.25% 21.83 72.79% 53.14 74.82% 149.13
nfa 150 71.21% 28.13 75.69% 71.87 77.14% 218.26
nfa 200 71.74% 33.43 77.25% 88.95 79.42% 271.3

6 Conclusions

The RPNI2 strategy behaves better than the original RPNI when the language
to learn comes from a regular expression or a NFA. In this case, because of the
inclusion relation between residual automata, the output values assigned to some
states, provide significant information to the inference process thus improving
the recognition rate with the test samples.

The experiments presented in [3], which we have also reproduced with RPNI2,
do not seem to obtain decisive conclusions about the usefulness of inferring
RFSAs, because the main reason for its use (the smaller size of the hypothesis)
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does not hold. Although the experiments are still preliminary, it seems that
the slightly better results obtained by DeLeTe2 with respect to RPNI2 do not
compensate the fact that the size of the representations obtained by RPNI2 are
clearly smaller.
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A Computational Approach to Illusory Contour
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Abstract. A computational approach to the perception of illusory con-
tours is introduced. The approach is based on the tensor voting technique
and applied to several real and synthetic images. Special interest is given
to the design of the communication pattern for spatial contour integra-
tion, called voting field.

1 Introduction

Illusory contours, also called virtual contours, are perceived contours that have
no counterpart in the retinal image of the human vision system. Neurophysi-
cal studies have shown that the perception of illusory contours can be found in
mammals, birds and insects [20]. The importance of illusory contours becomes
obvious regarding the fact that the brains of these animals have developed inde-
pendently throughout evolution. We can therefore assume that illusory contour
perception is not just a malfunction of these visual processing systems, but in-
stead is necessary for object border completion. Also for technical vision systems,
the completion of object boundaries that are interrupted due to occlusions or
low luminance contrast is an important issue.

For the human vision system, illusory contours have been studied by Gestalt
psychologists from the early 20th century on [10, 2, 25]. Schuhmann was one of
the first to mention this phenomenon in 1900 [24]. He described illusory contours
as contours that are not ”objectively present”. In the following years the contri-
butions to the field of illusory contour perception comprised the description of
optical illusions based on contour perception rather than explaining these illu-
sions. The most famous examples for optical illusions caused by illusory contour
perception are the Kanizsa figures shown in Fig. 1 (see also [8]).

In the following we present a computational approach to illusory contour
perception in natural scenes. The model uses the position and orientation of
detected corners. We therefore developed an algorithm for threshold-free edge
detection and a subsequent corner detection, which leads to the question of the
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(a) Kanizsa Triangle (b) Kanizsa Rectangle

Fig. 1. Kanizsa figures: The black ”pacmen” induce the perception of a triangle in (a)
and a rectangle in (b)

dependency of the presented results on the preceding low level image processes.
On the one hand it can be argued that results on real images suffer from the
systematic errors in preceding steps, on the other hand a real image offers a
much more complex and realistic test bed. Furthermore few attempts have been
made so far to apply illusory contour perception to real images.

2 Related Work

The majority of approaches or models dealing with the problem of spatial contour
integration use some kind of bipole connection scheme [6, 21], as introduced by
Grossberg and Mingolla [23]. This perceptual grouping kernel usually consists
of two symmetric lobes encoding the connection strength and orientation. In
[26], Williams and Thornber address the comparison of different methods of
aggregating the contributions of neighboring sites of the grouping kernel. For
a detailed overview of contour integration approaches, see [5] or [19]. In [19],
emphasis is placed on models including illusory contour perception, namely the
model of Heitger et al. [7, 22] as a neurophysical inspired computational model
and the approach of Zweck and Williams [28] which models the Brownian motion
of a particle from source to sink.

The method proposed in this paper uses the tensor voting technique intro-
duced by Medioni et al. [4]. Tensor voting was applied successfully to contour
inference problems on synthetic and binary input images in [17]. In [13] and [12],
this approach was extended to greyscale images as input, using gabor filtering as
a preceding image processing step. In the tensor voting framework the grouping
kernel, called stick voting field, is orientational, i.e. with angles from 0◦ to 180◦,
and designed for contour inference. Considering illusory contour perception,
the use of this stick voting field could make sense in the context of a unified
treatment of all contour elements, but would lead to interference of contour
elements, especially in the case of amodal completions behind a textured fore-
ground. What is needed for illusory contours including amodal completions is a
directional communication pattern (with angles from 0◦ to 360◦), e.g. one lobe,
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which was already used in [15] and [16], but addressed to spontaneously splitting
figures and binary input images.

3 Edge and Corner Detection

As a preprocessing step we have developed a method for threshold-free edge
detection and a subsequent corner detection. This is achieved by applying a
recursive search to edge candidates. The edge candidates are local extrema and
zero-crossings of the responses of several Gaussian-based filter banks. For an
overview of edge detection algorithms, see [3] and [27].

The kernels of our filter functions are shown in Fig. 2. In the case of the
edge-filter, Fig. 2(a), the behaviour of the filter is similar to that of the first
derivative of a Gaussian. For example, edges produce local extrema in the filter
responses with corresponding orientation. Like the edge filters, the corner filters
in Fig. 2(b) are defined for different orientation angles. The center-surround filter
shown in Fig. 2(c) behaves like the Mexican Hat Operator [11]. Edges produce
zero crossings, while lines result in local extrema of the filter responses.

(a) (b) (c)

Fig. 2. Filter Masks: (a) Edge filter (b) Corner filter (c) Center-surround filter

In general, edge detection is performed by convolving one filter mask with
the image data and in many cases, the filter mask is rotated to gain orientation-
sensitive filter responses. Like all differential edge detection schemes these meth-
ods suffer from the necessity of defining a threshold. This makes the results of
an edge detector highly dependent on the image and on its brightness. Further-
more, to avoid the influence of noise, the size of the convolution mask has to
be sufficiently large. This often leads to rounded corners and poor localization.
To avoid these disadvantages we use several convolution masks with different
shapes and compare their filter responses with each other to decide whether a
given point belongs to an edge.

Taken on their own, these convolution masks have several problems in de-
tecting edges or corners, but in spite of these problems, some image positions
can be labled as edges with a high probability. If an image position belongs to a
zero crossing of the center-surround filter and to a local maximum of the edge
filter and furthermore, if this maximum is higher than the corresponding corner
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(a) (b)

(c) (d)

Fig. 3. Lab scene: (a) Input image (b) Edge Candidates (c) Detected edges (d) Detected
corners

filter response, the position is very likely to belong to an edge. Starting from
these ”ideal” edges, we now recursively try to find a good continuation of the
edge, using a ranking list that defines e.g. that a zero crossing combined with
an edge filter maximum is preferred to a simple zero crossing.

With a search for local minima on the absolute center-surround filter re-
sponses, most of the corners are found correctly, except for those that lie on
”ideal” edges. Here we have to use the classic approach and compute the orien-
tation differences between neighboring edgels.

The result of the recursive search is shown in Fig. 3(c), detected corners are
shown superposed to the input image in Fig. 3(d). A comparison to other corner
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detectors is given in [18]. Note that the used method for corner and edge detec-
tion is not an integral part of the proposed computational approach to illusory
contour perception and can therefore be replaced by any other corner detector
providing not only the corner positions but also the associated orientation angles.

4 Tensor Voting

In [17], Medioni, Lee and Tang describe a framework for feature inference from
sparse and noisy data called tensor voting. The most important issue is the
representation of edge elements as tensors. In the 2D-case, a tensor over R

2 can
be denoted by a symmetric 2× 2 matrix T with two perpendicular eigenvectors
e1, e2 and two corresponding real eigenvalues λ1 > λ2. A tensor can be visualized
as an ellipse in 2-D with the major axis representing the estimated tangent
direction e1 and its length λ1 reflecting the saliency of this estimation. The
length λ2 assigned to the perpendicular eigenvector e2 encodes the orientation
uncertainty. The definition of saliency measures is deducted from the following
decomposition of a tensor into T = λ1e1e

�
1 + λ2e2e

�
2 or equivalently T = (λ1 −

λ2)e1e
�
1 +λ2(e1e

�
1 + e2e

�
2 ). Then, the weighting factor (λ1− λ2) represents an

orientation in the direction of the eigenvector e1 and thus will be called curve-
or stick-saliency. The second weight λ2 is applied to a circle, hence it is called
junction- or ball-saliency as its information about multiple orientations measures
the confidence in the presence of a junction.

λ1

λ2

Fig. 4. Visualization of a tensor as an ellipse

Grouping can now be formulated as the combination of elements according to
their stick-saliency or ball-saliency. In stick-voting, for each oriented input token
the grouping kernel called stick-voting-field (see next section) is aligned to the
eigenvector e1. In the following the input tokens consist of detected corners and
their associated directions. All fields are combined by tensor addition, i.e. addi-
tion of the matrices and spectral decomposition of the sum into eigenvectors and
-values. The field is designed to create groupings with neighboring tokens which
fulfill the minimal curvature constraint. Hence the orientation of each token of
the voting field is defined to lie on a cocircular path.

Note that for junctions or corners neither the tensor representation suffices to
encode the at least two different orientations nor is the ball saliency a trustable
measure for junctions, since it is highly dependent on the orientations of incoming
edges [14].
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5 Voting Fields

Given a point P with an associated tangent direction and a point Q with the
orientation difference θ between the tangent direction and the direct connection
of P and Q. Let � be the distance between P and Q. Then, with

r =
�

2sinθ
and s =

� · θ
sinθ

,

r is the radius of the tangent circle to P going through Q and s is the arc length
distance along the circular path (radian).

Most approaches to spatial contour integration define the connection strength
V for P and Q and therefore the shape of the bipole connection scheme via
V = Vd · Vc with a distance term Vd and a curvature term Vc. In [7], Heitger et
al. use

Vd1 = e−
�2

2σ2 and Vc1 =
{

cosk(π/2
α · θ) if |θ| < α

0 otherwise

with k = 2n, n ∈ N and an opening angle 2α = π. Hansen and Neumann also
use Vd1 and Vc1, but with k = 1 and α = 10◦ [6]. In [17], Medioni et al. define
the proximity term Vd2 and the curvature term Vc2 as follows:

Vd2 = e−
s2

2σ2 and Vc2 = e−
c·ρ2

σ2 with ρ =
2sinθ

�

c is a positive constant and ρ is nothing else than the inverse radius of the
osculating circle. This results in a curvature measure that is highly dependent
on scale.

Fig. 5. Stick saliency for the half lobe stick voting field with V = Vd2 · Vc1, k = 1 and
α = 15◦

To achieve a clear separation of distance along the circular path and its
curvature, we choose Vd2 and Vc1. The results presented in the next chapter are
computed with a directional one-lobe voting field and V = Vd2 · Vc1, k = 1 and
α = 15◦, i.e. an opening angle of 30◦.
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6 Results

Fig. 6(a), (d) and (g) show detected edges and corners and their associated
orientations, (b), (e) and (f) show stick saliencies after tensor voting and (c), (f)
and (i) show extracted illusory contours superposed to the previously detected
contours. It is remarkable, that in Fig. 6(f) the amodal completions of the circles
are found while this is not the case in Fig. 6(c) and (i). This is due to the acute
connection angles in the latter two cases as can be seen in the images showing
the stick saliencies.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6. Top row: Results for Fig. 1(b), middle row: results for Fig. 1(a), bottom row:
results for the Kanizsa triangle in Fig. 3. For further description see text.
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(a) (b)

(c) (d) (e)

Fig. 7. Rubber duck image: (a) input image, (b) stick saliencies induced by corners
and associated orientations, (c) illusory contours superposed to detected edges, (d) and
(e) magnification of regions containing illusory contours

In Fig. 7, the rubber duck is partially occluded by a black cable. Note that
there are some false assigned corners due to light reflections on the cable. The
voting fields cast by these corners interfere with the fields generated at the duck’s
object boundary and hence compromise the correct detection of amodal comple-
tions (Fig. 7(b)). This illustrates that a unified treatment of edge segments and
corners would disturb the perception of amodal completions, at least for this low
level image processing step. Anyhow just the two desired amodal completions of
the duck’s object boundary are marked as illusory contours, see Fig. 7(d) and
(e), so the correct virtual contours are found.

7 Conclusion

An approach to illusory contour perception has been introduced and successfully
applied to synthetic and real images. There are some natural limitations to a
low level image processing model for illusory contour perception. For a certain
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stage of grouping a knowledge base is required which leaves the field of low level
image processing. Furthermore, the human vision system derives its enormous
capabilities not only from the ”hardware implementation” as a parallel network
but also from the fact that several cues like depth and motion are considered
when detecting object boundaries.

With our approach we have shown that good results for illusory contour
perception can be achieved even in a low level image processing step.

8 Future Work

Currently, our model does not distinguish between modal and amodal comple-
tions and the contours are not assigned to certain object boundaries. Conse-
quently, unit formation will be substantial for future research. For further dis-
cussion about unit formation, see [9] and [1].
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Abstract. In this article, the clustering problem under the criterion of
minimum sum of squares clustering is considered. It is known that this
problem is a nonconvex program which possesses many locally optimal
values, resulting that its solution often falls into these traps. To explore
the proper result, a novel clustering technique based on improved noising
method called INMC is developed, in which one-step DHB algorithm as
the local improvement operation is integrated into the algorithm frame-
work to fine-tune the clustering solution obtained in the process of it-
erations. Moreover, a new method for creating the neighboring solution
of the noising method called mergence and partition operation is de-
signed and analyzed in detail. Compared with two noising method based
clustering algorithms recently reported, the proposed algorithm greatly
improves the performance without the increase of the time complexity,
which is extensively demonstrated for experimental data sets.

1 Introduction

The clustering problem is a fundamental problem that frequently arises in a
great variety of application fields such as pattern recognition, machine learning,
and statistics. In this article, we focus on the minimum sum of squares clustering
problem stated as follows: Given N objects in Rm, allocate each object to one
of K clusters such that the sum of squared Euclidean distances between each
object and the center of its belonging cluster for every such allocated object is
minimized. This problem can be mathematically described as follows:

min
W,C

J(W,C) =
N∑

i=1

K∑
j=1

wij‖xi − cj‖2 (1)

where
K∑

j=1
wij = 1, i = 1, . . . , N . If object xi is allocated to cluster Cj , then wij

is equal to 1; otherwise wij is equal to 0. Here, N denotes the number of objects,
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m denotes the number of object attributes, K denotes the number of clusters,
X = {x1, . . . ,xN} denotes the set of N objects, C = {C1, . . . , CK} denotes the
set of K clusters, and W = [wij ] denotes the N ×K 0−1 matrix. Cluster center
cj is calculated as follows:

cj =
1
nj

∑
xi∈Cj

xi (2)

where nj denotes the number of objects belonging to cluster Cj . This clustering
problem is a nonconvex program which possesses many locally optimal values,
resulting that its solution often falls into these traps. It is known that this
problem is NP-hard [1]. If exhaustive enumeration is used to solve this problem,
then one requires to evaluate

1
K!

K∑
j=1

(−1)K−j

(
K

j

)
jN (3)

partitions. It is seen that exhaustive enumeration cannot lead to the required
solution for most problems in reasonable computation time [2].

Many methods have been reported to deal with this problem [2,3]. Among
them, K-means algorithm is a very popular one but it converges to local minima
in many cases [4]. Moreover, many researchers attempt to solve this problem
by stochastic optimization methods including evolutionary computation [5,6,7],
tabu search [8], and simulated annealing [9]. By adopting these techniques, re-
searchers obtain better performance than by using local iteration methods such
as K-means algorithm. In [10], the noising method, a recent metaheuristic tech-
nique firstly reported in [11], is introduced to deal with the clustering prob-
lem under consideration. In the field of metaheuristic algorithms, to efficiently
use them in various kinds of applications, researchers often combine them with
local descent approaches [12,13]. To efficiently use the noising method in the
clustering problem, in [10], the authors introduced K-means algorithm as the
local improvement operation to improve the performance of the clustering al-
gorithm. As a result, two methods called NMC and KNMC, respectively, are
developed. NMC does not own K-means operation but KNMC does. The choice
of the algorithm parameters is extensively discussed, and performance compar-
isons between these two methods and K-means algorithm, GAC [5], TSC [8],
and SAC [9] are conducted on experimental data sets. It is concluded that, with
much less computational cost than GAC, TSC, and SAC, KNMC can get much
better clustering results sooner than NMC, GAC, and TSC, and obtain results
close to those of SAC. Meanwhile, it is found that the results of KNMC are still
inferior to those of SAC in most cases.

The motivation of this article is how to design a new noising method based
clustering algorithm. On one hand, the low complexity should be kept, and on
the other hand, the quality of outputs should be further improved. Here, we find
there are still some problems in KNMC. Firstly, methods better than K-means
algorithm are not considered, and secondly, the probability threshold employed
in [10] need be determined in advance. But it is very difficult for the designer to
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choose the proper value in different cases. In this paper, two novel operations are
introduced, DHB operation and mergence and partition operation. The role of
DHB operation is similar to that of K-means operation in [10], but the former can
further improve the current solution. Mergence and partition operation similar
to the probability threshold is used to establish the neighboring solution, but it
does not need any parameter and can attain much better results than the latter.
By introducing these two modules, we develop a new clustering technique based
on improved noising method called INMC. By extensive computer simulations,
its superiority over NMC, KNMC, and even SAC is demonstrated.

The remaining part of this paper is organized as follows: In Section 2, INMC
algorithm and its components are described in detail. In Section 3, how to deter-
mine proper modules is extensively discussed. Performance comparisons between
the proposed algorithm and other techniques are conducted on experimental data
sets. Finally, some conclusions are drawn in Section 4.

2 INMC Algorithm

As stated in [10,14], instead of taking the genuine data into account directly,
the noising method considers the optimal result as the outcome of a series of
fluctuating data converging towards the genuine ones. Figure 1 gives the general
description of INMC. The architecture of INMC is similar to that of KMNC and
their most procedures observe the main architecture of the noising method. The
difference between KNMC and INMC lies that two new operations are introduced
in INMC. The detail discussion about KNMC and the noising method can be
found in [10] and [14], respectively. Here, DHB operation consisting of one-step
DHB algorithm is used to fine-tune solution Xc and accelerate the convergence
speed of the clustering algorithm. Moreover, mergence and partition operation
is designed to establish the neighboring solution.

Begin
set parameters and the current solution Xc at random
while Ni ≤ Nt do

Ni ← Ni + 1
perform DHB operation to fine-tune solution Xc

perform mergence and partition operation to create the neighbor X ′

if f(X ′) − f(Xc) + noise < 0, then Xc ← X ′

if f(Xc) < f(Xb), then update the best solution Xb ← Xc

if Ni = 0(modNf ), then decrease the noise rate rn

end do
output solution Xb

end

Fig. 1. General description of INMC
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2.1 DHB Operation

In [15], an iterative method called DHB algorithm, a breadth-first search tech-
nique, for the clustering problem is reported. According to this algorithm, an-
other alternative approach called DHF algorithm, a depth-first search technique,
is described in [16]. In [17], two algorithms called AFB algorithm and ABF al-
gorithm, respectively, based on hybrid alternating searching strategies, are pre-
sented to overcome the drawbacks of either a breadth-first search or a depth-first
search in the clustering problem. In [18], five iteration methods (DHB, DHF,
ABF, AFB, and K-means) are compared. First four methods have the simi-
lar performance and own stronger convergence states than K-means algorithm.
Their time complexities are the same as that of K-means algorithm. In [18], the
conclusion is drawn that first four algorithms can get much better clustering
results sooner than K-means algorithm and DHB algorithm is recommended to
perform the clustering task. The detail descriptions of five methods can be found
in the corresponding references. In this paper, we choose DHB algorithm as the
local improvement operation to fine-tune solution Xc. Firstly, we define several
variables so as to describe DHB operation. For cluster Cj , its objective function
value is defined as:

Jj =
∑

xi∈Cj

‖xi − cj‖2 (4)

If object xi belonging to cluster Cj is reassigned to Ck, then cluster centers
are moved accordingly, Jj decreases by ∆Jij , Jk increases by ∆Jik, and the
objective function value J is updated as follows:

∆Jij = nj‖xi − cj‖2/(nj − 1)
∆Jik = nk‖xi − ck‖2/(nk + 1)
J ′ = J −∆Jij + ∆Jik

(5)

and Cj and Ck are modulated as follows:{
c′j = (njcj − xi)/(nj − 1)
c′k = (nkck + xi)/(nk + 1)

(6)

Then, DHB operation is described as follows: Object xi belonging to cluster Cj

is reassigned to cluster Ck, iff

min (∆Jik) < ∆Jij (7)

where i = 1, . . . , N , j, k = 1, . . . ,K, and j �= k. According to Equations 5 and 6,
the corresponding parameters are updated. After all objects are considered, the
modified solution is obtained.

2.2 Mergence and Partition Operation

In [10], the probability threshold popularly used to create the neighborhood of
tabu search is adopted to establish the neighboring solution of the current so-
lution Xc. But the designer has to determine the value of this parameter in
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advance by computer simulations. In this paper, mergence and partition opera-
tion is designed to create the neighboring solution and no parameter is needed
any longer. In [19], three clustering concepts, under-partitioned state, optimal-
partitioned state, and over-partitioned state, are given to describe the varia-
tion of two partition functions so as to establish the cluster validity index. In
this article, we introduce these concepts to explain why and how we establish
the neighboring solution by mergence and partition operation. In general, for a
cluster, there are only three partition states, under-partitioned state, optimal-
partitioned state, and over-partitioned state. In over-partitioned case, an original
cluster is improperly divided into several parts. In under-partitioned case, more
than two original clusters or parts of them are improperly grouped together. Only
in optimal-partitioned one, all original clusters are correctly partitioned. For a
suboptimal clustering solution, there must be the under-partitioned cluster and
the over-partitioned cluster. Therefore, it is seen that further partitioning the
under-partitioned cluster and merging the over-partitioned cluster are natural
and suitable for establishing the neighboring solution and exploring the correct
clustering result. By improving all improperly partitioned clusters, we can expect
to achieve the proper result at last. Here, we randomly perform one partition and
one mergence on solution Xc, keep the number of clusters constant, and form the
neighbor. As the increase of the number of iterations, this operation are repeat-
edly performed on suboptimal solutions and the proper solution will be finally
achieved. Mergence and partition operation includes four sub-operations: mer-
gence cluster selection, partition cluster selection, cluster mergence, and cluster
partition. Here, the cluster to be merged Cm and the cluster to be partitioned
Cp are randomly determined. For cluster Cm, its belonging objects will be reas-
signed to their respective nearest clusters. That is, object xi ∈ Cm is reassigned
to cluster Cj , iff

‖xi − cj‖2 < ‖xi − ck‖2 (8)

where k, j = 1, . . . ,K, Cj , Ck �= Cm, and Cj �= Ck. After this sub-operation,
cluster Cm disappears and the number of clusters decreases by one. Meanwhile,
For cluster Cp, we view objects belonging to cluster Cp as a new data set,
and adopt iteration methods such as K-means algorithm to divide its belonging
objects into two new clusters. Here, K-means algorithm is chosen to perform this
task by computer simulations. After this sub-operation, cluster Cp is divided into
two new clusters and the number of clusters increases by one. Above four steps
are performed on solution Xc and the neighboring solution X ′ is established.

3 Experimental Results

In order to analyze the performance of the proposed algorithm, we firstly evaluate
the individual contributions made by different operations. Then the proposed
algorithm is applied to seven data sets and compared with SAC, NMC, and
KNMC. These experimental data sets are chosen because they represent different
situations and provide the extensive tests of the adaptability of the proposed
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algorithm. Simulation experiments are conducted in Matlab on an Intel Pentium
III processor running at 800MHz with 128MB real memory. Each experiment
includes 20 independent trials.

3.1 Performance Evaluation

In this section, the experiments are performed to compare performance of differ-
ent modules. Due to space limitations, here, the well-known data set, German
Towns with eight clusters, is chosen to show the comparison results. For other
experimental data sets, the similar results are obtained.

Three local improvement operations (No operation, K-means operation, and
DHB operation) adopted by NMC, KNMC, and INMC, respectively, are com-
pared. In NMC, there is no local improvement operation. Here, the probability
threshold is used to create the neighboring solution. The best results obtained
by the methods equipped with different operations in the process of iterations
are compared as shown in Figure 2. It is seen that No operation is the worst.
For other two operations, it seems that their results are almost equal to each
other. But after No operation is removed, the real results are shown as Figure 3.
It is clear that K-means operation is obviously inferior to DHB operation. As a
result, the algorithm equipped with DHB operation can attain the best results
more quickly and stably than ones with other two operations.
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Fig. 2. Comparison of three operations
for improving solution Xc
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Fig. 3. Comparison of K-means opera-
tion and DHB operation

We now discuss the issue of creating the neighboring solution. Here, to compare
performance of the probability threshold and mergence and partition operation,
we do not adopt the local improvement operation to improve the current solution.
Figure 4 shows that mergence and partition operation is far superior to the proba-
bility threshold and greatly improve the performance of the clustering algorithm.
Without the cooperation of the local improvement operation, the neighboring so-
lution providedby mergence and partition operation still accelerates the clustering
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algorithmto attain the best result stably and quickly. Therefore, it can be expected
the combination of DHB operation and mergence and partition operation can fur-
ther improve the performance of the clustering method.
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Fig. 4. Comparison of two modes for creating the neighboring solution

3.2 Performance Comparison

In this paper, seven data sets are chosen to perform computer simulations besides
the ones adopted in [10]. Two well-known data sets are added: German Towns [2]
and British Towns [20]. Here, we consider two cases: one is that the number of
clusters is variable; the other is that this parameter is fixed. Among data sets,
the number of clusters in German Towns varies in the range [4, 10]. We label
them as GT4C, GT5C, GT6C, GT7C, GT8C, GT9C, and GT10C, respectively.
This data set consists of Cartesian coordinates of 59 towns in Germany. The
case of British Towns is the same as that of German Towns. This data set is
composed of 50 samples each of four variables corresponding to the first four
principal components of the original data. In other data sets, the number of
clusters is fixed. The detail descriptions of these five data sets (Data52, Data62,
Iris, Crude Oil, and Vowel) can be found in [10].

In this paper, our aim is to improve the noising method for the clustering
problem under consideration and to further explore better results than those of
KNMC and even SAC. In [10], it is shown that KNMC is better than K-means
algorithm, GAC, and TSC. Therefore, we here focus on SAC, NMC, KNMC, and
INMC. For SAC, according to the recommendation of the reference, the number
of iterations at a temperature is set to be 20, the initial annealing temperature
is set to be 100, α is set to be 0.05, and the terminal annealing temperature is
set to be 0.01. In [10], The choice of the algorithm parameters is determined by
computer simulations as follows: the noise range is equal to 10, the terminal noise
rate is equal to 0, the original noise rate is equal to 10, the number of iterations
at the fixed noise rate is equal to 20, and the total number of iterations is equal
to 1000. For INMC, its parameter settings are the same as those of NMC and
KNMC.
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Before conducting comparison experiments, we analyze the time complexities
of methods adopted in this article. The time complexities of SAC, NMC, and
KNMC are O(GNsKmN), O(NtmN), and O(NtKmN), respectively, where G
denotes the number of iterations during the process that the annealing tempera-
ture drops, Ns denotes the number of iterations at the fixed temperature, and Nt

denotes the total number of iterations in the noising method. It is known that
the cost of NMC is lower than that of KNMC, but the performance of NMC
is far inferior to that of KNMC. For INMC, the complexity of DHB operation
is O(KmN). The complexity of mergence and partition operation is O(KmN).
Therefore, the time complexity of INMC is O(NtKmN) that is equal to that of
KNMC. Under this condition, the complexity of SAC is over thrice as much as
those of INMC and KNMC.

Table 1. Comparison of the clustering results of four methods for German Towns

SAC NMC KNMC INMC

GT4C
Avg 49600.59 75063.93 51610.14 49600.59
SD 0.00 7917.87 6652.60 0.00
Min 49600.59 63245.97 49600.59 49600.59

GT5C
Avg 39496.39 67157.79 40075.44 39091.02
SD 783.34 6897.88 1094.02 376.04
Min 38716.02 58374.91 38716.02 38716.02

GT6C
Avg 32220.44 62077.15 33837.61 31502.50
SD 1548.73 7178.90 1369.15 975.98
Min 30535.39 49445.41 30535.39 30535.39

GT7C
Avg 26964.11 54509.46 29009.23 24511.56
SD 1707.07 6077.62 2146.84 136.82
Min 24432.57 40164.41 25743.20 24432.57

GT8C
Avg 22603.12 52753.38 24496.94 21573.29
SD 1458.92 5527.67 1591.55 153.88
Min 21499.99 45283.29 22114.03 21483.02

GT9C
Avg 19790.99 47585.86 21746.58 18791.13
SD 420.20 4602.09 1925.25 175.83
Min 19130.63 35490.28 19521.02 18550.44

GT10C
Avg 18028.90 42796.75 20451.51 16515.07
SD 633.67 4078.29 1643.82 125.47
Min 16864.78 35015.27 18462.07 16307.96

The average (Avg), standard deviation (SD), and minimum (Min) values of
the clustering results of four methods for German Towns are compared as shown
in Table 1. In face of German Towns in which the number of clusters is variable,
NMC is the worst and fails to attain the best values even once within specified
iterations and its best values obtained are far worse than the best ones. KNMC
equipped with K-means operation can attain much better results than NMC.
KNMC can attain the optimal results of German Towns when the number of
clusters is small. But when this number is greater than and equal to seven,
KNMC cannot obtain the ideal results any longer. SAC spending much more
computational resource than KNMC obtains better performance than KNMC
as stated in [10]. SAC can attain the optimal results of German Towns when
the number of clusters is up to seven. As the increase of this number, it does
not attain the best results but its results are still superior to those of KNMC.
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With the cooperation of DHB operation and mergence and partition operation,
INMC can achieve the best value in each case. Its stability and solution quality
are far superior to those of NMC, KNMC, and even SAC. Meanwhile, its time
complexity the same as that of KNMC does not increase.

The average (Avg), standard deviation (SD), and minimum (Min) values of
the clustering results of four methods for British Towns are compared as shown
in Table 2. In face of British Towns, NMC is still the worst and fails to attain
the best value in each case. At this time, KNMC can attain the optimal results
of British Towns when the number of clusters is up to five. As the increase of
the number of clusters, KNMC cannot obtain the best results any longer. In face
of British Towns, the performance of SAC also becomes bad. It only attains the
best values of British Towns with four and six clusters. But SAC still obtains
better performance than KNMC in most case. In face of British Towns with
different clusters, INMC can still attain the best value in each case. It is shown
that the stability and solution quality of INMC are far superior to those of NMC,
KNMC, and SAC.

Table 2. Comparison of the clustering results of four methods for British Towns

SAC NMC KNMC INMC

BT4C
Avg 180.91 213.74 182.05 180.91
SD 0.00 13.05 1.96 0.00
Min 180.91 186.25 180.91 180.91

BT5C
Avg 160.56 189.45 162.76 160.23
SD 0.00 9.82 3.12 0.00
Min 160.56 172.64 160.23 160.23

BT6C
Avg 145.37 178.18 147.29 141.46
SD 3.30 10.17 2.97 0.00
Min 141.46 167.61 142.30 141.46

BT7C
Avg 130.26 175.20 132.69 126.60
SD 2.45 12.01 3.86 0.29
Min 128.68 156.40 128.28 126.28

BT8C
Avg 120.07 163.48 121.18 113.82
SD 3.01 8.93 3.96 0.57
Min 114.07 141.67 116.65 113.50

BT9C
Avg 111.18 155.78 111.30 103.24
SD 2.47 9.83 3.25 0.22
Min 103.75 142.75 104.31 102.74

BT10C
Avg 100.71 148.21 103.14 92.81
SD 3.36 10.69 4.14 0.17
Min 93.19 131.07 98.47 92.68

After considering the case in which the number of clusters is variable, we focus
on the other case. The average (Avg), standard deviation (SD), and minimum
(Min) values of the clustering results of four methods for other five data sets are
compared as shown in Table 3. In these experiments, the number of clusters is
constant. As stated in [10], NMC is the worst, KNMC is the second, and SAC
is the best. SAC can attain the best values of Data52, Iris, and Crude Oil in
all trials. But after INMC is considered, more promising results are expected.
INMC can stably obtain the best values of Data52, Data62, Iris, and Crude Oil
in all trials. For Vowel, its solution quality and stability are much better than
other three methods.
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Table 3. Comparison of the clustering results of four methods for Data52, Data62,
Iris, Crude Oil, and Vowel

SAC NMC KNMC INMC

Data52
Avg 488.02 2654.52 488.69 488.02
SD 0.00 55.52 0.58 0.00
Min 488.02 2557.31 488.09 488.02

Data62
Avg 1103.11 19303.58 1230.02 543.17
SD 366.63 422.77 1382.50 0.00
Min 543.17 18005.98 543.17 543.17

Iris
Avg 78.94 302.99 85.37 78.94
SD 0.00 37.43 19.26 0.00
Min 78.94 242.15 78.94 78.94

Crude Oil
Avg 1647.19 1995.44 1647.27 1647.19
SD 0.00 124.27 0.12 0.00
Min 1647.19 1787.43 1647.19 1647.19

Vowel
Avg 31941263.99 250796549.46 31554139.24 31389900.02
SD 1205116.61 2866658.66 1209301.09 412724.00
Min 30720909.84 245737316.31 30718120.60 30690583.33
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Fig. 6. Comparison of SAC, KNMC,
and INMC for German Towns

In order to understand the performance of four methods better, we use Ger-
man Towns with eight clusters to show the iteration process. In Figure 5, it is
seen that NMC is obviously much inferior to other three methods. For other
three algorithms, it seems that their results are almost equal to each other. But
after NMC is removed, the real results are shown as Figure 6. It is seen that
INMC is superior to SAC and KNMC, which shows that without the increase
of the time complexity, the performance of the noising method based clustering
algorithm can be greatly improved by introducing proper components into the
algorithm framework.

4 Conclusions

In this article, in order to further improve the performance of the noising method
based clustering algorithm, a novel algorithm called INMC is proposed. Two new
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operations are described in detail, DHB operation and mergence and partition
operation. In the algorithm framework, DHB operation is used to modulate the
current solution obtained in the process of iterations and to accelerate the con-
vergence speed of INMC, and mergence and partition operation is developed to
establish the neighboring solution. With the same time complexity as KNMC,
INMC can get much better results more quickly and stably than NMC and
KNMC. Moreover, compared with SAC, INMC spends much less resource and
obtains much better results, which is not solved in [10]. In future, the estima-
tion of the number of clusters should be considered. Meanwhile, improving the
stability of the proposed algorithm to the best results in complicate cases will
be the subject of future publications.
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Abstract. This paper presents the results obtained in a real experiment for ob-
ject recognition in a sequence of images captured by a mobile robot in an in-
door environment. The purpose is that the robot learns to identify and locate ob-
jects of interest in its environment from samples of different views of the ob-
jects taken from video sequences. In this work, objects are simply represented 
as an unstructured set of spots (image regions) for each frame, which are ob-
tained from the result of an image segmentation algorithm applied on the whole 
sequence. Each spot is semi-automatically assigned to a class (one of the ob-
jects or the background) and different features (color, size and invariant mo-
ments) are computed for it. These labeled data are given to a feed-forward neu-
ral network which is trained to classify the spots. The results obtained with all 
the features, several feature subsets and a backward selection method show the 
feasibility of the approach and point to color as the fundamental feature for dis-
criminative ability. 

1   Introduction 

One of the most general and challenging problems a mobile robot has to confront is to 
identify and locate objects that are common in its environment. Suppose an indoor 
environment composed by halls, corridors, offices, meeting rooms, etc., where a robot 
navigates and is expected to perform some helping tasks (in response to orders such 
as “bring me a coke from the machine in the corridor” or “throw these papers to the 
nearest waste paper basket”). To accomplish these tasks, the robot must be able to 
locate and identify different objects such as a beverage machine or a waste paper 
basket. Of course, a possible approach is to program the robot with recognition proce-
dures specific for each object of interest; in this way, the knowledge about the object 
and its characteristics is directly injected by the programmer in the recognition code. 
However, this approach is somewhat tedious and costly, and a preferable one would 
be to show to the robot in an easy way what the object is from images taken in differ-
ent views and to rely on the general learning abilities of the robot, which could be 
based on neural networks or other machine learning paradigms, to obtain a certain 
model of the object and an associated recognition procedure.   
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A very important issue is to determine the type of object model to learn. In this re-
spect, a wide range of object representation schemes has been proposed in the litera-
ture [1]. In our point of view, a useful model should be relatively simple and easy to 
acquire from the result of image processing steps. For instance, the result of a color 
image segmentation process, consisting of a set of regions (spots, from now on) char-
acterized by different features (related to size, color and shape), may be a good start-
ing point to learn the model. Although structured models like adjacency attributed 
graphs or random graphs can be synthesized for each object from several segmented 
images [2], we have decided to investigate first a much simpler approach in which the 
object is just represented as an unstructured set of spots and the spots are classified 
directly as belonging to one of a finite set of objects or the background (defined as 
everything else) using a feed-forward neural network. 

The classification of segmented image regions for object recognition has been ad-
dressed in several works. In [3], eigenregions, which are geometrical features that 
encompass several properties of an image region, are introduced to improve the iden-
tification of semantic image classes. Neural networks are used in [4] not only to clas-
sify known objects but to detect new image objects as well in video sequences. In [5], 
objects of interest are first localized, then features are extracted from the regions of 
interest and finally a neural network is applied to classify the objects. Support vector 
machines are used in [6] to classify a segmented image region in two categories, ei-
ther a single object region or a mixture of background and foreground (multiple object 
region), in order to derive a top-down segmentation method. 

The rest of the paper is organized as follows.  In Section 2, image acquisition, pre-
processing and segmentation steps are described as well as the semiautomatic method 
to assign class labels to spots. In Section 3, the features computed for each spot are 
defined. Neural network training and test together with the experimental methodology 
followed are commented in Section 4. The experimental results are presented in Sec-
tion 5, and finally, in Section 6, some conclusions are drawn and future work dis-
cussed. 

2   Image Acquisition, Pre-processing and Segmentation 

A digital video sequence of 88 images was captured by an RGB camera installed on 
the MARCO mobile robot at the Institute of Robotics and Industrial Informatics (IRI, 
UPC-CSIC) in Barcelona. The sequence shows an indoor scene with some slight 
perspective and scale changes caused by the movement of the robot while navigating 
through a room. The objects of interest in the scene were a box, a chair and a pair of 
identical wastebaskets put together side by side (see Figure 1), and the objective was 
to discriminate them from the rest of the scene (background) and locate them in the 
images. 

Before segmentation, the images in the sequence were preprocessed by applying a 
median filter on the RGB planes to smooth the image and reduce some illumination 
reflectance effects and noise. Then, the image segmentation module was applied to 
the whole sequence, trying to divide the images in homogeneous regions, which 
should correspond to the different objects in the image or parts of them. We used an 
implementation of the Felzenszwalb – Huttenlocher algorithm [7], which is a pixel 
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merge method based on sorted edge weights and minimum spanning tree, to segment 
each image separately. Note that this is a method working on static images that does 
not exploit the dynamic continuity of image changes through the sequence. 

The output of the segmentation process for each image consists of a list of regions 
(spots) that partition the image in homogeneous pieces, where each region is defined 
by the set of coordinates of the pixels it contains. For each spot, the mass center was 
calculated, and for all the spots whose mass center lied in some region-of-interest 
(ROI) rectangular windows, several features listed in Section 3 were computed as 
well. These windows were manually marked on the images with a graphics device to 
encompass the three objects of interest and a large region on the floor. Figure 1 shows 
one of the images and its segmentation together with the ROI windows on them. 

The remaining set of spots, those with the mass center inside the ROI windows, 
was further filtered by removing all the spots with a size lower than 100 pixels, with 
the purpose of eliminating small noisy regions caused by segmentation defects. 
Hence, from the 88 images, a total number of 7853 spots were finally obtained.  

In order to assign a class label to each spot, to be used as target for the spot pattern 
in the neural network training and test processes, a simple decision was made: each 
one of the four ROI windows constituted a class and all the spots in a window were 
assigned the same class label. Note that this is a rough decision, since several back-
ground spots are included in the ROI windows of the box, the chair and the wastebas-
kets, and therefore are not correctly labeled really. This is a clear source of error (in-
correctly labeled patterns) that puts some bounds on the level of classification accu-
racy that the learning system, in this case the neural network, may reach. However, 
we preferred to carry out this simple but more practical approach instead of manually 
labeling each spot, which is obviously a very tedious task, although it would probably 
have raised the classification performance of the trained networks. 

For illustrative purposes, the spots of Figure 1 that were assigned to each of the 
four classes are displayed in Figure 2; for the three objects (Figure 2 (a)-(c)), the un-
ion of selected spots is shown in the left and isolated spots that belong to the class are 
shown in the right. In addition, Figure 3 displays some of the ROI windows in other 
images of the sequence. 
 

Fig. 1. One of the original images (left) and the corresponding segmented image (right), with 
the four ROI windows marked on them. Spot mass centers are also displayed in the right image. 
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(a) Class 1 (b) Class 2 (c) Class 3 (d) Class 4 

 
 
 
 

 

Fig. 2. Labeling of the spots selected from the segmented image in Figure 1 

 
 
 
 
 
 
 
 

Fig. 3. Selection of ROI windows for two other images in the video sequence  

3   Features Computed for the Image Regions 

In order to be processed as a pattern by a neural network, a spot must be described by 
a feature vector. Table 1 displays the 14 variables that were initially considered to 
form the feature vector for training and testing the networks. In Section 5 we will also 
present results obtained from several different subsets of these 14 variables.  

Two types of information were used in the computation of the spot features: color 
and geometry. With regards to color, average and variance values for each one of the 
three RGB bands were calculated for each spot on the basis of the corresponding 
intensity values of the spot pixels in the original image (not in the segmented image, 
for which spot color variance would be zero). This is, the result of the segmentation 
algorithm served to identify the pixels of every spot, but the color characteristics of 
these pixels were taken from the original RGB image.  

The geometrical information may include features related to position, orientation, 
size and shape. Because of the robot movement, we were mainly interested in shape 
descriptors that were invariant to translation and scale, and to this end, we decided to 
use the seven invariant geometric moments defined by Hu [8]. In addition and since 
the range of variation of the objects’ size was rather limited in the video sequence, we 
also calculated and used the size of each spot, i.e. its area measured in number of 
pixels. 

For the calculation of the moments corresponding to a spot, all the pixels that form 
the spot are involved (not only its boundary pixels). More precisely, the seven invari-
ant moments, independent of position and size of the region, that we used in this work 
are defined by the following equations: 
 

 

Window of 
the class 1

Window of 
the class 2

Window of 
the class 3

Window of 
the class 4 
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I1=N(2,0)+N(0,2) (1) 

I2=( N(2,0)-N(0,2))2+4(N(1,1))2 (2) 

I3=( N(3,0)-3N(1,2) )2 +( 3N(2,1)-N(0,3) )2  (3) 

I4=( N(3,0)+N(1,2))2+(N(2,1)+N(0,3) )2 (4) 

I5=(N(3,0)-3N(1,2) )(N(3,0)+N(1,2))[ (N(3,0)+N(1,2))2 -3(N(2,1)+N(0,3) )2] 
+(3N(2,1) –N(0,3))(N(2,1)+N(0,3))[3(N(3,0)+N(1,2))2-(N(2,1)+N(0,3) )2] 

(5) 

I6=( N(2,0) – N(0,2) ) [ (N(0,3)+N(1,2))2-( N(2,1)+N(0,3))2 ]  
+4N(1,1)(N(3,0)+N(1,2) )(N(2,1)+N(0,3) ) 

(6) 

I7=(3N(2,1)-N(0,3)) (N(3,0)+N(1,2) )[ ( N(3,0)+N(1,2) )2-3(N(2,1)+N(0,3) )2] 
+(3N(1,2)-N(3,0) )(N(2,1)+N(0,3) )[ 3(N(3,0)+N(1,2)2 )-(N(2,1)+N(0,3) )2]   

(7) 

 
where N (p, q) are the normalized central moments of order two, which are given by: 
 

N (p, q) = MC (p, q) / MC  (0, 0)  ;  = ((p + q) / 2) + 1 (8) 

 

MC(p,q) =  (x-X) p (y-Y) q f(x, y) (9) 

Table 1.  Initial set of 14 variables that formed the feature vector for every spot and were used 
as input to the neural network for training and test 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Set of variables 
Number of variable Feature 
1 Size of spot  
2 Average red plane     
3 Average green plane    
4 Average blue plane     
5 I1RGB invariant moment 
6 I2RGB invariant moment    
7 I3RGB invariant moment 
8 I4RGB invariant moment    
9 I5RGB invariant moment    
10 I6RGB invariant moment    
11 I7RGB invariant moment    
12 Variance red plane 
13 Variance green plane 
14 Variance blue plane 
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MC(0,0)=  f(x,y)   (10) 

where f (x, y) is the intensity value of the pixel (x,y) in the segmented image, as given 
by the average of the three planes RGB, and (X,Y) are the mean coordinates of the 
spot. It must be noted that, in this case, all pixels in the same spot share the same 
value f(x,y), which depends on the color assigned to the spot as result of the segmen-
tation process. 

4   Neural Networks and Experimental Methodology  

Neural networks (NNs) are used for a wide variety of object classification tasks [9]. 
An object is represented by a number of features that form a d-dimensional feature 
vector x within an input space X ⊆ Rd. A classifier therefore realizes a mapping from 
input space X to a finite set of classes C = {1,...,l}. A neural network is trained to 
perform a classification task from a set of training examples S = {(x µ, t µ), µ = 1,...,M} 
using a supervised learning algorithm. The training set S consists of M feature vectors 
x µ ∈Rd each labeled with a class membership t µ ∈ C. The network typically has as 
many outputs as classes and the target labels are translated into l-dimensional target 
vectors following a local unary representation. During the training phase the network 
parameters are adapted to approximate this mapping as accurately as possible (unless 
some technique, such as early stopping, is applied to avoid over-fitting). In the classi-
fication phase an unlabeled feature vector x ∈ Rd is presented to the trained network 
and the network outputs provide an estimation of the a-posteriori class probabilities 
for the input x, from which a classification decision is made, usually an assignment to 
the class with maximum a-posteriori probability [10]. 

In this work, we used a feed-forward 2-layer perceptron architecture (i.e. one hid-
den layer of neurons and an output layer) using standard backpropagation as training 
algorithm. For processing the full feature vectors, the networks consisted of 14 inputs, 
n hidden units and 4 output units, where n took different values from 10 to 200 (see 
Table 2). Hyperbolic tangent and sine functions were used as activation functions in 
the hidden layer and the output layer, respectively. A modified version of the PDP 
simulator of Rumelhart and McClelland [11] was employed for the experiments, set-
ting a learning rate of 0.003 and a momentum parameter of zero for backpropagation, 
and a maximum number of 2,000 training epochs for each run. 

As mentioned before, a dataset containing 7853 labeled patterns (spots) was avail-
able after the image segmentation and feature calculation processes described in pre-
vious sections. For each network tested, a kind of cross-validation procedure was 
carried out by generating 10 different random partitions of this dataset, each including 
60% of the patterns for the training set, 15% for the validation set and 25% for the test 
set. The validation sets were used for early stopping the training phase. Actually, the 
network chosen at the end of the training phase was the one that yielded the best clas-
sification result on the validation set among the networks obtained after each training 
epoch. Then, this network was evaluated on the corresponding test set. 

After the experiments with the whole set of features, we performed similar cross-
validation experiments with different subsets of features (as indicated in Table 3), 
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using the same experimental parameters aforementioned, except that the number  
of hidden units was fixed to 160 (since this provided the best test result with all fea-
tures) and that the number of inputs was obviously set to the dimension of the feature 
subset. 

Finally, starting from the architecture selected for the full set of features, a sequen-
tial backward selection method [12] was applied trying to determine a good subset of 
input features by eliminating variables one by one and retraining the network each 
time a variable is temporarily removed. In this case, each partition of the cross-
validation procedure divided the dataset in 60% of patterns for training and 40% for 
test (no validation set) and the training stop criterion was to obtain the best result in 
the training set for a maximum of 2,000 epochs.  

5   Experimental Results  

The results obtained for the full set of features with the different networks tested are 
displayed in Table 2. For each one of the three sets (training, validation and test set), 
the classification performance is measured as the average percentage of correctly 
classified patterns in the ten cross-validation partitions, evaluated in the networks 
selected after training (the ones that maximize the performance on the validation set). 
Although the classification performance is shown for the three sets, the main result 
for assessing the network classification and generalization ability is naturally the 
classification performance in the test set. Hence, a best correct classification rate of 
75.94 % was obtained for the architecture with 160 hidden units, even though the 
generalization performance was rather similar in the range from 60 to 200 hidden 
units. It appears to be an upper bound for both the training and test sets that might be 
caused in part by the incorrectly labeled patterns mentioned in Section 2. 

Table 2. Classification performance obtained for different network configurations (hidden layer 
sizes) for the full set of 14 features using 10-partition cross-validation and early stopping 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Classification performance (all features) 
Hidden units  Training    Validation     Test 

200 80.27 % 77,00 % 75.63 % 
180 80.04 % 77.47 % 75.81 % 
160 80.33 % 77.38 % 75.94 % 
140 80.24 % 77.46 % 75.74 % 
120 80.03 % 77.06 % 75.23 % 
100 79.74 % 76.94 % 75.74 % 
80 79,43 % 77,12 % 75,54 % 
60 79,22 % 77,30 % 75,77 % 
40 77,86 % 76,08 % 74,33 % 
20 74,92 % 74,84 % 73,46 % 
10 72.11 % 71.60 % 70.18 % 
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Table 3. It presents the classification results for several groups of selected variables to assess 
the relative importance of the different types of features (size, color averages, color variances 
and shape invariant moments) 

Classification performance (with feature subsets) 
Feature Subsets Training Validation Test 
spot size, average and variance r,g,b 79.69 78.02 76.17 
all variables 80.33 77.38 75.94 
spot size and average r,g,b 77.77 77.49 75.92 
spot size, average r,g,b and three first 
invariant moments 

79.32 77.68 75.90 

average r,g,b and seven invariants 77.51 77.23 75.38 
average r,g,b  and three first invariants 76.90 76.91 74.83 
spot size and variance r,g,b 45.12 45.82 45.61 
spot size, variance r,g,b and three first 
invariant moments 

45.10 45.59 45.08 

Seven invariant moments,  variance 
r,g,b 

40.95 41.12 40.79 

Seven invariant moments 30.30 30.34 29.96 
 

Table 4. It presents top-down the order of the variables eliminated in the sequential backward 
selection process and the associated performance in the training and test sets after each step 

 

The results obtained for different subsets of features are displayed in Table 3, or-
dered decreasingly by test classification performance. It can be noted that similar 
results are obtained if the average color features are taken into account, but the per-
formance falls down dramatically when they are not used. The best result here was 

Backward selection process – Classification performance 
Num. var. Feature eliminated      Training           Test 
BASELINE No variable  removed 79.88 75.64 

5 I1RGB invariant moment 80.14 76.40 
13 variance of green plane 80.16 76.22 
14 Variance of blue plane 79.77 76.55 
11 I7RGB moment invariant 80.04 76.26 
12 variance of red plane 78.90 77.13 
9 I5RGB moment invariant 78.60 76.24 
8 I4RGB moment invariant 78.07 75.99 
7 I3RGB moment invariant 78.14 75.73 
6 I2RGB moment invariant 77.81 75.89 

10 I6RGB moment invariant 77.04 74.18 
1 spot size 73.35 72.49 
3 average of green plane 65.89 63.96 
4 Average of blue plane 40.36 39.86 
2 Average of red plane 30.48 30.83 
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76.17% test classification performance for a subset comprising color features (both 
RGB averages and variances) and spot size (and with the shape invariant moments 
removed). Using only the seven invariant moments, the performance is almost as poor 
as that of a random classification decision rule. 

The results of the sequential backward feature selection, shown in Table 4, clearly 
confirmed that RGB color variances and invariant moments were practically useless 
(they were the first features removed without a significant performance degradation, 
indeed the test classification rate grew up to a 77.13% after the elimination of six of 
these variables) and that RGB color averages provided almost all the relevant infor-
mation to classify the spots. 

6   Conclusions and Future Work  

A simple approach to object recognition in video sequences has been tested in which 
a feed-forward neural network is trained to classify image segmentation regions 
(spots) as belonging to one of the objects of interest or to the background. Hence, 
objects are implicitly represented as an unstructured set of spots; no adjacency graph 
or description of the structure of the object is used. 

In order to provide labeled examples for the supervised training of the network, a 
semiautomatic procedure for assigning object labels (classes) to spots has been carried 
out based on the manual definition of graphical region-of-interest windows. However, 
this procedure produces some incorrectly labeled examples that affect negatively the 
learning of the objects and the posterior classification performance. 

Spot RGB color averages and, to a less extent, spot size have been determined em-
pirically in this work as adequate features to discriminate objects based on segmenta-
tion regions, whereas spot shape invariant moments and spot RGB color variances 
have been shown to be of very little help. The obtained classification results are rather 
good taking into account the simplicity of the approach (for instance, two very similar 
spots could perfectly belong to different objects) and the presence of incorrectly la-
beled patterns in the training and test sets caused by the semiautomatic labeling  
procedure.  

In order to increase the classification performance, there are several actions that 
can be attempted. First, the labeling procedure may be improved to reduce (or even 
eliminate) the presence of incorrectly labeled spots. Second, some model of the struc-
ture of the object can be used in the learning and test phases; for instance, attributed 
graphs and random graphs with spots as nodes may be tried [2]. Third, a better image 
segmentation algorithm may be used, for instance, one based on the dynamic se-
quence of images (instead of using only single images separately) may be more ro-
bust. 

In the long-term, our purpose is to design a dynamic object recognition method for 
video sequences by exploiting the intrinsic continuity in the object views represented 
by the successive images the mobile robot capture while navigating in an indoor  
environment. 
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Abstract. Polarization of light caused by reflection from dielectric sur-
faces has been widely studied in computer vision. This paper presents
an analysis of the accuracy of a technique that has been developed to
acquire surface orientation from the polarization state of diffusely re-
flected light. This method employs a digital camera and a rotating linear
polarizer. The paper also explores the possibility of linking polarization
vision with shading information by means of a computationally efficient
BRDF estimation algorithm.

1 Introduction

Many attempts have been made by the computer vision community to exploit
the phenomenon of the partial polarization of light caused by reflection from
smooth surfaces. Existing work has demonstrated the usefulness of polarization
in surface height recovery [7,6,8,1]; overcoming the surface orientation ambiguity
associated with photometric stereo [3,4]; image segmentation [11]; recognition
and separation of reflection components [10,11]; and distinguishing true laser
stripes from inter-reflections for triangulation based laser scanning [2]. Polariza-
tion vision has been studied for both metallic and dielectric surfaces and both
specular and diffuse reflection. However, little work has been carried out that
assesses the accuracy of these techniques or to couple these methods with shape
from shading or other intensity-based methods.

This paper is concerned with what is probably the most studied of the above
applications: shape recovery. In particular, we focus on shape recovery from dif-
fuse reflection from dielectric surfaces since this is the most commonly occurring
situation. The paper uses a technique to recover surface normals from polariza-
tion that involves a linear polarizer being mounted on a digital camera and
images taken as the transmission axis of the polarizer is rotated. We apply this
method to objects made from a variety of materials of known shape. The surface
orientation prediction based on polarization is then compared to the exact values
calculated from the known geometry. The analysis reveals several unstudied fea-
tures of surface polarization that help to demonstrate where current techniques
of polarization vision are adequate and where its use is inappropriate or where
more detailed models are required.

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 103–111, 2005.
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We also use polarization to estimate the “slice” of the bidirectional reflectance
distribution function (BRDF) corresponding to the case where the camera and
light source are coincident. We do this for objects of unknown shape and compare
the results to objects of the same material but known shape. This is of interest
for three reasons. Firstly, it complements the accuracy analysis since, again,
exact values can be deduced from the known shapes. Secondly, BRDF data
may be useful for the shape recovery of surface regions that cause difficulty for
polarization vision such as inter-reflections [1]. Finally, BRDF data can be used
for realistic image rendering.

2 Polarization and Reflection

The Fresnel equations give the ratios of the reflected wave amplitude to the
incident wave amplitude for incident light that is linearly polarized perpendicular
to, or parallel to, the plane of specular incidence. These ratios depend upon the
angle of incidence and the refractive index, n, of the reflecting medium. Since
the incident light can always be resolved into two perpendicular components,
the Fresnel equations are applicable to all incident polarization states. Indeed,
throughout this work, we assume that the incident light is unpolarized.

E
0i|| E

0r||

E
0t ||

E
0i

�
i

�
r

�
i

�
r=

�
t

n=1
i

n
t

E
0r

E
0t

Fig. 1. Definitions. Directions of electric fields are indicated.

For the geometry of Fig. 1, the Fresnel reflection coefficients are [5]

r⊥ (ni, nt, θi) ≡
E0r⊥
E0i⊥

=
ni cos θi − nt cos θt

ni cos θi + nt cos θt
(1)

r‖ (ni, nt, θi) ≡
E0r‖
E0i‖

=
nt cos θi − ni cos θt

nt cos θi + ni cos θt
(2)

where (1) gives the reflection ratio for light polarized perpendicular to the plane
of incidence and (2) is for light polarized parallel to the plane of incidence. The
angle θt can be obtained from the well-known Snell’s Law: ni sin θi = nt sin θt.
Cameras do not measure the amplitude of a wave but the square of the ampli-
tude, or intensity. With this in mind, it is possible to show that the intensity
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coefficients, which relate the reflected power to the incident power, are R⊥ = r2
⊥

and R‖ = r2
‖ [5].

Figure 2 shows the Fresnel intensity coefficients for a typical dielectric as
a function of the angle of the incident light. Both reflection and transmission
coefficients are shown, where the latter refers to the ratio of transmitted to
incident power (the transmission coefficients are simply T⊥ = 1−R⊥ and T‖ =
1−R‖).
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Fig. 2. Reflection and transmission coefficients for a dielectric (n = 1.5)

The work reported here relies on taking a succession of images of objects
with a polarizer mounted on the camera at different angles. As the polarizer
is rotated, the measured pixel brightness at a given point varies sinusoidally.
Let Imax and Imin be the maximum and minimum intensities in this sinusoid
respectively. The degree of polarization is defined to be

ρ =
Imax − Imin

Imax + Imin
(3)

Careful consideration of Fig. 2 and the Fresnel equations leads to an expression
for the degree of polarization in terms of the refractive index and the zenith
angle, that is, the angle between the surface normal and the viewing direction.
Unfortunately, this equation is only applicable to specular reflection since the
process that causes diffuse polarization, the sole concern of this paper, is differ-
ent, as explained below.

Diffuse polarization is a result of the following process [11]: A portion of
the incident light penetrates the surface and is scattered internally. Due to the
random nature of internal scattering, the light becomes depolarized. Some of
the light is then refracted back into the air, being partially polarized in the
process. Snell’s Law and the Fresnel equations can be used to predict the degree
of polarization of light emerging from the surface at a given angle. Figure 3
shows the Fresnel coefficients for light being refracted back into air.
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Fig. 3. Fresnel coefficients for light leaving a medium (n = 1.5)
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Fig. 4. Degree of polarization for diffuse reflection for two different refractive indices

Using a similar method to that used for specular polarization, an equation
for the degree of polarization in terms of the zenith angle and refractive index
can be derived:

ρ =
(n− 1/n)2 sin2 θ

2− 2n2 − (n + 1/n)2 sin2 θ + 4 cos θ
√

n2 − sin2 θ
(4)

The dependence of the diffuse polarization ρ on the zenith angle θ is shown in
Fig. 4.

The azimuth angle of the surface normal, i.e. the angle of the projection of
the surface normal onto the image plane, is also intimately related to the Fresnel
equations. As Fig. 3 shows, diffusely reflected light is reflected most efficiently
when polarized parallel to the plane containing the surface normal and the ray
reflected towards the camera. The azimuth angle therefore exactly matches the
angle of the polarizer that permits greatest transmission.

3 Polarization Analysis

Equations (3) and (4) are central to the technique of recovering surface orienta-
tion from diffuse polarization. For the experiments described below, the surface
normal azimuth and zenith angles were recovered using the following method:
For each object, 36 images were taken with a Nikon D70 digital SLR camera,
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with a linear polarizer mounted on the lens, which was rotated by 5◦ between
successive images. There was just one light source, a small but intense collimated
tungsten lamp. The walls, floor and ceiling of the laboratory, as well as the table
on which the objects lay, were matte black to avoid inter-reflections from the
environment.

As mentioned earlier, pixel brightness varies sinusoidally with polarizer angle.
A sinusoid was therefore fitted to the pixel brightnesses for each point on the
images. With Imax and Imin taken from this fit, (3) and (4) were used to estimate
the zenith angles. The azimuth angle of the surface was taken to match the
polarizer angle that allowed greatest transmission.

To assess the accuracy of the method, a set of vertically oriented cylinders of
various materials were used. The geometry of a cylinder is convenient for three
reasons. First, the analysis can easily be performed for all possible zenith angles.
Second, noise can be reduced by taking the average image intensity for each
column of pixels. Finally, the structure is simple enough for shape recovery to
be performed exactly from a single image. This is simply done by isolating the
cylinder from the background and placing semicircles that arch from one side of
the object to the other.

Using the method described above, we obtained a set of graphs showing the
measured and theoretical zenith angles against position across the cylinder for
different materials. Since the azimuth angle of the cylinder is constant, we can
also see how the accuracy of azimuth angle estimates vary with zenith angle, if
at all. A sample of these results for porcelain, blank photographic paper, pho-
tographic paper coated with cling film and normal paper are shown in Fig. 5.
The photographic paper is much smoother than normal paper due to its coat-
ing. Several other material samples were also analysed, including different paper
types, plastics, wax, terracotta and papers coated with inks. The graphs of Fig. 5
provide a good overall representation.

The first point to note about the figures is that, even for normal paper which
at the fine scale is very rough, the azimuth angles have been accurately recovered.
However, more noise is associated with the rougher surfaces.

There was greater variation in the accuracy of the zenith angle estimates.
For Fig. 5, the refractive index used was simply the value that produced greatest
similarity between theory and experiment for the material in question. The shiny
white porcelain object produced excellent agreement with theory down to very
small zenith angles.

The remaining graphs in Fig. 5 demonstrate the complications that can cause
the measured zenith angles to deviate from the expected values. The result for
blank white photographic paper, for example, is very accurate for large zenith
angles but an increasing discrepancy is present as the zenith angle approaches
zero. When the paper is coated in cling film, the discrepancy is less marked.
Clearly, this suggests that there is a process occurring that is not accounted for
by the theory. It is not considered useful to investigate this phenomenon fur-
ther because the intensity may vary by just a few grey levels in such regions.
Therefore, intensity quantization errors prevent extraction of useful data. The
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Fig. 5. Plots of measured zenith and azimuth angles (solid lines) across the surfaces of
cylinders of different materials. The exact values are indicated by the broken curves.

results for paper, which of course, is a rough matte surface, also show the phe-
nomenon of finite polarization at low zenith angles, as well as depolarizing effects
of roughness nearer to the limbs.

4 Shading Analysis and BRDF Estimation

We now turn our attention to information contained within the shading of the
images. For this analysis normal digital photographs were used (i.e. the polarizer
was removed from the camera) although taking the sum of two images with the
polarizer angle 90◦ different gives the same result (except for an overall inten-
sity reduction due to non-ideal filters). This analysis demonstrates the relative
strengths of polarization and shading analysis.

It is not our intention here to present a detailed survey of reflectance models
[12] but we are interested in where shading information should be used in place
of polarization. First consider the simplest reflectance model: the Lambertian
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Fig. 7. Some of the objects used in BRDF estimation

approximation. Figure 6 shows the zenith angle prediction using this model for
the porcelain and paper samples from Fig. 5. Polarization clearly gave much
better results for porcelain, but for paper (a genuinely Lambertian surface),
polarization was weaker due to roughness. Note however that the Lambertian
model tells us little about the surface azimuth angle, whereas even for paper,
this was accurately recovered from polarization up to a 180◦ ambiguity caused
by the equivalence of phase angles separated by this angle.

For the final contribution of this paper, we consider the BRDF of these two
very different materials. In full, the BRDF is the ratio of reflected light to incident
light for all possible viewing and illumination directions. Here, we are concerned
with estimating the “slice” of the BRDF where the light source and camera are
coincident using a single polarization image. The method is very simple and
computationally efficient and we compare the results to ground truth and to an
intensity based method.

The polarization-based method simply bins the zenith angles recovered from
a polarization image (here bin sizes were taken to be 1◦ wide) and plots in-
tensity against zenith angle. The intensity based method uses the cumulative
distribution of intensity gradients to estimate the zenith angles which then ap-
proximates the BRDF in the form of a polar function on a Gauss sphere. Details
of this method can be found in [9].
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These BRDF estimation methods were applied to objects made of porcelain
and paper, some of which are shown in Fig. 7. A BRDF graph was obtained
for each object. Figure 8 shows the mean graph for each material. Zenith angles
above 85◦ are not shown due to the difficulty in obtaining reliable intensity data
for these areas. Results are broadly as expected. For porcelain, both methods
gave good results with polarization being more accurate. In particular, the polar-
ization method gives almost exact results above about 70◦. The random-looking
curve for paper shows that BRDF estimation is highly sensitive to surface ge-
ometry for that material so intensity-based methods should clearly be used here.
The BRDF can be estimated in full by repeating the experiment under many
different lighting conditions and interpolating between the positions used to es-
timate the BRDF under arbitrary illumination conditions.

5 Conclusion

This work has presented a sensitivity study of shape from diffuse polarization for
various materials. The difference in the accuracy of the method between regions
of high and low zenith angles is clearly illustrated by Fig. 5, which also provides
a detailed picture of the effects of roughness. Importantly, we see that the surface
normal azimuth angles can be accurately determined even for moderately rough
surfaces. The BRDF experiments have demonstrated very efficient methods for
BRDF estimation from polarization and intensity and has applications in im-
age rendering and combining shape from shading with polarization. The paper
clearly identifies strengths and weaknesses of shape from polarization over shape
from shading.
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Abstract. In this paper, an approach based on lacunarity to locate address blocks
in postal envelopes is proposed. After computing the lacunarity of a postal enve-
lope image, a non-linear transformation is applied on it. A thresholding technique
is then used to generate evidences. Finally, a region growing is applied to recon-
struct semantic objects like stamps, postmarks, and address blocks. Very little a
priori knowledge of the envelope images is required. By using the lacunarity for
several ranges of neighbor window sizes r onto 200 postal envelope images, the
proposed approach reached a success rate over than 97% on average.

1 Introduction

Postal Service processes postal envelopes through manual and automated operations.
The former require an employee to read the address before sorting the mail. The latter
requires that an employee simply feed mail into and remove mail from a machine that
both ”reads” and sorts. Due to wide variety of postal envelope attributes like layouts,
colors, texture, and handwritten address block mixed up with postmarks or stamps,
many mails have to be processed manually. Mail-handling is a very labor intensive pro-
cess and the knowledge level required for the sorting process is quite considerable. The
use of automation is the logical choice for improving productivity and reducing ex-
penses. Mail sorting and postal automation represent an important area of application
for Image Processing and Pattern Recognition techniques. The main function required
in postal automation, involving Computer Vision, is definitely address reading and in-
terpretation.

Here, we have focused our attention on segmentation of a postal envelope image
into stamps, postmarks and address blocks. Other works in the literature have tack-
led different aspects of that problem. An address block location method is proposed in
[1] for working with both machine and hand printed addresses. The method is based
on dividing the input image into blocks where the homogeneity of each block gradi-
ent magnitude is measured. Heuristically given thresholds are used to decide upon the
gradient magnitude of a typical address block candidate. In their tests 1600 machine

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 112–119, 2005.
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printed addresses and 400 hand printed ones were used, reporting over 91% successful
location. The solution appears to work fast for well-constrained envelopes, whereby a
large separation exists between the image regions since they mentioned a large draw-
back in the figures if the envelopes have more than one stamp for example. Eiterer et
al [2] present a segmentation method based on calculation of fractal dimension from
2D variation procedure and k-means clustering. The authors have also computed the
influence of box size r used in each image pixel. Best values, on a 200 postal enve-
lope database, were obtained for range r = {3, 9}, where the segmentation recovered
address blocks (97.24%± 13.64%) with quite noise (6.43%± 6.52%).

The purpose of this study is to investigate the potential usefulness of lacunarity in
quantifying the texture of postal envelope images to locate handwritten address blocks,
postmarks and stamps, with little a priori knowledge of the envelope images.

The rest of this paper is organized as follows: Section 2 describes the segmenta-
tion task for postal automation and the proposed approach. Section 3 presents some
experimental results, the evaluation process used and briefly a discussion. Finally, some
conclusions are drawn in Section 4.

2 The Proposed Segmentation Approach for Postal Automation

The segmentation task to be performed for postal automation consists in separating the
background, and locating the address block, stamps, and postmarks. Our postal enve-
lope segmentation approach is based on evidence generation by lacunarity associated
with a region-growing algorithm. The 4 main steps are (Figure 1):

– Feature Extraction: it is performed on an input image Iin by means of Lacunarity
generating a feature image IFE ;

– Feature Normalization: New features IFN are devised by non-linear normalization
from IFE , in order to enhance singularities (discontinuities) between background
and objects and enhance extracted features;

– Saliency Identification: it is performed from IFN by a thresholding algorithm gen-
erating ISI , which contains enough evidence for segmentation objects;

– Region-growing: it is applied on the evidences in ISI in order to recover all remain-
ing pixels belonging to segmentation objects of interest, yelding the final segmen-
tation Iout.

Fig. 1. Flowchart of the segmentation approach proposed
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(a) (b)

(c) (d)

Fig. 2. Input image and outputs of the last three steps: (a) Envelope image, (b) Feature Normal-
ization, (c) Saliency Identification, (d) Region Growing

2.1 Feature Extraction

Lacunarity is a multi-scale measure describing the distribution of gaps within a texture:
the greater the range in gap size distribution, the more lacunar the data [3]. Higher lacu-
narity values represent a wider range of sizes of structures within an image. Lacunarity
is sensitive to both the image density and its spatial configuration [4].

A number of algorithms have been proposed for measuring this property [5], [6].
The Allain ’s and Cloitre ’s [7] algorithm for lacunarity estimation gliding box method
has been adopted. The gliding-box samples an image using overlapping square win-
dows of length r. Lacunarity is defined in terms of the local first and second moments,
measured for each neighborhood size, about every pixel in the image [4]:

L(r) = 1 +
var(r)

mean2(r)
(1)

where mean(r) and var(r) are the mean and variance of the pixel values, respectively,
for a neighborhood size r.

Thus, lacunarity is used as evidence to distinguish between background and objects.
Feature extraction (IFE) is performed by using Equation 1, where mean(r) and var(r)
will be computed for different neighborhood sizes r.

2.2 Feature Normalization

The distribution in IFE is very sparse and non-uniform. How to detect the lacunarity
values that can capture texture characteristic for homogeneous areas or for transition
areas is the main challenge for this feature-developing task. The variations of hand-
written object sizes and background illumination in image directly affect lacunarity
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distribution. To take into account the variation of lacunarity distributions, a non-linear
normalization was used:

IFN = arctan(
IFE

(k ∗ std(IFE)
) (2)

where arctan(•) is a trigonometric and well-known non-linear function, std(IFE) is
standard deviation of IFE and k is a multiplicative factor. Figure 2-(b) depicts an ex-
ample where it is easy to observe the enhancement of evidences.

2.3 Saliency Identification

To separate evidences into objects and background, the Otsu ’s thresholding algorithm
[8] was used, producing the output ISI (Figure 2-(c)).

Once features devised in the first two steps are thresholded, saliencies for segmen-
tation objects are detected. Thus, they are working as evidences for next step to recon-
struct desired objects. Figure 2-(d) depicts this step.

2.4 Region Growing

At this stage, the image ISI contains the selected evidences likely to belong to either
address block, stamps or postmarks. However, these evidences have to be properly used
in order to select the coherent pixels for ISI .

Thus, each point in ISI will be selected if the gray value, iv, of respective pixel falls
inside λ% of image distribution (Gaussian):

iv ≤ Iµ − Z50%−λ × Iσ (3)

where, Iµ and Iσ are the global mean and global standard deviation of image, respec-
tively, Z50%−λ is the normalized point for probability of 50%− λ. In fact, we suppose
that objects to be recovered are the λ% (in Gaussian distribution) darker ones.

After verifying all points iv indicated through ISI , only ones that hold the global
constrains (Equation 3) will be stored:

iv ≤ ig (4)

where, ig is the greatest gray value of each initial saliency so far.
If a dequeued point holds Equation 4, its neighbor points will be enqueued if they

hold Equation 3. The region-growing process will stop when there is no more points in
queue. Figure 2-(d) shows an example of this process.

3 Experiments, Numerical Results and Discussion

A database composed of 200 complex postal envelope images, with no fixed position
for the handwritten address blocks, postmarks and stamps was used. Each grayscale
image, approximately 1500 × 2200 pixels, was digitized at 200 dpi. We could verify
that the address blocks, stamps and postmarks represent only 1.5%, 4.0% and 1.0% on
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(a) (b)

(c) (d)

Fig. 3. Four (4) different images of postal envelopes used, as Iin, in the experiments

(a) (b)

(c) (d)

Fig. 4. Final results Iout obtained by our proposed approach with recovered address block, stamps
and postmarks without background, for 4 different envelopes

average of the envelope area, respectively and that the great majority of pixels of these
images belong to the envelope background (approximately 93.5%). Figure 3 depicts 4
envelopes issued from this database.

A ground-truth strategy was employed to evaluate the accuracy of the proposed ap-
proach. The ideal result (ground-truth segmentation) regarding each class (handwritten
address block, postmarks and stamps) has been generated for each envelope image. By
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comparing identical pixels at the same location in the ground-truth images and seg-
mented ones, a score of segmentation was computed.

The accuracy evaluation of the proposed method was carried out focusing the atten-
tion to address block. The tradeoff between high address block accuracy and low noise
rates has been taken into account. Table 1 depicts the best results, where the lacunarity
box size r = 3, k = 2, and λ = 10% ( and Z50%−λ = 1.28).

Table 1. Best results. Average results with identification of regions (pixel by pixel accuracy) for
the images tested.

Objects Accuracy pixel by pixel (µ ± σ)

Address Block 97.52% ± 5.72%
Stamp 31.94% ± 15.10%
Postmarks 88.07% ± 16.79%
Noise 0.51% ± 0.75%

Independently of the layout and background in the input images (Figure 3), one can
observe that the segmentation has succeeded in recovering address blocks, postmarks
and stamps, and eliminating the background (Figure 4).

In order to quantify their influence in accuracy, experiments to test each step of the
proposed approach have been run. Thus, we have focused our attention on automation
purposes, and only address block accuracy and noise have been reported. Table 2 depicts
variations in results when the box size r changes. By increasing r, the address block
accuracy decreases and the noise increases. In addition, by increasing r, the approach
time complexity increases, since it is O(r2n) in lacunarity feature extraction. From
these experiments, one can conclude that r = 3 is the best box size.

Table 2. Testing Lacunarity varying box size r

Accuracy pixel by pixel (µ ± σ)
Lac Address Block Noise

3 97.52% ± 5.72% 0.51% ± 0.75%
5 97.37% ± 5.95% 0.52% ± 0.76%
7 97.14% ± 6.42% 0.52% ± 0.77%
9 96.80% ± 7.10% 0.53% ± 0.76%

The influence of multiplicative factor of non-linear normalization has also been
tested (Table 3). No meaningful modification in accuracy has occurred. We can con-
clude that feature extraction and proposed non-linear normalization based on standard
deviation are robust.

The influence of parameter λ has also been analyzed (Table 4). By observing the
results regarding accuracy for address block and noise, one can clearly observe how λ
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Table 3. Testing non-linearity factor normalization k

Accuracy pixel by pixel (µ ± σ)
factor Address Block Noise

0.25 97.80% ± 5.35% 0.80% ± 1.04%
0.5 97.77% ± 5.37% 0.66% ± 0.88%
1 97.71% ± 5.46% 0.59% ± 0.82%
2 97.52% ± 5.72% 0.51% ± 0.75%
3 97.33% ± 5.97% 0.48% ± 0.72%
4 97.13% ± 6.28% 0.45% ± 0.72%

parameter can affect the accuracy. Increasing (decreasing) λ increases (decreases) both
address block and noise accuracies. By considering 0.51% a good noise rate on average,
λ = 10% has been chosen.

Table 4. Testing objects image distribution, the λ parameter

Accuracy pixel by pixel (µ ± σ)
λ Address Block Noise

17% 98.56% ± 3.71% 0.87% ± 1.21%
15% 98.34% ± 4.10% 0.77% ± 1.11%
10% 97.52% ± 5.72% 0.51% ± 0.75%
5% 94.77% ± 9.32% 0.28% ± 0.45%

2.5% 91.98% ± 12.97% 0.17% ± 0.29%

These experiments have shown that the accuracy is biased only forλparameter, which
is used to apply the knowledge about database images. One can say that the Gaussian
supposition works well (global constrain - Equation 3). On other hand, the value choice
of the other parameters was not critical in our proposed segmentation method.

4 Conclusions

A new postal envelope segmentation method based on saliency identification from la-
cunarity feature was proposed. The obtained results have shown this approach very
promising. The lacunarity algorithm is simple to implement, depending only on local
means and variances calculated for window sizes throughout the image. There is no
need to correct for noise in the image. Hence, lacunarity by itself may be sufficient to
characterize postal envelope texture, address block, postmarks and stamps, resulting in
a major advantage over other approaches. The time complexity (O(n) ) of the region-
growing algorithm is the same as in other approaches. But, simplicity of this approach
gives a time performance gain (6 times faster), compared with [2], which performs an
iterative process (k-means algorithm) and uses large box sizes for computing the fractal
dimension.
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Abstract. This paper proposes a measure of quality for evaluating the perfor-
mance of region-based segmentation methods. Degradation mechanisms are used
to compare segmentation evaluation methods onto deteriorated ground-truth seg-
mentation images. Experiments showed the significance of using degradation
mechanisms to compare segmentation evaluation methods. Encouraging results
were obtained for a selection of degradation effects.

1 Introduction

Image Segmentation is a field that deals with the analysis of the spatial content of an im-
age. It is used to separate semantic sets (regions, textures edges) and is an important step
for image understanding. The region-based segmentation consists in estimating which
class each pixel of the image belongs to. Due to the fact that none of the segmentation
approaches are applicable to all images, several region-based segmentation approaches
have been proposed. None of the algorithms are equally suitable for a particular applica-
tion. It is the reason why establish certain criteria, other than human subjective ones, to
evaluate the performance evaluation of segmentation algorithms is needed. Performance
evaluation is a critical step for increasing the understanding rates in image processing.
This work will focus on discrepancy evaluation methods of region-based segmentation,
that consist in comparing the results obtained by applying a segmentation algorithm
with a reference (ground-truth) and measuring the differences (or discrepancy). Zhang
[1] has proposed a discrepancy evaluation method based on mis-classified pixels. Sup-
pose an image segmented into N pixel classes, a confusion matrix C of dimension
N ×N can be constructed, where each entry Cij represents the pixel number of class
j classified as class i by the segmentation algorithms. A first error type named ”multi-
class Type I error” was defined as:

M
(k)
I = 100×

[(
N∑

i=1

Cik

)
− Ckk

]
/

[
N∑

i=1

Cik

]
(1)

where the numerator represents the pixel number of class k not classified as k and the
denominator is the total pixel number of class k. A second error type named ”multi-
class Type II error” was defined as:
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M
(k)
II = 100×

[(
N∑

i=1

Cki

)
− Ckk

]
/

 N∑
i=1

N∑
j=1

Cij

 (2)

where the numerator represents the pixel number of other classes called class k. The
denominator is the total pixel number of other classes.

Yasnoff et al [2] have shown that measuring the discrepancy only on the number
of mis-classified pixels does not consider the pixel position error. Possible solution is
to use the distance between the mis-segmented pixel and the nearest pixel that actually
belongs to the mis-segmented class. Let S be the number of mis-segmented pixels for
the whole image and d(i) be a metric to measure the distance between the ith mis-
segmented pixel and the nearest pixel that actually is of the mis-classified class. Yasnoff
et al [2] have defined a discrepancy measure D based on this distance:

D =
S∑

i=1

d2(i) (3)

To exempt the influence of image size, the discrepancy measure D is normalized ND:

ND = 100×
√
D
/
T (4)

where T is the total pixel number in the image.
This work will focus on proposing a new discrepancy evaluation and a strategy

for measuring its performance. This paper is organized as follows: A new discrepancy
evaluation method taking into account the different ”scenarios” occurred in a segmen-
tation process is detailed in Section 2. Section 3 presents some experimental results
and discussions. Section 4 shows the quality evaluation of two specific address block
segmentation methods. Finally, some conclusions are drawn in Section 5.

2 New Discrepancy Evaluation Method

A discrepancy evaluation method taking into account the different ”scenarios” occurred
in a segmentation process is proposed. Let A be a segmentation algorithm to be evalu-
ated. Let Gi (where i = 1 to G) be the ground-truth regions of a image and Sj (where
j = 1 to S) be the segmented regions obtained from algorithm A. Let nGi be the pixel
number of the ground-truth region Gi, and nSj be the pixel number of the segmented
region Sj . Let also wij = nGi ∩ nSj be the number of well-classified pixels between
regions Gi e Sj . A discrepancy measure Di is defined for each ground-truth region.
Gi. To characterize the discrepancy between Gi and Sj , four classifications of region
segmentation are considered:

– Correct segmentation: The ground-truth region Gi has been segmented in an unique
region Sj : the discrepancy measure is Di = wij . In case of total overlap, Di =
wij = nGi = nSj .

– Over-segmentation: The segmentation process has fragmented the ground-truth re-
gion Gi in a set of s regions Sj: the discrepancy measure is Di = wij/s;
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– Under-segmentation: The segmentation process has merged a set of g ground-truth
region Gi in an unique region Sj : the discrepancy measure is Di = wij/g;

– mis-segmentation: The ground-truth region Gi has not been segmented. The dis-
crepancy measure in this case represents a penalty: Di = −nGi;

A general metric Υ (A), taking into account these four ”scenarios”, can qualify the
segmentation method A, as follows:

Υ (A) =
∑G

i=1 Di∑G
i=1 nGi

(5)

This metric Υ (A) presents some properties:

– Υ (A) = −1 when segmentation totally failed (the A algorithm has ignored all
ground-truth regions);

– Υ (A) = 0 when the number of correct, over or under-segmented pixels matches
the number of ”forgotten” pixels;

– Υ (A) = 1 when segmentation has completely succeeded;
– Metric Υ (A) verifies −1 ≤ Υ (A) ≤ 1.

3 Comparison Strategy and Results

In order to compare different segmentation methods, two strategies can be used: the
first one consists in applying the evaluation methods to segmented images obtained
from different segmentation approaches. The second one consists in simulating results
of segmentation processes. The latter has been adopted and a set of test images syn-
thetically deteriorated was used. A binary image (640× 480 pixels) that represents the
ground-truth segmentation has suffered deteriorations. By this way, the aim is evalu-
ating the resistance of segmentation methods to noise, shrinking and stretching. The
degradation processes are a combination of salt noise, pepper noise and salt-pepper
noise ({1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50%}), i (∈ [1, 5]) erosions and dilations
(both with cross and square structuring elements EE. Fig 1 depicts some of these test
images used during the evaluation process.

Five discrepancy criteria have been applied to a database of 90 deteriorated im-
ages (Fig 1) where image 1-(a) represents the ground-truth image: The Zhang [1]
multi-class Types I and II error criteria (equations 1 and 2) , the Yasnoff et al [2] dis-
crepancy measure ND (equation 4), the new proposed evaluation metric (equation 5),
respectively named DBMCP −Type I , DBMCP −Type II , DBSMSP and Υ (.).
By modifying the ND measure, a fifth discrepancy measure , named DBSMSP − II ,
has been used, where d(i) measures the distance between the ith mis-segmented pixel
and the gravity center of the nearest ground-truth class.

For the aim of comparison, results are depicted in Figures 2, 3, 4. DBMCP −
Type I , DBMCP − Type II , DBSMSP , DBSMSP − II measures have been
inverted and Υ (.) metric normalized between 0 and 1.
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(a)

(b) (c) (d)

Fig. 1. Test images: (a) Ground-truth image, (b) Salt-Pepper (50%), (c) Dilation (cross EE 1
iteration), (d) Erosion (square EE 5 iterations)

It may be observed that:

– The DBMCP − Type I , DBSMSP and DBSMSP − II measures are totally
insensitive with respect to ”holed” segmentation simulated from salt noise (Figure
2-(a). The DBMCP −Type II measure is few sensitive. In the opposite, the new
Υ (.) criterion is very sensitive to the ”salt” effect;

– No measure is really sensitive with respect to noisy segmentation simulated from
pepper noise (Figure 2-(b);

– With respect to black set expansion simulated from dilation, DBMCP −Type II
and Υ (.) criteria is very sensitive (Figure 3-(b));

– With respect to black set shrinking simulated from erosion, no measure (Figure 3-
(a)) shows high sensibility. The DBMCP −Type I measure is the more sensitive;

– With respect to black set expansion and salt-pepper noise, all measures (Figure 4-
(a)) show low sensibility. The proposed metric Υ (.) is less sensitive than other ones
when erosion is combined with few salt-pepper. On the other hand, with increasing
salt-pepper percent, the metric Υ (.) decreases faster than other ones;

– With respect to bad segmentation simulated from dilation and salt-pepper noise,
DBSMSP − II , DBMCP − Type I and DBSMSP measures are not very
sensitive (Figure 4-(b)). In case of serious degradation (one EEcross dilation and
50% of salt-pepper noise), these criteria do not decrease below 77%. DBMCP
−Type II criterion is a little bit more sensitive and does not decrease below 80%.
The new Υ (.) criterion is much more robust and reliable in evaluating this kind of
bad segmentation.



124 R.J.G. Pinheiro and J. Facon

(a) (b)

Fig. 2. Normalised measure values for:(a) Salt noise, (b) Pepper noise

(a) (b)

Fig. 3. Normalized measure values for:(a) Erosion, (b) Dilation

Fig. 4. Normalized measure values with salt-pepper noise for: (a) Erosion, (b) Dilation
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4 Real Application and Discussion

In order to test the accuracy of quality evaluation in real segmentation, the five discrep-
ancy criteria were applied on two published approaches for postal envelopes; the first
one based on feature selection in wavelet space [3] and the second one based on fractal
dimension [4]. In both approaches, the same database composed of 200 complex postal
envelope images, with no fixed position for the handwritten address blocks, postmarks
and stamps was used. The authors have also employed a ground-truth strategy where
the accuracy was computed by only taking in account the identical pixels at the same
location.

According to [3], the wavelet-based segmentation rates are 97.36% for address
block, 26.96% for stamps and 75.88% for postmarks. According to [4], the fractal-
based approach rates are 97.24% for address block, 66.34% for stamps and 91.89% for
postmarks.

By applying the five discrepancy criteria to [3] ’s and [4] ’s segmentation results,
without separating the address block, stamp and postmark classes, we obtained the qual-
ity evaluation rates grouped in Table 1. This Table depicts that DBMCP − Type I
and DBSMSP and DBSMSP − II measures have the same sensibility than [3] ’s
and [4] ’s address block evaluation. This fact means that these 3 measures were not
able to accurately evaluate the results of real segmentation. The 3 measures have not
evaluated that the stamp and postmark segmentation was worse than the address block
one.

Table 1. Quality evaluation comparison for the database

Method DBNMSP DBNMSP DBSMSP DBSMSP Υ (.)
Type I Type II II

Wavelet 0,993 0,645 0,996 0,983 0,404
Fractal 0,917 0,872 0,982 0,967 0,378

Table 2. Quality evaluation comparison for only images No 1 and No 2

Image DBNMSP DBNMSP DBSMSP DBSMSP Υ (.)
Type I Type II II

No 1 0,999 0,303 0,999 0,983 0,192
No 2 0,995 0,999 0,997 0,993 0,975

DBMCP−Type II measure has shown be more sensitive than the three first ones.
The new Υ (.) criterion has shown be much more severe than other ones. This is due to
the fact that Υ (.) criterion took in account all the classes. And one can observe that the
rates are low because the stamp segmentation was inefficient. The defects occurred in
stamp segmentation are similar to bad segmentation simulated from dilation or dilation
and salt-pepper noise described in section 3. Figure 5 depicts the segmentation of two
postal envelopes, the first one (Figure 5-(a), (b) and (c)) with stamps and the second
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(a) (d)

(b) (e)

(c) (f)

Fig. 5. Examples of address block segmentation: (a) Original image No 1, (b) Ground-truth im-
age, (c) Segmentation Result, (d) Original image No 2, (e) Ground-truth image, (f) Segmentation
Result

one (Figure 5-(d), (e) and (f)) without stamp neither postmark. Table 2 shows the five
discrepancy criteria segmentation rates for the two above images. One can observe that,
for Figure 5-(a) where the stamp segmentation was inefficient, whereas DBMCP −
Type I and DBSMSP and DBSMSP − II rates are high, DBMCP − Type II
and Υ (.) rates are low. For Figure 5-(d) without stamp neither postmark, the address
block segmentation was efficient and DBMCP − Type II and Υ (.) rates are very
high. Due to noise occurred in address block segmentation, Υ (.) rate is lower than
DBMCP −Type II one. This point shows that the Υ (.) measure is more able to take
in account different segmentation scenarios than other criteria.
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5 Conclusions

A new discrepancy evaluation criterion considering different ”scenarios” occurred in
a segmentation process have been proposed. The new measure has been compared to
traditional discrepancy evaluation criteria. A strategy for evaluating the new measure
and other ones in the context of region-based segmentation was used. By applying the
discrepancy criteria onto a test database of degradated images, the new discrepancy
evaluation criterion has shown to be more sensitive than other ones.

By applying the discrepancy criteria in real segmentation onto wavelet based-
segmentation and fractal based-segmentation methods for postal envelope segmenta-
tion, experiments have shown that the new measure is more severe than other ones and
is able to take in account different segmentation scenarios.

As explained before, evaluation is a critical step. And this study has shown that it
is possible to evaluate different segmentation ”scenarios”. In spite of its simplicity, the
new measure was shown to be appropriated in the segmentation evaluation challenge.
Another advantage is that, in opposite to the study of [5], that excludes bad segmenta-
tion, there is no restriction in applying our evaluation approach.
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Abstract. The coarse to fine search methodology is frequently applied
to a wide variety of problems in computer vision. In this paper it is shown
that this strategy can be used to enhance the recognition of on-line hand-
written characters. Some explicit knowledge about the structure of a hand-
written character can be obtained through a structural parameterization.
The Frame Deformation Energy matching (FDE) method is a method op-
timized to include such knowledge in the discrimination process. This pa-
per presents a novel parameterization strategy, the Djikstra Curve Maxi-
mization (DCM) method, for the segments of the structural frame. Since
this method distributes points unevenly on each segment, point-to-point
matching strategies are not suitable. A new distance measure for these
segment-to-segment comparisons have been developed. Experiments have
been conducted with various settings for the new FDE on a large data set
both with a single model matching scheme and with a kNN type template
matching scheme. The results reveal that the FDE even in an ad hoc im-
plementation is a robust matching method with recognition results well
comparing to the existing state-of-the-art methods.

1 Introduction

Explicit usage of the structural information inherent to handwritten characters
is highly uncommon in state-of-the-art recognition methods today. The tantaliz-
ing idea of automatic optimization of all kinds of features by means of statistical
methods such as Neural Networks (NN) and/or Hidden Markov Models (HMM)
seems to have caused researchers to abandon the more straightforward discrim-
ination methods based on template matching [10]. The most successful of the
template matching methods, which still seems to have some followers [13], is the
Dynamic Time Warping (DTW) method which improves on static matching by
enabling a dynamic match between different dimensions. Under equal training
circumstances Hidden Markov Models seems to provide a higher hitrate than
DTW [3]. It is probable that HMM can be somewhat less sensitive to the non-
linearity of the variations of handwritten data since it models smaller segments
of each character with hidden states based on features [6]. However, the Markov
characteristic of such systems may also make it difficult to construct features that
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can discriminate between some models that have similar sets of hidden states
but of varying durations [1]. Recently Bahlmann et al. [2] have shown how DTW
and HMM relate to each other.

This paper presents considerable enhancements to the new template match-
ing method called Frame Deformation Energy (FDE) matching. The method is
based on a structural parameterization obtained by extracting a structurally de-
fined subset of points called core points in two stages. A outer core point frame is
obtained as the set of local extreme points in the direction orthogonal to the writ-
ing direction and then a fixed number of points is added to each such segment.
This paper introduces a new method, here called the Djikstra Curve Maximiza-
tion (DCM) method to extract the fixed number of points on each segment of
the core point frame. Previously the extraction of such sets of interesting points
have been performed mainly for segmentation of cursive script [9, 11]. It has
previously been shown that a structural parameterization enhances the recog-
nition performance for Euclidean matching. In this paper, implementation of a
new curve segment matching strategy developed for the DCM parameterization
method produces the highest recognition results obtained for the FDE strategy
so far. In particular the method seems robust and delivers very reliable results
for top two candidates.

2 Structural Reparameterization with Core Points

In the field of handwriting recognition (HWR) most of the techniques for extract-
ing the most interesting points on a curve have been developed for segmentation
of cursive script [8]. It has previously been shown that this strategy can be used
also to decompose isolated characters into smaller segments of simple curves.
The achievement of such a decomposition is that it enables a description of the
non-linear variations of handwritten data into smaller less non-linear parts. In
this paper a very simple yet effective method of dividing samples into segments
has been studied. The extreme points in the direction orthogonal to the writ-
ing direction (normally y) define a subset here called the core point frame.
Once such a method for fixing this greater structure of segments has been cho-
sen, the problem of fixing a parameterization for the intermittent points can be
addressed. Independently of the method chosen for accomplishing this the new
parameterization of a core point frame with intermittent points, will be called
the core points C(X) of a sample X .

2.1 Choosing a Fixed Number of Intermittent Points

The most basic approach for picking middle points is to sample each segment
in the core point frame by arclength. The weakness of this method is that seg-
ments may require a varied number of points in order to be described correctly.
Of course one can choose to pick many points but this also effects the time com-
plexity. This rudimentary method is here referred to as the Segment Arclength
(SA) method. Aiming at enabling an upper bound for the required number of
points on each segment, methods that try to approximate the segment by a few
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number of points have also been investigated below. For handwritten characters
a study of the various allographs of the script reveals that there is a maximum
of significant points on the segments. For the Latin-1 character set it has been
empirically observed that this number is three on any individual segment. For
this reason a fixed number of three points have been placed on each segment for
both methods of choosing points described below.

Since each segment of the core point frame should be described as well as
possible a method that chooses the most interesting points on this curve segment
is needed. As stated previously such methods have been used in the past for
cursive script segmentation [8]. A method inspired by these ideas have been
tried and will be referred to as the Curvature (C) method. Instead of just spacing
the points evenly on the segment as one would if one were to use conventional
arclength parameterization, a search for points that have a significant curvature
is performed first. This search is done recursively by picking any point with a
diversion from the line between the start and end point that exceeds a threshold.
If the number of curvature points chosen in this manner is less than the fixed
number of points per segment, points are added in a manner that spaces them
as evenly as possible.

Choosing the n points on a piece of a curve that best approximates it is
a problem that has been thoroughly studied in the field of discrete geometry
[5]. There it is common to refer to the best approximation the so called min-ε
solution in terms of the uniform metric i.e. the n points on the (discrete) curve
X = {xi}mi=0 resulting in the smallest maximum distance between the removed
points and the resulting piecewise linear curve.

Below we present a fundamentally different approach for finding an approxi-
mation of an m-polygon with n points. With a Euclidean metric the subset that
maximizes the linear segment function is:

(xp1 , . . . , xpn) = argmax
(p1,...,pn)⊂(1,...,m)

n∑
i=1

‖xpj − xpj−1‖. (1)

We call the method of finding (xp1 , . . . , xpn) on a m-polygon according to (1),
the Djikstra Curve Maximization (DCM) method since the set can be found by
means of a modified version of the Djikstras algorithm. This is a clear strategy
with the appealing characteristic that it is independent of threshold values and
other tuning parameters indispensable for the C -method described above.

One can easily show that the DCM and the min-ε curve approximations
are similar under some circumstances. One equally easily realizes that there are
many cases when they differ. One interesting example are the respective solutions
of the min-ε approach and the DCM to picking one point on a sinus curve on
the interval [0, 2π]. Here the DCM has two optimal solutions lying close to the
respective extreme points, whereas the min-ε approach will choose the middle
point. In particular one easily observes that their behavior differ greatly when
the number n is less than the number of local extreme points on the curve.
The DCM gets many solutions in this case, all aiming at choosing one of the
prominent features of the curve whereas the min-ε solution gives the mean path.
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Fig. 1. Two cursive words with the original sampling to the left and the core point
reparameterized words to the right. Here the DCM technique of Section 2.1 is used to
find the intermittent points in the core point frame.

Examples of the extracting core points with DCM on some connected character
sequences are shown in Figure 1. Apparently the DCM provides a nice and
smooth curve.

3 The Frame Deformation Energy Model

One of the limitations of template matching techniques such as DTW lies in
the fact that the normalization is global. Even though DTW is successful at
enabling matching between samples of varying dimension it is still dependent on
normalization and thereby also sensitive to non-linear variations. In other words
a handwritten sample X is in general not only the result of global transformation
of the reference template but also of individual transformations of each segment
of the core point frame.

These facts motivate the search for a method that tries to find both the
local segment transformations as well as calculate the resulting distance to the
transformed segments. In short the matching process of a sample X = {xi} to a
template (prototype) P = {pi} can be divided into three stages:

1. Find the best global linear transformation AP = argminL ‖P − LX‖
2. Find the frame bending transformation BP , pi = BP (xi),
∀xi, pi in their respective core point frames

3. Calculate a distance value dependent on the transformations AP , BP and
the remaining difference P − BP (AP (X))
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Analysis of samples of on-line handwritten characters clearly show that in-
class global transformations of handwritten characters are constrained linear
transformations. There are no reflections and only limited rotation and skew. The
frame bending transformations are defined as the transformations identifying the
corresponding core point frames.

3.1 Distance Calculation

A popular method to achieve exact transformations between templates in pat-
tern recognition is thin-plate splines. Although there have been successful ap-
plications of thin-plate splines to the character recognition problem in the past
[4] it has obvious shortcomings. The main problem is that common variations
in handwritten patterns involves points on the extension of a line being dis-
tributed on either side of the line causing folding of the thin-plate spline. To
counter this problem a much simpler energy model for the frame is introduced.
Let each segment be modelled by a robust spring that is equally sensitive to
compression and prolongation and let the connection between each segment be
a coiled spring that is equally sensitive to torque in both directions. The most
simple distance measure for the bending energy of the frame between a sample
X and a template P of m core points, with frames FX = (fX(1), . . . , fX(n)) to
FP = (fP (1), . . . , fP (n)) is then given by

EB(X,P ) =
n−1∑
i=2

kx(
‖fX(i + 1)− fX(i)‖
‖fX(i)− fX(i− 1)‖ −

‖fP (i + 1)− fP (i)‖
‖fP (i)− fP (i− 1)‖)

2+

n−1∑
i=2

ka(
θFX

i − θFP

i

π
)2, (2)

where kx, ka are the spring constants for the segment springs and the inter-
segment springs respectively. The intermittent frame segment angles θFX

i are
defined as θFX

i = arg(fX(i + 1)− fX(i), fX(i)− fX(i− 1)). For notational con-
venience a modula π for the angle retrieved with the arg operator is implied. As
described in the previous section the result of the bent frame BFP (FX) is that
‖BFP (FX)−FP ‖ = 0, however, the intermittent points are just Bookstein coordi-
nates in their respective surrounding segment and will generally not be identical.
To model their distance, the different models for selecting the intermittent points
presented in Section 2.1, have been evaluated with various distance measures.

Distance Measures for Intermittent Core Points. From an implementa-
tion point of view the most simple way to model the energy of transforming
points from one curve to the other is to to find a model that corresponds to the
Euclidean measure. This is achieved by imagining that each of the intermittent
points are attached to the corresponding point in the sample being matched by
elastic strings. This induces an energy measure for the intermittent points after
matching the frame

EEuc
M (BP (AP (X)), P ) =

m∑
j=1

kj‖BP (AP (xj))− pj‖2, (3)



Frame Deformation Energy Matching of On-Line Handwritten Characters 133

where kj is the spring constant for the string attached to core point j in P .
Evidently setting kj = 1, j = 1, . . . ,m gives the square Euclidean distance of
the bent frame transformed sample ‖BP (AP (X)) − P‖2. This should only be
suitable when there is a strong correspondence between points on the segments
so it should not be used with selection methods that distributes points unevenly
such as the DCM. Even though most of the parameterizational differences should
have been depleted by the core point reparameterization one could also try a
DTW measure on the intermittent points. However this has not been tested in
this paper.

The DCM method presented in Section 2.1 is not suitable to use with either
of these measures since points may be distributed anywhere on the curve seg-
ment. Instead some kind of curve comparison measure that is independent of
the parameterization is needed. To accomplish a new distance function the Djik-
stra Curve distance EDC

M , consisting of two individual components is proposed.
The first component is a Point-to-curve distance function dPC(X,P ), used for
matching the intermittent core points of one curve to some line segment in the
other curve. It is a DTW method with transitions (1, 0), (1, 1) solving the prob-
lem of finding the correspondence function Φ(k) = (φx(k), φp(k)), k = 1, . . . ,m
that optimizes

dPC(X,P ) = min
Φ

m∑
i=1

gPL(xφx(i),pφp(i)), (4)

where Φ(1) = (1, k1),Φ(m)=(m, km), ki ≤ ki+1,∀i ∈ (1, . . . ,m). Here gPL(xk,pj)
denotes the distance between point xk and the line segment pj = (pj−1, pj). Let
lj be the line passing through line segment pj and let x⊥

lj
be the orthogonal

projection of point x onto lj , then

gPL(xk,pj) =

{
min(‖xk − pj−1‖, ‖xk − pj‖), if x⊥

(lj ,k) /∈ pj ,

‖xk − x⊥
(lj ,k)‖, otherwise .

(5)

The dPC distance function from (4) is found through the following recursive
algorithm

Algorithm 1.
Dj(1) := gPL(1, j), j = 1, . . . ,m + 1
for j = 1, . . . ,m + 1 do

for k = 2, . . . ,m do
Dj(k) := gPL(k, j) + min(Dj−1(k − 1), Dj(k − 1))

end for
end for
dPC := argminj Dj(m)

The second is a fuzzy DTW distance function computing a distance between
the angles of consecutive core points. Denote the normalized angles of consecu-
tive points in X and P by {θX

i }mi=1 and {θP
i }mi=1 respectively then the angular

distance function corresponding to (5) is defined as

gA(xi, pj) = (κθ(θX
i − θP

j )/π)2 + (κλ(λX
i − λP

j ))2, (6)
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where λX
i = (xi−x1)T (xm−x1)

‖xm−x1‖ is the location of each angle in terms of the baseline.
It has been found that results are improved if a certain fuzziness is added to the
angular distance function. To enable this the definition of gA in (6) is extended
to treat matching the angle on one curve segment to a flat segment on the other
defined as a parameter t ∈ [0, 1] between two points as

gA(xi, pj + t) = (κθ(θX
i − π)/π)2 + (κλ(λX

i − ((1− t)λP
j − tλP

j+1))
2. (7)

The recursive update rule for the algorithm finding the best DTW distance
corresponding to the inner statement of Algorithm 1 in this case becomes

DA
j (k) = min



gA(xj , pk) + DA
j−1(k)

2gA(xj , pk) + DA
j−1(k − 1)

gA(xj , pk) + DA
j (k − 1)

2gA(xj , pk) + minr∈(1,...,j−1) D
A
j−r(k − 1)+∑r

i=1 gA(xj−r+i, pk−1 + i/(r + 1))
2gA(xj , pk) + minr∈(1,...,j−1) D

A
j−1(k − r)+∑r

i=1 gA(xj−1 + i/(r + 1), pk−r+i)

(8)

According to (8) the total angular distance will be dA(X,P ) = DA
m(m). Now the

Djikstra Curve distance EDC
M can be written as

EDC
M = dPC(X,P ) + dPC(P,X) + dA(X,P ). (9)

The Frame Deformation Energy Distance (FDE). Above we have de-
scribed methods to account for the two steps of frame bending and curve seg-
ment comparison. It is not entirely obvious how to fit a suitable penalization of
global transformations into this. On one hand global transformations are natural
variations of isolated handwritten character data and on the other some kind of
penalization is necessary since the energy EB(X,P ) of (2) is invariant to global
rotation. One could try global transformations of rotation and of the triple scale,
rotation and skew. For these parameters of scale (λx, λy), rotation θ and skew
η one can define a distance function similar to that of the bending energy by
setting

ERSS(X,P ) = kλ((
λx

λy
)tλ −1)2 +kθ(

mod (θ, π)
π

)2 +kη(
mod (η, π)

π
)2, (10)

where tλ is 1 λx < λy and −1 otherwise. However in the experiments of this
paper only the rotational component in (10) denoted by ER(X,P ) has been
used.

Combining the distance components for global transformation, bending en-
ergy and curve segment into a weighted sum produces the following distance
functions:

Dmethod
R (X,P ) = wAER(X,P ) + wBEEB(A(X), P )

+ wMEmethod
M (A(B(X)), P ) (11)
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Fig. 2. One in-class and one inter-class example of a mean model matched to a sample
according to the scheme of Section 3

Matching with the distance function in (11) will be referred to as Frame
Deformation Energy Matching (FDE). The optimization problem of finding the
optimal set of parameters {w}, {k} could probably be solved by some Support
Vector Machine inspired method but it is interesting enough to receive full at-
tention in a separate paper.

4 Experiments

The recognition experiments in this paper have been conducted on the MIT
single character database [7]. The set of 37161 samples from the w section (single
characters from words) was selected as test set while the 2825 samples from the
l section was selected as the training set.

For single models the new version of the template matching method FDE
was compared to DTW as well as a Gaussian Active Shape Model (AS) such as
it is described in thesis [12]. For the FDE and DTW methods a single model was
constructed for each allograph as the mean of the samples belonging to that allo-
graph class. For AS one model was built for each allograph class. The FDE was
implemented with the DDC

R measure in the most simple way by manually setting
all the spring constants in (2), (3) as well as all of the weights in (11) to suitable
values. Even with this simple ad hoc setting the results of template matching

Table 1. Results of k-NN matching on the MIT database. The different methods for
selecting intermittent points are shown as CP-C (Curvature) and CP-DCM (Djikstra
Curve Maximization). Where available the recognition result for best-two candidates
is also displayed to the right.

k-Distance Measure Arclength CP-C CP-DCM
1-Euclidean 86.3% 89.6 / 91.0 % -
1-DTW 91,3% 89,5 % -
1-DDC

AF E - - 88.2 / 94.7 %
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Table 2. Results of single model matching on the MIT database

Method Original data CP-DCM
AS 77.2 % 82.4 %
DTW-mean 89.6 / 90.7 % -
DDC

R -mean - 82.4 / 90.3 %

with single models performs as well as DTW on the original parameterization
for top-two candidates Table 2 making it a promising method well worth further
research. Especially since the results of the top two candidates when running
the same FDE method on multiple models for each class as seen in Table 1.
Although only two methods have been tried for second candidates in the 1-NN
matching the significant increase in recognition accuracy for the FDE method is
indicates a strong potential for improvement even at the single-model stage.

5 Discussion and Conclusions

This paper presents a new parameterization an distance measure for use with the
novel Frame Deformation Energy (FDE) matching method. The main objective
of the new method is to try to address the weak points of a global matching
schemes by dividing the matching process of a handwritten character into natural
segments called a core point frame. It has been shown that the new strategy
provides a robust matching method with results comparable to state-of-the-art
template matching methods such as DTW for top two candidates even in an ad
hoc implementation of manually setting the spring constants of the energy model.

Further research will include automatic methods for optimizing spring con-
stants for different allographs as well as hybrid methods for a final optimal
recognition rate. It might be even more efficient to view the problem in a prob-
abilistic way by determining the class C with a model MC that has the highest
probability P (C|AX ,BX ,BX(AX(MC)) − X). Since the novel FDE technique
already at this early stage has shown a promising capacity for computationally
efficient single models it will be especially useful in on-line cursive script systems
based on segmentation graphs.
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Abstract. Civil structures could undergo hysteresis cycles due to crack-
ing or yielding when subjected to severe earthquake motions or even high
wind. System identification techniques have been used in the past years
to assess civil structures under lateral loads. The present research makes
use of a polynomial artificial neural network to identify and predict, on-
line, the behavior of such nonlinear structures. Simulations are carried
out using the Loma Prieta and the Mexico City seismic records on two
hysteretic models. Afterwards, two real seismic records acquired on a
24-story concrete building in Mexico City are used to test the proposed
algorithm. Encouraging results are obtained: fast identification of the
weights and fair prediction of the output acceleration.

1 Introduction

Health monitoring of structures has been a focus of interest for researchers in
structural and control engineering for the past two decades. Civil structures,
such as buildings and bridges, are instrumented to acquire output acceleration,
velocity and displacement data due to lateral loads, which could be severe wind
or strong earthquake motions. The data is later analyzed to assess the lateral
resistant capacity of the structure and to check output maximums against those
allowed by construction codes. In some instances, wind or earthquake forces may
induce lateral loads to civil structures such that energy may dissipate through
hysteretic phenomena, a nonlinear time-variante behavior which reduces their
resistant capacity [5]. Many buildings have been instrumented around the world
in order to monitor their structural health. The identification of such nonlinear
systems is therefore an important task for engineers who work in areas affected
by these natural hazards, and thus, the subject of the present paper.

Forecasting time series has been solved with a broad range of algorithms such
as ARMAX [1], NARMAX [2], Fuzzy Logic [14], Neural Networks [3], etc. Some
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researchers have succesfully identified nonlinear structures with a wide variety
of proposed algorithms [4]. Some examples include: ERA-OKID, Subspace and
Least Squares algorithms to estimate linear parameters of structures [9]. An
Orthogonal NARMAX model is proposed in [6]. Sequential regression analysis,
Gauss Newton optimization and Least Squares with extended Kalman filter is
reviewed in [8]. Least Squares methods have also been used by [10], [13], and [16].

Although artificial neural networks have not been widely used in civil and
structural engineering, some researchers have succesfully applied them ([11], [12],
and [7]). Nonetheless, the models and architectures of those networks seem quite
complex and computer time consuming.

The present research proposes the use of a polynomial artificial neural net-
work [3] to identify a nonlinear structural system with a fairly small amount of
samples for on-line training. One important issue to consider is the use of on-line
algorithms for closed-loop control applications or simulation and fault detection
analysis, that is the reason an on-line algorithm is proposed.

In the present research, the Loma Prieta (California, USA, 1989) and SCT
(Mexico City, Mexico, 1985) seismic records are used to test the proposed al-
gorithm on a hysteretic simulated shear building structure. A Bouc-Wen model
[15] is used to simulate a hysteretic nonlinear single degree of freedom structure
(SDOF). Simulation results show that the proposed network is able to identify
the nonlinear system and predict with good accuracy the acceleration output
with a fairly simple model. Later on, one actual seismic record, acquired on a
real 24-story concrete structure in Mexico City in 2002, is used to identify the
behavior of the building. The identified model is then used to predict the ac-
celeration motion of the same real building, subjected to another actual record
acquired ten months later, in 2003, and the results show that this simple model
predicts with very good accuracy the behavior of the system.

The proposed network model has two interesting features: (1) the driving
external forces are considered unknown and not needed, which for the case of
wind loading this model is applicable; and (2) this model does not need physical
structural parameters, which in turn is a nice advantage when an instrumentation
is set up in an unknown structural system. A long term aim of the present
research is to develop a technique that could be used in conjunction with fault
detection analysis, structural health monitoring, and structural control.

2 Polynomial Artificial Neural Network

The model of a polynomial artificial neural network (PANN) is shown in (1).

ŷk = [φ(x1,k, x2,k, . . . , xni,k, x1,k−1, x2,k−1, . . . ,

xni,k−n1 , . . . , yk−1, yk−2, . . . , yk−n2)]
φmax

φmin
; (1)

where ŷk ∈ � is the estimated time series, φ(x, y) ∈ � is a nonlinear function,
xi ∈ X are the inputs for i = 1, . . . , ni; and ni is the number of inputs. yk−j ∈ Y
are the previous values of the output, for j = 1, . . . , n2; n1 is the number of
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delays of the input, n2 is the number of delays on the output, X and Y are
compact subsets of �. Simplifying the notation, it results into (2).

z = (x1,k, x2,k, . . . , xn1,k, . . . , yk−1, yk−2, . . . , yk−n2);
z = (z1, z2, z3, . . . , znv); (2)

where nv is the total number of elements in description z, and nv = ni+n1ni+n2.
The nonlinear function φ(z) ∈ Φp belongs to a family Φp of polynomials that
can be represented as (3)

Φp(z1, z2, . . . , znv ) = (φ(z) : φ(z) = a0(z1, z2, . . . , znv) + a1(z1, z2, . . . , znv),
+a2(z1, z2, . . . , znv) + . . . + ap(z1, z2, . . . , znv)).(3)

The subindex p is the maximum power of the polynomials expression and
ai(z1, z2, . . . , znv) are homogeneous polynomials of total degree i, for i = 0, . . . , p.
Every homogeneous polynomial could be written as shown in (4)

a0(z1, z2, . . . , znv) = w0

a1(z1, z2, . . . , znv) = w1,1z1 + w1,2z2 + . . . + w1,nvznv

a2(z1, z2, . . . , znv) = w2,1z
2
1 + w2,2z1z2 + . . . + w2,N2z

2
nv

...
ap(z1, z2, . . . , znv ) = wp,1z

p
1 + wp,2z

p−1
1 z2 + . . . + wp,Npz

p
nv

; (4)

where wi,j is the associated weight of the network. The term w0 corresponds to
the input bias of the network. The homogeneous polynomial a1(z) is equivalent
to weight the inputs. The polynomials a2(z) to ap(z) represent the modulation
between the inputs and the power of each polynomial. Ni is the number of terms
of every polynomial with:

N0 = 1;N1 = nv;N2 =
nv∑
i=1

i;N3 =
nv−1∑
s1=0

nv−s1∑
i=1

i; . . .

. . . ;Np =
nv−1∑

sp−2=0

. . .

nv−s3∑
s2=0

nv−s2∑
s1=0

nv−s1∑
i=1︸ ︷︷ ︸

p−1

i. (5)

The dimension of NΦ of each family Φp could be computed by NΦ =
∑p

i=0 Ni.
The activation function is given by (6)

[φ(z)]φmax

φmin
=


φmax φ(z) ≥ φmax

φ(z) φmin < φ(z) < φmax

φmin φ(z) ≤ φmin

. (6)

The weights of the PANN could be found with a recursive Least Squares
algorithm during training. It is worth noting that in [3] the PANN is shown to
lead to better and faster results compared to a normal ANN. The architecture
of the PANN model is shown in fig. 1.
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Fig. 1. PANN architecture

3 Simulations of Theoretical Models

The output acceleration, velocity and displacements of a one-story shear building
(SDOF) are only lateral motion of the mass. In the simulations, two theoretical
SDOF were introduced: (a) structure subjected to the Loma Prieta earthquake
with mass m =1 kg, damping c =1.2566 kgf · s/cm, and stiffness k =157.9137
kgf/cm; and (b) structure subjected to the Mexico City earthquake with mass
m =1 kg, damping c =0.3142 kgf ·s/cm, and stiffness k =9.8696 kgf/cm. In both
cases the theoretical acceleration output, sampled at 0.02 sec., was contaminated
with 2% random noise, and the structure was subjected to smooth and compact
hysteresis for stability purposes. In this sense, for SDOF (b) the seismic record
had to be scaled to 30% amplitude.

A PANN with p = 2, ni = n1 = 0, and n2 = 4 is used for training. Training
neural networks is usually based on two criteria: (1) minimizing the error, or
(2) by reaching a fixed number of iterations (epochs). Real-time techniques need
a different approach due to the fact that the learning process has to be done
on-line; thus, training criteria was done with the weight variance herein. One
conclusion drawn from the results is that at least two cycles of motion are needed
for training because the weight variance tends to zero after that time.

In our simulations, 100 samples (2 seconds) are required for training SDOF
(a), and 200 (4 seconds) for SDOF (b). Fig. 2 shows the training and prediction
of the hysteretic SDOF (a) in a three-second window.
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Fig. 2. Prediction of the intense part, Loma Prieta input

Fig. 3. Prediction of the intense part, Mexico City input

Training could identify a nonlinear model with very small hysteresis, and
when the hysteresis cycles become wider at the intense part of the excitation,
around 12 seconds of motion, the prediction looses some accuracy. Nonethe-
less, the proposed PANN is able to predict fairly well the acceleration output.
Increasing training time could increase accuracy because hysteretic cycles be-
come wider.

On the other hand, fig. 3 shows the prediction of the hysteretic SDOF (b) in
a ten-second window. It is worth noting that the PANN is able to identify very
well the nonlinear model, since a bit wider hysteresis occurs from the beginning,
and when the intense part takes place the prediction is still very good.
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4 Identification Using Real Data

In this section, the PANN is used to identify a model of a real instrumented
building. This structure is a 24-story concrete building located in Mexico City.
It is instrumented with accelerometer sensors located throughout the building,
and several earthquakes have been acquired since its activation. The building
has a period of around 3 seconds, thus, training was done with 6 seconds of the
output acceleration motion at the centroid of the roof. The seismic event of April
18, 2002, was used for training and prediction.

Fig. 4. Prediction of the intense part, April 18 2002 record

Fig. 5. Prediction of the intese part, January 21 2003 record
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Fig. 4 shows the prediction of the motion of the building. It is worth noting
that both lines seem overlapped due to the fact that the PANN is a very fine
tool to identify this structure. The proposed approach is so efficient that no
distinction between both lines could be observed.

After training, the weights of the network are kept unchanged to predict the
acceleration output for the seismic event of January 21, 2003. Fig. 5 shows the
prediction of the motion. Note again that both lines seem overlapped beause
the prediction error is very small. In this case, this coud mean that the building
has not suffered a noticeable change on its structural properties, since the model
still predicts accurately the motion, even after ten months between both seismic
events. Therefore, this technique could be used later as a tool for fault detection
analysis.

5 Conclusions

In the last two decades, several buildings have been instrumented in order to
monitor their structural health through the analysis of measured acceleration,
velocity and displacement records. The present research proposes the use of a
polynomial artificial neural network (PANN) to identify the nonlinear behavior
of a building structure, and to forecast the acceleration output. The PANN is
trained on-line with only the first two cycles of motion.

To test the effectiveness of the proposed algorithm, two theoretical simula-
tions were introduced. The hysteretic structures were subjected to the seismic
records of Loma Prieta (USA, 1989) and Mexico City (Mexico, 1985). The re-
sults show fast convergence speed of the weights, and good accuracy to forecast
the nonlinear output.

Later on, a model of a real instrumented building was identified with the
PANN. The real acquired seismic event of April 18, 2002, was used to train and
forecast the motion of the roof.

Finally, the real acquired seismic event of January 21, 2003, was used to
predict the motion of the roof using the model identified earlier. Very encourag-
ing results are derived from the analysis. In the long run, the present research
is aimed to develop a technique that could be used in conjunction with fault
detection analysis, structural health monitoring, and structural control.

References

1. Box, G. E. P., & Jenkin, G. M., Time Series Analysis: Forecasting and Control,
San Francisco, CA, Holden-Day (1970)

2. Chen, S., & Billings, A., “Representations of Nonlinear Systems: the NARMAX
model”, Int. J. of Control, Vol. 49, No. 3 (1989)

3. Gomez-Ramirez, E., Poznyak, A., Gonzalez-Yunes, A., & Avila-Alvarez, M.,
“Adaptive Architecture of Polynomial Artificial Neural Network to Forecast Non-
linear Time Series”, Congress on Evolutionary Computation, CEC ’99, Mayflower,
Washington, D.C., USA, July 6 - 9 (1999)



Nonlinear Civil Structures Identification 145

4. Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R.
O., Masri, S. F., Skelton, R. E., Soong, T. T., Spencer, B. F., & Yao, J. T. P.,
“Structural Control: Past, Present and Future”, Journal of Engineering Mechanics,
Vol. 123, No. 9, Sep. (1997)

5. Humar, J. L., Dynamics of Structures, A. A. Balkema Publishers, 2nd Edi-
tion (2001)

6. Korenberg, M., Billings, S. A., Liu, Y. P., & McIlroy, P. J., “Orthogonal Parameter
Estimation Algorithm for Non-Linear Stochastic Systems”, International Journal
of Control, Vol. 48, No. 1 (1988)

7. Kosmatopoulos, E. B., Smyth, A. W., Masri, S. F., & Chassiakos, A. G., “Robust
Adaptive Neural Estimation of Restoring Forces in Nonlinear Structures”, Trans-
actions of the ASME, Journal of Applied Mechanics, Vol. 68, November (2001)

8. Loh, C. H., & Chung, S. T., “A Three-Stage Identification Approach for Hysteretic
Systems”, Earthquake Engineering and Structural Dynamics, Vol. 22, (1993) 129-
150

9. Martinez-Garcia, J. C., Gomez-Gonzalez, B., Martinez-Guerra, R., & Rivero-
Angeles, F. J., “Parameter Identification of Civil Structures Using Partial Seismic
Instrumentation”, in 5th Asian Control Conference, ASCC, Melbourne, Australia,
July 20-23 (2004)

10. Masri, S. F., Miller, R. K., Saud, A. F., & Caughey, T. K., “Identification of
Nonlinear Vibrating Structures: Part I - Formulation”, Transactions of the ASME,
J. of Applied Mechanics, Vol. 57, Dec. (1987)

11. Masri, S. F., Chassiakos, A. G., & Caughey, T. K., “Structure-unknown non-linear
dynamic systems: identification through neural networks”, Smart Mater. Struct.,
1, (1992) 45-56

12. Masri, S. F., Chassiakos, A. G., & Caughey, T. K., “Identification of nonlinear
dynamic systems using neural networks”, J. of Applied Mechanics, 60, (1993) 123-
33

13. Mohammad, K. S., Worden, K., & Tomlinson, G. R., “Direct Parameter Estima-
tion for Linear and Non-linear Structures”, Journal of Sound and Vibration, 152
(3) (1992)

14. Sugeno, M., Industrial Applications of Fuzzy Control, Elsevier Science Pub.
Co. (1985)

15. Wen, Y. K., “Method for Random Vibration of Hysteretic Systems”, Journal of
Engineering Mechanics, ASCE, 102(2), (1976) 249-263

16. Yar, M., & Hammond, J. K., “Parameter Estimation for Hysteretic Systems”, J.
of Sound and Vibration, 117 (1) (1987)



M. Lazo and A. Sanfeliu  (Eds.): CIARP  2005,  LNCS 3773, pp. 146 – 153, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Method  of  Automatic Speaker Recognition Using 
Cepstral Features and Vectorial Quantization 

José Ramón Calvo de Lara 

Advanced Technologies Application Center, CENATAV, Cuba 
jcalvo@cenatav.co.cu 

Abstract. Automatic Speaker Recognition techniques are increasing the use of 
the speaker’s voice to control access to personalized telephonic services. This 
paper describes the use of vector quantization as a feature matching method, in 
an automatic speaker recognition system, evaluated with speech samples from a 
SALA Spanish Venezuelan database for fixed telephone network. Results ob-
tained reflect a good performance of the method in a text independent job in the 
context of sequences of digits. 

1   Introduction 

Automatic Speaker Recognition techniques make it possible to use the speaker’s voice 
to verify their identity and control access to services such as voice dialling, banking 
by telephone, telephone shopping, database access services, information services, 
voice mail, security control for confidential information areas, and remote access to 
computers [1]. 

These techniques can be classified into identification and verification. Speaker 
identification is the process of determining which registered speaker provides a given 
utterance. Speaker verification is the process of accepting or rejecting the identity 
claim of a speaker. 

Speaker Recognition methods can be divided into text-independent and text de-
pendent. In a text-independent method, speaker models capture characteristics of 
speaker’s speech irrespective of what one is saying. In a text-dependent method the 
recognition of the speaker’s identity is based on his/her speaking specific phrases, like 
passwords, card numbers, PIN codes, etc. 

Speaker Recognition systems contain two main processes: feature extraction and 
feature matching. Feature extraction extracts a small amount of data from the voice 
signal that can be used later to represent each speaker. Feature matching involves the 
procedure to identify the unknown speaker by comparing extracted features from 
his/her voice input with the ones from a set of known speakers.  

An Automatic Speaker Recognizer has to serve two pattern recognition phases. 
The first one is the training phase while the second one is the testing phase. In the 
training phase, each registered speaker provides samples of their speech so that the 
system can train a reference model for that speaker. In case of speaker verification 
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systems, in addition, a speaker-specific threshold is also computed from the training 
samples. During the testing phase, the input speech is matched with stored reference 
model(s) and recognition decision is made. 

This paper refers the author’s experience in the design and test of a text independ-
ent speaker recognition method, with a vector quantization algorithm of feature 
matching, evaluated with speech samples obtained from SALA database for fixed 
telephone network.  

2   Feature Extraction from Speech Samples  

The feature extraction from the speech samples consists of a filtering process with 
pre-emphasis and an extraction process of spectral features using a short term analysis 
[2]. The 8bit µ-law samples of corpus recorded at a sampling rate of 8 kHz were con-
verted to linear 16 bit PCM samples.  

2.1   Filtering Process with Pre-emphasis 

Pre-emphasis refers to filtering that emphasizes the higher frequencies of speech; its 
purpose is to balance the spectrum of voiced sounds that have a steep roll-off in the 
high frequency region. The pre-emphasis makes the upper harmonics of the funda-
mental frequency more distinct, and the distribution of energy across the frequency 
range more balanced. 

2.2   Extraction of Spectral Features 

The extraction process of spectral features using a short term analysis consists in: 

- A frame blocking, where the continuous speech signal is blocked into frames of 
256 samples, with adjacent frames separated by 100 samples. 

- A frame windowing, a Hamming window is applied to each individual frame in 
order to minimize the signal discontinuities, and consequently the spectral distor-
tion, at the beginning and end of each frame.  

- A Discrete Fourier Transform process using a FFT algorithm, which converts 
each frame of 256 samples from the time domain into the frequency domain, the 
result obtained is the signal’s periodogram. 

A wide range of possibilities exist for representing the speech signal in Automatic 
Speech and Speaker Recognition with spectral features as Linear Prediction Coeffi-
cients (LPC), Linear Prediction Cepstrals Coefficients (LPCC) and Mel-Frequency 
Cepstrals Coefficients (MFCC) and others [3]. 

MFCC are perhaps the best known and most popular spectral features for repre-
senting the speech signal, widely used in many speech and speaker recognizers [4], 
these are used in this speaker recognizer.  Dynamic spectral features known as delta 
and delta-delta features are calculated too, and appended to MFCC. 

2.2.1   MFCC Features 
Psychophysical studies have shown that human perception of the frequency contents 
of sounds for speech signals does not follow a linear scale. MFCC features are based 
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on the known variation of the human ear’s critical bandwidths with frequency; filters 
spaced linearly at low frequencies and logarithmically at high frequencies have been 
used to capture the phonetically important characteristics of speech.  

Thus for each tone with an actual frequency, f, measured in Hz, a subjective pitch 
is measured on a scale called the ‘mel’ scale. The mel-frequency scale is linear fre-
quency spacing below 1000 Hz and a logarithmic spacing above 1000 Hz. As a refer-
ence point, the pitch of a 1 kHz tone, 40 dB above the perceptual hearing threshold, is 
defined as 1000 mels.  

In order to simulate the frequency warping process, we use a filter bank, one filter for 
each desired mel-frequency component. That filter bank has a triangular band-pass fre-
quency response, and the spacing as well as the bandwidth is determined by a constant 
mel-frequency interval. A mel-spaced filter bank with 12 filters is given in figure 1. 
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Fig. 1. Mel-spaced filter bank with 12 filters [1] 

The modified or mel power spectrum consists of the output power of these filters 
applied to the periodogram. The number of mel-spaced filters and mel power spec-
trum coefficients is typically chosen as 20.  

At last, we convert the log mel spectrum back to time, to obtain the mel-frequency 
Cepstrum Coefficients (MFCC). Because the mel spectrum coefficients (and so their 
logarithm) are real numbers, we can convert them to the time domain using the Dis-
crete Cosine Transform (DCT).  

The first component k= 0 is excluded from the DCT since it represents the mean 
value of the input signal which carried little speaker specific information. Twelve 
cepstral coefficients of the speech spectrum provides a good representation of the lo-
cal spectral properties of the signal for the given frame analysis. 
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By applying the procedure described above for each speech frame, an acoustic 
vector of 12 mel-frequency cepstrum coefficients is computed. These are result of a 
cosine transform of the logarithm of the short-term power spectrum expressed on a 
mel-frequency scale. Therefore each input utterance is transformed into a temporal 
sequence of acoustic vectors. A block diagram of the MFCC extraction process is 
given in figure 2. 

Fig. 2. Mel-Frequency Cepstrum Coefficients extraction process [1] 

2.2.2   Extracting Delta and Delta-Delta Features 
A widely method to encode some of the dynamic information over time of spectral 
features is known as delta features “ ” [3, 5]. The time derivatives of each cepstral 
coefficient are obtained by differentiation and zero padding at begin and end of the ut-
terance, then, the estimate of the derivative is appended to the acoustic vector, yield-
ing a higher-dimensional feature vector. The time derivatives of the delta features are 
estimated also, using the same method, yielding delta-delta features “ ”. These are 
again appended to the dimensional feature space. In our case we obtained a 36-
dimmension acoustic vector: 12 MFCC + 12  + 12 . 

3   Feature Matching 

The problem of automatic speaker recognition is a pattern recognition problem. The 
goal of pattern recognition is to classify objects into one of a number of classes. In our 
case, the objects or patterns are sequences of acoustic vectors that are extracted from 
an input speech using the techniques described in the previous section. The classes re-
fer to individual speakers. Since the classification procedure in our case is applied on 
extracted features, it can be referred to as feature matching.  

Furthermore, if there are a set of patterns which classes are known, then it is a 
problem of supervised pattern recognition. During the training phase, we label the 
sequence of acoustic vectors of each input speech with the ID of the known speakers; 
these patterns comprise the training set and are used to derive a classification algo-
rithm. The remaining sequences of acoustic vectors are then used to test the classifi-
cation algorithm; these patterns are referred to as the test set. If the correct classes of 

mel
cepstrum

mel
spectrum

framecontinuous
speech

Frame
Blocking

Windowing FFT spectrum

Mel-frequency
Wrapping

Cepstrum



150 J.R. Calvo de Lara 

the individual pattern in the test set are also known, then one can evaluate the per-
formance of the algorithm. 

3.1   Vector Quantization Method of Feature Matching 

The state-of-the-art in feature matching techniques used in speaker recognition in-
cludes Dynamic Time Warping (DTW), Hidden Markov Modelling (HMM), and 
Vector Quantization (VQ). In this system, the VQ approach is used, due to ease of 
implementation and high accuracy. 

VQ is a process of mapping vectors from a large vector space to a finite number of 
regions in that space. Each region is called a cluster and can be represented by its 
center called a codeword. The collection of all codeword is called a codebook.  
Figure 3 shows a diagram to illustrate this process.  

Speaker 1

S peaker 1
c entroid
s am ple

S peaker 2
c entroid
s am ple

Speaker 2

VQ  dis tortion

 

Fig. 3. Conceptual diagram illustrating vector quantization codebook formation [6] 

In the figure, only two speakers and two dimensions of the acoustic vectors space 
are shown.  The circles refer to the acoustic vectors from speaker 1 while the trian-
gles are from speaker 2.  In the training phase, a speaker-specific VQ codebook is 
generated for each known speaker by clustering his/her training acoustic vectors. 

The result codewords (centroids) are shown by black circles and black triangles for 
speaker 1 and 2, respectively.  The distance from any acoustic vector to the closest 
codeword of a codebook is called a VQ-distortion.  In the testing phase, an input ut-
terance of an unknown voice is “vector-quantized” using each trained codebook and 
the total VQ distortion is computed.  The speaker corresponding to the VQ codebook 
with smallest total VQ-distortion is identified. 

3.1.1   LBG Algorithm  
In the training phase, a speaker-specific VQ codebook is generated for each known 
speaker by clustering his/her training acoustic vectors using a well-know algorithm 
namely LBG [7], this recursive algorithm cluster a set  X = {x1,....., xT} of acoustic 
vectors into a codebook C = {c1,.....cM } of M codewords (M power of 2) . The algo-
rithm is formally implemented by the following recursive procedure [1]: 
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1. Design a 1-vector codebook, this is the centroid of the set of training vectors  
2. Double the size of the codebook by splitting each current codebook yn according 

to the rule: 
)1( ε+=+

nn yy  (1) 

)1( ε−=−
nn yy  (2) 

Where n varies from 1 to the current size of the codebook, and ε is a splitting pa-
rameter (ε =0.01). 

3. Nearest-Neighbor Search: for each training acoustic vector, find the codeword in 
the current codebook that is closest in terms of VQ-distortion, and assign that 
vector to the corresponding cluster associated with the closest codeword. 

4. Centroid Update: update the codeword in each cluster using the centroid of the 
training acoustic vectors assigned to that cluster. 

5. Repeat steps 3 and 4 until the VQ distortion falls below a preset threshold. 
6. Repeat steps 2, 3 and 4 until a codebook size of M is designed. 

The generated codebook C contains the codewords that better represents the training 
set of acoustics vectors X in terms of VQ-distortion.  

3.1.2   Measure of VQ-Distortion  
Consider an acoustic vector xi generated by any speaker, and a codebook C, the VQ-
distortion dq of the acoustic vector xi with respect to C is given by: 

( ) ( )jiiq cxdCxd ,min, =  (3) 

Where d (. , .)  is a distance measure defined for the acoustic vectors. The codeword 
cj for which d (xi , cj ) is minimum, is the nearest neighbor of xi  in  the codebook C.  

Euclidean distance is a distance measure used due the straightforward implementa-
tion and intuitive notion (Euclidean distance between two cepstral features, measures 
the squared distance between the corresponding short term log spectra) [3]. 

In the testing phase, all the sequences of acoustic vectors from an unknown 
speaker is “vector-quantized” computing the average quantization distortion  DQ with 
each trained codebook C, the known speaker corresponding to the codebook  C with 
smallest DQ is assigned to unknown speaker. The average quantization distortion DQ 
is defined as the average of the individual distortions: 

( ) ( )Cxd
T

CXD iq

T

i
Q ,

1
,

1=
=  (4) 

4   Experimental Results 

The proposed speaker recognizer was evaluated with sequences of digits obtained 
from 347 speakers of SALA  database. A sequence of about 15 sec of duration  was 
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used for training and other sequence of similar duration was used for testing. Until 
now SALA Database had been used only in speech recognition studies[8]. 

4.1   SALA Database 

The SALA Spanish Venezuelan Database for fixed telephone network was recorded 
within the scope of the SpeechDat Across Latin America project. [9] The design of 
the corpus and the collection was performed at the Universidad de los Andes, Mérida 
Venezuela, transcription and formatting was performed at the Universidad Politécnica 
de Cataluña, Spain. 

This database comprises telephone recording from 1000 speakers recorded directly 
over the PSTN using two analogue lines, signals were sampled at 8 kHz and µ-law 
encoded without automatic gain control. Every speaker pronounces 44 different utter-
ances. 

The database has the following speaker demographic structure: 
• Five dialectal regions: Central, Zuliana, Llanos, Sud-Oriental and Andes 
• Five age groups: under 16, 16 to 30, 31 to 45, 46 to 60 and over 60 

13 speakers called more than once using the same prompt sheet. 

4.2   Evaluation Results 

The following table shows the 30 distribution groups of the 347 speakers: 

Table 1. Distribution of groups of speakers for the evaluation 

Age 16-30 31-45 46-60 
Regions F M F M F M 
Central 12 12 12 12 8 12 
Zuliana 12 11 12 12 12 11 
Llanos 12 12 12 12 12 12 
Sud-

Oriental 
12 12 12 12 5 12 

Andes 12 12 12 12 12 12 
 

The speaker recognizer was evaluated within every one of the 30 groups, obtaining 
the following results: 

Table 2. Results of the evaluation  

 speakers identified % 
F 169 168 99.4 
M 178 175 98.3 
 347 343 98.8 

 
An additional evaluation, using the 13 speakers that called more than once, taking a 
sequence of digits of the first call for training and other sequence of digits of the sec-
ond call for testing, shows a 92.3 % of identification rate. 
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5   Conclusion and Future Work 

This paper describes the result of the application  of a vector quantization speaker rec-
ognition method, used in a text independent job in the context of sequences of continuos 
digits and evaluated with a database for fixed telephone network. This kind of job and 
environment isn’t usual  for vector quantization methods [3,4].  

Many as 98.8% of speakers in a group of 347 speakers of SALA Database were 
identified correctly. Such a result may be regarded as a promising way to a high-
performance speaker identification system. However, it has to be taken into account 
that the speech data used in the experiments were recorded during one session. More 
exhaustive test must be performed in order to probe the method when there is a time 
interval between the recording of training and testing sentences. 
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Abstract. We propose a novel classification method to identify boar spermato-
zoid heads which present an intracellular intensity distribution similar to a model.
From semen sample images, head images are isolated and normalized. We define
a model intensity distribution averaging a set of head images assumed as normal
by veterinary experts. Two training sets are also formed: one with images that are
similar to the model and another with non-normal head images according to ex-
perts. Deviations from the model are computed for each set, obtaining low values
for normal heads and higher values for assumed as non-normal heads. There is
also an overlapped area. The decision criterion is determined to minimize the sum
of the obtained false rejected and false acceptance errors. Experiments with a test
set of normal and non-normal head images give a global error of 20.40%. The
false rejection and the false acceptance rates are 13.68% and 6.72% respectively.

1 Introduction

Semen quality assessment is an important subject in fertility studies: semen analysis is
a keystone in the clinical workup of infertile male patients and semen assessment is a
critical stage in artificial insemination processes carried out in veterinary medicine. Pig
and cattle farmers regularly acquire semen for artificial insemination from national and
international breeding companies whose main objective is to generate and supply semen
from boars and bulls of high genetic value. These companies are aware that they must
maintain high standards of product, and therefore subject the semen to rigorous quality
control procedures. Some of them use computerised methods for sperm evaluation, thus
obtaining information about the quality of overall motility and morphology, and others
couple this with tests to evaluate sperm plasma membrane and acrosomal integrity. A
precise prediction of fertility cannot be provided, although problematic samples can
usually be distinguished.

Whereas the majority of currently applied methods for inspection of animal ga-
metes were developed for the analysis of human semen morphology and subsequently
adapted for semen of other species, there is a continuing development of new method-
ologies [1,2]. Such improvements have increased the sensitivity of automated analysis,
allowing the recognition of minuscule differences between sperm cells. However, ex-
perts do not know a lot about the influence of these morphological alterations in male
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fertility [3,4]. Several authors have proposed different approaches to classify subpop-
ulations or to describe shape abnormalities using image processing techniques. Most
of them use CASA (Computer Aided Sperm Analysis) systems [5,6] or propose new
description and classification methods [7,8,9,10,11].

Although acrosome integrity and plasma membrane integrity determine the sperm
viability because their enzymes take part in the oocyte penetration process, some possi-
ble features obtained of density distribution or intracellular texture are not considered.
It is a visually observable fact that spermatozoid heads present a variety of cellular tex-
tures and the experts know that they are determined by their corresponding cytoplasmic
densities. Our research is focused on finding a correlation between certain patterns of
intracellular density distribution and semen fertility.

In this approach, veterinary experts first assume that a certain intracellular density
distribution is characteristic of healthy cells. Then a distribution model for normal heads
is obtained. Traditional techniques such as vital and fluorescent stains are used to as-
sess the sperm capacitation of a sample, and experts try to find a correlation between
the above mentioned classification and semen fertility. The aim of this research is to de-
fine a pattern of intracellular density distribution that corresponds to semen fertility, as
determined by traditional techniques. This approach can lead to the use of digital image
processing for sperm fertility estimation instead of expensive staining techniques.

In the current work, we analyse grey-level images of boar spermatozoid heads com-
prised in boar semen samples, Fig. 1a. To acquire the semen samples, veterinary experts
used a phase-contrast microscope and fixed the spermatozoa in glutaraldehyde. We de-
fine a model intracellular density distribution of the spermatozoid heads, according to
the hypothesis of experts. Hence, the typical deviations from the model for normal dis-
tributions and non-normal distributions give a classification criterion. The goal is to
automatically classify spermatozoid head images as normal or not-normal by means of
their deviation from the model intracellular density distribution.

In Section 2, we present the methods we have used and the obtained results. Dis-
cussion and conclusions are given in Section 3.

2 Methods and Results

2.1 Pre-processing and Segmentation

Boar sample images were captured by means of an optical phase-contrast microscope
connected to a digital camera. The magnification used was ×40 and the dimensions
of each sample were 1600× 1200 pixels. A boar sample image comprises a number of
heads which can vary widely from one sample to the next (Fig. 1a). Spermatozoid heads
also present different orientations and tilts. After morphological processing to smooth
the contours of the cells, they are isolated using segmentation by threshold applying
Otsu’s method. Finally, those regions that are smaller than an experimental obtained
value of 45% of the average of the head area are removed as well as the heads next to
the image boundaries (Fig. 1b).
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(a) (b)

Fig. 1. (a) Boar semen sample image acquired using a phase-contrast microscope. (b) Image
obtained after pre-processing and segmentation. Spermatozoid heads are grey-level distributions
in oval shapes on a black background.

2.2 Head Normalization

A spermatozoid head presents an oval shape with an eccentricity between 1.75 and 2.
As heads in a sample have different orientations, we find the main axes of the ellipse that
a head forms (Fig. 2a) to be able to rotate all the head images to the same horizontal
orientation (Fig. 2b). Empirical measurements in head morphological analysis give a
width from 4 to 5µm and a length from 7 to 10µm. We re-scale all the head images
to 19 × 35 pixels and consider a 2D function f(x, y) defined by the grey levels of the
image in the set of points which belongs to an ellipse whose major and minor axis are
35 and 19 respectively (Fig. 2c).

(a) (b) (c)

Fig. 2. (a) Spermatozoid head and main axes of the ellipse that it defines. (b) Rotated head. (c)
After re-scaling and brightness and contrast normalization, 2D grey-level function obtained for
the points of an ellipse with major and minor axis of 35 and 19 pixels, respectively.

Sample images differ in their brightness and contrast grey level. To normalise that,
we develop a linear transformation of the 2D function to keep a determined mean and
standard deviation (Fig. 2c). So, we define a new 2D function g(x, y) as follows:

g(x, y) = af(x, y) + b, (1)
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Fig. 3. Model of an intracellular distribution image considered as normal by veterinary experts,
obtained from the average of a set of head images assumed as normal

where the coefficients a and b are computed as:

a =
σg

σf
, b = µg − aµf . (2)

The spermatozoid head images which experts consider as potentially normal take values
for the mean and the standard deviation around 8 and 10 respectively. For this reason,
we set σg = 8 and µg = 100. The values µf and σf correspond with the mean and the
standard deviation of the function f , respectively.

2.3 Model of a Normal Intracellular Distribution

We describe a model density distribution as the average of a set of 34 heads assumed as
normal by veterinary experts. Such heads have a grey-level intensity variation from left
to right according to the dark post nucleus cap, the intermediate light area and a slightly
darker part called acrosome that covers part of the cell nucleus. After the previous steps
of pre-processing, segmentation and normalization, we compute a model 2D function
as (Fig. 3):

m(x, y) =
1
n

n∑
i=1

gi(x, y) . (3)

We also consider the standard deviation to assess the variability of the grey-levels for
each point:

σ(x, y) =

√√√√ n∑
i=1

(gi(x, y)−mi(x, y))2

n
. (4)

2.4 Classification of Spermatozoid Head Images

Apart from the set of images used to build the model, we employ two training sets of
44 head images labelled as “normal” (Fig. 4a) and 82 head images labelled as “non-
normal” (Fig. 4b) by veterinary experts according to the similarity to the intracellular
distribution considered as potentially normal. For each image of those training sets,
we apply the above mentioned stages and then compute a deviation from the model
function using the L∞ norm:

d = max
(
|g(x, y)−m(x, y)|

σxy

)
. (5)
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(a) (b)

Fig. 4. Examples of heads that were classified by an expert as having an intracellular distribution
that is (a) similar and (b) not similar to the assumed normal density distribution
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Fig. 5. Histograms of deviation from the model for (a) the set of head images considered as normal
by the experts and (b) the set of spermatozoid head images that present intensity distributions not
similar to the model

The obtained deviations for the 2D functions of the set of normal and non-normal
head images yield two histograms, Fig. 5. In general, the deviation values obtained for
normal heads are smaller than the ones obtained for non-normal ones. We can now
classify heads by taking a certain value of the deviation as a decision criterion. If the
deviation value obtained for a given head is below the decision criterion, that head is
classified as normal, otherwise as non-normal. The two histograms overlap for values
of the deviation between 3.5 and 5.5 and this means that it is not possible to achieve
errorless classification by taking any value of the deviation as a decision criterion. If
a high value of the decision criterion is taken (above 5.5), all normal heads will be
classified as normal but a number of non-normal cells that have deviation values below
5.5 will be erroneously accepted as normal too. If a low decision criterion value (e.g.
3) is taken, all non-normal heads will be correctly rejected but a number of normal
heads (with deviation values above 3) will be rejected as well. Fig. 6 shows the false
acceptance and false rejection error as well as their sum as function of the value of the
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Fig. 6. Error rates in head classification obtained for the different values of the decision crite-
rion. The red line shows the percentage of normal heads that are classified as non-normal (false
rejection error); the blue line represents the fraction of non-normal heads misclassified (false ac-
ceptance error). The green line is the sum of both errors and it has a minimum for a decision
criterion value of 4.25.

decision criterion. The sum of the two errors has a minimum for the value 4.25 of the
decision criterion and in the following we use this value for classification. We also used
a Bayer classifier but it yielded error rates higher than the method explained previously.

2.5 Experimental Results

We use a test set of 1400 images of spermatozoid heads: 775 images of heads with a
normal density distribution pattern according to veterinary experts and 625 images of
heads which are not perceived as normal by the experts. We calculate the deviation of
each such image from the model and classify it as normal if that deviation is less than
4.25. Otherwise the image is considered as non-normal. The false rejection error of
normal heads is 13.68%, and the false acceptance rate of non-normal heads is 6.72%.
The overall classification error is 20.40%.

3 Discussion and Conclusions

We proposed a method to classify images of boar spermatozoid heads by means of their
intracellular density distribution. A model of normal intensity distribution was defined
using a set of head images that were assumed as potentially normal by veterinary ex-
perts. We used two training sets of images, one of normal and the other of non-normal
heads, and computed the deviation of the grey-level intensity distribution of each such
head image from the model distribution. That yields a histogram with the values of de-
viations of normal head distributions from the model and another histogram with the
deviations of non-normal distributions from the model. These histograms were used to
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compute the value of a decision criterion in a two-class classification problem. Using
this value of the decision criterion with a new test set of normal and non-normal head
images, we obtained a global error of 20.40% with a false rejection error of normal
heads of 13.68% and a false acceptance rate of non-normal heads of 6.72%.

This result can not be compared with another works since there are no approaches
which solve this problem considering the intracellular density distribution. Hence, in
future works we will try to reduce this error using a more robust classification method.
The obtained results will be tested in veterinary praxis using staining techniques to
correlate it with sperm fertility.
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Abstract. This paper presents an approach for the automatic speech re-
cognition using syllabic units. Its segmentation is based on using the Short-
Term Total Energy Function (STTEF) and the Energy Function of the High 
Frequency (ERO parameter) higher than 3,5 KHz of the speech signal. Training 
for the classification of the syllables is based on ten related Spanish language 
rules for syllable splitting. Recognition is based on a Continuous Density 
Hidden Markov Models and the bigram model language. The approach was 
tested using two voice corpus of natural speech, one constructed for researching 
in our laboratory (experimental) and the other one, the corpus Latino40 
commonly used in speech researches. The use of ERO parameter increases 
speech recognition by 5% when compared with recognition using STTEF in 
discontinuous speech and improved more than 1.5% in continuous speech with 
three states. When the number of states is incremented to five, the recognition 
rate is improved proportionally to 97.5% for the discontinuous speech and to 
80.5% for the continuous one. 

1   Introduction 

Using the syllable as the information unit for automatic segmentation applied to 
Portuguese improved the error rate in word recognition, as reported by [1]. It provides 
the framework for incorporating the syllable in Spanish language recognition because 
both languages, Spanish and Portuguese, have as a common characteristic well 
structured syllable content [2]. 

The dynamic nature of the speech signal is generally analyzed by means of 
characteristic models. Segmentation-based systems offer the potential for integrating 
the dynamics of speech at the phoneme boundaries. This capability of the phonemes 
is reflected in the syllables, like it has been demonstrated in [3]. 

As in many other languages, the syllabic units in Spanish are defined by rules (10 
in total), which establish 17 distinct syllabic structures. In this paper the following 
acronyms are used: Consonant – C, Vocal – V; thus, the syllabic structures are formed 
as CV, VV, CCVCC, etc.  

The use of syllabic units is motivated by: 
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• A more perceptual model and better meaning of the speech signal. 
• A better framework when dynamic modeling techniques are incorporated into a 

speech recognition system [4]. 
• Advantages of using sub words (i.e. phonemes, syllables, triphones, etc) into speech 

recognition tasks [5]. Phonemes are linguistically well defined; the number of them 
is little (27 in the Spanish language) [6]. However, syllables serve as naturally 
motivated minimal units of prosodic organization and for the manipulation of 
utterances [7]. Furthermore, the syllable has been defined as "a sequence of speech 
sounds having a maximum or peak of inherent sonority (that is apart from factors 
such as stress and voice pitched) between two minima of sonority" [8]. The 
triphones treat the co-articulation problem to segment words structure as a more 
useful method not only in Spanish language. The triphones, like the syllables, are 
going to be nowadays as a good alternative for the speech recognition [5]. 

The use of syllables has several potential benefits. First, syllabic boundaries are 
more precisely defined than phonetic segment boundaries in both speech waveforms 
and in spectrographic displays. Second, the syllable may serve as a natural 
organizational unit useful for reducing redundant computation and storage [4]. 

There are not antecedents of speech recognition systems using the syllables rules in 
the training system for the Spanish language. Table 1 lists the frequencies of 
occurrence of ten monosyllables used in corpus Latino40 and its percentage in the 
vocabulary. Table 2 shows the percentage of several syllabic structures in corpus 
Latino40. Both tables show the behavior of the syllables units for this corpus.  

Table 1. Frequency of occurrence of ten monosyllables used in corpus Latino40 

Word Syllable configuration Number of times % in the vocabulary 
De Deaf Occlusive + Vocal 1760 11.15 
La Liquid + Vocal 1481 9.38 
El Vocal + Liquid 1396 8.85 
En Vocal + Nasal 1061 6.72 
No Nasal + Vocal 1000 6.33 
Se Fricative + Vocal 915 5.80 

Que Deaf Occlusive + Vocal 891 5.64 
A Vocal 784 4.97 

Los Liquid + Vocal + Fricative 580 3.67 
Es Vocal + Fricative 498 3.15 

Table 2. Percentage of several syllabic structures in corpus Latino40 

Syllable structure Vocabulary Rate (%) Accumulated in the vocabulary (%) 
CV 50.72 50.72 

CVC 23.67 74.39 
V 5.81 80.2 

CCV 5.13 85.33 
VC 4.81 90.14 

CVV 4.57 94.71 
CVVC 1.09 95.8 
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2   Continuous Speech Recognition Using Syllables 

In automatic speech recognition research (ASR) the characteristics of each basic 
phonetic unit in a large extent are modified by co-articulation. As a result, the 
phonetic features found in articulated continuous speech, and the phonetic features 
found in isolated speech, have different characteristics. Using the syllables the 
problem is the same, but in our approach the syllables were directly extracted from 
the speech waveform, whose grammatical solution were found later using a dedicated 
expert system. Figure 1 shows the result of the segmentation using STTEF [3]. 

It can be noted that the energy is more significant when the syllable is present and 
it is a minimum when it is not. The resulting relative minimum and maximum energy 
are used as the potential syllabic boundaries. The term syllabic unit is introduced to 
differentiate between the syllables defined generally on the phonological level and the 
syllabic segments. 

Thus, each syllable can be independently stored in a file. Our database uses 10 
phrases with 51 different syllables. For each phrase 20 utterances were used, 50% for 
training and the remainder for recognition, and there were produced by a single 
female speaker at a moderate speaking rate. 
 

 

 

 

 

 

 
 
 
 
 

Fig. 1. Syllables speech segmentation labeling 

3   Training Speech Model Using Data Segments 

The Energy Function of the High Frequency (ERO parameter) is the energy level of 
the speech signal at high frequencies. The fricative letter, s, is the most significant 
example. When we use a high-pass filter, we obtain the speech signal above a given 
cut-off frequency fc, the RO signal. In our approach, a cut-off frequency fc = 3500 Hz 
is used as the threshold frequency for obtaining the RO signal. The speech signal at a 
lower frequency is attenuated. Afterwards, the energy is calculated from the Equation 
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Fig. 2. STTEF (left) and ERO (right) parameters in the Spanish word ‘cero’ 

(1) for the ERO parameter in each segment of the resultant RO signal. Figure 2 shows 
graphically the results of this procedure for Short-Term Total Energy Function 
(STTEF) and ERO parameter in the case of the word ‘cero’. 
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Figure 3 shows the energy distribution for ten different words ‘cero’ spoken by the 
same speaker. We found an additional area between the two syllables (ce-ro) using 
our analysis. In the figure, the dark gray rectangle represents the energy before using 
the filter, ERO; a medium gray rectangle the energy of the signal after using the filter, 
STTEF; and a light gray rectangle represents the transition region between both 
parameters. We call this region the Transition Energy Region -RO.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3. Energy distribution for ten different words ‘cero’ 
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Fig. 4. Functional block diagram for syllable splitting 

Figure 4 shows the functional block diagram representing the algorithm used in our 
approach to extract the signal characteristics. 

In the training phase an expert system uses the ten rules for syllable splitting in 
Spanish. It receives the energy components STTEF and the ERO parameter extracted 
from the speech signal. Table 3 shows the basic sets in Spanish used by the expert 
system for the syllable splitting. Table 4 shows the inference rules created in the 
expert system, associated with the rules for splitting words in syllables. 

The rules mentioned above are the postulates used by the recognition system. 
Syllable splitting is carried out taking into account the spectrogram shape, parameters 
and the statistics from the expert system. Figure 5 shows graphically the decision 
trees of the inference rules of the expert system. 

After the execution by the expert system and for the voice corpus in process of the 
entire syllable splitting inference rules, the results are sent to the Training Module as 
the initial parameters. Then, the necessary models are created for each syllable during 
the process of recognition. 

Table 3. Basic sets in Spanish used during the syllable splitting 

CI = {br,bl,cr,cl,dr,fr,fl,gr,gl,kr,ll,pr,pl,tr,rr,ch,tl} Non-separable Consonant 
VD={ai,au,ei,eu,io,ou,ia,ua,ie,ue,oi,uo,ui,iu,ay,ey,oy} Vocal Diphthong and 

hiatus 
VA={a} Open Vocal 
VS={e,o} Half-open Vocal 
VC={i,u} Close Vocal 
CC={ll.rr,ch} Compound Consonant 
CS={b,c,d,f,g,h,j,k,l,m,n,ñ,p,q,r,s,t,v,w,x,y,z} Simple Consonant 
VT={iai, iei, uai, uei, uau, iau, uay, uey} Vocal Triphthong and 

hiatus 
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Table 4. Inference rules of the expert system 

Inference rules 
If CC ^ CC ∈ CI   /CC/ 
If VCV   /V/ /CV/ 
If VCCV   /VC/ /CV/ 
If VCCCV   /VCC/ /CV/ 
If C1C2 ^ C1=‘h’ or C2=‘h’   /C1/ /C2/ 
If VV ∉ VA, VS   /VV/ 
If VV ∈ VA, VS   /V/ /V/ 
If VCV with C=‘h’   /VCV/ 
If V1V2 any with accent   /V1/ /V2/ 
If VVV  VT   /VVV/ 

    

 

Fig. 5. Decision trees for the inference rules created in the expert system 

During the recognition phase, the Recognition Module receives the Cepstral Linear 
Prediction Coefficients from the signal in processes. They are used to calculate the 
probabilities of each element in the corpus. The recognized element is that with a 
higher probability. The final result of this process is the entire speech recognition. 
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4   Model for Continuous Speech Recognition 

In our approach, speech recognition is based on a Hidden Markov Model (HMM) 
with Continuous Density and the bigram [5] like a language model described by 
Equation (2). 

∏
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Where W represents the words in the phrase under analysis w1 on the corpus; wi 
represents a word in the corpus; P (W) is the probability of the language model; P(wi) 
is the probability of a given word in the corpus. In automatic speech recognition it is 
common to use expression (3) to achieve better performance: 

[ ])()(maxarg
*

WPWOPW =
 

(3) 

Here, 
*

W  represents the word string, based on the acoustic observation sequence, 
so that the decoded string has the maximum a posteriori probability P (O|W), called 
the acoustic model. 

Language models require the estimation of a priori probability P(W) of the word 

sequence Nwwww +++= L21 . P(W) can be factorized as the following 

conditional probability:  
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The estimation of such a large set of probabilities from a finite set of training data 

is not feasible. 
The bigram model is based on the approximation based on the fact that a word only 

depends statistically on the temporally previous word. In the bigram model shown by 

the equation (2), the probability of the word )(mw  at the generic time index i when 

the previous word is )( 1mw  is given by: 
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where the numerator is the number of occurrences of the sequence 
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i wwww == −  in the training set. 
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5   Experiments and Results 

Taking into account the small redundancy of syllables in the corpus Latino40, we 
have designed a new experimental corpus with more redundant syllables units, 
prepared by two women and three men, repeating ten phrases twenty times each to 
give one thousand phrases in total. 

Table 5 shows the syllables and the number of times each one appear in phrases of 
our experimental corpus.  

Table 5. Syllables and the number of each type into our experimental corpus 

Syllable #Items Syllable #Items Syllable #Items 
de 2 es 3 zo 1 
Pue 1 pa 2 rios 1 
bla 1 cio 1 bio 1 
a 5 e 2 lo 1 
Me 1 o 1 gi 1 
xi 1 ahu 1 cos 1 
co 1 ma 2 el 1 
cuauh 1 do 1 true 1 
te 1 cro 1 que 1 
moc 1 cia 1 ri 2 
y 1 ta 1 ti 1 
cuau 2 en 1 lla 1 
tla 2 eu 1 se 2 
mo 2 ro 1 ria 1 
re 2 pro 1 po 1 
los 1 to 1 si 1 
ble 1 sis 1 tir 1 

Table 6. Percentage of discontinuous recognition 

Segmentation Hidden Markov (%) 
with 3 states 

Models states (%) 
with 5 states 

STTEF 89.5 95.5 
STTEF + ERO 95.0 97.5 

Table 7. Percentage of continuous recognition 

Segmentation Hidden Markov(%) 
with 3 states 

Models states (%) 
with 5 states 

STTEF 77.5 78.5 
STTEF + ERO 79.0 80.5 
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Three Gaussian mixtures were used for each state in the HMM with three and five 
states, using twelve Cepstral Linear Prediction Coefficients (CLPCs). Tables 6 and 7 
show the results of recognition for the discontinuous and continuous cases, 
respectively, referred to the experimental corpus. The accentuation of Spanish words 
was not considered in the analysis. 

6   Conclusion 

The results shown in this paper demonstrate that we can use the syllables as an 
alternative to the phonemes in an automatic speech recognition system (ASRS) for the 
Spanish language. The use of syllables for speech recognition avoids the contextual 
dependency found when phonemes are used.  

In our approach we used a new parameter: the Energy Function of the Cepstral 
High Frequency parameter, ERO. The incorporation of a training module as an expert 
system using the STTEF and the ERO parameter, taking into account the ten rules for 
syllable splitting in Spanish, improved considerably the percent of success in speech 
recognition. The use of the ERO parameter increased by 5% the speech recognition 
with respect to the use of STTEF in discontinuous speech and by more than 1.5% in 
continuous speech with three states. When the number of states was incremented to 
five, the improvement in the recognition was increased to 97.5% for discontinuous 
speech and to 80.5% for continuous speech.  

CLPCs and CDHMMs were used for training and recognition, respectively.  
It was also demonstrated that comparing our results with [9], for English, we 

obtained a better percent in the number of syllables recognized when our new 
alternative for modeling the ASRS was used for the Spanish language.  

The improvement of the results shows that the use of expert systems or conceptual 
dependency [10] is relevant in speech recognition of the Spanish language when 
syllables are used as the basic features for recognition. 
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Abstract. The watersheds method is a powerful segmentation tool developed in 
mathematical morphology, which has the drawback of producing over-
segmentation. In this paper, in order to prevent its over-segmentation, we 
present a strategy to obtain robust markers for atherosclerotic lesions 
segmentation of the thoracic aorta. In such sense, we introduced an algorithm, 
which was very useful in order to obtain the markers of atherosclerotic lesions. 
The obtained results by using our strategy were validated calculating the false 
negatives (FN) and false positives (FP) according to criterion of pathologists, 
where 0% for FN and less than 11% for FP were obtained. Extensive 
experimentation showed that, using real image data, the proposed strategy was 
very suitable for our application.  

1   Introduction 

Segmentation and contour extraction are important steps towards image analysis. 
Segmented images are now used routinely in a multitude of different applications, 
such as, diagnosis, treatment planning, localization of pathology, study of anatomical 
structure, computer-integrated surgery, among others. However, image segmentation 
remains a difficult task due to both the variability of object shapes and the variation in 
image quality. Particularly, medical images are often corrupted by noise and sampling 
artifacts, which can cause considerable difficulties when applying rigid methods. 

The pathological anatomy is a speciality where the use of different techniques of 
digital image processing (DIP) allows to improve the accuracy of diagnosis of many 
diseases. One of the most important diseases to study is the atherosclerosis and its 
organic-consequences, which is one of the principal causes of death in the world [1]. The 
atherosclerosis produces as final consequence the loss of elasticity and increase of the 
wall of arteries. For example, heart attack, cerebral attack and ischemia are some of its 
principal consequences [2]. 

Many segmentation methods have been proposed for medical-image data [3-6]. 
Unfortunately, segmentation using traditional low-level image processing techniques, 
such as thresholding, histogram, and other classical operations, requires a considerable 
amount of interactive guidance in order to get satisfactory results. Automating these 
model-free approaches is difficult because of shape complexity, shadows, and 
variability within and across individual objects. Furthermore, noise and other image 
artifacts can cause incorrect regions or boundary discontinuities in objects recovered 
from these methods. 
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In mathematical morphology (MM) important methods have been developed for 
image segmentation [7, 8]. One of the most powerful tools developed in MM is the 
watersheds transformation, which is classic in the field of topography and it has been 
used in many problems of image segmentation. However, the watersheds 
transformation has the disadvantage of producing over-segmentation. For that reason, 
the correct way to use watersheds for grayscale image segmentation is to mark the 
regions we want to segment, that is, the objects, but also the background. 

The goal of this paper is to present a strategy to obtain robust markers for 
atherosclerotic lesions segmentation of the thoracic aorta. In such sense, we introduced 
an algorithm to obtain markers, which identifies correctly the atherosclerotic lesions and 
eliminates considerably all spurious information. The validity of our strategy was tested 
by using watersheds segmentation, where the atherosclerotic lesions were correctly 
delineated according to the criteria of pathologists. 

This paper is organized as follows: Section 2 outlines the theoretical aspects and 
the method of evaluation. In section 3, we present the features of the studied images. 
In section 4, we introduce an algorithm to obtain the markers. In section 5, we show 
the validity of our strategy and we carry out a test of the obtained results. Finally, we 
describe our conclusions in Section 6. 

2   Theoretical Aspects 

This section presents the most important theoretical aspects. 

2.1   Pre-processing 

With the goal of diminishing the noise in the original images we used the Gauss filter. 
We carried out several researches with many images, arriving to the final conclusion 
that the best performance are obtained, according to our application, with σ = 3 and a 
3x3 window size. We verified that with these parameters the noise was considerably 
smoothed and the edges of the interest objects (lesions) were not affected. 

2.2   Contrast Enhancement 

Contrast enhancement is a very used technique as previous step to segmentation. 
There are many methods in the literature that can be seen [9, 10]. In this work, we 
improve the contrast via histogram modification. 

2.3   Morphological Grayscale Reconstruction 

Let J and I be two grayscale images defined on the same domain DI, taking their 
values in the discrete set {0, 1, ......, L-1} and such that J  I (i.e., for each  pixel p  
DI , J(p)  I (p)). L being an arbitrary positive integer. In this way, it is useful to 
introduce the geodesic dilations according to the following definition [7]:  

Definition 2.3.1 (Geodesic dilation). The elementary geodesic dilation of  (J) (1)

I
of 

grayscale image J  I “under” I (J is called the marker image and I is the mask) is defined as,  
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I B)  J (  (J)   (1)

I
∧⊕=                                                                                     (1) 

where the symbol  ∧  stands for the pointwise minimum and  J ⊕ B is the dilation of J by flat 
structuring element B. The grayscale geodesic dilation of size n  0 is obtained by, 

 timesn  ), J (            (1)

I

(1)

I

(1)

I

)(

I
  (J)n ooo ⋅⋅⋅⋅⋅=                                   (2) 

This leads to the following definition of grayscale reconstruction, 

Definition 2.3.2 (Grayscale reconstruction). The grayscale reconstruction   (J)
I

of I from J 

is obtained by iterating grayscale dilations of J “under” I until stability is reached, that is,  

 ) J (    (J)   (n)
II

1 n ≥
= U                                                                            (3) 

Definition 2.3.3 (Geodesic erosion). Similarly, the elementary geodesic erosion  (J) (1)

I
of 

grayscale image J  I “above” I is given by, 

I B)  J (  (J)   (1)

I
∨=                                                                                     (4) 

where ∨ stands for the pointwise maximum and B  J  is the erosion of J by flat structuring 
element B. The grayscale geodesic erosion of size n  0 is then given by,  

 timesn (J),              (1)

I

(1)

I

(1)

I

)(

I
  (J)n ooo ⋅⋅⋅⋅⋅⋅⋅=                                      (5) 

Reconstruction turns out to provide a very efficient method to extract regional 
maxima and minima from grayscale images. Furthermore, the technique extends to 
the determination of maximal structures, which will be call h-domes and h-basins. 
The only parameter (h) is related to the height of these structures. The mathematical 
background and other definitions can be found in [7]. 

2.4   Watersheds Segmentation 

In what follows, we consider grayscale images as numerical functions or as 
topographic relief.  

Definition 2.4.1 (Catchment Basin). The catchment basin C(M) associated with a minimum M 
is the set of pixels p of DI such that a water drop falling at p flows down along the relief, 
following a certain descending path called the downstream of p, and eventually reaches M. 

Using the former definitions, it is possible to present the watershed definition. The notion of 
watershed will now serve as a guideline for the segmentation of grayscale images. 

Definition 2.4.2 (Watersheds by Immersion). Suppose that we have pierced holes in each 
regional minimum of I, this picture being regarded as a topographic surface. We then slowly 
immerse this surface into a lake. Starting from the minimum of lowest altitude, the water will 
progressively fill up the different catchment basins of I. Now, at each pixel where the water 
coming from two different minima would merge, we build a dam (see Fig. 1). At the end of this 
immersion procedure, each minimum is completely surrounded by dams, which delimit its 
associated catchment basin. The whole set of dams which has been built thus provides a 
tessellation of I in its different catchment basins. These dams correspond to the watershed of I, 
that is, these represent the edges of objects. 
 



174 R. Rodríguez and O. Pacheco 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Building dams at the places where the water coming from two different minima would 
merge 

In many practical cases, one of the principal problems is the obtaining the regional 
minimum, due to the fact that, in general, images are corrupted by noise. Therefore, 
the correct way to use watersheds for grayscale image segmentation consists in first 
detecting markers of the objects to be extracted. When one works in the other way, 
then the watersheds transformation produces over-segmentation. The over-
segmentation mainly comes from the fact that the markers are not perfectly 
appropriate to the objects to be contoured. In short, the quality of the segmentation is 
directly linked to the marking function. In this work, the proposed strategy permits to 
obtain good markers, which were useful for the segmentation process. 

2.5   The Method of Evaluation 

In order to evaluate the performance of the proposed strategy, we calculate the percent 
of false negatives (FN, atherosclerotic lesions, which are not classified by the 
strategy) and the false positives (FP, noise, which is classified as atherosclerotic 
lesion). These are defined according to the following expressions,  

                         100*
fV

f
FP

pp

p

+
=  

100*
f  V

f
FN

np

n

+
=                                                                                  (7) 

where Vp is the real quantity of atherosclerotic lesions identified by the physician, fn is 
the quantity of atherosclerotic lesions, which were not marked by the strategy and fp is 
the number of spurious regions, which were marked as atherosclerotic lesions.  

3   Features of the Studied Images 

Studied images are of arteries, which have atherosclerotic lesions and these were 
obtained from different parts of the human body from more of 80 autopsies. These 
arteries were contrasted with a special tint in order to accentuate the different lesions 
in arteries. Later, the lesions are manually classified by the pathologists according to 
World Health Organization. They classified the lesions in type I, II, III and IV. For 

Minima 

Dams Catchment 
basins 
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example, the lesions I and II, these are the fatty streaks and fibrous plaques respectively, 
while the lesions III and IV are respectively the complicated and calcified plaques. The 
arteries were digitalized directly from the working desk. It is possible to observe from the 
images that the different arterial structures are well defined. Other works have used the 
photograph of the arteries to digitalize the image [11, 12]. This constitutes an additional 
step, increases the cost of the research, and leads to a loss of information in the original 
image. The segmentation process is then more difficult too. These images were captured 
via the MADIP system with a resolution of 512x512x8 bit/pixels [13]. 

There are several remarkable characteristics of these images, which are common to 
typical images that we encounter in the atherosclerotic lesions: 

1. High local variation of intensity is observed both, within the atherosclerotic 
lesions and the background. However, the local variation of intensities is higher 
within the lesions than in background regions. 

2. The histograms showed that there is a low contrast in the images. 
3. The lesions III and IV have better contrast than the lesions I and II  
4. It is common of these images the diversity in shape and size of the atherosclerotic 

lesions. 

4   Experimental Results. Discussion 

It is very important to point out that the proposed strategy was obtained according to 
experimentation, that is, we carried out firstly a morphological reconstruction by 
erosion for each of the lesions, and secondly, we carried out a morphological 
reconstruction by dilation for each of the lesions. We verified that in all cases the best 
results for the lesions I and II using a reconstruction by dilation were obtained, while 
for the lesions III and IV the obtained results were much better for a reconstruction by 
erosion.  

With the goal of extracting the approximate regions of interest, after the histogram 
modification, we carried out a morphological reconstruction. We verified that the 
reconstruction by erosion (for the lesions III and IV) led to an image where the dark 
zones correspond to these lesions. For example, in Fig. 2 is shown the obtained result 
for a lesions IV. 

 
 
 
 
 
 
 
 
 

Fig. 2. (a) Resulting image of the histogram modification. (b) Image obtained by a recon- 
struction by erosion. The dark parts correspond to the lesion IV.  

(a) (b) 
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The result in Fig. 2(b) was obtained by using a rhomb as structuring element of 5x5 
pixels and a height equal to 60. The selection of this structuring element and its size 
was obtained via experimentation. These values were used for the lesion III too.   

We carried out several experiments with different structuring element and with 
different size, which we did not put here for problem space. With respect to the 
height, we verified that for each of our images the optimal value was in the range 
from 40 to 60.  

After obtaining both, the size of structuring element and the optimal height, the 
next stage of our strategy was to segment the approximate region of interest, that is, a 
region that contains the atherosclerotic lesions and its neighbouring background. This 
step was carried out by applying a simple threshold through Otsu method. The 
thresholding value does not have much influence on the performance, because the 
exact shape and size of this region are not important, and hence the region is referred 
to as an approximate region. In Fig. 3(b) one can see the region of interest. 

After this result, we introduce the following algorithm to obtain markers for the 
atherosclerotic lesions. 

 
 
 
 
 
 
 
 
 

Fig. 3. (a) Image of the reconstruction, where the arrows indicate the lesions. (b) Regions of 
interest. 

4.1   Algorithm to Obtain Markers 

The steps of the algorithm are described below: 

1. Obtain the regions of interest. Let IREZI be the resulting image. 
2. Label the resulting image of the step 1. Create an auxiliary image; let IA1 be this 

image. All pixels of this image are put in zero. Scan IREZI at iterative way and all the 
background in IA1 is labeled with a value equal to 1.  

3. Scan IREZI again from the top to the bottom and from the left to the right. If there is 
a pixel, which belongs to a connected component and in the image IAl this pixel has 
zero value, then other iterative method begins to work. This new iterative method 
marks with a determined value within the image IA1 all pixels belonging to a 
connected component. In addition, pixels within the image IREZI are also marked 
with a value, which identifies the connected component to which they belong. As this 
step is finished, in the image IREZI all the connected components were filled and in 
the image IA1 all the connected components were labeled. 

4. Create other auxiliary image (let IA2 be this image) with the same values of the 
image IA1. Create also an array, which controls if a connected component was 
reduced. In the image IA2 is where in each step the reduction of the connected 
components are obtained, the final result is represented in the image IA1. 

(a) (b) 

Lesions 
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5. Scan the labeled image (IA1). When in this image a pixel is found, which belongs to 
a connected component, through other iterative method, this component is reduced 
and in the image IA2 all the frontiers of the connected component are marked. If still 
there is some pixel within the connected component, which is no frontier, in the 
images IA2 and IA1, the mentioned pixel is eliminated and this function begins again 
until that all points are frontiers. In this case, the obtained result (reduction) is taken 
as the mark.  

6. Finish when the image IREZI is completely scanned. When this step is concluded, in 
the image IA1 all marks of BV are. These marks are collocated in the image IREZI. 
Here, after the step two, the connected components (in IREZI) were filled. The image 
IREZI is the resulting image.  

The result of applying this algorithm to the image of Fig. 3(b) is shown in Fig. 4. In 
Fig. 4(b) one can see that the mark is unique for each of the atherosclerotic lesions, 
which is always within these. This procedure was carried out for the lesions III and 
IV. 

 
 
 
 
 
 
 
 
 

Fig. 4  (a) Image with regions of interest. (b) Marking image. (c) Marks superimposed on the 
original image. 

Now, we will explain the steps that we carried out to obtain the marks for the 
lesions I and II. We carried out a reconstruction by dilation. This reconstruction 
improved more these lesions. Fig.5 shows the obtained result of the reconstruction.  

Later, we obtained the approximate region of interest and the markers similarly as 
in the lesions III and IV. In Fig. 6 is shown the obtained result. 
 
 
 
 
 
 
 
 
 
 
 
                       Fig. 5. (a) Initial image. (b) Reconstruction by dilation (lesion II and II). 
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Fig. 6. (a) Regions of interest. The arrows indicate the connected components. (b) Image with 
marks. (c) The marks superimposed on the original image. 

5   Application of the Proposed Strategy for Atherosclerosis Image 
Segmentation by Using the Watershed Method  

As we have pointed out the watershed transformation has the drawback of producing 
an over-segmentation as it is applied directly to the original image or the gradient 
image.  In fact, Fig. 7(b) shows the obtained result as we applied directly the 
watershed transformation to an atherosclerosis image without good markers. 
However, in Fig. 7(c) is shown the excellent result obtained according to our strategy 
and the introduced algorithm in this work. The contours of the atherosclerotic lesions 
were well defined. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 7. (a) Original image. (b) The watershed segmentation without marks in the lesions. (c) 
The watershed segmentation according to our strategy. 

 
 
 
 
 
 
 
 
Fig. 8. The contours superimposed on the original image. The arrow indicates an object, which 
does not correspond to an atherosclerotic lesion. 

(a) (b) (c) 

(a) (b) (c) 
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. 
 
 
 
 
 
 
 
 
Fig. 9  (a) Original image. (b) Watershed transformation. (c) Contours superimposed on the 
original image. The arrow in Figure 9 (c) indicates an object, which does not belong to the 
lesion. 

In Fig. 8, we show the contours superimposed on the original image in order to see 
the exact coincidence of the obtained contours. This result is evident 

In Fig. 9, another example, with real image, of the application of our strategy is 
shown. The authors have several examples, which we did not present for problem 
space 

6   Conclusions 

In this work, we proposed a strategy to obtain robust markers for atherosclerotic 
lesions. In such sense, we introduced an algorithm, which identifies correctly the 
atherosclerotic lesions and all undesirable information is considerably eliminated. 
With our strategy the application of the watersheds transformation provided excellent 
results, and we obtained the exact contours of the atherosclerotic lesions. We showed 
by extensive experimentation by using real image data, that the proposed strategy was 
robust for the type of images considered. This strategy was tested, according to the 
criteria of pathologists, obtaining the false negatives (FN) and false positives (FP), 
where the percent for FN was equal to 0% and for FP minor than 11%. The results 
were obtained for more of 80 images.  
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Abstract. In this paper, we show how the heat-kernel can be used to
construct a scale-space for image smoothing and edge detection. We
commence from an affinity weight matrix computed by exponentiating
the difference in pixel grey-scale and distance. From the weight matrix,
we compute the graph Laplacian. Information flow across this weighted
graph-structure with time is captured by the heat-equation, and the so-
lution, i.e. the heat kernel, is found by exponentiating the Laplacian
eigen-system with time. Our scale-space is constructed by varying the
time parameter of the heat-kernel. The larger the time the greater the
the amount of information flow across the graph. The method has the
effect of smoothing within regions, but does not blur region boundaries.
Moreover, the boundaries do not move with time and this overcomes one
of the problems with Gaussian scale-space. We illustrate the effectiveness
of the method for image smoothing and edge detection.

1 Introduction

Witkin was one of the first to formalise the multi-scale descriptions of images
and signals in terms of scale-space filtering [13]. The technique plays an im-
portant role in low-level computer vision. The basic idea is to use convolutions
with the Gaussian kernel to generate fine to coarse resolution image descriptions.
Babaud [7], Yuille [17] and Hummel [6] have analysed and further developed the
method. Broadly speaking this work has shown that there is considerable infor-
mation to be gained from the analysis of changes in image structure over different
scales. Moreover, the study of multi-scale and multi-resolution image process-
ing has lead the development of a diverse family of algorithms. For instance,
Gidas [4] has extended Geman and Geman’s [3] stochastic image restoration
method to the multi-scale case using the renormalisation group to relate the
processing at different scales. Spann and Wilson [16] combined the spatial and
frequency domain locality to segment images using multiresolution techniques.

The formal description of Witkin’s idea is as follows. From the image I0(x, y)
a series of coarser scale images I(x, y, σ) are generated through convolution with
a Gaussian kernel G(x, y;σ) of scale σ. The convolution is

I(x, y, σ) = I0(x, y)∗G(x, y;σ) =
∫ +∞

−∞

∫ +∞

−∞
I0(x−u, y− v)

1
2πσ2 e

−u2+v2

2σ2 dudv

(1)
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As the scale σ is increased, the resolution becomes coarser. Since the Gaussian
smoothing process is linear and isotropic, it has an equal blurring effect at all
image locations. Hence, while the region interiors are smoothed their boundaries
are blurred. Another problem with linear scale-space is that the boundary lo-
cations move and sometimes coalesce at coarse scales. As illustrated by Perona
and Malik [12], in 2-D images there is additional problem that edge junctions,
which contain much of the spatial information of edge maps, are destroyed.

Hummel [6] and Koenderink [8] pointed out that the family of images derived
from the Gaussian convolution operation are solutions of the heat equation

∂I
∂t

= ∆I =
∂2I
∂x2 +

∂2I
∂y2 (2)

with the initial condition I(x, y, 0) = I0(x, y). Based on this observation, Koen-
derink [8] stated two criteria for features to generate multi-scale descriptions.
The first of these is causality, whereby any feature at a coarse level of reso-
lution is required to possess a ”cause” at a finer level of resolution, although
the reverse need not be true. The second criterion is that of homogeneity and
isotropy. According to this requirement the scale-space blurring is required to
be spatially invariant. In [12], Perona and Malik suggested another definition of
scale-space which breaks the isotropy criterion and works better than Gaussian
blurring. Since Gaussian blurring is governed by the heat equation, the thermal
conductivity in all directions is constant. As a result boundaries will be blurred.
Perona and Malik’s idea is to halt the heat-flow process at object boundaries.
To do this they control the thermal conductivity c(x, y, t) using the magnitude
of the image gradient. When the gradient is large, which indicates the existence
of a likely edge, the value c is small. When the gradient is small, on the other
hand, the value of c is large. They generate a family of coarse resolution images
which are the solutions of the anisotropic diffusion equation

∂I
∂t

= div((c(x, y, t)(
∂I
∂x

+
∂I
∂y

))) (3)

where div is the divergence operator. The method is demonstrated to outperform
Gaussian blurring, preserving boundary sharpness and location.

Recently, there has been considerable interest in the use of graph-spectral
methods for image segmentation. The pioneering work here was done by Shi
and Malik [15]. The idea is to characterise the similarity of image pixels using
a weight matrix which is computed by exponentiating the difference in pixel
brightness. From the weight matrix the Laplacian matrix (the degree matrix
minus the weight matrix) of the associated weighted graph is computed. The
bi-partition of the graph that minimises the normalised cut is located using the
Fiedler eigen-vector of the Laplacian.

This paper aims to exploit the close relationship between the heat-kernel and
the Laplacian eigensystem to develop a graph-spectral method for scale-space
image representation. Our method is motivated by the heat kernel on graphs [9]
which is based on the heat equation for discrete structures, recently proposed in
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the machine learning domain. According to the heat-equation, the Laplacian de-
termines the rate of heat-flow across the weighted graph with time. The solution
to the heat equation, i.e. the heat-kernel, is found by exponentiating the Lapla-
cian eigensystem with time. We exploit this property to develop a scale-space
representation from the affinity weight matrix. According to our representation,
time plays the role of scale. By varying time we control the amount of blurring
resulting from heat-flow.

2 Heat Kernels on Graphs

To commence, suppose that the graph under study is denoted by G = (V,E,W )
where V is the set of nodes, E ⊆ V × V is the set of edges and W : E → [0, 1]
is the weight function. Since we wish to adopt a graph-spectral approach we
introduce the adjacency matrix A for the graph where the elements are

A(u, v) =
{
W (u, v) if (u, v) ∈ E
0 otherwise

(4)

We also construct the diagonal degree matrix D, whose elements are given by
D(u, u) = deg(u) =

∑
v∈V A(u, v). ¿From the degree matrix and the adjacency

matrix we construct the Laplacian matrix L = D − A, i.e. the degree matrix
minus the adjacency matrix. The spectral decomposition of the Laplacian matrix
is L = ΦΛΦT where Λ = diag(λ1, λ2, ..., λ|V |) is the diagonal matrix with the
decreasingly ordered eigenvalues (0 = λ1 < λ2 ≤ λ3...) as elements and Φ =
(φ1|φ2|....|φ|V |) is the matrix with the correspondingly ordered eigenvectors as
columns. Since L is symmetric and positive semi-definite, the eigenvalues of the
Laplacian are all positive. The eigenvector φ2 associated with the smallest non-
zero eigenvalue λ2 is referred to as the Fiedler-vector. We are interested in the
heat equation associated with the Laplacian and with the accompanying initial
conditions h0 = I where I is the identity matrix, i.e.

∂ht

∂t
= −Lht (5)

where ht is the heat kernel and t is time. The heat kernel can hence be viewed
as describing the flow of heat across the edges of the graph with time. The rate
of flow is determined by the Laplacian of the graph. The solution to the heat
equation is found by exponentiating the Laplacian eigen-spectrum, i.e.

ht = exp[−tL] = Φ exp[−tΛ]ΦT . (6)

The heat kernel is a |V | × |V | matrix, and for the nodes u and v of the graph G
the resulting element is

ht(u, v) =
|V |∑
i=1

exp[−λit]φi(u)φi(v) (7)
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When t tends to zero, then ht � I − Lt, i.e. the kernel depends on the local
connectivity structure or topology of the graph. If, on the other hand, t is large,
then ht � exp[−λ2]φ2φ

T
2 , where λ2 is the smallest non-zero eigenvalue and φ2 is

the associated eigenvector, i.e. the Fiedler vector. Hence, the large time behavior
is governed by the global structure of the graph.

3 Graph Scale-Space

The heat kernel matrix ht is real valued and from the well-known ’kernel
trick’ [14] can be interpreted as a inner-product or Gram matrix. As a result the
nodes of the graph can be viewed as residing in a possibly infinite dimensional
Hilbert space. In other words, ht(u, v) efficiently characterizes the similarity be-
tween the nodes u and v. The Laplacian L encodes the local structure of a graph
and dominates the heat-kernel at small time, but as time t increases then the
global structure emerges in ht.

From the standpoint of heat diffusion, the heat kernel ht is the solution of
the heat equation (5). As pointed out in [10], for an equally weighted graph
the heat kernel ht is the counterpart of the Gaussian kernel for discrete spaces
R|V | with variance σ2 = 2t. The value of ht(u, v) decays exponentially with the
distance or weight of edge W (u, v). It is useful to consider the following picture
of the heat diffusion process on graphs. Suppose we inject a unit amount of heat
at the vertex k of a graph, and allow the heat diffuse through the edges of the
graph. The rate of diffusion over the edge E(u, v) is determined by the edge
weight W (u, v). At time t, the heat kernel value of ht(k, v) is the amount of heat
accumulated at vertex v.

Following recent work on graph-spectral methods for image segmentation
[15] [11] we abstract images using the graph G = (V,E,W ) where the vertices of
G are the pixels of the image, and an edge is formed between each pair of vertices.
We denote the pixel intensities of the image as a column vector I0. The weight
of each edge, W (u, v), is a function characterizing the relationship between the
pixels u and v. We would like to generate a family of coarser resolution images
from I0 using heat flow on the graph G. To do this we inject at each vertex an
amount of heat energy equal to the intensity of the associated pixel. The heat
at each vertex diffuses through the graph edges as time t progresses. The edge
weight plays the role of thermal conductivity. If two pixels belong to the same
region, then the associated edge weight is large. As a result heat can flow easily
between them. On the other hand, if two pixels belong to different regions, then
the associated edge weight is very small, and hence it is difficult for heat to flow
from one region to another. We wish to minimize the influence of one region on
another. This behaviour is of course captured by the standard weight matrix

W (u, v) =
{

e−
|I0(u)−I0(v)|2

σ2 if ‖X(u)−X(v)‖ ≤ r
0 otherwise

(8)

where I0(u) and X(u) are the intensity and location of the pixel u respec-
tively. This heat evolution model is similar to the graph heat kernel described in
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Section 2, except that the initial heat residing at each vertex is determined by
the pixel intensities. Since we wish to find the heat at each node of the graph at
time t, the heat diffusion here is still controlled by the graph Laplacian. So the
evolution of the image intensity I0 follows the equation

∂It

∂t
= −LI0. (9)

The solution of the above equation is It = e−tLI0 = htI0. So the intensity of
pixel v at time t is

It(v) =
|V |∑
u=1

I0(u)× ht(u, v) (10)

Since each row u of the heat kernel ht satisfies the conditions 0 ≤ ht(u, v) ≤ 1∀v
and

∑|V |
v=1 ht(u, v) = 1, the total intensity of the image at all scales (times)

is preserved.

3.1 Lazy Random Walk View of Graph Scale-Space

Our proposed graph scale-space also has an explanation from the viewpoint
of the continuous time lazy random walk. Consider a lazy random walk with
transition matrix T = (1 − α)I + αD−1A which migrates between different
nodes with probability α and remains static at a node with probability 1 − α.
In the continuous time limit, i.e. N →∞, let t = αN , then

lim
N→∞

TN = lim
N→∞

((1 − α)I + αD−1A)N (11)

= e−tD−1L (12)

Let pt be the vector whose element pt(i) is the probability of visiting node i
of the graph under the random walk. The probability vector evolves under the
equation ∂pt

∂t = −Lpt, which has the solution pt = e−tLp0. As a result

pt = htp0 (13)

As a result, the heat kernel is the continuous time limit of the lazy random
walk. If we normalize the image intensity vector I0 and consider it as the initial
probability distribution of the associated graph, then the intensity or probability
of each node at time t is given by (13).

3.2 Approximate Schemes to Estimate the Heat Kernel

Since in practice the number of image pixels is large, it is time consuming and
demanding on memory space to calculate the heat kernel through finding all
the eigenvalues and eigenvectors of the graph Laplacian matrix. However, we
can perform a McLaurin expansion [2] on the heat-kernel to re-express it as a
polynomial in t with the result

ht = e−tL = I − tL +
t2

2!
L2 − t3

3!
L3 + · · · (14)
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Hence, we can approximate ht using the leading terms. However, in practice
the graph Laplacian matrix L of an image is too large and this still proves
computationally restrictive. To overcome this problem, we explore the following
two simplification schemes:

Scheme 1: Since the graph Laplacian L is positive semi-definite, its eigen-
values are all positive (with the exception of one that is zero for a connected
graph). Further, since ht = Φ exp[−tΛ]ΦT , then only the largest few eigenvalues
and corresponding eigenvectors of L make a significant contribution to ht. As a
result, since the graphs we use here are only locally connected and as result L
is very sparse, then we can use the Lanczos algorithm [5] to find the leading few
eigenvalues and eigenvectors. If we select the largest d eigenvalues, then

ht ≈ Φd exp[−tΛd]ΦT
d (15)

where Φd is a n × d matrix with the first d columns of Φ and Λd is a d × d
diagonal matrix containing the first d eigenvalues.

Scheme 2: An alternative is to restrict our attention to pixels that are close to
one-another. We can then use a smaller n1×n2 window of each pixel to construct
a smaller graph. As a result we can use the heat kernel of this smaller graph to
calculate the intensity of the pixel at time t. This method has a high degree of
potential parallelism and so could be implemented on a multi-processor machine.

We have used both of the above schemes in our experiments, and both give
good performance. Moreover, unlike Perona and Malik, our method does not
need iteration to compute the brightness of the image at different scales.

3.3 Properties of Graph Scale-Space

Anisotropic diffusion is based on the heat conduction equation for a two dimen-
sional continuous function, and locates the solution using an iterative numerical
scheme for discrete images. Our scale-space construction commences with the
discrete image data and is derived from the diffusions (or lazy random walks) on
the discrete image structures. Exact solutions are found using the graph spec-
trum. In our method the total pixel weight is invariant to the diffusion time t,
while the weight or gradient in the numerical scheme for anisotropic diffusion
needs to be updated at each step.

Our graph-based scale-space representation overcomes the drawbacks of the
Gaussian scale-space outlined in Section 1 since it is anisotropic due to the
difference in edge weights. Moreover, it has the following characteristics which
are similar to the method of Perona and Malik:

1. Causality: The graph scale-space representation has no spurious details gen-
erated through the fine to coarse scale sampling. Witkin [13] and Koen-
derink [8] pointed out that any candidate multi-scale description must satisfy
this criteria.

2. Object boundaries maintain sharpness at coarse scales and the locations of
the boundaries do not shift through the scale-space.

3. Region smoothing is preferred over boundary smoothing.
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4. The total intensity of the image does not change, and the contrast of different
regions is maintained at different scales

5. The new scale-space can be efficiently calculated without iteration using
approximation schemes.

4 Experiments

In this section we present the results of applying our method to synthetic and
real world data, and provide some experimental evaluation. We have also com-
pared our method with Gaussian smoothing and Perona and Malik’s algorithm
(Anisotropic diffusion). In the following, Figures 1 and 4 used simplification
scheme 1 and the remaining results used scheme 2. In all our experiments we
set r = 1.

We first constructed a synthetic image and generated a sequence of blurred
images with different amounts of added noise. Then, both anisotropic diffusion
and the heat kernel filter were applied to the sequence. The scale spaces of a
sample image from the sequence are shown in Figure 1. To compare the two
methods, we counted the number of error pixels of each image of the sequence
at different scales or time. The image statistics are plotted in Figure 2. When
the amount of noise is small, anisotropic diffusion works a little better than the
heat kernel method. However, when the amount of added noise becomes larger,
then the heat kernel method clearly outperforms anisotropic diffusion.
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Fig. 1. Row 1: Four synthetic blurred images with noise 0, 0.1, 0.2 and 0.4. Row 2:
Smoothing the last image of row 1 using anisotropic diffusion with λ = 0.20, K = 0.1,
and 50, 100, 300, 800 iterations. Row 2: Smoothing the same image of row 2 using
graph heat kernel with σ = 0.05, t=500, 1000, 3000, 5000.
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Fig. 2. Error pixels comparison of the the anisotropic diffusion (left) and graph scale
space (left)
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Fig. 3. (a) Synthetic heavily noisy image. (b) 3D brightness of original image. (c) 3D
brightness using anisotropic diffusion after 350 iterations. (d) 3D brightness after using
Graph heat kernel, window size: 13 × 13; σ = 0.1; t = 25.

In Figure 3 we illustrate the effect of the heat kernel method on another
synthetic image. Panel (a) shows the original image, which is subject to consid-
erable noise. Panel (b) displays the grey-scale values as an elevation plot. The
second row shows the smoothed images after applying anisotropic diffusion and
graph heat kernel filter. Here both methods recovered the main image structure,
and the boundaries are well preserved. Comparing the two elevation plots it is
clear that the heat kernel filter preserves the original structure a little better.
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Fig. 4. CT hand with noise (image size: 94 × 110). Row 1: Linear Gaussian scale-space,
σ = 0, 2, 4, 8, 16. Row 2: Anisotropic scale-space, 0, 10, 20, 30, 50 iterations. Row 3:
Graph scale-space, σ = 0.1; t = 0, 0.1, 1, 5, 15. All scale parameters increase from left
to right.

In Figure 4 we show the result of applying the method to a CT scan of
a hand. The top row shows the result of Gaussian filtering. Here the different
images are for different widths of the Gaussian filter. The middle row shows
the result of anisotropic diffusion and the bottom row shows the result of heat-
kernel smoothing. Here the different images are for different values of scale or t.
In the case of the Gaussian scale-space, the main effect of increased filter width
is increased blurring. When the heat-kernel method is used, then the effect is to
smooth noise while preserving fine image and boundary detail.

Another synthetic example is shown in Figure 5. Here the test image is a
picture of a house, with 10% Gaussian noise added. The top two rows show the
smoothed image obtained using a Gaussian filter and the resulting edge map
detected using Canny’s method [1]. The middle two rows and bottom two rows
are the results of applying the anisotropic diffusion and heat-kernel filter respec-
tively. In the first column, we show the original image and its edge-map. The
remaining columns show the results obtained with increasing values of scale or
time t. From the top two rows, although the results obtained with the Gaus-
sian filter control the effects of noise, the edge-structures are badly eroded. For
comparison, the effect of anisotropic diffusion and the heat kernel filter are to
smooth away the noise present in the original image and edge-map, while preserv-
ing edge-structure. Comparing the edges detected, the heat kernel filter preserves
the edges and junctions best.
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Fig. 5. Synthetic house with 10% noise (image size: 120 × 141). Row 1: Gaussian
scale-space, σ = 0, 2, 4, 8, 16. Row 2: Edges detected using Canny detector [1] with
Gaussian kernel variance as row 1. Edges are distorted and the junctions disappear.
Row 3: Anisotropic scale-space, 0, 10, 20, 30, 40 iterations. Row 4: Edges using the
same parameters of row 3. Row 5: Graph scale-space, window size: 11 × 11; σ = 0.08; t

= 0, 2, 5, 10, 15. Row 6: Edges using the same parameters of row 5. The object shapes,
boundaries and edge junctions are all preserved. All scale parameters increase from left
to right.
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Fig. 6. York Minster with 15% noise (image size: 350 × 262). (a) original picture. (b)
and (c) the results after using graph kernel with window size: 15 × 15; σ = 0.06; t

= 2, 5. (d) edges detected using Gaussian kernel. (e) edges detected using anisotropic
diffusion. (f) edges detected using graph heat kernel.

A complex real-world example is shown in Figure 6. Subfigure (a) shows the
original image, and (b) and (c) show the results of applying the heat-kernel to the
original image. Subfigure (f) shows the result of applying edge detection to the
smoothed image in (b). For comparison subfigures (d) and (e) show the results
of applying edge detection to the output of Gaussian filtering and anisotropic
diffusion respectively. The main feature to note here is that the heat kernel best
preserves the fine detail of the image.

5 Conclusions and Future Work

In this paper we have shown how the heat kernel can be used to smooth im-
ages without loss of fine boundary detail. Our approach is a graph-spectral
one. We commence from an affinity matrix which measures the similarity of
pixel grey-scale values. From the affinity matrix we compute the Laplacian, and
the spectrum of the Laplacian matrix is used to estimate the elements of the
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heat-kernel. Experiments show that the boundaries and regions extracted from
the smoothed images preserve fine detail.

Our future plans are to extend the method to the processing of vector fields.
In particular we are interested in how the method can be used to segment struc-
tures from tensor MRI imagery.
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Abstract. In this work, the problem of estimating high density regions
from univariate or multivariate data samples is studied. To be more pre-
cise, we estimate minimum volume sets whose probability is specified in
advance. This problem arises in outlier detection and cluster analysis,
and is strongly related to One-Class Support Vector Machines (SVM).
In this paper we propose a new simpler method to solve this problem.
We show its properties and introduce a new class of kernels, relating the
proposed method to One-Class SVMs.

1 Introduction

The task of estimating high density regions from data samples arises explicitly
in a number of works involving interesting problems such as outlier detection or
cluster analysis (see for instance [5,7] and references herein). One-Class Support
Vector Machines (SVM) [10,12] are designed to solve this problem with tractable
computational complexity. We refer to [10] and references therein for a complete
description of the problem and its ramifications.

In the recent years papers showing failures in the estimations found by One-
Class SVM have appeared [4,6]. In this work, a new algorithm to estimate high
density regions from data samples is presented. The algorithm relaxes the density
estimation problem in the following sense: instead of trying to estimate the
density function at each data point, an easier to calculate data-based measure
is introduced in order to establish a density ranking among the sample points.

The concrete problem to solve is the estimation of minimum volume sets of
the form Sα(f) = {x|f(x) ≥ α}, such that P (Sα(f)) = ν, where f is the density
function and 0 < ν < 1. Throughout the paper, sufficient regularity conditions
on f are assumed.

The rest of the paper is organized as follows. Section 2 introduces the method
and its properties. In Section 3, a kernel formulation of the proposed algorithm
is shown. Section 4 shows the numerical advantages of the new method over
One-Class SVM. Section 5 concludes.
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2 The Naive One-Class Algorithm

There are data analysis problems where the knowledge of an accurate estimator
of the density function f(x) is sufficient to solve them, for instance, mode esti-
mation [2], or the present task of estimating Sα(f). However, density estimation
is far from trivial [11,10]. The next definition is introduced to relax the density
estimation problem: the task of estimating the density function at each data
point is replaced by a simpler measure that asymptotically preserves the order
induced by f .

Definition 1. Neighbourhood Measures. Consider a random variable X
with density function f(x) defined on IRd. Let Sn denote the set of random
independent identically distributed (iid) samples of size n (drawn from f). The
elements of Sn take the form sn = (x1, · · · , xn), where xi ∈ IRd. Let M : IRd ×
Sn −→ IR be a real-valued function defined for all n ∈ IN. (a) If f(x) < f(y)
implies lim

n→∞P (M(x, sn) > M(y, sn)) = 1, then M is a sparsity measure.

(b) If f(x) < f(y) implies lim
n→∞P (M(x, sn) < M(y, sn)) = 1, then M is a

concentration measure.

Example 1. M(x, sn) ∝ 1/f̂(x, sn), where f̂ can be any consistent non-
parametric density estimator, is a sparsity measure; while M(x, sn) ∝ f̂(x, sn) is
a concentration measure. A commonly used estimator is the kernel density one
f̂(x, sn) = 1

nhd

∑n
i=1 K(‖x−xi‖

h ).

Example 2. Consider the distance from a point x to its kth-nearest neighbour in
sn, x(k): M(x, sn) = dk(x, sn) = d(x, x(k)): it is a sparsity measure. Note that dk

is neither a density estimator nor is it one-to-one related to a density estimator.
Thus, the definition of ‘sparsity measure’ is not trivial. Another valid choice is
given by the average distance over all the k nearest neighbours: M(x, sn) = d̄k =
1
k

∑k
j=1 dj = 1

k

∑k
j=1 d(x, x(j)). Extensions to other centrality measures, such as

trimmed-means are straightforward.

Our goal is to obtain some decision function h(x) which solves the problem stated
in the introduction, that is, h(x) = +1 if x ∈ Sα(f) and h(x) = −1 otherwise.
We will show how to use sparsity measures to build h(x).

Consider a sample sn = {x1, . . . , xn}. Consider the function g(x)=M(xi, sn),
where M is a sparsity measure. For the sake of simplicity we assume g(xi) �=
g(xj) if i �= j (the complementary event has zero probability).

To solve the One-Class problem, the following algorithm is introduced:

Naive One-Class Algorithm
(1) Choose a constant ν ∈ [0, 1].
(2) Consider the order induced in sn by the sparsity measure g(x), that is,

g(x{1}) ≤ g(x{2}) ≤ . . . ≤ g(x{n}), where x{i} denotes the ith-sample.
(3) Consider the value ρ∗ = g(x{νn}) if νn ∈ IN, ρ∗ = g(x{[νn]+1}) otherwise,

where [x] stands for the largest integer not greater than x.
(4) Define h(x) = sign(ρ∗ − g(x))
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Note that the choice of the function g(x) is not involved in the algorithm; it has
to be determined in advance. The role of ρ∗ and ν will become clear with the next
proposition, which shows that the decision function h(x) = sign(ρ∗ − g(x)) will
be non-negative for at least a proportion equal to ν of the training sn sample.
Following [10], this result is called ν-property.

Proposition 1. ν-property. The following two statements hold for the value
ρ∗:

1. 1
n

∑n
i=1 I(g(xi) < ρ) ≤ ν ≤ 1

n

∑n
i=1 I(g(xi) ≤ ρ), where I stands for the

indicator function and xi ∈ sn.
2. With probability 1, asymptotically, the preceding inequalities become equali-

ties.

Proof. 1. Regarding the right-hand side of the inequality, 1
n

∑n
i=1 I(g(xi) ≤

ρ) = νn
n = ν if νn ∈ IN and equals [νn]+1

n > ν if νn /∈ IN. For the left-hand side a
similar argument applies. 2. Regarding the right-hand side inequality, if νn ∈ IN
the result is immediate from the preceding argument. If νn /∈ IN, [νn]+1

n → ν as
n→∞. Again, for the left-hand side a similar argument applies. �

Remark 1. If g(x) is chosen to be a concentration measure, then the decision
function has to be defined as h(x) = sign(g(x)− ρ∗).

Notice that in the naive algorithm ν represents the fraction of points inside
the support of the distribution if g(x) is a sparsity measure. If a concentration
measure is used, ν represents the fraction of outlying points. The role of ρ∗

becomes now clear: it represents the decision value which, induced by the sparsity
measure, determines if a given point belongs to the support of the distribution.
As the next theorem states an asymptotical result, we will denote every quantity
depending on the sample sn with the subscript n. Also we will suppose νn ∈ IN.
The theorem goes one step further from the ν-property, showing that, asymp-
totically, the naive One-Class algorithm finds the desired α-level sets. In order
to formulate the theorem, we need a measure to estimate the difference between
two sets. We will use the dµ-distance. Given two sets A and B

dµ(A,B) = µ(A∆B) ,

where µ is a measure on IRd, ∆ is the symmetric difference A∆B = (A ∩Bc) ∪
(B ∩Ac), and Ac denotes the complementary set of A.

Theorem 1. Consider a measure µ absolutely continuous with respect to the
Lebesgue measure. The set Rn = {x : hn(x) = sign(ρ∗n − gn(x)) ≥ 0} dµ-
converges to a region of the form Sα(f) = {x|f(x) ≥ α}, such that P (Sα(f)) = ν.
Therefore, the naive One-Class method estimates a density contour cluster Sα(f)
(which, in probability, includes the mode).

Proof. For space reasons, we omit some mechanical steps. Consider the set
Cν = {xν ∈ IRd : f(xν) = α}, where ν = P (Sα(f)). By Proposition 1, point
2, limn→∞ P (gn(x) < gn(x{νn})) = ν (fact 1). Besides, it is easy to prove that
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given C ⊂ Sf(y)(f) with µ(C) < ∞, then µ(x ∈ C : gn(x) < gn(y)) tends to
µ(C). Thus limn→∞ P (gn(x) < gn(xν)) = ν, ∀xν ∈ Cν (fact 2). From facts 1 and
2, and using standard arguments from probability theory, it follows that ∀ε > 0,
limn→∞ P (

∣∣f(x{νn})− f(xν)
∣∣ > ε) = 0, that is, limn→∞ f(x{νn}) = f(xν) in

probability.
Now consider x ∈ Sα(f))∩Rc

n. From f(x) > f(xν) and Definition 1, it holds
that limn→∞ P (gn(x) < gn(xν )) = 1. Given that limn→∞ f(x{νn}) = f(xν) in
probability, it follows that limn→∞ P (gn(x) < gn(x{νn})) = 1, that is, P (hn(x) <
0)→ 1. Therefore, µ (Sα(f)) ∩Rc

n)→ 0.
Let now x ∈ Rn ∩ Sα(f)c. From f(x) < f(xν), Definition 1 and

limn→∞ f(x{νn}) = f(xν) in probability, it holds that P (gn(x) ≥ gn(x{νn})) →
1, that is, P (hn(x) > 0) → 1. Thus µ (Rn ∩ Sα(f)c) → 0, which concludes
the proof. �

We provide an estimate of a region Sα(f) with the property P (Sα(f)) =
ν. Among regions S with the property P (S) = ν, the region Sα(f) will have
minimum volume as it has the form Sα(f) = {x|f(x) ≥ α}. Therefore we provide
an estimate that asymptotically, in probability, has minimum volume.

Finally, it is important to remark that the quality of the estimation pro-
cedure heavily depends on using a sparsity or a concentration measure (the
particular choice is not – asymptotically – relevant). If the measure used is nei-
ther a concentration nor a sparsity measure, there is no reason why the method
should work.

3 Kernel Formulation of the Naive Algorithm

In this section we will show the relation between the naive algorithm and One-
Class SVM. In order to do so we have to define a class of neighbourhood mea-
sures.

Definition2.PositiveandNegativeNeighbourhoodMeasures. MP (x, sn)
is said to be a positive sparsity (concentration) measure if MP (x, sn) is a
sparsity (concentration) measure and MP (x, sn) ≥ 0. MN(x, sn) is said to be a
negative sparsity (concentration) measure if −MN(x, sn) is a positive con-
centration (sparsity) measure.

Given that negative neighbourhood measures are in one-to-one correspondence
to positive neighbourhood measures, only positive neighbourhood measures need
to be considered. The following classes of kernels can be defined using positive
neighbourhood measures.

Definition 3. Neighbourhood Kernels. Consider the mapping φ : IRd →
IR+ defined by φ(x) = MP (x, sn), where MP (x, sn) is a positive neighbourhood
measure. The function K(x, y) = φ(x)φ(y) is called a neighbourhood kernel. If
MP (x, sn) is a positive sparsity (concentration) measure, K(x, y) is a sparsity
(concentration) kernel.
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Note that the set {φ(xi)} is trivially separable from the origin in the sense of
[10], since each φ(xi) ∈ IR+. Separability is guaranteed by Definition 2.

The strategy of One-Class support vector methods is to map the data points
into a feature space determined by a kernel function, and to separate them
from the origin with maximum margin (see [10] for details). In order to build a
separating hyperplane between the origin and the points {φ(xi)}, the quadratic
One-Class SVM method solves the following problem:

min
w,ρ,ξ

1
2
‖w‖2 − νnρ +

n∑
i=1

ξi

s.t. 〈w, φ(xi)〉 ≥ ρ− ξi ,
ξi ≥ 0, i = 1, . . . , n ,

(1)

where φ is the mapping defining the kernel function, ξi are slack variables, ν ∈
[0, 1] is an a priori fixed constant, and ρ is a decision variable which determines
if a given point belongs to the estimated high density region.

The next theorem illustrates the relation between our naive algorithm and
One-Class SVMs when neighbourhood kernels are used.

Theorem 2. Define the mapping φ(x) = MP (x, sn). The decision function
hV (x) = sign(ρ∗V − w∗φ(x)) obtained from the solution ρ∗V and w∗ to the One-
Class SVM problem (1) using the sparsity kernel K(x, y) = φ(x)φ(y) coincides
with the decision function h(x) obtained by the naive algorithm.

Proof. Consider the dual problem of (1):

max
α
−1

2

n∑
i=1

n∑
j=1

αiαjK(xi, xj)

s.t.
n∑

i=1

αi = νn ,

0 ≤ αi ≤ 1 , i = 1, . . . , n ,

(2)

where xi ∈ sn. For the sake of simplicity we assume φ(xi) �= φ(xj) if i �= j (the
complementary event has zero probability) and that νn ∈ IN (the proof for νn /∈
IN can be derived with similar arguments to those in the proof of Proposition
1). Consider the order induced in sn by the mapping φ(x) and denote x{i}
the ith-sample and α{i} the corresponding dual variable. Therefore φ(x{1}) ≤
φ(x{2}) ≤ . . . ≤ φ(x{n}). Since K(xi, xj) = φ(xi)φ(xj) and, by Definition 2,
φ(xi) ∈ IR+, the maximum of the objective function of problem (2) will be
attained for α{i} = 1, i ∈ {1, . . . , νn} and αj = 0 otherwise. At the solution, the
objective function takes the value − 1

2

∑νn
i=1

∑νn
j=1 K(x{i}, x{j}). By the weak

theorem of duality, the value of the objective function of problem (1) has to
be equal or greater than the value of the objective function of problem (2)
at the solution. Consider the solution w∗ =

∑νn
i=1 φ(x{i}), ρ∗V = w∗φ(x{νn}),

ξ{i} = w∗ [φ(x{νn})− φ(x{i})
]

for i ∈ {1, . . . , [νn]}. For the remaining indexes
ξj = 0.
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At this point the solution to problem (1) coincides with the solution to prob-
lem (2), that is, the duality gap is zero. The decision function takes the form
hV (x) = sign(w∗ [φ(x{νn})− φ(x)

]
) which coincides with the decision function

of the naive algorithm (the scalar w∗ > 0 does not affect the sign). So the
theorem holds. �

It remains open to show if the decision function obtained from One-Class
SVM algorithms within the framework in [10,8] can be stated in terms of positive
sparsity or concentration measures. The next remark provides the answer.

Remark 2. The exponential kernel Kc(x, y) = e−‖x−y‖2/c is neither a spar-
sity kernel nor a concentration kernel. For instance, consider a univariate bi-
modal density f with finite modes m1 and m2 such that f(m1) = f(m2).
Consider any positive sparsity measure MP (x, sn) and the induced mapping
φ(x) = MP (x, sn). As n → ∞, the sparsity kernel K(x, y) = φ(x)φ(y) would
attain its minimum at (m1,m2) (or at two points in the sample sn near to the
modes). On the other hand, as the exponential kernel Kc(x, y) depends exclu-
sively on the distance between x and y, any pair of points (a, b) whose distance is
larger than ‖m1−m2‖ will provide a value Kc(a, b) < Kc(m1,m2), which asymp-
totically can not happen for kernels induced by positive sparsity measures. In
this case, the neighbourhood kernel has four minima while the exponential ker-
nel has the whole diagonal as minima. The reasoning for concentration kernels is
analogous. A similar argument applies for polinomial kernels with even degrees
(odd degrees induce mapped data sets that are non separable from the origin,
which discards them).

Note that, while the naive algorithm works with every neighbourhood measure,
the separability condition of the mapped data is necessary when One-Class SVM
are being used, restricting the use of neighbourhood measures to positive or
negative ones. This restriction and the fact that our method provides a simpler
approach make the use of the naive algorithm advisable when neighbourhood
measures are being used.

4 Experiments

In this section we compare the performance of One-Class SVM and the naive
algorithm for a variety of artificial and real data sets. Systematic comparisons
of the two methods as data dimension increases are carried out. First of all we
describe the implementation details concerning both algorithms.

With regards to One-Class SVM we adopt the proposal in [10], that is, the
exponential kernel Kc(x, y) = e−‖x−y‖2/c is used. This is the only kernel used
for experimentation in [10], and it is also the only (non neighbourhood) kernel
for which a clear relation to density estimation has been demonstrated (see [6]).
To perform the experiments, a range of values for c has been chosen, following
the widely used rule c = hd (see [9,10]), where d is the data dimension and
h ∈ {0.1, 0.2, 0.5, 0.8, 1.0}.
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Concerning the naive algorithm, three different sparsity measures have been
considered:

– M1(x, sn) = dk = d(x, x(k)), the distance from a point x to its kth-nearest
neighbour x(k) in the sample sn. The only parameter in M1 is k, which takes
a finite number of values (in the set {1, · · · , n}). We have chosen k to cover a
representative range of values, namely, k will equal the 10%, 20%, 30%, 40%
and 50% sample proportions. Therefore we choose k as the closest integer to
hn, where n is the sample size and h ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

– M2(x, sn) =
1∑n

i=1 exp
(
− ‖x−xi‖2

2σ

) , where σ ∈ IR+. The only parameter

in M2 is σ. We want σ to be related to the sample variability and, at the
same time, to scale well with respect to the data sample distances. We choose
σ = hs, where s = max d2

ij/ε, h ∈ {0.1, 0.2, 0.5, 0.8, 1.0}, d2
ij = ‖xi−xj‖2 and

ε is a small value which preserves scalability in M2. For all the experiments
we have chosen ε = 10−8.

– M3(x, sn) = log

(
1∑n

i=1
1

‖x−xi‖p

)
, where p ∈ IR+. Parameter p in M3 is re-

lated to data dimension [3]. We choose p = hd, where d is the data dimension
and h ∈ {0.01, 0.02, 0.05, 0.08, 0.1}. In this case the values of h are smaller
for smoothing reasons (see [3] for details).

Measure M1 has been described in Example 2 in Section 2. Measures M2 and
M3 are of the type described in Examples 1 and 4 in the same section. M2 uses
as density estimator the Parzen window [11], while M3 is based on the Hilbert
kernel density estimator [3] and could take negative values. Note that Theorem
1 guarantees that asymptotically every sparsity measure (and in particular the
three chosen here) will lead to sets containing the true mode.

4.1 Artificial Data Sets

An Asymmetric Distribution. In the first experiment we have generated
2000 points from a gamma Γ (α, β) distribution, with α = 1.5 and β = 3. Figure 1
shows the histogram, the gamma density curve, the true mode (α − 1)/β as a
bold vertical line, the naive algorithm estimations with sparsity measure M1
(five upper lines) and the One-Class SVM (five lower lines) estimations of the
50% highest density region. The parameters have been chosen as described at the
beginning of Section 4, and lines are drawn for each method in increasing order in
the h parameter, starting from the bottom. Being our goal to detect the shortest
region of the form Sα(f) = {x : f(x) > α} (that must contain the mode), it is
apparent that the naive regions improve upon the One-Class SVM regions. All
the naive regions regions contain the true mode and are connected. All the One-
Class SVM regions are wider and show a strong bias towards less dense zones.
Furthermore, only in two cases the true mode is included in the estimated SVM
regions, but in these cases the intervals obtained are not simply connected. The
naive algorithm using measures M2 and M3 provide similar intervals to those
obtained using measure M1, and are not shown for space reasons.
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Fig. 1. Gamma sample with 2000 points. The figure shows the histogram, the density
curve, a vertical line at the true mode, the naive estimations with sparsity measure M1

(five upper lines) and One-Class SVM (five lower lines) estimations of the 50% highest
density region.

Fig. 2. Mixture sample with 3000 points. The figure shows the histogram, the estimated
density curve, the naive estimations with sparsity measure M1 (five upper lines) and
One-Class SVM (five lower lines) estimations of the 50% highest density region.

A Mixture of Distributions. This second experiment considers a mixture of a
normal N(0, 1) and a uniform U(6, 9) distribution. Figure 2 shows the histogram,
the estimated density curve, the naive estimations with sparsity measure M1 (five
upper lines) and the One-Class SVM (five lower lines) estimations of the 50%
highest density region. Again, the parameters have been chosen as described at
the beginning of Section 4, and lines are drawn for each method in increasing
order in the h parameter, starting from the bottom. Once more, the naive method
using measures M2 and M3 provide similar intervals to those obtained using
measure M1, and are not shown for space reasons. Regarding the quality of the
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results, note that the 50% densest region corresponds to points from the normal
distribution. All the naive estimations (upper lines) match the correct region,
while the One-Class SVM (lower lines) spreads part of the points in the uniform
zone. However, all points in the uniform zone have lower density than those
found by the naive procedure.

Increasing the Data Dimension. In this experiment we want to evaluate
whether the performance of the Naive method and One-Class SVM algorithms
degrades as the data dimension increases. To this end, we have generated 20
data sets with increasing dimension from 2 to 200. Each data set contains 2000
points from a multivariate normal distribution N(0, Id), where Id is the identity
matrix in IRd. Detailed results are not shown for space reasons. We will only
show the conclusions. Since the data distribution is known, we can retrieve the
true outliers, that is, the true points outside the support corresponding to any
percentage specified in advance. For each dimension and each method, we have
determined, from the points retrieved as outliers, the proportion of true ones.

As the data dimension increases, the performance of One-Class SVM de-
grades: it tends to retrieve as outliers an increasing number of points. The best
results for One-Class SVM are obtained for the largest magnitudes of the param-
eter c (only when convergence for the optimization problem within was achieved).

Regarding the naive method, robustness with regard to the parameter choice
is observed. Dimension barely affects the performance of our method, and results
are consistently better than those obtained with One-Class SVM. For instance,
for a percentage of outliers equal to 1%, the best result for One-Class SVM is
15%, against 100% using our method (for all the sparsity measures considered).
For a percentage of outliers equal to 5%, the best result for One-Class SVM is
68%, against 99% using the naive method.

4.2 A Practical Example: Outlier Detection in Handwritten Digit
Recognition

The database used next contains nearly 4000 instances of handwritten digits
from Alpaydin and Kaynak [1]. Each digit is represented by a vector in IR64

constructed from a 32 × 32 bitmap image. The calligraphy of the digits in the
database seems to be easily perceivable, which is supported by the high suc-
cess rate of various classifiers. In particular, for each digit, nearest neighbour
classifiers accuracy is always over 97% [1].

In the present case there is a nice interpretation for points outside the sets
Sα(f) (the support of the data set, see Section 1). The outlying points should
correspond to ‘badly’-written characters. In order to check out this behaviour, 10
apparent outliers (shown in Figure 3) have been added to the database. We will
consider the whole database as a sample from a multivariate distribution, and we
will verify if the proposed algorithm is able to detect this outlying instances. Note
that there is an added difficulty in this case, namely, the underlying distribution
is multimodal in a high dimensional environment.

Figure 4 shows the outliers obtained by the naive algorithm when the support
for the 99.5% percentile is calculated. Using this support percentage exactly 20
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Fig. 3. Ten (apparent) outliers added to the original Alpaydin & Kaynak handwritten
digits database

Fig. 4. The outlying digits found by the naive algorithm, ordered left–right and up–
down using the sparsity measure M(x, sn) = d(x, x(k))

outliers are to be retrieved. We expect to detect the 10 outliers we have included,
and we are curious about the aspect of the 10 other most outlying digits in the
database. In Figure 4, the digits retrieved as outliers by the naive method using
the sparsity measure M1 are shown in decreasing order (left-right and up-down).
Here k = 1, using k = n4/(d+4), where d is the space dimension. This value is
known to be proportional to the (asymptotically) optimal value [11] for density
estimation tasks. Nine of the ten added outliers are detected as the most outlying
points. The remaining eleven outliers include the other added instance (similar
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to a ‘3’), and ten more figures whose calligraphy seems to be different from
representative digits within each class. Similar results are obtained for sparsity
measures M2 and M3.

Using a One-Class SVM with exponential kernel (trying a wide range of
values for the c parameter, including those proposed in [9,10]) none of the ten
added outliers was detected.

5 Conclusions

In this paper a new method to estimate minimum volume sets of the form
Sα(f) = {x|f(x) ≥ α}, has been proposed. Our proposal introduces the use
of neighbourhood measures. These measures asymptotically preserve the order
induced by the density function f . In this way we avoid the complexity of solving
a pure density estimation problem. Regarding computational results, the naive
method performs consistently better than One-Class SVM in all the tested prob-
lems (the ones shown here and many others omitted for space reasons). The
advantage that the naive method has over the One-Class SVM is due to Theo-
rem 1 which guarantees that it asymptotically finds the desired α-level sets. The
suboptimal performance of One-Class SVM arises from the fact that its decision
function is not based on sparsity or concentration measures and that there are
no results of the nature of Theorem 1 for One-Class SVM. In particular, we
have shown that the neither the exponential kernel nor polynomial kernels come
from neighbourhood measures (and therefore Theorem 1 does not hold for these
kernels).
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Abstract. The function of the Cerebral Blood Flow Autoregulation (CBFA) 
system is to maintain a relatively constant flow of blood to the brain, in spite of 
changes in arterial blood pressure. A model that characterizes this system is of 
great use in understanding cerebral hemodynamics and would provide a pattern 
for evaluating different cerebrovascular diseases and complications. This work 
posits a non-linear model of the CBFA system through the evaluation of various 
types of neural networks that have been used in the field of systems 
identification.  Four different architectures, combined with four learning 
methods were evaluated. The results were compared with the linear model that 
has often been used as a standard reference. The results show that the best 
results are obtained with the FeedForward Time Delay neural network, using 
the Levenberg-Marquardt learning algorithm, with an improvement of 24% 
over the linear model  (p<0.05).  

1   Introduction 

The determination of a model for the Cerebral Blood Flow Autoregulation (CBFA) 
system, is an important physiological modeling problem, not only because of the 
importance of maintaining Cerebral Blood Flow (CBF) within narrow limits, but also 
because this flow self regulation system is present in a number of other organs [1].  

The CBFA system has been the object of intense study recently, due to the 
development of transcranial Doppler as a tool for measuring CBF Velocity (CBFV), 
which can be assumed to be the equivalent to CBF [1,2]. A key element in the 
modeling of CBFA is the determination of the dynamic relationship that exists 
between Arterial Blood Pressure (ABP) and CBFV. The cerebral autoregulation 
literature includes a wide variety of studies that seek to characterize this relationship. 
In general these studies try to induce abrupt changes in patient ABP and then measure 
the effect of these changes on CBFV [1,3-4]. A non-invasive alternative, of great 
clinical importance in the modeling of CBFA is to analyze the relationship between 
ABP and CBFV by observing natural oscillations or spontaneous fluctuations in ABP 
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and its effect on CBFV. The validity of this type of analysis was demonstrated 
previosuly [1,4-6]. This technique can be applied both to healthy and sick patients 
including premature neonates. Thus, the greatest possibilities of generating clinical 
tools lie in the use of models based on spontaneous fluctuations. 

In order to characterize the ABP-CBFV relationship by measuring spontaneous 
fluctuations of ABP, a series of signal processing techniques have been used. Among 
these are transfer functions models, frequency analysis and impulse and step 
responses [4, 6-9]. Studies in the time domain have also been carried out using 
moving average filters such as the Wiener-Laguerre [4,6] and differential equations as 
proposed by Aaslid-Tiecks [6-10]. These models assume a linear relation between 
ABP and CBFV, which severely limits the results obtained, due to the existence of a 
number of non-linearities in the system [6] which are not considered in linear models. 
Up to now, there have been few attempts to model the system with non-linear 
methods. To our knowledge, there are only three studies that used neural networks 
[11-13]. Mitsis et al [11] used spontaneous fluctuations, but proposed a model based 
on a particular type of neural network. They have studied only five subjects and did 
not compare their findings with other models, such as the commonly used Aaslid-
Tiecks linear model [6-10]. Thus, there is a dearth in the development of non-linear 
models of CBFA, especially with signals that facilitate the construction of diagnostic 
methods. 

The present work proposes the modeling of the ABP-CBFV relationship through 
the use of non-linear system identification techniques, which hitherto have not been 
applied to autoregulation modeling. The different network architectures analyzed in 
the present work were: FeedForward Time Delay, Neural Net Output Error, Elman 
Net and Time Lagged FeedForward. These architectures were combined with the 
following learning methods: Backpropagation with momentum, Delta Bar Delta, 
Levenberg-Marquardt and One Step Secant [14-17]. Moreover, the results obtained 
with neural networks were compared with results obtained with the Aaslid-Tiecks 
model [1,3,6,10], the most often used linear model in the field of cerebral 
hemodynamics for evaluating autoregulation. 

2 Methods  

2.1 Data Collection and Pre-processing 

The study included 16 volunteer subjects with no history of cardio-vascular or neurologic 
disease. The average ± standard deviation (SD) age was 30 ± 7 years, with a range of 23 
to 47 years. Measurements were carried out at Leicester Royal Infirmary in a room with a 
temperature of approximately 23º C. The study was approved by the Leicestershire ethics 
committee and written consent was obtained from each subject. 

CBFV was monitored in the medial cerebral artery using a Scimed QVL-120 
Transcranial Doppler with a 2 MHz transducer.  APB was measured with a non-invasive 
Finapres 2300 Ohmeda monitor. 

Pressure and CBFV data were collected and stored on digital audio tape with a Sony 
PC108M 8-track recorder for posterior processing. 
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The data on the tape were transferred to a microcomputer in real time. FFT was used 
to extract the maximum velocity with a time window of 5 ms. The ABP signal was 
sampled at 200 samples/sec. Both signals were filtered with a Butterworth 8th order low 
pass filter with a cut off frequency of 20 Hz. The beginning of each cardiac cycle was 
detected from the end-diastolic value of the ABP wave, and mean values for ABP and 
CBFV were calculated for each cardiac cycle. 

The data obtained from the samples were conditioned for further analysis with the 
models. The measures of ABP and CBFV for each patient consisted of a file with 
approximately 1500 samples taken every 0.2 seconds. Given that the Nyquist 
frequency for these signals is approximately 1 sec. it is possible to determine the 
mean of three samples, thus obtaining a sampling period of 0.6 seconds. In this way, 
the number of samples was reduced to 500 per patient.  

2.2 Neural Network Models 

Neural networks require short term memories in order to represent dynamic systems. 
Networks that include such memories are known as recurrent neural networks. These 
networks can be divided into two large groups, static neuronal networks with external 
recurrence, and networks with internal memory. 

Networks with external recurrence are basically multilayer perceptrons which 
retard some of their inputs, and re-input their output with some delay. In this par- 
ticular project we used FeedForward Time Delay and Neural Net Output Error net- 
works which are representative of this type of model (also called NARX networks 
[18]). 

Networks with internal memory attempt to extend the duration of short term 
memory provided by networks with external recurrence. In order to achieve this ex- 
tension, so-called context memories are introduced. In this work two types of net- 
works with internal memory were used: Elman Net and Time Lagged FeedForward.  

The general structure for FeedForward Time Delay (FFTD) networks used for the 
CBFA model, is presented in Figure. 1. 

An important characteristic of these networks, is the manner in which training is 
carried out. In contrast to the training of a static network, these networks follow a 
strict sequence for the order in which signal samples are presented. 

The structure of a Neural Net Output Error (NNOE) [19-20] is essentially a FFTD 
network to which an error term is added that is represented by a white noise signal, 
the purpose of which is to represent a non-explained portion of the variance of the 
output variable, (in this case the CBFV). The inclusion of a signal that complements 
the chosen variables for this model allows a better fit between said model and the data 
being considered. 

The Elman Net (Elman) [14-17] has a classic recurrent neural network topology, 
and has all the elements that are typical of a multilayer perceptron, which turn it into a 
universal function approximator. Moreover, it has context units which represent a 
recurrent link with the hidden layer. This property allows the network to address an 
important limitation of static neural networks with external recurrences which is the 
definition of a fixed time window that does not allow the gathering of information 
about samples that occurred at time prior to D=max{N,M}. 
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Fig. 1. Architecture of the FeedForward Time Delay (FFTD) neural network 

Context memories can not only store information from the last D samples, but can 
also incorporate information from all the samples that the network has seen This is 
due to the fact that their output is generated as a function of the weighting of all the 
samples that have been seen during the network’s training. The basic structure for 
context memories is shown in Figure 2. 

 
 
 
 
 
 
 

 

Fig. 2. Context memory for the Elman network 

The principal shortcoming of these memories is that they do not deliver the exact 
value of the last D samples, these values are only approximated. In exchange, 
however, they are able to store approximate information about samples that have been 
seen outside the window of D samples. The memory parameter µ must be adjusted, 
making a compromise between the detail with which the memory recalls certain 
samples, and the number of samples in the past that it is able to recall. 

An important property of the Elman network is that, because it has a fixed 
recurrent link, it can be easily trained using a variation of the Backpropagation 
algorithm [14-15]. This model does not require that the delay number be explicitly 
indicated either for the input or for the output; determining the number of neurons in 
the hidden layer is sufficient. 
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Time Lagged FeedForward (TLFF) networks use a topology that is similar to that 
of FFTD, but they include context units known as Gamma and Laguerre memories 
[14], considered to be more powerful than those used in Elman networks. 

Figure 3a and 3b show Gamma and Laguerre memories. These memories are 
essentially a cascade of low-pass filters in the case of the Gamma memory, and band 
pass filters for the Laguerre memory (except for the first), all of which have a 
common parameter µ. When only one memory is used, this is the same as used in the 
Elman network. When µ is 1, the memory becomes a line of simple delays such as 
used in FFTD networks. Both memories have the same representational capacity. The 
difference lies in the response to impulse of the Laguerre memory which becomes 
more oscillatory than the Gamma memory. Nonetheless, the Laguerre memory has the 
advantage that it stabilizes in less time than the Gamma memory. 

The different learning methods or algorithms evaluated, correspond to variations 
and improvements on the backpropagation algorithm. A momentum term is added to 
this classic algorithm to improve convergence. The second improvement consists of 
adopting variable linear learning rates for individual weights. In this case the Delta 
Bar Delta algorithm linearly increases the rate of learning when the sign of the slope 
does not vary, and reduces the rate exponentially when it does. 
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Fig. 3. a) Gamma Memory, b) Laguerre Memory, for the TLFF network 

The other two algorithms correspond to quasi-Newton methods that avoid having 
to calculate the Hessian matrix. The Levenberg-Marquardt algorithm uses a 
combination of Jacobian matrices, which can be calculated with the Standard 
Backpropagation algorithm. The One Step Secant method uses an approximation of 
the combined Hessian matrix by calculating the direction of search of the slope which 
uses the directions of the previous slopes. 

2.3   Selection of Parameters and Statistical Analysis 

The different topologies were evaluated using a hidden layer [21], in which the 
number of neurons used varied from 2 to 20. The number of input and output signal 
delays varied from zero to 20 delays for each architecture, with the exception of the 
Elman network. Furthermore, to estimate the order of the system, the method 
proposed by He and Asada [20] was used, and an empirical verification was carried 
out to coincide with the combination that yields the best performance. The methods 
evaluated for stopping training were Early Stopping and Regularization [14-15]. 
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The signals for each patient were divided into two groups of 2.5 minutes each. 
Thus, a crossed validation strategy was developed [14, 16, 22] in which a model was 
generated for the patient with the first part of the signal, evaluated by the second part, 
and vice-versa. In total, 32 models were generated for each topology used. 

In order to measure the performance of the models, the correlation coefficient (r) 
was used as well as the normalized mean-square error (NMSE). The latter is defined 
as the sum of the squares of the error between the model’s output ( v̂ ) and the real 
output value (v) divided by the square of the real value of the output [11,13].  

In order to compare different model results in terms of error and correlation, 
Wilcoxon’s non-parametric sign test was used, and two results were considered 
significantly different when p<0.05. 

Further to comparing the results obtained with the different alternatives of non-
linear networks, the data were evaluated with Aaslid-Tiecks [10] linear model, which 
estimated CBFV using a second degree linear differential equation made up of two 
state variables. The relevance of this lies in the consideration of physiological 
elements in the estimation of autoregulation of the subjects. Additionally, this model 
provides an index of dynamic autoregulation which allows the individual 
performance of CBFA to be assessed on a scale of 1 to 10. 

3   Results 

The different models were tested on 16 subjects, and the architecture that generated the 
best average result for all subjects was selected. For each architecture, (except the Elman 
network, which only determines the number of neurons in the hidden layer), the 
fundamental parameters that were adjusted were: the number of delays applied to the 
ABP (PD) signal, the number of delays applied to the CBFV (VD) signal, and the 
 

Table 1. Mean results for the different models, best architecture, best learning method, NMSE, 
and correlation coefficient (r) for training and testing 

Model Architecture Learning Training Testing 
 PD-VD-HL Method NMSE ± SD r ± SD NMSE ± SD r ± SD 

Linear 2-2 - 62.3% ± 30.2 % 0.55 ± 0.15 66.5% ± 33.1 % 0.51 ± 0.20 

FFTD 8-2-6 LM 51.5% ± 30.5 % 0.65 ± 0.14 57.3% ± 25.3 % 0.63 ± 0.13 

NNOE 6-2-10 LM 36.8% ± 12.9 % 0.73 ± 0.09 78.8% ± 64.4 % 0.58 ± 0.09 

Elman 20    Elman 51.5% ± 16.5 % 0.60 ± 0.13 63.2% ± 23.0 % 0.52 ± 0.16 

TLFF 8-6-12   DBD 48.1% ± 8.4 % 0.56 ± 0.18 48.3% ± 8.9 % 0.53 ± 0.20 

number of neurons in the hidden layer (HL). Table 1 shows the best average results for 
each model, including the Aaslid-Tiecks linear model [6-10]. Upon analyzing the results 
presented in Table 1, it is evident that the best model depends on the evaluation 
parameter being considered. We believe that due to the large variability present in the 
spontaneous fluctuation signals, the best parameter for evaluation is the correlation 
coefficient obtained with the test set, and that NMSE should be used only as a means of 
comparison with other works.  
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Figure 4 shows a typical CBFV prediction for a patient using the FFTD model (with 
the LM algorithm), who shows the highest mean correlation value in testing.  

 

Fig. 4. Prediction for a CBFV segment with the FFTD model, and the LM learning algorithm, 
real signal v (above) and prediction v̂ (below) 

                       

Fig. 5. Mean response of CBFV to the ABP step for 16 subjects. ABP step (solid line), mean 
CBFV response (asterisks),  ± CBFV standard deviation (dotted line). 

An important characteristic for evaluating a CBFA model is determining whether 
the model is able to capture the physiological dynamics of the CBFA system, or if the 
model has only managed a numerical fit for the data. One way of determining 
whether this is the case, or not, is to input an ABP step signal that simulates a thigh 
cuff technique, to an already trained model, and examine the CBFV response signal. 
Figure 5 shows the ABP step signal and the mean CBFV response for the various 
models for 16 subjects. 
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4   Discussion and Conclusions 

Upon examining the correlations coefficients for the test set in Table 1, it is evident 
that the two models that noticeably surpass the correlation achieved by the linear 
model are the FFTD model (0.12 higher) and the NNOE model (0.07 higher). 

Sign test results for the FFTD network with LM were significantly superior to the 
linear model. The next model that shows large differences with the linear model is the 
NNOE model, but its hypothesis test showed that the difference was not significant 
(p=0.010). The better performance of the non-linear models can also be seen when 
comparing them against the two linear models used by Panerai [6,8-9]. This shows 
that CBFA is a non-linear phenomenon. 

In order to compare these results with non-linear models, we can refer to the work 
done by Mitsis et al [11], which is the only work that uses the same type of signal. 
Their study achieved an NMSE of 27.6% ± 9.5%, for its non-linear solution, which is 
inferior to our results. However, there are two important differences to consider which 
can narrow the difference between these results. Mitsis et al. analysed only 5 subjects, 
and they calculated the NMSE over the entire signal, whereas our errors correspond 
exclusively to the test set. 

The mean response of CBFV to the models shown in Figure 5 represent an 
adequate physiological response to the ABP step signal, indicating that the non-linear 
model not only achieves a numerical fit, but also represents the normal physiological 
function of the CBFA system in healthy subjects. 

The high correlation values of the NNOE model over the training set should be 
highlighted. The principal difference between this model and the others, is that it 
considers a white noise signal for modeling, which represents those elements that can 
affect CBFV and which cannot be completely represented by the ABP signal. Future 
work should consider the possibility of including other variables such as the partial 
pressure of carbon dioxide (pCO2) and critical closing pressure [23]. 

The importance of the present work resides in that it proves, generally speaking, the 
superiority of neural network models in the modeling of CBFA. However, it leaves 
unaddressed a great deal of challenges, such as the evaluation with other signal types 
(thigh cuff technique and valsalva maneuver), the generation of multivariate models, and 
the development of classification systems to allow clinical assessment of CBFA in 
patients. 
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Abstract. In this work we tackle the task of detecting biological motifs,
i.e. subsequences with an associated function. This task is important in
bioinformatics because it is related to the prediction of the behaviour
of the whole protein. Artificial neural networks are used to, somewhat,
translate the sequence of amino acids of the protein into a code that
shows the subsequences where the presence of the studied motif is ex-
pected. The experimentation performed prove the good performance of
our approach.

1 Introduction

The quantity of biological data is increasing each day. Processing of this data
implies sometimes to detect certain subsequences (domains or motifs) with some
functional features.

Coiled coil motif is involved in protein interaction. It is known the role of
this motif in some biological processes such as protein transport and membrane
fusions and the infection of cells by parasites [12][2].

Briefly, the coiled coil is an ubiquitous protein folding and assembly motif
made of α-helices wrapping around each other forming a super-coil. Coiled coil
motifs are usually made of seven-residue repeats (abcdefg)n, called heptads, in
which hydrophobic core occurs mostly at positions a and d. The interaction
between two α-helices in a coiled coil involves these hydrophobic residues. Its
simplicity and regularity results in a highly versatile protein interaction mech-
anism (see Figure 1). Furthermore, this is the most extensively studied protein
motif.

Several programs for predicting coiled coil domains have been described. The
most relevant to large-scale annotations are coils [7] (probably the most widely
used), paircoil [1] and multicoil [13]. All these programs are based on the prob-
ability of appearance of every amino acid in each position of the characteristic
heptad. This information is extracted from known coiled coil motifs and stored
in a matrix. This approach is known as a PSSM approach (Position Specific Scor-
ing Matrix). Multicoil is the most specialized one, and aims to detect double or
triple coiled coil domains.
� Work supported by the Spanish CICYT under contract TIC2003-09319-C03-02.
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Fig. 1. We show a schematic representation of the coiled coil structure. Note that two
α-helix are involved. Hydrophobic residues at the a and d positions are spatially close
one each other because the helix structure. Their interaction result in a simple protein
to protein fusion mechanism.

Lupas et al. [7] take into account that even very short proteins have stable
coiled coils containing four or five heptads. The general scheme performs the
analysis of the protein sequence using a sliding window of 21-35 amino acids. In
that way, a score for each amino acid in the sequence of the protein is obtained
using the probabilities stored in the PSSM. Berger’s approach is the same but
it considers correlation between amino acids where Lupas’ consider probabilities
of appearance. Berger et al. claim that the approach is useful to discard false
positives detected by the Lupas’ approach.

Hidden Markov Models and grammatical inference approaches has also been
used in order to detect the presence of this motif [3,6,5]. Nevertheless, the prob-
lem of locating general coiled coil motifs is far of being solved. Several authors
have noted several important coiled-proteins that are not detected when the
previous approaches are used (among others, fusion-membrane proteins of the
human and simian immunodeficiency virus or Ebola virus [10]). Thus, several
other works propose solutions for more specific instances of the problem [11][10].

In our work, we use artificial neural networks to detect the subsequences
which probably correspond to coiled coil. The experimentation carried out show
that the performance of our approach is suitable for the task. This work is
structured as follows: on section 2 we explain our neural net based approach and
the process to select the parameters and topology of the net. Section 3 presents
the experimentation that proves the validity of our approach. The conclusions
of the work and some lines of future work end this paper.

2 Neural-Based Pattern Recognition

In our work we use Multilayer Perceptrons (MLPs). These neural nets are widely
applied in pattern recognition tasks. For this purpose, the number of cells in the
output layer is determined by the number of classes (C) involved in the task. In
the same way, the input layer must hold the input patterns, and therefore the size
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of this layer depends on the data representation. Classification is based on the
creation of boundaries between classes. These boundaries can be approximated
by hyperplanes. Each unit in the hidden layer(s) of MLPs forms a hyperplane in
the pattern space. If a sigmoid activation function [9] is used, MLPs can form
smooth decision boundaries which are suitable to perform classification tasks.
The activation level of an output unit can be interpreted as an approximation of
the a posteriori probability that the input pattern belongs to the corresponding
class. Therefore, an input pattern can be classified in the class i� with maximum
a posteriori probability:

i� = argmax
i∈C

Pr(i|x) ≈ argmax
i∈C

gi(x, ω) ,

where gi(x, ω) is the i-th output of the MLP given the input pattern, x, and the
set of parameters of the MLP, ω.

2.1 Input Data

In order to test our approach we used the SwissProt Database (release 40, April
2003). Each entry in the database contains the protein sequence and annotations
for its known motifs (domains). Some of these motifs are annotated as potential,
which means that have not yet been confirmed. We extracted from the database
those entries corresponding non-potential coiled coil proteins, resulting in a set
of 350 sequences (containing 720 coiled coil motifs).

Proteins are composed by a sequence of amino acids. When the amino acids
are codified with one symbol, then protein sequences can be considered strings
over an alphabet of 23 symbols: 20 amino acids, the glutamic and aspartic acids,
plus a wildcard symbol. The wildcard symbol appear in the sequences whenever
the true amino acid is not yet confirmed.

In order to standardize the input (the length of the proteins is not constant),
the database was used to extract the set of segments of a given length (k). This
parameter will closely determine the size of the input layer of the MLP. For each
of these segments three output classes (three neurons in the output layer) were
established in the following way:

– Class −1 whenever the segment does not overlap with a coiled coil motif
– Class 1 whenever the segment overlap but is not wholly contained in a coiled

coil motif
– Class 2 whenever the segment is wholly contained in a coiled coil motif.

Three different numerical representations of the input data were tested. The
first one considered the ordinal of each symbol, resulting in an input layer of
k nodes. The second codification considered the symbols as a vector of 23 bits,
obtaining an input layer of 23k nodes. The third codification is divided into two
steps: first we used the Dayhoff codification (see Figure 1) to reduce the size of
the input alphabet. Then we used the vector-based representation of the second
representation. This option reduced the size of the input layer to 8k.
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Table 1. Dayhoff Amino acid codifications. This codification uses physic-chemical
properties of the amino acids to group them into seven classes. Therefore, it is biolog-
ically justified.

amino acid Dayhoff
C a

A, P, G, S, T b
N, Q, D, E c
R, H, K, d

L, V, M, I e
F, W, Y f

B, Z g
X x

2.2 Neural Network Topologies

The training of the MLPs was carried out with the software package SNNS
Stuttgart Neural Network Simulator [14]. In order to properly use MLPs as clas-
sifiers we need to take some considerations. The more suitable input codification,
the size of the input layer and the learning algorithm were studied in this order.
To select the more suitable parameters, we randomly extracted 287 out of 350
sequences in the database to train different MLPs. The remaining 63 sequences
were used to validate the resulting neural nets. The best results were obtained
using the 23k codification, length of the segments k = 28 and backpropaga-
tion learning algorithm with learning rate of 0.1. Increasing number of nodes in
the hidden layer of the MLPs (20, 40, 60, 80, 100, 200, 300 and 500 nodes), as
well as MLPs with two hidden layers of 40 and 20 nodes respectively were also
considered. Best results were obtained with one single hidden layer of 500 nodes.

3 Experimentation

For each test segment, it was expected that the MLP outputs 2 whenever the
segment belonged with high probability to a coiled coil motif, −1 if the segment
did not belong to a coiled coil motif and 1 otherwise. When a protein was ana-
lyzed, the different segments were processed sequentially. The output shows the
appearance probability of a coiled coil motif (see Figure 2). In order to obtain
statistically significant results, five balanced random partitions of the data were
done (80% to train and 20% to test). Therefore, our final experiment entailed
five runs obtaining a global 12.25% classification error rate. Confusion matrix is
shown in Table 2.

3.1 Postprocessing

It is important to note that the result of any motif forecasting method ought to
be confirmed in the laboratory. Thus, on the one hand it is important to reduce
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Table 2. Confusion matrix for the final experiment

Classes -1 1 2
-1 54.824 (89,36%) 3.752 (6,12%) 2.779 (4,53%)
1 4.045 (12,48%) 26.621 (82,13%) 1.747 (5,39%)
2 2.635 (5,61%) 2.312 (4,92%) 42.034 (89,47%)
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Fig. 2. Processing of a protein sequence. Note that the output fairly approximates the
coiled coil database annotations.
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Fig. 3. Result of the first postprocessing method is shown. Note that in order a change
to be considered, more than 7 consecutive amino acids with the same output are needed.
The noise level of the postprocessed output is also highly reduced.

the rate of false positive detection. On the other hand, it is more important to
roughly detect the more motifs the best rather than to accurately detect only
some of them.

Before to analyze our approach in this way, we post-processed the output of
our method. To do this, two procedures were tested.
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Fig. 4. Result of the second postprocessing method is shown. Note that there is no
trouble with several predictions for a single coiled coil annotation.

The first one take into account that certain number of heptad repeats are
needed to give stability to a coiled coil motif. Thus, the postprocessing did not
considered those changes of length lower or equal to one heptad. Besides, this
postprocess of the output reduced the noise level, because most of them was
produced by very short predictions. Figure 3 shows the postprocessing of the
output shown in Figure 2.

The second post-processing procedure is based on a smoothing of the output
signal. To do this a one-heptad-length sliding window was considered to average
the value of each output value. Figure 4 shows the postprocessing of the output
shown in Figure 2.

In order to analyze the motif detection error, three categories were estab-
lished:

– Error: Annotated coiled coil motif that has not been detected. The error
detection rate is defined as the number of errors among the total number of
coiled coil motifs in the database.

– False positive: prediction that overlap with no coiled coil annotation. There-
fore, false positive detection rate is considered as the number of false predic-
tions among the total number of coiled coil annotations in the database.

– Correct detection: Annotated coiled coil motifs that overlap with some coiled
coil predictions.

Finally, we considered as a coiled coil prediction those regions with output
over a value of 1.5, that is, the average between the probable and high probable
coiled coil output. The results obtained are shown in Table 3. In order to compare
our results with the most known prediction algorithms [7][1], we run available
versions of the algorithms ([8][4] respectively) using the default parameter values.
The results are also shown in Table 3.

The results obtained differ from each other considering the postprocessing
procedure. On the one hand the first postprocessing procedure produces very
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Table 3. Comparative experimental results. The error rate and the false positives
detection rate is shown for each method tested.

error rate FP
MLP (1st postprocessing) 22,50% 1,80%
MLP (2nd postprocessing) 7,50% 14,44%
coils 19,30% 15,83%
paircoil 21,38% 10,27%

low rate of false positive detection. This reduction does not produce significant
increase of the error rate (it is quite similar to the Lupas’ and Berger’s methods
error rate). The second postprocessing procedure obtains better error rate than
any other approach (the false positive rate is also similar to the Lupas’ and
Berger’s methods rate).

4 Conclusions

We propose a neural net based method to detect coiled coil motifs from biose-
quences. This motif is related to protein interaction. Motif location is important
in bioinformatics because it is related to the prediction of the behaviour of the
whole protein.

MLPs are used to, somewhat, translate the sequence of amino acids of the
protein into a code that shows the subsequences where the presence of the stud-
ied domain is expected. The output of the neural net is then postprocessed to
obtain a motif location forecast. Two postprocessing procedures were tested.
The behaviour of these procedure were different one each other.

In any case the results are improved respect previous prediction methods.
This is proved by the experimentation carried out. We can select the postpro-
cessing to obtain very low rate of false positive detection or low rate of error
detection. The reduction of false positive rate is highly biologically demanded
because it reduces the experimental effort. Comparison with two well-known
coiled coil prediction algorithms [7][1] is shown.

It is very important to note that the database contains annotations only for
those proteins that contain a coiled coil region. Furthermore, it is not assured
that the coiled coil motifs are accurately annotated. Furthermore, there not
exist any negative annotation, that is, information concerning non-coiled coil
subsequences. This have to be considered as an important drawback. Of course,
the availability of non-coiled protein sequences should improve our results. This
sequences could be obtained by considering protein structural information.

Coiled coil is a well characterized motif. Its structure is the key stone of the
most used prediction algorithms. MLPs could also be used to predict the location
of other motifs whose structure is poorly known.
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Abstract. This work presents a method for free-shaped object recognition from 
its partial views. Consecutive database reductions are achieved in three stages 
by using effective discriminant features. These features are extracted from the 
spherical mesh representation used to modeling the partial view and from the 
view range data itself. The used characteristics are global, which means that 
they can not represent the views univocally. However, their staged application 
allows the initial object database to be reduced to selecting just one candidate in 
the final stage with a high success rate. Yet, the most powerful search reduction 
is achieved in the first stage where the new Weighted Cone Curvature (WCC) 
parameter is processed. The work is devoted to describe the overall method 
making especial emphasis in the WCC feature and its application to partial 
views recognition. Results with real objects range data are also presented in the 
paper. 

1   Introduction 

The recognition problem tries to identify an object, called unknown or scene object, 
from a set of objects in an object database, generally called models. The problem of 
positioning or alignment solves the localization of an object in a scene with respect to 
a reference system linked to the model of this object. One of the most common ways 
of solving this problem is matching the unknown object on the corresponding object 
in the object database. 

Although conceptually recognition and positioning are two different problems, in 
practice they are closely related. If we can align the unknown object precisely on one 
of the different objects in the database, we will have solved not only positioning but 
also recognition. 
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The case that we present in this work is recognition of the range data of a partial 
view by matching the view on the range data of the complete objects stored in the 
object database. The resolution of the problem is of real practical interest since it can 
be used in tasks with industrial robots, mobile robot navigation, visual inspection, etc. 

In order to tackle the problem posed it is necessary to generate a model that allows 
us to extract information from the source data and represent them. Regarding these 
representations there are two fundamental categories: object-based representation and 
view-centered representation. 

The first creates models based on representative characteristics of the objects [8, 5, 
3], while the second tries to generate the model according to the appearance of the 
object from different points of view [4, 7]. 

Some other methods [6, 9] are halfway between these two categories since they do 
not capture the appearance of the object from each point of view, but provide just a 
characteristic measurement of the object. This is our case since our basis will be 
different measurements on the meshes or on the range data of the objects, calculated 
from different points of view. In this particular direction is addressed the problem in 
[1] where a shape similarity measure is introduced and applied. Nevertheless, this 
solution does not solve satisfactorily the object recognition problem from real partial 
views, which is the main purpose of our method. 

The structure of the work will be as follows: in section 2 we will do a general 
description of the three stages of method proposed. In section 3 we will study first 
stage and the WCC feature which is the key of our method. Some explanations of the 
two others stages are stated in section 4. Then, in section 5 we will give the 
experimental results of the method, making special emphasis in the high reduction 
rates achieved in the first stage, and in section 6 the conclusions of this work.  

2   Overall Method: Functioning Principle 

The method presented in this work obtains effective database reduction by applying 
sequentially different global characteristics calculated on the spherical meshes and the 
range data of partial views (Fig. 1). 

In the first stage we use a new invariant that we call Weihgted Cone-Curvature 
(WCC) to determine a first approximation to the possible axes of vision from which 
this partial view has been acquired. Discretization of the vision space is obtained by 
circumscribing a spherical mesh around the model of the complete object. Each node 
in this mesh, together with the origin of coordinates, defines the initial axes of vision 
around this model. Therefore, determining the possible axes of vision from which the 
partial view has been acquired is equivalent to selecting a set of nodes on the mesh 
and rejecting the others. It is important to bear in mind that with this reduction what 
we are doing implicitly is a reduction of the possible rotations that could be applied 
on the partial view to match it on the model of the complete object. 

We will call the nodes obtained after this first step i
cc
i NN ⊂ , where iN  are the 

initial nodes of the spherical mesh circumscribed in the i-th object of the database. As 
is deduced from the explanation, in this stage the number of models in the object 
database is not reduced. 
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Another invariant based on the principal components (eigen values + eigen 
vectors) of the partial view and complete object range data will be applied in a second 
stage on the selected nodes. After this features comparison a list for each of the 
objects in the database will be created with the nodes cc

iN  ordered according to the 

error existing in the eigen values comparison. This ordering in turn means that it is 
possible to identify which object has the greatest probability of matching the partial 
view. At the end of this second stage a reduction of the models in the object database 
is obtained together with the reduction of the nodes determined in the previous stage. 
If we call the initial object database B, the base obtained after comparing the eigen 
values will be BB ⊂cp , and the nodes for each object cc

i
cp
i NN ⊂ . 
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Fig. 1. Scheme of the different stages of the method for object recognition from partial 
views:graphical representation 

The eigen vectors will allow a first approximation to be done to the rotation 
existing between the partial view and each one of the objects of cpB , which will be 
used in the last stage when the Iterative Closest Point (ICP) algorithm is applied. This 
allows the matching to be done between the range data, and the convergence error of 
the algorithm will indicate the object to which the partial view belongs. 

The last two stages of the method are based on conventional techniques, whereas 
the first one represents a novel way of dealing with this problem. Therefore, only this 
key stage of the applied method will be detailed in next section. 
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3   First Stage: Robust Determination of the Point of View 

As it has been mentioned, in this stage of the recognition method the possible points 
of view from which the partial view has been acquired are estimated. For this task a 
new characteristic is proposed. Some preliminary concepts must be introduced 
previously to present this feature. It is calculated from partial spherical model, which 
we will call T', created from the range data of a given partial view. The partial 
spherical modeling technique is not covered in this work. After, a mesh adjusted to 
the range data is obtained whose patches are hexagonal or pentagonal. Each of the 
nodes of the mesh has a connectivity of 3 except for those nodes that are in the 
contour with connectivity less than 3. Fig, 2 shows the intensity image of an object 
and the spherical model for a partial view of the object. 

 
Fig. 2. Intensity image of an object and spherical model for a partial view of the object 

A structure called Modeling Wave Set (MWS) [2] can be created on the spherical 
model, which is generated from a simpler structure called Modeling Wave (MW). Any 
node of the complete spherical mesh T can be a focus and a MW can therefore be 
generated from it. Thus, a tessellated sphere with a number of nodes n=ord(T) will 
contain n MW’s. Fig. 3 shows two MW’s on the tessellated sphere and the axes of 
vision defined by the focus and origin of coordinates. Notice that each MW is 
composed of several Wave Fronts (Fj). 

 
Fig. 3. Representation of two different modeling wave on the tessellated sphere 

In this point the concept of Cone-Curvature (CC) is used. The CC is a 
characteristic calculated for each node of the mesh from the MWS. Its definition and 
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main features are stated in [1]. For each wave front Fj it determines an angle j and its 
range of values is [- /2, /2]. Negative values indicate the existence of concave areas; 
values near to zero correspond to flat surfaces, and positive values to convex areas. 
Fig. 4 illustrates the definition of Cone Curvature. 

 

Fig. 4. Definition of the j-th Cone Curvature (CC) for a given focus N 

Given a focus N, there exists a set of q wave fronts which define the CC’s for this 
focus {α1, …,αq} and which provide complete information about the curvature of the 
existing object from the point of view that determines N. Finally, q, which is known 
as front order, can have values from 2 (case q=1 does not make sense) to the 
maximum number of fronts that the object has. As we want to work with partial 
models, the maximum order will be calculated for a number of wave fronts equal to 
the number of complete fronts in our partial model. 

Main properties of CC’s are their uniqueness (sufficient distant values for different 
objects), invariance to affine transformations- translation, rotation and scaling- (same 
values map for the same object shape) and robustness (higher orders CC’s converge 
whereas important noise rates appearing in the model generation process). A deeper 
analysis of these properties can be found in [1], and it can be deduced that they are 
especially adequate to be applied to recognition tasks. 

3.1   Weighted Cone-Curvature (WCC) 

In this work we propose to use more compact information from the CC’s with the 
purpose of reducing their dimensionality. This can be done by replacing each vector 
{α1, …,αq} calculated from N'∈T' with a scalar linear combination of their 
components, denoted as cw, that will characterize the object from this node. We will 
call this new global characteristic Weighted Cone-Curvature (WCC) and it is the key 
parameter to implement the reduction in the number of nodes. 

To evaluate quantitatively if the reduction proposed is possible, the correlation 
existing in the CC’s was calculated. This is shown in gray scale in Fig. 5 (white for 
high values and black for low values), and it has been calculated as the mean value of 
all the correlation coefficients of the meshes in the database. From analysis of the 
figure, and as we had envisaged, it can be concluded that there is a high correlation 
between fronts of near orders, which increases as this order increases. 
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Fig. 5. Illustration of the correlation existing between the Cone-Curvatures of the wave fronts 
of orders 2 to 18 in the database 

If we denote the WCC for each N'∈T' as cw, the linear combination will be: 

 j
q

j

jw cvc
=

=
1

 (1) 

where vj are the coordinates of the eigen vector associated with the eigen value of 
greater value of the covariance matrix for the q initial variables. 

This eigen vector was determined empirically by evaluating the principal 
components on the Cone-Curvatures of all the mesh nodes. As regards the orders 
considered, we studied three possibilities: 

1. Wave fronts from q = 2 to q = 18.  
2. Wave fronts from q = 4 to q = 18.  
3. Wave fronts from q = 4 to q = 9. 

Fig. 6 represents, for the object that we are analyzing, the Weighted Cone-
Curvatures in the three cases, plotted over the object mesh and using a color code to 
express the range from negative to positive values. We can see that the Cone-
Curvatures for the first and second cases are very similar. 

 

Fig. 6. Representation in color of the Weighted Cone-Curvatures of each mesh node for cases 
(1), (2) and (3) (left to right). A bar is shown where the colors can be seen for the maximum, 
mean and minimum Weighted Cone-Curvatures of the object. 
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3.2   Application of WCC to Partial Views Recognition 

In order to apply the WCC’s to the recognition of partial views several factors must 
be taken into acount due to the nature of the handled meshes: 

1. The number of complete wave fronts in a partial view is variable.  
2. The surface represented by a set number of wave fronts can vary between a 

partial model and its complete model. 
3. The mean length of the internode distance is different for the partial model 

and the complete model in the same object. 

These questions imply that the CC’s cannot be used as they are since the partial 
view and total view wave fronts cannot be compared because of the differences 
existing between the partial and total meshes. Therefore, we will define a 
measurement of error based on the WCC’s: 

Definition 1. Let N'∈T' be the node of the partial mesh T' which is the nearest to the 
axis of vision. The error or distance of comparison of weighted cone-curvatures for 
each iTN ∈ , where iT  is the i-th total model of the object database is defined as: 

 ( ) ( )j
ww

j NcNcNe −= ')( '  (2) 

where the subscript j extends from 1 to the maximum number of nodes existing in iT  

and |⋅| represents the absolute value.  
The fact of conditioning the reduction of nodes around iT  to just one 

measurement of error can cause significant errors in this reduction. Therefore, in 
order to reinforce the reduction, for each iTN ∈  two errors will be measured. The first 

will consider the WCC’s to the furthest fronts generated from N'. We will call this 
error deep error and give it the symbol )(Ne p

j . The second will consider the nearest 

fronts generated from N'. This time we will call the error superficial error and give it 
the symbol )(Ne s

j . 

In both instances a set of errors equal to the number of nodes existing in iT  is 

obtained, and from these errors the nodes cc
iN  of the mesh that will be passed to the 

next stage of the algorithm will be determined. If we call pN  to the set of nodes of iT  

with less p
ie values, and sN to the set of nodes of iT  with less s

ie values, cc
iN will be: 

 spcc
i NNN ∪=  (3) 

4   Principal Components and ICP Stages 

In this section the last two stages of the recognition algorithm will be commented on 
for matching the partial views on complete models. These are the principal 
components and ICP stages. 

In the principal components stage the method proposed is based on calculating the 
principal components on the range data that we employed to obtain the model T' used 
in the previous stage. If we call these data X, the principal components are defined as 
the eigen values and eigen vectors },,1),{( mieii L

r
=λ  of the covariance matrix. 
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The eigen values are invariant to rotations and displacements and the eigen vectors to 
displacements. The eigen vectors conform a reference system linked to the data. This 
means that the eigen values can be used to evaluate what part of the range data of the 
complete model correspond to the scene, and the eigen vectors to calculate a first 
approximation to the transformation of the partial data to be matched on the total data. 
This approximation will only reflect the rotation sub matrix of the total transformation, 
since the origins of the two frames will coincide. 

To apply this technique it is necessary to evaluate, before the recognition process, 
all the possibly existing partial views on the range data of the complete object. For 
this, the space of the possible points of view existing around the object was 
discretized, and a method was developed for generating virtual partial views (VPV’s) 
based on the z-buffer algorithm. From each of these VPV their principal components 
will be calculated and used in the matching stage as explained earlier. 

Comparison of the eigen values gives information about the possible areas where 
the partial view can be matched, but this information is global and, as we have said, 
only gives information about the rotation. 

Thus it will be necessary to do a final calculation stage to refine the matching and 
to calculate the definitive transformation. For this we will use the ICP algorithm on a 
number of possible candidates marked in the eigen value comparison stage. The ICP 
must start from an approximation to the initial transformation, which in our case 
corresponds to the transformation given in the matching of the eigen vectors. The 
ending error in the ICP algorithm will measure the exactness of the definitive 
transformation and the correctness of the area where the view will be matched. 

The comparison of the eigen values of the partial view and the virtual partial views 
is done by measuring an index of error given in the following expression: 

 rv
i

cp
i NNe Λ−Λ= )()(  (4) 

where cc
iN N∈  is the node from where we generated the VPV, )(Nv

iΛ  is the vector 

formed by the eigen values of the VPV generated from the node N of the i-th object of 
the object database (i=1,..., K), },,{ 321

rrrr λλλ=Λ  is the vector formed by the eigen 

values of the real partial view and ||·|| is the Euclidean distance. 

After the error has been calculated for all the cc
iN  nodes and all the objects in the 

object database, we obtain a list of these errors, cp
ie  (i=1,..., K), ordered from least to 

great. If we compare the first error (least error for a set object) in all the lists, an 
ordering of the different objects in the object database will be obtained. Thus in the 
last stage we can apply the ICP algorithm on a subset of the object database, just cpB , 
and for each of the objects using the transformations associated with the subset of 
nodes  that have produced these errors. 

For the resolution of the ICP it is necessary to determine an approximation to the 
transformation matrix between the partial view and the object in the object database 

1R . This is calculated bearing in mind that the eigen vectors are orthonormal, and 

therefore: 

  Tv
i

rv
i

r NN ))(())(( 1
1 EEEER == −  (5) 
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where )(E Nv
i are the eigen vectors of the VPV generated from cpN N∈ of the i-th 

model of the object database cpB , and rE are the eigen vectors of the partial view. 

5   Experimental Results 

The method proposed in this work was tested on a set of 20 objects. Range data of 
these objects have been acquired by means of a GRF-2 range finder sensor which 
provides an average resolution of approximately 1 mm. Real size of the used objects 
goes from 5 to 10 cm. height and there are both polyhedral shaped and free form 
objects (see Fig. 7). MWS Models have been built by deforming a tessellated sphere 
with 1280 nodes. 

 

Fig. 7. Set of objects used to test the presented method 

The recognition was done for three partial views per object, except in one of them 
where after the determination of its partial model it was seen that it did not have enough 
wave fronts to be able to compare the weighted cone-curvatures. This means that 
recognition was done on a total of 59 partial models. The success rate has been the 90%, 
what demonstrates the validity of the method. The average computation time invested 
by the whole process was 90 seconds, programmed over a Pentium 4 at 2.4 GHz. 
computer under Matlab environment. A more detailed analysis of these results are next. 

As it has been explained, in the first stage the weighted cone-curvatures of the 
partial model were compared for a node with a maximum number of wave fronts. 
From this comparison cc

iN  was determined (equation (3)). In the considered 

experiments, the maximum value of the number of nodes that form the sets pN  (deep 
search) and sN (superficial search) was 32 each. Since the mesh used to obtain the 
complete model iT  was 1280, the minimum reduction of the space search in this stage 

was 95%. The reduction can be even bigger as long as there are nodes coinciding in 
pN  and sN . This step was carried out for all the objects of the initial database B and 

took an average of 7.95 seconds. 
Concerning the second stage, it started from these nodes and the eigen values were 

compared, which allowed us to achieve the first reduction of the database ( cpB database). 
Reduction of the nodes obtained in the previous stage is also accomplished ( cp

iN  set). It 

was determined experimentally that cpB  consists of approximately 35% of the objects of 
B and cp

iN  of approximately 8% of the nodes of ccN  per object, which represent very 

satisfactory reduction rates of the stage. This process spent around 1 sec. 
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Finally, the ICP algorithm was applied on seven objects (the mentioned 35% 
remaining in the cpB  database) and three nodes (corresponding to the mentioned 8%) 
for each cp

iN  object. As can be deduced, practically the most part of the time consumed 

for the algorithm was in this stage. 
Fig. 8 shows some examples of recognition concerning to different shaped objects of 

the database. For each object, left side of this figure contains the range data 
corresponding to the partial view to recognize. Right side plots the range data of the 
partial view and the complete range data of the recognized object matched together in 
the position obtained after application of the algorithm. 

 

  

  

  
Fig. 8. Recognition results on free-form objects. On the left in each row the partial view to be 
recognized is shown and on the right the result obtained after applying the algorithm (both 
partial view and complete object range data) 

6   Conclusions 

This work has described a method for the recognition of free-form objects from their 
partial views. The method is divided into three stages: Weighted Cone-Curvatures 

.
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stage, principal components stage, and ICP stage. Due to its novelty the first one has 
been described in more detail. The new feature WCC has been defined and analyzed. 
It exhibits the right properties for applying in recognition and positioning tasks. 
WCC’s are calculated on the spherical models of the objects. These characteristics 
allow to achieve important reductions in the number of nodes that define the possible 
axes of vision from which the partial view has been acquired. The validity of the full 
method was proven with the recognition of 59 partial views in an object database of 
20 objects. The success rate was 90%. 

We are currently working with a single view in real complex scenes where a hard 
and difficult task that frequently implies previous processes or steps must be solved 
before accomplishing recognition. In this case an effective 3D segmentation on the 
scene is essential to apply the recognition method presented in this paper. 
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Abstract. This paper reports the results obtained in the implementa-
tion of an Optical Braille Recognizer (O.B.R.), as well as the construc-
tion of a keyboard for the Braille code. This project was developed with
the objective of enabling teachers of blind people, who do not know
the Braille code, to visualize the texts written by their students. An
electronic keyboard, less noisy and less expensive than the traditional
mechanical ones was built too. To achieve these objectives, the ”Com-
pendium of the Braille code for the Portuguese Language” was used. The
final program translates plain text, mathematics and chemistry sheets
written in Braille code. It’s also possible to write plain text, mathemat-
ics or chemistry using the developed keyboard. The program is written
in Java and the keyboard communicates with it through serial port.

1 Introduction

This project appeared as the result of the educational politic of mixing blind
pupils in the normal school classrooms. The Optical Braille Recognizer is therefor
intended for teachers, who don’t understand Braille language, for visualization of
texts written by their blind students in normal mechanical emboss machines. The
keyboard is mainly intended for the blind students, as the common mechanical
Braille keyboards are very noisy and expensive, so the creation of a new, low
noise and low cost became crucial. To accomplish this objectives, the project has
been split into several tasks, which are:

1. Locating the Braille points that form the text;
2. Segmenting the image into Braille text lines;
3. Processing of the points found to extract the text;
4. Creating the parsers representing the language;
5. Constructing the keyboard and connection to the parsers;
6. Integrating the text to speech system;
7. User interface

This project is still under development, although there are interesting results,
which will be discussed from now on in this article.

In the beginning of the current project there were the following constraints:
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1. Translate single sided Braille sheets;
2. The system should be low cost;
3. The system should be platform independent;
4. Should run in a mid range computer;
5. Use of free software;
6. Simplicity of system circuits to allow a low skilled person to assemble the

keyboard (possibly in an electronics class).

2 Location of the Points

In Braille code each character is represented by six points, 3 per column and
2 per row, having standard distances between them [1]. The distance between
points is 2.5mm. The distance between characters is 3.5mm in the horizontal
and 5mm in the vertical. These distances define the braille cells. The characters
are formed by embossed dots in any position of the cell. These are the points to
be located in the scanned image, as they represent the Braille text.

The location of the points is the first stage of the project. It is very important
to have a good input image. The image can be scanned with any scanner, but
it should be in high resolution. The input image is crucial for the success of the
Optical Braille Recognition (O.B.R.), as in a bad image the points will be fuzzy
and difficult to locate.

In Figure 1 it is possible to see distinct zones in the represented points,
as this is a partial scanned test image. One zone is brilliant, above the point,
and the other zone is darker, under the point [2]. This is due to the emboss
of the points, illuminated by the oblique light source from the scanner. This
discrepancy has to be enhanced to locate the points more precisely, reducing
the probability to detect false points, introduced by eventual noise in the image.
Thresholding [4] twice using the Otsu method, accomplished some results, which
weren’t very reliable with different background colors. A more accurately method
was develop that calculates the threshold points based on a given percentage of

Fig. 1. Partial image of Braille Scanned sheet
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Fig. 2. Partial image after threshold process

the histogram peak1. This method was observed to be efficient has it permitted
to work with different color sheets. Each zone, brilliant or dark, is isolated by
one threshold.

After the threshold process, the image will be composed by three different
color regions, as represented in the Figure 2. Now the points have to be located
and marked to segment the image. A white zone, with a black zone under, is
searched to locate the points. Grouping the regions this way, there is a small
probability of detecting a false point. This process has some errors, as some
points will not be detected because the white zone, or the black one, may not
exist for all points. Although this may happen, it happens to few points, only
the ones that are not well embossed by the Braille printer, or those that may be
perforated.

Fig. 3. Partial image after locating the points

The point’s center is determined with a very simple approach, the center
of mass of the point is computed. After finding the center, a blob is drawn
representing the located point, as shown in Figure 3.

1 The histogram peak represent the background of the image.
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3 Isolation of the Lines of Text(Segmentation)

At this point, the text lines are isolated, so the text can be translated. The lines
that do not have any blob represented are searched and marked, securing the
segmentation in text lines. These will be discarded for a more efficient computing
of the translations. Figure 4 represents the image after segmentation.

Fig. 4. Partial image after segmentation

4 Processing of the Points

With the points detected and the image segmented, the next task is to get the
Braille characters. In this approach there is no need to segment the image verti-
cally [3]. For each line of text, the first center is found. Having it’s coordinates,
it’s position inside the cell is searched. This is done examining the distance be-
tween the current point and the next point center found. This gives the horizontal
position, as the vertical one is found dividing the text line into three regions.
The coordinates of the center and it’s position are stored in a linked list. The
rest of the line is computed, ending up with a linked list of centers and positions.
The linked list is then parsed and, according to the information it holds, a mask
is adjusted to each Braille character, ending up with a line of characters coded
into 1’s and 0’s, representing respectively, position is a point and position is not
a point.

This procedure is repeated for every line of text, ending up with the entire
page coded.

5 Creation of the Parsers

The parsers are created to translate the text from the coded file. Three parsers
were defined, one for text, one for mathematics and one for chemistry. These
parsers were created for the Portuguese Braille code. There are many Braille
Codes, and even inside one Braille Code there are characters that represent
one character in plain text and another in e.g. mathematics. That’s why three
different parsers have been created.
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The parsers were created using Javacc that allowed a more efficient integra-
tion with the developed application.

The parsers make use of the Unicode char set, and not the ASCII one. This
solution was adopted for the use of the mathematical symbols, since most of
these are not available in the ASCII set.

The input of these parsers is a string coded into 1’s and 0’s and the output
is an HTML coded page. The use of HTML tables were very useful to enable
printing of mathematical or chemical expressions.

6 Construction of the Keyboard

6.1 Motivations

The will to construct the electronic Braille keyboard came mainly from two
reasons:

1. The high price of the mechanical Braille emboss machines;
2. The noisy environment created by students using mechanical machines;

6.2 Hardware Overview

For a cost effective solution the existing school computers were thought to be
used, if possible the most downgraded, that are also the most expendable ones.
Having this into account the serial port was chosen to be the communication
interface between the computer and the keyboard. This interface was widely
used in the past and nowadays it is usually used in instrumentation and in
several electronic devices, so cheap hardware and free software solutions could
be created and used.

After some research [10,5] the PIC 16F628 [6] from Microchip R© was cho-
sen. This is a mid-range micro-controller, it has better specs than the widely
used PIC 16F84 and the advantage that it is cheaper. The 16F PIC series is
FLASH memory based and so can be erased and reprogrammed electrically.
This feature allows a faster software development comparing to the UV-erasable
micro-controllers. It is a RISC micro-controller with Harvard architecture, 14-
bit wide instructions and 8-bit wide data word. It has 2048x14 FLASH program
memory, a 224x8 RAM data memory and a 128x8 non-volatile EEPROM data
memory. Contains an 8 bit ALU and working register. A total of 35 instructions
are available, all are executed in one clock cycle except for program branches
that take 2 cycles. The 16F628 architecture also contains some special features
that can simplify the circuit system by eliminating the need of external compo-
nents, reducing the cost and power consumption, and improving reliability. In
the system two of these interesting specs were used: the 4MHz internal oscillator,
and the USART for serial communication.

To convert the output voltage levels of the micro-controller’s USART to
TIA/EIA-232 (serial port protocol) a MAX232 converter chip was used.
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(a) Perkins Brailler. (b) Keyboard layout.

Fig. 5. Keyboard layouts

Microchip R© provides PIC programmers that transfer the developed code
into the chip’s memory, but these don’t accomplish the low cost objective of
the project and so a cheaper solution was used, the JDM PIC Programmer
2 (JDM). Jens Dyekjær Madsen [7] created this simple, efficient and low cost
programmer. It is well documented on the World Wide Web by himself and
many other hardware developers, including a small circuit alteration that allows
compatibility with the PIC 16F6XX series. The communication interface of JDM
programmer is also the serial port.

The layout of a Perkins Brailler mechanical embosser, like the one in Fig-
ure ??, was followed maintaining the sequence but dislocating vertically the keys
for a more ergonomic positioning, as can be seen in Figure 6.2. This way the
Braille students would rapidly adapt to the keyboard.

6.3 Hardware Programming Software

For software development Microchip R© provides an integrated development en-
vironment called MPLAB R© IDE Software. It is MS Windows R© based but there
are Linux alternatives.

The programmer software used to load the code into the micro-controller was
IC-Prog [8], a free MS Windows R© based software developed by Bonny Gijzen.
There are software alternatives for Linux.

6.4 Keyboard Assembly

The first stage was assembling the JDM programmer, as seen in Figure ??. This
was a very important step for the production of the keyboard, so after it was
built it was tested with IC-Prog to assert it was a reliable programmer.

The keyboard circuit was mounted on a test board to allow the PIC’s pro-
gramming and testing.

The code was written in assembly language, using MPLAB R© for writing
and debugging the program. The main routine of the program needed to si-
multaneously debounce all keys, since a Braille character can be produced by
simultaneously pressing until 6 keys. If a pooling approach had been chosen a
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Fig. 6. JDM programmer circuit

very long, complicated and possibly ineffective program would be obtained. In-
stead, a routine by Scott Dattalo [9] that makes use of the notion of vertical
counters was adapted. Using two 8-bit registers, grouping them in 2-bit counters
in such way that e.g. the two LSBits form a counter, associating a key entry
to each counter in such way that if the state of the key is maintained after
4 iterations the state is filtered. If it doesn’t maintain the logical value, the 2
bit counter resets. One register accumulates key presses until no key is being
pressed, in that moment the composed value of all valid key presses is sent via
the PIC’s USART.

After loading the final program to the PIC’s memory all the components were
mounted in a PCB circuit board, as can be seen in Figure 7, and the keyboard
assembly was completed.

To finalize, the application developed for O.B.R. was linked to read from the
serial port. This application needs to have an active parser mode, so a keyboard

(a) Final keyboard circuit. (b) Final keyboard schematic.

Fig. 7. Final keyboard circuit and schematic
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user must send a code composed by the space, the delete, and one letter keys
simultaneously pressed. The letter codes are ”m” for mathematics (matemática),
”q” for Chemistry (qúımica) and ”t” for text (texto).

7 Text to Speech System

A Text to Speech System was linked to the developed O.B.R. software. This has
been done to enable the user of the software to hear what is being typed in real
time. This system had already been developed in a former work [11]. Originally
developed for the Linux platform, the program code was changed to compile
also under Microsoft Windows R©. Some changes have been made so the program
could function more accordingly to our objectives.

The software can only synthesize text. For a more complete system, the
rules of the text to speech program should be altered. This may be difficult to
implement since this system was originally developed for plain text.

8 User Interface

The user interface has been programmed in Java. It permits the user to open the
scanned image, and select an area of the image to be converted, also selecting
the text, mathematics or chemistry

parser. It permits to get the input from the developed keyboard, allowing the
user to type and hear the text. The final user interface program can be seen in
Figure 8.

9 Conclusion

Some good results have been obtained so far. The developed software can trans-
late quite accurately the texts in the Braille sheets. However some errors may
occur because of bad input image. Some points don’t have the white zone or the
black one, which will produce bad results in the detection. The input image is
very important for the success of the translation, so a good color high resolu-
tion image should be obtained. It is also expected that some scanners performed
better than others because of different illumination conditions.

A text to speech software system was adapted to the program. This solution
is limited since it was developed for plain text, however is very useful, because
the user can’t feel the output like in a mechanical embosser.

An efficient low cost keyboard was successfully developed. A mechanical em-
bosser would cost about 1000 Euros in Portugal, while the construction of the
keyboard and the PIC programmer would only cost about 50 Euros.

At this moment, the software translates an entire page of plain text under
15 seconds in an AMD Athlon 1.41 GHz. It can translate successfully plain text,
mathematics and chemistry. However further work should improve the parser’s
rules, possibly with the aid of Braille teachers and students.
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Fig. 8. User interface
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Abstract. In this paper is presented a method for the automatic DNA spots 
classification and extraction of profiles associated in DNA polyacrilamide gel 
electrophoresis based on image processing. A software which implements this 
method was developed, composed by four modules: Digital image acquisition, 
image preprocessing, feature extraction and classification, and DNA profile ex-
traction. The use of different types of algorithms as: C4.5 Decision Trees, Sup-
port Vector Machines and Leader Algorithm are needed to resolve all the tasks. 
The experimental results show that this method has a very nice computational 
behavior and effectiveness, and provide a very useful tool to decrease the time 
and increase the quality of the specialist responses. 

1   Introduction 

DNA profiling has attracted a good deal of public attention in the last years. The prac-
tical application of DNA technology to the identification of biological material has 
had a significant impact on forensic biology, because it enables much stronger con-
clusions of identity or non-identity to be made [1]. 

For human identity, scientists use Short Tandem Repeat (“STR”) loci [2]. Each 
STR locus exhibits variation in DNA molecule length. One person will inherit two 
specific lengths from their parents, which is likely to be different from the pair of 
lengths of another person. STR locus of an individual has two “alleles,” each corre-
sponding to a true DNA. To form a DNA profile, scientists generate and analyze STR 
data. Such data is derived from a blood (or other) sample taken from a person or ob-
tained from the crime scene. It is common to build a DNA profile using 10 STR loci 
(20 alleles).  Therefore, when (for example) ten loci are used, it is extremely improb-
able that the 20 numbers (i.e., 10 length pairs or alleles) from one individual will 
identically match the 20 numbers of an unrelated individual. This uniqueness serves 
as a “fingerprint” of genetic identity [3]. 

During laboratory data generation, the forensic scientist conducts experiments to 
transform these unknown DNA lengths into observable data [4]. This process has 3 
main steps: 1) Perform polymerase chain reaction (“PCR”) amplification on the DNA 
sample to transform the STR lengths into PCR products.2) Size separates the  
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amplified PCR products on a DNA sequencer to form electrophoretic bands (two 
bands per loci one band for each allele). The locations of these bands are related to 
their size.3) Detect the bands to acquire data. Each band in loci has a number, related 
to its side; therefore we obtain a pair of numbers per loci, to build at last de DNA 
profiles per samples. 

There are two chemical techniques in order to take to end the two last steps [5], 
one using the Capillary Electrophoresis Analysis, and the other applying Electropho-
resis on Polyacrilamide Gels with tintion reagents. The first is a very expensive tech-
nique, and no many laboratories have the possibilities to apply it. An automatic mod-
ule for the data processing based on signal processing accompanies the system. The 
second is a more common analysis, as an output, is obtained DNA sequencers in the 
form of electrophoretic bands on a Polyacrilamide Gel plate, the bands are visualized 
with a tintion reagent, one of them is the silver tintion reagent, and in this case we 
detect the DNA bands as black spots. 

There is a standardized method to manually detect the spots of DNA and make the 
numbers designations of the pair alleles per loci, but it is a very tedious, inefficient 
and inhuman form to do the task if we have under consideration that only one plate 
can contain more than 32 samples, plus 12 loci, plus 2 alleles per loci, 768 measure-
ments are necessary to obtain the correspondent profiles. 

In this article an automatic solution is presented for DNA profile extraction in 
Polyacrilamide Gel Electrophoresis Images, integrating image processing, pattern 
recognition techniques and the associated image acquisition module. 

2   Image Acquisition Module 

To acquire the images a digital camera Sony DSC-F717 was place on a controllable 
illumination system. The Polyacrilamide gel plate is placed in a mobile gate between 
a diffuser plate and the digital camera and the light sources are in the bottom, below 
the diffuser plate. Figure 1, shows a view of different parts of the module. 

The light sources are conformed by Leuci Lamps 8 watt cool-white 4500 0K.To ob-
tains a uniform illumination in the acquire images, the fulfillment of the equation (1), 
is necessary [6]:    

E=(Ii cos i)*ri
-1     (1) 

 

.  
                                         (a)                            (b)                             (c) 

Fig. 1. Acquisition module: (a) General view, (b) Light Sources, (c) Mobile gate 
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Where E is the light emission of set light sources, Ii the Light intensity, i the angle 
between the direction of the luminous flux and the normal to the surface and ri the 
distance to the surface.  

This condition guarantees that the dimension of the luminous bundle emitted for 
the source of illumination is little in relation to the distance that separates the diffu-
sion plate from the lamps, and as a result a uniform illumination is obtained.   

3   Image Preprocessing 

Data artefact can be introduced at every step of the data generation process. There are 
dozens potential artefacts, some include: Low-level intensity spots, contaminating 
DNA material, bands reflexion, shifts in the baseline, colour background of the gels 
and other size distortions. Some of them can be corrected at a preprocessing step in 
order to enhance the image quality [7]. 

First, the source image obtained from the acquisition system is RGB, but colour, 
does not give us any useful information; therefore a conversion to halftones is con-
venient.  

One of the main tasks of preprocessing is the removal or reduction of noise. In or-
der to find the best suited one for this kind of images some linear and non-linear fil-
tering methods, and also filtering methods in the wavelet domain [8] were tested. The 
best results were obtained using a Homomorphic Filtering [9, 10]. In our case, this 
filter acts to reduce the low frequency multiplicative noise that it is produced as a 
result of a non homogeneity illumination or a non homogeneity developed chemical 
process.  

The application of the Fourier transform to the logarithm of the image, gives: 

F {ln I(x, y)} =F {ln L(x, y)}+ F {lnR(x, y)}. (2) 

Where L is the luminance and R the reflectance. This can be written as the sum of two 
functions in the frequency domain as: 

Z (u, v) = FL (u, v) + FR (u, v).                                        (3) 

FR is composed of mostly high frequency components and FL of mostly low frequency 
components. Z can be convolved with a filter of transfer function H (u, v) that reduces 
the low frequencies and amplifies high frequencies, thus improving contrast and com-
pressing dynamic range, 

H(u,v).Z(u,v)= H(u,v).FL(u,v) + H(u,v).FR(u,v). (4) 

The processed image can be found by inverse Fourier transforming the previous equa-
tion and taking the exponential, 

I’(x, y)=eF-1{[H (u, v).Z (u, v)]}. (5) 

Next step contemplates the process of spots segmentation. In order to carry out this 
task, we apply a Sobel Edge Detector; it uses a special mask [11] to approximate 
digitally the first derivatives Gx and Gy. In other words, the gradient at the center 
point in a neighbourhood is computed as follows: 
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g = [Gx² + Gy ²] ½  
g= {[(z7 + 2z8 + z9) - (z1 + 2z2 + z3)] ²+ [(z3 + 2z6 + z9) - (zl + 2z4 + z7))] ²}

1/2     
(6) 

Where z1.....z9 conform the image neighbourhood.. Then we say that a pixel at loca-
tion(x, y) is an edge pixel if g  T at that location, where T is a specified threshold.  

The segmentation process finished applying automatically a Global Threshold fol-
lowing the iterative procedure proposed by González and Woods [11].  

4   Feature Selection  

Once finished the spot’s segmentation, the next step is to represent and describe them 
in a form suitable for further computer processing. A representation using 14 bound-
ary and region descriptors was chosen: Area, Complementary area, Perimeter, Recti-
fied perimeter, Compacness, Maximum width, Maximum Height, 2-D moment in-
variants ( 1, 2,  3,  4,  5),  (angle of the principal axis), and Height-Width ratio. 
An automatic tool was developed to assign the descriptor at each spot in the image gel 
after segmentation. 

To know which of these descriptors or features are the most significant to describe 
DNA spots, a data set formed of 4 images gels with more than 1890 spots were 
marked by  an expert selecting only DNA spots according his experience, at last 965 
DNA from the total of spots was marked . A C4.5 Decision tree [12] was used to do 
the task. Decision trees classify instances by sorting them down the tree from the root 
to some leaf node, which provides the classification of the instance. Each node in the 
tree specifies the test of some feature of the instance, and each branch descending 
from that node corresponds to one of the possible values for this feature. An instance 
is classified by starting at the root node of the tree, testing the feature species by this 
node, then moving down the tree branch corresponding to the value of the feature in 
the given example. This process is then repeated for the sub tree rooted at the new 
node. The features that are situated in the roots nodes of the tree will be the most 
significant. 

After the training, a decision tree with an effectiveness of 94.7% in the classifica-
tion among DNA spots and No-DNA spots are obtained. The most significant features 
probe to be:  3, 1, 4, and area. 

5   Classification 

In our method all spots present on the polyacrilamide gel images, are described auto-
matically, using the most significant features obtained in section 4. For the profile 
extraction only DNA spots are useful, therefore a two–class classification problem 
among DNA spots and No-DNA spots is necessary to solve. In order to realize the 
classification process with a high velocity, effectiveness, and robustness, a Support 
Vector Machines classifier was selected. 

Supports Vector Machines (SVMs) are kernel based learning algorithm introduced 
by Vapnik [13, 14]. SVMs classifiers are introduced to solve two-class pattern recog-
nition problems using the Structural Risk Minimization principle. Burges; Cristianini 
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& Shawe-Taylor [15, 16] worked given a training set in a vector space, SVMs find the 
best decision hyperplane that separates two classes. The quality of a decision hyper-
plane is determined by the distance (i.e. hard or soft margin) between two hyperplanes 
defined by the support vectors. The best decision hyperplane is the one that maxi-
mizes this margin. The mapping to higher dimensional spaces is done using appropri-
ate kernels such as Gaussian kernel and polynomial kernel [17]. SVMs lend them-
selves well to accurate non-linear modelling and are very powerful and rapid learners. 
Good results in the application of SVMs for different classification task of DNA were 
reported by Xu and Buckles [18].  

In our case a non-linear SVMs using a radial kernel offered the best results. 

6   DNA’s Profile Extraction 

After the Classification process, an image with only DNA spots is obtained. For the 
profile extraction, first it is necessary to determine the regions in the image that con-
tains the STR loci patterns, remember that usually we need twelve STR loci patterns 
in order to obtain the profiles. These patterns contain all the posibles alleles presents 
in a population and are possible to visualize them in the image as a sequence of DNA 
black spots for each STR loci. It is used to put the set of these 12 STR loci patterns 
more than one time in the plate intercalating the set each four samples investigated. 

For the determination of these regions the first step is the detection of the candidate’s 
regions according to the intensities histogram along the x axis. The second step is the 
determination inside of these regions of the periodic sequence of the image according the 
characteristics of the patterns. The third step is the validation of the results in correspon-
dence with the data position given by the specialist and we finish assigning the coordi-
nates at start and ending of the regions founded and it is marked in the image.  

Using as reference the coordinates contributed by the patterns, the next step is the 
division of the image in lanes, each lane contains one sample or the set of STR loci 
patterns according to the distribution above mentioned. Normally we have more or 
less 32 lanes per image.  

Inside the pattern’s lanes we have different STR loci each of them have a specific 
sequence of spots always with the same quantity of spots, each of them  have assigned 
a number, it is necessary the determination of these sub regions in the image each of 
them contains one STR loci with their spots. To solve this task a Sequential Leader 
algorithm was used [19]. It performs in two basic steps: 

1. Chose a cluster threshold value. 
2. For every new sample vector (DNA spot centroid that appears in patterns lanes): 

   -Compute the distance between the new vector and every cluster’s codebook vector. 
   -If the distance between the closest codebook vector and the new vector is smaller  
    than the chosen threshold, then recomputed the closest codebook vector with the 
    new vector. 
   -Otherwise, make a new cluster with the new vector as its codebook vector.   
Sometimes as a consequence of a malfunction of the classification algorithm, or by 
difficulties in the electrophoresis chemical process, one or more spots inside a se-
quence of a STR loci pattern were missing and in other cases two of them join up. A 
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restoration of the sequence of spots in the pattern is essential in order to obtain, in 
next steps, the DNA profiles of samples .To restore the missing spots a new algorithm 
was developed, which can be described as follows:  

1) Comment: In the initial conditions the clustered spots in the STR LOCI PATTERN 
sequence are DNA spots and all spots for this analysis are in the same 
lane, therefore for all clustered spots the value of Cluster.Spot.DNA is 
true 

2) Comment: Sort the clustered DNA spots in ascendant order by ’y’ coordinate value 
of its centroide. 

3) Cluster. Sort (); 
4) Comment: We denote the clustered spots as spotc, and the others as spot 
5) for (all clustered spots) do 
6)    Comment: There is a hole (DNA spot not present) 
7)    if (distance (spotc[i].centroid. y), spotc[i+1].centroid. y) ≥  threshold) do begin  
8)         Comment (Case 1): At this point when a spot is not clustered it means that is 

not DNA, therefore we want to know which spots not 
clustered are between spotc[i] and spotc[i+1] 

9)         for (all pair (spot[j], spot[k]), not clustered) 
10)              Comment: Case 1: There is a spot divided in two neighbouring spots 

(spot[j] & spot[k]) situated between (spotc[i] & spotc[i+1]) 
11)            if (((spot[j].centroid. y > spotc[i].centroid. y) &  
                      (spot[k].centroid. y > spotc[i ].centroid. y) & 
                     ((spot[j].centroid. y < spotc[i+1].centroid. y) &  

                  (spot[k].centroid. y < spotc[i+1].centroid. y))) 
12)                 if ((Abs (spot[j].centroid. y- spot[k].centroid. y) <=2) & ((spot[j].area + 

spot[k].area)>=area threshold)) do begin 
13)             Comment: join the spot[j] & spot[k] into one and eliminate them 
14)                    Cluster. Add (newElement (spot[j], spot[k])); 
15)                       Cluster. Sort (); 
16)                       Delete (spot[j], spot[k]); 
17)                       end; 
18)       for (all not clustered spot) 
19)             Comment (Case 2): There are some spots (spot[j]) between spotc[i] & 

spotc[ i+1] that are not divided (NOT Case1), but they 
are near enough of spotc[i], in this case the solution is 
adding to the cluster the most similar of all of them 

20)             if ((spot[j].centroid. y > spotc[i].centroid. y) &  
                       (spot[j].centroid. y < spotc[i+1].centroid. y) &  
                       (distance (spot[j].centroid. y), spotc[i].centroid. y) < threshold)) do  

begin         
21)                     Distance[j] =EuclideanDistance between spot[j].featurevector and        

spotc[i].featurevector] 
22)                        if ( Distance[j] < distance threshold) do begin 
23)                             K=index of the minimal Distance[j] 
24)                             Cluster. add (newElement(spot[k])) 
25)                             Cluster. Sort (); 
26)                             end; 



248 F. Silva–Mata et al. 

27)                     end; 
28)       end; 
29) Comment: if the restoration of STR Loci Pattern was not completely possible 
30)  if (Cluster. count < total ) 
        ErrorMessage (“STR LOCI NOT COMPLETED”)  

The joined spots are separated by means of the detection of Freeman’s chain typical 
segments of the contour [20], for example:  033332…03332…2110…21110…, the 
calculation of the horizontal dividing halfback line among them, permits an effective 
separation. 

The final step is to assign the corresponded number to the spots that represents the 
two alleles per STR loci to conform the DNA profile of each sample (24 pair of num-
bers are obtained per sample). To solve this task, it is necessary first the layout of the 
horizontal lines that join the centroide of each spot in the sequence of the STR loci 
patterns with their matches distributed in the plate, remember that each of these spots 
in a sequence of a STR loci has a unique number, that is specific for each STR loci 
pattern, therefore all the spots in the same line have the same number assigned. Ap-
plying the formula of distance of one point to a straight line, it is possible to evaluate 
the distance from the centroid of each spots, (alleles), to the lines of the patterns spots 
nearest to them. The number assigned to the alleles are the same assigned to the lines 
of the patterns whose distances are the minors to them. 

7   Data Set 

A set of 20 DNA polyacrilamide gel electrophoresis plates, containing 200 real sam-
ples investigated by the National Forensic Laboratory of Cuba were used for the ex-
perimentation. The Plates have been directly recorded with the acquisition module, 
and the images obtained were automatically store in the computer for the process. 

8   System Implementation 

For the preprocessing step, we used software in C# based on the algorithms and pro-
cedures proposed by Rafael Gonzalez [11].. The feature selection using the Decision 
Tree C4.5 was implemented by the pack of classes that offers Software WEKA [12] 
specifically Weka classifier tree J48. As this software is programmed in Java # a DLL 
that permits the conversion to Visual Studio C# was developed in order to guarantee 
the compatibility with our method. Classifications with SVMs were done using 
SVM. NET Version 0.8b[21]. 

9   Results and Discussion 

The SVMs were training to classify the spots obtained after the electrophoresis proc-
ess on the gel in DNA and No-DNA spots. For training the same data set used for the 
feature selection was employed, for testing we used the data set explained in point 7.  
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The classification accuracy was calculated by taken the number of correctly classi-
fied spots by the SVMs, and divided by the total number of samples into the test data 
set. Table 1 shows the results obtained in the classification.      

Table 1. DNA spot classification 

Confusion matrix Type of 
spots 

#of spots 
ADN NoADN

Classification 

ADN 2019 1997 22  
NoADN 4201 101 4100  

Total 6220  98.02% 

The good results obtained in the classification task demonstrated the advantages at-
tributed in the literature to the SVMs as a two class classifier. The training process 
was very fast, only 30 sec. fundamentally because their structure is automatically 
determined on the basis of the training data and relatively few parameters are needed; 
in the other hand training involves optimisation of a function that relates to a quad-
ratic convex programming problem, hence generating a completely reproducible solu-
tion (a major drawback of Neural Networks); overfitting can be avoided without using 
a validation set. 

The set of the original plates, were processed by the expert using the standardized 
manual procedure and the results of the profile extraction were compare with the 
results obtained applying the automatic method taking into  account the success rate 
and the time of response. Table 2 shows the results obtained in this comparison.  

 

    
                                     (a)                              (b)                              (c) 

     
                                          (d)                              (e)                              (f) 
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                                        (g)                              (h)                             (i) 

Fig. 2. (a) Original image, (b) Homomorphic filtering, (c) Sobel edge detector, (d) Global 
threshold, (e) STR loci patterns regions, (f) Division in lanes, (g) Determination sub regions, 
(h) Assigning number to alleles, (i) DNA profile 

Table 2. Automatic Profile extraction results vs. manual method results 

Time of response 
# of 

samples  Profiles de-
tected by expert 

System 
success 

Success 
rate Expert

Automat. 
200 204 199 97.54% 20 days 15 min 

Added to the previous tables only 5 profiles was not possible to extract, 4 caused 
by the presence of mix samples (DNA of two persons are present in the same sample) 
with 4 different alleles present in each STR Loci causing that it is not possible to 
determine, which of the 6 pairs of alleles is the correct by the automatic method. The 
other one was caused by misclassification errors in the lanes corresponded to the 
samples, given that the misclassification errors in the lane of the patterns are restored 
by the algorithm developed for this purpose. 

Another significant result is the decrease in the time’s response of the task that in-
fluences not only in the increase of the available time of the expert but also in the 
decrease of the cost of the analysis. Fig.2 (a-i) shows a set of images representatives 
of all the process. 

10   Conclusions 

The development and implementation of an effective method for the automatic DNA 
spots classification and extraction of profiles associated in DNA polyacrilamide gel 
electrophoresis, combining image process and pattern recognition techniques are 
obtained. 

Different types of algorithms as: C4.5 Decision Trees, Support Vector Machines, 
Leader Algorithm and the contribution with a new one for restoration purposes are 
used to resolve all the tasks. 

The experimental results show that this method has a very nice computational be-
havior and effectiveness, and provide a very useful tool to decrease the time and in-
crease the quality of the specialist responses. 
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Abstract. In the paper we propose a method based on Bayesian frame-
work for selecting the best kernel function for supervised learning prob-
lem. The parameters of the kernel function are considered as model pa-
rameters and maximum evidence principle is applied for model selection.
We describe a general scheme of Bayesian regularization, present model
of kernel classifiers as well as our approximations for evidence estimation,
and then give some results of experimental evaluation.

1 Introduction

Support Vector Machines [1] are one of the most popular algorithms for solving
regression and classification problems. They have proved their good performance
on numerous tasks. The main reasons for the success of SVM are the following.
Vapnik’s idea of optimal hyperplane construction led to maximal margin prin-
ciple [2] which provides better generalization ability. Another useful property of
SVM is the so-called ”kernel trick” which allows linear methods of machine learn-
ing to build non-linear surfaces. However, there are some aspects which remain
unclear when one starts using SVM. The concrete form of the kernel function
should be defined by the user so as regularization coefficient C. As there are sev-
eral parametric families of kernel functions it is not clear what family and what
function from that family will lead to the best performance of SVM. Coefficient
C limits the values of weights for the support vectors, thereby giving the algo-
rithm different degrees of flexibility. Usually the parameters of kernel function
and coefficient C are defined using a cross-validation procedure. This may be
too expensive from computational point of view. Moreover the cross-validation
estimates of performance, although unbiased [2], have large variance due to the
limited size of the sample. Recently Tipping proposed an SVM-like algorithm,
which used Bayesian regularization for best weights selection [4]. It was called
Relevance Vector Machines (RVM). In this algorithm the weights of the so-called
relevance vectors are interpreted as random values with gaussian prior distribu-
tion centered in zero. In this approach there is no need to set a regularization
coefficient C to restrict the values of the weights. Large weights are penalized
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automatically during training. In the paper we propose an extension of this idea
- Generalized Relevance Vector Machines (GRVM) which allows furthermore se-
lecting the best kernel function from the given family for the particular problem.
In the next section we give general scheme of Bayesian regularization of machine
learning algorithms. Section 3 briefly describes the RVM concept and in section 4
we present the GRVM algorithm for classification tasks. Some numerical aspects
of its realization are given in section 5. The last section contains experimental
evaluation and discussion.

2 Bayesian Learning and Maximal Evidence Principle

The paradigm of Bayesian learning allows for choosing the most appropriate
model for the given training data. The term model in this context means a
set of classifiers with fixed number of parameters and their prior distributions.
Suppose that we have a set of models (either finite, countable or continuum)
W (α), α ∈ A. Here α defines the family of classifiers, the structure of their
parameters w, and their prior distributions P (w|α). Denote by P (Dtrain|w)
the likelihood of the training data description with given values of w. As the
hyperparameters α do not have direct influence on the training data we may
write

P (Dtrain|w,α) = P (Dtrain|w) (1)

This means that α affects the likelihood of the training data description only
by means of its influence on w. A classical way of classifier training is based on
maximal likelihood principle, that is finding

wML = argmax
w

P (Dtrain|w)

The probability of new data Dtest given the training set is then just

P (Dtest|Dtrain) = P (Dtest|wML)

An alternative way of classifier training is to use Bayesian estimation of the
posterior probability of w

P (w|Dtrain) =
P (Dtrain|w)P (w)∫

W

P (Dtrain|w)P (w)dw

Then
P (Dtest|Dtrain) =

∫
W

P (Dtest|w)P (w|Dtrain)dw

Such inference can be done within one model. Now suppose we have several (or
even continuum) models W (α) of different nature, complexity etc. The ques-
tion is what model is preferable. To answer it we should estimate the so-called
evidence

P (Dtrain|α) =
∫

W (α)

P (Dtrain|w)P (w|α)dw (2)
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The known principle of maximal evidence [3] states that we should choose that
model which has the greatest value of evidence or, in other words, where the rate
of ”good” classifiers is the highest. This principle is a compromise between the
complexity of a model and classifier’s performance on the training sample. Taking
into account (1) the likelihood of the test data is calculated in the following way:

P (Dtest|Dtrain) =
∫
A

∫
W (α)

P (Dtest|w,α)P (w,α|Dtrain)dwdα = (3)

∫
A

∫
W (α)

P (Dtest|w)P (w|α, Dtrain)P (α|Dtrain)dwdα,

where
P (α|Dtrain) ∝ P (Dtrain|α)P (α),

i.e. in case of absence of any prior assumptions on α, P (α|Dtrain) is proportional
to evidence. Integration over A is often intractable that is why P (α|Dtrain) is
usually approximated by δ(αMP ) where αMP = argmax

α
P (Dtrain|α). Then

equation (3) turns into

P (Dtest|Dtrain) ≈
∫

W (αMP )

P (Dtest|w)P (w|αMP , Dtrain)dw (4)

3 Relevance Vector Machines

Here we briefly consider the idea proposed by Tipping on using Bayesian frame-
work in kernel methods [4]. Henceforth we consider the classification problem.
Let Dtrain = {x, t} = {xi, ti}mi=1 be training sample where xi are feature vec-
tors in an n-dimensional real space and ti are class labels taking values in
{−1, 1}. Consider the family of classifiers y(x) = sign(

∑m
i=1 wiK(x, xi) + w0) =

sign(h(x,w)). Establish prior distribution on the weights P (wi|αi) ∼ N(0, α−1
i ).

The set of parameters α determines the model in which the posterior distribution
is looked for. Define the likelihood of training sample as

P (Dtrain|w,α) = P (Dtrain|w) =
m∏

i=1

1
1 + exp(−tih(xi,w))

Then the evidence of model is given by (2). Our goal is to find α which maximizes
evidence and then to get posterior distribution P (w|Dtrain,α). As direct calcu-
lation of (2) is impossible due to the intractable integral, Tipping used Laplace
approximation for its estimation. He approximated Lα(w) = log(P (Dtrain|w)P
(w|α)) by quadratic function using its Taylor decomposition with respect to w
at the point of maximum wMP . Such approximation can be integrated yielding

P (Dtrain|α) ≈ exp(Lα(wMP )) | Σ |1/2, (5)
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where Σ = (∇w∇wL(w) |w=wMP )−1. Differentiating the last expression with
respect to α and setting the derivatives to zero gives the following iterative
re-estimation equation

αnew
i =

1− αold
i Σii

wMP
i

(6)

The training procedure consists of three iterative steps. First we search for the
maximum point wMP of L(w). Then we make approximation according to (5)
and use (6) to get the new values of α. The steps are repeated until the process
converges.

After the training is finished the integral (4) can be approximated by setting
P (w|Dtrain,α) ≈ δ(wMP ) resulting in the expression

P (Dtest|Dtrain) = P (Dtest|wMP )

It was shown [4] that RVM provides approximately the same quality as SVM
with the same kernel function and best value of C selected by cross-validation
but does not require the regularization coefficient C to be set by the user. More-
over it appeared that RVM is much more sparse, i.e. the rate of non-zero weights
(relevance vectors) is significantly less than the rate of support vectors. This hap-
pens because most of the objects are treated as irrelevant and the corresponding
α tend to infinity.

4 Generalized Relevance Vector Machines

Model selection via maximal evidence principle allows for avoiding the direct
setting of weight constraints in RVM. Nevertheless, making a choice on a kernel
function is still needed. The question is whether it is possible to use analogous
approach and to treat the kernel function type as meta-parameter using Bayesian
framework to define it. Henceforth we consider one of the most popular para-
metric kernels K(x, z) = exp(− ||x−z||2

2σ2 ). Our goal is to find the best σ value
without cross-validation using maximal evidence principle.

It is easy to see that equation (5) presents a compromise between the accuracy
on the training sample (the first item) and some kind of stability with respect
to changes of the algorithm’s weights (second item). Small values of σ lead to
overfitting and hence to high accuracy on the training sample. On the other
hand second item of formula (5) does not penalize such σ due to the following
reason. Small σ means that almost all objects from the training set have non-zero
weights and the influence from the neighboring objects can be neglected. But
changes in object’s weight just change the height of the corresponding gaussian
still keeping its center in the object. The likelihood after such weight changes is
still very high and the second term in (5) even encourages small σ. At the same
time if we start changing the position of the gaussian center the likelihood of the
training object changes dramatically (see fig.1). So small σ make classification
unstable with respect to shifts of the kernel centers. Hence it is necessary to
extend RVM model allowing kernels to be located at arbitrary point (relevant
point) of objects space.
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Fig. 1. The likelihood of the training sample is a product of likelihoods in each train-
ing object x1, x2, x3. Narrow Gaussians centered in training objects have nearly no
influence on the other objects from the training set. Small weight change still keeps the
likelihood of the corresponding object high enough (dotted line) while small shifts of a
relevant point (gaussian center) make likelihood catastorphically low in case of small
σ (dashed line).

Let M(α, σ) be the model that defines the family of classifiers y(x) =
sign(

∑p
i=1 wiK(x, zi) + b) = sign(h(x,w, z)). Here zi is the center of ith ker-

nel function (in our case this function is a gaussian). We call it a relevant point.
Then the likelihood of the training sample is given by

P (Dtrain|w, z) =
m∏

j=1

1
(1 + exp(−tjh(xj ,w, z)))

We have no prior knowledge about z so that we assume improper uniform dis-
tribution across the whole space of objects. Then the evidence is expressed by

P (Dtrain|α, σ) ∝
∫

W

∫
Rn

P (Dtrain|w, z)P (w|α)dwdz (7)

Again we will use Laplace approximation for the expression under the integral.
Denote Lα,σ(w, z) = log(P (Dtrain|w, z)P (w|α)). Then the integral (7) can be
evaluated analytically yielding

P (Dtrain|α, σ) ≈ exp(Lα,σ(wMP , zMP ))det(∇w,z∇w,zLα,σ(w, z) |w=wMP
z=zMP

)−1/2

Since σ is a scalar we may use direct search methods for its estimation by
evaluating

E(σ) = max
α

P (Dtrain|α, σ) (8)

Then the training process can be presented in the following way:
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1. Start with some initial values of w, z,α, σ.
2. Maximize P (Dtrain|w, z)P (w|α) with respect to w.
3. Re-estimate α according to formula (6).
4. Go to step 2 until the process converges. Otherwise go to step 5.
5. Maximize P (Dtrain|w, z) with respect to z.
6. Go to step 2 until process converges. Otherwise get E(σ) according to (8).
7. Change σ in order to maximize E(σ).

Note that there is no need to make additional optimization with respect to
α in step 6 as it has been already optimized during steps 2-5. We may use z = x
as initial estimation. As the most of α will tend to infinity to the step 5, the
number of relevant points to be optimized will be relatively small and we may
utilize a gradient descent method.

5 Numerical Realization and Approximations

To implement the algorithm described in the previous section we have to deal
with problems connected with high dimensionality of the (w, z) space. Its di-
mension is p(n + 1) + 1. Large number of relevance points (large value of p) is
typical in case of small σ. We have to make some assumptions to reduce the
computation time. First of all we will set all mixed derivatives ∂2Lα,σ(w,z)

∂wi∂xjk
to

zero. Then the Taylor decomposition of Lα,σ(w, z) at the point of maximum
(wMP , zMP ) will turn to

Lα,σ(w, z) ≈ Lα,σ(wMP , zMP ) +
1
2
("wT Hw"w +"zTHz"z)

Here Hessian Hw is responsible for the selection of α i.e. for stability with respect
to weight changes and Hessian Hz is responsible for the selection of σ i.e. for
stability with respect to shifts of relevant points.

Hessian Hz is still difficult to compute as its size is pn × pn. So another
approximation is to interpret each relevance point zk as a single variable. Our
goal is to estimate the measure of unsteadiness at the point, not its direction.
Differentiating formally with respect to zk as a single variable we get

∂

∂zk
Lα,σ(w, z) =

∂

∂zk

p∑
i=1

log(1 + exp(−tih(xi,w, z))) =

−
p∑

i=1

tiwk

1 + exp(tih(xi,w, z))
∂h(xi,w, z)

∂zk

∂2

∂zk
2Lα,σ(w, z) =

p∑
i=1

[
− exp(tih(xi,w, z))

(1 + exp(tih(xi,w, z)))2

(
∂h(xi,w, z)

∂zk

)2

+

ti
1 + exp(tih(xi,w, z))

∂2h(xi,w, z)
∂zk

2

]
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where

∂h(xi,w, z)
∂zk

= wk
||zk − xi||

σ2 K(zk, xi);

∂2h(xi,w, z)
∂zk

2 = wk

(
||zk − xi||2

σ4 − 1
σ2

)
K(zk, xi)

In this Hessian the off-diagonal elements are several orders smaller than the
diagonal elements, so we may neglect them getting a diagonal Hessian

Ĥz = diag(
∂2Lα,σ(w, z)

∂z2
1

, . . . ,
∂2Lα,σ(w, z)

∂z2
p

)

6 Experimental Evaluation and Discussion

To illustrate the performance of GRVM we made several experiments using
datasets taken from the UCI repository [5]. Each data table were split randomly
into training (67% of objects) and test sets. We used gaussian kernel function
and selected its width via leave-one-out procedure both for SVM and RVM as
well as regularization coefficient C in SVM. The use of cross-validation meth-
ods is typical for searching the best kernels for the given task and widely used
both for SVMs and RVMs. Our task was to check whether our approach can
lead to better kernels. So we used GRVM for evidence estimation. The value
of σ which corresponded to the maximum of evidence was then used for train-
ing usual RVM. Actually we could continue using GRVMs with obtained kernel
but our experiments showed that RVM had slightly better performance on all
tasks. The results of experiments are shown in table 1. The first three columns
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Fig. 2. Maximum of evidence most often corresponds to the minimum of test error
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Table 1. Testing results of kernel function selection procedure. Column N contains
number of objects in learning sample, other columns contains error rate and number
of support[relevant] vectors for RVM and SVM with Leave-One-Out and Maximal
Evidence kernel parameter selection procedure (RVM LOO, SVM LOO and RVM ME
correspondingly).

Errors Vectors
Data set N RVM LOO SVM LOO RVM ME RVM LOO SVM LOO RVM ME
AUSTRALIAN 482 14.9% 11.54% 10.58% 37 188 19
BUPA 241 25% 26.92% 21.15% 6 179 7
CREDIT 482 16.35% 15.38% 15.87% 57 217 36
HEPATITIS 108 36.17% 31.91% 31.91% 34 102 11
PIMA 537 22.08% 21.65% 21.21% 29 309 13

Fig. 3. Example of SVM classifier performance. Data consists of 200 objects of two
classes generated from mixture of Gaussian distributions. Parameters of the classifier
are: C = 1, σ = 1. Encircled objects are support vectors. In this case there are 65
support vectors.

(Errors) contain test errors of RVM with kernel selected via leave-one-out proce-
dure, SVM with kernel obtained in the similar way and RVM with kernel which
maximizes evidence respectively. The last three columns (Vectors) present num-
ber of non-zero weights. It is easy to see that maximum evidence principle selects
generally better kernels than leave-one-out procedure. RVM with kernel that was
selected by the proposed method outperforms state-of-art SVM classifier with
kernel selected by cross-validation. Another important aspect is sparseness of
obtained RVM. It is illustrated by last columns of the table. It is known that
RVM is more sparse than SVM as extra non-zero weights are penalized through
training. Application of maximum evidence principle to kernel determination
leads to even more sparse models. A typical relation between test error and ev-
idence value with respect to different σ values is shown in Fig. 2. Evidence is
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Fig. 4. Example of RVM classifier performance. Data consists of 200 objects of two
classes generated from mixture of Gaussian distributions. Encircled objects are relevant
vectors.

Fig. 5. Example of GRVM classifier performance. Data consists of 200 objects of two
classes generated from mixture of Gaussian distributions. Black circles are relevant
vectors. There are only 5 relevant vectors.

shown in logarithmic scale. It can be seen that it reaches its maximum on the
same σ where test error has minimum. Although it is not necessarily so for all
samples, in general this approach works better than traditional cross validation
methodology.

GRVM classifier tends to be even more sparse in comparison with RVM and
SVM. Figures 3, 4 and 5 illustrate performance of three classifiers on simple data.
Data consists of 200 objects of two classes generated from mixture of Gaussian
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distributions. In all cases σ equals 1. It can be seen that decision surface of SVM
is determined by more than 60 support vectors while for RVM the correspondent
parameter - number of relevance vectors - is near to 30. Accuracy of GRVM is
comparable with those of SVM and RVM, but number of relevant points is only
5. Extension of RVM model allowing kernels to be located at arbitrary points of
feature space and optimization of log-likelihood function with respect to kernels
centres provide simplier decision models with little amount of relevant points.

7 Conclusions

Success of RVM classifiers shows that Bayesian regularization can be effectively
used for optimal determination of models parameters. But simple application
of this approach for kernel selection task is not reasonable since classifiers with
narrower kernels are more stable with respect to weights variances. Inclusion
of kernels centres to model parameters leads to sophisticated optimization pro-
cedures which nevertheless can be rather effectively implemented using some
approximations.

Series of experiments using data from UCI repository show that maximum of
evidence generally better corresponds to the minimum of test error than leave-
one-out error. GRVM as well as RVM with kernel parameters selected according
to maximal evidence tends to be more sparse. Maximization of evidence can
improve the performance in many cases for both RVMs and SVMs. Moreover
it allows us to carry out more sophisticated optimization, e.g. setting different
σi for different features. Creation of effective procedure of evidence gradient
estimation is still open question but seems to be a solvable task.
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Abstract. One of the basic problems of applied mathematics is to find a 
synthetic expression (model) which captures the essence of a system given a 
(necessarily) finite sample which reflects selected characteristics. When the 
model considers several independent variables its mathematical treatment may 
become burdensome or even downright impossible from a practical standpoint. 
In this paper we explore the utilization of an efficient genetic algorithm to select 
the “best” subset of multivariate monomials out of a full polynomial of the form 
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desired degree for the i-th independent variable). This regression problem has 
been tackled with success using neural networks (NN). However, the “black 
box” characteristic of such models is frequently cited as a major drawback. We 
show that it is possible to find a polynomial model for an arbitrary set of data. 
From selected practical cases we argue that, despite the restrictions of a 
polynomial basis, our Genetic Multivariate Polynomials (GMP) compete with 
the NN approach without the mentioned limitation. We show how to treat 
constrained functions as unconstrained ones using GMPs. 

1   Introduction 

One of the basic goals of the scientific endeavor is to (try to) identify patterns in 
apparently chaotic data given a (necessarily) finite sample which reflects selected 
characteristics in the system under study. In this paper we explore the utilization of an 
efficient genetic algorithm to select the “best” subset of multivariate monomials out 
of a full polynomial. Such multivariate regression problem has been tackled with 
success using neural networks (NN) whose “black box” nature is frequently cited as a 
major drawback. We show that it is possible to find a polynomial model for an 
arbitrary set of data and give evidence that, despite the restrictions of a polynomial 
basis, our Genetic Multivariate Polynomials (GMPs) compete with the NN approach 
without the mentioned “black box” limitation. 

1.1   Statistical Systems 

Statistical systems are a relatively modern approach to automated machine learning 
(AML). They rely on the overall analysis of data representing the behavior of the 
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system. No previous knowledge about the system is assumed and, indeed, they do 
achieve AML with a certain amount of success depending on how one measures it. 

1.1.1   Neural Networks 
Perhaps the most representative systems in this category are the so-called neural 
networks (NN). The basic idea is that simple computing elements (which we will 
refer to as “units”), individually displaying little computing power, when arranged in 
richly interconnected networks, may embody the essence of the system they model. 
The term “neuron” arises from suggestive analogies where the units purportedly 
simulate the behavior of the neuron of a living being. Every connecting path between 
units has an associated weight. It is in these weights that knowledge, tacitly (as 
opposed to the explicit rules of the classical AI approach) is stored in a “trained” 
network. In supervised mode the NN is “shown” the data repeatedly and, via an 
iterative algorithm, it modifies the initial (typically random) value of the weights so 
that the NN’s outputs replicate the known ones for every element in the data. NNs 
have evolved from the initial animal-neuron-inspired approach into sophisticated 
entities in which units are determined by their mathematical properties. 

The statistical nature of the learning process has been given solid theoretical 
foundation by the work of many researchers, outstanding that of Vapnik [VV95]. It 
has been proven that a feedforward strongly interconnected network of units 
(perceptrons) constitutes a universal approximator [SH99]. Furthermore, analogous 
NNs are able to represent the data in the best possible way given a set of data [BB92]. 
Notice that the proper selection of the data is not an issue here; data is assumed to 
have been properly selected (a fact which we will take for granted in what follows). In 
conclusion, NNs are able to extract knowledge, given an arbitrary set of data, fully 
and optimally. However, a drawback of NNs is that the process by which they arrive 
at their conclusions is not explicit and, upon presentation of a larger (possibly richer) 
set of data the learning process has to be repeated or, at best, continued from the 
previous one. Nevertheless, the NN methodology yields a tool which is able to tackle 
complex multivariate regression effectively. 

1.1.2 Multivariate Polynomials 
An obvious alternative is to attempt such regression appealing to a functional 
representation (such as the one in (1)) where the known response of the system to a 
set of input stimulae is expressed explicitly. 
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In (1) vi corresponds to the i-th independent variable and gi is the highest allowed 
power for vi. In order to find F(v1,...,vn) one must device a method to approximate the 
data in a typically overdetermined system for a given metric. We must also overcome 
the curse of dimensionality inherent to this approach1. In what follows we give a 

                                                           
1  For instance, consider a problem where n=10 and g1=g2=...=gn=4. The number of coefficients 

in (1) is easily calculated as C = 510 = 9,765,625 which implies that we must have, at least, 
those many elements in our sample. 
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method which allows us to solve both problems. In part 2 we expound the method. In 
part 3 we make a comparison of a representative set of problems tackled with GMPs 
and NNs. In part 4 we offer our conclusions. 

2   Genetic Multivariate Polynomials 

To approximate the data vectors we have chosen the minimax or ∞L  norm for 

reasons that will become apparent in what follows. In ∞L one seeks an F(x) that 

minimizes θ , where |d)F(|max ii −= vθ ; vi denotes the i-th independent variable 

vector  and di the i-th desired output. The original data set is found in matrix O of 
dimensions (n+1) × s; where n denotes the number of independent variables and s the 
number of elements in the sample. In order to find the approximator of (1) we map the 
vectors of O to a higher dimensional space yielding matrix V of dimensions p ×  s, 
where p= )ig(1n

1i += . 

2.1   Minimax Approximation to a Set of Size m 

To illustrate minimax approximation we arbitrarily select a submatrix of V of size 
m × m (call it V’), where m=p+1; then, we solve the system of (2). 
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Denoting the  approximation error for the i-th vector as iε  we may define θεηε ii = ; 

clearly, θεεη ≤ii . We also denote the elements of row i, column j of (2) as ijδ  and 

the i-th cofactor of the first column as iκ . From Cramer’s rule, we immediately have:  

mm

mmm

m

d

d

κηκη
δ

δ

εθ ++
=

...

...

.........

...

11

11

 

(3) 

To minimize θε  we have to maximize the denominator of (3). This is easily achieved 

by a) Selecting the maximum value of the iη ’s and b) Making the signs of the iη ’s 

all equal to the signs of the iκ ’s. Obviously the iη ’s are maximized iff 1=iη  for 

i=1,...,m which translates into the well known fact that the minimax fit corresponds to 
approximation errors of equal absolute size. On the other hand, achieving (b) simply 
means that we must set the signs of the iη ’s to those of the cofactors. Making 

iσ =sign( iκ ) system (2) is simply re-written as 
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Once having all the elements in (4) it suffices to solve this system to obtain both the 
value of θε  an the coefficients c1,...,cm which best fit the elements of V’ in the 

minimax sense. To find the minimax coefficients for V we apply the next algorithm. 

2.2   Exchange Algorithm 

1. Set i ← 1. 
2. Select an arbitrary set (of size m) of rows of matrix V; this set  is called Mi. 
3. Determine the signs of the iε  which maximize the denominator of (3). 

4. Solve the system of (4). Denote the resulting polynomial by Pi. 
5. Calculate the value of φε =max(| Pi - di |) ∀ vi ∉  Mi. 

6. If θφ εε ≤  end the algorithm; the coefficients of Pi are those of the polynomial 

which best approximates V in the minimax sense. 
7. Set i ← i+1. 
8. Exchange the row corresponding to φε  for the one in Mi which preserves its sign 

and makes ii )()( 1 θθ εε >+ . 

9. Go to step 4. 

 
The exchange algorithm will end as long as the consecutive systems of (4) satisfy 
Haar’s condition while, on the other hand, the cost of its execution (in FLOPs) is of 
O(m6). There are implementation issues which allow to apply this algorithm even in 
the absence of Haar’s condition and which reduce its cost to O(m2). The interested 
reader is referred to [KG02]. 

2.3   Genetic Algorithm 

The basic reason to choose a minimax norm is that the method outlined above is not 
dependent on the origin of the elements in V. We decided them to be the monomials 
of a full polynomial. But it makes no difference to the exchange algorithm whether 
the vi are gotten from a set of monomials or they are elements of arbitrary data 
vectors. This is important because, as stated above, the number of monomials and 
coefficients in (2) grows geometrically. One way to avoid the problem of such 
coefficient explosion is to define a priori the number (say µ ) of desired monomials of 

the approximant and then to properly select which of the p possible ones these will be. 

There are 
µ
p

 possible combinations of monomials and even for modest values of p 

and µ  and exhaustive search is out of the question. This optimization problem may be 

tackled using a genetic algorithm (GA), as follows. 
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The genome is a binary string of size p. Every bit in it represents a monomial. If 
the bit is ‘1’ it means that the corresponding monomial remains while if it is a ‘0’ it 
means that such monomial is not to be considered. All one has to ensure is that the 
number of 1’s is equal to µ . Assume, for example, that v = (v1, v2, v3) and that g1=1, 

g2=2, g3=2; if µ = 6 the genome 110000101010000001 corresponds to the polynomial 

in (5). 
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(5) 

It is well known that any elitist GA will converge to a global optimum [GR94]. It 
has also been shown that a variation of GA called Vasconcelos Genetic Algorithm 
(VGA) shows superior behavior on a wide range of functions [AK00]. VGA uses a) 
Deterministic parenthetical selection, b) Annular crossover, c) Uniform mutation 
[KV98]. All results reported are based on VGA’s application. 

Therefore, the initial population of the GA is generated randomly. It consists of a 
set of binary strings of length p in which there are only µ  1’s. Then the GA’s 

operators are applied as usual. The fitness function is the minimax fitness error as per 
the exchange algorithm. This error is minimized and, at the end of the process, the 
polynomial exhibiting the smallest fit error is selected as the best approximant for the 
original data set. 

3   Neural Networks and GMPs 

As we already pointed out, NNs have been proven to be able to synthesize the 
knowledge contained in an arbitrary set of data. Particularly, when the units are the 
well known perceptrons [SH99], any continuous function may be approximated by a 
three layer NN, such as the one shown in figure 1. 

In figure 1 we show a NN with 6 input variables and one output variable, i.e., one 
dependent variable and 6 independent ones. The b neuron is the so-called bias and its 
input is canonically set to +1. It is easy to see that there are w = 33 (6 × 4+4 × 1+4+1) 
weights in this network. The number of neurons in the input and output neurons is 
determined by the number of input and output variables respectively. The number of 
neurons in the hidden layer (H) was estimated from the heuristic rule of equation (6). 

1)O3(I

O3S
H

++
−≈  (6) 

Here, S is the number of elements in the data sample; I and O are the number of 
input and output neurons, respectively. What equation (6) says is that the number of 
weights should equal, roughly, 1/3 of the size of the sample. With these convention 
we tackled the problem of approximating a set of constrained functions of which a 
small fraction is shown in table 1.  

In every case, we sampled the independent variables randomly and selected those 
values which complied with the constraints. Equalities were treated as closely 
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bounded inequalities. For example, the first constraint of function 6 was actually 

transformed into: 9999.92
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5x ≤ . The samples represented the actual values of interest of every one of 

the functions and the resulting NN, in fact, constitutes an alternate non-constrained 
version of the original one.  

Table 1. A Set of Constrained Functions 
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Our thesis may be resumed as follows: 
 a) The domain of a constrained function may be sampled in such a way that 

the resulting sample represents adequately the domain of a constrained function. 
 b) Any set of data may be re-expressed as a trained NN. 
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c)  If a GMP is able to duplicate the workings of a NN it is possible to work 
with the resulting algebraic expression. 

d) The optimization process can be performed on the polynomial with 
traditional calculus’ tools. 

 

 

Fig. 1. Three-layered Perceptron Network 

3.1   Experiments 

Data was divided in two sets: a training set and a test set. The training set 
encompasses 80% of the data; the test set consists of the remaining 20%. Both NNs 
and GMPs were trained using the training set. Then both methods were tested for 
performance on the test set, which they had not previously “seen”. The number of 
weights for the NNs were calculated from (6); the number of monomials in the GMP 
was set accordingly. In the following table we show the actual errors found from the 
trained NNs and GMPs for the selected functions. Eight types of error were compiled: 
a) Maximum training error for NNs and GMPs; b) RMS training error for NNs and 
GMPs; c) Maximum test error for NNs and GMPs; d) RMS test error for NNs and 
GMPs. 

Table 2. Error Comparison for Selected Functions (NN and GMP) 
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4   Conclusions 

Table 2 shows the remarkable performance of NNs and GMPs for this set of 
problems. For instance, the RMS test error was always of O(0.1) which directly bears 
on the generalization properties of the model. NNs behavior was expected but GMP’s 
was not as obvious: with two exceptions, GMPs showed better generalization 
capabilities than their neural counterparts. 

That maximum errors were smaller for GMPs may be explained easily, since the 
norm focuses on their minimization. That, in the majority of cases, GMPs RMS errors 
were comparable was not so clear, particularly since the number of monomials and 
weights were the same. In the perceptron networks the underlying functions (based on 
a sigmoidal transformation of the local induced field) are much more complex and, in 
principle, richer than linear combinations of monomials. However, as attested by the 
results, the VGA does a fine job in finding the best such combinations. 

The polynomial expression shows explicitly which powers of the independent 
variables bear on the behavior of the function and to what extent. It also allows for 
simple algebraic manipulation of the different terms. For instance, finding the partial 
derivatives with respect to any of the input variables is trivial and allows for the 
simple analysis of the function’s behavior. 

On the other hand, given the reliable representation of the original data, the method 
suggests a general algorithm to tackle constrained optimization problems as follows:  

a) Sample the feasible domain of the constrained function 
b) Synthesize the function appealing to a GMP 
c) Optimize utilizing traditional algebraic or numerical tools. 

We do not claim that the optimization process proposed herein will be able to 
deliver a global optimum. However, in general, it will certainly approach one or more 
(depending on the starting VGA’s population) local optima. These may be utilized to 
refine the search using other techniques. 

Finally, we would like to emphasize the fact that GMPs are not limited to use 
simple monomials as units. Other basis are applicable and it only remains to see 
whether the extra computational cost implied in more complex units yields cost 
effective results. 
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Abstract. We describe the application of 1-Dimensional Kohonen Networks in 
the  classification of color 2D images which has been evaluated in Popocatépetl 
Volcano’s images. The Popocatépetl, located in the limits of the State of Puebla 
in México, is active and under monitoring since 1997. We will consider one of 
the problems related with the question if our application of the Kohonen 
Network classifies according to the total intensity color of an image or well, if it 
classifies according to the connectivity, i.e. the topology, between the pixels 
that compose an image. In order to give arguments that support our hypothesis 
that our procedures share the classification according to the topology of the 
pixels in the images, we will present two approaches based a) in the evaluation 
of the classification given by the network when the pixels in the images are 
permuted; and,b) when an additional metric to the Euclidean distance is 
introduced. 

1   Introduction 

It is well known the application of 1-Dimensional Kohonen Networks in the non-
supervised classification of data with an elevated redundancy degree [5]. On the other 
hand, non-supervised image classification is an important vision task where images 
with similar features are grouped in classes. Many processing tasks (description, 
object recognition or indexing, for example) are based on such a preprocessing [8]. In 
this paper, we take in account these ideas in order to apply the methods associated to 
Kohonen Networks to provide solutions to automatic classification of images. The 
remainder of this paper is organized as follows: Section 1 describes the basis of the 1-
Dimensional Kohonen Networks, Section 2 describes some procedures to take in 
account in order to avoid training bias, Section 3 describes the procedures and 
applications related to the classification of 2D color images through Kohonen 
networks and our results and discussion, finally Section 4 presents conclusions and 
future work. 
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2   Fundamentals of the 1-Dimensional Kohonen Networks 

2.1   Classifying Points Embedded in a n-Dimensional Space Through a  
1-Dimensional Kohonen Network 

A Kohonen Network with two layers, where the first one corresponds to n input 
neurons and the second one corresponds to m output neurons ([4] and [7]) can be used 
to classify points embedded in a n-dimensional space in m categories. The input 
points will have the form (x1, …, xi, …, xn). The total number of connections of the 
neurons from the input layer to the neurons in the output layer will be n × m (See 
Figure 1). Each neuron j, 1 ≤ j ≤ m, in the output layer will have associated a n-
dimensional weights vector which describes a representative of class Cj. All these 
vectors will have the form: 

Output neuron 1: W1 = (w1,1, …, w1,n) 
M  

Output neuron m: Wj = (wj,1, …, wj,n) 

 

1 i n 

 xi x 1  xn

m j 1 

w 1,1 

w j,1
w 1,i 

w j,i
w m,i

w j,n

w m,n

C 1 C j C m

w m,1
w 1,n 

 

Fig. 1. Topology of a 1-dimensional Kohonen Network [5] 

2.2   Training the 1-Dimensional Kohonen Network 

A set of training points are presented to the network T times. According to the 
literature [5], all the values of the  weights vectors can be initialized with random 
values. In order to determine a winner neuron in the output layer in presentation t, 0 ≤ 
t < T, it is selected that neuron whose weights vector Wj, 1 ≤ j ≤ m, is the most similar 
to the input point Pk. Such selection is based according to the squared Euclidean 
distance. The selected neuron will be that with the minimal distance between its 
weight vector and the input point Pk: 

( ) mjwPd
n

i
ij

k
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=
1
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,
 

Once the j-th winner neuron in the t-th presentation has been identified, its weights 
are updated according to: 
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When the T presentations have been achieved, the final values of the weights 
vectors correspond to the coordinates of the ‘gravity centers’ of the points, or clusters 
of the m classes. 

3   Redistribution in the n-Dimensional Space of Kohonen 
Network’s Training Set 

To avoid training bias, the training data needs to be redistributed. Consider a set of 
points distributed in a 2D subspace defined by rectangle [0,1] × [0,1]. Moreover, this 
set of points is embedded in a sub-region delimited, for example, by rectangle 
[0.3,0.6] × [0.3,0.6] (Figure 2).  

 

Fig. 2. A set of points embedded in [0.3,0.6] × [0.3,0.6] ⊂ [0,1] × [0,1] 

Because the points are not uniformly distributed in the exemplified 2D space, we 
can expect important repercussions during their classification process. For example, 
for a given number of classes, we can obtain some clusters that coincide with other 
clusters or classes without associated training points. We will describe a simple 
methodology to distribute uniformly the points of a training set for the general case of 
a n-dimensional space. 

Consider a unit n-dimensional hypercube H where the points are embedded in their 
corresponding minimal orthogonal bounding hyper-box h such that h ⊆ H. The point 
with the minimal coordinates ),,...,,(

minminminmin 121min nn xxxxP −=  and the point with the 

maximal coordinates ),,...,,(
maxmaxmaxmax 121max nn xxxxP −=  will describe the main diagonal of h. 

We proceed to apply to each point ),,...,,( 121 nn xxxxP −=  in the training set, including 

Pmin and Pmax, the geometric transformation of translation given by: 

nixxx ≤≤−= 1'
min111

 

By this way, we will get a new hyper-box h’ and the points that describe the main 
diagonal of h’ will be )0,...,0('min 321

n

P =  and )',',...,','('
maxmaxmaxmax 121max nn xxxxP −= . See Figure 3.  
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a) 

 
b) 

Fig. 3. a) A training set and its minimal orthogonal bounding hyper-box h. b) Translation of h 
and the training points such that P’min is the origin of the 2D space. 

The second part of our procedure will consist in the extension of the current hyper-
box h’ to the whole n-dimensional hypercube H. The scaling of a point 

),,...,,( 121 nn xxxxP −=  is given by multiplying their coordinates by the factors S1, S2, …, 

Sn each one related with x1, x2, …, xn respectively in order to produce the new scaled 
coordinates x1’, x2’, …, xn’ [6]. Because we want to extend the bounding hyper-box h’ 
and the translated training points to the whole unit hypercube H, we have that by 
scaling the point )',',...,','('

maxmaxmaxmax 121max nn xxxxP −=  we must obtain the new point {)1,...,1(
n

. 

That is to say, we define the set of n equations: 

niSx ii ≤≤⋅= 1'1
max

 

Starting from these equations we obtain the scaling factors to apply to all points 
included in the bounding hyper-box h’ (see Figure 4): 

ni
x

S
i

i ≤≤= 1
'

1

max

 

 

 
a) 

 
b) 

Fig. 4. a) Applying to the translated training set scaling factors such that it will be  
(b) redistributed to the whole 2D space  
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Finally, each one of the coordinates in the original points of the training set must 
be transformed in order to be redistributed in the whole unit n-dimensional hypercube 
[0,1]n through: 

ni
x

xxx
i

iii ≤≤⋅−= 1
'

1
)('

max

min

 

4   Image Classification Through 1-Dimensional Kohonen Networks 

4.1   Representing Images Through Vectors in ℜn 

Let m1 (rows) and m2 (columns) be the dimensions of a two-dimensional image. Let  
n = m1 ⋅ m2. Each pixel in the image will have associated a 3-dimensional point (xi, yi, 
RGBi) such that RGBi ∈ [0, 16777216], 1 ≤ i ≤ n, where RGBi is the color value 
associated to the i-th pixel (assuming that the color of pixels are based in the color 
model RGB). The color values of the pixels will be normalized such that they will be 
in [0.0, 1.0] through the transformation: 

16777216
_ i

i

RGB
RGBnormalized =  

Basically, we will define a vector in the n-Dimensional space by concatenating the 
m1 rows in the image considering for each pixel its normalized color RGB value.  By 
this way each image is now associated to a vector in the n-dimensional Euclidean 
space. Because of the color values normalization the scalars in such vectors will be in 
[0.1]. By this way, a set of training images to be applied in a Kohonen Network will 
be embedded in an unit n-Dimensional hypercube once they have been transformed to 
their respective associated vectors.  

4.2   Classifications Results 

Our training set contains 148 images selected from CENAPRED [3] files. These 
images represent some of the Popocatépetl volcano fumaroles during the year 2003. 
The volcano is located in the limits of Puebla state in México; and it is active and 
under monitoring since 1997. The selected images have an original resolution of 
640×480 pixels and 24-bits color under format compression JPG. 

We have implemented three 1-Dimensional Kohonen Networks with different 
topologies (in each case, we applied an scaling to the 148 original images): 

• Network Topology τ0: o Images Resolution: 112×64 
o Input Neurons: n = 112×64 = 7,168 
o Output Neurons (classes): m = 20 
o Presentations: T = 10 

• Network Topology τ1: o Images Resolution: 56×32 
o Input Neurons: n = 56×32 = 1,792 
o Output Neurons (classes): m = 30 
o Presentations: T = 1,000 

• Network Topology τ2: o Images Resolution: 260×180 
o Input Neurons: n = 260×180 = 46800 
o Output Neurons (classes): m = 25 
o Presentations: T = 500 
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The set of 148 training points (images) were presented the number of times 
according to the corresponding topologies. The training procedures were applied 
according to section 2. All the weights vectors’ were initialized to 0.5.  

Figure 5 shows the classification of the training images using the three proposed 
topologies. In the figures are also presented the distribution of the 148 training images 
in each one of the classes. Table 1 presents some images that are representative of 
each class in Network Topology τ0 (these images were selected from each class in an 
arbitrary way). 

 

Fig. 5. Classification of the 148 training images according to Network Topology a) τ0, b) τ1 and 
c) τ2 

4.3   Intensity Based Classification vs. Classification Based in the Topology of 
Pixels in the Images 

One of the problems to consider is related with the question if our implementations of 
the Kohonen Networks classify according to the total intensity color of an image or 
well, if they classify according to the connectivity, i.e. the topology, between the 
pixels that compose an image. In order to give arguments that support our hypothesis 
that our procedures share the classification according to the topology of the pixels in 
the images, we have developed two approaches: 

• An approach (section 3.3.1) based in a classification of the training images but 
when their pixels are attached to an specific permutation. If our implementation 
classify by color intensity, then we can expect a distribution of the images in the 
classes which would be similar to the distributions presented in Figures 5. 
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Table 1. Representative images of each class in Network Topology τ0 

 

• An approach (section 3.3.2) based in the distances between the weights 
vectors associated to each output neuron. The clusters themselves are 2D color 
images if we apply in an inverse way the procedure described in section 3.1. 
For example, see in the Table 2 the 2D images corresponding to the clusters in 
Network Topology τ2. In this approach we will use an additional metric that 
guarantee the comparison of images only by their color intensity. According to 
the Kohonen Network training process, the clusters (classes representatives) 
have been distributed uniformly in an unit n-Dimensional hypercube. Such 
distribution implies, in an implicit way, the fact that each cluster has itself 
specific characteristics that allow to distinguish its respective class among 
other classes. By applying the new proposed metric, we can expect that the 
distances provided by it indicate us a considerable proximity between clusters, 
hence, they have similar color intensities. Moreover, this last result should 
establish a considerable distinct distribution respect to the distribution 
indicated by the Euclidean metric. In the case that our Kohonen Network 
classify only by color intensity, then the clusters distribution reported by both 
metrics should be similar.  

4.3.1   Permutation of Pixels in the Training Images 
(See Table 3 for examples of the permutations we describe here.) 

• P1: Random permutation of all the pixels in the image. 
 • P2: Division of the image in 25 rectangular regions and random permutation of the 

pixels in each region. 
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Table 2. Visualization of clusters in Network Topology τ2 

 

Class 1 Class 2 Class 3 Class 4 Class 5 
 

Class 6 Class 7 Class 8 Class 9 Class 10 
 

Class 11 Class 12 Class 13 Class 14 Class 15 
 

Class 16 Class 17 Class 18 
 

Class 19 Class 20 
 

 Class 21 Class 22 Class 23 Class 24 Class 25 

• P3: Division of the image in 25 rectangular regions and random permutation of such 
regions. 

• P4: Division of the image in 25 rectangular regions and random permutation of the 
pixels in each region and random permutation of the regions. 

Consider to network topology τ1. In the cases of permutations P1, P3 and P4, we can 
observe in their corresponding charts (Table 4) the fact that once the training process 
has finished two classes grouped the 80% of training images. The case of permutation 

 Table 3. Permutations of pixels applied to the training images  

Original Image Permutation P1 Permutation P2 Permutation P3 Permutation P4 
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Table 4. Distribution of the training images in the classes of network topology τ1 
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Permutation P4 

τ2 differs from the others by the property that the 80% of training images is grouped 
in seven classes with more than 5 images each one. From an informal point of view, 
permutation P2 can be considered visually as a permutation that preserved, compared 
with the remaining permutations, the connectivity of the pixels respect to the original 
training images. This is because if we increment the number of rectangular regions 
(more regions than those in permutation P2) and permute its corresponding pixels, as 
the number of regions increase the corresponding image will approximate to the 
original image. In fact, the original images can be seen as images divided in regions 
with only one pixel each one, obviously, the permutation of the pixel in each region 
leave to the image in its original state. 

4.3.2   Analysis Based in an Additional Metric over ℜ+ 
Definition 1 ([1] & [2]): Let x, y ∈ ℜ+. Let ρ be the function described as 

=

<−

<−

=
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We will show in Theorem 1 that such function is a metric over ℜ+. Appendix A 
contains the propositions that support our proof. 

Theorem 1: Let x, y ∈ ℜ+. Therefore ρ(x, y) is a metric over ℜ+. 
Proof: Let x, y, z ∈ ℜ+. 
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• We will show that ρ(x, y) = ρ(y, x). 
o If x = y  ρ(x, y) = 0 = ρ(y, x). 
o If x < y  ρ(x, y) = 1 – x/y = ρ(y, x). 
o If y < x  ρ(x, y) = 1 – y/x = ρ(y, x). 

∴(∀x, y ∈ ℜ+)(ρ(x, y) = ρ(y, x)) 
• By definition of ρ: (∀x ∈ ℜ+)(ρ(x, x) = 0). 
• By definition of ρ, if ρ(x, y) = 0  x = y. 
• By property A.1, (∀x, y ∈ ℜ+)(ρ(x, y) ≥ 0). 
• We will show that ρ(x, z) ≤ ρ(x, y) + ρ(y, z). 

o If x = y = z  ρ(x, z) = 0 ≤ ρ(x, y) + ρ(y, z) = 0 
o If x = z, x ≠ y  ρ(x, z) = 0 ≤ ρ(x, y) + ρ(y, z) 
o If x = y, x ≠ z  ρ(x, z) = ρ(y, z) 
o If y = z, x ≠ y  ρ(x, z) = ρ(x, y) 
o If x < y < z  By lemma A.1, ρ(x, z) < ρ(x, y) + ρ(y, z) 
o If x < z < y  By lemma A.2, ρ(x, z) < ρ(x, y) + ρ(y, z) 
o If z < x < y  By lemma A.3, ρ(x, z) < ρ(x, y) + ρ(y, z) 
o If z < y < x  By lemma A.4, ρ(x, z) < ρ(x, y) + ρ(y, z) 
o If y < x < z  By lemma A.5, ρ(x, z) < ρ(x, y) + ρ(y, z) 
o If y < z < x  By lemma A.6, ρ(x, z) < ρ(x, y) + ρ(y, z) 

∴(∀x, y, z ∈ ℜ+)(ρ(x, z) ≤ ρ(x, y) + ρ(y, z)) 
∴ ρ is a metric over ℜ+.                                                                                                 

Let I be an image. We know that each one of its pixels pi will have associated a 
vector (xi, yi, RGBi), i ∈ [1, n], RGBi ∈ [0, 16777216]. Lets assume that the 
dimensions of each pixel are equal to one. We will define to the Total Intensity of I, 
denoted by T(I), as follows: 

=

=
n

i
iRGBIT

1

)(  

Let IA and IB two images with the same geometrical dimensions. Let T(IA) and 
T(IB) their corresponding Total Intensities. Because T(IA), T(IB) ∈ ℜ+ we can 
determine its distance through the metric ρ. 

Now, we will define the similarity between images IA and IB according to the value 
of ρ(T(IA), T(IB)). Let 0 ≤ ε < 1 be an arbitrary value such that we will establish 

IA is similar to IB ⇔ ρ(T(IA), T(IB)) < ε 

A classification based in metric ρ will not take in account the connectivity between 
the pixels in the images. For example, for the images presented in Figure 6 we have 
that ρ(T(IA), T(IB)) = 0. 

The Kohonen Network we implemented uses as part of its processes of training 
and classification the Euclidean metric over ℜn. Because each one of the 
representatives of the classes (clusters) in the network are themselves vectors in  ℜn, 
then we can determine the Euclidean distance between any pair of clusters.  
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IA  IB  

Fig. 6. An example where ρ(T(IA), T(IB)) = 0.IB is image IA with permutation P3. 

We will define a false color map that will represent the distribution of the clusters 
in the subspace [0, 1]n. The maximal Euclidean distance between any two clusters will 
be nd =max  while in the other hand the minimal distance will be dmin = 0. Every 

Euclidean distance between two clusters will be associated with a color in the 
grayscale through 

256
max

⋅
d

d . By this way if d = 0 then it will have associated the black 

color while if d = dmax then it will have associated the white color. 
Moreover, we will define a false color map that represent the distances between the 

clusters in the subspace [0, 1]n under our metric ρ. For any clusters a and b, ρ(a, b) 
will be associated with the grayscale through ρ(a, b)⋅256. If ρ(a, b) = 0 then a = b and 
therefore such distance will be represented through the black color. On the other hand, 
ρ(a, b)⋅256 → 256 while ρ(a, b) → 1. 

Consider Network Topology τ0. The false color maps associated to the distances 
between the clusters under the Euclidean metric and ρ metric are presented in Table 5. 
It can be observed in the map under metric ρ that the 47% of the distances between 
clusters are less than 0.20. This indicates that according this metric an important 
 

Table 5. False Color Maps that show the distances between clusters in Network Topology τ0 

Distances according to Euclidean Metric Distances according to ρ Metric 

 
 

In both maps: 
 Maximum Distance 
 Minimum Distance 
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number of clusters are similar with ε = 0.20 (in fact the mean distance in this metric 
was 0.2542 with variance 0.0373 and standard deviation 0.1933). In the other hand, 
we have that for topology τ0 n = 7168, hence, dmax= 7168  = 84.66. Analogously we 
consider the number of distances whose value is less than the 20% of dmax. By this 
way, the map based in the Euclidean metric reports that only the 19% of the distances 
between clusters are lower than 16.9328 (the mean distance under Euclidean metric 
was 24.2119 with variance 94.7531 and standard deviation 9.7341). In conclusion, 
both metrics report different distributions of the clusters which makes visible the 
differences between a classification based in topology of pixels, by the Kohonen 
Network, and a classification based in color intensities of the images. 

5   Conclusions 

According to the results provided by the approaches discussed in sections 3.3.1 and 
3.3.2 we can infer that image classification based in a 1-Dimensional Kohonen 
Network groups an images set according to features based in the connectivity between 
pixels, i.e., their topology. As part of our future work, we will analyze in a detailed 
way the images contained in each one of our classes and their respective 
neighborhoods in order to determine some features shared by these images. By 
identifying these features, in our images domain, we will analyze the possible 
application of our classifications in the prediction of events of Popocatépetl volcano.  

Another objective, with respect to future work, considers the comparison of our 
presented procedures, based in a non-supervised classification, with other techniques 
that allow the automated retrieval and classification of images such as Case Based 
Reasoning (CBR) and Image Based Reasoning (IBR). 
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Appendix A: Properties of ρ Function 

Property A.1: Let x, y ∈ ℜ+. Therefore ρ(x, y) ∈ [0, 1). 
Proof: We consider three cases, 

• If x = y  ρ(x, y) = 0. 
• If x < y  1 > x/y > 0  -1 < -x/y < 0  0 < 1 – x/y < 1  0 < ρ(x, y) < 1. 
• If x > y  1 > y/x > 0  -1 < -y/x < 0  0 < 1 – y/x < 1  0 < ρ(x, y) < 1. 

∴ (∀x, y ∈ ℜ+)(ρ(x, y) ∈ [0,1)).                                                                              

Lemma A.1: Let x, y, z ∈ ℜ+ such that x < y < z. Then ρ(x, z) < ρ(x, y) + ρ(y, z). 
Proof: By definition 1 and considering the established hypothesis we have that 

ρ(x, y) = 1 – x/y  ρ(y, z) = 1 – y/z ρ(x, z) = 1 – x/z 
Because by hypothesis, x < y  x/z < y/z  -x/z > -y/z  1 - x/z > 1 - y/z  

 ρ(x, z) > ρ(y, z). 
Because by hypothesis, y <z  x/y > x/z  -x/y < -x/z  1 - x/y < 1 - x/z  

 ρ(x, y) < ρ(x, z). 
Due to 1 > ρ(x, z) > ρ(y, z) and 1 > ρ(x, z) > ρ(x, y) 

 2 > 2ρ(x, z) > ρ(x, y) + ρ(y, z) = 2 – (x/y + y/z)  2 > 2 – (x/y + y/z)  
 1 > 1 – (x/y + y/z)  2 > ρ(x, y) + ρ(y, z) > 1 > 1 – (x/y + y/z)  
 ρ(x, y) + ρ(y, z) > 1  ρ(x, y) + ρ(y, z) > 1 > ρ(x, z). 

∴ ρ(x, z) < ρ(x, y) + ρ(y, z).                                                                                      

Lemma A.2: Let x, y, z ∈ ℜ+ such that x < z < y. Then ρ(x, z) < ρ(x, y) + ρ(y, z). 
Proof: By definition 1 and considering the established hypothesis we have that  

ρ(x, y) = 1 – x/y  ρ(y, z) = 1 – z/y  ρ(x, z) = 1 – x/z 
Because by hypothesis, x <z  x/y < z/y  -x/y > -z/y  1 - x/y > 1 - z/y  

 ρ(x, y) > ρ(y, z). 
Because by hypothesis, z <y  x/z > x/y  -x/z < -x/y  1 - x/z < 1 - x/y  

 ρ(x, z) < ρ(x, y). 
Due to ρ(x, z) < ρ(x, y) and ρ(y, z) < ρ(x, y) ∴ ρ(x, z) < ρ(x, y) + ρ(y, z).             

Lemma A.3: Let x, y, z ∈ ℜ+ such that z < x < y. Then ρ(x, z) < ρ(x, y) + ρ(y, z). 
Proof: By definition 1 and considering the established hypothesis we have that 

ρ(x, y) = 1 – x/y ρ (y, z) = 1 – z/y  ρ(x, z) = 1 – z/x 
Because by hypothesis, x < y  z/x > z/y  -z/x < -z/y  1 – z/x < 1 – z/y  

 ρ(x, z) < ρ(y, z)  ρ(x, z) < ρ(y, z) < ρ(x, y) + ρ(y, z)  
∴ ρ(x, z) < ρ(x, y) + ρ(y, z).                                                                                      
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Lemma A.4: Let x, y, z ∈ ℜ+ such that z < y < x. Then ρ(x, z) < ρ(x, y) + ρ(y, z). 
Proof: By definition 1 and considering the established hypothesis we have that 

ρ(x, y) = 1 – y/x ρ(y, z) = 1 – z/y  ρ(x, z) = 1 – z/x 
Because by hypothesis, z < y  z/x < y/x  -z/x > -y/x  1 - z/x > 1 - y/x  

 ρ(x, z) > ρ(x, y). 
Because by hypothesis, y < x  z/y > z/x  -z/y < -z/x  1 - z/y < 1 - z/x  

 ρ(y, z) < ρ(x, z). 
Due to 1 > ρ(x, z) > ρ(y, z) and 1 > ρ(x, z) > ρ(x, y) 

 2 > 2ρ(x, z) > ρ(x, y) + ρ(y, z) = 2 – (y/x + z/y)  2 > 2 – (y/x + z/y)  
 1 > 1 – (y/x + z/y)  2 > ρ(x, y) + ρ(y, z) > 1 > 1 – (y/x + z/y)  
 ρ(x, y) + ρ(y, z) > 1  ρ(x, y) + ρ(y, z) > 1 > ρ(x, z) 

∴ ρ(x, z) < ρ(x, y) + ρ(y, z).                                                                                     

 
Lemma A.5: Let x, y, z ∈ ℜ+ such that y < x < z. Then ρ(x, z) < ρ(x, y) + ρ(y, z). 

Proof: By definition 1 and considering the established hypothesis we have that 
ρ(x, y) = 1 – y/x ρ(y, z) = 1 – y/z ρ(x, z) = 1 – x/z 

Because by hypothesis, y < x  y/z < x/z  -y/z > -x/z  1 – y/z > 1 – x/z  
 ρ(y, z) > ρ(x, z)  ρ(x, z) < ρ(y, z) < ρ(x, y) + ρ(y, z)  

∴ ρ(x, z) < ρ(x, y) + ρ(y, z).                                                                                      
 

Lemma A.6: Let x, y, z ∈ ℜ+ such that y < z < x. Then ρ(x, z) < ρ(x, y) + ρ(y, z). 
Proof: By definition 1 and considering the established hypothesis we have that 

ρ(x, y) = 1 – y/x ρ(y, z) = 1 – y/z ρ(x, z) = 1 – z/x 
Because by hypothesis, y < z  y/x < z/x  -y/x > -z/x  1 – y/x > 1 – z/x  

 ρ(x, y) > ρ(x, z)  ρ(x, z) < ρ(x, y) < ρ(x, y) + ρ(y, z)    
∴ ρ(x, z) < ρ(x, y).                                                                                                     
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Data Dependent Wavelet Filtering for Lossless Image 
Compression 
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Abstract. A data dependent wavelet transform based on the modified lifting 
scheme is presented. The algorithm is based on the wavelet filters derived from 
a generalized lifting scheme. The proposed framework for the lifting scheme 
permits to obtain easily different wavelet FIR filter coefficients in the case of 
the (~N, N) lifting. To improve the performance of the lifting filters the 
presented technique additionally realizes IIR filtering by means of the feedback 
to the already calculated wavelet coefficients. The perfect image restoration in 
this case is obtained employing the particular features of the lifting scheme. 
Changing wavelet FIR filter order and/or FIR and IIR coefficients, one can 
obtain the filter frequency response that match better to the image data than the 
standard lifting filters, resulting in higher data compression rate. The designed 
algorithm was tested on different images. The obtained simulation results show 
that the proposed method performs better in data compression for various 
images in comparison to the standard technique resulting in significant savings 
in compressed data length.  

 

Keywords: image processing, wavelets, lifting scheme, adaptive compression  

1   Introduction 

In the past decade, the wavelet transform has become a popular, powerful tool for 
different image and signal processing applications such as noise cancellation, data 
compression, feature detection, etc. Meanwhile, the aspect of wavelet decomposition/ 
reconstruction implementation, especially for image compression applications, now 
continues to be under consideration. 

The first algorithm of the fast discrete wavelet transform (DWT) was proposed by 
S.G.Mallat [1]. This algorithm is based on the fundamental work of Vetterli [2] on 
signal/image subband decomposition by 1-D quadrature-mirror filters (QMF), and 
orthonormal wavelet bases proposed by I.Daubechies [3]. Then, W.Sweldens [4] 
proposed the lifting scheme based on polyphase factorization of known wavelets that 
now is widely used (for example, in JPEG2000 standard) for lossless image/signal 
compression based on DWT. To enhance the energy compaction characteristics of the 
DWT, different methods basing on an adaptive lifting scheme [4 - 8], principal 
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components filter banks [9] and signal-dependent wavelet/subband filter banks [10-
12] were developed recently. 

In this paper, we present an algorithm for lossless image compression that is based 
on a subclass IIR wavelet filters. These filters are derived from the generalized FIR 
wavelet lifting filters [8, 13] introducing poles in the prototype FIR filters. Performing 
causal filtering at the analysis and anticausal filtering of the time-inverted data at the 
synthesis stages, one can obtain the perfect image restoration with the presented IIR 
filters. Varying the order of the filter and the filter coefficients depending on the 
image data statistical/spectral properties, the decompositions can be optimized to 
achieve a minimum of the entropy in the wavelet domain.  

2   Generalization of the Lifting Scheme 

The lifting scheme [3] is widely used in the wavelet based image analysis. Its main 
advantages are:  the reduced number of calculations; less memory requirements; the 
possibility of the operation with integer numbers. The lifting scheme consists of the 
following basic operations: splitting, prediction and update. 

Splitting is sometimes referred to as the lazy wavelet. This operation splits the 
original signal { }x  into odd and even samples:  

ii xs 2= ,  12 += ii xd . (1) 

Prediction, or the dual lifting. This operation at the level k  calculates the wavelet 

coefficients, or the details ( ){ }kd  as the error in predicting ( ){ }1−kd  from ( ){ }1−ks : 

( ) ( ) ( )

−=

−
+

− ⋅+=
N

Nj

k
jij

k
i

k
i spdd

~

~

11 , 
(2) 

where { }p  are coefficients of the wavelet-based high-pass FIR filter and N
~

 is the 

prediction filter order. 

Update, or the primal lifting. This operation combines ( ){ }1−ks  and ( ){ }kd , and 

consists of low-pass FIR filtering to obtain a coarse approximation of the original 
signal { }x : 

( ) ( ) ( )

−=
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− ⋅+=
N

Nj

k
jij

k
i

k
i duss 1 , (3) 

where { }u  are coefficients of the wavelet-based low-pass FIR filter and N  is the 

prediction filter order. 
The inverse transform is straightforward: first, the signs of FIR filter coefficients 

{ }u  and { }p  are switched; the inverse update followed by inverse prediction is 

calculated. Finally, the odd and even data samples are merged. 
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A fresh look at the lifting scheme first was done in [13], where the FIR filters that 
participate in the prediction and update operation are described in the domain of Z-
transform. According to this approach, the transfer function of the prediction FIR 
filter can be formulated as follows [8]: 

( ) ( ) ( ) ( )1
~

21
~

2
1

~
33

1
1

0 ...1 +−−
−

−− +++++++= NN
Np zzpzzpzzpzH , (4) 

The ( )zH p  must has zero at 0= , i.e., at 1=z . It can be easily found [5] that 

this condition is satisfied when  

2

11
~

0

−=
−

=

N

i
ip . (5) 

When the condition (5) is satisfied, ( ) 21 =−pH  and ( ) 10 =pH  that means the 

prediction filter has gain 2 at π=   and unit gain at 
2

πω = .  

Following this approach, the transfer function for update filter can be obtained in 
the terms of  ( )zH p  [8]:   

( ) ( ) ( ) ( ) ( ){ }1212
1

33
1

1
0 ..1 +−−

−
−− +++++++= NN

Npu zzuzzuzzuzHzH . (6) 

Similarly, ( )zHu  must has zero at π= , i.e., at 1−=z . It can be easily found [8, 

13] that this condition is satisfied when  

4

11

0

=
−

=

N

i
iu . (7) 

When the condition (7) is satisfied, ( ) 11 =uH  and that means the prediction filter 

has gain 1 at 0= .  
An elegant conversion of the formulas (5), (7) in the case of (4,4) lifting scheme 

was proposed in [13] to reduce the degree of freedom in the predictor and update 
coefficients. With some modifications, the formulas for the wavelet filters coefficients 
are as follows: 

256

128
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−= ,  

2561
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p = ,
256

64
0

ub
u

−
= ,

2561
ub

u =  , (8) 

where pb  and ub  are the parameters that control the DWT properties. The 

correspondences between these control parameters and the conventional (non-lifted) 
biorthogonal wavelet filters can be found in reference [13].  

Using the generalization of the lifting scheme (4)- (7), we found by simulations that 
the coefficients of the lifting filters of an arbitrary order higher than 4 can be found 
according to (8) and the recursive formulas [8]: 

ω

ω

ω

ω
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(9) 

 
where the parameters up cc ,  controls the filter characteristics. This way, the lifting 

wavelet filters of an arbitrary order can be derived [8].  
In the formula (8) the parameters up bb  ,  control the width of the transition bands 

and the new parameters up cc ,  in (9) control the smoothness of the pass and stop 

bands to prevent the appearance of the lateral lobes: with greater values of up bb  ,  the 

values of up cc ,  tend to be greater [8]. In practice, one can use predictor (4) and 

update filter (6) with 6
~ =N , 6=N , 8 ,20 == up bb , 6 ,6 == up cc  to achieve 

narrow transition bands [8].  

3   Proposed IIR Lifting Scheme  

Considering generalized lifting scheme (4), (6)  that these all-zeros systems can be 
modified to obtain rational transfer functions of a special form containing zeros and 
poles as following: 
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In (10), (11) the denominators contain only even powers of z  because the outputs 
of predictor and update stages indirectly realize data subsampling (because of splitting 
(1)) and the presented transfer function are expressed in terms of input data sampling 
rate. 

A specific condition to lifting predictor is that it must have a fixed gain to fulfill 
condition (7), i.e., to prevent bias in the output of the update filer at 0=ω . This can 
be done introducing normalization by factor ...1 42 −−− pp aa  in (11): 
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Another problem arises when implementing inverse transform with IIR lifting. The 
wavelet analysis/synthesis filters must provide the perfect restoration of the original 
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data that is especially important for lossless data compression. In the traditional 
dyadic wavelet decompositions/restorations technique, special care is took to design 

orthonormal filter banks where each filter satisfies Nyquist constraint ( ) 1
2

=
↓

ωj
k eH  

[9]. In difference, the lifting scheme has a potential to design biorthogonal IIR 
wavelet filters in simpler way: in the restoration stage, one can use inverse predictor 
and inverse update filter that operates upon rearranging the input signal elements 
(wavelet coefficients) backward 

( ) ( ) ( ) ( )[ ]0,...,1, sNnsNnsnBT −−−=s , 

( ) ( ) ( ) ( )[ ]0,...,1, dNndNndnBT −−−=d . 

 

(13) 

and then filtering them with the inverse filters  
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for synthesis and next time performing rearranging of the data: {}B⋅ . 

Next, we want to proceed with integer calculus whereas it is possible. For this 
purpose, we use normalized coefficients pa2 , ua2  as in (8): 
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Taking into account all before mentioned results and restrictions, we can formulate 
the integer-to-integer IIR lifting steps as following. 
Analysis stage: 

- prediction: 
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- update: 
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Synthesis stage: 
 - inverse update: 
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- inverse prediction: 
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In formulas (17)-(18), ⋅  denotes the operation of rounding to the nearest lower 

integer value.  
The coefficients { } { }up bb ,  are that satisfy to (5), (7). Additionally, { } { }up bb , , 

NN ,
~

 and especially { } { }up AA ,  are adjusted in such a manner that the filters (17), 

(18) match to the spectral properties of the image data to minimize the well known 
first order entropy of the wavelet coefficients 
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where ip  denotes the probability of the different values of wavelet coefficients d . 

The problem of optimization can be formulated as the problem to minimize the 
following errors:  

- the square error of prediction 
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- the square error of “update first” prediction  
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is the output of “update first” low-pass filter.  
Thus, one can obtain the optimal solution finding  
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at each level of decomposition. Unfortunately, it is difficult to obtain an analytical 

solution for the optimal { } { }up bb , , NN ,
~

, { } { }up AA ,  values due to complexity of the 

expressions (22), (24). 

4   Experimental Results 

The described in the previous section algorithm were tested on a set of 512x512 
standard images “Lena”, “Baboon”, “Barbara”, “Boats”, “Goldhill”, “Peppers”, 
“Bridge” shown in Fig. 1 (these images are available, for example, at 
http://sipi.usc.edu/database/).  

     

    

Fig. 1. Set of standard test images: “Lena”, “Baboon”, “Barbara”, “Boats”, “Goldhill”, 
“Peppers”, “Bridge” v 

Table 1 presents the entropy values in bits per pixel (bpp) obtained for these 
images by applying standard lifting decomposition (1) –  (3) and CDF(1,1) wavelet 

(Haar wavelet) with 1
~ =N , 1=N , 0=a , 0=b , CDF(2,2) wavelet with 2

~ =N , 
2=N , 16=a , 8=b  (this wavelet is used by JPEG2000 for lossless image 

compression), and IIR lifting (17)-(20) with the same FIR parameters and various 
{ } { }up AA ,  values. The values of { } { }up AA ,  are those that minimize the first order 

entropy of the wavelet coefficients in the first level of decompositions, in higher 
levels they were chosen to be 0.  

Table 2 presents the entropy values in bits per pixel (bpp) obtained for the test 
images by applying generelazid lifting decomposition (4), (6) and IIR lifting (17)-
(20). The values of FIR part of the lifting scheme were varied and the values 
{ } { }up AA ,  were the same parameters as in the previous simulations (see Table 1). 

 Analyzing the simulation results presented in Table 1 and Table 2, one can 
conclude that the proposed IIR lifting transform performs better, providing lower 
entropy values for all test images in comparison to the FIR lifting. Increasing FIR 
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lifting orders NN ,
~

 and varying FIR coefficients pb , ub , pc , uc  without using IIR 

coefficients ( { } { } 0,0
rr

== up AA ), one can obtain higher data compression. The 

difference between FIR and IIR performance is small sometimes (for example, for 
Lena image), but in all cases, the IIR technique gives the best compression results. 

Table 1. Entropy values in bpp for different techniques, 2
~ =N , 2=N , 16=pb , 8=ub  in 

cases of CDF(2,2) and IIR lifting with the correspondent { } { }up AA ,  values 

Image 
Technique 

Baboon Lena Barbara Boat Bridge Peppers Goldhill 
CDF(1,1) 
lifting 6.163 4.405 5.087 5.014 3.789 4.715 4.898 
CDF(2,2) 
Lifting 6.137 4.361 4.940 4.976 3.793 4.711 4.885 

IIR Lifting 6.128 4.355 4.914 4.966 3.792 4.686 4.871 

pA2  19 11 28 -11 0 -26 15 

pA4  7 -4 11 -3 0 9 16 

uA2  9 3 8 -19 3 5 -2 

uA4  -8 0 -8 -3 -5 3 -7 

Table 2. Entropy values in bpp for different techniques, 8
~ =N , 8=N , { } { }up AA ,  are 

those from Table 1, pb , ub , pc , uc  were varied to achieve the minimum bpp 

Image 
Technique 

Baboon Lena Barbara Boat Bridge Peppers Goldhill 
Generalized 
lifting 6.134 4.359 4.825 4.972 3.792 4.701 4.885 

IIR Lifting 6.125 4.351 4.817 4.963 3.791 4.678 4.869 

pb  20 20 29 18 11 9 15 

ub  13 9 18 11 8 11 4 

pc  6 6 2 5 4 4 6 

uc  5 6 2 6 9 6 3 

5   Conclusions 

The novel algorithm of data-dependent DWT based on the generalized IIR lifting 
scheme is presented. The proposed algorithm requires only four additional integer 
sums and one floating point multiplication per pixel in comparison to the standard 
lifting decomposition. The presented previous results show that the derived algorithm 
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provides lossless image compression and the highest data compression rate comparing 
to the standard wavelet lifting technique. The simulations were performed for the case 
when the IIR filtering is applied for the first level of decomposition only and at higher 
levels the generalized FIR lifting was used, because of the difficulties dealing with 
finding the optimal filter coefficients. One can expect even better energy compaction, 
and, thus, higher compression rate with the presented algorithm optimizing the filter 
coefficients for each wavelet decomposition. This aspect of global/local optimization 
according to (23), (24) to find the optimal filter coefficients pb , ub , pc , uc , 

{ } { }up AA ,  is a subject of future work. 
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Abstract. A new robust matching algorithm for motion detection and computa-
tion of precise estimates of motion vectors of moving objects in a sequence of 
images is presented. Common matching algorithms of dynamic image analysis 
usually utilize local smoothness constraints. The proposed method exploits 
global motion smoothness. The suggested matching algorithm is robust to mo-
tion discontinuity as well as to noise degradation of a signal. Computer simula-
tion and experimental results demonstrate an excellent performance of the 
method in terms of dynamic motion analysis. 

1   Introduction 

Extraction of motion information is an essential part of any video processing system. 
Such popular tasks as relative depth from motion, 3-D shape recovery, autonomous 
vehicle or robot navigation, and moving object detection usually involve various 
motion analysis techniques. Many techniques analyzing motion from optical flow 
computation have been proposed in the past two decades [1-7]. However, reliable 
optical flow estimation remains a difficult problem when smoothness constraint is 
violated. Furthermore, algorithms based on the optical flow concept are also very 
sensitive to large values of sought motion vectors (more than one pixel) and to noise 
degradation of a signal. Among a wide variety of approaches, there exist three main 
categories of motion estimation methods: gradient-based methods [1], frequency-
based methods [2], and matching techniques [4]. In this work we remain in frame-
work of matching concept that aims to solve the correspondence problem. It is well 
known that the correspondence problem is inherently ambiguous, and some additional 
information must be added to solve it. Various approaches have been suggested for 
solving the correspondence problem [8-12]. The identification of correspondence 
between the same points in consecutive images is often formulated as a local (area-
based) optimization problem, or shortest-path technique [9]. On the other hand, the 
correspondence between the same points in neighbor images can be considered as a 
global optimization problem [11-12]. So the matching is carried out between 2-D 
arrays of images. A drawback of this approach is owing to contradictions between the 
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smoothness constraint of motion vectors between adjacent pixels and a real signal 
discontinuity at borders of object segments. In this paper, the local motion smooth-
ness constraint is replaced by a global motion smoothness criterion. The latter yields a 
high performance in optical flow based techniques. We suggest a new matching algo-
rithm, which is based on dynamic programming and global smoothness criterion. 
Computer simulation with various image sequences shows that the proposed algo-
rithm is robust to motion discontinuity and to noise degradation of a signal. Experi-
mental results with real dynamic images illustrate a very good performance of the 
method in terms of motion vector accuracy. 

2   Optical Flow Constraint and Global Optimization Technique 

A common assumption in dynamic image analysis is that the intensity of a point 
keeps constant value along its trajectory. More precisely, let f(x,y,t) denote the inten-
sity of the pixel at the coordinates (x,y) and time t. Starting from the point (x0,y0) at 
time t0, we define the trajectory of this point in time as  (x0 +uxδt,y0+uyδt, t0+δt) 
 with 

0 0 0 0 0 0( , , ) ( , , ),x yf x y t f x u t y u t t tδ δ δ= + + +  (1) 

where u = (ux(x0,y0,t0), ux(x0,y0,t0)) is the velocity vector (called the flow vector) of 
 a point (x0,y0) at time t0 and δt is called the interframe interval. 

In motion analysis common algorithms usually work if some conditions are ful-
filled. For instance gradient-based methods [1] are subject to that the motion vector 
(δrx =uxδt, δry =uyδt) and the interframe interval δt are small. Therefore Taylor’s ex-
pansion may be applied to Eq. (1),  

( , , ) ( , , ) ( , , )
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x y t
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∂ ∂ ∂
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and finally 

( , , ) ( , , ) ( , , )
0.x y

f x y t f x y t f x y t
u u

x y t

∂ ∂ ∂+ + =
∂ ∂ ∂

 (3) 

Note that Eq. (3) is not sufficient for computing the components of velocity field. 
Another drawback of optical flow approach is a severe restriction for sought values of 
motion vectors. In general for a sampled signal (digital image), Eq. (3) holds only if 
motion vector values equal or less than one pixel (image sampling interval). Actually, 
the sign “=” in Eq. (3) must be replaced by “ ”. This means that the time interval in 
the most cases is a fixed value.  

We propose a new method that is based on matching techniques. With the help of 
matching techniques Eq. (1) can be rewritten as  

( , ) ( ( , ), ( , )),x ya x y g x r x y y r x y= + +  (4) 
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where a(x,y) is the intensity function of anchor frame (snapshot at t0) and g(x,y) is the 
intensity function of the target frame (snapshot at t0 +δt ). 

We use the following dissimilarity function 

, , , , ,

n

i j k l i k r j l r i jE g aδ δ+ += −  (5) 

as a local feature of correspondence matching as well as a local error function to com-
pute the optical flow. In a sampled space the dissimilarity function values can be 
described by a 4-D array {Ei,j,k,l; i=0,…, I-1; j=0,…, J-1; k=-K,-K+1…, K; l=-L,-
L+1,…, L}. Here, I and J are the size of images, and K, L are reasonable values to 
carry out the correspondence matching, a(i,j) and g(i,j) are the sampled intensity func-
tions of the anchor and the target frames, respectively. Suppose that the motion vec-
tors possess subpixel values,  n equals to 1 or 2, and, finally, the vector’s sampling 
interval belongs to the interval 0<δr 1 that means a subpixel accuracy of the vector 
estimation in Eq. (4). 

Now we need additional constraints to solve the problem. The common approach is 
that motion vectors possess small signal variations. So absolute differences between 
all adjacent elements of the motion vector field are assumed to be bounded by values 
δv: 

 ( )1 1 1 1i j i j i j i j i jk k l l v∆ δ± ± ± ±≡ − − ≤r , , , , ,, . (6) 

Now, for a sampled signal the global optimization problem is formulated as fol-
lows: find the motion vector field { } { }i j i j i jk l≡r , , ,,  with the local smoothness con-

straint in Eq. (6) in such a way to minimize the sum of the dissimilarity function Eq. 
(5) evaluated over all elements of images:  
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1 1
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where i j vδ≤r , denote the smoothness constraint in Eq. (6). 
On the other hand, the most successful methods based on optical flow concept util-

ize the global motion smoothness criterion. In this case the objective function is a 
combination of the dissimilarity function and the squared values of gradients. So Eq. 
(7) can be rewritten as  

( ) ( )1 1 2

0 0 
  

I J

i j i j i j
r i ji j

ARG MIN E w ∆
− −

= =

= +rr r, , , ,

,

, (8) 

where w is a regularizing parameter. 
The method proposed in [11] optimizes Eq. (7) by means of modified dynamic 

programming. The problem in Eq. (8) can be also solved withy modified dynamic 
programming: 
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(9) 

Finally, the solution can be found by simple procedure, 

( ) ( )( )  
i j

J I
i j i jO O EMIN= rr

r
,

, , , , (10) 

where OI and OJ are two consecutive transforms with the use of the recurrence opera-
tor in Eq. (9) along I and J axis, respectively.  

Note, that after one transform (OI , e.g.) the solution is equal to the optimal path 
that can be calculated with conventional dynamic programming. However the global 
optimization in Eq. (8) requires 2D optimization, whereas conventional dynamic 
programming solves only 1D optimization problem. After the second transform OJ the 
necessary optimization is obtained. 

So, the proposed algorithm consists of the following steps.  

• Form the initial 4D matrix Ei,j,r of the dissimilarity function  using Eq. (5).  
• Perform two consecutive transforms with the use of the recurrence operator 

in Eq. (9) along I and J axes, respectively.  
• Extract motion information with the help of Eq. (10). 

3   Computer Experiments 

Computer experiments are carried out to illustrate and compare the performance of 
conventional matching and proposed algorithms. We are also interested in under-
standing how well the proposed matching behaves if a signal distorted due to additive 
noise. In our computer experiments matched pair of images are generated using 
known test motion vector fields. In our case, the conventional representation of resul-
tant motion vectors by needle diagrams is not effective visual tool. We illustrate 
matching results by scalar maps. The gray-scale map presentation requires scalar 
values of motion vector fields. Generated test fields are also scalar (like horizontal 
disparity in stereo images). 

Fig. 1 (a) shows the pair of matched test images. The scalar valued map of a known 
vector field is given in Fig. 1 (b). Figs. 1 (c) and (d) show the scalar valued maps 
obtained by matching with local smoothness constraint and with global smoothness 
criterion, respectively. The visual comparison of the resultant maps shows that the 
performance of the proposed algorithm is obviously much better. 
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 (a)  

   

 (b)  

   
                                 (c)                                                                (d) 
Fig. 1. (a) Test pair of matched images. (b) The scalar valued map of a known vector field. (c), 
(d) The scalar valued maps obtained by matching with local smoothness constraint and with 
global smoothness criterion, respectively. 

Next we carry out experiments with test images that are degraded using additive 
Gaussian noise. Fig. 2 (a) shows the pair of matched test images degraded due to the 
noise. The map of a known vector field is given in Fig. 2 (b). Figs. 2 (c) and (d) show 
the resultant maps obtained by matching with local smoothness constraint and with 
global smoothness criterion, respectively. The visual and numerical analysis of the 
resultant depth maps shows that the proposed matching algorithm is robust to the 
noise degradation of a signal. 
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                                 (c)                                                                 (d) 

Fig. 2. (a) Test pair of matched images degraded due to additive Gaussian noise.(b) The scalar 
valued map of a known vector field. (c), (d) The resultant scalar valued maps obtained by 
matching with local smoothness constraint and with global smoothness criterion, respectively. 

The proposed operator in Eq. (9) includes a smoothness parameter w that must be 
defined during matching process. With the help of many computer experiments we 
found that this parameter can be represented as follows: 

1
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I

i j i j
i

a a
w

I

−

+
=

−
=

, ,

. ,  (11) 

where ai,j  is the image intensity value of the anchor frame.  
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In other word, the sought parameter is proportional to the mean absolute value of 
signal gradient along the chosen axis (in Eq. (11) it is the horizontal axis of matched 
images).  

We carried out many computer experiments with different simulated motion vector 
fields, motion fields, and degradation of matched images. So numerical analysis on 
the base of the mean squared errors (MSE) criterion shows that the proposed algo-
rithm has advantage over conventional matching algorithms.  

4   Conclusion 

In this paper, a new motion estimation method based on dynamic programming 
matching and global motion smoothness criterion has been proposed. The method 
demonstrates much better results than those obtained with the use of local smoothness 
constraints. The proposed method is robust to additive noise.  
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Reynaldo Gil-Garćıa1, José M. Bad́ıa-Contelles2, and Aurora Pons-Porrata1

1 Center of Pattern Recognition and Data Mining,
Universidad de Oriente, Santiago de Cuba, Cuba

{gil, aurora}@app.uo.edu.cu
2 Universitat Jaume I, Castellón, Spain

badia@icc.uji.es

Abstract. In this paper we introduce a general framework for hierarchi-
cal clustering that deals with both static and dynamic data sets. From
this framework, different hierarchical agglomerative algorithms can be
obtained, by specifying an inter-cluster similarity measure, a subgraph
of the β-similarity graph, and a cover algorithm. A new clustering al-
gorithm called Hierarchical Compact Algorithm and its dynamic version
are presented, which are specific versions of the proposed framework. Our
evaluation experiments on several standard document collections show
that this algorithm requires less computational time than standard meth-
ods in dynamic data sets while achieving a comparable or even better
clustering quality. Therefore, we advocate its use for tasks that require
dynamic clustering, such as information organization, creation of docu-
ment taxonomies and hierarchical topic detection.

1 Introduction

Managing, accessing, searching, and browsing large repositories of text docu-
ments requires efficient organization of the information. In dynamic information
environments, such as the World Wide Web or the stream of newspaper articles,
it is usually desirable to apply adaptive methods for document organization such
as clustering.

Hierarchical clustering algorithms have an additional interest, because they
provide a view of the data at different levels of abstraction, making them ideal for
people to visualize and interactively explore large document collections. Besides,
clusters very often include subclusters, and the hierarchical structure is indeed
a natural constraint on the underlying application domain.

Static clustering methods mainly rely on having the whole collection ready
before applying the algorithm. Unlike them, the incremental methods are able
to process new data as they are added to the collection. In addition, dynamical
algorithms have the ability to update the clustering when data are added or
removed from the collection. These algorithms allow us dynamically tracking
the ever-changing large scale information being put or removed from the web
everyday, without having to perform complete reclustering.

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 302–310, 2005.
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Several incremental clustering algorithms have been proposed (e.g. see [6]).
However, these algorithms do not create cluster hierarchies. On the other hand,
various hierarchical algorithms have been used for clustering [11], but all of
them are static algorithms. Finally, there are a few algorithms that update the
cluster hierarchy when a new object arrives, such as GALOIS [3], Charikar’s
algorithm [5] and DC-tree [10]. These algorithms have several of the following
drawbacks: its time complexity is exponential with the dimension of the objects,
the number of clusters is fixed a priori, the obtained clusters depend on the data
order, they require tuning several parameters and they impose restrictions to
the representation space of the objects and to the similarity function.

In this paper we introduce a general hierarchical framework that deals with
both static and dynamic data sets. From this framework, different hierarchical
agglomerative algorithms can be obtained, by specifying an inter-cluster simi-
larity measure, a subgraph of the β-similarity graph, and a cover algorithm. We
also propose a new clustering algorithm called Hierarchical Compact Algorithm,
which is a specific variant of this framework. This algorithm is compared with
other hierarchical clustering methods using four standard document collections.
Our evaluation experiments show that this algorithm requires less computational
time in dynamic data sets than standard methods while achieving a comparable
or even better clustering quality.

2 Static Hierarchical Clustering Algorithm

We call β-similarity graph the undirected graph whose vertices are the clusters
and there is an edge from vertex i to vertex j, if the cluster j is β-similar to i.
Two clusters are β-similar if their similarity is greater or equal to β, where β is
a user-defined parameter. Analogously, i is a β-isolated cluster if its similarity
with all clusters is lesser than β.

The clustering algorithms based on graphs involve two main tasks: the con-
struction of a certain graph and a cover routine of this graph that determines
the clusters. In this context, a cover for a graph G = (V,E) is a collection
V1, V2, ..., Vk of subsets of V such that ∪k

i=1Vi = V , each one representing a
cluster.

Our hierarchical clustering algorithm is an agglomerative method and it is
based on graph too. It uses a multi-layered clustering to produce the hierarchy.
The granularity increases with the layer of the hierarchy, with the top layer being
the most general and the leaf nodes being the most specific. At each successive
layer of the hierarchy, vertices represent subsets of their parent clusters. The
process in each layer has two steps: the construction of a graph and a cover
routine of this graph. The general framework is shown in Figure 1.

In our framework, a similarity measure to compare the objects and an inter-
cluster similarity measure are required. The algorithm starts with each object
being considered a cluster. Then, it constructs a subgraph of the β-similarity
graph. The set of vertices of this subgraph must equal to the set of vertices of
the graph. A cover routine is applied to this subgraph in order to build the clus-
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Fig. 1. General framework

ters in the bottom layer. From the obtained clusters, the algorithm constructs a
new β-similarity graph and its corresponding subgraph. Then, the cover routine
is applied again to obtain the clusters in the next layer. This process is repeated
until the β-similarity graph is completely disconnected, that is, all vertices (clus-
ters) of the graph are β-isolated. In our framework, the cover routine should not
depend on the order of the incoming objects. This requirement guarantees the
order independence of the framework. Notice that we use the same β value and
a unique subgraph type in all levels of the hierarchy.

We can obtain disjoint or overlapped clusters at each level of the hierarchy,
depending on the cover routine used. It is worth noticing that if we change the
type of subgraph, the similarity measures or the cover routine in this general
framework, different hierarchical agglomerative algorithms are obtained. In our
algorithm, unlike the traditional hierarchical agglomerative algorithms, several
clusters can be merged in the same level. Also, since our stopping criterion is
that the graph is completely disconnected, the top level of the hierarchy does
not necessarily consist of one cluster.

Traditional hierarchical agglomerative algorithms can be obtained as partic-
ular cases of the previous general framework if we choose β = 0, the subgraph
should be the mutual nearest neighbour subgraph of the β-similarity graph, and
the cover routine should find the connected components in this subgraph.

2.1 Hierarchical Compact Algorithm

In this paper we propose a specific variant of the abovementioned framework.
We will call it Hierarchical Compact Algorithm (HCA). This algorithm assumes
the following issues:

1. The group-average as inter-cluster similarity measure.
2. The subgraph is the maximum β-similarity graph [4] disregarding the orien-

tation of its edges (namely undirected max− S graph).
3. The cover routine finds the connected components of the undirected max−S

graph, that is, the compact sets [9].
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The main steps of the method are shown in the Algorithm 1.

Algorithm 1 Static Hierarchical Compact Algorithm.
1. Put each object in a cluster on its own.
2. level = 0.
3. Construct the β-similarity graph, Glevel.
4. While Glevel is not completely disconnected:

(a) Construct the undirected max − S graph (subgraph of Glevel).
(b) Find the connected components of this subgraph.
(c) Construct a new β-similarity graph, Glevel+1, where each vertex represents a

connected component and the inter-cluster similarity is group-average.
(d) level = level + 1

The proposed algorithm can produce clusters with arbitrary shapes and the
generated set of clusters at each level of the hierarchy is unique, independently
on the arrival order of the objects. Also, since we use the maximum β-similarity
graph, the algorithm produces cohesive clusters. In our algorithm, the number
of clusters is not fixed. Besides, it requires a unique parameter and therefore it
reduces the problem of tuning the parameter values to suit specific applications.
The computational complexity of the HCA algorithm is O(n2).

3 Dynamic Hierarchical Clustering Algorithm

Our dynamic general framework can be defined in a similar way to the static
framework explained above. The main difference is that the construction of the
graphs and the cover routine must be dynamic. Given a hierarchy of clusters
previously built by the algorithm, each time a new object arrives (or is removed),
the clusters at all levels of the hierarchy must be revised. The steps of the method
are shown in Algorithm 2.

As it can be noticed, the dynamic algorithm comprises the updating of the
graphs and the updating of the cover at each level of the hierarchy. The updating
of the β-similarity graph is trivial. The details of the other updating processes
are described below, focusing in the Dynamic Hierarchical Compact Algorithm
(DHCA). In this particular case, we need to update the undirected max − S
graph and its connected components at each level of the hierarchy.

When a new object arrives, a new unitary cluster is created and the β-
similarity graph of the bottom level is updated. Then, the undirected max− S
graph is updated too, which can produce a new vertex and can also produce
new edges and remove others (see Algorithm 3). Every time an edge is removed
from the undirected max−S graph, the cluster (connected component) to which
the vertices of this edge belong can become unconnected. Therefore, that cluster
must be reconstructed. On the other side, every time an edge is added to the
undirected max − S graph, the clusters of its vertices are merged if they are
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Algorithm 2 Dynamic general framework.
1. Arrival of an object to cluster (or to remove).
2. Put the new object in a cluster on its own (or remove the cluster to which the

object belongs).
3. level = 0.
4. Update the β-similarity graph, Glevel.
5. While Glevel is not completely disconnected:

(a) Update the subgraph of Glevel.
(b) Update the cover of this subgraph.
(c) Update the β-similarity graph, Glevel+1.
(d) level = level + 1

6. If there exist levels greater than level in the hierarchy, remove them.

different. The updating of the connected components produces new clusters and
removes others (see Algorithm 4). When clusters are created or removed from a
level of the hierarchy, the β-similarity graph of the next level must be updated.
This process is repeated until this graph is completely disconnected. It is possible
that the β-similarity graph became completely disconnected before the top level
of the hierarchy is reached. In this case, the next levels of the hierarchy must be
removed.

Algorithm 3 Undirected max− S graph updating.
1. Let N be the set of vertices to add to the undirected max − S graph and R the

set of vertices to remove from it.
2. Let M be the set of vertices for which a vertex of R is its most β-similar vertex.
3. Remove all vertices of R from the undirected max − S graph and add all vertices

of N to it.
4. Find the most β-similar vertices of each vertex of M∪N and add the corresponding

edges to the max − S graph.
5. Find the vertices for which a vertex of N is its most β-similar vertex and update

the corresponding edges.

4 Experimental Results

The performance of the Dynamic Hierarchical Compact Algorithm has been eval-
uated using four document collections, whose general characteristics are summa-
rized in Table 1. Human annotators identified the topics in each collection. The
smallest of these datasets contains 695 documents and the largest contains 10369
documents. To ensure diversity in the datasets, we obtained them from different
sources.

The AFP collection is from the TREC-5 conference [1] and it contains some
articles published by the AFP agency in 1994 year. The ELN collection contains
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Algorithm 4 Connected component updating.
1. Let N be the set of vertices added to the undirected max − S graph and R the

set of vertices removed from it. Let, also, NE be the set of edges added to the
undirected max − S graph and RE the set of edges removed from it.

2. Let Q be a queue with the vertices to be processed, Q = ∅.
3. Remove all vertices of R from their clusters. Put the remaining vertices of these

clusters into Q. Put, also, all vertices of the clusters where at least one edge of RE
is incident to a vertex of the cluster into Q. Remove these clusters from the list of
the existing clusters.

4. Put all vertices of N into the queue Q.
5. Build the connected components from the vertices in Q and add them to the list

of existing clusters.
6. For each edge of NE, merge the clusters to which its vertices belong.

Table 1. Description of collections

Collection Source Documents Terms Topics
AFP TREC-5 695 12575 25
ELN TREC-4 5829 84344 50
TDT TDT2 9824 55112 193
REU Reuters-21578 10369 35297 120

a set of ”El Norte” newspaper articles dated from 1994. Both collections are in
Spanish. We also use the TDT2 dataset, version 4.0 [2]. This corpus consists of
6 months of news stories from the January to June 1998. The news stories were
collected from six different sources. Human annotators identified a total of 193
topics in the TDT2 dataset. 9824 English stories belong to one of these topics,
the rest are unlabeled. Finally, from Reuters-21578 [8] we selected the documents
that are assigned one or more topics and have <BODY> and </BODY> tags.

In our experiments, the documents are represented using the traditional vec-
torial model. The terms of documents represent the lemmas of the words ap-
pearing in the texts. Stop words, such as articles, prepositions and adverbs are
disregarded from the document vectors. Terms are statistically weighted using
the term frequency (TF). To account for documents of different lengths, the
vector is normalized using the document length. We use the traditional cosine
measure to compare the documents.

There are many different measures to evaluate the quality of clustering. We
adopt a widely used external quality measure: the Overall F-measure [7]. This
measure compares the system-generated clusters with the manually labelled top-
ics and combines the precision and recall factors. The higher the overall F-
measure, the better the clustering is, due to the higher accuracy of the clusters
mapping to the topics.

Our experiments were focused on evaluating the quality of the clustering
produced by other well known hierarchical clustering methods: Average-link,
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Complete-link and Bisecting K-Means. We compare these algorithms with our
Dynamic Hierarchical Compact Algorithm.

The results for the various document collections and methods are shown in
Table 2. In our algorithm we only evaluated the top level of the hierarchy and
the parameter β that produced the best results was chosen. On the contrary, in
the other algorithms we consider the flat partition produced by the best level of
the hierarchy.

As it can be noticed, our method is either the best or always near to the best
solution. It is worth mentioning that our algorithm obtains these results with
both less total number of clusters and levels.

Table 2. Quality results obtained by different clustering algorithms

Data Algorithm Levels Clusters in hierarchy Clusters in best level F-Overall
AFP Average-link 695 1389 40 0.84

Complete-link 695 1389 29 0.83
Bisecting K-Means 695 1389 13 0.69
DHCA(β = 0.12) 3 226 45 0.82

ELN Average-link 5829 11658 170 0.41
Complete-link 5829 11658 80 0.41

Bisecting K-Means 5829 11658 42 0.36
DHCA(β = 0.10) 4 1033 73 0.46

TDT Average-link 9824 19645 165 0.77
Complete-link 9824 19645 255 0.50

Bisecting K-Means 9824 19645 122 0.40
DHCA(β = 0.12) 4 2636 136 0.76

REU Average-link 10369 20737 100 0.53
Complete-link 10369 20737 180 0.37

Bisecting K-Means 10369 20737 101 0.23
DHCA(β = 0.12) 4 2095 101 0.52

Figure 2 shows the time spent by the DHCA algorithm and the three classical
hierarchical algorithms mentioned above. Each curve represents the time spent
to cluster the document sub-collections of size 1000, 2000 and so on. Since the
dynamic nature, our algorithm needs to update the cluster each time a new
document arrives, which clearly increases its cost (see curve DHCA-T). However,
in a dynamic environment we have a collection partially clustered and some new
documents arrive. In this case the static algorithms have to cluster the whole
collection again, whereas the DHCA algorithm only needs to update the existing
clusters. DHCA-P represents the time spent by our algorithm to update the
clusters when adding 1000 documents every time. For example, the value shown
with 7000 documents represents the time spent to add 1000 new documents
to the clustering when we have already clustered 6000 documents. As we can
observe, in this case the DHCA clearly overcomes the static algorithms.
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5 Conclusions

In this paper a hierarchical clustering framework, both static and dynamic, has
been introduced. This framework is based on the β-similarity graph (relies only
on pair-wise document similarity information). Different hierarchical agglomera-
tive algorithms can be obtained from it, by specifying an inter-cluster similarity
measure, a subgraph of the β-similarity graph, and a cover algorithm of this
subgraph. The traditional hierarchical agglomerative methods can be seen as
particular cases of this general framework.

Since in our framework several clusters can be merged at the same level and
it stops when the graph is completely disconnected, we can obtain a cluster
hierarchy composed by few levels.

A specific variant of the proposed framework, called Hierarchical Compact
Algorithm is also introduced. This algorithm obtains cohesive clusters with ar-
bitrary shapes. Another advantage of HCA is that the number of clusters is not
fixed and the algorithm requires a unique parameter.

The dynamic version of the Hierarchical Compact Algorithm can be used
to organize dynamic data, such as the creation of document taxonomies and
the hierarchical topic detection task. Its most important novelty is that it is a
dynamic clustering algorithm able to build a cluster hierarchy independent on
the data order.

This algorithm was compared with other clustering algorithms in four stan-
dard document collections. The experimental results show that our algorithm
achieves a comparable or better clustering quality. Moreover, the algorithm
achieves better time performance than other traditional hierarchical clustering
algorithms in dynamic collections.

Finally, though we employ our algorithm to cluster document collections, it
can be also applied to any problem of Pattern Recognition with mixed objects.
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Abstract. The automatic detection of different foot’s diseases requires
the analysis of a footprint, obtained from a digital image of the sole.
This paper shows that optical monochromatic images are not suitable
for footprint segmentation purposes, while color images provide enough
information for carrying out an efficient segmentation. It is shown that
a multiplayer perceptron trained with bayesian regularization backprop-
agation allows to adequately classify the pixels on the color image of
the footprint and in this way, to segment the footprint without fingers.
The footprint is improved by using a classical smoothing filter, and seg-
mented by performing erosion and dilation operations. This result is very
important for the development of a low cost system designed to diagnose
pathologies related to the footprint form.

1 Introduction

When the foot is planted, not all the sole is in contact with the ground. The
footprint is the surface of the foot in contact with the ground. The characteristic
form and zones of the footprint are shown in figure 1(a). Zones 1, 2 and 3
correspond to regions in contact with the surface when the foot is planted; these
are called anterior heel, posterior heel and isthmus respectively. Zone 4 does
not form part of the surface in contact and is called footprint vault [18]. These
footprints play a key role in the detection of different foot’s diseases.

The sole image can be acquired either in gray scale or color format. The
segmentation of gray scale images can be done using standard techniques [7].
However, there are some problems with the segmentation of gray scale images
produced by shadows, surface curvature and metamerism [21]. Taking in ac-
count the previous problems, segmentation techniques in color images have been
developed. There are studies where the operators for edge detection have been
extended from gray scales to color images [3], [8]. In other cases, segmentation
techniques based on neural networks and statistical classifiers have been devel-
oped [1]. Good reviews of segmentation techniques based on color images can be
found in [4] and [5].
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Among segmentation methods relevant for this study is the use of neural
networks. In particular, the multilayer perceptron (MLP) and the training algo-
rithm called backpropagation [9] have been successfully used in classification and
functional approximation. An important characteristic of MLP is its capacity to
classify patterns grouped in classes not linearly separable. Besides that, it has
been shown that a one-hidden-layer perceptron (or two-layer perceptron) is an
universal function estimator [19].

The first disadvantage of the backpropagation algorithm is its speed of con-
vergence, this has led to the use of more sophisticated optimization methods.
A good summary of these optimization methods is found in [13], and the ap-
plication of such methods to the training of neural networks can be found in
[17].

A second disadvantage of MLP trained with error backpropagation is that it
may classify by mistake patterns not participating in the training process; i.e. it
lacks of generalization. Generalization means that the neural network correctly
classifies unknown patterns.

A technique to improve the generalization is called regularization, and con-
sists in building a cost function from the sum of a function for error measure-
ment (typically the average quadratic error) and a function representing the
network complexity. Different regularization methods propose different func-
tions for representing the network complexity, as example: weight decay [6],
weight elimination[11] and approximate smoother [22]. A current technique is
the bayesian regularization, which uses the weight decay as the cost function,
the Levenberg-Marquardt optimization algorithm [10], and a bayesian approach
for defining the regularization parameters [2]. Among the advantages of the
bayesian regularization technique are: (1) by using the Levenberg-Marquardt
optimization algorithm, the speed of the learning process is improved, and (2)
it provided the effective parameters the network is using. By using the network
effective parameters, it is possible to define the amount of neurons in the hidden
layer according to the procedure described in [10].

The data set used in this work, containing more than 200 images, was ob-
tained using a prototype designed and built to capture sole images. Matlab,
the Image Processing Toolbox and the Neural Networks Toolbox were used as
platform for carrying out most of data processing work. The structure of this
paper is as follows. Section 2 describes the problem of capturing footprints us-
ing gray scale images, shows the footprint segmentation using color images and
neural networks, and describes the segmentation improvements. Section 3 shows
a quality measurement of the footprint segmentation. Finally, Section 4 provides
some conclusions.

2 Footprint Segmentation Using Color Images and
Neural Networks

A first attempt to solve the segmentation problem considered gray scale images,
since the use of this type of image allows the use of simple algorithms for its
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(a) Zones of the sole (b) Gray level image (c) Color image

Fig. 1. Images of the sole

segmentation. Figure 1(b) shows a gray-scale footprint image. It can be seen at
first sight that there are patterns of the vault of the foot which have the same
level of gray as others of the posterior heel. This means that different regions
reflect the same amount of light (i.e. having the same gray values, whereas being
differently colored), this phenomenon is known as metamerism [21]. Thus, for
this application, a segmentation based on gray scale is not adequate to separate
the pixels of the footprint from the rest of the image by a simple threshold
method.

Because of the metamerism problem in gray scale images, the use of color
images is proposed. Color model means the specification of a system of three-
dimensional coordinates and a subspace of this system in which every color is
represented by only one point [7]. The RGB color model has been used in this
study. Figure 1(c) shows a color footprint image.

This work proposes the use of NN for footprint segmentation. The network
acts as a pixel classifier [1],[15], and by the training process, it learns the pixel
classes of the training set. In addition, by its generalization capabilities, it can
also adequately classify pixels from the same image but not belonging to the
training set and also pixels belonging to other images.

The neural network has three inputs corresponding to the RGB coordinates
of the particular color. In the color footprint image in figure 1(c) it is clearly
shown the existence of 3 pixel classes: the one from the image background, the
one from the vault, and the one from the footprint. The network has an output
assuming the value 1 for background pixels, 0 for the footprint, and -1 for the
vault. The training set considers 709 samples selected from just one image, the
26% correspond to the background, 38% to the vault and 36% to the footprint.
The size of each sample image is 434x342 pixels. The training of the multi-layer
perceptron has the following characteristics:

– A hidden-layer MLP was used.
– Number of inputs: 3.
– Number of outputs: 1.
– A bayesian regularization backpropagation as training algorithm.
– Learning in batch modality, where weights are updated at the end of each

stage.
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Table 1. Determining the amount of neurons in the hidden layer for the footprint
segmentation by using MLP

NNCO Epochs SSE SSW Effective parameters Total parameters
1 142/3000 130.657/0.001 55.7698 3.14e+000 6
2 45/3000 0.00029/0.001 8221.40 1.09e+001 11
3 18/3000 0.00067/0.001 6425.98 1.44e+001 16
4 36/3000 0.00048/0.001 7446.65 1.93e+001 21
5 125/3000 0.00064/0.001 3680.94 2.33e+001 26
6 66/3000 0.00073/0.001 3023.94 2.76e+001 31
7 113/3000 0.00080/0.001 3267.58 3.31e+001 36
8 329/3000 0.00091/0.001 3047.76 3.65e+001 41
9 104/3000 0.00098/0.001 2636.46 4.00e+001 46
10 150/3000 0.00097/0.001 2790.33 4.31e+001 51
11 140/3000 0.00079/0.001 2618.23 4.77e+001 56
12 292/3000 0.00099/0.001 2272.81 4.90e+001 61
13 194/3000 0.00096/0.001 2269.79 5.52e+001 66
14 218/3000 0.00090/0.001 2327.66 5.85e+001 71
15 182/3000 0.00099/0.001 2325.35 5.51e+001 76
16 225/3000 0.00093/0.001 2287.15 5.96e+001 81
30 261/3000 0.00099/0.001 2212.30 5.94e+001 151

– The initial network weights were generated by the Nguyen-Widrow method
[12] because it increases the convergence speed of the training algorithm [10].

– The initial regularization parameters a and b were 0 and 1 respectively.
– Successive trainings were done increasing progressively the amount of neu-

rons in the hidden layer.

To determine the amount of neurons of the hidden layer, the procedure de-
scribed in [10] was used. The details of this procedure are shown in table 1,
where NNCO corresponds to the number of neurons in the hidden layer, SEE is
the sum of the quadratic errors and SSW is the sum of the weight squares.

From the previous table it can be seen that from 13 neurons in the hidden
layer, the SSE, SSW and the effective parameters stay practically constants. As
a result, 13 neurons are considered in that layer. The evolution of SSE, SSW
and the effective parameters are shown in figure 2. Figure 3 shows the classifica-
tion results. The classification errors in the footprint edge can be improved by
carefully choosing with more detail the training set in this zone.

Because the detection of pathologies related to the footprint shape requires
the capture of the footprint without toes, the previous result is improved by
smoothing the footprint and by eliminating the toes.

The improvement steps are the following: (1) binarization, (2) footprint ero-
sion in order to disconnect the toes if it is necessary, (3) smoothing of the foot-
print by median filter or a low pass filter in the frequency domain, (4) discharging
the toes by ticketing and segmentation by size, and (5) image dilation in order
to recover the size. The techniques previously noted are described in [7]. To
visualize the improvements, the binarization is shown in figure 4(a), erosion is
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shown in figure 4(b), toe elimination is shown in figure 4(c), smoothing is shown
in figure 4(d), dilation in figure 4(e), and the final result of the surrounding over
the color image in figure 4(f).

3 Quality Assessment of the Footprint Segmentation

In the literature there are few methods to assess the quality of segmentation
[14],[20], because the main reference is the one done by the human brain. Hence
it is common in segmentation problems to compare the results obtained by the
proposed algorithm with the human segmentation [15].

In order to assess the quality of the segmentation carried out by the MLP, a
human-assisted segmentation was carried out for 10 footprint images and they
are compared with the ones obtained by MLP. The results of such comparison
are given in table 2, also the human segmentation of the footprint, the segmen-
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(a) Binarization
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(b) Erosion (c) Toe elimination

(d) Smoothing (e) Dilation (f) Final edge

Fig. 4. Improvements in the footprint segmentation

Table 2. Quality assessment of the segmentation

N Size of images Different colors Pixels bad classified Percent pixels good classified
1 324x139 12518 1827 95,94
2 260x112 8741 1000 96,56
3 260x115 8567 1335 95,46
4 268x121 10008 1304 95,97
5 280x118 10626 1029 96,87
6 300x138 13062 1515 96,34
7 280x118 7586 1005 96,96
8 264x113 9903 709 97,62
9 260x118 8244 1335 95,58
10 294x124 10492 1337 96,25

tation done by MLP and its errors are shown respectively in figures 5(a), 5(b)
and 5(c). The figures show that the classification errors are concentrated in the
borders. It must be noted that the footprint edges are not well defined and there
is a small transition zone, where it is not possible to have a perfect human seg-
mentation. It is possible to improve these results by using a training set with
more samples corresponding to the edge zone. It is important to remark that the
error introduced by the presence of toes is completely eliminated by the process
described in the previous section.
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(a) Manual segmentation (b) MLP segmentation (c) Segmentation error

Fig. 5. Segmentation quality

4 Conclusions

This work has illustrated that the footprint segmentation using gray scales is not
possible due to the problem known as metamerism, and the use of color image
is then required.

The multilayer perceptron trained with bayesian regularization backpropa-
gation not only enables to learn a training set representing the task of pixels
classification but also to classify adequately pixels of other images.

Future work will consider a comparative study among different automatic
segmentation algorithms, such as: non-parametric and non-supervised statistical
classifier [23], self-organized neural networks [16], and the use of techniques for
edge detection in color images [3],[8].

The results of this study are promising and they have established a very
simple and fast method for footprint automatic detection with no toes. It is
foreseen on the near future the development of an automatic and real time
diagnosis system of pathologies related with the footprint shape.
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Abstract. A new model to compute similarity is presented. The representation 
of a 3D object is reviewed; sequence of vertices and index of vertices are the 
basic information about the shape of any 3D object. A linear function called 
Labeling is introduced to create a new sequence or time series from a 3D object. 
A method to create randomly 3D objects is also described. Experimental results 
show viability to compute similarity among 3D objects using the extracted 
sequences and the Dynamic Time Warping algorithm. 

1   Introduction 

The problem of defining and computing similarity among objects (concepts, time 
series, images, 3D objects, etc.) is the essence of many Data Mining applications. 

Most of the methods of similarity search among 3D objects use a feature extraction 
technique [1]. A transformation from a 3D object to a feature vector is involved. The 
goal is to preserve, discover or select some property. This feature vector can be 
handled as a time series. Other methods consider 3D objects as images sequences (2D 
view based methods); afterward, models of similarity search among images. Also, 
there are methods based on histograms, even though they can be a particular case of 
feature extraction based methods, usually belong to another class (Histogram based 
methods).  Finally, hybrid methods exist. In this work a new model to compute 
similarity among 3D objects is presented. 

This work is organized as follow. In section 2, the Dynamic Time Warping 
algorithm used to compute similarity among sequences is described. In section 3, the 
3D Object Representation is discussed. In section 4, a linear function called Labeling 
is presented. This function converts the 3D object representation (sequence of vertices 
and index of these vertices) to a new sequence or time series useful to the properties 
of the Dynamic Time Warping algorithm. In section 5, a method to create randomly 
3D objects is introduced. In section 6, A Model to Compute Similarity is presented. In 
section 7 results of Experimental Test that show viability of the model are presented. 
Finally, Conclusions of this work are presented in section 8. 

2   Dynamic Time Warping 

The Dynamic Time Warping algorithm has been applied in automatic speech 
recognition; is fundamentally a feature-matching scheme [2].  
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Given two sequences Q and C (1), to accomplish the alignment (feature-match) is 
build a matrix of size n by m, where the (i,j) element of the matrix contains the metric 
d(qi, cj) (2), in this case the Euclidean metric: 

ni qqqqqQ ,,,,,, 321 KK= ;   
mj cccccC ,,,,,, 321 KK=  (1) 

2
)(),( iiii cqcqd −=  (2) 

The objective of the Dynamic Time Warping algorithm is to find a relation i = (j) 
that produces a warping path. 

Definition 1. Warping path: A warping path W, is a contiguous set of matrix elements 
that defines a relation between two sequences, The kth element of W is defined as wk = 
(i,j)k, so we have: 

1),max(,,,,, 21 −+<≤= nmKnmwwwwW Kk KK  (3) 

Until now, the time and space complexity of the Dynamic Time Warping algorithm 
is O(nm) [3]. Several constraints has been proposed to reduce the complexity: 

1. Endpoint Constraints. Requires that the endpoints match exactly; any path begin 
at (q1,c1), and end at (qn, cm). Another approach automatically locates endpoints . 

2. Monotonic. The warping path should be monotonic, that is, qk-1  qk and ck-1  ck. 
The features of a sequence Q must never  match to features already matched in the 
sequence C. 

3. Global Constraints. They imply allowed regions in the matrix; no warping path 
must be outside this area, even if optimal. Itakura parallelogram (left-side Fig. 1) 
constrains a warping path for maximum compression and expansion factors of two 
[2], the Window band (right-side Fig. 1) defines a windows width r to compress or 
expand the search space of a warping path. In this work the Itakura parallelogram 
is used. 

4. Local Constraints. Determine alignment flexibility. In this work the warping path 
search is in 0°, 45° and 90°, Fig. 2 depicts this local constraint. 
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Fig. 1. a) Itakura parallelogram, and b) Window band are the most common global constraints 
for Dynamic Time Warping 
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Fig. 2. The local constraint used in this work. It establishes the vicinity in the warping path 
search. 

To avoid an exponential number of warping paths, we use only the warping path 
that minimizes the cost: 

≡
=

K

k
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1
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The denominator K is used for the fact that warping paths may have different 
lengths; the sequence with the lowest match score is declared the most similar. The 
warping path can be found using dynamic programming, specifically: 

)}1,(),,1(),1,1(min{),(),( −−−−+= jijijicqdji ii γγγγ  (5) 

In Fig. 3 an example of two sequences before and after alignment, is shown, the 
reference (continuous line) and the sample (dotted line). 
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Fig. 3. Example of two sequences. Reference and sample are aligned using Dynamic Time 
Warping. 

3   3D Object Representation 

A 3D object can be represented as a graph; a graph is represented by an adjacency 
matrix. Most of the file formats used to represent 3D objects use an approximation of 
an adjacency matrix, that is, a sequence of vertices (6) and an index of vertices (7). 

( )kvvvV ,,, 21 K= , where ( )iiii zyxv ,,=  and ℜ∈iii zyx ,,  (6) 

( )
nfff vvvF ,,,

21
K= , where [ ]kf j ,1∈  (7) 

Sequence of vertices V composes the graph nodes in a 3D space. The index of 
vertices F implies the  order in which  vertices must be drawn, and therefore the graph  

(i-1,j) (i,j) 

90° 

0° 

45° (i-1,j-1) (i,j-1) 
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v0=(0,0,0) 

v1=(1,0,0) 

v2=(1,1,0) 

v4=(0,0,1) 

v7=(0,1,1) 

v5=(1,0,1)

v3=(0,1,0) 

v6=(1,1,1)  
 
 
 
 
 
 
 

 

Fig. 4. The figure shows a cube, eight vertices are defined (v0-v7), the index of vertices is: v0, v1, 
v2, v3, -1, v2, v6, v7, v3, -1, v6, v5, v4, v7, -1, v1, v2, v6, v5, -1, v0, v4, v7, v3, -1, v1, v5, v4, v0 

edges. Additional information such as position, rotation, cameras location, textures, 
etc., is ignored. Only the 3D object shape is considered when similarity is computed. 

In Fig. 1 a cube in VRML format [4] is presented. Vertices are 3D points, the 
presence of -1 in the index of vertices means that the face sequence is almost 
complete and an extra vertex has to be added. For example, the first face composed by 
(v0, v1, v2, v3, -1), -1 has to bee substituted by v0, that is, the first vertex in the face 
sequence. Several representations (file formats) uses this representation. Small 
modifications in index of vertices are detected. In this work this basic information is 
used (sequence of vertices and index of vertices). Graphics libraries, like OpenGL [5] 
agree this shape representation. The next code shows how to draw a 3D Object 
(polygon) defined by means of a sequence of vertices and an index of vertices 

glBegin(GL_POLYGON); 
  for (int i=0; i < length(F); i++) 
    glVertex3f(V[F[i]].x, V[F[i].y, V[F[x].z); 
glEnd(); 

The glVertex3f primitive puts a 3D point (vertex) in floating type. The F array 
is the index of vertices (7), and the structure V is the array of vertices or sequence of 
vertices (6). The next section presents a linear function to create another sequence or 
time series based on sequence of vertices and index of vertices. 

4   Labeling 3D Objects 

The Dynamic Time Warping is an excellent metric that can be indexed [3]. Given a 
sequence of vertices V and index of vertices F of any 3D object, a linear function 
(Labeling) is presented to create a new sequence. These sequences can be used to 
compute similarity among 3D objects using Dynamic Time Warping advantages. 

Function Labeling(V, F):Q 
  for (int i=0; i < length(F); i++) 
    Q[i]=V[F[i]].x + V[F[i]].y + V[F[i]].z; 
  return Q; 

Parameters of the linear function (Labeling) are sequence of vertices V (6) and index of 
vertices F (7). The output is a sequence or time series Q that reflexes the  

x

y

z 
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Table 1. A polyhedron of four vertices and a vertex index of length 16, the plot shows 
sequence Q 

Vertices Q 
)529.1,081.1,0(1 =v  2.61 

)0,081.1,529.1(2 −=v  0.448 

)529.1,081.1,0(0 −=v  -0.45 

)529.1,081.1,0(1 =v  2.61 

)0,081.1,529.1(2 −=v  0.448 

)0,081.1,529.1(3 −−=v  -2.61 

)529.1,081.1,0(0 −=v  -0.45 

)0,081.1,529.1(2 −=v  0.448 

)0,081.1,529.1(3 −−=v  -2.61 

)529.1,081.1,0(1 =v  2.61 

)529.1,081.1,0(0 −=v  -0.45 

)0,081.1,529.1(3 −−=v  -2.61 

)0,081.1,529.1(3 −−=v  -2.61 

)0,081.1,529.1(2 −=v  0.448 

)529.1,081.1,0(1 =v  2.61 

)0,081.1,529.1(3 −−=v  -2.61 

movements of drawing a 3D object, the object vertices have been labeled with the x, 
y, and z addition. In Table 1 a polyhedron of four vertices (v0-v3) is considered. 

5   Random Modifications of 3D Objects 

To show the efficiency of the model (computing similarity among 3D objects using 
Dynamic Time Warping), a method to create 3D objects is described. Given a 3D 
object, cube, pyramid, etc., called base, random modifications to the sequence of 
vertices V are made. The algorithm is sketched in the next code. 

bool CObject3D::RetriveVRML(char *filename) { 
 if (wml.Open(filename)) //VRML file (.wml) 
  if(wml.Retrive(&V, &F)) return true; 
  else return false; 
 else return false; } 

The CObject3D contains basic information (see section 3), that is, a sequence of 
vertices called V and an index of vertices called F. RetriveVRML method accepts a 
3D object base (cube, prism, etc.) in VRML format, it can be modified to accept other 
grammar that define a sequence of vertices and an index of vertices (.3ds-The 3D 
Studio Format, .dfx-Autodesk’s/AutoCAD, .off-Object File Format, etc.). 

CObject3D::RandomModify(int nModify) { 
 int list[V.Length]={0}; // Vertices to be modified 

-3 -2 -1 0 1 2 3

1
2

3
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5
6

7
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9
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13
14

15
16

 (6)
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myRand.IRandom(0, vertices.Length) 

 int count=0;         // Number of modifications  
 double x, y, z, min, max; 
 min = V.GetMin();  max = V.GetMax(); 
   
 for(int i=0; i < nModify; i++) 
  list[(int)myRand.IRandom(0, vertices.Length)]++; 
 for(i=0; i < V.Length; i++) 
  if(list[i]>0) { 
    count++; 
    x = myRand.IRandom(min, max); 
    y = myRand.IRandom(min, max); 
    z = myRand.IRandom(min, max); 
    V.ModifyVertix(i, x, y, z); } 
    wml.SaveVRML(&V, &F, count);     } 

RandomModify method defines a vertex list called list with the candidates to 
be modified using a pseudo-random number generator with uniform distribution and 
period of 219,937-1 [6] (Mersennne Twister). Uniform distribution warranties equal 
probability to each vertex to be modified. nModify parameter gives indirect control 
of modifications number made to a sequence of vertices. Finally, ModifyVertix, 
updates the x, y, and z component of vi . Fig. 1 depicts this idea.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. A 3D Object base is the input to generate new 3D Objects with a) one modification, b) 
two modifications, and c) three modifications 

Given a new data set of 3D Objects randomly created, a Labeling function (see 
section 4) can be computed over this data set to compute their similarity. 

6   A Model to Compute Similarity 

To compute similarity among 3D objects, a stage of pre-processing is required. The 
Labeling function creates sequences from 3D objects (see section 4), and these 
sequences are used to calculate a match score among these 3D objects. Fig 6 shows 
the model to compute similarity among 3D objects. An advantage of Dynamic Time 
Warping is that can be indexed. Future work presents results of indexing techniques. 
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a) b) c) d) e) f) g)

Less Similar 

 

Fig. 6. For each 3D object in the database a sequence is created (see section 4). Using Dynamic 
Time Warping a similarity distance among 3D objects can be computed. 

7   Experimental Tests 

Two data sets were used in this work: 3D objects created with a typical Computer 
Design System CAD (specifically, 3D Studio Max 6) and 3D objects randomly 
created (see section 5), the pre-processing stage using the Labeling function (see 
section 4) was applied to all 3D objects, finally, Dynamic Time Warping metric was 
computed for each reference sequence (extracted from a 3D object) against every 
sample in the database.  

 
 
 
 
 
 
 
 
 

Fig. 7. a) SockAbsorber02, b) ChafCil01, c)Ext_C01, d)Ext_L01, e)Gengon01, f) Huso01, 
g)Pyramid01 and their two most similar 3D objects 

Fig. 7 shows partial results. In Fig. 7 the less similar 3D objects to b), f) and g) 
respectively (marked with *), were created as part of another class (specifically, 
Gengon03, ChafCil05, and Polyhedron03), the proposed model can distinguish their 
similarity; this can be seen in Table 2. 

Table 2. Dynamic Time Warping distance, ordered to most similar to less similar  

21.508Polyhedron03205.8659ChafCil0520.4739Gengon035.7651Ext_L037.5414Ext_C03120.635Gengon05227.2536Muelle01
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Fig. 8. 3D objects randomly created; object11, object8, and object12 have 4 modifications, 
object2, object1, object0, has 1, 1, and 0 modifications respectively, the number of 
modifications can influence the Dynamic Time Warping distance 

8   Conclusions 

Experimental results show the efficiency of computing similarity among 3D objects, a 
linear function is required to convert a 3D object into a sequence and then compute 
Dynamic Time Warping distance among sequences. Two kinds of data sets were used 
in experimental test, the first one, created with a typical CAD; the other one was 
created from base 3D objects (cube, prism, and pyramid). There is not a true 
classification per se; the similarity between objects has to be recognized by humans. 
The proposed model to compute similarity among 3D objects is simpler than other 
approaches [1], and the results show this idea. An advantage of this model is that has 
been proved that Dynamic Time Warping technique can be indexed [3]. 
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Estimation of Facial Angular Information Using
a Complex-Number-Based Statistical Model

Mario Castelan� and Edwin R. Hancock

Department of Computer Science, University of York, York Y01 5DD, UK

Abstract. In this paper we explore the use of complex numbers as
means of representing angular statistics for surface normal data. Our
aim is to use the representation to construct a statistical model that can
be used to describe the variations in fields of surface normals. We focus
on the problem of representing facial shape. The fields of surface normals
used to train the model are furnished by range images. We compare the
complex representation with one based on angles, and demonstrate the
advantages of the new method. Once trained, we illustrate how the model
can be fitted to brightness images by searching for the set of parameters
that both satisfy Lambert’s law and minimize the integrability error.

1 Introduction

The problem of acquiring surface models of faces is an important one with po-
tentially significant applications in biometrics, computer games and production
graphics. There are many ways in which surface models can be acquired, and
these include the use of range-scanners, stereoscopic cameras and structured
light sensors. However, one of the most appealing methods is to use shape-from-
shading (SFS), since this is a non-invasive process which mimics the capabilities
of the human vision system. Shape-from-shading aims to recover surface ori-
entation, and hence surface height by solving the image radiance equation. In
general, though, SFS is an under-constrained problem since the two degrees of
freedom for surface orientation (slant and tilt), must be recovered from a single
measured intensity value. In contrast to the human visual system[3], it seems
that computer vision systems encounter more difficultly in estimating the tilt of
a surface from a single image than its slant (see Figure 1).

One way to overcome the problems with general purpose SFS is to draw on a
domain specific model that can be used to constrain the directions of the surface
normals. This approach has proved to be particularly effective in the analysis of
faces. Attick et al.[1] were the among the first to build 3D statistical shape mod-
els of faces for use in conjunction with SFS. Working with cylindrical coordinates
they develop an eigenmode model (referred to as eigenheads) for surface height.
In fitting the model to data, they impose an image irradiance constraint using
the shape coefficients of the model. Later, Vetter et al.[9] decoupled the effects of
� Supported by National Council of Science and Technology (CONACYT), Mexico,

under grant No. 141485.
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texture and shape on facial appearance. Assuming that full facial correspondence
information is to hand, they perform PCA separately on the texture and shape
components. Thus they develop a statistical model that can be fitted to image
brightness data. These methods deliver accurate and photo-realistic results, but
at the expense of considerable computational overheads and simplicity of imple-
mentation. This is largely due to the brute force search method used to adjust
the model parameters to fit the input image data. Recently, Dogvard and Basri[2]
have combined statistical models with symmetry constraints. The model relies
on a Cartesian representation of the surface height. Surface gradient is expressed
in terms of a set of deformation coefficients, and this allows the symmetric SFS
equation to be transformed into a linear system of equations. The linear system
can be efficiently solved and used to estimate surface height. Their results show
that accuracy is sacrificed for a gain in computational efficiency.

The aim in this paper is to explore whether angular representations can be
used to construct statistical models that can be used in conjunction with shape-
from-shading. This is a natural approach since it is surface orientation and not
surface height that is responsible to the perceived image brightness. Angular data
is more difficult to model than Cartesian data since angles wrap around. Hence,
small differences in distance on a sphere can correspond to large differences
in angles. The classical example here is a short walk across one of the poles
of a sphere, when large differences in longitude correspond to small differences
travelled. In shape from shading the surface normal is determined by the azimuth
and zenith angles. When the surface is illuminated in the direction of the viewer
and if the surface reflectance is Lambertian, then the arc-cosine of the zenith
angle is determined by the normalized image brightness. The azimuth angle,
on the other hand, must be determined using additional constraints provided
by smoothness or the occluding boundary. The aim in this paper is to develop
a statistical model that can be used to model the distribution of azimuthal
direction in faces. To overcome the problems with the representation of angular
data, we use complex numbers. Our idea is to encode the azimuth angles as
complex numbers and to capture their distribution by adapting the Sirovich
snapshot method to deal with complex eigenvectors. We show how the model can
be trained using range images and fitted to brightness images using constraints
on surface normal direction provided by Lambert’s law and surface integrability.

2 Statistical Information for Angular Data

In this paper, we aim to construct a statistical model for the angular variation in
surface normal direction. We train our model on surface normals extracted from
range images. We aim to recover surface normals from image brightness data by
fitting the model to facial images using constraints provided by Lambert’s law
and integrability.

To construct the statistical model, we represent the surface normal data
extracted from the range data as long-vectors. The range data is vectorized by
stacking the image columns. If the range images contain M columns and N rows,
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Fig. 1. Effect of incorrectly calculated azimuth and zenith angle in face shape recovery:
(a) orthogonal Lambertian (constant albedo) image, (b) true irradiance (non-constant
albedo) image, (c) ground-truth surface, (d) surface preserving true azimuth angle
but with its zenith angle estimated through SFS and (e) surface preserving true zenith
angle, but with its azimuth angle estimated through SFS. Note how the effect of wrongly
estimated tilt angle cause a severe deterioration on the recovered surface.

then the pixel with column index jc and row index jr corresponds to the element
indexed j = (N−1)jc+jr of the long-vector. Let nk

j = 1√
(pk

j )2+(qk
j )2+1

(pk
j , q

k
j , 1)T

be the surface normal at the pixel indexed j of the kth training image. Here
p = ∂h

∂x and q = ∂h
∂y are the partial derivatives of the surface height h in the

x and y directions. The zenith and azimuth angles of the surface normal are

respectively θk
j = arctan

√
(pk

j )2 + (qk
j )2 and φk

j = arctan
qk

j

pk
j

. Here we use the

four quadrant arc-tangent function and therefore −π ≤ φk
j ≤ π. Unfortunately

the angles can not be used to construct statistical models. The reason for this
is that statistical calculations performed on angular data can be biased by the
angle cut point (see Figure 2). To illustrate this problem consider two points
on a unit circle placed just above and just below the cut-line. Although the two
points are close to one another on the unit circle, when the difference in angles
is computed then this may be close to 2π.

Our idea in this paper is to overcome this problem by working with a complex
number representation of the azimuth angles of the surface normal. We encode
the azimuth angle using the complex number

zk
j = exp(iφk

j ) = cosφk
j + i sinφk

j , (1)

where i =
√
−1. The azimuth angle is hence given by the real (Re) and imaginary

(Im) components of the complex number, i.e.

φk
j = arctan

Im zk
j

Re zk
j

. (2)
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The azimuth angle φk
j is therefore the principal argument (a unique angle

value from −π to π) of zk
j . At the image location indexed j, the mean complex

number (center of mass) over the training set is given by

ẑj =
1
K

K∑
k=1

zk
j . (3)

The azimuth angle associated with this complex number (mean direction)
and its moduli are, respectively

φ̂j = arctan
Im ẑj

Re ẑj
and r̂j =

√
(Im ẑj)2 + (Re ẑj)2. (4)

Note that the cartesian coordinates of the points of ẑj on the complex plane
are defined by the average of the cosines (x-axis) and sines (y-axis) of all of the
observations φk

j of the training set, therefore

Re ẑj = r̂j cos φ̂j =
1
K

K∑
k=1

cosφk
j and Im ẑj = r̂j sin φ̂j =

1
K

K∑
k=1

. (5)

Unfortunately, although this allows us to overcome the problems of repre-
senting the azimuth angle statistics, it yields complex numbers that no longer
have unit modulus. In fact rj can fluctuate between 0 and 1. However, rj is an
important measure of the concentration of the azimuth angles in the training
data. If the directions of the azimuth angles in the training set are strongly clus-
tered, then rj will tend to be 1. If, on the other hand, they are scattered then
rj will tend to 0.

Fig. 2. In the top row, different arguments for one training set example zk are shown
as intensity maps. From left to right, (−π, π](a), (−π

2 , 3π
2 ] (b), (0, 2π] (c) and (−3π

2 , π
2 ]

(d). The mean direction φ̂ (e) and the mean resultant length r̂ (f) are presented in
the bottom row, from left to right, as intensity plots. Note how r̂ demonstrates that
the directions of the angles are widely dispersed through the regions where the zenith
angle is close to 0, i.e. tip of the nose, centers of the eyes and mouth, and forehead.
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Although the mean resultant length r̂j is a very important measure of dis-
persion, for purposes of comparison with data on the line we should consider
measures of dispersion based on circular data, like the sample circular variance
vj = 1− r̂j , 0 ≤ vj ≤ 1. Following [5], if 1−cos(α1−α2) is a measure of distance
between two angles α1 and α2, then the dispersion of the angles φ1

j , φ
2
j , . . . , φ

K
j

about a given angle β is

D(β) =
1
K

K∑
k=1

{1− cos(φk
j − β)}. (6)

For any set of angular data, the dispersion of its mean direction over the set
is equal to its circular variance, i.e., D(φ̂j) = vj = 1− rj. In Figure 2(e) and (f),
the mean arguments φ̂ and moduli of the center of mass ẑ are shown as intensity
maps.

3 Construction of the Statistical Models

In their work on eigenfaces, Turk and Pentland were among the the first to ex-
plore the use of principal components analysis for performing face recognition [8].
This method can be rendered efficient using the technique described by Sirovich
et al.[7] which shows how to avoid explicit covariance matrix computation for
large sets of two-dimensional images of objects of the same class.

We convert each image in the training set into a long-vector. Two encod-
ings are investigated. In the first of these the long-vector has the measured
azimuth angles as components. Hence, the jth component of the long-vector for
the training image indexed k is V k

φ (j) = φk
j . The second encoding involves using

the complex number representation. Here the jth component of the long-vector
for the training image indexed k is the complex number V k

z (j) = zk
j . We center

the long-vectors by computing the mean

V̂ =
1
K

K∑
k=1

V k. (7)

From the centered long-vectors we construct the data matrix

X = (V̂ 1|V̂ 2|...|V̂ K). (8)

In the case of the real-valued azimuth angle data the covariance matrix
is Σφ = 1

K XφX
T
φ . For the complex representation the covariance matrix is

Σz = 1
K XzX

†
z , where † denotes the transpose of the complex conjugate ma-

trix. The resulting covariance matrices Σφ and Σz are respectively symmetric
and Hermitian. We follow Atick et al.[1] and use the numerically efficient method
of Sirovich [7] to compute the eigenvectors of Σ. For the real valued azimuth
angle data this involves computing the eigen-decomposition of the matrices

Yφ = XT
φ Xφ = UφΛφU

T
φ , (9)



332 M. Castelan and E.R. Hancock

where the ordered eigenvalue matrix Λφ and eigenvector matrix Uφ are both real.
Similarly, for the complex representation we compute the eigen-decomposition

Yz = X†
zXz = UzΛzU

T
z . (10)

In this case the ordered eigenvalue matrix Λz is real, but the elements of the
eigenvector matrix Uz are complex. The eigenvectors of the matrices XφX

T
φ and

XzX
†
z (or eigen-modes) are respectively the real matrix Ûφ = XφUφ and the

complex matrix Ûz = XzUz.
We deform mean long-vectors in the directions defined by the eigen-mode

matrices. If ŨL is the result of truncating U after the L leading eigenvectors
then the deformed long vector is

V = V̂ +
L∑

l=1

Ũlbl, (11)

where b = [b1, b2, ...., bL]T is a vector of real valued parameters of length L and
Ũl is the lth column of matrix Ũ . Suppose that Vo is a centered long-vector
of measurements to which we wish to fit the statistical model. We seek the
parameter vector b that minimizes the squared error. The solution to this least-

Fig. 3. From left to right, the first six eigen-modes of Ũz (a) and Ũφ (b). The two
first rows represent, respectively, V̂z +

√
3ΛzÛz and V̂z −

√
3ΛzÛz. The variations V̂φ +√

3ΛφÛφ and V̂φ −√
3ΛφÛφ are shown in the two rows of (b).
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squares estimation problem is b∗ = ŨTVo. The best fit long-vector allowed by the
model is V ∗

o = UUTVo. In the case of both the real and complex representations,
the parameter vectors are real.

In Figure 3 we compare the eigen-modes obtained using the real and complex
representations. The rows of the figure show the first six eigen-modes. In the top
two rows we show the five eigen-modes for Σz. The first row is the result of the
displacement Ṽz = V̂z +

√
3ΛzÛz, and the bottom row the result of the displace-

ment Ṽz = V̂z−
√

3ΛzÛz. We display the azimuth angles φ̃z(j) = arctan Im (Ṽz(j))
Re (Ṽz(j))

at the pixel location indexed j. In the third and fourth rows, we repeat this anal-
ysis for the real-representation. Here we show the eigenmodes of Σφ The third
row shows the result of displacement Ṽφ = V̂φ +

√
3ΛφÛφ, and the bottom row

the result of the displacement Ṽφ = V̂φ −
√

3ΛφÛφ. We display the azimuth an-
gles φ̃z(j) = Ṽφ(j) at the pixel location indexed j. In general, both models seem
to encapsulate the same facial features though the complex model Ûz shows less
noise than the real model Ûφ. These errors are most evident where r̂(j) is near
zero. This suggests that the complex representation Ũz is profiting of the in-
herent accuracy attached in the center of mass ẑj , which might be sacrificed by
being projected onto the unit circle while calculating the mean direction φ̂j .

4 Fitting the Model to Brightness Data

In brief SFS aims to solve the image irradiance equation, I(x, y) = R(p, q, s),
where I is the intensity value of the pixel with position (x, y), R is a function
referred to as the reflectance map [6]. The reflectance map uses the surface
gradients p = ∂Z(x,y)

∂x and q = ∂Z(x,y)
∂y together with the light source direction

vector s to compute a brightness estimate which can be compared with the
observed one using a measure of error. If the surface normal at the location (x, y)
is n = [p, q,−1], then under Lambertian reflectance model, the image irradiance
equation becomes I(x, y) = n · s. Surface information can also be decoupled in
azimuth (tilt) and zenith (slant) angles (ϕ and ϑ respectively), related to the
surface normal by n = [cosϕ sinϑ, sinϕ sinϑ, cosϑ].

Let Ij be the normalized image brightness at the pixel indexed j. From
Lambert’s law, the zenith angle for this pixel is ϑj = arccos Ij . Let φ̃j =
arctan Im Ṽ (j)

Re Ṽ (j)
be the azimuth angle at the pixel j obtained by fitting the com-

plex model Ṽz = V̂z + Ũzb. From the surface normal at the pixel j, nj =
[cosφj sinϑj , sinφj sinϑj , cosϑj ]T , we compute a numerical estimate of the Hes-
sian matrix using first-differences. We are interested in the off-diagonal elements
of this matrix Hxy(j) = ∂nx

j

∂y and Hyx(j) =
∂ny

j

∂x .
Our aim is to fit the complex-model to brightness data so as to minimize the

integrability error for the recovered field of surface normals. The error is defined
to be

Err(b) =
MN∑
j=1

|Hxy(j)−Hyx(j)|. (12)
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Our algorithm for finding the best-fit parameter vector b is one based on search
and involves varying its elements over equally divided intervals between −

√
3Λze

and +
√

3Λze where e = (1, 1, ...., 1)T is the all-ones vector of length L. Briefly,
the algorithm is as follows: We initially zero all the components of the parame-
ter vector b. Commencing from the first component, i.e. the one corresponding
to the largest eigenvalue of Σz, we vary this component in S steps between
−3

√
Λz(1) and +3

√
Λz(1) until Err(b) is minimized. For each parameter set-

ting, we recompute the field of surface normals so that the integrability error
can be calculated. When the best-fit value of b(1) is found it is fixed, and then
we repeat the procedure for each of the remaining components of b in turn.

5 Experiments

In this section we present experiments with our statistical model for surface
normal data. We commence by showing how the model can be trained on range
data, and then fitted to out-of-sample range images. The second strand to the
study is to show how the model can be fitted to brightness images to recover
surface normals subject to Lambertian reflectivity and integrability constraints.

The face database used for constructing the surface models was provided by
the Max-Planck Institute for Biological Cybernetics in Tuebingen, Germany. As
described in [9], this database was constructed using Laser scans (CyberwareTM )
of 200 heads of young adults, and provides head structure data in a cylindrical
representation as well as ground-truth surface gradient for each of the face ex-
amples. We used K = 150 examples of size M ×N = 150× 150 pixels.

The results of fitting the model to out-of-sample range data (i.e. data not
used in training) are shown in Figure 4. In the top row we show the result of

Fig. 4. Out-of-sample recovery analysis. From left to right: the first three columns
show the ground truth azimuth angle, recovered azimuth angle using Ũz and recovered
azimuth angle using Ũφ. The rightmost diagram shows the angular difference averaged
over 50 out-of-sample data as a function of number of eigenmodes used for Ũz (solid
line) and Ũφ (dashed line).



Estimation of Facial Angular Information 335

Fig. 5. Fitting the parameters to brightness data. We present three row-wise blocks
representing different subjects. The results are organized in individual three-elements
panels containing the following attributes: azimuthal angle (at the top), integrated
surface (big surface at the right) and frontal re-illumination from integrated surface
(at the bottom). Three column-wise blocks show true azimuth angles (a), best fit from
true azimuth angles (b), fit from a Lambertian image using integrability constraints
(d).

fitting the model to a male subject and the bottom row shows the result of fitting
the model to a female subject. We show two panels of results. In the left panel
we present the ground truth data, the result of fitting the complex model and
the result of fitting the real model. The main feature to note from the panel
is that the complex model achieves more accuracy on regions where the zenith
angle is small, which in the estimation from the real model can be appreciated
as small perturbations. In the rightmost diagram we show the absolute angular
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Fig. 6. The scatter plots show the relation between the best-fit parameters (y-axis) and
the integrability-based adjustment (x-axis). We show three examples corresponding to
the ones presented in Figure 5.



Estimation of Facial Angular Information 337

difference1 averaged over 50 out-of-sample examples as a function of the number
of eigen-modes used for Ũz and Ũφ. From the diagram it is clear that the complex
model Ũz outperforms the real model. The behavior of both models is similar,
and the gap between the lines can be explained as a consequence of the badly
recovered regions by the real model.

The result of applying the fitting algorithm outlined in Section 4 to three
Lambertian images are shown in Figure 5. We used L = 150 parameters and
S = 10 equally spaced values for making rough estimates of the parameter vector
b. The results for each subject are organized into three row-wise blocks. Each
block presents: (a) the results obtained from the ground truth surface normals,
(b) the results obtained from the best fit to the ground truth azimuth angles, and
(c) the results obtained by fitting to brightness information using the lambertian
reflectance model and the integrability constraint. Three-elements Individual
panels show the following attributes: the estimated azimuth angles (top), profile
view of the surface reconstructed by integrating the recovered field of surface
normals using the Frankot and Chellappa integration method[4] (bigger surface
at the right ), and the result of re-illuminating the reconstructed surface in the
frontal viewer direction (bottom). We Note that there seems to be no significant
differences between the results shown for the best adjustment and the ones shown
for the integrability-constrained adjustment.

In Figure 6, the relationship between the best fit parameters and the param-
eters estimated by the integrability-constrained algorithm are shown as scatter
plots, for the three examples explained above. Note how the scatters show a ten-
dency to form a line, revealing a good correlation with the best-fit parameters.

6 Conclusions

We have explored the use of complex numbers as means of representing angular
statistics for surface normal data. The reason for doing this is the difficulties
encountered in representing surface normal information when attempting to fit
statistical shape models to face images using shape-from-shading. We show how
the complex valued model can be trained on surface normals delivered by range
data and fitted to image brightness data. The fitting to brightness data is effected
so as to satisfy Lambert’s law and minimize an integrability error. For future
work we are planning to experiment with textured images as well as adding
different attributes for developing constraints (i.e. irradiance, variable albedo,
curvature).
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Abstract. Virtual colonoscopy is a non-invasive method for diagnosing colon 
diseases such as diverticulosis and cancer using digitized tomographic images 
to produce 3D images of the colon. In virtual colonoscopy, it is crucial to 
generate the camera path rapidly and accurately for an efficient examination. 
Most of the existing path-generation methods are computationally expensive 
since they require preliminary data structures and the 3D positions of all path 
points should be calculated. In this paper, we propose an automated path-
generation method that secures visibility by emulating ray propagation through 
the colon conduit. The proposed method does not require any preliminary data 
preprocessing steps, which takes several minutes and it also dramatically 
reduces the number of points needed to represent the camera path. The 
experimental result is a perceivable increase in computational efficiency and a 
simpler approach to colon navigation. The proposed method can also be used in 
other applications that require efficient virtual navigation. 

1   Introduction 

Colon cancer is one of leading causes of cancer deaths. Periodic examination for early 
detection of colonic polyps is crucial for effective treatment of colonic cancer. Optical 
endoscopy and barium enema are colonic polyp detection methods that are widely 
used for periodic examinations. 

Optical endoscopy is an invasive method in which an optical probe is inserted into 
the colon. The physician examines the inner surface of the colon by manipulating a 
small camera at the tip of the optical probe. Controlling the camera requires great skill 
and precision, and the examination of the entire colon takes a long time. Because it is 
an invasive method, it requires an uncomfortable and lengthy preparation step for the 
patient and has negative side effects of contagion and bleeding [1-2]. Barium enema 
is a method in which the physician injects white contrast media into the colon and 
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examines the contrast media adhered to the colon wall using X-ray radiographs taken 
from different angles. This method requires a large amount of the patient’s efforts, but 
its sensitivity is less than that of optical endoscopy. 

Virtual colonoscopy has been developed to increase the sensitivity and specificity of 
the examination while reducing patient discomfort and the amount of time required for 
the examination [3-6]. Furthermore, the recent introduction of the multidetector CT, 
which generates 16 images in 0.5 seconds, reduces the time of CT taken required for 
virtual colonoscopy and increases sensitivity, enabling it to detect small polyps [7]. 
Virtual colonoscopy is a computerized, non-invasive method. Unlike optical endoscopy, 
an optical probe does not need to be inserted, and therefore, virtual colonoscopy causes 
no pain to the patient. Also, virtual colonoscopy can examine any region using the free 
movements of a virtual camera, improving the efficiency of diagnosis, whereas optical 
endoscopy can only examine along the moving direction of an optical probe[8]. 

Since the average length of a colon is 1.5 meters, it is difficult for a physician to use 
virtual colonoscopy to manually examine the inside of an entire colon. Therefore, the 
center-line of a colon needs to be pre-defined to determine the path of the virtual 
camera. There are several methods that have been developed for this purpose. The 
physician indicates the center positions of the colonic section on 2D axial images, and 
these positions are interpolated for virtual navigation. The problem, however, is that it 
takes a very long time to define all the center positions in the entire colon. Topological 
thinning eliminates the outermost layer of the segmented colon consecutively until the 
center-line voxels are left [3][9]. While the path defined by this method is accurate in 
the geometrical sense, it takes a long time to carry out all the necessary calculations. The 
navigation path is calculated using Dijkstra’s shortest path algorithm [10] with a 3D 
distance map generated in the preprocessing step. However, the preprocessing step and 
the search for all the points on the path requires a lot of time [11-13]. The current 
approaches to the path-generation method for virtual colonoscopy still need progress to 
improve computational efficiency for clinical applications. 

In this paper, we propose an efficient path-generation method, which determines 
the navigation path by emulating the propagation of rays in ray casting [14]. Our 
method does not require any data preprocessing steps and rather than generating all 
points of the path, it generates only a small number of control points representing the 
path to increase computational efficiency. Since the path is determined using 
visibility, the virtual camera will follow a path on which the navigator can inspect the 
colon with the least eye-strain. 

The organization of the paper is as follows. In Section 2, we propose a visibility-
based automatic path-generation method for virtual colonoscopy. In Section 3, 
experimental results illustrate how our method efficiently generates an optimal path in 
a short amount of time. This paper concludes with a brief discussion of the results 
from Section 4. 

2   A Path-Generation Method 

Determining the optimal path for virtual colonoscopy is composed of following steps. 
First, a sequence of 2D axial CT images of the patient’s abdomen must be acquired, 
as shown in Fig. 1(a). Second, the colon is segmented and reconstructed from axial 
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CT images by a 3D-seeded region growing method [15], as shown in Fig. 1(b). 
Finally, the examination can be performed by moving a virtual camera along the 
navigation path to diagnose polyps inside the colon, as shown in Fig. 1(c). The 
optimal path for virtual colonoscopy is the critical factor in determining the amount of 
time the examination would take as well as the accuracy of the examination. Without 
the optimal path, a physician needs to control a virtual camera manually, and it would 
take a lot of time and effort. If the optimal path is pre-defined, the physician can 
rapidly examine the entire colon and determine suspicious regions that should be 
manually examined for a closer look. 

 
(a)                    (b)                   (c) 

Fig. 1. The procedure for virtual colonoscopy (a) axial CT images (b) segmented colon (c) a 
virtual camera along the optimal path 

Our method for optimal path-generation consists of the following steps. First, the 
seed point is provided by the physician on a 3D volume rendered image and the 
starting position and direction of the initial reference ray is found. Next, control points 
of the optimal path are found continuously using visibility until the end of the colon 
has been reached. Finally, the optimal path is generated by interpolating these control 
points. 

2.1   The Initialization of the Reference Ray 

For a path-generation, the starting position and direction of the initial reference ray 
must be determined, and used to search for the next control point. First, the physician 

defines the seed point, )1,,,( iiiimage zyxP =  on the 2D screen-projected image of a 

colon. A 2D image coordinate of this point should is then transformed into a 3D 
object coordinate by propagating a ray along the perpendicular direction to the image 

plane. The two intersection points, 1intP  and 2intP  between the ray and the colon wall 

are calculated. The center point, centerP  between 1intP  and 2intP , is the optimal 

starting position of the initial reference ray. A ray is progressed by increasing the 

image depth, iz  from 0. When a viewing matrix is viewM , a point imageP  on a 2D 
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image coordinate can be transformed into a point objectP  on a 3D object coordinate as 

follows. 

imageviewobject PMP 1−=  . (1) 

After the starting position has been found, the direction of the initial reference ray 
must be determined. Rays are progressed in all visible directions from the starting 
position and the intersection position between the ray and the colon wall is calculated. 
The direction having the maximum distance to the colon wall along a ray is regarded 
as the direction having the highest visibility from the starting point. This direction is 

determined as the direction of the initial reference ray, ),( 000 φθdR . If the starting 

point is not at the end of the colon, a second path is generated along the opposite 
direction of the initial reference ray and the final navigation path will be composed of 
two sub-paths. 

2.2   The Procedure of the Path-Generation 

Control points representing the path are successively calculated by applying 
procedures shown in Fig. 2. The preliminary preparation of this procedure is 
generating the starting position and direction of the reference ray as described in 
Section 2.1. In the first step, the direction having the maximum visibility is found 

with respect to the starting point, 0P , along the ray R . The ray R  is modeled as 

follows. 

),(0 φθdRlPR ⋅+=  , (2) 

where dR  is the direction of the ray in a polar coordinate, and l  is the propagated 

length of the ray. R  is, then, progressed around a reference ray, ),( 000 φθdR  in the 

following range. 

1010 kk +≤≤− θθθ , 1010 kk +≤≤− φφφ  , (3) 

where the parameter 1k  represents the field of view. As the ray R is progressed 

around the reference ray, the intersection point between R  and the colon wall is 
determined. The intersection point having the maximum distance from the starting 
point is regarded as the point having the maximum visibility. In other words, this 
position is where the viewer can see the farthest from the viewpoint. In Fig. 2(b), 

maxP  has the maximum visibility with respect to 0P  and 0dR .  

As previously stated, the parameter 1k  from Eq. (3) represents the field of view. 

When 1k  is large, the field of view becomes broader because visibility is determined 

with a larger range of view directions. However, the path-generation time gets longer. 

When 1k  is small, the field of view becomes narrower because visibility is 

determined with a smaller range of view directions, but the path-generation time is 
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faster. Therefore, the optimal value of 1k  needs to be determined experimentally to 

increase computational efficiency without losing accuracy. 

In the next step, candidateP  is selected on the line between 0P  and maxP , as shown 

in Fig. 2(c). This procedure is modeled as follows.  

)( 0max20 PPkPPcandidate −⋅+=  . (4) 

The parameter 2k  controls the distance between neighboring control points. When 

2k  is large, a smaller number of control points is used to represent the whole colon 

for faster path-generation. However, a less accurate path is generated in narrow 
regions of the colon since a single control point represents a larger range of the colon. 

When 2k  is small, a larger number of control points represent the whole colon, and 

generates a more accurate path since one control point represents a smaller range of 

the colon. However, the path-generation time increases when 2k  is small. Therefore, 

the optimal value of 2k  needs to be determined experimentally to increase 

computational efficiency without losing accuracy. 

 

Fig. 2. The procedure for a path-generation  
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The accuracy of the point determined by the visibility criterion, candidateP , is 

improved by the following procedure. First, a virtual sphere is expanded around 

candidateP  to find intersection points between the expanding sphere and the colon wall, 

as shown in Fig. 2(d). After finding a set of contact points by expanding a sphere, we 

progress a ray from each contact point in the set, contactP , through candidateP  to the 

colon wall on the opposite side. This is done to find a new intersection point, 

2contactP , between this ray and the colon wall, as shown in Fig. 2(e). A set of 

midpoints can be determined using each set of contactP  and 2contactP . Finally, the 

control point for the navigation path, finalP , is determined by finding the average of 

this set of middle points. The next control point is generated with the new starting 

point, finalP , and new reference ray direction 0PPfinal −  by applying the set of steps 

illustrated in Fig. 2. When the control point at the end of the colon is generated, the 
cubic spline [16] is interpolated using the determined control points as the final 
navigation path for virtual colonoscopy. 

3   Experimental Results 

The implementation and tests have been performed using Intel Compiler 5.0 on an 
Intel Pentium IV PC containing 2.4 GHz CPU and 1.0 GB of main memory. The 
method has been applied to four CT scans, whose properties are described in Table 1. 

Table 1. Properties of experimental datasets 

Subject # Image size Slice # Number of voxels in a segmented colon 
1 512 x 512 213 2.84 MB 
2 512 x 512 253 2.53 MB 
3 512 x 512 368 3.34 MB 
4 512 x 512 579 4.85 MB 

Based on several experiments, optimal parameters 1k (= 30°), 2k (= 0.5) were 

determined to increase computational efficiency without losing accuracy. Using these 
parameters, the path-generation time on each dataset is shown in Table 2. The high 
speed of our path-generation algorithm has dramatically reduced total processing time 
from minutes [15-16] to seconds. 

Fig. 3 shows the automatically generated control points and the interpolated path. 
The control points are equally distributed near the colon center-line to model the 
 

Table 2. Total processing time for a path-generation 

Subject # 1 2 3 4 Average 
Time [sec] 19 17 25 40 25 
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                                         (a)             (b)  

Fig. 3. Generated control points and the interpolated path of subject 1 (a) in the anterior view 
(b) in the left view 

  
                            (a)             (b)  

Fig. 4. The generated navigation path (a) of subject 2 (b) of subject 4 

colon shape efficiently and accurately. Fig. 4 shows the automatically generated path. 
The path generated by our method is located around the center region of the colon. 

Fig. 5 shows the result of virtual colonoscopy along the path generated by our 
method. The path is located at the center of the colon cross section in both a high and 
low curvature regions. Also, we were able to find a tumor during virtual colonoscopy, 
as shown in Fig. 5(c). After the detection of the colonic polyp, the diameter should be 
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measured. Polyps having less than 5mm diameter can be regarded as harmless, 
whereas polyps having more than 8mm diameter are regarded as harmful, and 
requires follow-up colonoscopy. Other polyps, having 6 ~ 7 mm diameter, require a 
regular follow-up virtual colonoscopy. 

   
(a)     (b)                                            (c) 

Fig. 5. Virtual colonoscopy of subject 1 (a) in a low curvature region (b) in a high curvature 
region (c) in a region with a tumor 

4   Conclusion 

In this paper, we proposed a noble technique of generating the navigation path for 
virtual colonoscopy, determined by using visibility. Our method does not require any 
preliminary data processing steps, such as generating a 3D distance map, which takes 
several minutes. Also, to increase computational efficiency, our method generates a 
small number of control points representing the whole navigation path instead of 
generating all the points of the path. Because this path is generated using visibility, 
the position of the virtual camera is guaranteed to be on a visually comfortable 
position. The experimental results on four clinical datasets show that the navigation 
path is generated rapidly and that the path is located in the center of the colonic 
section for an effective clinical examination. Our method can be successfully applied 
to a wide range of applications that require path-generation for virtual navigation. 
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Abstract. This paper describes a method for estimating the defor-
mation field of the Left Ventricle (LV) walls from a 4–D Multi Slice
Computerized Tomography (MSCT) database. The approach is com-
posed of two stages: in the first, a 2–D non–rigid correspondence algo-
rithm matches a set of contours on the LV at consecutive time instants.
In the second, a 3–D curvature–based correspondence algorithm is used
to optimize the initial approximate correspondence. The dense displace-
ment field is obtained based on the optimized correspondence. Parame-
ters like LV volume, radial contraction and torsion are estimated. The
algorithm is validated on synthetic objects and tested using a 4–D MSCT
database. Results are promising as the error of the displacement vectors
is 2.69 ± 1.38 mm using synthetic objects and, when tested in real data,
local parameters extracted agree with values obtained using tagged mag-
netic resonance imaging.

1 Introduction

Heart motion studies are a sensitive indicator of heart disease, in consequence,
the estimation of cardiac motion and wall deformation are important parameters
for understanding the cardiac function. In particular, the evidence of reduced
transmural strain and left ventricle (LV) torsion are both important indicators
of myocardial ischemia [1,2]. The detailed deformation analysis of the heart has
been performed using highly invasive approaches based either on radiopaque or
sonomicrometer markers implanted in the myocardium [3,4]. In these approaches,
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implantation of markers may by themselves alter the pattern of deformation [5].
More recently, non-invasive techniques based on tagged Magnetic Resonance
Imaging (MRI) has been used to provide accurate estimations [6,7].

Several methodologies have been proposed for image analysis and for extract-
ing parameters describing the ventricular dynamics, thus increasing the frontiers
of clinical diagnoses and research on cardiovascular diseases [8]. The complete
modeling of mechanical properties of cardiac structures is a problem that re-
mains open, however, several approaches have been proposed for the description
of motion and deformations of the myocardial structure based in different car-
diac imaging modalities [8,9,10,11]. Clinical and research applications of cardiac
image analysis are considerably extensive [12]. However, these applications still
have to overcome problems like robustness, computational complexity, 3–D in-
teraction and clinical validation.

Different techniques have been used for describing and quantifying the non–
rigid motion of the heart. Non–rigid motion analysis is a difficult problem because
the motion implies a varying shape and possibly a varying topological structure.
Optical flow has been used for detecting the endocardial motion by analysis of
changes in intensity in MRI images [6]. However, the displacement field is usually
estimated from 2–D projections of a 3–D object, hence it is approximate. A set
of physics–based models have been proposed recently, based in the space-time
analysis (3–D + time) of images, which have provided a more realistic representa-
tion of cardiac chambers shape [7,11,13]. These models use geometry, kinematics,
dynamics and material properties in order to model physical objects and their
interactions with the physical world. The success of these approaches relies in
considering a priori-knowledge about the LV, shape and motion, to predict ven-
tricular dynamics. Simon et. al. introduced two approaches: one is based on a
surface matching process [9] and the other is based on a 3–D surface/volume
matching process [14]. The first approach provides 3–D displacement vectors
between two surfaces for consecutive time instants. The matching procedure be-
tween surfaces is performed according to an energy function composed of two
terms: a data term and a regularization term. A simulated annealing is used to
perform a global optimization of correspondences. The estimated displacement
field can represent accurate information related to LV motion.

In this paper, a method for estimating the deformation field for the left
ventricle walls from sequences of three-dimensional cardiac images is presented.
An efficient non–rigid shape–based correspondence algorithm is applied to the
left ventricular surfaces extracted from 4–D imaging databases. The obtained
correspondence maps enable the accurate estimation of functional local wall
motion indexes.

2 Left Ventricle Geometrical Representation

Our geometrical representation of the left ventricle is constructed from 3–D data
points located in the endocardial and epicardial walls of the left ventricle. These
points p(x, y, z) are detected from the 4–D image dataset during the segmen-
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tation stage. Endocardial and epicardial walls are manually segmented in each
slice of a 4–D MSCT database. Each segmented contour, is parameterized using
a 2–D b–spline which is sampled to generate a discrete set of evenly distributed
points that are considered as primary contours.

An interpolation algorithm is used with the objective of generating an iso-
sampled set of points in three dimensions. This interpolation process is necessary
because the resolution along the longitudinal axis (z) is lower than resolution
in axial plane (x-y) of the MSCT database. Each 3-D point p(x, y, z) in the LV
wall is located with respect to the coordinate system Γ (Fig. 1.a). The LV wall
is a surface that can be represented in the intrinsic reference system Π known as
the material coordinate system where each point p(u, v) is defined in the domain
Ω= [0, 1]. In this reference system the u axis goes from the apex to the base of
the LV while the v axis begins in a point located in the ventricular septum and
goes along the equatorial line of the shape arriving to the departing point (Fig.
1.b). Using this representation each point of the LV surface can be expressed in
the coordinate system Γ as p (x(u, v), y(u, v), z(u, v)).

(a) (b)

Fig. 1. Reference systems used in the geometrical representation of the LV shape. (a)
Γ coordinate reference system. (b) Material coordinate system Π.

The LV is represented as a continuous surface s(u, v) using interpolation
based in a set of contour points (uk, vl) included in a given neighborhood. The
resulting parametric surface is given as the convolution of the discrete samples
with a B-spline 2-D interpolation kernel h(u, v) [15]. Such surface is represented
as:

s(u, v) =
∑

k

∑
l

s(uk, vl) · h(u− uk, v − vl) , (1)

where k, l define a neighborhood of 7×7 points. The continuous surface obtained
is resampled at the desired sampling distance with the objective of generating
new contours (secondary contours) between the given primary contours. The
left ventricle endocardial and epicardial surfaces are represented by the set of
original and interpolated contours. The primary and secondary contours for the
endocardial wall are shown in Fig. 2.
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Fig. 2. Endocardial contour stacks. Left figure: the segmented contours. Rigth figure:
the complete contours set (including both primary and secondary contours).

3 Shape–Based Correspondence Algorithm

Since the LV is in motion, points p(x, y, z) at time t will move to a new position
p′(x′, y′, z′) at time t + 1. Thus, for non–rigid motion analysis, the problem of
shape–based correspondence is to find the Euclidean transformation Q that for
all time instants converts the point p into point p′:

Q(p, t) = p′ . (2)

The shape–based correspondence algorithm has two stages: the first stage
corresponds to the generation of an initial estimate of correspondence based on
a set of critical points [16], where the local curvature is maximum, extracted
from the primary LV contours at consecutive time instants. Then, in the second
stage the algorithm optimizes the initial correspondence in the 3–D space using
both primary and secondary contours.

3.1 2–D Non–rigid Correspondence Algorithm

In the first stage we use a 2–D approach based on tracking a set of Critical
Points in the primary contours of the LV geometrical representation, using the
non–rigid correspondence algorithm proposed by Hill et al. [17]. This algorithm
transforms a discretized contour A = {Ai; 1 ≤ i ≤ nA} (a primary LV contour
at time t), onto some other contour B = {Bi; 1 ≤ i ≤ nB} (a primary LV
contour at time t + 1), where nA and nB are the number of points in contours
A and B respectively. The algorithm produces two new shapes A′ = {Aαi ; 1 ≤
i ≤ nΦ} and B′ = {Bβi ; 1 ≤ i ≤ nΦ} that are in correspondence and represent
sparse subpolygons of A and B respectively. The sparseness is related to the fact
that each contour has less points than the original thus increasing the distance
between each pair of points. The correspondence is defined by a set of ordered
pairs Φ = {φi = (αi, βi); 1 ≤ i ≤ nΦ}, where integer values {αi} index the points
of A and {βi} index points of B that are in correspondence.

The Hill’s non–rigid correspondence algorithm comprises three parts:
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1. Generation of shape approximations to both A and B, (A′′ and B′′ respec-
tively). These approximate shapes only contain nA′′ critical points of A and
nB′′ critical points of B (usually nA′′ �= nB′′). In this stage no correspon-
dence is established. The critical point detection (CPD) algorithm described
by Zhu and Chirlian [18] is used. This CPD algorithm does not require
explicit curvature estimation, the algorithm is also reproducible, reliable,
invariant, and symmetric.

2. Generation of an initial correspondence between A′ and B′. The path–
matching algorithm is used. A reference of correspondence is established
(α0 = 1, βi = i). The path–length spacing of the points defining A′′ (with
respect to A1) are projected onto B (with respect to Bi) and also the path–
length spacing of the points defining B′′ (with respect to Bi) are projected
onto A (with respect to A1). This process generates [(nA′′ + nB′′) ∗ nB]
possible sets of correspondences. The best correspondence will be reached
when the pixel Bi that matches the pixel A1 is identified by minimizing the
following cost function:

minE2
i =

nA′′+nB′′∑
j=1

‖Aαj −Q
(
Bβj

)
‖2, (3)

where Q represent the Euclidean transformation Q(p) = sRp+t, s is a scale
factor, R is a rotation matrix, and t is a traslation. This patch–matching
algorithm produces a set of correspondences Φ = {φi; 1 ≤ i ≤ (nA′′ +nB′′)}.
For each pair of correspondence points (Aαi ,Bβi), the value Ti is calculated:

Ti = max
(
Area(Aαi−1 ,Aαi ,Aαi+1),Area(Bαi−1 ,Bαi ,Bαi+1)

)
, (4)

where Area(·) computes the area of a triangle whose vertices are three con-
secutive points (for instance, Aαi−1 ,Aαi ,Aαi+1). The φi for which Ti is
minimum is deleted repeatedly until nΦ = (nA′′ + nB′′) /2 correspondences
are obtained.

3. An iterative local optimization scheme is used to refine the initial set of cor-
respondence by minimizing a cost function. The cost function E is expressed
as:

E = λES + (1 − λ)ER , (5)

where the first term ES measures the difference in shape between A′ and its
corresponding polygon B′, represented as a mean distance error. The second
term ER ensures that the manner in which A′ differs from A is as similar
as possible to the manner in which B′ differs from B and it is expressed as
a mean distance error. The parameter λ expresses the relative contribution
of each of the terms included in the cost function and their value is taken
based in the experimental results obtained by Hill et al. [17].

The method for non–rigid correspondence proposed by Hill, is used in the
framework for automatic landmark identification in a set of 2-D shapes rep-
resenting an object. Within this framework the objective is to obtain a mean
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shape that represents the set of 2-D shapes based on the information provided by
the method of non–rigid correspondence. With this purpose, Hill et al. [17] pro-
posed an algorithm that constructs a binary tree whose root is the mean shape.
In our application the goal is to establish the correspondence between primary
contours, at consecutive time instants, describing the 4-D LV shape. Thus, the
correspondence during the entire cardiac cycle could be modeled as a transfor-
mation defined by the composition of several time-consecutive transformations
as the LV motion is small and varies between two consecutive time instants [7].
The algorithm proposed by Hill et al. for constructing the binary tree is modi-
fied. In this application the construction of the matrix of correspondence values,
considers only pairs of contours that are consecutive in time. The rest of steps of
the algorithm are followed to arrive to the mean representative shape located in
the root of the tree. In the mean shape the critical point detection algorithm is
applied and then, these critical points are projected back along the tree towards
the leaves to arrive to the optimal correspondence between primary contours.

3.2 Curvature Based Correspondence Optimization

The non–rigid correspondence algorithm described in the previous section, gives
a set of correspondences for all primary contours extracted from the MSCT
database. If p1(x1, y1, z1) is a point on a primary contour of the LV surface s1
at time t1 and p2(x2, y2, z2) its corresponding point on the LV surface s2 at time
t2, then the displacement vector for the point p1, v(p1) is given by:

v(p1) = p2 − p1 . (6)

Since all points of a primary contour are on the same axial plane, the non–rigid
correspondence method does not consider the through–plane component of the
3–D motion field. Considering that the motion of the heart is sufficiently small
between consecutive 3–D images (10–18 images acquired for a cardiac cycle) [7],
we can track the evolution of curvature in selected regions or patches of the
LV geometrical representation [13]. We use the shape–based tracking algorithm
proposed by Shi [19]. This algorithm tries to match points on successive surfaces
using a shape similarity metric. Such a metric (ε) is based on the difference in
principal curvatures k1 and k2.

ε =
[k1(p1)− k1(p2)]

2 + [k2(p1)− k2(p2)]
2

2
. (7)

The shape–based tracking verifies if a point near p2 (p̂2) exists, where the
shape similarity metric achieves a minimum. The set of neighbor points {p̂2,i},
consist of all points on s2 that have a distance less than a threshold δ from p2
on s2. The euclidean distance metric is used and δ is fixed at 0.3125mm. The
geometrical representation of the LV s2 at time t2, considers the primary and
secondary contours. The shape similarity metric (7), measures the difference
between the principal curvatures of a single point p1 on s1 and the neighbor
points to p2 on s2. Then the point p̂2 ∈ {p̂2,i} which has the minimum value
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Fig. 3. Search of the new point in correspondence

of ε (most similar shape-properties to p1) is selected as the new correspondence
point. This is illustrated in Fig. 3. Principal curvatures are estimated using the
method proposed by Sander and Zucker [20].

4 Results

4.1 Validation Using Synthetic Data

An ellipsoidal model is used for validation of the algorithm of motion estima-
tion. With this purpose a 3-D ellipsoidal model is deformed considering five types
of motion: translation, radial contraction, longitudinal shortening and torsion.
An algorithm based on Free Form Deformations (FFD) [21,22] is used for de-
forming the initial shape leading to a deformed shape according to a predefined
set of motion parameters. In each deformation stage using the FFD algorithm,
the points p1(x1, y1, z1) before the transformation, and p2(x2, y2, z2) after the
transformation are known, thus the displacement field is accurately obtained us-
ing (6). This motion field is compared with the motion field obtained using the
algorithm of motion estimation. In this case the distance between vector end-
points is considered as a measure of errors in the motion estimation. The error
obtained (mean ± standard deviation) using a population of 42 deformations
is 2.69 ± 1.38mm with a minimum value of 1.06mm and a maximum value of
5.54mm. This is close to the value of 2.00mm obtained by Chandrashekara et
al. [7] using 2-D slices in tagged MRI.

4.2 Results on Real Data

The motion estimation algoritm is also tested using real data corresponding to
a 4–D MSCT human heart database. In this database the left ventricle endocar-
dial and epicardial walls are extracted using manual segmentation from 18 3-D
images corresponding to time instants evenly spaced along the cardiac cycle. In
these images, the portion above the mitral valve is excluded because the goal,
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Fig. 4. Shape of the left ventricle for several time instants of the cardiac cycle

in this research, is to study only the Left Ventricular motion. Figure 4 shows
the resulting LV shape for six time instants of the cardiac cycle. The longitudi-
nal shortening that is one of the components of ventricular motion is apparent
in the images shown. The motion estimation algorithm is applied to the entire
4-D sequence considering the shape correspondence algorithm and the optimiza-
tion stage based in curvatures. As a result the estimated motion field for the
MSCT database is obtained. Figure 5 shows a plot of the motion vectors for
the endocardial wall considering three time instants of the cardiac cycle cor-
responding to end–diastole, 50% of diastole and end systole. Observe that the
magnitude of motion increases as the time approaches the end-systole instant,
this is due to the endocardial contraction. The torsion is also apparent in the
end-systole instant. Estimation of the motion field for the LV endocardial wall

(a) (b) (c)

Fig. 5. Displacement vectors plot. (a) End–diastole. (b) 50 % diastole. (c) End–systole
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Fig. 6. Average radial contraction of the endocardial wall

enables the calculation of several local mechanical parameters associated with
the ventricular motion. These parameters are the average radial contraction and
torsion. The average radial contraction represents the average of radial lengths
for the endocardial wall in a given axial plane. Figure 6 shows the endocardial
LV radial contraction over three axial planes as a function of time. The apex
plane is located 10mm above the actual endocardial apex, the equator axial
plane is located in the middle of the distance between the actual apex and the
base. The base plane is located 10mm below the actual base. The average radial
contraction index is expressed normalized with respect to the value obtained in
end-diastole. Results obtained for the average radial contraction are alike to the
values obtained in other research works performed in tagged magnetic resonance
imaging like these reported by Allouche et al. [10] and Sermesant [23] or in 3–D
echocardiography as reported by Gérard et al. [11]. Using the proposed method
the average radial contraction in the endocardium varies between 30.20% and
42.22% while Allouche et al. [10] obtained values between 28% and 38% using
tagged MRI. Figure 7 shows the torsion value obtained over the entire cardiac
cycle for the apex, equator and base plane. The torsion angle is defined as the
angle between a radial line traced joining the gravity center of the slice and a
endocardial contour point at time t and the radial line joining the gravity center
and the corresponding endocardial contour point for the t + 1 time instant. In
this case, the torsion value is higher in the apex than in the base of the endocar-
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Fig. 7. Endocardial wall torsion

dial wall. Additionally, the torsion angle is opposite between the base and the
apex. These features of LV motion are considered normal in healthy subjects
[24]. The torsion obtained is also alike to the results reported by Allouche et
al. [10], Sermesant [23] and by Gérard et al. [11]. Using the proposed method
the minimal torsion value (−3.60 ◦) occurs at the base and the maximal torsion
value (16.40 ◦) occurs at the apex while Allouche et al. [10], using tagged MRI,
obtained a minimum value at the base of −2.5 ◦ while the maximum value of
12 ◦ is obtained at the apex.

5 Conclusions

A method for the quantification of LV deformations have been presented. The
approach presented considers local geometrical features based in curvature anal-
ysis and the assumption that the LV motion is smooth during the entire cardiac
cycle. It uses local information of the shapes with the objective of providing an
accurate correspondence between consecutive time instants.

Validation of the method considering synthetic data provides low error values
for the distances of the vector endpoints of the estimated motion field. Test on
real data shows that LV estimated motion during the cardiac cycle is consistent
with the LV motion reported by the literature concerning normal subjects. The
estimated displacement field reproduces the contraction and relaxation of the
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normal LV accurately. Additionally, the method enables the calculation of several
global and local parameters that are useful for the assessment of cardiac motion
like the volume, the average radial contraction and the torsion index. Results
obtained on real data agree with other research works based on tagged MRI.

A more complete clinical validation including healthy subjects as well as sub-
jects cursing illnesses affecting the cardiac motion is necessary. The validation
should also compare results using other modalities like tagged MRI. Future re-
search will consider the incorporation of motion information extracted from the
gray level information of the MSCT database.
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Abstract. Edition is an important and useful task in supervised classification 
specifically for instance-based classifiers because edition discards from the 
training set those useless or harmful objects for the classification accuracy and 
it helps to reduce the size of the original training sample and to increase both 
the classification speed and accuracy. In this paper, we propose two edition 
schemes that combine edition methods and sequential search for instance selec-
tion. In addition, we present an empirical comparison between these schemes 
and some other edition methods.  

1   Introduction 

Supervised classifiers work on a training set T or sample, that is, a set of objects pre-
viously assessed and labeled to classify a new object O. However, it is common that T 
contains objects with a null or even negative contribution for classification accuracy, 
these objects could be: 

• Noisy Objects. These objects come from wrong measurements and they do not con-
tribute to improve the classification accuracy because they lead wrong classification 
since the features values that describe the objects are not correct at all. 

• Superfluous Objects. These objects have the characteristic that another object in T 
can generalize their description, that is, the superfluous objects are unnecessary ob-
jects. 

These kinds of objects (noisy and superfluous) are useless or even harmful for the 
classification process. Therefore, it is convenient to consider only objects from the 
training set which are useful to obtain higher accuracy, that is, to apply an edition 
method to the training set. 

The edition is defined as: given a training set T, choosing objects from T which 
contribute to improve the classification accuracy. The goal of edition methods is to 
find a training sample S⊂T such that the classification accuracy using S would be 
higher than using T.  

When a subset S from T is searched, we can proceed in three directions [1]: 
Incremental. An incremental search begins with S=∅ and in each step adds objects 
that fulfill the selection criteria. 
                                                           
* This work was financially supported by CONACyT (México) through the project J38707-A. 
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Decremental. This search begins with S=T and removes from S objects that do not 
fulfill the selection criteria. 

Batch. This search involves deciding if each object fulfills the removal criteria before 
removing any of them. Then all those objects that fulfill the criteria are removed at 
once, that is, this strategy does not remove one object at each step, it removes sets of 
objects. 

In this paper, we will refer to edition schemes as those edition methods that are 
based on two steps; the first one consists of applying a pre-processing over the train-
ing set and the second one consists of editing the subset obtained in the first step.  

In this paper, we propose two edition schemes, which reduce the runtimes of the 
decremental method Backward Sequential Edition (BSE) [2] and present an empirical 
comparison between these edition schemes and some other edition methods. 

The structure of this paper is as follows: in section 2, the related work about edition 
methods is presented. Section 3 describes our proposed edition schemes. Section 4 
presents some experimental results and finally in section 5 the conclusions and future 
work are given. 

2   Related Work 

In this section, some previous works related to edition methods are reviewed.  
Wilson [3] introduced an edition method called Edited Nearest Neighbor Algo-

rithm (ENN), this method removes from S objects that do not agree with the majority 
of their k nearest neighbors. Wilson suggested a small and odd value for k, the ENN 
method uses k=3. 

Wilson and Martínez [1] introduced the DROP1,…, DROP5 methods (Decremen-
tal Reduction Optimization Procedure). The DROP1 method is based on the rule: 
remove an object O if at least as many of its associates in S would be classified cor-
rectly without O. In this rule, an associate is an object such that O is one of its nearest 
neighbors. DROP2 method considers the effect in T of removing an object in S, that 
is, DROP2 removes the object O if its associates in T would be classified correctly 
without O. DROP3 uses a noise-filtering step before applying DROP2; the noise filter 
used is similar to ENN.  

DROP4 differs from DROP3 in the filtering criterion since it is different to ENN. 
In this case, an object is removed only if it is misclassified by its k nearest neighbors 
and it does not hurt the classification of any other object. DROP5 is similar to DROP2 
but DROP5 starts with objects that are nearest to their nearest enemy, that is, nearest 
neighbors with different output class. 

Brighton and Mellish [4] introduced the batch edition method Iterative Case Filter-
ing (ICF), this edition method is based on the Reachable(O) and Coverage(O) sets, 
which are based on the neighborhood and the set of associates of an object O. The 
edition rule is: remove objects that have a Reachable set size greater than the Cover-
age set size, that is, an object O is removed when some other objects could generalize 
the information from O. ICF starts applying ENN as noise filter.  

In [2] the Backward Sequential Edition (BSE) was introduced, this method is based 
on backward sequential search; the BSE method starts from the original training sam-
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ple T and finds a subset S. At each step, BSE removes the object (WorstO) with the 
smallest contribution for the subset quality, in terms of the accuracy of a classifier, 
which is calculated by the Classifier() function. In [2], k-Nearest Neighbors (k-NN) 
with k=3 is used as Classifier() function. The BSE method is depicted in figure 1. 

 
BSE( Training set T ): Object set S 
     Let S=T 
     BestEval = Classifier(S) 
     Repeat 
              WorstO = null 
              For each object O in S 
                       S’ = S – {O}  
                       If Classifier(S’) ≥ BestEval then 
                              WorstO = O 
               BestEval = Classifier(S’) 
              If WorstO ≠  null then 
         S = S – {WorstO} 
     Until WorstO == null or S == ∅  
     Return S 
 

Fig. 1. BSE Method 
 

In BSE, if there is more than one object with the smallest contribution, only the last 
is removed.  

In [5] three edition methods were introduced: Depuration, k-NCN and iterative k-
NCN. Depuration is based on the generalized editing, in which two parameters k and 
k’ have to be defined, using the parameters the objects are removed or re-labeled (the 
original class label is changed). k-NCN editing is a modification of ENN and it con-
sists of using the k-NCN (Nearest Centroid Neighborhood) instead of k-NN. Iterative 
k-NCN consists of applying repeatedly k-NCN until no more objects are removed. 

In [6] the NNEE (Neural Network Ensemble Editing) method was proposed. It con-
structs a neural network ensemble from the training set T and changes the class label 
of each object in T to the class label predicted by the ensemble. NNEE does not re-
move objects, just changes class labels in order to increase the classification accuracy. 

3   Proposed Schemes 

In this section, we introduce two edition schemes in order to reduce the runtimes of 
BSE without a significant reduction in the classification accuracy. These schemes 
consist of a pre-processing over the training set before applying BSE. 

It is very common that a training set contains noisy and/or superfluous objects. 
These objects are useless or harmful for the classification process because noisy ob-
jects lead to wrong predictions by classifiers and it is not necessary to store superflu-
ous objects in the training set. Therefore, it is convenient to detect and discard those 
objects before starting the classification process.  
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The edition schemes proposed in this section are based on two main steps; the first 
one pre-processes the sample in order to detect and discard the objects above 
 described, in this way, the size of the original sample is reduced. The second step 
edits the resultant pre-processed sample in order to increase the classification  
accuracy. 

In the pre-processing step our proposed schemes uses either a noise filter method 
(remove noisy objects) or an edition method (remove superfluous objects). In the 
edition step we use BSE because according the results shown in [2], BSE reduce sig-
nificantly the number of objects and increases the classification accuracy. 

The first edition scheme (ENN+BSE) consists of applying ENN as noise filter in 
order to remove those useless noisy objects in the sample and after the clean subset is 
edited using BSE. When a set have been cleaned (filtered) the amount of comparisons 
in the classification process is reduced because a filtered set contains fewer objects 
than an unfiltered set. We use ENN as noise filter because it is a typical noise filter 
used in other edition schemes such as ICF and DROP3. 

This scheme supposes that there are noisy objects in the training set, which can be 
removed in order to obtain a sample reduction in the pre-processing step. If there is 
not any noisy object, the scheme becomes the BSE method. 

The second scheme (DROP+BSE) is based on editing an edited sample  because 
after editing a sample, it is possible that some objects in the edited set do not contrib-
ute for the accuracy in the classification process (superfluous) because other objects 
in the edited set can generalize their description. This scheme consists of re-editing an 
edited sample in order to increase the classification accuracy. Our scheme uses 
DROP3-DROP5 methods in the pre-processing step because these are the best DROP 
edition methods according to results reported in [1] and [2]. Finally, this scheme uses 
BSE to edit the edited sample. 

In contrast to ENN+BSE, the sample reduction in DROP+BSE does not depend on 
the kind of objects in the original sample because the edition methods used in the pre-
processing step remove some objects before the editing step.   

The kind of objects preserved before the editing step depend on the method used in 
the pre-processing step, for example: ENN just removes noisy objects, DROP3 and 
DROP4 remove noisy and some other unnecessary objects, DROP5 removes central, 
nosy and border objects. 

4   Experimental Results 

In this section, we present some experiments in order to compare the BSE method 
against ENN+BSE and DROP+BSE schemes. In addition, we compare these schemes 
against DROP3, DROP4 and ICF methods because these methods could be consid-
ered as edition schemes since they apply a pre-processing step. Each method was 
tested on 10 datasets taken from the Machine Learning Database Repository at the 
University of California, Irvine [7]. 

The distance function for the experiments was the Heterogeneous Value Difference 
Metric (HVDM) [1], which is defined as: 
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Where Na,x is the number of times that the feature a takes value x in the training set; 
Na,x,c is the number of times that the feature a takes value x in the class c; and C is the 
number of classes. 

In each experiment, 10 fold cross validation was used. The dataset was divided into 
10 partitions and each edition algorithm was applied to T which is built with 9 of the 
10 partitions (90% of the data) and the left partition (10% of the data) was the testing 
set. Each partition was used as testing set, so 10 tests were made with each dataset. 

In Table 1, the results obtained with k-NN considering 100% of the data, BSE 
method and ENN+BSE, DROP+BSE schemes are shown. For each method, there are 
two columns; the left one (acc.) is the average classification accuracy and the right 
one (stor.) shows the percentage of the original training set that was retained by the 
edition method. 

Based on the results shown in Table 1, we can see that the average accuracy of 
ENN+BSE and DROP+BSE schemes was higher than such obtained using the original 
set. On the other hand, the schemes accuracy was slightly smaller than BSE’s but the 
schemes had a lower average number of retained objects. 

The schemes ENN+BSE and DROP+BSE do not improve the accuracy obtained 
with BSE, but the main advantage in these schemes is that their runtimes are shorter 
than the BSE runtimes since BSE is an expensive method because it analyses the accu-
racy impact of leaving out each object at each edition step. 

In Table 2, average runtime results for BSE, ENN+BSE and DROP+BSE are 
shown. From Table 2 it could be noticed that the ENN+BSE and DROP+BSE run-
times are shorter than the spent by BSE. The complexity of BSE is O(N4F) where N is 
the total number of objects in the sample and F is the number of features.  
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The complexity of ENN+BSE and DROP+BSE schemes is also O(n4F) which is 
the same than BSE’s but applied with n < N for ENN+BSE and n << N for 
DROP+BSE. According to this, the proposed schemes do not reduce the complexity 
even though they reduce the runtimes. 

Table 1. Accuracy and retention percentage for: k-NN with 100% of the data, BSE method and 
ENN+BSE, DROP+BSE schemes 

k-NN BSE ENN+BSE DROP3+BSE DROP4+BSE DROP5+BSE 
Dataset 

acc. stor. acc. stor. acc. stor. acc. stor. acc. stor. acc. stor. 

Breast Cancer(WI) 96.28 100 98.71 2.09 96.58 1.25 98.13 0.84 97.27 0.82 97.28 0.89 
Cleveland 82.49 100 97.35 15.04 95.01 9.70 91.74 7.29 92.73 7.44 91.39 6.78 
Glass 71.90 100 89.67 13.18 81.64 9.45 79.30 8.56 80.32 8.25 77.94 8.30 
Hepatitis 80.62 100 97.41 9.24 92.87 4.08 82.20 3.22 89.04 3.58 86.41 3.43 
Hungarian 79.55 100 94.27 14.88 91.13 4.64 86.72 3.40 91.12 4.95 91.09 5.29 
Iris 94.67 100 99.33 6.14 98.66 5.55 99.30 5.85 98.66 5.03 96.66 5.03 
Liver(Bupa) 65.22 100 96.52 12.69 91.58 14.20 90.45 7.85 91.63 9.34 89.02 9.31 
Pima Indians 72.79 100 94.27 9.33 90.76 5.45 89.45 4.78 92.31 5.85 91.79 7.40 
Thyroid 95.39 100 97.70 3.61 96.29 3.25 97.25 3.61 97.70 3.46 97.70 3.36 
Zoo 94.44 100 97.77 10.86 93.33 10.24 91.11 21.36 95.56 8.27 96.82 8.64 

Average 83.33 100 96.30 9.70 92.78 6.78 90.56 6.67 92.63 5.69 91.61 5.84 

Table 2. Runtimes spent by BSE, and ENN+BSE, DROP+BSE schemes (hrs. = hours, min. = 
minutes and sec. = seconds) 

Dataset BSE ENN+BSE DROP3+BSE DROP4+BSE DROP5+BSE 

Breast Cancer(WI) 6.9 hrs. 5.9 hrs. 18.4 sec. 45.5 sec. 59 sec. 

Cleveland 7.2 hrs. 4.6 hrs. 40.6 sec. 1.19 min. 1.95 min. 

Glass 6.5 min. 2.2 min. 19.9 sec. 39.3 sec. 22.5 sec. 

Hepatitis 38.5 min. 24.4 min. 2.0 sec. 3.6 sec. 2.0 sec. 

Hungarian 4.9 hrs. 3.4 hrs. 1.1 min. 58.8 sec. 2.2 min. 

Iris 1.4 min. 1.2 min. 2.5 sec. 2.8 sec. 2.9 sec. 

Liver(Bupa) 29.2 min. 8.4 min. 1.21 min. 1.29 min. 2.0 min. 

Pima Indians 9.1 hrs. 3.4 hrs. 3.9 min. 7.4 min. 6.6 min. 

Thyroid 18.7 min. 8.3 min. 2.8 sec. 4.2 sec. 2.3 sec. 

Zoo 5.1 min. 2.8 min. 3.2 sec. 4.1 sec. 3.0 sec. 

A second experiment was a comparison among the proposed schemes, DROP3, 
DROP4 and ICF. The results are shown in Table 3. 

From Table 3 we can see that schemes accuracy was better than the obtained with 
ICF and even with DROP3, which was better than DROP4. With DROP4+BSE were 
obtained both results:  almost the best accuracy and the lowest percent of retention. 

Finally, the proposed schemes were compared against other kind of edition meth-
ods: Depuration method (the best edition method reported in [5]) and the NNEE 
method. The results obtained are shown in Table 4 using the results reported in [6] for 
Depuration and NNEE. Here also, 10 fold cross validation was used. 

In all cases the proposed schemes had better accuracy than NNEE and Depuration. 
ENN+BSE and DROP+BSE schemes have the advantage that they do not change the 
original distribution of the objects among the classes as Depuration and NNEE do. 
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Table 3. Accuracy and retention percentage for: ICF, DROP3, DROP4 and ENN+BSE, 
DROP3+BSE, DROP4+BSE schemes 

k-NN ICF ENN+BSE DROP3 DROP3+BSE DROP4 DROP4+BSE 
Dataset 

acc. stor. acc. stor. acc. Stor. acc. stor. Acc. stor. acc. stor. acc. stor. 

Breast Cancer(WI) 96.28 100 96.42 18.53 96.58 1.25 95.42 3.26 98.13 0.84 95.99 3.70 97.27 0.82 
Cleveland 82.49 100 91.44 43.63 95.01 9.70 78.89 11.44 91.74 7.29 79.53 13.53 92.73 7.44 
Glass 71.90 100 68.39 32.91 81.64 9.45 66.28 24.35 79.30 8.56 67.77 29.39 80.32 8.25 
Hepatitis 80.62 100 77.95 18.71 92.87 4.08 81.87 7.81 82.20 3.22 78.75 9.75 89.04 3.58 
Hungarian 79.55 100 84.58 29.63 91.13 4.64 80.84 12.76 86.72 3.40 78.19 15.26 91.12 4.95 
Iris 94.67 100 94.00 45.03 98.66 5.55 95.33 15.33 99.30 5.85 94.67 15.26 98.66 5.03 
Liver(Bupa) 65.22 100 59.68 27.63 91.58 14.20 67.82 26.83 90.45 7.85 66.41 33.11 91.63 9.34 
Pima Indians 72.79 100 75.43 32.52 90.76 5.45 72.91 16.44 89.45 4.78 71.23 21.70 92.31 5.85 
Thyroid 95.39 100 92.05 53.22 96.29 3.25 93.98 9.77 97.25 3.61 93.51 10.39 97.70 3.46 
Zoo 94.44 100 81.22 16.54 93.33 10.24 90.00 20.37 91.11 21.36 91.11 21.36 95.56 8.27 

Average 83.33 100 82.12 31.84 92.78 6.78 82.33 14.83 90.56 6.67 81.71 17.34 92.63 5.69 

Table 4. Accuracy classification percentage for: Depuration (Dep.), NNEE and ENN+BSE, 
DROP+BSE schemes 

 
Dataset 

 
Dep. 

 
NNEE 

ENN 
+ 

BSE 

DROP3 
+ 

BSE 

DROP4 
+ 

BSE 

DROP5 
+ 

BSE 
Glass 59.90 67.94 81.64 79.30 80.32 77.94 
Iris 95.67 95.47 98.66 99.30 98.66 96.66 
Liver 57.28 64.06 91.58 90.45 91.63 89.02 
Pima Indians 72.42 75.57 90.76 89.45 92.31 91.79 
Wine 94.94 96.05 99.44 99.44 99.44 99.44 
Zoo 90.75 94.48 93.33 91.11 95.56 96.82 
Average 78.49 82.26 92.57 91.51 92.99 91.95 

5   Conclusions 

The main disadvantage in instance-based classifiers is that they are expensive because 
the classification cost depends on the amount of objects in the training set and it is 
common that a training set contains useless or harmful objects for the classification 
accuracy. Therefore, it is necessary editing the training set in order to detect useful 
objects.  

According to results shown in [2], BSE is a good edition method but a disadvan-
tage of BSE is its high complexity. Our schemes reduce significantly the runtimes 
edition and the accuracy results are not too low with respect to BSE.  

From the obtained results, we can conclude that our edition schemes are good op-
tions for solving edition problems since they obtained higher accuracy than ICF, 
DROP3, DROP4 and even than Depuration and NNEE. 

We used ENN and DROPs in the pre-processing step, but our edition schemes have 
not been proposed particularity to work only using these methods, some other meth-
ods can be used for pre-processing/pre-editing the sample before applying BSE.  

Based on our experimental results, the main advantages of our schemes over other 
edition methods are: better accuracy results and low runtimes. In addition, our 
schemes do not change the original label of the objects as Depuration and NNEE do. 
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As future work, we will propose and test some edition schemes that do not depend 
on the k-NN rule and they do not hurt on both classification accuracy and edition 
runtimes. 
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Abstract. The conceptual k-means algorithm consists of two steps. In the first 
step the clusters are obtained (aggregation step) and in the second one the 
concepts or properties for those clusters are generated (characterization step). 
We consider the conceptual k-means management of mixed, qualitative and 
quantitative, features is inappropriate. Therefore, in this paper, a new 
conceptual k-means algorithm using similarity functions is proposed. In the 
aggregation step we propose to use a different clustering strategy, which allows 
working in a more natural way with object descriptions in terms of quantitative 
and qualitative features. In addition, an improvement of the characterization 
step and a new quality measure for the generated concepts are presented. Some 
results obtained after applying both, the original and the modified algorithms on 
different databases are shown. Also, they are compared using the proposed 
quality measure. 

1   Introduction 

The conceptual clustering concept surged at 80’s with the Michalski’s works [1]. The 
conceptual clustering consists on finding, from a data set, not only the clusters but an 
interpretation of such clusters. 

There are some algorithms to solve the conceptual clustering problem [1,2]; one of 
them is the conceptual k-means algorithm [2].  

The conceptual k-means algorithm, proposed by Ralambondrainy in 1995, is a 
method that integrates two algorithms: 1) an extended version of the well known k-
means clustering algorithm for determining a partition of a set of objects described in 
terms of mixed features (aggregation step), and 2) a conceptual characterization 
algorithm for the intentional description of the clusters (characterization step). 

In the aggregation step, a distance function to simultaneously deal with qualitative 
and quantitative features is defined. The distance between two objects is evaluated as 
a weighted sum of the distance among the quantitative features, using the normalized 
Euclidean distance, and the distance among the qualitative features, using the chi-
square distance.  
                                                           
* This work was financially supported by CONACyT (México) through the project J38707-A. 
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This way to define the distance function is inappropriate because it requires 
transforming of each qualitative feature in a set of Boolean features. The values of 
these new features are codes but they are deal as numbers, which is incorrect. For this 
reason, in this paper, we propose to use a different strategy to obtain the clusters. 

In the characterization step, it is necessary to define, for each feature, a 
generalization lattice, which defines a relation among the values of the feature. We 
consider that the lattice defined for the quantitative features is incorrect, because it 
does not satisfy the definition of a generalization lattice. Therefore, we propose a new 
generalization lattice. The definition of a generalization lattice is given in section 2.2. 

This paper is structured in the following way: in section 2, a description of the 
conceptual k-means algorithm is presented. In section 3, a new conceptual k-means 
algorithm using similarity functions is proposed. In section 4, the results obtained 
after applying both algorithms over different databases are shown. In section 5, 
conclusions and future work are presented. 

2   Conceptual K-Means Algorithm (CKM) 

In this section, a description of the Ralambondrainy’s conceptual k-means algorithm 
is presented. As we have mentioned above, the CKM algorithm consists of two steps: 
the aggregation and the characterization steps. These steps are described in sections 
2.1 and 2.2 respectively. 

2.1   Aggregation Step 

The goal of the aggregation step is to find a partition { }kC,...,C1  in k clusters of the 

data set Ω. This algorithm is based on an extension of the well known k-means 
algorithm in order to allow working with objects described in terms of mixed features. 

As a comparison function between objects, a distance function is defined, which is 
given by a weighted sum of the normalized Euclidean distance (for quantitative 
features): 
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where σi denotes the standard deviation of the ith feature. And the chi-square distance 
(for qualitative features). In order to apply the chi-square distance, a transformation of 
each qualitative feature in a set of Boolean features to deal them as numbers, is 
carried out. Therefore, the chi-square distance is given as follows: 
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modality. This distance gives more importance to rare modalities than to frequent 
ones. 
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Then, in order to work with mixed data, the following distance was proposed: 
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where π1 y π2 are weights for balancing the influence of quantitative and qualitative 
features. In [3] a strategy to select the values for the weights π1 and π2 is shown. 

This algorithm requires transforming the qualitative features in sets of Boolean 
features. The values of these new features are codes (0 or 1) but they are dealt as 
numbers, which is incorrect because the codes 0 and 1 are not in the real space. 

In addition, this algorithm always uses this distance to manipulate mixed data, not 
giving the flexibility of using the comparison function which is more suitable for the 
problem that is being solved.  

On the other hand, the centroids obtained by the algorithm are elements that cannot 
be represented in the same space in which the objects of the sample are represented, 
the averages obtained by k-means for the qualitative features are real values not 0’s 
and 1’s, so that, it is not possible to return to the original representation space. 

For this reasons, we propose to use a different strategy in the aggregation step, 
which is presented in section 3.1. 

2.2   Characterization Step 

In order to apply the characterization step, a generalization lattice is associated to 
each feature. A generalization lattice is defined as follows: a generalization lattice is a 
structure L = (E,≤,∨,∧,*,∅), where E is a set of elements called the search space, ≤ is 
a partial order relation “is less general than”, which redefines the inclusion relation as 
follows: fefe,Ef,e ⊆≤∈∀ , the symbol * denotes the greatest member of E and 

it is interpreted as “all values are possible” and  ∅ denote the minimal element of E 
and it is interpreted as “impossible value”. Every (e,f) has a least upper bound that is 
denoted by e∨f called also the generalization of e and f, and a greatest lower bound of 
e and f denoted by e∧f [2]. 

The generalization lattice for the qualitative features is defined by the user from the 
available background knowledge. While for the quantitative features, a code or 
transformation into qualitative features through a partition of the values domain is 
carry out.  

For each cluster C obtained in the aggregation step, a value r of x is typical for this 
cluster if it satisfies:  

xxxx r σµσµ +≤≤−  

where xµ  is the mean of the feature x in the cluster C and xσ  is the standard 

deviation of x in the cluster C. 
Therefore, a coding function { }sup,typicalinf,:c →ℜ  is defined as: 

≤+
+≤≤−

−≤
=

rifsup

riftypical

rifinf

c

xx

xxxx

xx

r

σµ
σµσµ

σµ
 

(1) 

The generalization lattice for the quantitative features, associated to the search 
space E = {inf, typical, sup}, is shown in figure 1 a). 
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The values of xµ  and xσ  are calculated with the objects of the cluster. This fact 

originates a problem when the predicate CÂ  is compared with the counterexamples, 

because the values inf, typical and sup are syntactically similar but semantically 
different among clusters. In other words, these values represent different intervals 
depending on the cluster that is analyzed. For this reason, in this paper, some 
modifications to this step are proposed. These modifications are presented in the 
section 3.2. 

 
 

 

 

 

 

Fig. 1. a) Generalization lattice for the conceptual k-means, b) generalization lattice for the 
conceptual k-mans with similarity functions 

3   Conceptual K-Means Algorithm with Similarity Functions 
(CKMSF) 

In this section, some modifications to the CKM algorithm are presented. In section 
3.1, the new strategy to obtain clusters is described and in section 3.2, we propose a 
new generalization lattice for the quantitative features in characterization step. 

3.1   Aggregation Step 

In this paper, we propose to use the k-means with similarity functions algorithm 
(KMSF) [4], for the aggregation step, instead of the original strategy used by the 
CKM algorithm.  

This algorithm allows working in a more natural way (without transforming the 
space) with mixed features. For each feature, in order to compare its values, a 
comparison function is defined, which is denoted by [ ]10,DD:C ii →× . This function 

is given in dependence of the nature of the feature. 
The similarity function, used in this paper, to compare two objects is: 

( ) ( ) ( )( )
R

Ox,OxC
O,O Rx jtitt

ji
t ∈=Γ  

where ( ) ( )( )jtitt Ox,OxC  is the comparison function defined for the feature xt. 

The similarity functions are more appropriate than the defined distance function for 
the aggregation step of the CKM algorithm, because this function does not require 
transforming features. In addition, they could be defined in terms of comparison 
functions, which allow expressing how the values of the features are compared in the 
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problem to solve. It is more reasonable than using a fixed function for all the 
problems. 

On the other hand, the KMSF algorithm, selects the centroids of the clusters as 
objects of the sample instead of centroids, which are in a different representation 
space, as occur in the k-means algorithm. Considering an object of the sample as the 
centroid of the cluster is more reasonable than using an element that cannot be 
represented in the same space. 

3.2   Characterization Step 

The generalization lattice given by Ralambondrainy [2], for the qualitative features 
does not satisfy fefe,Ef,e ⊆≤∈∀ , because inf ≤ typical does not imply that the 

interval of values represented by the inf label are contained in the interval of values 
represented by the typical label and typical ≤ sup does not imply that the interval of 
values represented by the typical label are contained in the interval of values 
represented by the sup label; because these intervals are excluding (see expression 
(1)). Then, the concepts obtained with this generalization lattice do not represent 
appropriately the objects in the clusters. Therefore, we propose to use the 
generalization lattice shown in figure 1 b). 

This generalization lattice satisfies that fefe,Ef,e ⊆≤∈∀ , because inf ≤ *  

inf ⊆ *, typical ≤ *  typical ⊆ * and sup ≤ *  sup ⊆ *, which allows working in a 
more appropriate way with the quantitative features. 

As we have mentioned above, the values of xµ  and xσ  depend of the cluster. 

Therefore, it is not appropriate to only take the labels inf, typical and sup, but it is also 
necessary to verify if the value for the feature x, for the object that is being analyzed, 
is inside the range of values for the label of the feature x into the cluster. 

Another way to define the coding function for the quantitative features is using the 
mean xµ  and the standard deviation xσ  as global. This allows measuring the range of 

values of the feature with respect to the total sample of objects. In addition, in this 
case verifying if an object is covered by the generated concept; it is equivalent to take 
the labels or the ranges of the labels, because these values do not depend on the 
cluster.  

We consider that taking xµ  global and xσ  local  or xµ  local and xσ  global does 

not make sense, because this values would be evaluating in different levels, i.e., one 
value is evaluated with respect to the cluster and the other one is evaluated with 
respect to the whole sample of objects.  

Therefore, the proposed conceptual k-means algorithm uses, in the aggregation 
step, a similarity function given in terms of comparison functions which allows 
expressing how the features are compared depending on the problem to solve. Also, 
the centroids are objects in the sample and not elements that cannot be represented in 
the same space where the objects of the sample are represented.  

On the other hand, in the characterization step a new generalization lattice for the 
quantitative features was introduced. 

Finally, we consider that it is important to have a way to evaluate the quality of the 
concepts. Ralambondrainy [2] proposed to take as quality measure for the concepts 
the percentage of objects of the cluster that are recognized by the concept. However, 
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it is also necessary to take into account the objects outside the cluster that are 
recognized by the concept. Therefore, we propose the following quality measure: 

==

+=
c

i
i

c

i
i mplescounterexatotalexamplesquality

11

 

where: 
    examplesi: is the number of objects in the cluster Ci that are covered by the concept;  
    counterexamplesi: is the number of objects outside of the cluster Ci that are covered  

      by the concept; 
    total: is the number of objects in the sample. 

This function obtains higher values if the number of examples covered by the 
concept increases and the number of counterexamples covered by the concept 
decreases. And vice versa, the function obtains lower values if the number of 
examples covered by the concept decreases and the number of counterexamples 
covered by the concept increases. 

4   Experimentation 

Initially, some tests with the aggregation step were carried out. The k-means 
algorithm and the KMSF were applied over different databases and the obtained 
results were compared. The Iris, Glass, Ecoli, Tae, Hayes, Lenses and Zoo databases 
were used for the tests; these databases are supervised and they were taken from the 
UCI repository [5]. 

Table 1. Percentages of classification obtained by both algorithms over different databases 

  k-means algorithm KMSF algorithm 
Data-
bases 

Number  
of objects 

% of objects 
well classified 

% of objects 
bad classified 

% of objects 
well classified 

% of objects 
bad classified 

Iris 150 85.33% 14.67% 90.67% 9.33% 
Glass 214 34.11% 65.89% 45.79% 54.21% 
Ecoli 336 33.04% 66.96% 42.26% 57.74% 

Tae 151 36.42% 63.58% 61.59% 38.41% 
Hayes 132 36.36% 63.64% 46.97% 53.03% 

Lenses 24 41.67% 58.33% 41.67% 58.33% 
Zoo 101 71.29% 28.71% 79.21% 20.79% 

In table 1, the results obtained in the aggregation step after applying the k-means 
and the KMSF algorithms over the databases are shown. The obtained clusters were 
compared against the original classification.  

In table 1, we can observe that the classification obtained by the KMSF algorithm 
has more well classified objects, in most of the cases, than the classification obtained 
by the k-means algorithm. This is due to the form in which the objects are compared 
with the centroids, also that the centroids are objects in the sample instead of being in 
a different representation space.  

Later some tests with the characterization step, using the Iris, Glass, Ecoli and Tae 
databases were carried out. These databases contain quantitative data. The tests were 
made taking the global mean and standard deviation and taking the local mean and 
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standard deviation. The characterization step was applied over the clusters obtained in 
the aggregation step by the k-means and the KMSF algorithms  

In addition, an analysis of the parameters α (maximum number of counterexamples 
that could be covered by a predicate) and β (minimum number of examples that must 
be covered by a predicate) was carried out. In this analysis, we observed that for small 
values of β more objects of the cluster are covered by the concept but the concepts are 
larger and therefore, more difficult to understand. While, for big values of β it could 
happen that for some clusters any concept could be generated. 

In figure 2 a), the results obtained after applying the characterization step over the 
clusters created by the k-means algorithm taking σx global and σx local, and both 
lattices, the original and the new, are shown. In figure 2 b), the results obtained after 
applying the characterization step over the clusters obtained by the new conceptual k-
means algorithm taking σx global and σx local, and both lattices, the original and the 
new, are shown. The results shown in figure 2 are for those values of α and β, which 
obtain the highest concept quality. 

In figure 2, we can observe that for σx global, the obtained concepts using the new 
lattice are better than the obtained concepts using the original lattice, according to the 
proposed quality measure.  
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Fig. 2. Results obtained in the characterization step: a) for the CKM algorithm and b) for the 
CKMSF 

When the σx local is taking, this improvement in the concept quality is not so clear 
(see figure 2). However, with the new lattice, the concept quality does not depend so 
much of the parameters α and β, because for any value of α and β the concepts obtain a 
high quality (see figure 3), which does not occur when the original lattice is used (see 
figure 4). In that case, it was necessary to do a good selection of the parameters α and β, 
to obtain concepts with high quality.  

Only the results obtained using the Iris database are shown (figures 3 and 4). 
However, the Glass, Ecoli and Tae databases have a similar behavior. 

In addition, some tests with the Hayes, Lenses and Zoo databases, that contain only 
qualitative information, were carried out. In this case, we only compare the concept 
quality obtained by the CKM and the CKMSF algorithms because the new 
generalization lattice for quantitative features does not influence in the qualitative 
features. Only the results obtained with the Hayes database are shown (figure 5). 
However, the Lenses and Zoo databases have a similar behavior. 
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Fig. 3. Results obtained by the characterization step of both algorithms applied over the Iris 
database, using the new lattice and for values of α and β between 0 and 15 

  

Fig. 4. Results obtained by the characterization step of both algorithms applied over the Iris 
database, using the original lattice and for values ovf α and β between 0 and 15 

  

Fig. 5. Results obtainedin th e characterization step, applied over both algorithms, using the 
Hayes database, for values of α and β between 0 and 15 

In figure 5, we can observe that the concepts obtained for the CKMSF have similar 
quality than those obtained by the CKM even when the clusters obtained, in the 
aggregation step, by the k-means algorithm are different than the clusters obtained by 
the KMSF. 
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5   Conclusions and Future Work 

In this paper, we proposed a new conceptual k-means algorithm using similarity 
functions, which allows dealing in a more natural way with objects described in terms 
of mixed features. 

This algorithm uses, in the aggregation step, the k-means algorithm with similarity 
functions (KMSF). The KMSF uses a similarity function defined in terms of 
comparison functions for features, which allow expressing how the values for the 
features are compared, in the problem to solve. Also, this function does not require 
transforming the features. 

In addition, the centroids of the clusters are objects in the sample instead of 
elements that cannot be represented in the same space where the objects of the sample 
are represented. 

On the other hand, in the characterization step, we proposed a new generalization 
lattice, which allows dealing with quantitative features in a more appropriate way. 

Besides, we proposed a function to evaluate the quality of the concepts. This 
function takes into account both the objects into the cluster that are covered by the 
concept and the objects outside the cluster that are covered by the concept. 

Based on the experimentation, we observed that using the new lattice we obtained 
concepts with a high quality, independently of the values for the parameters α and β, 
which did not happen when the original lattice was used. In this case, it is necessary 
to do a good selection of the parameters to obtain concepts with high quality. 

As future work, we are working in other way to obtain the characterization of the 
clusters and in a fuzzy version of the conceptual k-means algorithm with similarity 
functions. 
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Abstract. In this paper we present an image segmentation technique
based on the concepts of circulation and topological control. Circulation
is a mathematical tool widely used for engineering problems, but still
little explored in the field of image processing. On the other hand, by
controlling the topology it is possible to dictate the number of regions
in the segmentation process. If we take very small regions as noise, the
mechanism can be seen as an efficient means for noise reduction. This
has motivated us to combine both mathematical tool in our algorithm.
As a result, we obtained an automatic segmentation algorithm that gen-
erates segmented regions bounded by simple closed curves; a desireable
characteristic in many applications.

1 Introduction

Segmentation plays an important role in image processing especially for edge
and object detection, coding and analysis. The spectrum of applications in which
segmentation is to be found is quite wide, ranging from medical imaging to robot
vision. Over the years a great number of approaches have been proposed, led by
the fact that the efficiency of segmentation methods are heavily domain-oriented:
the particularities of a problem found in a certain domain may demand the
development of techniques with characteristics that are not necessarily suitable
for other domains.

In this work we present a new segmentation technique that automatically de-
composes an image into a set of regions whose boundaries are Jordan’s curves,
while keeping the topology of these regions under control. Three-dimensional
reconstruction and object recognition (in which the topology of the object un-
der investigation is normally known and where simple closed curves - Jordans
curves - bounding the regions can be handled geometriacally) are examples of
applications where such feature is desirable.

Making use of a vector field derived from image data, our approach employs
the concept of circulation for such a field to decide which adjacent regions must
be glued, as expected in region growing methods. The gluing is conducted by a
mathematical framework capable of controlling the topology during the entire
process.

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 377–391, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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A consequence of the methodology above is that the segmentation process
can be controlled by thresholding the circulation between adjacent regions as
well as by the topological properties of the objects in the image. This flexibility
makes our approach an interesting segmentation technique, which can be useful
in many applications.

This paper is organized as follows: section 2 presents a brief description of
prior work in image segmentation. In section 3 we review definitions and some
properties necessary to figure out the next sections. The theoretical background
for our algorithm is described in section 4. The algorithm itself is presented in
section 5. Results are discussed in section 6. Section 7 contains our conclusions
and further work.

2 Related Work

The problem of image segmentation has received considerable attention in the
literature [12,16]. Several methodologies have been proposed to tackle this prob-
lem, and the majority of them fall into two major approaches widely used in this
context: edge-based-like [8,7,15] and region-based-like [3].

Region-based segmentation methods group pixels of similar properties (spe-
cific to a particular application domain), providing closed regions, which in turn
give the boundaries. In edge-based approaches, on the other hand, discontinuities
are extracted and the segmentation is guided by contours. The two approaches
are complementary, and one may be preferred to the other for some specific
applications or domain.

Compared to region-based segmentation techniques, however, edge detection
has some very appealing properties. Usually, the algorithms are based on deriv-
ative calculations and can be implemented as a simple control structure and
regular operators like convolution and, thus, lend themselves to an efficient im-
plementation on special purpose image processors and parallel computers. In
addition, edge detection techniques are able to localize surface boundaries more
precisely in general.

In this paper, we add three different “functional views” or “perspectives” in
which image processing techniques could be categorized, according to the role
played in the application domain. They are: degree of automation, topological
control and local/global information usage.

Under the first perspective, image processing techniques are classified accord-
ing to the degree of automation provided. For some domains, like medical imag-
ing, user-free segmentation techniques are highly desirable, as some modalities
(CT, MRI) produce multidimensional data sets and require the interpretation
of various slices. From this perspective, several semi-automatic and automatic
methods for segmenting images have been proposed. Semi-automatic methods
are those which require some degree of information, usually entered by the user
interactively, either in the beginning or during the process. Various classes of al-
gorithms fall into this category. One typical example are the deformable models
such as snakes [5], in which an initial snake (mostly outlined manually around
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an object of interest) is deformed under internal (bending) and external forces
(lines and edges, mainly), converging to a final form to reach an equilibrium
energy state.

On the other hand, automatic methods do not require user interaction. Some
edge- and region-based approaches can be categorized according to this func-
tionality. Signal Processing techniques (Fourier Transform [1], Wavelets [9]) and
some statistical methods - if one considers segmentation as a pixel classification
problem - such as Fuzzy [13] and Clustering [4], can lead to segmentation with
no human intervention.

A second, but nonetheless important perspective, is the control over the
image topology while carrying out segmentation. Few methods are to be found
in the literature that are capable of, simultaneously, keeping track of topology
while splitting an image into regions of interest. In practical terms, by controlling
the topology one can dictate the number of nested segmented regions. This is a
very desirable feature for certain domains like segmentation of medical images in
which different anatomical structures are sought. For example, the segmentation
of an axial image of the brain with Euler number equal to 1 could produce
a single contour of the skull (assuming this is the most external anatomical
structure present). But, if Euler number is set to values smaller than 0, other
internal structures (along with the skull itself) would appear as the result of the
segmentation [11].

The third perspective takes into account the usage of either local or global
information to reach segmentation. Local information based algorithms use the
pixel neighborhood and pixel connectivity as input of the segmentation process.
Several families of algorithms belong to this class: classic edge detection[8], math-
ematical morphology [14], convolution-based techniques, etc. Algorithms based
on global information, on the other hand, consider information from an image
region or a larger set of pixels, as opposed to a pixel and its near neighbor-
hood. In general, approaches based on global information are used on region
segmentation, texture algorithms and active contours.

Both local and global information-based approaches hold important infor-
mation of the image nature and are functionally complementary. Techniques
that explore both local and global features may be very promissing. Methods
based on Markov Random Fields (MRF) [6,2], for example, fall in this category.
MRF models represent an image through local characteristics, by defining the
dependency of each pixel value with its neighbouring pixels. This dependency is
expressed in terms of a conditional probability defined globally.

To our knowledge there is no method that combines the three functional
view altogether. The majority of the techniques available concentrate on a single
view alone and some combines two of them. The method described in this paper
encompasses characteristics from the three functional views presented above. It is
an automatic approach with full control over topology and, moreover, combines
both local and global information.
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3 Basic Concepts

This section presents the basic definitions and notation that will be used through-
out this paper. The approach undertaken here has been restricted to the two–
dimensional Euclidean space R

2.
A cell with center (a, b) and radius q is the set of points (x, y) ∈ R

2 satisfying
max(|x− a|, |y− b|) ≤ q, i.e., a square with side length 2q centered in (a, b). The
corners of a cell are called vertices of the cell and the four segments bounding
the cell are its edges.

A square grid G is a cell decomposition of R
2 where each point (a, b), where

a and b are integers, is the center of one single cell V (grid cell) with radius equal
to 1

2 .
A finite subset of grid cells R is a region of G if for any two cells Va and

Vb in R there is a sequence of grid cells (V1, . . . , Vn) in R such that Va = V1,
Vb = Vn, and Vi ∩ Vi+1 contains a common edge of Vi and Vi+1. From this we
can see that each edge in R is contained in either one or two cells of R, which
are called boundary edges and interior edges, respectively. Note from the
definion above that each region is a 4-connected set of cells.

Two regions R and S are called adjacent regions if R ∩ S = σ, where σ is
a set of boundary edges.

Let γ = (e1, . . . , en) be a sequence of distinct boundary edges of a region
R such that ei and ei+1 (en+1 = e1), i = 1, . . . , n, have a vertex in common.
γ is said to be a external boundary curve of R if γ encloses R and as one
“walked” from edge ei to ei+1, the cells (or cell) in R containing ei and ei+1
are always located on the left of these edges. If γ is enclosed by R and the cells
containing its edges are always to the right of the edges, then γ is called a hole
of R. With the definitions above we stipulate a counter-clock-wise orientation
for the boundary of the regions in G, which is essential for the Green’s theorem
described in next section. The union of the external boundary curve with the
holes of R is called the boundary curve of R, denoted Bd(R).

Let U be a subset of G such that the center (a, b) of each cell in U satisfies
1 ≤ a ≤ N and 1 ≤ b ≤M . An N ×M digital image, denoted I, is a pair (U , I),
where I : U → R

+ is a function that associates each grid cell in U with a positive
value. Note that in our context a digital image can be seen as a set of cells with
scalars associated with them.

Let nc(R) and nh(R) be the number of connected components and holes of
a region R ⊂ G, respectively. The Euler characteristic of R can be defined by

χ(R) = nc(R)− nh(R). (1)

It is worth mentioning that the Euler characterisctic is usually defined either
in terms of the number of vertices, edges, and faces or as a difference between
the number of connected components and the number of holes in an object. As
will be shown in the next section, this last definition is more appropriate in the
context of this work.
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4 Circulation and Topological Control

In this section we describe the mathematical framework that is the background
of our segmentation algorithm. Such a framework is based on two main concepts,
namely: circulation through boundary curves and topological control during the
gluing process. These concepts are detailed in the following subsections.

4.1 Circulation Through Boundary Curves

Let R be a region in a digital image I = (U , I), i.e., each cell in R is associated
with a positive scalar, and E the set of the edges in R. Let FR : E → R

2 a
map that relates each edge e ∈ E to a two-dimensional vector FR(e) = (p, q),
where p : NRe → R and q : NRe → R are real functions from a neighborhood
NRe of e, in R, to R. Notice that FR is a vector field defined in R. It is worth
mentioning that the vector FR(e) will depend on the arrangement of the cells in
the neighborhood of e as well as the escalar values of these cells.

Proposition 1 below states an important result that is essential for our region-
based segmentation algorithm.

Proposition 1. If FR : E → R
2 is constant, i.e., p = c1 and q = c2, for all

edge in R then ∮
Bd(R)

FR ds = 0

Proof. The proof follows from Green’s theorem, as∮
Bd(R)

F ds =
∫
R

∫
∂q

∂x
− ∂p

∂y
dxdy

and ∂q
∂x = 0, ∂p

∂y = 0 for all edges in R. �

Proposition 1 deserves some comments. Although Green’s theorem is usually
defined in the context of continuous vector fields, there are different versions of
such a theorem for the discrete case (see [18]). With some manipulation, the
proof of Proposition 1 can similarlly be carried out with a discrete version of
Green’s theorem.

Let’s investigate more carefully the relation
∮

Bd(R)
FR ds =

∫
R

∫
∂q
∂x −

∂p
∂y dxdy,

given by Green’s theorem in the proof of Proposition 1. The term ∂q
∂x−

∂p
∂y on the

right double integral represents the z component of the rotational vector of F and
it measures the circulation of FR in each point of the domain. The important
fact is that circulation can be seen as a high-pass filter when FR is properly
defined, as illustrated in figure 1. Figure 1b) shows the circulation of figure 1a)
for FR = (p, q) defined as p = 0.3Iij + 0.25(Ii+1j + Ii−1j) + 0.1(Iij−1 + Iij+1),
q = 0.3Iij + 0.25(Iij−1 + Iij+1) + 0.1(Ii+1j + Ii−1j) (we are supposing that R
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a) b)

Fig. 1. Circulation as a high-pass filter

is the whole image). Notice from figure 1b) that the high-frequence areas of the
image in figure 1a) could be well detected by measuring the circulation of FR.

Hence, in low-frequence areas, the integral
∫
R

∫
∂q
∂x−

∂p
∂y dxdy will assume values

close to zero, the same happening with
∮

Bd(R)
FR ds. Thus, by analyzing this last

integral we can have an indication whether the region R is crossing or not a
high-frequence area. This is an essencial matter in image segmentation. Regions
where the integral

∮
Bd(R)

FR ds is equal to zero are named homogeneous regions.

Notice that regions where FR is constant are always homogeneous. This fact will
be important in the development of the segmentation algorithm presented in the
next section.

Let R and S be two adjacent regions in a digital image I = (U , I) and
σ = R ∩ S be the intersection curve between R and S. In order to analyze the
circulation in σ we need to define the vector field in the edges of σ. A natural
way to do this is define Fσ = (p, q) so that the components p and q, for each
edge e ∈ σ, are real functions from a neighborhood of e in R ∪ S.

Next proposition, which is a consequence of the discussion above, tell us how
to glue homogeneous regions while keeping the homogeneity.

Proposition 2. Let R and S be adjacent homogeneous regions and Fσ = (p, q)
the vector field defined in σ = R∩S as discussed above. If ∂q

∂x −
∂p
∂y = 0, for each

edge in σ, then R ∪ S is also homogeneous.

4.2 Topological Control

In this subsection we shall investigate how to characterize the topology of the
union of two adjacent regions. More specifically, we are interested in identifying
the Euler characteristic of R∪S where R and S are two adjacent regions whose
topologies are given by χ(R) and χ(S), respectively.

In section 2 we defined the Euler characteristic of a region R in terms of its
number of connected components and holes, i.e., χ(R) = nc(R)− nh(R). As in
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our context regions are always constituted by single connected component, if we
characterize the number of holes in R ∪ S, we shall identify its topology.

Before presenting such a characterization, let us understand the topological
behavior of curves generated by intersecting two adjacent regions. If R and S are
two adjacent regions then either S is inside R (or vice-versa) or R and S are side
by side, as shown in figure 2. In the former, the intersection curve consists in a
simple closed curve, as illustrated in figure 2a). Curves generated by intersecting
side by side adjacent regions can be formed by a set of disjoint segments. For
example, in figure 2b), the intersection between the adjacent regions gives rise
to a curve with two connected components.

a)

S

R

b)

SR

Fig. 2. Intersection of adjacent regions generating: a) a simple closed curve, b) a set
of curve segments

Hence, supposing that σ = R∩ S is the intersection curve between R and S,
we can also compute the Euler characteristic of σ as χ(σ) = nc(R∩S)−nh(R∩S),
where nc(R ∩ S) and nh(R ∩ S) are the number of connected components (or
segments) and holes in R ∩ S, respectively. Notice that nh(R ∩ S) can only
assume value 1 if S is inside R (or R is inside S). Otherwise, nh(R∩S) becomes
0. Furthermore, if nh(R ∩ S) = 1 then nc(R ∩ S) = 1.

Next proposition allows us to quantify, in terms of χ(σ), the number of new
holes created when two adjacent regions are unified. We denote this number of
new holes by nhnew(R ∪ S), i.e., nhnew(R ∪ S) = nh(R ∪ S)− nh(R)− nh(S).

Proposition 3. Let R and S be two adjacent regions and σ = R ∩ S their
intersection curve. The number nhnew(R ∪ S) of new holes generated by gluing
R and S is:

nhnew(R ∪ S) = χ(σ) − 1

Proof. We know that

nhnew(R ∪ S) = nh(R ∪ S)− nh(R)− nh(S) (2)

Additionally, we have that χ(R∪S) = χ(R)+χ(S)−χ(σ), which from equation
1 becomes

nh(R ∪ S) = nc(R ∪ S)− nc(R) + nh(R)− nc(S) + nh(S) + χ(σ)
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Substituting equation above in (2) and remembering that nc(R ∪ S) = nc(R) =
nc(S) = 1 we conclude the proposition. �

In the next section we show how the mathematical framework presented
above can be handled in order to suit image segmentation effectively.

5 Algorithm

The segmentation algorithm proposed in this work can be divided in three parts,
namely: vector field definition, initialization, and region growing. The following
subsections are devoted to detailing each of these parts.

5.1 Vector Field Definition

The vector field plays an essential part in our algorithm, as it dictates the behav-
ior and the quality of the segmentation process. Notice that different vector fields
can produce distinct results. In our implementation the vector field is defined
from weighted mean values in the neighborhood of each edge. More specifically,
let R be a region in a N ×M digital image I = (U , I) and E the edges of R. We
define the vector field FR = (p, q) as follows:

p(e) =
1
C

∑
Vi∈NRe

ci I(Vi) (3)

q(e) =
1
D

∑
Vi∈NRe

di I(Vi) (4)

where ci and di are constants satisfying ci, di > 0, ∀i and C =
∑
NRe

ci, D =∑
NRe

di. It is important to note that C and D depend on the number of cell in

NRe . The values of ci and di are composed by applying a mask to each edge
e. Figure 3a) and 3b) shows the masks for horizontal and vertical edges, which
define the values for ci and di, respectively.

If e is either a boundary edge or an edge close to the boundary of R, the
values of ci and di are specified by intersecting the mask with R. Figure 4 shows
two examples of such an intersection. Notice that the normalization factors C
and D are computed as a sum of the mask values in the intersection.

5.2 Initialization

The initialization step aims at starting the segmentation process with a set of
regions satisfying proposition 1, i.e., FR must be constant in each edge of the
inicial regions, implying that the line integral of FR on the boundary curve of
each region R is equal to zero.
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a)

3

3

2

2

1

1

1

1

b)

32 2

1 1

1 1

3

Fig. 3. a) Values of ci; b) values of di

D = 10

3

3 1

2

13

1

1

2

1

3

C = 11

Fig. 4. Examples of the intersection between the mask (applyed in the bold edges) and
a region R (gray cells)

An easy way to create these initial regions while ensuring proposition 1, is
to make use of the grid cell comprising the whole image as the initial regions.
Moreover, since each grid cell of the image is associated with a single scalar,
the vector field FR is constant, thus ensuring proposition 1. The main reason
for restraining FR to be a constant in each initial region is that this property
guarantees the homogeneity, i.e., such regions are not crossing a high-frequence
area.

After initializing the regions, we compute and store, in a priority queue, the
values (and edges) of ∂q

∂x −
∂p
∂y evaluated on the boundary edges. The priority

queue stores the elements in increasing order and it is used in the growing process
to decide which regions must be merged, as discussed in next subsection.

e

Fig. 5. Least square approximation takes into account the values of p and q in the
marked boundary edges
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Before presenting the growing process, it is important to discuss how to
estimate the derivatives ∂q

∂x and ∂p
∂y . In our implementation we are making use

of least square interpolation to compute second order polynomials from which
the derivatives are computed. The least square approximation generates a second
order polynomial for each component p and q of the vector field in each boundary
edge e, taking into account the values of p and q from the edges of the cells
adjacent to e. Figure 5 illustrates which are the the values of p and q involved
in the calculation of the polynomials in an edge e.

5.3 Region Growing

The region growing process makes use of the values stored in the priority queue
to decide which regions must be glued. The regions adjacent to an edge extracted
from the priority queue are merged and the boundary curve of the new region is
updated. In order to continue with the growing process it is necessary to compute
the circulation on the new boundary curve.

Inspired by proposition 2, we estimate the circulation in each new component
of the boundary curve by computing the scalar field line integral∮

Bd(R∩S)

| ∂q
∂x
− ∂p

∂y
| dl (5)

where R and S are regions that become adjacent after gluing. The computed
value is also inserted into the priority queue. For example, suppose that R1 and
R2 are the regions selected to be merged, as shown in figure 6a). After gluing
R1 and R2, the new boundary curve component (highlighted as bold in figure
6b)) is updated and the scalar field line integral (5) is computed on it, and the
computed value is stored into the priority queue. Therefore, the region growing
process aims at merging the regions in an order that preserves homogeneity.

a)

R

R
S

1

2

b)

UR R

S

1 2

Fig. 6. Keeping the homogeneity in the growing process

The region growing process will have control over the region’s topology if
proposition 3 is employed, as it allows us to know if new holes are been created
during the gluing process. Hence, it is possible to specify, for example, a maximal
number of holes in each region. It is also possible to control the size of the holes
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in a straightforward way. In fact, it is well known that Green’s theorem allows
us to compute the area of a region through the line integral of the vector field
given by F = (−y, x), or similiarly, by computing the summation

1
2

n∑
i

vi
xv

i+1
y − vi

yv
i+1
x (6)

where vk
x and vk

y are the components x and y of the vertices vk of a poligonal
curve (boundary curve).

As a result, we can estimate the areas of each new hole created by the gluing
operation, discarding the ones whose areas are below a desired value. Notice that
this procedure can be employed as an alternative tool to noise reduction.

In our implementation we employ two different stopping criteria for the grow-
ing region process. The first one ends the process by thresholding the values of
the line integral (5). That is, when the priority queue returns a value higher than
a threshold, the region growing process stops.

The second stopping criterion takes into account the number of detected
regions. In this case the region growing process continues until a desired number
of regions is obtained. In our implementation, this criterion does not consider
the background of the image as a valid region.

6 Results

In this section we present some results obtained from the framework shown
above. The axial MRI image of the brain shown in figure 7 has been used to
illustrate our algorithm.

Fig. 7. Axial MRI image used in the segmentation

As mentioned in the previous section, our algorithm considers two different
stopping criteria: the line integral thresholding (Eq. 5) and topological properties
thresholding. Figure 8 shows the boundary curve of the regions detected by
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thresholding line integral (5). In this case, the resulting segmentation contains
400 regions approximately and some of them can be accounted on noise. Such
noisy regions are not easily removed, since finding an appropriate threshold value
to remove them may be a difficult task.

Fig. 8. Boundary curves of the regions dected by thresholding the line integral (5)

The difficulty in removing noisy regions can be overcome by topological
thresholding. Some examples are shown in figure 10. Figure 10a) shows the
resulting boundary curve when the topological threshold is set to a single region
without holes (we are not taken into account the background region). Note that
the curve that bounds the head is well detected and the small regions, which are
caracterized as holes, are eliminated altogether. Figure 10b) presents the result-
ing regions (boundary curves) when the topological threshold is set to a single
component with a single hole. Figure 10c) shows the resulting regions obtained
by setting the number of components to one, the number of holes inside this
component to one, and the number of holes within the hole equal two. As the
holes are indexed during the growing process, it is straightforward to select some
of them in accordance with a desired criterion. In our implementation the holes
are chosen from the area, i.e., the holes with the largest areas are selected.

Fig. 9. Segmented image by zero-crossing of the LoG with σ = 1.5
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Figure 9 depicts an edge image obtained by the classical zero-crossing of the
Laplacian of the Gaussian (LoG) (with σ = 1.5). Although this segmentation
looks similar to that generated by the proposed method, it does not deal with
topological control and, therefore, can not guarantee that edges are closed curves,
which define a single region. The topological control provided by the proposed
method turns out to be an efficient mechanism to keep noise under control,
since the number of regions in the resulting image is defined by a set of parame-
ters when the segmentation begins. This behavior can be observed in figures 8
and 10.

a) b)

c)

Fig. 10. Regions (and their boundary curves) dected by thresholding the topological
properties as: a) a single component; b) a single component with a hole; c) a single
component with a hole which has other two holes

To process the image in figure 7, the algorithm took 1.07s for the initialization
step and 1.77s for the region growing (with topological control) stage on a P4
2.4 GHz and 512 MB RAM. This is a satisfactory result when compared with
other automatic segmentation techniques described in the literature.

An important property of the algorithm, which can be observed in figure 10,
is that the boundary curves produced are Jordan’s curves, which are adequate
for 3D reconstruction from contours as discussed in [10]. Such feature is not
commonly found in other segmentation algorithms.
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7 Conclusions and Future Work

This paper presented a new framework to image segmentation that makes use
of circulation and topological control during the region growing process. From
such a framework we derived an automatic segmentation algorithm capable of
detecting regions while keeping their boundaries as Jordan’s curves; a desirable
property in many applications. The built-in topological control of the algorithm
has proven to be an efficient mechanism to reduce noise and enhance the quality
of the segmented regions.

The framework is also flexible, as different vector fields (from which the cir-
culation is computed) may produce different segmentations. In fact, this subject
is currently under investigation as we are now working on defining a vector field
to segment images with texture. We are also investigating how the topological
control can be used as a matching creterion. By imposing a certain number of
holes in a segmentation process for a single image, we can detect a set of other
images with similar characteristis, that is, those which holes are similar in shape
or area, for example.
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Abstract. The k-means algorithm is a frequently used algorithm for solving 
clustering problems. This algorithm has the disadvantage that it depends on the 
initial conditions, for that reason, the global k-means algorithm was proposed to 
solve this problem. On the other hand, the k-means algorithm only works with 
numerical features. This problem is solved by the k-means algorithm with 
similarity functions that allows working with qualitative and quantitative 
variables and missing data (mixed and incomplete data). However, this 
algorithm still depends on the initial conditions. Therefore, in this paper an 
algorithm to solve the dependency on initial conditions of the k-means 
algorithm with similarity functions is proposed, our algorithm is tested and 
compared against k-means algorithm with similarity functions. 

1   Introduction 

Clustering is a problem that frequently arises in several fields such as pattern 
recognition, image processing, machine learning, etc. As is well known, this problem 
consists in to classify a data set in two or more clusters.  

The k-means algorithm is a frequently used clustering algorithm that minimizes an 
objective function, this algorithm assumes that the number of clusters in which the 
data set will be classified is known. The algorithm consists in the following steps:  

1. Randomly select the initial centers. 
2. Each object is assigned to the cluster which the distance of its center to the 

object is minimum. 
3. Re-calculate the centers. 
4. Repeat steps 2 and 3 until there is not change in the centers. 

This algorithm has the disadvantage that it depends on the initial centers, for that 
reason; usually the algorithm is executed multiple times in order to find a better 
clustering. 

In order to solve the dependency on the initial conditions of the k-means algorithm, 
the Global k-means algorithm was proposed [1], the basic idea underlying this 
algorithm is that an optimal solution for a clustering problem with k clusters can be 
obtained using a series of local searches using the k-means algorithm. At each local 
search the k-1 clusters centers are always initially placed at their optimal position 
                                                           
* This work was financially supported by CONACyT (Mexico) through project J38707-A. 
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corresponding to the clustering problem with k-1 clusters and the remaining center is 
searched verifying each object in the data set. 

On the other hand, the k-means algorithm only works with numerical variables due 
to the use of means for calculating the new centers in each iteration. For that reason, 
the k-means algorithm with similarity functions that allows working with qualitative 
and quantitative features and missing data was proposed [2], [3]. Problems with this 
kind of descriptions are very frequent in soft sciences as Medicine, Geology, 
Sociology, etc. In this kind of descriptions could be not possible to use a distance, 
only the degree of similarity between objects can be determined, through a similarity 
function. In this algorithm, the similarity among objects belonging to the same cluster 
is maximized and the similarity among different clusters is minimized. 

As the k-means algorithm, the k-means with similarity functions depends on the 
initial conditions, therefore in this paper the global k-means with similarity functions 
is proposed. 

This paper is organized as follows: in section 2 the global k-means algorithm is 
described. Section 3 describes the k-means with similarity functions algorithm. In 
section 4 we propose the global k-means with similarity functions algorithm. 
Experimental results are shown in section 5 and finally section 6 provides conclusions 
and future work. 

2   Global k-Means Algorithm 

The global k-means algorithm was proposed by Aristidis Likas, et al. [1], it 
constitutes a deterministic effective global clustering algorithm. It does not depend on 
the initial conditions or any other initial parameter and it uses the k-means algorithm 
as a local search procedure. 

Suppose that a data set X={x1,…,xn}, xi∈Rd is given and it is required partitioning 
it in k clusters M1,…,Mk such that the following objective function is optimized: 

( ) ( ) ( )
= =

∂=
n

i

k

j
jiijk mxxImmJ

1 1

2
1 ,,...,  (1) 

This function depends on the cluster centers m1,…,mk., where  

( ) ∈
=

otherwise
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jiji mxmx −=∂ ),(  (3) 

To solve a problem with k-clusters we start with one cluster (k’=1) and find its 
optimal position as the center of the data set. In order to solve the problem with two 
clusters (k’=2) the first center is placed at the optimal position for the problem with 
k’=1 and the k-means algorithm is executed n times placing the second center at each 
object xi of the data set, xi must be different to the solution for the problem with one 
cluster, i=1,…,n. After the n executions of the k-means algorithm we consider the 
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solution for the clustering problem with k’=2 as the solution that minimizes the 
objective function (1). In general, let (m1

*(k-1),…,mk-1
*(k-1)) denote the solution for 

the problem with (k-1)-clusters. Once the solution for the problem of finding (k-1)-
clusters is obtained, this is used to solve the problem with k-clusters executing n times 
the k-means algorithm where each execution starts with the initial centers: (m1

*(k-
1),…,mk-1

*(k-1),xi), xi≠mp
*(k-1), p=1,…,k-1, i=1,…,n. The best solution (which 

minimizes the objective function (1)) after the n executions is considered as the 
solution for the problem with k-clusters. 

3   k-Means with Similarity Functions 

The k-means with similarity functions algorithm was proposed by Martínez-Trinidad, 
et al in [2], [3]. It follows the same idea that the k-means algorithm but instead of 
using a distance for comparing objects, a similarity function is used. 

Suppose that a data set X={x1,…,xn} is given, where each object is described by a 
set R={y1,…,ys} of features. Each feature takes values in a set of admissible values Di, 
yi(xj) ∈Di i=1,…,s. We assume that in Di there is a symbol “?” to denote missing data. 
Thus, the features can be of any nature (qualitative: boolean, multi-valued, etc. or 
quantitative: integer, real) and incomplete descriptions of objects are considered. A 

similarity function :(D1×D2×…×Ds)
2 [0,1], which allows comparing objects is 

defined. In this work, the similarity function used is: 
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where C is a comparison function between features values. 
We require partitioning the data set in k clusters M1,…Mk. In this kind of 

problems, it could be impossible to calculate means; so objects from the sample, 
called representative objects xj

r , are used as centers of the clusters Mj, j=1,…,k.  
The data set must be classified according the representative objects of each cluster, 

i.e., given a set of representative objects, first we obtain the membership Ij(xi) of the 
object xi to cluster Mj, after that, we calculate the representative objects for the new k-
partition, this procedure is repeated until there is no change in the representative 
objects. 

So, the objective function is: 
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That is, an object xi will be assigned to the cluster such that xi is the most similar 
with their representative objects. 
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In this case, the objective is to maximize this function. 
To determine the representative objects the next expressions are used: 
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The representative object for the cluster Mj is defined as the object xr which yields 

the maximum of )( iM xr
j
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4   Global k-Means with Similarity Functions Algorithm 

The global k-means algorithm solves the dependency on the initial conditions of the k-
means algorithm, but only works with numerical features, therefore we propose an 
extension to the global k-means such that it allows working with mixed and 
incomplete data. 

We consider a problem as the described in section 3. Our algorithm follows the 
same methodology that the global k-means algorithm with the difference that instead 
using k-means algorithm as local search procedure, the k-means with similarity 
functions is used, so it is guaranteed that the obtained centers belong to the data set. 

In order to solve a problem with k-clusters we start with one cluster (k’=1) and we 
find its optimal position as the representative object of the data set, this is made by 
finding the object which is the most similar to all the objects of data set. In order to 
solve the problem with two clusters (k’=2) the first center is placed at the optimal 
position for the problem with k’=1 (let *

1
rx  be the representative object for k’=1) and the 

k-means with similarity functions algorithm is executed n-1 times placing the second 
center at each object xi of the data set, xi≠ *

1
rx , i=1,…,n. After the n-1 executions of 

the k-means with similarity functions algorithm, we consider the solution for the 
clustering problem with k’ = 2 as the solution that maximizes the error function (5). In 
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general, let ( ( )1*
1 −kxr , ( )1*

2 −kxr ,…, ( )1*
1 −− kxr

k
) denote the solution for the problem 

with (k-1) –clusters. Once the solution for the problem with (k-1)-clusters is obtained 
this is used to solve the problem with k-clusters executing n-(k-1) times the k-means 
with similarity functions algorithm where each execution starts with the initial 
centers: ( ( )1*

1 −kx r , ( )1*
2 −kx r ,…, ( )1*

1 −− kxr
k

,xi), xi ≠ *r
px , p=1,…,k-1, i=1,…,n. The 

best solution after the n-(k-1) executions (which maximizes the error function (5)) is 
considered as the solution for the problem with k-clusters. The proposed algorithm is 
depicted in Table 1. 

Table 1. Global k-means with similarity functions algorithm 

Input: k = number of clusters 
       n = number of objects of the data set 
Output: RO [1,…,k] /* Representative Objects */ 
        OF /* Value of the objective function */ 
Count = 0 
Seeds [1,…,k] = 0 
Seeds[1] = most similar object to the data set 
for k’=2 to k 

for i=1 to n 
if i ≠ Seeds[1,…,k’-1] 
[SRO,J] = KMeansWithSimilarityFunctions (Seeds[1,…,k’-1],i) 
/* SRO is the set of representative objects */ 
/* J is the objective function */ 
if J>count then 
    count = J 
    Seeds = SRO 

RO = Seeds 
OF = count 

5   Experimental Results 

We have tested the proposed algorithm on several data sets: Iris, Flags, Electro, 
Machine and Wine [4]. In all data sets we did experiments considering only 
information of the feature vector and ignoring class labels. The quality of the obtained 
solutions was evaluated in terms of the objective function (5). The description of each 
data set is given in Table 2. 

Table 2. Data set features 

Data set Objects Qualitative 
features 

Quantitative 
features 

Iris 150 0 4 
Flags 194 3 26 

Electro 132 0 11 
Machine 209 1 7 

Wine 178 0 13 
 
For each data set we did the following experiments: 
• One run of the global k-means with similarity functions algorithm for the 

problem with k=2,…,15. 
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• n runs (where n is the number of objects of the data set) of the k-means with 
similarity functions algorithm for each problem with k=2,…,15 starting with 
random initial centers. For each data set, the average, the maximum and the 
minimum of the objective function were calculated. 

Fig. 1. Experimental results for data sets: a) Electro, b) Flags, c) Iris, d) Machine  
and e) Wine 
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Fig. 2. Runtime for data sets: a) Electro, b) Flags, c) Iris, d) Machine and e) Wine 

In figure 1 the value of the objective function obtained from the global k-means 
algorithm with similarity functions is compared against the average, the maximum 
and the minimum of the n values obtained from the runs of the k-means with 
similarity functions algorithm. In our experiments, the Global k-means with similarity 
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functions algorithm obtained better results than the k-means with similarity functions 
algorithm and in few cases it obtains the same result that the maximum. 

In figure 2 the runtime of each experiment is shown. The runtime of the Global k-
means algorithm with similarity functions is less than the runtime of the k-means 
algorithm. This is due because for each value of k we carried out n runs of the k-
means with similarity functions algorithm, and the global k-means with similarity 
functions execute only n-(k-1) runs of the k-means with similarity functions 
algorithm. Also, each time the global k-means with similarity functions algorithm 
uses the k-means with similarity functions, it starts with better seeds than the random 
selection, therefore, it converges faster. 

6   Conclusions 

In this paper the global k-means with similarity functions algorithm was introduced. 
Our method is independent of the initial conditions. It was compared against the k-
means with similarity functions algorithm.  

In our experiments, the global k-means with similarity functions algorithm 
obtained better clusters in terms of the objective function than the k-means with 
similarity functions, and only in a few cases, with small values for k, the results were 
the same that the maximum obtained with the k-means with similarity functions.  

The runtimes of our algorithm were less than the time needed for the n executions 
of the k-means with similarity functions algorithm, and our algorithm’s results were 
better. 

As future work, we are going to find a fast global k-means with similarity functions 
algorithm in order to reduce the computational cost without significantly affecting the 
quality. 

References 

1. Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek, “The global k-means clustering 
algorithm”, Pattern Recognition 36, 2003, pp. 451-461. 

2. José Francisco Martínez Trinidad, Javier Raymundo García Serrano, and Irene Olaya 
Ayaquica Martínez, “C-Means Algorithm with Similarity Functions”, Computación y 
Sistemas Vol. 5 No. 4, 2002, pp. 241-246 

3. Javier R. García Serrano and J. F. Martínez-Trinidad, “Extension to c-means algorithm for 
the use of similarity functions”, 3rd European Conference on Principles and Practice of 
Knowledge Discovery in Databases Proceedings. Prague, Czech Rep. (1999). pp. 354-359. 

4. C.L. Blake, C. J. Merz, UCI repository of machine learning databases, University of 
California, Irvine, Departament of Information and Computer Sciences, 1998. 



M. Lazo and A. Sanfeliu  (Eds.): CIARP  2005,  LNCS 3773, pp. 400 – 408, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Reconstruction-Independent 3D CAD for Calcification 
Detection in Digital Breast Tomosynthesis  

Using Fuzzy Particles 

G. Peters1,3, S. Muller1, S. Bernard1, R. Iordache1,  
F. Wheeler2, and I. Bloch3 

1 GE Healthcare Europe, 283, rue de la Minière, 78533 Buc, France 
{gero.peters, serge.muller, sylvain.bernard,  

razvan.iordache}@med.ge.com 
2 GE Global Research, One Research Circle, Niskayuna, NY 12309, USA 

wheeler@research.ge.com 
3 Ecole Nationale Supérieure de Télécommunications,  

CNRS UMR 5141 LTCI, Paris, France 
isabelle.bloch@enst.fr 

Abstract. In this paper we present a novel approach for microcalcification de-
tection in Digital Breast Tomosynthesis (DBT) datasets. A reconstruction-
independent approach, working directly on the projected views, is proposed. 
Wavelet filter responses on the projections are thresholded and combined to ob-
tain candidate microcalcifications. For each candidate, we create a fuzzy  
contour through a multi-level thresholding process. We introduce a fuzzy set 
definition for the class microcalcification contour that allows the computation 
of fuzzy membership values for each candidate contour. Then, an aggregation 
operator is presented that combines information over the complete set of pro-
jected views, resulting in 3D fuzzy particles. A final decision is made taking 
into account information acquired over a range of successive processing steps. 
A clinical example is provided that illustrates our approach. DBT still being a 
new modality, a similar published approach is not available for comparison and 
limited clinical data currently prevents a clinical evaluation of the algorithm. .  

1   Introduction 

Breast cancer continues to be one of the leading causes of cancer mortality among 
women. Since the underlying causes for this disease remain unknown, early screening 
is the only means to reduce mortality among the affected population. X-ray mammog-
raphy is currently the primary method for detecting early breast cancers, reducing the 
mortality rate by about 30% for women 50 years and older [1]. However, about 30% 
of breast cancers are still missed by conventional screening mammography. One of 
the main reasons is the superimposition of tissue that obscures lesions in dense breasts 
[2]. Digital Breast Tomosynthesis (DBT) [3],[4], is a new three-dimensional (3D) 
limited-angle tomography breast imaging technique that will substantially overcome 
the superimposition problem for lesion detection. It then remains important to accu-
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rately detect and localize microcalcification clusters, which are one of the earliest 
signs of breast cancer visible in mammograms.  

The introduction of DBT brings a variety of new challenges and benefits. Several 
projected views from different acquisition angles will potentially reduce the number 
of false positives (FP) caused by summation artifacts as well as the number of false 
negatives (FN) caused by the masking effect of overlying tissue. At the same time, the 
dose per acquired image is significantly reduced in comparison to standard 2D mam-
mograms, to maintain a comparable total patient dose per scan. This has a major im-
pact on any processing in the projections, as the characteristics of these images 
change dramatically, and algorithms developed for 2D mammograms cannot be gen-
erally applied without modification. 

As DBT systems become available for clinical testing, different strategies for CAD 
on DBT data are emerging. Chan et al. have presented an approach applying CAD 
processing on reconstructed slices [6]. A method applying mass detection algorithms 
directly on the projected views was presented in [7]. Candidates are detected in each 
projected view separately and afterwards combined in 3D using the acquisition ge-
ometry. CAD processing for calcification detection in 3D DBT data has not been 
made public so far and therefore represents one of the original contributions of this 
paper. Since DBT is a relatively new modality, 3D reconstruction algorithms for its 
particular geometry are still not fully optimized. Hence, it is desirable to devise a 
CAD approach that is independent of the reconstruction algorithm used to generate 
tomosynthesis slices. 

Fuzzy processing has been widely accepted for use in microcalcification detection 
tasks [8], [9], [10].  In the present work, we propose an original method using fuzzy 
particles to account for ambiguities in shape and appearance of microcalcifications for 
the purpose of modeling and identification. The use of a fuzzy set description enables 
us to maintain the evidence, and the strength of the evidence, gathered from each 
DBT projection image for each potential finding without making hard decisions in 
isolation.  The final decision as to the presence or absence of calcification is then 
made in 3D through aggregation of all available information from all projections. 

Working directly on DBT projected views offers several advantages. The process-
ing time is reduced compared to the processing of reconstructed slices since they are 
generally much more numerous than the projected views. The processing is per-
formed on a data space independent of the reconstruction algorithm used to generate 
3D images. There are however some issues that need to be addressed. The DBT pro-
jected views have a lower Contrast to Noise Ratio (CNR) rendering the detection task 
in a single image more difficult when using approaches designed for conventional 2D 
mammograms.  It is crucial to delay the detection decision for each candidate particle 
until information from each view can be jointly considered.  With this as our motiva-
tion, we develop and present a fuzzy processing operator that aggregates the informa-
tion extracted from each projected view. 

Low-dose projected views contain ambiguities about the objects in the image, in-
cluding uncertainty about a candidate particle being a microcalcification, imprecision 
of its position and extent, as well as the incomplete nature of data in the individual 
projections. We use fuzzy logic to take these ambiguities into account and preserve 
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them up to a point in the processing where we have gathered sufficient information to 
make a decision that simultaneously utilizes all available information.  

The novel approach presented here consists of the following processing steps. We 
start by detecting candidate particles that potentially are microcalcifications. We then 
build a fuzzy contour for each candidate particle, based on several extracted attributes 
and multi-level segmentation. A partial defuzzification is applied, resulting in fuzzy 
particles better suited for the final aggregation operation. Once information from the 
entire set of projected views has been aggregated resulting in 3D fuzzy particles, their 
properties are extracted before the final step deciding whether those particles corre-
spond to microcalcifications or other structures. 

2   Candidate Particle Detection 

In the initial processing performed on the projected views we extract a map of candi-
date particles. A "Mexican Hat" wavelet kernel is used to compute the contrast be-
tween a structure located in the center of the wavelet and its surrounding neighbor-
hood. Convolving the original image with this kernel creates a band-pass image of 
sorts that emphasizes small structures in the image. Our implementation incorporates 
a multi-scale approach to account for the range in size of microcalcifications. The 
images resulting from the application of wavelets at different scales are combined 
using a "max" operator resulting in a local contrast image. This image is thresholded 
against local variance of background noise level. The connected components of this 
binary image are then labeled as candidates. 

This initial step is crucial to all further processing. Any particle missed by the ini-
tial detection cannot be recovered later on. A high sensitivity in this step is therefore 
of utmost importance. To achieve the desired sensitivity we accept an elevated num-
ber of false positives (FP), which we will be able to reduce at a later stage with the 
use of fuzzy particles and the aggregation of information from different projected 
views. 

3   2D Fuzzy Contours 

Once the candidate particles have been identified, we create fuzzy contours de-
scribing each candidate. Each fuzzy contour accounts for the ambiguities of the origi-
nal data. For each candidate particle, we compute a set of contour candidates using 
multi-level thresholding. This ordered set of contours is considered the universe of all 
possible contours describing a given particle. The prior knowledge about contours of 
microcalcifications [5] is transformed into a fuzzy set description. Finally, member-
ship values for each contour candidate are calculated. 

First, we extract a set of candidate contours for each candidate particle using multi-
level thresholding. This is achieved by applying a series of decreasing thresholds to 
the local contrast image and extracting the level-set. Each candidate particle is treated 
separately. This processing is applied until either one of the conditions given in Equa-
tions (1) and (2) is met 
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( ) maxACA ≤  (1) 

where A(C) is the area enclosed by the contour C and Amax is the maximum expected 
size for the area of a microcalcification 

 ( ) ( ) maxmax, GGCG ∆−≥ ρρ  (2) 

where G( ,C) is the pixel intensity under the contour C of particle , G( )max is the 
maximum pixel intensity of particle , and Gmax  is the intensity range expected 
within a single microcalcification. These two conditions limit the area and intensity 
range of the candidate particles being extracted to values consistent with actual mi-
crocalcifications. 
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Fig. 1. The function on the left shows a gray level profile of a candidate particle and the thresh-
olds applied. The corresponding extracted contours are shown on the right.  

For each candidate particle, we thus obtain a set of candidate contours {Ci}. In or-
der to create a fuzzy contour we compute, for each contour Ci, the membership value 
fc(Ci) to the microcalcification contour class. 

The fuzzy set corresponding to this class is defined based on prior knowledge 
about characteristics of microcalcifications, which is summarized by "microcalcifica-
tions are small and have a high contrast". This linguistic definition translates to a 
fuzzy set description using two attributes namely area and gradient shown in Fig. 2. 

area gradient

f1 f2

 

Fig. 2. The above functions correspond to fuzzy set representations of size (size is small) and 
image gradient under a contour (gradient is high) for particles in the mammography images 
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The functions depicted in Fig. 2 correspond to fuzzy set representations of size 
(size is small) and image gradient under a contour (gradient is high). The functions 
have been designed experimentally in prior work [9].  

Ci

area

Ci

grad

 

Fig. 3. Values for the fuzzy contour of a given candidate particle for area (left) and gradient 
under the contour (right) 

For each candidate contour Ci, we measure both area A and gradient g values  
(Fig. 3). We can derive the membership values farea(Ci) and fgradient(Ci) for each con-
tour based on small area and high gradient criteria as  

 ( ) ( )( ) ( ) ( )( )iigradientiiarea CgfCfCAfCf 21 ; ==  (3) 

The conjunction of membership values obtained for each contour based on small 
area and high gradient provides membership values fc(Ci) to the class microcalcifica-
tion contour [9], 

( ) ( ) ( )[ ]igradientiareaic CfCfCf ,∧=  (4) 

Application of this method for one particular candidate particle is shown in Fig. 4.  

Ci CiCi

farea fcfgrad

 

Fig. 4. Membership values for the fuzzy contour of the candidate particle described in Fig. 3 for 
different criteria: small area (left), large gradient under the contour (middle) using fuzzy sets in 
Fig. 2, and conjunction of both criteria representing the membership values to the class micro-
calcification contour (right) for a fuzzy contour corresponding to a single candidate particle 
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4   Partial Defuzzification 

We now build a fuzzy particle for each candidate particle, using the membership 
function to the microcalcification contour class of its respective fuzzy contour. This 
process will be called partial defuzzification, since it consists in defuzzifying some 
aspects of the fuzzy contours. To derive a very simple aggregation process in the 3D 
space of the particles detected on projected views, we transform the fuzzy contours 
into fuzzy particles in a two-step process. 

First, for each candidate contour Ci of a fuzzy contour with a membership func-
tion to the microcalcification contour class fc, a connected component Ci is created 
such as 

( ) ( ) ( )icii CfyxCCyx =∈∀ ,,, &&  (5) 

where iC&  denotes the connected component that includes all pixels on or delimited 

by the contour Ci.  
Then, for a projection image P, we generate a fuzzy particle map I such that the 

value of each pixel is determined by  

( ) ( ) ( )[ ]yxCyxIPyx i
i

,,, &∨=∈∀  (6) 

In summary, the aim of this partial defuzzification is to create a fuzzy particle 
map, where each pixel value corresponds to the possibility of that pixel belonging to 
a microcalcification. Since a single pixel may be enclosed by several different candi-
date contours, the membership values corresponding to each of these contours are 
combined in order to obtain the value for this pixel. The "max" operator is the small-
est T-conorm and it realizes the equivalent of a union operation on fuzzy sets. It is 
used here to combine the different membership values corresponding to a given 
point. 

5   Aggregation and Final Decision 

After performing separate fuzzy detections in each of the N projection images of the 
DBT acquisition, the next step consists in aggregating the fuzzy particles by taking 
into account the acquisition geometry. The goal is to find for each 3D voxel the cor-
responding information in all of the N fuzzy particle maps that were created. 

The aggregation of information gathered in the fuzzy particle maps for a given 
voxel is expressed as 

 ( ) ( )[ ]kkk

N

k
vvv yxIzyxI ,,,

1=
Ψ=  (7) 

where I(xv, yv, zv) is the voxel intensity at position (xv, yv, zv), I(xk, yk) is the pixel 
intensity at position (xk, yk) of the kth fuzzy particle map, corresponding to the  
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(xv,yv,zv)

(x1,y1) (xN,yN)(xN-1,yN-1)(x2,y2)

 

Fig. 5. Information aggregation strategy: For a given voxel (xv, yv, zv) the information from all 
corresponding pixels (xk, yk) is aggregated using the operator . The position of the pixel (xk, 
yk) corresponding to the projection of a given voxel (xv, yv, zv) is computed using a priori 
knowledge about the acquisition geometry. 

projection of position (xv, yv, zv), and  is the aggregation operator. Fig. 5 illustrates 
this aggregation operation. 

Using the arithmetic mean as aggregation operator, equation (7) can be rewritten as 
follows: 

( ) ( )
=

+⋅+⋅=
N

k
kzykzkzxkzkvvv ysxsI

N
zyxI

1
,,,,,, ,

1
,, ξξ  (8) 

where x,z,k and y,z,k are the shift factors in x and y direction and sz,k is the scaling 
factor. These factors result from the acquisition geometry. 

Finally, a defuzzification is applied to the 3D fuzzy particles, taking into account 
information acquired during the different processing steps, to decide whether particles 
correspond to microcalcifications. For reasons of simplicity, a simple thresholding 
was implemented as defuzzification in this preliminary approach. 

6   Preliminary Results 

In this section we show the result of applying these methods to real DBT data.  Fig. 6 
shows a projected view and corresponding fuzzy particle map.  In Fig. 7 we see the 
results of aggregating in 3D before and after defuzzification (middle and right) along-
side a reconstruction slice (left) that was reconstructed for comparison using  
Algebraic Reconstruction Technique (ART). 

The validity of the proposed approach is illustrated in this example for a cluster of 
microcalcifications. Microcalcifications of different sizes, shapes and local contrast 
are detected. Since a clinical database providing ground truth at particle level is hard 
to come by, a visual sanity check today is the only means to verify our results. As 3D 
DBT datasets become increasingly numerous, a validation for detection of clusters of 
microcalcifications on a clinical database should be envisioned. 
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Fig. 6. Selected region of a DBT projected view (left) and the corresponding fuzzy particle map 
(right) (Tomographic projection data provided courtesy of Dr. D. Kopans, Massachusetts Gen-
eral Hospital, Boston, MA, USA.) 

   

Fig. 7. Selected region of a slice reconstructed with ART (left), the corresponding 3D fuzzy 
particles in the same slice (middle), and corresponding 3D particles resulting from defuzzifica-
tion of the 3D fuzzy particles by applying a threshold (right)  

7   Conclusion  

We have proposed a novel approach to detect microcalcifications in DBT datasets. 
Our approach exhibits numerous advantages. Working directly on the DBT projected 
views enables us to work independently of the reconstruction algorithm used to gen-
erate the 3D images. In addition, the processing time is expected to be significantly 
reduced compared to the application of similar operators on reconstructed slices, since 
they are generally much more numerous than the projected views, and the required 
3D processing is sparse. 

We have introduced a fuzzy description of the candidate particles to account for 
the ambiguities in the image data. Another key advantage of combining fuzzy tech-
niques with a detection applied directly on the projected views is that information 
about each potential microcalcification can be preserved until the aggregation step. A 
final defuzzification of the aggregated particles allows the reduction of false positives 
that were accepted at a high level during the initial detection step in the projected 
views. 
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The preliminary experiments presented in this paper are quite promising as far as a 
visual verification is concerned. Nevertheless, an investigation on a clinical database 
is needed for comparing detection results to state-of-the-art 2D detection algorithms. 
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Abstract. In this paper we introduce a simple method for the detection
of hard cuts using only interframe differences. The method is inspired in
the computational gestalt theory. The key idea in this theory is to define
a meaningful event as large deviation from the expected background
process. That is, an event that has little probability to occur given a
probabilistic background model. In our case we will define a hard cut
when the interframe differences have little probability to be produced by
a given model of interframe differences of non-cut frames. Since we only
use interframe differences, there is no need to perform motion estimation,
or other type of processing, and the method turns to be very simple
with low computational cost. The proposed method outperforms similar
methods proposed in the literature.

1 Introduction

Shot boundary detection algorithms are one of the most basic and important
methods for video analysis. They allow the segmentation of the original video
sequence into basic units called shots that facilitate high level processing and ab-
straction of the video signal. Although it may seem a simple task, the automatic
and reliable extraction of shot boundaries it has some difficulties, mainly due
to the different types of video sequences, which still need to be studied. Even
for simple shot transitions like hard cuts (abrupt transition between adjacent
frames) there is room for improvements. In particular, one of the possible di-
rections of research is to improve the performance of simple methods. We must
remember that a video sequence contains a great amount of data, so in general
we should avoid unnecessarily complicated methods. Another direction of work
is the study of fully automatic methods that permit to process a wide variety
of videos. In this work we will present a simple online method with only a few
parameters that performs well for a representative set of testing video sequences.

We can distinguish two types of shot transitions: abrupt transitions, called
hard cuts, and gradual transitions. A hard cut is an abrupt change in the frame
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appearance. Gradual transitions, on the other hand, span over a set of frames
and are produced by postproduction effects such as fades, dissolves, morphs and
wipes. In this work we will concentrate on hard cut detection.

We can divide the existing techniques for shot boundary detection into the
following basic categories: pixel, histogram, block matching, object segmentation
and tracking and feature tracking based methods. Some methods proposed in the
literature combine some of these basic methods to attain better performances.

Pixel based methods usually compute interframe differences between frames
(adjacent or not). The frame difference can be computed in several color spaces.
The main drawback of pixel-based methods is their sensitivity to camera and
object motion and noise. For this reason filtering is usually applied before com-
puting interframe differences [5]. Regarding the measure of difference, we can
make a distinction between distance based methods and thresholding ones. The
former ones compute a distance between frames such as the absolute difference,
while the later ones compute the number of pixels with a difference above a given
threshold. Usually these methods are not very reliable and therefore are mostly
used as indicators of probable shot boundaries that are the confirmed by more
sophisticated methods [6].

Histogram based methods compare the histograms of a pair of frames using
a suitable histogram distance [4]. In contrast to pixel based methods, histogram
based methods are robust against camera and object motions since the his-
tograms do not contain any spatial information. Unfortunately, the main critic
and limitation is that frames of different shot can have similar histograms and
in this way these methods will fail. In addition, like pixel-based methods, these
methods are not robust against lighting changes.

Block-matching methods divide each frame into blocks and then match a
given set of features of blocks (pixel colors, histograms, and so on) between
frames. That is, the best match for each block in the source frame is found
in the destination frame (This is the methodology applied in MPEG-like video
coding techniques) and the similarity of these block is used as an indicator for
shot boundary existence [4,5].

Segmentation and object tracking are typically computational demanding.
The underlying idea behind these methods is that frames within a shot con-
tain the same objects. Therefore, they use algorithms for object tracking and
segmentation to achieve shot boundary detection.

Feature tracking methods detect shot transitions when there is an abrupt
change in the number of features tracked. For example, if the frame edges have
strong variations [5]. In [8] the authors propose feature tracking as a measure of
frame dissimilarity. Instead of tracking edges, they propose to track fine grained
features as corners and textures. Hard cuts are then detected as points with high
interframe feature loss.

Nearly all of the previous methods rely on a set of thresholds in order to
decide whether there is a shot boundary in a given frame. In the case of the
pixel base methods we need a threshold to decide if the interframe distance is
enough to declare a shot boundary. For histogram based methods the thresh-
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old is applied to the histogram distances. The problem of selection of the right
threshold is a key point that has big influence in the overall system perfor-
mance. Unfortunately it has received little attention in the literature [5] and
most of the authors propose heuristics for their selection. Furthermore, it has
been demonstrated that global thresholds led to sub optimal methods, with too
many false positives or false negatives [5]. To solve this problem adaptive thresh-
olds have been proposed. However, life is never so straight forward, and when
using adaptive thresholds we must design an updating rule based on, for exam-
ple, the statistics of non-boundary frames. This introduces additional problems
concerning the correct estimation of this statistical information. Traditionally
the problem is solved introducing a learning stage where several video sequences
are processed to obtain the desired statistics.

In this paper we introduce a simple method for the detection of hard cuts
using only interframe differences. The method is inspired in the works of Compu-
tational Gestalt [2,3]. The key idea in this framework is to define the meaningful
event as large deviation from the expected background process. That is, an event
that has little probability to occur given a probabilistic background model. In
our case we will define a hard cut when the interframe differences have little
probability to be produced by a given model of interframe differences of non-cut
frames. Since we only use interframe differences, there is no need to perform
motion estimation, or other type of processing, and the methods turns to be
very simple with low computational cost.

In the first step of the algorithm we compute a measure of hard cut probability,
or meaningfulness. Then in a second stage we apply an adaptive thresholding tech-
nique that only uses the information of the video sequence being processed to find
the hard cuts. This contrasts with other methods that need a supervised learning
step to obtain the thresholds. This makes our methods very simple and fast.

Since we will use only interframe differences for adjacent frames we assume
that the videos are contain mainly smooth transitions. From another point of
view, we assume a reasonable temporal sampling. As we said above these meth-
ods have problems with strong camera or object motions. If a strong motion or a
lightning change occurs, the method may produce a false positive. Even though
these restrictions, we will show that the results of the proposed method are very
robust and perform well for a wide variety of videos.

2 Proposed Method

Lets suppose we have the probability, Pµ = P (e(x) > µ), that the error, e(x) =
|I(x; t) − I(x; t − 1)| at pixel x, exceeds the threshold µ. Within a video shot
segment we expect the frame differences to be small and therefore there would be
a small chance for a big number of pixels exceeding a reasonable threshold. Below
we will address the threshold selection. If we fix the threshold µ we can compute
the error image and the number of pixels, Nµ, exceeding the threshold µ. In order
to assess the meaningfulness of this event we must compute its probability of
occurrence given the apriori information of interframe differences, Pµ. This can
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be done computing the probability of at least Nµ pixels exceeding the threshold
µ by using the Binomial distribution:

B(N,Nµ, Pµ) =
N∑

k=Nµ

CN
k P k

µ (1 − Pµ)N−k

Using this probability, and following the ideas of the computational gestalt
theory, we say that the previous event is meaningful if its probability is very
low given the statistics of past frame differences 1. This means that we say that
the event is meaningful if it is a large deviation of what is expected given past
information.

Abrupt changes in interframe differences can be produced by hard cuts, fast
motion and deformation, but also by slow motions, freezing or frame repetition.
Therefore, we must also detect these events. Applying the same idea, given a
threshold λ and the probability Pλ = P (e(x) ≤ λ) = 1 − P (e(x) > λ), we
compute the probability of at least Nλ pixels being below the threshold.

B(N,Nµ, Pµ) =
N∑

k=Nλ

CN
k P k

λ (1− Pλ)N−k

So far we have presented the basic method for the assessment of the mean-
ingfulness of the events abrupt change and slow change. Now we are going to
explain the selection of the thresholds, the combination of the previous measure-
ments for the detection of hard cuts, and the estimation of the probabilities Pµ

and Pλ.
The meaningfulness of each of the events is obtained as the minimal prob-

ability over a set of fixed thresholds. That is, the meaningfulness of the event
abrupt change is obtained as:

Ma = min
µi

B(N,Nµi , Pµi)

where each term corresponds to a threshold µi ∈ {µ1, ..., µn}. In the same way,
the meaningfulness of a slow change is obtained as:

Ms = min
λi

B(N,Nλi , Pλi)

with λi ∈ {λ1, ..., λm}. The domain of variation of λi is set to detect slow chang-
ing frames, hence we set λi ∈ {1, ..., 10}. In the same way, since with the thresh-
old µi we expect to detect abrupt changes we set µi ∈ {10, ..., 100}. The upper
limit is set to a reasonable high value and does not play an important role in
the algorithm. The upper limit for λi and lower limit of µi has been set to 10
as a conservative value. We did several experiments changing these values and
1 In the computational gestalt theory instead of working only with the probabilities

the authors propose to estimate the expectation via multiplying the probability by
the number of test performed [3].
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we didn’t encounter differences in the final results. However, it is still an open
problem the tuning of it.

To conclude the description of the first step of the algorithm we now present
the estimation of probabilities Pµ and Pλ. These probabilities are obtained from
the error histogram of past frames. To cope with non-stationary statistics, we use
a buffer, Buf , of size n of non-cut histograms and a α− β filter. The histogram
of errors is updated with the following rule:

ht = Histogram(|I(x; t)− I(x; t− 1)|)
h = αmean(Buf) + (1− α)ht

with α = 0.9 and n = 12. The value for n was chosen to hold in the buffer half
second of video (assuming 24 fps).

As said before, we the previous rule we track non-cut error histogram. That
means that we must have a rule to decide whether a frame is hard cut or not. To
do so we use the measure H = Ma/Ms. If H < 1 the probability of occurrence of
an abrupt change given the previous non-cut probability distributions is smaller,
more meaningful, than the occurrence of a slow change.

Algorithm

For all frames t ≥ 2:

1. Compute interframe differences:

e(x) = |I(x; t)− I(x; t− 1)|

2. Find the meaningfulness of the events abrupt and slow change:

Ma = min
µi

B(Nµi , N, Pµi)

Ms = min
λi

B(Nλi , N, Pλi)

The probabilities Pµi and Pλi are computed using the histogram h 2.
3. If Ma < Ms (there is a probable hard cut), do not introduce the histogram

of e(x; t) into the buffer, else, update the histogram with:

ht = Histogram(|I(x; t) − I(x; t− 1)|)
h = αmean(Buf) + (1− α)ht

and introduce ht in the buffer.

For the computation of the binomial distributions we use the Hoeffding ap-
proximations [1] to obtain an upper bound for the logarithm of Ma and Ms

using:

log(B(k, n, p)) ≤ k log(pn/k) + n(1 − k/n) log
(

1− p

1− k/n

)
for k/n ≥ p

2 Initially h is computed using first and second frames.
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Since both, Ma and Ms, can attain extremely small values is numerically im-
possible to work directly with them. For this reason we compute their logarithms
and use log(H) = log(Ma)− log(Ms) in our method.

As we said in the introduction we propose an online method, therefore, we
must decide the occurrence of a hard cut using only past values. In fact we
introduce a delay in the system response in order to consider while judging frame
t also the results from frames t + 1, ..., t+ 4. In the second step of processing we
consider a window, W = [t− 4, ..t + 4] centered in t. We will say that there is a
hard cut at frame t if the following conditions are fulfilled:

log(H)(t) = min
s∈W

log(H)(s) (1)

log(H)(t)< min
s∈{t−4,..,t−1}

4 log(H)(s) or log(H)(t)< min
s∈{t+1,..,t+4}

4 log(H)(s)(2)

log(H)(t) < Threshold(t) (3)

where Threshold(t) is an adaptive threshold that is computed using only the
accumulated values of log(H) for non-cuts X [5]:

Threshold(t) = mean(X)− 5 ∗ std(X)

This is a simple method of template matching to obtain only prominent peaks.
We must mention that we are assuming that hard cuts are separated at least
four frames (As we will see in next section some video sequences do not fulfill
this hypothesis).

For processing color video sequences we apply the previous method by adding
up the meaningfulness log(H) for the three color channels. In this work we use
the YUV color space.

3 Results and Evaluation

We are going to test our algorithm against a set of videos used in [8]. In figures
1 and 2 we show the first frame of each video together with log(H). As we
can see there are set of well defined peaks that correspond to the hard cuts. In
table 3 we present the results for all the sequences together with the numerical
results obtained in [8]. As in [8] we measure the performance of out method
using precision (Prec), recall (Rec) and F1 defined as:

Precision =
True Positives

True Positives + False Positives

Recall =
True Positives

True Positives + False Negatives

F1 =
2× Precision × Recall

Precision + Recall
The proposed method outperforms on average the precision the feature track-

ing method and the pixel based one, while performs worse than the histogram
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based one. It has similar recall capabilities than the feature tracking based
method. From these number we can conclude that the proposed methods has
less false positives than the other three reported methods while achieving sim-
ilar number of false negatives with respect with the feature tracking method.
Summing up the F1 measure is the best among the four methods tested.

Looking at the individual sequences, the proposed method outperforms the
feature tracking method three cases while loses precession in two cases (B and
H). This is mainly due to strong motions that are not satisfactory resolved in
the proposed method. Also, in the case of sequence C, it contains very close hard
cuts that are missed due to our restriction of cuts separated in time at least four
frames. This sequence has a poor temporal sampling rate On the other hand the
proposed method has always better recall perform that then feature tracking
one.

Finally, at the bottom of the table 1 we present the average, variance and
standard deviation of the results to show that the results are stable.

To show the advantages of the proposed method against other well-known
interframe difference methods we are going to compare the output of our method
against the output of standard frame difference in the YUV space. For the com-
parison we normalize both results dividing each one by the maximum difference.
The results are presented in figure 3 for videos A (Lisa) and B (Jamie). As we
can see the results are less noisy and the peaks at hard cut positions are clearly
separated from non-cut ones. This contrast with results obtained with traditional
frame difference methods. However, we can also see, especially for the results on
Jamie sequence, that the peaks have strong variations. Nevertheless, from this
plots we can conclude that an offline hard cut detection would be much easier
using log(H) than the traditional pixel differences as the hard cut peaks are
clearly separated from the non-cut ones.

Table 1. Results obtained for sequences in figures 1 and 2

Proposed Method Feature tracking [8] Pixel based [8] Histogram based [7]
Seq Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

A 1 1 1 1 1 1 1 1 1 1 1 1
B .800 1 .889 1 1 1 .825 .825 .825 1 .375 .545
C .941 .906 .923 .595 .870 .707 .764 .778 .771 .936 .536 .682
D 1 1 1 1 1 1 1 1 1 1 .941 .969
E 1 .840 .913 .938 1 .968 .867 .867 .867 .955 .700 .808
F 1 1 1 1 1 1 0 0 0 1 1 1
G .882 .938 .909 .810 .944 .872 .708 .994 .809 1 .666 .800
H .760 .950 .844 .895 .895 .895 .927 1 .962 .971 .895 .932
I 1 1 1 1 1 1 1 1 1 1 .500 .667

Average .932 .959 .942 .915 .968 .938 .788 .829 .804 .985 .735 .823
Variance .009 .003 .004 .019 .003 .010 .099 .104 .099 .001 .055 .027
Std dev .095 .057 .059 .137 .052 .100 .314 .323 .315 .025 .234 .165
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Fig. 1. Left: First frame from the sequence. Right: log(H) for the sequence. A(Lisa):
Cartoon video with substantial object motion. B(Jamie): Strong motions. C(Psycho):
Black and white movie with substantial action and motions and many close hard cuts.
D(Sex in the city): High quality digitalization TV show. E(Highlander): Low quality
digitalization of TV show.
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Fig. 2. Left: First frame from the sequence. Right: log(H) for the sequence.
F(Commercial2): Contains no cuts but it has a low of postproductions effects that
can be misclassified as cuts. G (Comemrcial1): Commercial sequence. H(Video): Its
contains passages of strong motions. I (News): TV news.

4 Conclusions and Future Work

We have presented a simple method that uses only interframe differences that
improves the results of previously reported methods. The method obtains a
measure for hard cut meaningfulness with clear peaks at hard cut positions.
This allows for simpler adaptive threshold and offline detection methods.

We formulated the problem inspired in the computational gestalt theory and
presented a novel method to compute hard cuts based on simple interframe
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Fig. 3. Left: Results of a tradition pixel base difference method. Right: Results of the
proposed algorithm. The black dots indicate the true hard cuts. Top: Results for Lisa
sequences. Bottom: Results for Jamie sequence.

differences. We believe this direction of work can provide better results and
particularly more formal methods with less heuristics behind them.

In future work we will address the limitation of the method with respect to
strong motions and lightning changes, and also we will try to obtain bounds
on Ma and Ms to improve the adaptive thresholding technique. This will be
important to normalize the peaks in the response (log(H)).
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Abstract. The Chagas disease or Tripanosomiasis Americana affects between 16
and 18 million people in endemic areas. This disease affects the beating rate of
infected patients’ cardiomyocytes. At the Molecular Biology of Chagas Disease
Laboratory in Argentina the effect of isolated patient’s serum antibodies is studied
over rat cardiomyocyte cultures. In this work an image processing application to
measure the beating rate of this culture over video sequences is presented. This
work is organized as follows. Firstly, a preliminary analysis of the problem is
introduced, isolating the main characteristics of the problem. Secondly, a Monte
Carlo experiment is designed and used to evaluate the robustness and validity of
the algorithm. Finally, an algorithm of order O(T (N log N + N)) for tracking
cardiomyocyte membranes is presented, where T is the number of frames and N
is the maximum area of the membrane. Its performance is compared against the
standard beating rate measure method.

1 Introduction

The Chagas disease or Tripanosomiasis Americana affects between 16 and 18 million
people in endemic areas. That can be found between 42◦N and 46◦S parallels, rang-
ing from USA to Argentina and Chile [1]. The annual death rate caused by this dis-
ease reaches the number of 45.000 people [2]. Chagas disease is considered a typical
socioeconomic illness, inseparable from poverty and underdevelopment. It has been
noticed that this disease affects the beating rate of infected patients’ cardiomyocyte,
a human or mammal cardiac cell. At the Molecular Biology of Chagas Disease Lab-
oratory at INGEBI-CONICET Argentina, the effect of isolated and purified patient’s
serum antibodies is studied over neonatal rat cardiomyocyte cultures; the neonatal rat
cardiomyocytes behave like human cardiomyocytes, in the case of the studied chagas
antibodies [3]. The effects of these antibodies over the culture is studied on an inverted
microscope connected to a digital camera. The study can be divided in two steps. In
the first step the beating rate of the cardiomyocytes is measured, and according to it a
volume of antibodies is inoculated to the culture. After a lapse of time a new measure
of the beating rate is taken in order to measure the effect of the antibodies.

In this work a technique to measure the beating rate of the cardiomyocytes from a
digital video is developed. This algorithm needs to be fast enough to produce the results

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 420–430, 2005.
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in a few minutes (short response-time) because the cardiomyocytes in the culture are
dying and this affects the measures and results of the biological study. A preliminary
study of the videos is performed as a first stage, a filter is applied to each video frame
in order to reduce the image noise and enhance the edges. Then a set of cardiomyocyte
cell membranes are manually selected and tracked over the video sequence. The results
of this tracking are analyzed to measure the feasibility of extracting the beating rate
of the culture from the video sequence. Once the main characteristics of the tracked
objects are identified, a Monte Carlo experiment is designed to validate the procedure.
Finally a short response-time algorithm based on active contours, more precisely the
fast marching method (see [4,5]), is developed in order to track the cardiomyocyte cell
membranes. This algorithm is developed in order to produce a software tool for an
end-user working at the mentioned laboratory.

This work is structured as follows: In Sect. 2 a preliminary study of the cardiomy-
ocyte culture is performed and its main characteristics isolated. Furthermore a technique
to infer the beating rate is proposed. in Sect. 3 a Monte Carlo experiment is designed in
order to validate the proposed technique and its results are presented. In Sect. 4 a more
automated tracking technique based on active contours is presented in order to develop
a short response-time software tool. Finally, in Sect. 5 the conclusions of this work are
presented.

2 Preliminary Studies

In this section, image preprocessing of the cardiomyocyte culture and a technique for
preliminary analysis are described, and several features of the video are characterized.

In order to find the beating frequency in the cardiomyocyte culture in a robust man-
ner, cardiomyocyte cell membranes are tracked over a video sequence. In Fig. 1 the
membranes are circled. The centroid norm and area variations over time are calcu-
lated as two one dimensional signals: cd(t) and a(t), where t is the frame number.
The Fourier transform of these signals is then computed in order to find the beating
frequency, which will be the frequency with the greater amplitude.

The first task of the preliminary analysis is the segmentation of the membranes.
Here the image is convolved with a Gaussian kernel, and then thresholded. This process
is illustrated in Fig. 1, where Fig. 1(a) is the original culture image and Fig. 1(c) is the
image after filtering and thresholding. A region of interest (ROI) was selected for each
membrane analyzed in a way such that membrane is the only object over the threshold
in each ROI in every frame of the sequence. These ROIs are automatically analyzed
above the video sequences by calculating the centroid and area of the pixels above the
threshold in each ROI for each frame. Then the norm of the centroid and the area are
normalized as follows:

cdn(t) = ‖cd(t)‖ −
∑N−1

i=0 ‖cd(i)‖
N

, 0 ≤ t ≤ N − 1

an(t) = a(t)−
∑N−1

i=0 a(i)
N

, 0 ≤ t ≤ N − 1

where cd(t) is the centroid of the tracked object in frame t, a(t) is the area of the tracked
object in frame t and N is the number of frames. In Fig. 2 the normalized norm of the
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Fig. 1. In (a) a frame of the cardiomyocyte video sequence is shown. In (b) the same frame is
shown with some membranes marked. In (c) frame is shown again after it has been filtered and
thresholded, the membranes marked in (b) are over the threshold and ready to be segmentated.

centroid, cdn(t), and the normalized area an(t), functions are plotted along with their
Fourier transforms. Analyzing the Fourier transform of these functions presented on
Fig. 2(c) and Fig. 2(d), it can be noticed that cdn(t) is composed of several frequencies,
but also there are two dominant frequencies, F0 and F1 where F1 > F0. The lower
frequency, which also appears on the Fourier transform of a(t), is a consequence of
the microscope’s light intensity frequency and can be eliminated by normalizing the
mean grey level of all the frames in the sequence. Eliminating F0 and discarding the
low amplitude frequencies, the following characteristics can be inferred:

– There is a center of contraction and dilation in the culture. In this work this point
will be referred as beating center.

– The normalized centroid norm, cdn(t), has a dominant frequency which indicates
the beating rate: F1.

– The area, an(t), suffers no meaningful alteration.
– The topology of the tracked object can change in a periodic way. (i.e.: if the tracked

object splits, it will merge again in the following frames.)
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Fig. 2. Normailzed centroid norm cdn(t) and area an(t) functions (Figures (a) and (b) ) where
t is the video frame number. Fourier transform of the normalized centroid norm F{cdn(t)} and
normalized area F{an(t)} (Figures (c) and (d) ).
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Fig. 3. Fourier transform of the normalized centroid norm of three membranes, (a) near the beat-
ing center (20 pixels or less), (b) middle distance from the beating center (between 40 and 60
pixels) and (c) far from the beating center (more than 200 pixels)

On the other hand, analyzing objects with several distances to the beating center,
an increment on the amplitude of cdn(t) can be noticed when the object is near the
beating center but no alteration on the beating frequency is registered. This analysis
is illustrated in Fig. 3, where the Fourier transform of the normalized centroid norm
of three membranes is shown. The first membrane 3(a) is less than 20 pixels far from
the beating center, the second membrane 3(b) is between 40 and 60 pixels far from the
beating center and the third membrane 1(c) is more than 200 pixels far from it.
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3 Synthetic Data Processing and Model Validation

In this section the design and results of a Monte Carlo experiment based on the pre-
viously inferred characteristics of the problem are presented. This experiment is used
to validate the procedure that finds the beating rate, taking into account the following
characteristics of this particular problem:

– Each tracked object has an ondulatory movement along a line. The frequency of
this movement is the application’s goal.

– The amplitude of each ondulating object’s movement is different proportionally
with its distance from the beating center.

– The amplitude of each ondulating object’s movement suffers slight variations in the
same sequence (ie: noise).

– Each tracked object does not follow the previously mentioned line precisely. In fact,
each object has slight displacements from the line (ie: noise).

– The area of each tracked object does not have meaningful ondulatory variations.

3.1 Monte Carlo Experiment Design

According to the presented characteristics, a Monte Carlo experiment was designed.
This experiment, given the image dimensions, the number of frames to be generated,
a beating center and a frequency, generates a number of non-overlapping circular par-
ticles. Each particle has a fixed area and moves in an ondulatory manner over a line
orientated towards the beating center. This movement has a fixed amplitude, which can
be different for each particle. Furthermore, a noise component is added to the position
and frequency of each particle. The area the covered by the particles is between 20%
and 80% of the image. The frame sequences are generated by Algorithm 1. The random
variables used in the algorithm are the following:

– Xc ∼ N (w
2 , 0.6w)

– Yc ∼ N (h
2 , 0.6h)

– Xp ∼ U(0, w − 1)
– Yp ∼ U(0, h− 1))

– Amplitude ∼ N (0.001, 0.05)
– Area ∼ U(minArea,maxArea)
– Xn ∼ N (0, 0.05w)
– Yn ∼ N (0, 0.05h)

whereN and U represent normal and integer uniform distributions.
Once the Monte Carlo frame sequence is generated, a ROI is inferred for each par-

ticle in the same manner that the ROI for every tracked membrane on Sect. 2 was de-
scribed. The centroid of each particle is tracked and analyzed as presented in Sect. 2.

3.2 Monte Carlo Results

Using the algorithm described on Sect. 3.1, 10000 frame sequences were generated with
the following characteristics:

– 50 frames.
– 640× 480 pixels per frame.
– The number of particles ranged from 8 to 20 with a uniform integer distribution.
– The beating frequency is a random variable freq ∼ N (148

60 , 20
60 ) where a common

beating frequency is 148 beats
minutes .
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Algorithm 1 Monte Carlo frame sequence generation
1: w, h dimensions of the image I .
2: nf the number of frames to be generated.
3: qty the quantity of non-overlapping particles.
4: freq the beating frequency.
5: c ← (Xc, Yc) is the beating center.

 pattern signal generation

6: st ← sin
�
2π t

nf
freq

�
, t = [0 . . . nf ] is the discretized pattern signal.

 minimum and maximum areas for the particles

7: minArea ← min
�

(0.2)w h
qty

, 2
�

8: maxArea ← max
�

(0.8)w h
qty

, 4
�

 generation of the particles
9: P ← ∅

10: repeat
11: pos(p) ← (Xp, Yp)
12: generate a particle p at (x, y).
13: area(p) ← Area
14: amp(p) ← min(w, h)Amplitude is the amplitude of p’s movement.
15: dir(p) ← pos(p)−c

|pos(p)−c| is the unit vector which represents the direction of the p’s move-
ment.

16: if (∀p′ ∈ P ) p does not touch p′ while they’re moving then
17: add p to P .
18: end if
19: until |P | = qty

 sequence generation
20: Set every frame f t, t ∈ [1 . . . nf ] black.
21: for every frame f t do
22: for every particle p ∈ P do
23: draw a white circle of area area(p)
24: at pos(p) + dir(p)amp(p)si + (Xn, Yn)
25: end for
26: end for

Fig. 4. Three frames of a Monte Carlo frame sequence generated with the algorithm 1 and the
parameters specified in Sect. 3.1
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Three frames from a Monte Carlo frame sequence generated with the stated parameters
and algorithm 1 are shown in Fig. 4. The frequency measurement error for the n-th
Monte Carlo experiment is calculated as follows. For each particle p ∈ Pn is calcu-
lated, where Pn is the set of particles of the n-th Monte Carlo experiment and |Pn| the
number of particles in the set the main frequency Fn,p

1 is calculated as stated in Sect. 2:

en =
∑

p∈P n

(Fn,p
1 − freqn)2

|Pn|

Then, the mean square difference between the true beating frequency freqn of the
experiment and the frequency Fn,p

1 is calculated. A histogram presenting the frequency
measuring error for each Monte Carlo experiment is presented in Table 1 where it can
be seen that the error more than 94% of the experiments is zero.

Table 1. Table presenting the frequency measurement error for each Monte Carlo experiment. It
can be seen that the error in more than 94% of the cases, ranges to 0.

Frequency measurment error(e) Percentage of cases
00 94.46
04 1.23
08 0.88
12 0.80
16 0.94
20 1.16

24 and more 0.53

4 Real Data Processing

The proposed tracking algorithm based on the fast marching method presented in [4,5]
and applied to image segmentation in [6] is presented in this section. This algorithm is
developed in order to relax the restrictions placed on the algorithm presented in Sect. 2,
where a ROI in which the membrane to be tracked had to be the only object over the
threshold in every frame of the sequence. The short response-time requirement for the
application stated in Sect. 1 makes the choice of a tracking algorithm critical. A compre-
hensive review of tracking techniques is presented in [7], nevertheless the techniques
reviewed in that work are bounded by a high-computational cost or by topology de-
pendence; none of these characteristics can be afforded in this work due to the non-
functional requirements on the application and the possibility of a topology change in
the thresholded tracked membrane. A tracking algorithm based on the fast marching
algorithm is presented in this section.

4.1 Fast Marching Algorithms

In this section the algorithm introduced in [6,4] is briefly described. Let Γ be the ini-
tial position of a curve and let F be its speed in the normal direction. In the level set
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perspective [8], Γ is viewed as the zero level set of a higher dimensional function
ψ(x, y, z) and its movement equation is:

ψ(Γ (t), t) = 0

where Γ (t) is the Γ curve in instant t. Then, by chain rule,

ψt +∇ψ(Γ (t), t) · Γ ′(t) = 0

and taking F as the speed in the outward normal direction

F = Γ ′(t) · ∇ψ

|∇ψ| ,

an evolution equation for the moving surface can be produced [8,4], namely

ψt + F |∇ψ| = 0. (1)

Consider the special case of a surface moving with speed F (x, y) > 0. Now, let T (x, y)
be the time at which the curve Γ crosses a given point (x, y). The function T (x, y) then
satisfies the equation

|∇T (x, y)|F (x, y) = 1; (2)

this simply says that the gradient of arrival time is inversely proportional to the speed
of the surface. The way of approximating the position of the moving curve in the fast
marching approach is to explicitly construct the solution function T (x, y) from equa-
tion (1). The algorithm which presents this function reconstruction is presented on [6,4].

Implementation of the Algorithm. In order to solve equation (2) an approximation to
the gradient given by [8,4,5],[

max(D−x
ij , 0)2 + min(D+x

ij , 0)2

+max(D−y
ij , 0)2 + min(D+y

ij , 0)2

] 1
2

=
1
Fij

, (3)

is used, where D− and D+ are the backward and forward difference operators for
T (x, y). The central idea behind the fast marching method is to systematically construct
the solution T using only upwind values. Observe that the upwind difference structure
of equation (3) allows to propagate information “one way”, that is from smaller values
of T to larger values. Plainly speaking no point in T can be affected by points of T
containing larger values, taking this “causality principle” [5] into account, a method for
calculating the values of T is presented in the algorithm 2.

By implementing the Trial set with a particular heap sort structure [4] this algo-
rithm takes O(N logN) computations, where N is the number of points in the grid.

4.2 Segmentation Using the Fast Marching Method

Given an image function I(x, y) the objective in segmentation is to separate an object
from the background. This can be done applying an image-based speed function kI >
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Algorithm 2 fast marching algorithm
1: Given a grid with the initial values of T where the points in the initial curve have a known

value and every other point has an ∞ value.
2: Tag all points in the initial boundary value as Known.
3: Tag all points with a neighbor in Known as Trial.
4: Calculate the value of T for each point tagged as Trial with equation (3)
5: Tag all other grid points as Far
6: while there are points in Trial do
7: Let A be the Trial point with the smallest value.
8: Add A to Known and remove it from Trial.
9: Tag as Trial all points that are not Known. If the neighbor is in Far, remove.

10: Recompute the values of T at all Trial neighbors of A according to equation (3).
11: end while

0 such that it controls the outward propagation of the initial curve in a way that it
stops in the vicinity of shape boundaries. Mathematically this corresponds to solving
equation (2) where Fij = kI ij :

|∇T | = 1
kI ij

,

where kI ij approaches to 0 as it gets closer to shape boundaries; in every other case
it approachos to 1. In the case of this particular work where I(x, y) is a thresholded
binary image kI ij can be defined as

kI ij =
1

Iij + ε
, ε > 0,

where Iij is 1 inside the object to be segmentated and 0 outside of it.

4.3 Tracking by Fast Marching Methods

The fast marching method presented on Sect. 4.1 propagates a curve. The segmentation
task, introduced in Sect. 4.2, is performed by manually selecting a set of initial curves
or points inside the objects to be segmentated and then propagating these curves until
the border of the object is reached. This process is illustrated on Fig. 5

The facts that the area of the objects do not suffer a meaningful variation and the dis-
placement performed by the objects between frames is bounded were stated in Sect. 2.
Thus, the initialization of the propagating curve inferred from the previously segmented
frame is obtained eroding the resulting curve with a circular kernel, see Fig. 5(d), obtain-
ing an initialization curve that can change its topology. For each segmented membrane,
the normalized centroid norm cdn(t) for the video sequence is calculated in order to
find the beating rate of the membrane. This is done by analyzing the Fourier transforms
of these functions and taking the frequency F1 as stated in Sect. 2.

The overall cost of processing a membrane in a frame can be calculated as the cost
of segmenting the membrane O(N logN) plus the erosion O(Nk), where N is the
area of the segmented membrane and k is the size of the erosion kernel. The cost of
calculating the centroid is O(N) -linear in the area of the membrane-, then the overall
cost of processing a frame is O(N logN + Nk + N) = O(N logN + N).
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Fig. 5. Segmentation of a membrane using the fast marching method. The membrane to be seg-
mentated is shown in (a). An initial curve is selected and propagated until it reaches the border
of the object. The evolution of the segmentation progress is shown in (b),(c) and (d). In (b) The
membrane to be segmentated in grey and the initial curve in whitem in (c) the evolving curve-
white- growing inside the membrane-grey-. In (d) curve has grown to fill the membrane. After the
segmentation, the obtained figure is eroded in order to initialize the next frame, shown in white
in (e), is used as the initial curve for the next frame.

4.4 Real Data Processing Results

The algorithm described in Sect. 4.3 was applied over several rat cardiomyocyte culture
frame sequences with a sampling frequence of 25 frames per second and 10 frames per
second. Several membranes were tracked in each video. The results were compared with
the measures obtained with the standard method by the staff of the Molecular Biology
of Chagas Disease Laboratory at INGEBI-CONICET Argentina. Their method consists
of a trained member of the staff who measures the beating rate with a cronometer by
looking at the culture over a microscope. The mean measuring difference was of 0.1Hz
in the 25 frames per second videos and of 0.77Hz in the 10 frames per second videos.
This measuring difference are one order of magnitude smaller than the measured beat-
ing rates.

5 Conclusions and Further Work

In this work the base for an image processing application to measure the beating rate
of a rat cardiomyocyte culture is presented. It can be divided in three stages. In the
first stage, a preliminary analysis of the problem is introduced, isolating the main char-
acteristics of the problem. In the second stage, a Monte Carlo experiment is designed
using this characteristics to evaluate the robustness and validity of the algorithm which
attains a rate above 87% of measurements with zero measurement error. Finally, a short-
response time O(T (N logN+N)) algorithm for tracking cardiomyocyte membranes is
presented, where N is the maximum surface of the tracked membrane in pixels and T is
the number of frames in the video sequence. This algorithm is implemented in a testbed
application and the beating rate measures obtained with it were compared against the
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measures obtained by the standard procedure over several videos. This comparison re-
sulted in a mean error of 0.1Hz in 25 frames per second videos and in a mean error
of 0.77Hz in 10 frames per second videos representing a measuring error one order of
magnitude smaller than the measures taken by both methods.

Two tasks are currently being addressed as further work: In order to improve the
comparison between the standard method and the testbed application more video se-
quences are being generated and measured by the Chagas Disease Laboratory, the re-
sults of this measures will be compared against the measures of the proposed application
using the Bland and Alman method [9]. Furthermore this algorithm will be implemented
in an end-user application for its use at the Molecular Biology of Chagas Disease Lab-
oratory at INGEBI-CONICET Argentina in Chagas’ disease investigation.

The authors want to acknowledge Gabriela Levy and Dr. Mariano Levin for provid-
ing the cardiomyocyte culture videos and the manual beating rate measures and Msc.
Daniel Acevedo for his support.
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Abstract. Recent advances in digital processing of biological signals have 
made it possible to incorporate more extensive signals, generating a large 
number of features that must be analyzed to carry out the detection, and thereby 
acting against the performance of the detection methods. This paper introduces 
a simple feature reduction method based on correlation that allows the 
incorporation of very extensive signals to the new biological signal detection 
algorithms. To test the proposed technique, it was applied to the detection of 
Functional Dyspepsia (FD) from the EGG signal, which is one of the most 
extensive signals in clinical medicine. After applying the proposed reduction to 
the wavelet transform coefficients extracted from the EGG signal, a neuronal 
network was used as a classifier for the wavelet transform coefficients obtained 
from the EGG traces. The results of the classifier achieved 78.6% sensitivity, 
and 92.9% specificity for a universe of 56 patients studied. 

1   Introduction  

The incorporation of more extensive biological signals and of new transformation 
methods to represent those signals produces a large number of features which are 
difficult to analyze by the classifying algorithms that allow the detection of a 
pathology. To overcome these problems there are feature extraction methods such as 
Principal Component Analysis and Feature Selection by Mutual Information [1-2]. 
But these methods require a number of cases (at least equivalent to the features to be 
selected) to carry out the extraction. On the other hand, the incorporation of new 
pathologies with long signal registers makes it difficult to obtain test subjects for the 
analyses, decreasing the number of examples. To solve this problem, use of a simple 
method is proposed that allows a reduction of the number of redundant features 
according to the degree of correlation existing between them. 

To carry out an evaluation, a problem of great clinical interest has been chosen, 
which also generates a signal made up of very extensive electric registers.  
                                                           
* This work was supported by FONDECYT project Nº 1050082. 
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Functional Dyspepsia (FD) is a complex syndrome which can not be detected by 
clinical examination and affects 25% of the population. At present, the precise nature 
of the mechanisms that produce this symptomatology is unknown, but it seems 
unlikely that a single mechanism can explain the variety of discomforts that comprise 
this syndrome [3]. 

The lack of knowledge regarding the specific mechanisms that give origin to this 
syndrome, the necessity of ruling out a variety of alterations, added to the high 
degree of incidence in the population, highlight the importance of having recourse to 
efficient diagnostic mechanisms for the detection of FD. The methodology used at 
present for the identification of FD consists of following the so called Rome protocol 
based on the systematic elimination of possible organic alterations [4]. This results in 
costly procedures and long periods during which patients must live with this 
condition. 

A different approach in order to establish minimal motor alterations in these 
patients came to light about a decade ago, and involves the study of the electric 
activity of the digestive tract. These studies are based on the analysis of the graphs of 
electro-gastric activity over time, obtained from surface electrodes placed on the pat- 
ient’s abdomen. The resulting record, which is similar to an electroencephalogram, is 
called an electrogastrogram (EGG)[4-8]. 

Spectral analyses carried out by means of a Fourier transformation are the 
methods most often used for extracting information from electro-gastric activity. The 
difficulty in recording these signals has resulted in the design of new methods in 
order to improve the signal/noise ratio of the EGG [3,9]. The long signal records 
(approximately 2 hours) require block processing which produces undesired 
averaging effects in the spectra. In order to avoid this problem, special processing 
techniques have been developed based on adaptive and mobile media models which 
achieve a significant improvement in the quality of the record [9]. 

In several papers attempts have been made to evaluate gastric activity by means of 
an EGG, but these refer to pathologies other than FD, and they focus on the methods 
of classification (such as the use of neuronal networks), in which the first steps 
include the use of a classic Fourier analysis or the extraction of parameters from this 
transform [10-11]. 

The main disadvantage of analyses based on Fourier transforms for the diagnosis 
of FD is that they do not have the ability to temporarily locate the phenomenon of 
interest. This is due to the fact that Fourier theory only possesses frequency ability, 
and thus, although it is possible to determine the total number of frequencies that 
make up a signal, it is impossible to determine the time at which they occur. [12]. 
This problem becomes especially relevant in the study of EGGs related to FD 
because it is necessary to analyze the gastric system in its different states: pre-
prandial (before the ingestion of food), prandial (during the ingestion of food), and 
post-prandial (after ingestion of food), which results in records that are too long to 
only analyze frequencies. 

In order to solve the problem of time resolution, a variety of solutions have been 
developed that attempt to provide, to a greater or lesser degree, a simultaneous 
improvement in time and frequency resolution. Some of these are spectral methods 
that vary in time, spectro-temporal methods, and time-scale methods. Most of these 



 A Simple Feature Reduction Method for the Detection of Long Biological Signals 433 

solutions are based on segmentation of the signal, thus transforming the problem into 
a search for the optimal segment.  

Among the different alternatives, wavelet transformation stands out because it 
avoids the problems of segmenting the signal by using windows based on functions 
that can be completely scaled and modulated. This is called a multiresolution analysis 
[13]. This type of transform is a powerful alternative for the analysis of non-
stationary signals whose spectral characteristics change in time, such as biomedical 
signals in general [14] and EGG in particular. 

Thus, this work consists of pre-processing an EGG signal in order to select the 
segment that contains FD information, calculating the coefficients of the wavelet 
transform, and subsequently using them as input for a neuronal classifier which will 
discriminate between healthy and dyspeptic patients. 

2   Methods  

2.1   Foundations 

In order to avoid the segmentation of the signal required for the Fourier windowing 
calculation, the wavelet transformation (WT) uses a different alternative that consists 
of using a window that moves through the signal allowing the spectral calculation of 
each position. Then we iterate by gently increasing or decreasing the size of the 
window, thus obtaining a complete set of time-frequency representations at different 
resolutions. 

The WT decomposes the signal into a set of base functions that correspond to a 
family. Families are generated by dilation and translation of a basic wavelet, called 
the “mother” wavelet, which is a function of time denoted by decomposes the signal 
ncy representations at different resolutions..ncreasing or decreasing the size of the 
window, obtai ψ(t). The translation of ψ provides temporal resolution, and the 
dilation provides scaling. There are two important conditions that a wavelet must 
fulfill: i) the function must decay in time 0tt =∞→ )(lim ψ . ii) The function must 

oscillate so that = 0dtt)(ψ . In order to implement these functions there are various 

alternatives, among which the ones most used are those of Haar, Daubechies and 
Morlet, which are shown in Figure 1. 

 
Fig. 1. Wavelets of Haar (a), Daubechies (b) and Morlet (c) 
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For applications that involve the digital processing of signals, the discrete wavelet 
transformation (DWT) is used. The result of DWT is a multilevel decomposition in 
which the coefficients that determine a high degree of resolution correspond to the 
high frequency components of the signal, while the low resolution levels correspond 
to the low frequency components. 

For the implementation of DWT, beyond the base wavelets that act as bandpass 
filters, scaling functions, are used to establish upper limits for scaling factors.  

The base wavelets in conjunction with the scaling functions form a bank of filters 
that are applied to the signal to be transformed. The low pass filters formed by the 
scaling functions limit the spectrum of the base wavelets on the basis of a given 
scale, covering the lower frequency functions. The output of the filter bank comprises 
the wavelet coefficient series. 

The division of the spectrum is carried out by means of a multiresolution analysis 
which divides the spectrum in two. The details of the high frequency portion of the 
signal are kept, while the half corresponding to the lower frequencies can be again 
subdivided as often as necessary, and is limited only by the available information. 
Figure 2 below illustrates this type of treatment. 

 

Fig. 2. Division of the spectrum by means of multiresolution analysis 

2.2   Data Collection  

The original data set corresponds to a total of 150 EGG exams carried out on subjects 
most of whom suffered from diverse gastric disorders, and among which there is a 
control group of 14 healthy patients. From the total of sick patients, 42 were selected 
that fit the Rome protocol; adding the healthy patients to these, a final set of 56 exams 
is generated for analysis. These exams were carried out between the years 2000 and 
2002 in the Clinical Hospital of the Universidad de Chile, using a computational tool 
known as Polygram Version 5.0 developed by Gastrosoft Inc. [15] for recordring, 
processing and storing data. The signals obtained were stored digitally with a 
sampling frequency of 8 Hz for subsequent processing by Matlab version 6.1, using 
the signal processing, wavelet and neuronal network toolboxes. 

Each exam consists of a 2.5-hour record. After a 10 minute relaxation period, the 
pre-prandial stage is initiated under fasting conditions and lasts approximately one 
hour. Subsequently, a light meal is given to the patient for ingestion, thus initiating 



 A Simple Feature Reduction Method for the Detection of Long Biological Signals 435 

the prandial stage which lasts between 20 and 30 minutes. Finally, the post-prandial 
stage begins which lasts approximately one hour. 

2.3   Process and Pre-processing 

The data obtained from the Polygram equipment presents a very high rate of 
sampling because the maximum frequencies in the stomach correspond to 
tachygastric episodes and reach 0.15 Hz or 9 cycles per minute (cpm). Frequencies 
between 9 and 12 cpm correspond to activity in the small intestine. These signals 
have frequency components that are outside the range of gastric activity, and include 
a great deal of noise. 

In order to focus the process on the relevant information, a subsampling process is 
carried out followed by a filtering of the signal. The exam is separated into its three 
stages (pre-prandial, prandial and post-prandial), in order to calculate the wavelet 
transform coefficients. The complete process is illustrated in Figure 3. 

Separation
Pre-prandial
Prandial
Post-prandial

Wavelet Reduction ClassificationFilteringSub-
sampling

EGG

 

Fig. 3. Pre-processing and classification of EGG 

Once the wavelet transform coefficients have been obtained, very little relevant 
information exists in the low frequency bands (flat responses) and high frequency 
bands, and these are therefore discarded. After obtaining the coefficients and deleting 
the high and low frequencies, there still remain a great deal of coefficients for each 
period which contain redundant information. With this large number of coefficients, 
and only 56 cases, it is not possible to carry out a Principal Component Analysis or 
Feature Selection by Mutual Information [1-2]. 

2.4   Feature Reduction 

The reduction method from the generated wavelet coefficients is the following: 

i)  Create groups of correlated coefficients (given a correlation interval, e.g. 0.05). For 
that purpose the quantity and kind of wavelet coefficients having a correlation greater 
than 0.95 are calculated, then those greater than 0.90, and so on successively until a low 
correlation (e.g. 0.2) is reached. Each calculation begins with the total set of wavelet 
coefficients. This leads to pairs (c,r), where c represents the number of wavelet 
coefficients (features) that have a correlation greater than the value indicated by r. 
ii)  Create a correlation curve, with the correlation index r on the abscissa, with r ∈ [0.2, 
0.95], and the number of coefficients having a correlation coefficient greater than r on the 
ordinate. 
iii)  The choice of an adequate point for the reduction will always be a compromise 
between the reduction of coefficients (features) and the elimination of information. 
The idea is to try and decrease as much as possible the number of components 
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without decreasing the information considered in the analysis. More than one point 
can be chosen and evaluated with the classifier. The points that are candidates to be 
evaluated will be those that show the largest drop along the curve from right to left. 

2.5 Classification 

Classification is carried out by means of a static neuronal network which uses the 
backpropagation method for training. The input layer uses the reduction of the 
wavelet coefficients, and for the hidden layers zero to two layers are tested. For the 
output layer two output neurons were evaluated: the implementation of a classic 
classifier, and an output neuron for which a threshold must be calculated. 

Different training methods were evaluated such as backpropagation with 
momentum, resilient backpropagation, secant and second order methods (Levenberg-
Marquardt) [16]. In order to evaluate the training of the network, a cross validation 
process was used [17] which consisted in separating the initial set into seven groups. 
Each group consisted of the exams of six dyspeptic and two healthy patients. 
Training was carried out with six groups, and the seventh was reserved for 
evaluation. This process was carried out seven times in order to evaluate all groups. 

3   Results  

3.1   Pre-processing 

The process is initiated by subsampling the signal which selects one sample for every 
20 original samples, thus obtaining a sampling frequency of 24 cpm. 

The signal filtering is carried out with a Butterworth low-pass fifth-order filter 
with a cutoff frequency of 10 cpm. The purpose of this cut-off frequency is to 
eliminate small intestine activity (9 cpm to 12 cpm), without damaging the signals 
that correspond to gastric activity. 

The EGG record is divided into the three previously mentioned sections, which are 
analyzed separately. At this stage it is necessary to ensure that the length of each 
segment is the same for each patient as a way of normalizing the input to the neuronal 
classifier. 

3.2   Feature Extraction 

For the calculation of the DWT, the three base wavelets shown in Figure 1 were 
tested. Daubechies' wavelet shows the best results. An analysis of variability between 
subjects shows that low and very high frequency signals do not carry any useful 
information, and thus these coefficients were discarded as shown in Figure 4 below. 

Figure 5 shows the graph of correlation versus coefficients obtained according to 
section 2.4 for the prandial stage. It is seen that there are four points at which the 
curve has more pronounced drops. These points were evaluated by the neuronal 
classifier, and the best result was obtained with the point having the coordinates 
(0.65, 80). 
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Fig. 4. Elimination of coefficients that do not carry information (shaded regions) 

The total coefficient reduction achieved for the prandial stage was from 160 to 80, 
and that for the pre and post-prandial stages was from 1070 to 300. 

3.3   Classifications 

Different neuronal classifiers were implemented for each of the exam stages, and the 
four training methods mentioned in Section 2.5 were evaluated. Sigmoid neurons 
were used for the hidden layer, and linear and sigmoid neurons were tested for the 
output layer. 

By means of the cross validation process, models with one and two hidden layer 
were evaluated first, and acceptable results were obtained. However, these results are 
achieved with reduced numbers of neurons in the hidden layer. Due to this fact, it 
was decided to eliminate the hidden layer, thus transforming the classifier into a 
linear discriminator which uses a single output neuron with a sigmoid activation 
function. 
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Fig. 5. Feature reduction graph, prandial stage (chosen point, solid line)  
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The best results were obtained for the prandial stage with 80 input coefficients, 
one output neuron, and the resilient backpropagation training method. The threshold 
value is adjusted in order to improve classification while using only training data, 
thus achieving 82.1% accuracy (17.9%±6% error, with p<0.005), with 78.6% 
sensitivity and 92.9% specificity. 

4   Conclusions 

Time-frequency analysis methods make it possible to obtain important features for 
identifying biological signals. When the signals are extensive, however, the number 
of features generated by these methods prevent an adequate classification of the 
signals. This paper presents a simple method for extracting important features that 
make it possible to classify satisfactorily very extensive biological signals. The 
method has been evaluated using one of the most extensive signals known in clinical 
practice, that of EGG records (2.5 hours per patient) for the detection of FD. 

Attempts to diagnose gastric electrical abnormalities in FD by studying the 
frequencies generated by the spectral analysis of segments of the EGG signal are not 
satisfactory. Attempts to systematically extract EGG characteristics for their 
subsequent classification have generated adequate results in other gastric pathologies 
[10], but the vast majority of these methods are based purely on a frequency analysis, 
and complex indices must be developed in order to characterize the different 
phenomena. 

The time-frequency analysis based on the wavelet transform generated more than 
1000 coefficients for identifiable sections of EGG signals. Attempts to classify 
directly these coefficients did not allow an adequate discrimination between healthy 
patients and those suffering from FD. Only after applying the proposed feature 
reduction the cases were separated adequately, achieving 82.1% accuracy. In this 
particular case, application of the feature extraction allowed the complexity of the 
classification to be reduced to a linear separation problem that was implemented by a 
neuronal network without hidden layer. 

The proposed feature reduction introduced here can be extended to other problems 
of identification of long biological signals such as those of sleep-wakefulness EEGs 
[18], or signals of blood pressure and flow for the analysis of the autoregulation of 
brain blood flow [19]. 
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Abstract. Based on the directional characteristic of SAD(Sum of Absolute Dif-
ference) distribution and the center-biased characteristic of motion vectors, a 
fast BMA(block-matching motion estimation algorithm), DSSS(Diamond and 
Simplified Square Search), is proposed in this paper. DSSS employs line search 
pattern(LP), triangle search pattern(TP), or square pattern(SP) adaptively ac-
cording to the distance between the MBD(Minimum Block Distortion) and 
SMBD(Second MBD) points to locate the best matching block with large mo-
tion vector, and diamond search pattern(DP) to refine the motion vector. Al-
though the proposed DSSS may also be trapped in local minima, the experimen-
tal results show that it is faster than DS(Diamond Search) and DTS(Diamond 
and Triangle Search), while its encoding efficiency is better than DS and it is 
almost the same as that of DTS. 

1   Introduction 

Motion Compensated Predictive Coding can improve the encoding efficiency greatly 
by eliminating the temporal redundancy between successive frames and it was 
adopted by many video coding standards such as MPEG-1/2/4, H.261, H.263 and 
H.264/AVC[1], etc. The basic algorithm for motion compensated predictive coding is 
the block-matching motion estimation(BMME), and the most basic BMA(BMME 
Algorithm) is the full search (FS). Although FS can find out the best matching block 
by exhaustively testing all the candidate blocks within the search window, its compu-
tation is too heavy, for example, experimental results show that the time of the 
BMME consumed by FS in H.264/AVC is about 80% of the total. In order to speed 
up the BMME in the process of video encoding, many researchers have been working 
hard and have proposed many kinds of fast BMAs.  

Most of the fast BMAs find the best matching block (or point) by using some spe-
cial search patters. For example, TDLs(Two-Dimensional Logarithmic Search) uses 
“+” search pattern[2]; CSA (Cross-Search Algorithm)[3] and DSWA(Dynamic 
Search-Window Adjustment) [4] adopt “X” and “+” search patterns; TSS(Three-Step 
Search), NTSS (New TSS) [5], 4SS (Four-Step Search) [6], and BBGDS(Block-
Based Gradient Descent Search)[7] employ square search pattern; DS(Diamond 
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Search) exploits diamond search pattern [8]; HEXBS(Hexagon-Based Search) adopts 
hexagon search pattern [9]; OCTBS uses octagon search pattern [10]; etc. Some im-
proved fast BMAs usually use two different search patterns in the searching proce-
dure of motion vector, for example, CBHS adopts “X” and diamond patterns [11]; 
CDS and its improved algorithms use “+” and diamond pattern [12,13,14]; DTS em-
ployes diamond and triangle search patterns[15]; etc. 

Based on the directional characteristic of SAD distribution and the center-biased 
characteristic of motion vectors, we proposed a fast BMA, DSSS(Diamond Simplified 
Square Search), in this paper.  

The rest of this paper is organized as follows. Section 2 introduces our previous 
work briefly. The proposed DSSS is described in Section 3. Experimental results are 
presented in Section 4. Finally, conclusions are given in Section 5. 

2   The Previous Work 

In [15] we proposed a fast motion estimation algorithm based on diamond and trian-
gle search patterns(DTS). The DTS algorithm adopts two search patterns adaptively 
in the process of motion search. The first pattern, called DP(Diamond Pattern, as 
shown in Fig.1(a)), comprises five checking points from which four points surround 
the center one to compose a diamond shape. The second pattern consisting of three 
checking points and covering the MBD point obtained in the previous search step(as 
shown in Fig.1(b)) forms a triangle shape, called TP(Triangle Pattern). In the process 
of motion search, DP is used to refine the motion vectors and it is necessary no matter 
how the motion vector being small or big, while TP is used to locate the best match-
ing block with large motion vector approximately and it can be disused if the motion 
vector is ‘0’. 

 

         
(a)  DP                                    (b)  TP 

Fig. 1. Two search patterns employed in the proposed DTS algorithm 

The DTS algorithm has the following technical characteristics. Firstly, the initial 
search center is formed according to the predicted motion vector of the current block 
by the adjacent blocks. Secondly, DP and TP are adaptively employed according to 
the motion extents of macro blocks. 

By analyzing the DTS algorithm, we found that its speed of encoding is not so high 
for some video sequences, so we developed the proposed DSSS in the following. 
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3   The Proposed Diamond and Simplified Square Search 
Algorithm 

3.1   DSSS Patterns 

The proposed DSSS algorithm employs four search patterns adaptively in the process 
of motion search. The first pattern is called DP(as shown in Fig.2(a)). The second 
pattern consisting of two checking point forms a line shape, called LP(Line search 
Pattern) if the MBD(Minimum Block Distortion) and the SMBD(Second MBD) 
points obtained in the previous search step are located in different directions(as shown 
in Fig.2(b)). The third pattern consisting of three checking points and covering the 
MBD point  forms a triangle shape, called TP(Triangle search Pattern)  if the MBD 
and the  SMBD points obtained in the previous search step are located in the same 
direction and the distance of the two points is only one pixel(as shown in Fig.2(c)). 
The fourth pattern consisting of four checking points forms a square shape, called 
SP(Square search Pattern) if the MBD and the SMBD points obtained in the previous 
search step are located in the same direction and the distance of the two points equals 
two pixels(as shown in Fig.2(d)). In the searching process of motion estimation, DP is 
 

 
(a)   Diamond search Pattern(DP) 

 
(b)  Line search Pattern(LP) 

 
(c)  Triangle search Pattern(TP) 

 
(d)  Square search Pattern(SP) 

Fig. 2. Four search patterns employed in the proposed DSSS algorithm, only the solid black 
icons are the new checking points where the computational of block-distortion measurement is 
required, while the blank triangles are the skipped points, where ‘  ’ and ‘  ’or ‘   ’ represent the 
MBD and SMBD point found in the previous search step respectively 
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used to refine the motion vectors and it is necessary no matter how the motion vector 
being small or big, while LP, TP or SP is used to locate the best matching block with 
large motion approximately and it can be discarded if the motion vector is ‘0’. 

3.2   Description of the Proposed DSSS Algorithm 

The proposed DSSS algorithm mainly comprises 4 stages. In the first stage, in order 
to reduce the search points for the best matching block with large motion, we use the 
median motion value of the adjacent blocks (as shown in Fig.3) to predict the motion 
vector of the current block. The median prediction is expressed as Eq. (1). 

 

        

Fig. 3. Reference block location for predicting motion vector 

In the second stage, in order to find the best matching block with zero or small motion 
vector efficiently, DP is selected as the search pattern. If the MBD point is located at 
the search center, then the motion search process terminates immediately and the best 
matching motion vector is equal to the predicted one. Assume that P0(x0, y0), P1(x1, y1) 
are the MBD and SMBD (Second MBD) points found in the current search step re-
spectively, the searching pattern for the next search step can be decided by the dis-
tance from P1 to P0, which is defined by Eq.(2). 

In the third stage, the proposed DSSS algorithm selects a search pattern from LP, TP, 
and SP adaptively according to the distance between P1 and P0. In the fourth stage, 
the proposed DSSS algorithm uses DP repeatedly until the new MBD point occurs at 
the center of DP or DP and LP/TP/SP alternately according to the position of the new 
MBD point found in the previous search step. 

The block diagram of the proposed algorithm is depicted in Fig.4, and the proposed 
algorithm is summarized as follows. 

Step1� Eq. (1) is used to predict the initial motion vector of the current block, and 
the initial search center point is set according to the predicted value. 

Step2� DP is disposed at the search center, and the 5 checking points of DP(as 
shown in Fig.2(a)) are tested. If the minimum block distortion (MBD) point calcu-
lated is located at the center position of DP, then it is the final solution of the motion 
vector, goto step5. Otherwise, the new MBD point is re-positioned as the search cen-
ter point�  goto step3. 

)_,_,_(_ CmvBmvAmvmedianmvpred =  (1) 

),(),( 10101101 yyxxyxPP −−=∆∆=  (2) 



444 Y. Cheng et al. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. The block diagram of the proposed algorithm 

Step3�  If((|�x1|=2) or ( |�y1|=2)) 
{ 

SP is disposed at the new search center, and 4 checking points of SP 
(the 4 black squares as shown in Fig.2 (d)) are tested. 

} 
Else if((�x1=0) or (�y1=0)) 
{ 

            TP is disposed at the new search center, and 2 checking points of TP 
(the 2 black squares as shown in Fig.2 (c)) are tested. 

} 
Else 
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{ 
LP is disposed at the new search center, and 1 checking points of LP 
(the 1 black squares as shown in Fig.2 (b)) are tested. 

} 

If the MBD point is refreshed, the new MBD point is re-positioned as the search 
center, goto step2, otherwise, goto step4. 

Step4� DP is disposed at the search center, and the 3 checking points of DP are 
tested according to the position of the MBD point. If the MBD point calculated is 
located at the center position, goto step5, otherwise, recursively repeat this step. 

Step5� Stop searching. The center point is the final solution of the motion vector 
which points to the best matching block. 

3.3   Analysis of the Proposed DSSS Algorithm 

For BMME, computational complexity could be measured by average number of search 
points required for each motion vector estimation. According to the statistical distribution 
 

Table 1. Comparison of least search points near the initial search center for DS,DTS and DSSS 

 the best matching point is located in the 

 center 
Circular area 
with a Radius 

of 1 pixel 

Circular area 
with a Radius 
of 2  pixels 

Circular area 
with a Radius 

of 2 pixels 
DS 13 13 16 18 

DTS 5 10 12 13 

DSSS 5 9 11 12 

 

(a) DTS uses six search steps—two times of 
TP and four times of DP. There are 19 search 
points in total—taking five, two, four, two, 
three, and three search points at each step, 
sequentially. 

 

(b) DSSS uses six search steps—one time of 
LP, one time of TP, and four times of DP. 
There are 18 search points in total—taking 
five, one, four, two, three, and three search 
points at each step, sequentially. 

Fig. 5. Search path example which leads to the motion vector (-4,-2) for DTS and DSSS 
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law of motion vectors in different images sequences, assume that the best matching point 
is located in a circle area with a radius of 2 pixels around the initial search point, the least 
search points needed for DS, DTS, and DSSS are listed in Table.1. 

From Table.1 we observe that the least search points needed for DSSS is always 
less than that of DS, and the reduced search points is always 3~8. If the MBD point is 
not located in the initial search center, DSSS can reduce one search point comparing 
with that of DTS. 

If the best matching point is located outside the circular area with a radius of 2 pix-
els, the least search points needed for DSSS is still less than that of DTS. This could 
be seen from the practical search path. Fig.5 gives a search path example which leads 
to the motion vector (-4,-2) for DTS and DSSS. 

4   Experimental Results 

Our proposed DSSS algorithm was integrated within version 7.6 of the H.264 soft-
ware [16], and it is compared versus FS, DS, and DTS. Even though many image 
sequences are tested in the experiment, only four of them are selected out to be com-
pared. The CABAC(Context-Adaptive Binary Arithmetic Coding) entropy coder[17] 
was used for all of our tests, with quantization parameter (QP) values of 28, 32, 36, 
and 40, a search range of ±16, and 2 references. 

Table 2. The Average number of Search Points per macro-block 

  FS DS DTS DSSS 
QP=28 1089 13.04 5.14 5.12 
QP=32 1089 13.05 5.18 5.16 
QP=36 1089 13.10 5.22 5.20 

akiyo 

QP=40 1089 13.18 5.37 5.32 

QP=28 1089 15.07 8.34 7.96 
QP=32 1089 15.12 8.40 8.00 
QP=36 1089 15.09 8.44 8.04 

foreman 

QP=40 1089 14.99 8.42 8.01 

QP=28 1089 14.73 8.81 8.67 
QP=32 1089 14.72 8.54 8.39 
QP=36 1089 14.68 8.13 7.96 

coastguard 

QP=40 1089 14.51 7.80 7.65 

QP=28 1089 14.57 8.81 8.59 
QP=32 1089 14.46 8.72 8.54 
QP=36 1089 14.56 8.77 8.51 

mobile 

QP=40 1089 14.68 8.94 8.68 
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The four selected sequences are akiyo(Quarter Common Intermediate Format, 
QCIF), foreman(QCIF), coastguard(QCIF), and mobile(CIF). The former 100 frames 
of every sequence are tested, and only the first frame was encoded as I-frame, while 
the remainders are encoded as P-frames. Although H.264 provides seven different 
block-sizes for inter-frame coding, we have only used the 16×16 mode so as to com-
pare the speed of motion search accurately. To simplify our comparison, we have 
used ASP(Average number of Search Points per macro-block) and RD(Rate Distor-
tion) performance plot as shown in Table 2 and Fig.6 respectively. 
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Fig. 6. RD performance plot for  sequences (a) akiyo, (b) foreman, (c) coastguard, and (d) mobile 

From Table 2 we can observe that the average number of search points per macro-
block needed for DS, DTS, and DSSS are 13.04~15.12, 5.14~8.94, and 5.12~8.68 
respectively. It’s obvious that DSSS is faster than DS and DTS. From Fig.5 we can 
observe that the encoding efficiency of DSSS is better than DS and it is almost the 
same as that of DTS. 

5   Conclusions 

Based on the directional characteristic of SAD distribution and the center-biased 
characteristic of motion vectors, a fast BMA, DSSS, is proposed in this paper. DSSS 
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employs DP to refine the motion vectors, and LP, TP or SP adaptively according to 
the distance between the MBD and SMBD point so as to locate the best matching 
block with large motion vector approximately. Although the proposed DSSS may also 
be trapped in local minima, experimental results show that it is faster than DS and 
DTS, while its encoding efficiency is better than DS and it is almost the same as that 
of DTS. 
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Abstract. In this paper we introduce a new method for selecting prototypes 
with Mixed Incomplete Data (MID) object description, based on an extension 
of the Nearest Neighbor rule. This new rule allows dealing with functions that 
are not necessarily dual functions of distances. The introduced compact set 
editing method (CSE) constructs a prototype consistent subset, which is also 
subclass consistent. The experimental results show that CSE has a very nice 
computational behavior and effectiveness, reducing around 50% of prototypes 
without appreciable degradation on accuracy, in almost all databases with more 
than 300 objects.  

1   Introduction 

Supervised classifiers need a good training matrix for classifying with effectiveness. 
This “goodness” is usually achieved by expert criterion, but sometimes even experts 
make this selection arbitrarily. These classifiers typically compare a new unclassified 
object with all stored classified ones to make a decision. This can make them 
prohibitively costly for large training sets. One possible solution to these problems is 
to reduce the cardinality of the object descriptions sample, while simultaneously 
insisting that the decisions based on the reduced data set perform as well, or nearly as 
well, as the decisions based on the original data set. This process is known as finding 
prototypes. 

There are two different goals approached while finding prototypes: 

− Minimize the size of the training set (condensing methods).  
− Reduce the size of the training set obtaining classification accuracy never worse 

than with the initial training matrix (editing methods).  

On the other hand, in order to solve practical real problems, especially in soft 
sciences, we have to deal frequently with description of objects that are non-classical, 
that is, the features are not exclusively numerical or categorical. Both kinds of values 
can appear simultaneously, and a special symbol is necessary to denote the absence of 
values (missing values). A mixed and incomplete description of objects should be 
used in this case (MID). Many examples of real problems with this sort of objects can 
be found [1, 2] and also in the UCI Repository of Machine Learning Databases [3]. 
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Although the terms distance and dissimilarity have been widely exchanged, it is 
not true that a dissimilarity function is always dual to a distance function. There are 
many practice applications that use non-reflexive and/or non-symmetrical 
dissimilarities, which their duals are evidently not distances [4, 5].  

Most prototype selection algorithms were developed to deal with distances defined 
in metric spaces, which almost never is possible to use while working with MID. 
Some of them may be trivially extended to work with MID (Hart’s CNN [6], Wilson’s 
ENN [7], Random [8]) and many others do not, because use properties of distances 
and metric spaces for working (Construction of new prototypes [9], proximity graphs 
[10]). 

2   Basic Concepts  

Let U a universe of objects, structured in K1, …,Kr classes, described in terms of a 
finite set of features R={x1,… xn}. Each of these features has associated a set of 
admissible values Mi, which include de value ‘*’ for the case of unknown value. Over 
Mi no algebraic, topologic of logic structure is assumed. Then be U=M1×…×Mn, the 
Cartesian product of the admissible values sets of features of R. Let O=(x1(O), x2(O), 
…, xn(O)), where xi:U→Mi . A comparison criterion ϕi:Mi× Mi→Li is associated to 
each xi, where Li is a totally ordered set. A similarity function is a function Γ as be 
defined in [11]. Γ(O1,O2) is an evaluation of the degree of similarity between any two 
descriptions of objects belonging to U. Any restriction of Γ to any subset of R will be 
called a partial similarity function. Besides, this function is characterized by the 
following properties: the partial similarity relationships between any pair of objects 
are preserved when the total similarity between these objects is considered. Also, the 
maximum value of similarity is reached when the same part of the same object for any 
non-empty subset of R is considered, including the case of whole R.  

There are many pattern recognition algorithms for either numerical data processing 
or categorical data processing, that can be extended for the case of MID. These 
extensions are scarce and non trivial because it is necessary to face several problems. 
One of the simplest is the assumption of a distance for the comparison of MID.  

Nearest neighbor rule can not be applied with similarities which are non-dual to 
distances because the term “near” is associated with distances, while the term “most 
similar” is associated with analogies.  

Let α(O) =(α1(O),…, αr(O)) the membership t-uple of O in which αi(O) means the 
grade of membership of O to the class Ki, i=1,..,r. For example, it could have αi(O) 

={0,1} with the obvious interpretation. Let Q=U
r

i

iK
1

'

=

, '
iK ⊂Ki, i=1,…r, a training set.  

Let O∈U\Q, the most similar neighbor rule (MSN) for classifying O is to assign it 
the membership t-uple α(O) in the following way: 

A) Assuming Γ as just a similarity function 

If  ΓΓ
∈∈

)},({)},,({max maxmax OOOO i
QO

i
QO ii

=Γ(O,O') or Γ(O', O)  then 

(O)= (O') 
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B) Assuming Γ as symmetric similarity function 
If  )},({max i

QO
OO

i

Γ
∈

=Γ(O,O') then (O)= (O'), with O'∈Q 

Observe that in these cases MSN rule does not require that K be a partition neither 
a hard structuralization of U.  

We say that Oi, Oj∈U are β0-similar objects if Γ(Oi, Oj)  β0. In the same way Oi is 
a β0-isolated object if 0),( β<Γ∈≠∀ ijij OOUOO .The β0 threshold value can be 

used to control how similar a pair of objects must be in order to be considered β0-
similar. 

Definition. NU ⊆ U, NU  ∅ is a compact set if: [11]  

− { } NUOOOOONUOUO jjiti

OO
UO

ij

it

t

∈≥Γ=Γ∧∈∈∀
≠
∈

0),(),(max β  

− { } NUONUOOOOO pttpip

OO
UO

pii

i

∈∈∧≥Γ=Γ
≠
∈

0),(),(max β  

− |NU| is minimal.  
− Every β0-isolated object is a compact set (degenerated). 

The compact set criterion induces a unique partition for a given data set, which has 
the property that one object x and all its most similar neighbors belongs to the same 
cluster and also, those objects for which x is its most similar neighbor.  

In many classification problems, a class is not uniformly formed. Consider, for 
example, in the universe of all humans we can define two classes: S is the class of all 
who are sick, and H is the class of all who are healthy. In the class S are grouped 
together many different objects with many different diseases, which compose 
subclasses inside the outer class. Intuitively, if an object belongs to a subclass its most 
similar neighbor must be in the same set, so it is obvious that a subclass should be 
considered as a union of compact sets.  

Consider now the problem of selecting a set of prototypes which describes this 
problem. We face two important difficulties: 

1.  Selecting the number of prototypes per subclass (and obviously per class) can not 
be done a priori, because it depends on the inner structure of each subclass, which 
can only safely be inferred from data. 

2. If the subclass structure of the class is not preserved someway it may be a serious 
degradation on accuracy, and it may be whole subclasses without a single 
representative. That is why it is important to introduce a new kind of consistency. 

Let Q ⊂ U a training matrix of a set of classes K={K1, K2,…, Kr}, Cf(LM, x) a 
classifier with learning matrix LM and MSNR(x) the most similar neighbor of object x 
in set R. 
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Following Hart [6] R ⊂ Q is a prototype consistent subset with respect to (wrt) Cf  
and Q iff )],(),([ xRCfxQCfQx =∈∀  

Definition. Let Φ a partition of Q in subclasses, such that 
)]()(, [ 2121 xxxxIi ii αα =Φ∈Φ∈Φ∈∀  and Ri ⊂ Φi, a set of representatives 

associated to each subclass. U
Ii

iRR
∈

=  is subclass consistent wrt Φ iff: 

])([( iRi xMSNxQxIi Φ∈Φ∈∈∀∈∀  

3   Compact Set Editing (CSE) Algorithm 

Inputs:  

- β0-compact sets in a maximal similarity graph (oriented graph each edge from 
vertex a to vertex b means that b is the most β0-similar element of a) described by 
a set of edges C and a set of vertexes V. 

- α(x): class associated with vertex x 
Output: 

- Subset of selected prototypes R 
Notations: 

- S(x) = {b ∈ V / (x, b) ∈ C}, set of the successors of vertex x in graph V. The 
presence of these elements in K guarantee the good classification of x 

- A(x) = {a ∈ V / (a, x) ∈ C}, set of the predecessors of vertex x in graph V.  
0. R = ∅ 
1. Let associate each vertex x in V with a quadruple (S’x, Ex, Sx, Flagsx), where: 

S’x = |{y ∈ S(x) / α(x) ≠ α(y)}| 
Ex = |{y ∈ A(x) / α(x) = α(y)}|  
Sx = |{y ∈ S(x) / α (x) = α (y)}| 
Flagsx ⊂ V, Flagsx = ∅  

2. R’ = { x ∈ V / S’x > 0} 
3. If R’ = ∅ go to step 6 
4. C ← C \ {(x, y) ∈ C / x ∈ R’ ∧ α(x) ≠ α(y)} 
5. For each element x ∈ R’ execute Move(x). 
6. ∀ x ∈ V [(Sx = 0)  execute Move(x)] 

7. ∉∈∀∈∀
∈

Move(x) execute 
}\{

U
xVz

zx FlagsyFlagsyVx  

8. Sort the elements of V with the following order relation: 
)()( yxyxyxyxyxyx FlagsFlagsSSEESSEEEEyx >∧=∧=∨<∧=∨<⇔p  

9. Execute Discard(x1), where x1 is the first vertex of V (p ) 
10. If V = ∅ end, else go to step 6 
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The indexes calculated in step 1 are the core of the later decision of which vertex to 
select and which to discard. Steps 2-6 break the compact sets eliminating the edges 
connecting vertexes with different classes, leaving “pure” components (v. gr. in figure 
1b eliminating edges c-d, d-c and e-d). To guarantee consistency predecessors nodes 
in this edges are moved to R, because they would be bad classified if do not (its MSN 
have a different class). 

a)            b)    

Fig. 1. Maximal similarity graph with a single class (a) and a couple of classes (b) 

Let see how the algorithm decides what objects should be included in the result set. 
Suppose that the graph represented in Figure 1 is associated with a real problem. As 
you can see nodes C and D are more important than nodes A, B and E, because their 
presence in the result set guarantee the good classification of the rest of the nodes. 
The order relation defined assures that nodes with low importance are removed first 
from the set, and an additional process is done to keep consistency: if a node is 
discarded one of its MSN must to stay. This is done “flagging” all the successors of x 
with a non-simultaneous elimination mark (step d2). In step 7 if an object is the last 
having such “flag”, it is automatically moved to R. After each modification in the 
graph, the indexes are updated. If the good classification of some node x is already 
assured, its Sx is assigned the value infinite, meaning that this information is no longer 
necessary for that object. 

In the example, node A is the first discarded, flagging C as its only successor. 
Node C is moved to result set because is the only one to have the “A” flag. So, nodes 
B and D have Sx equal infinite. All indexes are recalculated, and the process is 
repeated again. Finally the result set is nodes C and D. Note that this set is prototype 
consistent, no matter the distribution of the other objects in the space, because of the 
use of maximal similarity graph. 

 

Move(x) 
m1. Calculate A(x) and S(x) with the 

current set of vertexes V. 
m2. ∀ y ∈ A(x) [Sy ← ∞] 
m3. ∀ y ∈ S(x) [Ey ← Ey – 1] 
m4. ∀ y ∈ V [Flagsy ← Flagsy  \ Flagsx] 
m5. V ← V – {x}, R ← R ∪ {x} 
m6. C ← C \ {(a, b) ∈ C / a = x ∨ b = x} 

 

Discard(x) 
d1. Calculate A(x) and S(x) with the 

current set of vertexes V. 
d2. ∀ y ∈ S(x) [Flagsy ← Flagsy ∪ {x}] 
d3. ∀ y ∈ S(x) [Ey ← Ey – 1] 
d4. ∀ y ∈ A(x)[Sy ≠ ∞  Sy ← Sy - 1 
d5. V ← V – {x} 
d6. C ← C \ {(a, b) ∈ C / a = x ∨ b = x} 
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Let demonstrate some properties of the algorithm. 

Proposition 1. Let Cf  the classifier defined by the MSN rule. We have: 
 (R ⊂ Q is prototype consistent) ⇔ [ ]))(()( xMSNxQx Rαα =∈∀  

Proof. If R ⊂ Q is prototype consistent, then by definition we have 
)],(),([ xRCfxQCfQx =∈∀  (1).  

Cf(Q, x) = (MSNQ(x))= (x), because x is its own MSN (2). 
Cf(R, x) = (MSNR(x)), because the definition of MSN (3). 
Substituting (2) and (3) in (1) we have [ ]))(()( xMSNxQx Rαα =∈∀ . 

The back implication is also obvious. 

Proposition 2. If a set of prototypes R  ⊂ Q is subclass consistent wrt a partition Φ, 
then it is prototype consistent wrt Q. 
Proof.  
This is obvious based on the fact that the partition Φ is such that two elements in the 
same subclass have the same class.   

Theorem 1. The result set of the algorithm CSE is subclass consistent wrt the 
partition induced by the β0-connected subgraphs. 
Proof.  Basically the CSE algorithm, for each x ∈ Q decides if x ∈ R or not (and then 
its most similar neighbor MSNQ(x) ∈ R), so we have  

[ ]RxMSNRxQx Q ∈∨∈∈∀ )(  

Let x∈ R and x ∈ Vi, then x ∈ R∩Vi = Ri (1) 
x ∈ R implies that MSNR(x) = x, because x is its own MSN in R. (2) 
By (1) and (2) we have that MSNR(x) ∈ Ri, and then MSNR(x) ∈ Vi  (3) 
Let MSNQ(x) ∈ R and x ∈ Vi (4) 
x ∈ Vi implies that MSNQ(x) ∈ Vi, because Vi is a β0-compact set (5). 
From (4) and (5) we have: 
MSNQ(x) ∈ R and MSNQ(x) ∈ Vi, so MSNQ(x) ∈ R∩Vi = Ri, and then, because Ri⊂R 
and R⊂Q, we have MSNR(x) ∈ Ri, and finally MSNR(x) ∈ Vi. (6) 
By (3) and (6) we have: 

[ ] [ ]iRiQ VxMSNVxQxIiRxMSNRxQx ∈∈∈∀∈∀∈∨∈∈∀ )()(
what prove the theorem. 

4   Experimental Results 

Traditionally all prototypes selection methods have been defined in ℜn with distances 
functions. Many of them can not be extended to deal with MID, because they need 
properties of metric spaces, for example, the existence of an addition and 
multiplication operator. We have trivially extended some methods, originally 
enounced for working in metric spaces, allowing the comparisons with CSE. These 
methods are: AllKnn [12], Hart’s CNN [6], IB2 [13], Dasarathy’s MCS [14], Random 
[8], Relative neighbor editing [10], Random Mutation Hill Climbing (RMHC) [15], 
Shrink [16] and Wilson’s ENN [7]. 
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incomplete object description. Each database was split randomly, taking 30% for 
training (training matrix) and 70% for testing (control matrix). To reduce the 
influence of the randomness in partition, we repeat the process 5 times, and average 
the results. We measure the accuracy (# correct classification / # of objects) of each 
method by the difference of the accuracies over the training matrix and the edited 
matrix with respect to the control matrix, respectively. 

A MSN classifier was used for testing, without weighing the features, because we 
are only interested in the differences between the selection methods, more than 
finding a best classifier for a particular example.  

Table 1. Databases used in the experiments 

Number UCI name Objects Outperforms CSE 
1.  Annealing 257 MCS 
2.  Audiology 64 - 
3.  Breast cancer 1 230 Random 
4.  Breast cancer 2 182 Random 
5.  Breast cancer 3 69 RMHC 
6.  Credit-screening 228 Random, RMHC 
7.  Heart-disease Cleveland 94 Random, RMHC 
8.  Heart-disease Hungarian 91 Random, RMHC 
9.  Heart-disease Long Beach 63 MCS, ENN 
10.  Heart-disease Switzerland 37 AllKnn, MCS, Random, 

RMHC, Shrink, ENN 
11.  Hepatitis 56 - 
12.  Horse-colic 96 MCS, Random 
13.  Monks-problems 1 186 Shrink 
14.  Monks-problems 2 194 AllKnn, IB2, Random, 

RMHC 
15.  Monks-problems 3 184 MCS 
16.  Mushroom 2655 MCS 
17.  Soybean large 95 MCS 
18.  Thyroid-disease Allbp 903 - 
19.  Thyroid-disease ann 2399 - 
20.  Thyroid-disease dis 1243 - 
21.  Thyroid-disease hyper 936 - 
22.  Thyroid-disease hypo 1233 - 
23.  Thyroid-disease hypothyroid 1049 - 
24.  Thyroid-disease new-thyroid 72 - 
25.  Thyroid-disease rep 1246 - 
26.  Thyroid-disease sick 1268 - 
27.  Thyroid-disease sick-

euthyroid 
1055 - 

We use 27 databases from UCI Repository of Machine Learning with mixed and 

 
Table 1 shows the databases used in the experiments, the size of those databases 

and the list of methods that outperforms CSE in both, compression ratio and accuracy 
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difference. In the 27 databases evaluated, twelve of them CSE had the best behavior, 
in eight cases was outperformed by only one of the nine methods (not always the 
same) and in the remainder cases in which was outperformed by other methods, the 
databases were small.  

We can also observe that gaining in compression ratio by other classifiers above 
CSE will lead to a drastic reduction in classification accuracy, as shown in Table 2 
and Table 3 (bolded rows). Random based and evolutive methods (Random and 
RMHC) have a good performance in small databases [8], but are usually slow and 
inaccurate for big ones. MCS exhibit good performance for medium size database, but 
for big ones is always worse than CSE. 

Table 2. Results of prototype selection for “thyroid-disease ann” database 

Method Name Acc. Difference & Comp. Ratio Time(sec) 
CSE -1,75 53,9 151,93 
RMHillClimb -0,43 50,1 670,91 
RelativeNeighborEditor -5,10 79,37 3738,04 
MCS -5,54 83,74 487,32 
IB2 -13,99 85,16 10,95 
Shrink -28,45 88,70 81,07 
AllKnn 1,98 8,71 1173,69 
WilsonENN 1,70 5,04 148,54 
CNN -6,99 8,63 115,64 

We have to note than the Time result shown in tables are only useful for 
comparisons, because the absolute value is highly dependant on the computer where 
they are executed. 

Table 3. Results of prototype selection for “thyroid-disease dis” database 

Method Name Acc. Difference & Comp. Ratio Time 
CSE -0,42 58,25 57,1418 
RMHillClimb -0,22 50,52 248,1506 
MCS -2,54 95,58 121,0522 
IB2 -6,33 95,09 1,5004 
CNN -2,31 35,32 38,7486 
Wilson ENN 0,25 1,21 55,376 
AllKnn 0,28 1,85 443,863 
Shrink -21,71 97,35 28,3314 

The compression ratio of the method is around 50% of the prototypes in almost all 
databases, and the reduction of accuracy for medium and big databases is usually 
lower than 1. The behavior of the remainder methods is not so stable, and is more 
dependent to the data nature. 
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5   Conclusions  

Many practical pattern recognition problems, especially many of those appearing in 
soft sciences (medicine, geosciences, criminology, and others), make a necessity to 
work with MID. Training set prototype selection is a core issue for improving the 
efficiency and efficacy of many supervised classifiers. To face those problems, firstly 
we have extended the well known NN rule to MSN, for allowing to work with 
similarity functions non necessarily dual to distances and with object representation 
spaces different to metric spaces, which is usual while working with MID. We have 
defined subclass consistency property, to preserve the subclass structure of the data 
set while selecting a subset of prototypes.  

A new prototype selection method has been introduced (CSE). It works with MID 
and more general similarities (even non-symmetric or non-positive defined). It 
produces a subclass consistent subset. We have shown that this algorithm has a good 
performance compared to other prototype selection algorithms that can be used also 
with MID after a trivial extension. The new method is neither a pure condensing 
method nor a pure editing method, having desirable properties of both. Also the 
method leverages the user to spend time in selecting the training matrix, doing the 
selection automatically. 

Based on preliminary experiments and the results shown, CSE seems to be very 
adequate for synergy of editing methods with mixed incomplete data, in which we are 
actually working. 

References 

1. F. Martínez-Trinidad and A. Guzmán-Arenas. The logical combinatorial approach to 
Pattern Recognition, an overview through selected works. Pattern Recognition, 34: 741-
751, 2001. 

2. J. Ruiz-Shulcloper and M. A. Abidi. Logical combinatorial pattern recognition: A Review. 
In S. G. Pandalai, editors, Recent Research Developments in Pattern Recognition. 
Transword Research Networks, USA. 

3. C. J. Merz and P. M. Murphy. UCI Repository of Machine Learning Databases. Technical 
report, University of California at Irvine, Department of Information and Computer 
Science, 1998. 

4. M. Sato and Y. Sato. Extended fuzzy clustering models for asymmetric similarity. In B. 
Bouchon-Meunier, R. Yager, and L. Zadeh, editors, Fuzzy logic and soft computing. 
World Scientific. 

5. H. Chen and K. J. Lynch. Automatic construction of networks of concepts characterizing 
document databases. IEEE Transactions on systems, man and cybernetics., 22: 885-902, 
1992. 

6. P. E. Hart. The condensed nearest neighbor rule. IEEE Trans. on Information Theory, 14: 
515-516, 1968. 

7. D. L. Wilson. Asymptotic properties of nearest neighbor rules using edited data. IEEE 
Transactions on systems, man and cybernetics, SMC-2: 408-421, 1972. 

8. L. I. Kuncheva and J. C. Bezdek. Nearest prototype classification: clustering, genetic 
algorithms or random search. IEEE transactions on systems, man and cybernetics. Part C, 
28: 160-164, 1998. 



 Selecting Prototypes in Mixed Incomplete Data 459 

9. S.-W. Kim and J. B. Oommen. A brief taxonomy and ranking of creative prototype 
reduction schemes, in IEEE SCM Conference, 2002. 

10. G. T. Toussaint. Proximity Graphs for Nearest Neighbor Decision Rules: Recent Progress, 
in 34 Symposium on Computing and Statistics INTERFACE-2002, 2002. 

11. J. F. Martínez-Trinidad, J. Ruiz-Shulcloper, and M. S. Lazo-Cortés. Structuralization of 
universes. Fuzzy sets and systems, 112: 485-500, 2000. 

12. I. Tomek. Two modifications of CNN. IEEE Transactions on systems, man and 
cybernetics, SMC-6: 769-772, 1976. 

13. D. W. Aha, D. Kibler, and M. K. Albert. Instance-based learning algorithms. Machine 
Learning, 6: 37-66, 1991. 

14. B. D. Dasarathy. Minimal consistent set (MCS) identification for optimal nearest neighbor 
decision systems design. IEEE Transactions on systems, man and cybernetics., 24: 511-
517, 1994. 

15. D. B. Skalak. Prototype and Feature Selection by Sampling and Random Mutation Hill 
Climbing Algorithms, in Eleventh International Conference on Machine Learning, 1994. 

16. D. Kibler and D. W. Aha. Learning representative exemplars of concepts: An initial case 
study., in Fourth international workshop on Machine learning, pages 24-30, 1987. 

 
 



M. Lazo and A. Sanfeliu  (Eds.): CIARP  2005,  LNCS 3773, pp. 460 – 469, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Diagnosis of Breast Cancer in Digital Mammograms 
Using Independent Component Analysis and Neural 

Networks 

Lúcio F.A. Campos, Aristófanes C. Silva, and Allan Kardec Barros 

Laboratory  for Biologic Information Processing, 
 University of Maranhão, Av. dos portugueses,  

s/n, Campus do Bacanga 
lucio@dee.ufma.br, ari@dee.ufma.br, akbarros@ieee.org 

Abstract. We propose a method for discrimination and classification of mam-
mograms with benign, malignant and normal tissues using independent compo-
nent analysis and neural networks. The method was tested for a mammogram 
set from MIAS database, and multilayer perceptron neural networks, probabilis-
tic neural networks and radial basis function neural networks. The best per-
formance was obtained with probabilistic neural networks, resulting in 97.3% 
success rate, with 100% of specificity and 96% of sensitivity. 

Keywords: Mammogram, breast cancer, independent component analysis, neu-
ral networks, computer aided diagnosis.  

1   Introduction 

Breast cancer is the major cause of death by cancer in the female population. It is 
know that the best prevention method is early diagnosis, which lessens the mortality 
and enhances the treatment [1]. Therefore, a great effort has been made to improve the 
early diagnosis techniques. Among them, the most used is the mammogram, for it is 
low cost and easy access. However, mammogram has a high error value for medical 
diagnosis, ranging from 10 to 25%, resulting in a great number of false-positives 
diagnostics, which causes unneeded biopsies, or false-negatives, which delays the 
cancer diagnosis. The medical diagnosis using mammography can be aided by image 
processing and computational vision algorithms, combined with artificial intelligence 
for features extraction. Those algorithms are able to decrease the error and make the 
mammograms more reliable [2]. 

The breast cancer is originated by an exaggerated and disordered cell multiplica-
tion, forming a lesion. This lesion is called malignant when its cells have the capacity 
to cause metastases, that is, invade other healthy cells around them. If those malignant 
cells reach the blood circulation, they could get into contact with other parts of the 
body, invading new cells and originate new tumors [3]. 

On the other hand, the benign lesions do not have this capacity. Their growth is 
slower, until a maximum fixed size, and they cannot spread to other organs. These 
kind of lesion is common in the breasts [4].  
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The mammography of benign tumors are well-defined, circular, with homogeneous 
texture. The malignant tumors, however, have speculated shape, frequently asymmet-
ric, and less homogeneous than the benign lesions [5].  

There are yet structures that can lead to medical misdiagnosis, as calcifications that 
arise as circular white spots [6].  

CAD (Computer-Aided Diagnosis) systems can aid radiologists by providing a sec-
ond opinion and may be used in the first stage of examination. For this to occur, it is 
important to develop many techniques to detect and recognize suspicious lesions and 
also to analyze and discriminate them. Some methods of lesion diagnosis in mammo-
grams images have been reported. In [7], a system based in density-weighted contrast 
enhancement (DWCE) was used, obtaining 82.33% of success. In [8] mammograms 
are classified by support vector machines (SVM). The system sensibility was 84%. 
Christoyianni et al [9] compared three methods: Gray level histogram moments 
(GLHM), Spacial Gray Level Dependence Matrix (SGLD) and Independent 
Component Analysis (ICA). Accordingly to the authors, ICA had a better perform-
ance, with 88% of successful discrimination between normal and abnormal lesions, 
and 79.31% between benign and malignant lesions. 

The proposed method is based on feature extraction by Independent Component 
Analysis. This technique is applied to many situations, as signal processing in cock-
tail-party environments [10], and pattern recognition in ECG and MEG [11], [12], 
[13].  

Into this work, an image is taken as a linear combination of basis images, mutually 
statically independents, found using ICA. Such an basis image are extracted through 
the FastICA algorithm, from a preselected set of region of interest (ROI) of benign, 
malignant or normal tissues. 

The objective of this work is to classify a ROI as normal, benign or malignant from 
the coefficients (features) extracted using ICA. Then, those features are used as input 
parameters to a Neural Network do the classification. 

We divide this work as follows. Into section 2 we show the techniques for feature 
extraction and classification of ROI. In Section 3 we present the results and discuss 
about the application of the techniques under study. Finally, Section 4 presents some 
concluding remarks. 

2   Methods 

The block diagram of the proposed method is shown in figure 1. It consists of the 
selection of ROIs, the extraction of features using ICA, reduction of insignificants 
features using the forward-selection technica and the classification of the ROIs 
through neural networks. 

2.1   Independent Component Analysis 

Let us assume that an image is the sum of basis images s1,.., sn, mutually statistically 
independent. The image is then composed by the combination of n basis images, 
where we have n coefficients a1… an   [9], [14], such that  

nsasasax ininiii L,1...... 2211 =∀+++=                          (1) 
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Fig. 1. Block diagram of the proposed method 

 

Fig. 2. Region of interest as a linear combination of its basis image mutually statistically inde-
pendent 

In equation 1, only the variables xi are known, and from them we estimate the coef-
ficients aij and the independent components sj, that is: 

SAX .=                                                               (2) 

Where X is an mixture matrix, the columns of A are the basis functions and S are the 
basis images. 

2.1.1   FastICA Algorithm 
The FastICA algorithm is used to solve the blind source separation (BSS) problem, 
where we want to estimate the basis images and the basis functions of the image X. 
This algorithm is based on fixed-point iteration [15], [16], [17]. In [15], a fixed-point 
algorithm was introduced using kurtosis, and in [16]-[17], the FastICA algorithm was 
generalized for general contrast functions [16]. For sphered data, the one-unit Fas-
tICA algorithm has the following form: 

         { } { } ( )1.).)1((').)1((.)( −−−−= kwxkwgExkwgxEkw TT          (3)    

Where the weight vector w is also normalized to unit norm after every iteration, and 

Aw =−1                                                   (4) 

The function g is the derivative of the function G used in the general contrast func-
tion in equation 5.  

{ } { } p

vyyG vGEyGEJ )()()( −=                                (5) 
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Where v is a standardized Gaussian random variable, y is assumed to be normalized to 
unit variance, and the exponent p=1,2 typically. The subscripts denote expectation 
with respect to y and v. 

The basic form of the FastICa algorithm is as follows [14]: 

1. Choose an initial (e.g. random) weight vector w. 
2. Let ( ){ } ( ){ }wxwgExwxgEw TT '. −=+  

3. Let +
+

=
w

ww  

4. If not converged, go back to 2. 

The expectations are estimated, in practice, using sample averages over a suffi-
ciently large sample of the input data. Units using this FastICA algorithm can then be 
combined, just as in the case of neural learning rules, into systems that estimate sev-
eral independent components. Such systems may either estimate the independent 
component one-by-one using hierarchical decorrelation (deflation), or they may esti-
mate all the independent components [16]-[17].  

2.2   Neural Networks 

In this work, we use a Multilayer Perceptron Neural Network (MLP), Probabilistic 
Neural Network (PNN) and Radial Basis Functions Neural Network (RBFNN) to 
classify malignant, benign and normal tissues. 

2.2.1   Multilayer Perceptron Neural Networks 
The Multilayer Perceptron (MLP), a feed-forward back-propagation network, is the 
most frequently used neural network technique in pattern recognition [18], [19]. 

Speaking, MLPs are supervised learning classifiers that consist of an input layer, 
an output layer, and one or more hidden layers that extract useful information during 
learning and assign modifiable weighting coefficients to components of the input 
layers. In the first (forward) pass, weights assigned to the input units and the nodes in 
the hidden layers and between the nodes in the hidden layer and the output, determine 
the output. The output is compared with the target output. An error signal is then back 
propagated and the connection weights are adjusted correspondingly. During training, 
MLPs construct a multidimensional space, defined by the activation of the hidden 
nodes, so that the three classes (malignant, benign and normal tissue) are as separable 
as possible. The separating surface adapts to the data. 

2.2.2   Probabilistic Neural Network 
The probabilistic neural network (PNN) is a direct continuation of the work on Bayes 
classifiers. The PNN learns to approximate the pdf of the training examples [19].  

 More precisely, the PNN is interpreted as a function which approximates the prob-
ability density of the underlying example  

The PNN consists of nodes allocated in three layers after the inputs: 

- pattern layer: there is one pattern node for each training example. Each pattern 
node forms a product of the weight vector and the given example for classification, 
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where the weights entering a node are from a particular example. After that, the prod-
uct is passed through the activation function: 

              exp[ ( xTwki-1 ) / σ2 ]                                           (6) 

Where 
- x: Data input 
- Wk: Weight 
- σ: Smothing adjust  

  - summation layer: each summation node receives the outputs from pattern nodes 
associated with a given class: 

Σi=1
Nkexp[ ( xTwki-1 ) / σ2 ]                                 (7) 

 - output layer: the output nodes are binary neurons that produce the classification 
decision 

  Σi=1
Nkexp[ ( xTwki-1 ) / σ2 ] > Σi=1

Njexp[ ( xTwkj-1 ) / σ2 ]                 (8) 

2.2.3   Radial Basis Functions Neural Networks 
Successful implementation of the Radial Basis Functions Neural Network (RBFNN) 
can be achieved using efficient supervised or unsupervised learning algorithms for an 
accurate estimation of the hidden layer [20]-[21].  

In our implementation, the k-means unsupervised algorithm was used to estimate 
the hidden layer weights from a set of training data containing the features from ma-
lignant, benign and normal tissue. After the initial training and the estimation of the 
hidden layer weights, the weights in the output layer are computed using Wiener-
filter, for example, by minimizing the mean square error (MSE) between the actual 
and the desired output over the set of samples. 

The RBFNN have a faster learning rate and have been proved to provide excellent 
discrimination in many applications. 

2.3   Selection of Most Significant Features 

Our main objective is to identify the effectiveness of a feature or a combination of 
features when applied to a neural network. Thus, the choice of features to be extracted 
is important. 

Forward selection is a method to find the "best" combination of features (variables) 
by starting with a single feature, and increasing the number of used features, step by 
step [22]. In this approach, one adds features to the model one at a time. At each step, 
each feature that is not already in the model is tested for inclusion in the model. The 
most significant of these feature is added to the model, so long as  P-value is below 
some pre-selected level. 
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2.4   Evaluation of the Classification Method 

Sensitivity and specificity are the most widely used statistics to describe a diagnostic 
test. Sensitivity is the proportion of true positives that are correctly identified by the 
test and is defined by S = TP/(TP+FN). Specificity is the proportion of true negatives 
that are correctly identified by the test and is defined by TN/(TN+FP). Where FN is 
false-negative, FP is false-positive, TN is true negative and TP is true positive diag-
nosis. 

3   Experimental Results and Discussions 

Here are describe the results obtained using the method proposed in the previous 
section. 

3.1   Mammogram Database 

The database used into this work is the Mammographic Institute Society Analisys 
(MIAS) [23]. The mammograms have a size of 1024 x 1024 pixels, and resolution of 
200 micron. This database is composed of 332 mammograms of right and left breast, 
from 161 patients, where 53 were diagnosed as being malignant, 69 benign and 206 
normal. The abnormalities are classified by the kind of found abnormality (calcifica-
tion, circumscribed masses, architectural distortions asymmetries, and other  ill-
defined masses) . 

 This database contains a file lists the mammograms in the MIAS database and pro-
vides appropriate details, for example, the class of abnormality, xy image-coordinates 
of centre of abnormality, and approximate radius (in pixels) of a circle enclosing the 
abnormality. 

From this database, we selected 100 abnormal (50 benign and 50 malignant mam-
mograms) and 100 normal from each group, summing up 200 mammograms. To each 
mammogram, a ROI was manually selected, containing the lesion, in the case of the 
benign and malignant mammograms. The ROIs was found through of xy images co-
ordinates of centre of abnormality, contained in file list of MIAS database . To the 
normal mammograms, was randomly selected the ROI. Only the pectoral muscle was 
not considered as a possible ROI, although tissue and fatty tissue were. If the tissues 
had different sizes, it was rescaled each ROI. Therefore, they were resized to 24x24 
pixels. Figure 3 exemplifies the ROI selection of a mammogram diagnosed as benign, 
malignant and normal, respectively. 

3.2   ICA Application  

X of Equation 2 was represented using the chosen ROIs. The images with ROI were 
rescaled and transformed into a one-dimensional vector 

            yx PxPP =                                                             (9) 

where Px is a rows and Py is a colunns of P and P has dimension 1x 576. 
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                             (a)                                   (b)                                 (c) 

Fig. 3. Chosen region of interest (ROI) of  mammograms diagnosed as benign (a), malignant 
(b) and normal (c) 

Each sample represents one row of the mixture matrix. The matrix X is represented by 
the samples into the dimension of P, that is, 1x576. Thus, each row of the matrix A 
correspond to a ROI, and each column correspond to an attributed weight to a base 
image, i.e., an input parameter to the neural network [9]. 

Using the FastICA algorithm and the matrix X, we obtain the basis function matrix A, 
which contains the features of each sample. 

Figure 4 exemplifies the basis image found using the basis functions of the malig-
nants, benigns and normal ROIs, respectively. We can clearly observe the differences 
between the basis images of each kind. Thus, the basis functions of the benign tissue 
are different of those of the malignant tissue. 

 

Fig. 4. Basis image sample produced from the ROIs basis functions for normal, benign and 
malignant tissue 

 
 



 Diagnosis of Breast Cancer in Digital Mammograms Networks 467 

3.3   Neural Networks 

Using the forward-selection algorithm, basis functions were selected as being the 
most significant features. The chosen features (ai) are the input to the Neural Network. 
For each Neural Networks (MLP, PNN, RBFNN) the algorithm selected the most 
significant features.   

We carried out tests with different Neural Network architetures to find the bests 
MLP, PNN and RBF Neural Networks. 

In order to carry out the tests, we divided a sample in 200 ROIs: 100 for training 
and 100 for tests. 

3.4   Results 

Table 1 shows the Neural Networks architecture, the performance of the application 
of the ICA technique with each Neural Network for discrimination tissues (ROI). 

Table 1. Neural Networks architecture and classification of malignant, benign and normal ROI 

 (%)  
N.Networks Arquiteture TP TN FP FN

Specificity  Sensitivity Accuracy  

PNN 50:76-3:1 96 
10
0 

0 4 100 96 97.3 

RBF 44:15-3:1 93 98 2 7 98 93 94.6 

MLP 44:21:3 90 98 2 9 98 90.91 92.6 

Based on the Table 1, the best results was obtained with Probabilistic Neural Net-
works. The PNN obtained a success rate of 97.3 % on discriminating malignant, be-
nign and normal tissues. The found specificity was 100 % and the sensitivity, 96%.  
The PNN obtained 96 true positives diagnosis, 100 true negatives, 0 false positives 
and 4 false negatives.  

4   Conclusion 

The presented results demonstrate that Independent Component Analysis and Neural 
Networks is a useful tool to discriminate malignant, benign and normal tissues.  

Furthermore, the Probabilistic Neural Network obtained the best performance, 
classifying those tissues, with a success rate of 97.3%, specificity of 100 % and sensi-
tivity of 96%. It can decrease the number of unneeded biopsies and late cancer diag-
nosis. 

Based on these results, we have observed that such features provide significant 
support to a more detailed clinical investigation, and the results were very encourag-
ing when tissues were classified with ICA and Neural Networks.  
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Abstract. An automatic texture segmentation approach is presented in this pa-
per, in which wavelet-domain hidden Markov tree (WD-HMT) model is ex-
ploited to characterize the texture features of an image, an effective cluster va-
lidity index, the ratio of the overlap degree to the separation one between dif-
ferent fuzzy clusters, is used to determine the true number of the textures within 
an image by solving the minimum of this index in terms of different number of 
clusters, and the possibilistic C-means (PCM) clustering is performed to extract 
the training sample data from different textures. In this way, unsupervised seg-
mentation is changed into self-supervised one, and the well-known HMTseg al-
gorithm in the WD-HMT framework is eventually used to produce the final 
segmentation results, consequently automatic segmentation process is com-
pleted. This new approach is applied to segment a variety of composite textured 
images into distinct homogeneous regions with satisfactory segmentation re-
sults demonstrated. Real-world images are also segmented to further justify our 
approach. 

1   Introduction 

Image segmentation is an important and hard problem in image analysis. Among 
others, texture plays an important part in low level image analysis. The image seg-
mentation based on textural information is termed as texture segmentation, which 
involves the identification of non-overlapping homogeneous regions in an image.  

Typically, the first step of texture segmentation is texture feature characterization, 
which has been discussed through various approaches by far. In this paper, wavelet-
domain hidden Markov tree (WD-HMT) model is exploited to characterize texture 
features. The WD-HMT model [1], proposed first by Crouse et al. as a type of wave-
let-domain statistical signal models to characterize signals through capturing the inter-
scale dependencies of wavelet coefficients, has gained more and more attention from 
image processing and analysis communities due to its effectiveness in performing 
image denoising [2, 3], segmentation [4 ,5, 6], texture classification [6], texture syn-
thesis [6] and texture retrieval [7] etc..  

Based on the WD-HMT model, one supervised image segmentation algorithm, 
HMTseg [4], was presented by Choi et al. to solve the image segmentation problem. 
Later, HMTseg algorithm was improved to apply to synthetic aperture radar (SAR) 
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image segmentation where the “truncated” HMT model [8] was proposed to reduce 
the effect of speckle present at fine scales.  

More recently, a variety of unsupervised segmentation algorithms [9, 10, 11, 12] 
have been proposed one after another to extend the supervised algorithm [2] to the 
unsupervised one based on WD-HMT models. Zhen [9] integrated the parameter 
estimation and classification into one by using one multi-scale Expectation Maximi-
zation (EM) algorithm to segment SAR images on the coarse scales. In [10], Song 
exploited HMT-3S model [6] and the joint multi-context and multi-scale (JMCMS) 
approach [5] to give another unsupervised segmentation algorithm in which K-means 
clustering was adopted to extract the appropriate training samples for the unknown 
textures based on the likelihood disparity of HMT-3S model. Subsequently, Sun [11] 
utilized an effective soft clustering algorithm, possibilistic C-means (PCM) clustering, 
to further improve the unsupervised segmentation performance. Alternatively, Xu 
[12] has also given one unsupervised algorithm, where the dissimilarity between im-
age blocks was measured by the Kullback-Leibler distance (KLD) between different 
WD-HMT models, followed by a hierarchical clustering of the image blocks at the 
selected scale. It should be noted that all the unsupervised segmentation algorithms 
above are implemented under the assumption that the number of the textures in an 
image is provided a priori, which is unpractical for automatically segmenting images 
in many particular application areas, such as the content-based image retrieval. 

In this paper, we present an automatic texture segmentation approach based on the 
WD-HMT model [1]. Firstly, one global WD-HMT model is trained with the special 
EM algorithm in [1] with the whole image to be segmented as one texture. This model 
contains information from all distinct regions, and the different goodness of fit be-
tween the global model and local texture regions exists. Secondly, the true number of 
textures is obtained by finding the minimum of index ( , )osv c U  [13] over 

max2, ,c C= L for the likelihood results of image blocks. Thirdly, PCM clustering [14] 

is used to extract the training sample data based on the true number of textures. Fi-
nally, WD-HMT models for different textures are re-trained with the extracted sample 
data, and the supervised procedures of HMTseg [4] are performed to achieve the final 
results with one adaptive context based fusion scheme. 

The paper is organized as follows. In Section 2, WT-HMT model is briefly re-
viewed. Supervised Bayesian image segmentation algorithm, HMTseg, is outlined in 
Section 3. Automatic segmentation approach is detailed with three main procedures in 
Section 4. Experimental results on composite and real images are demonstrated in 
Section 5. Section 6 concludes this paper. 

2   Wavelet-Domain Hidden Markov Tree Model 

It is well known that the discrete wavelet transform (DWT) is an effective multi-scale 
image analysis tool due to its intrinsic multi-resolution analysis (MRA) characteris-
tics, which can represent different singularity contents of an image at different scales 
and subbands. In Fig.1 (a), one quad-tree structure of wavelet coefficients is shown, 
which demonstrates the dependencies of wavelet coefficients at three subbands, HL, 
LH, and HH. 
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(a)                                          (b) 

Fig. 1. (a) Quadtree structure of 2-D discrete wavelet transforms. (b) 2-D wavelet-domain hid- 
den Markov tree model for one subband. Each wavelet coefficient (black node) is modeled as a 
Gaussian mixture model by a hidden state variable (white node) 

For multi-scale singularity characterization, one statistical model, hidden Markov 
tree (HMT) model [1], was proposed to model this structure. The HMT is a multidi-
mensional Gaussian mixture model (GMM) that applies tree-structured Markov 
chains across scales to capture inter-scale dependencies of wavelet coefficients [6], as 
shown in Fig.1 (b). In this tree-structured probabilistic model, each wavelet coeffi-
cient W is associated with a hidden state variable S, which decides whether it is 
“large” or “small”. The marginal density of each coefficient is then modeled as one 
two-density GMM: one large-variance Gaussian for the large state and one small-
variance Gaussian for the small one. Thus, GMM can closely fit the non-Gaussian 
marginal statistics of wavelet coefficient. 

Grouping the HMT model parameters, i.e. state probabilities for the root nodes of 
different quad-trees, state transition probabilities and variances for two mixtured 
Gaussians, into one vector , the HMT can be considered as one high-dimensional 

yet highly structured Gaussian mixture model ( )f W  that approximates the joint 

probability density function (pdf) of wavelet coefficients W. For each wavelet coeffi-
cient, the overall pdf ( )f w can be expressed as 

( ) ( ) ( ),
M

W S W S
m=1

f w = p m f w S = m  (1) 

where, M is the number of states and S state variable. The model parameters in  are 
estimated by the EM algorithm in [1]. 

It should be noted that HMT model has one nesting structure that corresponds to 
multi-scale representation of an image, as shown in Fig. 2. Each subtree of the HMT 
is also an HMT, with the HMT subtree rooted at node i modeling the statistical char-
acteristics of the wavelet coefficients corresponding to the dyadic square id  in the 

original image. 

3   Bayesian Image Segmentation Using WD-HMT 

One Bayesian segmentation algorithm, HMTseg [4], was proposed to implement super-
vised segmentation in which the WD-HMT model [1] is exploited to characterize  
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Fig. 2.  Multi-scale representation of an image; (b) Correspondence of quad-tree structure of 
wavelet coefficients with multi-scale representation of an image 

texture features and context labeling tree is built to capture the dependencies of the multi-
scale class labels. 

In multi-scale segmentation framework, the dyadic image squares at different 
scales can be obtained by recursively dividing an image into four equal sub-images. 
HMTseg can capture the features of these dyadic squares by the WD-HMT model. 
Moreover, contextual information on each dyadic square is described by one vector 

jv , which is derived from the labels of dyadic squares at its parent scale. Denote a 

dyadic square and its class label by j
id and j

ic respectively, and j  is the scale index. 

In HMTseg [], each context vector j
iv consists of two entries, the value of the class 

label of the parent square and the majority vote of the class labels of the parent plus 
its eight neighbors. 

The HMTseg algorithm relies on three separate tree structures: the wavelet trans-
form quad-tree, the HMT, and a labeling tree [4]. As for a complete procedure, it 
includes three essential ingredients, i.e. HMT model training, multi-scale likelihood 
computation, and fusion of multi-scale maximum likelihood (ML) raw segmentations. 
The three main steps are summarized as follows.  We refer the interested readers to 
Section IV in [4] to further get the knowledge on the HMTseg algorithm. 

1) Train WD-HMT models for each texture using their homogeneous training im-
ages. Furthermore, Gaussian mixture is fit to the pixel values for each texture and the 
likelihood of each pixel is calculated to obtain the pixel-level segmentation,. 

2) Calculate the likelihood of each dyadic image square j
id at each scale. The con-

ditional likelihoods ( )j j
i if d c for each j

id are obtained in this step, on which ML raw 

segmentation results are achieved based. 
3) Fuse multi-scale likelihoods using context labeling tree to give the multi-scale 

maximal a posterior (MAP) classification. Choose a certain suitable starting scale J  
such that a reliable raw segmentation can be obtained at this scale. The contextual 

vector 1J −v is calculated from the class label set Jc at the J-th scale. Also, the EM 

algorithm [4] for context labeling tree is utilized to find 1 -1( )J J
i ip c − v  by maximizing 
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the likelihood of the image given the contextual vector 1J −v . In this step, each itera-

tion updates the contextual posterior distribution ( )i i ip c d ,v . When the process of 

iteration converges, determine ic  which maximizes the probability ( )i i ip c d ,v . The 

fusion is repeated in next finer scale with the contextual vector 2J −v computed from 

the label set 1J −c at scale 1J − . Continue the fusion process across scales until the 
finest scale is reached. 

4   Automatic Segmentation 

Automatic image segmentation using texture information means identifying all the 
non-overlapping homogenous regions in an image with the texture features and the 
number of textures unavailable. Our proposed segmentation method is made up of 

three steps: the determination of the number of textures utilizing osv  index in [13], 

the extraction of training sample data from different textures via the PCM clustering 
[14] and the supervised segmentation algorithm, HMTseg [4]. 

4.1   Determining the Number of Texture Categories 

In this paper, the true number of textures in an image is not assumed a priori, which is 
different from the segmentation methods [9, 10, 11, 12], but determined using the 
likelihood values of image blocks at a certain suitable scale J through an effective 
cluster validity index for the fuzzy c-means (FCM) algorithm, osv  index in [13], 

which exploits an overlap measure and a separation measure between clusters to cor-
rectly recognize the optimal cluster number of a given data set. 

Let { }, , , nX x x x1 2= denote a pattern set, and [ ], , , T
i i i imx x x x1 2= represent 

the m  features of the ith sample. The FCM algorithm classifies the collection X  of 
pattern data into c  homogeneous groups represented as fuzzy sets ( , 1, , )iF i c=% L . The 

objective of FCM is to obtain the fuzzy c-partition in terms of both the data set X and 
the number c  of clusters by minimizing the following function 

( , ) , .
c n c

m
m ij j i ij

i j i

J U V u x v subject to u for all j
2

=1 =1 =1

= − = 1  (2) 

In (2), ( , , )cV v v1= is a c-tuple of prototypes, i.e. a vector of cluster centroids of the 

fuzzy cluster 
1 2( , , , )cF F F% % %L , n  is the total number of feature vectors, c  is the 

number of classes, and ijU u=  is a c n×  matrix, called fuzzy partition matrix. 

Here, iju  is the membership degree of the feature point jx  in the fuzzy cluster iF% and 

can be denoted as ( )jFi
xµ % , and [ , )m ∈ 1 ∞  is a weighting exponent, called the fuzzier, 

typically taken as 2. 
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The osv  index consists of two elements, an overlap measure ( , )Overlap c U  and a 

separation one ( , )Sep c U . The former measure indicates the degree of overlap between 
fuzzy clusters and can be obtained by calculating an inter-cluster overlap. This meas-
ure is defined as 

( , )Overlap c U =
1

1 1 [0.1,0.5] 1

2
( , : , ) ( )

( 1)

c c n

p q j
p q p j

xj F F w x
c c µ

δ µ
−

= = + ∈ =

×
−

% % , 
(3) 

where 
1 if ( ( ) ) and ( ( ) )

( , : , )
0 otherwise

p qj jF F
j p q

x x
x F F

µ µ µ µ
δ µ

≥ ≥
=

% %% % =, and ( )jw x is empirically 

given a value of 0.1( ( ) 0.8jFi
xµ ≥% ), 0.4( 0.7 ( ) 0.8jFi

xµ≤ ≤% ), 0.7( 0.6 ( ) 0.7jFi
xµ≤ ≤% ), 0 

otherwise for any iF% . A small value of ( , )Overlap c U  implies a well-classified fuzzy c-

partition. Whereas, the latter measure ( , )Sep c U  indicates the distance between fuzzy 
clusters and is defined as 

{ {( , ) 1-min max min( ( ), ( ))
p qF F

p q x X

Sep c U x xµ µ
≠ ∈

= % % . (4) 

A large value of ( , )Sep c U  could tell one a well-separated fuzzy c-partition. 
Then, the ( , )osv c U  index is expressed as the ratio of the normalized overlap meas-

ure to the separation one, i.e. 

{

{

( , ) max ( , )
( , )

( , ) max ( , )
c

os

c

Overlap c U Overlap c U
v c U

Sep c U Sep c U
= . (5) 

A small value of ( , )osv c U  indicates a partition in which the clusters are overlapped to 

a less degree and more separated from each other. So, the optimal value of c  can be 
determined by minimizing ( , )osv c U over max2, ,c C= L . 

In this paper, the data set to be clustered is the likelihood values of image blocks. 
The true number of textures can be obtained by finding the minimum of ( , )osv c U for 

the likelihood results. 

4.2   Extraction of Sample Data from Different Textures 

The key step for a fully unsupervised segmentation is the extraction of sample data 
for training different textures to obtain their HMT models used for the following su-
pervised procedure. The input is the true number of textures in an image obtained by 
the cluster validity index ( , )osv c U  above. Herein, an effective soft clustering algo-
rithm, PCM clustering [14], is exploited to extract the sample data of different tex-
tures. The objective function of the algorithm is formulated as 

2

( ) ( )
,

1 1

( , ) ( ) ( ) ( ) (1 ) ,

k k

N N
J Jm m

m ij i ijk l k
k l k l

J U V u f y f y uη
= ∈Γ = ∈Γ

= − + −  (6) 
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where ,U V  and m  have the same meanings as those in (2), iη is a certain positive 

number, and ( )( )J
kf y is the likelihood mean of class k at the suitable scale J , 

( )
,( )J

k lf y  the likelihood of an image block l regarding the class k . The updated 

equation of iju  is 

1
2 1( ) ( )

,

1
,

( ) ( )
1

ij

mJ J
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f y f y

η

−

=

−
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where iη  is defined as 

( ) ( )
,( ) ( )

.
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J Jm

ij k l k
j
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ij

j
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u

η

2

=1

=1

−

=  (8) 

PCM clustering differs from the K-means and FCM clustering algorithms since the 
membership of one sample in a cluster is independent of all other clusters in the algo-
rithm. In this clustering, the resulting partition of data can be interpreted as degrees of 
possibility of the points belonging to the classes, i.e., the compatibilities of the points 
with the class prototypes [14]. Generally, more reliable and stable clustering results 
can be obtained with this algorithm. 

The complete procedure for the PCM algorithm to implement the extraction of im-
age sample data is listed in [14]. 

4.3   Adaptive Context-Based Fusion of Multi-scale Segmentation  

Effective modeling of contexts for each dyadic square id is crucial to effectively fuse 
the raw segmentations from coarse scale to fine one to obtain a satisfactory result in 
the multi-scale fusion step. In the original HMTseg method [4], the context j

iv is 
specified as a vector of two entries consisting of the value of class label ( )iCρ of the 
parent square and the majority vote of the class labels of the parent plus its eight 
neighbors, as illustrated in Fig.3 (a). This simplified context is typically effective for 
images consisting of separate large homogeneous textures since it focuses on the 
information of class labels at coarse scales. However, the segmentation results might 
be unsatisfactory when complicated structures occur in an image, such as most real-
world images. In [5], Fan proposed a joint multi-context and multi-scale (JMCMS) 
approach to Bayesian image segmentation using WD-HMT models, where three con-
texts (context-2, context-3 and context-5 shown in Fig. 3) are exploited sequentially 
to fuse the raw segmentation results across scale. However, the computation cost is 
too expensive, which renders this approach unpractical in real-time image segmenta-
tion applications. Herein, one adaptive context model, as shown in Fig. 3(d), is given 
to fully incorporate both the information of the class labels at the coarse scale and the 
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information at the fine scale to further improve the segmentation performance. In this 
context model, the context vector for each image block contains two entries of which 
the first element V1  is defined in the same way with [4], whereas the other one V2  is 
obtained by the compromise between the coarse scale and fine scale. Generally speak-
ing, if the dominant label 1Ω  at the coarse scale is identical with 2Ω  at the fine 
scale, V2  is established like context-2; otherwise, V2 is assigned 2Ω . In this way, 
the new context could adaptively make a trade-off between the parent-scale ML clas-
sification results and those at the child scale. It is expected that better segmentation 
results could be achieved. 

      
(a)                                    (b)  

            
                       (c)                                     (d)  

Fig. 3. Context models for inter-scale raw segmentation fusion. (a) Context-2 in [2]; (b) Con-
text-3 in [11]; (c) Context-5 in [11]; (b) Context proposed. 

5   Experimental Results 

We testified our approach on composite texture images with the size of 
256 256× pixels, which are made up of the original textures from Brodatz album [15]. 
Here, four composite textured images, consisting of 2, 3, 4 and 5 classes of homoge-
neous textures respectively, are shown in Fig. 4. 

  Originally, all the textured images are decomposed into four levels by discrete 
wavelet transform (DWT). The true number of the textures is determined by the dis-
parity of the likelihoods for different image blocks using the cluster validity index 

( , )osv c U at the suitable, J = 4  here, which is the coarsest scale. The number of cluster 
goes through from 2 to 10 ( maxC ), and the optimal (true) number of the textures in an 
image is found by evaluating the minimum of ( , )osv c U . Then, the PCM clustering of 
the model likelihoods is conducted at the scale J . 
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Fig. 4. Four composite texture images and their segmentation results with the proposed ap-
proach  (the second column) and supervised HMTseg algorithm [4] (the third row) 

In Table 1, the values of ( , )osv c U  in terms of different c for the four composite 
textured images in Fig. 4 are tabulated, of which the minimum of ( , )osv c U  is marked 
with boldface. It can be seen that all the true number of textures in these images have 
been correctly determined. Moreover, we also applied our method to other composite 
textures with a return of over 70% correctly detected number of textures obtained. 

Fig. 4 also demonstrates the final segmentation results for the four composite textures 
with the proposed approach and the supervised HMTseg algorithm in [4]. The results 
demonstrate that the segmentation performance of our approach is basically satisfactory 
and favorably compares with the results with HMTseg. The rate of misclassified pixels 
for the four images is given in Table 1. Our approach gives the error percentage of below 
8% for all tested composite textured images, which is basically feasible for practical 
applications.  Meanwhile, the segmentation results for real-world images are shown in 
Fig. 5 with similar performances with the HMTseg algorithm [4]. 
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Table 1. Values of ( , )osv c U  in terms of different c for the four composite textured images in 
Fig. 4 and their rate of misclassified pixels 

Image Number 
of tex-
tures 

Values of ( , )osv c U  for c=2,…,10 Rate of misclassi-
fied pixels 

Composite-2 2 0.0931(2),0.1257(3),0.1969(4), 
0.3150(5),0.2500(6),0.3950(7), 
0.6881(8),1.2424(9),1.0168(10) 

0.59% 

Composite-3 3 1.9374(2),0.0308(3),0.3746(4), 
0.2774(5),0.1936(6),0.1184(7), 
0.0908(8),0.0659(9),0.0586(10) 

4.65% 

Composite-4 4 1.7898(2), 1.0708(3), 0.0623(4), 
0.1634(5), 0.1089(6), 0.1226(7), 
0.1049(8), 0.0770(9) 0.0996(10) 

3.52% 

Composite-5 5 1.9502(2),0.0460(3),0.0131(4), 
0.0111(5),0.0642(6),0.0353(7), 
0.0231(8),0.0659(9),0.0868 (10) 

6.79% 

 

     
 

     

Fig. 5. Real-world images (Zebra and aerial-photo images) and their segmentation results with 
the proposed approach (the second column) and the HMTseg algorithm [4] (the third row) 

6   Conclusions 

In this paper, an automatic texture segmentation is developed by characterizing the 
texture features using WD-HMT model, determining the number of textures with the 
cluster validity index osv , and extracting the sample data from different textures by 
means of PCM clustering. Experimental results demonstrated that the proposed 
method can detect correctly the number of textures and provide good segmentation 
results on textured images. The further work is concerned with the use of more accu-
rate statistical model describing texture feature, such as HMT-3S model [6]. 
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Abstract. The KNN rule has been widely used in many pattern recognition 
problems, but it is sensible to noisy data within the training set, therefore, 
several sample edition methods have been developed in order to solve this 
problem. A. Franco, D. Maltoni and L. Nanni proposed the Reward-Punishment 
Editing method in 2004 for editing numerical databases, but it has the problem 
that the selected prototypes could belong neither to the sample nor to the 
universe. In this work, we propose a modification based on selecting the 
prototypes from the training set. To do this selection, we propose the use of the 
Fuzzy C-means algorithm for mixed data and the KNN rule with similarity 
functions. Tests with different databases were made and the results were 
compared against the original Reward-Punishment Editing and the whole set 
(without any edition). 

1   Introduction 

The k-nearest neighbor rule (KNN) has been widely used in many pattern recognition 
problems. Given a set of n training objects, when a new object is going to be 
classified, the KNN rule identifies the k nearest neighbors in the training set and the 
new object is labeled with the most frequent class among the k nearest neighbors. 

However, some of the data in the training set do not provide useful information to 
classify new objects; therefore, it is necessary to edit the sample in order to get a 
better training set which would contribute to obtain better classification rates. In the 
sample edition area, several methods have been developed [1-3]. 

The Reward-Punishment Editing method (R-P Editing) is based on two selection 
criteria: A local criterion rewards each pattern that contributes to classify its 
neighbors correctly (using the KNN rule), and punish the others; the second criterion 
rewards each pattern that is classified correctly (using the KNN rule) with a set of 
prototypes extracted from the training set. Based on these criteria, a weight is 
assigned to each pattern in the training set. If the weight is smaller than a predefined 
threshold, the pattern is eliminated from the training set. 

In order to select prototypes, the Reward-Punishment Editing method uses the 
Fuzzy C-means algorithm. This does not guarantee that the selected prototypes belong 
to the sample, because the prototypes in the classical Fuzzy C-means are computed as 
the mean of the cluster. Therefore, we propose to use the Fuzzy C-means for mixed 
                                                           
* This work was financially supported by CONACyT (Mexico) through the project J38707-A.  
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data, which guarantees that the selected prototypes belong to the sample. In addition, 
using the KNN rule with similarity functions allows working with object descriptions 
through qualitative and quantitative features. 

This paper is organized as follows: in section 2 a description of the most similar 
neighbor method (KNN with similarity functions) is presented, in section 3 the Fuzzy 
C-means algorithm for mixed data is described, in section 4 the R-P Editing for mixed 
data algorithm is introduced, in section 5 the obtained results are reported. Finally, in 
section 6 some conclusions are given. 

2   The Most Similar Neighbor 

When we talk about the KNN rule with similarity functions, we are talking about the 
k-most similar neighbor (K-MSN). For that reason, we have to define a similarity 
comparison function for comparing feature values and establishing its similarity 
moreover, it is needed to define a similarity function for comparing objects in the data 
set. 

Let us consider a set of n objects {O1,O2,…,On}, each object in this set is described 
by a set R = {x1,...,xm} of features. Each feature xi takes values in a set Di, xi(O) ∈ Di, 
i=1,...,m. Thus, features could be qualitative or quantitative. 

For each feature xi, i=1,...,m, we define a comparison function Ci:Di×Di → Li with 
i=1,2,…,m. where Li is a totally ordered set such that Ci gives us the similarity 
between two values of the feature xi, for i=1,…,m. 

Based on the Ci it is possible define a similarity function between objects. 
Let Γ: (D1 ×...× Dm)2 → [0,1] be a similarity function. Γ(Oj,Ok) gives the similarity 

between Oj and Ok, and satisfies: 
 
Γ(Oj,Ok) ∈ [0,1] for 1 ≤ j ≤ n, 1 ≤ k ≤ n; 
Γ(Oj,Oj) = 1for 1 ≤ j ≤ n; 
Γ(Oj,Ok) = Γ(Ok,Oj)for 1 ≤ j ≤ n, 1 ≤ k ≤ n; 
Γ(Oi,Oj) > Γ(Oi,Ok)means that Oi is more similar to Oj than to Ok 

 
In this work, we used the following similarity functions. 
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The value for ε is introduced by the user based on the data set. 
Based on the definitions described above, we can work on databases with 

numerical information, described in terms of qualitative and quantitative features.  
The K-MSN is similar to the KNN rule, but the K-MSN identifies the k most 

similar neighbors of the new object in the training set, after that, the new object is 
labeled with the most frequent class among the k most similar neighbors. 

3   Fuzzy C-means for Mixed Data 

The use of Fuzzy C-means for mixed data allows working with object descriptions in 
terms of qualitative and quantitative features. 

The objective is to obtain fuzzy clusters with the characteristic that the similarity 
among the objects that belong to the same cluster is high, and at the same time, the 
similarity among different clusters is low. 

In order to obtain this type of clusters, given a group of objects to classify, the 
Fuzzy C-means for mixed data algorithm randomly selects c objects, which will be 
the initial representative objects (centers) of the clusters. With the representative 
objects, the algorithm classifies the rest of the objects in the dataset. After this 
classification, it calculates the new representative objects. This procedure is repeated 
until we obtain the same representative objects in two consecutive iterations. 

The problem is reduced to optimize the next objective function: 

( ) ( )( )
= =

Γ−=
n

k

c

i
ikikm OOuJ

1 1

*,1ϑ  (4) 

Where ϑ is a representative object set, one for each cluster Mi, Γ(Ok,Oi
*) is the 

similarity between the object Ok and the representative object Oi
* of Mi and uik is the 

membership degree of the object Ok to the cluster Mi. Thus the solution to this 
problem consists in minimizing Jm(ϑ ). The next formulas are used to calculate uik and 
Oi

* respectively. 
The degree of membership of the object Ok to Mi is computed via (5). 
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Finally, we use (5) to calculate the representative objects for the clusters Mi, 
i=1,…,c. 
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4   Reward-Punishment Editing for Mixed Data 

The R-P Editing for mixed data is similar to the method proposed in [3] but using the 
k-most similar neighbor rule and the Fuzzy C-means for mixed data algorithm. 

The algorithm is divided in two parts, in the first part, the method rewards and 
punishes patterns in the training set using the k-most similar neighbor (K-MSN) rule. 
Each pattern is rewarded if it contributes to the correct classification of another 
pattern in the training set, in this case the weight WR is increased, in the same way; a 
pattern is punished if it contributes to the wrong classification of another pattern, also 
in the training set, and the weight WP is increased. This part of the method is shown 
in figure 1. 

In the second part, the method selects from the sample a prototype set using the 
Fuzzy C-means for mixed data and applies the K-MSN rule to classify the patterns in 
the sample, using the selected prototype set like a training set. These selected 
prototypes belong to the sample. 
 

RPEMD(TS, CL) 
WR = WP = WPR = 0 
for each xi ∈ TS 

// Find the k-most similar neighbor of the pattern xi 
[L, c] = K-MSN(xi, TS, k) 
// Is the pattern correctly classified? 
if CL(i) = c then 

// Reward of the patterns that contributed to the correct classification 
for j = 1 to k 

if CL(L(j)) = c then 
WR(L(j))= WR(L(j))+ 1 

else 
// Punishment of the patterns that contributed to the wrong classification 
for j = 1 to k 

if CL(L(j)) = c then 
WP(L(j)) = WP(L(j))+ 1 

Fig. 1. Part 1 of Reward-Punishment Editing for Mixed Data 

Each pattern is rewarded if it is classified correctly using the selected prototypes 
set, that is, the weight WPR is increased. In the second part of this algorithm (fig 2) 
the variable np_max determines the number of elements, for each class, in the selected 
prototype set.  

The WR, WP, WPR values are used to determine if a pattern within the training set 
will be eliminated. 
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for np = 1 to np_max 
//Generation of np prototypes for each class 
PR = CREATEPROTOTYPES(TS, CL, np) 
for pk = 1 to np step 2 

for each xi  TS 
//Classification of each pattern 
[L, c] = K-MSN(xi, PR, pk) 
if CL(i) = c then 

WPR(i) = WPR(i) + 1 
NORMALIZE(WP, WR, WPR) 
OPTIMIZE(TS, CL, , , , et) 
// Computation of the final weight and Editing 
for each xi  TS 

c = CL(i) 
WF(i) = c WR(i) + c (1-WP(i)) + c WPR(i) 
if WF(i) < et then 

TS = TS - { xi }  

Fig. 2. Part 2 of Reward-Punishment Editing for Mixed Data 

The procedure CREATEPROTOTYPES (TS, CL, np) generates a set of prototypes 
(PR) from the training set. For each class, the Fuzzy C-means for mixed data 
algorithm is used to determine np clusters; the np representative objects (these objects 
belong to the original training set) computed by the Fuzzy C-means for mixed data 
will be the prototype set. Those patterns that are classified correctly (using the K-
MSN) with the selected prototype set are rewarded. 

Based on WR, WP and WPR a final weight (WF) is computed, if this final weight 
is lower than a predefined threshold et, the pattern is eliminated from the training set. 
After that, the objects in the dataset are classified using the K-MSN rule with the 
edited training set. 

5   Experimental Results 

In this section, we present the results obtained with the Reward-Punishment Editing 
for mixed data and compare them against the original algorithm and the whole set 
(without any edition) results. 

In our experiments, the training and test sets were randomly constructed. The 
average classification accuracy from 10 experiments using 10 fold cross validation 
were calculated. In each experiment k=3 (for K-MSN) and np_max=10 were used. 
Four datasets taken from [5] were used; the description of these databases is shown in 
Table 1. 

Table 1. Databases used in the experiments 

Database Instances Features Classes 

Iris 150 4 3 
Wine 178 13 3 
Credit 690 15 2 

Bridges 105 11 6 
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In table 2, the amounts of quantitative and qualitative features are shown for each 
database. 

Table 2. Quantitative and qualitative features for each used database 

Datasets 
Quantitative 

features 
Qualitative 

features 

Iris 4 0 
Wine 13 0 
Credit 6 9 

Bridges 4 7 

Tests with different thresholds were made. The best results were obtained with 
et=0.2 and et=0.3. The obtained results for each datasets are showed in figure 3 and 
figure 4. 

 

     
a) b) 

 

     
     c) d) 

Fig. 3. Classification accuracy on a) Iris, b) Wine, c) Credit and d) Bridges using a threshold 
et=0.3 for editing the training set 

Notice that the original R-P Editing could not be applied on Credit and Bridges 
datasets because they have qualitative features. 

In all the experiments, we can see that the classification rates obtained with 
Reward-Punishment Editing for Mixed Data (RPEMD) are better than the rates 
obtained with the original R-P Editing method and the whole set without any edition. 
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     a)                                                             b) 

     
     c) d) 

Fig. 4. Classification accuracy on a) Iris, b) Credit, c) Wine and d) Bridges using a threshold 
et=0.2 for editing the training set 

Table 3. Size of the Training set after the edition, using et=0.2 as threshold of edition 

Database Without Edition RP-Editing RPEMD 

Iris 100 % 95 % 94 % 
Wine 100 % 96 % 93 % 
Credit 100 % ----- 95 % 

Bridges 100 % ----- 93 % 

Table 4. Size of the Training set after the edition, using et=0.3 as threshold of edition 

Database Without Edition RP-Editing RPEMD 

Iris 100 % 94 % 92 % 
Wine 100 % 95 % 93 % 
Credit 100 % ----- 95 % 

Bridges 100 % ----- 92 % 

6   Conclusion and Future Work 

In supervised classification, the training set quality is very important because it is the 
basis of the training process. However, in practical cases, there could be irrelevant 
objects; therefore, it is necessary editing the training sample. 

The use of Fuzzy C-means for mixed data and KNN rule with similarity functions 
in RPEMD allows us to work with object descriptions with mixed data, i.e. 
quantitative and qualitative features. These characteristics allow applying the new 
algorithm in many classification problems where the R-P Editing cannot be applied. 
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The obtained results show that the use of Fuzzy C-means for mixed data and the 
KNN rule with similarity functions in RPEMD allows getting better accuracy in the 
classification process. 

As future work, we are going to extend the algorithm in order to use other 
classifiers. 
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Abstract. Stable coordinate pairs (SCP) like comentarios y sugerencias ‘com-
ments and suggestions’ or sano y salvo ‘safe and sound’ are rather frequent in 
texts in Spanish, though there are only few thousands of them in language. We 
characterize SCPs statistically by a numerical Stable Connection Index and re-
veal its unimodal distribution. We also propose lexical, morphologic, syntactic, 
and semantic categories for SCP structural description  for both a whole SCP 
and its components. It is argued that database containing a set of categorized 
SCPs facilitates several tasks of automatic NLP.. The research is based on a set 
of ca. 2200 Spanish coordinate pairs.  

1   Introduction 

In all European languages, coordinate constructions are rather frequent in common 
texts. For example, in the Internet version of a Mexican newspaper La Jornada a co-
ordinated construction is on an average in each fourth sentence. We name word com-
bination of two content words (or content word compounds) linked by a coordinative 
conjunction Stable Coordinate Pair (SCP), if the occurrence rates of the whole entity 
and its components satisfy a statistical criterion introduced below. One component in 
a SCP more or less predicts another. In other words, one component restricts the other 
both lexically and semantically: café y té ‘coffee and tea’, guerra y paz ‘war and 
peace’, ida y vuelta ‘roundtrip’. 

Notwithstanding frequent occurrence of SCPs, general linguistics gave them scant 
attention [1, 7]. Our works [4, 5] seem insufficient either. 

The objective of this paper is to describe SCPs in more detail. To characterize them 
statistically, we propose Stable Connection Index similar to Mutual Information Index 
well known in statistics [8]. To categorize both whole SCPs and their components, we 
introduce parameters of lexical, morphologic, syntactic, semantic, and pragmatic na-
ture. It is argued that gathering a set of fully characterized SCPs into a database facili-
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tates a variety of NLP applications. The research is based on ca. 2300 Spanish coordi-
nate pairs (2165 stable ones after testing). 

2   Stability of Coordinate Pairs 

SCP as a whole plays the syntactic role of any major part of speech: noun, adjective, 
verb, or adverb. SCP occurs in a text as a contiguous segment, with its components 
that vary morphologically depending on the intra-sentence context. The surface syn-
tactic structure of SCPs can be of two shapes [9]: 

• In frequent cases the structure is P1 → C → P2 where components P1 and P2 are 
linked with unique conjunction C equal to y/e ‘and’,  o ‘or’, or pero ‘but.’ 

• In rarer cases the structure contains disjoint conjunctions y ... y ‘both ... and’,  ni .... 
ni ‘neither ... nor’, o bien ... o bien ‘either ... or’: 

c1 → P1        c2 → P2  
During the recent years we have gathered a set of ca. 2300 Mexican coordinate 

pairs intuitively considered stable. Then the problem arose to formally define and to 
numerically test their stability, in order to filter off the scratch set. We did not take the 
criterion based only on frequencies of the entire would-be SCPs met in some corpus, 
since these frequencies depend on the corpus size S while the frequencies of the com-
ponents Pi taken apart are not considered. A possible solution is to involve Mutual In-
formation well known in statistics [8] 

,
)N()N(

),N(S
log),MI(

21

21
21 PP

PP
PP

×
×

≡  

where N() is frequency of the entity in parentheses met through the corpus. Regretta-
bly, only a limited part of our set proved to be in the text corpus compiled by us from 
Mexican newspapers [6]. 

The Web search engines are incomparably richer, but they deliver statistics on que-
ried words and word combinations measured in Web-pages. We can re-conceptualize 
N() as numbers of relevant pages, and S as the page total managed by the engine. 
However, now N()/S are not empirical probabilities of occurrences: the same words 
occurring in a page are counted only once, while the same page is counted repeatedly 
for each word included. Thus, MI is not now a strictly grounded statistical measure 
for words. Since MI depends on N(P1,P2) and N(P1) × N(P2), we may construe other 
similar criteria from the same ‘building blocks.’ Among those we have preferred Sta-
ble Connection Index  

,
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where the constant 16 and the logarithmic base 2 are chosen quite empirically: we 
tried to allocate a majority of SCI values in the interval [0...16]. To calculate SCI, we 
do not need to know the steadily increasing total volume S under the search engine’s 
control. SCI reaches its maximally possible value 16 when P1 and P2 always go to-
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gether. It retains its value when N(P1), N(P2), and N(P1,P2) change proportionally. 
This is important since all measured values fluctuate quasi-synchronously in time.  

Computing SCI values for the available set by means of Google, we have plotted a 
unimodal (= single-peaked) statistical distribution with the mean value M = 7.2 and 
standard deviation D = 2.8 (Fig. 1). While dividing the SCP set into three groups, the 
lower (SCI < M – D), the middle (M – D ≤ SCI < M + D), and the upper one (S I ≥ M 
+ D), their relative proportions are 23:57:21. 

Hereafter a coordinate pair is considered stable if the following formula is valid: 

SCI  ≥  0. 

Taking into account the shape of the distribution and the negligible number of the 
pairs that did not pass the test on positivity, the threshold seems adequate.  

Examples of SCPs with maximal possible SCI values are given in Table 1. One can 
see than they are of three types: idioms (a diestra y siniestra ‘to the right and to the 
left’); usually inseparable geographic names (América Latina y el Caribe ‘Latin 
America and the Caribbean’) or office names (Hacienda y Crédito Público ‘Treasury 
and Public Credit’); fixed everyday-life expressions, also rather idiomatic (un antes y 
un después ‘somewhat before and somewhat after’, a tontas y a locas ‘without think-
ing or reasoning’ (lit. ‘to idiots and crazies’). The non-idiomatic pairs (pequeño y me-
diano ‘small and medium,’ lavadoras y secadoras ‘washing machines and dryers,’ 
términos y condiciones ‘terms and conditions,’ etc.) are rather rare within the upper 
group. Except for the proper names and the fixed formulas like una de cal y otra de 
arena ‘changing one’s mind’ (lit. ‘one of lime and other of sand’), these SCPs can be 
also used in the inverse order, but with significantly lower SCI values (cf. the figures 
after ‘/’ sign in the middle column). 

The most numerous middle group is illustrated by the following SCPs with SCI in 
the interval 7.0 to 8.0: trabajadores y sindicatos ‘workers and trade unions,’ normas y 
políticas ‘norms and policies,’ casa y jardín ‘house and garden,’ previsible y evitable 
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Table 1. Several SCPs of the upper group 

Spanish SCP SCI (dir/inv) Translation 

a tontas y a locas 16.8/7.3 without thinking or reasoning 
monedas y billetes 16.1/11.5 coins and currency 
ayudas y subvenciones 16.0/11.9 aid and subventions 
un antes y un después 15.8/4.1 somewhat before and somewhat after 
pequeño y mediano 15.3/7.7 small and medium 
una de cal y otra de arena 15.2/- changing one’s mind 
todos para uno y uno para todos 14.9/11.7 all for one and one for all 
en las buenas y en las malas 14.9/9.8 for better or worse 
las mil y una noches 14.9/1.3 thousand and one night 
a diestra y siniestra 14.8/4.9 hobnob 
lavadoras y secadoras 14.5/2.9 washing machines and dryers 
escuelas y universidades 14.4/8.7 schools and universities 
bebés y niños 14.4/9.6 babies and children 
imagen y sonido 14.3/10.4 image and sound 
lo público y lo privado 14.3/11.6 public and private domains 
carteles y edictos 14.2/- posters and proclamations 
comentarios y sugerencias 14.1/11.3 commentaries and suggestions 
Hacienda y Crédito Publico 14.1/- Treasury and Public Credit 
términos y condiciones 14.0/8.7 terms and conditions 
América Latina y el Caribe 14.0/3.8 Latin America and the Caribbean 

‘foreseeable and evitable,’ autobuses y tractores ‘buses and tractors,’ negocios y 
comercios ‘shops and services,’ cartón y cartoncillo ‘board and chipboard.’ Nearly all 
of them are non-idiomatic with commonly used words as components. 

SCPs with the lowest positive SCI values can be illustrated as follows: servicio y 
equipo ‘service and equipment,’ noticias y foros de opinión ‘news and opinion polls,’ 
señores y niños ‘gentlemen and children,’ concentrados y sabores ‘concentrates and 
flavors,’ granito y concreto ‘granite and concrete.’ Mostly, these are commonly used 
non-idiomatic expressions with components occurring apart much more frequently 
than the components of the middle group pairs. 

The pairs with negative SCI values (ca. 6%) were removed from the initial set so 
that the total of actual set is now ca. 2200. Most of them were morphological variants 
of the same SCPs. For example, the pair acción y proyecto ‘action and project’ has 
negative SCI, while its plural acciones y proyectos ‘actions and projects’ has the SCI 
value 7.4. 

3   External Categorization of SCPs 

As a whole, SCP can be characterized by the following categories. 

Part of speech is determined by its syntactic role of a SCP in a sentence: SCP can 
be a noun group (NG, 85% of our set), adjective group (AjG, 7%), adverb group 
(AvG, 5%), or verb group (VG, 3%). E.g., embajadas y consulados ‘Embassies and 
Consulates’ is NG, infantil y juvenil ‘infant and juvenile’ is AjG, comer y beber ‘to 
eat and drink’ is VG, por arriba y por abajo ‘by above and below’ is AvG. Some 
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prepositional groups can play the role of both AjG and AvG, e.g., en cuerpo y alma 
‘in body and soul’ is AjG when modifying hermosa ‘beautiful’ or is AvG when modi-
fying apoyar ‘to help.’ We consider these roles as separate SCPs. 

Number is relevant only for NGs. Usually it is plural, independently of number of 
the components P1 and P2. Indeed, both padre y madre ‘father and mother’ and pa-
dres y madres ‘fathers and mothers’ can be substituted by they. However, in cases 
when P1 and P2 refer to the same person, the SCP is externally singular (cf.  Sect. 4). 

Sphere of usage can be subdivided as follows, without strict borders between the 
branches: 

• Official documentation entries and mass media clichés, including the names of 
well known organizations: pérdidas y ganancias ‘losses and gains’; mayoreo y 
menudeo ‘wholesale and retail’; Hacienda y Crédito Público ‘Treasury and Pub-
lic Credit’; 

• Common business notions including the names of common shops, workshops or 
store departments: frutas y verduras ‘fruits and vegetables’; vinos y licores 
‘wines and liquors’; 

• Everyday life clichés: dimes y diretes ‘squabble’; noche y día ‘night and day’; 
• Sci-tech terms: temperatura y presión ‘temperature and pressure’; hidráulica y 

mecánica ‘hydraulics and mechanics’; álgebra y geometría ‘algebra and geome-
try’ 

• Cultural and religious terms: Sansón y Dalila ‘Samson and Delilah’; Adán y Eva 
‘Adam and Eva’; 

• Official geographic names: Bosnia y Herzegovina, Trinidad y Tobago. 

External semantic correspondences of an entire SCP are usually their synonyms 
in the form of:  

• A single word: padre y madre = padres (father and mother = parents); 
• The same SCP given in the reverse order. In the examples hospitales y clínicas 

(SCI = 11.8) = clínicas y hospitales (SCI = 11.6) ‘clinics and hospitals’; indus-
trial y comercial (10.2) = comercial e industrial (10.3) ‘industrial and commer-
cial’ SCI values are comparable, and there is no reasons to prefer any order ex-
cept of a mere habit. There are also cases when the opposite order changes 
communicative organization of the expression: México y el mundo means ap-
proximately ‘México and its relations with the world’, whereas el mundo y 
México means ‘the world and its relations with México.’ Such oppositions do 
not seem fully synonymous, even if their SCI values are close to each other. 

• A SCP with components synonymous to the corresponding components of the 
source SCP (one component may be the same). Such SCPs can have comparable 
SCI values: colegios e institutos (12.0) ≈ escuelas y universidades (14.4)  
‘schools and universities’; astronomía y física del espacio (11.7) ≈ astronomía y 
ciencias del cosmo (11.6) ‘astronomy and space science’. In the case when the 
options differ in SCI more significantly (ida y vuelta (12.4) = ida y venida (8.4) 
‘go and return’; docentes y estudiantes (9.6) ≈ maestros y discípulos (6.1) 
‘teachers and pupils’) it is recommendable to prefer more stable synonym. 
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Style is a pragmatic parameter for us: the speaker addresses the given expression to 
a specific audience. The style can be elevated (very rare: alfa y omega ‘alpha and 
omega’), neutral (standard in speech and texts and without any labels in dictionaries), 
colloquial (used by everybody addressing everyone, very frequent in everyday 
speech, and given in dictionaries with the colloq label), and coarse colloquial (com-
monly used by men addressing men, not so rare in speech but rarely represented in 
dictionaries). 

4   Internal Categorization of SCPs 

Internally, SCPs can be characterized as follows. 

Inflectionality. A SCP is inflectional if at least one its component changes its 
morphologic form depending on the syntactic governor of the SCP and/or of its se-
mantically-induced morphologic characteristics (like tense of verb). 

Noun SCPs that at the first glance have both singular and plural forms frequently 
do not correspond to each other as usual grammatical numbers. We consider each 
number as a separate SCP, e.g., bar y cantina ‘bar and canteen’ vs. bares y cantinas 
‘bars and canteens’.  

Concerning the articles, the situation is different. We adopt the modern Mel’ uk’s 
point of view [10] that the pairs bar y cantina and el bar y la cantina are grammatical 
forms of the same pair with variants differing in definiteness. The fact that the purely 
grammatical feature is represented by a separate auxiliary word is irrelevant for us. 
Indeed, in some other languages (e.g., Romanian, Bulgarian or Swedish) the definite 
article is suffixal part of the corresponding noun. So we compute SCI separately for 
each member of ‘morphological’ paradigms {bar y cantina ‘bar and canteen,’ el bar y 
la cantina ‘the bar and the canteen’}, {bares y cantinas ‘bars and canteens,’ los bares 
y las cantinas ‘the bars and the canteens’} and take the maximal SCP in a paradigm to 
characterize it as a whole. Conventionally, the paradigm may be represented by the 
version without articles. Note that if there occur in texts also indefinite form of a 
given coordinate pair like un bar y una cantina ‘a bar and a canteen’, the third mem-
ber is added to the paradigm proposed, and the maximum is searched among the three 
variants. 

Spanish adjectives change in gender (masculine and feminine) and in number (sin-
gular and plural), having totally four combinations. We compute SCI values for each 
member of the morphologic paradigm, e.g., {activo y saludable, activos y saludables, 
activa y saludable, activas y saludables} (‘active and healthful’) and then take the 
maximal value to characterize the whole. By usual convention, the {masculine, singu-
lar} form is taken as dictionary representation of the whole paradigm. 

Hence we initially had ca. 5400 various forms of coordinate pairs, and after evalua-
tions and unifications the total has reduced to ca. 2300 SCPs. 

Semantic link between components can be of the following types: 

• Synonyms, quasi-synonyms, and mere repetitions (2% in our set): presidente y di-
rector ‘president and director’; cine y artes audiovisuales ‘movies and audiovisual 
arts’; más y más ‘more and more’; 
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• Co-hyponyms in an unspecified genus–species hierarchy (86%): maestría y doc-
torado ‘magister and doctorate degrees’; axiomas y teoremas ‘axioms and theo-
rems’; ginecología y obstetricia ‘gynecology and obstetrics.’ The degree of the 
meaning intersection between quasi-synonyms or co-hyponyms is rather vague. 

• Antonyms, quasi-antonyms, conversives, and opposite notions (7%): material y 
espiritual ‘material and spiritual’; más o menos ‘more or less’; a dios y al diablo 
‘to God and to devil’; compra y venta ‘purchase and sale’; frío y caliente ‘cold and 
hot’. 

• Co-participants or actions in a situation (5%): gerencia y presupuesto ‘manage-
ment and budget’; productos y servicios ‘products and services’. 

The latter type is the most complicated semantically. Some subtypes of the situa-
tion are as follows: 

• In muerto y enterrado ‘died and buried’ there is a time sequence of actions, with 
the time of P1 preceding that of P2. 

• In fabricación y venta ‘manufacturing and sale’, crimen y castigo ‘crime and pun-
ishment’, arbitraje y mediación ‘arbitration and mediation’, there is a material 
cause-consequence link: fmanufacturring brings about a product to sell, crime 
leads to official punishment, and arbitration entails mediation. 

Idiomaticity. A SCP is called idiom if its meaning is not just a sum of its compo-
nents’ meanings. Idioms whose meaning does not contain meanings of any of their 
component are complete phrasemes [10], e.g., una de cal y otra de arena ‘changing 
one’s mind’ (lit. ‘one of lime and other of sand’); ni con melón ni con sandía ‘neither 
pro nor contra’ (lit. ‘neither with melon nor with watermelon’). The majority of SCPs 
are non idiomatic. 

Irreversibility of SCP components could be induced by a temporal or causative 
sequence mentioned above. However many SCPs are reversible, maybe with change 
of SCI (cf. Sections 2 and 3). 

Lexical peculiarity means that at least one component is not used separately. For 
example, in toma y daca ‘give and take’ word daca is peculiar (compare with the 
word fro in to and fro). 

Coreferentiality. In very rare cases, P1 and P2 co-refer to the same person: padre y 
esposo ‘father and husband’, madre y amiga ‘mother and wife’. This parameter de-
termines morpho-syntactic agreement in number: such NGs are considered singular. 

5   Stable Coordinate Pairs in Natural Language Processing 

If we supply each SCP of the available set with all parameters introduced above, in-
cluding the corresponding syntactic subtree, semantic interpretation (for idioms), and 
SCI value, the resulting SCP dictionary becomes a database very useful for various 
applications. Let us give their synopsis. 

Referencing in text editing is needed while preparing a new text or editing an al-
ready existing one. Indeed, even a native speaker can feel uneasiness while selecting a 
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convenient expression for a given case, SCPs being among such expressions. The ap-
propriate SCP could be found by means of any its component or a one-word synonym 
of the whole SCP (if any). 

Learning foreign language is greatly facilitated with the SCP database. A student 
should know that ida y vuelta is more preferable than ida y venida (both are ‘round-
trip’) and docentes y estudiantes is much more preferable than maestros y discípulos 
(both are ‘teachers and pupils’). 

Word sense disambiguation. Out of context, a component of a SCP can have dif-
ferent meanings. In our set about 20% of SCPs contain at least one ambiguous word. 
Nearly all SCPs resolve this ambiguity, selecting only one sense. E..g., in centros y 
departamentos ‘centers and departments’, the noun center has at least two senses: 
‘midpoint’ and ‘institution’, and the SCP selects the second one; in pacientes y famil-
iares ‘patients and relatives’, the noun pacientes (‘sick person’ or ‘object of an ac-
tion’) resolves to the first sense. We suppose that all SCP components in the database 
are labeled by their sense numbers. 

Parsing. Since the DB with SCPs contains their partial parses, the parsing of the 
embedding sentence is facilitated: the parser finds the sequence of words correspond-
ing to the SCP and copies its dependency subtree from the DB to the dependency tree 
of the sentence under parsing. For Spanish this operation includes lemmatization. 
E.g., the textual expression sanas y salvas ‘safe and sound’FEM,PL should be reduced to 
the standard dictionary form sano y salvo labeled with FEM,PL. In many cases, the 
subtree substitution resolves morphological and lexical homonymy. For example, en-
tre el cielo y la tierra ‘between the heaven and the earth’ contains entre that can be a 
form of the verb entrar ‘enter’, so that the sequence permits the false interpretation 
‘should enter the heaven and the earth’. The finding of the word chain in the SCP dic-
tionary resolves such ambiguities at once. 

Detecting and correcting malapropisms. Malapropisms are semantic errors re-
placing one content word by another, similar in sound but different in meaning. Syn-
tactic links of a malapropos word with its contextual words often remain the same. In 
[3] semantic text anomalies are detected by noting that malapropisms, as a rule, de-
stroy the collocation(s) that the mutilated word would be in. We can apply the same 
idea to SCPs. Suppose that the program of malapropism detection and correction finds 
in a text the syntactically correct coordinate pair vivito y boleando ‘alive and shoe 
shinning’ with ultimately negative SCI value. By few editing operations on both com-
ponents, a special subprogram finds the unique similar SCP vivito y coleando ‘alive 
and kicking,’ thus indicating both the error and its possible correction. 

Linguistic steganography is automatic concealment of digital information in 
rather long orthographically and semantically correct texts. In [2] a steganographic 
algorithm replaces words by their synonyms, taking into account the context. How-
ever, only few SCPs do have synonyms, while the rest permits synonymous para-
phrases of neither the whole pair nor its components. This knowledge is quite impor-
tant for steganography. 
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6   Conclusion 

A convenient numerical measure of stabilityStable Connection Indexis proposed 
for coordinate pairs and on this ground the notion of a stable coordinate pair is intro-
duced. Various lexical, morphologic, syntactic, semantic, and pragmatic features are 
proposed, for both entire SCPs and their components. So far, as many as 2200 Span-
ish SCPs passed the test on positive SCI. Supplied with all categorial information 
proposed, the set of SCPs forms a useful database. Such DB facilitates several modern 
applications of NLP. All our examples and calculations were done for Spanish, but 
our earlier work [5] shows that all our classifications description are applicable also to 
some other European languages. 
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Abstract. Acartia tonsa was used as model to establish an index for oocyte 
maturity determination in zooplankters based in citometry and histochemical 
evaluation of gonadic masses. Biometry was performed using an ocular 
micrometer and nucleus/cytoplasm ratios were obtained characterizing each of 
the three identified stages: Immature, Vitellogenic and Mature. This paper 
presents a novel approach since it joins (and, indeed, reinforces) the index 
framework with the evaluation of the same biological samples by a suitable 
combination of deformable models. Nucleus contour is identified through 
Active Shape Models techniques, and cytoplasm contour’s detected through 
parametric Snakes, with prior image preprocessing based on statistical and 
mathematical morphology techniques. Morphometric parameters such as 
nucleus and cytoplasm area and ratio between them are then easily computed. 
As a result the dataset validated the applied methodology with a realistic 
background and a new, more accurate and ecologically realistic index for 
oocyte staging emerged.  

1   Introduction 

It’s in the oceans that the gross majority of primary biomass is produced by 
phytoplankton (the world’s largest plant crop). When grazing upon these primary 
producers, zooplankters constitute a crucial link to higher trophic levels which begin 
with fish and, most of the time, culminate in man [1]. Copepods often represent 80-
95% of the mesozooplankton, a fact which considering continuously dwindling yields 
in fisheries catapults the understanding of their recruitment to an imperious necessity 
in order to characterize and quantify energetic flux in aquatic environments [1,2,3]. 
Acartia tonsa Dana (Copepoda: Calanoida) was used as model organism (given its 
dominance in zooplanktonic communities) to establish an index determining oocyte 
maturity stage (including inter-seasonal variance) in zooplankters [4]. Based in 
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citometry (measurements using an ocular micrometer and thus calculating N/C ratios 
= area of the Nucleus / area of the Cytoplasm in percentage) and histochemical 
evaluation of the gonadic masses (identification of chemical constituents) consisted in 
the division of the oocytes in three stages: Immature, vitellogenic and mature, and in a 
finer pattern recognizing differences between months of high (H) and low (L) 
abundance (were reproductive strategies differ [2,5]) within each stage [4]. Roughly 
by the same time a novel method based in deformable models was being developed to 
evaluate histological sections [6].  

This paper presents a novel approach by fusing both concepts: re-evaluate the same 
biological material using a suitable combination of deformable models (Active Shape 
Models [7] and Snakes [8]) in order to either confirm or, by weight of evidence, build 
a new index. Nucleus contours are identified through Active Shape Models (ASM) 
techniques, and the cytoplasm contours are detected through parametric deformable 
models (Snakes), with a prior preprocessing based in statistical and mathematical 
morphology techniques. Smoothed instances of the final contours (nucleus and 
cytoplasm) are then obtained through ASM and spline approximation based on the 
detected cytoplasm edge points, respectively. Morphometric parameters such as 
nucleus and cytoplasm area and ratio between them are then easily computed. 

The outcoming results are the amplification of the index to four development 
stages and enhanced capability of information gathering regarding oocyte biometry, 
leading to the clarification of inter-seasonal differences in the reproductive cells of 
these essential elements for energy transduction in aquatic ecosystems.  

In section 2, we describe the details related with material and methods of our 
technique. Section 3 discusses the results and presents the new characterization index 
established for the determination of oocyte maturity. Section 4 concludes with a short 
summary of our work. 

2   Material and Methods  

For details on biological material collection and processing see Pastorinho et.al. [4]. 

2.1   Computer Technique 

Our method to evaluate gonadic cell masses consists on four well differentiated 
stages: Initial Image Processing, Initial Segmentation, Final Segmentation and Feature 
Extraction, which are discussed below. 

2.1.1   Initial Image Processing 
Initial image processing is carried out to prepare images for objects differentiation 
and is divided in two steps: initial image preparation and image enhancing. 
 
Initial Image Preparation. The presence of noise in images may represent a serious 
impairment for subsequent automated quantitative evaluation tasks. This median filter 
has been used extensively for image noise reduction and smoothing. The filter 
preserves monotonic image features that fill more than half the area of the transform 
window. Examples are constant regions, step, edges, or ramp edges of sufficient 
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extent. Median filters are especially good at removing impulse noise from images [9]. 
Initial image preparation consists on building the median image M (image denoising), 
which is achieved applying the median filter to the input image I (see Fig.1(B1)) (a 
256 gray level image), with a window size of 9x9 pixels. Figure 1(B2) show the 
median image.  
 
Image Enhancement. Mathematical morphology is a shape-oriented technique for 
image processing and analysis, based on the use of simple concepts from set theory 
and geometry [10]. Images under study contain gonadic cells of diverse shape and 
sizes, in which nucleus appear in different positions with respect to cytoplasm. Due to 
this, to increase the potential for future object discrimination was used a suitable 
combination of mathematic morphology (top-hat and bottom-hat) operations. We 
evaluated structuring elements of different shapes and sizes, obtaining the best results 
when an octagonal structuring element is used. A flat octagonal structuring element K 
was created computing the radius of the maximum diagonal diameter in the biggest 
cell’s nucleus of the image under study (see Fig.1(B3)). The mathematical 
formulation to enhance image M to obtain image E is: 
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2.1.2   Initial Segmentation 
The initial segmentation process is carried out to differentiate objects (gonadic cells) 
from background and includes two steps: primary image segmentation through 
thresholding and object’s edge detection. 
 
Thresholding. Histogram analysis reveals heuristically that the black pixels were in 
the interval (0,109) and the white pixels were in the interval (110,255). Mathematical 
formulation to achieve objects differentiation (image BW) is the following: 
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Edge Detection. This is a critical step, since edge information is a major driving 
factor in subsequent deformable models performance. Several techniques were tested 
such as a combination of noise suppression by average and median filtering, with 
different masks and thresholding, followed by binarization and edge tracking [11]. 
We’ve also tried with edge maps detectors [12], but these methods fail where a 
gonadic cell’s edge is not completed and closed. However we found that applying a 
local median average, as we propose in [6], produces a more suitable set of nucleus 
and cytoplasm edges (see Fig.1(B4)). The mathematical formulation used to detect 
edges is: 
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2.1.3   Final Segmentation (Deformable Models) 

Mathematical foundations of deformable models represent the confluence of 
geometry, physics, and approximation theory. Geometry is used to represent object 
shape, physics inflict constraints on how the shape may vary over space and time, and 
optimal approximation theory makes available the formal underpinnings of 
mechanisms for fitting the models to measured data. We use a suitable combination of 
two kinds of deformable models: Active Shape Models (ASM) proposed by Cootes et. 
al. [7] to identify the nucleus contour and hereafter the Gradient Vector Flow (GVF) 
Snake proposed by Xu and Prince [8] to identify the cytoplasm boundary.  
 
Active Shape Model. The ASM uses the point distribution model (PDM) and the 
principal component analysis (PCA) for modeling objects. The implementation of 
ASM is characterized by the following stages: labeling of training set; alignment of 
training set; capturing of statistics of a set of aligned shapes, and finally the 
application of the model to search shape in image. In order to model a nucleus, we 
represent it by a set of points. The labeling of the points (landmarking) is important, 
and these can be placed manually or semi-automatically. Each labeled point 
represents a particular part of the object or its boundary. We can describe each object 



502 M.R. Pastorinho et al. 

 

of the training set by the vector Xi = [xi0, yi0, xi1, yi1, ..., xin−1, yin−1], where n is the 
number of points that define each object and i is the object identifier. As a result of 
labeling the training set we have a set of Ns vectors. In order to study a variation of 
the position of each landmark throughout the set of training images, it’s necessary to 
align all the shapes to each other. The alignment is done by changing the pose 
(scaling, rotating, and translating) of the shapes. That is made in order to minimize the 
weighted sum of squares of distances between equivalent points on different shapes. 
After the alignment of the training set, it there is a diffuse “cloud” around each 
landmark. These “clouds” represent the variability of object. We can use principal 
component analysis (PCA) to determine the variation modes of the object. If we 
assume that the first t principal components explain a sufficiently high percentage 
(96%) of the total variance of the original data, any shape in the training set can be 
approximated using the mean shape and the weighted sum of the deviations obtained 
from the first t modes: 
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    The suitable limits for bk are typically of the order of 3 3k k kbλ λ− ≤ ≤ , 

where λk is the kth eigenvalue derived by PCA. Now we can apply this model to 
search a shape in image, but first we have to initialize the model over the image. 
Then, we examine the neighborhood of the landmarks of our estimate, trying to find 
the better locations for each landmark. Hereafter, we change the shape and the pose of 
our estimate to better fit the new locations for the landmarks. Each iteration produces 
a new acceptable shape. The system finishes the search when the shape has 
insignificant changes over successive iterations (when the desired movement for each 
landmark has a small value). In our study we assume this value equal to 8 pixels. The 
desired movement or adjustment of each landmark is obtained from modeling the 
gray level statistics around each landmark, in order to better fit of the object to the 
image.  
 
Gradient Vector Flow Snake. For details on GVF model see our previous work 
Guevara et.al. [6]. But here we first use ASM to segment the nucleus, and then, based 
on the nucleus edge points the initial snakes for cytoplasm contours are automatically 
created. We use the parametric equation of the line formed with the nucleus centroid 
and the maximum radius between the centroid and the nucleus edges took in angles of 
20°, in order to obtain the intersection points with the cytoplasm edges. Initial snakes 
were obtained with spline approximation over the set of this intersection points (see 
Fig.1 (A)), then the GVF snake deformation is carried out to produce the final snakes. 
In the snake deformation process to compute the cytoplasm edges we needed to 
increase rigidity and pressure force weighs, due to the shape variability of gonadic 
cells. The parameters used in the snake deformation process were: elasticity (0.05), 
rigidity (0.1), viscosity (1), external force weight (0.6) and pressure force weight 
(0.2). Figure 1(B5) show the final snakes representing nucleus and cytoplasm contour.  
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Fig. 1. (A) Spline approximation to create the cytoplasm initial snake; (B) 1-Original image, 2-
Enhanced, 3-Segmented, 4-Edges, 5-Final cytoplasm and nucleus edges   

2.1.4   Feature Extraction  
Morphometric features express the overall size and shape of objects. For these 
features only the object mask Ο  and its border ς  are needed, not the actual gray 

scale image [13]. We compute nucleus and cytoplasm areas and the ratio between 
them to evaluated gonadic cells. To do this we use as input the final snakes 
deformations (the arrays of edge points of nucleus and cytoplasm). Mathematical 
formulation and computational sequence of measurements are the following: 

pixels nucleus   NΟ  
pixels cytoplasm   CΟ  

NNN ΟΟ⊂  ofcontour  snake), (final pixels edge ofset    ς  
CCC ΟΟ⊂  ofcontour  snake), (final pixels edge ofset    ς  

NNN Ο=Ο=Α  of elements ofnumber      area   
 

CCC Ο=Ο=Α  of elements ofnumber      area   
 

( ) 100*/ CNratio ΑΑ=  

3   Results and Discussion  

This section will only be object of a brief set of considerations given the scope of this 
article. The original index [8] was divided in three maturity stages: Immature with 
N/C=73.46 (H=73.02; L=73.91), Vitellogenic with N/C=46.98 (H=52.31; L=41.64) 
and Mature with N/C= 20.78 (H=19.0; L=22.56). The most significant outcome of 
this work was the unfolding (significantly different, p< 0.001, Table I) of the 
Vitellogenic stage in two: Primary (N/C= 62.39; H=59.61; L= 65.17) and Secondary 
(N/C= 29.04; H=23.01; L=35.07).  As it would be expected, substantial modifications 
occurred as well in Immature and mature stages: the latter with N/C=12,29 (H=4.36; 
L=20.21) and the former with N/C= 121.42 (H=102.38; L=140.45) (significantly 
different, p< 0.001, Table 1). These results fit in ecological models that predict lower 
parental investment (less offspring, bigger in size) in low abundance epochs (more 
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severe environmental constraints, e.g. higher temperature, less available food, 
enhanced predatorial pressure [14]) in order to enhance viability of the spawned eggs 
and to assure their own survival [2,3,5]. 

 
Table 1. One-way ANOVA tests applied to Oocyte size in the months of September (I) and 
March (II) and to four stages of oocytical maturation (immature -III; primary vittelogenic –IV; 
secondary vitellogenic –V, and mature –VI) of Acartia tonsa. df = degrees of freedom; MS = 
Mean square; Fs = Test Value; P = Probability value.  
I- One way ANOVA of the oocytes size of Acartia tonsa distributed by maturation state, for the 
month of September. The null hypotheses is that the oocyte’s size does not differ between 
maturity status. 
II- One way ANOVA of the oocytes size of Acartia tonsa distributed by maturation state, for 
the month of March. The null hypotheses is that the oocyte’s size does not differ between 
maturity status. 
III- One-way ANOVA of the Immature (Im) stage of oocytes of Acartia tonsa during the period 
of the study. The null hypotheses is that all the Im cells do not register any variation between 
samples 
IV- One-way ANOVA of the Primary Vittelogenic (PV) stage of oocytes of Acartia tonsa 
during the period of the study. The null hypotheses is that PV the cells do not register any 
variation between samples. 
V- One-way ANOVA of the Secondary Vittelogenic (SV) stage of oocytes of Acartia tonsa 
during the period of the study. The null hypotheses is that SV the cells do not register any 
variation between samples. 
VI- One-way ANOVA of the Mature stage of oocytes of Acartia tonsa during the period of the 
study. The null hypotheses is that all the M cells do not register any variation between samples. 
 

Source of variation Df MS Fs P 
I-Sample 2 0.008 764.28 P< 0.001 
II-Sample 2 0.011 752.33 P< 0.001 
III-Sample 2 0.015 114.17 P< 0.001 
IV-Sample 2 0.004 78.92 P< 0.001 
V-Sample 2 0.003 46.23 P< 0.001 
VI-Sample 2 0.002 36.86 P< 0.001 

4   Conclusions  

We presented an innovative method to segment histological sections based on a 
suitable combination of deformable models: Active Shape Models and Gradient 
Vector Flow Snakes, which allowed developing a new index to evaluate 
Zooplanktons´ gonads. This approach is an extension of our previous work [6], but in 
this case was include an Active Shape Model to semiautomatically detect the gonad’s 
cell nucleus (N). Afterward, using the set of point of the nucleus contour is built the 
initial snake to detect automatically cytoplasm (C) contour. The ability of our 
algorithm was demonstrated on an experimental representative dataset. For present 
and future biological studies the most significant outcome of this work was the 
unfolding of the Vitellogenic stage in two: Primary and Secondary. As it would be 
expected, substantial modifications occurred as well in Immature and mature stages: 
the latter with N/C=12.29 and the former with N/C=121.42. 
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Abstract. Most traumatology services use radiological images to control the 
state and possible displacements of total hip replacement implants. Prostheses 
are typically and traditionally detected by means of edge detectors, a widely 
used technique in medical image analysis.  This article analyses how different 
edge detectors identify the prosthesis in X-Rays by measuring the performance 
of each detection algorithm; it also determines the clinical usefulness of the 
algorithms with the help of clinical experts. 

1   Introduction 

Traumatology services spend a considerable amount of time on the follow-up of 
patients with prostheses or screws in order to check the state of a particular orthopedic 
device. These follow-ups are usually based on a series of X-rays and comply with 
standardised protocols [1]. Even so, the medical expert controls the displacement or 
loosening of the prosthesis with certain measurements that are often subjective and 
fail to detect small movements that may be significant.  

At present, several research groups are developing systems that automatically 
segment the bone and prostheses and as such provide the expert with quantitative 
measurements that help him to evaluate the patient’s condition. Downing [2] 
developed a new and accurate method to automatically segment, classify and measure 
the femoral components of cemented total hip replacement in radiographs; Ozanian 
[3] described the development of a system that assists the expert in trajectory planning 
for computer–assisted internal fixation of hip fractures; and Behiels [4] evaluated 
various image features and different search strategies to apply Active Shape Models 
(ASM) to bone object boundaries in digitalized radiographs and carry out quantitative 
measures. 

The aim of our group is to build a system that is based on the analysis of X-Rays 
and automatically segments the bone and the orthopedic device, providing the expert 
with a series of measurements that improve his diagnosis. The system consists of a 
module that recommends the most convenient algorithm to evaluate the images, and 
tries to automate its use as much as possible; the applied algorithm and the values of 
the different parameters can then be modified by the user in order to enhance the 
detection [5][6][7]. 

R
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We selected the following algorithms on the basis of their use in the field of 
medical images analysis: Canny [8], Heitger [9], and the Bezdek fuzzy edge detector 
[10]. And they have provided results in a range of edge detector studies such as the 
works of Bowyer [11][12], which are among the best in computerized vision 
literature. Bowyer’s first work presented the results of various algorithms to several 
observers for evaluation; the second work compared different edge detectors against a 
heterogeneous set of images by means of ROC curves.  

The Canny algorithm is at present considered the reference algorithm in edge 
detection and has been used in a wide range of image analysis applications. The 
Bezdek fuzzy edge detector is being used in the development of a system for the 
detection of tumors in mammographies. We have not found any applications in the 
field of medical images analysis for the Heitger algorithm, but we nevertheless 
decided to include it because it provided the best results in Bowyer’s edge detectors 
study [12], which is commonly considered one of the most extensive studies on this 
technique. 

The tests are based on a heterogeneous set of images that presents the most 
commonly found characteristics: marks made by the expert, sudden contrast changes, 
etc. The results were contrasted with ground truth masks that present the perfect 
segmentation carried out by several experts. 

In recent years researchers have used techniques based on models for the analysis 
of X-Ray prosthesis images, i.c. the ASM technique [13]. This technique however 
requires a considerably “clear” training set (well delimited and with clearly marked 
areas), it can generate critical outliers in difficult classification areas, and the results 
are not easily modifiable by the operator. Even though edge detectors do not provide a 
completely automatic segmentation, we believe that they are better adapted to the 
characteristics of our system, since their parameters can easily be modified and the 
results can be corrected with erase and mark tools.  

2   Selection of the Test Set 

The images used in this study were selected with traditional image processing 
techniques [14] and with the histogram as a basic tool (see Figure 1).  The number of 
available images amounts to 40. 

The available bank of images was analyzed to select a subset of X-Rays that 
reflected as precisely as possible the different characteristics of the population 
(artifacts caused by the prosthesis, superpositions, fuzzy edges between the areas, 
saturation, etc.). We made a visual analysis and histogram exam of the images to 
decide whether to include or reject the image. 

Firstly, as was to be expected in a case of irradiation techniques such as X-Rays, 
we observed inhomogeneities in the intensity levels of one and the same element, due 
to the uneven absorption of the radiation by the patient’s tissues. 

We also noticed that in most cases the histogram is bimodal: one of the modes 
corresponds to the background in the black area, whereas the other represents the 
prosthesis with the highest luminosity levels. The transition between the modes is 
continuous, with a detectable value for the different grey values, which implies that 
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Fig. 1. Image and histogram used in this study 

the edges between the elements are fuzzy. The image confirms this. We also observed 
that the shape of the histogram is similar for all the X-Rays and that the differences 
are due to the number of pixels between the modes, which varies according to the 
presence of more or less tissue in the X-Ray.     

The images were digitalized with an especially designed scanner; the resolution for 
the image acquisition was 100 pixels/inch and the number of grey levels 256, which is 
the highest available value. 
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Since we observed that most images were similar with regard to the motives that 
appear and to the intensity levels and their distribution, we finally selected a set of 10 
images. The choice of this number was based on the large amount of results that will 
be obtained from the edge detectors and the fact that the results will be evaluated by 
experts. An excessively high number of images would make tedious and complicate 
this evaluation process. 

3   Edge Detectors 

The algorithms were selected according to two basic criterions: they had to be used in 
the development of analysis systems for medical images, and they had to apply 
different techniques for the detection of points that are considered edges. 

3.1   Canny Edge Detector 

This algorithm was developed by J. Canny [8] as a response to the following 
requirements: 

 
• Good detection: maximise the probability of marking an edge where there 

actually is one, and minimise the probability of marking an edge where there 
is none.  

• Good location: the points of the edge that are indicated by the operator 
should be as close as posible to the edge.  

• Unique response: there should be a unique response for each edge. 
 
This algorithm was developed by J. Canny. The detector follows a series of steps: 
 

1. Smoothen the original image with a bidimensional Gaussian function. 
The width of the function is specified by the user. 

2. Calculate the derivation of the filtered image with respect to the two 
dimensions, in order to calculate the size and direction of the gradient. 

3. Find the points of the edge, which correspond with a maximum. Non-
maxima must be surpressed: we want to eliminate non-maxima 
perpendicular to the edge direction, since we expect continuity of edge 
strength along an extended contour. Any gradient value that is not a 
local peak is set to zero. 

4. Apply tresholding hysteresis. We eliminate those points that are below 
an inferior limit specified by the user. The points over the superior limit 
are considered to belong to the edge. The points between the two limits 
are accepted if they are close to a point with a high response.  

3.2   Heitger Edge Detector 

The focus of the Heitger edge detector [9] is different from that of Canny in that it 
tries to solve the weaknesses of algorithms that use asotropic linear operators. 
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    This algorithm uses a logical/lineal operator, based on a set of filters in the 
quadratic phase (Gabor filters), to detect the interesting elements of the image. The 
operator is based on the representation of the normal signal in a curve that depicts the 
edges/line dichotomy.  

In order to eliminate possible ambiguities caused by the use of this operator, we 
apply a phase of suppression and enhancement; the responses of those image points 
for which the operator does not present an ideal edge or line are suppressed, whereas 
the responses that do meet the requirements are improved. The suppression is based 
on the first derivative of the response module, the enhancement on the second 
directional derivative of the response module.  

Finally, we apply a non-maxima suppression phase on which we build a binary 
image by using a threshold value. The latter is a configurable parameter of the 
algorithm. 

3.3    Bezdek Fuzzy Edge Detector 

The edge detector developed by J. Bezdek [9] consists of four phases: 
 

• An enhancement function that is charged with filtering the image in order 
to facilitate the analysis by the feature detector. 

• A feature detection function that applies various filters to the image, in 
order to detect the points that may correspond to an edge.  

• A composition function that combines the results of the different filters, 
selecting the points that are part of the image edge.  

• A thresholding function, whose purpose is to provide a binar background-
edge image by using a threshold value. 

 
The algorithm is based on the analysis of the geometrical characteristics that an 

edge is supposed to have, the development of feature detection functions that allow us 
to detect these properties in the image, and finally the analysis of the detectors’ result 
by means of a fuzzy function that selects the candidate points. The latter allow us to 
introduce a certain learning capacity in the selection of the pixels.  

The current implementation of the algorithm uses a Sobel filter, in horizontal and 
vertical direction, as a function for feature detection. The applied function 
composition is based on the fuzzy rules system of Takagi-Sugeno [15], with a control 
parameter that checks the fuzziness of the system; this system builds a binary image 
of edges on a background through a thresholding value that can be fixed as an 
algorithm parameter. 

4   Results 

The study was based on the methodology proposed by Bowyer, in which he starts 
from wide intervals for each parameter and progressively refines the interval by 
means of ever smaller increases for the values of the parameters that provide the best 
results.  
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The parameters that were modified for each algorithm are the following: 
 

• Canny; sigma of the gaussian, inferior and superior hysteresis threshold, 
• Heitger: sigma of the gaussian, enhancement factor and thresholding 

value. 
• Bezdek: control parameter of the fuzzy system and thresholding value. 

    The results were measured with two criteria: the probability of edge detection and 
the ROC curves. It is indeed very difficult to reflect with only one criterium all the 
factors that affect the result and correct the deficiencies of each measurement.  

The performance of the edge detectors was firstly measured by calculating the edge 
detection probability [16]. We suppose an image that consists of an edge/background 
dichotomy: the bigger the probability of correctly classifying an edge pixel, the better 
the segmentation algorithm, as can be seen in equation 1: 

N

NN
D hb +

=  (1) 

Nb: number of pixels that are false positives in the result image 
Nh: number of pixels that are false negatives in the result image 
N: number of total image points 

Figure 2, 3 and 4 shows the best results of this measure for all the X-Ray images 
for Canny, Heitger and Bezdek. 
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Fig. 2. Discrepancy measurement values for Canny applied to the test set 

The most frequently used method to measure the performance of edge detection 
algorithms are the ROC curves [17]. This method consists in comparing the false 
positives (points that are erroneously detected as edges) and the true positives (real 
edge points) in a graphic (Figure 5). If the sampling of the algorithm’s parameters 
space takes place at a sufficiently small interval, we can create a response curve and 
find the point at which the ratio is optimal, i.e. when the relation between the true and 
false positives is maximal.  
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Fig. 3. Discrepancy measurement values for Heitger applied to the test set 
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Fig. 4. Discrepancy measurement values for Bezdek applied to the test set 

We evaluated the results according to Bowyer’s methodology, contrasting the false 
negatives against the possible false positives (% not detected, % false). The best 
algorithm is that whose curve has the smallest area; it is usually calculated with the 
trapezoidal rule.  

4.1   Evaluation by Medical Experts 

In this phase, the specialists were asked to evaluate the clarity of the elements of the 
diagnostic image; they were shown the original image with superposition of the 
detected edges. The final purpose was to evaluate the usefulness of the resulting 
images during the diagnosis.  

We developed a web application that allows the experts to qualify the images in a 
fast and comfortable manner.  Figure 7, 8, and 9 show the experts’ punctuations for 
each algorithm in each category and for each image.  
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Fig. 5. Curves that represent the different edge detection performances for the X-ray images 
set. The graphs correspond with the R1-R10 images of left to right and top to down. 
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Fig. 6. Qualitative evaluation for Canny 

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

 
Fig. 7. Qualitative evaluation for Heitger 

The evaluation was carried out by four specialists in the field and one resident 
physician. They worked independently and with anonymous data; there was no 
contact whatsoever between the evaluators in order to guarantee absolute objectivity.  



 The Performance of Various Edge Detector Algorithms 515 

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

 
Fig. 8. Qualitative evaluation for Bezdek 

Each result was rated with a value between 1 (lowest value) and 5 (highest value).  
We opted for this interval because the expert can easily associate it with semantic 
categories (very bad, bad, regular, good, very good).   

In order to be considered clinically useful for the specialists, an algorithm must 
obtain for at least 60% of the results a punctuation of 3 or more. This criterium is 
based on the assumption that if the punctuation of an image is above 50 %, it is 
clearly positive. Due to the characteristics of the algorithms and the complexity of the 
images, the expert will consider a significant part of the results to be of low quality. 
So if an algorithm obtains an approval percentage that is above 50 %, we can assume 
that the images provided by the edge detector are really of use to the expert.  

5   Conclusions 

The study shows that the best results are provided by the Canny and Heitger edge 
detectors, and that the Bezdek algorithm provides considerably worse results both for 
the quantitative measures and for the experts. We believe that the main reason for this 
outcome is the fact that the Bezdek detector uses a Sobel mask in horizontal and 
vertical for the detection of the candidate points, which provokes the appearance of 
double edges in the resulting image. 

Furthermore, we observe that the Canny algorithm obtains its best results with a 
low sigma value. High values cause considerable loss of information because of the 
low signal/noise relationship (mainly in the area where the bone and the iron 
coincide). The maximal threshold should not have a low value, because too many 
points are then considered edges, whereas a high minimal threshold makes too many 
points disappear.   

The Heitger algorithm shows the same effect for sigma: since here the most critic 
parameter is the threshold, small variations in its value create noticeable differences in 
the result.  

The critical parameter for the Bezdek fuzzy edge detector is the control parameter 
of the fuzzy rules. This means that small variations in its value considerably affect the 
quality of results. 
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The quantitative measures by the Heitger and Canny algorithms are very similar 
but vary according to the analysed image. Also, even though in the analysis of the 
ROC curves in the global set the Heitger algorithm is more effective, the Canny 
algorithm provides more stability (interval of the parameters values in which the 
algorithm gives a result that can be considered good). The experts give the same 
positive evaluation for both algorithms and their clinical usefulness, but manifest a 
slight preference for the Canny algorithm.   

Although these algorithms do not provide a totally automatic segmentation of the 
image, we believe that they simplify the edge identification task for the medical 
expert. We have therefore incorporated both algorithms to the system and are 
currently trying to determine which algorithm provides the best results on the basis of 
the image’s characteristics.  
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Abstract. In this paper, we present an incremental clustering algorithm
in the logical combinatorial approach to pattern recognition, which finds
incrementally the β0-compact sets with radius α of an object collec-
tion. The proposed algorithm allows generating an intermediate subset
of clusters between the β0-connected components and β0-compact sets
(including both of them as particular cases). The evaluation experiments
on standard document collections show that the proposed algorithm out-
performs the algorithms that obtain the β0-connected components and
the β0-compact sets.

1 Introduction

In some areas such as finance, banking, engineering, medicine and geosciences the
amount of stored data has had an explosive increase [1]. In these areas, there are
many instances where the description of objects is non-classical; that is, features
are not numerical or exclusively categorical, and sometimes, with missing values
(mixed data). Data Mining and Knowledge Discovery on Databases areas process
data in order to extract knowledge from data sets [9]. An important tool to
extract knowledge is clustering. Several non incremental techniques to obtain
clusters of a mixed data set have been proposed [2].

On the other hand, static clustering methods (non incremental algorithms)
mainly rely on having the whole object set ready before applying the algorithm.
Unlike them, the incremental methods are able to process new data as they
are added to the collection. Nowadays, there are many problems that require
a clustering of dynamic object collections such as topic detection and tracking,
web mining and others.

In the Logical Combinatorial Pattern Recognition approach some clustering
criteria have been proposed [6]. These clustering criteria were used to solve
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real problems [4], using classical algorithms which generate and store similarity
matrix between objects.

However, these algorithms are inapplicable when the data set is large or
dynamic. For some of these criteria, incremental algorithms to process large data
sets have been developed [8, 7]. The first one finds the β0-connected components,
but it could obtain clusters with low internal cohesion. The second one obtains
the β0-compact sets, but it could generate a great number of cohesive and small
clusters.

In this paper, we use the β0-compact sets with radius α [5]. This cluster-
ing criterion allows generating an intermediate subset of clusters between the
β0-connected components and the β0-compact sets (including both of them as
particular cases). Thus a new incremental algorithm in order to generate the
β0-compact sets with radius α of an object collection is introduced.

2 Some Basic Concepts

Let U = {O1, . . . , Om} be the universe of objects in study, described in terms
of features R = {x1, . . . , xn}. Besides, let β(Oi, Oj) be a similarity function
between objects Oi and Oj , and β0 a similarity threshold defined by the user.

Definition 1. We say that objects Oi and Oj are β0-similar if β(Oi, Oj) ≥ β0.
If ∀ Oj ∈ U , β(Oi, Oj) < β0 then Oj is a β0-isolated object.

Notation: Let us denote νi = max{β(Oi, Ot)/Ot ∈ U ∧Ot �= Oi ∧ β(Oi, Ot)
≥ β0}.

Definition 2. We say that Oj is α-max β0-similar to Oi if β(Oi, Oj) ≥ β0 and
β(Oi, Oj) ≥ νi − α. In other case, Oi is β0-isolated and we do not consider νi.

Definition 3. We call β0-maximum similarity reduced neighborhood with radius
α of an object Oi, and we denote it by N0(Oi;β0, α), the following set:

N0(Oi;β0, α) = { Oj ∈ U : Oj �= Oi ∧ β(Oi, Oj) ≥ β0 ∧

[β(Oi, Oj) ≥ (νi − α) ∨ β(Oj , Oi) ≥ (νj − α)] }

From definition, ∀ Oi ∈ U,Oi �∈ N0(Oi;β0, α). We call β0-maximum similar-
ity neighborhood with radius α of an object Oi, and we denote it by N(Oi;β0, α),
the set N0(Oi;β0, α) ∪ {Oi}.

The set N(Oi;β0, α) contains to Oi, all its α-max β0-similar objects, and
those objects for which Oi is an α-max β0-similar object.

From definition 3, an interesting property is the following:

Proposition 1. Oi ∈ N(Oj ;β0, α) ≡ Oj ∈ N(Oi;β0, α).

Proof. It is sufficient with doing explicit the expressions:
Oi ∈ N(Oj ;β0, α) ≡ β(Oj , Oi) ≥ β0 ∧ [β(Oj , Oi) ≥ (νj−α) ∨ β(Oi, Oj) ≥

(νi − α)]
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Oj ∈ N(Oi;β0, α) ≡ β(Oi, Oj) ≥ β0 ∧ [β(Oi, Oj) ≥ (νi−α) ∨ β(Oj , Oi) ≥
(νj − α)]

As β is a symmetric function, the equivalence is fulfilled. $%

Definition 4. Let δ ⊆ U , δ �= ∅, δ is a β0-compact set with radius α with respect
to (wrt) β and β0 if:

i) Oi ∈ δ ⇒ N(Oi;β0, α) ⊆ δ.
ii) ∀Oi, Oj ∈ δ ∃{Ns1 , Ns2 , . . . , Nsq} : Ns1 = N(Oi;β0, α) ∧ Nsq = N(Oj ;β0, α)
∧ Nsp ∩Nsp+1 �= ∅, ∀ p ∈ {1, . . . , q − 1}, being {Ns1 , Ns2 , . . . , Nsq} a set of
β0-maximum similarity neighborhoods with radius α of objects in δ.

iii) If {Oi} = N(Oi;β0, α) then δ = {Oi} is a degenerate β0-compact set with
radius α wrt β and β0.

The first condition states that each object Oi in δ has its α-max β0-similar
objects and those objects for which Oi is an α-max β0-similar object in δ. The
second condition means that δ is the smallest set that holds the condition i).

We will denote by δ(O) the β0-compact set with radius α which the object
O belongs.

From now on, we will use the expression (β0, α)-compact set instead of β0-
compact set with radius α.

For any β0 and α values, (β0, α)-compact sets generate a partition of the
universe of objects in study.

β0-compact sets and β0-connected components [6] are particular cases of
(β0, α)-compact sets, taking α = 0 and α = βM − β0, being βM = max{νi}Oi∈U

respectively [5]. For each of them, incremental algorithms have been developed
[8, 7].

Definition 5. We will call graph based on the α-max β0-similarity according to
β to the directed graph ΓU,β,β0,α whose vertices are the objects of U, and there is
an arc from the vertex Oi to the vertex Oj if Oj is an α-max β0-similar object
to Oi. We will denote by GU,β,β0,α the undirected graph associated to ΓU,β,β0,α.

From the previuos definition, we obtain that N0(Oi;β0, α) coincides with the
set of adjacent vertexes to Oi in the graph GU,β,β0,α.

Proposition 2. The set of all (β0, α)-compact sets of U coincides with the set
of all connected components of graph GU,β,β0,α.

Proof. It is a direct consequence of definitions 4 and 5. Let δ = {Oi1 , Oi2 , . . . ,
Oik
} be a (β0, α)-compact set of U . If k = 1, then δ = {Oi1} is an isolated

(β0, α)-compact set, and N0(Oi1 ;β0, α) = ∅, where Oi1 is an isolated vertex.
Therefore, {Oi1} is a connected component in GU,β,β0,α.

Now, if k > 1, where N0(Oi1 ;β0, α) is the adjacent vertex set of Oi1 , condition
ii) of definition 4 guarantees that for any pair of objects Oil

, Oij ∈ δ, a path in
GU,β,β0,α that connects these objects exists, and the associated subgraph of δ is
connected.
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In addition, condition i) of definition 4 guarantees that δ is not a subset
of any connected component of graph GU,β,β0,α, but δ is the same connected
component. $%

Definition 6. Let U ′ ⊂ U and δ ⊂ U ′ be a (β0, α)-compact set of U ′. Besides,
let O ∈ U \ U ′. We say that object O is connected with δ if there exists some
object O′ ∈ δ such that O is α-max β0-similar to O′ or O′ is α-max β0-similar
to O.

Proposition 3. Let U ′, U and O be like above. If object O is not connected with
δ, then δ is a (β0, α)-compact set in U ′ ∪ {O}.

Proof. This is immediate from definition 6. As object O is not connected with
δ, then δ ∪ {O} does not satisfy (β0, α)-compact set definition. $%

Corollary 1. If O is a β0-isolated object, then the set of all (β0, α)-compact
sets in U ′ ∪ {O} is ζ ∪ {{O}}, where ζ is the set of all (β0, α)-compact sets in
U ′. In this case, the graph GU ′∪{O},β,β0,α and the graph GU ′,β,β0,α differ in only
one vertex.

Let E be the set of edges of graph GU,β,β0,α.

Proposition 4. Let U ′, U , O and δ be like above. If O is connected with δ,
and EU ′,β,β0,α ⊂ EU ′∪{O},β,β0,α (i.e. new edges appear and no edge of GU ′,β,β0,α

was broken by O), then δ ∪ {O} is a (β0, α)-compact set or it is a subset of a
(β0, α)-compact set in U ′ ∪ {O}.

Proof. As a consequence of the proposition 2, if δ is a (β0, α)-compact set in
U ′, then the subgraph associated to δ is a connected component of the graph
GU ′,β,β0,α. Let {Oi1 , Oi2 , . . . , Oir} be the objects connected with O by the new
edges in the graph GU ′∪{O},β,β0,α.

If {Oi1 , Oi2 , . . . , Oir} ⊆ δ, then O is added to this connected component,
and therefore δ ∪ {O} is a (β0, α)-compact set in U ′ ∪ {O}. Otherwise, if O is
also connected with an object O′ ∈ δ, then O′ ∈ N(O;β0, α) and δ ∪ {O} is
not a (β0, α)-compact set in U ′ ∪{O}, because it does not satisfy condition i) of
definition 4. Nevertheless, as the subgraph associated to δ∪{O} is connected, it
is a subset of a (β0, α)-compact set in U ′ ∪ {O}. This (β0, α)-compact set is the
union of {O} and all (β0, α)-compact sets in U ′ to which O is connected. $%

3 Incremental Clustering Algorithm

In this paper, we propose a new clustering algorithm that finds incrementally
the (β0, α)-compact sets of an object collection. This algorithm is based on the
propositions explained above.

The algorithm stores the maximum β0-similarity of each object Oi, and the
set of objects connected to it in the graph GU ′,β,β0,α, that is, the objects belong-
ing to N0(Oi;β0, α). It stores, also, the similarity values with Oi for each object
of N0(Oi;β0, α).
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Every time that new object O arrives, its similarity with each object of
existent (β0, α)-compact sets is calculated and the graph GU ′,β,β0,α is updated.
The arrival of O can change the current (β0, α)-compact sets, because some new
(β0, α)-compact sets may appear, and others that already exist may disappear.

Therefore, after updating the graph GU ′,β,β0,α the (β0, α)-compact sets are
rebuilt starting from O, and the objects in the (β0, α)-compact sets that become
unconnected. The (β0, α)-compact sets that do not include objects connected
with O remain unchanged, by virtue of the Proposition 3. During the graph
updating task the algorithm constructs the following sets:

ClustersToProcess: A (β0, α)-compact set is included in this set if it has
any object Oj that satisfies the following conditions:

1. The new object O is the most β0-similar to Oj , and the objects that were
α-max β0-similar to Oj are not anymore; that is, its edges with Oj in the
graph GU ′,β,β0,α are broken.

2. Oj had at least two α-max β0-similar objects, in which its edges are broken,
or Oj is α-max β0-similar to at least another object in this (β0, α)-compact
set.

This set includes the (β0, α)-compact sets that could lose its compactness
when the objects with the previous characteristics are removed from the cluster.
Thus, these (β0, α)-compact sets must be reconstructed.

Example 1: Let be β0=0.3 and α=0.1. As can be seen in Figure 1, the (β0, α)-
compact set C belongs to the set ClustersToProcess, because object O1 satisfies
the conditions mentioned above.

Fig. 1. A cluster that belongs to ClustersToProcess

ObjectsT oJoin: An object Oj is included in this set if it satisfies the following
conditions:

1. The new object O is the most β0-similar to Oj , and the only object that was
α-max β0-similar to Oj is not anymore.

2. Oj is not α-max β0-similar to any object of its (β0, α)-compact set.
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The objects in this set will be included in the same (β0, α)-compact set as
O, that is, δ(O). The (β0, α)-compact set to which Oj belongs continues being
a (β0, α)-compact set when Oj is removed from it.

Example 2: Let be β0=0.3 and α=0.1. The object O1 belongs to the set
ObjectsT oJoin, as is illustrated in Figure 2. O1 will belong to δ(O) and it must
be removed from the (β0, α)-compact set C. Also C\{O1} is a (β0, α)-compact
set.

Fig. 2. An example of ObjectsToJoin

ClustersToJoin: A (β0, α)-compact set is included in this set if it is not in
ClustersToProcess and it has at least one object Oj that satisfies one of the
following conditions:

1. Oj is α-max β0-similar to the new object O.
2. O is α-max β0-similar to Oj , and no edge of Oj in the graph GU ′,β,β0,α is

broken.

Fig. 3. A cluster that belongs to ClustersToJoin

All the objects in ClustersToJoin will be included in the same (β0, α)-
compact set as O. Notice that the clusters in ClustersToJoin are the (β0, α)-
compact sets that satisfy the Proposition 4.

Example 3: Let be β0=0.3 and α=0.1. As can be seen in Figure 3, the (β0, α)-
compact set C belongs to the set ClustersToJoin, because the new object O is
connected with it and no edge in C is broken.
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3.1 The Incremental Algorithm

The main steps of the algorithm are the following:

1. Arrival of the new object O.
2. Updating of the graph GU ′,β,β0,α.

(a) For each object in the existent (β0, α)-compact sets, its similarity with
O is calculated.

(b) The maximum β0-similarity of each object in the graph GU ′,β,β0,α, and
the set of its α-max β0-similar objects are updated.

(c) The maximum β0-similarity of O, and the set N0(O;β0, α) are deter-
mined.

(d) The sets ClustersToProcess, ClustersToJoin and ObjectsT oJoin are
built.

(e) Every time an object is added to ObjectsT oJoin it is removed from the
(β0, α)-compact set in which it was located before.

3. Reconstruction of the (β0, α)-compact sets.
(a) Let C be a set including O and all the objects included in the (β0, α)-

compact sets in ClustersToProcess.
(b) Build the existing (β0, α)-compact sets in C, and add them to the existing

(β0, α)-compact set list.
(c) Add all the objects in ObjectsT oJoin, and all the objects included in

the (β0, α)-compact sets of ClustersToJoin to δ(O).
(d) The (β0, α)-compact sets in ClustersToProcess and in ClustersToJoin

are removed from the existing (β0, α)-compact set list.

The worst case time complexity of this algorithm is O(n2), since for each
object, all the objects of existing clusters could be checked to find the most
similar objects.

4 Evaluation

The effectiveness of the proposed clustering algorithm has been evaluated using
four standard document collections, whose general characteristics are summa-
rized in Table 1. Human annotators identified the topics in each collection.

In our experiments, the documents are represented using the traditional vec-
torial model. The terms of documents represent the lemmas of the words ap-
pearing in the texts. Stop words, such as articles, prepositions and adverbs are
disregarded from the document vectors. Terms are statistically weighted using
the term frequency. To account for documents of different lengths, the vector is
normalized using the document length. We use the traditional cosine measure
to compare the documents.

The source TREC was obtained of http://trec.nist.gov, TDT2 of
http://www.nist.gov/speech/tests/tdt.html, and finally, Reuters-21578 of
http://kdd.ics.uci.edu.
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Table 1. Description of document collections

Collection Source N. of documents N. of terms N. of topics Language
AFP TREC-5 695 12330 25 Spanish
ELN TREC-4 1997 39025 49 Spanish
TDT TDT2 9824 55112 193 English
REU Reuters-21578 10369 38367 120 English

There are many different measures to evaluate the quality of clustering. We
adopt a widely used external quality measure: the Overall F1-Measure
[3]. This measure compares the system-generated clusters with the manually
labelled topics and combines the precision and recall factors. The higher the
overall F1-measure, the better the clustering is, due to the higher accuracy of
the clusters mapping to the topics.

Our experiments were focused on evaluating the quality of the clustering
produced by GLC [8], Incremental Compact Clustering [7] and the proposed
algorithm.

Table 2. Quality results obtained by clustering algorithms

Collection Algorithm Parameters Overall F1-measure
AFP GLC β0 = 0.33 0.65

Compact set β0 = 0.1 0.43
Proposed algorithm β0 = 0.25, α = 0.02 0.68

ELN GLC β0 = 0.38 0.21
Compact set β0 = 0.15 0.30

Proposed algorithm β0 = 0.22, α = 0.002 0.31
TDT GLC β0 = 0.5 0.57

Compact set β0 = 0.24 0.25
Proposed algorithm β0 = 0.45, α = 0.02 0.61

REU GLC β0 = 0.67 0.32
Compact set β0 = 0.1 0.14

Proposed algorithm β0 = 0.5, α = 0.04 0.49

The obtained results for each collection are shown in Table 2. Second column
contains the values that produce best results. The entries that are boldfaced
correspond to the method that performed the best in each document collection.

Several observations can be made by analyzing the results in Table 2. First,
in most collections the algorithm GLC obtains better results than Compact
algorithm. However, our algorithm overcomes them in all collections. Finally,
the best value of β0 parameter in our algorithm is always greater than the best
value of the Incremental Compact Algorithm, but it is always lesser than the β0
value of the GLC algorithm.
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5 Conclusions

In this paper, a new incremental clustering algorithm has been introduced. This
algorithm is based on the incremental construction of existing β0-compact sets
with radius α in the object collection. It handles a clustering criterion that gen-
erating an intermediate subset of clusters between the β0-connected components
and β0-compact sets (including both of them as particular cases). In this sense,
the proposed algorithm is more restrictive than GLC algorithm, and at the same
time, is more flexible than Incremental Compact algorithm.

Our algorithm allows the finding of clusters with arbitrary shapes, the num-
ber of clusters is not fixed a priori and it does not impose any restrictions to the
representation space of the objects. Another advantage of this algorithm is that
the generated set of clusters is unique, independently on the arrival order of the
objects.

Our experiments with standard document collections have demonstrated the
validity of our algorithm for document clustering tasks. The proposed algorithm
overcomes the GLC algorithm and the Incremental Compact algorithm in all
document collections.

The new algorithm can be used in tasks such as information organization,
browsing, topic tracking and new topic detection. Although we employ our algo-
rithm to cluster document collections, its use is not restricted to this area, since
it can be applied to any problem of Pattern Recognition where clustering mixed
objects can appear.

As future work, we will study the inclusion of this clustering criterion as
clustering routine in a dynamic hierarchical clustering algorithm.

Acknowledgements. This work was financially supported by Institutional Pro-
gram Research of UAEH (Mexico).

References

[1] Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. and Uthurusamy, R.: Advances in
knowledge discovery in databases, Cambridge, MIT Press, 1996.

[2] Jain, K. and Dubes, R.: Algorithms for clustering data, Prentice Hall, 1998.
[3] Larsen, B. and Aone, C.: Fast and Effective Text Mining Using Linear-time Doc-

ument Clustering. In Proceedings of KDD’99, San Diego, California, pp. 16–22,
1999.

[4] Lopez-Caviedez, M.: A cities stratification tool in risk zones for the healt. MSc.
Thesis, UAEH, Pachuca, Hgo. Mexico, 2004 (in Spanish).

[5] Lopez-Caviedez, M. and Sanchez-Dı́az, G.: A new clustering criterion in pattern
recognition. WSEAS Transactions on Computers 3(3), pp. 558–562, 2004.

[6] Mart́ınez Trinidad, J. F.; Ruiz Shulcloper, J. and Lazo Cortés, M.: Structuralization
of universes. Fuzzy Sets and Systems 112 (3), pp. 485–500, 2000.

[7] Pons-Porrata, A.; Berlanga-Llavori, R. and Ruiz-Shulcloper, J.: On-line event and
topic detection by using the compact sets clustering algorithm. Journal of Intelli-
gent and Fuzzy Systems (3-4), pp. 185–194, 2002.



An Incremental Clustering Algorithm Based on Compact Sets with Radius α 527

[8] Sanchez-Dı́az, G. and Ruiz-Shulcloper, J.: Mid mining: a logical combinatorial
pattern recognition approach to clustering in large data sets. In Proc. VI Ibero-
American Symposium on Pattern Recognition, Lisboa, Portugal, pp. 475–483, 2000.

[9] Sarker, R.; Abbass, H. and Newton, C.: Introducing data mining and knowledge
discovery. Heuristics & optimization for knowledge discovery, Idea Group publish-
ing, pp. 1–12, 2000.



Image Registration from Mutual Information
of Edge Correspondences

N.A. Alvarez1 and J.M. Sanchiz2

1 Universidad de Oriente, Santiago de Cuba, Cuba
aime@fastmail.ca

2 Universidad Jaume I, Castellón, Spain
sanchiz@uji.es

Abstract. Image registration is a fundamental task in image process-
ing. Its aim is to match two or more pictures taken with the same or from
different sensors, at different times or from different viewpoints. In image
registration the use of an adequate measure of alignment is a crucial is-
sue. Current techniques are classified in two broad categories: pixel based
and feature based. All methods include some similarity measure. In this
paper a new measure that combines mutual information ideas, spatial in-
formation and feature characteristics, is proposed. Edge points obtained
from a Canny edge detector are used as features. Feature characteris-
tics like location, edge strength and orientation, are taken into account
to compute a joint probability distribution of corresponding edge points
in two images. Mutual information based on this function is maximized
to find the best alignment parameters. The approach has been tested
with a collection of medical images (Nuclear Magnetic Resonance and
radiotherapy portal images) and conventional video sequences, obtain-
ing encouraging results.

1 Introduction

Image registration is the process of overlaying two or more images of the same
scene taken under different conditions. It is a crucial step of image analysis meth-
ods where the final information is obtained from the combination of various data
sources. Some applications of registration are found in remote sensing (change
detection, environmental monitoring, image mosaicing), medicine (monitoring
tissue or injury evolution, treatment verification), cartography (map updating)
and computer vision (surveillance systems, motion tracking, ego-motion).

To register two images, a transformation must be found so that each point in
one image can be mapped to a point in the second one. It can be assumed that
correspondent objects in both images present similar intensity values, and this
can be used to accurately estimate the transformation [1]. However, specially in
medical imaging modalities, one or both images could be of very low contrast,
and significant features should be used instead of intensity values.

A new approach to compute a measure of image alignment was introduced
by Viola and Wells [2], and by Maes et al. [3]. This measure, mutual information,

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 528–539, 2005.
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is based on entropy concepts developed as part of Shannon’s information the-
ory. Mutual information is used to measure the statistical dependence between
the image intensities of corresponding pixels in two images. The use of mutual
information as a criterion for image similarity has been reported quite often in
the literature in recent years. It enjoys the reputation of an accurate, robust and
general criterion.

We describe a registration method based on ideas of mutual information.
But, instead of a joint probability distribution derived from grey levels, used in
classical mutual information registration, we propose a joint probability func-
tion derived from the spatial localization of features, and features similarity.
The possibility of a multifeature approach of mutual information has been intro-
duced by Tomazevic et al. [4]. They presented a method that allows an efficient
combination of multiple features to estimate the mutual information.

Our work is mainly motivated by improving quality assessment in radiother-
apy by performing automatic registration of portal images. Portal images are
extremely low contrast images. Although still they show some steady character-
istics like bone edges. So, in the method we present edges are used as features
and edge points are determined using conventional edge extractors.

In our approach, we define a probability function that two edge points cor-
respond combining three attributes of edges: edge point location, gradient mag-
nitude, and gradient orientation. A joint probability table is computed for all
possible correspondences. A minimization of the entropy of this table is applied
to obtain the best match, and the registration parameters. The measure we are
proposing allows us to incorporate spatial information in the estimation of the
joint probability distribution. The lack of this type of information is a drawback
in classical mutual information, where only correspondences of intensity values
are used. This problem can lead to erroneous results when images contain little
information, in the case of poor image quality, low resolution, etc. Our method
has been tested with portal images from radiotherapy and from Magnetic Res-
onance (MR) modalities. It has also been tested with outdoor video sequences.

The structure of this paper is as follows: in Section 2 some related work is
discussed. Section 3 describes theoretical aspects of mutual information, and of
the approach we are proposing. In Section 4 we present results obtained using our
new measure based on mutual information and feature characteristics. Finally,
in Section 5 conclusions and further research directions are drawn.

2 Related Work

Registration algorithms have applications in many fields. Currently, research is
directed to multimodal registration and to cope with region deformations [5]. A
recent study about image registration can be found in the work by Zitova and
Flusser [6]. A more specific reference dedicated to the field of medical imaging
is the work by Maintz and Viergever [7].

Depending on the information used to bring images into alignment, current
techniques are classified in two broad categories: feature-based and pixel-based
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approaches. Feature-based approaches aim at extracting stable features from the
images to be registered. The correspondences among extracted features is found
and used to estimate the alignment between the two images. These methods tend
to be fast. Leszczynski et al. [8] manually selected contours of notable features
and used their points for registration using chamfer matching. The introduction
of the chamfer distance [9] reduces the computation time, although the method
depends on user interaction.

Pixel-based approaches use all the pixels of an image. A Fourier transform-
based cross correlation operator was used by Hristov and Fallone [10] to find the
optimal registration, accounting for translations and rotations.

In the last decade, a new pixel-based approach has been introduced: the mu-
tual information measure. Similarity measures based on this concept have shown
to be accurate measures for selecting the best rigid or non-rigid transformation
in mono and multi-modal registration. However, being an area-based technique
it has limitations, mainly due to the lack of spatial information.

Portal imaging consists of sensing therapeutic radiation applied from elec-
tron accelerators in cancer treatment [11]. They are formed when a high energy
radiation excites a sensor after being absorbed by anatomical structures as it
goes through the body. Due to the high energy of the radiation, there is a poor
contrast in portal images compared to x-ray, axial tomography or magnetic res-
onance images. Detection of patient pose errors during or after treatment is
the main use of portal images. Recently, Kim et al. [12] reported results on us-
ing classical mutual information as the measure of alignment in registration of
portal images. Good average accuracies for motion parameters estimation were
achieved, but the long computation time of the proposed method makes it diffi-
cult to estimate the patient setup error in real time. Since our method deal with
a shorter amount of data, only features characteristics, its application in real
time would be possible.

Hybrid techniques that combine pixel-based and feature-based approaches
have been proposed. In the work by Rangarajan et al. [13] mutual information
is computed using feature points locations instead of image intensity. The joint
probability distribution required by the mutual information approach is based on
distances between pairs of feature points in both images. From this distribution
a measure of the correspondence likelihood between pairs of feature points can
be derived. The authors report results with autoradiograph images.

Pluim et al. [14] extended the mutual information in a different way to include
spatial information. The extension is accomplished by multiplying the classical
mutual information by a gradient term. This term includes the gradient mag-
nitude and orientation. The method computes a weighting function that favors
small angles between gradient vectors. Then, its value is multiplied by the mini-
mum of gradients magnitude. Finally, summation of the resulting product for all
pixels gives the gradient term. This combined criterion seems to be more robust
than classical mutual information.

The method we propose provides the registration parameters of a pair of im-
ages by maximizing the mutual information computed from a joint probability
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table of feature correspondence feasibility. The probability of correspondence of
two edge points is estimated using points attributes. A search of the best regis-
tration parameters implies recomputing the joint probability table but not the
feature points themselves. The registration parameters giving the lowest entropy,
and so the highest mutual information are selected as the best alignment.

3 Registration Based on Feature Characteristics and
Mutual Information

3.1 Mutual Information

Mutual Information is a concept from information theory, and is the basis of one
of the most robust registration methods [15]. The underlying concept of mutual
information is entropy, which can be considered a measure of dispersion of a
probability distribution. In thermology, entropy is a measure of the disorder of
a system. A homogeneous image has a low entropy while a high contrast image
has a high entropy. If we consider as a system the pairs of aligned pixels in two
images, disorder or joint entropy increases with misregistration, while in correct
alignment the system has a minimum disorder or joint entropy. The mutual
information of two images is a measure of the order of the system formed by the
two images. Given two images A and B, their mutual information I(A,B) is:

I(A,B) = H(A) + H(B)−H(A,B) , (1)

with H(A) and H(B) being the entropies, and H(A,B) being the joint entropy.
Following Shannon’s information theory, the entropy of a probability distribution
P is computed as:

H = −
∑
p∈P

p log p . (2)

In classical mutual information, the joint probability distribution of two im-
ages is estimated as the normalized joint histogram of the intensity values [2].
The marginal distributions are obtained by summing over the rows or over the
columns of the joint histogram:

H(A) = −
∑

a

pT
A(a) log pT

A(a) , (3)

H(B) = −
∑

b

pT
B(b) log pT

B(b) , (4)

where pT
A and pT

B are the marginal probability distributions for certain values
of the registration parameters T . They are not constant during the registration
process because the portion of each image that overlaps with the other changes.
The registration parameters T represent a spatial mapping (rigid, affine) that
aligns one image with the other.
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The mutual information can be estimated with respect to the marginal en-
tropies pT

A and pT
B [16] as:

I(A,B) =
∑

a

∑
b

pT
AB log

pT
AB∑

a pT
A

∑
b p

T
B

, (5)

where pT
AB represents the joint probability for a given T .

3.2 Including Feature Information

Although successful results are reported when mutual information-based regis-
tration is applied, there are cases where it can fail. This may happen in low
quality images as we mention in previous section. Some researchers like Pa-
pademetris et al. [17] have proposed the inclusion of spatial information in the
registration process using an approach that integrates intensity and features in
a functional with associated weights. Results suggest that this method yields
accurate nonrigid registrations.

We propose a new measure of mutual information computed only from fea-
tures. The use of features for registration seems well suited for images where,
like in some medical images, the local structural information is more signifi-
cant than pixel’s intensity information. It also reduces, generally, the amount of
data that must be handled during registration. We use edge points as features,
and point location, edge strength and edge orientation as feature characteristics.
Edge points are a significant source of information for image alignment, they are
present in almost every conventional image, as well as in every medical imag-
ing modality like MR, computed tomography (CT) or portal images, so they
are useful for intra and inter modality registration. In optimal registration edge
points from one image should match their corresponding edge points in location
and also in edge strength and orientation.

Let a1,a2,...,aN and b1,b2,...,bM be two sets of feature points in two images
A and B. Let DT

ij denote a distance measure between two points ai and bj (e.g.
Euclidean distance) after applying the transformation T on the set of bj. When
the two images are registered, point ai will be located close to its matching
point bj . If a joint probability table is built considering the distances from each
ai to all the bj , with j=1, 2,...,M, in one of the M cells of the i-th column, there
will exist the maximum of that column, point bj, having the biggest likelihood
of being the match of ai. Re-computing the joint probability table for different
transformations T , one of the tables obtained will be the best, having the highest
likelihood of matched points and so the highest mutual information. Similarly,
with the images registered, an edge point ai will match some bj having similar
edge strength since they represent the same edge point. The edge orientation
after the mapping has to be also similar.

Denoting as Dij the distance between ai and bj , Sij the difference in edge
strength, and Oij the difference in edge orientation after the mapping, we can
estimate the mutual information I(A,B) as a function on these feature points
characteristics f(Dij , Sij , Oij).
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The principal modification we propose with respect to the classical mutual
information is the use of several feature attributes to estimate the joint prob-
abilities. We use the gradient magnitude at a feature point as an estimation
of the edge strength, and the gradient direction as an estimation of the edge
orientation:

DT
ij = ‖ai − bT

j ‖2 , (6)

Sij =
∣∣∣∣|∇ai| − |∇bj |

∣∣∣∣ , (7)

OT
ij = cos−1 ∇ai∇bT

j

|∇ai||∇bT
j |

. (8)

Note thatSij does not depend on the registrationparameters since the strength
difference (gradient magnitude difference) of two edge points remains the same af-
ter moving an image. This does not hold for the Euclidean distance DT

ij , or the
orientation difference OT

ij , which are affected by translation and rotation. Gradi-
ent magnitude at edge points can be different in corresponding edges detected in
different images due to the possibly different sensing devices used to take the im-
ages. This can be overcome by scaling the gradient magnitude at the edges in both
images, giving, for example, a relative measure between zero and one.

To estimate the joint probability of match between two edge points in two
images we introduce an exponential function based on the feature attributes, so
that if DT

ij , Sij and OT
ij are small, there is a high probability of correspondence

between those edge points. The proposed joint probability is expressed as follows:

pT
ij =

exp− (
DT

ij

γ1
+ Sij

γ2
+

OT
ij

γ3
)∑

i

∑
j exp− (

DT
ij

γ1
+ Sij

γ2
+

OT
ij

γ3
)

, (9)

with γk being constant weights. Using the probability distribution function given
in (9), mutual information is computed as described in (5), but replacing pT

AB

with pT
ij .

The main advantage of our approach compared to the classical mutual in-
formation is that this latter method does not use the neighbouring relations
among pixels at all. All spatial information is lost in the classical approach,
while our approach is precisely based on spatial information. Compared to the
method reported by Rangarajan et al.. [13], we add new feature information in
the estimation of the joint probability distribution, so the similarity criterion
is improved and this can be particularly effective with images of poor quality,
like portal images. With respect to the work reported by Pluim et al. [14], our
approach is only based on feature points, a smaller amount of data than the
classical approach, that uses all the pixels, resulting in a faster estimation of the
mutual information. The computation of Sij is done only once at the beginning
of the registration as it does not depend on T , OT

ij changes only if the transfor-
mation T involves a rotation, while DT

ij is affected by translation and rotation.
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It is also possible to control the contribution that each term introduces in the
joint probability with the weights γ1, γ2 and γ3.

3.3 Edge Detection

Extraction of edges can be done by several methods, first derivative-based meth-
ods (Sobel masks), or second derivative-based, like Laplacian of a Gaussian or
Canny [18]. In this work we have used the Canny edge detector, that selects edge
points at locations where zero-crossings of the second derivative occur. Since the
amount of resulting edge points can be big, a selection of a certain percentage of
the strongest ones can be done, using only the selected points for the registration.

3.4 Optimization

Optimization of the registration function is done by exhaustive search over the
space of parameters. We assume a rigid transformation to align one image with
the other, a rotation followed by a translation, both in 2D, so the search space is
three-dimensional. A revision of optimization strategies can be found in the work
by Maes et al.. [19] where various gradient- and non-gradient-based optimization
strategies are compared.

Since the principal purpose of our work is to prove the feasibility of a new
form of obtaining the joint probability used for the computation of the mutual
information, no analysis on the convenience of using a certain optimization has
been made. Exhaustive search is a sufficiently simple method for a bounded
three-dimensional search space, and it finds a global optimum, avoiding the
main drawback of other optimization algorithms, that may converge to a local
optimum.

4 Results

We have tested our approach with a number of pairs of images of different
sources: portal images provided from sessions of radiotherapy treatments at the
Provincial Hospital of Castellón, Spain, MR images obtained from the inter-
net (http://www.itk.org/HTML/Data.htm) and video sequences. Figure 1 shows
pairs of images used in our experiments. Note that pa the pair of MR images,
although obtained with the same sensor, are multimodal in the sense that dif-
ferent tissue characteristics are represented. So, we are also testing our method
in multimodal registration. We assume that the registration parameters to align
the second image with the first one represent a two-dimensional rigid motion.
The parameters of this transformation are denoted as θ for the angle of rota-
tion, and as (tx, ty) for the translation vector. In portal images, the true image
registration parameters were determined by human operators that selected cor-
responding landmarks in both images. For MR images and video sequences true
image registration parameters were available along with the images.
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Fig. 1. Pairs of images used in the experiments. Top: portal images obtained in two
different sessions. Middle: MR images, T1-weighted (left) and proton-density-weighted
(right). Bottom: two images of a video sequence.

Table 1 shows the errors in the estimation of the rigid transform parameters:
θ(degrees), tx and ty (mm). Results using the classical mutual information (MI)
and using our method are presented.
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Table 1. Errors in the estimation of rigid transform parameters

Classical MI Our method

θ tx ty θ tx ty

Portal Images 0.1 2.01 1.93 0.238 0.510 0.396

MR images 0.5 1.12 1.58 0.5 1.35 0.97

Video Sequence 2.02 2.36 2.52 1.30 1.01 1.04

Average 0.87 1.83 2.01 0.68 0.96 0.80

Standard Deviation 1.01 0.64 0.47 0.55 0.42 0.35

Remember that classical MI is based on grey level correspondences at every
pixel of two images, where one image has been moved to be aligned with the
other. So, to obtain the classical MI registration results, we gave values to the
registration parameters aligning an image with the other, we computed the joint
histogram of grey levels, which is an estimation of the joint probability that two
grey levels correspond, and we selected the registration parameters that provide
a maximum of the mutual information.

In the computation of pT
ij the values of γ1, γ2 and γ3 were fixed heuristically.

These values are like time constant of the decreasing exponentials that appear
in (9). In the zone where the independent variable of an exponential function
has a value similar to the time constant, the function decreases quickly. We
are interested in quick changes of correspondence probability around values of
DT

ij , Sij and OT
ij that are typical in our images. So, we registered some images

manually, and we selected the values of γ1, γ2 and γ3 as the mean of the distances
(DT

ij , Sij , OT
ij) found between correspondent feature points.

Figure 2 shows the registration results for images in Figure 1. Observe that
for the pair of images from a video sequence the mismatch of some edges after
registration is still notable. This is due to perspective effects. We assumed a 2D
rigid transformation as a motion model, that can not account for real 3D scenes.

Although we assumed a rigid transformation in our tests, there is no a pri-
ori restriction to a particular type of transformation, an affine motion model
could be used also. Figure 3 shows the joint probability tables of each pair of
images after registration using our feature-based method. Low intensity values
correspond to high likelihood of correspondence. It can be observed that the
information concentrates in an area of the table, as expected.

5 Conclusions and Further Work

The inclusion of spatial information in the computation of the mutual informa-
tion is a subject under current investigation. In this paper we have proposed
a new measure of registration that combines mutual information with spatial
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Fig. 2. Sets of edges detected in images of Figure 1 overimposed before the registration
in the left column, and after the registration in the right column

information obtained from feature attributes, like edge points. Instead of a joint
histogram of grey levels, the classical approach, we estimated a joint probability
distribution based on feature points. We introduced a probability estimate that
two feature points match based on points similarity. An optimization algorithm
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Fig. 3. Joint probability functions computed after registration for portal (left), MR
(center) and video sequence (right) images

was then applied to find the best registration parameters where a maximum of
the mutual information occurs.

The proposed approach can be used to register images from different sources,
multimodal registration, since it can combine different features as needed. A way
to compute the probability that two features in two images correspond has to
be provided.

Our approach improves the classical mutual information method, which is
based only on intensity values, by using feature characteristics. Furthermore, the
number of points used to build the probability function is significantly smaller,
only feature points, compared to the number used to build the joint histogram,
the whole image.

Further work is addressed at investigating the use of other features in the
approach, as boundaries of regions in segmented images, or their overlapping
area. The key question is which attributes to include in the computation of the
joint probability table, and how to combine them. In our work we have used as
probability functions a combination of decreasing exponentials that account for
differences in location, in edge orientation, and in edge strength, of two feature
(edge) points.
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Abstract. In this paper, an adaptive scene-based nonuniformity correc-
tion methodology for infrared image sequences is developed. The method
estimates detector parameters and carry out the non-uniformity correc-
tion based on the recursive least square filter approach, with adaptive
supervision. The key advantage of the method is based in its capacity
for estimate detectors parameters, and then compensate for fixed-pattern
noise in a frame by frame basics. The ability of the method to compensate
for nonuniformity is demonstrated by employing several infrared video
sequences obtained using two infrared cameras.
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1 Introduction

Infrared (IR) imaging systems employ an IR sensor to digitize the information,
and due to its high performance, the most used integrated technology in IR
sensors is the Focal Plane Array (FPA). An IR-FPA is a die composed of a
group of photodetectors placed in a focal plane forming a matrix of X × Y
pixels, which gives the sensor the ability to collect the IR information.

It is well known that nonuniformity noise in IR imaging sensors, which is due
to pixel-to-pixel variation in the detectors’ responses, can considerably degrade
the quality of IR images since it results in a fixed-pattern-noise (FPN) that is su-
perimposed on the true image. Even more, what makes matter worse is that the
nonuniformity slowly varies over time, and depending on the technology used,
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this drift can take from minutes to hours. In order to solve this problem, several
scene-based nonuniformity correction (NUC) techniques have been developed
[1,2,3,4,5,6]. Scene-based techniques perform the NUC using only the video se-
quences that are being imaged, not requiring any kind of laboratory calibration
technique.

Our group has been given special attention to NUC methods based on es-
timation theory. Seeking for more effectiveness in the reduction of NUC, we
propose an adaptive scene-based NUC method, based in a RLS (recursive least
square) filter [7], to estimate detector parameters and to reduce the FPN in a
fast and reliable frame by frame basis. Further, the NUC method based in a
RLS algorithm exhibits the advantages of fast convergence rate and unbiased
stationary error [8,9].

This paper is organized as follows. In Section 2 the IR-FPA model and the
NUC-RLS method is developed. In Section 3 the NUC-RLS technique is tested
with video sequences of real raw IR data captured using two infrared cameras.
In Section 4 the conclusions of the paper are summarized.

2 The NUC-RLS Algorithm for Infrared Video Sequences

The aim of this paper is to develop a scene-based NUC method for infrared video
sequences using fundamental theory in parameters estimation. We begin review-
ing the most common model used for IR-FPA technology, and then developing
a RLS filter approach for NUC.

2.1 IR-FPA Model

In this paper, we adopt the commonly used linear model for the infrared detector.
For the (ij)th detector in IR-FPA, the measured readout signal Yij at a given
time n can be expressed as:

Yij(n) = gij(n) ·Xij(n) + oij(n) (1)

where gij(n) and oij(n) are the gain and the offset of the ijth detector, and Xij(n)
is the real incident infrared photon flux collected by the respective detector.
Equation (1) is reordered for obtain the inverse model given by:

Xij(n) =
1

gij(n)
· Yij(n)− oij(n)

gij(n)
(2)

where this equation performs the NUC correction. The detector parameters have
to be estimated using only the measured signal Yij , and the corrected image is
obtained with the inverse model equation.
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Fig. 1. Scheme of the proposed Scene-Based Non-Uniformity Correction Method

2.2 NUC-RLS Filter Method

We start re-writing equation (1) in a vectorial form:

Yij(n) = ΨT
ij(n)Θij(n) (3)

where, Ψij(n) = [Xij(n), 1]T is the infrared data vector and Θij(n) =
[gij(n), oij(n)]T , is the detector parameter vector. Because the real incident IR
is unknown, the key assumption of this paper is that Xij can be initially esti-
mated from the read-out data Yij . We propose to initially estimate the real Xij

applying a spatial lowpass filter over the corrupted image as follow:

Ȳij(n) =
1

(2v + 1) 2

i+v∑
k=i−v

j+v∑
l=j−v

Ykl(n) (4)

where Ȳ is the smoothing version of Y , and only spatio correction is performed.
If we supposes that the scene is constantly moving with respect to the detector,
Ȳ can be assumed as the corrected image and the equation (3) can be used for
estimate the detector parameters with Ψ̂ij(n) =

[
Ȳij(n), 1

]T
, i.e., we suppose

that the gain parameters have a spatial normal distribution with unit mean,
and the bias have a spatial normal distribution with zero mean. Then, writing
equation (2) as:

X̂ij(n) = Yij(n)/ĝij(n)− ôij(n)/ĝij(n) (5)

we can remove the FPN of the corrupted image sequence making it a spatio-
temporal NUC method. For a recursive update of the parameters, the RLS al-
gorithm is used and all necessary equations to form the algorithm are:

Θ̂ij(n + 1) = Θ̂ij(n) + Kij(n + 1)
[
Yij(n + 1)− Ψ̂T

ij(n + 1)Θ̂ij(n)
]

Kij(n + 1) = Pij(n)Ψ̂ij(n + 1)
[
λ− Ψ̂T

ij(n + 1)Pij(n)Ψ̂ij(n + 1)
]−1
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Pij(n + 1) =
[
I −Kij(n + 1)Ψ̂T

ij(n + 1)
]
Pij(n) · 1

λ
(6)

where, Θ̂ij(n) = [ĝij(n), ôij(n)]T , is the estimated parameter vector, Kij(n) is
the correction vector, Pij(n) is the covariance matrix, and λ is the forgetting
factor. Varying λ within 0 < λ < 1, we weight the influence of past error values.

The scheme of the proposed RLS-NUC method is shown in Fig. 1. The cor-
rupted image is smoothed using a local spatial neighborhood average filter (4),
and the IR-FPA model (3) is used for estimate the gain and offset of each detec-
tor with the RLS algorithm. The difference of the readout data and the output
of the sensor model evaluated with the estimate real infrared data calculates the
error signal. Then, the estimated parameters are introduced into equation (5)
for computing the corrected image. On each step, the equation (6) is updated
with a new infrared image.

Note that if the scene is not constantly moving with respect to the IR-FPA,
on the output of the RLS-NUC method of Fig. 1, the smoothing version of Y
is obtained. Therefore, the sensor parameter can not be update and a motion
detection algorithm would be required, and it will be develop in future works.

(a)

(b)

(c)

Fig. 2. Performance of the NUC-RLS method under real IR data. (a)(b) (c) The 200−
th (1600−th) (2630−th) frames of the first set of IR data, at the left the raw corrupted
frames, at the right the corresponding frames corrected first by the Scribners method
and then by the proposed method.
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Fig. 3. The evolution of the RMSE between the reference (set 1 calibrated with black
bodies) and the corrected frames of IR data set 1. Dashdot line represents the RMSE
computed for the enhance Scribners NUC method, and solid line represents the RMSE
computed for the proposed NUC-RLS method.

3 Performance Evaluation with Real Infrared Image
Sequences

The main goal of this section is to test the ability of the proposed method
for reduce nonuniformity on real video data. The algorithm is tested with two
real infrared image sequences. The first sequence has been collected using a
128 × 128 InSb FPA cooled camera (Amber Model AE-4128) operating in the
3 − 5µm range. As an example, figure 2 (a)(b)(c) shows from left to right a
corrupted readout data frame, the corresponding corrected frame by enhance
Scribner NUC method [6], and the corresponding corrected frame by the NUC
method proposed in this paper. The NUC performance, in this case, is evaluated
employing the index root mean square error (RMSE) computed between a ref-
erence (the real IR sequence calibrated with black bodies) and the corrected IR
video sequence. Figure 3 shows the calculated RMSE for each frame corrected
using enhance Scribner’s NUC method and using the proposed method. Further,
the average RMSEs computed for the whole infrared sequence are equal to 20.15
and 16.62 for the Scribner NUC method and the NUC-RLS algorithm proposed,
respectively. Further, it can be seen in figure 2 using only the naked eye that the
non-uniformity is notably reduced by the proposed NUC method.

The second sequence of infrared data has been recorded using a 320 × 240
HgCdTe FPA cooled camera (CEDIP Jade Model) operating in the 8 − 12µm
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(a)

(b)

(c)

Fig. 4. Performance of the NUC-RLS method under real IR data. (a)(b)(c) The 280−th
(500− th) (1000− th) frames of the second set of IR data, at the left the raw corrupted
frames, at the right the corresponding frames corrected first by the Scribners method
and then by the proposed method.

range. As an example, figure 4 (a)(b)(c) shows from the left to right a corrupted
readout data frame, the corresponding corrected frame by enhance Scribner NUC
method, and the corresponding corrected frame by the NUC method proposed
in this paper. Again, it can be seen by only using the naked eye, that the non-
uniformity presented in the raw frame has been notably reduced by both NUC
method. Thus, we have shown experimentally with real IR data that the pro-
posed scene-based NUC-RLS method has the ability of notably reduces the non-
uniformity noise presented in IR-FPA sensors and improve the enhance Scribner
NUC method.

4 Conclusions

In this paper a NUC-RLS method is proposed. The main advantage of the
method is based in its simplicity using only fundamental parameter estima-
tion theory. The method has the ability of notably reducing the FPN after only
processing around 300 frames. The key assumption of the method is that the
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real infrared data is obtained from the readout data applying an average spatial
filter on each step time. It was shown experimentally using real IR data from
two technologies that the method is able to reduce the non-uniformity with a
faster convergence and low RMSE.
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Abstract. We propose a novel subtraction-based method for visualizing 
segmental and subsegmental pulmonary embolism. For the registration of a pair 
of CT angiography, a proper geometrical transformation is found through the 
following steps: First, point-based rough registration is performed for correcting 
the gross translational mismatch. The center of inertia (COI), apex and hilar 
point of each unilateral lung are proposed as the reference point. Second, the 
initial alignment is refined by iterative surface registration. Third, thin-plate 
spline warping is used to accurately align inner region of lung parenchyma. 
Finally, enhanced vessels are visualized by subtracting registered pre-contrast 
images from post-contrast images. To facilitate visualization of parenchymal 
enhancement, color-coded mapping and image fusion is used. Our method has 
been successfully applied to four pairs of CT angiography. 

1   Introduction 

Currently, computed tomography (CT) has become increasingly important in the 
diagnosis of pulmonary embolism because of the advent of multi-detector row CT 
scanners providing high spatial and excellent contrast resolution [1-3]. In CT 
angiography (CTA) images, thrombi are generally recognized as dark regions within 
enhanced pulmonary arteries. Thus the basis of pulmonary embolism assessment on 
CT images is the direct visualization of contrast material within the pulmonary 
arteries. However, it provides only limited information on perfusion defects since 
lung parenchymal attenuation changes as a result of the injection of contrast material 
are too faint to be identified on segmental and subsegmental vessels. If lung perfusion 
can be well visualized, CT may provide more accurate information on pulmonary 
embolism. 

Several methods have been suggested for visualizing perfusion defects in CTA [4]. 
Mastuni et al. [5] proposed a fully automatic detection method based on segmentation 
of pulmonary vessels to limit the search space and analysis of several 3D features 
inside segmented vessel volume. However, several false positive occurs due to flow 
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void and soft tissue between adjacent vessels. Zhou et al. [6] developed a CAD 
system for detection of pulmonary embolism in CTA images. An adaptive 3D pixel 
clustering method was developed based on Baysian estimation and Expectation-
Maximization (EM) analysis to segment vessels. Then the vessel tree was 
reconstructed by tracking the vessel and its branches in 3D space based on their 
geometric characteristics such as the tracked vessel direction and skeleton. Pichon et 
al. [7] proposed a method to highlight potential pulmonary embolism in a 3D 
representation of the pulmonary arterial tree. At first, lung vessels are segmented 
using mathematical morphology. The density values inside the vessels are then used 
to color the outside of a SSD of the vessel tree. However, pulmonary vessels exhibit a 
wider distribution of CT values from slice to slice. Thus it is difficult to visualize 
vessel structures in 3D volume using segmentation-based approach for the pulmonary 
embolism diagnosis since vessels cannot be accurately segmented and continuously 
tracked if they are largely or totally clotted by pulmonary embolism. Herzog et al. [8-
9] proposed an image post-processing algorithm for visualization of parenchymal 
attenuation in chest CT angiography, which divided into five steps: lung contour 
segmentation, vessel cutting, adaptive filtering, color-coding and overlay with the 
original images. However, the method has a limitation in the direct visualization of 
emboli by CT angiography alone. Chung et al. [10] evaluated the value of CT 
perfusion image obtained by 2D mutual information-based registration and 
subtraction for the detection of pulmonary embolism. However, they evaluated their 
method using a porcine model under the limited conditions. The 2D registration has a 
limitation to accurately align three-dimensional anatomy. In addition, the processing 
time is about 40 seconds for single slice registration. Thus, it is difficult to be useful 
and acceptable technique for clinical applications in diagnosis of pulmonary 
embolism. 

Current approaches still need more progress in computational efficiency and 
accuracy for detecting attenuation changes of pulmonary vessels in CTA. In this 
paper, we propose a novel subtraction-based method for accurately imaging perfusion 
defects and efficiently detecting segmental and sub-segmental pulmonary embolism 
in chest CTA images. For the registration of a pair of CTA, a proper geometrical 
transformation is found through the following steps: First, point-based rough 
registration is performed for correcting the gross translational mismatch. The center 
of inertia (COI), apex and hilar point of each unilateral lung are proposed as the 
reference point. Second, the rough alignment is refined by iterative surface 
registration. For fast and robust convergence of the distance measure to the optimal 
value, a 3D distance map is generated by the narrow-band distance propagation. 
Third, thin-plate spline warping is used to accurately align inner region of lung 
parenchyma. Finally, enhanced vessels are visualized by subtracting pre-contrast 
images from registered post-contrast images. To facilitate visualization of 
parenchymal enhancement, color-coded mapping and image fusion is used.  

The organization of the paper is as follows. In Section 2, we discuss how to correct 
the gross translational mismatch. Then we propose a narrow-band distance 
propagation to generate a 3D distance map and a distance measure to find an exact 
geometrical relationship in pre- and post-contrast images of CTA. Finally, nonrigid 
registration using thin-plate spline warping is described to align deformable and 
distorted area within lung parenchyma. In Section 3, experimental results show how 
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our registration method accurately and rapidly aligns the lungs. This paper is 
concluded with brief discussion of the results in Section 4. 

2   Lung Perfusion Imaging 

Fig. 1 shows the pipeline of our method for lung perfusion imaging in pre- and post-
contrast images of chest CTA. In order to extract the precise lung region borders, 
pulmonary vessels and main airway, we apply the automatic segmentation method of 
Yim et al. [11] to our experimental datasets. Since our method is applied to the 
diagnosis of pulmonary embolism, we assume that each CT scan is almost acquired at 
the maximal inspiration and the dataset includes the thorax from the trachea to below 
the diaphragm.  

 

 

Fig. 1. The pipeline of proposed method for visualization of pulmonary embolism  

2.1   Point-Based Rough Registration 

Although pre- and post-contrast images of chest CT angiography are acquired at the 
maximal inspiration, the position of lung boundaries between pre- and post-contrast 
images can be quite different according to the patient’s unexpected respiration and 
small movement. For the efficient registration of such images, an initial gross 
correction method is usually applied. Several landmark-based registration techniques 
have been used for the initial gross correction. To achieve the initial alignment of lung 
boundaries, these landmark-based registrations require the detection of landmarks and 
point-to-point registration of corresponding landmarks. These processes much 
degrade the performance of the whole process. 

To minimize the computation time and maximize the effectiveness of initial 
registration, we propose a point-based rough registration using hilar point and 
evaluate our method with center of inertia and apex. As shown in Fig. 2(c), hilar point 
is where the outermost  upper  lobe vein crosses  the basal  artery  on its way to the left  
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                    (a) (b) (c) 

Fig. 2. The effect of point-based rough registration as an initial alignment (a) COI-based 
registration (b) apex-based registration (c) hilar point-based registration   

atrium. The initial registration of two volumes is accomplished by aligning the COI, 
apex and hilar point, respectively. 

The processing time of point-based rough registration is dramatically reduced since 
it does not require any anatomical landmark detection. In addition, our method leads 
to robust convergence to the optimal value since the search space is limited near the 
lungs. 

2.2   Iterative Refinement Using Surface Registration 

In a surface registration algorithm, the calculation of the distance from a surface 
boundary to a certain point can be done using a preprocessed distance map based on 
chamfer matching. Chamfer matching reduces the generation time of a distance map 
by an approximated distance transformation compared to a Euclidean distance 
transformation. However, the computation time of distance is still expensive by the 
two-step distance transformation of forward and backward masks. In particular, when 
the initial alignment almost corrects the gross translational mismatch, the generation 
of a 3D distance map of whole volume is unnecessary. From this observation, we 
propose the narrow-band distance propagation for the efficient generation of a 3D 
distance map. 

To generate a 3D distance map, we approximate the global distance computation 
with repeated propagation of local distances within a small neighborhood. To 
approximate Euclidean distances, we consider 26-neighbor relations for 1-distance 
propagation as shown in Eq. (1). The distance value tells how far it is apart from a 
surface boundary point. The narrow-band distance propagation is applied to surface 
boundary points only in the contrast volume. We can generate a 3D distance map very 
fast since pixels are propagated only in the direction of increasing distances to the 
maximum neighborhood. 

))(),1)((min(min)( )(26 iDPjDPiDP ineighborsj += −∈  . (1) 

The distance measure in Eq. (2) is used to determine the degree of resemblance of 
lung boundaries of mask and contrast volume. The average of absolute distance 
difference, AADD, reaches the minimum when lung boundary points of mask and 
contrast volumes are aligned correctly. Since the search space of our distance measure 
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is limited to the surrounding lung boundaries, the Powell’s method is sufficient for 
evaluating AADD instead of using a more powerful optimization algorithm. 

−
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where )(mask iD  and )(contrast iD  is the distance value of mask volume and the distance 

value of the 3D distance map of contrast volume, respectively. We assume that 
)(mask iD  are all set to 0. 

CN  is the total number of surface boundary points in mask 

volume.  

2.3   Non-rigid Registration Using Thin-Plate Spline Warping 

Affine transformation in iterative surface registration is insufficient for accurate 
modeling of inner lung parenchyma since the lung volumes move in a non-linear way 
influenced by a combination of body movement, heart beats, and respiration. Thus we 
use a thin-plate spline warping using 10 control points of vascular structure in each 
unilateral lung. Our method leads to a non-linear volumetric warping for aligning 
inner region of lung parenchyma and detecting pulmonary embolism accurately.  

Thin-plate splines can be defined as a linear combination of radial basis functions 
as shown in Eq. (3). A transformation between two volumes can be defined by three 
separate thin-plate splines. 

=

−++++=
N

i
ii zyxbzayaxaazyxt

1
4321 )),,((),,( φθ , ss =)(θ , (3) 

where iφ  is ith control point. The coefficient ia  characterizes the linear part of the 

transformation and the coefficient ib  characterizes the non-linear part of the 

transformation. 

2.4   Enhanced Vessel Visualization 

A traditional approach for visualizing enhanced vessels after registration is to subtract 
registered pre-contrast volume from post-contrast volume. However, it is difficult to 
easily recognize perfusion defects using a traditional subtraction technique when lung 
parenchymal changes as a result of the injection of contrast material are too small. 
After subtraction, we apply color-coded mapping to only lung parenchyma and image 
fusion with original image. 

To facilitate visualization of parenchymal enhancement, the subtraction image is 
mapped onto a spectral color scale, which is interactively controlled by modifying 
center and width of a spectral color. Then the resulting color-coded parenchymal 
images are overlaid onto the corresponding slice of contrast volume. For overlaying, 
all non-parenchymal pixels are replaced by the original pixels of the respective slice 
position and displayed in the usual CT gray-scale presentation. 
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3   Experimental Results 

All our implementation and test were performed on an Intel Pentium IV PC 
containing 3.4 GHz and 2.0 GB of main memory. Our method has been applied to 
four clinical datasets with pulmonary embolism, as described in Table 1, obtained 
from Siemens Sensation 16-channel multidetector row CT scanner. The image size of 
all experimental datasets is 512 x 512. The pre- and post-contrast images of chest CT 
angiography are acquired under the same image conditions excepting the injection of 
contrast material. 

Table 1. Image conditions of experimental datasets 

(mm) 
Subject # Image size Slice number Pixel size Slice thickness 
Pre-contrast 512 x 512 258 0.60 x 0.60 1.5 1 
Post-contrast 512 x 512 258 0.60 x 0.60 1.5 
Pre-contrast 512 x 512 175 0.61 x 0.61 1.5 2 
Post-contrast 512 x 512 175 0.61 x 0.61 1.5 
Pre-contrast 512 x 512 221 0.69 x 0.69 1.5 3 
Post-contrast 512 x 512 221 0.69 x 0.69 1.5 
Pre-contrast 512 x 512 214 0.59 x 0.59 1.5 4 
Post-contrast 512 x 512 214 0.59 x 0.59 1.5 

                                                                                                                                              

The performance of our method is evaluated with the aspects of visual inspection, 
accuracy and total processing time. Fig. 3 shows the results of color-coded mapping 
and image fusion on original image. Segmental and subsegmental emboli are detected 
predominantly in the upper lobe of right and left lungs as shown in Fig. 3. We can 
easily recognize the occlusion of the corresponding segmental and subsegmental 
arteries as color-coded mapping and fusion. 

 

    
  

                      (a) (b) (c) (d) 

Fig. 3. The results of color-coded mapping and image fusion in subject 1 

Fig. 4 shows how the error, the average of root-mean squared error of 
corresponding control points, is reduced by our rough registration. The average RMS 
error reduction of COI- and hilar point-based registration is 0.32mm and 0.27mm, 
respectively. However, 0.72mm is increased in the average RMS error using apex-
based rough registration. 
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Fig. 4. The accuracy evaluation of corresponding points after rough registration   

 
Fig. 5 shows how the error, the average of absolute distance difference (AADD), is 

reduced by our rough registration and subsequent iterative surface registration. The 
COI-, apex- and hilar point-based registration is used as rough registration shown in 
Fig. 5(a), (b) and (c), respectively. Since positional difference is almost aligned by our 
rough registration, iterative surface registration rapidly converge to the optimal 
position. In almost clinical datasets, the AADD errors are less than 0.6 voxels on 
optimal solution. 

 

   
(a) (b) (c) 

 
Fig. 5. The accuracy evaluation of corresponding lung boundaries using AADD error per 
iteration    

 
Fig. 6 shows the results of our method (Method 3) of four patients in comparison 

with COI-based rough registration (Method 1) and apex-based rough registration 
(Method 2). The average of RMS errors of Method 1 and Method 3 as shown in Fig. 6 
(a) and (c) are all 1.12mm. In contrary to them, the average of RMS error of Method 2 
as shown in Fig. 6 (b) is 1.25mm. In conclusion, the average of RMS error is 
relatively small when COI- or hilar point-based registration is used as the initial 
alignment. The total processing time is summarized in Table 2 where the execution 
time is measured for registration. For four subjects, it takes less than 10 minutes. 
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(a) (b) (c) 

Fig. 6. The accuracy evaluation of corresponding lung boundaries using AADD error per 
subject   

Table 2. The comparison of processing time for registration 
(mm) 

   

4   Conclusion 

We have developed a new subtraction-based method for visualizing perfusion defects 
in pre- and post-contrast images of CT angiography. Using the rough registration, the 
initial gross correction of the lungs can be done much fast and effective without 
detecting any anatomical landmarks. In the subsequent iterative surface registration, 
our distance measure using a 3D distance map generated by the narrow-band distance 
propagation allows rapid and robust convergence to the optimal value. Nonrigid 
registration using thin-plate spline warping can exactly aligns inner region of lung 
parenchyma. Our enhanced vessel visualization makes the recognition of attenuation 
variations within lung parenchyma easily. Four pairs of pre- and post-contrast images 
of CT angiography have been used for the performance evaluation with the aspects of 
visual inspection, accuracy and processing time. In visual inspection, we can easily 
recognize the occlusion of the corresponding segmental and subsegmental arteries. 
The registration error of our method is less than 1.12mm. All our registration process 
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is finished within 10 minutes. Accurate and fast result of our method can be 
successfully used to visualize pulmonary perfusion for the diagnosis of pulmonary 
embolism. 
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Universidad del Páıs Vasco
webjublr@lg.ehu.es, manes@we.lc.ehu.es

Abstract. In this work several sets of categories obtained by a statisti-
cal clustering algorithm, as well as a linguistic set, were used to design
category-based language models. The language models proposed were
evaluated, as usual, in terms of perplexity of the text corpus. Then they
were integrated into an ASR system and also evaluated in terms of sys-
tem performance. It can be seen that category-based language models
can perform better, also in terms of WER, when categories are obtained
through statistical models instead of using linguistic techniques. They
also show that better system performance are obtained when the lan-
guage model interpolates category based and word based models.

1 Introduction

Automatic Speech Recognition and Understanding (ASRU) Systems are cu-
rrently based on Statistical Language Modeling. Thus, large amounts of training
data are required to get a robust estimation of the parameters of the model.
However, the availability of large amounts of training material is not always as-
sured when designing many of usual ASRU applications. As an example, the text
corpus needed to train a dialogue system consists of transcriptions of dialogue
turns uttered by potential users of the system to be developed. These speakers
reproduce the natural behavior of further users including spontaneous, uncons-
trained and most times noisy speech. This procedure only allows to obtain a
limited corpus to train the language model of the ASRU system, smaller than
the usual text databases.

One of the ways to deal with sparseness of data is to cluster the vocabulary
of the application tasks into a reduced number of categories. Replacing words
by the category they belong to entails significant reductions in the number of
parameters to be estimated. Thus, smaller training corpora can be used. On the
other hand, new words belonging to previously defined categories can be directly
added to the vocabulary of the task without changing the training corpus.
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The first issue when generating a category-based language model is the appro-
priate selection of word classes. Morphosyntactic and/or semantic knowledge is
usually applied to manual clustering of linguistic categories (e.g. part of speech
POS) [1]. This procedure leads to some perplexity reduction when applied to
limited domain tasks. However in less constrained domains these models do not
usually improve on word-based language models. Alternatively, iterative cluste-
ring algorithms using theoretic information criteria have also been proposed to
reduce perplexity in large corpora [2].

In this work the categories obtained through a statistical clustering algorithm
are compared with a classical linguistic set of POS. Several category-based lan-
guage models are evaluated and compared in terms of ASR system performance.
Thus, not only the perplexity of a text test set is evaluated but also the WER
obtained through the ASR system when different category-based language mo-
dels are compared. On the other hand, a category-based language model will
prove coarser than a word-based model and could lose accuracy in predictions
of the next word. In such a case, the language model is only based on relations
between word classes and on the probability distribution of words into classes.
Alternatively a second approach proposes a language model that interpolates the
information associated with the relations between categories and the information
associated to the relations between words [3].

These proposals were evaluated through a set of recognition experiments ca-
rried out on a Spanish human-machine dialogue system. The experiments carried
out shows that category-based language models can also perform better in terms
of WER, when categories are obtained through statistical models than for lin-
guistic categories, even for limited domains. They also show that better system
performance is obtained when the language model interpolates category-based
and word-based models.

Section 2 deals with the method for classifying words into categories. The
statistical clustering algorithm is fully explained and the POS categories are
presented. In Section 3 the two category-based language model are described and
their integration into the decoder is presented. Section 4 deals with experimental
evaluation of the proposals and Section 5 presents the main conclusions and
suggestions for future work.

2 Classification of Words into Categories

A classical clustering algorithm has been used in this work to automatically
obtain a set of categories from a text corpus. The goal of a clustering algorithm
is to group samples with high internal similarity. For this purpose, an objective
function to be optimized should be defined [4]. This function will also measures
the quality of any partition of the data. Thus, the clustering algorithm has
to find the partition of the initial set of samples that optimizes the objective
function. Section 2.1 fully explains the objective function to be maximized in
the clustering algorithm presented in Section 2.2. Finally Section 2.3 presents
the linguistic set of categories used for comparison purposes.
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2.1 Objective Function: Class Bigram Models

We first describe a class bigram model which is the basis of the objective function
to be selected [5]. Suppose a distribution of the W words of the vocabulary
into NC classes using a function C(·), which maps a word w into a class Cw,
C(·) : w → Cw. If each word is assigned to a single class, a word bigram (wi, wj)
will correspond to the class bigram (Cwi , Cwj ).

According to a class bigram model:

p(wj |wi) = p(wj |Cwj )p(Cwj |Cwi) (1)

Given a training corpus and the map function C, p(wj |Cwj ) and p(Cwj |Cwi)
can be estimated taking into account the number of times that particular events
have been seen in the training corpus, N( ).

p(w|Cw) =
N(w)
N(Cw)

(2)

p(Cwj |Cwi) =
N(Cwi , Cwj )

N(Cwi)
(3)

The clustering algorithm consist of finding the function C that maximizes the
log-likelihood function of the class bigram model described in 1, on the training
corpus.

The likelihood is defined as the joint probability of the training samples and
using the bigram model is expressed as follows:

P (w1 . . . wN ) = P (w1)
N∏

n=2

P (wn|wn−1) (4)

From equation 4, the function log-likelihood is developed for a bigram class
model:

Fbi(C) =
T∑

n=1
logP (ωn|ωn−1) =

∑
v,w

N(v, w) log p(w|v) =

=
∑
w

N(w) log N(w)
N(Cw) +

∑
Cv,Cw

N(Cv, Cw) log N(Cv,Cw)
N(Cv) =

=
∑

Cv ,Cw

N(Cv, Cw) logN(Cv, Cw)− 2
∑
C

N(C) logN(C) +
∑
w

N(w) logN(w)

(5)
where each term is defined in 1.

2.2 Clustering Algorithm

The goal of this algorithm is to find the function C , thus, the way the words
can be grouped, which maximizes the log-likelihood function of the bigram class
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Table 1. Notation for the expression 5

Fbi(C) Log-likelihood function for a bigram class model.
T Training corpus size.
C Word class.
Cv, Cw Classes containing the words v and w respectively.
N(C) Number of occurrences of the C class in the training corpus.
N(Cv, Cw) Number of occurrences of the Cv class after Cw class have

been seen in the training corpus.
N(w) Number of times w word has appeared in the training.

model, Fbi(C) on the training corpus. An iterative clustering algorithm based on
sample exchange is used for this purpose [5].

Iterative algorithm.
Start with some initial mapping: NC classes and C : w → Cw.
do
for each w of the vocabulary do
for each class k do
- tentatively exchange word w from class Cw to class k.
- compute likelihood for this tentative exchange.

exchange word w from class Cw to class k which maximizes the likelihood.
until the stopping criterion is met.

The result of such algorithms strongly depends on the initialization, thus
different classes are generated depending on the initial distribution of words into
categories.

The initial distribution in [5] is based on placing each of he most frequent
words in a single class and the rest in the last class. This technique lets the
most frequent words determine the way the words are grouped because they
are evaluated first in the process. However, the algorithm used does not permit
the use of this technique with the same result because putting each of the most
frequent words in a single class means they are unable to leave that class until
they are not only word in it. Therefore, a different distribution has been selected
[6], consisting of placing each of the most frequent words each in a class, except
for the less frequent NC − 1, which are placed in the NC − 1 remaining classes.

2.3 Linguistic Categories

The categories obtained from a text corpus, using classical clustering algorithms,
have been compared to the linguistic categories obtained from a morphosyntactic
analyzer: “Freeling”, in terms of ASR system performance.

“Freeling” is a free software developed in Barcelona’s Polytechnic University
by the talp group. The FreeLing package consists of a library providing language
analysis services (such as morphosyntactic analysis, date recognition, PoS ta-
gging, etc.) In this case, only morphosyntactic analysis is used to obtain classes
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comparable with those obtained automatically. The classes given by the Freeling
correspond to the following “eagle” labels: Adjectives, adverbs, determinants,
names, verbs, pronouns, conjunctions, interjections, prepositions and another
class was defined for the word P, corresponding to silences.

3 Category-Based Language Models into a Speech
Recognition System

In this section two category-based language models are defined and then inte-
grated into a speech recognition system.

3.1 A Language Model Based on Category N-Grams

In a first approach, the language model only collects the relations between word
groups, “forgetting” the relations between particular words [7].

The probability of a sentence (w1, . . . , wN ) can be represented as a product
of conditional probabilities:

P (w1, . . . , wN ) = P (w1)
N∏

n=2

P (wn|w1 . . . wn−1) (6)

where P (wn|w1 . . . wn−1) represents the probability of wn when the sequence
of words (w1, . . . , wn−1) has been observed.

Assuming that when the categorization process is finished, the set of words
in the lexicon belongs to a smaller group of “a priori” defined categories, the
probability of wN conditioned to its N−1 predecessors can be defined as follows
[7] [8]:

P (wN |w1 . . . wN−1) =
Nc∑
j=1

P (wN |Cj)P (Cj |C1 . . . Cj−1) (7)

where NC is the number of different word categories.
The classification algorithm restricts the membership of words to a single

class, so a single label corresponding to a category is assigned to a word and the
above equation assumes the follows form:

P (wN |w1 . . . wN−1) = P (wN |CwN )P (CwN |Cw1 . . . CwN−1) (8)

The parameters of the distributions of words into categories are calculated
as follows:

P (w|C) =
N(w,C)∑

w′
N(w′, C)

(9)

where N(w,C) is the number of times a word w is labeled by C in the training
corpus.
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On the other hand, P (CwN |Cw1 . . . CwN−1) represents the probability of CwN

being the next class if up to now Cw1 . . . CwN−1 category sequence has been
observed and Cwi represents the class wi belongs to.

It is important to notice that probabilities are calculated using category n-
gram based models, analogous to word n-grams, so the history of an event is
reduced to the n-1 previous events, thus:

P (wN |w1, . . . , wN−1) ∼= P (wN |wN−n+1, . . . , wN−1) (10)

and expression 8 is rewritten as:

P (wN |w1 . . . wN−1) = P (wN |CwN )P (CwN |CwN−n+1 . . . CwN−1) (11)

An automatic speech recognition system based on the Viterbi algorithm looks
for the sequence of states that has the maximum probability given the sequence
of acoustic observations, and thus estimates the sequence of words the speaker
pronounced

The transition probability between each pair of words is calculated in accor-
dance with expression 11. This model only considers the probability distribution
of words into categories and the category n-gram model.

3.2 Interpolating Category and Word N-Gram Models

The category based language model described in the equation 11 does not need
so many parameters as the one based on word n-grams. Thus, it may be better
estimated, with a higher confidence level. But it fails to capture the relationships
between particular words so it is less accurate in predicting the next word.

The hybrid model to be described try to integrate both information sources,
i.e. the one relative to relationships between particular words and the one asso-
ciated with the relationships between groups of words.

This hybrid model is an interpolation of a model based on category n-grams
and a model based on word n-grams. It is defined as a linear combination of
both models. The probability of the word wN conditioned to the N-1 previous
words, would be represented as follows [3]:

P (wN |w1 . . . wN−1) = λP (wN |w1 . . . wN−1)+

+(1− λ)P (wN |w1 . . . wN−1,Mc)
(12)

If n-grams based models are used as in the previous sections:

P (wN |w1 . . . wN−1) = λP (wN |wN−n+1 . . . wN−1)+

+(1− λ)
C∑

j=1
P (wN |Cj)P (Cj |Cj−n+1 . . . Cj−1)

(13)

and assuming that each word belongs to a single class
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P (wN |w1 . . . wN−1) = λP (wN |wN−n+1 . . . wN−1)+

+(1− λ)P (wN |CwN )P (CwN |CwN−n+1 . . . CwN−1)
(14)

In this case the speech recognizer calculates the transition probability be-
tween each pair of words taking into account three probability distributions:
distribution of words into categories, category n-grams and word n-grams.

4 Experimental Results

Several speech recognition experiments were done using a human-machine dia-
logue corpus in Spanish, BASURDE [9]. The speakers ask for information about
long distances trains schedules, destinations and prices by telephone (8KHz). It
was acquired by the ”Wizard of Oz” technique and has 227 dialogues uttered
by 75 speakers, 43 male and 32 female. The total number of phrases is 1657
and 1340 of them are used for training and the remaining 308 for testing. The
starter set of the vocabulary consists of 788 words and the total number of words
is 21088.

The language models proposed in this work were evaluated, as usual, in terms
of perplexity (PP) of the text corpus. Then they were integrated into an ASR
system and evaluated in terms of both, Word Error Rate (WER) and Category
Error Rate (CER).

Continuous HMM were used to model a set of context independent units
corresponding to the basic set of Spanish phones. These models were previously
trained over a task-independent phonetically balanced Spanish corpus (SEN-
GLAR) uttered by 57 speakers and then integrated into the ASR system.

K-testable grammars in the strict sense (K-TSS) were used to get the pro-
posed language models. This formalism is considered as the grammatical ap-
proach to the well known n-gram models [10]. The ASR consists finally in a sin-
gle stochastic automaton integrating acoustic, lexical, word-based and category-
based language models along with the required smoothing technique. The search
of most probable hypothesis over the full network is based on the Viterbi algo-
rithm.

Category based language models based on 5, 10 and 20 categories, obtained
through the clustering algorithm, as well as the language model based on the 10
linguistic classes obtained by “Freeling” were evaluated in these experiments. For
comparison purposes a classical word-based language model was also considered.
In such a case, the number of classes is equal to the size of the vocabulary, i.e. 788.
Table 2 shows the perplexity evaluation for k=2, 3, and 4 models. This table
reveals, as expected, important reductions of the PP values for the category-
based language models. These PP values increased with the number of categories
but similar value was achieved by linguistic and statistical methodologies for
equal number of classes.

A first evaluation of the defined categories was achieved using the word se-
quences obtained through the ASR system. A conventional word-based language
model was integrated into the ASR system. Then, once the recognition process
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Table 2. Perplexity values for a classical word-based language model (788 classes) and
for language models generated using a labeled corpus with 5, 10 and 20 automatically
obtained classes on one hand and with 10 linguistic classes on the other hand

PP without categories statistical clusterings linguistic classes
788 words 5 10 20 10 (9+1)

k=2 29.8 3.06 4.73 7.38 5.15
k=3 27.36 3.02 4.69 7.35 4.64
k=4 27.65 3.03 4.70 7.83 4.36

Table 3. Values of CER when the word based language model is used but the recog-
nized phrases are labeled with the labels corresponding to 5, 10 and 20 automatically
obtained categories on one hand and to 10 linguistic categories on the other hand.
The value of (CER ≡ WER) when the word based language model is used and no
categories are considered, i.e. 788 categories, also appears.

without categories statistical clustering linguistic classes
788 words 5 10 20 10 (9+1)

(WER ≡ CER)
CER(%) 38.19 27.97 31.43 33.87 39.96

was finished, both the sequences of words obtained by the recognizer and the
reference sequences of words were labeled according to the different set of ca-
tegories defined. Thus, a Category Error Rate (CER) can be calculated. Table
3 shows that CER is clearly lower for statistical categories than for linguistic
ones. In this case, CER is similar, even greater, to CER obtained when any
clustering was considered. Thus, the confusions, i.e. substitution errors, between
words belonging to different cluster seems to be lower for statistical categories
than for linguistic ones. Let us note that in certain sense linguistic categories
also model the order of the phrase in agreement with the general syntax of the
language. However this fact does not seem important in this case, perhaps due
to the natural and spontaneous type of speech in the corpus.

For the final evaluation the category based models described in the section
above were integrated into the ASR system.

Table 4 shows the WER and CER obtained when the category based language
model, defined in section 3.1 was used. Statistical and linguistic categories were
compared using corresponding K-TSS language models. Reductions in CER and
WER can be seen in the mentioned table when statistical categories were used.
However, the integration of the category based language model does not improve
the system performance measured in terms of both WER and CER (see table 3
to compare).

Finally the hybrid language model interpolating a category based model and
a word based model (see section 3.2) was integrated into the ASR system. Table
5 shows WER and CER obtained when statistical and linguistic categories were
considered in the hybrid model. In this table an important reduction in CER and
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WER can be seen when compared to Table 4. The interpolation of word-based
models and category-based models improves the WER and CER obtained by a
simple category category-based language model. Nevertheless, the final perfor-
mance of the ASR system is similar, maybe a little better, than the reference
ASR system which did not consider any category model.

Finally let us note that the objective function used in the statistical clustering
algorithm seems to work quite well since the values of CER are quite low for
these categories.

Table 4. Values of WER and CER using a category based language model with 5, 10
and 20 statistical clusters on the one hand and 10 linguistic classes on the other one

statistical clustering linguistic classes
number of classes 5 10 20 10 (9+1)

WER (%) 51.06 47.12 46.57 52.42
CER (%) 33.07 36.20 39.63 41.33

Table 5. Values of WER and CER using a hybrid language model where the category
based language model has been generated with 5, 10 and 20 statisitcal clusters on the
one hand and with 10 linguistic classes on the other one

statistical clustering linguistic classes
number of classes 5 10 20 10 (9+1)

WER (%) 38.34 37.92 38.16 37.67
CER (%) 27.39 30.2 33.02 40.35

5 Conclusions and Future Work

In this work several sets of categories obtained by a statistical clustering algo-
rithm, as well as a linguistic set, were used to design category-based language
models. The language models proposed were evaluated, as usual, in terms of
perplexity of the text corpus. Then they were integrated into an ASR system
and also evaluated in terms of system performance.

The experiments carried out shows that category-based language models can
perform better, also in terms of WER, when categories are obtained through
statistical models instead of using linguistic techniques, even for limited domains.
They also show that better system performance are obtained when the language
model interpolates category based and word based models.

These preliminary experiments have shown the power of statistical clustering
of words for language modeling, even for limited domain application tasks. How-
ever, an in-depth experimentation is required to explore new objective functions
and initializations in cluster algorithm. Alternative formalism s to interpolate
and integrate models into the ASR system should also be explored.
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Abstract. The purpose of this work is to present a comparative analysis of 
knowledge-based systems, artificial neural networks and statistical clustering 
algorithms applied to the classification of low resolution stellar spectra. These 
techniques were used to classify a sample of approximately 258 optical spectra 
from public catalogues using the standard MK system. At present, we already 
dispose of a hybrid system that carries out this task, applying the most 
appropriate classification method to each spectrum with a success rate that is 
similar to that of human experts. 

1   Introduction 

This work is part of a global project devoted to the study of the last phases of stellar 
evolution. Our main purpose is the development of an automatic system for the 
determination of physical and chemical stellar parameters by means of optical 
spectroscopy and artificial intelligence techniques. This system can contribute to 
evolutionary studies in Astrophysics that discover and follow the temporal changes of 
the physical and chemical conditions of stars. 
 Spectroscopy is a fundamental tool in the analysis of a star’s physical conditions 
(temperature, pressure, density, etc.) and chemical components (H, He, Ca, K, etc.). 
In general terms, a stellar spectrum consists of a black body continuum light 
distribution, distorted by the interstellar absorption and reemission of light, and by the 
presence of absorption lines, emission lines and molecular bands [1]. 

 We have collected a sample of approximately 400 stellar spectra from astronomical 
observations carried out by several telescopes. The stellar spectra are collected from 
telescopes with appropriate spectrographs and detectors. Observers collect the flux 
distribution of each object and reduce these data to obtain a one-dimensional spectrum 
calibrated in energy flux (erg-1cms-2s-1Å-1) and wavelength (Å). 
     In order to extract useful information from the individual spectra and to study the 
stellar evolution in the whole sample, we must complete a solid and systematic 
spectral classification in the current Morgan-Keenan system (MK). 
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The MK classification system was firstly proposed in 1943 by Morgan, Keenan & 
Kellman, and has experienced many revisions ever since [2]. This two-dimensional 
system is the only one that is widely used for stellar classification. One of its main 
advantages is that MK classifications are often static, because they are based on the 
visual study of the spectra and on a set of standard criteria. However, the same spectra 
can be classified differently by different experts and even differently by the same 
person at different times. This classification system quantifies stellar temperatures and 
levels of luminosity. Stars are divided into groups, i.e. spectral types, that are mainly 
based on the strength of the hydrogen absorption lines and on the presence or absence 
of some significant lines of Ca, He, Fe, and molecular bands. The temperature of the 
stars is divided into a sequence called OBAFGKM, ranging from the hottest (type O) 
to the coolest (type M) stars. These spectral types are further subdivided by a decimal 
system, ranging from 0 (hottest) to 9.5 (coolest). In addition, a luminosity class (from 
I to V) is assigned to the star, which depends on the intrinsic stellar brightness.  
 Table 1 illustrates the main properties of each spectral type in the MK standard 
classification system. 

Table 1. Main spectral features in the MK system 

Type Color Prominent Lines 
O Bluest Ionized He  
B Bluish Neutral He, Neutral H  
A Blue-white Neutral H  
F White Neutral H, Ionized Ca  
G Yellow-white Neutral H, Strongest Ionized Ca  
K Orange Neutral Metals (Ca, Fe), Ionized Ca 
M Red Molecules and Neutral Metals  

 
 The estimation of the stellar parameters is often carried out by human experts, 
who analyse the spectra by hand, with no more help than their own experience. These 
manual analyses usually lead to a MK classification of the spectra. The manual 
classification techniques are often based on the visual study of the spectra and on a set 
of standard criteria [1]. Although this manual method of classification has been used 
by the researchers and the astrophysicists widely and successfully along the years, it 
is no longer viable because of the spectacular advance of the objects collection 
technologies, which allow us to obtain a huge amount of spectral data in a relatively 
short time. Since the manual classification of all the spectra that are currently 
available would involve a considerable increase in human resources, it is highly 
advisable to optimise the manual procedure by means of automatic, fast and efficient 
computational techniques. 
 In the course of the last 10 years, research in the field of spectral classification has 
been focused on either the need for the development of automatic tools, or on the 
revision and improvement of the manual techniques. 
 As for the application of artificial intelligence techniques to the design of 
automatic classification systems, some well-known previous works have also applied 
artificial neural networks to the problem of stellar classification [3], obtaining 
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classifications with diverse resolution grades. Our research team has contributed to 
this research line with the development of various fuzzy experts systems for the 
classification of super giant, giant and dwarf stars. A complete description of our 
previous works can be found in [4]. 
 Our intention is not to test models or techniques that have already demonstrated 
their suitability in this problem, but rather to integrate several models of artificial 
neural networks and clustering algorithms with our previous expert systems. 
Combining all the techniques, we intend to formalise a hybrid system able to 
determine the most appropriate method for each spectrum type and to obtain on-line 
MK classifications through an Internet Stellar Database (http://starmind.tic.udc.es). 

2   Classification Techniques 

The following sections start by describing the spectral data that were used to train and 
test the automatic classification techniques. Secondly, we describe the morphological 
analysis algorithms that were applied to the spectra before presenting them to the 
automatic techniques. Finally, we present the different neural networks and clustering 
algorithms that were tested and we contrast their results. 

2.1   Astrophysical Data 

We have chosen a complete and consistent set of spectra in order to design and test 
the neural networks and clustering algorithms that will be applied to the problem of 
stellar classification.  
 The 258 selected spectra proceed from the public catalogues of  Silva [4] (28 
spectra sampled in the range of 3500 to 8900 Å with 5 Å of spectral resolution), 
Pickles [1] (97 spectra sampled in the range of 1150 to 25000 Å with 5 Å of spectral 
resolution) and Jacoby [5] (133 spectra sampled in the range of 3510 to 7426 Å with 
1.4 Å of spectral resolution). The selected spectra cover all the types and luminosities 
of the MK system and are sufficiently representative, because they offer a continuous 
transition of the spectral features between each spectral type and its adjacent types. 
These spectra were previously analyzed and corrected by human experts that 
collaborate in the project. 
 In order to guarantee the generalization of the designed networks and algorithms, 
we have built the training set with approximately 50% of the spectra of each spectral 
type, leaving around 15% of them to validate the training and the remaining 35% to 
evaluate the classification capability of each model. 
 The neural networks and the clustering techniques of this experimentation have 
been designed and tested so as to consider both full spectra and spectral parameters as 
input patterns. Before presenting the spectra to the automatic techniques, we carry out 
a morphological analysis of all the spectra in order to obtain the values of the 
parameters that characterize each spectrum separately. 

2.2   Morphological Analysis 

The patterns that are presented to both neural networks and clustering algorithms 
were obtained automatically by using signal processing techniques to measure the 
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spectral peculiarities (absorption and emission lines, spectral energy, molecular 
bands, etc.). 
 In particular, we measure the 25 spectral features that are described in Table 2. 
These spectral parameters can be grouped into three general types: 

• Absorption and emission lines: including hydrogen, helium and metallic lines (Ca, 
K). 
• Molecular bands: hydrogen and carbon absorption bands. 
• Rates between lines: CH-K rates, He-H rates, etc. 

Table 2. Spectral classification parameters 

Parameter Description Parameter Description 
Band 1 5005 ±  055 Å Line H I  4102 Å 
Band 2 6225 ±  150 Å Line He I 4026 Å 
Band 3 4435 ±  070 Å Line He II 4471 Å 
Band 4  5622 ±  180 Å Line H I  4861 Å 
Band 5  5940 ±  135 Å Line H I  6563 Å 
Band 6  6245 ±  040 Å Main Bands =

=

2

1

i

i iBand  

Band 7  6262 ±  130 Å Secondary Bands =

=

9

3

i

i iBand  

Band 8  6745 ±  100 Å Rate K-H    Ca II K / Ca II H 
Band 9  7100 ±  050 Å Rate CH- H I  CH band / H I  
Line Ca II (K) 3933 Å Rate H I  - HeI H I  / He I  
Line Ca II (H) 3968 Å Rate H I  - HeII  H I  /He II 
Line CH band 4300 Å Energy Flux Integral 
Line H I  4340 Å Line H I  4102 Å 

 
 The signal processing algorithms used to obtain the spectral parameters are mainly 
based on the spectral continuum estimation and the energy measurement.  
 From a morphological point of view, an absorption line is a descending (ascending 
for emission) deep peak that appears in an established wavelength zone. As 
mentioned, the absorption/emission lines are supposed to appear in a fixed 
wavelength, but due to the spectrum displacement caused by the measuring 
instruments, they can be found in the previous or next sample. To accurately calculate 
the intensity of each line, we carry out an estimation of the local spectral continuum. 
We smoothen the signal with a low pass filter, excluding the peaks in an interval 
around the sample where the line was detected. This filter is implemented by a five-
point moving average method that selects the five more stable fluxes. That is 
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where Cj is the estimation of the continuum for sample j, Ei is the flux in sample i, N 
is the number of values used in the moving average method to calculate the local 
spectral continuum, and X is a binary vector that indicates the representative fluxes of 
the spectral continuum in the zone. This means that Xi = 1 if Ei is a flux value 
representative of the local spectral continuum, and Xi = 0 if Ei is a peak. The intensity 
is positive for the absorption lines and negative for the emission lines. 
 A molecular band is a spectral zone where the flux suddenly decreases from the 
local continuum during a wide lambda interval. For the molecular bands this means 
that we only have to measure their energy to decide if they are significant enough. In 
this case, the upper threshold line for each band is calculated by means of linear 
interpolation between the fluxes in the limits of the interval defined for each band. 
Then, the area between this line and the axis of abscissas is calculated with discrete 
integral; the area that surrounds each band is calculated by integrating the flux signal 
between the extremes of the band. Finally, the flux of the band is obtained by 
subtracting both calculated energies. That is 

( ) ( )−=
r

l

i

r

l

ilr ELB λλ  (2) 

where Blr is the flux of the band between the samples l and r, L is the projection line, 
E is the flux function,  the wavelength, l the left limit of the band and r the right 
limit. Since the obtained value becomes more negative as the band becomes deeper 
and wider, positive or negative values close to zero are not considered as bands. 

The sampling frequency of the input spectra is not limited because we developed a 
simple algorithm that automatically resamples them; this increases the flexibility and 
avoids losing spectral resolution because of format reasons. 

Although most of the spectra are uniformly sampled, some of them have zones 
where there is no flux. This lack of information is generally due to the atmospheric 
effects and to the resolution of the measuring instruments. With the purpose of 
correcting the spectra and covering all the spectral ranges, we have elaborated an 
algorithm that reproduces the experts' behaviour in this specific situation. It is based 
on the interpolation of the energy flux in the wavelengths that belong to void zones.  

After having scaled and adapted the spectra, the system carries out an exhaustive 
analysis of the most relevant spectral features, i.e., molecular bands and 
absorption/emission lines, using the signal processing algorithms described above. 
These algorithms have been implemented in a software module, the spectral analyzer, 
that is equipped with signal processing techniques to extract and measure the main 
spectral features of each spectrum. It is developed in C++ and integrates ad hoc 
ActiveX components for the visualization of spectra.  

In this module we have also elaborated other algorithms to estimate the flux of 
some additional spectral features that are not directly considered in the manual 
process, e.g. the spectral energy. These features have been examined to find out their 
capacity to classify spectra. 
 We use both the spectral parameters obtained by the spectral analyzer module and 
the full spectral data to build the input patterns of the neural networks and clustering 
techniques.  
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 In order to implement the neural networks we used the Stuttgart Neural Network 
Simulator (SNNS v.4.1), and we developed the clustering algorithms by using 
MATLAB v.6.5.1. After analyzing the performance of both techniques, we 
implemented the best models in C++ by integrating them with the spectral analyzer, 
which allow us to obtain a unique tool for processing and classifying the optical 
spectra of stars. 

2.3   Knowledge Based Systems 

This first approach proposes the implementation of a knowledge-based system that 
provides the user with a comfortable tool for the processing of stellar spectra. We 
have integrated signal processing, knowledge-based and fuzzy techniques, obtaining a 
very satisfactory emulation of the current manual process. This approach results in 
two classification modalities: spectra with no given luminosity class, and spectra of 
stars with a well-known luminosity level. 

As a previous step towards the design of the expert system, we carried out a 
sensibility analysis of the classification parameters in order to define the different 
fuzzy sets, variables and membership functions. In this study, we have analysed the 
parameters of the spectra from the reference catalogue, using the aforementioned 
algorithms and determining the different spectral types that each parameter 
discriminates. Some parameters that seemed to be suitable were discarded, whereas 
others, which are not explicitly considered in the manual classification, were 
included, for example the additions of band fluxes: no molecular band, by itself, was 
found suitable to determine the global temperature (early, intermediate, late) for all 
the stars in the reference catalogue; however, we found a good discriminant between 
early, intermediate and late stars, which is the addition of several relevant bands. This 
new parameter can divide the stars from the catalogue into the three global 
temperature groups: since some stars that belong to the same group present a greater 
value in some bands, and in other stars the highest value corresponds to a different 
band, the addition solves these problems.   

As a final result of this analysis, we have defined as many fuzzy variables as 
classification levels (global, type and subtype) for each luminosity class; we have also 
defined the fuzzy sets and membership functions determined by the values of the 
spectral features in the guiding catalogue spectra. 

 

Fig. 1. Membership function for global classification in luminosity 1 

The developed expert system stores the information that is necessary to initiate the 
reasoning process in the facts base. This descriptive knowledge of the spectra is 
represented by means of frames [8], i.e. objects and properties structured by levels. 
This model was chosen because it is the simplest and most adequate to transfer the 
analysis data to the classification module and allows us to establish the equivalence 
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between analysis data and knowledge. The knowledge of the facts base includes 
general information, such as the names of the stars, and the results of the 
morphological analysis, i.e. the values of the classification parameters. 

The real parameters of spectral classification and the limit values of each type and 
subtype were included in the expert system in the shape of fuzzy rules. The rules base 
is that part of the system where the human classification criteria are reproduced. We 
have adopted IF-THEN production rules for the implementation of this module, 
because they allow us to manage the uncertainty and imprecision that characterise 
human reasoning in this field. 

The conditions of these rules refer to the values of the parameters stored in the 
current facts base (working memory). The conclusions allude to three levels of 
spectral classification: global (late, intermediate, early), spectral type and luminosity, 
and as such, the module communicates actively with the facts base. 

To decide what rule to apply at each moment, we used the Means-End Analysis 
strategy (MEA) [9]: basically, among the rules that were incorporated last into the 
working memory, this strategy chooses the not executed rule that has the largest 
number of patterns. The production rules are linked in a forward reasoning, guided by 
objectives. The strategy used for the reasoning process combines guided reasoning 
methods with a method based on truth values. The rules also have associated 
credibility factors that were obtained from interviews with experts and from the 
bibliography of this field. 

We used the Shortliffe and Buchanan methodology [10] to create an evolution that 
includes fuzzy sets and membership functions that are contextualized for each spectral 
type and allow superposition between them. The applied inference method is Max-
product, which combines the influence of all the active rules and produces a smooth, 
continuous output. In our approach, the credibility factor of each rule has also been 
considered as another truth value. The defuzzification of the data into a crisp output 
was accomplished by the fuzzy-centroid method [11]. With this mixed strategy, we 
achieved a remarkable adaptation to human reasoning, able to successfully handle the 
imprecision and uncertainty implicit in the manual classification process. In addition, 
we obtained the spectral classification of stars with a probability value that indicates 
the grade of confidence. 

This part of the spectral classifier was developed in OPS/R2 [12] and integrated 
with the analyzer by means of dynamic link libraries (DLL). 

An additional research topic consisted in improving the implemented system by 
applying the results of the best neural models, and will be described in the next 
sections. The weights of the output layer units were analyzed so as to determine, for 
each spectral type, which input parameters have more influence on the output. The 
normalized values of the higher weights were included in the expert system in the 
shape of credibility factors of the rules that correspond to the most influential 
parameters for each spectral type. This modification of the reasoning rules (using the 
weights values of the trained neural networks) resulted in a slightly significant 
improvement of the performance of the original expert systems (around 2%). 

2.4   Artificial Neural Networks 

The neural networks of this approach are based on both supervised and non-
supervised learning models. In particular we have implemented Backpropagation, 



 A Comparative Study of KBS, ANN and Statistical Clustering Techniques 573 

Kohonen and Radial Basis Functions (RBF) networks. The topologies, the learning 
functions and the results obtained by these networks are described below. 

2.4.1   Backpropagation Networks 
Backpropagation is a supervised learning algorithm that belongs to the general feed-
forward model. This model is based on two stages of learning: forward propagation 
and backward propagation.  
 Training a feed-forward neural network with supervised learning consists of 
presenting a set of input patterns that are propagated forward by the net until 
activation reaches the output layer. This constitutes the so-called forward propagation 
phase. When the activation reaches the output layer, the output is compared with the 
teaching input (provided in the input patterns). The error, or difference between the 
output and the teaching input of a target output unit, is then used together with the 
output of the source unit to compute the necessary changes of the link between both 
units. In this way the errors are propagated backwards, which is why this phase is 
called backward propagation [13]. 
 We have tested the backpropagation learning algorithm for the spectral types and 
luminosity classes. We used both spectral parameters and full spectral data to train the 
networks. 

Table 3. The topologies for backpropagation networks we implemented 

Network Input Patterns Hidden Layer 
Type  Spectral parameters 10 
Type Spectral parameters 5x5 
Type Spectral parameters 10x10 
Type Spectral parameters 10x5x3 
Type 659 flux values 100x50x10x3 
Luminosity Spectral parameters 10x10 
Luminosity 659 flux values 100x50x10x3 

 
 The backpropagation topology that has resulted in a better performance 
corresponds to a network trained with 25 spectral parameters as input layer and three 
hidden layers of 10, 5 and 3 units. 
 In the training phase, we used the topological order to update the weights: first the 
weights of units in the input layer are updated, then the units in the hidden layers and 
finally the units in the output layer. The weights are initiated randomly with values in 
the interval [-1,1]. 
 The number of training cycles, the frequency of validation and the values of the 
learning parameters were changed during the learning phase of the different 
implemented topologies. Our observations show that the implemented networks 
converge when MSE (Mean Square Error) is equal or inferior to 0.05 and the net 
becomes stable. If the training continues after having reached this rate of MSE, the 
net is over trained and its performance decreases. In the SNNS simulator, an output 
greater than 0.5 is equivalent to 1, otherwise to 0. In the analysis of the results, we 
have not considered the outputs near 0.5 as successes (from 0.45 to 0.55). 
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2.4.2   Kohonen Networks 
The Self-Organizing Map (SOM) algorithm of Kohonen is based on non-supervised 
learning. SOMs are a unique class of neural networks, since they construct topology-
preserving mappings of the training data where the location of a unit carries semantic 
information [14].  
 Self-Organising maps consist of two unit layers: a one-dimensional input layer 
and a two-dimensional competitive layer, organized as a 2D grid of units. Each unit in 
the competitive layer holds a weight vector that, after training, resembles a different 
input pattern. The learning algorithm for the SOM networks accomplishes two 
important goals: the clustering of the input data and the spatial ordering of the map, so 
that similar input patterns tend to produce a response in units that are close to each 
other in the grid. In the learning process, the input pattern vectors are presented to all 
the competitive units in parallel, and the best matching unit is chosen as a winner.  
 We have tested Kohonen networks for the spectral types and luminosity classes, 
using two-dimensional maps from 2x2 to 24x24 units. The best results for these 
networks were achieved by maps of 12x12 units. 

2.4.3   RBF Networks 
Networks based on Radial Basis Functions (RBF) combine non-supervised learning 
for hidden units and supervised learning in the output layer. The hidden neurons apply 
a radial function (generally Gaussian) to the distance that separates the input vector 
and the weight vector that each one stores, called centroid [13]. 
 We have tested the RBF learning algorithm for the spectral types and luminosity 
classes. The RFB network that has resulted in a better performance corresponds to a 
network trained with 25 spectral parameters as input layer and 8 neurons in the hidden 
layer. 

Table 4. The topologies for the implemented RBF networks 

Network Input Patterns Hidden Layer 
Type Spectral parameters 16 
Type Spectral parameters 8 
Type Spectral parameters 4 
Type 659 flux values 124 
Luminosity Spectral  parameters 8 
Luminosity 659 flux values 124 

2.5   Clustering Techniques 

In order to refine the classifications of the artificial neural networks, we implemented 
statistical clustering techniques and applied them to the problem of spectral 
classification, in particular the K-means, Max-Min and Isodata non-hierarchical 
clustering methods. 
 At the initial stage of non-hierarchical clustering, we selected an arbitrary number 
of clusters or groups. The members of each cluster are checked by means of selected 
parameters or distance measures, and relocated into the more appropriate clusters with 
higher separability [15]. The K-means algorithm is based on k cluster centers chosen 
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at random, assigning each data item to the closest cluster, recomputing the cluster 
center (e.g. the centroid of its data items), and looping back to the assignment step if 
the clusters have not converged. This technique has been applied to large-scale data 
sets because its time complexity is linear, once the number of clusters k and number 
of passes has been fixed [16]. The Isodata clustering method is a modification of k-
means which adds splitting and merging; at each time step, clusters with variance 
above a fixed threshold are divided and pairs of clusters with centroids closer than 
another threshold are merged [15]. 
 The Max-min algorithm is based on the heuristic combination of minimum and 
maximum euclidean distances. At each iterative step, the algorithm verifies the 
viability of building a new class with an element sufficiently separated of the already 
existing classes. 
 As for the application of clustering techniques to the spectral classification of 
stars, we have used the spectral parameters obtained by means of the morphological 
analysis algorithms as well as the full spectra. In addition, we have implemented two 
different versions of each algorithm with 6 and 12 initial clusters. 
 Although the implemented clustering methods have achieved remarkable success 
rates in classifying stellar spectra, we have mainly applied this technique to carry out 
a sensibility analysis of the spectral parameters used to classify stellar spectra. 

3   Results 

The application of expert systems, clustering techniques and artificial neural networks 
has allowed us to elaborate a final comparison. We selected the neural models of each 
type with the best performance and classified, by means of the clustering algorithms 
and the expert systems, the 100 spectra that were used to test these networks. Figure 1 
contrasts the behavior of the three techniques and that of two human experts who 
collaborated on this project. 
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Fig. 2. Final performance for 100 testing spectra 
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 The Backpropagation and RBF networks, as well as K-means and Isodata 
algorithms, obtained a high success rate of approximately 95%. The Kohonen model 
obtained a low success rate in all its implementations, which could be due to the size 
of the training set, since this kind of network has to cluster the data and therefore  
needs a training set that is big enough to extract similarities and group the data.  
 Although the final results for the three proposed classification methods seem to be 
very similar, an exhaustive study has revealed some interesting peculiarities; for 
example, we have observed that both techniques reached their worst results for B and 
M spectral types, i.e. the hottest and coolest stars respectively, and indeed, most of the 
grouping algorithms include these spectra in the same cluster. This fact led us to 
review the spectral parameters that were being used to train and test the networks and 
the algorithms: we discovered that B stars usually present great emission lines in 
zones where a molecular band is expected, so that the automatic techniques are unable 
to differentiate between them. Our hybrid approach tries to solve these problems by 
making a previous global classification of the star and then selecting the best method 
to classify it. 
 This hybrid strategy consists of choosing, among all the described techniques, 
those methods that present the best performance for each classification level. The 
final system is mainly based on an expert system that determines the global type of 
each star and that, according to the type, sends the spectra to different neural networks 
or clustering algorithms in order to obtain their spectral type as well as their 
luminosity level. 

The implemented system includes two user-friendly interfaces: a web environment 
(STARMIND) and another environment under MS-Windows. Both allow the users to 
select the spectra, visualise them, carry out various analyses and classify as many 
spectra as they want in a fast, simple and reliable manner. 

4   Conclusions 

This work has analyzed the classification ability of artificial neural networks, expert 
system techniques, and statistical clustering techniques applied to stellar spectra. 
These approaches were integrated into a hybrid system that has resulted in a versatile 
and flexible automatic technique for the classification of stellar spectra. 
 Considering the fact that human experts reach an agreement percentage of 
approximately 87% of the spectra in the course of manual classifications, the success 
rate of approximately 95% for a sample of 100 testing spectra, obtained by the 
abovementioned techniques, corresponds to a performance increase of approximately 
10%. The additional classification information provided by the clustering techniques 
refine the parameters used for automatic classifications, especially for cases of 
spectral types B and M; the implemented clustering techniques make it easier to 
analyze the sensibility of the spectral parameters used to classify stellar spectra in the 
neural networks approach. 
 This research project was made possible thanks to the financial contribution of the 
Spanish Ministry of Education and Science (AYA2000-1691 and AYA2003-09499). 
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Abstract. In this paper, we propose an automatic approach to measure the 
minutiae quality. When image of 500 dpi is captured, immediately the 
enhancement, thinning and minutiae extraction processes are executed. The 
basic idea is to detect the spatial 0 - Connected minutiae cluster using the 
Euclidean distance and quantify the number of element for each group.  In 
general, we observe that more than five element in a group is a clue to mark all 
points in the cluster as bad minutiae. We divide the image in block of 20 x 20 
pixels. If one block contains bad minutiae it is mark as a bad block. The 
goodness quality index is calculated as the proportion of bad blocks respect to 
the number of total blocks. The proposed index was tested on the FVC2000 
fingerprint image database. 

1   Introduction  

When some agency face the task of make a massive load of card ink fingerprint, to 
create a large data base, it is necessary to put maximum care in the quality of 
fingerprint images that will feed the Automatic Fingerprint Identification System 
(AFIS). It is known that performance of an AFIS relies heavily on the quality of input 
fingerprint images. Although, it is normal to have a manual quality control, it is 
desirable that system automatically reject the bad fingerprint that do not accomplish 
the quality threshold. If each image is storage, with its quality measure associated, it 
is possible to calculate the average database quality.  

Several methods for measuring the quality of fingerprint images were found in the 
literature [1,2]. In general, they can divide in five categories: methods using standard 
deviation, methods using directional contrast, methods using Gabor features, methods 
using local ridge structure, and methods using Fourier spectrum.   

The completely path to make fingerprints matching can be segmented in three 
moments: early steps, middle steps, and last steps. The early steps correspond to the 
image enhancement and binarization; the middle is associated to thinning, skeleton 
reconstruction process and the minutiae detection. The last steps in our sequence are 
the graph based representation of the fingerprint and finally, the graph matching and 
visual verification. Minutiae extraction corresponds to the middle steps. The basic 
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idea is evaluate the quality in the middle step in this sequence. We propose to detect 
spatial minutiae clusters using the Euclidean distance and quantify the number of 
element for each group.  In general, the idea is to consider high spatial density of 
minutiae as a sign of not good automatically minutiae detection. We observe that 
more than five element in a group is a clue to mark all points in the cluster as bad 
minutiae. We divide the image in block of 20 x 20 pixels. If one block contains a bad 
minutiae it is marked as a bad block. The goodness quality index is calculated as the 
proportion of bad blocks respect to the number of total blocks.  With our approach the 
Goodness index is possible to use it in both sense to evaluate the image enhancement 
algorithm and the expert visual evaluation of image. The global fingerprint’s database 
quality is the average of all image’s quality introduced in it.   

The remainder of the paper is organized as follows: Section 2 presents our global 
workflow to create fingerprint database from card ink impression. Section 3 describes 
the spatial minutiae cluster algorithm and the goodness quality index. The 
descriptions of our experiments and results are showed in section 4. Finally, 
conclusions are presented in section 5.  

2   Global Workflow to Create Fingerprint Database from Card  
     Ink Impression 

When we have a lot of card ink impression paper that we need to covert in digital 
format, in order to work with an Automatic Fingerprint Identification System, is very 
important to guarantee the database quality. This may determine the acceptation of the 
system by the staff of forensic expert personal. 

Load one million of card ink paper may take around six months. This is a great and 
determinant effort that must be carefully organized, and appropriated software tools 
are required to reach the quality in the minimum possible time. 

First, it is necessary to have an automatic tool to massive scanning of card ink 
papers with the possibility of an automatic and manual cut of the frames including the 
image of each finger. Every fingerprint model must have a barcode associated. In this 
way, the code in the moment that it is scanned is recognized and used as an identifier 
in the filename of each fingerprint image. 

After the cut, it is necessary apply a mask to segment the image in regions which 
correspond to foreground and background, then a second cut is performed to optimize 
the followings processes. Immediately, the image enhancement, binarization, 
thinning, skeleton reconstruction and minutiae extraction are executed. We know that 
these processes are computational intensive, fundamentally the image enhancement.  
We enter in a trade of between the calculus time and the quality of the minutiae set.  

In this moment, a first calculus of the goodness index is made before to pass the 
image to visual quality control. The system highlights that finger minutiae set is not 
reaching the quality threshold.  Then, it is possible to examine the automatic cut 
quality and the quality of minutiae set.  May be, some image need a manual cut and 
edition where some spurious minutiae must be deleted and mark new ones.  So, it is 
necessary a minutiae editor tool. It is the human expert who finally has the 
responsibility to decide if one fingerprint image could be storage in the database. A 
second goodness quality index must be calculated to be storage associated to the 
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image in the database after the manual edition. Together with the image and the 
goodness index, the graph based representation obtained from the minutiae set is also 
stored. 

It is possible to have various scanners to read card ink papers to some repository 
and other work stations to processing the images. A job manager may distribute the 
digital images of card models to the processing stations following some priorities. The 
job manager always has the possibility to examine the average quality of the images 
stored by a determined operator, or evaluate the average quality of whole database in 
some determined period of time. 

3   Spatial Minutiae Clustering and Goodness Quality Index 

In general, the idea is to consider high spatial density of minutiae as a sign of not 
good automatically minutiae detection. We need to look for the minutiae clusters on 
the fingerprint image and evaluate its spatial concentration to decide if there is a 
cluster of bad minutiae. In some cases, when there are singular points like core or 
delta, it is possible to observe some natural aggregation of point on the fingerprint. In 
that situation our approach underestimate the fingerprint quality. However, in general, 
a minutiae cluster is associated with a region of bad image quality where the 
enhancement algorithm has a bad performance, and the ridge pattern obtained is false. 
Then, the feature extraction algorithm detect many spurious points near each other. 

3.1   Spatial Minutiae Clustering 

Every minutia has associated its coordinate x and y. To find spatial minutiae clusters 
based on its coordinates, it is possible to use an algorithm that operate in a metric 
space, using a similarity function based on the Euclidean distance. Algorithms 
Leader, K-Means, and ISODATA [4] were evaluated and rejected. All of them may 
obtain different solutions on different order on the input data. In this case, when an 
impression suffers some geometrical transformation the feature points may change its 
order. Almost all these algorithms need to know the number of cluster to obtain. 
Precisely, the goodness quality index proposed is based on the cardinality of the 
clusters. We need to detect natural points clusters. If a number of cluster if defined 
previously, all minutiae are distribute between these groups and the membership of 
some cluster may grow artificially. We prefer an algorithm to detect small connected 
minutiae groups, regardless the number of cluster obtained.   

It is necessary to use some algorithm that detects automatically the number of 
minutiae clusters in input set.  Besides, we are looking for clusters that no necessarily 
follow an elliptical shape. With these elements in mind, we think about using some 
algorithm to detect connected component [3]. 

3.1.1   0-Connected Component 

Let O = {o1,…,om} be set of objects,   a similarity function and 0  similarity 
threshold for  . 
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Fig. 1. Goodness quality index = 0.63.  a) Bad image from FVC2000 database. b) Minutiae 
detection. c) Division in block of 20 x 20 pixels. d) Bad block detection. 

Definition 1. Two object oi, oj  are  denominated 0 similar  if  (oi,oj) ≥  0. 

Definition 2. Let S ⊆  O, S ≠ ø be 0-Connected set respect to  iff ∀ oi, oj ∈  S, 

∃ {oS1,oS2,…,oSt} such that oi=oS1, oSt=oj  and (oSi-1,oSi) ≥  0, i=2,3,…,t. 
 It means that for any pair of point in S there is a succession of elements in S 

beginning in oi and finishing in oj such that one is 0 similar to the next. 
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Fig. 2. The pseudocode of the main step of the proposed algorithm 
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3.1.2   Algorithm   
Our algorithm to detect 0-Connected sets is used to observe if there are spatial 
clusters of minutiae in the image. This algorithm partitions a set of m minutiae into k 
disjoint 0-Connected clusters. A similarity function  that compute the inverse of 
distance between minutiae is assumed along with a predefined similarly threshold 
value, 0.  

The algorithm proceeds as follow for a minutiae set O and 0 threshold.   is the 
inverse of  Euclidean distance: 

 

PairEquivalenceList = FindPairNearMinutiae(O, , 0) 

0-ConnectedSet = FindConnectedSet(PairEquivalenceList,m) 

 
To find the equivalence pairs is the similar process to build the adjacency matrix of 

a graph. A pair of minutiae is included in the PairEquivalenceList if they are 0 
similar. 

Immediately, the equivalence pair list is processed to obtain the 0-Connected set 
following the flow showed in figure 2. For our experiments we found 0.04 as a good 
threshold for 0.   

3.2   Goodness Quality Index  

We use other threshold to classify a cluster as a bad cluster or good cluster. This 
threshold is related with the number of element in the cluster.   If the cluster has more 
than 5 minutiae it is marked as bad cluster. Then, we divide the fingerprint images in 
blocks of 20 x 20 pixels. A block is considered to have bad quality if it contains at 
less one minutia belonging to a bad cluster and otherwise it is considered a good 
block. 

We defined a goodness quality index (GqI): 
 

.1
blocksofnumber

bocksqualitybadofnumber
GqI −=                                           (1) 

4   Experiments and Results  

The algorithm described has been implemented and tested. FVC2000 database was 
used to obtain the quality measure thresholds.  FVC2000 is a public database 
collected using optical sensing techniques. The experts performed a visual pre-
selection of four groups of fingerprint images categorized in: good, bad, smudged and 
dried fingerprint image. 

The minutia sets obtained for each fingerprint image were analysed and 
categorized as good, regular or bad by the experts. 

We have found the following quality thresholds (table 1): 
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Table 1. The thresholds of quality 

Thresholds Description 

GqI  <     0.78                   Bad minutiae set  

0.78    ≤     GqI    < 0.85           Regular minutiae set 
GqI     ≥     0.85                       Good minutiae set 

The following results (table 2) show the performance of the goodness minutiae 
index for each fingerprint image category: 

Table 2. Goodness quality index for each fingerprint image group from FVC2000 database 

 Good Bad Smudged Dried Total 
Number of 
   image 

120 40 68 92 320 

Average         
    GqI 

0.93 0.78 0.87 0.90 0.89 

We observed that the goodness quality index not always is consistent with visual 
human assessment, because our image enhancement and feature detection algorithms 
are robust and perform very well to obtain the minutiae set, even in some image 
where there are scars and some level of noise. 

We noted that, according to our approach, the FVC2000 database has a goodness 
quality index of 0.89 relative to our minutiae detection algorithm.  

On another hand, the experts made a manual minutia edition of the fingerprint 
image included in the bad group (GqI = 0.78) and after that it was recalculated the 
goodness quality index. In this case, the averaged value was elevated to 0.98.  It 
shows that our goodness quality index reach a value near 1 when a good minutiae set 
is obtained. 

5   Conclusion 

In this paper we present an approach to measure the minutiae quality that guarantee a 
control about the average quality of a fingerprint image database. 

In general, we observed that our heuristic detect more true bad cluster than false 
bad cluster.  From this point of view it follow a pessimist strategy, because it is 
possible that an image was stored in the database with some block marked as bad 
when in reality there was a minutiae concentration due a singularity  fingerprint ridge 
flow. 
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Abstract. Tin Kam Ho and Ester Bernardò Mansilla in 2004 proposed to use 
data complexity measures to determine the domain of competition of the classi-
fiers. They applied different classifiers over a set of problems of two classes 
and determined the best classifier for each one. Then for each classifier they 
analyzed how the values of some pairs of complexity measures were, and based 
on this analysis they determine the domain of competition of the classifiers. In 
this work, we propose a new method for selecting the best classifier for a given 
problem, based in the complexity measures. Some experiments were made with 
different classifiers and the results are presented. 

1   Introduction 

Selecting an optimal classifier for a pattern recognition application is a difficult task. 
Few efforts have been made in this direction; for example STATLOG [1] where sev-
eral classification algorithms were compared based on some empirical data sets and a 
metal-level machine learning rule on the algorithm selection was provided. Other 
example is Meta Analysis of Classification Algorithms [2] where a statistical meta-
model to predict the expected classification performance of each algorithm as a func-
tion of data characteristics was proposed. They used this information to find the rela-
tive ranking of classification algorithms. 

In this work we propose an alternative method using the geometry of data distribu-
tions and its relationship to classifier behavior. Following [3] the classifier selection 
depends on the problem complexity, which can be measured based on data distribu-
tion. In [3] some data complexity measures were introduced. These measures charac-
terize the complexity of a classification problem, focusing on the geometrical com-
plexity of the class boundary.  

In [4] some problems were characterized by nine measures taken from [3] to de-
termine the domain of competition of six classifiers. They made the comparison of 
their results between two measures. Based on this comparison, they determined the 
domain of competition of the classifiers. However they did not present the results if 
more than two measures were compared together.    

In this work, we propose a new method for selecting the best classifier for a given 
problem with two classes (2-class problem). Our method describes problems with 
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complexity measures and labels them with the classifier that gets the best accuracy 
among five classifiers. After, other classifiers were used to make the selection. 
   This paper is organized as follows: in section 2 the complexity measures used in this 
work are described. In section 3 the proposed method is explained, in section 4 some 
experiments are shown and in section 5 we present our conclusions and future work.  

2   Complexity Measures  

We selected 9 complexity measures from those defined in [3] which describe the most 
important aspects of boundary complexity of 2-class problems. The selected measures 
are shown in table 1.  

 
Table 1.  Complexity measures 

 
 
 
 
 
 
 
 
 

These measures are defined as follows:  

F1: Fisher’s Discriminant 
Fisher’s discriminant was defined for only one feature. This is measured by calculat-

ing, for each class, the mean ( µ ) and the variances ( 2σ ) of the feature; and evaluat-

ing the next expression:  

                                                
2
2

2
1

2
21 )(

F1
σσ
µµ

+
−=                                                

 

(1) 

For a multidimensional problem, the maximum F1 over all the features is used to 
describe the problem. 
 
F2: Volume of Overlap Region 
This measure takes into account how the discriminatory information is distributed 
across the features. This can be measured by finding, for each feature (fi), the maxi-
mum max(fi,cj)  and the minimum min(fi,cj) values for each class (cj), and then calcu-
lating the length of the overlap region defined as:  
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(2) 

 

F1  Fisher’s discriminant  
F2 Volume of overlap region 
F3 Maximum feature efficiency 
L2 Error rate of linear classifier 
L3 Nonlinearity of linear classifier 
N2 Ratio of average intra/Inter class NN distance 
N3 Error rate of 1nn classifier  
N4 Nonlinearity of 1nn classifier  
T2 Average number of points per dimension  
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F3: Maximum Feature Efficiency 
F3 is a measure that describes how much each feature contributes to the separation of 
the two classes.  
   For each feature, all points (p) of the same class have values falling in between the 
maximum and the minimum of that class. If there is an overlap in the feature values, 
the classes are ambiguous in that region along that dimension.  The efficiency of each 
feature is defined as the fraction, of all remaining points, which are separable by that 
feature. For a multidimensional problem we use the maximum feature efficiency.  

 
 

=
p

pseparable )(F3  

                    where                  

                                               1 if p is separable by the feature 
                    separable(p) =          

                                           0 otherwise  
 

. 

 

(3) 

L2: Nonlinearity of the Linear Classifier  
Many algorithms have been proposed to determine linear separability. L2 uses the 
error rate of the classifier on the training set to describe the nonlinearity of the linear 
classifier.   

                          ))_(_(_L2 settrainingclassifierlinearrateerror=                  (4) 

L3: Nonlinearity of Linear Classifier 
L3 describes the nonlinearity of the linear classifier. This metric measures the error 
rate of the classifier on a test set.  

 

))_(_(_L3 settestclassifierlinearrateerror=  

 

(5) 

N2: Ratio of Average Intra/Inter Class NN Distance            
This metric is measured as follows: first compute the average (x) of the Euclidean 
distances from each point to its nearest neighbour of the same class, and the average 
(y) of all distances to inter-class nearest neighbors. The ratio of these two averages is 
the metric N2. This measure compares the dispersion within the classes against the 
separation between the classes.  

 

y

x=N2  

 

 

(6) 

N3: The Nearest Neighbor Error Rate 
The proximity of points in opposite classes obviously affects the error rate of the 
nearest neighbor classifier. Thus N3 describes the nonlinearity of the K-nn classifier 
and it measures the error rate of the K-nn classifier on a test set. 

 

))_(_(_N3 settestnnKrateerror=      (7) 
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N4: Nonlinearity of the K-nn 
Given a training set, a test set is created by linear interpolation between randomly 
drawn pairs of points from the same class. Then the error rate of the K-nn on this test 
set is measured. Thus N4 uses the error rate of  K-nn with the training set to describe 
the nonlinearity of the K-nn classifier. 
                                                                                                

))_((_N4 settrainingnnkrateerror −=  
 

(8) 

T2: Average Number of Points Per Dimension  
This metric is measured by calculating the average number of samples per features. 

features

samples
=T2  

 

(9) 

3   Proposed Method 

In this section we describe the proposed method based on data complexity measures 
to select the best classifier for 2-class. 
  The idea of our method is to describe the 2-class problem by some complexity meas-
ures. The label of each 2-class problem is its best classifier, which is determined test-
ing a set of classifiers, in this way; we will obtain a training set of a supervised 
classification problem. Therefore a classifier could be used to select the best classifier 
for a new 2-class problem. Our method works as follow: 
 

1. Given a database set, for each problem with n classes, two or more, C(n,2) 2-
class problems are created, taking all possible pairs of classes. This is done 
because as it was mentioned in section 3, the complexity measures were de-
signed to describe the complexity of 2-class problems.   

 
2. For each 2-class problem created in the previous step 

 
a) Calculate the nine complexity measures. 
b) Apply the set of classifiers and assign a label that indicates which was the 
classifier with the lowest error for the 2-class problem. 
 
Thus, each problem is characterized by its nine complexity measures and la-
beled with the class of its best classifier. These data conform the training set. 
 

3. Apply a classifier on the training set to make the selection of the best classi-
fier for a new 2-class problem.          

 
This method is depicted in figure 1. 
 
 
 



590 E. Hernández-Reyes, J.A. Carrasco-Ochoa, and J.Fco. Martínez-Trinidad 

 

Generating 2-class 
       problem

2-class problems 

Apply the classifiers on 
each 2-class problem and 

label it. 

Calculate the 9 com-
plexity metric for each

2-class problem

Training set 

Best Classifier for 
the new 

 2-class problem 

New 2-class 
problem

Apply a classifier on the 
training set

 

Fig. 1. Proposed method 

4   Experimental Results 

In order to test our method we selected 5 data sets from the UC-Irving repository [5] 
(Abalone, Setter, Iris, Pima, Yeast). Following the proposed method, in the first step, 
for each database, with n classes, C(n,2) 2-class problems were created; thus we had 
752 2-class problems (see table 2).   
 

Table 2. 2-class problems for each used database 

 
 
 
 
 
 
 
 

    In the second step, for each 2-class problem, the nine complexity measures were 
calculated. Then, each problem was evaluated with five classifiers. The used classifi-
ers were:   

1. K-nn 
2. Naive Bayes 
3. Lineal regression 
4. RBFNetwork 
5. J48 

Databases Classes  2-class Problems 
Abalone 28       378 
Iris   3           3 
Setter 26       325 
Pima   2           1 
Yeast 10         45 
Total        752 
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RBFNetwork is a normalized Gaussian radial basis function network and J48 is a 
version of C4.5, both implemented in weka [6]. 
    In our method, we considered the classifier with the lowest error on a 2-class prob-
lem as the best method, and then we assign this classifier as the label of the 2-class 
problem. Table 3 shows how the problems were distributed according their best  
classifier. 

Table 3. Distribution of the problems 

Classifier Problems 

K-nn 421 

Naive  Bayes 208 

J48 123 

 
    The problems were only distributed in 3 classes (K-nn, Naive Bayes and j48), be-
cause the other two classifiers did not obtain a better classification rate for any of the 
2-class problems. Thus, we obtained the problems characterized by their nine meas-
ures of complexity and labeled with the class of their best classifier. These data form 
a training set of 752 objects with 9 variables and separated in 3 classes. 
    Finally, to select the best classifier for a new 2-class problem, we applied three 
different classifiers (1-nn, J48, RBFNetwork) on the training set. We used ten-fold 
cross validation to evaluate the accuracy of our method.  
    From the used classifiers (1-nn, j48 and RBFNetwork). The best was 1-nn, which 
obtained a classification accuracy of 83.5 %.  In table 4 we can appreciate the results. 

Table 4. Results for best classifier selection 

Classifier  Selection accuracy 

1-nn 83.5 % 

RBFNetwork 71.6 % 

J48 60.2 % 

5   Conclusions 

In this paper, a new method based on complexity measures for selecting the best clas-
sifier of a given 2-class problem was introduced. Our method describes 2-class prob-
lems with complexity measures and labels them with the class of their best classifier. 
After, for making the selection a classifier was used.  
   We found that the complexity measures are a good set of features to characterize the 
problems and make the selection of the best classifier. As future work, we will com-
pare our method against other methods. Also, we propose to extend the proposed 
method for problems with more than two classes by mean of redefining the complex-
ity measures, in order to allow applying them on multiple class problems.  
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Abstract. Complex images contaminated by noise appear in various 
applications. To improve these phase images, noise effects, as loss of contrast 
and phase residues that deteriorate the phase unwrapping process, should be 
reduced. Noise reduction in complex images has been addressed by various 
methods, most of them dealing only with the magnitude image. Few works have 
been devoted to phase image de-noising, despite the existence of important 
applications like Interferometric Synthetic Aperture Radar (IFSAR), Current 
Density Imaging (CDI) and Magnetic Resonance Imaging (MRI). In this work, 
several de-noising algorithms in the wavelet packets domain were applied to 
complex images to recover the phase information. These filtering algorithms 
were applied to simulated images contaminated by three different noise models, 
including mixtures of Gaussian and Impulsive noise. Significant improvements 
in SNR for low initial values (SNR<5 dB) were achieved by using the proposed 
filters, in comparison to other methods reported in the literature.  

1   Introduction 

Images produced by systems such as Synthetic Aperture Radars (IFSAR), Current 
Density Imaging  (CDI) and Magnetic Resonance Imaging (MRI) appear as arrays of 
complex numbers and are affected by the presence of noise. These images suffer in 
many cases from a poor signal to noise ratio (SNR). 

Complex images allow the use of both magnitude and phase information, 
depending on the type of application considered. The presence of noise in the 
complex images can be originated by numerous causes as can be the noise produced 
by the acquisition hardware, physiological noise originated from the patients, noisy 
artifacts provoked by movements during image acquisition (MRI, CDI) and the 
presence of phase jitter that can appear during the acquisition of signals obtained by 
IFSAR. In all the previously mentioned cases noise not only produces a deterioration 
in SNR and loss of contrast in the image, but also it introduces phase residues that 
will affect negatively the later phase unwrapping process, that is unavoidable in most 
applications where the analysis is based upon the phase information from the complex 
image obtained. 
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In this work three noise models were considered. These are combinations of 
additive white Gaussian (AWGN) and impulsive noise in various proportions. 
Preliminary results obtained in [1] have been considered as a reference for 
comparison. The algorithms developed in [2, 3] for magnitude images have been also 
implemented for comparison for phase images, in order to better show the 
effectiveness of the filtering methods introduced here. A description of the noise 
models associated to complex images have been discussed in [2, 3]. Most de-noising 
algorithms developed for complex images have assumed zero-mean AWGN, which 
contaminate independently the real and imaginary parts of the complex image. Noise 
distribution in the magnitude image is usually assumed to have a zero-mean Rician 
distribution, which behaves as a Gaussian distribution for high SNR and as a Rayleigh 
one for low SNR. Our main interest is centered in the phase images in low SNR 
environments. 

In a previous work [2], a de-noising algorithm was reported based in a Wiener 
filter that reduces noise in a very effective way in the magnitude image and it is 
claimed that it can also make this simultaneously in the phase image. Another 
approach based in nonlinear filtering was introduced in [ 1], and de-noising methods 
using the Wavelet Transform were introduced and tested in [ 7].  In this work we 
pursue to show some considerations related to wavelet packets de-noising for phase 
images that differ in a certain extent from its application to magnitude images and that 
exhibited some advantage in SNR improvement when compared to the previous cited 
works. 

2   Materials and Methods 

2.1   Simulated Image 

The complex simulated image was built in similar way as in previous works [1, 2]. 
This consists in a magnitude image formed as a 64 x 64 pixels square with intensity 
210 (bright region) which is centered inside another square of size 128 x 128 with 90 
units intensity (dark region). The original unwrapped phase image was defined as the 
bi-dimensional Gaussian function  

( ) ( )−+−=
2

2

2

2 6464
exp

vu
uv

vu
A

σσ
ϕ ,                            (1) 

where u and v are the variables associated to the coordinate axes. For the rest of the 

variables in equation (1), the following values were used: π7=A , 35002 =uσ   

and 10002 =vσ . 

The complex image was formed from the magnitude and wrapped phase images. It 
was contaminated with various proportions of AWGN and impulsive noise, 
independently for the real and imaginary parts. The various noise models employed 
here are shown in Table 1. This table shows the standard deviation values for a  
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Table 1. Noise models 
 

Noise model  PI, % 
1 60 0 
2 70 3 
3 90 5 

Gaussian probability density function with zero mean and the corresponding 
percentages of impulsive noise. 

The impulsive noise was modeled in the same way as in [1], where the probability 
of occurrence of an impulse for any part, real or imaginary, is given by 

 

IPp −−= 11    .                                              (2) 

 
In Table 1 are shown the global percentages PI   of the impulses to be generated. 

The p value is to be divided evenly for the contribution of positive and negative 
pulses. Both the image and the noise were modeled considering an 8-bit resolution for 
the representation of their numerical values. 

2.2   Measurement Parameters 

In order to demonstrate the effectiveness of the algorithms and compare them with 
previous works reported in the literature we performed a set of measurements similar 
to those performed in [1], where we determined the values of SNR, the number of 
phase residues (RES), the standard deviation (STDV) and the normalized mean 
square error (NMSE), defined as  
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where ϕ  is the original unwrapped phase, ϕ)  is the recovered unwrapped phase after 

filtering and (i, j) are the pixel values in the direction (u, v). 
SNR was calculated as 

=
NMSE

SNR
1

log10 10                                               (4) 

The amount of phase residues that appear both in the noisy and in the de-noised 
signals were calculated by applying systematically the expression 

( ) ( ) =⋅∇=
C

Kdrrr πϕϕ 2                                            (5) 
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Here )(rϕ is the signal phase, )(rϕ∇  is the phase gradient and K is an integer 

number that accounts for the phase residues enclosed by the contour C. 

2.3   De-noising Algorithms 

Two new algorithms in the wavelet packets domain were proposed here to increase 
SNR in phase images. These filtering processes begin with the application of the bi-
dimensional Discrete Wavelet Packet Transform (DWPT-2D) to both the real and 
imaginary parts of the noisy complex image zn. From this transformation, the noisy 

DWPT-2D complex coefficients ch
ojc  ,  were obtained, where the index ch indicates 

whether the coefficient belongs to the real  (re) or imaginary (im) parts of the complex 
image, and the terms j and o indicate the decomposition level and the orientation 
(horizontal, vertical or diagonal), respectively. 

 
The expression of the transformation T  for the DWPT-2D is given by 
 

    [ ]nDDWPT
ch

oj zTc 2 , −=   .                                           (6) 

 
After calculating this transformation, the wavelet packet coefficients are 

appropriately thresholded obtaining { ch
ojc  ,

)
}, and the synthesis equation associated to 

the DWPT equation (6) was applied later, resulting in 
 

[ ]ch
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1
2

)) −
−=  .                                           (7) 

 
The first filtering method described is based in the classical soft thresholding of the 

wavelet packet coefficients (called SOFT_WP here). Thresholding was applied 
independently to the real and imaginary parts, as 
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where thr is the threshold value, whose calculation will be discussed in paragraph 2.4. 

The second filtering method (called A_SOFT_WP), thresohlding was applied to 
the magnitude wavelet packet coefficients, instead of doing this for the real and 
imaginary parts independently where  
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The filtering transformation was in this case 
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where the threshold is obtained from the thresholds for the real and imaginary parts as  

 

( ) ( )[ ] 2

1
22  IMREG thrthrthr += .  

 
Various other filtering alternatives were devised and tested in the wavelet packet 

domain, from which we have illustrated here only the most representative cases with 
which we obtained the best results. 

2.4   Threshold Calculation 

There exist several methods to obtain the noise standard deviation from noisy data 
and from this to obtain the threshold values to be used [2, 3]. In most applications 
noise can be considered uncorrelated and independent from the decomposition level, 
frequency and orientation.  Having this in mind, the best alternative for noise 
estimation was to apply the DWPT-2D at the finest scale, e. g. the first decomposition 
level. This is the median absolute deviation (MAD) estimate used in [4], with which 
the resulting threshold is 

 

      6745.0
)( ,1

ch
ocmedian

thr = .                                (11) 

 

Here )( ,1
ch

ocmedian  is the value of the statistical median of the array formed by 

the absolute value of the wavelet packets coefficients from the first decomposition 
level. The global threshold for de-noising is obtained by a wavelet packet coefficients 
selection rule using a penalization method provided by Birge-Massart [ 6]. 

3   Results 

Performance evaluation for the filters described above was realized using a simulated 
complex image as it was described in 2.2. Tables 2 and 3 show the results obtained 
for the two filters described above, corresponding to SNR and NMSE for two out of 
the three noise models shown in Table 1. In both filters the wavelet packet Bior2.6  
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was employed, with a number J = 4 of decomposition levels, which led to good 
results. As can be observed, in all cases the noisy phase image had SNR values less 
than 5 dB. This was determined basically because our objective was to improve phase 
images in low SNR environments. Figure 1 shows in the first column the original 
(wrapped and unwrapped) simulated images, in the second column the contaminated 
images (wrapped and unwrapped with an algorithm that does not tolerate phase 
residues) and in the third column the results obtained once the de-noising process was 
applied with the filter SOFT_WP. The simulated complex image in this experiment 
was contaminated with noise model 2 (stdv = 70 and imp = 3%). 

Figure 2 shows a comparison between the algorithm proposed here (SOFT_WP) 
and the best of the previous algorithms published in the literature (A_H_S_U) [7]. In 
this case the simulated complex image was contaminated with noise model 3 (stdv = 
90 and imp = 5%) with the objective of illustrating the effectiveness of the use of 
wavelet packets in situations of very low signal to noise. The unwrapped phase image 
shows clearly the improvement obtained with the SOFT_WP filter versus the 
A_H_S_U filter. 
 
          

Table 2. Results of filtering in terms of NMSE and SNR, noise models 2 and 3 
 
Image: Image 1  Wavelet: Bior2.6  Noiseless residues: 0  Trials: 20 
 
                                  Noise model 
   
                        2                           3 
   
filter       NMSE      STDV       SNR     NMSE      STDV     SNR    
   
NONE        0.9144   5.39e-001   0.97   1.2821  7.85e-001  -0.61 
 
A_SOFT_WP    0.0006  4.81e-004   32.88   0.0068  7.17e-003  23.49 
 
SOFT_WP      0.0004  3.50e-005   34.11   0.0027  2.77e-003  27.50 
 
 
   

Table 3. Results of filtering in terms of phase residues, noise models 2 and 3 
   

Image: Image 1  Wavelet: Bior2.6  Noiseless residues: 0  Trials: 20 
 
                                  Noise model 
                                    

                      2                      3 
 

Filter           Nres     stdv        Nres       stdv 
   
 NONE         1396.80     47.75      2149.70     44.17 
       
A_SOFT_WP        0.20      0.62         4.10      2.55 
        
SOFT_WP          0.00      0.00         2.10      2.00 
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Fig. 1. De-noising of simulated image, wavelet packet Bior2.6, J=4, filter SOFT_WP, noise 
model 2 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. De-noising of simulated image, wavelet packet Bior2.6, J=4, filters A_H_S_U and 
SOFT_WP, noise model 3 
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4   Discussion and Conclusions 

The proposed methods constitute a new alternative for phase image de-noising that 
differ from the traditional wavelet-domain methods [2, 3, 4, 5, 7] that are based in 
Wiener filtering or in soft thresholding and phase preservation of the wavelet 
coefficients in the wavelet domain.  

The use of soft thresholding techniques reduced noise significantly, showing a high 
and stable SNR gain for all the noise models used in this work. The only drawback 
present in the wavelet based methods was the poor edge preservation in some regions 
of interest in the image. The methods based on wavelet packets showed a noticeable 
reduction of this negative effect. 

Through the simulation experiments performed here, it was possible to conclude 
that it is the magnitude image, and not the phase one, the most sensitive to phase 
changes in the wavelet packets coefficients. This is because it was observed that the 
magnitude image was degraded when the real and imaginary parts of the wavelet 
packet coefficients were filtered independently, while this process led to an 
improvement of the phase image.  

These results indicated a significant noise reduction, which surpass previous results 
reported in the literature [1, 7] and in this case without the need of an excessive 
computational burden. 
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Abstract. Optical character recognition of cursive scripts present a number of 
challenging problems in both segmentation and recognition processes and this 
attracts many researches in the field of machine learning. This paper presents a 
novel approach based on a combination of MLP and SVM to design a trainable 
OCR for Persian/Arabic cursive documents. The implementation results on a 
comprehensive database show a high degree of accuracy which meets the re-
quirements of commercial use. 

1   Introduction 

Optical character recognition (OCR) has been extensively used as the basic applica-
tion of different learning methods in machine learning literature [1, 2]. Consequently, 
there are also a large number of commercial products available in the market for rec-
ognizing printed documents.  However, the majority of the efforts are focused on 
western languages with Roman alphabet and East Asian scripts. Although there has 
been a great attempt in producing omni-font OCR systems for Persian/Arabic lan-
guage, the overall performance of such systems are far from perfect. Persian written 
language which uses modified Arabic alphabet is written cursively, and this intrinsic 
feature makes it difficult for automatic recognition.  

There are two main approaches to automatic understanding of cursive scripts: ho-
listic and segmentation-based [3]. In the first approach, each word is treated as a 
whole, and the recognition system does not consider it as a combination of separable 
characters. Very similar to the speech recognition systems, in almost all significant 
results of holistic methods, hidden Markov models have been used as the recognition 
engine [4, 5]. The second strategy which owns the majority in the literature, segments 
each word to containing characters as the building blocks, and recognizes each char-
acter then.  

In comparison, the first strategy usually outperforms the second, but it needs a more 
detailed model of the language which its complexity grows as the vocabulary gets larger. 
In addition, in this method, the number of recognition classes is far more than similar 
number in segmentation-based methods. Recently, there is also a trend toward hybrid 
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methods which incorporates the segmentation and recognition systems to obtain overall 
results; these methods are usually called segmentation-by-recognition [6, 7].  

One of the main concerns of designing every OCR system is to make it robust to 
the font variations. Thus, successful examples are omni-font recognition systems with 
ability to learn new fonts from some tutor. In holistic methods, as the OCR problem is 
considered on the whole, and the system globally uses learning mechanisms, it is easy 
to transform it into an omni-font learning system. On the other hand, the segmenta-
tion-based systems mainly use learning methods only in recognition process, and to 
the best of our knowledge, the learning systems are never used for the segmentation 
process in the literature [8]. Usually, human recognizes unfamiliar words by segment-
ing them and recognizing each character separately to understand the whole word. 
With this perspective, in this research, the whole task is broken down into two sepa-
rate learning systems to gain from reduction of complexity in hierarchy as well as 
adaptability of learning systems. 

The layout of this paper is as follows: Section 2 emphasizes on the characteristics 
of Persian script that were crucial for the design of OCR systems. In section 3, we 
will discuss the proposed algorithm. Segmentation and recognition modules are de-
scribed in separate subsections. Section 4 presents implementation details and results. 
This is accompanied with conclusive remarks and acknowledgements. 

2   Some Notes on Persian/Arabic Script 

In this section, we will briefly describe some of the main characteristics of Per-
sian/Arabic script to point out the main difficulties which an OCR system should 
overcome. As one of the main properties, the script consists of separated words which 
are aligned by a horizontal virtual line called "Baseline". Words are separated by long 
spaces and each word consists of one or more isolated segments each of them is called 
Piece of a Word (PAW). On the contrary, PAWs are separated by short spaces, and 
each PAW includes one or more characters. If one PAW has more than one character, 
each of them will be connected to its neighbors along the baseline. Fig. 1 shows a 
sample Persian/Arabic script where a represents the space between two different 
words, and b is the short space between PAWs of the first word which is also shown 
larger in Fig. 2. 

In the latter figure, the first PAW on the right, comprises three characters and the 
second one, on the left, consists of only a single character, and denotes the pen width 
value which is heuristically equal to the most frequent value of the vertical projection 
in each line. 

 

 

Fig. 1. Sample of Persian script and virtual baseline shown for demonstration only 
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Fig. 2. An example of a Persian word consists of two PAWs 

3   Proposed Algorithm 

The overall block diagram of the system is presented in Fig. 3 which depicts layout 
analysis, post-processing, and natural language processing (NLP) subsystems in addi-
tion to recognition and segmentation blocks. The details of the NLP and layout analy-
sis sections are out of scope of this paper and will not be discussed here.  

Fig. 3. Overall block diagram 

    In our design, we exploited the segmentation-based approach, and we considered 
some measures to overcome the main weaknesses of it. In addition, we examined 
different methods for segmentation including a system based on If-Then rules, a fuzzy 
inference system, and an artificial neural network (ANN) system. Finally, we con-
cluded that an ANN approach with extended features provides the best solutions (Sec-
tion 3.1). In recognition section, we obtained a definite set of features from each seg-
mented symbol which was fed to a support vector machine (SVM) classification en-
gine to obtain the recognized symbol. Using large margin classifiers enables us to 
achieve high recognition rates which are in coherence with the best results in the 
literature [2].  

We also decomposed each character of Persian script to more primitive symbols 
called graphemes. This novel decomposition has decreased the complexity of the 
recognition and segmentation procedures and has improved the overall result. Few 
different characters could share a single grapheme, and additionally, several joint 
graphemes could build a single character. Persian language includes many characters 
which the only difference they have is the number of dots and placement of them. 

To finalize the character recognition task, a post-processing section is implemented 
to combine the result of grapheme recognition and the number of dots. Besides, this 
section corrects some common grapheme recognition errors using an embedded con-
fusion matrix. Fig. 4 shows the combination of grapheme recognition and post-
processing brocks with dot recognition module. 
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Fig. 4. Grapheme recognition subsystem is combined with dot recognition modules and post-
processing blocks to recognize characters 

    Before proceeding further, we provide concepts of some frequently used terms in 
this paper for clarification: 

Grapheme: In this research, we refer grapheme to any graphical image that would 
be a character or a part of it which acts as a fundamental building block of words. 
This resembles the concept of phonemes in speech, but we don't directly choose them 
in relation to real phonemes.  

Pen tip: The vertical position of the pen in the skeleton PAW image.  
Junction points: The horizontal position of the grapheme boundary. Thus, cutting 

the word at junction points results separated graphemes. 

3.1   Segmentation 

The ultimate goal of the segmentation block is to find the exact junction points in 
each PAW. In this research, three distinct methods have been used for segmentation 
of the PAWs. The decision about how segmenting a line is based on specific features 
which are identical for all of these methods, but the decision maker is different.  

 
1- If Then Rule: In this method, we defined some conditional rules to compare the 
computed features with some predefined thresholds. The results of these conditions 
have been combined to determine the junction points. We fine-tuned the rule base and 
thresholds by observing the test results.  The following algorithm, describes how we 
obtain junction points through this If-Then rules.  

Initially, the upper contour of the character image is extracted, and its first deriva-
tive is computed (Figures 5 and 6). In order to have robust derivatives, neighboring 
points should participate in the derivative calculation of each point. This is done by 
using the convolution of the upper contour signal and h(t) which is defined as follows: 

( )
0

t n t n
h t

otherwise
=  (1) 

    As it is depicted in Fig. 6, in junction points, the derivative of the upper contour has 
a significant peak. Hence, zero crossings of the second derivative of the upper contour 
are candidate junction points. On the other hand, the pen tip should be near to the 
baseline in the junction points; therefore, neighboring pixels of the candidate junction 
points are searched for black pixels near the baseline. Finally, the obtained points are 
the junction points. 
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Fig. 5. Sample PAW image with contour and vertical projection 

 

Fig. 6. Sample PAW image with contour (red) and its derivative (gray) 

2. Fuzzy Inference System (FIS): As an alternative to the previous method, FIS is 
used to determine the junction points with increased robustness. The used features in 
this method are as follows: 

a. Vertical projection of the line image (Fig. 5). 
b. The first derivative of the upper contour. 
c. The distance of the pen tip from the baseline.  
The calculation of the first two features is evident, and we will explain the third (f3) 

in more details. This feature is computed using the weighted average of the pixel 
values on each column of the image matrix, where the weights are chosen Gaussian 
functions. 
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These three features are fed to an FIS which is used as a filter to create zero cross-
ings at the junction points. Thus, applying a zero-crossing detector to the output of the 
FIS will result the junction points. 

 
3. Artificial Neural Network (ANN): Previously explained systems have a short 
memory in the derivative calculation. Therefore, the final decision for each point 
depends on values of a small neighborhood of that very point. It is obvious that using 
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a larger neighborhood can result in a more accurate decision. Hence, in the neural 
network method, features of a large window participate in making decision for its 
center point. On the other hand, this method uses a learning system to find the junc-
tion points. In this approach, similar features to the fuzzy system are calculated over a 
window of width equal to 4 times the pen width to make a feature vector. Resulting 
vector is fed to a Multi Layer Perceptrons (MLP) with one output neuron that esti-
mates the probability of the center point being the junction point. 

Our train set includes labeled junction points. The target vector of the neural net-
work should be equal to one for the junction points and zero for the others. To assist 
the learning procedure, a Gaussian function with variance equal to 1/6 times the pen 
width is placed at each junction point. Although this smoothing reduces the accuracy, 
the results are quite acceptable (Fig. 7). 

In practice, our neural network should have a predefined number of inputs; conse-
quently, the input image is normalized with the pen width value in order to have pen 
width equal to 5 points in all images. In the implementation stage, the neural network 
window width is set to 20 i.e. 4 times the pen width. Thus, the neural network has 60 
neurons in the input layer and 5 hidden neurons.  

 

 

Fig. 7. Sample PAW image neural network target signal, which is used for training procedure 

The described neural network uses a hyperbolic tangent sigmoid as the transfer func-
tion in all neurons, and it is trained using the standard gradient decent with momentum 
training algorithm which has adaptive learning rate [9]. In order to facilitate the training 
process and escape from the local minimums, a simulated annealing algorithm is added 
to the training process. The peaks of the neural network output are selected as the candi-
date junction points. Finally, the neighboring points of the candidates are checked for the 
location of the pen tip, and the final junction points are specified. 

3.2   Recognition 

The task of this section is to recognize the input grapheme image. In Persian script, 
every letter can have two to four different shapes in respect to their position in their 
containing PAW. The four different positions are at the beginning, in the middle, at 
the end, or character as an isolated word. These positions correspond to the connec-
tivity of the letter from left, both sides, right, or no connection respectively. Table 1 
shows the example of four different shapes of character "HEH". This fact is addressed 
in some previous works [6, 10] as one of unique characteristics of Persian/Arabic 
scripts which increases the literally available 52 characters of Persian script to 134 
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different characters in shape. The main idea to overcome this diversity is to recognize 
the position of characters separately and generate four different recognition systems 
for each position.  

As Table 1 presents, we assigned a group number to each case of character shapes. 
In contrast to the methods available in the literature, classifiers were designed to rec-
ognize graphemes instead of characters in different positions inside words. By intro-
ducing graphemes instead of characters, the number of recognition classes reduces 
from 134 characters to 85 graphemes. Similarly, graphemes have four groups accord-
ing to their position in the PAW. Meanwhile, a post-processing system is needed to 
recognize the number and positions of the dots and also the sequence of the graph-
emes to produce the final recognized characters. As mentioned before, this strategy 
helps simplifying the segmentation section and decreases the complexity of the classi-
fication process significantly. 

Table 1. Four possible shapes of a character in a PAW and corresponding character group of 
each shape and its connectivity direction 

 

Table 2. Some characteristic features for grapheme recognition 

i Feature Vector (Fi)
1-7 Moment invariant Hu features [13, 15]. 
8 (The variance of the horizontal projection) / (The variance of 

the vertical projection)

9 (The number of the black pixels in the upper half of the image) 
/ (The number of black pixels in the lower half of the image)

10 (The number of black pixels in the right half of the image) / 
(The number of black pixels in the left half of the image)

11 (The number of black pixels in the whole image) / (Area of 
the bounding box of the image)

12 (The width of the bounding box of the image) / (The height 
of the bounding box of the image)

13
(The variance of the horizontal projection of the upper half 
of the image) / (The variance of the horizontal projection of the 
lower half of the image)

14 The 2-D standard deviation of the image

15-34 The elements of the vectors that are extracted from the chain code [14] of 
the contour of the thinned image [12].

35-37 Quantitative measures of curvatures of the thinned image. 
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    For every grapheme image, a feature vector of length 50 is computed which con-
sists of normalized values of both statistical and structural features. The former is 
mainly gathered from the statistical distribution of the grapheme skeleton, while the 
latter is mostly related to the shape and morphological characteristics of Persian script 
 [10, 11]. 

In addition to some new features specially designed for the printed script recogni-
tion, we used a number of features from our previous work on designing a recognition 
system for isolated handwritten Persian characters [12]. Table 2 provides some of the 
characteristic features extracted from binary image in brief. 

We used an SVM classifier with RBF kernel and parameters listed in Table 3 
which are optimized by cross-validation. 

Table 3. SVM optimized parameters 

Group Kernel  c SVs Classes 
1 RBF 0.01 1 1195 13 
2 RBF 0.01 2.2 951 12 
3 RBF 0.01 2.2 930 20 
4 RBF 0.01 1 1664 40 

4   Implementation and Results 

In order to have confidential results, a comprehensive database of characters is 
needed, and since there was no standard dataset available for Persian script, we de-
cided to build it from scratch. For our OCR system with segmentation-based strategy 
which uses learning systems in both recognition and segmentation sections, two dif-
ferent datasets are needed. First set should include the train and test samples of la-
beled PAWs for neural network which performs segmentation task and the second set 
should contain labeled graphemes for the SVM classifier. To achieve higher recogni-
tion rates, we decided to gather the second set based on the behavior of the neural 
network segmentation process. Hence, we carried out following procedures to create 
those two datasets. 

At the first move, we designed a primitive segmentation system based on the If-
Then rules, and used this system to segment about 40 pages of Persian script from 
daily newspapers in different font types. Since the results of such segmentation sys-
tem was not satisfactory, we developed software for manually verifying the results of 
that primitive segmentation system. Therefore, a labeled dataset has been created for 
learning perfect segmentation procedure and evaluating different segmentation  
methods. 

On the way to have complete datasets, we trained the segmentation neural network 
with the first set, and used this system to segment a large number of printed docu-
ments in 20 fonts to create four groups of grapheme database. Fig. 8 shows an exam-
ple of some of these fonts. This dataset is also verified to have a complete multi-font 
labeled dataset of Persian printed documents. Our database compromises 40,000 sam-
ple PAWs for segmentation and 170,000 graphemes. The train and test sets are chosen 
uniformly random with ratio of 1/3. 
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A prototype system is implemented in MATLAB environment. The neural net-
works implementation is based on MATLAB Neural Network toolbox, and the SVM 
classification is built with the help of OSU-SVM toolbox. To speed up the algorithms 
and increase the efficiency, the overall system is implemented in Delphi platform. In 
addition, a modified version of Lib-SVM library is used in Delphi implementations. 

Tables 4 to 6 provide the detailed results of our system for segmentation, recogni-
tion, and overall results.  

Table 4. Correct segmentation rate 

Segmentation Train  set Test set 
If Then Rule - 89% 

FIS - 91% 
NN 99.4% 98.7% 

Table 5. Grapheme classification rate 

Group Samples Train set Test set 
1 43521 99.6% 99.5% 
2 38562 99.8% 99.3% 
3 39452 99.8% 99.6% 
4 48521 99.1% 98.3% 

Table 6. Overall recognition tate 

Type Train set after NLP Test set 
Character - 99.2% 

Word 95.46% 91.09% 
 

 

Fig. 8. Example of a Persian script with different font types in each line 
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5   Conclusion 

With the proposed design which uses learning systems in both segmentation and rec-
ognition sections, we have achieved a highly accurate OCR system for omni-font free 
size Persian printed documents. The commercial version of this system will be ex-
ploited in Iranian Civil Organization in year 2005.  This novel strategy could be ex-
tended to other cursive scripts as well with a proper training dataset. 
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Abstract. Area based local stereo correspondence algorithms that use
the simple ’winner takes all’ (WTA) method in the optimization step
perform poorly near object boundaries particularly in occluded regions.
In this paper, we present a new modified area based local algorithm
that goes some way towards addressing this controversial issue. This
approach utilizes an efficient strategy by adding the concept of a com-
putation skip threshold (CST) to area based local algorithms in order
to add the horizontal smoothness assumption to the local algorithms. It
shows similar effects to Dynamic Programming(DP) and Scanline Opti-
mization(SO) with significant improvements in occlusions from existing
local algorithms. This is achieved by assigning the same disparity value of
the previous neighboring point to coherent occluded points. Experiments
were carried out comparing the new algorithm to existing algorithms us-
ing the standard stereo image pairs and our own images generated by
a Scanning Electron Microscope (SEM). The results show that the hor-
izontal graphical performance improves similarly to DP particularly in
occlusions but the computational speed is faster than existing local al-
gorithms, due to skipping unnecessary computations for many points in
the WTA step.

1 Introduction

The main aim of stereo vision systems is to determine depth between two or more
stereo image pairs using an approach which is similar to the human vision system
[4]. More recently, a variety of dense stereo correspondence algorithms have been
developed for a variety of purposes such as computer vision, robot navigation,
intelligent vehicles and so on [11] [13]. These dense stereo matching algorithms
can be classified in two categories: namely local and global algorithms. [1] Local
algorithms are broadly split into two categories: area based matching and feature
based matching. The area based algorithms aggregate costs of pixels in correlated
window regions without smoothness assumptions and are fast computationally
but exhibit poor performance graphically. Notwithstanding, they have often been
used for real time applications. [12] In the feature based matching, two classes
have recently received attention: hierarchical feature matching and segmentation
matching.
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On the other hand global algorithms are based on iterative schemes and
minimize the global cost function combining data and smoothness terms. These
algorithms such as Graph Cuts(GC) [18] produce better and more accurate dis-
parity maps but the computational costs are often too high. We have attempted
to reconstruct the 3D surfaces of specimens from nano-scaled stereo image pairs
generated by the SEM at slightly different eucentric tilting angles for a fast
nanotechnology application. Initially, we used area based local stereo matching
algorithms rather than global ones. However, the results from the existing local
algorithms proved not to be accurate enough to reconstruct sufficient detail on
the 3D surfaces.

Here, we propose a new modified area based local algorithm by adding the
concept of a computation skip threshold (CST) to the basic steps in terms of the
horizontal smoothness term. The aim of this approach is to improve graphical
performance of existing area based local algorithms particularly for occlusions
with speed improvement. Section 2 describes related work. Section 3 presents
the new algorithm in detail. Section 4 compares the new algorithm with existing
ones and shows all images used and results from experiments. Section 5 contains
conclusions.

2 Related Work

The majority of area based local algorithms can be divided into 4 steps as be-
low: [5]

1. Matching cost computations
2. Cost (support) aggregation
3. Disparity computation/optimization(WTA)
4. Disparity refinement

However, some local algorithms combine steps 1 and 2 and use a matching cost
based on a correlated area (e.g. normalized cross-correlation [6]). For the match-
ing cost commonly both the squared intensity differences (SD) [10] and the
absolute intensity differences (AD) [9] have been used. Recently, there are new
robust measures, such as truncated quadratics and contaminated Gaussians [7],
which limit the influence of mismatches in the aggregation. However, this paper is
concerned with only basic methods (AD and SD). In aggregation, window-based
methods aggregate matching cost over a support region in the Disparity Space
Image (DSI) [2] C(x, y, d) (three-dimensional in x-y-d space) around a specific
pixel of interest; the sum of absolute differences (SAD) or the sum of squared
differences (SSD). Additionally, some efficient methods can be used with these
techniques. For example, shiftable windows [8] can be used with a separable slid-
ing min-filter. For disparity computation, a straightforward way to determine the
best match for a point is to select the point of the other image, which shows the
best similarity value within the range of disparities (dmin ≤ d ≤ dmax). This
method is referred to as the ’Winner Takes All’ (WTA).

Through the 1980’s there has been much interest in feature based techniques
due to their efficiency but the interest has declined in the last decade because of
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improvements in robust global techniques. These methods use symbolic features
rather than image intensities. Venkateswar and Chellappa [14] have proposed
a hierarchical feature matching algorithm utilizing four types of features: lines,
vertices, edges, and surfaces. Matching starts from the highest level of the hi-
erarchy (surfaces) to the lowest (lines). Another feature based approach is to
segment the images and then match the segmented regions [16] [15]. Birchfield
and Tomasi [16] segment stereo images into small planar patches for which cor-
respondence is determined and introduce an affine transformation model with
parameters as bellows: [

x2
y2

]
= A

[
x1
y1

]
+ d (1)

where (x1, y1)and(x2, y2) are the coordinates of corresponding points in the left
and right images. The vector d defines the translation of a segment between
frames and the matrix A defines the in-plane rotation, scale, and shear trans-
formations between frames. The parameters are calculated by spatio-temporal
intensity gradients [17].

Global algorithms are formulated by the energy minimization framework [19].
Those methods often skip the aggregation step and intensively work in the dis-
parity computation step to minimizes a global energy shown as follows:

E(d) = Edata(d) + λEsmooth(d) (2)

The data term, Edata(d) measures how well the disparity function d agrees with
the input images. The smoothness term,Esmooth(d) encodes the vertical and
horizontal smoothness assumptions.

3 A New Modified Algorithm

In this algorithm, a new Computation Skip Threshold (CST) has been added to
the cost and disparity computation steps of existing local algorithms in order to
determine whether or not the point in the left image should be skipped in the
WTA step. In the given stereo pair images; IL (left) and IR (right), the pixel
intensity value of each point in each epipolar scanline of the IL will be compared
with that of the neighboring previous point in the same scanline of the IL during
the first cost computation step.

SKIPL(x, y) =
{

1 if ‖IL(x, y)− IL(x− 1, y)‖ ≤ δ
0 if ‖IL(x, y)− IL(x− 1, y)‖ > δ

(3)

In Equation 3, δ is the Computation Skip Threshold (CST) expressed by a pixel
intensity value (from 0 to 255). In the first step SKIPL(x,y) of each pixel point
is calculated according to Equation 3 before the point is calculated for the AD
or SD process. The SKIP function simply marks 1 or 0 in each point but has
no influence in existing calculations. In the aggregation step, there is no change
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in computations. For the first two steps, the new algorithm is exactly the same
as existing local algorithms except marking 0 or 1 for each point by the SKIP
function. During the third WTA step, if SKIPL(x,y) is 1 the point (x,y) in the
left image will be skipped and then the same disparity value of the previous
point will be assigned to that point. Conversely, if it is 0 then the point (x,y)
will be computed as normal so that the point (x,y) is regarded as where the
image intensity is sufficiently changed to be calculated.

Fig. 1. An example of the ith−scanline in a stereo image pair

Figure 1 illustrates how this method works in each scanline of a stereo image
pair. In the cost computation step, SKIPL(x,i) of the first pixel in each scanline
is forced to be 0 whereas, that of the remaining ones will be 0 only when the
absolute difference between the current pixel value and the previous one in the
same scanline of the IL is bigger than CST. Thus, the value of SKIPL(x, i)
for the three points (IL(0, i), IL(3, i), IL(7, i) ) where pixel intensity values are
changed more than CST from the previous point is 0 and that for the others
is 1. In the WTA step, only the three points of the left scanline are computed
within the disparity range rather than all of the available 10 points. The dis-
parity value of the remaining seven points will be assigned with that of the
previous point of each point. For example, the disparity value of the three points
(IL(4, i), IL(5, i), IL(6, i)) will be 2 assigned by that of the point IL(3, i) . In
this way a large number of computations can be saved. If one assumes that the
disparity range is 30 then we can skip 30 x 7 (points) computations but do only
30x3 (points). The aim of this approach is to compute only the points where
pixel intensity values are changed in each sacnline more than the CST value
so that errors particularly at occlusions have been reduced with the horizontal
smoothness term. Consequently, the new method produces an effect similar to
that of DP and SO [1], especially for occluded regions by assigning the same dis-
parity cost of the previous point of each point to the occluded points. In the next
section, we evaluate the performance of the new algorithm with experiments.
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4 Experiments and Results

All work has been done on the basis of the open sources from Scharstein and
Szeliski [1] [3]. The experiments were conducted on an AMD Athlon 1.2GHz PC
with 1GB RAM to compare the performance and computation speed of the new
modified algorithm with those of existing fundamental local algorithms such as
SAD+WTA and SSD+WTA. In all experiments, a 9x9 or 5x5 window with min-
filter has been used with the commonly used images from Middlebury College [3]
such as Map, Sawtooth and Tsukuba (gray level images) with the ground truth
maps. The first experiment investigated the role of CST and also compared per-
formances, particularly for occluded regions among three algorithms (Existing,
New local algorithms and Dynamic Programming). Two factors such as bad pixel
percentages(B) in all area and occluded regions [1] were calculated to evaluate
the performance of each algorithm.

B =
1
N

∑
(x,y)

(|dC(x, y)− dT (x, y)| > δd) (4)

where dC(x, y) is the calculated disparity map and dT (x, y) is the ground truth
map. δd is a disparity error tolerance, it is 1 here.

Figure 2 shows that the improved performance of the new algorithm at oc-
cluded regions has been simultaneously considered with the bad pixel percentage
of the whole area in Map (284x216) and Sawtooth images (434x380). In Figure
2a while the CST increased from 5 to 15, the bad pixel percentage at occluded
regions is considerably reduced from 90% in existing algorithms to 60% without
increasing bad pixel errors across the image as a whole. Figure 2b also shows
more than 30% decrease in error at occlusions. In both images bad pixels have
been redueced around 30% but not as much as DP(see Figure 2a). This is for the
reason that this algorithm adapts only the horizontal smoothness term but not

(a) Map Image (b) Sawthooth Image

Fig. 2. Results of performance comparisons between existing and the new algorithms
in Map and Sawtooth images with different CSTs
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(a) Map Left (b) Ground Truth (c) Existing

(d) New CST=10 (e) New CST 15 (f) Dynamic Program-
ming

(g) Sawtooth Left (h) Existing (i) New CST=3

(j) Tsukuba Left (k) Existing (l) New CST=4

Fig. 3. Experimental images Map,Sawtooth: Window Size=9, Tsukuba: Window
Size=5

the vertical one. However, from the points CST=20 in Fingure 2a and CST=5
in Figure 2b the bad pixels in all areas start to be increased so that there seems
to be a critical point for the CST. This problem is also the same problem of the
difficulty of enforcing consistency causing the horizontal streaks in the disparity
map of both DP and SO (see Figure 3). Using the map images, the critical CST
is 15 (Figure 2a), and in the Sawtooth images the CST is 4 (Figure 2b). With
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(a) Left image (b) Existing (c) CST=3 (d) CST=4

Fig. 4. Results from a stereo image pair generated by the SEM using a 21x21 window
with min filter

Table 1. Results of computation time taken in both images as disparities are increased

Map Image Sawtooth Image
Dispa Improv. Exist. New Dispa Improv. Exist. New
-rity (Sec) (Sec) (Sec) -rity (Sec) (Sec) (Sec)
30 0 1.53 1.53 20 0 2.6 2.6
50 0.02 2.56 2.54 40 0.1 3.9 3.8
70 0.04 3.61 3.57 60 0.2 7.9 7.7

an appropriate CST value, the performance of the new algorithm for occluded
regions will be between the existing local algorithm shown in the left hand side
of Figure 2a and DP shown in the most right hand side.

In the second experiment, a comparison of computation speed between the
existing and the new local algorithms in both images has been executed with
different disparities. Table 1 shows results of computation time taken. In both
images the computation time of the new algorithm is faster than the existing
one for all cases. Moreover, in each image the improvement of the computation
speed slightly increased as the range of disparities increased. For example, in the
Sawtooth image of Table 1 for a disparity range of 20, it is the same speed and
for a disparity range of 60, 0.2 seconds faster. Figure 3 shows disparity maps
generated by the above experiments. Figure 3c is the map from the existing SSD
with a 9x9 adaptive window. It shows bad performance at occluded regions of the
left hand side of the object. From Figure 3d, the errors at occluded regions start
to be reduced by the new algorithm with CST=10. In Figure 3e with CST=15
shows the best performance. As the value of CST is increased, errors in occluded
regions significantly reduced so that the results are going towards those generated
by DP (see Figure 3f). In the sawtooth images errors in the left hand side of the
sawtooth have been reduced with CST=3(around 30% improvement)as shown
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Figure 3g−i. Also, Tsukuba shows also graphically better results in Figure 3j−l
with CST=4.

Figure 4 shows another example using smaller objects magnified at a smaller
scale. A nano-scaled stereo image pair in high magnification (30,000) is generated
by the SEM, using eucentric tilting within slightly different angles (−5 5). It also
shows better performance at the occluded regions. Figure 4b is the disparity map
generated by the existing SAD algorithm with a 21x 21 window and min-filter.
As a result, many errors at occlusions have been generated in the left hand side
of each object. In Figure 4c when CST=3, the errors in left hand side of the
upper object can be handled and when CST=4 even errors in the left hand side
of the bottom object are also handled as shown Figure 4d.

5 Future Work and Conclusion

From all of the experiments, the new modified local algorithm apparently shows
approximately a 30% improvement especially in occluded regions due to the
added horizontal smoothness term and is moreover faster than existing local
ones. The effect of it is similar to that of SO with no occlusion cost necessary
and with the lack of the vertical smoothness terms. But both algorithms are
different in that SO utilizes DP algorithms to compute the global minimum so
as to take much more time than our algortithm. The computing time of the new
algorithm is considerably improved when the range of disparities and the size of
the images are quite large.

However, the best performance requires an optimized CST value for each
image pair as DP also requires a smoothness weight(λ). Fortunately, from our
experiments the optimized CST value of all images was 3 or 4 except the map
images. It is for the same reason that in DP map images, which are well textured
and only have two planar regions, are required for a high value for the smoothness
weight(λ) as an input parameter in equation 2 while other images that have
many objects at different depth levels are required for smaller values for the
parameter [1]. Therefore, the CST value actually works in a similar way to the
smoothness weight(λ). If CST is 0, the result of the new algorithm is exactly the
same as that of the existing local algorithms. From CST=1 disparity maps of
local algorithms start to become smooth up to an optimized CST point(mostly
4) in gray level images without losing the quality of the whole disparity map
with speed improvements. This issue of more clearly finding the optimized CST
value will be tackled in future work. Finally, we conclude that the new local
algorithm adopting the horizontal smoothness can be applied to all kinds of
local algorithms, which use the WTA, for a wide range of applications.
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Abstract. This paper is about an evaluation for a feature selection
strategy for mammogram classification. An earlier solution to this prob-
lem is revisited, which constructed a supervised classifier for two prob-
lems in mammogram classification: tumor nature, and tumor geometric
type. The approach works by transforming the data of the images in a
wavelet basis and by using a minimum subset of representative features
of these textures based in a specific threshold (λT ). In this paper differ-
ent wavelet bases, variation of the selection strategy for the coefficients,
and different metrics are all evaluated with known labelled images. This
is a suitable solution worth further exploration. For the experiments we
have used samples of images labeled by physicians. Results shown are
promising, and we describe possible lines for future directions.

1 Introduction

In a pattern recognition approach, the features used to represent the classes must
be significative to characterize them with precision and to contribute positively
towards the classification process. In the case of images, a transformation of
pixels to a different space can help to untangle the meaningful information.

An early diagnostic for medical treatment is very important to total or partial
cure. This can avoid the surgical removal of a breast. A common method of
diagnosis is by using a Mammogram, which is basically an x-ray of the breast
region that displays points with bigger intensities. From the image a trained
physician screens it searching for artifacts that could be a sign for the presence
of a benign or malign tumor. However suspicious areas appear as almost free
shapes and this a challenging for pattern recognition approaches. Besides there
are vessels and muscles which are more or less prominent in the images depending
on the patient. The variation of images in a class and among considered classes
is a factor that will influence directly the problem treated in this paper.

We proposed a solution to this in a previous paper [3] using feature sets with
100, 200, 300 and 500 features to represent each image class. In this paper we re-
port on an strategy to select the wavelet features to be used n the classification,
and further it is shown a protocol of tests evaluating the features chosen on two
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mammogram classification problems: 1) Type(Benign or Malign) and presence
of tumor; and 2) Shape of the Artifacts Distribution in he Mammogram. Con-
siderable advances in this paper are achieved if compared with [3], because of
the reduction of the dimensions in space and successful classification rates. This
reduction is provided by a new strategy to select the most significant features
based on standard deviation of classes by a specific threshold λT .

A mammogram classifier is constructed and evaluated using a wavelet de-
composition process and a selected subset of representative features. The ex-
periments performed show that successful classification can be achieved, even
when we consider the two main problems: 1) Classification between normal, be-
nign, and malign areas; 2) Classification between normal, microcalcifications,
radial or spiculated, and circumscribed areas. Section 2 shows the images of typ-
ical mammograms and its target classes, along with a revision of literature on
mammograms classification. Section 3 defines the problem in terms of a pattern
recognition framework and presents a proposed approach for its solution. Section
4 shows experiments on images taken from MIAS [4]. Section 5 gives conclusions
and points to future extensions.

2 Mammograms

A mammogram is an x-ray of breast obtained by compression of the breast of pa-
tients between two acrylic plates for a few seconds. Thus a typical mammogram
is an intensity image with gray levels, showing the levels of contrast inside the
breast which characterize normal tissue, vessels, different masses of calcification,
and of course noise. This type of image is used by physicians because it is cheap
and it allows the discovery of breast cancer that is not perceived in a touch ver-
ification. An example of a mammogram and a machine used for obtaining this
type of image are shown in Figure 1 a) and b), respectively.

Some calcifications can be grouped in classes due their similar geometrical
properties. They are usually named radial or spiculated lesions, circumscribed
masses lesions and microcalcifications. The radial lesions have a centred region
with segments leaving it in many directions. The circumscribed masses lesions
are more uniform, resembling a circle, although still irregular. Finally, the micro-
calcifications constitute small groups of calcified cells without pre-defined form
or size.

Another classification adopted by a physician considers the nature of the le-
sions, such as benign or malign lesions. The distinction between these two classes
is very ill-defined in terms of the images themselves, since what usually a physi-
cian does is to ask for further analysis including other tests for characterizing
the tumor as benign or malign. In terms of an automated classification to be
performed by a computer, a strong evidence of a classification in one of these
classes will be an important result to achieve. Mammograms without any of the
typical artifacts, or abnormalities will be classified as normal cases.

The images used in the experiments were labelled by a physician and they
came from the database of MIAS [4] with original size of 1024x1024 pixels, per
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image, and namely mdbX, where X is a number of the image in the database.
However, the images used in the experiments were crops of size 64x64 pixels per-
formed in the original mammograms, whose centers correspond to the centers of
the presented abnormalities. The images are irregular textures, and with subtle
similarities and differences regarding the classification between radial, circum-
scribed, microcalcifications, and normal; or between normal, benign, and malign.
Figures 5 and 6 show examples of the two classification problems addressed here.

A solution to this whole problem is still a research issue. Some works from
the literature either deal only with the segmentation of mammograms in order
improve visualization and analysis by a physician, or classify subsets of classes.
A review of some work until 1994 can be seen in [9]. We will comment here on
some recent works.

Fig. 1. a) Intensity image of a typical mammogram (mdb184) b) Mammogram machine

In [8] is presented a scheme for analyzing mammograms by using a multires-
olution representation based on Gabor wavelets. The method is used to detect
asymmetry in the fibro-glandular discs of left and right mammograms in order
to diagnose breast cancer. The types of lesions are not dealt with as it is the
approach taken here. In their work a dictionary of Gabor filters is used and the
filter responses for different scales and orientation are analyzed by using the
Karhunen-Loève transform, which is applied to select the principal components
of the filter responses. They show figures of correct classification for asymmet-
ric, distortion, and normal cases. In [7], thermal texture maps are used in early
detection of breast cancer. In this case the relationship between the pattern in
each slice and the metabolic activities within a patient’s body is revealed and the
depth of tumor is estimated by thermal-electric analog and half power point. The
conclusion is based on fact that different tissues have different growth patterns
and this can distinguished the pixels of tumors and blood vessel. This approach
is used to detection of breast cancer and ovarian cancer.

This paper represents the continuity of approach presented in [3] and it shows
the constructing and evaluating of classifier for mammogram using a wavelet
decomposition process for the feature extracting stage. We evaluate a differ-
ent strategy for representative feature selecting is presented by using a specific
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threshold (λT ), based on standard deviation of classes. The number of features
is reduced drastically and results shown have high successful rates.

Section 3 next frames the problem in a pattern recognition framework and
presents the details of our approach.

3 The Proposed Approach

In a general way texture can be characterized as the space distribution of the
gray levels in a neighborhood, as in [5], that is to say, the variation pattern of
the gray levels in a certain area. Texture is a feature that can not be defined for
a point, and the resolution at which an image is observed determines the scale
at which the texture is perceived. So, texture is a confusion measurement that
depends mainly on the scale which the data are observed. There are textures
with regularity, deterministic and structured aspects, and others irregular like
the mammograms previously shown. In case of regular textures, some measure-
ments can be used like gray-level co-occurrence matrices to capture the spatial
dependence of gray-levels values. In addition, entropy, energy, contrast and ho-
mogeneity properties can be calculated easily. An autocorrelation function also
can be used for images with repetitive texture patterns because it exhibits peri-
odic behavior with a period equal to spacing between adjacent texture primitives.
However, in our problem, the images are mammograms with irregular textures,
and in addition, the mammogram classes are not homogeneous. Therefore, those
measurements will not be representative for the kind of classes we aim to separate
in an automated mammogram analysis.

We need first to find what features can be useful, and then select possibly
uncorrelated measurements of them. This can be reached by using a wavelet
transform in data, because statistical properties of this kind of transformation
can help to uncorrelate the data as much as possible without losing their main
distinguishable characteristics.

The main contribution of this method is the design and selection of a feature
representation of mammogram that can help in the mammogram classification
process. We use a wavelet transform in data and we reach a dimensionality re-
duction. We propose a selecting strategy of main features subsets that have a
good representation for the elements of each class and they are more separated
in the feature space. A specific threshold (λT ) based on standard deviation of
classes images is used. Extracted and selected features of the decomposed image
are used in the construction of the image signature. We believe that this ap-
proach can be used in other applications that deal with recognition of irregular
textures, like other medical image applications. In order to achieve a separation
among image for experiments, the following conventions are adopted: “Basis Im-
age” for mammogram subset with known classification and “Test Image” for
mammogram subset with unknown classification, used in test stage.
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3.1 Wavelets

The wavelets are functions used as basis for representing other functions, and
once a so called mother wavelet is fixed, a family can be generated by translations
and dilations of it. If we denote a mother wavelet as y(x), its dilations and
translations are

{ψ(x−b
a ), (a, b) ∈ R+ ×R},

where a = 2−j and b = k × 2−j, with k and j integers.
The wavelets used in the experiments of this work were implemented following

the multiresolution scheme given by Mallat [6].
A bi-dimensional wavelet can be understood as an one-dimensional one along

axes x and y. In this way applying convolution of low and high pass filters on
the original data, the signal can be decomposed in specific sets of coefficients, at
each level of decomposition, as:

- low frequency coefficients (Ad
2jf);

- vertical high frequency coefficients (D1
2jf),

- horizontal high frequency coefficients (D2
2jf), and

- high frequency coefficients in both directions (D3
2jf).

The Ad
2jf coefficients represent the entry of next level of decomposition. The

decomposition process proposed by Mallat [6] and implemented in our work rep-
resents the pyramidal algorithm for a bi-dimensional wavelet transform. Figure
2 represents the wavelet decomposition process and Figure 3 show an example
of decomposed mammogram.

Fig. 2. Decomposition process for computing a wavelet transform
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Fig. 3. Example of a decomposed mammogram

By having in mind that decomposing the input image with a Wavelet Trans-
form will be a pre-processing step, the approach can be described then in two
main stages as follows.

3.2 First Stage: Building the Classes Signatures

The first stage is based on the Basis Image subset and it is based on the following
steps:

- Mammogram images are decomposed with a chosen wavelet basis (Wi);
- Some low frequency coefficients (CoefClassj) are selected, based on their

magnitude, in the first decomposition level, considering λT as the threshold;
- Signatures of the classes (ClassSigj) are built based on CoefClassj and on

the mean of those coefficients.

The λT threshold is calculated using λ [2] defined as:
λ = σ

√
2logn
n

where σ represents the standard deviation of the class and n represents the
number of images in that class.

The λT threshold is calculated by a mean of the λ thresholds of j classes,
e. g.:

λT =

j�

v=1
λv

j ,
where j represents the number of classes considered.

3.3 Second Stage: Classifying a Mammogram

The second stage is based on the Test Image subset and follows the procedures
presented below:

- An unknown mammogram (Mamok) is decomposed with a chosen wavelet
basis (Wi);

- Some low frequency coefficients (CoefMamok) are selected, based on their
magnitude, in the first decomposition level, considering λT as a threshold;

- In the second stage, CoefClassj coefficients represent the unknown mam-
mogram signature (MamoSigk)
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- Distances between MamoSigk and ClassSigj signatures are calculated by
different metrics. Dj are computed for all classes ClassSigj;

- The unknown mammogram is classified based on the lowest distances Dj .

The distance metrics used in order to measure the proximity between un-
known mammogram and classes signatures are: Euclidean Distance, Norm in
Absolute Value, Mahalanobis Distance and Huffmann Code. The Euclidean Dis-
tance is defined by

DEuclidean =
√∑

i,j

(A(i, j)−M(i, j))2.

The Norm in Absolute Value is represented by

DAbsoluteV alue =
∑
i,j

(A(i, j)−M(i, j)).

A is the matrix that represents the mammogram signature (MamoSigk), M is
the class signature (ClassSigj) and the distance is calculated for all A(i, j) �= 0.
Mahalanobis Distance is defined by

D2
Mahalanobis = (x−m)′C−1(x−m),

where x is the features’ matrix of mammogram that it is to be classified repre-
sented by MamoSigk, m is the matrix of arithmetic mean among all of elements
of the same class, represented by SigClassj, and C−1 is the covariance matrix
of class elements. Huffmann Code is based on the following rules: for an A ma-
trix, for all i and j, we have A(i, j) = 1, if A(i, j) > 0, and A(i, j) = −1, if
A(i, j) < 0, where i is the number of lines and j is the number of columns of
A matrix. Considering that A and B are matrices, the distance between them,
using Huffmann Code is calculated by a sum of “1”, where the sum is calculated
in cases where A(i, j) = B(i, j).

4 Experiments and Analysis of Results

Experiments were accomplished for the two problems: the geometric property
of the tumor, and its nature. The first set of experiments took into considera-
tion the geometric property of the tumor, considering four classes: radial lesions,
circumscribed lesions, microcalcifications and normal areas. The second experi-
ment took into consideration the nature of the tumors, regardless of geometric
property, considering three classes: benign, malign and normal classes.

The images used in this set of experiments are shown by class. Some noisy
images were obtained from original ones and used for testing, namely ndbX,
rdbX and sdbX. The noisy images were obtained by application of three types
of noise: Noisify, Randomize and Spread, corresponding to ndbX, rdbX and
sdnX, respectively. The parameter settings were independent, option of gray
factor equals 10 to Noisify. In case of Randomize, randomization percentile was
100% and 10 number of repetitions. At last, in case of Spread, both horizontal
and vertical spread amount were 10.00.
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The images used for constructing the classes are different from the images
used for classification. Figures 4(a), 4(b) and 4(c) show benign, malign and
normal classes respectively, considering the nature of tumors. Figures 5(a), 5(b),
5(c) and 5(d) show radial lesions, circumscribed lesions, microcalcifications and
normal classes, considering the geometric property of tumor.

We consider the variation of two issues: wavelet basis used in the decom-
position process, and distance metrics. The wavelet bases tested were Haar,
Daubechies 4, Biorthogonal 2.4, Coiflets 2 e Symlets 2. A cross validation process
is performed with 75% of images separated for building the classes signatures
and 25% of them for testing. Four rounds are tested with all of images consider-
ing the mentioned percentages and we present the average results in Tables 3, 4,
5, 6, and 7. Tables 1 and 2 present λT threshold values for each test, considering
the nature and geometrical properties of tumors, respectively.

(a) Benign class (b) Malign class (c) Normal class

Fig. 4. Typical images of the classes for the first mammogram classification problem
considered in this work (Tumor Nature)

(a) Radial class (b) Circumscribed le-
sion class

(c) Microcalcification
class

(d) Normal class

Fig. 5. Typical images for the second classification problem (Tumor Geometrical Type)
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Table 1. λT values, considering nature of the tumors

Round Daubechies 4 Haar Biorthogonal 2.4 Coiflets 2 Symlets 2
1 15 15 14 14 15
2 13 14 12 12 14
3 15 15 14 14 15
4 14 14 12 12 14

Table 2. λT values, considering the geometrical properties of the tumors

Round Daubechies 4 Haar Biorthogonal 2.4 Coiflets 2 Symlets 2
1 15 15 14 14 15
2 17 17 15 15 17
3 15 15 14 14 15
4 17 17 16 16 17

Table 3. Successful rates of classification using Daubechies 4 wavelet basis with nor-
malized data

Class Euclidean Norm in Huffmann Mahalanobis
Distance Abs. Value Code Distance

Benign 95.83 95.83 87.50 95.83
Malign 45.83 33.33 45.83 33.33
Normal 87.50 83.33 87.50 87.50
Radial 56.25 50.00 56.25 50.00

Circumscribed 75.00 75.00 75.00 75.00
Microcalcifications 93.75 93.75 68.75 93.75

Normal 75.00 75.00 87.50 68.75

Table 4. Successful rates of classification using Haar wavelet basis with normalized
data

Class Euclidean Norm in Huffmann Mahalanobis
Distance Abs. Value Code Distance

Benign 91.67 91.67 91.87 91.67
Malign 79.17 70.83 79.17 66.67
Normal 95.83 95.83 100.00 95.83
Radial 75.00 75.00 75.00 75.00

Circumscribed 87.50 87.50 87.50 87.50
Microcalcifications 93.75 93.75 93.75 93.75

Normal 93.75 93.75 100.00 100.00

Table 5. Successful rates of classification using Biorthogonal 2.4 wavelet basis with
normalized data

Class Euclidean Norm in Huffmann Mahalanobis
Distance Abs. Value Code Distance

Benign 75.00 75.00 66.67 83.33
Malign 50.00 29.17 20.83 29.17
Normal 83.33 83.33 95.83 75.00
Radial 75.00 75.00 62.50 75.00

Circumscribed 62.50 62.50 62.50 62.50
Microcalcifications 75.00 62.50 62.50 56.25

Normal 62.50 56.25 81.25 56.25
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Table 6. Successful rates of classification using Coiflets 2 wavelet basis with normalized
data

Class Euclidean Norm in Huffmann Mahalanobis
Distance Abs. Value Code Distance

Benign 87.50 87.50 70.83 87.50
Malign 83.33 58.33 54.17 54.17
Normal 87.50 83.33 95.83 83.33
Radial 81.25 81.25 81.25 81.25

Circumscribed 81.25 81.25 81.25 81.25
Microcalcifications 93.75 93.75 93.75 87.50

Normal 81.25 75.00 93.75 75.00

Table 7. Successful rates of classification using Symlets 2 wavelet basis with normalized
data

Class Euclidean Norm in Huffmann Mahalanobis
Distance Abs. Value Code Distance

Benign 87.50 87.50 83.33 91.67
Malign 79.17 70.83 75.00 54.17
Normal 95.83 95.83 100.00 95.83
Radial 68.75 62.50 75.00 62.50

Circumscribed 81.25 87.50 81.25 87.50
Microcalcifications 93.75 87.50 93.75 81.25

Normal 93.75 93.75 100.00 100.00

The experiments show that the distance metrics used in the classification
process present similar results on average. Euclidean Distance and Norm in Ab-
solute Value show similar successful rates, with the exception of some cases in the
malign class. In some cases, Mahalanobis Distance presents inferior rates when
compared to other metrics. Haar basis achieves better results considering all the
tested classes. The dimensionality of feature space is reduced and the results are
promising for the two mammogram classification problems. Selection of features
by the λT threshold demonstrates its representation capability for choosing the
minimum features subset used for building the signatures of classes. The number
of features used is about of 1.46% of the low frequency coefficients in the first
level of decomposition and 0.37% of total information. Thus relevant information
is concentrated in few low frequency coefficients.

5 Conclusions and Future Works

This paper showed an evaluation of a feature selection strategy for two mam-
mogram classification problems. We see this as a practical and important issue
to be addressed in medical applications. Variations of the problem, considering
tumor nature, and tumor geometric properties are considered. The strategy for
the classification was first presented in [3], and in this work we have used a
threshold, λT , to select the coefficients and have presented experiments in a dif-
ferent number of conditions. The λT threshold was capable to choose signatures
that conduced to a representation that showed successful rates in classification
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process, and with λT it was possible to use a smaller quantity of features that
are useful for mammogram classification problem.

Future extensions of this approach will try to deploy a fully working system
in a medical environment. In addition, we suggest the union of this process of
decision making of classification with medical inference models of diagnosis.
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Abstract. The location of the texture limits in an iris image is a previous step in 
the person's recognition processes. The iris localization plays a very important 
role because the speed and performance of an iris recognition system is limited 
by the results of iris localization to a great extent. It includes finding the iris 
boundaries (inner and outer). We present a new method for iris pupil contours 
delimitation and its practical application to iris texture features estimation and 
isolation. Two different strategies for estimating the inner and outer iris 
contours are used. The results obtained in the determination of internal contour 
is used efficiently in the search of the external contour parameters employing a 
differential integral operator. The proposed algorithm takes advantage of the 
pupil's circular form using well-known elements of analytic geometry, in 
particular, the determination of the bounded circumference to a triangle. The 
algorithm validation experiments were developed in images taken with near 
infrared illumination, without the presence of specular light in their interior. 
Satisfactory time results were obtained (minimum 0.0310 s, middle 0.0866 s, 
maximum 0.1410 s) with 98% of accuracy. We will continue working in the 
algorithm modification for using with images taken under not controlled 
conditions. 

1   Introduction  

Person's recognition using the iris texture has been an active investigation area in last 
time, because it is considered the most unique phenotypic visible feature in human 
face that determines their identity and offer biometric feature acquisition without 
invasion. Person's recognition with iris constitutes one of the main applications of the 
biometrics at the moment. In this process, the first step to do is the automatic texture 
iris localization which is characterized by a circular or quasi circular form limited by 
two borders (iris inner border and outer). The two limits with near circularity form are 
shown in Fig. 1. The iris inner border coincides with the contour of the eye's pupil and 
the iris outer border establishes the contact iris-sclera. The iris localization means 
isolate the iris texture information and play a very important role in the speed and 
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performance of an iris recognition 
system. With the iris texture area 
delimited we can begin to construct 
the iris code which is the base of an 
iris recognition system. 
    In this paper we present a new 
method to obtain both, the iris inner 
and outer border parameters in order 
to isolate the iris texture information. 
The proposed method uses different 
strategies for the parameters 
estimation of each one of the interest 
borders, and it uses the results 
obtained in the determination of the 
internal contour, in the most efficient 
search of the external contour 
parameters. 

In order to compute the parameters of the iris inner contour we use the so called 
"Three Points Method" [1]. It uses well-known elements of analytic geometry and 
trigonometry, in particular, the determination of the parameters of the circumference 
bounded to a triangle. To obtain the parameters that define the external contour was 
used the Daugman’s algorithm [2, 3]. This second algorithm receives the output from 
the first one and after that, search the abrupt gradient changes of a contour integral to 
find the iris – sclera border.  

Portions of the research in this paper use the CASIA iris image database (version 
1.0) collected by Institute of Automation, Chinese Academy of Sciences [4]. Our 
experiments show that the sequential combination of these two algorithms (Three 
Point Method + Daugman algorithm) during the texture isolation is precise, fast and 
efficient. The IrisCode formed with the iris texture obtained with our method offer 
good results during the eye matching applying a test of statistical independence on 
two coded patterns originated from the same or different eyes. 

2   Parameters of the Iris Inner Contour 

The iris inner contour coincides with the pupil's external frontier. Since it is assumed 
that the pupil possesses circular form, the parameters that should be obtained are, the 
pupil's center coordinates and its radio. To solve this task the algorithm of the three 
points was designed. 

 
Three points algorithm  
The algorithm receives a 256 grey tones image as input (Fig. 2a) and also a precision 
level P to define the accuracy for finding a point on the pupil contour. P is a threshold 
used to compare the variation of a texture feature between two points. Particularly, if 
these two points are located in different regions characterized with different textures, 
the value P will help us to know the texture change from one region to another. 
    

 

Fig. 1. Circular form of the Iris and pupil. See 
the iris inner and iris outer boundaries. 

íazil
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Fig. 2. Process in order to obtain the “interior point” PI using the Three points Method. a) 256 
grey tones image as input to the algorithm [3], b) binarized image showing the interior point PI, 
and c) original image showing the interior point PI already associated. 

The general idea is very simple, beginning with an interior point of pupil, we will 
find three points on the circular contour of the pupil, named P1, P2 and P3 (Fig. 3). 
With these three points we have a triangle and also a bounded circumference to it. 
Finally, the bounded circumference parameters are calculated. The mentioned 
circumference is exactly the pupil's contour. The algorithm steps are as follows: 

 
Step 1: Find the initial point PI located inside the pupil  
    The original image (Fig. 2a) [3] is binarized to isolate the pupil object from the rest 
of image. Working with the binarized image we determined which is the row F and 
the column C with bigger quantity of dark points continuously. A dark point is that 
whose grey level belongs to the lowest values of the scale [0 .. 255] and it will usually 
be smaller than 70. The intersection point of the row F and the column C will always 
be located inside the pupil and we take it as PI (Fig.2b). Taking PI as initial point, the 
algorithm will begin the search of the points P1, P2 and P3. 

This approach is based on the fact that in the eye images, the pupil's grey levels are 
characterized to have a homogeneous or quasi homogeneous black color, and 
therefore, its binarization generates a new image with a black stain that represents the 
pupil on a white background and a grateful method of finding a point inside this stain 
is the one described above. 

 
Step 2: Find the three points P1, P2 and P3 located on the circumference that defines 
the iris inner border  

The search of these three points begins from the point PI found in the step 1. It is 
known that there is a very marked texture contrast between the pupil's regions and the 
iris. For this reason is appropriated to use a quantitative texture feature, as the 
standard deviation, to detect the frontier between the pupil and the iris. The standard 
deviation feature is calculated in a point considering a vicinity of 3x3 pixels size 
which is an habitual procedure in digital image analysis. The standard deviation varies 
very little inside the pupil, however it will suffer an instantaneous abrupt increasing 
once the vicinity 3x3 begin to take pixels belonging to the iris region. 

The strategy to find the three points P1, P2 and P3 consists on following three 
trajectories with different addresses whose angles will be 0º, 120º and 240º. On each 
point of the trajectory we compute the difference between the standard deviation of 
initial point PI (DSPI) and the points of the trajectory (DSPC). A point whose 
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difference is bigger than threshold P (DSPC - DSPI> P), it will be selected as point 
belonging to the pupil's contour. The trajectories are taking with these addresses in 
order to obtain the biggest quantity of information about the contour (Fig. 3). 

 
Step 3: Find the circumference parameters of the iris inner contour 

The circumference parameters are the radius and the coordinates of its center. 
Inside of this circumference the eye pupil is located.  

 
 
 
 
 

 
The points P1, P2 and P3 obtained in the step 2 are not aligned since they belong to 

the internal contour of the iris which is surrounded by the texture quasi - circular of 
the iris, that in general possesses irregular form. These three points allow to build a 
triangle of sides R1, R2 and R3 (Fig. 4) and on that triangle it is possible to define a 
bounded circumference of radio r that defines the eye's pupil and therefore it 
determines the extension of iris inner contour that we want to know. 

Knowing P1, P2 and P3 the radius r is calculated using the equality settled by the 
sine law [4] that is enunciated in (1): 

r
PPP

2
 Sen 

P
Sen 
P

Sen 
P 133221 ===  (1) 

Where, 

21P P  : Segment from point P1 to point P2 (see Fig. 4). 

,  and  : angles between the sides of triangle R2,R3; R1,R3 and R1,R2 
respectively. 
 

 

Fig. 3. Circumference bounded to 
the triangle P1-P2-P3 whose sides 
are R1, R2 and R3 

 

Fig. 4. Image from Fig. 2 (a) showing the 
points P1, P2 and P3 on the pupil's contour at 
orientation 0º, 120º, 240º 
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Fig. 5. The circumcenter point is the 
intersection point of two median line 
that are sides of a inscribed triangle in a 
circumference 

Therefore, 

Sen *2
P 21Pr =

 
(2) 

If P1(x1, y1) and P2(x2, y2) are the positions coordinates of P1 y P2 then the 

longitude of segment 21P P  is obtained from (3): 

( ) ( )2121P
22

21 yyxxP −− +=  (3) 

Calculation of angle :  
The angle  is comprehend between the segment R2 and segment R3 whose slopes 

are respectively m2 and m3, it can be calculated using the expression (4): 

( )
( )  

*m1
arctan

32

32

+
−=

m

mmθ  (4) 

The slopes m2 and m3 are obtained using the well-known formula (5): 

12

12

xx
yym −

−=  (5) 

When all the necessary data have been 
calculated, then applying the formula (2), the 
circumference's radius is obtained. That 
circumference defines the iris inner contour. 

As the circumference is bounded to the 
triangle P1-P2-P3 (Fig. 4), then its center 
coincides with the median line intersection 
point of this triangle. The Fig. 5 shows the 
circuncenter point. The median line point of 

the segment S  is the perpendicular straight 
line to it, and also crosses by its half point. 

The points P1, P2 and P3 define the 

segments P1P2  P2P3  P3P1 . We use two of 
these segments in order to find the median 
line M1 and M2 and their interception 
represents the circumference center. 

To define the median lines we must find a 
point that belongs to each one and also their 
slopes. A point that belongs to the median line is the half point of segment which cuts 

it. The half point of a segment XY is possible calculate it as, 
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−−=
2

,
2

1212 yyxx
Pm

  
(6) 

The slope of a median line is equal to the inverse of the opposed of the slope of the 
straight line that contains the segment of which is median line. As the straight lines 
slopes that contain the segment we already found, it is only necessary to calculate the 
inverse of its opposed one. We need obtain the intersection of two of the three 
possible median lines, and in that point it is located the circumference center which 
has the property of being bounded to the shown triangle. This point constitutes the 
center of the iris inner contour. 

3   Parameters of the Iris Outer Contour 

In order to obtain the iris external contour parameters we use the values of the iris 
inner contour parameters already computed above - radius and the circumference 
center coordinates - which offer an advantageous starting point for the Daugman 
algorithm expressed in (7). 
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The above inequation presents the Daugman’ integrodifferential operator for 
determining the coordinates and radius of the pupil; where I(x, y) is an image such as 
Fig. 2a containing an eye. The operator searches over the image domain (x, y) for the 
maximum in the blurred spatial derivative with respect to increasing radius r, of the 
normalized contour integral of I(x, y) along a circular arc ds of radius r and 

coordinates (x0, y0). The symbol * denotes convolution and 
( )rG σ  is a smoothing 

function such as a Gaussian of scale σ . The complete operator behaves as a circular 
edge detector, blurred at a scale set by σ , searching iteratively for the maximal 
contour integral derivative at successively finer scale of analysis through the three 
parameter space of center coordinates and radius (x0, y0, r) defining a path of contour 
integration [2]. 
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The final discreet expression (8) describes the process that is used practically in the 
iris-esclera contact detection with the human eye image. 

4   Work of the Integrodifferential Operator 

Since the operator behaves as an edge detector, the form of the edge depends on the 
contour integral used in its expression. In our case an integral of a circular edge 
detector is used, because the objective is to detect the iris external contour. The 
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operator solves a problem of optimization on three variables: radius r, and the 
coordinates of the circumference center (x0, y0) on the image domain. The operator 

looks for the maximum of the a 
partial derived function respect 
the radius r, a function 
represented by a circular 
integral of edge on an arc ds 
that depends on the radius, the 
coordinates of the 
circumference and the angles 
that limit the arc, and that it is 
convolved with a Gaussian 
function which parameter is 
sigma (scale). 

The contour’s integral on an 
arch ds, defines the sector of the 
contour where it is wanted to 
find the value of the integral one. 
In our case, the arches ds are of 
90º centred in the axis X with 
address to positive infinite and 
negative infinite. The objective 
of the angles in this address is to 

avoid the eyelid interference. The Fig. 6 shows the location of the coordinated system, 
as well as the successive arches that are explored, modifying the radius from inside 

toward outside, in order to detect the 
iris’s limits.  

The normalization of the 
contour’s integral is applied to have 
an idea about the intensities half 
value at the points located on the 
contour.  

The differential of the normalized 
contour’s integral estimates the 
speed with which it changes their 
half value, being of interest their 
maximum values, because they 
indicate an abrupt change in the 
averaged intensities of the points 
among contours of different radios 
and therefore the sure detection of a 
border in the radial direction. (See 
Fig. 7 and Table 1). 

The convolution operation with a 
Gaussian function, whose scale parameter is sigma, has the objective of pondering the 
obtained values during the differential function evaluation, giving higher importance 
to the values near to the radius with which the operator is evaluated. 

Fig. 6. Iris image showing the contour’s integrals.  
The arches ds are of 90º centred in the axis X with 
address to positive infinite and negative infinite. 

Fig. 7. Iris image showing the contour’s integrals 
computed with r = 30, 33, 36, 39 y 42 
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Table 1. Daugman operator values computed from the pupils’ center up to the iris border. The 
abrupt change of the texture properties between the pupil–iris contact and the iris-sclera contact 
guarantees the iris limits detection. 

Radius r 30 33 36 39 42 45 
Operator 0 0 20.14 60.41 6.84 6.45 

5   The Optimization Problem 

The solution to the maximization problem, begins selecting a point inside the pupil 
that is a center in relation to the iris outer boundary. This initial point is assumed as 
the pupil’s center, previously obtained. Once the initial point is defined, a radius 
optimization begins. The processes continue changing by approximation, the outer 
boundary center point, until the max value is obtained. 

The radius optimization is implemented increasing the radius in a certain step 
according to the precision needed to define the outer boundary. The used value is 2 
pixels. The strategy for the displacement of the center coordinates is to move it with a 
certain step, following the vertical and horizontal addresses, 0º, 90º, 180º and 270º. 
This strategy appears in Fig. 8. The stop condition in the center optimization is the 
occurrence of three successive iterations without reaching a maximum value of the 
maximization expression, while in the optimization of the radius the integrals are 
calculated for all possible radius and selecting the best result.  

 

Fig. 8. Iris images belonging to optimization process of the external contour applying Daugman 
operator. Displayed images show different stages of the not concluded optimization processes. 

6   Experimental Results 

In order to compare the results of our method with another already published, the 
CASIA Iris Image Database was adopted. It includes 108 classes and each class has 7 
iris images captured in two sessions with a time interval about a month. So there are 
totally 756 iris images with a resolution of 320x280 pixels. As it is know, in the 
CASIA iris images some irises are occluded by eyelids and some eyelids are out of 
the image window. In another way, some eyelash is inside the irises. The experiments 
are performed in Matlab (version 7) on a PC with P4 2.6 GHz processor and 512Mb 
RAM. 
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The Fig. 9 shows an iris images sequence where the inner and outer borders, 
delimiting the iris’s texture, were detected using the Three Point Method combined 
with the Daugman operator.  

 

Fig. 9. Results of the proposed method for pupil’s circle detection and its combination with the 
Daugman operator for iris-sclera circle detection 

We studied the whole CASIA Iris Image Database in order to obtain the following 
statistics. In Table 2, the accuracy is the result of eye observations, because we have 
not developed a method to evaluate quantitatively the boundaries localization results.  

Table 2. The localization results of inner and outer iris boundary 

Boundary Accuracy Mean time Min. time Max. time 

Inner boundary localization 100% 0.0198 s 0.0150 s 0.0320 s 
Inner and outer boundary 
localization 

98% 0.0576 s 0.0160 s 0.3260 s 

Observing the accuracy from Table 2, we can see: a) 100% iris inner boundary 
localization results, this means all the 756 images precisely detected; b) some false 
localization results that mean several pixel displacement from de true position of 
contact iris – sclera. 

Because there are some special tricks unknown in Daugman, Wildes and Cui’ 
methods, we do not compare with them, but compare the localization results of inner 
and outer iris boundary published in [5] and the results are listed in Table 3. We also 
include our results. 
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Table 3. Comparion with other algorithms 

Method Accuracy Mean time Min. time Max. time 

Daugman 98.6% 6.56 s 6.23 s 6.99 s 
Wildes 1 [6] 99.9% 8.28 s 6.34 s 12.54 s 

Wildes 2 [7] 99.5% 1.98 s 1.05 s 2.36 s 

Cui et al. [5] 99.54% 0.2426 s 0.1870 s 0.3290 s 

Proposed 98.0% 0.0576 s 0.0160 s 0.3260 s 

Note that the accuracy is 98% with the proposed method, lower than the others. 
However it is the faster, with a 4 times higher speed than the best.  

The theoretical reasons of the high speed and robustness of the proposed method 
are the follows: 

1. Pupil detection uses circle fitting, which use the solution of the “Three 
Point Method”. The method makes full use of the local texture variation 
and doesn’t use any optimization procedure. For this reason it can reduce 
the computational cost greatly. 

2. The outer boundary localization combine the output of the “Three Point 
Method” as input to the integrodifferential operator taking advantage in 
order to search the abrupt gradient changes of a contour integral to find 
the iris – sclera border. 

Our method combines two different strategies, texture variation (pupil – iris) and 
edge detection (iris – sclera) to localize the iris zone. 

7   Conclusions 

Iris localization serves not only computing the position of the iris, but also detecting 
the important iris texture area, useful to develop the IrisCode information. In this 
paper we propose an algorithm to localize iris based on pupil and iris texture 
segmentation. The pupil local texture has a great contrast with the iris texture, this 
fact is very important for iris localization and at the same time, it is useful to save 
computational time with our “Three Point Method”. The pupil detection using it, 
provide the initial parameters set (radius, x0, y0 of the pupil circle) to the Daugman 
operator, which takes advantage using these values in order to detect the iris – 
sclera boundary. The experimental results show the promising performance and 
robustness of the method. It is fast and we hope a good behaviour in a real time iris 
recognition system. In the near future, we will continue working to improve the 
accuracy of the inner and outer boundary localization. We also must do experiments 
with images taken under not controlled condition, different of CASIA Iris images 
Database.  
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1 Universidad de Valparáıso; Departamento de Computación; Valparáıso-Chile
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Abstract. Catastrophic Interference is a well known problem of Artifi-
cial Neural Networks (ANN) learning algorithms where the ANN forget
useful knowledge while learning from new data. Furthermore the struc-
ture of most neural models must be chosen in advance.

In this paper we introduce a hybrid algorithm called Flexible Architec-
ture of Self Organizing Maps (FASOM ) that overcomes the Catastrophic
Interference and preserves the topology of Clustered data in changing en-
vironments. The model consists in K receptive fields of self organizing
maps. Each Receptive Field projects high-dimensional data of the input
space onto a neuron position in a low-dimensional output space grid by
dynamically adapting its structure to a specific region of the input space.

Furthermore the FASOM model automatically finds the number of
maps and prototypes needed to successfully adapt to the data. The
model has the capability of both growing its structure when novel clus-
ters appears and gradually forgets when the data volume is reduced in
its receptive fields.

Finally we show the capabilities of our model with experimental re-
sults using synthetic sequential data sets and real world data.

Keywords: Catastrophic Interference, Artificial Neural Networks, Self
Organizing Maps, Pattern Recognition.

1 Introduction

During this decade a huge amount of real data with highly dimensional samples
have been stored for some sufficiently large period of time. Models were con-
structed to learn this data, but due to the changing nature of the input space,
the neural networks catastrophically forgets the previously learned patterns [4].
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In addition, the neural designer has the difficulty to decide in advance the ar-
chitecture of the model, and if the environment change, the neural network will
not obtain a good performance under this new situation. To overcome the ar-
chitectural design problem several algorithms with adaptive structure have been
proposed (See [2], [5], [12] and [13]).

In this paper we propose a hybrid problem-dependent model based on the
Kohonen’s Self Organizing Maps [8] with the Bauer et al. growing variant of
the SOM [2], the K-means [11], the Single Linkage clustering algorithm [7]
and the addition of new capabilities of gradually forgetting and contracting
the net. We call this algorithm Flexible Architecture of Self Organizing Maps
(FASOM ). The FASOM is a hybrid model that adapts K receptive fields of
dynamical self organizing maps and learn the topology of partitioned spaces [13].
It has the capability of detecting novel data or clusters and creates new maps
to learn this patterns avoiding that other receptive fields catastrophically forget.
Furthermore the receptive fields with decreasing volume of data can gradually
forget by reducing their size and contracting their grid lattice.

The remainder or this paper is organized as follows. The next section we
briefly discuss the ANN Catastrophic Interference problem. Then we review the
models where our hybrid model is based. In the fourth section, our proposal of
the FASOM model is stated. Simulation results on synthetic and real data sets
are provided in the fifth section. Conclusions and further work are given in the
last section.

2 The ANN Catastrophic Interference Problem

Artificial neural networks with highly distributed memory forget catastrophically
when faced with sequential learning tasks, i.e., the new learned information most
often erases the one previously learned. This major weakness is not only cogni-
tively implausible, as human gradually forget, but disastrous for most practical
applications. (See [4] and [10] for a review)

Catastrophic interference is a radical manifestation of a more general problem
for connectionist models of memory, the so-called stability-plasticity problem [6].
The problem is how to design a system that is simultaneously sensitive to, but
not radically disrupted by, new input. A number of ways have been proposed
to avoid the problem of catastrophic interference in connectionist networks (see
[1], [4]).

3 Review of Unsupervised Clustering and Topology
Preserving Algorithms

3.1 Unsupervised Clustering

Clustering can be considered as one of the most important unsupervised learn-
ing problem. A cluster is a collection of “similar” objects and they should be
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“dissimilar” to the objects belonging to other clusters. Unsupervised clustering
tries to discover the natural groups inside a data set.

The purpose of any clustering technique [9] is to evolve a K × N partition
matrix U(X ) of the data set X = {x1, ..., xN}, xj ∈ R

n, representing its parti-
tioning into a number, say K, of clusters C1, ..., CK . Each element ukj , k = 1..K
and j = 1..n of the matrix U(X ) indicates the membership of pattern xj to
the cluster Ck. In crisp partitioning of the data, the following condition holds:
ukj = 1 if xj ∈ Ck; otherwise, ukj = 0.

There are several clustering techniques classified as partitional and hierar-
chical [7]. In this paper we based our model in the following algorithms.

K-means
The K-means method introduced by McQueen [11] is one of the most widely
applied partitional clustering technique. This method basically consists on the
following steps. First, K randomly chosen points from the data are selected as
seed points for the centroids zk, k = 1..K, of the clusters. Second, assign each
data to the cluster with the nearest centroid based on some distance criterion,
for example, xj belongs to the cluster Ck if the distance d(xj , zk) =

∥∥xj − zk

∥∥ is
the minimum for k = 1..K. Third, the centroids of the clusters are updated to
the “center” of the points belonging to them, for example, zk = 1

Nk

∑
xj∈Ck

xj ,
where Nk is the number of data belonging to the cluster k. Finally, repeat the
procedure until either the clusters centroids do not change or some optimal
criterion is met.

This algorithm is iteratively repeated for K = 1, 2, 3, ... until some validity
measure indicates that partition UKopt is a better partition than UK , K < Kopt

(see [9] for some validity indices). In this work we used the F -test to spec-
ified the number K of clusters. The F -test measures the variability reduc-
tion by comparing the sum of square distance of the data to their centroids
EK =

∑N
j=1

∑K
k=1 ukj

∥∥xj − zk

∥∥2 of K and K + 1 groups. The test statistic is
F = EK−EK+1

EK+1/(n−K−1) and is compared with the F statistical distribution with p

and p(n−K − 1) degrees of freedom.

Single Linkage
The Single Linkage clustering scheme, also known as the nearest neighbor method,
is usually regarded as a graph theoretical model [7]. It stars by considering each
point as cluster of its own. The single linkage algorithm computes the distance
between two clusters Ck and Cl as δSL(Ck, Cl) = min

x∈Ck,y∈Cl

{d(x, y)}. If the distance

between both clusters is less than some threshold θ then they are merged into
one cluster. The process continues until the distance between all the clusters are
greater than the threshold θ.

This algorithm is very sensitive to the determination of the parameter θ, for
this reason we compute its value proportional to the average distance between
the points belonging to the same clusters, i.e., θ(X ) ∝ 1

Nk

∑
xi,xj∈Ck

d(xi, xj).
At the beginning θ can be set as a fraction (bigger than one) of the minimum
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distance of the two closest points. When the algorithm is done, clusters consisting
of less than l data are merged to the nearest cluster.

3.2 Topology Preserving Neural Models: The Self Organizing Maps

It is interesting to explore the topological structure of the clusters. The Koho-
nen’s Self Organizing Map [8] and their variants are useful for this task. The
self-organizing maps (SOM ) neural model is an iterative procedure capable of
representing the topological structure of the input space (discrete or continuous)
by a discrete set of prototypes (weight vectors) which are associated to neurons
of the network.

The map is generated by establishing a correspondence between the input
signals x ∈ X ⊆ R

n, x = [x1, ..., xn]T , and neurons located on a discrete lattice.
The correspondence is obtained by a competitive learning algorithm consisting
on a sequence of training steps that iteratively modifies the weight vector mk ∈
R

n, mk = (mk
1 , ...,m

k
n), where k is the location of the prototype in the lattice.

When a new signal x arrives every neuron competes to represent it. The
best matching unit (bmu) is the neuron that wins the competition and with its
neighbors on the lattice they are allowed to learn the signal. The bmu is the
reference vector c that is nearest to the input x, i.e., c = argmini{‖x−mi‖}.

During the learning process the reference vectors are changed iteratively ac-
cording to the following adjusting rule,

mj(t + 1) = mj(t) + α(t)hc(j, t)[x−mj(t)] j = 1..M

where M is the number of prototypes that must be adjusted. The learning pa-
rameter α(t) ∈ [0, 1] is a monotonically decreasing real valued sequence. The
amount that the units learnt will be governed by a neighborhood kernel hc(j, t),
that is a decreasing function of the distance between the unit j and the bmu
c on the map lattice at time t. The neighborhood kernel is usually given by a
Gaussian function:

hc(j, t) = exp

(
−
∥∥rj − rc

∥∥2

σ(t)2

)
(1)

where rj and rc denote the coordinates of the neurons j and c in the lattice. In
practice the neighborhood kernel controlled by the parameter σ(t) and is chosen
wide enough in the beginning of the learning process to guarantee global ordering
of the map, and both its width and height decrease slowly during the learning
process. More details and properties of the SOM can be found in [3] and [8].

4 The Flexible Architecture of Self Organizing Maps

The FASOM is a hybrid model that adapts K receptive fields of dynamical self
organizing maps and learn the topology of partitioned spaces. It has the capabil-
ity of detecting novel data or clusters and creates new maps to learn this patterns
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avoiding that other receptive fields catastrophically forget. Furthermore the re-
ceptive fields with decreasing volume of data can gradually forget by reducing
their size and contracting their grid lattice.

The learning process has two parts. The first part occurs when the model
is created an learn the data for the first time. The second part of the learn-
ing process occurs when a new pattern is presented to the trained model. The
description of the algorithm follows.

4.1 First Part: Topological Learning Algorithm

First Step: Clustering the data
The purpose of this step is to find the number of clusters presented in the data.
To this purpose, first we execute the K-means algorithm, presented in section
3.1, with a very low threshold in order to find more clusters than they really are.
Then, the Single Linkage algorithm is executed to merge cluster that are closer
and to obtain, hopefully, the optimal number of clusters.

When the number of clusters K and their respective centroids zk, k = 1..K,
are obtained then we proceed to create a grid of size 2× 2 for each cluster.

Second Step: Topological Learning
During the learning process when an input data x is presented to the model at
time t the best matching map (bmm) is found as follows. Let Mk be the set
of prototypes that belong to the map Ck. The best matching units (bmu) m

[k]
ck ,

k = 1..K, of the sample x for each of the K maps are detected. The map that
contains the closest bmu to the data will be the bmm whose index is given by

η = arg min
k=1..K

{
∥∥∥x−m[k]

ck

∥∥∥ ,m[k]
ck
∈Mk} (2)

Then all the units that belong to the bmm will be updated iteratively ac-
cording to the following rule:

m
[η]
j (t + 1) = m

[η]
j (t) + α(t)h[η]

cη
(j, t)[x −m

[η]
j (t)] j = 1..Mη

where the neighborhood kernel h[η]
cη (j, t) is given by equation (1) and the learn-

ing parameter α(t) is a monotonically decreasing function through time. For
example this functions could be linear α(t) = α0 + (αf −α0)t/tα or exponential
α(t) = α0(αf/α0)t/tα , where α0 and αf are the initial and final learning rate
respectively, and tα is the maximum number of iteration steps to arrive αf

Third Step: Growing the Maps Lattices
In this part we introduce the variant proposed by Bauer et. al. of growing the
SOM [2]. If the topological representations of the input space partitions are not
good enough, the maps will grow by increasing the number of their prototypes.
The quality of the topological representation of each map Ck of the FASOM
model is measured in terms of the deviation between the units. At the beginning
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we compute the quantization error qe
[k]
0 over the whole data belonging to the

cluster Ck.
All units must represent their respective Voronoi polygons of data at a quan-

tization error smaller than a fraction τ of qe
[k]
0 , i.e., qe

[k]
j < τ · qe[k]

0 , where

qe
[k]
j =

∑
xi∈C[k]

j

∥∥∥xi −m
[k]
j

∥∥∥, and C[k]
j �= φ are the set of input vectors belonging

to the Voronoi polygon of the unit j in the map lattice Ck. The units that not
satisfy this criterion require a more detailed data representation.

When the map lattice Ck is chosen to grow, we compute the value of qe
[k]
j

for all the units belonging to the map. The unit with the highest qe
[k]
j , called

error unit e , and its most dissimilar neighbor d are detected. To accomplish this
the value of e and d are computed by e = arg maxj

{∑
xi∈C[k]

j

∥∥∥xi −m
[k]
j

∥∥∥} and

d = arg maxj

(∥∥∥m[k]
e −m

[k]
j

∥∥∥) respectively, where C[k]
j �= φ,m

[k]
j ∈ Ne and Ne

is the set of neighboring units of the error unit e. A row or column of units is
inserted between e and d and their model vector are initialized as the means of
their respective neighbors. After insertions, the map is trained again by executing
the second step.

4.2 Second Part: Adapting to Changing Environments

The behavior of the input space could change through time, for example, clusters
of data could be created, moved, and even vanished. The model should be able
to adjust its architecture to the new environment.

Let FASOMT be the model and XT the training dataset, both considered
at the training stage T . The adaptation is done as follows.

First step: Detection of strikingly new data
The samples that do not have a good topological representation with the actual
model FASOMT−1 are identified by computing the influence of the sample x

to the model FASOMT−1 as ρ(x, FASOMT−1) =
∥∥∥x−m

[η]
cη (t)

∥∥∥, where m
[η]
cη (t)

is the bmu of the bmm η to the data x. Let X [new]
T be the set of all the strik-

ingly new data whose influence function are bigger than some threshold θ, i.e.,
ρ(x, FASOMT−1) > θ.

Second Step: Creating Maps for the new data
A new model FASOM

[new]
T based on the samples X [new]

T extracted from the
previous step is created. This is accomplished by applying the first step of the
previous part (Clustering the data).

Third step: Integration of the maps
Both models are integrated in an unique updated version, i.e.,

FASOMT = FASOMT−1

⋃
FASOM

[new]
T
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Fourth step: Learning the samples
The model FASOMT learns the whole dataset XT . This is accomplished by ap-
plying second step of the previous part.

Fifth step: Gradually forgetting the old data
Due to the environmental of the input space is not stationary, the clusters be-
havior change through time, and, for example, either their variance or their data
volume can be reduced, or even more, the clusters could be vanished. For this
reason, and to keep the complexity of the model rather low we let the maps
gradually forget the clusters by shrinking their lattices towards their respective
centroids and reducing the number of their prototypes.

Centroid neurons m[k] representing the cluster k modelled by the map Ck are
computed as the mean value of the prototypes belonging to the map lattice, i.e.,
m[k] = 1

Mk

∑Mk

j=1 m
[k]
j , where m

[k]
j is the j−th prototype of the grid Ck and Mk

is the number of neurons of that grid.
The map κ will forget the old data by applying once the forgetting rule:

m
[κ]
j (T + 1) = m

[κ]
j (T ) + γ[x−m[κ]] j = 1..Mκ

where γ is the forgetting rate. m
[κ]
j (T ) and m

[κ]
j (T + 1) are the values of the

prototypes at the end of the stage T and the beginning of stage T+1 respectively.
The objective is to shrink the maps toward their centroids neurons.

Then, if the units of the map κ are very close, the map is contracted. If the
map lattice is a rectangular grid, then we search two rows or columns whose
neurons are very close. To accomplish this the value ν is computed by

ν = arg min
e=1..Nr−1;d=1..Nc−1

�
1

Nc

Nc�
j=1

���m[κ]
(e,j) − m

[κ]
(e+1,j)

��� ,
1

Nr

Nr�
i=1

���m[κ]
(i,d) − m

[κ]
(i,d+1)

���
�

where m
[κ]
(i,j) is the unit located at the position (i, j) in the map lattice κ. Nr

and Nc are the number of rows and columns of the map lattice respectively.
If the criterion ν < β is met then a row (or a column) of units are inserted
between ν and ν + 1 and their model vector are initialized as the mean of their
respective neighbors. Then the rows (or columns) ν and ν + 1 of prototypes are
both eliminated. The map is contracted iteratively until no other row or column
satisfies the criterion. After contraction, the map is trained again by executing
the fourth step.

4.3 Clustering the Data and Evaluation of the Model

To classify the data xj to one of the cluster k = 1..K, we find the best matching
map given by equation (2) and the data will receive the label of this map η, i.e.,
for the data xj we set ujη = 1 and ujk = 0 for k �= η.
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To evaluate the clustering performance we compute the percentage of right
classification given by:

PC =
1
N

∑
xj ,j=1..N

ujk k = True class of xj (3)

Evaluation of the adaptation quality
To evaluate the quality of the partitions topological representation, a common
measure to compare the algorithms is needed. The following metric called the
mean square quantization error is used:

MSQE =
1
N

∑
Mk,k=1..K

∑
m

[k]
j ∈Mk

∑
xi∈C[k]

j

∥∥∥xi −m
[k]
j

∥∥∥2
(4)

5 Simulation Results

To validate the FASOM model we apply first the algorithm to computer gen-
erated data and then to El Niño real data. The models used to compare the
results were the K-Dynamical Self Organizing Map KDSOM [13] and our model
proposal FASOM and FASOMγ where the last gradually forgets.

To execute the simulations and to compute the metrics, all the dimensions
of the training data were scaled to the unit interval. The test sets were scaled
using the same scale applied to the training data (Notice that with this scaling
the test data will not necessarily fall in the unit interval).

5.1 Experiment #1: Computer Generated Data

For the synthetic experiment we create gaussian clusters of two-dimensional
distribution Xk ∼ N (µk, Σk), k = 1, ...,K, where K is the number of clusters,
and, µk and Σk are the mean vector and the covariance matrix respectively of
the cluster Ck. The behavior of the clusters change through the several training
stages.

The experiment has 5 stages where in the first four we re-train the model. The
information about the clusters in the several stages are given in table 1. As can
be noted seven clusters were created. The cluster 1 vanishes in the second stage,
the cluster 2 decreases the number of data, cluster 3 appears in the second stage,
cluster 4 moves from (0.1, 0.8) to (0.42, 0.56), cluster 5 increases its variance and
finally the clusters 6 and 7 appear in the third and fourth stage respectively.

The summary of the results is given in table 2. To evaluate the ability of
the net to remember past learned information, the model was tested with data
of the previous stages, p.e., the model trained after stage four was tested with
the data of stage three, two and one. As can be noted, the FASOM ’s models
outperform the KDSOM. The FASOMγ shows lower MSQE with less number of
prototypes.
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Table 1. Summary of the clusters generated for the Synthetic Experiment in the
several training stages

Cluster 1 2 3 4 5 6 7 Total
NtrainT1 250 250 0 250 250 0 0 1000
NtestT1 250 250 0 250 250 0 0 1000

µT1 [0.9, 0.01]T [0.8, 0.5]T [0.6, 0.8]T [0.1, 0.8]T [0.2, 0.1]T [0.5, 0.5]T [0.01, 0.5]T

ΣT1 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2
NtrainT2 0 250 250 250 250 0 0 1000
NtestT2 0 250 250 250 250 0 0 1000

µT2 [0.9, 0.01]T [0.8, 0.5]T [0.6, 0.8]T [0.18, 0.74]T [0.2, 0.1]T [0.5, 0.5]T [0.01, 0.5]T

ΣT2 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.0542 ∗ I2 0.052 ∗ I2 0.052 ∗ I2
NtrainT3 0 188 250 250 250 750 0 1688
NtestT3 0 188 250 250 250 750 0 1688

µT3 [0.9, 0.01]T [0.8, 0.5]T [0.6, 0.8]T [0.26, 0.68]T [0.2, 0.1]T [0.5, 0.5]T [0.01, 0.5]T

ΣT3 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.05832 ∗ I2 0.052 ∗ I2 0.052 ∗ I2
NtrainT4 0 125 250 250 250 750 250 1875
NtestT4 0 125 250 250 250 750 250 1875

µT4 [0.9, 0.01]T [0.8, 0.5]T [0.6, 0.8]T [0.34, 0.62]T [0.2, 0.1]T [0.5, 0.5]T [0.01, 0.5]T

ΣT4 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.0632 ∗ I2 0.052 ∗ I2 0.052 ∗ I2
NtrainT5 25 62 250 250 250 750 250 1837
NtestT5 25 62 250 250 250 750 250 1837

µT5 [0.9, 0.01]T [0.8, 0.5]T [0.6, 0.8]T [0.42, 0.56]T [0.2, 0.1]T [0.5, 0.5]T [0.01, 0.5]T

ΣT5 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.052 ∗ I2 0.0682 ∗ I2 0.052 ∗ I2 0.052 ∗ I2

In figure 1 each row of the graphs array corresponds to one model, the first
is the KDSOM, the second is the FASOMγ and the last is the FASOM. Each
column of graphs array corresponds to a different training stage. In the figure
is easy to note how the KDSOM model catastrophically forgets different cluster
and tries to model two or three different cluster with the same grid. Instead, the
FASOM and FASOMγ models learn new cluster in different stages, furthermore,
the FASOMγ forgets the cluster with no data as cluster 1, as a consequence the
model has a lower complexity.

In figure 2, the models obtained after the fifth stage were tested with data of
all previous stages. The graphs show how the models forget previously learned
patterns, the KDSOM was the most affected model while the FASOM ’s models
obtain comparable results.

5.2 Experiment #2: Real Datasets

In the real dataset experiment we test the algorithm with the El Niño Data. The
data can be obtained from http://kdd.ics.uci.edu/databases/el nino/el nino.html.
The El Niño Data is expected to aid in the understanding and prediction of El
Niño Southern Oscillation (ENSO) cycles and was collected by the Pacific Marine
Environmental Laboratory National Oceanic and Atmospheric Administration.
The data set contains oceanographic and surface meteorological readings taken
from a several buoys positioned throughout the equatorial Pacific.

The data consists in the following variables: date, latitude, longitude, zonal
winds (west < 0, east > 0), meridional winds (south < 0, north > 0), relative
humidity, air temperature, sea surface temperature and subsurface temperatures
down to a depth of 500 meters. Data taken from the buoys are as early as 1980
for some locations.

The data set was modified by discarding those data with missing values.
Finally we obtains 130454 instances of 4 dimensions (meridional winds, relative
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Table 2. Summary of the results obtained for the synthetic experiments. The first
column S indicates the training stage of the experiment, M is the neural model where
KD is the KDSOM, FSγ and FS are the FASOM with and without (γ = 0) forgetting
factor respectively. The column PC shows the percentage of the correct classification
and MSQE Test X is the MSQE error with test data of the stage X but using the
trained model of the current stage.

S M Neurons Grids MSQE PC MSQE MSQE MSQE MSQE MSQE
Train Test Test1 Test2 Test3 Test4 Test5

KD 48 4.0 1.87 100 2.02 – – – –
S1 FSγ 47 4.0 1.51 100 1.62 – – – –

FS 48 4.0 1.83 100 1.96 – – – –
KD 49 4.0 2.49 75.70 4.13 2.70 – – –

S2 FSγ 69 5.9 1.62 100 3.32 1.77 – – –
FS 69 5.8 1.95 100 3.62 2.11 – – –
KD 49 4.0 5.88 73.34 14.16 6.74 6.31 – –

S3 FSγ 78 7.1 2.39 95.92 10.82 3.44 2.65 – –
FS 87 7.6 2.81 95.66 11.80 4.03 3.05 – –
KD 49 4.0 7.13 66.01 24.54 12.99 8.69 7.32 7.89

S4 FSγ 91 8.3 2.48 95.67 18.92 8.78 4.10 2.85 3.36
FS 101 8.8 2.72 95.52 19.58 9.72 4.55 3.09 3.56

Fig. 1. Synthetic data results: Each column correspond to the training stage. The first
row is the KDSOM model, the second is the FASOMγ with forgetting factor and the
last is the FASOM without forgetting.

humidity, sea surface temperature and subsurface temperatures). We divided the
dataset according to the years into 19 training sets and one test set with size of
1000 at most for each clusters.



652 R. Salas et al.

Fig. 2. Synthetic data results: Results obtained with the KDSOM (continuous line),
FASOMγ (segmented line) and FASOM (points) models. In the horizontal axis, the
stage and in the vertical axis the MSQE of the model trained at stage 4 but evaluated
with data of previous stages.

The summary of the results are shown graphically in figure 3. The FASOM ’s
models increase considerably the number of prototypes when new cluster of data
are found in stage 4. The KDSOM model has the greater MSQE error in train
and test set, although it has the lower complexity, the model is not able to adapt
when the input space change and forgets the previously learned patterns. It is
important to mention that the FASOMγ obtain better performance with less
complexity and at the same time it adapts to changing environment.

Fig. 3. Real Experiment: Results obtained with the KDSOM (continuous line),
FASOMγ (points) and FASOM (segmented line) models. (Up) Number of neurons
of the models in each stage. (down-left) MSQE of training for each stage. (down-right)
MSQE of the model trained at stage T but evaluated with data of stage T − 1.

6 Concluding Remarks

In this paper we have introduced the Flexible Arquitecture of Self Organizing
Maps (FASOM ). The FASOM is a hybrid model that adapts K receptive fields
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of dynamical self organizing maps and learn the topology of partitioned spaces.
It has the capability of detecting new data or clusters by creating new maps and
avoids that other receptive fields catastrophically forget. In addition, receptive
fields with few data can gradually forget by reducing their size and contracting
their grid lattice.

The performance of our algorithm shows better results in the simulation
study in both the synthetic and real data sets. In the real case, we investigated
El Niño data. The comparative study with the KDSOM and FASOM without
forgetting factor shows that our model the FASOMγ with forgetting outperforms
the alternative models while the complexity of our model stays rather low. The
FASOM s models were able to find the possible number of cluster and learn the
topological representation of the partitions in the several training stages.

Further studies are needed in order to analyze the convergence and ordering
properties of the maps.
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Abstract. We propose an automatic segmentation method for accurately 
identifying lung surfaces, airways, and pulmonary vessels in chest CT images. 
Our method consists of four steps. First, lungs and airways are extracted by 
inverse seeded region growing and connected component labeling. Second, 
pulmonary vessels are extracted from the result of first step by gray-level 
thresholding. Third, trachea and large airways are delineated from the lungs by 
three-dimensional region growing based on partitioning. Finally, accurate lung 
regions are obtained by subtracting the result of third step from the result of 
first step. The proposed method has been applied to 10 patient datasets with 
lung cancer or pulmonary embolism. Experimental results show that our 
segmentation method extracts lung surfaces, airways, and pulmonary vessels 
automatically and accurately. 

1   Introduction 

Chest computed tomography (CT) is widely used to evaluate numerous lung diseases, 
including lung nodules, pulmonary embolism and emphysema [1]. A precursor to all 
of these applications is the lung segmentation. In particular, since multi-detector row 
CT scanner routinely generate 300 or more two-dimensional (2D) slices per patient, it 
is critical to develop an efficient method for automatically segmenting the precise 
lung boundaries, airways and pulmonary vessels. 

Several methods have been suggested for segmentation of lungs in chest CT scans. 
In Denison [2], manually traced boundaries were used to estimate regional gas and 
tissue volumes in the lungs of normal subjects. In Hedlund [3], 3D region growing 
with manually specified seed points was presented for segmenting the lungs. 
However, these manual and semi-automatic methods are laborious and subject to 
inter- and intra-observer variations. Brown [4] proposed an automatic, knowledge-
based method for segmenting the chest CT images. Anatomic knowledge stored in a 
semantic network is used to guide the segmentation process. In knowledge-based 
method, accuracy significantly depends on the level of knowledge. In Armato [5], 
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gray-level thresholding is used to segment the thorax from the background and then 
the lungs from the thorax. A rolling-ball algorithm is applied to the lung segmentation 
contours to avoid the loss of juxtapleural nodules. This method was for use as a 
preprocessing step for automated lung nodule detection and mesothelioma 
measurement. In Hu [6], gray-level thresholding is used to distinguish between the 
low density lung regions and denser surrounding tissue. The radiodense pulmonary 
vessels are excluded from the lung regions through the gray-level thresholding so that 
holes in the lung surface near the mediastimum are made. To fill these holes, 2D 
morphological closing is used. However, unsmooth boundaries of lungs are still 
remained. To solve this problem, Ukil [7] proposed an automatic method for the 3D 
smoothing of the lung boundaries using 3D morphological closing with an ellipsoidal 
kernel. 

Current approaches still need more progress in computational efficiency and 
accuracy for segmenting lungs in chest CT scans. In this paper, we describe an 
automatic segmentation method for accurately identifying pulmonary structures such 
as lung surfaces, airways, and pulmonary vessels in chest CT images. First, a similar 
operation to region growing is used to segment the thorax from the background and 
then the lungs and airways from the thorax. To remove other low-density regions 
which have similar intensity with the lungs, connected component labeling is used. 
Second, pulmonary vessels are extracted from the result of first step by gray-level 
thresholding. Third, trachea and large airways are delineated from the lungs by 3D 
region growing based on partitioning. Finally, accurate lung regions are obtained by 
subtracting the result of third step from the result of first step. To evaluate the 
accuracy, we present results comparing automatically extracted borders by proposed 
method to manually traced borders from two radiologists. We also compare the results 
of two automatic segmentation methods: our proposed method and commercial tool 
Analyze. Experimental results show that our segmentation method extracts pulmonary 
structures accurately and automatically. Accurate and automatic segmentation would 
be more useful for clinical applications of pulmonary nodule detection, pulmonary 
embolism and emphysema analysis. 

The organization of the paper is as follows. In Section 2, we discuss how to extract 
the pulmonary structures from other organs in chest CT images. In Section 3, 
experimental results show how the method accurately and automatically segments the 
pulmonary structures in the chest CT images. This paper is concluded with a brief 
discussion of the results in Section 4. 

2   Segmentation of Pulmonary Structures 

For the segmentation of the chest CT images, we apply the pipeline shown in Fig. 1. 
Since our method is applied to the pulmonary nodule matching and pulmonary 
embolism analysis, we assume that each CT scan is acquired at the maximal 
inspiration and the dataset includes the thorax from the trachea to the diaphragm.   
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Fig. 1. The pipeline of the automatic lung segmentation 

2.1   Threshold Selection Using Optimal Thresholding 

For this step, we assume that the image volume contains only two principal brightness 
regions: 1) high-density regions within the chest wall structures, 2) low-density 
regions in the lungs. We use optimal thresholding [8] to automatically select a 
threshold for separating thorax from the lung regions. The segmentation threshold is 
selected through iterative procedure. We first select the initial threshold T0 and apply 
T0 to the volume to separate the voxels into high-density and low-density regions. 
The new threshold for next step is the average of the mean gray-levels of two regions. 
This threshold update procedure is repeated until there is no change in the threshold. 
Since the tissue density of CT images varies between subjects according to radiation 
dose of CT scanner, optimal thresholding allows us to adapt these variations. 

2.2   Lung Separation Using 2D Inverse Seeded Region Growing 

The goal of this step is to separate voxels of lung tissue from the surrounding 
anatomy. Generally, thresholding and 3D region growing are used to identify lungs 
[6]. Since these methods based on difference in attenuation values can produce holes 
in high-density vessels within the lungs, these holes should be filled by morphological 
operations such as dilation and erosion [8]. To eliminate the holes, the mask size of 
these operations has to be larger than the size of holes. However, determining the 
mask size is difficult to eliminate the holes while distorting the lung region 
boundaries as little as possible. We propose the 2D inverse seeded region growing 
(iSRG) method for the automatic lung separation without these limitations in the chest 
CT images. 

The 2D iSRG is used to automatically segment the thorax from the background and 
then the lung regions from the thorax, as shown in Fig. 2(b) and (c). In first 2D iSRG, 
the seed pixel is selected at (0, 0) on each 2D slice, which has a gray level smaller 
than threshold value selected by optimal thresholding. Background air which 
surrounds the body is extracted by region growing and then thorax is segmented by 
inverse operation. In second 2D iSRG, the seed pixel is chosen at a pixel of thorax 
with a gray level larger than the threshold value. As a result of region growing, thorax 
region which has similar gray level to the seed pixel is extracted. By inverting the 
result, we can segment the lungs and airways without inner holes and the distortion of  
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(a) (b) (c) 

Fig. 2. The result of lung separation (a) chest CT image (b) thorax extraction from the 
surrounding anatomy (c) lung delineation from the thorax 

 

(a) (b) 

Fig. 3. The removal of unwanted region (a) the result of 2D iSRG (b) connected component 
labeling eliminates bowel gas (indicated by square and displayed by enlarged image) 

lung boundaries. Binary images are then constructed as shown in Fig. 2(c). The 3D 
connected component labeling is applied to ensure that non-pulmonary structures, 
such as bowel gas, are not erroneously identified as lung regions, as shown in Fig. 3. 

After the lung separation, pulmonary vessels are extracted from the above result 
using gray-level thresholding. All pixels with a gray level larger than the threshold 
value selected by optimal thresholding are identified as pulmonary vessels.  

2.3   Airway Extraction Using 3D Region Growing Based on Partitioning 

Since the intensities of the trachea and large airways are similar to those of the lungs, 
the lungs resulting from the lung separation step still contain the trachea and large 
airways. Thus the airway extraction step segments trachea and large airways by 3D 
region growing based on partitioning and subtracts the results from the results of lung 
separation step. 

The airway extraction is composed of the following four stages. First, we apply 
pre-filtering in order to increase robustness of 3D region growing. Due to junctions 
between the lungs and the airways, the 3D region growing for airway extraction may 
create an explosion into the lung parenchyma, as shown in Fig. 4(a) and (b). Applying 
2D median filter to each slice can make thin these junctions with weak contrast and 
separate the lungs and the airways, as shown in Fig. 4(c). The mask size for the 
median filtering is 3×3. Second, threshold value is selected by applying adaptive 
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thresholding. Airway extraction cannot be successful using a single threshold since 
there are gray-level variations between trachea and large airways. We partition the 
chest CT images into two parts on the basis of the branching point of trachea. For 
upper part, a threshold value that is 50% of the difference between the maximum and 
minimum values in the image is used. For lower part, predefined threshold value is 
used. Third, 3D region growing with 26-connectivity is applied to the filtered images. 
The seed point is automatically selected by searching for the large, circular, air-filled 
region near the center of the first few slices in the dataset. The regions with a gray 
level smaller than the threshold value are extracted as the trachea and large airways, 
as shown in Fig. 4(d). Finally, 2D morphological operators are applied to the results 
of previous step in which high-density airway wall is not included and unwanted 
cavities are remained. To prevent these occurrences, we apply a 2D binary dilation 
and closing with a 3×3 mask to each slice repeatedly. We partition the chest CT 
images into two parts and apply different number of iteration to each part.  

 

 

 (a) (b) (c) (d) 

Fig. 4. The effect of median filtering (a)(b) the result of airway extraction without median 
filtering (c)(d) the result of airway extraction with median filtering 

2.4   Lung Extraction Using Image Subtraction 

After the trachea and large airways are extracted, the results are subtracted from the 
results of the lung separation. Subtracted images contain only the lung regions. Fig. 5 
shows the results of lung extraction by image subtraction. Fig. 5(a) and (b) is the 
results of lung separation and airway extraction, respectively. Fig. 5(c) is obtained by 
subtracting Fig. 5(b) from Fig. 5(a). 

 

 

(a) (b) (c) 

Fig. 5. The result of lung extraction (a) the result of lung separation (b) the result of airway 
extraction (c) lungs extracted by image subtraction 
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3   Experimental Results 

All our implementation and test were performed on an Intel Pentium IV PC 
containing 2.5 GHz and 2.0 GB of main memory. Our segmentation method has been 
applied to ten patients with pulmonary nodule or embolism of 16-channel chest CT 
scans whose properties are described in Table 1. The CT images were obtained with a 
Philips MX8000 multidectector helical CT scanner or Siemens Sensation16 
multidectector helical CT scanner. The image size of all patient datasets is 512 x 512. 
The performance of our method is evaluated with the aspects of visual inspection and 
accuracy and processing time. 

Table 1. Image conditions of experimental datasets 

Subject  Slice # Pixel size 
(mm) 

Slice  
thickness 

(mm) 
Disease Subject Slice # Pixel size 

(mm) 

Slice 
thickness 

(mm) 
Disease 

1 258 0.6 x 0.6 1.5 PE 6 358 0.64 x 0.64 2.0 PN 
2 209 0.77 x 0.77 1.5 PE 7 270 0.57 x 0.57 2.0 PN 
3 456 0.61 x 0.61 0.75 PE 8 371 0.6 x 0.6 2.0 PN 
4 372 0.68 x 0.68 0.75 PE 9 407 0.62 x 0.62 2.0 PN 
5 374 0.61 x 0.61 0.75 PE 10 446 0.55 x 0.55 2.0 PN 

 (PE: pulmonary embolism, PN: pulmonary nodule) 
 

Fig. 6 shows the results of lung segmentation of subject 1, 6, 7. The first row 
shows the 2D binary image and the second row shows the 3D display of segmented 
lungs. These results show our proposed method segments lung boundaries with high 
curvature precisely. 

 

Fig. 6. The results of automatic lung segmentation 

Fig. 7 shows the results of airway extraction of subject 1, 3, 6 and pulmonary 
vessel extraction of subject 3, 6, 8. These results show that our proposed method 
extracts the airways and pulmonary vessels accurately. 
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Fig. 7. The results of airway extraction and vessel extraction 

To evaluate the accuracy of lung segmentation, we performed two comparisons. 
First, we compared our method with manual method. Second, considering the manual 
method as gold standard, we compared our method with commercial tool Analyze 
(Mayo clinic, Rochester, USA). For manual method, two radiologists manually 
outlined the left and right lung borders for 10 patient datasets. For the first 
comparison, the accuracy was measured by computing the mean, rms, and maximum 
distance between computer-defined contour and the manually-outlined contour. For 
each pixel on the computer-defined contour, the minimum distance to the manually-
outlined contour was computed as  

M
j

C
i

j
i XXd −= min  (1) 

where Xi
C is the computer-defined contour pixel location and Xj

M is the manually-
outlined contour pixel location.  

Fig. 8 shows a comparison between the computer-defined contours and the 
manually-outlined contours. The figure shows the difference between radiologist1 and 
 

   

Fig. 8. The accuracy evaluation using distance measure 
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the computer, and the difference between radiologist2 and the computer. In addition, 
inter-observer variations are evaluated by computing the distances between the 
manually-outlined contours. The difference between the radiologists and the computer 
could be considered not significant since the variations between the computer and any 
of the radiologists is smaller in magnitude than the variations between two 
radiologists. 

For the second comparison, considering the manual method as gold standard, the 
accuracy was measured by computing the number of error voxels and error rates of 
two automatic methods: our method and Analyze. Table 2 shows the average number 
of error voxels and the error rates of proposed method is much smaller than those of 
Analyze. 

Table 2. Average number of error pixels and error rates 

 Analyze Proposed method 
Average number of 

error voxels 
1,607,006 336,975 

Error rates 16.21 % 3.16 % 

Total processing time is summarized in Table 3 where execution time is measured 
for lung separation and vessel extraction, airway and lung extraction processes. On 
average, 22.7 seconds are required to segment 512 x 512 x 352 dataset. 

Table 3. Total processing time (sec)  

Subject  A  B Total Processing 
Time Subject A B Total Processing 

Time 

1 14.704 2.515 17.219 6 20.391 4.265 24.656 

2 7.625 1.922 9.547 7 14.188 2.719 16.907 

3 24.063 5.468 29.531 8 19.329 3.468 22.797 

4 19.719 4.359 24.078 9 23.047 4.141 27.188 

5 20.125 4.937 25.062 10 26.578 3.937 30.515 

(A : Lung Separation and Vessel Extraction, B : Airway and Lung Extraction) 

4   Conclusion 

We have developed an automatic method for accurately identifying pulmonary 
structures in the chest CT images. Our automatic segmentation extracts accurate lung 
surfaces, airways and pulmonary vessels. In first step, using 2D iSRG and connected 
component labeling, the airways and the lungs can be accurately extracted without 
hole-filling. In particular, connected component labeling in low-resolution can reduce 
the memory use and computation time. Pulmonary vessels can be identified from the 
result of first step by gray-level thresholding. In second step, trachea and large 
airways can be accurately delineated from the lungs by splitting the chest CT image 
into two parts and applying different threshold values. Accurate lung regions can be 
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identified by subtracting the trachea and large airways from the airways and the lungs. 
Ten patient datasets with lung cancer or pulmonary embolism have been used for the 
performance evaluation with the aspects of visual inspection and accuracy and 
processing time. The results of our method show that lungs with large curvature, 
airways and pulmonary vessels are accurately extracted. The comparison with manual 
analysis shows that the root mean square difference between the computer and 
manual analysis is about 0.8 pixels. The difference could be considered not significant 
since the variations between the computer and any of the radiologists is smaller in 
magnitude than inter-observer variations. The comparison with Analyze shows that 
error rates of our method is 13% smaller than those of Analyze for 10 patient datasets. 
On average, 22.7 seconds are required to segment 512 x 512 x 352 dataset. Proposed 
method can be successfully used for lung nodule matching and CT lung perfusion, 
which are preprocessing step for pulmonary nodule detection and pulmonary 
embolism analysis, respectively. 
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Abstract. Defect detection by ultrasonic method is limited by the pulse width. 
Resolution can be improved through a deconvolution process with a priori in-
formation of the pulse or by its estimation. In this paper a regularization of the 
Wiener filter using wavelet shrinkage is presented for the estimation of the re-
flectivity function. The final result shows an improved signal to noise ratio with 
better axial resolution. 

1   Introduction 

Deconvolution of ultrasonic signals is defined as the solution of the inverse problem 
of convolving an input signal, known as the transducer impulse response h(n) and 
medium reflectivity function x(n) and can be represented by [1]: 

( ) ( )* ( ) ( )y n h n x n nη= +  . (1) 

where y(n) is the measured signal, the operator * denotes the convolution operation 
and η(n) is the additive noise. To recover x(n) from the observation y(n) drives to 
improve the appearance and the axial resolution of the images through the elimination 
of the dependent effects of the measuring system [1]. The signal y(n) corresponds to 
A-scan lines of 2-D acoustic image or 1-D signal, where the problem settles down by 
taking the desired signal x(n) as the input of a linear time invariant system (LTI) with 
impulse response h(n) [2]. The output of the LTI system is blurred by white Gaussian 
noise η(n) of variance σ2. In frequency domain from (1) we get: 

( ) ( ) ( ) ( )Y f H f X f N f= +  . (2) 

Where: Y(f), H(f) and N(f) are the Fourier Transform of y(n), h(n) y η(n) respectively. 
If the system frequency response H(f) does not contain zeros an estimation of x(n) can 
be obtained from: 

1 1
1( ) ( ) ( ) ( ) ( ) ( )X f H f Y f X f H f N f− −= = +  . (3) 

However where H(f) takes near to zero values, the noise is highly amplified with 
variance spreading to infinite which leads to incorrect estimates. In this case it is  
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necessary to include in the inverse filter some regularization parameter which reduces 
the variance of the estimated signal. The most known case of regularized filter for 
stationary signals is the Wiener filter [3]. 

When the signals under analysis shows non stationary properties, as abrupt 
changes, the Wiener filter based on the Fourier Transform does not give satisfactory 
results in the estimation, conditioned by the characteristics of Fourier basis (ejw) [1]. A 
projection into a base that can characterize these non stationary signals and at the 
same time achieves a better matching with the transmitted pulse, as wavelets, drives 
to a better localization in time and frequency [3]. Another of the advantages of wave-
lets is that the signals can be represented with some few coefficients different from 
zero, what corresponds with the ultrasonic signals, where the trace is only composed 
by values different from zero in cases of abrupt changes of acoustic impedance, this 
leads to an efficient methods of compression and noise filtering. R. Neelamani, H. 
Choi & R. Baranikuk, recently proposed a regularized deconvolution technique based 
on Wavelet (ForWaRD) [4] which will be used in this paper for the deconvolution of 
ultrasonic signals as a first step to the conformation of acoustic images by means of 
Synthetic Aperture Focusing Testing (SAFT). 

The initial problem in deconvolution, is the a priori knowledge or not of the system 
impulse response h(n). Oppenhiem & Shafer have defined the case of estimating x(n) 
from h(n) as the well-known homomorphic deconvolution [5], using the real cepstrum 
for minimum phase signals or the complex cepstrum for the most general case. An-
other author, Torfinn Taxt in [6], compares seven methods based on the cepstrum for 
blind deconvolution (without knowing h(n)), in the estimation of the reflectivity func-
tion in biological media. We select the method of High Order Spectral Analysis 
(HOSA) because of its immunity to the noise and the not initial conditionality that the 
transducer’s electromechanical impulse response is of minimum phase, something 
that depends on the construction of the housing of the pieso-electric and of the imped-
ance matching between the transmitter and the ceramic [7]. 

The paper is structured as follows. Section 2.1 deals with the process of estimating 
the system function using HOSA. Section 2.2 summarizes the procedure for a first 
estimate using the Wiener filter. Section 2.3 focuses on the wavelet-based regularized 
deconvolution. Section 2.4 describes the measurement system and the signals to be 
processed. Section 3 presents the results with a comparative analysis. Finally Section 
4 gives the conclusions of the paper. 

2   Materials and Methods 

This Section firstly describes the method used for estimating the system function and 
continues with the wavelet-based deconvolution. 

2.1   Estimation of System Function Using HOSA 

The system function described in (1) as the transducer’s impulse response h(n) is a 
deterministic and causal FIR filter, x(n) represents the medium response function that 
we assume initially, without loss of generality, stationary, zero mean and non Gaus-
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sian distribution, this last property guarantees that its third-order cumulant exists, like 
we will explain later on, on the other hand η(n) represents the zero mean Gaussian 
noise that is uncorrelated with x(n). The third-order cumulant of the zero mean signal 
y(n) is represented by [1], [8]: 

1

1 2 1 2
0

1
( , ) ( ) ( ) ( )

M

y x
k

c m m h k h k m h k m
M

γ
−

=

= + +  . (4) 

where γx=E[x3(n)], is a constant equal to the third cumulant of the signal x(n), and E 
is the operator of statistical average.  

By applying the 2-D Z-Transform (Z2D) to (3) we get the bispectrum:  

1 1
1 2 1 2 1 2( , ) ( ) ( ) ( )y xC z z H z H z H z zγ − −=  . (5) 

The bicepstrum by(m1, m2), is obtained as was described in [5], logarithm of the 
bispectrum and inverse transformation to arrive into the 2-D quefrency domain: 

1
1 2 2 1 2( , ) log( ( , ))y D yb m m Z C z z−=  . (6) 

As follows in [1], the cepstrum ĥ (n) of h(n) is obtained by evaluating the bicep-
strum along the diagonal m1 = m2 for all n  0: 

ˆ( ) ( , ) 0yh n b n n n= − ∀ ≠  . (7) 

Then from (6) we can estimate h(n) as: 

{ }1 ˆ( ) exp ( ( ))h n Z Z h n−=  . (8) 

where Z and Z-1 are 1-D the direct and inverse Z -Transform respectively.  
The bicepstrum is derived from the bispectrum in the same way that the cepstrum is 

obtained from the spectrum. The main advantage of this estimation method is that the 
bispectrum of the white Gaussian noise is zero [7], which allows us to estimate h(n) 
without taking into account the contribution of η(n) in (1). 

2.2   The Wiener Filter 

Having h(n) we can estimate X1(f) using the Wiener filter: 

*

1 2

( )
( ) ( )

( )

H f
X f Y f

H f q
=

+
 . (9) 

Where q is a term that includes the regularization parameter and the noise contribu-
tion, H(f) is the 1-D Fourier Transform of h(n) and * ( )H f  its complex conjugated, the 
term inside the brackets is the inverse Wiener filter in generic form it is represented 
by [1]: 
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1

1

*

2 2

( ) ( )
( )

( ) ( )

x

x

H f P f
G f

H f P f ασ
=

+
 . (10) 

where Px1(f), is the power spectral density of x1(n), α is the regularization parameter 
and σ2 represents the noise variance. As Px1(f) is unknown it is necessary to use the 
iterative Wiener method, in this study we took α=0.01 initially, giving good results in 
the estimate and σ2 was calculated as the median of the finest scale wavelets coeffi-
cients of y(n) [8], x1(n) is obtained from X1(f) by inverse Fourier transformation. 

2.3   Wavelet-Based Wiener Filter 

The discrete wavelet transform (DWT) represents a 1-D continuous-time signal x(t), 
in terms of shifted versions of a lowpass scaling function φ and shifted and dilated 
versions of a prototype band-pass wavelet function ψ [4]. As it was demonstrated by 

I. Daubechies [9], special cases of these functions ,

2
( ) 2 (2 )

j

j k

j
t t kψ ψ= −  and  

,

2
( ) 2 (2 )

j

j k

j
t t kψ ψ= −  form an orthonormal basis in the 2 ( )L ℜ  space, with ,j k ∈ . 

The parameter j is associated with the scale of the analysis and k with the localization 
or displacement. Signal decomposition at a level J, would be given by [1]: 

( ) ( )2 2

,
1 1 1

( ) ( ) ( ) ( , ) ( )
N J N JJ

J
k j k

k j k

x t c k t d j k tφ ψ
− −

= = =

= +  . (11) 

where c(k) is the inner product ,( ) ( ), ( )j kc k x t tφ=  and ,, ( ), ( )
j kj kd x t tψ= . 

The estimated signal from the Wiener filter is projected into this base, and at each 
decomposition level the variance σj

2 is obtained for noise reduction. The following 
step is to use the Wiener filter in the wavelet domain where the filtering process is 
done for the wavelet coefficients. From (10) we have [4]: 

2 2
,

, ,2 2 22
,

 and 
j k kd c

j k j k

k jj k j

d c

cd
λ λ

σσ
= =

++
 . (12) 

By substituting (11) in (10) we obtain the expression of the estimated reflectivity 
function ( )x n% : 

( ) ( )2 2

, , , ,
1 1 1

( ) ( ) ( ) ( )
N J N JJ

c d
j k k j k j k j k

k j k

x n c k n d nλ φ λ ψ
− −

= = =

= +%  . (13) 

2.4   Experimental Setup 

The experimental system consisted on the obtaining an acoustic image of 10 bars of 
acrylic of diameter 5 mm, submerged in water. A data set of 400 RF-sequences has 
been generated, each RF-sequence containing 9995 sampling points. The RF-lines 
were sampled at a rate of 50 MHz. An unfocused 3.5 MHz transducer was used in 
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both emission and reception operating in pulse-echo mounted in a scanner controlled 
by stepping motor with 0.25 mm between A-scan lines. 

3   Results and Discussion 

The deconvolution process steps, as has been described previously include: 

1. Estimate the impulse response from the bicepstrum.  
2. Obtain a first estimate of the reflectivity function using the regularized Wiener 

filter in the domain of the frequency. 
3. Apply a noise filtering over the wavelets coefficients. 
4. Estimate the reflectivity function with the Wiener filter in the wavelet domain.    

3.1   Estimation of the Ultrasound Pulse 

The pulse estimation was carried out on a set of 16 zero mean signals. Fig. 1 shows 
the obtained pulse, using the MatLab® function bicepsf.m of the HOSA Toolbox.   
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Fig. 1. Estimated impulse response. The normalized pulse width vs time in µs. 

The spectral content of the obtained pulse includes the same band of the original 
signal. 

3.2   Estimation of the Reflectivity Function 

We used an iterative Wiener filter to estimate the power spectral density Px1(f), as 
was explained in the section 2.2. After ten iterations the signal x1(n) was obtained. 
Fig. 2 shows a segment of the original signal and the estimated one. 
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Fig. 2. Estimated reflectivity function obtained by iterative Wiener filter. (upper plot) The 
original signal y(n); (lower plot) the estimated signal x1(n). 
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Fig. 3. The Wiener filter applied to the wavelets coefficients. (upper plot) The original signal 
y(n); (lower plot) the deconvolved signal ( )x n% . 
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3.3   Noise Filtering 

We used a soft threshold over the wavelets coefficients after a decomposition using 
DB16 and DB10 in the algorithm proposed in [4]. Fig. 3 shows the result of the de-
convolution in the wavelet domain. 

The estimated signal shows a better spatial localization, which improves the axial 
resolution. 

In accordance with Fig. 4, the deconvolution of the RF signal improves the resolu-
tion, quantified as the decrease of the main lobe width of the autocovariance function 
[7]. The lobe width at half amplitude (-6dB drop) given in samples is 9 samples for 
the original signal and 4 for estimated one. 

We obtained an increment of the axial resolution in a factor of 2.25. The same pro-
cedure was applied to the set of 30 signals of a total of 400 to characterize the stan-
dard deviation of the values, obtaining a factor of 2.25± 0.36. 

This increment of the axial resolution depends of the transducer’s spectral proper-
ties; consequently it is suggested to prove the method with different frequency band-
width ratio. 
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Fig. 4. Autocovariance function of the original signal (dotted line) and of the estimated signal 
(continuous line). The amplitude was normalized in both functions and centered in their 
 maximum. 

4   Conclusions 

This paper establishes a cepstrum-based method using high-order statistics as the first 
step for the blind deconvolution kernel estimation which is used in the inverse filter 
design in both Fourier and wavelet domain for the reconstruction of the medium re-
flectivity function. This procedure results in a significant reduction of the time spatial 
support, suggesting a significant gain in the axial resolution.  
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This property is particularly useful in the case of acoustic image generation, where 
we will apply these results. 
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Abstract. This paper introduces a novel approach for region segmentation. In
order to represent the regions, we devise and test new features based on low and
high frequency wavelet coefficients which allow to capture and judge regions
using changes in brightness and texture. A fusion process through statistical hy-
pothesis testing among regions is established in order to obtain the final segmen-
tation. The proposed local features are extracted from image data driven by global
statistical information. Preliminary experiments show that the approach can seg-
ment both texturized and regions cluttered with edges, demonstrating promising
results. Hypothesis testing is shown to be effective in grouping even small patches
in the process.

1 Introduction

Segmentation process is a major bottleneck in applications on Pattern Recognition and
Computer Vision areas, and it is kept on the agenda of scientific community. There
are several segmentation approaches on literature, however since most of the tests are
designed for specific applications, many open problems remain. One which is addressed
here in this paper is how to segment regions consistently having images either with
highly texturized patches, or artefacts with brightness, or both. Usually the approaches
work either for one situation, or another, and in this paper we propose an approach that
could work more consistently in both situations.

Segmentation approaches found in the literature could be separated into two main
groups: those regarding supervised learning, which take into account knowledge about
the application (i.e., training); and those ones regarding unsupervised learning, which
relies only in the input image data, or without a priori knowledge about the application.

The well known Canny edge detector [1] models boundaries as brightness step
edges, which is the most common approach to detect local boundaries. The Canny
detector fails wildly inside texturized regions where high contrast edges are present,
but usually with no separation between regions. Moreover, it is unable to detect the
boundary between textured regions when there is only a subtle change in average im-
age brightness.

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 671–678, 2005.
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A review on image segmentation approaches of the 80’s and previous can be found
in [2], and an initial guide can be found in [3]. Recently, with availability of compu-
tation and memory store devices, more demanding and complex approaches have been
proposed.

A highly cited approach was proposed by Shi et al. in [4]. The approach extracts the
global impression of an image, considering the segmentation task as a graph partitioning
problem proposing a global criterion, the normalized cut for segmenting the graph. This
criterion can be optimized by an efficient computational technique (O(N3/2)) based
on a generalized eigenvalue problem. In [5], Sharon et al. proposed a fast algorithm
for image segmentation on multiscale framework based on graph partitioning, and it
has a linear time complexity (O(N)) in number of pixels presenting results that are at
least comparable to the results obtained by the spectral methods [4]. The algorithm is
inspired on algebraic multigrid (AMG) solvers of minimization problems of heat and
electric networks. In this approach, more measurements were combined in a multiscale
framework. The results obtained for some images were better than the ones in [4].

In this paper, we propose a new segmentation algorithm focusing on local features
and their consistencies in image data (i.e., an unsupervised approach), which is driven
by global statistical information. Patches will be extracted from low and high frequency
wavelet coefficients, and new features are devised based on those ones. Brightness and
texture are modelled through patch images (e.g. square windows) from these extracted
features. Statistic hypothesis testing is then proposed to perform the segmentation, using
a fusion process in order to generate more consistent regions according to a control
parameter given by the user.

The rest of this paper is organized as follows. In Section 2, the proposed approach
is described. The experiments performed for testing and evaluating the algorithm are
shown in Section 3. Finally, conclusions and future works for extending the approach
in a multi-scale and multiresolution framework are pointed out in Section 4.

2 The Approach

Our proposed approach can be divided into 3 main steps, namely: 1) First, feature ex-
traction by a Wavelet transform is performed. The image I is decomposed into a wavelet
space, using Mallat’s decomposition algorithm [6] with Haar basis function. This is a
non-redundant transformation which leads to four output channels of features, being
LL, LH , HL, and HH ; 2) New features are devised based on the wavelet coefficients.
The output channels of the Wavelet transform are exploited in a windowed (e.g. patches
of k×k elements in size) way in order to generate new features for characterizing bright-
ness and texturized regions; 3) Region growing through statistical hypothesis testing is
performed based on information extracted from windowed features, generating consis-
tent region segmentation. A flowchart of the proposed approach can be seen in Figure
1. Details of each step are given in the following subsections.

2.1 Wavelet Transform

A Wavelet transform decomposes data into fundamental building blocks. Its basic dif-
ference from Fourier decomposition is that the wavelet functions are well localized in
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Fig. 1. Flowchart of the proposed approach

time and space, whereas sinusoidal functions used in Fourier transform are not. Since
it is possible to design wavelet decompositions with a great variety of basis functions,
and also either emphasizing redundancy or eliminating it throughout the levels of de-
composition, the literature for such is plenty. Moreover, the Wavelet transform has been
used in several fields in Image Processing, Pattern Recognition, and Computer Vision
for image denoising and coding, object segmentation, recognition, and characterization.

Here, for our purposes of wavelet feature extraction, a desired decomposition would
have to help representing consistently both brightness and texturized regions, elimi-
nating redundancies on scales. We use the well known Mallat’s decomposition algo-
rithm [6] with Haar (simpler) basis function (QMF filter pairs: H̃ = [

√
2/2;
√

2/2];
G̃ = [

√
2/2;−

√
2/2]) for performing the wavelet decomposition, namely Wavelet

transform. Given an input image (with n×m in size), the result of this decomposition
process are four output channels of low and high frequency content wavelet coefficients
(with n/2 ×m/2 elements in size, since it is a downsampling process), e.g. LL, LH ,
HL, HH . LL is called approximation (low frequency) band, LH , HL, and HH are
called horizontal, vertical, and diagonal details (high frequency) bands, respectively.
Our first stage then consists of transforming an input image I into four output channels,
e.g. LL, LH , HL, and HH .

2.2 Feature Devising

We propose to analyze a region considering what we call a degree of perturbation. In
an approximate or complete homogeneous region, changes in brightness are very few
or none. On the other hand, in a texturized region it is possible to notice an almost uni-
form degree of perturbation, or confusion, throughout that region. Therefore, in order
to characterize a consistent region we will use this concept of degree of perturbation,
namely a consistent region should have a homogeneous degree of perturbation. Thus,
different, brightness or texturized, regions will have different degrees of perturbation.

For achieving such an aim, we shall have features allowing us to capture these char-
acteristics from the regions data. Original patches of the image (e.g. square windows)
could be the source of these local properties. In this step we devise new features based
on the wavelet coefficients, extracted from the latter step. They will be able to represent
and capture the degree of perturbation of the patches. In fact, we take square windows
of k × k elements and extract statistics from those, which will be used in the next step
for segmentation in a region growing process. Then, the resulting output of this step are
statistical matrix images with n/2k×m/2k elements, having the mean (µ) and variance
(σ2) of the patch windows.
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From low and high frequency wavelet coefficients (only first level of decomposition
is used) we extract enough information for characterizing consistent regions. Then, we
first separate the wavelet coefficients in two kinds of features, e.g.,

IµLow = µ(|LL|) = µ(LL), Iσ2
Low = σ2(|LL|) = σ2(LL). (1)

As the Haar basis function was used in the Wavelet transform, it produces only
positive values for LL. Thus, we take them as absolute values. And for high frequency
features we have,

IµHigh = µ(
√

(LH)2 + (HL)2), Iσ2
High = σ2(

√
(LH)2 + (HL)2), (2)

HH coefficients are noisy, and usually not reliable for these purposes, and so they are
left out.

Those are the proposed new features for the segmentation task, i.e., IµLow, IµHigh,
Iσ2

Low, and Iσ2
High. In the next step, those measures extracted from the patches are

used as cues for the segmentation. Experiments given here show that those features are
enough for characterizing brightness and texturized regions.

2.3 Region Growing Through Statistical Hypothesis Testing

The analysis proposed on mean and variance values makes an important assumption,
namely that the features upon which segmentation is based is distributed normally
(Gaussian distribution) [7]. The parameter σ2 is called the variance (i.e., σ is the stan-
dard deviation), and it measures the flatness of the distribution. Discrimination between
adjacent areas with differing means and standard deviations can be made according to
Fischer’s criterion [8]:

|µ1 − µ2|√
σ2

1 + σ2
2

> λ, (3)

where λ is a threshold, µ1, µ2, σ1, and σ2 are averages and variances of respective
regions.

In other words, if two regions have good separation in their means, and low variance,
then it is possible to discriminate them. However, if the variance becomes high and the
mean difference is low it is not possible to separate them.

In order to have a self tuned algorithm, we establish a measure for this purpose. For
a better separation, the merging threshold, λ, for the mean intensity for two adjacent
regions should be adjusted depending on the expected uniformity of the merged region.
Less uniform regions will require a lower threshold to prevent under merging. The
uniformity is a function of both intensity mean and variance of the region. A suitable
heuristic law for combining both properties into one is [7]:

Uniformity = 1− σ2/µ2, (4)

where µ and σ2 are related with the full matrix feature image. Note that the uniformity
will be in the range of 0 to 1 for cases where the samples are all positive. The threshold
value, λ decreases with the decrease in uniformity as follows:
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λ = (1− σ2/µ2)λ0. (5)

This has the advantage that the user need only to supply a single threshold, λ0. But
for our algorithm, we use two features, and so discrimination functions are

|µLow1 − µLow2|√
σ2

Low1 + σ2
Low2

≥ λLow, (6)

|µHigh1 − µHigh2|√
σ2

High1 + σ2
High2

≥ λHigh, (7)

Note that we still need to supply only a single threshold, λ0 for having λLow and
λHigh, since they are dependent on the data by Equation 5. Therefore, for two regions
1 and 2 to be discriminated, they must hold either one of Equations 6 or 7. However,
for them to be merged, them can not hold both Equations 6 and 7.

The algorithm is automatically started with chosen seed windows, those ones with
more energy on low frequency wavelets coefficients. These seeds are enqueued, and
then the region process is started dequeueing window by window. Each dequeued win-
dow (i.e., region) is tested with its neighboring windows, merging or generating new
regions and putting them on a queue. At this moment the mean and the variance val-
ues are updated. The algorithm will evolve until there are no more windows left (i.e.,
regions) on queue.

3 Experiments

For the experiments, we have used three known images having texturized and britght-
ness homogeneous regions. They are shown in Figure 2. These images are grayscale
and 512× 512 pixels in size. Parenthesized numbers on captions in Figure 3 and 4 are
the percentual significance level in the Gaussian distribution used in statistical hypoth-
esis testing. Resulting images of our proposed algorithm have granularity 2k, namely
each patch image corresponds to 2k × 2k pixels from the original image, where k is
the window size and the number 2 comes from the decimation process of the Wavelet
transform, i.e., downsampling. Each of the segmented regions on the images in Figures
3 and 4 was fullfilled with its respective average grayscale.

We have performed experiments using different values for λ0, e.g., 1.28(80%),
1.64(90%), 1.96(95%), in order to verify the algorithm behavior and its extension for
other scales. Results are shown in Figure 3, and input images used are those ones in
Figure 2. Observing those images, we can notice that segmented regions are more con-
sistent as the λ0 value increases, namely the images are less oversegmentated. On the
other hand, some small regions, which could be dependent on the application or type of
scene, are merged together.

Figure 4 shows results from different windows size. For those images we have setup
λ0 = 1.96, which stands for significance level of 90% in the Gaussian distribution. We
have tested two window size, 2, and 4. The images in Figure 4 give an idea of how
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(a) (b) (c)

Fig. 2. Images (input) used in our experiments

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Experiments used for verifying our proposed approach; using differents values of λ0 for
input images shown in Figure 2. In first col we have (3(a), 3(d), and 3(g)) λ0 = 1.28(80%),
second col (3(b, 3(e), and 3(h)) λ0 = 1.64(90%), and, in third col (3(c), 3(f), and3(i)) λ0 =
1.96(95%).
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Experiments used for verifying our proposed approach; using differents values of win-
dow size for input images shown in Figure 2. Images on first (4(a),4(b) and 4(c)),second
(4(d),4(e)and4(f)) rows are resulting segmented images of our approach using λ0 = 1.96, win-
dow sizes of k = 2 and 4, respectively, related with original ones in Figure 2.

usefull it could be to combine segmentation of several different windows size in order
to obtain a more consistent segmentation.

Our algorithm implementation (C++) took less than 5 seconds for segmenting any
of those images of 512 × 512 pixels in size in a Pentium III 1.0 GHz with 512 MB
RAM. The time complexity of our proposed algorithm is O(N) considering the number
of windows, since region of windows will go to queue only with a new incorporated
window, and so, the algorithm will process each window at a maximum of 8 times, i.e.,
number of neighbors.

4 Conclusions and Future Works

In this paper, we have proposed and tested a new approach for segmenting images into
consistent regions. As the experiments show the approach has some advantages, which
are to address region segmentation both in texturized regions and regions with bright-
ness, using the same features. Even though one can observe oversegmentation, as for
example in images in Figure 4 for small window size (i.e., k = 2), it is reasonable to
say that these images were segmented in consistent regions, since we do not take into
account any a priori knowledge or high level perception cue. Thus, the features devised
by wavelet coefficients were shown to be a good characterization for both brightness
and texturized regions. Our given experiments show interesting results that we think
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are promising for further investigation. For future works we want to address fusion
among scales in order to obtain fine segmentation results, e.g., one pixel wide granu-
larity. Also, a possibility would be to have different window sizes in different scales
putting all together in a multi-scale and multiresolution approach. A more extensive
comparison with other algorithms, such as the ones in [4], [5], would be necessary in
order to confirm our hypothesis that algorithms based on graph cuts perform segmen-
tation without any knowledge about the objects. We think this perception should be
driven by other decision process, like intuition for example. Our proposed algorithm
can also be applied tor Natural, Biomedical, SARs, and man-made structures image
segmentation, since they are related with brightness and texturized regions.
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Abstract. Content description and representation are still challenging issues for 
the design and management of content-based image retrieval systems. This 
work proposes to derive content descriptors of color images by  wavelet coding 
and indexing of the HSV (Hue, Saturation, Value) channels. An efficient 
scheme for this problem has to trade between  being translation and rotation in-
variant, fast and accurate at the same time. Based on a diverse and difficult da-
tabase of 1020 color images, and a strong experimental protocol we propose a 
method that first divides an image into 9 rectangular regions (i.e. zoning), sec-
ond it applies a wavelet transformation in each of the HSV channels. A subset 
of the approximation and of detail coefficients of each set is then selected. A 
similarity measure based on histogram intersection followed by vector distance 
computation for the 9 regions then evaluates and ranks the closest images of the 
database by content. In this paper we give the details of the this new approach 
and show promising results upon extensive experiments performed in our lab. 

1   Introduction 

Most conventional content-based retrieval systems use color or spatial-color features 
for characterizing image content [5], [10]. Some interesting works have used addi-
tional low-level features that can be computed automatically, i.e., without human as-
sistance, and associated with the color-based features. A promise one is texture. How-
ever, even after texture has been widely studied in Psychophysics, as well as in Com-
puter Vision, our understanding of it is still very limited when compared with our 
knowledge of other features, such as color and shape. A difficult task when using tex-
ture is how to represent it or even how to combine it with other features, such as the 
ones based on color. Most of methods to represent texture are based on co-occurrence 
statistics, directional filter masks, fractal dimension and Markov Random Fields. 
Some interesting works have tried to represent texture using visual properties, such as 
in [4], where texture is characterized by the following features: coarseness, contrast, 
busyness, complexity and texture strength. In a similar direction, Rao and Lohse [8] 
have done an experiment to describe texture. They suggest that three perceptual  
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features can describe texture: repetitiveness, directionality and granularity (complex-
ity). Another strategy to characterize texture has been the use of a wavelet transform. 
In this direction, Brambilla et al. [2] have used multiresolution wavelet transform in a 
modified CIELUV color space to compute image signatures for use in a content-based 
image retrieval application. Other approach using wavelet coding on color is [4], 
where the authors propose a joint coding using texture, color, and shape with statisti-
cal moments on the wavelet coefficients. The work we present in this paper is close to 
those since it also uses a wavelet decomposition to derive descriptors for the images.  
However, it proposes a different way to represent and select the features, and also to 
compute and rank the closest matches. We also present a strong experimental protocol 
showing how they performed so we derived the final features for the approach.  There 
is a large literature on Content Based Retrieval and we point  the  reader to the survey 
in [1], and to the works in [2], [5], and [7] for a more detailed covering of the area. 

The remaining of this paper is organized as follows. Next, we present in detail 
our approach that combines color and wavelet features in a region based scheme. An 
extensive experimental protocol that we used to derive the best features in the three 
levels of decomposition and the image channels HSV is presented in Section 3. Sec-
tion 4 summarizes the main results and points to future works.   

2   Proposed Method 

Figure 1 shows an overview of the proposed method. In the First Stage a signature is 
computed for each image in the database. It begins by converting the input image 
from  RGB to the HSV color space, such as we could deal directly with perceptually 
more meaningful information  [11].  The second step is used to divide the image into 
9 regions. This has shown to be an interesting strategy to associate spatial information 
to color-based features. The third step corresponds to a Mallat wavelet decomposition 
[9] using  Haar basis function.  Finally, the combination of the best features is used as 
a signature for the input image. To obtain the best features, we have evaluated for 
each color channel (H, S and V) the sub-images corresponding to the following wave-
let coefficients: approximation, horizontal, and vertical, all of them computed on three 
levels of decomposition.  Using the 10% largest coefficients in magnitude for each 
band, i.e. LL, HL, and LH, has shown to be a sufficient selected set for  the best fea-
tures. 

The Second Stage corresponds to the retrieval process in which after computing 
an intersection of the quantized histograms [11] for each channel and all three bands 
(i.e. (H,S,V) x (LL,HL,LH) = 9), and for each spatial region of the image,  a distance 
measure computes and ranks the images based on a sum of the intersections. 

2.1   Signature Extraction 

For each channel (H, S and V), and, respectively, each of the 9 image regions, the 
wavelet transform is computed using three levels of decomposition for the tests. With 
the experiments we have noticed that performance was closely the same for the 3rd 
level of decomposition, so only the 3rd levels with less features were used as features. 
Of course this will depend upon the initial resolution of the images.  
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Fig. 1. Overview of the proposed method 

Figure 2 shows the composition of the image signature computed. Each histogram 
used as signature is computed taking into account the coefficients quantized using the 
mean and standard deviation of each region at each decomposition level. Each histo-
gram contains only 10% of the most significant coefficients of the image region being 
processed. The best results were obtained by using the combination of the approxima-
tion wavelet coefficients calculated on the H and V channel with the vertical coeffi-
cients calculated on the S channel, as it will be shown in the experiments. 

Wavelet 
coefficients 

Level of 
decomposition 

1st

2ndApproximation (LL) 
3rd

1st

2ndVertical (HL) 
3rd

1st

2nd

 
 
 
 
For each color channel  
(H, S and V)  

Horizontal (LH) 
3rd 

Fig. 2.  Image signature structure. Each level of decomposition produces 3 histograms (LL, HL, 
LH) for each channel (i.e. H, S, and V). 

2.2   Retrieval Process 

Each image will then have as an index a feature vector of nine (9) histograms (HSV x 
LL,HL,LH) with 10% of the largest coefficients. All of them are referenced in 9 dif-
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ferent spatial regions of the image. Retrieval then consists of measuring a distance for 
each pair of images (i.e. a query and one from the database) by computing the histo-
gram intersection for each pair of regions and histogram features. A sum of these nine 
(9) intersection results for each channel (HSV) is computed as a distance and ranking 
measure in the end.  In the experiments we have found a set of the three (3) best fea-
tures that performed better in the end, and the final feature vector is selected as a 
combination of those. Table 1 shows the quantities and types of the classes used.  

Table 1. Names and quantities of the 27 classes used for the experiments. Total number of 
images is 1020. 

Class # samples Class # samples  

1-Water 70 15-Flowers 43 
2-Air 53 16-Football 44 
3-Animals 55 17-Fruit 19 
4-Wires 06 18-Girls 27 
5-Trees 103 19-Trees2 55 
6-Boxes 15 20-Windows 12 
7-Cars 42 21-Foliage 30 
8-Christmas 42 22-Mammals 16 
9-Cement 14 23-Mosaic 25 
10-Buildings 79 24-Mountains 31 
11-Sunset 63 25-Bridges 07 
12-Ducks 37 26-Sky 43 
13-Flags 43 27-Snow 14 
14-Texture 32   

3   Experimental Results 

The experiments were carried out on 1020 images distributed in 27 classes. Table 1 
gives the image classes and their quantities and Figure 3 shows sample images of 
each class. In the experiments each channel (H, S and V) was evaluated separately. 
Two sets  were separated  from each class, being 10% for training and 90% for test-
ing, tests were performed  individually for each image of the training set (against the 
testing set).  The successful classification rank was finally computed considering the  
number of matches between query and result. The confusion graphics show the first  
classification in red (light gray), where for example a diagonal red (light gray) line 
would mean perfect matches for all classes. For each image region the wavelet trans-
form is calculated considering three levels of decomposition. Figures 4, 5 and 6 gives 
the confusion graphics  for channels H, S, and V respectively in the first level of de-
composition for approximation, horizontal, and vertical coefficients. All the confusion 
graphics showed  in this paper mark (red (light gray) curve in the figures) the respec-
tive class that was chosen as the first ranked in the experiment. The complete protocol 
evaluated the following:  

1) In the first set of experiments, each color channel was considered in a sepa-
rated way. The retrieval process was evaluated based on signatures created 
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from each of the three channels and considering 3 sub-images generated by 
the wavelet transform (approximation, horizontal and vertical) at each de-
composition level. This totalizes 27 different signatures for each image.   

2) The second set of experiments considers the combination of the most prom-
ising results of the first experiments, independent of the level of decomposi-
tion and trying to get the best results with the coarsest level of decomposition 
if possible. New signatures were created by combining signatures through 
the use of intersection of coefficient histograms. 

3.1   First Set of Experiments 

Independently, each of the 27 possibilities of features (i.e. HSV x 3 coefficients (ap-
proximation, horizontal, vertical) x 3 levels of decomposition) was tested in this stage. 
Ten percent (10%) of the images were separated for validation only, and the results 
were averaged using  a cross-validation scheme. Figure 4 shows  confusion graphics 
related to the experiment on the H channel using the approximation, horizontal and 
vertical details sub-images in the first decomposition level. Figures 5 and 6 show re-
spectively the results for S and V channels. On the x axis the class of the query image 
is given, and on the y axis the class that had the best (highest) score for the classifica-
tion result. During these experiments, we observed that the best retrieval results when 
using the  channels H (Hue) and V (Value) were obtained from the signatures based 
on the approximation wavelet coefficients on the third decomposition level. Regard-
ing the S channel best success rates were higher in the third level of decomposition 
using the vertical detail coefficients. Figures 7, 8 and 9 shows examples of images 
misclassified according to the labeled database used.  Although a general comparison 
of the success rates obtained here is dependent on the database used, which we know 
it is not large enough for benchmarking purposes, there is a high correlation between 
some image classes and the main purpose here would be to design and test a small, 
however significant and efficient, set of features based on a combination of color and 
wavelet representations to be used in an image retrieval task. Since it was possible to 
evaluate out of the 27 sets of features which were the most efficient for retrieval we 
picked the 3 best ones and performed a second set of experiments in order to find a 
best combination of them for the final classification.   

3.2   Second Set of Experiments 

In the second set of experiments the signatures calculated on the channels H and V 
using the approximation coefficients (LL) and the signatures calculated on the chan-
nel S using the vertical coefficients (HL) were combined through the use of intersec-
tion of their histograms. No weight was given differently to each signature. In this 
case, the 10% corresponding to the most significant coefficients  are chosen from the 
resulting histogram  after the intersection process. The final results  are shown in Fig-
ure 10. Only 3 out of 27 classes were not classified correctly as the first choice, which 
shows an improvement from any of the individual set of features  in the first set of 
experiments.  



684 F. Ramos, H. Martins Gomes, and D.L. Borges 

 
 

Fig. 3. Samples representative of the classes. From the top left to the right (1 to 27 as named in 
Table 1). The complete database has 1020 images. 



 Evaluating Content-Based Image Retrieval by Combining Color and Wavelet Features 685 

 
Channel H 1st level  (Approximation coef.) 

 
Channel H 1st level (Horizontal coef.) 

 
Channel H 1st level (Vertical coef..) 

 
Fig. 4. Confusion graphics: experiment on channel H (Hue Value), all coefficients in the first 
level of decomposition. (x axis is the class of the query image, and y axis is the result classifica-
tion obtained). 
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Classes(1-27) Confusion Graphic 

Classes(1-27)

 
Channel S 1st level (Approximation coef.) 

 

Classes(1-27) Confusion Graphic 

Classes(1-27)
 

Channel S 1st level (Horizontal coef.) 

Classes(1-27)                        Confusion Graphic

Classes(1-27)
 

Channel S 1st level (Vertical coef.) 

Fig. 5. Confusion graphics: experiment on channel S (Saturation Value), all coefficients in the 
first level of decomposition. (x axis is the class of the query image, and y axis is the result clas-
sification obtained). 
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Classes(1-27) Confusion Graphic

Classes(1-27)

 
Channel V 1st level (Approximation coef.) 

 

Classes(1-27)                 Confusion Graphic

Classes(1-27)
 

Channel V 1st level (Horizontal coef.) 
 

Classes(1-27) Confusion
Graphic

Classes(1-27)
 

Channel V 1st level (Vertical coef.) 

Fig. 6. Confusion graphics: experiment on channel V (intensity Value), all coefficients in the 
third level of decomposition. (x axis is the class of the query image, and y axis is the result clas-
sification obtained). 
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a)  b)  

Fig. 7. Examples of misclassification (i.e similar images) occurred in  Hue channel a) an image 
from Class 5 – Trees, and b) an image from Class 19 – Windows 

 
 

a)  b)  

 
Fig. 8. Examples of misclassification (i.e. similar images) occurred in Value channel a) an im-
age from Class 22 – Mammals, and b) an image from Class 5 – Trees 
 

a)  b)  
 

Fig.9. Examples of misclassification (i.e. similar images) occurred in Saturation channel. a) an 
image from Class 26 – Sky, and b) an image from Class 11 – Sunset. 

The main purposes of  this work were: 1) first, design a special set of features to be 
used efficiently as a reduced set of features in image retrieval tasks; 2) evaluate the 
conditions upon which they could work better and combine the best results in a par-
ticular set of features.  The first was accomplished with the proposition of a combined 
set of features based on HSV channels and Mallat decomposition of each channel on 
approximation, horizontal, and vertical coefficients. A spatial grid, based on 9 re-
gions, to improve localization, and a protocol of experiments using three levels of the 
decomposition in order to find the most reduced sets were proposed and evaluated. 
With the best results on those conditions, using 27 different individual sets, we picked 
the 3 best ones as a useful and efficient reduced set and evaluated the new combined 
feature. We have found that the new set improved the classification results in the da-
tabase tested.  Those results encourage us to explore further with this feature set, par-
ticularly in special purpose image retrieval tasks such as with medical databases, and 
with feedback relevance schemes where evidence combination together with small 
sets of features are good characteristics to hold. 
  



 Evaluating Content-Based Image Retrieval by Combining Color and Wavelet Features 689 

 
 
Fig. 10. Confusion graphic: combining the best results (i.e. selected feature set): H, V (ap-
proximation coefficients) + S (vertical coefficients), all in the third level of decomposition.  (x 
axis is the class of the query image, and y axis is the result classification obtained). 

4   Conclusions 

We have presented in this paper an evaluation of a combined set of features to be used 
in image retrieval tasks.  As can be seen from the experiments the combined new fea-
ture is an efficient approach to content-based image retrieval that combines color and 
wavelet coding in a zoning scheme. A set of features is derived from the HSV chan-
nels by computing wavelet coefficients in each of them and selecting upon the most 
significant the ones to index the image.  Different than others we did not use global 
features as moments (e.g. see [1], [2], [6] and [7] for other approaches in image re-
trieval using wavelet features), but tested to check the combined performance of HSV 
channels, coarse and detail coefficients in three levels of decomposition using the 
most significant ones. Extensive testing was done in order to end with only 3 small 
sets for final similarity measure and rank.  One of the difficulties in content-based 
research is that the databases may have multiple and yet acceptable classifications. 
Instead of giving only a precision x recall curve we plotted where the misclassifica-
tions occurred, considering the voted highest result achieved with all the training set 
of the images. Of course we do not advocate our approach to be a final word for this, 
it is still a challenging problem. However we have shown it to be a direct, and generic 
method (i.e. deal with different types of image classes), and with competitive success-
ful results, not evaluated before, to derive significant features for use in image re-
trieval. Also, performance measures on a reasonably sized database is given. Al-
though tests were not performed in full using other databases such as Corel, and oth-
ers with more than 20 thousand images, for the purpose of validating as a useful and 
reduced set of features the experiments given were meaningful. Future works will 
deal with relevance feedback for consistent uncertainty treatment [12], special pur-
pose medical databases, and further tests with bigger available databases for bench-
marking purposes in image retrieval. 
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Abstract. We propose an automatic framework to detect and classify
highlights directly from soccer videos. Sports videos are amongst the
most important events for TV transmissions and journalism, however
for the purpose of archiving, reuse for sports analysts and coaches, and
of main interest to the audience, the considered highlights of the match
should be annotated and saved separately. This procedure is done man-
ually by many assistants watching the match from a video. In this paper
we develop an automatic framework to perform such a summarization
of a soccer video using object-based features. The highlights of a soc-
cer match are defined as shots towards any of the two goal areas, i.e.
plays that have already passed the midfield area. Novel algorithms are
presented to perform shot classification as long distance shot and oth-
ers, highlights detection based on object-based features segmentation,
and highlights classification for complete summarization of the event.
Experiments are reported for complete soccer matches transmitted by
TV stations in Brazil, testing for different illumination (day and night),
different stadium fields, teams and TV broadcasters.

1 Introduction

With the widespread availability of digital formats for video making, production
and TV broadcasting, an important area of technological and scientific interest
that has emerged recently is Video Processing. Video Processing is naturally
attached to the broad research areas of Computer Vision, Image Processing and
Pattern Recognition, although it poses specific challenges concerning domain
knowledge and computational resources. Videos are produced as documentaries,
news materials, advertisement, movies, shows, TV programs, and sports cover-
age. Indexing and retrieving such material efficiently require new techniques in
content and semantic description, coding and searching unavailable nowadays.

Soccer videos are major products in that industry attracting millions of spec-
tators worldwide. However after a live transmission some plays, or shots of the
match carry more interest than others, for example the attacks which came closer
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to a goal and of course the goals if any of the two teams scored. Those would
be the highlights of the match. Broadcasters have personnel just for producing
a logging of a soccer match, which could be then used by analysts in TV pro-
grams or as a main source for annotation and further saving in archives. We
propose an automatic framework to detect and classify highlights directly from
soccer videos. The proposed solution reported here present new algorithms for
soccer shot classification, object-based feature segmentation into attack playing
fields (i.e. left and right), midfield and stadium audience, and highlights detec-
tion and classification. Experiments are shown for more than 7 hours of video,
comprising 4 complete matches in different locations, time of playing and teams.
More than 94.0 % of the highlights were correctly detected and classified (i.e.
recall rate), and the final produced summary is presented with less than 9 min
of video instead of the complete 90 min match (i.e. compression rate achieved
with summarization is bigger than 90 %).

The following sections of this paper comment on related research found in
the literature, present more details of the proposed approach, show and analyze
a great deal of experiments in order to evaluate the performance of the system,
and draw conclusions about the achievements at this point.

2 Related Works

Sports video summarization research has been a hot topic in the last five years.
Reports found in the literature explores sports such as baseball, tennis, and
soccer mainly but the list is growing [2]. Worldwide soccer is the main sport
attraction, and since a complete match takes more than 90 min, summarizing
it including only the highlights is a real necessity for broadcasters and video
program makers.

In the literature different features are employed in the attempt to summarize
soccer videos. Edges and color are used as features in [4] to detect and recognize
the line marks of the field. Motion detection is also used to identify particular
camera motion patterns, and along with line marks decide if the scene is part of
a highlight or not. The tests shown by the authors use a small number of pre-
segmented shots as input and check he correct identification by their system.
Their solution rely very much on the line marks detection, and from our experi-
ence those features appear occluded and sometimes indistinguishable, especially
in shots near the goal area (i.e. highlights) when the players are much closer to
each other than in other shots.

A set of fuzzy descriptors is used in [1] to represent and classify the positions
of players in the field. Hidden Markov Models are then trained with these descrip-
tors to help identify some subset (penalty, free, and corner kicks) of highlights
for classification. Their experiments show only 10 shots pre-segmented for each
of the highlights considered and then tested. Tests to show the performance of
the players position detection are not given. Identifying the highlights directly
from the transmission is a crucial bottleneck in this application, which if not
accomplished compromise the whole summarization task.
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Other work to use HMMs is [8], however their proposed classification is into
”plays” and ”breaks” shots only. Motion vectors and color ratios are used as
features and a combination of those are trained using HMMs to separate into
the two classes: play and break. Their experiments include parts (not complete)
of matches and accuracy achieved was around 85 percent. In order to summarize
the event a classification into highlights and not only ”plays” is necessary.

A combination of color and texture features are used in [6], and [7] in order
to identify the players’ shirts and track them in a shot. Medium and short
distance frames are shown with identification of players with those features.
Their proposed system allows tracking of players in a fixed camera situation.
From the point of view of a summarization task, classifying highlights, it seems
one pre-processing tool yet, because the highlight can not be decided based on
these features only.

A summarization soccer system based on cinematic and object-based features
is presented in [3]. Color and a spatial ratio mask are used as object-based fea-
tures in the identification of long, medium and short shots. A cinematic template
checking for duration of a break, slow-motion replay and close-ups is a proposed
procedure to detect and classify particular events in a match. The events, or the
equivalent highlights they propose to detect are: a) goals; b) referee; c) penalty
box. Their experiments shown have recall rates of 85.3 % for those mentioned
events for 13 hours of soccer video. We argue in this paper that the detection of
a referee as an event does not seem to be an interesting highlight of a match, and
that their ( [3]) penalty box detection relies very much on the line marks and
in most attack plays this type of shot is cluttered with players. Actually even
that a combination of those events could help identifying a highlight this will be
particular to a broadcaster style (e.g. showing a referee in every highlight shot),
and the final summary could miss many interesting highlights for not detecting
the penalty box.

Our approach presented in this paper addresses those issues, and proposes a
complete summarization system for soccer videos based on direct object-based
features, and efficient and robust new algorithms for achieving it. We propose to
identify highlights as action in the attack fields, not only goals, and we evaluate
the performance of the system in more realistic and difficult conditions for 4
complete matches. By more realistic and difficult conditions we mean by using
direct transmissions of matches from TV in different stadiums and light (time of
the day) conditions. The rest of the paper describe the proposed approach, the
experimental protocol, results and conclusions.

3 Structure of a Typical Soccer TV Transmission

Typical transmissions of soccer matches on TV are designed to give a constant
view of the main action, close-ups of some shots, and usually when breaks occur
some replays. Some broadcasters might even use many different cameras to fill
with other viewpoints of the play. Figure.2 shows the three main categories of
shots that are used: 1) Long distance shots, 2) Medium distance shots, and 3)
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Short distance shots. Important pieces of the game are mostly shown as Long
distance shots, since they give a better view of the whole action in a play because
the dimensions of the field and number of players in the game.

Semantically we could point two types of plays happening according to de-
velopments towards a goal: 1) Action in the midfield, 2) Action in the attack
fields (i.e. either right or left). Scoring goals are the main objective of the game,
however since it is not so easy to score a goal in soccer highlights of a match
will be when the action is placed in the attack fields, i.e. the regions outside the
centre circle and closer to the goal areas.

An automatic system to detect and classify the highlights of a soccer video
will have to first identify the Long distance shots, then parse the shots as actions
in the attack fields (i.e. highlights) and in the midfield. Approaches considering
tracking the ball are not robust in practice since it is a very small object in a
long distance shot, it is partially occluded in most of the scenes because of the
players and marks on the field. Model-based recognition of the goal area using
the marks on the field suffer also from the clutter in the scene, and in some fields
especially in rainy weather they become indistinguishable.

Our approach will be to propose object-based features to be able to segment
the action happening in any of the attack fields, without having to track the
ball or follow the marks on the field. As it is shown here with the experiments
the solution proved to be very effective and robust to many of the situations
encountered in soccer videos.

4 Framework of the Solution Proposed

A functional diagram of the soccer video summarization approach proposed is
shown in Figure.1. The video stream is captured from the TV transmission and
digitized in color frames, 30 frames per second. The three steps of the approach
are: 1) Shot classification, 2) Object-based feature segmentation, 3) Highlights
detection and classification. Details of each step are given in the next sections.

Input: video stream
↓�

�

�

�Shot classification
↓�

�

�

�
Object-based feature segmentation

↓�

�

�

�
Highlights detection and classification

↓
Output: highlights

Fig. 1. Main steps of the soccer video summarization approach proposed here
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4.1 Shot Classification

Figure 2 shows the three main categories of shots in a soccer video. This step of
the approach is aimed to classify the Long distance shots and pass them to the
next step of the system. We devise the following algorithm for performing it:

i. Color frame is normalized in RGB, I = (R+G+B)/3;
ii. A histogram is computed for each frame and the dominant bin pixels are se-

lected together with pixels belonging to the 10 % closer bins to the dominant
one;

iii. Only frames which have at least 65 % of the pixels selected in the step ii.
are picked;

iv. Sequences shorter than 100 frames are classified as Medium distance shots;
v. Sequences longer than 100 frames are classified as Long distance shots;
vi. Other frames which did not pass step iii. above are classified as Short dis-

tance shots.

(a) (b) (c)

Fig. 2. Three categories of shots commonly found in a soccer TV transmission. (a)
Long distance shot, (b) Medium distance shot, (c) Short distance shot.

4.2 Object-Based Feature Segmentation

This step has as input the long distance shots already classified earlier. The aim
here will be to design and evaluate object-based features to be able to segment
the frames into field and outside areas. Depending upon the concentration of
these areas in a frame a decision procedure can be formulated to identify main
action in the midfield, or attack fields to the left or to the right.

Upon analyzing the clutter in the long distance shots we devised the following
procedure to perform segmentation into either field, or outside areas:

i. Find edges in the image (e.g. Marr-Hildreth filter);
ii. Place a grid of 16x16 cells upon the edge image;
iii. Try to fit a line in each cell by doing a Principal Components Analysis on

their values;
iv. Cells will be marked either as ”clutter”, or ”lines” depending on the residuals

of the fits ( [5]);
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v. By checking neighboring cells for region consistency, clean (i.e erase) isolated
cells marked as ”clutter”;

Figure.3 shows snapshots of this step of the approach. This step is performed
on each frame of the sequence classified as long distance. Two consistent main
regions are given as output of this stage, Figure 3.d) shows an example of the
this output.

(a) (b)

(c) (d)

Fig. 3. Typical outputs of the object-based feature segmentation steps. (a) After the
binarization, (b) With the grid superimposed to compute the eigenvalues, (c) After
the decision on each window about a significant direction, (d) Result after cleaning
inconsistent regions.

4.3 Highlights Detection and Classification

The final stage of the approach consists of the decision on highlights detection
and classification based on the consistent regions given from the earlier step.
The following algorithm performs this stage:

i. Place a 4x4 grid on the two consistent regions image given as input;
ii. Compute the density of black regions on the 16 cells of the grid;
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iii. Higher density on the right side cells is classified as ”highlight (attack on
the right)”;

iv. Higher density on the left side cells is classified as ”highlight (attack on the
left)”;

v. Equal or higher density on the middle cells is classified as ”not highlight”;

Figure.4 shows snapshots of the final highlight classification, from image still
with inconsistent regions (4.(a)), after cleaning inconsistent regions (4.(b)), and
with grid for density computation placed upon it (4.(c)). The final classification
of this example is ”highlight (attack on the right)”.

(a) (b) (c)

Fig. 4. Three steps on a shot detection and classification. (a) Region classification
output before cleaning for inconsistent regions, (b) Final detection for classification,
(c) Grid used for classification of highlight, showing an attack to the right.

Next section shows experiments performed for evaluating the approach pre-
sented here.

5 Experiments

Some of the works found in the literature of soccer video summarization rely
either on the detection of the marks of field, or on cinematic features for pro-
cessing motion. As we mentioned earlier in this paper those features are not
robust in practice, since in most of the TV soccer transmissions (see Figure.5 for
example shots) the marks on the field are difficult to recognize with efficiency
necessary to perform such a task. On the other hand cinematic features are ex-
pensive to compute, and it brings too much burden in this task since 30 frames
per second is the acquisition rate to process. The time when the match is played,
the Stadium, i.e. the grass conditions of the field, the teams and the transmis-
sions produced by different broadcasters pose realistic conditions to evaluate the
approach. Figure.5 shows snapshots of soccer games to illustrate some of these
conditions. In order to evaluate the approach proposed here we acquired four
(4) complete soccer matches from TV transmissions in different situations: 1)
Match G1 ”Brazil x Chile”, played at night, Conception Stadium, Chile (2004);
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2) Match G2 ”Figueirense x Flamengo”, played at afternoon, O.Scarpelli Sta-
dium, Brazil (2004); 3) Match G3 ”Atletico(PR) x Botafogo(RJ)”, played at
afternoon, J.Americo Stadium, Brazil (2004); 4) Match G4 ”Santos x Vasco”,
played at afternoon, B.Teixeira Stadium, Brazil (2004).

(a) (b)

(c) (d)

Fig. 5. Shots of four different soccer matches showing different situations to deal with.
(a) and (b) are from matches at night, (c) and (d) during the day. All of them are set
in different fields (stadiums).

Table.1 shows the compression rates achieved with the summarization ap-
proach proposed here for the different soccer matches mentioned G1, G2, G3,
and G4. The number of highlights varies of course from match to match, however
by detecting the highlights automatically only this information will be handled
by TV program editors and placed for further annotation and indexing. The
saving in time and computational resources is considerable since the average
compression rate is 90.8 % for the 4 matches.

In order to have a ground truth for evaluating the performance of the system
we annotated manually every shot in the 4 matches. Table.2 gives the results
considering the expected input highlights from the ground truth. It is important
to notice in this area that a false detection of a highlight is not of major concern
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Table 1. Compression achieved by the soccer highlights detection algorithm in four (4)
different games captured from TV transmissions. Data was acquired in full resolution,
color, 30 frames per second.

Input Frames Highlights Compression
G1 169200 8035 95.3 %
G2 166074 25958 84.4 %
G3 171513 16792 90.2 %
G4 168455 11611 93.1 %

TOTAL 675242 62396 90.8 %

since they are to be passed to indexing and those could be cleared out. The
recall rate, the relative success in detecting the expected highlights is of greater
importance. On average the recall rate presented here is 94.6 %. Other works
from the literature ( [1,3,4]) report recall rates of less than 80 %. Although the
test data are not the same we have used similar input size (4 matches), but in
much harder conditions such as the field conditions and time of the play.

Table 2. Compression achieved by the soccer highlights detection algorithm in four (4)
different games captured from TV transmissions. Data was acquired in full resolution,
color, 30 frames per second.

G1 G2 G3 G4 TOTAL
Input Highlights 190 463 280 280 1213

Correct 182 447 263 258 1150
Missed 8 19 17 22 66
False 82 100 157 169 508

Precision 68.9 % 81.7 % 62.6 % 61.4 % 69.4 %
Recall 95.8 % 95.9 % 94.0 % 92.1 % 94.6 %

By analyzing the results we could notice that many of the False highlights
detected were due to some texts and logos appearing on the screen during the
transmissions. They are usually placed by the broadcasters on either side of the
screen cluttering the scene nearby the considered attack fields by the algorithm.
Regarding the highlights missed by the system they were mainly due to sudden
change of cameras during transmission, cutting from a long distance shot to
either medium or short ones. Not many broadcasters use this, and the missed
ones were below 5 %, however it would be a point to explore further with more
experiments.

6 Conclusions and Future Works

In this paper we have presented an automatic system to detect and classify
highlights of soccer videos. A complete summary of the match is achieved making
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it possible for practical use for annotation, indexing, and video retrieval. We
have set a test protocol which includes more than 7 hours of soccer video, i.e. 4
complete matches, with a great variety of circumstances to evaluate the system
performance. The summaries obtained produced a compression of 90.8 % from
the input data, and a recall rate for the highlights of 94.6 %. This is a higher rate
than others seen in the literature [3]. The successful results in such conditions
allow us to explore realistic further possibilities of a fully automated soccer
video summarization. The missed highlights and the false detected ones from our
experiments were mapped to other features to be explored in future work, they
are the text and logos appearing during transmission that should be dealt with,
and sudden change of cameras in some shots. We are exploring these research
lines in our group.

Video processing is an area of growing demand in research and development
nowadays. It is a truly research area of Computer Vision and Pattern Recognition
with well defined domains shaped with data available and industry demands. The
work presented here could be extended to other sports videos as well, since as
it was shown exploration of the knowledge of the game is important to predict
where the main action will be happening.
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Abstract. This paper presents a novel efficient multiscale vessel segmentation 
method using the level-set framework. This technique is based on the active 
contour model that evolves according to the geometric measure of vessel struc-
tures. Inspired by the multiscale vessel enhancement filtering, the prior knowl-
edge about the vessel shape is incorporated into the energy function as a region 
information term. In this method, a new region-based external force is com-
bined with existing geometric snake variation models. A new speed function is 
designed to precisely control the curve deformation. This multiscale method is 
more efficient for the segmentation of vessel and line-like structures than the 
conventional active contour methods. Furthermore, the whole model is imple-
mented in a level-set framework. The solution is stable and robust for various 
topologic changes. This method was compared with other geometric active con-
tour models. Experimental results of human lung CT images show that this mul-
tiscale method is accurate. 

1   Introduction 

Many diseases are accompanied with the change of vessel shape. Analysis of the ves-
sels that helps identify early features of pathological changes plays an important role 
in medical diagnosis. Moreover, the vessel segmentation provides a tool to understand 
the relation between vessels and diseases. Vessel segmentation is an important area in 
medical image processing. 

Early approaches for vessel segmentation include matched filter method [1] and 
morphological method [2]. In these approaches, all the pixels of the vessels in these 
approaches should be detected before the whole line shape structures are captured. 
However, detection accuracy and validity of post processing is always considered, es-
pecially for noise or low contrast images. T-snakes method for vessel segmentation 
was firstly provided in Reference 3, which is topology adaptive, but companied with 
extensive computational cost. Recently, active contour models [5][7][8][9][10] have 
become effective tools for extraction of region of interests (ROI), which were widely 
investigated for overcoming the limitations of traditional methods. Sethian et al first 
introduced the level set method into active contour models for numerical implementa-
tion [4]. Reference 5 applied level-set-based active contour methods to vessels extrac-
tion, whose corresponding curve evolution is controlled by gradient information. The 
evolution can be implemented by FastMarching algorithm, because all the speed in 
the image is defined as the positive or negative speed fields. The following boundary-
based approaches added the curvature term and advection term to evolution equation 
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for smoothing the curve and driving the front into the desired boundary. These inves-
tigations may improve the segmentation results. However, they are difficult to evolve 
accurately in weak edge or noise images. Moreover, Most of the methods are sensitive 
to the initial condition. Region-based methods are more suitable for vessel segmenta-
tion because the whole region information, not only boundary gradient information, is 
considered. Early region-based method is markov random fields-based approach. Re-
cently, many region-based active contour models were presented. Yezzi presented a 
global approach for image segmentation [8], but it brings too extensive computational 
cost. The geodesic active region model presented by Nikos [7], who integrates bound-
ary-based with region-based active contour approaches, is more effective region-
based snake segmentation methods, because prior knowledge about ROI is intro-
duced.  

The important problems in the region-based approaches include the design of re-
gion-based models and the combination with the snake energy minimization frame-
work. In this paper, a level-set-based method for vessel segmentation is presented. 
This method is inspired by multiscale vessel enhancement filtering. The measure of 
vessel structure as posterior probability estimation is introduced into the energy func-
tion. This method is combined with boundary-based snake framework and imple-
mented by level set method. Experimental results on different medical vessel images 
segmentation demonstrate the performance of the proposed model.  

The remainder of the paper is organized as follows. In section 2, a multiscale ves-
sel enhancement method is briefly introduced; in section 3, the proposed energy func-
tion is described and the new level set evolution equation is developed; in section 4, 
experiments on vessels extraction are presented and compared with that of the exist-
ing active contour models; finally in section 5, conclusions are reported. 

2   Multiscale Vessel Enhancement Filtering 

The multiscale vessel enhancement filtering was first presented in Reference 6. The 
filter depends on the eigenvalues )3,2,1(, =kkσλ of the Hessian Matrix of the second 

order image structure. The eigenvectors express three orthonormal directions: 1,σu in-

dicates minimum intensity variation, i.e. the direction along the vessel; The ideal tu-

bular structure in a 3D image is: 3,2,2,1,1, ,,0 σσσσσ λλλλλ ≈<<≈ . Two basic ratios 

and a measure for distinguishing background are defined as: 
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The first ratio accounts for the deviation from a blob-like structure but cannot dis-
tinguish between a line- and a plate-like pattern. The second ratio refers to the largest 
area cross section of the ellipsoid (in the plane orthogonal to 1,σu ). It is essential for 

distinguishing between plate-like and line-like structures since only in the latter case 
it will be zero. The final measure will be low in the background where no structure is 
present and the eigenvalues are small. The whole vessel-enhancement filter ),( σν x  at 

location x  and at scale σ  is defined as: 
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The parameters c,, βα are thresholds, which control the sensitivity of the line filter 

to the measures. Especially, for 2D images, the following vesselness measure can be 
proposed: 
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The filter is applied at multiple scales that span the range of expected vessel widths 
according to the imaged anatomy. Multiscale filter is also helpful to improve segmen-
tation in the noise image. The vesselness measure is provided by the filter responses 
at different scales to obtain a final estimate of vesselness or vessel probability: 
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=   

Obviously, )(xν is between 0 and 1. Equation (1) is given for bright curvilinear 

structures (MRA and CTA). For dark objects (as in DSA), the conditions (or the im-
ages) should be reversed. 

3   Vessel Region Information Function and Evolution Equation 

3.1   Vessel Region Information Function 

The image segmentation can be viewed as an optimization problem with respect to a 
posteriori partition probability. Usually, the posteriori probability density function is 
given according to prior probability by the Bayes rule. The vesselness measure is 
maximal at the center of the vessel and decreases to zero at the vessel boundaries, 
which is suitable to be used as the vessel probability estimation. For example, if the 
vesselness measure of a pixel is closer to 1, it is likely that the pixel is in the vessels. 
Therefore, we define the vessel region information function as: 
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Where )(],1,0[, xIba ∈ is the image intensity. ba, are thresholds, which control the 

sensitivity of region information function. 2.0,5.0 == ba have proven to be work well 
in most cases. ))(( xIP is a piecewise function, whose values range [-1,1]. When its 

value is 1 or close to 1, the voxel should be a point in vessels. When its value is much 
smaller than 1, the voxel may be in or out of vessel. When the value of ))(( xIP is 

negative, the voxel is out of vessels. Moreover, the smaller the function value, the 
smaller the vessel probability density function. Therefore, ))(( xIP  is equal to an effi-

cient estimation of the vessel probability density function, which applies not only ves-
sel intensity information, but also the whole line-like structure information of vessels.  

3.2   Energy Function and Speed Function 

The new vessel region information energy function in 3D space is presented as: 

−= dxdydzzyxIpE Rvessel )),,((     (4) 

Where R  is the interior fields of the curve (2D) or surface(3D). The integral in equa-
tion (4) is to find the boundary of R  where vesselE  is minimized. The straightforward 

understanding to the equation is that the boundary of curve or surface should include 
voxels in the vessels as many as possible. Moreover, vesselE  is a region-based energy 

function and not sensitive to the initial condition. 
Integrate it with boundary-based energy function; the whole energy function is de-

scribed as: 

Boundaryvessel EEE )1( αα −+=     (5) 

where [ ]1,0∈α . 
In this paper, we choose geodesic active contour as boundary information energy. 

It is defined as:  

{ } dppCCIgEE vessel ∇−+=
1
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According to variational theory and gradient descent method, through minimiz-
ing vesselE , we can acquire its evolution equation. It is presents as: 

NzyxIp
t

C ⋅=
∂
∂

)),,((     (7) 

Where N  is the outer normal vector of the curve or surface. When the curve is in the 
vessels, the vesselness measure is biggish. Therefore, the evolution speed is equal or 
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close to 1, which creates a large expansible force to make the convergence more 
rapid. When the curve is out of the vessel, the evolution speed is close to -1, which 
makes the curve shrink rapidly. In other cases, both vessel force and boundary force 
control the curve evolution. 

Reference 11 presented the evolution equation of geodesic active contour. The 
geodesic active contour evolution model is: 

NNIgNkccIg
t

C ⋅⋅∇∇−⋅+∇=
∂
∂

))(())(( 21     (8) 

Where k is the curvature of curve, 21 , cc is parameters. 

From equation (5), (7) and (8), the final speed function is defined as: 

{ }NNIgNkccIg

NzyxIp
t

C

⋅⋅∇∇−⋅+∇

−+⋅×=
∂
∂

))(())((

)1()),,((

21

αα
    (9) 

3.3   Evolution Equation in Level Set Framework 

Assume that the curve C  is a level set of a function of .],0[],0[: Rbau →×  That is, 

C  coincides with the set of points )0..(constant == ugeu . u is therefore an implicit 

representation of the curve C . This representation is parameter free, then intrinsic.  
If the planar curve C  evolves according to 

N
t

c β=
∂
∂

    
 

for a given speed function β , then the embedding function u  should deform accord-

ing to 

u
t

u ∇=
∂
∂ β     

 

By embedding the evolution of C  in that of u, topological changes of C  are han-
dled automatically and accuracy and stability are achieved using the proper numerical 
algorithm. 

Because 
u

u
N

∇
∇= , from level set theory, the level set evolution equation is: 
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Equation (10) is the final curve evolution equation, which can be implemented by 
level set method. 

4   Experiments and Results 

To demonstrate our vessel segmentation model, the proposed level set evolution equa-
tion (10) for vessel extraction is compared with other three conventional methods.  

Experiment1: geodesic active contour model presented by reference 11: 

NNIgNkccIg
t
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))(())(( 21     
 

In the following experiment, 1.0,1 21 −== cc . The values of 1c  and 2c  can work 

well in most images [11]. 
Experiment2: The evolution equation presented by Malladi[5]: 
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Where NIGP ,*∇−=  is outer normal vector. In the following experiment, 

1.0,1.0,1 21 === βcc . The values of parameters have proven to work in most cases. 

Experiment3: fully global approach presented by Yezzi[8]: 
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Where vu,  is the average of interior or exterior intensity of curve, vu AA ,  is interior 

and exterior area. We set 1.0=β  in the experiment. 

Experiment4: the proposed model in this paper: 
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Where the best results are obtained for .1.0,1,6.0 21 −=== ccα  In most cases, 

α should be bigger than 0.5, because the vesselness measure is more efficient than 
gradient information in noise images. Moreover, the selection of big α makes the 
segmentation result not sensitive to the initial condition. The selection of 1c  and 2c is 

similar to the first experiment. 
In the following experiment, we present some segmentation results of 2D medical 

vessel image. All the methods can be extended to 3D medical image because they are 
implemented in level set framework. The medical image is pulmonary vessels selected 
from CT image. The obtained image is low contrast and accompanied by random noise, 
where many branches are blurry and discontinuous intensity. The first column shows 
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the initial seed curves; the second and the third column show the random middle state of 
the curves; the fourth column shows the final segmentation result.  

Fig1(a)~1(d) are the results of geodesic active contours model, where the big ves-
sel branches can be extracted successfully. However, many narrow or blurry branches 
fail to be captured because the boundary-based information in these branches is too 
weak. The results of experiment 2 are Fig2(a)~2(d). Like geodesic active contour 
model, the only edge-based information is too weak to propagate the front in thin 
branches. Meanwhile, the boundary-based model is sensitive to the initial condition 
and all the seeds have to be set nearby branches. Another problem in these approaches 
is the curves are easy to leak out of weak edges if the improper parameters are se-
lected.  

Fig3(a)~3(d) are the results of Yezzi’s model. It is not sensitive to the initial condi-
tion and all the seeds are set at random. Because it only uses the global intensity in-
formation in the evolution equation, many low contrast pixels in vessels are excluded 
from ROI. Therefore, the result of the experiment is not satisfactory. Fig3 (d) shows 
the final result, where many thin branches are not captured successfully. Fig4(a)~4(d) 
are the results of the proposed model in this paper, where the vessels especially nar-
row thin branches can be extracted successfully. Moreover, many blurry and even 
broken branches can be captured and connected automatically. Meanwhile, although 
the intensity of many branches is discontinuous, the vessel region information func-
tion is also effective to find them. Fig4(d) shows the final result, which demonstrates 
the performance of our approach.  

       

Fig. 1. Geodesic active contour. From left to right, Fig1(a) , Fig1 (b), Fig1 (c), Fig1 (d). 

       

Fig. 2. Malladi’s model. From left to right, Fig2(a) , Fig2 (b), Fig2 (c), Fig2 (d). 
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Fig. 3. Yezzi’s model. From left to right, Fig3(a) , Fig3 (b), Fig3 (c), Fig3 (d). 

       

Fig. 4. The proposed model in this paper. From left to right, Fig4(a) , Fig4 (b), Fig4 (c), Fig4 (d). 

5   Conclusion 

In this paper, we proposed a novel efficient multiscale vessel segmentation method 
that is based on the curve evolution. In this method, a new regional information func-
tion was designed to integrate the multiscale enhancement filter. A new curve evolu-
tion model was incorporated with the edge-based speed function. This method is effi-
cient for the segmentation of vessel and other line-like structures. It is not sensitive to 
the initial condition. The proposed approach was implemented in the level set frame-
work and is suitable for various topologic changes. Moreover, it can be easily ex-
tended to 3D images because the multiscale enhancement filter works well in 3D 
space. This approach was validated in human CT images for pulmonary vessel seg-
mentation. Experiments showed that the new method performs better than the conven-
tional snake models for the segmentation of narrow thin vessel branches. It can auto-
matically analyze line-like structures and works well even when the branches are 
darker or blurrier. The proposed approach in this paper is very promising. 
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Laboratory of Information Processing, Department of Information Technology,
Lappeenranta University of Technology, P.O.Box 20, 53851 Lappeenranta, Finland

{sadovnik, ltl, jkamarai, kalviai}@lut.fi

Abstract. Mottling is one of the most severe printing defects in modern
offset printing using coated papers. It can be defined as undesired un-
evenness in perceived print density. In our studies, we have implemented
two methods known from the literature to quantify print mottle: the stan-
dard method for prints from office equipment and the bandpass method
specially designed for mottling. Our goal was to study the performance
of the methods when compared to human perception. For comparisons,
we used a test set of 20 grey samples which were assessed by professional
and non-professional people, and the artificial methods. The results show
that the bandpass method can be used to quantify mottling of grey sam-
ples with a reasonable accuracy. However, we propose a modification to
the bandpass method. The enhanced bandpass method utilizes a contrast
sensitivity function for the human visual system directly in the frequency
domain and the function parameters are optimized based on the human
assessment. This results a significant improvement in the correlation to
human assessment when compared to the original bandpass method.

1 Introduction

Print quality is an essential attribute when modern printing processes are consid-
ered. This is because an increasing proportion of data to be printed are images. If
the original of a print is assumed to be ideal, print quality depends on the print-
ability of paper, printing inks, and printing process. Despite major improvements
in the before-mentioned factors affecting the quality, there are several undesired
effects in prints. One of the most severe defects is mottling which is the uneven
appearance of solid printed areas. It is related to density and gloss of print, and
it is caused by non-ideal interactions of paper and ink in high-speed printing pro-
cesses. There are three types of mottling depending on the cause for this defect:
back-trap mottle, water-interface mottle, and ink-trap mottle. The causes for
these forms of mottling are uneven ink absorption in the paper, insufficient and
uneven water absorption of the paper, and incorrect trapping of the ink because
of tack, respectively [1]. However, a thorough explanation to this phenomenon
is still missing.

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 710–719, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Mottling can be defined as undesired unevenness in perceived print density,
or more technically as ”aperiodic fluctuations of density at a spatial frequency
less than 0.4 cycles per millimeter in all directions” [2]. When printing defects
are of concern, mottling is generally considered as a stochastic phenomenon.
Depending on the cause, however, print unevenness can include several forms of
regularity. For example, a regular drift in the printing process causes macro-scale
noise in print, whereas structures in the paper formation are random in nature
and cause micro-scale noise.

A few methods to quantify mottling by a machine vision system have been
proposed. The ISO 13660 standard includes a method for monochrome images.
The method is based on computing the standard deviation of small tiles within a
larger area [2]. In the standard, the size of the tiles is set to a fixed value, which
is a known limitation [3]. The standard method has been improved by using
tiles of variable sizes [4]. Other methods relying on clustering, statistics, and
wavelets have also been proposed to quantify mottling [5,6,7]. Other approaches
to evaluate greyscale mottling have their basis in frequency-domain filtering [8],
and frequency analysis [9]. All of the before-mentioned methods are designed for
binary or greyscale images. If colour prints were assessed, the performance of
the methods would be limited when compared to human assessments.

It is possible to define mottling by using mathematical or physical terms. How-
ever, mottling is implicitly related to human perception: If a person looking at a
solid print perceives unevenness, mottling is considered as a defect. Thus, a strict
definition based on the quantitative sciences can prove to be insufficient. This is
why the properties and limits of the human visual system (HVS) must be taken
into account in the design of proper methods to quantify mottling. Sensitivity of
the HVS to contrast and spatial frequencies of noise in images is independent of
luminance within common luminance levels [10]. However, the contrast sensitivity
depends on the spatial frequency [11], thus, mottles of different sizes are perceived
differently. The peak sensitivity of the HVS is approximately at 3 cycles/degree,
and the maximum detected frequency is from 40 cycles/degree (sinusoidal grat-
ings) [12] to over 100 cycles/degree (single cycle) [13].

The purpose of our work was to implement study artificial methods to quan-
tify mottling, and compare the method results to evaluations by humans. Since
the grounds of the selected methods are not directly in vision science, we propose
a modification to the method which is superior based on the comparison. The
modification is in accordance with the psychophysical studies in vision science,
and it utilizes the frequency information of the sample images directly.

2 Methods

To study the possibilities of machine vision, we implemented two methods to
quantify print mottle: the standard method to assess image quality of printer
systems [2], and the bandpass method [8]. The third method described in this
work is a modification of the bandpass method accommodating an appropriate
contrast sensitivity function (CSF) for the HVS.
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2.1 Standard Method

ISO 13660 standard is designed for assessing print quality of office equipment
that produce monochrome prints [2]. The attributes of print density for large
print areas include graininess and mottling. In the standard, a fixed value has
been chosen to separate this two forms of print unevenness. Aperiodic fluctu-
ations of print density at spatial frequencies higher than 0.4 cycles/degree are
considered as graininess, whereas frequencies lower than 0.4 cycles/degree are
mottling. The standard method is presented in Algorithm 1.

Algorithm 1 Standard method
1: Divide the region of interest into tiles.
2: Compute the mean densities within each tile.
3: Compute the standard deviation of the means as the measure of mottling.

The region of interest must be larger than 21.2 mm squared, and it is divided
into tiles of size 1.27 mm squared. Within each tile, 900 independent measure-
ments of density are made.

2.2 Bandpass Method

The method is based on applying a set of Gaussian bandpass filters to the image
in the frequency domain. The coefficient of variation of reflectance (CVR) for
each spatial image representing a frequency band is computed. Different coeffi-
cients represent the variation of reflectance within each band [8]. The coefficients
are weighted with the CSF and then summed together as the mottling index.
The method is described in Algorithm 2.

Algorithm 2 Bandpass method
1: Filter the image with a set of bandpass filters.
2: Compute coefficients of variation from the filtered spatial image for each

frequency band.
3: Weight each coefficient with a CSF.
4: Sum the weighted coefficients to get the mottling index.

In Step 1, the image is filtered in the frequency domain with a set of bandpass
filters. Five fixed spatial bands are designed to an octave series: 0.5-1, 1-2, 2-4,
4-8, and 8-16 mm (note that we fixed the viewing distance to 30 cm in the human
assessments). The band containing the smallest details has been included when
compared to [8]. The Gaussian filters are illustrated in Fig. 1. The mean (DC
component) is set to 1 so that the mean grey value of the image does not change
due to filtering.

In Step 2, the coefficients of variation for each band are computed in the
spatial domain. The coefficient of variation is the ratio of standard deviation of
reflectance and mean reflectance, i.e.,

CVR =
σR

R
. (1)
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Fig. 1. The filters in 2-D representing the 0.5-1, 1-2, 2-4, 4-8, and 8-16 mm spatial
bands
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Fig. 2. The Mannos monochrome CSF and the weights corresponding to 0.75, 1, 5, 3,
6, and 10 mm

In Step 3, the coefficients are weighted with a CSF [14] illustrated in Fig. 2.
The weights are taken at points representing 0.75, 1.5, 3, 6, and 10 mm.

2.3 Enhanced Method

The idea for this method comes from the bandpass method. Consider a peak in
frequency domain which lies in between two bandpass filters, it introduces seri-
ous sinusoidal distortion (unevenness) in spatial domain. At the same time, it
cannot be detected by a predefined set of bandpass filters, and thus the computed
mottling index remains intact. The obvious solution to this bandpass method
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weakness is to increase number of bandpass filters in order to catch more fre-
quency fluctuations. Finally, increase in the number of filters leads to a limit case,
where all the bandpass filters comprise a plane, which has no impact on the val-
ues of frequency magnitudes. However, coefficient of variation used as weighted
value, makes it complicated for integration in the limit case. We propose to use
the following value

CVR =
σ2

R

R
. (2)

to make the result correspond to the bandpass method in the terms of order of
magnitude, we take square root inside the integral. In the limit case mottling
index will have the form (follows from Parseval’s theorem)

M =
1

F (0, 0)

∫ ∞

−∞

∫ ∞

−∞
CSF (u, v)

√
F (u, v)F (u, v)dudv, (3)

where F (0, 0) = R is the mean reflectance, CSF (u, v) is a 2-D representation of
the CSF, F denotes the Fourier transform of the image, and F is the complex
conjugate of the transformed image.

Since the frequency for the peak contrast sensitivity of the HVS varies from
2 cpd up to 10 cpd, depending on the type of gratings and its regularity [10], it
was decided to introduce the scaling factor into the CSF formulation. The factor
scales the function along the frequency axis. It was experimentally found that,
for the unevenness type gratings, the peak sensitivity is approximately at 2 cpd.
This can be explained by the stochastic nature of mottling and its aperiodicity.

We also studied the effect of orientation sensitivity of the HVS [12]. It is
known that human sensitivity is lowest around 45◦and 135◦and highest at ver-
tical and horizonal directions. However, experiments showed low significance of
introducing the orientational scaling. This can also be understood based on the
nature of mottling.

2.4 Visual Assessment

To compare the results of the implemented methods to human perception, we
collected a set of 20 mottling samples covering a wide range of mottling, and
asked human observers to evaluate the perceived mottling. The group of ob-
servers consisted of experts from the paper industry, and ”laymen” in the area
of image processing. The mean of these subjective assessments was used as an
initial ground truth for mottling, and the results of all the machine vision meth-
ods were compared to this information.

The human assessment consisted of two parts. The first part was a pairwise
evaluation of the whole sample set: the observer was asked to select the sample
which had less mottling. The main function of this part was to present all samples
to the observer, and to give some idea of different forms and levels of mottling.
In the second part, each sample was evaluated one at a time, and the observer
was asked to rate the level of mottling in a five point Likert scale. Two control



Quantified and Perceived Unevenness of Solid Printed Areas 715

questions were used in the assessment: the number of times the person had
evaluated mottling, and the time needed for the test. The primary function of
the assessment was to quantify the perceived level of mottling of the test set.

The results of the assessments were processed as follows. The people taking
the test were divided into two distinct groups based on the control question
about the number of times the person had evaluated mottling. The first group
was formed by experts who evaluate prints as a part of their work. The second
group consisted of people who evaluated mottling for the first time and were
not experts in the field of print assessment. Selection criteria for outliers were
difficult to design. Each observer had his or her own way of selecting the the
use of the scale. The mean and the standard deviation were used as elementary
criteria to select outliers. If either one differed from the average of all assessments
significantly, the assessment was marked as an outlier.

3 Experiments

We present the results for the set of 20 K70 (70% black) samples (see Fig.3). The
original samples are approximately 4.5 cm × 4.5 cm in size. The paper used for
printning is 70 g/m2 LWC (Lightweight Coated) paper, and the samples were
printed using heatset offset printing process with round dots. The samples were
originally scanned with a flatbed office scanner at 1200 dpi and gamma of 2.2.
The gamma value was not altered before applying the machine vision methods.
To reduce computing time, the images were re-sampled to 600 dpi because this
resolution is more than sufficient in this application when the HVS is concerned.

We inspected mottle sizes ranging from 0.5 to 16 mm while viewing the
sample from a distance of 30 cm (spatial frequency range 0.03-1 cycles/mm).
Spatially higher- and lower-frequency unevennesses were considered as graininess
and banding. The viewing angle of all samples was approximately 8.5◦, and the
material surrounding each sample was 100% black cardboard. To remove possible
defects in images that are not mottling, the inspected contrast of print density
was limited to ±10% of the median grey-value of an image.

3.1 Visual Assessment

The results are based on 35 human evaluations. The assessments were made in
usual office lighting conditions. However, the conditions were not identical in all
evaluations, thus, the human assessment should be considered as an initial one.
Evaluators were divided into two groups: experts (12 people) and laymen (23
people). The division was made based on the number of mottling evaluations
done prior to this one. As it can be seen from Fig. 4(a), there is only little dif-
ference in evaluations between the experts and laymen. This is natural since it
would be confusing if the experts evaluated print quality of samples in which
mottling is most visible completely distinctly to end-users. However, experts in
the printing industry do have a different view of print quality, and there should
be representatives from this group in the next and more thorough assessment.
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Fig. 3. The set of K70 samples (scaled to fit the figure and altered to enhance the
visibility of mottling)

Confidence bounds in Fig. 4(a) show the average results across the whole pop-
ulation ±standard deviation, and show how similar the mottling indices were
among all evaluators.

3.2 Machine Vision Assessment

The standard method was implemented as described in the ISO 13660 stan-
dard [2]. The implementation of this method is easy and does not require much
programming effort. As it was expected, the results produced by the standard
method show low correlation to the human assessment (see Fig. 4(b)). In the
standard, the size of the tiles is set to a fixed value which is a known limita-
tion [3]. The bandpass method makes use of a few frequency bands to separate
information relevant to the HVS. A small number of bands limits the number
of spatial classes, and the method becomes similar to a set of low-pass filters
used in previous mottling methods. Performance of the method is limited by the
resolution of the image and the number of bands. The results of this method
can be seen in Fig. 4(c). The increase in the number of bands leads to the en-
hanced method, which utilizes characteristics of the HVS and outperforms two
aforementioned methods (see Fig. 4(d)).

All the artificial methods produced mottling indexes in their own scale. Thus,
appropriate scaling was needed for the method comparison. We used simple
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Fig. 4. Mottling assessments: (a) Human evaluation; (b) Standard method; (c) Band-
pass method; (d) Enhanced method

normalization which equalizes the mean value and standard deviation of the
experimental values across the samples.

3.3 Results Summary

In Table 1, inter-method similarity is presented. Correlation coefficients were
used as the similarity measure.

Table 1. Mottling assessment correlations

Methods Overall Experts Laymen Standard Bandpass Enhanced
Overall human 1.0000 0.9848 0.9957 0.6956 0.8579 0.8941
Experts 0.9848 1.0000 0.9644 0.6568 0.8125 0.8516
Laymen 0.9957 0.9644 1.0000 0.7078 0.8715 0.9057
Standard 0.6956 0.6568 0.7078 1.0000 0.8810 0.8755
Bandpass 0.8579 0.8125 0.8715 0.8810 1.0000 0.9949
Enhanced 0.8941 0.8516 0.9057 0.8755 0.9949 1.0000
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Fig. 4 shows performance graphs for different assessment approaches.
The collected correlation data allow to state that the enhanced method out-

performs the other two methods. It can be also noticed that the machine vision
methods correlate better among each other than with human evaluation based
data. This leads to the conclusion that all artificial methods have a similar nature
and the model of HVS they assume is not accurate.

4 Conclusions

In the presented work, we performed a comparison between the human and ma-
chine vision evaluation of mottling. The results of the human evaluation appear
to be highly distributed and, thus, a larger number of assessments is needed
both in evaluators and in samples. The high deviation in single sample eval-
uation results leads to the conclusion that a machine vision system modelling
an average end-user is necessary. This could bring more precision in delivering
printed products of desired quality.

The presented machine vision methods, though having a relatively good cor-
relation with averaged human observation, still need improvement in the sense
of modelling of the HVS. The standard method presented can be considered only
as a starting point because this method does not model the HVS at all and also
it does not have significant correlation with the human mottling evaluation. The
bandpass method shows good results, though it should be mentioned, that it is
not accurate to use CSF derived for regular sinusoidal gratings for measuring
human sensitivity for random reflectance fluctuations. General enhancement for
the bandpass method resulted improvement in both computational sense and in
precision.

The goals for the future research can be defined as follows: make methods
closer to human perception, by involving new knowledge about the HVS, and
incorporate mottling evaluation of colour samples. The general conclusion of
our research, is that for the implementation of a machine vision solution to the
human perception problem, one needs a suitable HVS model and good statistical
characteristics of how the humans perceive the phenomenon.

However, the results also show that when assessing low-contrast unevenness
of print, humans have diverse opinions about quality.
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Abstract. In this paper we resolve the problem of automatically normalize front 
view photos from a database that contain images of human faces with different 
size, angle and position. It was used a template with a standardized inter eye 
distance and dimensions. We are mapping all images to this template applying a 
geometrical transformation. It is necessary to obtain the eyes positions on image 
to calculate the transforms parameters. That is not a trivial problem. We use 
active contour to detect the human face. After that, we apply morphological 
filters to highlight image signal amplitude in the eyes positions. A set of 
criterion is applied to select a pair of point with more possibility to be the eyes. 
Then, a subroutine is feed with eyes coordinates to calculate and apply the 
geometrical transformation. Our method was applied to 500 photos and it 
performs very well in the 94% of all cases. 

1   Introduction 

Face recognition [1, 2, 3, 5] has become an important issue in many applications such 
as access control, credit card verification and criminal identification. The main task of 
face recognition is the identification of a given face photo among all the faces stored 
in an image database. This is our general problem. Our approach need to known the 
position of eyes to create a face space in which all the faces are geometrically 
normalized and photometrical correlated [4, 8].  

This paper is dedicated to the process of geometrical normalization of human faces. 
This process is divided in three steps: a) face detection, b) eye detection and c) 
geometrical normalization [6, 11, 12]. 

First, it is necessary localize the limit of face using active contour [9, 10]. Then, 
the eyes are detected searching white spot in a map resulting of apply a combination 
of morphological filters. Finally, it is performed the geometrical normalization. 

The structure of this paper is the following: In section 2, we show the basic 
concepts about active contour and its employ in face detection. The face and eye 
detection process are presented in Section 3 and 4 respectively. Section 5 is dedicated 
to explain the spatial transformation. Section 6 focuses on experimental results of the 
proposed methodology. Finally, we present some relevant conclusions. 
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2   Active Contour Model (Snake) 

The active contour or snake can be defined as a spline curve that minimize the energy 
guided by external constraint forces and influenced by image forces that pull it toward 
feature as lines and edges. In the snake, image and external forces together with the 
connectivity of contour and the presence of corners will affect the energy function and 
the detailed structure of the locally optimal contour. The snake has a set of inner 
forces that serve to put smoothing restrictions to the curve. Also, it has a set of image 
forces and restrictions imposed by the user. The idea, it is modify an initial elastic 
curve under the action of such forces until reach the object contour. 

The definition of the active energy of the contour is illustrated as 

( )( ) ( )( ) ( )( )dssrEsrEsrEE imageernalsnake erestrictiv

1

0 int δβα ++= . (1) 

Where ( )sr  represent the position of the snake, ernalEint  represents the internal 

energy of the contour due to bending. Defined as 

( )( ) ( ) ( ) 22

int srsrsrE ernal ′′+′=  . (2) 

The following approximations are used: 

2

1−−≈ ss
s rr

ds

dr
   and   2

112

2

2 +− +−≈ sss
s rrr

ds

rd  . (3) 

Continuity Force: The first derivative 
2

1−− ss rr  causes the curve to shrink. It is 

actually the distance between points. It is evident that a term that facilitates the 

uniform distribution of the points 
2

1−−− sspro rrd  would much more reflect the 

wished behavior of contour. 

Curvature Force: Since the formulation of the continuity term causes the points to be 

relatively evenly spaced, 
2

11 2 +− +− iss rrr  gives a reasonable and quick estimate of  

 

 

Fig. 1. Continuity forces: Minimizing the distance between points 
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Fig. 2. Continuity forces: Minimizing the difference between the average distance points dpro 
and the distance between the two points under consideration 

 
Fig. 3. Curvature Force 

 

Fig. 4. Image force 

the curvature. This term, like the continuity term, is normalized by dividing the 

largest maxd  value in the neighborhood, giving a number between 0 and 1. 

Image Force: imageE  is the image force which is defined taking account the intensity 

in a point and the gradient of the intensity in a point. We need to select a point in the 
neighborhood which intensity plus gradient minimize the energy function. When the 
contour is white it is necessary multiply by -1 this value. 
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Restrictive Force: It is the distance between an inner points and other on the contour. 
As the criterion considered is to minimize the energy, the curve will be shrinking. In 
the case that we are interested to expand the curve, it is necessary to consider multiply 
by -1 the distance. 

3   Face Detection 

The basic idea is close a face in a frame to minimize the negative effect of the hair to 
the algorithm of facial feature extraction. We may initialize a process of expansion of 
an inner curve searching the face contour applying the snake principle. The problem 
is to be sure that the initial set of point is internal to the face. To guarantee this 
condition, it is possibly to apply an active contour to shrink a curve in form of an 
ellipse to reach the external edges of hair and face. A Sobel filter is applied to the 
image to facilitate the convergence of snake to the searching edges (see Fig. 5). This 
way, it is found a previous face approximation closed in a rectangle.   

As the snake finish its iterations, it is obtained a set of point most of them over the 
head contour. Then, a searching is initiated to look up for the two rows and columns 
with more density of point to form a frame including the face (see Fig. 6). 

We position a set of point in the centre of this rectangle to begin a second expanding 
snake. Initial snake into the face is not a sufficient condition for all points evolve to the  
 

 

Fig. 5. a) Face image. b) Sobel edges detection. 

 
Fig. 6. Shrinking snake evolution. a) Initial elliptical curve, b) Points over the contour, and c) 
Frame including the face. 
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Fig. 7. Expanding snake evolution. a) Initial elliptical curve, b) Points over face contour, and   
c) Frame including the face. 

face contour because some points may be trapped on the eyebrow, eyes and nostril. 
Only the points over the face contour were taken to build the inner frame (see Fig. 7).  

4   Eye Detection 

We are interested in highlight the eyes location and eliminate other image elements. 
Based in the observation that eye images have a combination of white and black 
pixels, we proposed to utilize dilation filter to amplify the whites pixels and erosion 
filter to amplify the black one. Then, it is possibly to obtain a map of shade value 
(Map) where the eyes locations are highlighted. This map is obtained by the  
 

 

Fig. 8. Morphological operation to obtain the Map shade 
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Fig. 9. Map shade dilated 

 

Fig. 10. Masks used to detect eyes positions 

subtraction of image dilated (Dila) minus image eroded (Ero). With this operation we 
pretend to remark the difference between pixels black and white in both images (see 
Fig. 8). 

EroDilaMap −=  . (4) 

After that, a dilate operation is applied to the Map shade to highlight image signal 
amplitude in the eye position. 

On the shade map we select the 10 positions that obtain greater value when 
matching with Mask A. These points are evaluated in the original image by means of 
Mask B. The pair of greater score is chosen as the eyes, where the horizontal 
orientation and the distance between the possible points associated to eyes fulfill the 
correspondent thresholds. 

5   Geometric Normalization  

A geometric transformation consists of a spatial transformation, which defines the 
arrangement of pixels on the image planes and the gray level interpolation, which 
deals with the assignment of gray levels to pixels in the spatially transformed image.  
We defined a template with 500 x 400 pixels and the exactly location where is desire 
to put the eyes of all transformed images (see Fig. 11). This point on the template and 
the eyes locations are using as tiepoints.  We used gray level interpolation based on 
the nearest neighbor concept. 
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Fig. 11. Template used for the geometric normalization. Left eye (144,190) and right (256,190). 

6   Result  

In this section, we show some results obtained with our methodology. We selected 
500 front view images of students and professors from Havana University, where 
appear persons with different ages, sex, length of hair, color of skin, head inclination, 
illumination, color and scale (see Fig. 12 left). 

The eyes were correctly detected in 94 percent of images with a probability of 
more than 9 positive results into 10 images (see Fig. 12 right). Figure 13 show some 
human faces normalized using the automatic detected coordinates of eyes.  

We observed some negative results where the snake does not work very well and 
the algorithm was affected by earring and glasses with much shine. 

7   Conclusions 

We present a new methodology for eyes detection that combines active contour, 
morphological filters and template matching. 

We introduce an additional restrictive force in energy function to obligate the 
snake to evolve to the wanted contour. 

We obtained a 94 percent of effectivity when the algorithm was applied to 500 
images of faces took in conditions not controlled, corresponding to students of 
Havana University. 

The algorithm presented in this paper resolve the problem of normalization of a set 
of images mapping all them over a template with standard spatial dimensions, without 
necessity of manually marking the eyes position. 
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Fig. 12. Some of the photos of the registry. Left: Original photos. Right: Eyes detected. 

 

Fig. 13. Examples of normalized images 
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Abstract. This paper presents a method for segmentation of medical
images and the application of the so called geometric or Clifford algebras
for volume representation, non-rigid registration of volumes and object
tracking. Segmentation is done combining texture and boundary infor-
mation in a region growing strategy obtaining good results. To model 2D
surfaces and 3D volumetric data we present a new approach based on
marching cubes idea however using spheres. We compare our approach
with other method based on the delaunay tetrahedrization. The results
show that our proposed approach reduces considerably the number of
spheres. Also we show how to do non-rigid registration of two volumetric
data represented as sets of spheres using 5-dimensional vectors in con-
formal geometric algebra. Finally we show the application of geometric
algebras to track surgical devices in real time.

1 Introduction

When dealing with tumor segmentation in brain images, one way to solve the
problem is by using Magnetic Resonance (MR) images because in such images
we have different types of them (ie. T1, T2, T1-weighted, T2-weighted, etc.;
some of them highlight tumor and other structures), and by combining and
differentiating them, the task become more easy and an automatic approach for
segmentation become possible (see [1]). Other methods, like the one proposed
by [2], use a probabilistic digital brain atlas to search abnormalities (outliers)
between the patient data and the atlas. The use of Computer Tomographic (CT)
images is less used because they have not such modalities and the development
of an automatic algorithm for segmentation is more complicated; however semi-
automatic approaches have been proposed (as in [3,4]) using seed points defined
manually by the user as initialization, and growing the region by some method.
In this work we are interested in segmenting tumors in CT images, so we use
a simple but effective algorithm to segment them: a set of 5 texture descriptors
is used to characterize each pixel of the image by means of 5 × 1 template or
a 5D-vector; then each vector is compared with the typical vector describing
a tumor in order to establish an initialization of the tumor in the image (seed
points for tumor tissue). Finally, a region growing strategy is used, combined

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 729–740, 2005.
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with boundary information to obtain the final shape of the tumor (this method
is explained in section 2).

On the other hand, representation of volumetric objects using primitives like
points, lines or planes is a common task. The Union of Spheres proposed in [5] is
another possible representation for volumetric data, but it usually needs a large
amount of primitives (spheres). This fact aimed us to look a different way to
model the object with less primitives but being a good enough representation.
In the first approach, the dense Union of Spheres representation is obtained
using the Delaunay tetrahedrization and its complexity is O(n2) in both, time
and number of primitives, while our highest number of spheres using our method
based on marching cubes is less than 2n in the worst case, and some times it is
less. We use computer tomography (CT) images to do the experiments, and one
of the the surfaces to be modeled is the segmented tumor - n is the number of
boundary points in a total of m CT images (slides). This approach is explained
in section 4, which uses the concepts explained in section 3.

Some times (ie., when surgeon opens the head and occurs loss of cerebrospinal
liquid) tumor and brain structures suffer (non-linear) deformation. In this work
(see section 4.2) we present a new approach which uses models based on spheres
for using such spheres as the entities to be aligned. This is embedded in the
Conformal Geometric Algebra (CGA) framework using the TPS-RPM algorithm
but in a 5-dimensional space (see Sect. 4.2). Finally, we show the application of
GA for the task of object tracking (section 5).

2 Segmentation

As mentioned in [7,8] segmentation techniques can be categorized in three classes:
a) thresholding, b) region-based and c) boundary-based. Due to the advantages
and disadvantages of each technique, many segmentation methods are based on
the integration information of region and boundary techniques and there are
a great variety of methods; some of them working better in some cases, some
being more sensitive to noise, etc. This fact make not feasible to determine the
best approach to segmentation that integrates boundary and region information
because we have not a generally accepted and clear methodology for evaluating
the algorithms; additionally, the properties and objectives that the algorithms
try to satisfy and the image domain in which they work are different. Interested
reader can consult a detailed review of different approaches in [7]. Due to the
fact that we are dealing with medical images, we need also to take into account
an important characteristic: the texture. Textural properties of the image can
be extracted using texture descriptors which describe the texture in an area of
the image. So, if we use a texture descriptor over the whole image, we obtain a
new “texture feature image”. In most cases, a single operator does not provide
enough information about texture, and a set of operators need to be used. This
results in a set of “texture feature images” that jointly describe the texture
around each pixel.

When segmenting tomographic images, simple segmentation techniques such
as region growing, split and merge or boundary segmentation can not be used



Medical Image Segmentation and the Use of Geometric Algebras 731

alone due to the complexity of the brain computer tomographic images, which
contain textures of different tissues, similar gray-levels between healthy and non-
healthy tissues, and sometimes the boundaries are not well defined. For this
reason, we decide to combine not only boundary and region information (as
typically it is done), but also to integrate information obtained from texture
descriptors and embed that in a region growing strategy. A block diagram of our
approach is shown in figure 1.a.

Input
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image
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a) b)

Fig. 1. a) Block diagram of the approach to segment tumors in CT images (region
growing strategy combining texture and boundary information); b) Texture descriptors
used to obtain the texture information (4 Laws energy masks)

The first step is to characterize each pixel on images, so we opt for use the
texture information provided by some of the Laws’s masks to characterize them
with a five-dimensional vector (named texture vector, Vij , for pixel in coordi-
nates (i, j)). Then, to place automatically the seed points for the region growing
strategy, we choose only the pixels having a texture vector for the tissue of in-
terest (in this case we are interested in tumor) and use them as initialization (or
seeds) for the region growing strategy; boundary information is used to stop the
growing of the region. The construction of Vij is explained as follows: the first
element of Vij is only to identify if the pixels corresponds to the background
(value set to zero) or to the patient’s head (value set to one) - patient’s head
could be skin, bone, brain, etc.; in order to obtain the texture information, we
use a set of four masks of the so called Laws Masks (L5E5, R5R5, L5S5, E5S5 -
see 1.b); then we fix the value in a position of Vij with 1’s or 0’s, depending on
if the value is greater than zero or zero, respectively. As a result, each structure
(tissue, bone, skin, background) on the medical images used, has the same vector
Vij in a high number of its belonging pixels, but not in all of them because of
variations in values of neighboring pixels. So we can use the pixels having the
texture vector of the object we want to extract to establish them as seed points
in a region-growing scheme. Region growing criterions we use are as follows: we
compute the mean µseeds and standard deviation σseeds of the pixels fixed as
seeds; then, for each neighboring pixel being examined to determine if added or
not to the region:

If I(x, y) = ±2σseeds and Vxy �= Vseed at most in 1 element,then I(x, y) ∈ Rt
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where Rt is the region of the tumor. The stopping criterion takes into account the
boundaries of the object because the growing of the region is in all directions, but
when a boundary pixel is found, the growing in such direction is stopped. Figure
2 shows results of the process explained before: figure 2.a shows one original
CT-image; figure 2.b shows the seed points fixed, which have the texture vector
of the tumor; figure 2.c shows the final result after the overall process has ended
(the tumor extracted). The overall process takes only few seconds per image and
it could be used to segment any of the objects; but in our case, we focus our
attention on the extraction of the tumor.

a) c)
b)

Fig. 2. Results for the segmentation. a) One of the original CT-images; b) Seed points
fixed; c) Result for the image of (a) after the whole process (the tumor extracted).

After that, the next step is to model the volumetric data by some method.
Due to the fact that tumor can be deformed due to the lost of cefalic liquid once
the head of the patient is opened, we need a 3D representation of the tumor
which allows us to estimate such deformation to update the shape of the tumor.
Next sections explain the basis of our different approach for such modeling as
well as a similar method used for comparison. However, first we present how the
spheres are represented in conformal geometric algebra (CGA), and then we will
show how to build 3D models and register two of them using such entities with
TPS-RPM method.

3 Representation of Spheres in CGA

Our objective is not to provide a detailed description of the geometric alge-
bra (GA) and its advantages (interested reader can find very useful material
in [10,11]), so we only give a brief introduction and explain how to represent
spheres in conformal geometric algebra (CGA) as points in a space of 5 di-
mensions (because such representation will be used in the non-rigid registration
process).

Geometric algebra is a coordinate-free approach to geometry based on the
algebras of Grassmann and Clifford. The algebra is defined on a space whose
elements are called multivectors; a multivector is a linear combination of objects
of different grade, e.g. scalars, vectors and k-vectors. It has an associative and
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fully invertible product called the geometric or Clifford product. The existence
of such a product and the calculus associated with the geometric algebra endows
the system with tremendous power. The Clifford product (or geometric product)
ab between two vectors a and b is defined as:

ab = a · b + a ∧ b . (1)

where a · b represents the dot or inner product and a ∧ b represents the wedge
or exterior product. The geometric algebra Gp,q,r is a linear space of dimension
2n, where n = p + q + r and p, q, r indicate the number of basis vectors which
squares to 1,−1, 0, respectively. This algebra is constructed by the application
of geometric product between each two basis vectors ei , ej from the base of
the vector space �p,q,r. Thus Gp,q,r has elements of grade 0 (scalars), grade
1 (vectors), grade 2 (bivectors), and so on. The CGA G4,1,0 is adequate for
representing entities like spheres because there is no direct way to describe them
as compact entities in G3,0,0 (the geometric algebra of the 3D space); the only
possibility to define them is given by formulating a constraint equation. However,
in CGA the spheres are the basis entities from which the other entities are
derived. These basic entities, the spheres s with center p and radius ρ are defined
by (2).

s = p +
1
2
(
p2 − ρ2) e + e0 . (2)

where p ∈ �3, ρ is a scalar and e, e0 are defined as in eq. 3 (they are called null
vectors), and they are formed with two basis vectors e−, e+ additional to the
three basis vectors of the 3D-Euclidean space (which have the properties that
e2− = −1; e2

+ = +1; e− · e+ = 0).

e = e− + e+; e0 =
1
2
(e− − e+) (3)

In fact, we can think in a conformal point x as a degenerate sphere of radius
ρ = 0. More details on GA and the construction of other entities in CGA can
be consulted in [10,11]. We can see eq. 2 as a linear combination: s = αe1 +
βe2 + γe3 + δe+ + εe−, or represent it as a 5D-vector s = [α β γ δ ε]T . Thus, the
sphere in CGA is represented with a 5-dimensional vector, which is an adequate
representation to make two sets of 5-vectors, one representing the object and
the other the deformed object. These sets are obtained by the method explained
in next section (4). Once we have these sets, we will be able to apply the TPS-
RPM algorithm in order to do the registration process (see Sect. 4.2). However,
let us explain before how the rigid motion is done in GA. In GA, rotations are
computed by the so called rotor, R, defined as in equation 4, where a is the
plane perpendicular to the rotation axis; while translations are computed by the
translator, T , defined as in equation 5, where t is the translation vector and e is
defined as in 3.

R = exp−1
2
θa (4)

T = exp− t

2
e (5)
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To rotate any entity in any dimension, we multiply it by the rotor R from the
left and by the conjugate R̃ from the right, x′ = RxR̃. Translations are made
in the same way: y′ = TyT̃ . If we combine the rotation and the translation, the
resulting operator is named motor and is expresed as M = TR, which is applied
in the same way explained: x′ = MxM̃ = TRxR̃T̃ .

4 Volume Representation and Non-rigid Registration

In medical image analysis, the availability of 3D-models is of great interest to
medicians because it allows them to have a better understanding of the situa-
tion, and such models are relatively easy to build. However, in special situations
(as surgical procedures), some structures (as brain or tumor) suffer a (non-rigid)
transformation and the initial model must be corrected to reflect the actual shape
of the object. For this reason, it is important to have a representation suitable to
be deformed, with the minor quantity of primitives involved in such representa-
tion as possible to make faster the process. In literature we can find the Union of
Spheres algorithm (see [5]), which uses the spheres to build 3D-models of objects
and to align or transform it over time. Nevertheless, we use the marching cubes
algorithm’s ideas to develop an alternative method to build 3D models by using
spheres, which has the advantage of reducing the number of primitives needed.
For space reasons we do not provide an explanation of the Union of Spheres nor
the Marching Cubes algorithms, but it can be found in [5,9].

4.1 3D Models Using Spheres

To build a 3D model of the object of interest using spheres, we are based in the
marching cubes algorithm (MCA). The principle of our propposal is the same as
in MCA: given a set of m slides (CT images), divide the space in logical cubes
(each cube contains eight vertices, four of slide k and four of slide k + 1) and
determine which vertices of each cube are inside (or on) and outside the surface.
Then define the number of spheres of each cube according to figure 3 and eq.
6 (where i is the ith sphere of the case indicated by j), taking the indices of
the cube’s corners as the first cube of such figure indicates. Note that we use
the same 15 basic cases of the marching cubes algorithm because the total of
256 cases can be obtained from this basis. Also note that instead of triangles
we define spheres and that our goal is not to have a good render algorithm
(as intended for Marching cubes algorithm), but have a representation of the
volumetric data based on spheres which, as we said before, could be useful in
the process of object registration.

sj
pi

= cpi + 0.5(c2pi
− ρ2

pi
)e + e0 ; sj

mi
= cmi + 0.5(c2mi

− ρ2
mi

)e + e0

sj
gi

= cgi + 0.5(c2gi
− ρ2

gi
)e + e0 (6)

Table 1 is a comparison between the results of the Union of Spheres and our
approach for the case of a brain model. The first row shows the worst case with
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(i,j,k)

(i,j+d,k) (i+d,j+d,k)

(i+d,j,k)

(i+d,j+d,k+d)
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Fig. 3. The basic 15 cases of surface intersecting cubes (defining a different number of
spheres with different centers and radius

both approaches; second row shows the number of spheres with improvements
in both algorithms (reduction of spheres in DT is done by grouping spheres in
a single one which contents the others, while such reduction is done using a
displacement of d = 3 in our approach). The number of boundary points was
n = 3370 in both cases. It is obvious the reduction in the number of primitives
obtained with our approach, while maintaining clear enough the representation
(even in the worst case). Figure 4.a-d shows the results obtained for a set of 36
images of a real patient with a tumor visible in 16 of them (see in figure 4.d the
3D model of the tumor of the real patient).

Table 1. Comparison between number of spheres using approach based on Delaunay
tetraherization and our approach based on marching cubes algorithm; n is the num-
ber of boundary points; d is the distance between vertices in logical cubes of second
approach.)

n/d
Num of spheres with each approach
DT approach Our approach

3370 / 1 13480 11866
3370 / 3 8642 2602

4.2 Registration of Two Models

Suppose you have two points sets and one of them results from the transforma-
tion of the other but you do not know the transformation nor the correspondences
between the points. In such situation you need an algorithm that find these two
unknowns the best as possible. If in addition the transformation is non rigid,
the complexity increases enormously. In the variety of registration algorithms
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a) c)

a) b)
c) d)

Fig. 4. Real patient: a) Original of one CT slide; b) Segmented object (the tumor);
c) Zoom of the approximation by circles according the steps described in section; d)
Approximation by spheres of the tumor extracted

existing today, we can find two that solve for correspondence and transforma-
tion: Iterated Closest Point (ICP) and Thin plate spline-Robust Point Matching
(TPS-RPM). Details of each one of this algorithms can be found in [6]; here we
assume, for space reasons, the reader knows them. In a past work we presented
a comparison between these algorithms for non-rigid registration and we con-
cluded TPS-RPM gives better results. However, we had used only sets of 2D
and 3D points. Now we have spheres as points in a 5D-space modeling the ob-
ject, and these spheres have not only different centers, but also different radius.
So, for the non-rigid registration we follow the simulated annealing process of
TPS-RPM explained in [6]. Let be UI = {sI

j}, j = 1, 2, ..., k, the initial spheres
set; UF = {sF

i }, i = 1, 2, ..., n, the final spheres set. To update the matrix M of
correspondence for spheres sI

j y sF
i , modify mji as

mji =
1
T
e−

(sF
i

−f(sI
j
))�(sF

i
−f(sI

j
))

T . (7)

for outlier entries j = k + 1 and i = 1, 2, ..., n:

mk+1,i =
1
T0

e−
(sF

i
−f(sI

k+1))�(sF
i

−f(sI
k+1))

T0 . (8)

and for outliers entries j = 1, 2, ..., k and i = n + 1:

mj,n+1 =
1
T0

e
− (sF

n+1−f(sI
j
))�(sF

n+1−f(sI
j
))

T0 . (9)

where T is the parameter of temperature which is reduced in each stage of the
optimization process beginning at a value T0 (remember that TPS-RPM use the
simulated annealing process). Then, to update transformation we use the QR-
decomposition of M to solve eq. 10 (following the same process explained in [6]
and omited here for space reasons).

Etps(d, w) = ‖Y − V d− Φw‖2 + λ1(wTΦw) + λ2[d− I]T [d− I] . (10)

Figure 5.a shows the 3D models as sets of spheres representing the object (the
tumor mentioned in figure 4) -one is the initial set (or representation at time t1);
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Tumor at time

(initial set)

t1

Tumor at time

(expected set)

t2

a) Before registration

Tumor at time

(initial set)

t1

Result of the

algorithm (initial

set transformed)

b) registrationAfter

Shape expected of

the tumor

( the one of time t2)

Fig. 5. a) Initial and expected sets (the expected set is obtained by a non-rigid trans-
formation of the initial one); b) Initial and result of applying TPS-RPM to align the
sets of spheres, represented as 5D-vectors in conformal geometric algebra. Note that
the resulting set has been aligned an looks like the initial one.

the other is the deformed or expected set (or representation at time t2)- which must
be registered. Figure 5.b shows the results of registration process using TPS-RPM
algorithmwith the spheres as 5D-vectors in conformal geometric algebra.Note that
usually, researchers use TPS-RPM with 2D or 3D vectors because they can not go
beyond such dimension; in contrast, using conformal geometric algebra we have an
homogeneous representation which preserves isometries and uses the sphere as the
basic entity. In figure 5, at the left are only the initial and expected sets; at the right
the initial and the result of registration but with the shape of the expected set for
visual comparison. Note that the algorithm adjusted the radius as expected (this
is not possible using only 3D vectors).

5 Object Tracking

Other important task in surgical procedures is the tracking of objects involved
in such procedures. For this purpose, some spherical markers are placed on the
instruments, and such markers are tracked using the Polaris System (Northern
Digital Inc.). To find the transfomation relating the 3D position of the objects
being tracked with the virtual model showed on display, we first calibrate the
real position of the patient with the 3D-model using the TPS-RPM algorithm
(section 4.2). Then we use the so called “motor” (explained in 3), to update the
position of the surgical devices in real time. The procedure to track is explained
as follows: first, we take two 3D point sets {xi} and {x′

i} defined in the Euclidean
3D geometric algebra and compute the rotor R and the translation vector t which
minimize the following equation
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Polaris

optical

tracker

Mannequin

Passive probe

Spherical markers

Fiducial

points

Fig. 6. Scenario for tracking of devices: fiducial points are used to register the 3D
model with what is been observed by the polaris system; spherical markers on device
are used to track it

S =
n∑

i=1

[
x′

i −R(xi − t)R̃
]2

. (11)

The equations to compute the rotor and translation vector are obtained using
the differentiations of equation (11).

Fαβ ≡ σα · f(σβ) =
n∑

i=1

(σα · ui)(σβ · vi) (12)

t =
1
n

n∑
i=1

[
xi − R̃x′

iR
]

(13)

where ui = xi −x and vi = x′
i. By computing the SVD of F we get F = USV T

and using this result we compute the 3×3 rotation matrix R = V UT . Thereafter
the translation is computed using equation (13). This method was developed by
Lasenby et al. in [12]. The exponential representation of the transformation in
our framework reads

M = R +
t
2
R = el(

θu
2 +e tu

2 ) (14)

where θu is the angle and tu the displacement with respect to the screw axis line
l. Applying this transformation to each point x′, we can obtain a tracking path
as follows:

x′ = TRxR̃T̃ = e
1
2 tee

θu
2 n xh e−

θu
2 ne−

1
2 te

= el(
θu
2 +e tu

2 ) xh e−l( θu
2 +e tu

2 ) (15)

Figure 7 shows the applicaton of procedure explained before when tracking a
“polaris in-line passive probe” with three spherical markers (as the one showed
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Head

Tumor

Brain

Passive probe

Fig. 7. Images in 3D virtual world of the process of tracking of the surgical device.
First and third column: the whole 3D-model (skin + brain +device); second and fourth
column: brain hidden to visualize the tumor.

in figure 6:b). The scenario is as follows (see figure 6):a mannequin (in substi-
tution of a real patient); in such mannequin we put nine fiducial markers used
to align the “presurgical 3D-model” with the real position when tracking is in-
tended to be. A brain, obtained from a digital atlas, which is segmented and
merged with the 3D-model of the mannequin in order to have a more realistic
representation in the experiment, together with a tumor (also segmented to visu-
alize in differents views). Figure 7 shows the 3D-model of the mannequin, brain,
tumor and the device being tracked; such figure shows different momments while
tracking the device. In such figure, the first and third column show the model
complete (head+brain+device), the second and fourth one only the the head
and the tumor for better visualization of the last one.

6 Conclusions

We have shown the application of GA in three different tasks: volume repre-
sentation, non-rigid registration of sets of spheres and real time tracking. Also
we show at the begining a different approach for medical image segmentation
which combines texture and boundary information and embed it into a region-
growing scheme, having the advantage of integrating all the information in a
simple process. The algorithm proved to be very useful despite the limitations
of the used CT images (limitations compared with the facilities given by MRI
images, commonly used in similar works). With the GA framework, we show
how to obtain a representation of volumetric data using spheres; our approach is
based on the ideas exposed in marching cubes algorithm but it is not intended
for rendering purposes or displaying in real time, but for reduce the number of
primitives modeling the volumetric data and use less primitives in the process of
registration. Also, we show how to represent these primitives as spheres in the
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conformal geometric algebra, which are 5-dimensional vectors that can be used
with the principles of TPS-RPM. Experimental results seem to be promising
and highlight the potential of GA used in different tasks.
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Abstract. In this paper we present a new model, designated as Association 
Graph, to improve document representation, facilitating the ontological 
dimension. We explain how to generate and use this kind of graph. Also, we 
analyze different document similarity measures based on this representation. A 
classical vector space model was used to evaluate this model and measures, 
investigating their strengths and weaknesses. The proposed model was found to 
give promising results. 

1   Introduction 

At the moment, due to vertiginous scientific and technological advances of the last 
years, institutions have great capacities of creating, storing and distributing their data. 
This situation, among other things, has increased the necessity of new tools that aid in 
transforming this vast quantity of data in useful information or new knowledge that 
can be used in decision making. Data mining systems are examples of this type of 
tools. 

These systems allow us to analyze and to discover interesting patterns in large 
databases. However, due to the information characteristics contained in traditional 
databases and data warehouses, data mining systems are not appropriate for the 
analysis of other types of information less structured like, for example, the one 
contained in text collections. For this reason, Text Mining arises as an alternative to 
understand the processing of natural language. Text Mining combines artificial 
intelligence, statistical, database, and graphic visualization techniques, allowing the 
comprehension of aspects dealing with the identification, organization and 
understanding of the knowledge appearing in any text. 

Examples of systems that use those techniques, and have gotten some attention in 
recent years, are pointed out by Yao et al. as RSS (Research Support Systems) and 
WRSS (Web-based RSS) [1]. They improve current search tools, helping scientists to 
access, explore, evaluate and use information on digital libraries or on the Web, 
improving research productivity and quality [2]. 
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Text Mining, together with others techniques, such as profiling, collaborative 
filtering, intelligent agent, etc., should be considered to develop those systems. Text 
Mining, as many other tasks of text processing, is usually carried out on simple 
representations of text contents. However, profiling, collaborative filtering and WRSS 
require more complex semantic relations, usually expressed as semantic graphs [3]. 

In this paper we propose an approach using Association Graphs, a measure as an 
alternative representation of documents and a way of measuring their similarities, 
facilitating their ontological dimensions required by many applications as, for 
instance, WRSS. In Section 2 we will present general considerations for vector space 
models in Text Mining. In Section 3 we will analyze the limitations of term 
correlation for knowledge indexing and representation. In Section 4 we will explain 
our proposal, as an alternative to improve document representation, facilitating the 
ontological dimension.  

2   Text Mining 

Text Mining could be defined as a discovery process of interesting patterns and new 
knowledge in a text collection; therefore, Text Mining is a specific type of Data 
Mining applied to documents to discover information not present in any specific one. 
Hence, its objective is to discover things such as regularities, tendencies, deviations 
and associations in huge databases in textual form [4]. 

By applying algorithms of Text Mining to documents stored in different media, for 
example in WRSS, one may discover patterns and extract knowledge useful to 
decision-makers, in the example researchers, who are interested in exploratory 
searching and browsing [1]. 

The process of Text Mining is carried out in two main stages: a pre-processing 
stage and a discovery stage. In the first stage, texts are transformed into a kind of 
structured or semi-structured representation, facilitating their later analysis. In the 
second stage these representations are analyzed in order to discover interesting 
patterns or new knowledge [4]. 

In the pre-processing stage a set of operations is done to simplify and standardize 
the texts being analyzed. Some of the operations considered are the following: 

• Recognizing useful words. 
• Ignoring the null words, also known as Stopwords. 
• Identifying phrases or terms with multi-words. 
• Obtaining the canonical forms of the words, also known as stemming. 

As a result of this stage a sequence of distinguished terms is obtained. These terms 
could be organized in different forms but, in general, they are considered as groups or 
bags of terms, usually structured using vector models [5]. In these representations, the 
sequences of the terms, their correlations or syntactical relations are not analyzed; 
therefore, their mutual independence is supposed. The values of those vectors could 
be assumed as weights, considering the following interpretations [6]: 
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• Boolean - Each term is associated with a Boolean value representing if it is present 
or not in a document. 

• TF (Term Frequecy) - Each term is associated with a frequency of appearance in a 
document, absolute or normalized. 

• TF-IDF (Term Frequency - Inverse Document Frequency) - The term is associated 
with its frequency, adjusted by the inverse of the number of documents containing 
each term. 

These vectors of terms are used in a second stage, among other tasks, to analyze 
the similarities between documents, or groups of them, using different measures as 
the Cosine, applied to the angle between the vectors, define as [6]: 
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where di, dj are the vectors of documents i, j, ||di||, ||dj|| the norms of the vectors, and 
wir, wjr are the term weights in the vectors di, dj, respectively. 

3   Ontological Requirements 

Although, generally, the terms appearing in a document are interrelated and the vector 
space model, proposed by Salton [7], has been the dominant way to represent and 
measure document similarities, some authors consider this treatment as an elementary 
way of the ontological dimension of the information. 

While that treatment could be adequate for some applications, in others, like 
WRSS and collaborative filtering systems, more complex semantic relations are 
required. Collaborative filtering system, a kind of information filtering, evaluates 
resources in order to recommend objects preferred by similar users, supposing they 
are also useful to a particular user [8]. 

In WRSS, documents are the resources to be evaluated. In this case, the scientific 
knowledge of documents, or groups of them, and scientific profiles of users should be 
considered. That knowledge and profiles are usually expressed by semantic graphs 
constructed generally by users. For that reason, one should evaluate methods for 
automatic or semi-automatic graph generation, quite difficult to make from a simple 
vector model. 

An alternative approach of the ontological dimension is observed in [9]. In this 
work the authors use Conceptual Maps to identify potential terms and relationships. 
So, with this proposal, the user defines his personal Conceptual Maps interactively. 
Although the author’s intention might be the use of Conceptual Maps in an 
information retrieval process, such approach wasn’t discussed in that work. 

Other ways to include an ontological dimension are the corpus-based methods in 
conjunction with lexical taxonomies to calculate semantic similarity between 
words/concepts. Examples of these methods are those developed over the broad-
coverage taxonomy known as Wordnet [10]. 
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Well alternative approaches to the vector space model are the language models. 
These consider the probabilities of occurrence of a phrase S in a language M, 
indicated by P(S/M). However, the phrases are usually reduced to one term, assuming 
again unigrams and independence among them. An example of this model is the 
Kullback-Leibler Divergence (a variation of the cross-entropy), defined as: 
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This expression could be combined in both directions to obtain a similarity 
measure, as was pointed out by Feldman and Dagan [11]. 

An interesting implementation is the proposal of Kou and Gardarin [12]. This 
proposal is a kind of language model, considering the similarities between two 
documents as: 
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where wir and wjs, using Kou-Gardarin terminology, are the term weights in document 
vectors di, dj, respectively, and (tr • ts) is the a priori correlation between terms tr and 
ts. Actually, the authors included in the first part of the expression the self-correlation 
in tr, considering that (tr • tr) = 1. The authors propose the estimation of the 
correlation through a training process. As can be noticed, those correlations express 
the probabilities P(tr,ts/M) of phrases containing the terms tr, ts in a language M. 
Besides, that expression could be reduced to the Cosine measure (normalized by the 
length of the vectors) if the term independence is considered and, for that reason, the 
correlation (tr • ts) is zero. 

Although the Kou-Gardarin proposal improves the independence limitation of the 
vector space model, it considers that two terms are correlated as a tendency, and 
independent of the documents analyzed in the similarity measure. This assumption 
underestimates the ontological view of each document. 

The approaches mention above are variants of the Generalized Vector Space Model 
proposed by S.K.M Wong et al. [13]. In their work, they expressed that there was no 
satisfactory way of computing term correlations based on automatic indexing scheme. 

We believe that up to the present time that limitation has not been solved yet. 
Although several authors have proposed different methods of recognizing term 
correlations in the retrieval process, those methods try to model the ontological 
dimension by a global distribution of terms, but not with a local evaluation of 
documents. 

In general, it could be assumed that with a better ontological representation of the 
information retrieved and discriminated, the better the documents will be mined. 
Besides, it is expected that a better representation improve the capacity of knowledge 
comprehension regarding the vector model. These considerations will be developed in 
more details later on. 
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4   Association Graphs 

It is comprehensible that a same term in two documents could designate different 
concepts. Besides, two terms could have different relations, according to the subject 
of each document, and those relations could exist only in the context of some 
documents, forming a specific group, and independent of the relations in a global 
dimension or language. 

In order to model the relation between two terms in a document, we will consider 
the shortest physical distance between those terms. So, two documents shall be closer 
if the number of common terms is greater and the shortest physical distances among 
those terms are similar. With these assumption we hypothesize that, in order to 
recognize the semantic relation between two terms, it is enough that they appear 
together at least once in a small context: a sentence, a paragraph, and so on. 

The use of physical distance among terms has been considered in other works. For 
example, Ahonen et al. has appointed that many documents, especially books and 
papers, are structured in sections or micro-documents and, logically, terms in a same 
micro-document are strongly related, but in different micro-documents the physical 
relation uses to be weak [14]. Although they realized the relevance of the physical 
relation among terms, the vector model was considered in their work. 

Also, many search engines to measure the document’s importance or quality 
consider the proximity among the words of complex equations or queries. 

In order to measure the distance between two terms tr and ts in a document i, 
designated by Di

rs, the physical distance in the document between those terms could 
be defined in different ways. One way could be considering the number of words 
between them. Although this could be a feasible solution, it ignores the semantic 
strength in sentences and paragraphs. 

Considering the distance by sentence, Di
rs will be n+1, where n is the number of 

intermediate sentences between those containing the terms..  
If we consider the distance by paragraph, without ignoring the natural co-

occurrence when appearing in the same sentence, and considering: (pr, nr), (ps, ns), the 
paragraph and sentence numbers of terms tr and ts respectively, the physical distance 
between these terms is defined as follows: 
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Observe that the minimum value of Di
rs, as could be expected, isn’t zero, but one in 

both cases.. This consideration is only a convenient assumption to expressions defined 
farther on. 

Besides, it will be considered in both distance that every term is related to itself, 
having distance one, in order to include the case two documents have only one term in 
common.  

According to this, a document could be modeled by a graph, where the nodes are 
the distinguished terms and the arcs are their relations, weighted by their distances. 
Also, we are considering this is a full connected graph, having any term some relation 
(stronger or not according to the distance) with the others. 
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Although the physical relation, in conjunction with the common terms, could be 
used to evaluate the neighborhood among documents, the weights of the distinguished 
terms should not be ignored in a similarity measure. To include these values, the 
document graph could be extended with weighted nodes. 

Therefore, a first approximation for a document representation could be seen as a 
weighted graph by node, considering the weights of the distinguished terms, and by 
arc, considering the shortest physical distance between the adjacent terms. 

As the additional components of these graphs are the arcs, with respect to the 
vector model, and trying to combine the weights of the terms and the distance 
between them to express the strength of their association, the vector Ai

rs, named 
Association Vector, is proposed as the arc’s weight of the related terms tr, ts in a 
document i, defined as: 

),(
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where wi
r and wi

s are the weights of the terms tr and ts, respectively, in a document i.  
As the arc’s weight Ai

rs is a two-dimensional vector, the strength of the terms’s 
association can be evaluated as the Euclidean norm ||Ai

rs||. In this case, the strength is 
greater if the terms’s weights are greater and the distance between the terms is shorter. 
Besides, the upper value of Ai

rs is (wi
r, w

i
s), when the distance is one, and the lower 

tends to (0, 0), when the distance is very long. 
With these transformations, an Association Graph can be defined as a weighted 

graph by arc, considering as weight of each arc (tr, ts) the Association Vector Ai
rs. 

5   Similarity Measures 

Although for a vector model a Cosine measure represents a standard way to evaluate 
the similarity between two documents, in a graph model (as the Association Graph) 
other measures should be considered. 

As our graph doesn’t posses a structural or spatial representation, it is enough to 
treat it as a set of arcs. Several authors have proposed different matching coefficients 
for sets, which in general coincide with commonly used measures of association in 
information retrieval.. Examples of these are: Dice’s, Jaccard’s and Overlap 
coefficients, among others [15]. These may all be considered to be normalized 
versions of the simple matching coefficient of two sets X and Y, defined as: | X ∩ Y|. 

Another version of the simple matching coefficient is the proposal of Pazienza and 
Vindigni. They define a common coverage of two non-empty sets as the average of 
the coverage of their intersection with respect to each of them [16]. 

As we are considering sets of arcs, a first idea for a matching coefficient is trying 
to define a simple matching-like one. If that were adequate for a common graph, in an 
Association Graph, where each graph has different association strengths, the 
coefficient could be better constructed as the Pazienza-Vindigni proposal. 

According to the previous idea, and considering the Association Graphs of 
documents i, j, the Simple Coverage as a similarity measure could be used, expressed as: 
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where Ti, Tj represent the sets of terms in the Association Graphs of documents i, j, 
respectively, and Tij is the set of the common terms (Ti ∩ Tj). 

Notice that the first part of the expression evaluates the proportion of the total 
association strength of the common arcs with respect to the total strength in whole 
document i, and the second part the same but in document j. The fractions ½ in the 
formula guarantee that this measure has values in the interval [0, 1]. 

Although we considered that the Equation 2 is a good first approach, we realized 
that it doesn’t measure the similarities between the vectors associated with the 
common arcs. In order to include these similarities, we propose the Weighted 
Coverage measure, defined as: 
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If Ti or Tj are empty sets, the expression is defined as zero. The weight Sij
rs 

represents a similarity measure between Ai
rs and Aj

rs. This weight is defined in this 
paper as: 
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where the first part of the expression represents the cosine between those vectors, 
defined in a similar way as the Equation 1. It can be noticed that the weights defined 
in this manner include not only the angles between the vectors, but also the 
differences of their strengths. 

This similarity measure could be extended to evaluate the similarities between 
documents, groups of documents, and user profiles, changing the values ½ of each 
part of the formula by different fractions. These extensions could be convenient to 
many applications, as collaborative filtering and WRSS. 

6   Experiment and Analysis 

In order to evaluate the proposed measure, the data TREC-5 in Spanish 
(http://trec.nist.gov) was used. From this data, we used 676 news published by AFP 
during 1994 and classified in 22 topics. Table 1 shows the topics and the quantity of 
documents for each topic in this data. 

The pre-processing stage was done with the library of the system JERARTOP [6], 
which used the morphological analyzer MACO+, developed by the Natural Language 
Processing Group of the Polytechnic University of Catalunya, based on extended  
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Table 1. Topics of TREC-5 

Topic Description # Doc. 
SP51 Ocean’s Fish Suplí 75 
SP52 Basque Rebels War 13 
SP53 Women’s status in Latin America 46 
SP54 World’s Marine Resources 35 
SP55 Fate of Carlos Andrés Pérez 108 
SP58 Financing of Samper Election 44 
SP59 Hoof and Mouth Disease 7 
SP60 Methods Narcotraffickers Use to Hide their Drugs 46 
SP62 Colombia's Fresh Flower Trade 15 
SP63 Drug Trafficking Involvement 5 
SP64 Green Iguana Extinction 7 
SP65 Raul Castro's Activities 29 
SP66 MERCOSUR 68 
SP67 Peruvian Fishmeal Industry 8 
SP68 AIDS in Argentina 12 
SP69 Status of Russian Satellites and Membership in 

NATO 
62 

SP70 NATO Peace Force in Bosnia 6 
SP71 Status of United States' Certification of Columbia 

and its War on Drugs 
11 

SP72 Damage to Mexico's Environment 14 
SP73 Illegal Trade of Exotic Animals 12 
SP74 Privatization of Major Sectors of Argentina 

Economy 
34 

SP75 Heroin in Latin America 19 
Total 22 Topics 676 

stochastic models ECGI [17]. A detailed description of that analyzer can be found in 
http://www.lsi.upc.es/~nlp. 

A classical vector model was used to evaluate the proposed approach, applying the 
Cosine measure. The term weights were calculated as TF (Term Frequency), 
normalized by the maximum frequency. K-Nearest Neighbour classifier, with 
weighted voting by similarity value, was conducted by taking the value of K as 5, 10, 
15 and 20. A k-fold cross-validation was applied with k=10. The results obtained are 
shown in Table 2, where simC and simG are the measures obtained by Cosine and 
Weighted Coverage models respectively. 

Precision, Recall and F1 are three commonly used evaluation measures of 
performance. For a single category or topic, these measures can be defined as [18]: 

Precision = “Correctly assigned” / “Assigned to the category” 
Recall = “Correctly assigned” / “Belonging to the category” 
F1 = 2 * Recall*Precision / (Recall+Precision) 
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Table 2. Macro-averaged Performance 

Precision Recall F1 
K simC simG simC simG simC simG 
5 0.8175 0.8222 0.7289 0.7356 0.7545 0.7611 

10 0.8072 0.8568 0.6663 0.7088 0.6973 0.7414 
15 0.8566 0.8482 0.6452 0.7043 0.7079 0.7397 
20 0.8425 0.8461 0.6233 0.6813 0.6836 0.7181 

 
Precision, Recall and F1 are three commonly used evaluation measures of 

performance. For a single category or topic, these measures can be defined as [18]: 

Precision = “Correctly assigned” / “Assigned to the category” 
Recall = “Correctly assigned” / “Belonging to the category” 
F1 = 2 * Recall*Precision / (Recall+Precision) 

 

For evaluating the performance average across categories, there are two 
conventional methods: Macro-averaging performance and Micro-averaging 
performance. Macro-averaged performance scores are computed by a simple average 
of the performance measures for each category. Micro-averaged performance scores 
are computed by first accumulating the corresponding variables in the per-category 
expressions, and then using those global quantities to compute the scores. Micro-
averaged performance score gives equal weights to every document. Likewise, 
macro-averaged performance score gives equal weights to every category or topic, 
regardless of its frequency. 

As can be noticed in Table 2, Association Graph model outperforms Cosine 
similarity model for different K values, except for Macro-precision with K=15. 
Besides, as an average, 2.9 % of F1 measure in Weighted Coverage model is bigger 
than in Cosine model. This proves that the use of physical term association really 
improves the effectiveness of categorization. 

Although these results are only preliminaries, they show that the Association 
Graph and the proposed measure represent a good model and seem to be better than 
the Vector-Cosine. 

7   Conclusions 

Although some approaches have been considered, especially in semi-automatic 
processing, the vector space model has been the dominant way for document 
representations, especially as frequency vectors of terms. These representations are 
relatively easy to build from texts, but cannot express several details of their 
meanings, having a poor capacity of description. In order to achieve a better 
representation of the knowledge contained in documents, we have proposed the 
Association Graphs. 

Using this kind of graph, a similarity measure, named Weighted Coverage,  
is proposed, making it possible to compare and discriminate documents, applying  
it in different techniques as, for example, clustering and classification algorithms. 
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Some variations to the proposed measure could be analyzed and other distance 
measures could be assumed as, for example, limiting the distance to a convenient 
value. 

Nevertheless, the experiment has shown interesting results. Although other 
experiments must be done, the proposed model was found to give promising results. 
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Abstract. A scene-based method for nonuniformity correction of in-
frared image sequences is developed and tested. The method uses the in-
formation embedded in the scene and performs the correction in a frame
by frame Kalman Filter approach. The key assumption of the method is
that the uncertainty on the input infrared irradiance integrated by each
detector is solved using the spatial infrared information collected from
the scene. The performance of the method is tested using infrared image
sequences captured by two infrared cameras.

Keywords: Infrared Sensor-Imaging, Infrared Focal Plane Arrays, Sig-
nal Processing, Kalman Filtering, Image Coding, Processing and Anal-
ysis.

1 Introduction

Infrared (IR) imaging systems are widely used in a variety of civilian and military
applications such as aerial surveillance, satellite imaging, early fire detection,
biology, robotics, and astronomy [1]. An IR Focal-Plane Array (FPA), the heart
of an IR imaging system, is an array consisting in a mosaic of photo-detector
elements that are placed in the focal plane of the optical imaging system [3].

It is well known that the performance of the whole IR imaging system is
strongly affected by the fixed-pattern noise (FPN) [1]. The FPN, also called
nonuniformity, is the unequal photoresponse of the detectors in the FPA when
an uniform scene is imaged. What makes the FPN even a more challenging
problem is that the spatial nonuniformity slowly drifts in time, and depending
on the technology used, the drift can take from minutes to hours [1]. The task
of any nonuniformity correction (NUC) technique is to compensate for the spa-
tial nonuniformity and updates the compensation as needed to account for the
temporal drift in the detector’s response [2], [5], [6].
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In this paper, a new algorithm for NUC in IR-FPA, based on Kalman filter
(KF) theory, is developed and tested. The algorithm operates, per pixel and in
a frame by frame basis, assuming that the nonuniformity parameters, the gain
and bias, follow a Gauss-Markov model (GMM). As the method operates, the
autocorrelation parameters of the gain and bias are fixed to be close enough to
one, following GMM’s convergence requirements. The per pixel input irradiance
parameter is computed on-line using a spatial lowpass filter [4]. The performance
of the algorithm is tested using sequences of corrupted IR data captured by
two infrared cameras and is compared against the results obtained by using
black body radiator corrected data. Further, the algorithm is also tested over a
image sequence with artificial nonuniformity. Two performance parameters are
computed to check the level of reduction of the nonuniformity.

2 Algorithm

2.1 Mathematical Modelling

The model for each pixel of the IR-FPA is a linear relationship between the
input irradiance and the detector response [1,7]. Further, for a single detector in
the FPA, the linear input-output relation of the ij-th detector in the k-th frame
is approximated by [1]:

Y ij
k = Aij

k T ij
k + Bij

k + V ij
k (1)

where Aij
k and Bij

k are the ij-th detector’s gain and bias, respectively, at the k-th
frame. T ij

k represents the average number of photons that are detected by the
ij-th detector during the integration time associated with the k-th frame. V ij

k

is the additive readout (temporal) noise associated to the ij-th detector for the
k-th frame. For simplicity of notation, the pixel superscripts ij will be omitted
with the understanding that all operations are performed on a pixel-by-pixel
basis.

In this paper, nonuniformity’s slow drift between frames is modeled by a
Gauss-Markov process for the gain and the bias of each pixel on the FPA. This
is:

Xk = Φk−1Xk−1 + Gk−1Wk−1 (2)

where Xk is the state vector comprising the gain Ak and the bias Bk at the
k-th frame and Φk is the 2× 2 transition diagonal matrix between the states at
k and k − 1, with its diagonal elements being the parameters αk and βk that
represent, respectively, the level of drift in the gain and bias between consecutive
frames. Gk is a 2× 2 noise identity matrix that randomly relates the driving (or
process) noise vector Wk to the state vector Xk. The components of Wk are
W

(1)
k and W

(2)
k , the random driving noise for the gain and the bias, respectively,

at the k-th frame. A key practical requirement to be set on the model is that,
between frames, the drift in the gain and bias is very low; therefore, the drift
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parameters αk and βk have to be set to values closer but not equal to one. All
others assumptions are shown and justified in detail elsewhere [7].

Also, in this paper the observation model for a given frame can be cast as:

Yk = HkXk + Vk (3)

where Hk is the observation vector in which the first element contains the input
Tk per frame and Vk is the additive temporal noise. The main assumption in
(3) is that the input Tk in any detector is a known parameter. Further, Tk is
estimated, for each pixel, using a lowpass spatial filter that can emulate the IR
radiation and it lessens the effect of the gain and bias difference between neigh-
boring pixels. The mask size (number of neighboring pixels) must be determined
according to the type of the scene imaged and to the amount of nonuniformity.

The Tk value is estimated averaging the pixel neighborhood. We can assume
that a pixel and their near neighbor is illuminating by the same infrared radiance.
Averaging the neighboring of a pixel i,j and assuming Ai,j = 1, Bi,j = 0, Vi,j = 0
and Ti,j = T inside the neighborhood we have:

Ȳ ij
k = Āij

k T̄ ij
k + B̄ij

k + V̄ ij
k = T ij

k (4)

2.2 Kalman Filter Equations

The main idea is to develop an algorithm, based on the KF theory [9], that
estimates frame by frame the gain and bias of each pixel using each incoming
frame from the read-out data.

The recursive equations of the KF to estimate the parameters (the Xk vector)
are the following [8]:

X̂k = (Φk−1 −KkHk) X̂k−1 + KkYk (5)

where X̂k+1 and X̂k are the estimated gain and bias at the k-th and k − 1-th
frame, respectively. Kk is the Kalman gain vector defined by:

Kk = Φk−1Pk−1H′
kF

−1
k (6)

where Rk−1 = V ar(Vk−1) and Fk = HkPk−1H′
k + Rk−1

The recursive equation to compute the error covariance matrix Pk is:

Pk = Φk−1
(
Pk−1 −Pk−1H′

kF
−1
k HkPk−1

)
Φ′

k−1 + Gk−1Qk−1G′
k−1 (7)

with Qk−1 = V ar(Wk−1). The first values that must to feed the recursive
equations (5,6,7) are: X̂0 = E(X) and P0 = V ar(X), which must be known.

3 Performance Analysis

The main goal of this section is to test the ability of the proposed NUC method
to mitigate nonuniformity as well as to follow the drift in the nonuniformity
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Fig. 1. Six frames of an IR sequence with real NonUniformity. a) The 10− th frame. b)
The 100− th frame. c) The 1000− th frame. d) The 2000− th frame. e) The 3000− th

frame. f) The 4000 − th frame.
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Fig. 2. The six frames of the IR sequence shown in figure 1 corrected using the proposed
algorithm. a) The 10 − th frame. b) The 100 − th frame. c) The 1000 − th frame. d)
The 2000 − th frame. e) The 3000 − th frame. f) The 4000 − th frame.
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Fig. 3. a) Diagonal elements of the error covariance matrix Pk versus frame time for
the algorithm applied to figure 1 sequence. b) Kalman gain matrix Kk versus frame
time. c) RMSE between the real noisy data and the corrected data with the data
corrected with a Black Body technique (true data). d) Q Factor between the real noisy
data and the corrected data with the data corrected with a Black Body technique (true
data).

parameters. The algorithm is tested with real infrared image sequences capture
by two cameras. The first sequence has been collected using a 128 × 128 InSb
FPA cooled camera (Amber Model AE-4128) operating in the 3 − 5µm range.
The collected data is quantized with 16 bits @ 30fps. The figure 1 shows raw
frames of the sequence and figure 2 shows the corresponding frames corrected
with the proposed algorithm. As expected, it can be seen using the naked eye
that the method reach a good nonuniformity correction in the 1000− th frame
and after.

The evolution of the error covariance matrix Pk along the frame time is
showed in the figure 3 (a), while the evolution of the Kalman gain matrix along
the frame time is shown in the figure 3 (b). As expected, it can be seen a reduc-
tion in the diagonal elements of the covariance matrix as long as the method is
processing the incoming infrared information, converging therefore to the esti-
mation of the real nonuniformity parameters.

As a numerical measure of the performance of the proposed algorithm, the
parameters RMSE [12] and the Q factor [11] are computed between a true im-
age(a one corrected in the laboratory with black bodies radiators) and the real
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Fig. 4. Six frames of a video sequence with simulated nonuniformity. a) The 10 − th

frame. b) The 100− th frame. c) The 1000− th frame. d) The 2000− th frame. e) The
3000 − th frame. f) The 4000 − th frame .
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Fig. 5. The frames of figure 4 corrected using the proposed algorithm. a) The 10 − th

frame. b) The 100− th frame. c) The 1000− th frame. d) The 2000− th frame. e) The
3000 − th frame. f) The 4000 − th frame.
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Fig. 6. a) The diagonal elements of the error covariance matrix Pk versus frame time
for the algorithm applied to figure 4 sequence. b) The Kalman gain matrix Kk versus
frame time. c) The RMSE between the the noisy image and the corrected data with
the true image. d) Q Factor between the noisy image and the corrected data with the
true image.

image (image with FPN) or the image corrected with our method. The RMSE
is defined as follow:

RMSE =
1
n

√√√√ n∑
i=1

(Y t
i − Y c

i )2 (8)

where n is the total number of pixels, and Y t
i is the i-th value on the true image.

Y c
i is the i-th value of the corrected image or the real image.

The recently published Q Factor is a measure of three desirable features
between two images (the true and corrected): correlation, luminance distortion
and contrast modification. The dynamic range of the Q Factor is [-1, 1]. The best
value is 1, and it is achieved only if the true image is identical to the compensated
image.

Q =
σY tY c

σY tσY c

· 2Ȳ tȲ c

(Ȳ t)2 + (Ȳ c)2
· 2σY tσY c

σ2
Y t + σ2

Y c

(9)

The RMSE and the Q factor between the noisy real sequence and the cor-
rected sequence with the proposed algorithm with a corrected sequence using
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Fig. 7. Four frames with real NonUniformity. a) The 10 − th frame. b) The 100 − th

frame. c) The 1000 − th frame. d) The 1500 − th frame.
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Fig. 8. The four previous frames corrected with the new technique. a) The 10 − th

frame. b) The 100 − th frame. c) The 1000 − th frame. d) The 1500 − th frame .
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Fig. 9. a) The diagonal elements of the error covariance matrix Pk versus the frame
time for the algorithm applied to figure 7 sequence. b) The Kalman gain matrix versus
the frame time Kk.

a Black Body technique is represented in the figure 3 (c) and the figure 3 (d)
respectively. It can be seen a notably numerical reduction in the RMSE after the
500th frame. It can be also seen a notably better performance on the Q factor
after the 500th frame.

The developed algorithm is also applied to an infrared video sequence with
simulated nonuniformity. The video sequence was created adding artificial noise
to 4100 true frames (frames without nonuniformity). As an example, figure 4
shows images with artificial nonuniformity. The corresponding corrected frames
are shown in figure 5. The evolution of Pk, Kk the RMSE and Q factor is
represented in figure 6. The goal of this test is to check the performance of the
method with images with a level of nonuniformity more severe that real cases. It
can be seen that the method presents a similar performance to the cases tested
with real nonuniformity.

Finally, this new technique is applied to infrared data recorded using a 320×
240 HgCdTe FPA cooled camera (CEDIP Jade Model) operating in the 8−12µm
range. The infrared sequence is quantized at 14 bits @ 50fs. As examples, the
uncorrected and corrected frames are shown in figures 7, 8. The evolution of Pk

and Kk are shown in the figure 9. Using the naked eye, it can be seen again a good
correction of nonuniformity. However, note that a ghosting artifact is presented
in the 1500th frame. Future works will be oriented to develop methodologies to
reduce ghosting artifacts, which are generated when a target has been imaged
for some time and then it suddenly is out of the field of view of the camera.
Our method could not follow such abrupt change in the operation points of the
detectors involved in imaging such target.

4 Conclusions

We have developed and tested a new scene-based NUC method based in stan-
dard Kalman filter theory. The algorithm has the advantage to use temporal
and spatial data embedded in the develop of the Kalman Filter. The param-
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eters of the algorithm must to be carefully selected according to the specific
application and the kind of infrared camera . The foregoing influences the level
of nonuniformity and the level of drift in the nonuniformity parameters. It was
experimentally demonstrated as well as by using the performance parameters
RMSE and Q that the proposed method is able to reach good performance after
processing 500 frames.
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Abstract. Many of the watermarking schemes that claim resilience to
geometrical distortions embed information into invariant or semi-
invariant domains. However, the discretisation process required in such
domains might lead to low correlation responses during watermarking
detection. In this document, a new strategy is proposed to provide re-
silience to strong Rotation, Scaling and Translation (RST) distortions.
The proposed detection process is based on a Genetic Algorithm (GA)
that maximises the correlation coefficient between the originally embed-
ded watermark and the input image. Comparisons between a previous
scheme, based on Log-Polar Mapping (LPM), and the present approach
are reported. Results show that even a simple insertion process provides
more robustness, as well as a lower image degradation.

1 Introduction

Multimedia applications are arising, and technological advances afford faster and
cheaper forms of copying and distributing multimedia data, with high quality.
Hence, digital watermarking has been proposed to provide suitable alternatives
to detect copyright infringements, tampering, and so forth. However, any digital
signal might suffer a wide set of accidental and incidental distortions that can
severely damage and even destroy the embedded watermarks.

In most watermarking schemes, geometrical distortions, applied on content
images, usually lead to wrong detection responses due to synchronisation loss
between watermarks and detectors.

When the original (non-watermarked) image is available for the detector,
synchronisation might be easily restored by using conventional image registra-
tion techniques [1], before testing the presence of a watermark. Yet, detectors
will seldom be provided the original image in real applications. Thus, different
strategies have been proposed to deal with the effects of geometrical distortions
in watermarking schemes that do not require the original image during detection.

Some approaches embed either a template (along with the watermark) or
a periodic watermark to generate a defined pattern that is used to effectively
invert affine transformations in content images before detection [2,3,4,5]. Both

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 762–769, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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strategies usually provide robustness against geometrical attacks. However, de-
tectors are unable to restore synchronisation if the templates are removed by
using specialised attacks, such as collusion and template removal attacks [6,7].

Another proposed strategy is to embed the watermarks into invariant or
semi-invariant domains provided by the Fourier-Mellin transform, or Log-Polar
Mapping (LPM) [8,9]. Results show those scheme are robust against RST with
and without cropping. Unfortunately, stronger attacks might requiere weighter
watermarks, which usually cause visible distortions into the watermarked im-
ages. In [10] the watermark is inserted in previously normalised versions of the
images, and restored to the original form before distribution. The scheme is ro-
bust against some geometrical distortions, but the detection is prone to errors
when the normalisation parameters change due to cropping. The schemes based
on invariant or semi-invariant domains are usually vulnerable to severe geometri-
cal distortions, because of the discretisation and interpolation processes required
in the insertion/extraction processes.

A newer strategy is to embed the watermarks into marking regions near to
invariant features of the images [11,12]. However, watermarking retrieval highly
depends on the accuracy of the used algorithms for detecting points resilient to
geometrical changes.

In this paper we propose a strategy to provide resilience to RST, which is
based on Maximum Correlation Seach (MCS). The detection scheme might be
thought of as an image registration problem [1], where the correlation between
the original watermark and the input image is maximised, instead of minimis-
ing the difference between two images. This strategy avoids the security prob-
lems found in schemes based on template insertion and auto-synchronisation.
Moreover, results show that even a simple insertion scheme could significatively
improve the discretisation problems found in schemes based on LPM.

The paper is organised as follows. Sections 2 and 3 describe the proposed
insertion and detection process, respectively. The specifications of the Genetic
Algorithm (GA), used during the detection process, is presented in Sect. 3.1.
Section 3.2 describes the proposed whitening filter, and some experiments and
comparisons of the present approach with a previous scheme are shown in Sect.
4. Finally, some conclusions and future work are discussed in Sect. 5.

2 Watermark Embedding Process

Let f(x, y) be the pixel intensity of the original image f at (x, y) location, where
0 ≤ y ≤ M and 0 ≤ x ≤ N ; M and N denote the total number of rows
and columns of the image, respectively. The discrete Fourier magnitude, |F |, is
assessed and a pseudo-random binary watermark, Wm(x, y) ∈ {−1, 1}, the same
size of the content image, is generated by preserving the symmetry of the Fourier
magnitude. Each coefficient of |F | is modified by,

|F ′(x, y)| = |F (x, y)| e1+αWm(x,y) , (1)
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where α is a user-defined strength parameter (usually set to 0.1), that controls
the tradeoff between robustness and image fidelity.

By using (1), we avoid modifying the phase component of the image in order
to preserve a better visual quality. Finally, the inverse discrete Fourier transform
is assessed from F ′ to obtain the watermarked image fw.

3 Watermark Detection Process

Translation attacks are implicitly solved by the well known invariance of the
Fourier magnitude [13]. In order to find the rotation angle and scale, we propose
a novel detection approach based on a GA that aims to maximise the correla-
tion between the originally inserted watermark, Wm, and the Fourier magnitude
logarithm of the input image.

Let f̃ be the input image, and log |F̃ | the logarithm of its Fourier magnitude.
A whitening filter [14] (see Sect. 3.2) is applied to log |F̃ | and Wm. Then a
searching algorithm, based on a GA (see Sect. 3.1), is used to find the scale
factor and rotation angle that maximise the correlation between both filtered
signals. Finally, a watermark is reported as successfully detected when the best-
found correlation value is higher than a predefined threshold τ .

3.1 Genetic Algorithm

Several authors have proposed watermarking schemes where the correlation co-
efficient is used as a detection measure [15,14]. We propose maximising the cor-
relation between the input image, likely distorted, and the originally inserted
watermark, which is computed as,

C (θ, σ) =
WT

m (θ, σ) log |F̃ |
log |F̃ |T log |F̃ |

. (2)

The goal is to achieve the values of scaling, σ, and rotation, θ, that might
have been applied on the watermarked images by using a MCS based on a GA.

A GA is an evolutive algorithm inspired by a biological process, that attempts
to optimise a complex function cost, in such a way that given a random initial
population, the GA allows this population to reach a state of maximum fitness
in many generations. The general optimisation procedure is: 1) Define a cost
function and the chromosome, 2) Create a new population, 3) Evaluate the cost
function, 4) Select mates, 5) Mating, 6) Mutate, 7) Check convergence.

Haupt [16] describes those previous steps to minimise a continuous parame-
ters function cost using a GA. In our case, we optimise the function cost, given
by (2), which depends on the rotation and the scale parameters. A chromosome
Φ = [θ, σ] is created for each member of the population, where θ ∈ [θmin, θmax)
and σ ∈ [σmin, σmax]. Based on the symmetry of the Fourier magnitude we set
θmin = 0 and θmax = π. In addition, it is well known that scaling in time pro-



Maximum Correlation Search Based Watermarking Scheme Resilient to RST 765

duces inverse scaling in the Fourier domain [13], hence we set1 σmin = 1
1.7 and

σmax = 1
0.6 .

An initial population, of length Npop, is created with chromosomes uniformly
distributed over the whole space. In this way, we aim to accelerate the conver-
gence, as we cover the entire space and avoid evaluating the cost of very similar
chromosomes in the first generation [16].

Once the first generation is computed, the best half is selected for the paring
procedure (Ngood = Npop/2) and the other half is discarded. For paring selection,
a weighted probability is computed by using a normalised cost, which is estimated
for each chromosome, subtracting the highest cost, of the discarded chromosomes,
from the cost of all the chromosomes in the mating pool Cn = costn−costNgood+1.
The probability for each mating chromosome is assessed as,

Pn =

∣∣∣∣∣ Cn∑Ngood

p=1 Cp

∣∣∣∣∣ , (3)

note that the higher an individual’s cost is, the higher is the probability of having
offsprings.

Mating generates two offsprings by mixing the chromosomes of the couples
previously selected. Let Φ(m) = {φ(m)

1 , φ
(m)
2 } and Φ(p) = {φ(p)

1 , φ
(p)
2 } denote the

parents selected by the paring procedure. One of the two genes is randomly
selected, and then exchanged, whereas the other one is mixed, by,

Φ(offspring1) = {φ(m)
1 , φ

(new1)
2 } and Φ(offspring2) = {φ(p)

1 , φ
(new2)
2 } ,

where φ(new1) = φ
(m)
2 − β1(φ

(m)
2 − φ

(p)
2 ) and φ(new2) = φ

(p)
2 + β2(φ

(m)
2 − φ

(p)
2 ),

and βi is randomly selected between the interval [0, 1].
Finally, for the mutation procedure, a percentage of individuals are randomly

selected with uniform probability distribution (with the exception of the best
individual, which will not be mutated). Then, the gene j−th (randomly selected)
of each selected individual is modified by φ

(k)
j = (φmax

j − φmin
j )β3 + φmin

j .

3.2 Whitening Filter

The correlation measure is an optimum method to detect a signal in Additive
White Gaussian Noise (AWGN) channels, but it will be suboptimal in the case of
non-AWGN channels. Depovere et al. [14] showed that images might be usually
thought of as non-AWGN channels. The authors improved the detection response
by applying a simple difference filter, known as whitening filter, to the rows of
an image in order to remove most of the correlation existing between adjacent
pixels. Subsequently, Cox et al. [17] proposed a bidimensional whitening filter
(size 11×11), drawn from an elliptical Gaussian distribution, that significatively
improved the detection response achieved by Depovere. We propose using a
Separable Bidirectional Difference-Whitening Filter (SBD-WF) that computes

1 We assume that scaling factors out of this range will likely degrade the image quality.
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the horizontal and vertical differences. Thus, we aim to decorrelate pixels through
both directions, in contrast with the filter proposed by Depovere. In addition,
the SBD-WF filter is separable, which can significatively reduce the required
computational cost, in comparison with bidimensional Cox’s filter.

4 Experimental Results

4.1 Whitening Filter Test

A random watermark was embedded into 1000 diverse nature images, by using
(1), and then, it is detected without applying any prior distortion. We applied
and compare the performance of the following whitening filters: the filter pro-
posed by Cox et al. [17], an horizontal difference filter, a vertical difference filter,
and the proposed SBD-WF . Figure 1(a) shows the correlation values obtained
by using the four different whitening filters. Note that there is no significant dif-
ference among the correlation values obtained from non-watermarked images. In
the watermarked images, the obtained results are similar after applying both the
vertical and horizontal difference filters. Higher correlation values are achieved
by using Cox’s filter and the proposed SDB-WF. However, the computation cost
of the SBD-WF is lower than the filter proposed by Cox, which requieres a 2D
convolution of the image with a 11× 11-size kernel.
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Fig. 1. Whitening filter and distortion experiments. (a) Correlation detected from 1000
watermarked and non-watermarked by using different whitening filters. (b) Histograms
of PSNR values computed from 1000 watermarked images.

4.2 Image Degradation

In order to measure the degradation caused to the watermarked images, 1000
diverse nature test images were watermarked by using the proposed approach
(with α = 0.12) and Lin’s scheme [9]. Figure 1(b) depicts a comparison of the
2 This is the value used in the experiments discussed in the robustness tests.
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Peak Signal-to-Noise Ratio (PSNR) values obtained from the images output
by both insertion schemes. Results show that Lin’s scheme clearly causes more
distortion to the images (lower PSNR values) than the proposed approach.

4.3 Robustness

In this section we compare the detection response of Lin’s scheme3 [9] and the
proposed approach in images attacked with severe geometrical distortions. We
first propose reliable detection thresholds with low false-positive probabilities.
Then comparisons between both detection schemes were made.

In this experiment, both detection schemes were applied on 1000 diverse
non-watermarked test images. Figures 2(a) and 2(b) show the correlation values
detected with the proposed approach and Lin’s scheme, respectively. Thus, in
order to yield a small false-positive probability, we propose a detection threshold
of 9.5 for the proposed scheme and 4.8 for Lin’s scheme.
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Fig. 2. Correlation detected from 1000 non-watermarked images (a) proposed scheme.
(b) Lin’s scheme.

After defining the detection thresholds, the robustness against strong RST
attacks were tested by using the three standard images shown in Figs 3(a)-(c).
Figures 3(d)-(e) show the watermarked versions of Lena. Observe that more
distortion is perceived when using Lin’s scheme. Table 1 shows study cases of
the detection responses obtained from both schemes4, after applying some severe
RST attacks on the watermarked test images. Comparatively, the number of
faults (printed in bold) detected when using the proposed approach is lower
than the faults detected by using Lin’s scheme.

Despite the general performance of the proposed scheme is clearly better than
Lin’s scheme, we think that more robust watermarks and lower impact on human
3 The original normalised correlation was multiplied by the (constant) watermark

magnitude to get higher values.
4 An initial population of 7,581 was used in our detection scheme, and the reported

correlation values required, at most, 15 generations.
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(a) (b) (c)

(d) (e)

Fig. 3. Watermarked and non-watermarked images. (a), (b) and (c) Standard test
images (Peppers, Lena and Ship). (d) Lena image watermarked with the proposed
scheme (e) Lena image watermarked with Lin’s scheme.

Table 1. Study cases

θ = rotation angle (grades). σ = scale factor.
Tx = horizontal translation. Ty = vertical translation.
Tests Lin’s scheme Proposed scheme

# θ σ Tx Ty Peppers Lena Ship Peppers Lena Ship
1 45.5, 1.0, 50.0, 50.0, 3.63 3.58 3.94 9.56 9.08 9.55
2 10.5, 0.7, 100.0, 100.0, 3.57 3.73 3.52 14.49 11.91 10.75
3 25.5, 1.2, 100.0, 0.0, 4.02 3.88 3.83 10.62 13.73 11.52
4 25.5, 1.0, 0.0, 0.0, 4.84 4.34 4.57 12.61 13.42 14.38
5 5.5, 1.0, 0.0, 0.0, 5.00 4.64 4.76 20.83 21.75 25.40
6 0.5, 1.0, 0.0, 0.0, 5.83 5.04 4.87 24.11 25.47 25.40
7 20.0, 0.7, 0.0, 0.0, 8.11 8.03 8.18 11.27 14.74 11.87
8 2.5, 1.5, 0.0, 0.0, 5.63 5.08 5.52 18.67 19.96 13.14

perception is possible by using an embedding process based on Quantisation
Index Modulation (QIM).

5 Conclusions

In this paper, a new strategy, based on MCS, is proposed to provide a watermark-
ing scheme resilient to RST. The proposed approach avoid the security problems
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found in the schemes basd on auto-synchronisation and template insertion. In
addition, comparisons were made to show that even a simple insertion scheme
could significatively improve the performance of watermarking schemes based
on invariant and semi-invariant domains, such as LPM.

Further research is being done to include an optimised embedding scheme,
based on QIM, that will provide stronger watermarks with lower impact in hu-
man perception. Additionally, a strong feature extraction algorithm is being
designed to provide resilience to local geometrical attacks.
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Abstract. In this research we propose to use phoneme spotting to im-
prove the results in the generation of a cryptographic key. Phoneme
spotting selects the phonemes with highest accuracy in the user classifi-
cation task. The key bits are constructed by using the Automatic Speech
Recognition and Support Vector Machines. Firstly, a speech recogniser
detects the phoneme limits in each speech utterance. Afterwards, the
support vector machine performs a user classification and generates a
key. By selecting the highest accuracy phonemes for a a set of 10, 20, 30
and 50 speakers randomly chosen from the YOHO database, it is possible
to generate reliable cryptographic keys.

1 Introduction

The key generation based on biometrics is now acquiring more importance since
it can solve the problems of traditional cryptosystems authentication. For in-
stance, the automatic speech key generation can be applied for secure telephone
calls, file storage, voice e-mail retrieval and digital right management. The ne-
cessity of having a key which can not be forgotten, and that can be kept secure is
one of the main goals of today key generation. Current biometric authentication
uses the intrinsic attributes of the users to provide solution to this security items
[12].

For the purpose of this research, speech is the biometric used. It was chosen
among the others because it has the flexibility that by changing the uttered
sentence, the key automatically changes. Using the Automatic Speech Recogni-
tion (ASR) it is possible to obtain the starting and ending time of each phoneme
given a utterance and a speech model. Afterwards, a feature adaptation is needed
which can convert a set of vectors in a characteristic and final feature. Finally,
a user classification task is performed by the Support Vector Machine (SVM).

Monrose et. al [6] showed a first method in which a partition plane for the
feature vector space was suggested to generate binary biometric keys based on
speech. However, a plane that can produce the same key is difficult to find due
to the fact that infinite planes are possible. A more flexible way to produce a
key - in which the exact control of the assignation of the key values is available
- is always attractive. The main challenge of the general research is to find a
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suitable method to generate a cryptographic-speech-key that should repeatedly
generate the same key every time a user produces the same utterance under
certain conditions.

Therefore, the objective of this proposal is to improve the accuracy results in
a cryptographic key generation task by using the phoneme spotting. In a similar
way ASR uses word spotting to find key words, it is possible to use phoneme
spotting [15]. In our case, it is used to make a selection of the highest phoneme
accuracies. The phoneme spotting has the ability to locate a set of key phonemes
(meaning the phonemes with the highest accuracy) during the training stage.
However, selecting the phonemes with highest performance has the drawback
that larger pass phrases are required. This issue is not a real problem since the
system performs much better, and the pass phrases are not being memorised by
the user (the system can give a random sentence that a user can utter).

The system architecture is depicted in Figure 1 and will be discussed in the
following sections. The part under the dotted line shows the training phase that
is performed offline. The upper part shows the online phase. In the training
stage the speech processing and recognition techniques are used to obtain the
model parameters and the starts and ends of the phonemes in each user utter-
ance. Afterwards, using the model parameters and the phoneme segmentation,
the feature generation is performed. Next, the Support Vector Machine (SVM)
classifier and the phoneme selection produces its own new model according to a
specific kernel and bit specifications. From all those models, the ones that give
the highest results per phoneme are selected and compose the final SVM model.
Finally, using the last SVM model the key is generated. The online stage is sim-
ilar to the training, but a filtering of the unwanted phonemes is also included.
This scheme will repeatedly produce the same key if a user utters the same pass
phrase.
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2 Speech Processing and Phoneme Feature Generation

The ASR is one of the most important parts of our research. Firstly, the speech
signal is divided into short windows and the Mel frequency cepstral coefficients
(MFCC) are obtained. As a result an n-dimension vector, (n − 1)-dimension
MFCCs followed by one energy coefficient is formed. To emphasize the dynamic
features of the speech in time, the time-derivative (∆) and the time-acceleration
(∆2) of each parameter are calculated [11].

Afterwards, a forced alignment configuration of an ASR is used to obtain a
model and the starts and ends of the phonemes per utterance. For this research,
the phonemes were selected instead of words since it is possible to generate larger
keys with shorter length sentences.

In this training phase the system learns the patterns that represent the speech
sound. Depending on the application the units can be words, phonemes, or syl-
lables. The Hidden Markov Model (HMM) is the leading technique for acoustic
modelling [10]. An HMM is characterised by the following, see Figure 2:

A = {aij}, aij = Prob{qj at t + 1|qi at t} state transition probability distri-
bution

B = {bj(Ot)}, bj(Ot) = observation probability distribution
π = {πi} = Prob{qi at t = 1} initial state distribution
O = {O1, O2, ..., OT } = observation sequence (input sequence)
T = length of observation sequence
Q = {q1, q2, ..., qN} hidden states in the model
N = number of states

The compact notation λ = (A,B, π) is used to represent an HMM [9]. The
parameter set N , M , A, B, and π is calculated using the training data and it
defines a probability measure Prob(O|λ).

The resulting model has the inherent characteristics of real speech. The out-
put distributions of the HMM are commonly represented by Gaussian Mixture
Densities with means and covariances as important parameters, see Figure 3.
Depending on the application one or more Gaussians can be included per state.
But also, one or more states are also possible for a given reference sound. To
determine the parameters of the model and reach convergence it is necessary
to first make a guess of their value. Then, more accurate results can be found
by optimising the likelihood function and using Baum-Welch re-estimation al-
gorithm.

Assuming the phonemes are modelled with a three-state left-to-right HMM,
and assuming the middle state is the most stable part of the phoneme represen-
tation, let,

Ci =
1
K

K∑
l=1

WlGl, (1)
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where G is the mean of a Gaussian, K is the total number of Gaussians available
in that state, Wl is the weight of the Gaussian and i is the index associated to
each phoneme.

Given the phonemes’ starts and ends, the MFCCs for each phoneme in the
utterances can be arranged forming the sets Ru

i,j , where i is the index associated
to each phoneme, j is the j-th user, and u is an index that starts in zero and
increments every time the user utters the phoneme i.

Then, the feature vector is defined as

ψu
i,j = µ(Ru

i,j)− Ci

where µ(Ru
i,j) is the mean vector of the data in the MFCC set Ru

i,j , and Ci ∈ CP
is known as the matching phoneme mean vector of the model. Let us denote the
set of vectors,

Dp = {ψu
p,j | ∀ u, j}

where p is a specific phoneme.



774 L.P. Garćıa-Perera, J.A. Nolazco-Flores, and C. Mex-Perera

Afterwards, this set is divided in subsets: Dtr
p and Dtest

p . 80% of the total
Dp are elements of Dtr

p and the remaining 20% form Dtest
p . Then, Dtrain

p =
{[ψu

p,j, bp,j ] | ∀ u, j} where bp,j ∈ {−1, 1} is the key bit or class assigned to the
phoneme p of the j-th user.

3 Support Vector Machine

The classifier named Support Vector Machine (SVM) Classifier is a method used
for pattern recognition, and was first developed by Vapnik and Chervonenkis
[1,3]. Although SVM has been used for several applications, it has also been
employed in biometrics [8,7]. For this technique, given the observation inputs
and a function-based model, the goal of the basic SVM is to classify these inputs
into one of two classes. Firstly, the following set of pairs are defined {xi, yi};
where xi ∈ R

n are the training vectors and yi = {−1, 1} are the labels. The
SVM learning algorithm finds an hyperplane (w, b) such that,

min
xi,b,ξ

1
2
wTw + C

l∑
i=1

ξi

subject to yi(wTφ(xi) + b) ≥ 1− ξi

ξi ≥ 0

where ξi is a slack variable and C is a positive real constant known as a tradeoff
parameter between error and margin.

To extend the linear method to a nonlinear technique, the input data is
mapped into a higher dimensional space by function φ. However, exact specifi-
cation of φ is not needed; instead, the expression known as kernel K(xi, xj) ≡
φ(xi)Tφ(xj) is defined. There are different types of kernels as the linear, poly-
nomial, radial basis function (RBF) and sigmoid. In this research, we study just
SVM techinque using radial basis function (RBF) kernel to transform a feature,
based on a MFCC-vector, to a binary number (key bit) assigned randomly. The
RBF kernel is denoted as K(xi, xj) = e(−γ||xi−xj||2), where γ > 0.

The methodology used to implement the SVM training is as follows. Firstly,
the training set for each phoneme (Dtrain

p ) is formed by assigning a one-bit
random label (bp,j) to each user. Since a random generator of the values (-1
or 1) is used, the assignation is different for each user. The advantage of this
random assignation is that the key entropy grows significantly. Afterwards, by
employing a grid search the parameters C and γ are tuned.

The SVM average classification accuracy is computed by the ratio

η =
α

β
. (2)

where α is the number of times that the classification output matches the correct
phoneme class on the test data and β is the total number of phonemes to be
classified.
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By performing the statistics and choosing an appropiate group of phonemes
that compute the highest results in the trainning stage, with output Dtrain

ps , a
key with high performance can be obtained. Just this selection of phonemes will
be able to generate the key in the test stage.

Finally a phoneme feature filtering is performed using Dtest
p . The sets Dtest

ps

are computed according to the models obtained in the training phase. This
research considers just binary classes and the final key could be obtained by
concatenating the bits produced by each selected phoneme. For instance, if a
user utters three phonemes: /F/, /AO/, and /R/, and just /F/ and /R/ are
selected the final final key is K = {f(D/F/), f(D/R/)}. Thus, the output is
formed by two bits.

4 Experimental Methodology and Results

For the purpose of this research the YOHO database was used to perform the
experiments [2,4]. YOHO contains clean voice utterances of 138 speakers of dif-
ferent nationalities. It is a combination lock phrases (for instance, ”Thirty-Two,
Forty-One, Twenty-Five”) with 4 enrollment sessions per subject and 24 phrases
per enrollment session; 10 verification sessions per subject and 4 phrases per ver-
ification session. Given 18768 sentences, 13248 sentences were used for training
and 5520 sentences for testing.

The ASR was implemented using the Hidden Markov Models Toolkit (HTK)
by Cambridge University Engineering Department [5] configured as a forced-
alignment automatic speech recogniser. The important results of the speech
processing stage are the twenty sets of mean vectors of the mixture of Gaus-
sians per phoneme given by the HMM and the phoneme segmentation of the
utterances. The phonemes used are: /AH/, /AX/, /AY/, /EH/, /ER/, /EY/,
/F/, /IH/, /IY/,/K/, /N/, /R/, /S/, /T/, /TH/, /UW/, /V/, /W/. Following
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the method already described, the Dp sets are formed. It is important to note
that the cardinality of each Dp set can be different since the number of equal
phoneme utterances can vary from user to user. Next, subsets Dtrain

p and Dtest
p

are constructed. For the training stage, the number of vectors picked per user
and per phoneme for generating the model is the same. Each user has the same
probability to produce the correct bit per phoneme. However, the number of
testing vectors that each user provided can be different.

Following the method a key bit assignation is required. For the purpose of this
research, the assignation is arbitrary. Thus, the keys have liberty of assignation,
therefore the keys entropy can be easily maximised if they are given in a random
fashion with a uniform probability distribution.

The classification of vectors Dtrain
ps and Dtest

ps was performed using SVMlight
[14]. The behaviour of the SVM is given in terms of Equation 2.

Using the principle of phoneme spotting, the phonemes with the highest
accuracy and its SVM model are selected. The accuracy results η are computed
for the selected phonemes. The statistics were computed as follows: 500 trials
were performed for 10 and 20 users, and 1000 trails were performed for 30 and
50 users. Afterwards, the models that developed the lowest accuracy values are
removed. The results for 10, 20, 30 50 users are depicted in Figure 4.

As shown, using phoneme spotting the results become better for all the cases.
For instance, for 10 users the key accuracy goes from 92.3% to 95.9%. This is also
the behaviour for the different number of users. The most complex experiment
was performed using 50 users, but the result shows that 90% accuracy can be
achieved.

If less phonemes are taken in account it is possible to compute keys with high
accuracies. However, it has the drawback that when just a few phonemes are
taken in account the utterances should be larger enough to have cryptographic
validity. We have choosen to stop in 8 phonemes, so it is possible to have realiable
combinations of phonemes to create the key.

5 Conclusion

We presented an scheme to improve the generation of a cryptographic key from
speech signal. With this method we showed that an improvement is possible if
just a selection of phonemes (phoneme spotting) is used in the training phase.
Results for 10, 20, 30 and 50 speakers, from the YOHO database, were shown.

For future research, we plan to study the clustering of the phonemes to
improve the classification task. It is also important to improve the SVM kernel or
use artificial neural networks. Moreover, it is important to study the robustness
of our system under noisy conditions. Besides, future studies on a M -ary key
may be useful to increase the number of different keys available for each user
given a fixed number of phonemes in the pass phrase.
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Abstract. In this work is proposed a new approach based on Evolving
Fuzzy Neural Networks (EFuNNs) to on-line evaluation of training in
virtual reality worlds. EFuNNs are dynamic connectionist feed forward
networks with five layers of neurons and they are adaptive rule-based sys-
tems. Results of the technique application are provided and compared
with another evaluation system based on a backpropagation trained mul-
tilayer perceptron neural network.

1 Introduction

Nowadays, with recent technological advances, several kinds of training are made
in virtual reality (VR) environments. For example, military combat strategies,
surgery and other critical works that involve human risks. So, very realistic VR
systems have been developed with training objectives to immerge the user into
a virtual world where real situations can be simulated. Simulators based on VR
for training need high-end computers to provide realistic haptics, stereoscopic
visualization of 3D models and textures [1]. However, it is very important to know
the quality of the training and what is the trainees performance. So important as
that is the existence of an on-line evaluation coupled to the system, so the trainee
can evaluate himself and improve his learning. On-line evaluators must have low
complexity to do not compromise simulations performance, but they must have
high accuracy to do not compromise evaluation [10]. Because VR worlds are
approaches of real worlds, exact measures correspondence between both worlds
are not possible in VR simulators. In some applications, data collected from
user’s interaction cannot be adequated to classical statistical distributions [12].

Some simulators for training already have a method of evaluation. However
they just compare the final result with the expected one or are videotape records
post-analyzed by an expert [1]. The first models for off-line or on-line evaluation
of training were proposed in the year 2000 [4,14]. Since that, statistical models
as Hidden Markov Models [11,14], Fuzzy Hidden Markov Models [10], statistical
distributions [9] and Fuzzy Gaussian Mixture Models [12] were proposed for
training evaluation.
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The paper by Rosen et al. [13] was proposed for off-line evaluation of train-
ing applied to laparoscopic procedures performed in guinea pigs. Using an op-
toelectronic motion analysis and video records, McBeth et al. [9] acquired and
compared postural and movement data from experts and residents in different
contexts by the use of statistical distributions. Other papers [4,10,11] were pro-
posed for on-line evaluation training in VR simulators. Recently, Machado and
Moraes proposed the use of Neural Networks to perform that evaluation [6] to
solve the problem of data not adequated to classical statistical distributions.

In 2001 Kasabov [3] proposed a new class of Fuzzy Neural Networks named
Evolving Fuzzy Neural Networks (EFuNNs). EFuNNs are structures that evolve
according determined principles. EFuNNs have low complexity and high acuracy
and, as mentioned before, these features are important to an evaluator from
training using VR. In this paper we propose an evaluation system based on
EFuNNs for VR simulators and tested it using a bone marrow harvest simulator
[5]. Results of the new evaluator are provided and compared with an evaluation
system based on a multilayer perceptron (MLP) neural network.

2 VR Simulators and On-Line Evaluation

VR refers to real-time systems modeled by computer graphics that allow user
interaction and movements with three or more degrees of freedom [1]. More than
a technology, VR became a new science that joins several fields as computer
sciences, engineering and cognition. VR worlds are 3D environments created by
computer graphics techniques where one or more users are immersed totally or
partially to interact with virtual elements. The quality of the user experience in
this virtual world is given by the graphics resolution and by the use of special
devices for interaction. Basically, the devices stimulate human senses as the
vision, the audition and the touch (haptic devices) [1]. There are many purposes
for VR systems, but a very important one is the simulation of procedures for
training. In medicine, VR based training provides significant benefits over other
methods, mainly in critical procedures where a mistake can result in physical or
emotional impact on human beings [1].

Some VR simulators for training have a method of evaluation. However they
just compare the final result with the expected one or they are videotape records
post-analyzed by an expert [1]. It can be not enough to provide a good evaluation.
Basically because there are medical procedures where the only sense used is the
touch, as in internal exams and minimally invasive surgeries, and the intervention
tool trajectory and applied forces inside the body should be known to evaluate the
training. In addition, in the second case the student can have forgetten about some
details of his training when the evaluation arrives. In these cases, an on-line eval-
uation system coupled to the VR simulator could supervise the user movements
during the internal manipulation of the virtual body and provide the evaluation
results to the trainee immediately at the end of the simulation [4].

The VR simulator and the on-line evaluator are independent systems, how-
ever they act simultaneously. So, user movements, applied forces, angles, po-
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sition, torque and other input data can be collected from devices during the
simulation to feed the evaluation system [4,13]. Depending on the application,
all those variables or some of them will be monitored according to their relevance
to the training. It is important to remember that virtual reality based simulators
are real time systems. So, the evaluation method requires special attention to
do not compromise the simulator performance.

3 Evolving Fuzzy Neural Networks (EFuNNs)

As mentioned before, Evolving Fuzzy Neural Networks (EFuNNs) are structures
that evolve according ECOS principles [3]: quick learning, open structure for
new features and new knowledge, representing space and time and analyse itself
of errors. The EFuNN is a connectionist feed forward network with five layers of
neurons, but nodes and connections are created or connected when data exam-
ples are presented[3]. The input layer represents input variable of the network as
crisp value x. The second layer represents fuzzy quantization of inputs variables.
Here, each neuron implements a fuzzy set and its membership function as trian-
gular membership, gaussian membership or other. The third layer contains rule
nodes (rj) which evolve through training. Each one is defined by two connections
vectors: W1(rj) from fuzzy input layer to rule nodes and W2(rj) from rule nodes
to fuzzy output layer. These nodes are created during network learning and they
represent prototypes of data mapping from fuzzy input to fuzzy output space.
In this layer we can use a linear activation function or a Gaussian function. The
fourth layer represents fuzzy quantization of the output variables from a func-
tion of inputs and from an activation function. The last layer use an activation
function to calculate defuzzified values for output variables y.

In the third layer, each W1(rj) represents the coordinates of the center of a
hypersphere in the fuzzy input space and each W2(rj) represents the coordinates
of the center of a hypersphere in the fuzzy output space. The radius of the
hypersphere of a rule node rj is defined as Rj = 1−Sj, where Sj is the sensitive
threshold parameter for activation of rj from a new example (x, y). The pair of
fuzzy data (xf , yf) will be allocated to rj if xf is into the rj input hypersphere
and if yf is into the rj output hypersphere. For this, two conditions must be
satisfied:

a) The local normalized fuzzy distance between xf and W1(rj) must be
smaller than Rj . The local normalized fuzzy distance between these two fuzzy
membership vectors is done by:

D(xf ,W1(rj)) = ‖xf −W1(rj)‖ / ‖xf + W1(rj)‖ (1)

where ‖a− b‖ and ‖a + b‖ are the sum of all the absolute values of a vector that
is obtained after vector subtraction a− b or summation a + b respectively.

b) The normalized output error Err = ‖y − y′‖ /Nout must be smaller than
an error threshold E, where y is as defined before, y′ is produced by EFuNN
output, Nout is the number of outpus and E is the error tolerance of the system
for fuzzy output.
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If the condictions (a) or (b) are not satisfied, it can be created a new rule
node. The weights of rule rj are updated according to an interactive process:

W1(r
(t+1)
j ) = W1(r

(t)
j ) + lj,1

(
W1(r

(t)
j )− xf

)
W2(r

(t+1)
j ) = W2(r

(t)
j ) + lj,2(A2 − yf )A1(r

(t)
j )

(2)

where lj,1 is the learning rate for the first layer and lj,2 is the learning rate for

the second layer. In general, it can be assumed they have the same value done
by: lj = 1/Nex(rj), where Nex(rj) is the number of examples associated with
rule node rj .

A1(r
(t)
j ) = f1(D(W1(r

(t)
j ), xf ) (3)

is the activation function of the rule r
(t)
j and

A2 = f2(W2A1) (4)

is the activation of the fuzzy output neurons, when x is presented. For the
functions f1 and f2 can be used a simple linear function.

When a new example is associated with a rule rj , the parameters Rj and Sj

are changed:

R
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If exists temporal dependencies between consecutive data, the connection
weight W3 can capture that. The connection W3 works as a Short-Term Memory
and a feedback connection from rule nodes layer. If the winning rule node at time
(t− 1) was r

(t−1)
max and at time (t) was r

(t)
max, then a link between the two nodes

is established by:
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)
+ l3A1

(
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)
A1

(
r(t)
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)
(6)

where A1

(
r
(t)
max

)
denotes the activation of a rule node r at a time (t) and l3

defines a learning rate. If l3 = 0, no temporal associations are learned in an
EFuNN.

The EFuNN learning algorithm starts with initial values for parameters [3].
According to mentioned above, the EFuNN is trained by examples until con-
vergence. When a new data example d = (x, y) is presented, the EFuNN either
creates a new rule rn to memorize the new data (input vector W1(rn) = x and
output vector W2(rn) = y) or adjusts the winning rule node rj [3].
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4 The Evaluation System

The new methodology proposed in this work was applied in training evaluation
over a bone marrow harvest simulator based on VR [4]. The bone marrow is a
tissue found inside the bones and used for transplant. Its harvest is a medical
procedure performed without any visual feedback except the external view of
the donor body. Basically, the physician needs to feel the skin and tissue layers
trespassed by the needle to find the bone marrow and then start the material
aspiration. Each layer has specific properties as density and elasticity. The bone
marrow harvest simulator uses a robotic arm, that offers six degrees of freedom
movements and force feedback in the x, y and z axis, to simulate the needle
used in a real procedure [5]. So, the goal of the bone marrow simulator is to
train the needle insertion stage. The system presents the pelvic region and the
robotic arm. The Figure 1 presents the simulator and the layers trespassed by
the needle during the bone marrow harvest.

Fig. 1. The Bone Marrow Harvest simulator based on VR and the pelvic tissue layers
of human body

An evaluator of performance based on EFuNN and coupled to the bone mar-
row harvest simulator was implemented. For reasons of general performance of
the VR simulator were monitored the following variables: spatial position, veloci-
ties, forces and time on each layer. At first moment, the system was calibrated by
an expert, according K classes of performance defined by expert. The number of
classes of performance was defined as K = 4: 1) correct procedures, 2) aceptable
procedures, 3) bad executed procedures and 4) very bad executed procedures.
So, the classes of performance for a trainee could be: ”you are well qualified”,
”you need some training yet”, ”you need more training” and ”you are a novice”.
When a trainee uses the system, his performance is compared with each expert
classes of performaces and the EFuNN assigns the better class according the
trainee’s performance. At the end of training, the evaluation system reports to
trainee his classification.
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To the calibration of EfuNN based training evaluator, an expert executed the
procedure approximately a hundred times. The information about performance
was acquired using an Evolving Fuzzy Neural Networks and using activation
functions done by (3) and (4) for each class. For a controlled and impartial
analysis, the procedure was executed hundreds of times by several users. After
that, the data collected from these trainings were manually rotuled according
to the expert specifications. For each class of performance were selected two
hundred cases. These cases were used to validate the evaluation system based
on EFuNN. The percentual of correct classification obtained was 98.625% and
the Mean Square Error was 0.017956, with 11 misclassifications.

From these data, it was generate the classification matrix showed in the
Figure 2. The diagonal of that matrix shows the correct classification. In the
other cells, we can observe the mistakes of classifications.

Fig. 2. Classification matrix performed by EFuNN based evaluator

It was used the Kappa Coefficient [2] to perform the comparison of the clas-
sification agreement. From the classification matrix obtained, the Kappa coef-
ficient for all samples was K = 98.1667% with variance σ2

K = 3.012 × 10−5.
The Kappa coefficients for each class of performance were: for class 1, K1 =
100.000%; for class 2, K2 = 100.000%; for class 3, K3 = 92.799% and for class
4, K4 = 100.000%. That performance is very acceptable and shows the good
adaptation of EFuNN in the solution of evaluation problem.

Another important result is the computational performance of the evaluator
system: as EFuNN has low computational complexity, other variables could be
monitored without degradation of the performance to the virtual reality simu-
lation.

5 Comparison with a MLP Neural Network

A comparison was performed with a Backpropagation trained MLP Neural Net-
work as those proposed by Moraes and Machado [6]. The MLP Neural Network
was configured and calibrated by the expert for the same four classes used be-
fore. The same eight hundred samples of training (two hundred of each class of
performance) were used for a controled and impartial comparison between the
two evaluation systems. In this case, after several tests, the better choice was a
MLP with four layers with 9, 7, 4, 1 neurons respectively. Nine neurons in the
input layer, seven and four in the hidden layers and one in the output layer. The
percentual of correct classification obtained was 95.625% and the Mean Square
Error was 0.042656, with 35 misclassifications.
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Fig. 3. Classification matrix performed by MLP Neural Network based evaluator

From the classification matrix obtained (presented in the Figure 3), the
Kappa coefficient for all samples was K = 94.1667% with variance σ2

K = 9.293×
10−5. The Kappa coefficients for each class of performance were: for class 1,
K1 = 94.089%; for class 2, K2 = 90.713%; for class 3, K3 = 91.973% and for
class 4, K4 = 100.000%. That performance is good and shows that MLP Neural
Network is a competitive approach in the solution of evaluation problem.

We could observe few mistakes in classification performed by MLP Neural
Network based evaluator. However, it can see by Figures 2 and 3 and by other
information (Kappa coefficients and Mean Square Errors) that the performance
of evaluator based on MLP Neural Network is lower than the one of the evaluator
based on EFuNN.

About computational performance of evaluator system, some MLP Neural
Network tested with 5 or more layers caused performance problems to the VR
simulation. However, those MLP neural nets were not the nets with better per-
formance for this task.

6 Conclusions and Further Works

In this paper we presented a new approach to on-line training evaluation in
virtual reality simulators. This approach uses an evaluator based on EFuNN
and solves the main problems in evaluation procedures. Systems based on this
approach can be applied in virtual reality simulators for several areas and can
be used to classify the trainee into classes of learning giving him a real position
about his performance.

A bone marrow harvest simulator based on virtual reality was implemented
to serve as base of the performance tests. The performance obtained by evalu-
ation system based on EFuNN was compared with a backpropagation trained
multi-layer perceptron neural network. Based on the obtained data, it is possible
to conclude that the evaluation system based on EFuNN presented a superior
performance when compared with an evaluation system based on MLP Neural
Network for the same case.

By their qualities, this approach could be used for Web-based simulation
evaluation also, using plug-ins or agents to collect information about the different
variables of user’s simulations. In the future, evaluation systems like this can help
training in telemedicine.
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Abstract. The goal of this work is to automatically determine the level of tool 
insert wear based on images acquired using a vision system. Experimental wear 
was carried out by machining AISI SAE 1045 and 4140 steel bars in a precision 
CNC lathe and using Sandvik inserts of tungsten carbide. A Pulnix PE2015 
B/W with an optic composed by an industrial zoom 70 XL to 1.5X and a diffuse 
lighting system was used for acquisition. After images were pre-processed and 
wear area segmented, several patterns of the wear area were obtained using a 
set of descriptors based on statistical moments. Two sets of experiments were 
carried out, the first one considering two classes, low wear level and high wear 
level, respectively; the second one considering three classes. Performance of 
three classifiers was evaluated: Lp2, k-nearest neighbours and neural networks. 
Zernike and Legendre descriptors show the lowest error rates using a MLP neu-
ronal network for classifying. 

1   Introduction 

Measuring of wear in tools for machining has been in the scope of many studies. 
Depending on the method for acquiring values and their implementation, methods to 
wear measuring are classified in direct or indirect, and according to the monitoring in 
continuous and intermittent [1]. 

Direct methods measure change of actual parameters values as shape and location 
of the cutting edge [2] (optical methods: CCD cameras or optic fibber sensors), tool 
material volumetric loss, electrical resistance at the part-tool interface (voltage 
measuring of a specific conductive covering), part dimensions (dimensional 
measuring with optic devices or with micrometers, pneumatic, ultrasonic or 
electromagnetic transducers) or distance between tool and part. 

Indirect methods contrast the wear with process parameters, which are easier of 
measuring. However, the computational effort later on is bigger. Examples are cutting 
forces evaluation (effort measuring devices, sensors, piezoelectric plates or rings, 
bearings with force measuring, torque measuring, etc.), tool or tool-holder vibration 
(accelerometer), acoustic emissions (transducers integrated in the tool-holder or 
microphones), current or power consumption in the screw or motor (ammeters or 
dynamometers), temperature (thermocouples or pyrometers, colour reflectance or chip 
surface) or roughness of machined surface (mechanical or optical methods) [3]. 
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Continuous or on-line measuring is carried out during the cutting process, while 
intermittent measuring or off-line is only carried out during predefined intervals. 
These intermittent measuring generally requires stopping the production. In many 
cases direct and indirect techniques are used at the same time; for example, an indirect 
and on-line technique (tool break detection, based on vibration signals) can be 
combined with a direct and off-line technique (measuring of the wear area with a 
CCD camera).  

Systems for automatic wear monitoring helps to reduce the manufacturing costs, 
but it is difficult to introduce them in the industrial field. Artificial vision offers many 
advantages as direct technique of measuring. Although it has already been used with 
relative success [4], their application is difficult because the results require precision 
levels in the scope of industrial standards: measuring with quality, integration with the 
machine tool, handling of tools and advanced techniques of adaptative lighting to 
obtain optimized images [5,6]. 

First results obtained carrying out a direct and intermittent wear measuring of the 
tool inserts using a vision system are showed in this work. The system does not work 
as continuous method due to the assembly conditions. Disassemble of tool is 
necessary to obtain images at the end of each machining period. Application of 
acquisition and pre-processing has been carried out with Matlab. Different wear 
patterns have been obtained for the different classes analyzed using descriptors, and 
the results with their errors are showed. 

2   Materials and Methods 

2.1   Machining and Vision Systems 

A CNC parallel lathe has been used for the machining with a maximum turning speed 
of 2300 rpm. AISI SAE 1045 (20 HB, normalized) and 4140 (34 HB, tempered) steel 
bars of 250 mm of length and 90 mm of diameter were machined. The tool inserts 
were of covered tungsten carbide, rhombic, high tough. Different values were used for 
the cutting parameters: cutting speeds (Vc) between 150 and 300 m/min, feedrate (f) 
between 0.15 and 0.3 mm/rev and depth of cutting (ap) between 0.5 and 3 mm. After 
the machining of the part length the tool is disassembled and the insert is located in a 
tool-fixture; that allows to keeping constant their position in the image for the flank 
images and also for the crater images. Additionally, roughness and hardness 
measuring was taken on the machined surface [7]. 

2.2   Image Acquisition 

Images have been acquired [7] using a Pulnix PE2015 B/W camera with 1/3" CCD. 
Digitalization was carried out with a Matrox Meteor II card. The optical system is 
composed by a 70XL industrial zoom of OPTEM, with an extension tube of 1X and 
0.5X/0,75X/1.5X/2.0X Lens also of OPTEM. The lighting system is composed by a 
DCR®III regulated light source of FOSTEC that provides an intense cold lighting. A 
SCDI system of diffuse lighting of NER SCDI-25-F0 is used to avoid shines. The 
system provides diffuse lighting in the same direction as the camera axis. Positioning 
of lighting is carried out by means of bundle dual of Fostec. 
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Acquisition is achieved using a developed Matlab application that uses the Image 
Acquisition Toolbox. The capture application has three modules: setup of the camera, 
setup of the sequence and acquisition of the image. These modules let to know the in-
formation of the capture device, to choose the resolution, to define the path of infor-
mation storage and to keep the images. 

 

Fig. 1. The camera and the lighting system 

2.3   Image Processing 

Initially, a low-pass filter was applied to the image for blurring the background and to 
make easier the segmentation. Later on the region of interest is cropped and the 
contrast is enhancement by means of a histogram stretching. 

Region growing has been used to segment the wear area, selecting the starting 
points based on the result of a previous threshold. Once the thresholds are obtained, a 
binary image is generated in which the wear region is set to 1 and the rest one to 0. 
Later on a median filter is applied to smooth for noise reduction. If the wear region is 
not effectively closed, a morphological closing is carried out. Finally, the binary 
image with the wear region is multiplied for the original image, obtaining the area of 
interest as grey scale perfectly segmented. 

 
  

 (a)  

   
 (b)  

Fig. 2. (a) First images in a series showing three wear levels. (b) Segmented images with the 
wear region in grey scale. 
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2.4   Samples and Descriptors 

Experiments have been carried out using a set of 146 insert images with different 
wear level in the flank. 

Different wear patterns have been obtained for each class, using a different 
statistical descriptor for each pattern. Table 1 shows the descriptors used.  

Table 1. Used descriptors 

Pattern # Descriptor Details 
Pattern 1 Simple moments 9 moments: from m00 to m22 
Pattern 2 Central moments  9 moments: from mc00 to mc22 
Pattern 3 Central moments 

normalized 
9 moments: from mcn00 to mcn22 

Pattern 4 Hu moments The 7 moments 
Pattern 5 Zernike moments 29 moments: all the possible moments 

until the order 4. 
Pattern 6 Legendre moments 9 moments: from ML00 to ML22 
Pattern 7 Taubín moments The 8 characteristics of the vector 
Pattern 8 Flusser moments The 6 moments 

Additional patterns were also obtained combining diverse moments in the same 
pattern. The first combination was created with the Zernike and Legendre moments. 
The second one was created adding simple moments to the Zernike and Legendre 
moments. The third one was created adding Taubín moments and the last one pattern 
was created with all the moments. 

Finally, the images were divided in two subsets. The first subset, composed by two 
thirds of the total in each class, was used to obtain the pattern and the second, formed 
by a third of the images, to carry out the experiments. 

2.5   Experiments and Classifiers 

Firstly, a supervised classification has been carried out attending to the wear level in 
each insert. A label has been assigned to each image which indicates its inclusion in 
one of the three classes settled down by an expert: D001, inserts with low wear; 
D003, inserts with very high wear; and D002, inserts with medium wear level. A 
second set of experiments was carried out classifying and labelling images in two 
classes: D001, or inserts with low wear and D002, or inserts with very high wear. 

The minimum Euclidean distance has been used initially to carry out the 
recognition of these classes, obtaining the prototype of each class by means of the 
arithmetic media. 

Later on a classifier of k nearest neighbours was used, with k=10.  
Finally, a neuronal network was evaluated as classifier. A multilayer perceptron 

neuronal network (MLP) was used, varying the number of training cycles, the number 
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 of neurons in the hidden layer and, in some cases, the learning rate. 70% of images in 
each class were used in the experiments to training the network, and 30% for the test. 
The medium error and standard deviation have been calculated for the errors. Images 
for training and test have been chosen in each iteration randomly, and the experiment 
has been repeated ten times consecutively. Data have also been normalized calculat-
ing the media and standard deviation of the training data and then subtracting that 
media from all the data, so much for training as for test, and dividing them by the pre-
viously calculated standard deviation. Finally, a new experiment balancing the data in 
each class has been carried out, equalling the number of images that are included in 
each one. 

2.6   Results 

Three classes and Euclidean distance 

Table 2. Error rate: three classes with Lp2 

Class Simple Cent. Norm. Hu Taub. Fluss. Zern Leg. 
1 0.258 0.193 0.548 0.903 0.935 0.968 0.129 0.097 
2 0.583 0.583 0.583 0.500 1 0.830 0.250 0.500 
3 0.200 0.600 0.200 0 0 1 0.400 0.400 

Two classes and neuronal networks 
The following tests have been carried out differentiating only between two wear 

classes, the D001 and the D002. A MLP neuronal network has been used for it, 
varying the number of training cycles, the number of neurons in the hidden layer and, 
in some case, the learning rate. 

The error results for Zernike and Legendre moments with normalized data are 
shown next: 

Table 3. Error rate: normalized Legendre moments and MLP neuronal network with learning 
rate 0.1 

  500 cycles 3000 cycles 6000 cycles 
Without Norm.    

D001 0.124±0.102 0.112±0.059 0.108±0.050 2 N 
D002 0.426±0.196 0.274±0.102 0.347±0.143 
D001 0.321±0.071 0.100±0.057 0.168±0.079 5 N 
D002 0.279±0.114 0.316±0.119 0.353±0.122 

12 N D001 0.144±0.078 0.108±0.073 0.112±0.053 
 D002 0.279±0.147 0.284±0.099 0.347±0.114 
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Table 4. Error rate: normalized Zernike moments and MLP neuronal network with learning rate 
0.1 

  500 cycles 3000 cycles 6000 cycles 
Without Norm.    

D001 0.096±0.086 0.124±0.051 0.096±0.078 2 N 
D002 0.305±0.135 0.289±0.119 0.315±0.065 
D001 0.096±0.057 0.164±0.091 0.148±0.060 5 N 
D002 0.389±0.159 0.268±0.094 0.242±0.119 

12 N D001 0.140±0.066 0.124±0.066 0.132±0.105 
 D002 0.247±0.099 0.310±0.084 0.289±0.087 

The following experiments were carried out with balanced data and with the 
normalized Legendre and Zernike descriptors. Results are shown in the tables 5 and 6. 

Table 5. Error rate: normalized and balanced Legendre moments and MLP neuronal network 
with learning rate 0.1 

  500 cycles 3000 cycles 6000 cycles 
Normalized and Balanced   

D001 0.160±0.128 0.176±0.057 0.188±0.100 2 N 
D002 0.263±0.089 0.326±0.098 0.263±0.110 
D001 0.156±0.066 0.160±0.065 0.176±0.073 5 N 
D002 0.253±0.088 0.263±0.089 0.284±0.071 

12 N D001 0.188±0.098 0.188±0.046 0.148±0.059 
 D002 0.231±0.103 0.216±0.120 0.310±0.120 

Table 6. Error rate: normalized and balanced Zernike moments and MLP neuronal network 
with learning rate 0.1 

  500 cycles 3000 cycles 6000 cycles 
Normalized and Balanced   

D001 0.108±0.078 0.144±0.073 0.156±0.100 2 N 
D002 0.368±0.113 0.268±0.106 0.258±0.100 
D001 0.156±0.079 0.184±0.093 0.140±0.063 5 N 
D002 0.273±0.085 0.245±0.119 0.240±0.096 

12 N D001 0.180±0.083 0.172±0.068 0.140±0.083 
 D002 0.250±0.100 0.247±0.093 0.280±0.107 

Combination of moments and neuronal networks 
Next, results for the experiment of combining different moments are shown. 
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Table 7. Error rate: normalized and balanced Zernike and Legendre moments and MLP neu-
ronal network with learning rate 0.1 

  500 cycles 3000 cycles 6000 cycles 
Normalized and Balanced   

D001 0.136±0.085 0.144±0.087 0.140±0.051 2 N 
D002 0.305±0.140 0.242±0.087 0.279±0.056 
D001 0.168±0.075 0.140±0.069 0.124±0.078 5 N 
D002 0.263±0.110 0.257±0.072 0.242±0.090 

12 N D001 0.108±0.108 0.144±0.078 0.152±0.086 
 D002 0.274±0.118 0.242±0.079 0.305±0.101 

Two classes and 10 nearest neighbours  
The following experiment has been carried out using the method of the k-

neighbours with two classes, with patterns created with descriptors of Zernike, 
Legendre and Taubín. 

Table 8. Error rate: Zernike, Legendre, Taubín and total moments with 10 nearest neighbours 
classifier 

 Zernike Legendre Taubín Totales 
Without Norm     
D001 0.042±0.056 0.074±0.055 0.172±0.084 0.174±0.079 
D002 0.368±0.109 0.397±0.116 0.242±0.091 0.195±0.082 
Normalized     
D001 0.010±0.022 0.040±0.053 0.174±0.082 0.042±0.042 
D002 0.500±0.125 0.463±0.100 0.260±0.079 0.431±0.077 

3   Conclusions 

The analysis of the obtained results let stay the following conclusions. With the 
classifier of minimum Euclidean distance the descriptors that better discriminate, for 
both two and three classes experiments, are those of Zernike and Legendre. The other 
descriptors do not offer reliable results since they provide acceptable results for a 
class but not for the other ones. 

In the case of using a neuronal network and two classes the best behaviour is 
provided again by the moments of Zernike and Legendre, and error is lower when 
data are normalized. 

It has also been confirmed that the use of a pattern composed by several 
descriptors, as Zernike and Legendre, does not provide significant improvements. 

With regard to the neuronal network adjustment, it can be concluded that a learning 
rate next to 0.1 is the one that better behaviour provides. Variations in the number of 
training cycles and neurons in the hidden layer do not offer significant differences, 
although we have observed that it is enough with a network with 5 to 12 neurons in 
the hidden layer and 3000 to 6000 training cycles. 
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With the 10 nearest neighbour classifier, the moments of Zernike and of Legendre, 
the combination of all the moments and, surprisingly, the moments of Taubín, have 
provided the lower errors. With this classifier the normalization of data worsens the 
results, contrary to the behaviour observed with neuronal networks. 

We can conclude saying that the best results have been obtained with the moments 
of Zernike and Legendre, normalized and balanced, and a neuronal classifier. The 
patterns created with combinations of descriptors, whenever the Zernike and 
Legendre are among them, also provides low error rates. 

We believe that the small number of images is the origin of the high error rate 
obtained with some descriptors. In future works we will carry out new experiments 
using a bigger number of images and more balanced classes. 
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Abstract. In this paper, we propose a robust surface registration using a 
Gaussian-weighted distance map for PET-CT brain fusion. Our method is 
composed of three steps. First, we segment the head using the inverse region 
growing and remove the non-head regions segmented with the head using the 
region growing-based labeling in PET and CT images, respectively. The feature 
points of the head are then extracted using sharpening filter. Second, a 
Gaussian-weighted distance map is generated from the feature points of CT 
images to lead our similarity measure to robust convergence on the optimal 
location. Third, weighted cross-correlation measures the similarities between 
the feature points extracted from PET images and the Gaussian-weighted 
distance map of CT images. In our experiments, we use software phantom and 
clinical datasets for evaluating our method with the aspect of visual inspection, 
accuracy, robustness, and computation time. Experimental results show that our 
method is more accurate and robust than the conventional ones. 

1   Introduction 

Computed tomography (CT) is a well-established means of diagnosing metastasis of 
oncology patients and evaluating disease progression and regression during treatment. 
However, CT has lower sensitivity and specificity than positron emission tomography 
(PET) in identifying tumors of initial staging or defining their biological behavior and 
response to therapy, while PET has a limitation in achieving precise lesion size and 
shape due to the few anatomical structures. Currently, whole body PET-CT fusion 
using hardware is introduced so as to provide a rough alignment of whole body 
rapidly. However, it is still critical to develop a registration technique for aligning two 
different modalities exactly and robustly since images obtained from the PET-CT 
scanner are acquired with different scan time. 

Surface- and voxel-based approaches have been suggested for alignment of 
functional and anatomical images [1]. In surface-based approach, it requires the 
delineation of corresponding surfaces in each image. Hongjian et al. [2] used the 
chamfer distance matching for PET-MR brain fusion. Each rigid surface segmented 
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from PET and MR brain images is aligned by repeatedly minimizing values of each 
distance map. Maintz et al. [3] proposed a feature-based cross-correlation to search 
for the optimal location where the number of corresponding points between feature 
points extracted from both images is a maximum. However, the accuracy of these 
surface-based approaches is largely affected by the result of surface extraction. In 
voxel-based approach, it measures the similarity of all geometrically corresponding 
voxel pairs in overlapping area. Especially, mutual information-based registration [4] 
shows the accurate results in comparison with other voxel-based approaches and 
surface-based approach. However, mutual information-based registration requires 
enormous processing time in comparison with surface-based approaches even though 
multi-resolution technique or other improvements are used.  

Current approaches still need more progress in computational efficiency and 
accuracy for registration between functional and anatomical images. In this paper, we 
propose a surface-based registration using Gaussian-weighted distance map (GWDM) 
to robustly find optimal location even in bad conditions such as blurry and noisy 
images. Our method is applied to PET and CT brain images, which divided into three 
steps such as head segmentation and non-head elimination, Gaussian-weighted 
distance map generation, similarity measure and optimization. In our experiments, we 
use software phantom and clinical datasets for evaluating our method with the aspects 
of visual inspection, accuracy, robustness, and computation time. 

The organization of the paper is as follows. In Section 2, we discuss how to extract 
feature points efficiently. Then we propose a robust surface registration using 
Gaussian-weighted distance map in PET and CT brain images. In Section 3, 
experimental results show how our method aligns exactly and robustly using software 
phantom and clinical datasets. This paper is concluded with a brief discussion of the 
results in Section 4. 

2   Surface Registration Using GWDM 

Fig. 1 shows the pipeline of our method for the registration of PET and CT brain 
images. Since CT images have more anatomical information than PET images, CT 
images are fixed as reference volume and PET images are defined as floating volume. 
Since rigid transformation is enough to align the head base, we use three translations 
and three rotations about the x-, y-, z- axis.  

2.1   Head Segmentation Using 3D Inverse Region Growing 

Since the head segmentation using threshold-based method can produce holes within 
the head, these holes should be filled by morphological operations such as dilation 
and erosion. However, we decide the number of iterations of morphological operation 
in proportion to the size of holes as well as the computation time is increased by the 
number of iterations. In addition, numerous iterations can produce distortions of edge. 
Thus we propose a 3D inverse region growing (IRG) for the automatic head 
segmentation without additional processing such as hole filling in PET and CT brain 
images. 



796 H. Lee and H. Hong 

 

Fig. 1. The pipeline of proposed method using a Gaussian-weighted distance map 

First, our 3D IRG starts by choosing a seed voxel at (0, 0, 0) on whole volume and 
compares seed voxels with neighboring voxels. Region is grown from the seed voxel 
by adding neighboring voxels that are less than chosen tolerance. When the growth of 
region stops, this region is background except head. Then we simply segment the 
head by inverse operation. Thus our 3D IRG segments the head automatically without 
holes and the distortion of edges by morphological operations in PET and CT images. 
Fig. 2 shows the comparison of threshold-based method and our 3D IRG method in 
PET and CT brain images. In Fig. 2(a) and (c), we can easily see holes inside of the 
head, whereas our method can clearly segment the head without holes as shown in 
Fig. 2(b) and (d). 

 
(a)           (b)                             (c)                    (d) 

Fig. 2. The comparison of head segmentation between threshold-based method and 3D IRG 
method in PET and CT brain images (a) and (c) shows the results of the threshold-based 
method in PET and CT brain images, respectively. (b) and (d) shows the results of our 3D IRG 
method in PET and CT brain images, respectively. 

2.2   Non-head Elimination Using Region Growing-Based Labeling 

Although the 3D IRG segments the head without holes, the non-head regions having 
the intensities which are similar to the head can be segmented on background area. 
Since the size of these non-head regions is small in comparison with the head, we 
propose a region growing-based labeling (RGL) to efficiently eliminate the non- head 
regions by removing other regions except the largest region.  

Our RGL finds the position of 1’s voxel for choosing the seed on the binary images 
while scanning from position at (0, 0, 0) to whole volume size. The region is then 
grown from the seed voxel by adding neighboring voxels based on connectivity and 
the voxels of growing region are given to label. When the growth of region stops, we 
identify the size of label. Since the RGL doesn’t require any equivalence table and 
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renumbering of label, Our RGL provides efficient labeling in comparison with a 
conventional connected component labeling [7] in memory use and time complexity. 
As shown in Fig. 3(a) and (c), non- head regions are included in PET and CT brain 
images. Fig. 3(b) and (d) shows the results of the head without the non-head regions 
removed by the RGL in PET and CT brain images, respectively. 

 
(a)        (b)              (c)      (d) 

Fig. 3. The results of the non-head elimination using our RGL method (a) PET brain images (b) 
the results of non-head elimination in the PET brain image (c) CT brain images (d) the result of 
non-head elimination in the CT brain image 

The feature points are extracted from the binary segmentation images by applying 
a conventional sharpening filter [7]. Since the holes within head area or the non-head 
regions in background area are filled or eliminated by 3D IRG and RGL, the feature 
points are selected from the only head boundary. Fig. 4 shows the feature points of 
head extracted from PET and CT images, respectively. 

  
(a)                                                               (b) 

Fig. 4. The feature points of head extracted from PET and CT images (a) PET slice (b) CT slice 

2.3   Feature Points Extraction and Gaussian-Weighted Distance Map  
        Generation 

A conventional surface registration is likely to lead the similarity measure to converge 
on the local optimum near to global optimum since the correspondence of the feature 
points extracted from PET images can differ from the feature points of CT images. To 
prevent this occurrence we propose the 2D Gaussian-weighted distance map 
(GWDM) to robustly converge on global optimum even in blurry and noisy images as 
well as in a large geometrical displacement.  

Our 2D GWDM is generated by assigning the Gaussian-weighted mask to the 
corresponding feature points. If the current weighting is larger than the weighting of 
neighbor feature points, the previous weighting is changed to the current one. In our 
method, GWDM is generated only for CT images. The Gaussian-weighted mask is 
defined as Eq. (1).  
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where σ  is set in proportion to the mask size as a standard deviation. λ  is a scaling 
parameter. xc  and yc is the center of the Gaussian-weighted mask. The weighting of 

mask is very large at center, and is reduced in proportion to the distance far from 
center depending on Gaussian curve. G is the Gaussian-weighted mask. 

Fig. 5 shows the process for the generation of GWDM in CT brain image. Fig. 5(a) 
and Fig. 5(b) show the Gaussian-weighted curve and mask with 13 by 13 size, λ =1, 
σ =3.0, respectively. Fig. 5(c) shows the extracted feature points. Fig. 5(d) shows the 
GWDM generated from feature points. Fig. 5(e) shows the weighting of the GWDM 
in a magnification of Fig. 5(d). The area corresponding to feature points has the 
brightest intensities while the area far from feature points has dark ones. 

 
(a) (b) 

     
(c)               (d)                      (e) 

Fig. 5.  The generation of a 2D GWDM in CT brain image (a) the Gaussian curve (b) the 
Gaussian-weighted mask (c) the feature points of head (d) 2D GWDM (e) magnification of (d) 

2.4   Weighted Cross-Correlation and Optimization 

For similarity measure between the feature points of PET images and the GWDM of 
CT images, we propose the weighted cross-correlation (WCC). Our approach reduces 
the computation time because of using the only GWDM of CT images corresponding 
to the feature points of PET images instead of using whole CT volume. The WCC is 
defined as Eq. (2). 
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where PETN and )(iPPET  are the total number of feature points and the position of i-th 

feature point in PET images, respectively. Tr  is rigid transformation matrix 
transforming  feature points of PET images into the coordinate system of CT images. 

CTG  is the GWDM of CT images corresponding feature points in PET images. λ  is a 

scaling parameter. 
In order to search for the optimal location, we find optimal parameters such as Tx’, 

Ty’, Tz’, Rx’, Ry’, Rz’ when the WCC reaches maximum as following Eq. (3). Powell’s 
multidimensional direction method is then used to maximize WCC. This method 
searches for optimal location in the order following Tx, Ty, Rz, Rx, Ry, Tz until WCC 
doesn’t change any more and iterate over constant number.  

)(maxarg)',',',',','( WCCRRRTTT zyxzyx =  (3) 

3   Experimental Results 

All our implementation and test were performed on an Intel Pentium IV PC 
containing 3.2 GHz CPU and 2.0 GBytes of main memory. Our method has been 
successfully applied to five clinical datasets and two software phantom datasets, as 
described in Table 1, for evaluating with the aspects of visual inspection, accuracy, 
robustness, and computation time. 

Table 1. Experimental datasets 

Dataset CT/PET 
Image  
size 

Slice 
number 

Voxel Size 
(mm) 

Slice spacing 
(mm) 

Intensity 
range 

CT 512×512 158 0.38×0.38 1.0 0 ~ 4095 Patient1 
FDG-PET 128×128 40 1.95×1.95 3.33 0 ~ 255 

CT 512×512 35 1.17×1.17 5.00 -976 ~ 1642 Patient2 
FDG-PET 128×128 82 2.00×2.00 2.00 0 ~ 4095 

CT 512×512 34 1.17×1.17 5.00 48 ~ 2857 Patient3 
FDG-PET 128×128 45 4.00×4.00 4.00 0 ~ 4095 

CT 512×512 28 1.17×1.17 5.00 -976 ~ 1933 Patient4 
FDG-PET 128×128 80 2.00×2.00 2.00 0 ~ 4095 

CT 512×512 37 1.17×1.17 5.00 48 ~ 4048 Patient5 
FDG-PET 128×128 53 4.00×4.00 4.00 0 ~ 4095 

CT 128×128 40 1.95×1.95 3.33 0 ~ 2224 Software 
phantom1 FDG-PET 128×128 40 1.95×1.95 3.33 0 ~ 4095 

CT 128×128 40 1.95×1.95 3.33 498 ~ 2721 Software 
phantom2 FDG-PET 128×128 40 1.95×1.95 3.33 0 ~ 4095 

As shown in Fig. 6, PET software phantom datasets simulate background, tissue, 
and brain in the head and are generated by using Gaussian smoothing for blurry 
properties. The standard deviation of Gaussian smoothing in PET software phantom1 
and phantom2 are 1.0 and 2.0, respectively. CT software phantom datasets simulate 
four areas such as background, tissue, muscle, and skull. In particular, the Gaussian 
noise with standard deviation 20.0 is added to CT software phantom2. We can see 
that software phantom2 shown in Fig. 6(c) and (d) are more blurry and noisy than 
software phantom1 shown in Fig. 6(a) and (b). 
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(a)                               (b)                              (c)                              (d) 

Fig. 6. Software phantom datasets for accuracy and robust evaluation (a) PET software 
phantom1 (b) CT software phantom1 (c) PET software phantom2 (d) CT software phantom2 

Fig. 7 and Fig. 8 show the comparison of 2D visual inspection and 3D fusion 
before and after registration. In Fig. 7, the results of 2D visual inspection are 
displayed by fusing skull edges of CT images and transformed PET brain images in 
axial, coronal, and sagittal planes together, whereas Fig 8 fuses brain boundary of 
PET images on the CT images. While the top row of Fig. 7 and Fig. 8 applying scale 
parameters before registration are misaligned between PET brain images and CT 
images, the bottom row of Fig. 7 and Fig. 8 applying optimal parameters after 
registration are well aligned within skull area of CT image. Fig. 7(d) and Fig. 8(d) 
show the brain in arbitrary 3D view before and after registration. Fig. 9 shows the 
aligned results in arbitrary 2D plane and 3D view of clinical datasets after 
registration. 

   �

   �

(a)     (b)         (c)      (d) 

Fig. 7. The comparison of 2D visual inspection and 3D fusion before and after registration in 
clinical dataset1 (a) axial plane (b) coronal plane (c) sagittal plane (d) 3D fusion 

The registration accuracy of our method is evaluated by comparing with the 
conventional ones such as mutual information (MI)-based registration, chamfer 
distance matching (CDM), and feature-based cross-correlation (FCC). For the 
evaluation, we use the software phantom with the known parameters, called as true 
transformations. In order to quantify the registration error shown in Table 2, we 
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(a)     (b)         (c)      (d) 

Fig. 8. The comparison of 2D visual inspection and 3D fusion before and after registration in 
clinical dataset2 (a) axial plane (b) coronal plane (c) sagittal plane (d) 3D fusion 

 

 

Fig. 9. The results of 2D visual inspection and 3D fusion of clinical datasets after registration 

compute each RMSE for translations and rotations as Eq. (4) between estimated 
parameters and true transformations. At this time, the feature points of head are 
extracted by applying proposed IRG and RGL for comparing our WCC with CDM or 
FCC in same environments. The use of MI for accuracy test is restricted to the 
intensities of whole volume without extracting the feature points of head, and is not 
included sampling and multi-resolution optimization. 
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In our method, T-RMSE and R-RMSE are less than 0.1mm and 0.4°, respectively 
in two software phantom datasets and give better accuracy than the conventional ones. 
In particular, MI shows a large different in software phantom2. This means that MI 
has a limitation in exact alignment when blurry and noisy images are aligned. 
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Table 2. Accuracy results using the software phantom with the known parameters 

Dataset Method 
Tx

 

(mm) 
Ty

 

(mm) 
Tz 

(mm) 
Rx 

( ° ) 
Ry 

( ° ) 
Rz

 

( ° ) 

T-
RMSE 
(mm) 

R-
RMSE 

( ° ) 
TRUE 10.73 12.48 -10.14 -4.8 -5.2 7.3 - - 
WCC 10.72 12.46 -10.19 -4.74 -5.01 7.21 0.03 0.12 

MI 10.71 12.64 -10.34 -5.31 -5.55 7.67 0.14 0.42 
CDM 11.46 12.07 -9.75 -4.38 -6.13 4.50 0.53 1.72 

Software 
Phantom

1 
FCC 7.87 8.72 -9.09 -5.69 0.67 4.04 2.79 3.91 

TRUE -6.83 -8.58 6.24 4.8 -3.2 -6.3 - - 
WCC -6.75 -8.59 6.39 4.43 -2.69 -6.19 0.10 0.37 

MI -7.80 -8.85 5.85 5.62 -5.46 -7.12 0.63 1.47 
CDM -6.22 -8.53 6.70 4.19 1.00 -4.88 0.44 2.58 

Software 
Phantom

2 
FCC -13.07 -2.33 0.76 2.66 -11.98 0.07 5.99 6.38 

For robustness test, we evaluated whether the WCC similarity measure searches for 
optimal location against the noise in software phantom1 with a large geometrical 
displacement. White zero-mean Gaussian noise with standard deviation 0, 100, 300, 
and 500 is superimposed onto the only CT software phantom1. As shown in Fig. 10, 
increasing the noise level does not affect the maximal WCC at optimal location (0mm 
or 0��� as the position of maximal WCC in traces computed for all six optimal 
parameters is not changed when the amount of noise is increased. This means that our 
WCC leads to a global maximum using the GWDM even though feature points 
extracts differently between PET and CT brain images due to blurry or noisy 
properties. 

The total computation time including 3D fusion in two software phantom datasets 
is measured by comparing our method with conventional ones in Table 3. Our method 
gives similar computation time to the CDM and FCC and much faster than the MI-
based registration. 

Table 3. Total computation time 
(sec)  

 WCC MI CDM FCC 

Software-phantom1 8.234 391.843 8.579 8.062 
Software-phantom2 8.406 407.734 8.687 7.890 

 
(a)                                                                   (b) 

Fig. 10. The robustness test of WCC in software phantom1 added the Gaussian noise with 
standard deviation 0, 100, 300, 500 (a) translation of x-direction in the range from -60 to 60 mm 
(b) rotation around z-axis in the range from -30 to 30° 



 Robust Surface Registration Using a Gaussian-Weighted Distance Map 803 

4   Conclusion 

We have developed an accurate and robust surface registration method using a 
Gaussian-weighted distance map for brain PET-CT fusion. Our 3D IRG segmented 
the head without any additional processing such as hole filling. The proposed RGL   
eliminated efficiently the non-head regions in comparison with the conventional 
connected component-based labeling. Our GWDM led our similarity measure to 
robust convergence on the optimal location even though feature points extract 
differently between PET and CT brain images due to blurry or noisy properties. The 
WCC rapidly measure the similarities because of considering the GWDM of CT 
images corresponding to the feature points extracted from PET images instead of 
using whole volume of CT images. Experimental results showed that our method was 
much faster than MI and more accurate than conventional registration methods such 
as MI, CDM, and FCC. In particular, our method was robustly registered at optimal 
location regardless of increasing noise level. 
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Abstract. Locating the minimum number of sensors able to see at the same 
time the entire surface of an object is an important practical problem. Most 
work presented in this area is restricted to 2D objects.  In this paper we present 
an optimal 3D sensor location algorithms that can locate sensors into a polyhe-
dral environment that are able to see the features of the objects in their entirety. 
Limitations due to real sensors can be easily taken into account. The algorithm 
has been implemented, and examples are also given. 

1   Introduction 

Sensor planning is an important research area in computer vision. It consists of auto-
matically computing sensor positions or trajectories given a task to perform, the sen-
sor features and a model of the environment. A recent survey [15] refers in particular 
to tasks as reconstruction and inspection. Several other tasks and techniques were 
considered in the more seasoned surveys [19] and [12]. Sensor panning problems 
require considering a number of constraints, first of all the visibility constraint. To 
this effect, the sensor is usually modeled as a point, the vertex of a frustum if the field 
of view is taken into account, and referred to as a “viewpoint”.  A feature of an object 
is said to be visible from the viewpoint if any segment joining a point of the feature 
and the viewpoint does not intersects the environment or the object itself and lies 
inside the frustum. A popular 3D solution is locating the viewpoint onto the view 
sphere, which implicitly takes into account some constraints. Usually the view sphere 
is discretized, for instance by locating the possible viewpoints at the vertices of some 
semi-regular polyhedron, as the geodesic dome [4], [21], [22]. In this paper we will 
deal with a basic visibility problem, that is finding and locating the minimum number 
of sensors able to see at the same time all points of the surface of an object. The prob-
lem arises for tasks as static inspection and surveillance for several kind of sensors, as 
TV cameras, range sensors, etc. The sensors are supposed to be rotating or omni di-
rectional. The problem also arises in the area of image-based modeling and rendering 
[7]. A related problem is finding an inspection path optimum according to some met-
ric, since according to a popular approach it is constructed joining static sensor posi-
tions which guarantee total object visibility [4], [6], [9], [22]. 

The major contribution of this paper is to present a 3D algorithm for finding a set 
of zones where a minimal set of viewpoints, able to observe the entire surface of the 
object, can be independently located. The algorithm works for multiply connected and 
unconnected general polyhedra, and can locate viewpoints able to observe the interior 
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or the exterior surfaces of the polyhedra. For finding an optimal solution the view 
space needs not to be discretized, the only restriction being that each face must be 
completely observed by at least one viewpoint. This complies with the usual defini-
tion of feature of an object surface in term of faces or parts of faces, and with the 
practical requirement of observing a feature in its entirety. It is also worth observing 
that, if the faces are subdivided into smaller areas, the solution provided by the algo-
rithm converges towards the optimal solution of the unrestricted problem. In the con-
clusion we will discuss how the approach can be extended in order to take into ac-
count additional constraints besides the visibility constraint. 

The paper is organized as follows. In section 2 we will deal with the problem in 
2D. Section 3 to 7 are devoted to describing the 3D algorithm. In section 6 we will 
also present some examples. Concluding remarks are contained in Section 8. 

2   The Problem in 2D 

Although in general the problem addressed is three-dimensional, in some cases it can 
be restricted to 2D. This is for instance the case of buildings, which can be modeled 
as objects obtained by extrusion. Much related work in the area of computational 
geometry stems from the popular Art Gallery Problem. The problem, stated in 1975 
refers to the surveillance, or “cover” of polygonal areas with or without polygonal 
holes. The famous Art Gallery Theorem stated the upper tight bound n/3  for the 
minimum number of  “guards” (omni directional sensors) for covering any polygon 
with n edges, metaphorically the interior of an art gallery. The upper tight bound 
(n+h)/3  was subsequently found for polygons with n edges and h holes. Many 2D 

variations of the problem have been considered, as for instance “rectilinear polygons”, 
that is polygons with edges parallel or perpendicular, guards restricted to particular 
positions, etc. The original problem, as well as several restricted problems, have been 
found to be NP-hard [6]. For further detail, the reader is referred to the monograph of 
O’Rourke [13], and to the surveys [16] and [23]. At present, no finite exact algorithm 
exists able to locate a minimum unrestricted set of guards in a given polygon. In addi-
tion, no approximate algorithm with guaranteed approximation has been found.  

Let us observe that our problem is similar, but not equal, to the classic Art Gallery 
problem, since we are interested in observing only the boundary of the object.  Then, 
our 2D problem can be called the internal or external edge covering problem. A de-
tailed analysis of the edge covering problem compared with the classic Art Gallery 
problem is reported in [10]. Among other results, it is shown that in general a minimal 
set of guards for the Art Gallery problem is not minimal for the interior edge cover-
ing, and that also the edge covering problem is NP-hard. However, edge covering 
admits a restriction which makes practical sense and allows to construct a finite algo-
rithm which supplies a minimum set of viewpoints able to cover internal or external 
polygonal boundaries. The restriction is that each edge must be observed entirely by 
at least one guard, and it allows finding one or more sets of regions where a minimal 
set of viewpoints can be independently located. In addition, the algorithm asymptoti-
cally converges to the optimal solution of the unrestricted problem if the edges are 
subdivided into shorter segments. Finally, the algorithm can easily take into account 



806 A. Bottino and A. Laurentini 

several constraints. Here we briefly present the essentials of a 2D sensor-positioning 
algorithm presented in [3]. The steps of the algorithm are as follows. 

1. Divide the view space into a partition Π of maximal regions such that the 
same set of edges is completely visible from all points of a region.  

2. Find the dominant zones (a zone Z of Π is dominant if no other zone Z* 
exists which covers the edges of Z plus some other)  

3. Select the minimum number of dominant zones able to cover all the faces. 

The idea of partition Π has been also proposed in restricted cases for robot self loca-
tion in [17], [18]. Step 1), and 2) of the algorithm can be performed in polynomial time 
(see [10] for the details). Step 3) is an instance of the well-known set covering problem, 
which in the worst case is exponential. However, covering the edges using the dominant 
zone only usually substantially reduces the computation complexity. In addition, in 
many cases several dominant zones are also essentials, that is they cover some edges not 
covered by the other dominant zone, and must be selected. Observe that there could be 
minimal solutions also including non-dominant zones. However, replacing a non domi-
nant regions with a dominant region covering the same edges plus some others provides 
multiple coverage of some edges, which is preferable for instance in the case of sensor 
failure. Some overlapping of the views is also useful for image registration.  

3   The 3D Algorithm 

The general idea of the 2D algorithm can be extended in 3D: 

Step 1- Compute a partition Π of the viewing space into regions Zi such that: 
-  The same set Fi = (Fp, Fq, ......Ft) of faces is completely visible from all points 

of Zi ∀ i 
-  The Zi are maximum regions, i.e. Fi ≠Fj for contiguous regions.  
The list of the visible faces must be associated to each region of Π. 

Step 2- Select the dominant regions.  A region Zi is defined to be dominant if there is 
no other region Zj of the partition such that Fi ⊂ Fj . 
Step 3- Select an optimal (or minimum) solution. A minimum solution consists of a 
set of dominant regions Sj= (Zj1, Zj2,...Zjk....) which covers F=∪Fi with the minimum 
number of members. 

In the following paragraph we will detail the steps of the algorithm. The environ-
ment is assumed to consist of simple polygons. Partition Π is built by means of a 
particular set of surfaces, called the active visibility surfaces. Each resulting region 
will be associated with the list of the faces that are completely visible from that zone. 
This set can be built traversing the partition graph from an initial region whose set of 
visible faces is known. Observe that interior inspection is similar, with a polygon 
enclosing the workspace and defining the outer border. 

3.1   Partition Π 

A visibility surface (VS) relative to a face divides the space into areas where the sur-
face is partially or totally hidden. A VS is an half-open planar surface starting at one 
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of the edges or at a vertex of a face, lying in the half space opposite to the inner side 
of the face. Also, each potential VS has a positive side, which is the side closer to the 
originating face. The angle between the normal of this surface and the normal of the 
originating face is in the range [0,π]. Examples can be seen in Fig. 1, where the ar-
rows mark the positive side of the VSs. Each VS can have an active and an inactive 
part. Only the active VSs are the effective boundaries of the visibility region of the 
corresponding surface. A VS is active when: 

1. the angle with the normal of the originating face is 0 and the surface is not enter-
ing the object in the proximity of the originating vertex or edge (VS of type I) 

2. it is tangent to another part of the object (or to another object) and in the 
neighborhood of this part, the inner side of the object lies on the negative side of 
the potential VS (that is, the VE surfaces defined in [8]). Those surfaces are de-
fined by a vertex of the object and an edge of the face (VS of type II) or by an 
edge of the object and a vertex of the face (VS of type III). A surface of the first 
type is an unbounded triangle starting at the vertex of the object; a surface of the 
second type is an unbounded trapezoid with the object edge as one of its sides. In 
both cases, the active part of the VS starts at the intersection point (Fig. 2). 

We can associate to each active VS an operator ^, where ^j means that the surface 
is the boundary between a region where face j is hidden and a region where the face 
j visible, and j is the face the VS relates to. The operator has also a direction, which 
points to the area where the face is visible (see Fig. 2). In the following we will use a 
result found in [21], that is: if the face is convex (and simply connected), its visibility 
region is connected. This property is useful in order to avoid more complex situation 
and allows pruning radically the initial set of potential VSs of a face. Therefore any 
concave face will be split into convex parts.  

 

 

Fig. 1. Example of VSs 

 

Fig. 2. VS of type II (left) and type III (right) 

Finding the active part of a VS 
For each initial VS, we must identify the part which is indeed active. In order to con-
struct the active VSs of type I, we must find the regions of the plane P of a face F 
from where its 2D silhouette is completely visible. Forcing F to be convex, its 2D 
silhouette from a viewpoint V corresponds to the list of edges of F totally visible from 
the viewpoint. The active VS of type I can be constructed in the following way: 

1. find on P the polygons corresponding to the intersection of the objects with P; let 
S, the initial active VS, be the union of all the regions in P where the 2D silhouette 
of F is completely visible;  
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2. for each edge, define as positive the side of the edge pointing to the internal part 
of the face; for each edge of the face closed by another face, or by another object 
intersecting the plane of the face, let H be the half plane in P bounded by the line 
containing the edge and corresponding to the positive side of the edge. Then S = 
S∩H (see Fig. 3). 

Consider Fig. 3 where a face F and its active VS of type I are shown; edges e1 and 
e2 are closed by other objects, H1 and H2 are the half planes bounded by e1 and e2. 

 
Fig. 3. Active part of the VS of types I 

The initial active VS on P can be evaluated using a modified version of the 2D re-
gion labeling algorithm of [3].  

The active part of a VS of type II can be found determining the parts of the initial 
unbounded triangular surface where the originating edge is entirely visible. The algo-
rithm is similar to the one used to find the active part of a VS of type I, that is: 

1. let P be the initial unbounded VS of type II 
2. find on P the polygons corresponding to the intersection of the objects with P; if 

one of the face is coplanar with P, it must not be considered if its normal is paral-
lel to the positive direction of P 

3. let S, the active VS, be the union of all the regions in P where the edge of F is 
visible 

An example can be seen in Fig. 4. 
Finally, the active part of a VS of type III can be found determining the parts of the 

initial unbounded trapezoidal surface where the originating vertex of F is visible. The 
algorithm is similar to the previous one, letting P at point 1 be the initial unbounded 
VS of type III. An example can be seen in Fig. 5. 

 

 
 

Fig. 4. Active part of a VS of type II Fig. 5. Active part of a VS of type III 
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Additional rules for potential VS to be active 
Some other conditions must be checked to identify an active VS.  

For a potential VS of type II or III, its orientation must be such that the plane con-
taining the surface intersects F only in the originating vertex or on the edges joining 
the vertex for a surface of type II, on the edge itself for a surface of type III. See for 
instance Fig. 6. The surface S relative to vertex V is lying on the plane P, whose in-
tersection with the face f1 is the line L. Therefore the surface S is not a potential VS.  

 

Fig. 6. Surface S is inactive 

 
 

Fig. 7. Only part of these surfaces is active Fig. 8. Only the most external surface is active 
 

Second, when the active parts of two VS relative to elements of the same face in-
tersect somewhere, they both stop at their intersection (see Fig. 7). The part of the VS 
that falls on the negative side of another VS becomes inactive. Finally, consider a set 
of VS of type III insisting on the same edge e. If one of the VS is found to be on the 
negative side of another VS, then it is inactive. See for instance Fig. 8(a) and (b), 
where only the outermost surface is active. In (b), e is the edge common to all the 
VSs. The same rule applies to VSs of type II insisting on the same vertex when previ-
ous rules do not apply (that is, when the VSs are not intersecting).  

3.2   The Algorithm 

Given the definition of VS and operator ^, we can outline a region labeling algorithm: 

1. find all the active VSs and the associate operator ^  
2. intersect all the active VSs and subdivide the space into regions  
3. select one region and compute the set of visibile faces V(f1,…,fn) for that zone  
4. visit all the regions and compute their set of visible faces with the following rules:  

a. when crossing a boundary between R1 and R2 in the direction of the operator 
^, the operand (j) is added to the set of visible faces of R2  

b. when crossing a boundary between R1 and R2 in the opposite direction of the 
operator ^, the operand (j) is removed from the set of visible faces of R2  
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An example of how the algorithm works can be seen in the following pictures. The 
original object is the L-shaped solid of Fig. 9 (left). The expression ^(e,f) as a short 
form for ^e and ^f.  

Now, let’s imagine to place our viewpoint in the half-plane defined by face 2. 
The object, the VS surfaces and the corresponding regions as seen from this view-
point are shown in Fig. 9 (right). The picture depict also the operators ^ and their 
sign for the boundaries outgoing the plane of face 2 (the information about other 
boundaries have been omitted for clarity). Let’s choose as starting region the central 
region of the figure, where the only visible face is 2. If we visit the partition moving 
southward, we cross a boundary declaring ^1 in the direction of crossing. The oper-
and (1) will become visible, and in the second region 1 and 2 will be visible. Now 
moving to the right, we cross a boundary declaring ^3 in the direction of crossing. 
Therefore 3 will become visible in the arrival region. Let’s make one more step 
upward. In the current region 1, 2 and 3 are visible. We cross the boundary in the 
opposite direction of ^1, therefore 1 will be hidden in the arrival region. By visiting 
all the regions following the rules specified in step 4 of the algorithm, the final 
result can be seen in Fig. 10.  

The algorithm has been implemented. An example of the sensor positioning can be 
seen in Fig. 11, where the white spheres represents the position of the two sensors 
placed. 

 

  

Fig. 9. Object (left) and boundaries of partition 
Π (right) 

Fig. 10. Labeled regions 

4   Complexity  

To find the active VSs, given n faces, we have O(n2) VE surfaces. Checking if a sur-
face intersects the polyhedron at one the edges can be done in constant time. For each 
surface, checking the extra conditions and finding the active surfaces requires inter-
secting each surface with any other and sorting the intersections. Overall O(n2) Vss 
can be obtained in O(n3logn) time. A classic algorithm can create the partition Π in 
O(n6) time. We should stress that this is the asymptotic complexity, while the dif-
ference is substantial in real world scenes. For instance, in the example of Fig. 11, the 
faces of the objects are 12, the active VSs after pruning 16, and the regions of the 
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Fig. 11. Objects (blue), boundary lines of partition Π (yellow), and sensor position (white 
spheres) 

partition are 75. Computing the visible surfaces of the starting region takes 
O(n2) time [14]. The time required for traversing the partition is O(p) where p is the 
number of vertices of the partition (regions and edges also are O(p)) [2]. To find d 
dominant zones, we must compare the sets of visible faces of each region. This proc-
ess can be shortened if we observe that a necessary condition for a region to be domi-
nant is that all the positive crossing directions of the boundaries of the region lead to 
the interior of the region (except for the faces of the objects). Given c candidate found 
with this rule, d dominant regions can be found in O(nc2) time [10]. Step 3 requires, in 
the worst case, exponential time. However, an interesting alternative could be using a 
greedy heuristic, which selects the region covering the largest number of uncovered 
faces each time, requiring polynomial time. 

5   Conclusions 

In this paper a method for positioning a minimum number of sensors into a 3D poly-
hedral environment has been presented for some sample cases. With this approach is 
also simple to take into account additional constraints besides the visibility constraint 
by adding other rules to the process of generation of the Vss, since for each face f the 
constraints define a region C(f) of the space where the viewpoint can be located. The 
approach has been implemented and results have been presented. Future work will be 
focused on extending the algorithm in order to consider the general case of face cov-
ering, and not only its integer face covering restriction. The idea it is to develop an 
iterative algorithm for the general problem. This requires finding a lower bound for 
the number of sensors needed. Then we can evaluate the integer solution and check if 
they match. Otherwise, subdividing some of the initial surfaces and reapplying the 
integer algorithm can refine the solution. Rules for finding indivisible edges must be 
studied as well. 
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Abstract. This paper generalizes the technique described in [1] to gray-
scale image processing applications. This method chooses a subset of
variables W (i.e. pixels seen through a window) that maximizes the in-
formation observed in a set of training data by mean conditional entropy
minimization. The task is formalized as a combinatorial optimization
problem, where the search space is the powerset of the candidate vari-
ables and the measure to be minimized is the mean entropy of the esti-
mated conditional probabilities. As a full exploration of the search space
requires an enormous computational effort, some heuristics of the feature
selection literature are applied. The introduced approach is mathemati-
cally sound and experimental results with texture recognition application
show that it is also adequate to treat problems with gray-scale images.

1 Introduction

The paper [1] discusses a technique based on information theory concepts to es-
timate a good W-operator to perform binary image transformations (e.g. noisy
image filtering). A W-operator is an image transformation that is locally defined
inside a window W and translation invariant [2]. This means that it depends just
on shapes of the input image seen through the window W and that the trans-
formation rule applied is the same for all image pixels. A remarkable property
of a W-operator is that it may be characterized by a Boolean function which
depends on |W | variables, where |W | is the cardinality of W .

Here, the W-operator will be extended to be applied to gray-scale images.
For this, instead of considering it as a Boolean function, we will consider it as
a function whose domain is a vector of integer numbers (gray levels) and the
output is a integer number (one of the considered classes). Then, the method
developed in [1] can be extended to deal with this problem in a similar way to
the design of W-operators for binary image transformations.

In order to build the training set, the adopted window collects feature vectors
(vectors of integer numbers representing gray levels) translating over the input
gray-scale images. From this training set, a gray-scale W-operator is estimated.
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This task is an optimization problem. The training data gives a sample of
a joint distribution of the observed feature vectors and their classification. A
loss function measures the cost of a feature vector missclassification. An oper-
ator error is the expectation of the loss function under the joint distribution.
Given a set of operators, the target operator is the one that has minimum error.
As, in practice, the joint distribution is known just by its samples, it should be
estimated. This implies that operators error should also be estimated and, con-
sequently, the target operator itself should be estimated. Estimating an operator
is an easy task when the sampling of the joint distribution considered is large.
However, this is rarely the case. Usually, the problem involves large windows
with non concentrated probability mass joint distributions requiring prohibitive
amount of training data.

The fact that each pixel in gray-scale images contains more than two pos-
sible values worsens the problem of lack of training data. Because of this, an
approach for dealing with the lack of training data becomes even more required.
By constraining the considered space of operators, less training data is necessary
to get good estimations of the best candidate operator [3]. However, depending
on how many gray levels exists in an image, the constraint may be so excessive
that even the best operator of such space lead to very bad classification results.
Therefore, quantization is usually necessary.

In this paper, we discuss how to apply the criterion function used in [1] to
estimate an sub-window W ∗ that gives one of the best operators to perform
classification over images with arbitrary number of gray levels and arbitrary
number of classes.

The search space of this problem is the powerset of W , denoted P(W ). The
criterion to be minimized is the degree of mixture of the observed classes. The
mean conditional entropy is adopted as a measure of this degree. The impor-
tant property of entropy explored here is that when the probability mass of a
distribution becomes more concentrated somewhere in its domain, the entropy
decreases. This means that when a given feature vector defined in a window
has a majoritary label (i.e. it is classified almost always in a same class), its
entropy of the conditional distribution should be low. Thus, the optimization
algorithm consists in estimating the mean conditional entropy for the joint dis-
tribution estimated for each sub-window and choosing the one that minimizes
this measure.

Each observed feature vector has a probability and a corresponding condi-
tional distribution from which the entropy is computed. The mean conditional
entropy is the mean of the computed entropies, weighted by the feature vector
probabilities.

As P(W ) has an exponential size in terms of the cardinality of W , we adopted
some heuristics to explore this space in reasonable computational time. The
adopted heuristic was the SFFS feature selection algorithm [4].

Following this Introduction, Section 2 recalls the mathematical fundamentals
of W-operators design with extension to gray-scale images. Section 3 introduces
the definitions and properties of the mean conditional entropy and presents the
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proposed technique for generating the minimal window and, consequently, choos-
ing a minimal family of operators. Section 4 presents results of the application of
the proposed technique to recognize textures with multilevel gray tone. Finally,
Section 5 presents some concluding remarks of this work.

2 W-Operator Definition and Design

In this section, we recall the notion of W-operator and the main principles for
designing W-operators from training data.

2.1 W-Operator Definition and Properties

Let E denote the integer plane and + denote the vector addition on E. The
opposite of + is denoted −. An image is a function f from E to L = {1, ..., k},
where k is the number of gray tones.

The translation of an image f by a vector h ∈ E is the image f(x)h. An image
classification or operator is a mapping Ψ from LE into Y E , where Y = {1, ..., c}
is the set of labels (classes).

An operator Ψ is called translation invariant iff, for every h ∈ E and f ∈ LE ,

Ψ(fx) = (Ψ(f))x . (1)

Let W be a finite subset of E. A constraint class of f over W , denoted Cf |W ,
is the family of functions whose constraint to W results in f |W , i.e.,

Cf |W = {g ∈ LE : f |W = g|W} . (2)

An operator Ψ : LE → Y E is called locally defined in the window W iff, for
every x ∈ E, f ∈ LE .

Ψ(f)(x) = Ψ(g), ∀g ∈ Cf−x|W . (3)

An operator is called a W-operator if it is both translation invariant and
locally defined in a finite window W . Given a W-operator Ψ : LE → Y E , exists
one characteristic function ψ : LW → Y such that:

Ψ(f)(x) = ψ(f−x|W ), ∀x ∈ E . (4)

2.2 W-Operator Design

Designing an operator means choosing an element of a family of operators to per-
form a given task. One formalization of this idea is as an optimization problem,
where the search space is the family of candidate operators and the optimization
criteria is a measure of the operator quality. In the commonly adopted formula-
tion, the criteria is based on a statistical model for the images associated to a
measure of images similarity, the loss function.
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Let S and I be two discrete random functions defined onE, i.e. realizations of S
or I are images obtained according with some probability distribution on LE . Let
us model image transformations in a given context by the joint random process
(S, I), where the process S represents the input images and I the output images.
The process I depends on the process S according to a conditional distribution.

Given a space of operators F and a loss function � from L × L to �+,
the error Er[Ψ ] of an operator Ψ ∈ F is the expectation of �(Ψ(S), I), i.e.,
Er[Ψ ] = E[�(Ψ(S), I)]. The target operator Ψopt is the one of minimum error,
i.e., Er[Ψopt] ≤ Er[Ψ ], for every Ψ ∈ F .

A joint random process (S, I) is jointly stationary in relation to a finite
window W , if the probability of seeing a given feature vector in the input image
through W together with a given value in the output image is the same for every
translation of W , that is, for every x ∈ E,

P ((S|Wx, I(x)) = P (S|W, I(o)) , (5)

where S is a realization of S, I is the function equivalent to a realization of I,
and o is the origin of E.

In order to make the model usable in practice, from now on suppose that
(S, I) is jointly stationary w.r.t the finite window W . Under this hypothesis,
the error of predicting an image from the observation of another image can be
substituted by the error of predicting a pixel from the observation of a feature
vector through W and, consequently, the optimal operator Ψopt is always a W-
operator. Thus, the optimization problem can be equivalently formulated in the
space of functions defined on LW , with joint random processes on (LW , Y ) and
loss functions � from L× L to �+.

In practice, the distributions on (LW , Y ) are unknown and should be esti-
mated, which implies in estimating Er[ψ] and ψopt itself. When the window is
small or the distribution has a probability mass concentrated somewhere, the
estimation is easy. However, this almost never happens. Usually, we have large
windows with non concentrated mass distributions, thus requiring prohibitive
amount of training data.

An approach for dealing with the lack of data is constraining the search space.
The estimated error of an operator in a constrained space can be decomposed
as the addition of the error increment of the optimal operator (i.e., increase
in the error of the optimal operator by the reduction of the search space) and
the estimation error in the constrained space. A constraint is beneficial when
the constraint estimation error decreases (i.e., w.r.t the estimation error in the
full space) more than the error increment of the optimal operator. The known
constraints are heuristics proposed by experts.

3 Window Design by Conditional Entropy Minimization

Information theory has its roots in Claude Shannon’s works [5] and has been suc-
cessfully applied in a multitude of situations. In particular, mutual information
is a useful measure to characterize the stochastic dependence among discrete
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random variables [6] [7] [8]. It may be applied to feature selection problems in
order to help identifying good subspaces to perform pattern recognition [9] [10].
For instance, Lewis [11] explored the mutual information concept for text cate-
gorization while Bonnlander and Weigend used similar ideas for dimensionality
reduction in neural networks [12]. Additional works that may also be of interest
include [13] [14]. An important concept related to the mutual information is the
mean conditional entropy, which is explored in our approach.

3.1 Feature Selection: Problem Formulation

Given a set of training samples T where each sample is a pair (x,y), a function ψ
from Ln to Y = {1, ..., c}, called a classifier, may be designed. Feature selection
is a procedure to select a subset Z of I = {1, 2, ..., n} such that XZ be a good
subspace of X to design a classifier ψ from L|Z| to Y .

The choice of Z creates a constrained search space for designing the classifier
ψ. Z is a good subspace, if the classifier designed in Z from a training sample T
has smaller error than the one designed in the full space from the same training
sample T .

Usually, it is impossible to evaluate all subsets Z of I. Two different aspects
involve searching for most suitable subsets: a criterion function and a search
algorithm (often based on heuristics in order to cope with the combinatorial
explosion) [15]. There are many of such algorithms proposed in the literature
and the reader should refer to [16] for a comparative review.

Next section explains how we explore the mean conditional entropy as a
criterion function to distinguish between good and bad feature subsets.

3.2 Mean Conditional Entropy as Criterion Function

Let X be a random variable and P be its probability distribution. The entropy
of X is defined as:

H(X) = −
∑
x∈X

P (x)logP (x) , (6)

with log0 = 0. Similar definitions hold for random vectors X. The motivation
for using the entropy as a criterion function for feature selection is due to its
capabilities of measuring the amount of information about labels (Y ) that may be
extracted from the features (X). The more informative is X w.r.t. Y , the smaller
is H(Y |X). The basic idea behind this method is to minimize the conditional
entropy of Y w.r.t the instances xZi

of XZ.
The criterion function adopted by the algorithm is the mean conditional

entropy as described in [1] (Equation 7).

Ê[H(Y |XZ)] =
|L||Z|∑
i=1

Ĥ(Y |XZi) · (oi + α)
α|L||Z| + t

, (7)

where Ĥ(Y |XZi
) is the entropy of the estimated conditional probability

P̂ (Y |XZi
), oi is the number occurrences of XZi

in the training set, t is the total
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number of training samples, |L||Z| is the number of possible instances of XZ

and α is a weight factor used to model P (XZ) in order to circumvent problems
when some instances of XZ are not observed in the training data. These non
observed instances lead to prior entropy of Y (Ĥ(Y )), which is slightly different
from the criterion defined by [1] based on the entropy of the uniform distribution
(maximum entropy).

Thus, feature selection may be defined as an optimization problem where we
search for Z∗ ⊆ I such that:

Z∗ : H(Y |XZ∗) = minZ⊆I{Ê[H(Y |XZ)]} , (8)

with I = {1, 2, ..., n}.
Dimensionality reduction is related to the U-curve problem where classifica-

tion error is plotted against feature vector dimension (for an a priori fixed num-
ber of training samples). This plot leads to a U-shaped curve implying that an
increasing dimension initially improves the classifier performance. Nevertheless,
this process reach a minimum after which estimation errors degrades the clas-
sifier performance [15]. As it would be expected, the mean conditional entropy
with α positive and conditional entropies of non observed instances conveniently
treated reflects this fact, thus corroborating its use for feature selection [1].

4 Experimental Results

This section presents a method for texture classification that uses the SFFS
algorithm with mean conditional entropy to design W-operators that classify

Fig. 1. Textures with 256 gray levels used in this experiment
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(a) (b) (c)

Fig. 2. Typical subwindows obtained using the textures of the Figure 1 to design the
W-operator. (a) k′ = 2, 20% of pixels to form the training set; (b) k′ = 4, 20% of pixels
to form the training set; (c) k′ = 8, 40% of pixels to form the training set.
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Fig. 3. Histograms of label frequency after the classification performed by the W-
operator for each region of the Figure 1 (40% of pixels used to form the training set;
k′ = 8). The textures are numbered from 1 to 9 and the histograms are placed in raster
order by these numbers.

gray-scale textures. Figure 1 shows an example containing 9 textures with 256
gray tones (c = 9 and k = 256).

The training set used to choose the window points and design the W-operator
under this window is obtained from input textures. A window of fixed dimen-
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(a) (b)

(c) (d)

Fig. 4. Final results after applying the mode filters post-processing. (a) k′ = 2, 10% of
pixels to form the training set, MAE = 0.1020; (b) k′ = 2, 20% of pixels to form the
training set, MAE = 0.0375; (c) k′ = 4, 20% of pixels to form the training set, MAE
= 0.0095; (d) k′ = 8, 40% of pixels to form the training set, MAE = 0.0037.

sions is centered at each selected pixel collecting the feature vector observed and
its respective label (texture). Each feature vector is quantized in order to avoid
excessive constraining in the space of W-operators that can be estimated ade-
quately. Given a quantization degree k′ < k, the lowest and highest gray levels
observed in the considered feature vector form a interval which is divided in k′

intervals of equal size. Then, these intervals are used to do the quantization of
the collected feature vector. Thus, each quantized feature vector together with
its label form a training sample.

The feature selection algorithm used to choose the window points is the
Sequential Floating Forward Selection (SFFS). This algorithm has a good cost-
benefit, i.e., it is computationally efficient and returns a very good feature sub-
space [4]. The criterion function used to drive this method is the mean conditional
entropy as defined by Equation 7.

We have analyzed the MAE (Mean Absolute Error) obtained by application
of our technique using as input nine textures presented in Figure 1 with increas-
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Table 1. Average, standard deviation, minimum and maximum for MAE results after
10 executions for increasing number of training samples (% of pixels) and increasing
quantization level k

Training samples
10% 20% 40%

avg 0.0899 0.0345 0.0151
±std ±0.0099 ±0.0049 ±0.0019

k′ = 2 min 0.0723 0.0281 0.0121
max 0.1020 0.0420 0.0182
avg 0.0711 0.0097 0.0087
±std ±0.0082 ±0.0008 ±0.0010

k′ = 4 min 0.0628 0.0085 0.0071
max 0.0859 0.0110 0.0100
avg 0.0270 0.0176 0.0038
±std ±0.0033 ±0.0019 ±0.0003

k′ = 8 min 0.0197 0.0157 0.0033
max 0.0308 0.0218 0.0043

ing quantization degrees k′ (2, 4 and 8), increasing number of training samples
(10%, 20% and 40% of pixels of each texture randomly chosen) and a 7 by 7
window (49 features in total). The designed W-operator observes and quantizes
the feature vectors through a subset of the window points (chosen by SFFS with
mean conditional entropy) to label the pixel centered at this window. The re-
sults presented here took as the image test, the image of the Figure 1. Typical
subwindows obtained are ilustrated by Figure 2.

In all cases, each region correponding to one of the textures received the
correct label with significant majority. Figure 3 shows a histogram for pixel
classification of the nine considered regions, using k′ = 8 and 40% of the image to
form the training data. These histograms do not take into account the undefined
labels.

In order to remove the undefined labels and improve the final texture seg-
mentation, one step of post-processing is proposed. This step is an application
of the mode filter multiple times for decreasing window dimensions. The mode
filter is a window-based classifier that translates a window over all pixels of the
labeled image produced by the designed W-operator and attributes the most
frequent label observed to its central pixel. We propose the application of mode
filter to windows with the following dimensions in the same order as they ap-
pears: 15 × 15, 13 × 13, 11 × 11, 9 × 9, 7 × 7, 5 × 5, 3 × 3. Assuming that
there are many more correct labels than incorrect ones (see Figure 3), this step
helps to eliminate errors, although, depending on similarity among textures in
certain regions, there is a risk to propagate errors.

Figure 4 presents the final texture segmentation result of the image presented
by Figure 1, for 4 distinct pair values (k′, % of training samples). Results ob-
tained using the textures of the Figure 1 as input after 10 executions for each
considered pair (k′, % of training samples) are summarized in the Table 1. Note
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(a) (b)

(c) (d)

Fig. 5. (a) Mosaic of textures obtained from the Figure 1; (b) Correponding template
of labels; (c) Final result using k′ = 4 and 20% of pixels from the textures of Figure 1
(MAE = 0.0380); (d) Corresponding texture segmentation

that the results are satisfactory even taking small training samples to design the
W-operators. Also is important to note that quantizations k′ = 4 and k′ = 8
lead to better results than those obtained by k′ = 2, although this last quan-
tization level already presents good results. Finally, a result obtained from the
mosaic of the Figute 5(a) using k′ = 4 and 20% of pixels from the textures of
Figure 1 to design the W-operator is ilustrated by Figure 5(c), showing that
our method is adequate for segmentation of small textures. Figure 5(b) shows
its corresponding template of labels and Figure 5(d) shows the corresponding
texture segmentation.

5 Concluding Remarks

This paper presents an extension for the design of W-operators from training
data to be applied to gray-scale image analysis. A hypothesis for applying the
presented approach is that the conditional probabilities of the studied pattern
recognition problem have mass concentrated in one class when the problem has
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a good solution. Experimental results with texture recognition have been pre-
sented.

The proposed technique is general and may be applied in a wide range of
image processing problems besides texture segmentation, including document
analysis and color image processing.

For the estimation of the conditional entropy it is required the estimation of
the conditional probabilities P (Y |XZ) and the prior distribution P (XZ). The
conditional probabilities are estimated based on simple counting of the observed
classifications of a given feature vector. The entropy for XZ is computed from
the estimated distribution P̂ (Y |XZ). The distribution of P (Y |XZ) when XZ is
not observed in training set were considered uniform in [1]. But the conditional
entropy H(Y |XZ) can not be higher than the entropy a priori of Y (H(Y )),
since the information a priori about Y cannot decrease.

The parameter α in Equation 7 gives a determined probability mass for the
non-observed instances. We have verified empirically that this parameter fixed
as 1 leads to a very good balance between error due to noise in feature vector
classification and estimation error. However, this parameter could be estimated
from the training data in order to obtain better results. We are currently working
on this problem to improve the proposed technique.

A branch and bound feature selection algorithm that explores the ”U-curve”
effect by our mean conditional entropy estimator [1] is under development. The
goal is to obtain the optimal feature subspace in reasonable computational time.
Results will be reported in due time.
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Abstract. In this paper we consider some questions related to the ori-
entation of shapes when the standard method does not work. A typical
situation is when a shapes under consideration has more than two axes of
symmetry or if the shape is n-fold rotationally symmetric, when n > 2.
Those situations are well studied in literature. Here, we give a very sim-
ple proof of the main result from [11] and slightly adapt their definition
of principal axes for rotationally symmetric shapes. We show some de-
sirable properties that hold if the orientation of such shapes is computed
in such a modified way.

Keywords: Shape, orientation, image processing, early vision.

1 Introduction

The computation of a shape’s orientation is a common task in the area of com-
puter vision and image processing, being used for example to define a local frame
of reference, and helpful for recognition and registration, robot manipulation, etc.
It is also important in human visual perception; for instance, orientable shapes
can be matched more quickly than shapes with no distinct axis [8]. Another
example is the perceptual difference between a square and a diamond (rotated
square) noted by Mach in 1886 [6], which can be explained by their multiple
reference frames, i.e. ambiguous orientations [8]. There are situations (see Fig. 1
(a), (b), (c)) when the orientation of the shapes seems to be easily and naturally
determined. On the other hand, a planar disc could be understood as a shape
without orientation.

Most situations are somewhere in between. For very non-regular shapes it
could be difficult to say what the orientation should be – see Fig. 6(a),(b).
Rotationally symmetric shapes can also have poorly defined orientation – see Fig
2 (d). Moreover, even for regular polygons (see Fig. 2 (a) and (b)) is debatable
whether they are orientable or not. For instance, is a square an orientable shape?
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(a) (b) (c)

Fig. 1. It is reasonable to say that the orientation of the presented shapes coincide
with the dashed lines

The same question arises for any regular n-gon, but also for shapes having several
axes of symmetry, and n-fold (n > 2) rotational symmetric shapes – see shapes
from Fig. 2. It is known ([11]) that the standard method, based on computing
the axis of the last second moment, does not suggest any answer what the shape
orientation should be if applied to n-fold (n > 2) rotationally symmetric shapes.

An compromised answer could be that such shapes are orientable but they
do not have the unique orientation. Naturally, if a n-fold rotationally symmetric
shape is considered as an orientable shape, than it should be n lines (making
mutual angles that are multiplication of 2π

n ) that define its orientation. If a shape
has n axes of symmetry than it is reasonable to use such axes to represent the
shape orientation. Some solutions are proposed in [5,9,11], for example.

(a) (b) (c) (d)

Fig. 2. The dashed lines seem to be reasonable candidates to represent the orientation
of the shapes (a), (b), and (c). It is not quite clear what the orientation of 4-fold
rotationally symmetric shape (d) should be.

2 Standard Method for Computing Orientation

In this section we give a short overview of the method which is mostly used in
practice for computing orientation.
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The standard approach defines the orientation by the so called axis of the
least second moment ([1,2]). That is the line which minimizes the integral of
the squares of distances of the points (belonging to the shape) to the line. The
integral is

I(δ, ρ, S) =
∫
S

∫
r2(x, y, δ, ρ)dxdy (1)

where r(x, y, δ, ρ) is the perpendicular distance from the point (x, y) to the line
given in the form

x · cos δ − y · sin δ = ρ.

It can be shown that the line that minimizes I(S, δ, ρ) passes through the centroid
(xc(S), yc(S)) of the shape S where (xc(S), yc(S)) =

(��
S

xdxdy��
S

dxdy
,

��
S

ydxdy��
S

dxdy

)
. In

other words, without loss of generality, we can assume that the origin is placed at
the centroid. Since required line minimizing I(S, δ, ρ), passes through the origin
we can set ρ = 0. In this way, the shape orientation problem can be reformulated
to the problem of determining δ for which the function I(S, δ) defined as

I(δ, S) = I(δ, ρ = 0, S) =
∫
S

∫
(−x · sin δ + y · cos δ)2dxdy1

reaches the minimum.
Further, if the central geometric moments mp,q(S) are defined as usually

mp,q(S) =
∫
S

∫
(x− xc(S))p · (y − yc(S))q dx dy,

and by the assumed (xc(S), yc(S)) = (0, 0), we obtain

I(δ, S) = (sin δ)2 ·m2,0(S)− sin(2 · δ) ·m1,1,(S) + (cos δ)2 ·m0,2(S). (2)

The minimum of the function I(δ, S) can be computed easily. Setting the first
derivative I ′(x, S) to zero, we have

I ′(δ, S) = sin(2δ) · (m2,0(S)−m0,2(S))− 2 · cos(2δ) ·m1,1(S) = 0.

That easily gives that the required angle δ, but also the angle δ + π/2, satisfies
the equation

sin(2δ)
cos(2δ)

=
2 ·m1,1(S)

m2,0(S)−m0,2(S)
. (3)

Thus, the maximum and minimum of I(δ, S) are easy to compute.
Let us mention that, when working with digital objects which are actually

digitizations of real shapes, then central geometric moments mp,q(S) are replaced
with their discrete analogue, i.e., with the so called central discrete moments.
1 The squared distance of a point (x, y) to the line X ·cos δ−Y ·sin δ = 0 is (−x sin δ+

y cos δ)2.
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Since the digitization on the integer grid Z2 of a real shape S consists of all
pixels whose centers are inside S it is natural to approximate mp,q(S) by the
central discrete moment Mp,q(S) defined as

Mp,q(S) =
∑

(i,j)∈S∩Z2

(i− xcd(S))p · (j − ycd(S))q

where (xcd(S), ycd(S)) is the centroid of the discrete shape S ∩ Z2. For some
details about the efficiency of the approximation mp,q(S) ≈Mp,q(S) see [3].

If the all geometric moments in (3) are replaced with the corresponding
discrete moments we have the equation

sin(2δ)
cos(2δ)

=
2 ·M1,1(S)

M2,0(S)−M0,2(S)
(4)

which describes the angle δ which is used to describe the orientation of discrete
shape S ∩ Z2.

So, the standard method is very simple (in both “real” and “discrete” ver-
sions) and it comes from a natural definition of the shape orientation. However,
it is not always effective. Indeed, if I(δ, S) is a constant function then the method
does not work – i.e., it does not tell us what the angle should be used to define
the orientation of S. I(δ, S) = contsnt can happen for very non regular shapes
but perhaps the most typical situation is when the considered shape S has more
than two axes of symmetry, or more generally, if S is an n-fold rotationally
symmetric shape (with n > 2).

The next lemma (it is a particular case of Theorem 1 from [11]) proves easily
that the standard method cannot be used if the measured shape has more than
two symmetry axes.

Lemma 1. If a given shape has more than two axes of symmetry then I(δ, S)
is a constant function.

Proof. From (2) it is obvious that I(δ, S) can have no more than one maximum
and one minimum on the interval [0, π) or it must be a constant function. Triv-
ially I(0, S) = I(π, S). So, if S has more than two axes of symmetry then I(δ, S)
must be constant since the first derivative I ′(δ, S) does not have more than two
zeros on the interval [0, π). [[[]]]

Remark 1. Lemma 1 implies I(S, δ) = 1
2 ·(m2,0(S)+m0,2(S)) (for all δ ∈ [0, π))

if S has more than two symmetry axes. The standard method does not tell us
what the orientation should be in such a situation. Obviously, the standard
method is limited by the simplicity of the function I(δ, S).

3 High-Order Principal Axes

In [11] it has been noted that the standard method does not work if applied to
n-fold (n > 2) rotationally symmetric shapes. As usual, rotationally symmetric



On Shape Orientation When the Standard Method Does Not Work 829

shapes are such shapes which are identical to itself after being rotated through
any multiple of 2π

n (the problem of detecting number of folds but also the problem
of detecting symmetry axes are well studied – see [4,7,10], for example). So, if a
discrete point set S is n-fold rotationally symmetric then it is of the form

S =
{

(ri, θi,j) | i = 1, . . . ,m, j = 1, . . . , n, and θi,j = θi,1 + (j − 1)
2π
n

}
(5)

where points (ri, θi,j) from S are given in polar coordinates.
As mentioned, the function I(δ, S) is not a strong enough mathematical tool

to be used for the defining the orientation of n-fold (n > 2) rotationally symmet-
ric shapes. In order to overcome such a problem, the authors of [11] proposed
the use of the N th-order central moments of inertia. A precise definition follows.

Definition 1. Let a shape S whose centroid coincide with the origin. Then,
the N -order central moment of inertia, denoted as IN (δ, S) about a line going
through the shape centroid with slope tan δ is defined as

IN (δ, S) =
∑

(x,y)∈S

(−x sin δ + y cos δ)N . (6)

In other words, the authors suggest that a more complex function than (2) should
be used. Obviously, if N = 2 we have the standard method.

A nice result, related to n-fold rotationally symmetric shapes and their corre-
sponded N th-order central moments has been proven in [11]. The proof presented
in [11] is pretty long. Here, we give a very elemental proof.

Theorem 1. ([11]) For an n-fold rotationally symmetric shape S, having the
centroid coincident with the origin, its N th-order central moment of inertia
IN (δ, S) is constant about any line going through its centroid for all N less than
n.

Proof. Let an n-fold rotationally symmetric shape S, with the centroid placed
at the origin. Setting the first derivative of IN (δ, S) to be equal to zero, we
can derive that there are not more than 2N values of δ for which dIN (δ, S)/dδ
vanishes, if IN (δ, S) is not a constant function. Indeed, starting form

dIN (δ, S)
dδ

=
∑

(x,y)∈S

N · (−x sin δ + y cos δ)N−1 · (−x cos δ − y sin δ) (7)

we will distinguish two situations – denoted below by (i) and (ii).
(i) – If δ = 0 and δ = π (i.e. sin δ = 0) are not solution of dIN (δ, S)/dδ = 0,

then (from (8))

dIN (δ, S)
dδ

= 0 ⇔ (sin δ)N ·
∑

(x,y)∈S

(−x + y cot δ)N−1 · (x cot δ + y) = 0.
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Since the quantity ∑
(x,y)∈S

(−x + y cot δ)N−1 · (x cot δ + y)

is an N -degree polynomial on cot δ it cannot have more than N real zeros

cot δ = z1, cot δ = z2, . . . , cot δ = zk, (k ≤ N).

In other words, because of cot δ = cot(δ + π) the equation

dIN (δ, S)
dδ

= 0

has no more than 2N solutions.
(ii) – If δ = 0 and δ = π (i.e. sin δ = 0) are solution of dIN (δ, S)/dδ = 0,

then easily (see (8)) ∑
(x,y)∈S

x · yN−1 = 0. (8)

But, in such a situation

P (cot δ) =
∑

(x,y)∈S

(−x + y cot δ)N−1 · (x cot δ + y)

is an (N − 1)-degree polynomial on cot δ (see (10), the coefficient of (cot δ)N

vanishes). Consequently, P (cot δ) cannot have more than N − 1 real zeros:

cot δ = z1, cot δ = z2, . . . , cot δ = zk, (k ≤ N − 1),

i.e. there are no more than 2(N − 1) values of δ for which P (cot δ) vanishes. So,
again, dIN (δ, S)d/δ = 0 has at most 2N solutions, including δ = 0 and δ = π.

Thus, the number of zeros that could have dIN (δ, S)/dδ is not bigger than
2N .

On the other side, if S is a fixed n-fold rotationally symmetric shape, then
IN (δ, S) must have (because of the symmetry) at least n local minima and n
local maxima (one minimum and one maximum on each interval of the form
[β, β+2π/n), or it must be a constant function. That means, dIN (δ, S)/dδ must
have (at least) 2n zeros δ1, δ2, . . . , δ2n.

Since the presumption N < n does not allow 2n zeros of dIN (δ, S)/dδ
if IN (δ, S) is not a constant functions, we just derived a contradiction. Thus
IN (δ, S) must be a a constant function for all N less than n. [[[]]]

4 Comments on High-Order Principal Axes

The computing orientation is not always easy and straightforward. As shown by
Lemma 1, even the orientation of a square cannot be computed if the standard
method is applied. Once again, the standard method, if works, gives only one
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line which should represent the shape orientation. Lemma 1 is related to the
shapes having more than two axes of symmetry but there are also irregular
shapes whose orientation is not computable by the standard method. Since it
is clear that the function (2) (that uses the second degree moments only) is
not powerful enough to define the orientation of any shape, [11] involves more
complex functions IN (δ, S) that should be used to define the orientation of n-fold
rotationally symmetric shapes.

Precisely, [11] defines an N -th order principal axis of a degenerate shape S
(a shape for which the standard method does not work) as a line going through
the centroid of S about which the IN (δ, S) is minimized. Then, the orientation
of S is defined by one of N -th order principal axes. Of course, for any fixed N
there are still shapes whose orientation cannot be computed in this generalized
manner – it is enough to consider an n-fold rotationally symmetric shape with
n > N (see Theorem 1).

Theorem 1 gives a clear answer that for an n-fold rotationally symmetric
shape, the N -th order principal axes cannot be determined for all N < n. On the
other side, even Theorem 1 says nothing about the existence of minima (maxima)
of IN=n(δ, S) it seems that N = n could be an appropriate choice of the order to
define the high order principal axes for an n-fold rotationally symmetric shape.
If n-th order principal axes of an n-fold rotationally symmetric shape S exist,
then they can be computed easily, as given by the next lemma.

Lemma 2. ([11]) The directions, δ, of the N th-order principal axes of an n-fold
rotationally symmetric S satisfy following equations:

tan(nδ) =


n ·Mn−1,1(S)

Mn,0(S)− (n− 1) ·Mn−2,2(S)
if n is even

−Mn,0(S)
Mn−1,1(S)

if n is odd.

Remark 2. It is important to notice that Lemma 2 does say nothing if S is not
n-fold rotationally symmetric.

Some examples of shape orientations obtained by a use of higher order prin-
cipal axes are given Fig. 3. In the presented cases, the method satisfies the basic
request for which it was involved - i.e. it suggests a precise answer what the
orientation of n-fold symmetric shapes should be. That could be enough for, let
say, an image normalization task. Also, a very nice property is given by Lemma
2 – i.e. in the case when S is an n-fold rotationally symmetric shape (with a
known n) then the computation of principal axes is very simple.

On the other side, just looking at the presented example, we can see that
sometimes (even case) the orientation coincide with one of symmetry axes, but
sometimes (odd case) does not. That could be a strong objection. This disadvan-
tage is caused by the fact that there is no a good enough “geometric” motivation
for a use of centralized geometric moments having an odd order. The preference
that the shape orientation coincides with one of its symmetry axes (if any) seems
to be very reasonable.
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Fig. 3. The principal axes (obtained as suggested in [11]) for regular 3, 4, 5, 6, 7, and
8-gons are presented

The situation is even worse. If a shape S has at least one symmetry axis and
if the orientation is computed as the line that minimizes I2k+1(β, S) then very
likely such a line will not coincide with any axis of symmetry of S. Indeed, let
an axis-symetric set S. Without loss of generality we can assume that this axis
coincides with the x-axis. So, S is the union of the sets:

– Set A which consists of all points from S that have a positive y coordinate;
– set B which consists of all points from S that have a negative y coordinate;
– set C which consists of all points from S that have y coordinate equal to zero.

Since x-axis is a symmetry axis of S, we have (x, y) ∈ A ⇔ (x,−y) ∈ B. Thus,
we can write:

I2k+1(δ, S) =
∑

(x,y)∈A

(−x sin δ + y cos δ)2k+1 +
∑

(x,y)∈B

(−x sin δ + y cos δ)2k+1

+
∑

(x,y)∈C

(−x sin δ + y cos δ)2k+1 =

=
∑

(x,y)∈A

(
(−x sin δ + y cos δ)2k+1 + (−x sin δ − y cos δ)2k

)
+

∑
(x,0)∈C

2k(−x sin δ)2k+1.

The first derivative is

dI2k+1(δ, S)
dδ

=
∑

(x,y)∈A

(2k + 1) · (−x sin δ + y cos δ)2k · (−x cos δ − y sin δ)
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+
∑

(x,y)∈A

(2k + 1) · (−x sin δ − y cos δ)2k · (−x cos δ + y sin δ)

+
∑

(x,0)∈C

(2k + 1) · (−x sin δ)2k(−x cos δ).

From the last equality we obtain

d2I2k+1(0, S)
dδ2 = −(4k + 2)

∑
(x,y)∈A

xy2k = −(4k + 2)M1,2k(S).

Thus, d2I2k+1(0, S)/dδ2 is not necessarily equal to zero and, consequently, a
maximum is not guaranteed.

It is interesting to note d2I2k+1(π/2, S)/dδ2 = 0. So, if I2k+1(δ, S) reaches
the maximum for an angle δ0, then it seems to be more reasonable to define the
orientation of S by the angle π/2+ δ0, rather than by the angle δ0, as suggested
by [11].

5 Modified Use of High Order Principal Axes

Here, we use a modified approach to the problem. We accept that we have to
use a more complex method than the standard one. So, we are going to use N th-
order central moments with N > 2 and will try to make a compromise between
the following requests:

(c1) The method should have a reasonable geometric motivation;
(c2) The method should give some answer what orientation should be even

for rotationally symmetric shapes;
(c3) The method should give reasonably good results if applied to non regular

shapes;
(c4) The orientation should be relatively easy to compute.

If we go back to the standard definition of shape orientation, we can see
that it is defined by the line that minimizes the sum of squares of distances of
the points to this line. The squared distance (rather than the pure Euclidean
distance) has been taken in order to enable an easy mathematical calculation.
Following this initial idea and taking into account the problems explained by
Theorem 1, we suggest that the orientation should be defined as a line which
minimizes the total sum of a (suitably chosen) even-power of distances of the
points to the line. We give a formal definition.

Definition 2. Let a given integer k and let a given shape S whose centroid
coincide with the origin. Then, the orientation of S is defined by an angle δ that
minimizes

I2k(δ, S) =
∑

(x,y)∈S

(−x sin δ + y cos δ)2k. (9)
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Now, we show a desirable property of the orientation computed in accor-
dance with Definition 2. Let an axis-symetric set S. Because of the definition of
I2k(δ, S), without loss of generality we can assume that this axis coincides with
the x-axis. Again, if S is represented as the union of:

– set A consisting of all points from S that have a positive y coordinate,
– set B consisting of all points from S that have a negative y coordinate,
– set C consisting of all points from S that have y coordinate equal to zero,

and if the x-axis is a symmetry axis of S, we have (x, y) ∈ A ⇔ (x,−y) ∈ B.
Thus, we can write:

I2k(δ, S) =
∑

(x,y)∈A

(−x sin δ + y cos δ)2k +
∑

(x,y)∈B

(−x sin δ + y cos δ)2k

+
∑

(x,y)∈C

(−x sin δ + y cos δ)2k

=
∑

(x,y)∈A

(
(−x sin δ + y cos δ)2k + (−x sin δ − y cos δ)2k

)
+

∑
(x,0)∈C

2k(−x sin δ)2k

dI2k(δ, S)
dδ

=
∑

(x,y)∈A

2k(−x sin δ + y cos δ)2k−1(−x cos δ − y sin δ)

+
∑

(x,y)∈A

2k(−x sin δ − y cos δ)2k−1(−x cos δ + y sin δ)

+
∑

(x,0)∈C

2k(−x sin δ)2k−1(−x cos δ).

From the last equality we have that the first derivative of I2k vanishes if δ = 0,
but also if δ = π/2, i.e.,

dI2k(0, S)
dδ

=
dI2k(π/2, S)

dδ
= 0.

The above equality shows that a symmetry axis (if any) has a “good chance” to
be coincident with the computed orientation if Definition 2 is applied.

Since naturally defined, the orientation computed in proposed manner should
performs well if applied to non regular shapes – that is illustrated by a few
examples on Fig. 6.

Of course, the main disadvantage of the modified method is a higher compu-
tation complexity caused by the size of coefficient 2k from (9). It is not expected
that a closed formula (as it is the formula (3) in the case of 2k = 2) could
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Fig. 4. (a) I2 is nearly a constant value. The minimum of I4 is reached for 44 degrees,
while I8 has the minimun for 42 degrees. (b) I2 is nearly a constant value. The minimum
of I4 is reached for 11 degrees, while I8 has the minimum for 8 degrees. (c) I2 and I4

are nearly constants. The minimum of I6 is reached for 150 degrees – as preferred.
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Fig. 5. The presented figures have exactly one axis of symmetry. In all presented cases
the minimum of I2, I4, I6, I8, and I10 is obtained to be very close to 90 degrees.
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Fig. 6. Minimum values for I2, I4, I6, I8, and I10 are obtained for the following angle
values: (a) 48, 56, 61, 63, and 64, respectively. (b) 114, 131, 32, 31, and 31, respectively.
(c) 96, 95, 94, 92, and 92, respectively. (d) 87, 88, 88, 88, and 88, respectively.

be derived. But, the formula (9) enables an easy and straightforward numerical
computation. Several examples are given on Fig. 4-6.

Rotationally symmetric shapes are presented on Fig. 4. The obtained re-
sults are in accordance with the previous theoretical observations. Particularly,
the obtained minimum of I6 says that the orientation of a regular triangle is
coincident with one of its symmetry axes.

On Fig. 5 the orientation is measured for shapes having one symmetry axis.
In all cases the computed minimal values for I2, I4, I6, I8, and I10 are obtained
for an angle of 90 degrees – as preferred.

Fig. 6 displays non symmetric shapes. It may be assumed that the orientation
is not well-defined for the shapes presented on Fig. 6 (a) and Fig. 6 (b). Indeed,
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when measure the orientation as the minimum of IN we obtain different angle
values for different values of N .

On the other side, since the shape on Fig. 6(c) and Fig. 6 (d) seems to be
“well orientable” we obtain almost same angle values that should represent the
orientation.

6 Concluding Remarks

In this paper we consider some problems related to the shape orientation. The
most studied situation when such problems arise, is when working with shapes
having many axes of symmetry and with n-fold rotationally symmetric shapes.
The paper is mainly based on the results presented in [11]. A very short proof
of the main result from [11] is presented. It is clarified that the most of of
problems come from the fact that the function (2) is not complex enough to
be used to compute orientation of an arbitrary shape. As an solution, a use of
higher moments is suggested in [11]. Some disadvantages of such a proposal are
discussed here as well. The main of them is that shapes having an odd number
of axes of symmetry could have the computed orientation that does not coincide
with any of symmetry axes. This paper suggest a modified use of the higher
order moments that should avoid this disadvantage.
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3. R. Klette, J. Žunić, “Digital approximation of moments of convex regions,” Graph-

ical Models and Image Processing, Vol. 61, pp. 274-298, 1999.
4. J.-C. Lin, W.-H. Tsai, J.-A. Chen “Detecting Number of Folds by a Simple Math-

ematical Property,” Patt. Rec. Letters, Vol. 15, pp. 1081-1088, 1994.
5. J.-C. Lin, “The Family of Universal Axes,” Patt. Rec., Vol. 29, pp. 477-485, 1996.
6. E. Mach, The analysis of sensations (Beiträge zur Analyse der Empfindungen),
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Abstract. The analysis of spatial relations among objects in an image
is a important vision problem that involves both shape analysis and
structural pattern recognition. In this paper, we propose a new approach
to characterize the spatial relation along, an important feature of spatial
configuration in space that has been overlooked in the literature up to
now. We propose a mathematical definition of the degree to which an
object A is along an object B, based on the region between A and B
and a degree of elongatedness of this region. In order to better fit the
perceptual meaning of the relation, distance information is included as
well. Experimental results obtained using synthetic shapes and brain
structures in medical imaging corroborate the proposed model and the
derived measures, thus showing their adequation with the common sense.

1 Introduction

To our knowledge, the only work addressing alongness between objects by giving
mathematical definitions was developed in the context of geographic information
systems (GIS) [1]. In this work, the relation along between a line and an object
is defined as the length of the intersection of the line and the boundary of the
object, normalized either by the length of this boundary (perimeter alongness)
or by the length of the line (line alongness). In these definitions, the boundary
can also be extended to a buffer zone around the boundary. Crevier [2] addresses
the problem of spatial relationships between line segments by detecting collinear
chains of segments based on the probability that sucessive segments belong to the
same underlying structure. However this approach cannot be directly extended
to any object shape.

Here we consider the more general case where both objects can have any
shape, and where they are not necessarily adjacent. For computer vision appli-
cations, the considered objects can be obtained for instance from a crisp or fuzzy
segmentation of digital images.
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The along relation is an intrinsically vague notion. Indeed, in numerous sit-
uations even of moderate complexity, it is difficult to provide a definite binary
answer to the question “is A along B?”, and the answer should rather be a
matter of degree. Therefore fuzzy modeling is appropriate. Now if the objects
are themselves imprecisely defined, as fuzzy sets, this induces a second level of
fuzziness. In this paper, we propose a fuzzy model of the relation along , for both
crisp and fuzzy objects. It is based on a measure of elongatedness of the region
between both objects.

In Section 2 we motivate our work based on a few references to other domains
such as psychophysics or linguistics. We propose a mathematical model and a
measure of alongness between crisp objects in Section 3. Their generalization to
fuzzy objects is discussed in Section 4. Experimental results using both synthetic
and real objects are shown in Section 5. Some properties and possible extensions
are provided in Section 6.

2 Spatial Relations and Motivation for Using Fuzzy
Definitions

According to Biederman[3], any object, even the simplest one, may project an
infinity of image configurations to the retina considering orientation and, con-
sequently, the bidimensional projection, possible occlusion, texture complexity,
or if it is a novel exemplar of its particular category. The hypothesis explored
in [3] is that the visual perception may be modeled as a process related to the
identification of individual primitive elements, e.g. a finite number of geometrical
components. In addition, Biederman claims that the relation between parts is
a main feature to the object perception, i.e. two different arrangements of the
same components may produce different objects.

Hummel and Biederman, in [4], claim that the majority of the visual recogni-
tion models are based on template matching or feature list matching. The two of
them present limitations and are not in accordance with the human recognition
[3]. In that way, the authors in [4] present a strutural description to characterize
the object as a configuration of features, sensitive to the attribute structure and
indifferent to the image overview.

Kosslyn et al, in [5], re-affirm the importance of relative positions for object
and scene recognition. They classify those spatial relationships, psychophysically,
according to their visuospatial processing, as absolute coordinate representations
(i.e. precise spatial localization) and categorical representations (i.e. association
of an interval of position to a equivalence class, e.g. left of).

The works in this area started mainly with Freeman’s paper [6], and was
continued during the 80’s by Klette and Rosenfeld [7]. In [6], Freeman presents
mathematical-computational formalisms to represent the semantic context of
terms (in English) that codify relationships between objects by underlining the
necessity of using fuzzy representations for a number of relations. Then several
authors proposed fuzzy representations of some spatial relations (see e.g. [8] for
a review).
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Moreover, when considering works in psycholinguistics, it appears that even
if the objects are crisp, the lack of clarity in the concepts related to the relative
positions gives the background to the use of fuzzy definitions of these concepts.

3 Modeling the Spatial Relation Along for Crisp Objects

In the example of Fig.1(a), it can be said that A is along B, or that B is along A.
The intuitive meaning of the relation is polymorphic: some assumptions can be
made or not on the objects (at least one should be elongated, or both should), the
distance between them should be reduced with respect to the size of the objects
(typically we would not say that A is along B in the example of Fig.1(b)).
What is quite clear is that the region between A and B, denoted by β, should
be elongated, as is the case in Fig.1(a). In our model, we choose to propose a
definition that does not necessarily consider the shape of the objects as a whole,
that is symmetrical in both arguments, and that involves the region between the
objects and their distance. Moreover, as already advocated in [6], defining such
relations in a binary way would not be satisfactory, and a degree of satisfaction
of the relation is more appropriate. Finally, we want also to be able to deal with
situations where the relation is satisfied locally, between parts of the objects
only.
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Adjacent arcs

Fig. 1. (a) Example where A is along B, with an elongated region β between A and
B. (b) Case where β is elongated but A is not along B. (c) Same example as (a) where
adjacent arcs are shown.

Based on these considerations, we propose a mathematical definition of the
degree to witch an object A is along an object B, based on the region between
A and B [9] . The basic idea to characterize to which degree “A is along B” is
based on two steps:
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1. calculate the region β between A and B;
2. measure how elongated is β, thus defining the degree to which A is along B.

This approach is interesting because it involves explicitely the between region,
which is also committed in the usual semantics of the along relation, and a good
technique to calculate the region between A and B is available and used in
our approach. Once the region between A and B is obtained, the issue of how
elongated is β may be treated by shape analysis, leading to different measures
which may be chosen depending on the application, as explained below.

3.1 Definition of the Region Between Two Objects

Since no assumption on the shapes of the objects is made, some classical ways
to define the between region may not be appropriate. In particular, if the objects
have complex shapes with concavities, a simple definition based on the convex
hull of the union of both objects does not lead to a satisfactory result. We
have addressed this problem in [9], where new methods are proposed in order to
cope with complex shapes. We choose here one of these methods, the visibility
approach, which provides results adapted to our aim. In particular, concavities
of an object that are not visible from the other one are not included in the
between area. More formally, this approach relies on the notion of admissible
segments as introduced in [7]. A segment ]a, b[, with a in A and b in B (A and
B are supposed to be compact sets or digital objects), is said admissible if it
is included in AC ∩ BC [9]. Note that a and b then necessarily belong to the
boundary of A and B, respectively. This has interesting consequences from an
algorithmic point of view, since it considerably reduces the size of the set of
points to be explored. The visible points are those which belong to admissible
segments. The region between A and B can then be defined as the union of
admissible segments.

(a) (b)

Fig. 2. (a) Region between two objects, calculated by the visibility approach; (b) Anal-
ogous to (a), but showing that the concavity of one of the objects is properly excluded
from the between region by the visibility method.

Here, for the second step, we need to keep the extremities (belonging to the
boundary of A or B) of the admissible segments in the between region. Therefore
we slightly modify the definition of [9] as:

β = ∪{[a, b], a ∈ A, b ∈ B, ]a, b[ admissible}. (1)
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This definition is illustrated in Fig.2 for two different cases. Note that, in contrast
to the objects in Fig.2(a), in case of Fig.2(b), there is a concavity in one of the
shapes not visible from the other object, and which is properly excluded from
the between region by the visibility approach.

3.2 Definition of the Degree of Elongatedness

There are different possible approaches to measure how elongated is a region.
One of the most popular ones is given by the inverse of compacity, i.e. how
elongated is the region with respect to a circle. This can be measured in the
2D case by the elongatedness measure c = P 2/S, where P and S represent the
perimeter and the area of the region. We have c = 4π for a perfect disk, and the
more elongated is the shape, the larger is c. In order to normalize this measure
between 0 and 1, we propose a first alongness measure defined as:

α1 = f
a

(
P 2(β)
S(β)

)
, (2)

where S(β) and P (β) denote the area and perimeter of region β, respectively,
and fa is an increasing function, typically a sigmoid, such as fa(x) = (1 −
exp(−ax))/(1 + exp(−ax)). This measure α1 tends towards 1 as β becomes
more elongated. Although a is a parameter of the method, it preserves the order
between different situations, which is the most important property. Absolute
values can be changed by tuning a to enhance the difference between different
situations.

However the measure α1 does not lead to good results in all situations. In-
deed it considers a global elongatedness, while the elongatedness only in some
directions is useful. Let us consider the example in Fig.1(b). The region between
A and B is elongated, but this does not mean that A is along B. On the other
hand, the situation in Fig.1(a) is good since β is elongated in the direction of its
adjacency with A and B. In order to model this, instead of using the complete
perimeter of β, the total arc length L(β) of the contour portions of β adjacent
to A or to B is used (see the adjacent arcs indicated in Fig.1(c)). Here, with the
modified definition of β (Equation 1), these lines are actually the intersections
between A and β and between B and β. The new elongatedness measure is then
defined as:

α2 = f
a

(
L2(β)
S(β)

)
. (3)

Although this measure produces proper results, it presents the drawback of
not taking directly into account the distance between A and B, which is useful
in some situations. Also, because α2 is a global measure over A and B, it fails
in identifying if there are some parts of A that are along some parts of B, i.e. it
lacks the capability of local analysis.

There is an interesting way of incorporating these aspects in the present
approach by considering the distance between the two shapes within the between
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area. Let x be an image point, and d(x,A) and d(x,B) the distances from x to A
and B respectively (in the digital case, they can be computed in a very efficient
way using distance transforms). Let DAB(x) = d(x,A)+d(x,B). Instead of using
the area of β to calculate how elongated it is, we define the volume V (β) below
the surface {(x,DAB(x)), x ∈ β}, which is calculated as:

V (β) =
∫

β

DAB(x)dx. (4)

In the digital case, the integral becomes a finite sum.
This leads to an alongness measure taking into account the distance between

A and B:

α3 = f
a

(
L2(β)
V (β)

)
. (5)

The distance DAB(x) may be used in a more interesting way in order to
deal with situations where just some parts of A can be considered along some
parts of B. In such cases, it is expected that such parts are near each other, thus
generating a between region with lower values of DAB(x). Let βt = {x, DAB(x) <
t}, where t is a distance threshold. Let L(βt), S(βt) and V (βt) be the total
adjacent arc length, area and volume for βt. Two local alongness measures, in
the areas which are sufficiently near to each other according to the threshold,
are then defined as:

α4(t) = f
a

(
L2(βt)
S(βt)

)
, (6)

and

α5(t) = f
a

(
L2(βt)
V (βt)

)
. (7)

4 Modeling the Spatial Relation Along for Fuzzy Objects

Now we consider the case of fuzzy objects, which may be useful to deal with
spatial imprecision, rough segmentation, etc. We follow the same approach in
two steps as in the crisp case.

The visibility approach for defining the between region can be extended to the
fuzzy case by introducing the degree to which a segment is included in AC ∩BC

(which is now a fuzzy region). Let µA and µB be the membership functions of
the fuzzy objects A and B. The degree of inclusion µincl of a segment ]a, b[ in
AC ∩BC is given by:

µincl(]a, b[) = inf
y∈]a,b[

min[1− µA(y), 1 − µB(y)]. (8)

Let us denote the support of the fuzzy objects A and B by Supp(A) and Supp(B)
respectively. The region between A and B, denoted by βF , is then defined as

βF (x) = sup{µincl(]a, b[);x ∈ [a, b], a ∈ Supp(A), b ∈ Supp(B)}. (9)
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In order to define alongness measures analogous to αl, l = 1...5, it is necessary
to calculate the perimeter, area and volume of βF . Perimeter P (βF ) and area
S(βF ) are usually defined as [10]:

P (βF ) =
∫

Supp(βF )
| ( βF (x)|dx, (10)

where (βF (x) is the gradient of βF , and

S(βF ) =
∫

Supp(βF )
βF (x)dx. (11)

The extension of α2 requires to define the adjacency region Radj between the
objects and β. In order to guarantee the consistency with the crisp case, we can
simply take the intersection between A and β and between B and β and extend
L as:

Radj(βF , µA∪B) = (Supp(βF ) ∩ Supp(A)) ∪ (Supp(βF ) ∩ Supp(B)), (12)

where µA∪B represents the union of the fuzzy objects A and B, and:

L(βF , µA∪B) = S(Radj(βF , µA∪B)). (13)

Finally, it is also necessary to calculate the distance of any point x of the
between region to A and to B. We propose the use of the lenght of the admissible
segments:

DAB(x) = inf{‖b−a‖, ]a, b[ admissible, x ∈]a, b[}, for x ∈ (Supp(A)∪Supp(B))C .
(14)

Then, we define the volume V (βF ) below the surface {(x,DAB), x ∈ βF } by
weighting each point by its membership to βF (x), as:

V (βF ) =
∫

Supp(βF )
βF (x)DAB(x)dx. (15)

In order to keep the fuzzy nature of the model, instead of thresholding the
distance function as in the crisp case, we propose to select the closest area based
on a decreasing function g of DAB. We thus have βFt(x) = βF (x)g(DAB(x)). In
our experiments, we have chosen g as:

g(t) = 1− fa1(t), (16)

with a1 = 0.3.

5 Experimental Results

Extensive results with a large number of pairs of shapes have been successfully
produced. Some of these results are presented and discussed in this section.
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(a) (b)

Fig. 3. Results using the visibility approach to calculate β. (a) Synthetic shapes and
the region β between them. The adjacent arcs are also indicated. (b) The distance map
DAB(x) in β is represented as grey-levels.

Table 1. Alongness values for different shape configurations (synthetic shapes) with
parameters a = 0.125 and t = 10
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Shapes (a) (b) (c)
α1 0.907 0.450 0.874
α2 0.885 0.431 0.340
α3 0.172 0.011 0.010

α4(10) 0.834 0.653 0.072
α5(10) 0.165 0.127 0.010

(a) (b)

Fig. 4. Results using the visibility approach to calculate β and βt. (a) The distance
map DAB(x) in β is represented as grey-levels. (b) The thresholded between region
βt = {x, DAB(x) < t}, indicating that only nearby contour portions are taken into
account by this approach.

5.1 Crisp Objects

Table 1 shows some results obtained on synthetic objects illustrating different
situations. The adjacent lines and distance values of the object in Table 1(a)
are shown in Fig.3 (a) and (b), respectively. High values of DAB(x) correctly
indicate image regions where the shapes are locally far from each other.

In the example of Table 1(a), the two objects can be considered as along
each other, leading to high values of α1, α2 and α4. However some parts of the
objects are closer to each other than other parts. When the distance increases,
the corresponding parts can hardly be considered as along each other. This is
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Table 2. Alongness values for different shape configurations (brain structures from
medical imaging) with parameters a = 0.25 and t = 10

Shapes (a) (b) (c) (d)
α1 0.746 0.677 0.487 0.708
α2 0.746 0.677 0.438 0.289
α3 0.717 0.611 0.133 0.015

α4(10) 0.746 0.677 0.438 0.001
α5(10) 0.717 0.611 0.133 0.000

(a) (b) (c)

Fig. 5. Results using the fuzzy visibility approach to calculate βF and βFt . (a) Original
shapes. (b) Shapes and the region βF between them. (c) Shapes and the thresholded
between region βFt(x) = {x, DAB(x) < t}.

well expressed by the lower values obtained for α3 and α5. These effects are even
stronger on the example of Table 1(b) where only small parts of the objects
can be considered as being along each other. The between regions β and βt (i.e.
thresholded) are shown in Fig.4. The third case is a typical example where the
region between A and B is elongated, but not in the direction of its adjacency
with A and B. This is not taken into account by α1, while the other measures
provide low values as expected: α2 is much smaller than α1 and the other three
values are almost 0.

Table 2 shows results obtained on real objects, which are some brain struc-
tures extracted from magnetic resonance images. Similar values are obtained for
all measures in the two first cases where the relation is well satisfied. The third
example shows the interest of local measures and distance information (in par-
ticular the similar values obtained for α2 and α4 illustrate the fact that only the
parts that are close to each other are actually involved in the computation of the
between region for this example), while the last one is a case where the relation
is not satisfied, which is well reflected by all measures except α1, as expected.

5.2 Fuzzy Objects

The experiments concerning the fuzzy approach are based on the construction
of synthetical fuzzy objects by a Gaussian smoothing of the crisp ones, only
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(a) (b)

Fig. 6. (a) The distance map DAB(x) in βF of the objects in Figure 5 (a). (b) The
decreasing function g of DAB(x).

Table 3. Alongness values for different shape configurations (fuzzy synthetic shapes)
with parameters a = 0.50 and a1 = 0.30

Shapes (a) (b) (c)
αF1 0.990 0.815 0.982
αF2 0.999 0.948 0.881
αF3 0.879 0.531 0.515
αF4 0.975 0.755 0.572
αF5 0.686 0.552 0.508

Table 4. Alongness values for different shape configurations (fuzzy brain structures
from medical imaging) with parameters a = 0.25 and a1 = 0.30

Shapes (a) (b) (c) (d)
αF1 0.996 0.997 0.980 0.997
αF2 0.984 0.965 0.972 0.971
αF3 0.888 0.840 0.675 0.536
αF4 0.812 0.764 0.781 0.544
αF5 0.675 0.643 0.579 0.503

for the sake of illustration. In real applications, fuzzy objects may be obtained
from a fuzzy segmentation of the image, from imprecision at their boundaries,
from partial volume effect modeling, etc. Figure 5 illustrates an example of fuzzy
objects along with the between region and the fuzzy regions βF and βFt . The
distance map and the selected area are depicted in Figure 6.

Some results obtained on fuzzy synthetic shapes are given in Table 3, while
some results on fuzzy real objects are given in Table 4. In these tables, αFi

denotes the fuzzy equivalent of αi.
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Results are again in accordance with what could be intuitively expected. This
illustrates the consistency of the proposed extension to fuzzy sets.

Since the computation of L, S and V in the fuzzy case is based on the support
of the fuzzy objects, which is larger than the corresponding crisp objects, we
have to choose a different value for the parameter a, in order to achieve a better
discrimination between the different situations. However a has the same values
for all objects in each table, for the sake of comparison. Note that in Table 3 as
well as in Table 4, the results obtained on fuzzy synthetic and real objects are
qualitatively the same as the results obtained on crisp object: in particular, αF3

and αF5 well reflect the distance constraint on the alongness degree.

6 Conclusion

We proposed in this paper an original method to model the relation along and
to compute the degree to which this relation is satisfied between two objects of
any shape. Several measures are proposed, taking into account different types of
information: region between the objects, adjacency between the objects and this
region, distance, parts of objects. The definitions are symmetrical by construc-
tion. They inherit some properties of the visibility method for computing the
between area such as invariance under translation and rotation. Measures α1,
α2 and α4 are also invariant under isotropic scaling. Finally, the proposed mea-
sures fit well the intuitive meaning of the relation in a large class of situations,
and provide a ranking between different situations which is consistent with the
common sense. One of the advantages of the proposed approach is the decom-
position of the solution in two parts, i.e. to find the region between the objects
and to calculate its elongatedness. The inverse of compacity (sometimes called
circularity) has been adopted to measure how elongated is the region between
the shapes. This is by no means the unique way of characterizing elongatedness.
In fact, if the region between the shapes becomes very complex (e.g. Fig.7), the
area starts to increase fast with respect to the perimeter (i.e. space-filling prop-
erty), and circularity-based measures may produce poor results. In such cases,
alternative elongatedness measures may be adapted to replace circularity in our
proposed approach (e.g. shape measures that characterize thinness of a shape).

Alternative approaches to the computation of length of the adjacencies and
distances can be tested. We can restrict, for example, the adjacent region to the

Fig. 7. Complex shapes lead to space-filling between region. This may affect the
circularity-based elongatedness measure, thus requiring alternative approaches to eval-
uate how elongated is the between region.
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watershed line of this intersection, and compute its length in a classical way. On
the other hand, instead of using Equation 14, we can calculate DµA∪B with the
distances to the α-cuts. The distance d(x, µ) from a point x to a fuzzy set with
membership function µ can indeed be defined by integrating over α the distance
from x to each α-cut. Another option is to calculate d(x, µ) as the distance of x
to the support of µ, i.e. d(x, µ) = d(x,Supp(µ)). These definitions are useful for
implementation purposes since for each α-cut, a fast distance transform can be
used.

Extensions to 3D are straightforward: the computation of the between rela-
tion does not make any assumption on the dimension of space; the measures
of elongatedness can be simply performed by replacing lengths by surfaces and
surfaces by volumes.

Future work also aims at introducing this relation as a new feature in struc-
tural pattern recognition or content-based image retrieval schemes.
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Abstract. This paper presents a computational model for pattern analysis and 
classification using symmetry group theory. The model was designed to be part 
of an integrated management system for pattern design cataloguing and re-
trieval in the textile and tile industries. While another reference model [6], uses 
intensive image processing operations, our model is oriented to the use of 
graphic entities. The model starts by detecting the objects present in the initial 
digitized image. These objects are then transformed into Bezier curves and 
grouped to form motifs. The objects and motifs are compared and their symme-
tries are computed. Motif repetition in the pattern provides the fundamental 
parallelogram, the deflexion axes and rotation centres that allow us to classify 
the pattern according its plane symmetry group. This paper summarizes the re-
sults obtained from processing 22 pattern designs from Islamic mosaics in the 
Alcazar of Seville.  

1   Introduction 

The interest of plane symmetry group theory for the design and cataloguing of regular 
plane segmentations can be seen in works such as [1] or [2]. These works analyze, 
with mathematical and geometrical rigor, the design patterns used by the ancient Is-
lamic handcraft workers for covering architectural surfaces and walls. In addition, 
these works have become a key reference for most contributions that, in the form of 
computer models have analyzed their pattern geometries in recent years. Most of 
these research works describe design pattern geometry and provide tools ,like Shape 
Grammars [14], for design pattern generation which are very useful in the world of 
Computer Graphics. However few of such works analyze pattern designs using com-
puter vision. Nevertheless, from this perspective, there are many works on the analy-
sis of independent symmetries, [3] [4] [5], although few works have studied symme-
try groups in images. Among these works, it is worth mentioning the theoretical ap-
proaches of [4] and [5], and particularly the computational model proposed by Y. Liu, 
R.T. Collins and Y. Tsin [6]. This, as opposed to the model presented in this paper, 
works in image space and thus obtains global symmetries, with no specification of 
pattern objects and motifs. We have taken it as a reference model for our work.  
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In this paper we propose an alternative computational model which, based on sym-
metry group theory [1], [2], allows the automatic analysis, decomposition and classi-
fication of the digital image of a regular design pattern. To evaluate this model’s 
capacity to analyze historical Islamic design patterns, the authors analyze the tile 
patterns used in one of the most emblematic Islamic buildings in Spain: the Alcazar of 
Seville, built between 1364 and 1366. This palace possesses one of the largest and 
most beautiful patterns in Islamic Art. 

2   Design Patterns and Tile Designs: Identification of PSG 

Design patterns and tile designs are both the result of a systematic repetition of one 
given geometrical form. However, each has certain inherent characteristics [3]: in the 
case of a design pattern, the repeated geometrical form has no constraints, since the 
result is a set of independent geometrical forms more or less close to each other. In 
the case of tile designs, the repeated form necessarily requires a given shape to avoid 
gaps or overlapping. "Geometrical Form" here means what is perceived or seen, and 
comprises any  figure, image or drawing used as unit motif to create a pattern design. 

Despite these formal differences between design patterns and tile designs, their 
classification in terms of compositive syntax, is similar and in accordance with sym-
metry group theory. This theory states that any 2D pattern can be classified according 
to the set of geometrical transformations that transforms it into itself. Transformations 
that preserve distances are known as isometries, and the plane isometries are: rota-
tions, translations, reflections and glide reflections. The set of isometric transforma-
tions that makes a motif coincide with itself is known as symmetry group. Three types 
or categories of symmetry groups are defined: 

• Point symmetry groups (psg): including cyclic and dihedral symmetry groups. 
The cyclic group Cn has only n-fold rotational symmetry around the center. The 
dihedral group Dn also includes n reflection axes. 

• Frieze symmetry groups (FSG): containing only one translational symmetry 
and other symmetries. 

• Plane symmetry groups (PSG) or Wallpaper groups: containing two transla-
tional symmetries and other symmetries. 

The importance of this theory lies in the fact that all design patterns and tile de-
signs can be classified according to the FSG or PSG to which they belong. It is known 
that there are geometric restrictions, called ‘crystallographic constraints’, which limit 
the number of possible rotations that can be applied to completely fill the plane or 
frieze [7]. Accordingly, the PSG and FSG are limited to 17 and 7 classes respectively. 
We only address the problem of PSG identification.  

In a previous work [8] we studied the specific aspects used to identify the PSG. 
Following other works in the literature, we suggested that the basic information on the 
pattern structure resides in three features: 

• Fundamental Parallelogram (FP): the smallest part of the pattern that by repli-
cating and displacing is able to generate the whole pattern. The FP is defined by 
two displacement vectors, the parallelogram sides, which can be used to locate the 
centre position of all motifs in the pattern. In [6] the FP is known as the unit lattice. 
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• Design symmetries axes (DSA): the reflection or glide reflection symmetry axes 
of motifs present in the pattern. 

• Design rotation centers (DRC): the points around the motifs can rotate to find 
another repetition of  themselves in the pattern. According with the crystallo-
graphic constraints above mentioned, there are a limited number of possible rota-
tions.. The corresponding DRC or n-fold rotation centers are featured by an order  
n = 2, 3, 4 and 6 which indicate rotations of 180º, 120º, 90º and 60º respectively.  

Thus, we propose using these three features to identify the PSG of a given pattern. 
Table 1 shows the strict relation between these structural descriptors and each of the 
17 PSG. The first column shows standard PSG nomenclature.  

 

Table 1. PSG classification using FP, DSA, and DRC features 

PSG FP DSA DRC DSA and DRC with respect to FP 

P1 S,RE, ERO,RO, P None 

PM S,RE RA || FP side P1    PM   

PG S,RE GRA || FP side 

CM S,RO,ERO RA || FP diag 

None 

PG    CM    

P2 S,RE, ERO,RO, P None 

PMM S,RE RA || FP sides 
P2    PMM      

PMG S,RE 
GRA || FP side 

RA ||  2nd FP side 

PGG S,RE GRA || FP sides 
PMG    PGG     

CMM S, RO,ROE RA || FP diag. 
RA || FP 2nd diag. 

 
 
 
 
 

2-fold (180º) 

 
 
 

CMM    

 

P3 ERO None 

P31M ERO RA || FP sides 
RA ||  FP diag. P3    P31M   

P3M1 ERO 
RA _|_ FP sides 
RA ||  FP diag. 

 
 
 

3-fold (120º) 

 
 

P3M1    

 

P4 S None 

P4M S RA || FP sides 
RA ||  FP diags P4     P4M     

P4G S 
GRA || FP sides 
RA ||  FP diags 

 
 

4-fold (90º) 
 

 
2-fold (180º) 

 

P4G     

 

P6 ERO None 

P6M ERO 
RA || FP sides 
RA ||  FP diags 
RA _|_ FP sides 

 
6-fold (60º) 

 
 

3-fold (120º) 
2-fold (180º) 

P6     P6M      

FP = parallelogram (P), square (S), rhombus (RO), rectangle (RE) and  
equilateral rhombus (ERO) 

DSA = reflection axe (RA), glide reflection axe 
(GRA)  

3   A Reference Computational Model 

As mentioned above, Y. Liu, R.T. Collins and Y. Tsin have recently proposed a com-
putational model (afterwards LCT Model) for periodic pattern perception based on 
crystallographic group theory [6]. LCT Model input is the image containing 1D or 2D 
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periodic pattern. LCT outputs are the frieze or wallpaper group the image belongs to 
and its median tile. Figure 1 shows a scheme of the main LCT components. 

The model has four main stages: (i) Lattice detection, which is the extraction of 
two linearly independent vectors that describe the translational symmetry of the pat-
tern.  (ii) Median tile, which is a representative tile extracted using the median of 
pixels in all tile-shaped regions formed by the lattice. (iii) Test symmetries, which 
extract the rotation and reflection symmetries in the pattern. (iv) Classification, which 
classifies the pattern in one of the 17 wallpaper or 7 frieze symmetry groups. 

Fig. 1. A schematic workflow of the computational model reported in [6] 

To prove this computational model, several synthetic and real-world pattern sam-
ples were used. The problems arise from two main causes. Firstly, real-world patterns 
are very noisy so they depart from ideal frieze or wallpaper patterns.  Secondly, sym-
metry groups have hierarchical relationships among themselves, so they are not mutu-
ally exclusive classes. That means a given pattern can be classified in several symme-
try groups. To address these problems, the authors propose a modified version of their 
computational model that uses a measurement of symmetry group distances and Geo-
metric AIC (Akaike Information Criterion) [13].  The result is a very robust and 
successful algorithm only limited by practical issues, such as the use of distorted or 
damaged samples from the real world. 

It is significant that most of the task proposed by the model is performed in the im-
age space using pixel values. Only in the last stage are feature vectors (symmetry 
scores or group distances) used to classify the pattern. All the other stages require  
an intensive use of bitmap manipulations, with the subsequent computational  
requirements.  

4   The Proposed Computational Model 

We propose an alternative to the LCT model that, with the same aim and scope, at-
tempts to  approach the  problem  from the  point of view of the  graphic world, rather  
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Fig. 2. Main components of the proposed computational model 

than the image world. Figure 2 shows a scheme of proposed model’s main  
components. 

The underlying idea of our proposal is to reverse the typical process of producing a 
pattern in contexts such as ceramics, textile or graphic arts. In these contexts, the artist 
or graphic designer creates graphical entities or motifs using state of the art computer 
and acquisition tools. Then, they combine these motifs, regularly repeating them us-
ing geometric transformations, filling a flat area and producing the pattern design. 
Similarly, tiling can be produced including the motif inside a tile, with defined geo-
metric form, and repeating the tiles with no gaps or overlapping. As indicated before, 
only a subset of geometric transformations is possible, as dictated by Symmetry 
Group Theory. 

We propose extracting the motifs from the pattern image in the form of graphic en-
tities, and using these entities to perform most of the work, such as computing geo-
metric features, unit lattice or placement rules and, finally, to classify the pattern 
according to the symmetry group. In the process, we obtain many graphic objects, in 
parametric forms, such as Bezier curves or B-splines, which can be stored for later 
use in re-design tasks. 

With this aim, we propose a computational model which has five main stages, de-
pending on the feature space used to represent the data in each case. Below we briefly 
explain each stage: 

Step 1. Image Segmentation. In this first stage the image is acquired and pre-
processed to reduce noise and enhance its quality. Then, a colour segmentation algo-
rithm is applied to decompose the image in homogeneous regions differentiated by 
colour or texture attributes. In [9] we proposed the use of CIE Luv colour spaces and 
clustering algorithms such as Mean-Shift or K-Means for this purpose. The output is 
again an image but each region (object) has been properly labelled with an index that 
differentiates it from the other regions and from the background. 



854 J.M. Valiente, F. Albert, and J.M. Gomis 

 

 

Fig. 3. Illustrative image of a historical tile design (left), detail (centre) and vectorization result 
(right) showing the Bezier curve nodes. 

Step 2. Object Extraction. Using the labelled image as input, a vector data structure 
is generated. It is formed by a list of objects -which will constitute the output data-, 
each one of which contains a number of properties (colour, area, etc) and a list of 
contours (an external one and any number –zero included– of internal contours) that 
delimit the object’s region. The contours are formed by a piece-wise sequence of 
Bezier curves arranged cyclically. Figure 3 (right) shows the vectorized objects found 
in the detail of figure 3 (centre). Within this stage there are three clearly differentiated 
phases: 
− Contour vectorization [10]: The stage begins with a piecewise primitive approxi-

mation of the object contours using Bezier curves, by means of a two pass process: 
first, to obtain the border pixels sequence with a contour retrieval algorithm, and 
then, breaking down the point sequence into sub-sequences that are approximated 
by Bezier curves using a least-square method. This representation is more manage-
able and compact and allows scale invariance.  

− Object comparison: The second sub-stage is an object comparison that attempts to 
obtain similar objects repeated in the image. Each set of similar objects is referred 
to as an ‘object class’. Object comparison is limited to the external contour. To 
compare contours we use a more manageable feature called normalized signature, 
which is a representation of a fixed number of re-sampled contour points. The 
normalized signatures are translation and scale invariant. In [11] we describe the 
geometric symmetries that can be computed using signatures (reflection, rotations 
and shifts), and a dissimilarity measure that allows us to compare two contours. 
The proposed comparison method can indicate if both objects are similar (they do 
not exceed the similarity threshold), and the geometric transformation which links 
them. Figure 4 shows an example of object comparison where similar objects are 
drawn with the same color. 

− Object symmetries: By comparing one object with itself we obtain its circular or 
reflected symmetry axis 

Step 3. Motif Creation. A motif is a set of objects that are related by perceptual fea-
tures. They are what humans first detect on visual analysis of a pattern. Even though 
the use of motifs to perform the PSG classification is not mandatory, we think that 
these entities provide us with a greater degree of abstraction and allow us to simplify 
the processing. In addition, they are the valuable graphic entities that users want to 
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recover from a pattern to use in re-design tasks. This could be one of the most inter-
esting contributions of this work.  

Using the data structure with the list of objects as input, we can generate a list of 
groups or motifs, each represented by a number of related objects and a contour 
(minimal convex polygon that includes such objects). Figure 4 shows an example of 
object grouping and motif creation. This stage is similar to object extraction, in that 
first the working units (objects / motifs) are obtained and then compared, although the 
procedures used are very different: 
− Object grouping: The related objects are grouped using perceptual criteria (inclu-

sion, contact, co-circularity, co-linearity and overlapping). 
− Group comparison: The comparison is done at two levels, first it is checked that 

the groups (motifs) contain a certain percentage of similar objects, and then the 
transformations relating the objects to the two motifs are compared (displacements, 
rotations or symmetries). The presence of a predominant transformation indicates 
that both motifs are formed by similar objects that are equally distributed inside the 
motif they belong to. Such motifs are considered to be similar, even if there are 
some disjoint objects, and they are sub-classified as the same class. It is very com-
mon for incomplete motifs (in the borders of the image) or motifs with gaps to ap-
pear. 

− Motif symmetries: Global motif symmetries are obtained by comparing the symme-
try axes and rotation centres of the objects in each motif class. 

 

 

Fig. 4. Object comparison (left), motif creation (centre) and final classification (right) showing 
the fundamental parallelogram (black square), the symmetry axes (broken lines) and the rota-
tion centres (circles) 

− Motif reconstruction: This is the first moment at which we have enough informa-
tion to start correcting errors. This correction, or reconstruction, covers two differ-
ent aspects: (i) Restitution, which restores missing objects to a motif by bringing 
them from another motif in the same class and, (ii) unification, which unifies dif-
ferent objects located in the same position in their respective class. In [12] we in-
troduced a set of rules to perform these tasks. 
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Step 4. Lattice Detection. In this stage we obtain the translational symmetry of the 
pattern.  Two operations are carried out: 

− Fundamental parallelogram: There are motifs in each class related by displace-
ments. We obtain the two unique displacement vectors that, through linear combi-
nations, make them to coincide. These two vectors act as the basis of the vector 
space defined by the positions of similar motifs. As usually there are several motifs 
there will be several bases, so we will choose the one with an n-times area, since 
pattern repeatability is that of the less frequently repeated elements. Such vectors 
form two sides of the Fundamental Parallelogram or unit lattice: the smallest part 
able to generate the whole pattern by replicating and displacing. 

− Lattice reconstruction [12]: While in the case of motif reconstruction we worked 
with loose objects, now we work with complete motifs. The repetition of funda-
mental parallelograms will form a mesh where all the motifs located in the same 
relative position within each mesh cell must be equal. If they are not, we remove 
some and replicate others to unify the pattern. 

Step 5. Classification. In this last stage we perform the whole PSG classification. 
The operations in this stage are the following: 

− Classification: Considering the geometry of the FP, the symmetry axes and the 
rotation centres, the FP is classified in accordance with Table 1. 

− Simplification: The pattern is simplified, since the content of the FP and its PSG 
will suffice to define the whole pattern; therefore we can suppress all redundant in-
formation without decomposing any objects or motifs. 

− Pattern reconstruction [12]: Once the plane symmetry group has become avail-
able, the defects can be corrected since the reflections and rotations involve the 
content of the motifs and even the object regions. For this purpose we check that 
all the objects or motifs related by symmetry axes or rotation centres are equal and 
following the correct orientation; otherwise, we choose the best alternatives (those 
which fulfil the symmetry criterion) and any incorrect ones are replaced. 
Figure 4 (right) shows the analysis result for the pattern in Figure 3 (left). Only the 

motifs contained in the FP have been left, without dividing any of them. 

5   Experiments and Results 

To validate the proposed methodology we have successfully used 22 different tiling 
patterns, with repetition in two plane directions, from the mosaic collection of Pedro 
I’s Palace in the Alcazar of Seville (Spain). Figure 5 shows an example of such mosa-
ics. Two problems arise: the first one is related to the historical nature of these tiles 
which were made in the 14th century using handcraft techniques. Consequently, there 
are inaccuracies in the position and finish of the mosaic tiles. The second problem is 
the use of a tile design technique widely extended in Islamic decoration of that period, 
known as “lacería” or “interlace” (Figure 5 right). They can be defined as figures,  
built from regular polygons or stars, developed in the form of a band that extend its 
sides in such a way that they alternatively cross each other, generating a composition 
of artistically arranged loops. 
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Original image Detail 
 

 
 

Fig. 5. Original image (left) and detail (right) from a mosaic of the Alcazar of Seville 

Result of the Analysis Reconstruction 
With interlaced objects 

 
FP: Equilateral Rhombus 

PSG: P6 

Without interlaced objects 

 
FP: Equilateral Rhombus 

PSG: P6M 

 

Fig. 6. Simplified result of the analysis (left) with interlaced objects (up) and without them 
(down), and pattern reconstruction (right) of the original  mosaic in figure 5 
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The treatment of the lacerias was twofold. Firstly we increased the color toler-
ances of the segmentation operator achieving fusion of lacerias, which were then 
considered as background. And secondly, we reduced the color tolerances in such a 
way that lacerias appeared as independent objects. Figure 6 shows the results ob-
tained in both cases. The upper image is the simplified result of the analysis consider-
ing all the objects of the pattern, while the lower image is the result without consider-
ing the interlaced objects. The fact that the interlaced objects are always arranged 
circularly, without symmetry axes common to all of them, makes Plane Symmetry 
Group different in both cases. The image on the right shows the pattern reconstruction 
from the simplified analysis with interlaced objects, by repetition and displacement 
using the FP directions. 

 
Objects 

Motifs (P6) 
Interlaced (P6) Non interlaced (P6M) 

 

 

 

 

     

 

Fig. 7. Motifs and objects obtained after simplification. The interlaced objects have been sepa-
rated from the rest. Symmetry axes are represented with a dashed black line and different orien-
tations are showed by different colours. 

Finally, Figure 7 shows the main motifs and their objects obtained from the analy-
sis, including all symmetry axes. As this figure shows, the interlaced objects either do 
not have symmetry axes, or they are not common to all, while the other objects have 
symmetry axes and are common to all, so that the Plane Symmetry Groups of each 
type of objects, have the same PF and rotation centers, but one has symmetry axes 
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(P6M) and the other does not (P6). The motifs that contain the interlaced objects have 
the less restrictive PSG, which is P6. 

The experiments show that this computational model satisfactorily reached its ob-
jectives with most of the processed images. In some cases, the user must tune system 
parameters to obtain a correct classification. Figure 8 summarizes the results obtained 
showing the obtained PSG for the two possible classifications. Observe the high num-
ber of P4-P4M tile designs in this kind of mosaics. 

Typical processing time is presented in Table 2. In the segmentation stage the time 
depends on the image size but, in the other stages, it depends heavily on the number 
of existing objects, (motifs) and their complexity, with the longest time requirement 
for processing the tiles with interlaced objects. 

Fig. 8. Number of patterns in each PSG with and without considering interlaced objects 

Table 2. Processing time for several examples on a Pentium III 450 MHz computer 

 Minimum Median Maximum 
Time 24” 1’10” 4’26” 

Image size 3264x2448 3264x2448 3264x2448 
Number of objects 54 162 699 

6   Conclusions 

This paper presents a computational model for analyzing periodic design patterns. 
The successful results obtained after analysis of tiling design patterns in the Alcazar 
of Seville are also reported. The main findings can be summarized as follows: 

• All the tiling patterns used were successfully classified. Their structures (funda-
mental parallelogram and plane symmetry group) and elements (objects and mo-
tifs) were obtained in the form of graphic entities. 

• The problems derived from the use of interlaced objects in most of the tiles ana-
lyzed were solved. From the data obtained, we can conclude that in the case of in-
terlace tile design patterns it is advisable to provide the two possible classifica-
tions rather than their more generic classification (without symmetry axes). 

• Compression ratios up to 1:1000, with respect to the original image in jpeg format, 
were obtained. The pattern structure was reduced to its fundamental parallelogram 
geometry and content and one object/motif per class. 

 



860 J.M. Valiente, F. Albert, and J.M. Gomis 

The proposed computational model behaves perfectly with all the mosaic samples 
used and its output data represents a meaningful and compact design description of 
the original pattern. This data reduction is very convenient for storing and retrieval 
purposes in information systems, which are a current issue in the ceramic and textile 
industries. 
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Abstract. The wave is a complex and important phenomenon for structures de-
signs in the coastal zones and beaches. This paper presents a novel system for 
the generation of spectral patterns of unidirectional irregular waves in research 
laboratories.  The system's control basic elements are a linear motor, a servo 
controller and a personal computer. The used main mathematical tools are a 
feed forward neural network, digital signal processing and statistical analysis. 
The research aim is to obtain a system of more accuracy and small response 
time. This behavior is interpreted, in marine hydraulics, as a fast calibration of 
experiments.  The wave power spectrums are generated in a test channel of 
rectangular section with dimensions: length 12 m; depth 40 cm; width 30 cm.  

1   Introduction 

The design of coastal and maritime works is complex. The wave is a main element 
and its mathematical representation is difficult [1], [2]. The mathematical models 
make possible to represent the sea disturbance and to calculate its effects, although in 
many cases, they need a calibration by means of physical modeling on reduced scale 
[3], [4], [5], [6], [7]. In complex maritime work designs, the physical modeling on 
reduced scale is essential. This paper presents a system for the generation of spectral 
patterns of unidirectional irregular waves, in project and research laboratories.  The 
system main elements are digital signal processing, neural network and linear motor.  

The research aim is to obtain a system of easy operation and greater efficiency with 
respect to traditional methods. The traditional methods make a control of open loop 
and the operator has a fundamental function. In this work, we used a combined neural 
control [8], [9], [10] that makes shorter the transitory response. This behavior is inter-
preted, in marine hydraulics, as a fast calibration.  In addition, the spectral patterns of 
the generated wave will have small errors with respect to the reference spectral 
patterns.    
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2   Technical Support and Schemes of Operation 

Fig.1 presents the combined neural control to generate spectral patterns of irregular 
unidirectional wave, where: 

ST : Target spectrum; SG : Generated spectrum. 
The controlled process is a wave channel and the control final element is a genera-

tor formed by a linear motor and a paddle device (see photo in fig 2).  
A linear motor [11] is a type of electric motor, an induction motor in which the 

fixed stator and moving armature are straight and parallel to each other (rather than 
being circular and one inside the other as in an ordinary induction motor). Linear 
motors are used, for example, in power sliding doors. There is a magnetic force be-
tween the stator and armature; this force has been used to support a vehicle, as in the 
experimental maglev linear motor train [12]. 

A controller PI (proportional-integral) and an inverse neural network (INN) form 
the combined control. 

 
 
 
 
 
 
 

Fig. 1. Combined neural control to generate spectral patterns of  irregular unidirectional wave 

  
 
 
 
 
 
 
 
 
 

3   Wave Generation Theory 

Eq. (1) is basic for the spectral analysis of a registry of irregular wave in a fixed sta-
tion, and this defines the spectral density function S(f) [2].   

21
( )

2

f df

n
f

a S f df
+

=                                                     (1) 

This equation, nevertheless, contains an infinite number of amplitudes an of com-
ponents of the waves and, therefore, is not applicable to practical calculation.  For the 
practical analysis, a wave registry of N points is acquired, with a constant sampling 

Fig. 2. Linear motor with paddle device and a channel of irregular and unidirectional wave 

 

Channel
Linear
Motor

Spectrum / 
Position 

SG 
+ 

+ 

Kp PI 
+ 

- 

Measurement 
and DSP 

ST 

INN Kn Spectrum of the Displacement of 
Wave Paddle Motion 



 Spectral Patterns for the Generation of Unidirectional Irregular Waves 863 

period: ( t), (2 t),… (N t). Analyzing the harmonics of the wave profile (t), 
the profile can be expressed as the well-known finite Fourier series [2], [13]: 
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* * *
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2 2
( ) ( cos( ) sin( )) cos( )

2 2

N
N

k k
k

A Ak k
t A t B t t
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* *t / : 1, 2,3,...t t t N= ∆ =  

 The wave power spectrum can be generated by two general methods:  first, in dis-
creet form, with a series of Fourier and the components of power of each  harmonic. 
Second, in the continuous form, with the significant wave height and period and em-
pirical equations of spectrum  such as the Mitsuyasu [2], [8], Pierson and Moskowitz, 
JONSWAP [2], etc., for example, the spectra of wind waves fully- developed in the 
open sea, can be approximated by the following standard formulas: 

42 5 4
1/ 3 1/ 31/ 3( ) 0.257 exp[ 1.03( ) ]S f H T f T f− − −= −                         (3) 

42 5 4
1/ 3 1/ 31/ 3( ) 0.205 exp[ 0.75( ) ]S f H T f T f− − −= −                         (4) 

where 1/ 3H : is the significant wave height; 1/ 3T : is the significant wave period; f :  is 

the frequency. 
Fig 3 presents an example of sea spectrum. The dash-dot line is the result of fitting 

Eq. (4) with the values of the significant wave height and period of the record. 
Although some difference is observed between the actual and standard spectra, partly 
because of the shallow water effect in the wave record which was taken at the depth 
of 11 m, the standard spectrum describes the features of the actual spectrum quite 
well. 

The wave generator of mechanical type is more useful and simple and it reproduces 
better the wave forms. The theory of displacement of the beater (paddle) and the 
characteristics of the generated waves are studied by several investigators [2], [3], [4], 
[8].   

The desired wave power spectrum is multiplied by the transfer function of the 
wave generator, well-known as the equation of efficiency of the paddle. This transfer 
function is obtained solving the differential equation for the free boundary conditions 
(see Eq. 5 and 6)   

Piston type:  
24sinh (2 / )

( , )
2 4 / sinh(4 / )

H h L
F f h

e h L h L
                                 (5) 

Flap type: 
24sinh (2 / ) 1 cosh(2 / ) (2 / ) sinh(2 / )

( , )
2 4 / 4 / sinh(4 / )

( )( )H h L h L h L h L
F f h

e h L h L h L
  (6) 

 
where H  is the height of the produced wave  in the channel;  e  is the amplitude of 
wave paddle at the mean water level; f denotes the wave frequency; L is the wave-
length;  h  is the depth of the water at the front of the paddle in the channel. 
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The Inverse Fourier Transform is applied to product of Eq. (3) or Eq. (4) and Eq. 
(5) or Eq. (6) to obtain the wave signal in time domain. The Fig.4 presents the process 
of the preparation of input signal to an irregular wave generator. The control systems, 
in general of open loop, need a relatively great time for the calibration each experi-
ment in order to generate a wave spectral pattern (target spectrum).  

 

 

Fig. 3. Example of spectrum of sea waves 

 

Fig. 4. Process of the preparation of input signal for an irregular wave generator 
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4   Feed Forward Neural Network 

For identification and control systems, an artificial neural network (ANN) with three 
layers is adequate.  A hidden layer is sufficient to identify any continuous function 
[10], [11], [14], [15]. The input neurons are determined by the number of frequency 
bands where the spectrum is divided. The tests were made with 128 and 64 inputs. 
The best results were obtained with 64 (training error and epochs).  Another input 
neuron is added for the different water levels in the channel. The hidden layer uses a 
sigmoid function. The output layer uses a lineal function. The number of neurons of 
the output layer is determined by the number of frequency bands, where the generated 
wave spectrum will be divided (the number of output neurons were taken equal to the 
number of input neurons).   

 
 
 
 
 
 

Fig. 5. Neural network topology 

4.1   Training Patterns 

Pµ : Input patterns [ f (1), f (2),........f (nf ), h  ] 

0T µ  : Output patterns [ o o of (1), f (2),........f (nf )  ] 

where f: power spectrum harmonics;  h: channel level 

Quality factor in spectrum estimation: 
Generally, the sea disturbance is simulated by a random (pseudorandom) process. The 
variability of the sea disturbance spectrum is given by: 

2
2( ) ( )S f S f χ

∧
=

                                               (7) 

The variability of the spectrum is determined by the chi-square distribution with 
two degrees of freedom, that is the estimation by the periodogram method [2].  In 
order to reduce the variation, the temporary registry of the wave measurement is di-
vided in a set of M windows. The training patterns for neural network are obtained 
according to the scheme in Fig. 6. 

 

 
 

 
 

Fig. 6. Acquisition scheme for the neural network training patterns 

 
         Input: 65 neurons                                                            Output layer: 64 neurons 
         Training pattern: SG                                                                                      Training pattern: ST 
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4.1.1   Patterns and Neural Control Versus Open Loop Control 

 
Fig. 7. Example of Patterns .Training performance is 6.97697e-10, Goal is 1e-10. Epochs: 25. 

 
Fig. 8. Example of neural control performance 

 

Fig. 9. Example of open loop control performance  
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Paddle spectrum 

Target spectrum 

Generated spectrum 
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Fig. 10. Example of irregular wave profile. Axis X: samples; Axis Y: water level in cm. 

 

Fig. 11. Neural control performance for the irregular wave profile in Fig. 10 

5   Conclusions and Future Work 

The coastal and maritime work are complex and highly expensive. The optimal design 
requires the physical modeling. The sea phenomena are reproduced in the hydraulic 
research laboratories, this way, the designs can be tested. This works include 
“pedraplenes”, oil platforms, artificial beaches, protective installations of the coasts, 
conservation of the ecosystem, etc.  

The presented work on the spectral patterns for the generation of unidirectional 
irregular waves creates a novel method that uses linear motors and neural networks to 
generate irregular wave with high accuracy and fast calibration, obtaining satisfactory 
results. The combined neural control allows to generate spectrums more exact than 
the spectrums generated with conventional systems (open-loop control).  The system 
does not require an expert operator in "experiments calibration".  The linear motors 

Paddle spectrum 

Target spectrum 

Generated spectrum



868 L.P. Sanchez Fernandez, R. Herrera Charles, and O. Pogrebnyak 

reduce the mechanical facilities. The hydraulic pistons and complex electro-mechanic 
devices are unnecessary. 

The control is made with a distributed architecture, because the linear motor has a 
system of independent control. 

For the future work, self-learning elements will be introduced.  These elements will 
make possible to create spectral patterns during the operation of the system and to 
suggest a new training of the neural network, when the conditions of channel opera-
tion have large changes.   
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Abstract. A simple note onset detection system for music is presented
in this work. To detect onsets, a 1/12 octave filterbank is simulated in the
frequency domain and the band derivatives in time are considered. The
first harmonics of a tuned instrument are close to the center frequency
of these bands and, in most instruments, these harmonics are those with
the highest amplitudes. The goal of this work is to make a musically
motivated system which is sensitive on onsets in music but robust against
the spectrum variations that occur at times that do not represent onsets.
Therefore, the system tries to find semitone variations, which correspond
to note onsets. Promising results are presented for this real time onset
detection system.

1 Introduction

Onset detection refers to the detection of the beginnings of discrete events in
an audio signal. It is an essential component of many systems such as rhythm
tracking and transcription schemes. There have been many different approaches
for onset detection, but it still remains an open problem.

For detecting the beginnings of the notes in a musical signal the presented
system analyses the spectrum information across 1/12 octave (one semitone)
bands and compute their relative differences in time to obtain a detection func-
tion. Finally, the peaks in this function that are over a threshold are considered
as onsets.

There are several onset detection systems that apply a pre-processing stage
by separating the signal into multiple frequency bands. In an onset detector
introduced by Klapuri [1], a perceptually motivated filter-bank is used, divi-
ding the signal into eight bands. Goto [2] slices the spectrogram into spectrum
strips [3]. Scheirer [4] uses a six band filter-bank and Duxbury et al [5] utilizes
a filterbank to separate the signal into five bands.

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 869–879, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In the well-tempered scale, the one used in western music, the first harmo-
nics1 of the tuned instrument notes are close to the center frequencies of the
1/12 octave bands. In most instruments these first harmonics are those with the
highest amplitudes.

It is not our aim to use a perceptually motivated approach. Instead, a musi-
cally motivated filter-bank is utilized. In music, notes are separated by semitones,
so it makes sense to use a semitone filterbank to detect their onsets. By using
semitone bands the effect of subtle spectrum variations produced during the sus-
tain and release stage of a note is minimized. While a note is sounding, those
variations mainly occur close to the center frequencies of the 1/12 octave bands.
This means that the output band values for a note will remain similar after its
attack, avoiding false positive onsets. And when a new note of a tuned instru-
ment begins, the output band values will increase significantly because the the
main energy of its harmonics will be concentrated in the center frequencies of the
semitone bands. This means that the system is specially sensitive to frequency
variations that are larger than one semitone.

This way, the spectrum variations produced at the beginning of the notes
are emphasized and those produced while the notes are sounding are minimized.
This makes the system robust against smooth vibratos that are not higher than
a semitone. It also has a special feature; if a pitch bend (glissando) occurs, a new
onset is usually detected when it reaches more than one quarter tone higher or
lower than the starting pitch. This kind of detector can be useful for some music
transcription systems, those that have the pitch units measured in semitones.

2 Input Data

2.1 Spectral Analysis

From a digital audio file a short-time Fourier transform (STFT) is computed,
providing its spectrogram. In order to remove unused frequency components
and increasing spectral resolution downsampling from 44,100 Hz to 22,050 Hz
sampling rate was done. Thus, the highest possible frequency is fs/2 = 11,025 Hz,
which is high enough to cover the range of useful pitches.

The STFT is calculated using a Hanning window with N = 2048 samples.
An overlapping percentage of 50% (O = 0.5) is also applied in order to retain the
information at the frame boundaries. The time resolution ∆t can be calculated
as:

∆t =
(1−O)N

fs
. (1)

Therefore, with the parameter values described, Eq. 1 yields ∆t = 46.4 mil-
liseconds and the STFT provides 1024 frequency values with a spectral resolu-
1 A “partial” is any of the frequencies in a spectrum, being “harmonic” those multiples

of a privileged frequency called fundamental that provides the pitch of the sounding
note.
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tion of 10.77 Hz. Concert piano frequencies range from G#−1 (27.5 Hz) to C7
(4186 Hz). We want to use 1/12 octave bands. The band centered in pitch G#0
has a center frequency of 51.91 Hz, and the fundamental frequency of the next
pitch, A0, is 55.00 Hz, so a spectral resolution of 10.77 Hz is not enough to build
the lower bands.

To minimize this problem, zero padding was applied for having more points
in the spectrum, appending three windows of 2048 zero samples at the end of
the input signal in the time domain before doing the STFT. Zero padding does
not add spectral resolution, but interpolates. With these values, a resolution of
10.77/4 = 2.69 Hz is obtained.

2.2 Semitone Bands

In this work, the analysis is performed by a computer software in the frequency
domain. Therefore, the FFT algorithm is utilized to compute the narrowband
(linear) frequency spectrum. Then, this spectrum is apportioned among the oc-
tave bands to produce the corresponding octave spectrum, simulating the re-
sponse of a 1/12 octave filterbank in the frequency domain.

The spectral bins obtained after the STFT computation are analyzed into
B bands in a logarithmic scale ranging from 50 Hz (pitch G#0) to 10,600 Hz
(pitch F8), almost eight octaves. This way, B = 94 spectral bands are obtained
and their center frequencies correspond to the fundamental frequencies of the 94
notes in that range.

1

0 f

B3 C4 C#4

Fig. 1. Example of triangular windowing for pitches B3, C4 and C�4

To build the 1/12 octave bands, a set of different sized triangular windows are
used (see Fig. 1). There is one window centered at the fundamental frequency of
each pitch. For wider windows (those centered in the highest frequencies), many
bins are considered but for lower bands only a few bins are used. Therefore, if the
input signal is an uniformly distributed noise, wider bands will have higher values
than narrower ones. To minimize this problem, a RMS (Root Mean Square)
computation is performed, in order to emphasize the highest spectrum values.
A simple equation to get each band value bk(t) at time t can be used;

bk(t) =

√√√√Wk∑
j=1

(X(j, t)wkj)2 , (2)
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being {wkj}Wk

j=1 the triangular window values for each band, Wk the size of the
k-th window and X the set of spectrum bins corresponding to that window at
time t, with j indexing the frequency bin.

The RMS of the bands is used instead of the energy. This is because small
variations in the highest amplitude bands are emphasized, causing false onsets
during the sustain stage of some notes. Moreover, some soft onsets could be
masked by strong onsets.

3 Note Onset Recognition

3.1 Basic Note Onset Recognition

Like in other onset detection algorithms [2][4][6][7], a first order derivative func-
tion is used to pick potential onset candidates. In this work the derivative c(t)
is computed for each band k.

ck(t) =
d

dt
bk(t) (3)

We must combine onset components to yield the onsets in the overall sig-
nal. In order to detect only the beginnings of the notes, the positive first order
derivatives of all the bands are summed at each time. The negative derivatives
are not considered.

a(t) =
B∑

k=1

max {0, ck(t)}. (4)

To normalize the onset detection function, the overall sum of the band values
s(t) is also computed:

s(t) =
B∑

k=1

bk(t) (5)

and the sum of the positive derivatives a(t) is divided by the sum of the band
amplitudes s(t) to compute a relative difference. Therefore, the onset detection
function o(t) ∈ [0, 1] is:

o(t) =
a(t)
s(t)

. (6)

The Fig. 2 shows an example of the detection function o(t) for a Mozart real
piano melody2.

A silence threshold µ is applied, in such a way that if s(t) < µ, then o(t) = 0.
This is done to avoid false positive onsets when the overall amplitude is very
low.

The peaks in o(t) are considered as onset candidates and a low level threshold
θ is applied to decide which of these candidates are onsets. Due to the fact that
2 RWC-MDB-C-2001 No. 27 from RWC database [8].
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Fig. 2. Example of the onset detection function o(t) for a piano melody. All the detected
onsets (peaks over the threshold θ) correspond to actual onsets.

only the peaks are taken into account for onset candidates, two consecutive
onsets at t and t + 1 cannot be detected so the minimum difference in time
between two onsets is 2∆t = 92.8 milliseconds.

The human ear cannot distingish between two transients less than 10 ms
apart [9]. However, in an onset detector, correct matches usually imply that the
target and detected onsets are within a 50 ms window, to allow for the inaccuracy
of the hand labelling process [3]. The presented system uses a 46.4 ms window
to detect onsets, which is an admisible temporal resolution.

3.2 Note Onset Recognition for Complex Instruments

The previous methodology yields good results for instruments like piano or gui-
tar, having sharp attack envelopes. But for instruments that have a longer attack
time, like a church organ, or those with ”moving” harmonics as some kind of
strings or electric guitars, more time frames should be considered.

The methodology in this case is the same as in the previous subsection, but
Eq. 3 is replaced by this one:

c̃k(t) =
C∑

i=1

i · [bk(t + i)− bk(t− i)] , (7)

being C the number of considered time frames. This is a variation of an equation
(Eq. 5.16) proposed by Young et al. in [10] to enhance the performance of a
speech recognition system.

The idea of the weighting is that the difference is centered on each particular
frame, thus two-side difference (with C = 1) is used instead of the frame itself.
When using C = 2, the difference is calculated from a longer period, playing i
the role of a weight.
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An example of the onset detection function for a cellomelody3 is shown in Fig. 3
without considering additional frames (a), with C = 1 (b) and with C = 2 (c).

Note that the higher C is, the lower is the precision in time for detecting
onsets but the system yields better results for complex instruments. For a robust
detection, the notes need to have a duration l ≥ ∆t(C + 1). If C = 2 and with
the utilized parameters, l = 139.2 ms, so this method variation is not suitable
for very rapid onsets4.

To normalize o(t) into the range [0, 1] Eq. 5 is replaced by

s̃(t) =
B∑

k=1

C∑
i=1

i · bk(t + i) (8)

when the Eq. 7 is used, because only local loudness is considered in Eq. 5.

4 Results

In this work, the experiments were done using an onset detection database pro-
posed by Leveau et al. [11] in 2004. Most of its melodies belong to the RWC
database [8].

Rigorous evaluation of onset detection is a complex task [12]. The evaluation
results of onset detection algorithms presented in various publications are in
most cases not comparable [13], and they depend very much on the database
used for the experiments. Unfortunately, at the moment there are not similar
works using the Leveau et al. database, so in this paper our algorithm is not
compared with others. However, our system is currently being evaluated at the
MIREX 2005 competition5, which results will be released soon.

A set of real melodies was used to carry out the experiments. To test the
system, some real melodies were selected and listened to detect the actual onsets.
New audio files were generated adding ”click” sounds where the onsets were
detected. The number of false positive and negative onsets was finally counted
by analysing the generated wavefiles.

The error metric can be defined in precision/recall terms. The precision is the
percentage of the detected onsets that are correct. The recall is the percentage
of the true onsets that were found with respect to the actual onsets. A false
positive is considered as a detected onset that was not present in the signal, and
a false negative as an undetected onset.

The silence threshold µ is not very relevant, because in most of the melodies
the values of s(t) are usually over this threshold. It is only useful when silences
occur or when the considered spectrogram has a very low loudness, so the system
is not very sensitive to the variation of this parameter. The threshold θ can
control the precision/recall deviation.

3 RWC-MDB-C-2001 No. 36 from RWC database [8].
4 139 ms is the length of a semiquaver when tempo is 107 bpm.
5 2nd Annual Music Information Retrieval Evaluation eXchange.
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Fig. 3. Onset detection function o(t) for a polyphonic cello melody. (a) Without ad-
ditional frames; (b) with C = 1; (c) with C = 2. When C = 2, all the onsets were
succesfully detected except by one (marked with a circle).
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Table 1. Results for the database proposed in [11]. The first columns are the melody
name, the duration (secs.), and the number of actual onsets. The next columns are the
number of correcly detected onsets (OK), false positives (FP), false negatives (FN), pre-
cision (P) and recall (R). The experiments were performed without additional frames
(basic detection) and with C = 2.

Tested melodies Basic detection With C=2
Content Dur (s) On OK FP FN P(%) R(%) OK FP FN P(%) R(%)

Solo trumpet 14 60 57 1 3 98.3 95
Solo clarinet 30 38 38 1 0 97.4 100

Solo saxophone 12 10 10 4 0 71.4 100
Solo synthetic bass 7 25 25 1 0 96.2 100

Solo cello 14 65 49 23 16 68.1 75.4 50 5 15 90.9 76.9
Solo violin 15 79 72 12 7 85.7 91.1

Solo distorted guitar 6 20 20 3 0 87 100
Solo steel guitar 14 58 58 2 0 96.7 100

Solo electric guitar 15 35 31 4 4 88.6 88.6
Solo piano 15 20 20 0 0 100 100

Techno 6 56 38 1 19 97.4 67.9
Rock 15 62 62 21 1 74.7 98.4

Jazz (octet) 14 52 40 1 12 97.6 76.9
Jazz (contrabass) 11 52 51 6 1 89.5 98.1

Classic 1 20 50 49 17 1 74.2 98 50 5 0 90.9 100
Classic 2 14 12 11 15 1 42.3 91.7 11 20 1 35.5 91.7
Pop 1 15 38 32 11 6 74.4 84.2

4.1 Results Without Additional Frames

The results of the experiments with basic detection are shown in the table 1.
They were obtained with a silence threshold µ = 70 and with θ = 0.18.

The system works specially well for the piano melody. In other tested piano
melodies results showed that the system is robust for this instrument. It also works
well for the tested melodies played by a trumpet, a clarinet, a bass or guitars.

In the melody played by a saxophone a few extra onsets appeared close to the
actual onsets. This is due to the nature of this instrument; its attack begins with
a small amount of noise, specially evident when it is played legato, like in the
tested melody. Its pitch also starts in a frequency slighly lower than the played
pitch and it takes a little time to reach the desired pitch. So in some notes both
the attack and the moment when the pitch was reached were detected, yielding
some false positive onsets.

The cello is a very difficult instrument for onset detection, and the results
were not very good when no aditional frames were utilized. Though the violin
is another problematic instrument, the results were not bad. Usually, distorted
guitars are also a difficult problem for onset detection, but the tested melody
yielded good results. More experiments were done with other melodies played
by distorted guitars and the system yielded good results too.
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In the techno melody, some onsets were not detected probably because they
were masked by the strength of the drums. In the rock melody, several false pos-
itives appeared when the distorted guitar was played muted. However, in other
similar rock melodies the obtained results were very good due to the presence of
drums, that are usually helpful for detecting onsets.

The octet jazz melody yielded some false negatives, but most of them belong
to very soft onsets produced by the hi-hat of the drumset. The results for the
other jazz melody were satisfactory.

In the first classic melody the system obtained good results for the initial
notes but, when the singer started, several false positive were achieved. This
also happened in another tested singing melodies. The human voice behaviour
is different to most of the instruments because of its complex spectral features,
so this system do not seem to be the most adequate to deal with this problem.

The second classic melody was very difficult due to the presence of strings,
and when no additional frames were considered several false positives appeared.
Finally, the pop melody yielded false positives with human voice, and some false
negatives corresponding to very soft onsets.

4.2 Results with Additional Frames

As discussed before, for some kind of instruments, like a cello or a church organ,
more time frames are needed. In the tested database only three melodies suggest
to use additional frames. They are the cello melody and the two classic melodies,
and the results with C = 2 are in the Tab. 1. The detected onsets considering
C = 1 were similar to those obtained with basic detection, so they are not shown
in the table.

The results with C = 2 are not shown for melodies which instrument features
do not suggest the use of additional frames. These results are obviously worse
considering more time frames than without additional time frames.

The system yielded much better results for the cello and the first classic
melodies. However, worse results were obtained for the second classic melody.
Obviously, only three examples are not enough to test the performance of the
system when C = 2 but, unfortunately, in this database only these melodies
recommend the use of more frames. In other tested melodies from the RWC
database the results improved importantly, for example for the cello melody (in
Fig. 3), for an organ and for some classic melodies.

Anyway, in most cases the system yields better results without considering
time frames, and more frames should only be utilized for specific instruments.

5 Conclusions and Future Work

In this work, a musically motivated onset detection system is presented. In its
basic version, the spectrogram of a melody is performed and 1/12 octave band
filters are applied. The derivatives in time are computed for each band and
summed. Then, this sum is normalized dividing it by the sum of the band values
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in the considered time frame. Finally, all the peaks over a threshold are detected
onsets. A simple improvement was made by using more time frames in order to
make the system more robust for complex instruments.

The system is intended for tuned musical instruments, and the results for
these kind of melodies were very satisfactory. It does not seem to be the most
adequate for voice or drums, because it is based in the harmonic properties of the
musical instruments. However, when drums were present in the tested melodies,
the system was robust. With voice, results are worse due to its harmonic prop-
erties.

The simplicity of the system makes it easy to implement, and several future
work lines can be developed over this basic scheme. An adaptative filterbank
could be added for non-tuned instruments, detecting the highest spectrum peak
and moving the fundamental frequency of the closest band to that peak.

A dynamic value of C (the number of aditional time frames) depending on
the instruments could also be considered. Usually, in the melodies where C must
be increased, the detected onsets in o(t) have lower values than they should have.
As an example, in Fig. 2 the peaks detected as onsets have higher values than
those detected in Fig. 3 (a). This is because cello attacks are softer than piano
attacks. Therefore, the analysis of the o(t) function in the first time frames could
be performed to tune the value of C.
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Abstract. In this work we propose to monitor the cutting tool-wear con-
dition in a CNC-machining center by using continuous Hidden Markov
Models (HMM). A database was built with the vibration signals obtained
during the machining process. The workpiece used in the milling process
was aluminum 6061. Cutting tests were performed on a Huron milling
machine equipped with a Sinumerik 840D open CNC. We trained/tested
the HMM under 18 different operating conditions. We identified three key
transitions in the signals. First, the cutting tool touches the workpiece.
Second, a stable waveform is observed when the tool is in contact with
the workpiece. Third, the tool finishes the milling process. Considering
these transitions, we use a five-state HMM for modeling the process. The
HMMs are created by preprocessing the waveforms, followed by training
step using Baum-Welch algorithm. In the recognition process, the sig-
nal waveform is also preprocessed, then the trained HMM are used for
decoding. Early experimental results validate our proposal in exploit-
ing speech recognition frameworks in monitoring machining centers. The
classifier was capable of detecting the cutting tool condition within large
variations of spindle speed and feed rate, and accuracy of 84.19%.

Keywords: Signal Processing and Analysis, Remote Sensing Applica-
tions of Pattern Recognition, Hidden Markov Models, Tool-wear moni-
toring.

1 Introduction

Manufacturing processes are typically complex. High Speed Machining (HSM)
systems demand precise and complex operations; operators have to implement
complicated operations in these systems too. Computerized numerical controls
(CNC) systems demand supervisor and protection functions such as monitoring,
and supervising [5]. Also, special software for supporting operators is required
[7].

In any typical metal-cutting process, key factors that define the product
quality are dimensional accuracy and surface finish. One important part in the

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 880–890, 2005.
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CNC machines is the cutting tool condition, and it is important to constraint
the following aspects: progressive tool wear, deflection of cutting tool and the
variation of process conditions. We need a cutting tool condition monitoring
system in order to reduce operating cost with the same quality, [13].

Tool wear is caused by a combination of various phenomena. Contact with the
chip produces a crater in the face of the tool. Flank wear, on the other hand, is
commonly due to friction between the tool and the work-piece material. Once the
protective coating is removed, sudden chipping of the cutting edges may occur,
leading to catastrophic failure of the tool. Recent studies conclude that rake-face
wear, flank wear, chipping and breakage are the main modes of tool wear in HSM.
One of the main goals in HSM is to find an appropriate trade-off among tool wear,
surface quality and productivity, considering the cost of the tool, its replacement
cost, the cost of maintain the machine in idle time, and so forth.

Safety is fundamental in tool condition monitoring systems; also, accurate
data acquisition from sensors are mandatory. Sensors should meet certain re-
quirements ensuring robustness, reliability and non-intrusive behavior under nor-
mal working conditions. Almost all sensors present restrictions in the manufac-
turing industry because the harsh environment. The development of new sensors
or technologies for monitoring tool wear are critical in machining business.

In this work, we propose a new recognition approach for tool-wear monitoring
using continuous Hidden Markov Models (HMM). The vibration signals between
the tool and the workpiece will provide the database. In section 2, we describe
the state of the art. In section 3 we present our proposal to solve the problem.
In section 4, the experimental set up is described. In section 5, the experimental
results are shown. Finally, section 6 concludes the paper.

2 State of the Art

Tool failure represents about 20 % of machine tool down-time, and tool wear
negatively impacts the work quality in the context of dimensions, finish, and sur-
face integrity [9]. Using fuzzy logic, artificial neural networks, and linear regres-
sion, important contributions for tool-wear monitoring had been proposed, with
different sensors (acoustic, electrical, magnetic, accelerometer, etc.) installed in
strategic points of the CNC machine.

In [5], Haber and Alique developed an intelligent supervisory system for tool
wear prediction using a model-based approach. In order to deal with nonlinear
process characteristics, they used an Artificial Neural Network (ANN) output
error model to predict online the resultant cutting force under different cutting
conditions. First, an ANN model is created considering the cutting force, the
feed rate, and the radial depth of the cut. The residual error obtained of the two
forces was compared with an adaptive threshold to estimate the tool wear. This
method evaluated the behavior of the tool in three states; new tool, half-worn
tool, and worn tool.

In [6], Haber et al. presented an investigation of tool wear monitoring in
a high speed machining process on the basis of the analysis of different sig-
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nals signatures in the time and frequency domains. They used sensorial infor-
mation from relevant sensors (e.g., dynamometer, accelerometer, and acoustic
emission sensor) to obtain the deviation of representative variables. During the
tests measurements at different cutting speeds and feed rates were carried out
to determine the effects of a new and worn tool in high speed roughing. Data
were transformed from time domain to frequency domain through a Fast Fourier
Transformer (FFT) algorithm in order to analyze frequency components. They
conducted second harmonic of the tooth path excitation frequency in the vibra-
tion signal is the best index for tool wear monitoring. Additionally, the spectrum
analysis of acoustic emission (AE) signals corroborates that AE sensors are very
sensitive to changes in tool condition. Also, [13] worked with multilayered neural
networks for tool condition monitoring in the milling process.

In [10], Owsley et al. presented an approach for feature extraction from vi-
brations during the drilling. Self-organizing feature maps (SOFM’s) extract the
features. They modified the SOFM algorithm in order to improve its generaliza-
tion abilities and to allow it to server as a preprocessor for a HMM classifier. The
authors used a discrete hidden Markov model. Similar proposals for tool-wear
monitoring can be found in [2,15,1,8,14].

3 Tool Wear Monitoring System

Figure 1 shows a flow diagram of the system for monitoring tool-wear using
continuous HMM.

The vibration signal in the machining process is considered the input signal.
As we can see in Figure 1, the input signal is preprocessed and then it is separated
into two branches. The training data branch leads to a HMM model. Given the
model and the parameterized signal a decoder produce a transcript of a specific
pattern as a result. In this training phase the system learns the patterns that

Fig. 1. Flow diagram for monitoring the tool-wear with continuous HMM
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represent the vibration signals. The testing branch uses the preprocessed input
signal and the HMM model to compute P (O | λ) using the Viterbi algorithm
for each model. The model with higher probability is selected as result. Next,
we review the steps and basic concepts of the proposed algorithm.

3.1 Hidden Markov Models

Real world processes produce observable outputs which can be characterized as
signals (discrete/continuous, pure/corrupted, etc.). A problem of fundamental in-
terest is characterizing such signals in terms of models (deterministic/statistical).
Statisticalmodels use the statistical properties of the signal, suchasHiddenMarkov
Models, [11,3].

Definitions. For completeness we will review some basic definitions. A HMM,
as depicted in Figure 2, is characterized by the following:

– N, number of states in the model. We denote the states as S = S1, · · · , SN ,
and the state at time t as qt.

– M, number of distinct observation symbols per state. We denote the individ-
ual symbols as V = v1, · · · , vM .

– The state transition probability distribution
A = P [qt = Sj |qt−1 = Si] , 1 ≤ ij ≤ N

– The observation symbol probability distribution in state j,
B = P [vk|qt = Sj ], 1 ≤ j ≤ N ,1 ≤ k ≤M

– The initial state distribution
π = P [q1 = Si], 1 ≤ i ≤ N

Given appropriate values of N, M, A, B, and π, the HMM can be used as a
generator to give an observation sequence O = O1, · · · , OT . Then, a complete
specification of an HMM requires specification of two model parameters (N,
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Fig. 2. Elements of a HMM: left-right model, 6 states, and observations per state
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and M ), specification of observation symbols, and the specification of the three
probability measures λ = (A,B, π). The parameters N,M and λ are learned
from data. Given this model and the observation we can compute P (O|λ).

3.2 Baum-Welch Algorithm

The well-known Baum-Welch algorithm [11] is used to compute the model pa-
rameters (means, variance, and transitions) given the training data. It is an
iterative process for parameter estimation based on a training data set for a
given model λ. The goal is to obtain a new model λ̄ where the function

Q(λ, λ̄) =
∑
Q

P (O,Q | λ)
P (O | λ)

log[P (O,Q | λ̄)] (1)

is maximized. For this algorithm it is need to define a forward and a backward
probability as

αt(i) = P (Ot
1, qt = i | λ), βt(i) = P (OT

t+1 | qt = i, λ) (2)

Based on this two functions, the probability for changing from state j to state
k at time t can be defined as

ξt(j, k) =
∑

i αi−1(i)aijcjkbjk(ot)βt(j)∑N
i=1 αT (i)

(3)

where bj(o) is a continuous output probability density function (pdf) for state j
and can be described as a weighted mixture of Gaussian functions, as follow

bj(o) =
M∑

k=1

cjkN(o, µjk, Ujk) =
M∑

k=1

cjkbjk(o, µjk, Ujk) (4)

where cjk is the weight of the gaussian k and N(o, µjk, Ujk) is a single gaussian
of mean value µjk and a covariance matrix Ujk. Therefore, the model can be
described in terms of µjk,Ujk and cjk, and the new set of parameters for model
λ̄ are recalculated using Baum-Welch as follow

µ̄jk =
∑T

t=1 ξ(j, k)ot∑T
t=1 ξt(t, k)

(5)

Ūjk =
∑T

t=1 ξt(j, k)(ot − µ̄jk)(ot − µ̄jk)t∑T
t=1 ξt(j, k)

(6)

c̄jk =
∑T

t=1 ξt(j, k)∑T
t=1

∑
k ξt(j, k)

(7)

Now, the term bjk can be written as

bjk(ot, µjk, σjk) =
1∏d

i=1

√
2πσjki

e
− 1

2

�d
i=1(

oti−µjki
σjki

)2
(8)
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3.3 Viterbi Algorithm

The Viterbi algorithm [3] is used to find the single best state sequence, Q =
q1, · · · , qT , for the given observation sequence O = O1, · · · , OT , we need to
define the quantity

P (O|λ) = maxq1,··· ,qt−1P [q1, · · · , qt = i, O1, · · · , Ot | λ] (9)

3.4 Feature Extraction

The vibration signals are pre-processed calculating their Mel Frequency Cesptral
Coefficient (MFCC) representation [12]. This common transformation has shown
to be more robust and reliable than other techniques. The process to calculate
the MFCC is shown in Figure 3.

Magnitude
Spectrum

Discrete
Cosine
TransformFraming

Windowing

Discrete
Fourier
Transform

Bank of filters

Log scale

MFCC

Fig. 3. Feature extraction process

Each signal is divided into short frames. For each frame the amplitude spec-
trum is obtained using the Discrete Fourier Transform (DFT). Afterwards, the
spectrum is converted to a logarithm scale. To smooth the scaled spectrum,
bandpass filter banks are used. Finally, the discrete cosine transform is applied
to eliminate the correlation between components. The result is a 13-dimension
vector, each dimension corresponding to one parameter. We applied similar con-
siderations as in speech recognition [4], where it is common to estimate the time-
derivative (∆) and the time-acceleration (∆2) of each parameter. Then, the final
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representation is a 39 dimension vector formed by 12-dimension MFCC, followed
by 1 energy coefficient, 13∆ and 13 ∆2 coefficients.

4 Experimental Set Up

4.1 CNC Machine

The experimental tests were conducted in a KX10 HURON machining center,
with a capacity of 20 KW, three axis, and equipped with a SIEMENS open-
Sinumerik 840D controller, left image in Figure 4. This machining center pos-
sesses high precision sideways that allow all three axis to reach a speed of up
to 30 m/min. The machine has high-rigidity, high-precision features and there
is not interference between the workpiece and the moving parts.

Fig. 4. KX10 Huron CNC-milling center (left), and cutting tool (right)

The cutting tool is an Octomill R220.43-03.00-05 face mill of SECO Carboloy,
with a diameter of 80 mm, depth of cut 3.5 mm, and six inserts of the SECO
Carboloy OFEX-05T305TN-ME07 T250M type, right image in Figure 4.

4.2 Data Acquisition System

Figure 5 shows a diagram of the experimental set-up. The vibration signal is
recorded by using an accelerometer installed on the flat metal support. The vi-
bration signals during the machining process was acquired using a 8 bits analog-
digital converter (ADC) sampling at 50 KHz.

The accelerometer has as sensing element a ceramic/shear with (±20%) 10.2
mV/(m/s2) sensitivity and a frequency range of 1.2 Hz - 10 KHz. The range
of measurement is ± 490 m/s2. We recorded the vibration signals for several
machining conditions. Spindle speed : 2, 000, 1, 500, and 1, 000 rev/min. Feed
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Fig. 5. Experimental Set-up: Acquisition System to record the vibration signals

rate of the tool : 600, 800, and 1, 000 mm/min. Depth of the tool: 1 mm. All the
experiments were made considering two conditions for the tool: good and worn
inserts. We applied a full factorial design to consider all the defined levels for each
machining condition. Then, we required 18 different operating conditions, and
we reproduced the experiments 9 (tool with good inserts) and 8 (tool with worn
inserts) times. We obtained 153 experiments. Figure 6 shows some examples
of the vibration signals. The vibration signals on left of the figure represent
normal conditions of the tool (inserts in good conditions) at different operating
conditions. The vibration signals on the right of the figure were recorded with
worn inserts.

5 Results

Our database was built with the vibration signals obtained during the machin-
ing process. This database contains 153 experiments under 18 different operating
conditions. The first 5 experiments (Tr) were used for training, and last 4 ex-
periments were used for testing (Ts). The data streams are processed using the
Sphinx HMM Toolkit developed at Carnegie Mellon University. The toolkit was
configured to use several Gaussian, left-right, five states, HMMs. Table 1 presents
the accuracy when a signal is processed for the classifier.

We evaluate the performance of the classifier considering the following con-
ditions:
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Fig. 6. Vibration Signals. Left signals represent good cutting tool conditions. Right
signals were obtained with worn inserts. Each condition is defined by the spindle speed
(2000, 1500, 1000 rpm), feed rate (600, 800, 1000 mm/min), depth of the cut (1 mm)
and number of damage inserts (0,5).

– First, we train and test the algorithm with the same database, Tr = Ts, and
we obtain 95% of success, almost all conditions were identified. Note that we
have very few data for both training and testing steps.

– Second, we test the algorithm with different database, Tr �= Ts. We obtain
66.70% of success to recognize the pattern. In this case, the parameters of
the HMM were obtained using only one Gaussian.

– Third, we compute the parameters of the HMM with different Gaussian.
We obtained an 84.10% success with 16 Gaussian. We train and test the
algorithm with different database.

We also configured the HMM toolkit for recognition of two states: good and
faulty(worn inserts) condition. Table 2 presents the results for each condition
using the HMMs with 16 Gaussian. This table also shows the False Alarm Rate
(FAR) and the False Fault Rate (FFR) and Expected number of workpieces ma-
chining when the fault condition is detected. The FAR is the rate when decoder
detects the tool is in fault condition (worn inserts), but the tool is in good con-
dition. The FFR is the rate when decoder detects the tool is in good condition
and it is not. The FAR condition is not a problem for the machining process.
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Table 1. Accuracy of the model

Experiments for testing Accuracy
Tr = Ts 95 %
Tr �= Ts 66.70 % with 1 Gaussian
Tr �= Ts 68.30 % with 2 Gaussian
Tr �= Ts 79.40 % with 8 Gaussian
Tr �= Ts 84.10 % with 16 Gaussian

However, the FFR condition could be a huge problem when it presents a higher
value, because the poor quality of the product and the tool can be broken before
being detected.

Given the FFR we can easily obtain the probability to detect the fault con-
dition as follow:

E(k) =
∞∑

k=1

P (k) (10)

From this equation, we can also obtain the expected number of pieces processed
before the fault condition is detected, as shown:

E[k] =
1

1− Pb,g
(11)

This value is important because it establishes the number of pieces before the
fault condition is detected. This number must be small to reduce the number of
pieces with a poor quality surface, and to reduce the possibilities that the tool
could be broken.

Table 2. Probabilities of the HMMs with the 16 gaussian

Condition Probability Description
Pg,g ,Pb,b 0.841 Success probability

Pg,b 0.016 False alarm rate E(k) = 1.016
Pb,g 0.143 False fault rate E(k) =1.167

6 Conclusions and Future Work

In this paper we have proposed an algorithm to monitor the cutting tool-wear
condition in a CNC-machining center by using continuous Hidden Markov Mod-
els. The speech recognition framework was exploited in this domain with success-
ful results and great potential. A database was built with the vibration signals of
different conditions during the machining process of an Aluminium 6061 work-
piece. We trained/tested the HMM for each operating conditions, and the results
were satisfactory given the limited number of experiments. This is a first stage in
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the development of an intelligent system to monitor, supervise, and control the
machining process for a CNC-machining center. We are working in the process
to acquire more vibration signals with other sensors installed in different points
of the machine. We will use these additional signals to train and test new contin-
uous HMMs and evaluate the accuracy of the classifier with the new conditions.
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Abstract. A new method for hand gesture recognition is proposed which is 
based on an innovative Self-Growing and Self-Organized Neural Gas (SGONG) 
network. Initially, the region of the hand is detected by using a color 
segmentation technique that depends on a skin-color distribution map. Then, the 
SGONG network is applied on the segmented hand so as to approach its 
topology. Based on the output grid of neurons, palm geometric characteristics 
are obtained which in accordance with powerful finger features allow the 
identification of the raised fingers. Finally, the hand gesture recognition is 
accomplished through a probability-based classification method. 

1   Introduction 

Hand gesture recognition is a promising research field in computer vision. Its most 
appealing application is the development of more effective and friendly interfaces for 
human–machine interaction, since gestures are a natural and powerful way of 
communication. Moreover, it can be used to teleconferencing and telemedicine, 
because it doesn’t require any special hardware. Last but not least, it can be applied to 
the interpretation and the learning of the sign language. 

Hand gesture recognition is a complex problem that has been dealt with many 
different ways. Huang et al. [1] created a system consisting of three modules: i) model 
based hand tracking that uses the Hausdorff distance measure to track shape–variant 
hand motion, ii) feature extraction by applying the scale and rotation invariant Fourier 
descriptor and iii) recognition by using a 3D modified Hopfield neural network 
(HNN). Huang et al. [2] developed also another model based recognition system that 
consists of three stages as well: i) feature extraction based on spatial (edge) and 
temporal (motion) information, ii) training that uses the principal component analysis 
(PCA), the hidden Markov model (HMM) and a modified Hausdorff distance and iii) 
recognition by applying the Viterbi algorithm. Yin et al. [3] used a RCE neural 
network based color segmentation algorithm for hand segmentation, extracted edge 
points of fingers as points of interest and matched them based on the topological 
features of the hand, such as the centre of the palm. Herpers et al. [4] used a hand 
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segmentation algorithm that detects connected skin–tone blobs in the region of 
interest. A medial axis transform is applied, and finally, an analysis of the resulting 
image skeleton allows the gesture recognition. 

In the proposed method, hand gesture recognition is divided into four main phases: 
the detection of the hand’s region, the approximation of its topology, the extraction of 
its features and its identification. The detection of the hand’s region is achieved by 
using a color segmentation technique based on a skin color distribution map in the 
YCbCr space [6-7]. The technique is reliable, since it is relatively immune to 
changing lightning conditions and provides good coverage of the human skin color. It 
is very fast and doesn’t require post–processing of the hand image. Once the hand is 
detected, a new Self-Growing and Self-Organized Neural Gas (SGONG) [8] network 
is used in order to approximate its topology. The SGONG is an innovative neural 
network that grows according to the hand’s morphology in a very robust way. The 
positions of the output neurons of the SGONG network approximate the shape and the 
structure of the segmented hand. That is, as it can be viewed in Fig. 1(c), the grid of 
the output neurons takes the shape of the hand. Also, an effective algorithm is 
developed in order to locate a gesture’s raised fingers, which is a necessary step of the 
recognition process. In the final stage, suitable features are extracted that identify, 
regardless to the hand’s slope, the raised fingers, and therefore, the corresponding 
gesture. Finally, the completion of the recognition process is achieved by using a 
probability–based classification method. 

   
(a) (b) (c) 

Fig. 1. Growth of the SGONG network: (a) starting point, (b) a growing stage, (c) the final 
output grid of neurons 

The proposed gesture recognition system has been trained to identify 26 hand 
gestures. It has been tested by using a large number of gestures and the achieved 
recognition rate is satisfactory. 

2   Description of the Method 

The purpose of the proposed gesture recognition method is to recognize a set of 26 
hand gestures. The principal assumption is that the images include exactly one hand. 
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Furthermore, the gestures are made with the right hand, the arm is roughly vertical, 
the palm is facing the camera and the fingers are either raised or not. Finally, the 
image background is plain, uniform and its color differs from the skin color. 

The entire method consists of the following four main stages: 

• Color Segmentation 
• Application of the Self-Growing and Self-Organized Neural Gas Network 
• Finger Identification 
• Recognition Process 

Analysis of these stages follows. 

2.1   Color Segmentation 

The detection of the hand region can be achieved through color segmentation. The 
aim is to classify the pixels of the input image into skin color and non-skin color 
clusters. This can be accomplished by using a thresholding technique that exploits the 
information of a skin color distribution map in an appropriate color space. 

It is a fact that skin color varies quite dramatically. First of all, it is vulnerable to 
changing lightning conditions that obviously affect its luminance. Moreover, it differs 
among people and especially among people from different ethnic groups. The 
perceived variance, however, is really a variance in luminance due to the fairness or 
the darkness of the skin. Researchers, also, claim that the skin chromaticity is the 
same for all races [5]. So regarding to the skin color, luminance introduces many 
problems, whereas chromaticity includes the useful information. Thus, proper color 
spaces for skin color detection are those that separate luminance from chromaticity 
components.  

The proposed color space is the YCbCr space, where Y is the luminance and Cb, 
Cr the chrominance components. RGB values can be transformed to YCbCr color 
space using the following equation [6-7]: 

16 65.481 128.553 24.966

128 37.797 74.203 112  

128 112 93.786 18.214

Y R

Cb G

Cr B

= + − −
− −

 (1) 

Given that the input RGB values are within range [0,1] the output values of the 
transformation will be [16, 235] for Y and [16, 240] for Cb and Cr. In this color 
space, a distribution map of the chrominance components of skin color was created, 
by using a test set of 50 images. It is found that Cb and Cr values are narrowly and 
consistently distributed. Particularly, the ranges of Cb and Cr values are, as shown 
in Fig. 2, CbR = [80, 105] and CrR = [130, 165], respectively. These ranges were 
selected very strictly, in order to minimize the noise effect and maximize the 
possibility that the colors correspond to skin. 

Let ibC  and irC  be the chrominance components of the i-th pixel. If ib CbC R∈  and 
ir CrC R∈ , then the pixel belongs to the hand region. 
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Fig. 2. Distribution of: Cb component and Cr component 

Finally, a thresholding technique completes the color segmentation of the input 
image. The technique consists of the following steps. 

• Calculation of the Euclidean distance between the ibC , irC  values and the edges of 
CbR  and CrR , for every pixel. 

• Comparison of the Euclidean differences with a proper threshold. If at least one 
difference is less than the threshold, then the pixel belongs to the hand region. The 
proper threshold’s value is taken equal to 18. 

The output image of the color segmentation process is considered as binary. As 
illustrated in Fig. 3 the hand region, that is the region of interest, became black and 
the background white. The hand region is normalized to certain dimensions so as the 
system to be invariant of the hand’s size. It is worth to underline also, that the 
segmentation results are very good (almost noiseless) without further processing (e.g. 
filtering) of the image. 

  

(a) (b) 

Fig. 3. (a) Original image, (b) Segmented image 

2.2   Application of the Self-growing and Self-organized Neural Gas Network 

The next stage of the recognition process is the application of the Self Growing and 
Organized Neural Gas (SGONG) [8] on the segmented (binary) image. 

The SGONG is an unsupervised neural classifier. It achieves clustering of the input 
data, so as the distance of the data items within the same class (intra-cluster variance) 
is small and the distance of the data items stemming from different classes (inter-



 Hand Gesture Recognition Via a New Self-organized Neural Network 895 

cluster variance) is large. Moreover, the final number of classes is determined by the 
SGONG during the learning process. It is an innovative neural network that combines 
the advantages both of the Kohonen Self-Organized Feature Map (SOFM) and the 
Growing Neural Gas (GNG) neural classifiers.  

The SGONG consists of two layers, i.e. the input and the output layer. It has the 
following main characteristics: 

a. Is faster than the Kohonen SOFM, 
b. The dimensions of the input space and the output lattice of neurons are always 

identical. Thus, the structure of neurons in the output layer approaches the structure 
of the input data,  

c. Criteria are used to ensure fast converge of the neural network. Also, these criteria 
permit the detection of isolated classes. 

The coordinates of the output neurons are the coordinates of the classes’ centers. 
Each neuron is described by two local parameters, related to the training ratio and to 
the influence by the neighbourhood neurons. Both of them decrease from a high to a 
lower value during a predefined local time in order to gradually minimize the 
neurons’ ability to adapt to the input data. As it is shown in Fig. 1, the network begins 
with only two neurons and it inserts new neurons in order to achieve better data 
clustering. Its growth is based on the following criteria: 

• A neuron is inserted near the one with the greatest contribution to the total 
classification error, only if the average length of its connections with the neighbor 
neurons is relatively large.  

• A neuron is removed if no input vector is classified to its cluster for a predefined 
number of epochs. 

• All neurons are classified according to their importance. The less valuable neuron 
is removed, only if the subsequent increase in the mean classification error is less 
than a predefined value. 

• A neuron is removed, if it belongs to an empty class. 
• The connections of the neurons are created dynamically by using the “Competitive 

Hebbian Learning” method. 

The main characteristic of the SGONG is that both neurons and their connections 
approximate effectively the input data’s topology. This is the exact reason for using 
the specific neural network in this application. Particularly, the proposed method uses 
the coordinates of random samples of the binary image as the input data. The network 
grows gradually on the black segment, i.e. the hand region and a structure of neurons 
and their connections is finally, created that describes effectively the hand’s 
morphology. The output data of the network, in other words, is an array of the 
neurons’ coordinates and an array of the neurons’ connections. Based on this 
information important finger features are extracted. 

2.3   The Training Steps of the SGONG Network 

The training procedure for the SGONG neural classifier starts by considering first two 
output neurons ( 2c = ). The local counters iN , 1,2i =  of created neurons are set to 
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zero. The initial positions of the created output neurons, that is, the initial values for 
the weight vectors iW , 1,2i =  are initialized by randomly selecting two different 

vectors from the input space. All the vectors of the training data set 'X  are circularly 
used for the training of the SGONG network. 

The training steps of the SGONG are as follows: 

Step 1. At the beginning of each epoch the accumulated errors ( )1
iAE , ( )2

iAE , 

[1, ]i c∀ ∈  are set to zero. The variable ( )1
iAE  expresses, at the end of each epoch, the 

quantity of the total quantization error that corresponds to iNeuron , while the 

variable ( )2
iAE , represents the increment of the total quantization error that we would 

have if the iNeuron  was removed. 

Step 2. For a given input vector kX , the first and the second winner neurons 

w1Neuron , w2Neuron  are obtained: 

for w1Neuron : k w1 k iX W X W− ≤ − , [1, ]i c∀ ∈  (2) 

for w2Neuron  : k w2 k iX W X W− ≤ − , [1, ]i c∀ ∈  and i w1≠  (3) 

Step 3. The local variables ( )1
w1AE  and ( )2

w1AE  change their values according to the 

relations: 

( ) ( )1 1
w1 w1 k w1AE = AE + X W−  (4) 

( ) ( )2 2
w1 w1 k w2AE = AE + X W−  (5) 

1w1 w1N = N +  (6) 

Step 4. If w1 idleN N≤  then the local learning rates w11  and w12  change their values 

according to equations (7), (8) and (9). Otherwise, the local learning rates have the 
constant values minw11 = 1  and 0w12 = .  

/w1 w1 w12 = 1 r  (7) 

max
max min min

min

w1

idle
w1

N
1 N1 = 1 + 1 1
1

− ⋅  (8) 

max max
max

1
1

w1

idle
w1

N

Nr = r + r
r

− ⋅  
(9) 
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The learning rate i1  is applied to the weights of iNeuron  if this is the winner neuron 

( w1= i ), while i2  is applied to the weights of iNeuron  if this belongs to the 

neighborhood domain of the winner neuron ( ( )i nei w1∈ ). The learning rate i2  is 

used in order to have soft competitive effects between the output neurons. That is, for 
each output neuron, it is necessary that the influence from its neighboring neurons to 
be gradually reduced from a maximum to a minimum value. The values of the 
learning rates i1  and i2 are not constant but they are reduced according to the local 

counter iN . Doing this, the potential ability of moving of neuron i  toward an input 

vector (plasticity) is reduced with time. Both learning rates change their values from 
maximum to minimum in a period, which is defined by the idleN  parameter. The 

variable wir  initially takes its minimum value min 1r =  and in a period, defined by the 

idleN  parameter, reaches its maximum value maxr . 

Step 5. In accordance with the Kohonen SOFM, the weight vector of the winner 
neuron w1Neuron  and the weight vectors of its neighboring neurons mNeuron , 

( )m nei w1∈ , are adapted according to the following relations: 

( )w1 w1 w1 k w1W = W + 1 X W⋅ −  (10) 

( )m m m k mW = W + 2 X W⋅ − , ( )m nei w1∀ ∈  (11) 

 
Step 6. With regard to generation of lateral connections, SGONG employs the 
following strategy. The CHR is applied in order to create or remove connections 
between neurons. As soon as the neurons w1Neuron  and w2Neuron  are detected, the 

connection between them is created or is refreshed. That is  

0w1,w2s =  (12) 

 
With the purpose of removing of superfluous lateral connections, the age of all 
connections emanating from w1Neuron , except the connection with w2Neuron , is 

increased by one:  

1w1,m w1,ms = s + , ( )m nei w1∀ ∈ , with m w2≠  (13) 

 
Step 7. At the end of each epoch it is examined if all neurons are in idle state, or 
equivalently, if all the local counters iN , [1, ]i c∀ ∈  are greater than the predefined 

value idleN  and the neurons are well trained. In this case, the training procedure stops, 

and the convergence of SGONG network is assumed. The number of input vectors 
needed for a neuron to reach the “idle state” influences the convergence speed of the 
proposed technique. If the training procedure continues, the lateral connections 
between neurons with age greater than the maximum value  are removed. Due to 
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dynamic generation or removal of lateral connections, the neighborhood domain of 
each neuron changes with time in order to include neurons that are topologically 
adjacent.  

2.4   Finger Identification 

2.4.1   Determination of the Raised Fingers’ Number 
An essential step for the recognition is to determine the number of fingers that a 
gesture consists of. This is accomplished by locating the neurons that correspond to 
the fingertips.  

  
(a) (b) 

Fig. 4. (a) Hand image after the application of the SGONG network, (b) hand image after the 
location of the raised fingers 

Observations of the structure of the output neurons’ grid leads to the conclusion 
that fingertip neurons are connected to neighbourhood neurons by only two types of 
connections: i) connections that go through the background, and ii) connections that 
belong exclusively only to the hand region. The crucial point is that fingertip neurons 
use only one connection of the second type. Based on this conclusion, the 
determination of the number of fingers is: 

• Remove all the connections that go through the background. 
• Find the neurons that have only one connection. These neurons are the fingertips, 

as indicated in Fig. 4.  
• Find successively the neighbor neurons. Stop when a neuron with more than two 

connections is found. This is the finger’s last neuron (root-neuron). 

Find the fingers’ mean length (i.e. the mean fingertip and root neuron distance). If 
a finger’s length differs significantly from the mean value then it is not considered to 
be a finger. 

2.4.2   Extraction of Hand Shape Characteristics 
Palm Region 
Many images include redundant information that could reduce the accuracy of the 
extraction techniques and lead to false conclusions. Such an example is the presence 
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of a part of the arm. Therefore, it is important to find the most useful hand region, 
which is the palm. 

The algorithm of finding the palm region is based on the observation that the arm 
is thinner than the palm. Thus, a local minimum should appear at the horizontal 
projection of the binary image. The minimum defines the limits of the palm region as 
it is shown in Fig. 5. 

  

(a) (b) 

Fig. 5. (a) Horizontal projection, (b) Palm region 

This procedure is as follows: 

• Create the horizontal projection of the image H[j]: 

• Find the global maximum maxH j  and the local minima min
iH j  of [ ]H j . 

• Calculate the slope of the lines segments connecting the global maximum and the 
local minima, which satisfy the condition min max

ij j< . The minimum lowerj  that 

corresponds to the greatest of these slopes defines the lower limit of the palm 
region, only if its distance from the maximum is greater than a threshold value 
equal to ImageHeight/6.  

• The point that defines the upper limit of the palm region is denoted as upperj  and is 

obtained by the following relation: 

[ ] [ ] max   and   upper lower upper lowerH j H j j j j≤ > >  (14) 

Palm Centre 
The coordinates of the centre of the palm are taken equal to the mean values of the 
coordinates of the neurons that belong to the palm region. 

Hand Slope 
Despite of the roughly vertical direction of the arm, the slope of the hand varies. This 
fact should be taken under consideration because it affects the accuracy of the finger 
features, and consequently, the efficiency of the identification process. The 
recognition results depend greatly on the correct calculation of the hand slope.  

 



900 E. Stergiopoulou, N. Papamarkos, and A. Atsalakis 

The hand slope can be estimated by the angle of the left side of the palm, as it can 
be viewed in Fig. 6(a). The technique consists of the following steps: 

• Find the neuron LeftN , which belongs to the palm region and has the smallest 

horizontal coordinate. 
• Obtain the set of palm neurons setN that belong to the left boundary of the neurons 

grid. To do this, and for each neuron, starting from the LeftN , we obtain the 

neighborhood neuron which has, simultaneously, the smallest vertical and 
horizontal coordinates.  

• The first and the final neurons of the set setN  define the hand slope line (HSL) 

which angle with the horizontal axis is taken equal to the hand’s slope. 

The hand slope is considered as a reference angle and is used in order to improve 
the feature extraction techniques. 

2.4.3   Extraction of Finger Features 
Finger Angles 
A geometric feature that individualizes the fingers is their, relative to the hand slope, 
angles. As it is illustrated in Fig. 6(b), we extract two finger angles. 

• RC Angle. It is an angle formed by the HSL and the line that joints the root neuron 
and the hand center. It is used directly for the finger identification process. 

• TC Angle. It is an angle formed by the HSL and the line that joints the fingertip 
neuron and the hand center. This angle provides the most discrete values for each 
finger and thus is valuable for the recognition. 

   

(a) (b) (c) 

Fig. 6. (a) Hand slope and centre, (b) Fingers’ angles, (c) Distance from the centre 

Distance from the Palm Centre 
A powerful feature for the identification process is the vertical distance of the finger’s 
root neuron from the line passing through the palm centre and having the same slope 
as the HSL. An example is illustrated in Fig. 6(c). 
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3   Recognition Process 

The recognition process is actually a choice of the most possible gesture. It is based 
on a classification process of the raised fingers into five classes (thumb, index, 
middle, ring, little) according to their features. The classification depends on the 
probabilities of a finger to belong to the above classes. The probabilities derive from 
the features distributions. Therefore, the recognition process consists of two stages: 
the off–line creation of the features distributions and the probability based 
classification. 

3.1   Features Distributions 

The finger features are naturally occurring features, thus a Gaussian distribution can 
model them. Their distributions are created by using a test set of 100 images from 
different people.  

 

  

(a) (b) 

 

(c) 

Fig. 7. Features distributions (a) TC Angle, (b) RC Angle, (c) Distance from the centre 
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If if  is the i-th feature ( [ ]1,  3i ∈ ), then its Gaussian distributions for every class 

jc  ( [ ]1,  5j ∈ ) are given by the relation: 
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where, 1,...,5j = , j
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c
fm  is the mean value and j

i

c
fσ  the standard deviation of the if  

feature of the jc  class. . The Gaussian distributions of the above features are shown in 
Fig. 7. As it can be observed from the distributions, the five classes are well defined 
and are well discriminated. 

 

3.2   Classification 

The first step of the classification process is the calculation of the probabilities 
jRPc  of a raised finger to belong to each one of the five classes. Let 0x  be the 

value of the i-th feature if . Calculate the probability ( )0
j

i

c
fp x  for [ ]1,  3i ∈  and 

[ ]1,  5j ∈ . The requested probability is the sum of the probabilities of all the 

features for each class 
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where, 1,...,5j = , j

i

c
fm  is the mean value and j

i

c
fσ  the standard deviation of the if  

feature of the jc  class. . The Gaussian distributions of the above features are shown in 
Fig. 7. As it can be observed from the distributions, the five classes are well defined 
and are well discriminated. 

This process is repeated for every raised finger.  
Knowing the number of the raised fingers, one can define the possible gestures 

that can be created. For each one of these possible gestures the probability score is 
calculated, i.e. the sum of the gesture’ s each raised finger to belong to each one of 
the classes. Finally, the gesture is recognized as the one with the higher probability 
score. 

4   Experimental Results 

The proposed hand gesture recognition system, which was implemented in 
DELPHI, was tested with 158 test hand images 1580 times. It is trained to 
recognize up to 26 gestures. The recognition rate, under the conditions described 
above, is 90.45%. Fig. 8 illustrates recognition examples. 
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Fig. 8. Gesture recognition examples 
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5   Conclusions 

This paper introduces a new technique for hand gesture recognition. It is based on a 
color segmentation technique for the detection of the hand region and on the use of 
the Self-Growing and Self-Organized Neural Gas network (SGONG) for the 
approximation of the hand’s topology. The identification of the raised fingers, which 
depends on hand shape characteristics and fingers’ features, is invariant of the hand’s 
slope. Finally, the recognition process is completed by a probability-based 
classification with very high rates of success. 
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Abstract. It is presented herein a new thresholding algorithm for images of his-
torical documents. The algorithm provides high quality binary images using en-
tropy information of the images to define a primary threshold value which is ad-
justed with the use of ROC curves. 

1   Introduction 

Thresholding or binarization is a conversion from a color image to a bi-level one. This 
is the first step in several image processing applications. This process can be under-
stood as a classification between objects and background in an image. It does not 
identify objects; just separate them from the background. This separation is not so 
easily done in images with low contrast. For these cases, image enhancement tech-
niques must be used first to improve the visual appearance of the image. Another 
major problem is the definition of the features that are going to be analyzed in the 
search of the correct threshold value which will classify a pixel as object or back-
ground. The final bi-level image presents pixels whose gray level of 0 (black) indi-
cates an object (or the signal) and a gray level of 1 (white) indicates the background. 
With document images, the background can be seen as the paper of the document and 
the object is the ink. 

When the images are from historical documents this problem is quite singular. In 
these cases, the paper presents several types of noise. In some documents, the ink has 
faded; some of the others were written on both sides of the paper presenting ink-
bleeding interference. A conversion into a bi-level image of this kind of documents 
using a nearest color threshold algorithm does not achieve high quality results. Thus 
ink and paper separation is not always a simple task. 

In this work, we analyze the application of the thresholding process to generate 
high quality bi-level images from grey-scale images of documents. The images are of 
letters, documents and post cards from the end of the 19th century and beginning of 
the 20th century. The Image Processing of Historical Documents Project (DocHist) 
aims at the preservation of and easy access to the content of a file of thousands of 
documents. 

In the complete file, there are documents written on one side or on both sides of the 
sheet of paper. In the latter case, two classes are identified: documents with or without 
back-to-front interference. 
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    The second class is the most common and it is easy to reduce the color palette 
suitably. The bi-level image can be generated from the grayscale one through the 
application of a threshold filter. A neighborhood filter [15] can also be used to reduce 
the “salt-and-pepper” noise in the image. 
    Palette reduction of documents with ink-bleeding interference is far more difficult 
to address. A straightforward threshold algorithm does not eliminate all the influence 
of the ink transposition from one side to the other in all cases. 
    It is presented herein a variation on a previous entropy-based algorithm [12]. It is 
used to define a primary threshold value which is adjusted using Receiver Operating 
Characteristic (ROC) curves [13]. 

2   Materials and Methods 

This research takes place in the scope of the DocHist Project for preservation and 
broadcasting of a file of thousand of historical documents. The bequest is composed 
of more than 6,500 letters, documents and post cards which amounts more than 
30,000 pages. 
    To preserve the file, the documents are digitized in 200 dpi resolution in true color 
and stored in JPEG file format with 1% loss for better quality/space storage rate. Even 
in this format each image of a document reaches, in average, 400 Kb. Although 
broadband Internet access is a common practice nowadays, the visualization of a 
bequest of thousand of files is not a simple task. Even in JPEG file format all the 
bequest must consume Giga bytes of space. There are new mobile devices which are 
not suitable to access large files as palm tops or PDA´s (Personal Digital Assistants). 
    A possible solution to this problem is to convert the images to bi-level which is not 
a simple task. As said before, some documents are written on both sides of the paper 
creating back-to-front interference; in others the ink has faded. Thus, the binarization 
by commercial softwares with standard settings is not appropriate. Figure 1 presents a 
sample document and its bi-level version produced by straightforward threshold algo-
rithms. 
    Besides compression rates, high quality bi-level images yield better response from 
OCR tools. This allows the use of text files to make available the contents of the 
documents instead of its full digitized image. 
    The problem remains in the generation of these bi-level images from the original 
ones. For this, an entropy-based segmentation algorithm was proposed and extended 
with variations in the logarithmic basis [12]. 

2.1   Thresholding Algorithms 

There are several algorithms for thresholding purposes. The first ones were based on 
simple features of the images or their histograms. The mean of the grayscale histo-
gram is used as cut-off value in the thresholding by mean gray level [15]. Another 
algorithm is based on the percentage of black pixels desired [15] (10% is the value 
suggested in [15]). In the two peaks algorithm, the threshold occurs at the low point 
between two peaks in the histogram [15]. In adaptive algorithms, the iterative selec-
tion [17] makes an initial guess at a threshold value which is refined improving this 
value. The initial guess is the mean gray level which separates two areas and the mean 
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values of these areas are evaluated (Tb and To). A new estimative of the threshold is 
evaluated as (Tb + To)/2. The process repeats with this new value of threshold until 
no change is found in the value in two consecutives steps. 

It is presented herein some of the most well-known thresholding algorithms, which 
are classified based on the type of information used. The taxonomy used herein de-
fines three categories of thresholding algorithms based on histogram entropy, maximi-
zation or minimization functions and fuzzy theory. 

 

              

Fig. 1. (left) Grayscale sample document written on both sides of the paper and (right) its bi-
level version by a threshold algorithm 

    Entropy [19] is a measure of information content. In Information Theory, it is as-
sumed that there are n possible symbols s which occur with probability p(s). The 
entropy associated with the source S of symbols is: 
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where the entropy can be measured in bits/symbols. Although the logarithmic base is 
not defined, [7] and [10] analyze that changes in the base do not affect the concept of 
entropy as it was explored in [12]. 
    Six entropy-based segmentation algorithms are briefly described herein: Pun [16], 
Kapur et al [6], Johannsen [5], Li-Lee [11], Wu-Lu [20] and Renyi [18]. 
    Pun’s algorithm [16] analyses the entropy of black pixels, Hb, and the entropy of 
the white pixels, Hw, bounded by the threshold value t. The algorithm suggests that t 
is such that maximizes the function H = Hb + Hw, where Hb and Hw are defined by: 
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where p[i] is the probability of pixel i with color color[i] is in the image. 
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In [6], Kapur et al defined a probability distribution A for an object and a distribu-
tion B to the background of the document image, such that: 

A: p0/Pt, p1/Pt, ..., pt/Pt 
B: (pt+1)/(1 – Pt), (pt + 2)/(1 - Pt),..., p255/(1 – Pt) 
 
    The entropy values Hw and Hb are evaluated using Equations 1 and 2 with p[i] 
defined with these new distributions. The maximization of the function Hw + Hb is 
analyzed to define the threshold value t. 

Another variation of an entropy-based algorithm is proposed by Johannsen and 
Bille [5] trying to minimize the function Sb(t) + Sw(t), with: 
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where E(x)=-xlog(x) and t is the threshold value. 

The Li-Lee algorithm [11] uses the minimum cross entropy thresholding, where the 
threshold selection is solved by minimizing the cross entropy between the image and 
its segmented version. 

The basic idea of the Wu-Lu algorithm is the use of the lower difference between 
the minimum entropy of the objects and the entropy of the background [20]. The 
method is very useful in ultra-sound images which have few different contrast values. 

The Renyi method [18] uses two probability distribution function (one for the ob-
ject and the other for the background), the derivatives of the distributions and the 
methods of Maximum Sum Entropy and Entropic Correlation. 

Other algorithms are based on the maximization or minimization of functions. Al-
though Kapur and Johannsen algorithms, presented previously, work in the same way, 
they were classified as Entropy algorithms because of the major importance of this 
feature in them. For this category of algorithms, five techniques are selected. 

The Brink method [8] identify two threshold values (T1 and T2), using the Brink´s 
maximization algorithm. The colors below T1 are turned to black and the colors 
above T2 are turned to white. The values between T1 and T2 are colorized analyzing 
the neighbors of the pixel. A 25x25 area is analyzed and, if there is a pixel in this area 
which color is greater than T2, then the pixel is converted to white. 

In the Minimum Thresholding algorithm, Kittler and Illingworth [9] use the histo-
gram as a measured probability density function of two distributions (object and 
background pixels). The minimization of a criterion function defines the threshold. 

Fisher method [1] consists in the localization of the threshold values between the 
gray levels classes. These threshold values are found using a minimization of the sum 
of the inertia associated to the two different classes. 

In the Kittler and Illingworth Algorithm based on Yan´s Unified algorithm [22] the 
foreground and background class conditional probability density functions are as-
sumed to be Gaussian, but in contrast to the previous method the equal variance as-
sumption is removed. The error expression can be interpreted also as a fitting expres-
sion to be minimized. 
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Otsu [14] suggested minimizing the weighted sum of within-class variances of the 
foreground and background pixels to establish an optimum threshold. The algorithm 
has its basics in the discriminant analysis. The segmentation is done using the mean 
values of the foreground and background classes (

bµ  and 
wµ , for the pixels classified 

as ink or paper, respectively), of the between-classes variances 2
bσ , within-classes 

variances 2
wσ  and total variance 2

Tσ . Otsu demonstrated that the optimal value of the 

threshold t* can be reached by the maximizing the function 
2

2 )(
)(

T

b t
t

σ
ση = , i.e., the 

ratio between the variance between-classes and the total variance. 
In a fuzzy set, an element x belongs to a set S with probability px. This definition of 

fuzzy sets can be easily applied to the segmentation problem. Most of the algorithms 
use a measure of fuzziness which is a distance between the original gray level image 
and the segmented one. The minimization of the fuzziness produces the most accurate 
binarized version of the image. We can cite three binarization algorithms that use 
fuzzy theory: C Means [4], Huang [3] and Yager [21]. 

In addition, there is also the Ye-Danielsson [2] algorithm which is implemented as 
an iterative thresholding. 

Fig. 2 presents the application of these algorithms in the sample document of Fig. 
1. It can be observed that some algorithms performance was very poor as some im-
ages are completely black or white. 

2.2   Entropy-Based Segmentation Algorithm 

At first, the algorithm scans the image in search for the most frequent color, t. As we 
are working with images of letters and documents, it is correct to suppose that this 
color belongs to the paper. This color is used as an initial threshold value for the 
evaluation of Hb and Hw as defined in Eq. 1 and 2 before. 
    As defined in [7], the use of different logarithmic bases does not change the con-
cept of entropy. This base is taken as the area of the image: width by height. 
    With Hw and Hb, the entropy, H, of the image is evaluated as their sum: 

 HbHwH += .                                                 (Eq. 3) 

Based on the value of H, three classes of documents were identified, which define 
two multiplicative factors, as follows:  

• H ≤ 0.25 (documents with few parts of text or very faded ink), then mw = 2 and 
mb = 3; 

• 0.25 < H  < 0.30 (the most common cases), then mw = 1 and mb = 2.6; 
• H ≥ 0.30 (documents with many black areas), then mw = mb = 1. 

    These values of mw and mb were found empirically after several experiments 
where the hit rate of OCR tools in typed documents (as the one of Fig. 3-left) defined 
the correct values. With the values of Hw, Hb, mw and mb the threshold value, th, is 
defined as: 

HbmbHwmwth .. += .                                          (Eq. 4) 



910 C.A.B. Mello and A.H.M. Costa 

 

Fig. 2. Application of several thresholding algorithms in document presented in Fig. 1 with 
back-to-front interference 

    The grayscale image is scanned again and each pixel i with graylevel[i] is turned to 
white if: 

thigraylevel ≥)256/][( .                                          (Eq. 5) 

Otherwise, its color remains the same (to generate a new grayscale image but with a 
white background) or it is turned to black (generating a bi-level image). This is called 
the segmentation condition. 

 
    Fig. 3 presents a zooming into a document and its binarized version generated by 
the entropy-based algorithm. 

The problem comes when the images have back-to-front interference. As it can be 
seen in Fig. 4, the results of the algorithm are not the best, even though it is far better 
 
 

   

Fig 3. (left) Sample document and (right) its bi-level version by entropy algorithm .
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than other ones. It can be noticed in Fig. 4-left that the bi-level image presents some 
elements of the opposite side of the paper, although its quality is much better than the 
one created by a straightforward thresholding algorithm (Fig. 4-center). The correc-
tion of this threshold value is proposed in the next Section with the use of ROC 
curves. 

 

   

Fig. 4. (left) Sample document with back-to-front interference, (center) binarized image using a 
nearest color thresholding algorithm with default values and (right) bi-level image generated by 
new entropy-based algorithm  

2.3   Thresholding by ROC Curves 

The threshold value defined by the entropy-based algorithm is not always the best 
value. So, to adjust this value, it used a receiver operating characteristic (ROC) curve 
from Detection Theory [13]. This is usually used in medical analysis where some tests 
can generate true positives (TP), false positives (FP), true negatives (TN) and false 
negatives (FN) answers. TP represents the number of patients who have some disease, 
and have this corroborated by having a "high" test (above some chosen cutoff level). 
FP represents false positives - the test was wrong, and resulted that non-diseased 
patients are really ill. Similarly, true negatives are represented by TN, and false nega-
tives by FN. 
    In elementary statistical texts, some will encounter other terms: 

• The sensitivity is how accurate the test is at picking out patients with the disease. 
It is simply the True Positive. In other words, sensitivity gives us the proportion 
of cases picked out by the test, relative to all cases that actually have the disease. 

• Specificity is the ability of the test to pick out patients who do not have the dis-
ease. This is synonymous with the True Negative. 

    A receiver operating characteristic (ROC) curve shows the relationship between 
probability of detection (PD) and probability of false alarm (PFA) for different thresh-
old values. The two numbers of interests are the probability of detection (TP) and the 
probability of false alarms (FP). The probability of detection (PD) is the probability of 
correctly detecting a Threat user. The probability of false alarm (PFA) is the probabil-
ity of declaring a user to be a Threat when s/he is Normal. The detection threshold is 
varied systematically to examine the performance of the model for different  
thresholds. Varying the threshold produces different classifiers with different (PD) 
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and probability of false alarm (PFA). By plotting PD and PFA for different thresholds 
values, one can get a ROC curve. 
    For thresholding applications, this theory can be easily adapted as one can see the 
TP as the ink pixels correctly classified as object; FP represents background elements 
classified as object, and so on. 
    The new proposed algorithm starts with the application of the previous entropy-
based algorithm. This initial threshold value (th) is used to define a binary matrix (M) 
with the same size of the input image. Each cell of this matrix is set to true if the 
corresponding pixel in the input image (IM) is equal to th. This leads to the building 
of the PD versus PFA curve (the ROC curve) according to algorithm 1. 

 
Algorithm 1 

n1 ← the number of true elements in M (elements equal to th in IM) 
n0 ← the number of false elements in M (elements different to th in IM) 
for t = 0 to 255 
      pd(t) ←  (IM > t AND M)/n1 
      pfa(t) ←  (IM > t AND ¬M)/n0 
end 

 
    For our kind of images, the ROC curve defined by this algorithm is a step like func-
tion which has its maximum values equal to 1 for both axes. Different initial threshold 
values define different ROC curves. 

Fig. 5 presents the PD versus PFA curve for the sample image of Fig. 4-left. For 
this document, th = 104 and PFA is equal to 1 when PD is 0.758. 

One can see in the bi-level image (Fig. 4-right) that there are still many elements of 
the ink that is in the other side of the paper. So this cut-off value is not the best one. 

It was observed in the handwritten documents that the percentage of ink is about 
10% of the complete image. So, the correct ROC curve must grow to 1 when PD 
values about 0.9. For this, different values of th must be used. This creates different M 
matrixes leading to new PDxPFA curves. If the curve grows to 1 with PD less than 
0.9, then the initial th must decrease; otherwise, it must increase. Fig. 6 presents some 
resulting images for different th and the PD value which turns PFA equals to 1, start-
ing from the initial th = 104, and PD = 0.758 (present in Fig. 5). 

 

 

Fig. 5.  (top-left) Original document with back-to-front interference. (top-right) Binarized 
version generated with th = 104. (bottom) PD versus PFA graphic; PFA = 1 for PD = 0.756. 
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a) b) c) d) 

Fig. 6. Bi-level images generated by different threshold values (th) and the corresponding PD 
value for which PFA turns equal to 1: a) th = 100, PD = 0.771, b) th = 90, PD = 0.8244, c) th = 
80, PD = 0.8534 and d) th = 70, PD = 0.8749 

3   Results 

For the sample document of Fig. 4, the initial threshold value is 104 and, as it could 
be seen, it did not result a good quality image. For this th, PD is 0.756 (Fig. 5). So, the 
th value must be decreased until PD equals to 0.9. In fact, a small variation of this PD 
value is accepted. Changing the th value, PD reaches the value of 0.8983 (when PFA 
turns from 0 to 1) with th = 57. The final PD versus PFA graphic just as the final bi-
level image of the sample document of Fig. 4 are shown in Fig. 7. 

Fig. 8 presents others sample documents, their bi-level images generated by the en-
tropy-based algorithm with and without the ROC correction and the threshold values 
defined (initial and final). 

As can be seen in Fig. 8, the correction achieved better quality images for all cases. 
The same happened with images without back-to-front interference. But, in these 
cases, the difference between the initial threshold value and the final one is smaller. 
Thus, the correction can be applied to every case. 
 
 

     

Fig. 7.  (left) Final bi-level version of document presented in Fig. 4-top-left after correction by 
ROC curve. (right) PD versus PFA graphic. The threshold value is now 57, with PD = 0.8983. 

4   Conclusions 

This paper presents a variation of an entropy-based thresholding algorithm for im-
ages of historical documents. The algorithm defines an initial threshold value which 
is adjusted by the use of ROC curves. These adjustments define new cut-off values 
and they generate better quality bi-level images. The method is quite suitable when  
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a) 

   
 Original Document th = 92 th = 33 

 
 
 

b) 

   
 Original Document th = 100 th = 69 

 
 
 

c) 

   
 Original Document th = 102 th = 50 

 
 
 

d) 

   
 Original Document th = 102 th = 58 

 
 
 

e) 

   
 Original Document th = 100 th = 29 

Fig. 8.  (left) Sample original documents and bi-level images generated by entropy-based 
threshold algorithm (center) without and (right) with ROC correction 
 



 Image Thresholding of Historical Documents Using Entropy and ROC Curves 915 

applied to documents written on both sides of the paper, presenting back-to-front 
interference. By visual inspection, the binary images are far better than the ones pro-
duced by others well-known algorithm. 
    The monochromatic images can be used to make files of thousand of historical 
documents more easily accessible by the Internet even through mobile devices which 
have slower connections. 
    A MatLab implementation of the proposed algorithm just as a sample image of a 
document is avaliable at: http://www.upe.poli.br/dsc/recpad/site_hist/throc.htm 
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Abstract. As an efficient sparse coding and feature extraction method, 
independent component analysis (ICA) has been widely used in speech signal 
processing. In this paper, ICA method is studied in extracting low frequency 
features of underwater acoustic signals. The generalized Gaussian model 
(GGM) is introduced as the p.d.f. estimator in ICA to extract the basis vectors. 
It is demonstrated that the ICA features of ship radiated signals are localized 
both in time and frequency domain. Based on the ICA features, an extended de-
noising method is proposed for underwater acoustic signals which can extract 
the basis vectors directly from the noisy observation. The de-noising 
experiments of underwater acoustic signals show that the proposed method 
offers an efficient approach for detecting weak underwater acoustic signals 
from noise environment. 

1   Introduction 

Recently, independent component analysis (ICA) has been shown highly effective in 
encoding patterns, including image and speech signals [1-4]. Unlike correlation-based 
learning algorithm, ICA can extract the higher order statistics from data. And the most 
informative features of sound signals require higher-order statistics for their 
characterization. Nowadays, pattern recognition and object detection of underwater 
acoustic signals are hard works since these signals are non-Gaussian, non-stationary 
and non-linear complex signals. In this paper, ICA is used in extracting the higher-
order statistics of underwater acoustic signals, and the generalized Gaussian model 
(GGM) was introduced in ICA algorithm to estimate the p.d.f. of coefficients. By 
inferring only one parameter q, ICA algorithm can extract the efficient basis vectors 
for different underwater acoustic signals. The time and frequency domain 
characteristic of the ICA basis and the sparseness of coefficients demonstrate that 
ICA feature extraction of underwater acoustic signals is efficient.  

Based on the ICA features, an extended de-noising method is proposed for noisy 
underwater acoustic signals. In many ICA-based de-noising works, the de-noising 
process of noisy signals needs noise-free source data to train the ICA basis vectors as 
a priori knowledge. Unfortunately, the noise-free signal is always not acquirable in 
practice. In this paper, the ICA algorithm based on GGM is presented on extracting 
the efficient basis vectors directly from the noisy signals. At the same time the 
shrinkage function can be obtained from the p.d.f. of each coefficient. Using the 
maximum likelihood (ML) method on the non-Gaussian variables corrupted by 
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additive white Gaussian noise, we show how to apply the shrinkage method on the 
coefficients to reduce noise. The de-noising experiments of the artificial mixtures of 
underwater acoustic signals show that the short-term zero crossing rate (ZCR) of 
source signals is improved after de-noising. 

2   ICA Feature Extraction Using GGM  

ICA assume the observation x is the linear mixture of the independent components u, 
x = As, where the columns of A are described as the basis vectors. An ICA feature 
extraction algorithm is applied to obtain independent vectors u and weight matrix W 
from signal segment x, u = W x, then the basis vectors A can be calculated by the 
relation A= W -1. The infomax learning rule is used here [1-4]: 

WssIW T ])([ ϕη −∝∆  (1) 

Where the vector )(sϕ is a function of the prior and is defined by
s

sp
s

∂
∂−= )(log

)(ϕ , 

here p(s) are the p.d.f.s of vectors s. It can be seen that the knowledge of the p.d.f. of 
the independent components s plays an important role. Here the generalized Gaussian 
model (GGM) is used in ICA feature extraction of underwater acoustic signals. 

The GGM models a family of density functions that is peaked and symmetric at the 
mean, with a varying degree of normality in the following general form [5, 6] 
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][sE=µ  and ])[( 2µσ −= sE are the mean and standard deviation of the data 

respectively. ][⋅Γ is the Gamma function. By inferring q, a wide class of statistical 

distributions can be characterized. The Gaussian, Laplacian, and strong Laplacian 
distributions can be modeled by putting q = 2, q = 1, and q < 1 respectively. In ICA 
learning rules, the problem then becomes to estimate the value of q from the data. 
This can be accomplished by simply finding the maximum posteriori value q. The 
posterior distribution of q given the observations x={x1,…,xn} is 

)()|()|( qpqxpxqp ∝  (4) 

where the data likelihood is 

]||)(exp[)()|( q
n

n
xqcqqxp −∏= ω  (5) 
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and p(q) defines the prior distribution for q. Gamma function ][⋅Γ is used as p(q) 

here.  

In the case of the GGM as the p.d.f of s, the vector )(sϕ  in eq. 1 can be derived as 

)(||)( 1
ii

q
ii

q
iii ssignsqcs µµσϕ −−−= −−

 (6) 

    Using the GGM-based ICA learning rule (eq. 1), the basis vectors of ship radiated 
signals and sea noises are extracted respectively. 40,000 samples of each signal were 
used and the sample-rates were down-sampled to 500Hz. For each signal, 1000 
samples of length 40 (8ms) were generated. Each segment was pre-whitened to 
improve the convergence speed. The adaptation started from the 40×40 identity 
matrix and trained through the 1000 data vectors. The learning rate was gradually 
decreased from 0.2 to 0.05 during the iteration. When W is achieved, the basis vectors 
of signals can be obtained by A= W -1. Figure 1 show the basis vectors of ship 
radiated signals and sea noise.  

      
(a)                                                                     (b) 

Fig. 1. (a)-(b) Basis vectors of ship radiated signals and sea noises in time domain 

40 basis vectors of ship radiated signals are show in Fig. 1 (a), in which each 
subfigure denotes one basis vector which is the column vector of A, the same as Fig. 1 
(b). The basis vectors look like short-time Fourier bases, but are different in that they 
are asymmetric in time. The basis vectors of ship radiated signals have one or two 
peaks and are local in time, but those of sea noises have a few peaks, generally four, 
and cover all time span like Fourier basis. Fig.2 gives the frequency domain 
characteristic of fig.1. 
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(a)                                                                 (b) 

Fig. 2. (a)-(b) The frequency spectrum of fig.1 (a) and (b) 

It can be seen that the ICA basis vectors of ship radiated signals are localized both 
in time (Fig1. (a)) and frequency domain (Fig2. (a)), and not localized in sea noise 
(Fig1. (b) and  Fig2. (b)). The ICA feature of ship radiated signals are focus on low 
frequency (Fig.2 (b)), and that of sea noises are global in all frequency domain 
because sea noises are close to Gaussian distribution. 

In order to compare the sparseness of the coefficients produced by ICA and other 
conventional methods, the log-scaled histograms of the coefficients of DFT, DCT, 
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Fig. 3. Histograms of the coefficients of ship radiated signals in different methods 
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PCA and ICA for ship radiated signals are shown in fig.3. It can be seen that the 
distribution of the ICA coefficients is peakier than the others, and this characteristic 
yields greater sparseness in encode efficiency. 

3   De-noising Method Based on ICA Feature Extraction 

In recently ICA-based de-noising works of speech or image, the de-noising process of 
noisy signals needs noise-free source data to train the ICA basis vectors as a priori 
knowledge. Unfortunately, the corresponding noise-free signals are always not 
acquirable, especially for the underwater acoustic signals. The object ship radiated 
signals are always submerged in loudly sea noises. In this paper, based on 
Hyvärinen’s maximum likelihood de-noising method [7, 8, 9], an extended method 
based on GGM-ICA feature extraction is proposed. 

In the noise environment, denote y as the noisy coefficient of a basis vector, s as the 
original noise-free version of coefficient of basis vector, and v as a Gaussian noise 

with zero mean and variance 2σ . Then the variable y can be describe as 

y = s + v (7) 

We want to estimate s from the only observed noisy coefficient y. Denote p as the 
probability of s, and f = - log p as its negative log-density, the estimator of s can be 
obtained by the maximum likelihood (ML) method [7] 

)()(
2

1
minargˆ 2

2
sfsys

s
+−=

σ
 (8) 

Assuming f(�) to be strictly convex and differentiable, the ML estimation gives the 
equation 

)(ˆ yhs =  (9) 

where the nonlinear function h(�) is called as shrinkage function, and the inverse is 
given by 

)()( 21 sfssh ′+=− σ  (10) 

Thus, the estimation of s is obtained by inverting a certain function involving f ′ (�).  

    For current ICA-based de-noising works, however, the de-noising process of noisy 
signals needs noise-free source data to train the ICA basis vectors. When the 
corresponding noise-free signals are inaccessible, these algorithms are failed. The 
GGM-based ICA algorithm in last section has been used to extract the basis vectors 
directly from noisy signals when the noise-free signals cannot be obtained, and the 
p.d.f. of the coefficients p(s) learned by the GGM can get simultaneously. Since f(�) 
in eq. 10 is a function of p, the probability of s has been obtained by GGM in ICA 
feature extraction, so the shrinkage function can be obtained easily. 
    To recover the de-noised signal from the noisy source three steps are needed. 
Firstly, by using GGM-based ICA, we can obtain the un-mixing matrix W and the 
p.d.f. of the corresponding coefficients p(s) at the same time. From the experiments, it 
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shows that the coefficients of the basis vectors extracted from noisy underwater 
acoustic signals have sparse distributions. Secondly, the shrinkage functions can be 
estimated by p(s) by eq.10, and the de-noised coefficients can be calculated 

by )(ˆ yhs = . Finally, recover the de-noised ship radiated signals by sAsWx ˆˆˆ 1 == − . 

    This sparse coding method based on ICA may be viewed as a way for determining 
the basis and corresponding shrinkage functions base on the data themselves. Our 
method use the transformation based on the statistical properties of the data, whereas 
the wavelet shrinkage method chooses a predetermined wavelet transform. And the 
second difference is that we estimate the shrinkage nonlinearities by the ML 
estimation, again adapting to the data themselves, whereas the wavelet shrinkage 
method use fixed threshold derived by the min-max principle. 

4   Experiments 

We select 4 kinds of the ship radiated signals mixed with sea noises to test the de-
noising method. The sampling rate is 500Hz and each mixture has 7800 samples. The 
first step is the feature extraction of the noisy signals using the GGM-based ICA 
algorithm described in section 2. The un-mixing matrix W was extracted by the 
learning rule eq. 1, and it was used as the filter in the de-noising processing. To judge 
the results of the de-noising, the signal-to-noise ratio (SNR) is used 
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    The ship radiated signals mixed with sea noises with the input SNRs of 16.6680, 
6.6346, 0.4932 and -0.6203 respectively. By using the method presented in section 3, 
we obtain the de-noising results for these 4 kinds of mixtures are 17.7891, 7.7121, 
1.9061 and 0.9028dB respectively.  
    To compare the proposed method and conventional de-noising methods, the results 
of the mean filter (n=3, n=5) and wavelet filter (db3, n=3) are also given in table 1. 
Where SNRin denotes the input SNR of the noisy ship radiated signals and SNRout 
denotes the output SNR of the de-noised signals.  
    In table 1, the first column denotes the 4 kinds of mixtures with different input 
SNR. The second and third columns denotes the de-noising results for these 4 kinds of 
 

Table 1. The de-noising results of 4 kinds of mixtures  

SNRout of mean filter 
(dB) 

SNRin of noisy 
ship radiated 
signals (dB) n=3 n=5 

SNRout of 
wavelet filter 

(dB) 

SNRout 
of our 

method (dB) 
16.6680 16.3109 11.2377 12.8825 17.7891 
6.6346 7.1221 6.0431 7.1446 7.7121 
0.4932 1.3909 1.2900 0.9203 1.9061 
-0.6203 0.7743 0.7043 0.3306 0.9028 
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noisy signals using mean filter with n=3, n=5 respectively. The fourth and fifth 
column are the de-noising results of wavelet filter and our method. For these 4 
experiments (each row of the table) we can see that the presented method is efficient 
and always better than conventional methods. For example, in the second experiment 
with SNRin =6.6346, the de-noising result of mean filter and wavelet filter are 7.1221 
(n=3), 6.0431 (n =5) and 7.7121 respectively, and the results of our method is 7.7121, 
which is the best in these methods. 

Fig. 4 shows the graph of the de-noising results of the second experiment by our 
method. Fig. 4 (a) is some kind of ship radiated signals, (b) is the sea noises, (c) is the mixture 
of (a) and (b) with SNR of 6.6346, and (d) is the de-noising result of the mixture. Here we use 
short-term zero crossing rate (ZCR) to detect the crossing characteristic of the ship. The short-
term ZCR is defined as 

−

=

−−=
1

1

|)]1([)]([|
2

1 N

n

nxsignnxsignZCR  (12) 

where N is the number of samples. The short-term ZCR is an efficient method to 
detect the crossing characteristic of the ship. The short-term ZCR is very high when ship 
is far away from sonar because the observed signals are almost sea noises which are 
close to Gaussian distribution in the frequency of 0~400Hz. However, when ship 
comes close to sonar it becomes very low because the ship radiated signals present a 
strong non-Gaussian distribution in 0~400Hz. Fig.5 show the short-term ZCR of fig.4. 
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Fig. 4. The de-noising results of noisy ship 
radiated signals. (a) ship radiated signals, (b) 
sea noises, (c) the mixture of (a) and (b) with 
SNR of 6.6346, (d) the de-noising result 
of (c) 

Fig. 5. (a)-(d) The short-time ZCR of the 
corresponding signals in fig.4 (a)-(d) 

.
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    Fig.5 (a) is the short-term ZCR of the ship radiated signals (Fig.4 (a)), we can see 
that the value descended quickly after time t1=3300/500Hz=6.6s, (b) is the short-term 
ZCR of sea noise. They are higher than that of ship radiated signals. Therefore, we 
can choose 450 as the threshold to detect ship signals. (c) is the short-term ZCR of 
noisy signals. From this figure we can see that the short-term ZCR failed to detect the 
crossing characteristic of ship since the short-term ZCR higher than the threshold. (4) 
is the short-term ZCR of de-noised signals. It is clear that the values are lower than 
the threshold after the time t2=3500/500Hz=7s which means that the ship can be 
detected at time t2. 

5   Conclusions 

Feature extraction and de-noising are important task of pattern recognition of 
underwater acoustic signals. This paper presented a method of GGM-based ICA 
feature extraction for underwater acoustic signals. It is demonstrated that the ICA 
features of underwater acoustic signals are efficient. Since how to extract efficient 
basis vectors directly from the observed noisy signals is the key objective of noisy 
signals, in this paper, a method of extracting the basis vectors directly from noisy data 
is proposed. Sparse coding is achieved by ICA feature extraction in which the ICA 
features and the shrinkage functions can be obtained simultaneously. By shrinkage the 
absolute values of the sparse components towards zero, noise can be reduced. 
Experiments on ship radiated signals mixed with different intensive sea noises show 
that the proposed method can efficiently remove the additive white Gaussian noise.  
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Abstract. In this paper we study the ICA feature extraction method for Chinese 
speech signals. The generalized Gaussian model (GGM) is introduced as the 
p.d.f. estimator in ICA since it can provide a general method for modeling non-
Gaussian statistical structure of univariate distributions. It is demonstrated that 
the ICA features of Chinese speech are localized in both time and frequency 
domain and the resulting coefficients are statistically independent and sparse. 
The GGM-based ICA method is also used in extracting the basis vectors 
directly from the noisy observation, which is an efficient method for noise 
reduction when priori knowledge of source data is not acquirable. The de-
nosing experiments show that the proposed method is more efficient than 
conventional methods in the environment of additive white Gaussian noise. 

1   Introduction 

Chinese is a typical tonal and syllabic language, in which each Chinese character 
corresponds to a monosyllable and basically has a phoneme structure with a lexical 
tone. Each Chinese character has four lexical tones (Tone1, Tone2, Tone 3, and Tone 
4) and a neutral tone. There are about 400 toneless Chinese syllables and about 1,300 
toned Chinese syllables. How to extract efficient features from Chinese speech signals 
is a key task of Chinese speech coding, de-noising and recognition. 

Nowadays, many efforts have gone into finding learning algorithms to obtain the 
statistical characteristics of speech and sound signals. However, these commonly used 
features have the limitations that they are sensitive only to second-order statistics 
since they all use correlation-based learning rules like principal component analysis 
(PCA). The failure of correlation-based learning algorithm is that they are typically 
global and reflect only the amplitude spectrum of the signal and ignore the phase 
spectrum. The most informative features of sound signals, however, require higher-
order statistics for their characterization [1-4]. For this reason, we study the ICA feature 
extraction method on Chinese speech signals in this paper. The generalized Gaussian 
model was introduced here to provide a general method for modeling non-Gaussian 
statistical structure of the resulting coefficients which have the form 

of )||exp()( qxxp −∝ . By inferring q, a wide class of statistical distributions can 

be characterized. By comparing the ICA basis with DFT, DCT and PCA basis, it can 
be seen that the proposed method is more efficient than conventional features. 
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The advantage of GGM-based ICA method is also applied in the de-noising of 
Chinese speech signals even when the trained priori knowledge of source data is not 
acquirable. Not only the ICA features but also the de-noising shrinkage function can 
be obtained from the GGM-based ICA sparse coding. Using the maximum likelihood 
(ML) method on the non-Gaussian variables corrupted by additive white Gaussian 
noise, we show how to apply the GGM-based shrinkage method on the coefficients to 
reduce noise. Experiment of noisy male Chinese speech signals shows that our de-
noising method is successful in improving the signal to noise ratio (SNR). 

2   ICA Feature Extraction Using GGM 

In ICA feature extraction methods, the source speech signal is represented as 
segments 

ii

N

i
saAsx

1=
==  (1) 

Where A is defined as ‘basis vector’ of source signals, and s is its corresponding 
coefficient. ICA algorithm is performed to obtain the estimation of independent 
components s from speech segments x by the un-mixing matrix W 

u = W x (2) 

where u is the estimation of independent components s. Basis functions A can be 
calculated from the ICA algorithm by the relation A= W -1.  

By maximizing the log likelihood of the separated signals, both the independent 
coefficients and the unknown basis functions can be inferred. The learning rules is 
represented as 
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here W TW is used to perform the natural gradient, it simplifies the learning rules and 
speeds convergence considerably. The vector )(sϕ is a function of the prior and is 
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)(ϕ , and p(s) is the p.d.f. of s. Here we use the GGM as the 

p.d.f. estimator. The GGM models a family of density functions that is peaked and 
symmetric at the mean, with a varying degree of normality in the following general 
form [5] 
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and 
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])[(],[ 2µσµ −== sEsE are the mean and standard deviation of the data 

respectively, and ][⋅Γ is the Gamma function. By inferring q, a wide class of 

statistical distributions can be characterized. The Gaussian, Laplacian, and strong 
Laplacian (such as speech signal) distributions can be modeled by putting q = 2, q = 
1, and q < 1 respectively. The exponent q controls the distribution’s deviation from 
normal.  

For the purposes of finding the basis functions, the problem then becomes to 
estimate the value of q from the data. This can be accomplished by simply finding the 
maximum posteriori value q. The posterior distribution of q given the observations 
x={x1,…,xn} is 

)()|()|( qpqxpxqp ∝  (7) 

where the data likelihood is 

]||)(exp[)()|( q
n

n
xqcqqxp −∏= ω  (8) 

and p(q) defines the prior distribution for q, here Gamma function ][⋅Γ  is used as p(q).  

In the case of the GGM, the vector )(sϕ  in eq.3 can be derived as 

)(||)( 1
ii

q
ii

q
iii ssignsqcs µµσϕ −−−= −−

 (9) 

 
(a)                                                                          (b) 

Fig. 1. (a)-(b) Some basis vectors of male and female Chinese speech signals  
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    Using the learning rule eq. 3 the un-mixing matrix W is iterated by the natural 
gradient until convergence is achieved.  

To learn the basis vector, one male Chinese speech signals and one female Chinese 
speech signals were used. The sampling rates of the original data are both 8kHz. Fig.1 
(a) and (b) show some of the basis vector of the male and female Chinese speech  
 

 
(a) (b) 

Fig. 2. (a)-(b) The frequency spectrum of fig.1 (a) and (b) 

          
(a)                                                                      (b)  

(c) (d)  

Fig. 3. Comparison of DFT, DCT, PCA and ICA basis vector of male Chinese speech signal, 
(a) DFT basis vector, (b) DCT basis vector, (c) PCA basis vector, (d) ICA basis vector  
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signals learned by the GGM-based ICA method. Fig.2 shows the frequency spectrum 
of fig.1 (a) and (b) respectively. It can be seen that the ICA basis vectors of Chinese 
speech signals are localized both in time and frequency domain.  

For comparison, discrete Fourier transform (DFT), discrete cosine transform 
(DCT), and principal component analysis (PCA) basis vectors as conventional 
methods are adopted. Fig.3 compares the waveforms of the DFT, DCT and PCA basis 
with the ICA basis.16 basis functions of male Chinese speech signals for each method 
are displayed.  

From fig. 3 (a)-(d) we can see that the DFT and DCT basis look similar and they 
are spread all over the time axis. For different signals the DFT and DCT basis are 
fixed. PCA basis is data driven and exhibits less regularity and global. However, the 
ICA basis functions are localized in time and frequency, thus they reflect both the 
phase and frequency information inherent in the data. 

3   Speech De-noising Using GGM-Based ICA 

ICA feature extraction is wildly used in de-noising of image and speech signals since 
ICA is an efficient sparse coding method for finding a representation of data [6, 7]. In 
these methods, however, the trained basis vectors were needed and applied for the 
removal of Gaussian noise. In the noise environment, denote y as the noisy coefficient 
of a basis vector, s as the original noise-free version of coefficient of basis vector, and 

v as a Gaussian noise with zero mean and variance 2σ . Then the variable y can be 
describe as 

y = s + v (10) 

Denote p as the probability of s, and f = - log p as its negative log-density, we want to 
estimate s from the observed noisy coefficient y. The estimator of s can be obtained 
by the maximum likelihood (ML) method 

)()(
2

1
minargˆ 2

2
sfsys

s
+−=

σ
 (11) 

Assuming f(�) to be strictly convex and differentiable, the ML estimation gives the 
equation 

)(ˆ yhs =  (12) 

where the nonlinear function h(�) is called as shrinkage function, and the inverse is 
given by 

)()( 21 sfssh ′+=− σ  (13) 

Thus, the estimation of s is obtained by inverting a certain function involving f ′ (�). 

Since f(�) is a function of p.  
There are two difficulties in this method. One is: the noise-free source data is 

needed to train the ICA basis vectors as a priori knowledge. Unfortunately, the 
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corresponding noise-free signals are always not acquirable in practice. The other is 
how to efficiently estimate the p.d.f. of the coefficient vector s which is the key of 
estimating ŝ . To solve these two problems the GGM-based ICA algorithm in section 
2 is used to extract the basis vectors directly from noisy speech signals when the 
noise-free signals cannot be obtained. It is fortunately that the p.d.f. of the coefficients 
p(s) can be learned by the GGM simultaneously since the parameter q of the GGM is 
determined during the ICA feature extraction. 

To recover the de-noised speech signal from the noisy source three steps are needed. 
Firstly, extract the ICA basis vector directly from the noisy speech signals by using 
GGM-based ICA. The p.d.f. of the corresponding coefficients p(s) are obtained at the 
same time. It is demonstrated that the coefficients of the basis vectors extracted directly 
from noisy speech have sparse distributions. Secondly, the shrinkage functions can be 
estimated by p(s) by eq. 13, and the de-noised coefficients can be calculated by )(ˆ yhs = . 

Finally, recover the de-noised speech signal by sAsWx ˆˆˆ 1 == − . 
This method is closed related to the wavelet shrinkage method. However, the 

sparse coding based on ICA may be viewed as a way for determining the basis and 
corresponding shrinkage functions base on the data themselves. Our method use the 
transformation based on the statistical properties of the data, whereas the wavelet 
shrinkage method chooses a predetermined wavelet transform. And the second 
difference is that we estimate the shrinkage nonlinearities by the ML estimation, again 
adapting to the data themselves, whereas the wavelet shrinkage method use fixed 
threshold derived by the mini-max principle. 

4   Experiments 

Noisy male Chinese speech signals mixed with white Gaussian noise were applied to 
perform the proposed method. The sampling rate is 8kHz and 64000 samples are 
used. The first step is the feature extraction of the noisy signals using the GGM-based 
ICA algorithm described in section 2. For the noisy speech signal, the mean was 
subtracted (eq.14) and then 1000 vectors of length 64 (8ms) were generated, and each 
segment was pre-whitened to improve the convergence speed (eq.15). 

x = x – E{x} (14) 

v = E{x xT }-1/2 x (15) 

This pre-processing removes both first- and second-order statistics from the input 
data, and makes the covariance matrix of x equal to the identity matrix, where x 
denoted as the observed noisy signals. The adaptation of the un-mixing matrix W 
started from the 64×64 identity matrix and trained through the 1000 vectors. The 
learning rate was gradually decreased from 0.2 to 0.05 during the iteration. The 
signal-to-noise ratio (SNR) is used to judge the results of the de-noising 

2
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2
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t
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Fig. 4 shows the noisy male Chinese speech signals with the input SNR of 
6.3850dB and the de-noising results of wavelet method (db3, n=3) and our proposed 
method in (b), (c) and (d) respectively. For comparison, the corresponding noise-free 
signal is given by (a). The SNR of the input noisy signal is 6.3850. The output SNR 
of wavelet and GGM-based ICA method are 10.5446 and 12.9910 respectively. It can 
be seen that the de-noising result of the proposed method is better than that of wavelet 
de-noising method.  
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Fig. 4. The de-noising results of male Chinese speech signals, (a) noise-free male Chinese 
speech signal, (b) noisy male Chinese speech signal, (c) the de-noising result of wavelet, (d) the 
de-noising result of GGM-based ICA 

5   Conclusions 

In this paper, we obtained efficient feature extraction method for Chinese speech 
signals. It is demonstrated that the GGM-based ICA features are localized both in 
time and frequency domain. This efficient ICA feature extraction method was also 
applied to the de-noising of Chinese speech signals and demonstrated better 
performance than wavelet de-noising method. The proposed de-noising method can 
be directly used in practice since it does not need the noise-free signals to train the 
priori knowledge. The experiment on noisy male Chinese speech signal shows that the 
proposed method is efficient to remove the additive white Gaussian noise.  
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Abstract. Wavelets are widely used in numerous applied fields involv-
ing for example signal analysis, image compression or function approxi-
mation. The idea of adapting wavelet to specific problems, it means to
create and use problem and data dependent wavelets, has been developed
for various purposes. In this paper, we are interested in to define, starting
from a given pattern, an efficient design of FIR adapted wavelets based
on the lifting scheme. We apply the constructed wavelet for pattern de-
tection in the 1D case. To do so, we propose a three stages detection
procedure which is finally illustrated by spike detection in EEG.

1 Introduction

The fields of application of wavelets grows because of their attractive properties
for various purposes. The possibility to construct new wavelets with simplicity
is one of the characteristics.

The construction of problem or data dependent wavelets have been under-
taken by many authors: for instance, Zhang et al.[1] construct orthonormal
wavelets bases which are best suited to represent a given signal, Lucas et al.[2]
create orthogonal wavelets to improve the classification accuracy for certain given
classes and Du et al.[3] use adapted wavelets for crackle detection.

The main contribution of the present paper is a modification of the Lifting
Method to construct adapted wavelets introduced by Sweldens. Such wavelets
are particulary well suited for pattern detection what we use for illustration. The
modification overcomes the drawback of Sweldens approach concerning the too
coarse approximation.

The paper is organized as follows. Section 2 gives some motivations to use
pattern-matched wavelets as templates and proposes a three stages procedure
to use them for pattern detection problems. In section 3 we propose a lifting
based method to construct such pattern-adapted wavelets. Section 4 illustrates
the procedure by considering the spike detection problem.

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 933–944, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Pattern Detection in 1D with Adapted Wavelets

For many applications, detection of known or a priori unknown patterns in sig-
nals are required. Those patterns can also be transformed (translated, scaled,
etc), so it is usually needed to estimate the parameters of the transformation.

Here, we will suppose that we have to detect some translated and scaled
versions of one given pattern. On the matter of this article, the pattern detection
problem consists of, given a finitely supported pattern f and a signal S, to find
where the signal is similar to a scaled version of the pattern estimating both
time-shift and scale factor.

2.1 Why Adapted Wavelets for Pattern Detection

Template matching or pattern matching is used for this purpose [4]. Two meth-
ods are commonly used: signal substraction, where the norm of the difference
is used as a measure of the dissimilarity, and the correlation, where the scalar
product is considered as a measure of similarity. Both methods are equivalent
when the template and the signal are normalized so they have zero average and
norm 1. But a zero-average 1D finite supported function is close to a wavelet.

On the other hand, the wavelet transforms have efficient implementations
and allow to decompose any signal in “frequency” bands. So, why not to use
wavelets as templates, this is to use pattern-adapted wavelets.

A wavelet ψf approximating any given pattern f allows, by means of the
wavelet transform, to estimate the correlation of any signal S, not only with the
pattern itself, but with its scaled versions. The continuous wavelet transform
(CWT) of a signal S with the wavelet Ψ at scale a > 0 and time b is defined as:

WΨS(a, b) =
〈
S,

1√
a
Ψ(

x − b

a
)
〉

. (1)

The values WΨ (a, b) are also called the wavelet coefficients of S in (a, b).
The discrete-like transforms –discrete wavelet transform (DWT) and trans-

lation invariant wavelet transform (SWT)– are fast algorithms to compute it for
dyadic scales (aj = 2ja0). It is calculated at scale-dependent shifts by the DWT
(bj,k = b0 + jak) and at some fixed shifts bj,k = b0 + j by the SWT.

Also, for any fixed scale a > 0, every local maxima of the similarity cause
local maxima of the wavelet energy (squared wavelet coefficients), i.e. those
pairs (a, b) for which the wavelet energy is locally maximum as a function of b
are the only possible values for which the similarity between the signal and the
corresponding scaled and translated versions of the pattern is locally maximum.

2.2 A Three Stages Procedure

So, we can search such wavelet energy maxima (called similarity alert or simply
alert) and then to individually test if they are interesting with respect to the



Adapted Wavelets for Pattern Detection 935

problem (true alert) or not (false alert). Then, to know if the alert is true or
false it is needed to verify some rules.

The similarity is verified by using rules that are designed only from the
pattern – we called them pattern-based rules –. The relevance with respect to the
problem is checked by using problem dependent rules. Usually, neural networks
are implemented to create such rules automatically from a training set of data
[5,6].

Resuming this idea we propose a three stages procedure:

1. Given the motif f to detect, create the pattern adapted wavelet ψf (x). With-
out loss of generality we will suppose that supp(f) = [0, 1] (so that the scale
a represents the size of the corresponding pattern and b the starting time),∫ 1
0 f(x)dx = 0 and ‖f‖2 = 1.

2. Detect all the alerts on the signal. This is to search the local maxima of the
signal wavelet energy for any b and all possible, for the problem, durations
a > 0.

3. Detect and discard all the false alerts. For this some rules must be applied
to decide if each alert is false or not.

3 Pattern Adapted Wavelets

Let us start this section by giving some basic ideas about wavelets. More can be
found for example in [7].

Wavelets are sufficiently smooth functions with zero average. The wavelet
transform is well localized both in time and in frequency, unlike the Fourier
transform.

One important concept on the wavelet theory, is the Multiresolution Analysis
(MRA). It is the base of discrete decomposition of signals in terms of translates
and scaling of a single function and so of the computationally efficient algorithms
to compute the DWT and SWT like the Mallat’s “a trous”[7] which iteratively
computes the wavelet transform for successive scale levels.

The MRA is a family M = {Vj}j∈� of nested closed subspaces of L2:

{0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L2 (2)

named approximation spaces which satisfy the conditions stated for example in
[8] p. 65. It can be defined another family of closed subspaces {Wj}j∈�, called
details spaces, such that Vj−1 = Vj ⊕Wj .

The so called scaling function ϕ and wavelet ψ are so that their linear integer
translates spans generate V0 and W0 respectively.

One of the most important consequences of the MRA definition is the exis-
tence of two filters u and v satisfying the two-scales relations:{ 1√

2
ϕ(x

2 ) =
∑

k u[k]ϕ(x− k)
1√
2
ψ(x

2 ) =
∑

k v[k]ϕ(x − k)
. (3)
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Those filters are known as the two-scales filters.
The fast algorithms take profit of this relation to compute the transform at

dyadic scales. The invertibility of the fast algorithms are ensured by a new pairs
of filters ů, v̊ satisfying the perfect reconstruction (PR) property:{

u∨ $ ů + v∨ $ v̊ = 2δ0

ũ∨ $ ů + ṽ∨ $ v̊ = 0
(4)

where δk is the unit response at time k and where the convolution operator is
denoted by $ and the subsampling, upsampling, modulation and transpose of a
filter u are denoted by [u]↓2

, [u]↑2
, ũ and u∨ respectively.

In the case of the existence of a biorthogonal MRA with scaling function ϕ̊
and wavelet ψ̊ in L2, the associated filters satisfy (4). The second MRA, scaling
and wavelet function, and filters will be called dual and denoted by appending
a “˚” (e.g. ϕ̊).

3.1 Adapted Wavelet Construction

There are many ways to construct wavelets. Some of those approaches are to
create signal (or pattern) adapted wavelets e.g. [9,10].

Abry et al. [11,12,13] propose to construct a time-space matched scaling
function or wavelet by projecting the pattern onto the approximation spaces
or detail spaces (V0, W0 respectively) of some initially given MRA. Then, it
is possible to compute the new functions as admissible (i.e. invertible) linear
combinations of the original ones and to compute the associated filters.

Their approach allows to construct four new functions ϕ, ψ, ϕ̊ and ψ̊ in L2

satisfying the biorthogonality conditions and generating a pair of biorthogonal
MRAs. As said above, the existence of such functions and MRAs, ensures the
property (4). The main problem is that in general, when using this approach, the
new associated filters may not exist or will have infinite impulse response (IIR),
reducing the efficiency of the algorithms. So, truncating the filters is required but
it may be the cause of large errors which will grow at each iteration compromising
the convergence and the accuracy of the algorithms.

3.2 Lifting Based Methods

Principle. Another approach is the lifting method introduced by W. Sweldens
[14,15]. This method allows, starting from four filters u, v, ů, v̊ satisfying the
PR property (i.e. a perfect reconstruction filter bank PRFB), to construct a new
PRFB. This method, for instance, allows to create second generation wavelets
which are not necessarily translates and dilates of one fixed function [16]. Also,
Sweldens shows that any discrete wavelet transform can be decomposed in (pri-
mal and dual) lifting steps, giving a new, more efficient, algorithm called fast
lifting transform [17].
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The idea of wavelet construction with a primal lifting step is, starting from
a scaling function ϕ and wavelet ψ generating a MRA which are associated to u
and v, to make

ψl(x) = ψ(x) +
∑

i

l[i]ϕ(x− i) (5)

where l is a finite filter with zero average.
The new PRFB would be (u, vN , ůN , v̊) with

uN = u − [l]∨↑2
$ v (6)

v̊N = v̊ + [l]↑2
$ ů . (7)

The dual lifting step can be obtained by exchanging the primal functions and
filters with the dual ones.

Let f ∈ L2 be a normalized (‖f‖2 = 1) and compactly supported function
with zero-average. To approximate f by a wavelet function ψf constructed with
this method we have to project f − ψ onto V0 which gives us the lifting filter l∗

and so a pattern-matched wavelet

ψf (x) = ψ(x) + l∗ $ ϕ(x) . (8)

The approximation with this method can be too coarse as shown in Figure
1(b).

A Variant. To circumvent this drawback, we propose to use a dilated version
of f (fρ(x) = 1√

ρf(x/ρ) where ρ is the dilation coefficient) and a variant of the
lifting step.

The dilation coefficient ρ allows to take profit of the good approximation
properties of the scaling functions [18] reducing ‖f − IPV0f‖, where IPV0f means
the projection of f onto V0, but ψ is still seen reducing the accuracy of the
approximation (see Figure 1(c)).

We propose a variant to the lifting step which reduces the influence of ψ
in the constructed wavelet ψf . Let l be a finite filter with

∑
k l[k] = 0, a real

number c such that |c| > cmin for some cmin > 0 and an integer k. The new
primal wavelet will be

ψl(x) = cψ(x − k) +
∑

i

l[i]ϕ(x− i) (9)

and the associated filters (u, vN , ůN , v̊N ) where

vN = c · v $ δ2k + [l]↑2
$ u (10)

ůN = u − 1
c
δ2k $ [l]∨↑2

$ v (11)

v̊N =
1
c
δ2k $ v̊ . (12)
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The new four filters also satisfy (4).
The use of a small enough c and a convenient k reduce the influence of ψ.

The value of cmin must be chosen so that the dual filters ů and v̊ are not too
large.

If W0 ⊥ V0 and IPW0f �≡ 0, the optimal values of c and k can be obtained
from the wavelet decomposition of IPV−1f :

As
IPV−1f = IPV0f + IPW0f , (13)

then taking c∗, k∗ such that

k∗ = argmax
k
|Wψ(0, k)| , (14)

and
c∗ = sign(Wψ(0, k∗))max( |Wψ(0, k∗)| , cmin ) . (15)

where sign(·) denotes the sign function.
If IPW0f ≡ 0 then k∗ is free and c∗ = cmin.
When W0 �⊥ V0 then an optimization problem has to be solved:

min�
k l[k]=0, |c|>cmin

(
‖f − cψ(x− k)− l $ ϕ(x)‖2

)
. (16)

Resuming, projecting f onto V0 gives l∗ and for the convenient values of c∗

and k∗ we get the pattern-matched wavelet.

ψf (x) = c∗ψ(x− k∗) + l∗ $ ϕ(x) . (17)

An example of a pattern-adapted wavelet computed using this method can
be seen in Figure 1(d).

Illustration. Let us consider f(x) =
√

3(.5−2 |x− .5|)�[0,1](see Figure 1(a)) as
motif. Let us use Db5’s MRA, this is the MRA generated by the scaling function
and wavelet with 5 vanishing moments obtained by Daubechies [19], for which
V0 ⊥W0.

Figure 1(b) shows the wavelet constructed using a classical lifting step. Due
to the small support of f ([0, 1]), the new wavelet is not well adapted to the
pattern. By approximating fρ, a dilated version of f , with ρ = 16 we get a much
better solution but the influence of the original wavelet is evident.

Now, using our lifting’s variant step for ρ = 16 (see 1(d)), we get better
results. Notice that the original wavelet has almost disappeared.

Properties. This construction method is stable for small variations in the pat-
tern:

Let g ∈ L2 be a function such that ‖g‖2 = 1. Let fε(x) = f(x) + εg(x) for
any ε ∈ IR. We have that∥∥ψf − ψε

f

∥∥2 ≤ ε2 · Tσg (H)−1
σg , (18)



Adapted Wavelets for Pattern Detection 939

0 1 0−1 1 0 1 0 1

(a) (b) (c) (d)

Fig. 1. Example of pattern adapted wavelets construction using lifting-based methods
starting from Db5’s MRA. (a) the pattern f , (b) the wavelet obtained by an original
lifting step, (c) the wavelet obtained by using the original lifting step but f was dilated
with ρ = 16 and (d) wavelet created by using our variant and ρ = 16.

where σg[i] = 〈g, ϕ(x − k)〉, H [i, j] = γ[i − j] and γ[i] = 〈ϕ, ϕ(x − i)〉 is the
sampled autocorrelation function.

Continuity and differentiability properties of the constructed wavelet are en-
sured by the original scaling function’s properties and it is possible to obtain
an arbitrary number of vanishing moments by adding some linear constraints,
besides the l’s null sum restriction, while keeping the stability of the method.
Unlike the projection methods, the dual functions may not have finite energy
but the PR property hold so the analysis-synthesis algorithms work.

The good behavior of such adapted wavelets for pattern detection to find
possible points (in the time-scale plane) of locally maximum similarity is shown
in Figure 2(a) where it is represented the CWT of a fragment of an EEG with
a wavelet adapted to a simple model of a spike-wave complex (a spike followed
by a slower wave) (Figure 3 (a)) which we want to detect.

Three maxima (one with positive coefficient in the center and two negatives on
both sides) are present for each complex location but a further analysis shows that
the true location is represented by center ones (all for scales between a = .2 and .3).

Figures 3(b) and (c) show the scaled and shifted versions of the adapted
wavelet for two consecutive local maxima (b = .0985 and b = 1.125 respectively).
They are also multiplied by the estimated amplitude. See that in the first case,
although the similarity is high, it is lower than this of the second case (fig 3(c))
where there is an almost perfect match. Those false maxima must be eliminated
by selection rules like to check the possible scales or duration (in this example,
the complexes have a duration around .22s) or by direct testing if there are only
a few of local maxima to check.

4 Real World Example: Spike Detection in EEG

Electroencephalogram (EEG) is an important clinical tool for diagnosing, mon-
itoring and managing neurological disorders related to epilepsy. Spikes corre-
spond to tiny epileptic discharges which last for a fraction of a second. Beyond
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(a) 0 1 2 3

0.1

0.2

0.3

0.4

(b) 0.9 1 1.1 1.2

Fig. 2. (a)An EEG fragment and its CWT with the spike-wave complex adapted
wavelet. (b)A zoom between .9 and 1.2s shows the existence of three local maxima
of the wavelet energy around a spike-wave complex.

0 1 0.9 0.95 1 1.05 1.1 1.15 1.2 0.9 1 1.1 1.2

(a) (b) (c)

Fig. 3. (a)Spike-wave complex model (dashed line) and the adapted wavelet(solid line).
The EEG signal with scaled (a) and shifted (b) adapted wavelet: (b) for b = .985s and
a = .125, (c) for b = 1.05s and a = .225.

of the diagnosis of epilepsy, automatic spike detection helps to make quantita-
tive descriptions of spike density, topology and morphology what could help to
determine patient syndrome and surgical outcome [20].

Spike detection is tedious and requires skill to do it well. The noise and the
artifacts make this task difficult [21]. That is why there are so many people
working on automatic spike detection. We use this problem to illustrate the
behavior of this procedure as an example of the use of the pattern-matched
wavelets. Let us first describe the problem.

4.1 The Problem

The epileptic spikes on the EEG was loosely defined by Gloor in [22]. He gives three
characteristics regarding their form (a restricted triangular transient), its duration
(having a duration of ≤ 200ms) and the electric field (as defined by involvement



Adapted Wavelets for Pattern Detection 941

of a second adjacent electrode). He says also that the spikes must be clearly distin-
guishable from background activity and having an amplitude of, at least, twice of
the preceding 5s of background activity in any channel of the EEG.

Many works roughly follow this definition and emphasize the local context,
morphology and the field of the spike. As local context it is understood the local
characteristics of the signal compared with the background activity. The term
“background activity” is used to describe the context in which the spikes occurs
and it is typically used to normalize the spikes parameters to account for varying
electrical output from different patients and determine whether the spike is more
than a random variation of the underlying rhythmic activity [20].

As morphology it is understood every attribute used to describe the spike
and its background. Relative height, relative sharpness at the apex and total
duration are some examples of attributes.

To detect the presence of field it is needed to analyze adjacent electrode
signals. Overlapping spikes on different channels are used to create a spike-event
[23] so it is used as a rule to discard false alerts.

4.2 The Detection Procedure

First we have to choose the pattern. From the first characteristic given by Gloor,
we take a triangular function (Figure 1(a)) as a very simple pattern. We will use
Db5’s as initial MRA, whose wavelet is two times continuously differentiable,
and ρ = 16. The resulting wavelet is shown in Figure 1(d).

The alert detection process for a signal S consists in the detection of local
maxima in b of the wavelet energy W 2

ψf
S(a, b) for every scale a > 0. It can be

done for dyadic scales, with the DWT or SWT, or for more regularly spaced
scales, by using the CWT.

This will give us the times when the spike-alerts occur. To decide the optimum
scale a∗(i.e. the duration) for any alert time b∗, it is needed to compare between
the adjacent scales for the times b such that the wavelet supports intercept. We
will take 1

a3 W
2
ψf

(a, b) as an estimation of spikes slopes and will keep those alerts
where it is locally maximum as a two-variables function.

4.3 Some Selection Rules

Pattern-Based Rules. Those rules consist of the threshold of upper bounds
of the approximated similarity between the pattern and the signal’s fragment.
Two possible upper bounds of the similarity are

corr(a∗, b∗) ≤
(

1 +

∣∣Wψf
S(a, b)− Γ ∗ ·Wψf

S(a∗, b∗)
∣∣∣∣Wψf

S(a∗, b∗)
∣∣√1− Γ ∗2

)−1

(19)

and

corr(a∗, b∗) ≤

1 +

∣∣∣∣∣∣∣∣
a∗2∂2

b,bWψf
S(a∗, b∗) + Wψf

S(a∗, b∗)
∥∥∥ψ′

f

∥∥∥2

∣∣Wψf
S(a∗, b∗)

∣∣√∥∥∥ψ′′
f

∥∥∥2
−
∥∥∥ψ′

f

∥∥∥2

∣∣∣∣∣∣∣∣


−1

(20)
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where Γ ∗ =
〈
ψf (x), ψf (x−(b−b∗)/a∗

a/a∗ )
〉

is the correlation function of ψf and ∂b,b

means the second derivative twice in b. Those bounds can be easily evaluated
from some selected values of the pair (a/a∗, b−b∗

a∗ ).

Problem-Dependent Rules. Now, as every pattern-similar event will satisfy
those conditions, it is necessary to add some problem-dependent selection rules.

As supp(f) = [0, 1], from the characteristics given by Gloor, we have that
a ≤ .2. To discard some possible discontinuities we will keep only all scales
a > .01 for EEG sampled at 200Hz. Hence the first rule is that the possible
scales are in the range [.01, .2], so, adding one scale up and one down of the
range in the analysis, we can discard those events whose duration is not in the
range: if the estimated slopes for any of those out-of-range scales is larger than
those corresponding to the scales in the range, then this alert is discarded.

Other rules are taken from the facts that the spikes must be distinguishable,
with an amplitude of at least twice that of the background, must be more than
a random event and must cause a field. The first three rules depend on each
channel independently and the last include other adjacent channels in the anal-
ysis. As a measure of the average background amplitude we can use the average
of the locally maximum wavelet energy for 5s of signal before the alert-time.
The rule consists in normalizing the wavelet energies by the average background
amplitudes and comparing it with a threshold τσ >= 4.

To keep only those events that are not caused by random effects, we take
those whose instant wavelet energy is larger than a multiple of the standard
deviation σ of the background amplitudes plus its mean µ.

4.4 Spike Detection Results

Here we show some results of the procedure with the described rules. Figures 4
and 5 show two different EEG with the detected spikes. Each figure represents

0 1 2 3 4 3 3.1 3.2 3.3 3.4

(a) (b)

Fig. 4. A first example of spike detection results performed on three different channels
independently of each other. (a)The EEG and the detected locations which are signaled
by an arrows. (b) Zoom of (a) between 3 and 3.5s. The interval duration of the detected
events are marked as line segments limited by two crosses (‘+’).



Adapted Wavelets for Pattern Detection 943

0 1 2 3 4

Fig. 5. A second example of spike detection results performed on three different chan-
nels independently of each other. The detected locations are signaled by an arrow.

three adjacent channels of the same EEG. Notice that there exists spike events
almost simultaneously in various channels, i.e. there exists a field for those spikes.

Figure 4 (b) represents a zoom of Figure 4 (a) between 3 and 3.5s. The interval
of duration of the detected events are signaled as line segments limited by two
crosses (‘+’). Notice the inverted spike-event overlapping the other (larger) spike
in the second and third channels represented in Figure 4 by the up-down arrows.

5 Conclusions

To end, let us give some concluding remarks for future work. First, this pa-
per shows how the lifting methods can be used to construct pattern-adapted
wavelets. Unlike Abry et al. approach, they always give FIR filters but the dual
functions may have infinite energy. An additional analysis must be done when L2

dual functions are required. Second, as many of the pattern detection problems
are for images, the generalization of this method to the 2D case will be done
but such pattern-adapted wavelet construction method is more difficult. Since
efficient 2D wavelets are associated to MRAs obtained by tensor products of the
1D wavelet filters and many possible patterns cannot be well approximated by
such wavelets. Finally, another problem to solve is that, up to now, we start with
a pattern given a priori and separately but for many applications such motifs
are noisy or have to be taken from some experimental signals [24].
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Abstract. In this paper we present a method to detect edges in images.
The method consists of using a 3x3 pixel mask to scan the image, moving
it from left to right and from top to bottom, one pixel at a time. Each
time it is placed on the image, an agglomerative hierarchical cluster
analysis is applied to the eight outer pixels. When there is more than
one cluster, it means that window is on an edge, and the central pixel
is marked as an edge point. After scanning all the image, we obtain a
new image showing the marked pixels around the existing edges of the
image. Then a thinning algorithm is applied so that the edges are well
defined. The method results to be particularly efficient when the image is
contaminated. In those cases, a previous restoration method is applied.

1 Introduction

Edge detection is based on the assumption that discontinuities in the intensity
of an image correspond to edges in the image, without disregarding the fact that
often changes of intensity are not due only to edges, but can be produced by light
effects, like shades or brightness, effects which demand additional treatment.

Among the operators used most frequently for edge detection are gradient
operators and compass operators. The first one computes the gradient in two
perpendicular directions, which are used to find the module and phase, and the
second measures the gradient module in a set of different directions, selecting
the one with largest value at each point. Unfortunately the derivative amplifies
the noise, for that reason, filters must be used to smooth the images. When there
are steep changes of intensity in the image, the gradient and compass operators
work well, but don’t do so when there are gradual changes in intensity. The
Laplace operator is used in these cases, but it is more sensitive to noise so it
requires a better smoothing of the image.

The amplification of the noise produced by most of the edge detectors usually
result in reporting non existing edges. In this paper we introduce a detector
based on cluster analysis for contaminated images, which also filters the image
without altering it too much. Is is based on the cluster analysis filter proposed
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by [1], to which was added the ability to detect edges, using the same structure
of grouping pixels into clusters. The results obtained by this edge detector are
compared with known detectors to investigate its effectiveness.

2 Edge Detection Algorithm

The image is analyzed through sliding windows, which move along the image
from left to right and from top to bottom, one pixel at a time. These windows
consist of a 3x3 pixel square, numbered according to Figure 1. To analyze the
central pixel in each window, a cluster analysis algorithm is applied to the eight
surrounding pixels to detect groups with similar light intensity. Because of its
simplicity, the best algorithm to use is the agglomerative hierarchical algorithm.
In each iteration, the two nearest clusters are combined to form one, according
to some distance measure previously determined.

The result is a nested or hierarchical series of groups of clusters formed with
these eight pixels, starting with eight clusters with one pixel each, followed by
seven, etc., ending with one single cluster containing the eight pixels. At each
iteration, the distance at which the two closest clusters are grouped is recorded,
forming an ascending sequence. A significantly big increase at iteration k + 1, as
compared to some threshold value Tcluster , indicates that the optimum pattern
of clusters is the one defined in the k-th step. A value of 25 for the threshold
Tcluster of in a scale of 1 to 255 has shown empirically to be a good choice [1].
The usual number of clusters is one, which corresponds to a smooth area.

Once the cluster pattern for the surrounding pixels is defined, the central
pixel is examined and compared to the average intensity value of each cluster,
with the purpose of determining if it belongs to one of them. If it differs too much
from all the clusters, then it is considered a contaminated pixel (an outlier). To
decide whether it belongs to some cluster, a second threshold value is introduced,
Tmember , to which the distances to the average of each group are compared.
Empirical evidence shows that a suitable value for Tmember is 36 [1].

Fig. 1. 3 by 3 pixel window. The central pixel Px(0) is being analyzed, based on the
eight pixels Px(1) to Px(8).
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If the central pixel is considered to be contaminated, then it is assigned to
one of the surrounding clusters. This is done through a probabilistic procedure,
favoring the clusters with highest number of pixels, and those that have greater
adjacency with the central pixel and those that group more adjacent pixels
together [1]. This way it manages to eliminate noise from the image without
blurring it, as other well-known filter do. Once that the image has been treated
to eliminate the existing noise, a second smoothing is carried out, using a median
filter, to improve the definition of each cluster. Then the edge detection procedure
is applied. It consists sliding 3x3 pixel windows, in a similar way as was described
before. The same cluster analysis algorithm is applied, but this time it is used
to keep record of the number of clusters present in each window. If there are
more than one cluster in the window, then it means that it contains an edge,
so the central pixel is marked as an edge point. Suppose that Px(0) denotes
the central pixel which is being analyzed, and Px(y) one of its neighborhood
pixels, y=1,2,..,8, numbered as in Figure 1. Let CPx(y) be the cluster containing
Px(y). Then Px(0) is marked as a border pixel if in satisfies one of the following
conditions:

CPx(2) �= CPx(0)
CPx(4) �= CPx(0)
CPx(6) �= CPx(0)
CPx(8) �= CPx(0)

When scanning the entire image using the previous method, the resulting
edges are not very precise. In order to enhance the border lines, a thinning
algorithm is applied. An appropriate algorithm is the one proposed by Nagen-
draprasad ,Wang and Gupta (1993) based on a previous one due to Wang and
Zhang (1989) and improved by Carrasco and Forcecada [2], and it consists of
the following:

Let b(p) be the number of neighbors of Px(0) that are marked as borders. We
will call these pixels ”black”, while the ones that are not marked as borders will
be referred to as ”white”. let a(p) be the number of transitions from white to
black, of the neighboring pixels, visited in the same order established in Figure
1. Let c(p), e(p) and f(p) be functions defined in the following way:

c(p) =


1, if Px(2) = Px(3) = Px(4) = Px(7) and Px(6) = Px(8)
1, if Px(4) = Px(5) = Px(6) = Px(1) and Px(8) = Px(2)
0, in other cases

e(p) = (Px(4) + Px(6)) ∗ Px(2) ∗ Px(8)

f(p) = (Px(8) + Px(2)) ∗ Px(6) ∗ Px(4)

We proceed to scan the image iteratively. At each step, if b(p) has a value
between 1 and 7 and a(p) or (1− g) ∗ c(p) + g(p) ∗ d(p) = 1, with g = 0 for odd
iterations, g = 1 for even iterations. d(p) is defined by
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2. (a) Original image 50 percent contaminated, standard deviation 20. Edge de-
tection methods:(b) Prewitt (c) Sobel (d) Log (Laplacian of normal) (e) Roberts (f)
Zero-cross (g) Canny (h) Proposed.

d(p) =


1, if Px(3) = Px(6) = Px(7) = Px(8) and Px(2) = Px(4)
1, if Px(2) = Px(5) = Px(8) = Px(1) and Px(4) = Px(6)
0, in other cases

If we are in an even number iteration, then if e(p) = 0 the p − th pixel is
changed to white. If the iteration is odd-numbered, then if f(p) = 0, the p-
th pixel is turned to white. In other cases, the p-th pixel is not changed. This
process is carried out along the entire image. With this procedure we obtain the
edges of the image, as connected lines, one pixel wide.
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3 Experimental Results

We present several study cases with different levels of contamination, as a per-
centage P of contaminated pixels, and a standard deviation. A percentage P of
pixels is randomly chosen and are contaminated in the following way: Let (i,j) be
a chosen pixel and let xij be its light intensity. A random number Y is generated
from a normal random variable with mean 0 and some fixed standard deviation.
The intensity is then substituted by xij +Y, approximated to the nearest integer
between 0 and 255. Tests are carried out using the threshold values mentioned

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3. (a) Original image 25 percent contaminated, standard deviation 40. Edge de-
tection methods:(b) Prewitt (c) Sobel (d) Log (Laplacian of normal) (e) Roberts (f)
Zero-cross (g) Canny (h) Proposed.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 4. (a) Original image 10 percent contaminated, standard deviation 80. Edge
detection methods:(b) Prewitt (c) Sobel (d) Log (Laplacian of normal) (e) Roberts (f)
Zero-cross (g) Canny (h) Proposed.

earlier for Tcluster and Tmember. The percentage of contamination and the stan-
dard deviation were given the values (50,20), (25, 40) and (10, 80). To observe
the quality of the resulting edges they were compared to other commonly used
edge detectors, like Prewitt [3], Sobel [4], LOG (Laplacian of Gaussian), Roberts,
Zero-Cross and Canny.

The Roberts, Sobel and Prewitt edge detectors are based on the gradient
of the image, formed by a vector field associated to each pixel. The vector’s
module is associated to the light intensity, and the direction of the vector to the
direction of the major change in intensity. The Zero-Cross, Canny and LOG are
based on the Laplacian, which is associated to the second derivative of the light
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Fig. 5. (a) Original contaminated image. (b) Edge detection using proposed method.

Fig. 6. (a) Original contaminated image. (b) Edge detection using proposed method.

intensity of the image, with which the zero crossings are detected, determining
thus, the location of edges. Figures 2 to 4 show the results obtained for each of
these detectors and for the one introduced in this article.

The times taken to complete the edge detection process, including smoothing
and line enhancing, ranged between 515.5 and 523.4 seconds. For uncontami-
nated images, times for edge detection and line enhancement ranged between
255.8 and 258.4 seconds.
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Fig. 7. (a) Original contaminated image. (b) Edge detection using proposed method.

Also, tests were carried out with other type of images, which by their par-
ticular way of obtaining the image, are naturally contaminated with noise, like
satellite images and medical images. Figures 5 to 7 show the results.

4 Conclusions

The method introduced in this article approaches the problem of detecting edges
in contaminated images. As it can be seen from the experimental results shown
here, most of the edge detectors behave relatively well when there is a low level
of contamination or when the standard deviation of the contamination is small
(figure 2), due to the fact that the contaminated pixels are easy to smooth.
But when there is a high contamination standard deviation is large (figures 3
and 4) then nonexisting edges appear, because most of the contaminated pixels
cannot be smoothed out. In both cases, the proposed edge detector is able to
find the proper borders, avoiding to point out contaminated pixels as edges. We
can see with the results obtained in figures 5, 6 and 7, the power of the proposed
detector to find borders in contaminated images, therefore it is a good alternative
for processing medical images and satellite images. Observing the figures we can
notice that for different contamination levels, we get similar results, obtaining
the proper borders of the image, and not of the contamination.
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Abstract. In this paper a new method for edge detection in grayscale
images is presented. It is based on the use of the Kohonen self-organizing
map (SOM) neural network combined with the methodology of Canny
edge detector. Gradient information obtained from different masks and
at different smoothing scales is classified in three classes (Edge, Non Edge
and Fuzzy Edge) using an hierarchical Kohonen network. Using the three
classes obtained, the final stage of hysterisis thresholding is performed
in a fully automatic way. The proposed technique is extensively tested
with success.

1 Introduction

Changes or discontinuities in an image amplitude attribute such as intensity
are fundamentally important primitive characteristics of an image because they
often provide an indication of the physical extent of objects within the image.
The detection of these changes or discontinuities is a fundamental operation in
computer vision with numerous approaches to it.

Marr and Hildreth [3] introduced the theory of edge detection and described
a method for determining the edges using the zero-crossings of the Laplacian
of Gaussian of an image. Canny determined edges by an optimization process
[1] and proposed an approximation to the optimal detector as the maxima of
gradient magnitude of a Gaussian-smoothed image. Lily Rui Liang and Carl G.
Looney proposed a fuzzy classifier [2] that detects classes of image pixels cor-
responding to gray level variation in the various directions. A fuzzy reasoning
approach was proposed by Todd Law and Hidenori Itoh [8], in which image fil-
tering, edge detection and edge tracing are completely based on fuzzy rules. The
use of self-organising map and the Peano scan for edge detection in multispec-
tral images was proposed by P.J. Toivanen and J. Ansamaki [5]. In [10], Pihno
used a feed-forward artificial neural of perceptron-like units and trained it with
a synthetic image formed of concentric rings with different gray levels. Weller
[11] trained a neural net by reference to a small training set, so that a Sobel
operator was simulated. In Bezdek’s approach [12], a neural net is trained on
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all possible exemplars based on binary images, with each windowed possibility
being scored by the (normalised) Sobel operator.

Among the various edge detection methods proposed so far, the Canny edge
detector is most widely used due to its optimality to the three criteria of good
detection, good localization, and single response to an edge.

In this paper a new edge detection technique is proposed which improves the
canny edge detection the following way:

– Utilizes edge information extracted not only from one edge detection masks
but from a number of different masks.

– Uses Kohonen SOM in order to obtain three main classes of edges (Edge,
Fuzzy-Edge, Non-Edge) that are next used to automatically obtain the final
edge pixels according to the Canny’s hysterisis thresholding procedure.

The proposed technique is extensively tested with many different types of
images and it is found that it performs satisfactory even with degraded images.

2 Overview

A typical implementation of the Canny edge detector follows the steps below:

1. Smooth the image with an appropriate Gaussian Filter to reduce noise.
2. Determine gradient magnitude and gradient direction at each pixel.
3. Suppress non edge pixels with non maximum suppression. If the gradient

magnitude at a pixel is larger than those at its two neighbors in the gradi-
ent direction, mark the pixel as an edge. Otherwise, mark the pixel as the
background.

4. Remove the weak edges by hysteresis thresholding.

The first step of the Canny edge detector is the gaussian smoothing. Gaus-
sian filters are low-pass filters and thus apart from filtering the noise they also
blur an image. The Gaussian outputs a ‘weighted average’ of each pixel’s neigh-
borhood, with the average weighted more towards the value of the central pixels.
The degree of smoothing is determined by the standard deviation of the filter.
Filtering an image with a gaussian does not preserve edges. Larger values of
standard deviation correspond to images at coarser resolutions with low detail
level.

After the image filtering, the next step is the determination of the image
gradient. The simplest method to compute the gradient magnitude G(j, k) refers
to the combination of row GR(j, k) and column GC(j, k) gradient. The spatial
gradient magnitude is given by:

G(j, k) =
√

GC(j, k)2 + GR(j, k)2 (1)

and the orientation of the spatial gradient with respect to the row axis is:

θ(j, k) = arctan
{

GC(j, k)
GR(j, k)

}
(2)
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The discrete approximation of GR(j, k) and GC(j, k) can be given by the
pixel difference, separated by a null value [9] :

GR(j, k) = P (j, k + 1)− P (j, k − 1) (3)

GC(j, k) = P (j − 1, k)− P (j + 1, k) (4)

The separated pixel difference is sensitive to small luminance fluctuations
in the image and thus it is preferred to use 3× 3 spatial masks which perform
differentiation in one coordinate direction and spatial averaging in the and or-
thogonal direction simultaneously. The most widely used masks are the Sobel,
Prewitt and Frei-Chen operators. As show in figures 1 and 2 these masks have
different weightings, in order to adjust the importance of each pixel in terms
of its contribution to the spatial gradient. Frei and Chen have proposed north,
south, east, and west weightings so that the gradient is the same for horizontal,
vertical, and diagonal edges, the Prewitt operator is more sensitive to horizontal
and vertical edges than to diagonal edges and the reverse is true for the Sobel
operator.

1
4

�
�

1 0 −1
2 0 −2
1 0 −1

�
� (a) 1

3

�
�

1 0 −1
1 0 −1
1 0 −1

�
� (b) 1

2+
√

2

�
�

1 0 −1√
2 0 −√

2
1 0 −1

�
� (c)

Fig. 1. Row gradient masks: (a) Sobel (b) Prewitt (c) Frei-Chen
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1

√
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Fig. 2. Column gradient masks: (a) Sobel (b) Prewitt (c) Frei-Chen

Hysterisis thresholding uses a high threshold Thigh and a low threshold Tlow

which both are user-defined. Every pixel in an image that has gradient magnitude
greater than Thigh or less than Tlow is presumed to be an edge or a non-edge
pixel respectively. Any other pixel that is connected with an edge pixel and has
gradient magnitude greater than Tlow is also selected as edge pixel. This process
is repeated until every pixel is marked as edge or non edge pixel. In terms of
clustering, by selecting the two thresholds, the image pixels are grouped in three
clusters : Edge cluster, non-edge cluster and fuzzy-edge cluster with fuzziness
defined by means of spatial connectivity with edge pixels.

The basic idea of this work is to automate the edge map clustering using the
Kohonen self-organizing map. As described previously in this section, gradient
depends on the size of the gaussian filter and the differentiation operator . Thus
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it is more robust to create a feature space with gradient information obtained
from different masks and at different detail levels of the image and represent the
gradient magnitude in a vectorial form and not with a scalar value.

2.1 Kohonen SOM Neural Network

The Kohonen SOM is a neural network that simulates the hypothesized self-
organization process carried out in the human brain when some input data are
presented [4]. The Kohonen network consists of two layers. The first layer is
the input layer and the second is the competition layer in which the units are
arranged in a one or two dimensional grid. Each unit in the input layer has a
feed-forward connection to each unit in the competition layer. The architecture
of the Kohonen network is shown in figure 3. The network maps a set of input
vectors into a set of output vectors (neurons) without supervision. That is, there
is no a-priori knowledge of the characteristics of the output classes. The training
algorithm is based on competitive learning and is as follows :

1. Define of the desired set A of output classes ci

A = {c1, . . . , cN} (5)

and the topology of the competition layer neurons.
2. Initialize output units ci with reference vectors wci chosen randomly from a

finite data set D = {d1, . . . ,dM} and set the time parameter t = 0.
3. Present an input vector d and find the winner output neuron s(d) = s:

s(d) = arg minc∈A ‖d−wc‖ (6)

4. Adapt each unit c according to

∆wc = ε(t)hsh(s−wc) (7)

Fig. 3. Architecture of the Kohonen Self-Organising Map
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where ε(t) is the function that controls the learning rate and hsh the func-
tion that defines the neighborhood units of the winner neuron that will be
adapted. For the learning rate in this work we used the function:

ε(t) = εinitial

(
εfinal

εinitial

)
(8)

and as a neighborhood function the gaussian :

Hcs = exp

(
−‖c− s‖

2σ2

)
(9)

with standard deviation varied according to

σ(t) = σinitial

(
σfinal

σinitial

)
(10)

.
5. Repeat steps 3 and 4 until all the vectors of the training dataset D are

presented to the network.
6. Increase the time parameter:

t = t + 1; (11)

7. If t < tmax continue with step 3.

3 Description of the Method

As shown in figure 4 , the proposed edge detection method consists of two parts.
The first one follows the the three first steps of the Canny edge detector.

Firstly we smooth the grayscale image I with an appropriate Gaussian Filter of
standard deviation σcentral in order to reduce image noise. We call the smoothed
image IC . Then we calculate gradient magnitude and direction using the So-
bel operator and perform non maximum-suppression. Every pixel with gradient
magnitude greater than zero is set 0 (edge) and all the other pixels are set to
255 (non-edge). This process leads to a single-pixel width binary edge map M .
The second part is the classification of images pixel into three clasees (Edge,
Non-Edge, Fuzzy Edge). We separately smooth the original grayscale image I

Fig. 4. Flowchart of the proposed method



Automatic Edge Detection 959

with a gaussian filter of standard deviation σlow and σhigh. The values of σlow

and σhight have a small deviation above and below σcenter respectively in order
to create different detail levels but also avoid the problem of edge dislocation.
For each of these three smoothed images IL, IC and IH , we compute the gra-
dient magnitude using Sobel,Prewitt, Frei-Chen and Separated Pixel Difference
operator.

For every pixel P of the image I we assign a 12-component vector. Each
vector’s element represents gradient magnitude from different combination of
smoothing scale and differentiation mask. This process produces a 12-dimension
feature space D, which will be sampled in order to train the Kohonen SOM.

As shown in figure 5 we approach the clustering process in a hierarchical way,
which has been carried out after a large number of experiments.

At the first level, we use a Kohonen map with three output units connected in
line topology. These output units represent three clusters: high,medium and low
gradient class. The training dataset for the Kohonen map consists of randomly
choosen vectors of the input space D. After the training of the Kohonen network
we assign each pixel of the image to one of the output classes according to the
euclidean distance between the pixel’s vector in feature space D and the vectors
of the SOFM output units.

At the second level, all the pixels that are mapped into the high and medium
gradient class are grouped in order to form the Edge Pixel class. The Low Gradi-
ent class is splitted in two classes: the Fuzzy-Edge Pixel class and the Non-Edge
Pixel class, using a Kohonen map with the same topology as the one at the first

Fig. 5. Flowchart of the clustering process
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level but with two output units. All the pixels that were mapped into the Low
Gradient class on the first level, are now assigned at these two classes.

The next step of the method is the hysterisis thresholding in a revised way. By
integrating the information of the pixel class labeling performed in the previous
step, there is no need for the user-defined thresholds Tlow and Thigh. Hysterisis
thresholding is summarized as follows:

1. Mark as Non-Edge class pixel, every pixel that is marked as non-edge (255)
in the binary edge map M .

2. Select a pixel P that belongs to the Edge class.
3. Every pixel that is connected with 8-neighborhood with P and belongs to

the Fuzzy-Edge class is marked as edge pixel(0) and it is classified into the
Edge class.

4. Repeat step 2 for all pixels of the Edge-class.
5. The remaining Fuzzy-edge class pixels are classified into the Non-edge class

and marked as non-edge pixels (255).

4 Experimental Results

The method analysed in this paper is implemented in visual enviroment (Borland
Delphi) and tested on several images with satisfactory results. For an AMD
Athlon 64 (2GHz) bazed PC with 512 MB RAM, the processing time for a
512× 512 image with a Kohonen Som network trained for 300 epochs with 1000
samples, was 2.55 seconds. Edges extracted with the proposed method are shown
in figure 6. In 6(b) we have the binary edge map M after gaussian smoothing
with σcentral = 1, gradient detection with the sobel operator and non-maximum
suppression. In 6(c) we can see the result of the classification using the Kohonen
SOM. Pixels classified to the Non-Edge class are shown in black color. Red
coloured pixels are the pixels that belong to the Edge class and the pixels of
the Fuzzy-edge class are shown in green color. The parametres of the Kohonen
maps for these examples are: εi = 0.9, εf = 0.01 and Tmax = 400 with training
vectors from an input space formed as described previously with σlow = 0.8 and
σhigh = 1.2. The final edges exctracted with automatic hysterisis thresholding
are shown in 6 (d). Two additional examples are shown in figures 7 and 8.

In order to have some comparative results, our technique was tested against
the results of objective edge evaluation and detector parameter selection method
proposed in [6]. In this work, Yitzhak Yitzhaky and Eli Peli propose a statistical
objective performance analysis and detector parameter selection method, using
detection results produced by different parameters of the same edge detector.
Using the correspondence between the different detection results, an estimated
best edge map, utilized as an estimated ground truth (EGT), is obtained. This
is done using both a receiver operating characteristics (ROC) analysis and a
Chi-square test. The best edge detector parameter set (PS) is then selected by
the same statistical approach, using the EGT. This method was implemented in
Matlab for the canny edge detector.
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For the tests we used six ground truth images from the GT dataset used in
[7] which is freely available on the internet. In figure 9 we see the test images and
corresponding ground truth images. In these manually created GT images black
represents edge, gray represents no-edge and white represents dont care. The
GT is created by specifying edges that should be detected and regions in which
no edges should be detected. Areas not specified either as edge or as no-edge
default to dont-care regions. This makes it practical to specify GT for images
that contain regions in which there are edges but their specification would be
tedious and error-prone (for example, in a grassy area) [7]. The results of the
pixel based comparison between the ground truth and the edge images were
based on the following values:

– True positives (TP): Number of pixels marked as edges, which coincide with
edge pixels in the GT.

– False positives (FP): Number of pixels marked as edges, which coincide with
non-edge pixels in the GT.

– True negatives (TN): Number of pixels marked as non-edges, which coincide
with non-edge pixels in the GT.

– False negatives (FN): Number of pixels marked as non-edges, which coincide
with edge pixels in the GT.

(a)

(c)

(b)

(d)

Fig. 6. (a) Original grayscale image, (b) Binary edge map M after smoothing differenta-
tion and non-maximum suppression, (c) Edge classes obtained by Kohonen SOM (d)
Final edge map after automatic hysterisis thresholding
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(a)

(c)

(b)

(d)

Fig. 7. (a) Original grayscale image, (b) Binary edge map M after smoothing differenta-
tion and non-maximum suppression, (c) Edge classes obtained by Kohonen SOM (d)
Final edge map after automatic hysterisis thresholding

(a)

(c)

(b)

(d)

Fig. 8. (a) Original grayscale image, (b) Binary edge map M after smoothing differenta-
tion and non-maximum suppression, (c) Edge classes obtained by Kohonen SOM (d)
Final edge map after automatic hysterisis thresholding
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(1)

(3)

(5)

(1.GT)

(3.GT)

(5.GT)

(2)

(4)

(6)

(2.GT)

(4.GT)

(6.GT)

Fig. 9. Images used for pixel-based evaluation

The calculation of these values is performed as follows: if a detector reports
an edge pixel within a specified tolerance Tmatch of an edge in the GT, then it is
counted as a true positive (TP) and the matched pixel in the GT is marked so
that it cannot be used in another match. The Tmatch threshold for tolerance in
matching a detected edge pixel to GT allows detected edges to match the GT
even if displaced by a small distance [7]. In our test we used a value of Tmatch =
1. If a detector reports an edge pixel in a GT no-edge region, then it is counted
as a false positive (FP). Edge pixels reported in a dont care region do not count
as TPs or FPs. Background pixels that match pixels in a GT no-edge region are
counted as true negatives (TN). Background pixels that match GT edge pixels
are counted as false negatives (FN).

For the pixel-based comparison, these similarity measures were used:

– The percentage correct classification (PCC):

PCC =
TP + TN

TP + TN + FP + FN
(12)
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– The Jaccard Coefficient:

Jaccard =
TP

TP + FP + FN
(13)

– The Dice Coefficient:

Dice =
2× TP

2× TP + FP + FN
(14)

These three measures yield different properties: The PCC measure describes the
proportion of matches to the total number of (pixels). Jaccard measure is an
overlap ratio which excludes all non-occurrences, and, thereby, disregards the
information on matches between background pixels. The Dice measure is similar
to Jaccord but it gives more weight to occurrences of edge pixels (TPs).

From each test image we extract three edge maps. The first one is obtained
using our method. The second and third, using canny edge detection with param-
eters selected with the process described in [6], with EGT estimated with ROC
analysis and best parameter selection (PS) using ROC analysis and Chi-Square
test respectively.

In table 1 we present the results of pixel-based comparison to the ground
truth images. Larger values of PCC, Jaccard coefficient and Dice coefficient
indicate greater similarity to the GT images. From the comparison of the mea-
surments we conclude that for this GT dataset, the method proposed in this
paper performs better compared to the method of detector parameter selection
proposed in [6].

Table 1. Results of pixel-based evaluation. Larger values indicate better performance.

GT evaluation results
Our method PS: ROC analysis PS: Chi Square test

Image 1 PCC 0.520055 0.477554 0.484051
Jaccard 0.111810 0.033120 0.045144

Dice 0.201133 0.064117 0.086389
Image 2 PCC 0.509625 0,496870 0,497209

Jaccard 0.065781 0,041458 0,042076
Dice 0,123443 0,079608 0,080754

Image 3 PCC 0,528503 0,518710 0,520773
Jaccard 0,127268 0,108964 0,112783

Dice 0,225799 0,196515 0,202704
Image 4 PCC 0,533181 0,511978 0,511269

Jaccard 0,156842 0,118467 0,117178
Dice 0,271156 0,211838 0,209775

Image 5 PCC 0,520935 0,504178 0,510735
Jaccard 0,092413 0,059962 0,072394

Dice 0,169191 0,113140 0,135014
Image 6 PCC 0,523620 0,511709 0,515407

Jaccard 0,120254 0,098250 0,105069
Dice 0,214691 0,178922 0,190159
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Abstract. The proposed technique deals with jigsaw puzzles and takes 
advantage of both geometrical and color features. It is considered that an image 
is being divided into pieces. The shape of these pieces is not predefined, yet the 
background’s color is. The whole method concerns a recurrent algorithm, which 
initially, finds the most important corner points around the contour of a piece, 
afterwards performs color segmentation with a Kohonen’s SOFM based 
technique and finally uses a comparing routine. This routine is based on the 
corner points found before. It compares a set of angles, the color of the image 
around the region of the corner points, the color of the contour and finally 
compares sequences of points by calculating the Euclidean distance of 
luminance between them. At a final stage the method decides which pieces 
match. If the result is not satisfying, the algorithm is being repeated with new 
adaptive modified parameter values as far as the corner points and the color 
segmentation is concerned. 

1   Introduction 

The aim of this paper is to provide an automatic method for jigsaw puzzle solving. 
Automatic solution of jigsaw puzzles by shape alone goes back to 1967 [1]. Since 
then numerous papers have been written, yet few take advantage of color information. 
The majority of the proposed techniques works on curve matching. Some of them 
[11] divide the contour of each piece into partial curves through breakpoint. 2-D 
boundary curves are represented by shape feature strings which are obtained by a 
polygonal approximation. The matching stage finds the longest common sub-string 
and is solved by geometric hashing. In this paper we introduce a few new ideas about 
how color information and shape matching can go along in solving jigsaw puzzles. 

There are many reasons for someone to work on this subject. Related problems 
include reconstructing archeological artifacts [2]-[6] and or even fitting a protein with 
known amino acid sequence to a 3D electron density map [7]. However, what is of 
most interest is that of simulating the human brain. It is very difficult to create an 
algorithm as effective as human apprehension yet it is very challenging. 

In the proposed method, jigsaw puzzle solving algorithm is divided into three 
main stages. The inputs of the system are images that contain the pieces of the puzzle 
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over a background color. In the first stage some basic features that can contribute to 
the final decision, whether two pieces are similar or not, are being extracted. We use 
an algorithm for detection of high curvature points, named ‘IPAN’ [12]. This 
algorithm finds the most significant points along the contour of an image and 
calculates the angle with a certain way, which is described below. This is the first 
feature and the most powerful in our method. The other one has to do with color 
segmentation. Color segmentation is being accomplished by a Kohonen’s SOFM (Self 
Organized Feature Map) based technique proposed by Papamarkos et al. [8]-[10]. In 
the second phase we examine all the pieces in pairs. For every pair we examine all its 
corner points and we decide if two points, one for every piece, are similar according 
to the color of the neighborhood of each point, the angle and the similarity of their 
neighborhood’s points. The algorithm ends if two pairs of corner points are found. 
Finally if no matching pairs are found the first two phases are being repeated with 
properly modified parameters, until all pieces are matched or a maximum number of 
recursions is reached. This technique has been implemented in Delphi 7 and handles 
with 24-bit depth color images.  

2   Description of the Method 

The purpose of the proposed technique is to solve the puzzle problem by combining 
color and geometrical information. Specifically, the technique takes in a number of 
color pieces (around 10-15) as inputs to reconstruct the original image. There are two 
principal assumptions. Firstly we define the color of the background (e.g. white), so 
we are able to distinguish the background from the foreground and the size of the 
images should be big enough so as IPAN algorithm can find at least 10 to 15 corner 
points. While we know the color of the background we can achieve binarization and 
extract the contour of our pieces. Furthermore, none of the pieces should fit wholly 
inside the contour of another, because the proposed technique handles only with the 
external contour of its piece. This means that every piece is concerned as a solid 
object. 

The entire method consists of the following five main stages: 

• Corner Detection 
• Color Segmentation 
• Comparing Routine 
• Iteration of all stages above if it is needed 
• Matching Routine 

2.1   Background and Foreground 

In order to extract the contour boundary of an image, which is necessary for corner 
detection, we should first convert our image in a binary one. Since we know the color 
of the background we can easily perform binarization. Yet, what happens if some 
pixels of the foreground have the same value of luminance? These pixels could 
contain useful color information for our algorithm. Having in mind this case we 
created a function that detects these pixels and works as follows: i.e. we consider 
background as white. We put the value 0 to all pixels that have not value 255. Then 
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we find the contour be separating black and white pixels. Afterwards we read each 
row of the image from left to right and after 2 pixels of contour are found, we set the 
following query: If the second pixel has on the left a ‘black’ pixel, then set all pixels 
between them black (foreground), else we consider these pixels as two peaks of the 
contour and leave them unattached. 

2.1.1   Corner Detection (Corner Matching) 
At this stage, every piece is being approximated with a polygon. The algorithm, 
which is used, is called IPAN. It is a two-pass algorithm which defines a corner in a 
simple and intuitively appealing way, as a location where a triangle of specified size 
and angle can be inscribed in curve. A curve is represented by a sequence of points 

ip  in the image plane. The ordered points are densely sampled along the curve and no 

regular spacing between them is assumed. A chain-coded curve can also be handled if 
converted to a sequence of grid points. The second pass is a post-processing 
procedure so as to remove superfluous candidates. 

First Pass: In each curve point p  the detector tries to inscribe in the curve a 

variable triangle ( , , )p p p− +  that satisfies the set of following rules: 

• 
22 2

min maxd p p d+≤ − ≤  

• 
22 2

min maxd p p d−≤ − ≤  

• maxα α≤  

 

(1) 

where | | | |p p a+− =  is the distance between p  and p+ , | | | |p p b−− =  the distance 

between p  and p− , and ( , )α π π∈ − the angle of the triangle. The latter is computed 

as: 

 
2 2 2

cos
2

a b c
ar

ab
α + +=  (2) 

Variations of the triangle that satisfy the conditions are called admissible. Search 
for the admissible variations starts from p outwards and stops if any of the conditions 

(1) is violated. Among the admissible variations, the least opening angle ( )pα  is 

selected.  
Second Pass: A corner detector can respond to the same corner in a few 

consecutive points. Similarly to edge detection, a post-processing step is needed to 
select the strongest response by discarding superfluous points. A candidate point p is 

discarded if it has a sharper neighbor pν : ( ) ( )a p a pν> . A candidate point is a valid 

neighbor of p if 
2

p pν− 2
maxd≤  

Parameters: min max,d d and maxα are the parameters of the algorithm and they are 

very important for the final stage, which will be discussed below. 
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Fig. 1. Detecting High Curvature Points. (a) Determining if p is a candidate point. (b) Testing p 
in terms of his neighbors. 

The parameters of the algorithm contribute to the flexibility of the algorithm by 
giving us each time a different number of corner points according to their value. 
Moreover, the angle of every candidate point p is being calculated toward its 

neighborhood’s points and therefore, IPAN is rotationally and scale invariant. Finally, 
we compute the metacenter of each corner point’s inscribed triangle. If metacenter is 
pixel of background, then the angle is concave, otherwise it is convex. The results of 
this method are shown in figure 2.  

2.1.2   Color Segmentation (Color Similarity) 
In the second stage of the technique, a Kohonen’s SOFM based color reduction 
method proposed by Papamarkos et al. [8]-[10] is applied. The metric that uses 
Kohonen SOFM is the Euclidian color distance. It calculates, therefore, the distance 
for R, B and G layers of every pixel in order to conclude in which class is this pixel 
nearer. In order better results to be achieved the number of classes is not constant. It 
varies between 10 and 30 so as our technique to be effective but not time consuming. 
Pieces with many similarities, in terms of color information, cannot be distinguished, 
unless a large number of classes is used. On the other hand, it would be time 
consuming to apply 30 classes to well distinguished pieces, when the same result can 
be achieved with only 10.   

A problem that we have to deal with here is that only pixels of each piece should 
be processed and not those of the background. So, we separate the background from 
the foreground. Samples for the algorithm are taken through each piece, in order to 
perform unified classes for all the pieces. Although the original color segmentation 
technique would consider a constant number of randomly taken samples, this would 
be a drawback for the proposed paper, because each application of the technique 
would result in different results. Thus, the number of the samples is a percentage of 
the total number of pixels and moreover we created a function that takes into account 
specified pixels of every piece, if they contain useful information, which means they 
are pixels of the foreground. The results are shown in figure 3. 
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(a) (b) 

  

(c) (d) 

Fig. 2. Polygonal Approximation with a rotationally invariant technique called IPAN. (a) An 
image piece. (b) Corner points extracted with IPAN. (c) and (d) Ipan extracts certain corner 
points in the image through its rotation invariance.  

2.1.3   Comparing Stage 
At this stage we compare couples of pieces and determine whether they are matching 
or not. From the first stage we concluded to a number of important characteristic 
points along the contour boundary. We assume that each corner point of the first 
image corresponds to all corner points of the second. During the comparing stage we 
discard all corner points that fail to be one with comparing rules. The purpose of this 
stage is to minimize this number in order to choose 4 points, if it is possible. Having  
two points from each piece that correspond to precisely two points from the second 
one, it is easy for us to compute the rotation angle and the shift that is needed for the 
two pieces to match.  

First of all we compare the angle (in degrees) of every point 1( )ipα of the first 
image with the angle of every point 2( )ipα of the second image. If 
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(a) (b) 

Fig. 3. Color Segmentation with Kohonen SOFM (a) Original Image (b) Color Segmentation 
with vector’s dimension equals to 3  

1 2( ) ( ) 10i ip pα α− > , then the corresponding points will be discarded and will not be 
examined any more.  

Then we compare all points left as far as the luminance is concerned. All points 
with different luminance, after the application of Kohonen’s algorithm, will be 
discarded as well. 

The third criterion is a function F  that compares the Euclidean distance of 
luminance between a connected sequence of points from the first image and another 
from the second one. If 1, 5 1, 1 1, 1, 1 1, 5{ ,..., , , ,..., }i i i i ic c p c c− − + + is a sequence around 1,ip  of 

the first image and 2, 10 2, 1 2, 2, 1 2, 10{ ,..., , , ,..., }j j j j jc c p c c− − + +  another sequence around 2, jp  

of the other image, where c , pixels of the contour. Then: 

5

1 2 1, 2,
5

( )
min 5,...,5

11

i j i l j l k
l

p p c c
F for k

+ + +
=−

− + −
= = −  (3) 

After finding F , every point 1,ip  corresponds to 3 at most points 2, jp  , those that 

minimize function F . All the other points are being discarded. 
 Furthermore we compare 1, 1 1, 1, 1( , , )i i ip p p− + with 2, 1 2, 2, 1( , , )j j jp p p− + as far as their 

angles ( 1, 2,( ) ( ) 10i jp pα α− < ) and the values of luminance is concerned. 

At this point, we introduce two sets of points from both images, each one having 
five elements as shown in figure 4. Every point pi of the first set corresponds to 
another point pj of the second set. To minimize the chances for a mismatch we test 
them once more geometrically. As it is shown in figure 4, we compare angle a1 with 
a2 and part d1 with d3 as well as d2 with d4. All the possible combinations of angles 
for 5 points are 12. If 10 out of 12 are very similar we conclude that piece I and piece 
J match, and the algorithm ends. Otherwise we continue with all the possible 
combinations of 5-point sequences and in case we run out of combinations we go 
forward to the next and final stage. 
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Fig. 4. Comparison of two 5-point sets with each other 

2.1.4   Recursion Stage 
At this stage what is of most importance are the parameters of stages 1 and 2. If we 
decrease dmin  , dmax  and max , IPAN algorithm takes out a large number of corner 
points and  our algorithm falls short of speed, yet it can cope with low-analysis 
images where the search for important corner points should be meticulous in order to 
be  effective. On the other hand, if we increase the values of the parameters we 
decrease the number of corner points and the algorithm is solving very fast puzzles 
with high-analysis images. So, the initial values of the parameters are high and if none 
solution has found the whole method is being repeated automatically with lower 
values after each recursion. The initial set of parameters is dmin  =10, dmax  =12 and 

max =160. Additionally Kohonen SOFM is very reliable with 30 classes but faster 
with 10. The initial value for the Kohonen SOFM is 10. When many recursions are 
needed is sometimes time-consuming but generally the algorithm is very flexible, as it 
can cope with various different shaped images. The values of the parameters have 
been chosen by trial and error. Once our goal is achieved, this stage stops. 

2.1.5   Matching Routine 
Since has been decided which images are matching together, what is left to do, is to 
merge the images and show up the results. The rotation and shift phase for all images 
is being done in terms of one image, which is called reference image. Firstly, if two 
images fit at points 1,1 1,2p and p and 2,1 2,2p and p respectively, shift and rotation angle 

are being calculated from the following equations: 

1,1 2,1

1,1 2,1

1,1 1,2 2,1 2,2

1,1 1,2 2,1 2,2

: :

:

: arctan arctan

Shift p p

Shift p p

p p p p
angle

p p p p

Shift CoordinateX X X X

CoordinateY Y Y Y

Y Y Y Y
Rotation R

X X X X

= −

= −

− −
= −

− −

 
(4) 
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However, it is possible that some images don’t have common points with the 
reference image. That is why we created a routine that relates all the images together. 
So, if for example image 2 fits with the reference image since it has been rotated by 
angle ‘a1’ around center point ‘c1’ and it has been shifted for ‘d1’ pixels and image 3 
fits with the image 2 since it has been rotated by angle ‘a2’ around center point ‘c2’ 
and it has been shifted for ‘d2’ pixels, we consider that image 3 should be rotated by 
‘a1’ around ‘c1’ plus ‘a2’ around ‘c2’ and it should be shifted by ‘d1+d2’ so as to fit 
with the reference image. The whole procedure is being repeated for each image, until 
all images have been related with the reference one. 

3   Experimental Results 

The proposed technique for solving jigsaw puzzles, has been implemented in Delphi 7 
and tested many images, after they have been cut from 3 to 10 pieces each. The 
success rate for those images with pieces that were not rotated reaches 90% and 80% 
for the others. Figure 6 shows the pieces of figure 5(g) image before the application of 
the technique.  

 
 

(a) (b) 

  
(c) (d) 
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(e) (f) 

  
(g) (h) 

  

(i) (j) 

 

Fig. 5. Some experimental results. (a) Image reconstruction out of 6 pieces. (b) Image 
reconstruction out of 8 pieces (c) Image reconstruction out of 6 pieces. (d) Image reconstruction 
out of 5 pieces (e) Image reconstruction out of 5 pieces. (f) Image reconstruction out of 7 pieces 
(g) Image reconstruction out of 15 pieces. (h) Image reconstruction out of 9 pieces (i) Image 
reconstruction out of 8 pieces. (j) Image reconstruction out of 7 pieces. 
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Fig. 6. The pieces of example g in figure 5 before the application of the algorithm 
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Abstract. A new method for the reduction of the number of colors in a digital 
image is proposed. The new method is based on the development of a new 
neural network classifier that combines the advantages of the Growing Neural 
Gas (GNG) and the Kohonen Self-Organized Feature Map (SOFM) neural 
networks. We call the new neural network: Self-Growing and Self-Organized 
Neural Gas (SGONG). Its main advantage is that it defines the number of the 
created neurons and their topology in an automatic way. Besides, a new method 
is proposed for the Estimation of the Most Important of already created Classes 
(EMIC). The combination of SGONG and EMIC in color images results in 
retaining the isolated and significant colors with the minimum number of color 
classes. The above techniques are able to be fed by both color and spatial 
features. For this reason a similarity function is used for vector comparison. To 
speed up the entire algorithm and to reduce memory requirements, a fractal 
scanning sub-sampling technique is used. The method is applicable to any type 
of color images and it can accommodate any type of color space.  

1 Introduction 

The reduction of the number of colors in digital images is an active research area. 
True type color images consist of more than 16 million of different colors. The image 
color reduction is an important task for presentation, transmission, segmentation and 
compression of color images. The proposed method can be considered as a Color 
Quantization (CQ) technique. The goal of the CQ techniques is to reduce the number 
of colors in an image in a way that minimizes the perceived difference between the 
original and the quantized image. Several techniques have been proposed for CQ 
which can be classified in the following three major categories. Firstly, there is a class 
of techniques that are based on splitting algorithms. According to those approaches, 
the color space is divided into disjointed regions by consecutive splitting up the color 
space. The methods of median-cut [1] and variance-based algorithm [2] belong to this 
category.  The method  of  Octree [3]  is  based on splitting the color space to  smaller 
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cubes. An optimized splitting technique is proposed by Wu [4] who utilizes the 
principal component analysis to split optimally the original color space. The second 
major class of CQ techniques is based on cluster analysis. Techniques in this category 
attempt to find the optimal palette by using vector classifiers. In this category belong 
methods like ACR [5], FOSART [6], Fuzzy ART [7] and FCM [8]. As it is noticed by 
Buhmann et al. [9], one of the basic disadvantages of the most classic CQ approaches 
is the fact that they neglect spatial, i.e. contextual, information. In order to overcome 
this disadvantage, the color reduction problem must be considered as a clustering 
problem with the input vectors describing not only the color information but also 
extra spatial features derived from the neighboring area of each pixel [10-11]. 
Artificial neural networks are very efficient approaches to create powerful vector 
classifiers and to solve clustering problems. A well-known unsupervised neural 
network classifier is the Kohonen SOFM [12]. This network consists of two separate 
layers of fully connected neurons, i.e. the input and the output layer. Although, the 
Kohonen SOFM performs topology preserving mapping, there is a major drawback: 
the dimensions of the input space and the output lattice of neurons are not always 
identical and, consequently, the structure of the input data is not always preserved in 
the output layer.  

Several implementations of the Kohonen SOFM have been proposed for color 
reduction. Dekker [13] proposes a color reduction technique which is based on a 
Kohonen SOFM classifier. According to this approach, equal sized classes are 
produced. Papamarkos and Atsalakis propose a new technique according to which a 
Kohonen SOFM neural network is fed not only with the image gray-scale values but 
also with local spatial features extracted from the neighboring of the sampling pixels 
[10-11]. An extension to the methods mentioned above, is the Adaptive Color 
Reduction (ACR) technique [5]. This technique, by applying a tree-driven splitting 
and merging strategy, decomposes the initial image into a number of color planes. A 
two-stage color segmentation methodology based on a Kohonen SOFM network is 
also proposed by Huang et al. [14]. Ashikur et al. [15] propose a CQ technique by 
combining the SOFM with a supervised counter propagation network. With the 
exception of the ACR algorithm, all the techniques mentioned above have the same 
drawback: the final number of colors should be predefined.  

The proposed color reduction technique uses a new Self-Growing and Self-
Organized Neural Gas (SGONG) network. We develop this neural classifier in order 
to combine the growing mechanism of the GNG algorithm [16] and the learning 
scheme of the Kohonen SOFM. Specifically, the learning rate and the influence of 
neighboring neurons are monotonically decreased with the time. Furthermore, at the 
end of each epoch, three criteria are applied that improve the mechanism of growing 
and the convergence efficiency of the network. These criteria define when a neuron 
must be removed or added to the output lattice. The proposed neural network is faster 
than the Kohonen SOFM. In contrast with the GNG classifier, a local counter is 
defined for each neuron that influences the learning rate of this neuron and the 
strength of its connections with the neighboring neurons. In addition, these local 
counters are also used to specify the convergence of the proposed neural network. The 
main advantage of the SGONG classifier is its ability to influence the final number of 
neurons by using three suitable criteria. Thus, in the color reduction problem, the 
proper number of the image's dominant colors can be adaptively determined.  
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An extension to any vector quantization technique is proposed for Estimation of 
the Most Important of already created Classes (EMIC). In order to function the EMIC 
technique, a predefined number of classes and a set of vectors representative of data 
space is required. The proposed technique is based on Comparative Hebbian Rule 
CHR [17] and no heuristic parameters are adjusted in order to be applied.  

Concluding, in this paper 

− A new self-growing and self-organized neural network is introduced. This SGONG 
neural network has the following characteristics: 
• faster than the Kohonen SOFM, 
• the dimensions of the input space and the output lattice of neurons are always 

identical. Thus, the structure of neurons in the output layer approaches the 
structure of the input data,  

• criteria are used to ensure fast converge of the neural network, detection is of 
isolated classes and automatically estimation the number of neurons in the 
output layer. 

− The EMIC method is proposed for choosing efficiently very few numbers of 
classes in automatic way.  

− Even though the quantized image is described with few colors, isolated and small 
color classes can be detected combining the SGONG and EMIC methods  

− Except for color components, the above methods can also be fed by additional 
local spatial features.  

− The color reduction results obtained are better than previous reported techniques.  

The proposed color reduction technique was tested by using a variety of images 
and the results are compared with other similar techniques.  

2 Combination of Color and Spatial Features 

To simplify our approach, let us consider a digital image of n  pixels and the 
corresponding data set X , consisting of n  input vectors (feature vectors) kX : 

]2,1,3,2,1,3,2,1[ kkkkkkkkk zzgggfffX = , 1,...k = ,n  (1) 

where D
kX ∈ℜ , with D=8 the dimensionality of the input space. Each input vector 

kX  consists of the pixel’s color components ]3,2,1[ kkkk ffff =  and additional 

spatial features ]3,2,1[ kkkk gggg =  and ]2,1[ kkk zzz =  extracted from a 

neighborhood region of this pixel. In color images, using for example the RGB color 
space, the elements kf 1 , kf 2 , kf 3 ]255,0[∈ , express the intensity values of red, 

green and blue color components of the k  pixel. Apart from the RGB color space, 
which is not perceptually uniform, more advantageous and perceptually uniform color 
spaces like CIE-L*a*b* or CIE-L*u*v*, can be used.  

The neighborhood region of each pixel can be defined using a mask of 3 3×  or 
5 5×  dimensions, where the central mask’s element expresses the pixel’s position. 
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 Depending on the spatial features used, the color of each pixel is associated with the 
spatial color characteristics of the neighboring pixels. The spatial feature vectors 

kg and kz can be derived from edge extraction, smoothing, noise reduction masks, 

min and max values, etc. Besides, the coordinates of each pixel can be used as 
additional features. According to the above analysis, color domain and spatial domain 
are concatenated in a joint domain of features. The vector kX  combine vectors of 

different nature and thus their elements take values in different ranges. In order to 
compare efficiently two different vectors kX  and mX , ( nmk K,1, = ) a similarity 

function ),( mk XXS is defined which takes values in range ]1,0[  [18]. If 

1),( =mk XXS  then the vectors kX  and mX  are considered equal. 

),(),(),(),( mkzmkgmkfmk XXSXXSXXSXXS ⋅⋅= ,  (2) 
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The parameters fh , gh  and zh  are normalization factors which are user defined. 

Usually, these parameters express the scatter of vectors f, g, z, respectively. 
From equation (2) we have 
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vector of kX . 

The proposed technique can be applied to color images without any sub-sampling. 
However, in the case of large-size images and in order to achieve reduction of the 
computational time and memory size requirements, it is preferable to have a sub-
sampling version of the original image. We choose to use a fractal scanning process, 
based on the well-known Hilbert's space filling curve [10-11], where scans one area 
of the image completely before moving to the next. So, the neighborhood relationship 
between pixels is retained in neighboring samples. 

3 The SGONG Neural Network 

The proposed SGONG network consists of two separated layers of fully connected 
neurons, the input layer and the output mapping layer. In contrast with the Kohonen 
SOFM, the space of the mapping layer has always the same dimensionality with the 
input space, and also, the created neurons take their position in order the structure of 
neurons to approximate the structure of the input training vectors. In other words, the 
topology of the created neurons always approximates the topology of the training 

vectors. All vectors of the training data set 
'X  are circularly used for the training of 

the SGONG network. In contrast with the GNG network, where a new neuron is 
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always inserted at the end of each epoch, in the proposed algorithm three new criteria 
are applied that control the growing of the output lattice of neurons. In summary, we 
introduce the following three criteria: 

• remove the inactive neurons, 
• add new neurons,  
• and finally, remove the non important neurons.  

In accordance with the Kohonen SOFM, the proposed neural network uses the 
same equations for the adaptation of neuron's position and utilizes a cooling scheme 
for the learning rates used for weights readjustments. In contrast with the GNG 
classifier, in the proposed technique, the learning rates are locally defined in such a 
way that the adaptation ability of each neuron to each training vector is proportionally 
decreased with the number of vectors classified in the corresponding class. This 
removes the problem of increased neuron's plasticity or the danger of convergence in 
local minima, when the constant learning rates are not well adjusted. The proposed 
strategy makes the convergence faster, compared with the GNG classifier, as the 
weights of all neurons are stabilized and the network is forced to converge, when a 
predefined number of vectors have been classified to each neuron.  

The adjacency relations between neurons are described by lateral connections 
between them. The Competitive Hebbian Rule (CHR) [12] is used to dynamically 
create or remove the lateral connections during the training procedure. This approach 
improves the data clustering capabilities of the SGONG network, in comparison with 
the Kohonen SOFM, where the lateral connections are fixed and predefined. Taking 
into account that the new neurons are inserted in order to support these with the 
highest error, and that the neuron's lateral connections perfectly describe the topology 
of the input vectors, we conclude that in contrast with Kohonen SOFM the proposed 
technique, during the training procedure, always gives a good description of the data 
structure. In addition, as the new neurons are inserted near these with the maximum 
accumulated error at the end of a single epoch, the proposed technique is robust to 
noisy data. The length of each epoch determines the robustness to noisy data. On the 
other hand, the convergence is not based on optimizing any model of the process or 
its data, as the proposed neural network shares almost the same weight-update scheme 
with the Kohonen SOFM neural network.  

3.1 The Training Steps of the SGONG Network 

The training procedure for the SGONG neural classifier starts by considering first two 
output neurons ( 2c = ). The local counters iN , 1,2i =  of created neurons are set to 

zero. The initial positions of the created output neurons, that is, the initial values for 
the weight vectors iW , 1,2i =  are initialized by randomly selecting two different 

vectors from the input space. All the vectors of the training data set 'X  are circularly 
used for the training of the SGONG network. 

The training steps of the SGONG are as follows: 

Step 1. At the beginning of each epoch the accumulated errors ( )1
iAE , ( )2

iAE , 

[1, ]i c∀ ∈  are set to zero. The variable ( )1
iAE  expresses, at the end of each epoch, the 
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quantity of the total quantization error that corresponds to iNeuron , while the 

variable ( )2
iAE , represents the increment of the total quantization error that we would 

have if the iNeuron  was removed. 

Step 2. For a given input vector kX , the first and the second winner neurons 

w1Neuron , w2Neuron  are obtained: 

for w1Neuron : ),(),( 1 ikwk WXSWXS ≥ [1, ]i c∀ ∈  (3) (3) 

for w2Neuron  : ),(),( 2 ikwk WXSWXS ≥ , [1, ]i c∀ ∈  and i w1≠  (4) 

Step 3. The local variables ( )1
w1AE  and ( )2

w1AE  change their values according to the 

relations: 

1
)1(
1

)1(
1 wkww WXAEAE ′−′+=  (5) 

2
)2(

1
)2(

1 wkww WXAEAE ′−′+=  (6) 

1w1 w1N = N +  (7) 

Step 4. If w1 idleN N≤  then the local learning rates w11  and w12  change their 

values according to equations (8), (9) and (10). Otherwise, the local learning rates 
have the constant values minw11 = 1  and 0w12 = .  

/w1 w1 w12 = 1 r  (8) 

max
max min min

min

w1

idle
w1

N
1 N1 = 1 + 1 1
1

− ⋅  

 

(9)  

max max
max

1
1

w1

idle
w1

N

Nr = r + r
r

− ⋅  

 

(10) 

The learning rate i1  is applied to the weights of iNeuron  if this is the winner 

neuron ( w1= i ), while i2  is applied to the weights of iNeuron  if this belongs to the 

neighborhood domain of the winner neuron ( ( )i nei w1∈ ). The learning rate i2  is 

used in order to have soft competitive effects between the output neurons. That is, for 
each output neuron, it is necessary that the influence from its neighboring neurons to 
be gradually reduced from a maximum to a minimum value. The values of the 
learning rates i1  and i2 are not constant but they are reduced according to the local 

counter iN . Doing this, the potential ability of moving of neuron i  toward an input 
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vector (plasticity) is reduced with time. Both learning rates change their values from 
maximum to minimum in a period, which is defined by the idleN  parameter. The 

variable wir  initially takes its minimum value min 1r =  and in a period, defined by the 

idleN  parameter, reaches its maximum value maxr . 

Step 5. In accordance with the Kohonen SOFM, the weight vector of the winner 
neuron w1Neuron  and the weight vectors of its neighboring neurons mNeuron , 

( )m nei w1∈ , are adapted according to the following relations: 

( )1111 1 wkwww WXWW ′−′⋅+′=′ ε  (11) 

( )mkmmm WXWW ′−′⋅+′=′ 2ε , ( )m nei w1∀ ∈  (12) 

Step 6. With regard to generation of lateral connections, SGONG employs the 
following strategy. The CHR is applied in order to create or remove connections 
between neurons. As soon as the neurons w1Neuron  and w2Neuron  are detected, the 

connection between them is created or is refreshed. That is  

0w1,w2s =  (13) 

With the purpose of removing of superfluous lateral connections, the age of all 
connections emanating from w1Neuron , except the connection with w2Neuron , is 

increased by one:  

1w1,m w1,ms = s + , ( )m nei w1∀ ∈ , with m w2≠  (14) 

Step 7. At the end of each epoch it is examined if all neurons are in idle state, or 
equivalently, if all the local counters iN , [1, ]i c∀ ∈  are greater than the predefined 

value idleN  and the neurons are considered well trained. In this case, the training 

procedure stops, and the convergence of SGONG network is assumed. The number of 
input vectors needed for a neuron to reach the “idle state” influences the convergence 
speed of the proposed technique. If the training procedure continues, the lateral 
connections between neurons with age greater than the maximum value  are 
removed. Due to dynamic generation or removal of lateral connections, the 
neighborhood domain of each neuron changes with time in order to include neurons 
that are topologically adjacent.  

Step 8. At the end of each epoch, three criteria that modify the number of the 
output neurons c and make the proposed neural network to become self-growing are 
applied. These criteria are applied in the following order:  
• A class (neuron) is removed if for a predefined consecutive number of epochs, 

none of training samples have classified in this class.  
• A new class (neuron) is added near the class with the maximum contribution in 

total quantization error (with the maximum )1(AE ), if the average distance of its 
vectors from neighboring classes is greater than a predefined value. This value is 
expressed as a percentage ( 1t ) of the average distance between all classes.  
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• The class (neuron) with the minimum average distance of its vectors from 
neighboring classes is removed if this quantity is less than a predefined value. This 
value is expressed as a percentage ( 2t ) of the average distance between all classes. 

In order to make faster the network convergence it can be defied not to apply the 
above criteria when the total number of epochs is above a predefined value. This has 
as a result the rapid passing of all neurons to the “idle state” and therefore the 
finalizing of the training procedure. After the training procedure the de-normalized 
vectors iW , ci K,2,1=  expresses the centers of final classes. 

4 On the Estimation of Most Important Classes  

As it is already mentioned, the EMIC technique requires only a predefined number of 
classes and a set of vectors representative of data space. It considers the position of 
given classes in feature space and the number of vectors classified to each class in 
order to choose automatically the most important classes. Initially the Comparative 
Hebbian Rule CHR [17] is applied extracting the lateral connections between classes. 
Then, we consider in the middle of each lateral connection a new class and we apply 
again the CHR in order to update the lateral connections between all classes. A kind 
of histogram is defined counting the population of vectors in connected nodes – 
classes. The EMIC can be considered as finding the peaks in created histogram. A 
class is denoted as a peak if its height, i.e. the number of classified vectors, is greater 
of the height of neighboring classes. .  

The Image in Fig. 1 is described in RGB color space and only for presentation 
reasons the color vectors are projected onto the plane defined by the first and the 
second Principal Component of all color vectors, Fig 1(b). Doing this, each color is 
represented by a two-dimensional vector. In Fig. 1(c) the main concentrations of 2D-
vectors are described by white color. The SGONG classifier with proper settings 
converges to 16 classes whose centers and their neighboring relations are depicted on 
Fig. 1(d) with red circles and lines, respectively. We consider in the middle of each 
connection a new class and we continue the training procedure of SGONG, for only 
one epoch, considering that all classes are in idle state. This is happening in order to 
find again the new lateral connections using the CHR procedure that coexists in 
SGONG. A class is denoted as a peak if the number of vectors which have been 
classified to it is greater from the number of vectors classified to neighboring classes. 
As depicted in Fig. 1(e) 13 peaks have estimated which corresponds to the most 
important classes. 

5 Experiments 

The proposed method and the CQ methods that are based on the Kohonen SOFM, 
GNG, and FCM classifiers were implemented in software, called “ImageQuant”, and 
can be downloaded and tested from the site http://ipml.ee.duth.gr/~papamark/ . In this, 
paper, due to the space limitation, we give only the following two experiments. Both 
experiments demonstrate the ability of the proposed SGONG neural classifier and the  
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(a) (b) (c) 

  

(d) (e) 

Fig. 1. Estimation of dominant  colors 

EMIC technique to define, in an adaptive way, the number of final classes, i.e. the 
number of final colors, according to the structure of the input data. 

Experiment 1  

In the first experiment the original image of Fig. 1 has 113081 unique colors. The 
proposed SGONG neural classifier converges to 16 unique colors applying the 
following main settings:  

− The maximum number of output neurons is adjusted to 45,  
− A new class (neuron) is added near this one with the maximum contribution in 

quantization error, if the average distance of its vectors from neighboring classes is 
greater than 30% of the average distance between all classes ( 3.01 =t ). 

− The class (neuron) with the minimum average distance of its vectors from 
neighboring classes is removed if this quantity is less than 20% of average distance 
between all classes ( 2.02 =t ).  

− The initial values for max1ε , min1ε , maxr  are set to 0.2, 0.0005 and 400 

respectively. 
− The original image is sub-sampled taking samples from the peaks of Hilbert’s 

fractal. The size of fractal is adjusted to take almost 3000 samples. 
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− A neuron is getting to “idle state” if 9000 vectors have classified to it 
( 9000=idleN ). 

The number of most important classes obtained applying the EMIC technique. As 
depicted on Fig. 1(e) only 13 classes have estimated. 

Experiment 2 

In the second experiment the test image of Fig 2 has 33806 unique colors. In order to 
automatically find the number of the image dominant colors, the SGONG classifier 
uses the same settings as in Experiment 1. The resultant image is depicted on Fig 2 (b) 
and has only nine colors. The colors can be more reduced by applying the EMIC 
technique. Doing this, an image of only seven colors is constructed, which depicted 
on Fig 2(c). Furthermore, for comparison reasons, the CQ techniques based on 
Kohonen SOFM, the GNG, and the Fuzzy C-Means are applied. In order to have 
comparative results, the above techniques use exactly the same samples in the same 
order. Other applied techniques are the Color Quantization method of Dekker [13], 
and finally, the method of Wu [4]. In all above cases the RGB color model was used.  

  
(a) (b) (c) 

  
(d) (e) 

Fig. 2. (a)  Initial image of 33806 unique colors. (b) Color quantization using the SGONG 
technique, the number of classes has automatically estimated to nine with appropriate settings. 
(c) The EMIC method is applied resulting in an image of only 7 classes. (d) Color quantization 
using the SGONG technique, the number of classes are predetermined and equal to 7, the 
criteria that influence the growing of the output lattice of neurons are neglected. (e) The same 
settings with Fig (d) except of using with R,G,B color components the additional features “a” 
and “b” of L*a*b* color space. 
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Table 1.  Comparative results 

 
SGONG &  

Estimation Fig.2(c) 
SGONG
Fig.2(d) FCM GNG Dekker Wu 

MSE 694,28 719,38 1107,11 821,39 1972,72 1049,32 

ADC 42,51 44,29 52,52 46,6 77,21 54,21 

SNR 51,23 50,87 46,56 49,54 40,78 47,1 

PSNR 56,38 56,03 51,72 54,7 45,94 52,25 

6 Conclusions 

This paper proposes a new CQ technique which is based on a new neural network 
classifier (SGONG). The SGONG network classifier is suitable for CQ applications. 
Each pixel is considered as a multidimensional vector which contains the color 
components and additional spatial characteristics derived from the neighborhood 
domain of each pixel. An efficient way to combine color and feature vectors is used. 
The main advantage of the SGONG network is that it controls the number of created 
neurons and their topology in an automatic way. . The convergence speed of SGONG 
classifier is comparable to the convergence speed of the GNG classifier, while the 
stability of SGONG classifier is comparable to the stability of Kohonen SOFM 
classifier. The number of resultant classes can efficiently be reduced more, applying 
the EMIC technique. The combination the SGONG and EMIC techniques in colored 
images enable the efficient description of images with very few numbers of colors. In 
order to speed up the entire algorithm, a fractal sub-sampling procedure based on the 
Hilbert's space filling curve is applied to initial image, taking samples only from the 
fractal peaks and their neighboring pixels. The proposed CQ technique has been 
extensively tested and compared to other similar techniques.  
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Abstract. We introduce a method to reduce oversegmentation in watershed par-
titioned images, that is based on the use of a multiresolution representation of 
the input image. The underlying idea is that the most significant components 
perceived in the highest resolution image will remain identifiable also at lower 
resolution. Thus, starting from the image at the highest resolution, we first ob-
tain a multiresolution representation by building a resolution pyramid. Then, we 
identify the seeds for watershed segmentation on the lower resolution pyramid 
levels and suitably use them to identify the significant seeds in the highest reso-
lution image. This is finally partitioned by watershed segmentation, providing a 
satisfactory result. Since different lower resolution levels can be used to iden-
tify the seeds, we obtain alternative segmentations of the highest resolution im-
age, so that the user can select the preferred level of detail. 

1   Introduction 

Any image analysis task requires a segmentation step to distinguish the significant 
components of the image, i.e., the foreground, from the background. 

A frequently adopted segmentation technique is based on the watershed transfor-
mation, [1,2]. Basically, watershed transformation originates a partition of a gray-
level image into regions characterized by a common property, such as an almost ho-
mogeneous gray-level distribution. The partition regions are then assigned to either 
the foreground or the background, by taking into account the properties expected to 
characterize the two sets. If the user perceives as more significant the regions with lo-
cally higher (lower) intensity, hence the regions locally lighter (darker), the assign-
ment criterion could be based on the maximal difference in gray-level among adjacent 
partition regions. This problem is still partially open, especially because its solution is 
strongly conditioned by the quality of the image partition.  

Unfortunately, watershed segmentation is generally affected by excessive fragmen-
tation into regions. This, besides requiring a suitable complex process to reduce the 
number of seeds from which the partition originates, may bias the successive assign-
ment of the partition regions to the foreground and the background. We think that an 
effective way to reduce the number of seeds can be found by resorting to multiresolu-
tion representation. If a gray-level image is observed at different resolutions, only the 
most significant regions will be perceived at all resolutions, even if in a more coarse 
way at lower resolution. Regions that, at the highest resolution image, can be inter-
preted as noise or constitute fine details are generally not preserved when resolution 
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decreases. Thus, if the seeds for watershed segmentation of the highest resolution im-
age are identified in a lower resolution level, the resulting partition is expected to be 
characterized by a reduced number of regions, corresponding to the most significant 
image parts. In this communication, we face this problem.  

Starting from a gray-level image, we create a multiresolution representation by 
building a resolution pyramid. To this purpose, we modify the algorithm illustrated in 
[3,4]. Here, we use a different 3×3 mask of weights to compute the gray-level of (par-
ent) pixels at lower resolution, in order to obtain more faithful representations of the 
original input at all resolutions. Then, we identify the seeds for watershed segmenta-
tion at one of the lower resolution levels. These seeds are suitably projected onto the 
highest resolution level of the pyramid and are used to select among the seeds origi-
nally detected at that resolution, only those corresponding to the most significant re-
gions. All other seeds originally found in the highest resolution image undergo a suit-
able removal process, aimed at merging the corresponding partition regions. The 
watershed segmentation of the highest resolution image is finally accomplished, by 
using only the seeds that survived the removal process. Different segmentations are 
suggested for the same image, depending on the pyramid level used to identify the 
seeds to be projected and, hence, on the desired detail of information to be preserved.  

The paper is organized as follows. In Section 2, we briefly discuss the method to 
build the resolution pyramid. In Section 3, we illustrate the process that, starting from 
the seeds identified at a selected lower resolution level, allows us to identify among 
all seeds at the highest resolution, only those regarded as the most significant. In Sec-
tion 4, we show the results of the watershed segmentation of the highest resolution 
image by using seeds computed at lower resolution levels. We also show the results 
obtained after we apply to the partitioned image a method to distinguish the fore-
ground from the background. Finally, in Section 5 we give some concluding remarks. 

2   The Resolution Pyramid  

We consider images where the locally darker regions (i.e., those whose associated 
gray-level is locally lower) constitute the foreground. In our images, gray-levels are in 

the range [0, 255]. Let G1 be a 2n×2n gray-level image. If the input image has a dif-
ferent number of rows/columns, a suitable number of rows/columns is added to build 
G1. Pixels in the added rows/columns are assigned the maximum gray-level present in 
the original image, i.e., are seen as certainly belonging to the background. Through 
this paper, G1 is interpreted as a 3D landscape, where for every pixel in position (x,y), 
its gray-level plays the role of the z-coordinate in the landscape. This interpretation is 
helpful to describe our process in a simple and intuitive way.  

A multiresolution image representation is of interest in many contests, since it pro-
vides from coarse to fine representations of an input image, always preserving the 
most relevant features. In this framework, resolution pyramids are among the most 
common representation systems [5]. We here modify the discrete method [3,4] to 
build a resolution pyramid. In [3,4], we focused both on shift invariance and topology 
preservation. Here, we are still interested in shift invariance and aim at a more faithful 
computation of gray-levels for the parent pixels. 

ian tni
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Pyramid construction is based on a recursive subdivision into quadrants of G1. At 
each recursion step, resolution decreases by four and, in principle, the process termi-
nates when the image including one single pixel is built. Actually, we do not compute 
resolution levels including less than 32×32 pixels, as they would give too coarse rep-
resentations of G1. For the running example shown in this paper, the base of the 
pyramid, level 1, is the image G1 at full resolution (128×128), the next level of the 
pyramid, level 2, represents the image at a uniformly lower resolution (64×64), and 
the apex of the pyramid is the 32×32 image, which constitutes level 3. We use a 
decimation process involving the use of a partition grid. When the grid is placed onto 
the current resolution image, Gk, the image is divided into blocks of 2×2 children pix-
els, which correspond to parent pixels at the immediately lower resolution level Gk+1. 
Practically, we inspect in forward raster fashion only pixels belonging to even rows 
and columns of Gk, meaning that we use the bottom right child pixel in a block to find 
the coordinates of the parent pixel in Gk+1. Let us indicate with (i,j) the pixel in posi-
tion (i,j). For each inspected pixel (i,j) of Gk, the parent pixel in Gk+1 will be (i/2,j/2).  

 
4 6 4
6 9 6
4 6 4

Fig. 1. The multiplicative mask of weights used to build the pyramid 

To compute the gray-level of the parent pixel (i/2,j/2) in Gk+1, we average the gray-
levels of (i,j) and of its eight neighbors in Gk. Since, the partition grid could be shifted 
on Gk and, hence, any pixel in the 3×3 window centered on (i,j) could be the bottom 
right pixel of the block, we introduce a multiplicative mask of weights to evaluate the 
contribution given by the nine pixels in the 3×3 window centered on (i,j).  

 

   

Fig. 2. The three levels of the pyramid computed for a 128×128 input image 

In this way, the gray-level of (i/2,j/2) will be computed almost independently of the 
position of the partition grid. To this aim, we consider the nine 3×3 windows centered 
on (i,j) and on each of its eight neighbors. Pixel (i,j) is included in all nine windows, its 
horizontal/vertical neighbors are included in six windows and diagonal neighbors in 
four windows. The number of windows including a pixel constitutes the corresponding 
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weight for the multiplicative mask.  See Fig. 1. It can be noted that the weights in our 
mask are practically midway between the Gaussian and the uniform weights. 

The gray-levels computed by using the mask are then normalized to assume values 
in the range [0, 255]. Once the computation of Gk+1 is done, the successive lower 
resolution level is built by the same procedure. The pyramid built for the running ex-
ample is shown in Fig. 2. 

3   Selection of the Significant Seeds 

At each level k, the gradient image ∇k corresponding to Gk is interpreted as a 3D 
landscape. This interpretation is useful to illustrate in a simple manner the paradigm 
on which watershed segmentation is founded. High gray-levels correspond in the 
landscape to mountains, while low gray-levels correspond to valleys. If the bottom of 
each valley is pierced and the landscape is immersed in water, then valleys are filled 
in by water. Filling starts from the deepest valleys and then continues through less and 
less deep valleys. These begin to be filled as soon as the water level reaches their bot-
tom. A dam (watershed) is built wherever water could spread from a basin into the 
close ones. When the whole landscape has been covered by water, the basins are in-
terpreted as the parts into which the landscape is partitioned. 

The regional minima found in ∇k are generally used as the seeds starting from 
which watershed transformation generates a partition of ∇k (and, hence, of Gk) into 
regions characterized by some gray-level homogeneity. See Fig. 3, where the water-
shed lines found by using the regional minima in the three gradient images at the three 
pyramid levels are shown in white. There are respectively 709, 280, and 116 seeds 
(and, hence, basins), for pyramid levels 1, 2 and 3.  We note that the image at level 1 
is affected by excessive fragmentation, caused by the very large number of regional 
minima. Some (heavy) process is generally accomplished to select among the seeds 
found in ∇1 only those that are significant to correctly partition G1. See, e.g., [6].  

 

   

Fig. 3. The watershed lines (white) found at the three pyramid levels starting from the relative 
regional minima, superimposed on the three gray-level images. The found basins are 709, at 
level 1, 280, at level 2, and 116, at level 3.  

Since G1 is well represented even at the lowest resolution level of the pyramid (see 
Fig. 2) and, in turn, the seeds found in ∇3 are considerably less than those found in 
∇1, we will use the seeds found in ∇3 to select among the seeds detected in ∇1 the 
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most significant ones and obtain, in this way, a less fragmented partition of G1. To 
this aim, we project the seeds from level 3 to level 1. This is possible due to the fact 
that our pyramid construction method preserves the links parent-children. Thus, for 
each pixel at level 3 we can easily identify its descendants at level 1. Obviously, since 
any parent pixel at level 3 has four children at level 2 and each of these children has 
in turn four children at level 1, for each seed pixel found in ∇3 we identify a 6×6 
block of descendants in ∇1. See Fig. 4 middle. 

 

         

Fig. 4. Seeds found at level 1, left; descendants at level 1 of the seeds found at level 3, middle; 
descendants remaining after reduction (see text), right  

Our idea is to regard as significant a seed originally detected in ∇1(Fig. 4 left), only 
provided that its associated partition region (Fig. 3, level 1) includes at least one de-
scendant of the seeds found at level 3 (Fig. 4 middle). All other seeds detected in ∇1 

are regarded as non significant and, by means of a flooding process, the corresponding 
partition regions are merged.  

Due to the large size of the sets of descendants originated from the seeds found at 
level 3, still too many seeds would be preserved at level 1. To reduce their number, 
we do the following process. Let M be the number of connected components of de-
scendants, CCDi, found at level 1. In the gradient image ∇1, we inspect the M sets Ci 
of pixels with homologous positions with respect to the pixels of the sets CCDi. In 
each set Ci, we identify and preserve as seeds only the pixels, whose gray-level is 
minimal with respect to the gray-levels of the other pixels of Ci. All other descendants 
are removed (Fig. 4 right). Flooding is then applied at level 1 to merge all partition 
regions that do not include at least one descendant that survived the removal process.  

 

         

Fig. 5. Partition of G1 at level 1 into 133 basins, by using the seeds found at level 3, left, and 
partition of G1 at level 1 into 284 basins, by using the seeds found at level 2, right 
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The watershed lines of the partition of G1, obtained by using the seeds found at 
level 3 to identify the significant seeds at level 1, are superimposed in white on G1 in 
Fig. 5 left. By selecting a different lower resolution level, we can use the seeds found 
there to identify the significant seeds among those detected at level 1. For example, 
by sing the seeds found at level 2 and by applying the same process described above, 
the watershed partition of G1 shown in Fig. 5 right is obtained. 

By comparing the results shown in Figs. 5 and 3, we see that a considerable reduc-
tion of the fragmentation is obtained, as expected. To show that the obtained parti-
tions are significant, we briefly illustrate in the following Section a process that al-
lows us to assign to either the background or the foreground the partition regions. 

4   Region Assignment to Foreground and Background 

The model that we follow to assign the watershed partition regions to either the back-
ground or the foreground is inspired by visual perception. In our gray-level images, 
the foreground is perceived as characterized by locally lower intensity. We assume 
that the border separating the foreground from the background is placed wherever 
strong differences in gray-level occur. Assignment is done by means of a process re-
quiring two steps. A more detailed description of this process can be found in [7].  

The first step of the process globally assigns to the foreground and to the back-
ground the regions characterized by locally minimal and locally maximal average 
gray-levels (valleys and peaks and in the landscape representation).  

 

     

Fig. 6. Foreground components identified in correspondence of the two alternative partitions 
shown in Fig. 5. Gray-tones are related to the significance of the regions (see text). Darker re-
gions are more significant. 

The second step is guided by the maximal gray-level difference ∆ between all pairs 
of adjacent regions. It assigns to the foreground and to the background the partition 
regions placed along the slopes in the landscape. This step is iterated (with a new ∆ 
computed at each iteration) until all regions are assigned. Two cases are possible de-
pending on the number N of adjacent regions with maximal ∆. If N=1, the darker re-
gion in the pair of regions with difference ∆ is (locally) assigned to the foreground, 
while the lighter region is assigned to the background. In fact, in correspondence with 
these two adjacent regions with difference ∆, we assume that a transition from back-
ground to foreground occurs. Based on the same assumption, we (globally) assign to 
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the foreground (background) also all the regions equally dark or darker (equally light 
or lighter) than the region, in the pair of adjacent regions with difference ∆, assigned 
to the foreground (background). If N>1, a conflictual assignment is possible if, for 
any of the pairs characterized by the maximal ∆, say the i-th pair, the darker region, 
say DRi, happens to be lighter of the lighter region, say LRj, in another pair of regions 
characterized by the maximal ∆, say the j-th pair. In fact, DRi should be assigned to 
the foreground, by taking into account the average gray-levels in the i-th pair, but it 
should be assigned to the background, by taking into account the relation between the 
average gray-levels of LRi and DRj. If this is the case, a local process, still based on 
the maximal ∆, is accomplished to assign the regions along the slope including DRi. 
Once the conflictual cases have been treated and all the pairs with the maximal ∆ have 
been locally assigned, the same global process done for N=1 is safely applied.  

A relevance parameter, taking into account the perceptual significance, is also set 
for the regions assigned to the foreground, which allows us to rank foreground com-
ponents. The relevance parameter for regions detected during the first step assumes 
value 1 if the region (i.e., a valley in the landscape representation) has an average 
gray-level smaller than that characterizing all peaks in the landscape (i.e., all regions 
assigned to the background). It assumes value 2 otherwise, meaning that such a val-
ley, though assigned to the foreground, has a perceptual significance smaller than that 
pertaining the other valleys. During the second step, the relevance parameter of a re-
gion assigned to the foreground is set to the number of foreground regions in the 
shortest path, linking that region to the most relevant part in the same foreground 
component. The result of this process applied to the watershed partitions shown in 
Fig. 5 is shown in Fig.6, where darker gray-tones correspond to more significant  
regions. 

 

         

Fig. 7. Result of the segmentation process [6] applied to G1. The final segmentation into 119 
basins, left, and the result of the assignment process to identify the foreground, right. 

If we apply to G1 the high performance, but computationally more expensive, seg-
mentation algorithm [6], we obtain the result shown in Fig. 7. Also in this case, region 
assignment is done by using the algorithm [7]. We can now compare Figs. 6 and 7, by 
using Fig. 7 as a reference. We note that even starting from seeds found at low resolu-
tion (levels 2 and 3 of the pyramid), the results shown in Fig. 6 are comparable with 
those in Fig. 7. Obviously, more details are identified if the seeds are taken at level 2, 
as it is expected because of the higher resolution of level 2 with respect to level 3. 
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5   Conclusion 

We have introduced a method to reduce the excessive fragmentation of gray-level im-
ages into regions, when watershed segmentation is used. Our method is based on the 
use of a multiresolution representation of the input image and on the detection of the 
most significant seeds for segmenting the highest resolution image, guided by the 
seeds found at lower resolution. The underlying idea is that the most significant com-
ponents perceived in the highest resolution image will remain identifiable also at 
lower resolution. Thus, starting from the highest resolution image, we first build a 
resolution pyramid. Then, we identify the seeds for watershed segmentation on one of 
the lower resolution pyramid levels and suitably use them to identify the significant 
seeds in the highest resolution image. This image is finally partitioned by watershed 
segmentation, providing a satisfactory result. Since different lower resolution levels 
can be used to identify the significant seeds at the highest resolution, we obtain alter-
native segmentations of the highest resolution image, among which the user can select 
the best suited one for the specific task. 

The performance of the method has been shown on a sample image only, but we 
have tested our procedure on a large set of biological images. The obtained results 
have been judged as satisfactory by the experts in the field. 
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Abstract. This paper presents a novel approach for image retrieval from digital 
collections. Specifically, we describe IRONS (Image Retrieval with Ontological 
Descriptions of Shapes), a system based on the application of several novel al-
gorithms that combine low-level image analysis techniques with automatic 
shape extraction and indexing. In order to speed up preprocessing, we have 
proposed and implemented the convex regions algorithm and discrete curve 
evolution approach. The image indexing module of IRONS is addressed using 
two proposed algorithms: the tangent space and the two-segment turning func-
tion for shapes representation invariant to rotation and scale. Another goal of 
the proposed method is the integration of user-oriented descriptions, which 
leads to more complete retrieval by accelerating the convergence to the ex-
pected result. For the definition of image semantics, ontology annotation of sub-
regions has been used. 

1   Introduction 

A typical approach to automatic indexing and classification of images is based on the 
analysis of low-level image characteristics, such as color, texture or shape [1], [2], but 
this type of systems does not provide the semantics associated with the content of 
each image. There are a number of well-known systems for visual information re-
trieval (VIR). The Query by Image Content system (QBIC) provides retrieval of im-
ages, graphics and video data from online collections using image features such as 
color, texture, and shape for computing the similarity between images [3]. AMORE 
(Advanced Multimedia Oriented Retrieval Engine) and SQUID systems provide im-
age retrieval from the Web using queries formed by keywords specifying similar 
images, sketches, and SQL predicates [4]. Whereas the contributions of these systems 
have been important in the field, they do not provide ways to represent the meaning of 
objects in the images. In order to overcome this problem, our hypothesis is to apply 
the machine-understandable semantics for search, access, and retrieval of multimedia 
information using ontology [5]. The widely used Grubber's definition permits to de-
scribe semantics, establishes a common and shared understanding of a domain and 
facilitates the implementation of user-oriented vocabulary of terms and their relation-
ship with objects in image the [6]. The potential applications of the proposed image 
retrieval facilities include systems for supporting digital image processing services, 
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high performance exchange of multimedia data in distributed collaborative and learn-
ing environments, digital libraries, etc. 

2   Proposed Image Retrieval Method 

The proposed method may be described as a combination of specific descriptors 
based on low-level image preprocessing for extraction of sub-regions (objects) invari-
ant to scale, rotation, and illumination, and the application of ontology concepts for 
definition of machine-understandable semantics for retrieved images. The main pro-
cedures for image preprocessing, indexing, ontological description and retrieval are: 

1. In order to divide the image into regions, the SUSAN corner detection method is 
used by applying the circular mask [7], [8]. The extracted principal corners present 
the points that define particular positions of objects in the image.  

2. The spatial sampling of the original image is provided by computing the average 
values of color regions via the I1I2I3 color model, applying slicing 8x8 pixels win-
dows generating the main color descriptor of each region [9]. 

3. Comparing the proposed method with well-known prototypes, where the de-
scription is applied to the whole image, the textual annotations of sub-regions are 
preferred for the simple definition of their semantic characteristics. Subdivision of 
image into sub-regions is provided by Convex Regions Preprocessing Algorithm in 
Images (CORPAI) proposed by the authors [10]. Detected principal corners are used 
for convex hulls generation providing the vertical slabs algorithm and producing a 
sorted array that is used to determine the sub-region as a polygon. 

4. The frequent problem of shape representation is a great number of necessary 
vertices for polygon transformation, which may be reduced by the proposed discrete 
curve evolution process. This technique reduces the set of vertices of a polygon to a 
subset of vertices containing relevant information about the original outline [10]. 

5. The next step is indexing of the simplified object (shape, polygon); here two dif-
ferent approaches have been proposed and implemented. One of them is based on an 
object transform to a tangent space, and the other represents the object as a two-
segment turning function. 

6. Finally, it is possible to establish the relationship between the object and its for-
mal explicit definition. In such a way, the meaning of an image may be obtained in 
textual form as a set of annotations for each sub-region related to a particular ontol-
ogy. The Resource Description Framework (RDF) language to support the ontology 
management is used in this approach that defines a syntactic convention and a simple 
data model to implement machine-readable semantics [11]. Using RDF it is possible 
to describe each web resource with relations to its object-attributes-value based on 
metadata standard developed by the World Wide Web Consortium [12]. 

3   Irons Image Retrieval System 

The block diagram of the Image Retrieval by Ontological Description of Shapes 
(IRONS) system implementing the proposed method is shown in Fig. 1. The input for 
the system may be an image, its shape, or a keyword, which describes the object with 



 A Hybrid Approach for Image Retrieval with Ontological Content-Based Indexing 999 

a certain degree of similarity. The retrieved images will be the ones with more simi-
larity to the low-level features of the query (if the input is an image or its sub-region) 
and will have a high degree of matching with the ontology annotations defining the 
content of the image. Once the user draws a query, the system uses the shape indexing 
algorithm in order to generate the feature vector for comparison with the other ones in 
the image database [10]. Then the content-based recognition process is applied to 
shapes (based on the ontological textual description) in order to find similar ones in 
the ontology namespace.  

The IRONS system consists of four principal modules: query preprocessing, index-
ing module, feature vector comparison and feedback GUI, and it operates according 
to the algorithm described in section 2. The query preprocessing module provides the 
selection of sub-regions containing relevant objects. Once the sub-region is extracted, 
the object within that sub-region is found by the CORPAI algorithm.  

 

 

Fig. 1. Block diagram of the proposed IRONS system 

The discrete curve evolution process reduces the complexity of the extracted shape. 
If the query is a keyword, the preprocessing step is not applied. The indexing module 
generates a feature vector describing low-level image characteristics and content-
based annotations. The preprocessed polygon is represented either by tangent space or 
by two-segment turning function because these techniques are invariant to scaling, 
rotation, and translation. The ontological annotation tool is used for searching 
matches in the ontology name space. The images with higher matching are retrieved 
and visualized on GUI with a certain degree of similarity.  

3.1   Query Preprocessing Module 

The algorithm for image preprocessing using color and principal corners is described. 
Input: A color image with luminance of pixels Ic;  Output: the region’s feature vector 

1. Ig ⇐ ComputeLuminance (using Ic) // it converts color into gray level image  
2. Principal corners ⇐  SUSAN operator (Ig) // detection of object's corners  
3. Scs ⇐ SpatialSampling(Ic) // reduction of image size to an 8x8 pixels window 
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4. ColorDescriptor ⇐ ComputeColorDescriptorI1I2I3 (Scs) // descriptors based on 
I1I2I3 color system model 
5. FeaturesVector⇐ ComputeDescriptor (Principal Corners, ColorDescriptor) // 
the sub-region descriptor includes a color vector and the principal corner's position. 
6. Subregion ⇐ CORPAI(Ic,Sp) // applying the CORPAI algorithm over regions  
ConvexHulls(points[])   // compute the convex hull 
{ if( query_sub-region(image[][])) // apply boundary detection operator to  
sub-region (operator(image[][]))} 
7. IcNEW ⇐ TransformationFromSubregionToImage (Subregion) // transformation 
of the irregular convex sub-region of the original image to a new normalized one 
8. FeaturesVector ⇐ ComputeDescriptor (Principal Corners, ColorDescriptor, 
ConvexRegions) // the convex region descriptor is obtained.  
9. FeaturesVector ⇐ DiscreteCurveEvolution (Simplified Polygon) // removal of 
the least important polygon vertexes. 

 

         

Fig. 2. Results of applying the vertical slabs algorithm for extraction of a convex sub-region 
and the containing object 

The last procedure of the preprocessing step is simplification of polygons repre-
senting the shape of objects detected by discrete curve evolution. This process re-
moves the least important vertexes of a polygon, computing the relevance measure K, 
where β(s1,s2) is the turn angle of the common vertex of segments s1,s2, and l is the 
length function normalized with respect to the total length of the polygonal curve C.  
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The lower value of K(s1 , s2) corresponds to the least contribution of this curve to a 
shape. This process of vertexes removal is repeated until we obtain the desired shape 
simplification using the designed interface presented in Fig. 3. 

3.2   Indexing Module 

The polygonal representation is not a convenient form for calculating similarity be-
tween two shapes, an alternative representation such as the Tangent Space Represen-
tation (TSR) is proposed for generation of the feature vector and quantitative com-
parison of simple shapes. Using TSR, a curve C is converted to a step function: the 
steps on the x-axis represent the arc length of each segment in C, and the y-axis 
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 represents the turn angle between two consecutive segments in C. In Fig. 3 indexing 
module GUI of the TSR is shown where the results of applying the discrete curve 
evolution and the TSR for selected complexity of the shape are depicted.  

 

Fig. 3. Tangent space representation of shapes of the IRONS indexing module 

Another possible way for shape indexing is to apply the cumulative angle function 
or turning function, which may speed up the computing the similarity between two 
shapes. In general, the turning function of a polygon A returns the angle between the 
counterclockwise tangent and the x-axis as a function of the arc length s ΘA(s). This 
function is invariant to translation and scale of a polygon, but it is not invariant to 
rotation. If a polygon is rotated by an angle θ, the turning function value changes by 
the amount of θ. To overcome this problem, we additionally propose an alternative 
way called two-segment turning function (2STF). With each iteration, the angle be-
tween two consecutives edges of a polygon is calculated. As a result, we may analyze 
the edges with rotation. Now we have the same representation of a shape even though 
that shape has been rotated. 2STF is calculated by traversing a digital curve in the 
counterclockwise direction and assigning a certain value of 2STF to each line seg-
ment. The x-value (the assigned value) defines the length of the line segment normal-
ized with respect to the length of the complete curve. The y-value is the directional 
angle of the line segment with respect to its previous segment. 

Using the GUI of the IRONS indexing module (Fig. 3), the 2STF may be com-
puted and visualized in the same way as TSR. Once, the efficient way to represent a 
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shape is obtained via TSR or 2STF, the matching strategy to find the degree of simi-
larity between two shapes is applied. Shape representation and matching are consid-
ered the most difficult aspects of content-based image retrieval [10]. In this work we 
use hybrid feature vector which defines such low-level image characteristics as se-
mantic descriptions. This permits to speed up the matching process as well as reduce 
the number of iterations with non-sensical results. The similarity value between two 
shapes is based on proposed algorithm: 

1. The polygon simplified by curve evolution is transposed into TSR or 2STF. 
2. The resulting curves representing the polygon are scaled to the same length. 
3. One of the curves is shifted vertically over the second one for a better fit. 
4. The area between the two curves is computed. 

Now the user may define a threshold value for the computed area as the acceptable 
degree of similarity between the reference and the analyzed patterns.  

3.3   Ontological Annotation Tool 

The ontology is described by a directed acyclic graph; each node has a feature vector 
that represents the concept associated with that node. Concept inclusion is represented 
by the IS-A inter-relationship. For instance, particular elements of buildings, 
churches, and so on form specific concepts of shapes defining these buildings, 
churches, etc. If the query describes an object using this ontology, the system would 
recover shapes that contain windows, columns, façades, etc. even though, those im-
ages have not been labeled as geometric figures for the retrieved object. The feature 
vectors of each node in the ontology name space consist of keywords linking the 
previously classified images to the characteristics of the new shape extracted by the 
TSR or 2STF. The indexing and the ontology annotation processes may be described 
now as: 

1. FeaturesVector ⇐  Shapei(Pentagon, Pi,Ci) // Pi is its TSR or 2STF representa-
tion and Ci is the compactness of the shape computed as a ratio: square of Region-
BorderLength and ShapeArea.  

2. SaveRelationInOntology(Ic, FeaturesVector of IcNEW, Td ) // update the ontology 
namespace. 

As has been mentioned, two kinds of vector comparison are used: matching the 
low-level image features and definition of similarity in ontological annotations. The 
computing of similarity is additionally provided by computing the Euclidean distance 
dE to compare feature vectors according to the equation: 

dE(µ,σ ) = (µ − σ)2 , 
(2) 

where µ and σ denote two feature vectors.  
The query interface of the IRONS system is shown in Fig. 4 where the images with 

high degree of matching are shown in downward order. The user may submit a visual 
example, a sketch, a keyword or a combination of the above.  
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Fig. 4. Image retrieval GUI of the IRONS system 

4   Evaluation, Contribution, and Conclusions  

Evaluations of the proposed method and testing of the implemented system have been 
done comparing the results of image retrieval by the IRONS to several well-known 
systems, particularly, QBIC and AMORE systems. We performed a number of ex-
periments to verify the role of the shape-based and ontology-based indexing in the 
retrieval process. We test the proposed method using the image collection CE-Shape-
1. This database contains approximately 1400 images randomly taken from Internet 
and divided into 60 different categories with about 20 images per category.  

The system performance is better when the image is processed in sub-regions; ex-
cessive subdivision does not produce good results. Satisfactory retrieval of expected 
images is achieved faster through the use of ontological descriptions due to the lower 
number of iterations in the search process. The analysis of the indexing approaches 
shows that 2STF is twice as fast as TSR. This occurs because the typical data struc-
tures used in indexing tools are hashing tables, which are manipulated with specific 
keys or signatures representing a shape. The disadvantages of the system are errors in 
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spatial sampling during generation of the image feature vector as well as the required 
amount of system memory. Factors like tolerance to occlusion and deformation, ro-
bustness against noise, and feasibility of indexing are also considered in our approach. 

The most important contribution of this research is the proposed hybrid method 
combining the advantages of low-level image characteristics extraction with textual 
description of image semantics. The use of ontological annotations allows simple and 
fast estimation of the meaning of a sub-region and of the whole image. The proposed 
image retrieval method is robust to partial occlusion and to small changes in the posi-
tion of the objects. From the obtained experimental results, we can conclude that the 
method could be considered as an alternative way for the development of visual in-
formation retrieval facilities.  
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Abstract. Most of the document binarization techniques have many parameters 
that can initially be specified. Usually, subjective document binarization 
evaluation, employs human observes for the estimation of the best parameter 
values of the techniques. Thus, the selection of the best values for these 
parameters is crucial for the final binarization result. However, there is not any 
set of parameters that guarantees the best binarization result for all document 
images. It is important, the estimation of the best values to be adaptive for each 
one of the processing images. This paper proposes a new method which permits 
the estimation of the best parameter values for each one of the document 
binarization techniques and also the estimation of the best document 
binarization result of all techniques. In this way, document binarization 
techniques can be compared and evaluated using, for each one of them, the best 
parameter values for every document image.  

1   Introduction 

Document binarization is an active area in image processing. Many binarization 
techniques have been proposed and most of them have parameters, the best values of 
which must initially be defined. Although, the estimation of the parameters values is a 
crucial stage, it is usually missed or heuristic estimated because there is no automatic 
parameter estimation process exists for document binarization techniques, until now.  

In this paper, a Parameter Estimation Algorithm (PEA), which can be used to 
detect the best values for the parameter set (PS) of every document binarization 
technique, is proposed. The estimation is based on the analysis of the correspondence 
between the different document binarization results obtained by the application of a 
specific binarization technique to a document image, using different PS values. The 
proposed method is based on the work of  Yitzhaky and Peli [1] which is used for 
edge detection evaluation. In their approach, a specific range and a specific step for 
each one of the parameters is initially defined. The best values for the PS are then 
estimated by comparing the results obtained by all possible combinations of the PS 
values. The best PS values are estimated using a Receiver Operating Characteristics 
(ROC) analysis and a Chi-square test.  In order to improve this algorithm, we use a 
wide  initial  range  for every parameter  and  in  order to estimate the  best  parameter  
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value an adaptive convergence procedure is applied. Specifically, in each iteration of 
the adaptive procedure, the parameters’ ranges are redefined according to the 
estimation of the best and second best binarization result obtained. The adaptive 
procedure terminates when the ranges of the parameters values cannot be further 
reduced and the best PS values are those obtained from the last iteration.  

For document binarization, it is important to lead to the best binarization result 
comparing the binary images obtained by a set of independent binarization 
techniques. For this purpose, we introduce a new technique that using the PEA leads 
to the evaluation of the best binarization results obtained by a set of independent 
binarization techniques. Specifically, for every independent binarization technique the 
best PS values are first estimated by using the PEA. Next, the best document 
binarization results obtained are compared using the Yitzhaky and Peli method and 
the final best binarization result is achieved.  

2   Obtaining the Best Binarization Result 

When we binarize a document image, we do not know initially the optimum result, 
that is, which is the ideal result that we must obtain. This is a major problem in 
comparative evaluation tests. In order to have comparative results, it is important to 
estimate a ground truth image. By estimating the ground truth image we can compare 
the different results obtained, and therefore, we can estimate the best of it. This 
Estimated Ground Truth (EGT) image, can be selected from a list of Potential Ground 
Truth (PGT) images as proposed by Yitzhaky and Peli [1].  

Consider N  document binary images ( 1,..., )jD j N=  obtained by the application 

of one or more document binarization techniques to a gray-scale document image of 
size K L× . In order to get the best binary image it is necessary to obtain the EGT 
image. After this, the independent binarization results are compared with the EGT 
image using the ROC analysis or a Chi-square test.  

The entire procedure is described in the following where with “0” and “1” are 
considered the background and foreground pixels, respectively. 

Stage 1  For every pixel, it is counted how many binary images consider this as 
foreground pixel. The results are stored to a matrix ( , ),  0,.., 1C x y x K= −  

and 0,.., 1y L= − . The values of the matrix will be between 0 and N.  

Stage 2  , 1,..,iN PGT i N=  binary images are produced using the matrix ( , )C x y . 

Every iPGT  image is defined as the image that has as foreground pixels all 

the pixels with ( , )C x y i≥ . 

Stage 3  For each iPGT  image, four average probabilities are defined which they 

assigned to pixels that are: 
• Foreground in both iPGT  and jD  images: 

1 1

1 1 1

1 1
i

N K L

PGT i j
j k l

TP PGT D
N K L= = =

= ∩
⋅

 (1) 
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• Foreground in iPGT  image and background in jD  image: 

1 0

1 1 1

1 1
i

N K L

PGT i j
j k l

FP PGT D
N K L= = =

= ∩
⋅

 (2) 

• Background in both iPGT  and jD  images: 

0 0

1 1 1

1 1
i

N K L

PGT i j
j k l

TN PGT D
N K L= = =

= ∩
⋅

 (3) 

• Background in iPGT  image and foreground in jD  image: 

0 1

1 1 1

1 1
i

N K L

PGT i j
j k l

FN PGT D
N K L= = =

= ∩
⋅

 (4) 

Stage 4  In this stage, the sensitivity 
iPGTTPR  and specificity (1 )

iPGTFPR−  values 

are calculated according to the relations: 

i

i

PGT
PGT

TP
TPR

P
=  (5) 

1
i

i

PGT
PGT

FP
FPR

P
=

−
 (6) 

where , 
i iPGT PGTP TP FN i= + ∀  

Stage 5  This stage is used to obtain the EGT image, which is selected to be one of 
the iPGT  images. There are two measure methods that can be used: 

The ROC analysis 

It is a graphical method which is using a diagram constituted of two curves 
(CT-ROC diagram). The first curve (the ROC curve) constituted of N  
points with coordinates ( , )

i iPGT PGTTPR FPR  and each one of the points is 

assigned to a iPGT  image. The points of this curve are the correspondence 

levels of the diagram. A second line, which is considered as diagnosis line, 
is used to detect the Correspondence Threshold (CT). This line has two 
points with coordinates (0,1) and (P,P). The iPGT  point of the ROC curve 

which is closest to the intersection point of the two curves is the CT level 
and defines which iPGT  image will be then considered as the EGT image.  

The Chi-square test  

For each iPGT , the 2
iPGTX value is calculated, according to the relation: 

 2
( ) ( (1 ))

(1 )
i i

i

i i

PGT PGT
PGT

PGT PGT

sensitivity Q specificity Q
X

Q Q

− ⋅ − −
=

− ⋅
 (7) 
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A histogram from the values of 2
iPGTX  is constructed (CT-Chi-square 

histogram). The best CT will be the value of i  that maximizes 2
iPGTX . The 

iPGT  image in this CT level will be then considered as the EGT image. 

Fig.1 shows examples of a CT ROC Diagram and a CT Chi-square 
histogram, for 9N = . In both cases the CT level is equal to five. 

 

 

Fig. 1. A CT ROC diagram (left) and a CT Chi-square histogram (right) 

Stage 6  For each jD  image, four probabilities are calculated (as in Stage 3), which 

they assigned to pixels that are: (a) foreground in both jD  and EGT 

images ,jD EGTTP , (b) foreground in jD  image and background in EGT 

image ,jD EGTFP , (c) background in both jD  and EGT images ,jD EGTTN , 

(d) background in jD  image and foreground in EGT image ,jD EGTFN .  

Stage 7  Stages 4 and 5 are repeated to compare each binary image jD  with the 

EGT image, using the probabilities calculated in stage 6 rather than the 
average probabilities calculated in Stage 3. According to the Chi-square 

test, the maximum value of 2
,jD EGTX  indicates the jD  image which is the 

estimated best document binarization result. Sorting the 2
,jD EGTX  values, 

the jD  images are sorted according to their quality. 

3   Parameter Estimation Algorithms 

In the first stage of the proposed evaluation system it is necessary to estimate the best 
PS values for each one of the independent document binarization techniques. This 
estimation is based on the method of Yitzhaky and Peli [1] proposed for edge 
detection evaluation. However, in order to increase the accuracy of the estimated best 
PS values we improve this algorithm by using a wide initial range for every parameter 
and an adaptive convergence procedure. That is, the parameters’ ranges are redefined 
according to the estimation of the best and second best binarization result obtained in 
each iteration of the adaptive procedure. This procedure terminates when the ranges 
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of the parameters values cannot be further reduced and the best PS values are those 
obtained from the last iteration. It is important to notice that this is an adaptive 
procedure because it is applied to every processing document image.  

The stages of the proposed parameter estimation algorithm, for two 
parameters 1 2( ,  )P P , are as follows:   

Stage 1  Define the initial range of the PS values. Consider as 1 1[ , ]s e  the range for 

the first parameter and 2 2[ , ]s e  the range for the second one. 

Stage 2  Define the number of steps that will be used in each iteration. For the two 
parameters case, let 1St  and 2St  be the numbers of steps for the ranges 

1 1[ , ]s e  and 2 2[ , ]s e , respectively. In most of the cases 1 2 3St St= = . 

Stage 3  Calculate the lengths 1L  and 2L  of each step, according to the relations: 

 1 1 2 2
1 2

1 2

,        
1 1

e s e s
L L

St St

− −
= =

− −
 (8) 

Stage 4  In each step, the values of parameters 1 2,  P P  are updated with the relations: 

1 1 1 1( ) ,    ( 0,..., 1)P i s i L i St= + ⋅ = −  (9) 

2 2 2 2( ) ,    ( 0,..., 1)P i s i L i St= + ⋅ = −  (10) 

Stage 5 Apply the binarization technique to the processed document image using 
all the possible combinations of 1 2( , )P P . Thus, N  binary images 

, 1,...,jD j N=  are produced, where N is equal to 1 2N St St= ⋅ . 

Stage 6  Examine the N binary document results, using the algorithm described in 
Section 2, to estimate the best and the second best document binarization 
results. Let 1 2( , )B BP P  and 1 2( , )S SP P  be the parameters’ values obtained 

from the best and the second best binarization results, respectively.  

Stage 7  Redefine the ranges for the two parameters as 
1 1 2 2

' ' ' '[ , ] and [ , ]s e s e  that will 

be used during the next iteration of the method, according to the relations: 
' '

1 1 1 1 1 1
1 1 ' '' ' 1 1 1 1 1 1

1 1

' ' 1 1
1 1 1 1

if  then [ , ] [ , ]
if  then 

if  then [ , ] [ , ][ , ]

if  then [ , ] [ , ]          
2 2

B S S B
B S

B S B S

B S

P P s e P P
P P

P P s e P Ps e
s A e A

P P A s e

> =
≠

< ==
+ +

= = =

 (11) 

' '
2 2 2 2 2 2

2 2 ' '' ' 2 2 2 2 2 2
2 2

' ' 2 2
2 2 2 2

if  then [ , ] [ , ]
if  then 

if  then [ , ] [ , ][ , ]

if  then  [ , ] [ , ]          
2 2

B S S B
B S

B S B S

B S

P P s e P P
P P

P P s e P Ps e
s A e A

P P A s e

> =
≠

< ==
+ +

= = =

 (12) 

Stage 8  Redefine the steps ' '
1 2, St St  for the ranges that will be used in the next 

iteration according to the relations: 
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' ' '
1 1 1 1 1'

1 '
1 1

if -  then 1

else                            

e s St St St
St

St St

< = −
=

=
 (13) 

' ' '
2 2 2 2 2'

2 '
2 2

if -  then 1

else                            

e s St St St
St

St St

< = −
=

=
  (14) 

Stage 9  If 
1 2

' ' 3St St⋅ >  go to Stage 3 and repeat all the stages. The iterations 

terminate when the calculated new steps for the next iteration have a 

product less or equal to 3 (
1 2

' ' 3St St⋅ ≤ ). The best PS values are those 

estimated during the Stage 6 of the last iteration. 

4   Comparing the Results of Different Binarization Techniques 

The proposed evaluation technique can be extended to estimate the best binarization 
results by comparing the binary images obtained by independent techniques. The 
algorithm described in Section 2 can be used to compare the binarization results 
obtained by the application of independent document binarization techniques. 
Specifically, the best document binarization results obtained from the independent 
techniques using the best PS values are compared through a similar to the Section 2 
procedure. That is, the final best document binarization result is obtained as follows: 

Stage 1  Estimate the best PS values for each document binarization technique, 
using the PEA described in Section 3.  

Stage 2  Obtain the document binarization results from each one of the independent 
binarization techniques by using their best PS values. 

Stage 3  Compare the binary images obtained in Stage 2 and estimate the final best 
document binarization result by using the algorithm described in Section 2. 

5   Experimental Results 

The proposed evaluation technique is used to compare and estimate the best document 
binarization result produced by seven independent binarization techniques: Otsu [2], 
Fuzzy C-Mean (FCM) [3], Niblack [4], Sauvola and Pietaksinen’s [5-6], Bernsen [7], 
Adaptive Logical Level Technique (ALLT) [8-9] and Improvement of Integrated 
Function Algorithm (IIFA) [10-11]. It should be noticed that we use improvement 
versions for the ALLT and IIFA, proposed by Badekas and Papamarkos [12].  

Fig. 2 shows a document image coming from the old Greek Parliamentary 
Proceedings. For the specific image, the initial range for each parameter  and  the best  

 

Fig. 2. Initial gray-scale document image 
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Table 1. The initial ranges and the estimated best PS values 

 Technique Initial ranges Best PS values 

1. Niblack [3,15]W ∈ , [0.2,1.2]k ∈  14 and 0.67W k= =  

2. Sauvola [3,15]W ∈ , [0.1,0.6]k ∈  14 and 0.34W k= =  

3. Bernsen [3,15]W ∈ , [10,90]L ∈  14 and 72W L= =  

4. ALLT [0.1,0.4]a ∈  0.10a =  

5. IIFA [10,90]pT ∈  10pT =  

Table 2. The five iterations that applied in order to detect the best PS values for the binarization 
techniques of Niblack, Sauvola and Bernsen 

Iterations Niblack Sauvola Bernsen 
First 1. W=3, k=0.2 

2. W=3, k=0.7 
3. W=3, k=1.2 
4. W=9, k=0.2 
5. W=9, k=0.7 (1st) 
6. W=9, k=1.2 
7. W=15, k=0.2 
8. W=15, k=0.7 (2nd) 
9. W=15, k=1.2 

1. W=3, k=0.1 
2. W=3, k=0.35 
3. W=3, k=0.6 
4. W=9, k=0.1 
5. W=9, k=0.35 (1st) 
6. W=9, k=0.6 
7. W=15, k=0.1 
8. W=15, k=0.35 (2nd) 
9. W=15, k=0.6 

1. W=3, L=10 
2. W=3, L=50 
3. W=3, L=90 
4. W=9, L=10 
5. W=9, L=50 (1st) 
6. W=9, L=90 
7. W=15, L=10 
8. W=15, L=50 
9. W=15, L=90 (2nd) 

Second 1. W=9, k=0.45 
2. W=9, k=0.7 
3. W=9, k=0.95 
4. W=12, k=0.45 
5. W=12, k=0.7 (1st) 
6. W=12, k=0.95 
7. W=15, k=0.45 
8. W=15, k=0.7 (2nd) 
9. W=15, k=0.95 

1. W=9, k=0.22 
2. W=9, k=0.35 
3. W=9, k=0.48 
4. W=12, k=0.22 
5. W=12, k=0.35 (1st) 
6. W=12, k=0.48 
7. W=15, k=0.22 
8. W=15, k=0.35 (2nd) 
9. W=15, k=0.48 

1. W=9, L=50 
2. W=9, L=70 
3. W=9, L=90 
4. W=12, L=50 
5. W=12, L=70 (1st) 
6. W=12, L=90 
7. W=15, L=50 
8. W=15, L=70 (2nd) 
9. W=15, L=90 

Third 1. W=12, k=0.58 
2. W=12, k=0.7 
3. W=12, k=0.82 
4. W=14, k=0.58 
5. W=14, k=0.7 (1st) 
6. W=14, k=0.82 
7. W=16, k=0.58 
8. W=16, k=0.7 (2nd) 
9. W=16, k=0.82 

1. W=12, k=0.28 
2. W=12, k=0.35 
3. W=12, k=0.42 
4. W=14, k=0.28 
5. W=14, k=0.35 (1st) 
6. W=14, k=0.42 
7. W=16, k=0.28 
8. W=16, k=0.35 (2nd) 
9. W=16, k=0.42 

1. W=12, L=60 
2. W=12, L=70 
3. W=12, L=80 
4. W=14, L=60 
5. W=14, L=70 (1st) 
6. W=14, L=80 (2nd) 
7. W=16, L=60 
8. W=16, L=70 
9. W=16, L=80 

Fourth 1. W=14, k=0.64 (1st) 
2. W=14, k=0.7 (2nd) 
3. W=14, k=0.76 
4. W=16, k=0.64 
5. W=16, k=0.7 
6. W=16, k=0.76 

1. W=14, k=0.32 
2. W=14, k=0.35 (2nd) 
3. W=14, k=0.38 
4. W=16, k=0.32 
5. W=16, k=0.35 (1st) 
6. W=16, k=0.38 

1. W=13, L=70 
2. W=13, L=75 
3. W=13, L=80 
4. W=14, L=70 (2nd) 
5. W=14, L=75 (1st) 
6. W=14, L=80 

Fifth 1. W=14, k=0.64 
2. W=14, k=0.67 (1st) 
3. W=14, k=0.7 (2nd) 

1. W=14, k=0.34 (1st) 
2. W=14, k=0.36 
3. W=16, k=0.34 (2nd) 
4. W=16, k=0.36 

1. W=14, L=70 
2. W=14, L=72 (1st) 
3. W=14, L=74 (2nd) 
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PS values obtained are given in Table 1. The best PS values for all binarization 
techniques are obtained using five iterations. Tables 2 and 3 give all the PS values 
obtained during the five iterations and also the best and second best PS values that are 
estimated in each iteration. The Otsu’s technique has no parameters to define and FCM is 
used with a value of fuzzyfier m equal to 1.5. The results obtained by the application of 
the independent techniques using their best PS values, are compared using the algorithm 
described in Section 2. Fig.3 shows the binary images obtained by ALLT and Bernsen’s 
technique which are estimated as the best binarization results using the Chi-square test 
and the ROC analysis, respectively, in order to obtain the EGT image. The corresponding 
diagrams for these two cases, which are constructed according to the proposed technique 
to compare the independent binarization techniques, are given in Fig. 4. 

Table 3. The five iterations that applied in order to detect the best PS values for the ALLT and 
IIFA 

Iterations ALLT IIFA 
First 1. a=10 (1st) 

2. a=25 (2nd) 
3. a=40 

1. Tp=10 (2nd) 
2. Tp =50 (1st) 
3. Tp =90 

Second 1. a=10 (1st) 
2. a=18 (2nd) 
3. a=26 

1. Tp=10 (2nd) 
2. Tp =30 (1st) 
3. Tp =50 

Third 1. a=10 (1st) 
2. a=14 (2nd) 
3. a=18 

1. Tp=10 (2nd) 
2. Tp =20 (1st) 
3. Tp =30 

Fourth 1. a=10 (1st) 
2. a=12 (2nd) 
3. a=14 

1. Tp=10 (1st) 
2. Tp =15 (2nd) 
3. Tp =20 

Fifth 1. a=10 (1st) 
2. a=11 (2nd) 
3. a=12 

1. Tp=10 (1st) 
2. Tp =12 (2nd) 
3. Tp =14 

 

 

Fig. 3. Binarization result of ALLT (left) and Bernsen’s technique (right) 

The proposed technique is applied to a large number of document images. For each 
document image, the binarization results obtained, by the application of the independent 
binarization techniques, are sorted according to the ordering quality results obtained by 
the proposed evaluation method. The rating value for a document binarization technique 
can be between 1 (best) and 7 (worst). The mean rating value for each binarization 
technique is then calculated and the histogram shown in Fig. 5 is constructed using these 
values. It is obvious that the minimum value of this histogram is assigned to the 
binarization technique which has the best performance. The Sauvola’s technique gives, in 
most of the cases, the best document binarization result. These conclusions agree with the 
evaluation test that has been made by Sezgin and Sankur [13]. 



 Automatic Evaluation of Document Binarization Results 1013 

  

Fig. 4. The Chi-square histogram and the ROC diagram constructed using the EGT image 
calculated from the CT Chi-square histogram (left) and the CT ROC diagram (right) 
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Fig. 5. The histogram constructed by the mean rating values. Sauvola’s technique is the 
binarization technique with the best performance in the examined document image database 

6   Conclusions 

This paper proposes a method for the estimation of the best PS values of a document 
binarization technique and the best binarization result obtained by a set of 
independent document binarization techniques. It is important that the best PS values 
are adaptively estimated according to the processing document image. The proposed 
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method is extended to produce an evaluation system for independent document 
binarization techniques. The estimation of the best PS values is achieved by applying 
an adaptive convergence procedure starting from a wide initial range for every 
parameter. The entire system was extensively tested with a variety of document 
images. Many of them came from standard document databases such as the old Greek 
Parliamentary Proceedings. The entire system is implemented in visual environment 
using Dephi 7.  
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Abstract. The market demand for dental implants is growing at a sig-
nificant pace. In practice, some dental implants do not succeed. Impor-
tant questions in this regard concern whether machine learning tech-
niques could be used to predict if an implant will be successful and
which are the best techniques for this problem. This paper presents a
comparative study on three machine learning techniques for prediction
of success of dental implants. The techniques compared here are: (a)
support vector machines (SVM); (b) weighted support vector machines;
and (c) constructive RBF neural networks (RBF-DDA) with parameter
selection. We present a number of simulations using real-world data. The
simulations were carried out using 10-fold cross-validation and the results
show that the methods achieve comparable performance, yet RBF-DDA
had the advantage of building smaller classifiers.

1 Introduction

Dental implants have been used successfully to replace lost teeth with very
high success rates [3]. Nevertheless, oral rehabilitation through dental implants
presents failure risks related to the different phases of the osseointegration pro-
cess (the integration of the implant to the adjacent bone) [13]. A number of risk
factors may be related to the failure of dental implants, such as the general health
conditions of the patient, the surgical technique employed, the use of smoke by
the patient and the type of implant [12]. In this work, a dental implant is con-
sidered successful if it presents characteristics of osseointegration in the different
phases of the process, including the prosthetic loading and its preservation. We
considered that a failure took place whenever any problem related to the implant
motivated its removal.

The features of the patients considered in this work were carefully chosen by
an oral surgeon specialist in dental implants. The features considered here were:
1) age of the patient, 2) gender, 3) implant type, 4) implant position, 5) surgical

M. Lazo and A. Sanfeliu (Eds.): CIARP 2005, LNCS 3773, pp. 1015–1026, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



1016 A.L.I. Oliveira, C. Baldisserotto, and J. Baldisserotto

technique, 6) an indication whether the patient was a smoker of not and 7) an
indication whether the patient had a previous illness (diabetes or osteoporosis)
or medical treatment (radiotherapy). These features are best described in the
remaining of the paper. Some of these features, also referred to as risk factors,
were also considered in a recent studied which used statistical techniques to
analyze the risk factors associated with dental implants [12]. The data for the
present study were collect between the years 1998 and 2004 by a single oral
surgeon. The data set consists of 157 patterns which describe dental implants.

In the period in which data were collected there were implants carried out less
than five years before. Therefore, instead of classifying the outcome of an implant
simply as success or failure, we have classified our data into seven classes: (1)
success confirmed until one year; (2) success confirmed between 1 and 2 years;
(3) success confirmed between 2 and 3 years; (4) success confirmed between 3
and 4 years; (5) success confirmed between 4 and 5 years; (6) success confirmed
for more than 5 years; and (6) failure. In general, the longer the number of
years of confirmed success, the greater is the likelihood of definitive success of
an implant.

Nowadays the prediction of success of failure of a dental implant is almost
always carried out by the oral surgeons through clinical and radiological evalu-
ation. Therefore, the accuracy of such predictions is heavily dependent on the
experience of the oral surgeon. This works aims to help predicting the success
or failure of a dental implant via machine learning techniques, thereby hoping
to improve the accuracy of the predictions.

We have considered three machine learning techniques for our comparison,
namely, (a) support vector machines (SMVs) [7,8,1]; (b) weighted SVMs [10,6];
and (c) RBF-DDA with θ− selection [17].

SVMs are a recent powerful class of machine learning techniques based on
the principle of structural risk minimization (SRM). SVMs have been applied
successfully to a wide range of problems such as text classification and optical
character recognition [8,18]. Weighted SVM is an extension to SVM more ap-
propriate to handle imbalanced datasets, that is, datasets which have unequal
proportion of samples between classes [10,6]. We have considered this extension
to SVM here because our dataset is imbalanced, as detailed in section 3. DDA
is a fast training method for RBF and PNN neural networks [5,4]. RBF-DDA
with θ− selection uses cross-validation to select the value of parameter θ− thus
improving performance in some classification problems [17]. We decided to use
the last classifier in order to assess its performance in a task different from those
considered in the paper in which it was originally proposed [17]. Thus this paper
also contributes by further exploring this classifier on a different data set.

The classifiers considered in this work were compared using 10-fold cross-
validation together with Student paired t-tests with 95% confidence level.

This paper is organized as follows. Next section reviews the machine learning
techniques considered in this work. Section 3 describes the experiments carried
out along with the results and discussion. Finally, section 4 presents our conclu-
sions and suggestions for further research.
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2 The Machine Learning Techniques Compared

2.1 Support Vector Machines

Support vector machine (SVM) is a recent technique for classification and regres-
sion which has achieved remarkable accuracy in a number of important problems
[7,18,8,1]. SVM is based on the principle of structural risk minimization (SRM),
which states that, in order to achieve good generalization performance, a ma-
chine learning algorithm should attempt to minimize the structural risk instead
of the empirical risk [8,1]. The empirical risk is the error in the training set,
whereas the structural risk considers both the error in the training set and the
complexity of the class of functions used to fit the data. Despite its popularity
in the machine learning and pattern recognition communities, a recent study
has shown that simpler methods, such as kNN and neural networks, can achieve
performance comparable to or even better than SVMs in some classification and
regression problems [14].

The main idea of support vector machines is to built optimal hyperplanes -
that is, hyperplanes that maximize the margin of separation of classes - in order
to separate training patterns of different classes. An SVM minimizes the first
equation below subject to the condition specified in the second equation

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

subject to yi(wT φ(xi) + b) ≥ 1− ξi, (1)
ξi ≥ 0.

The training vectors xi are mapped into a higher (maybe infinite) dimensional
space by the function φ. Then SVM finds a linear separating hyperplane with
the maximal margin in this higher dimensional space. A kernel K(−→x ,−→y ) is an
inner product in some feature space, K(−→x ,−→y ) = φT (−→x )φ(−→y ). A number of
kernels have been proposed in the literature [18,8,1,2]. In this work we use the
radial basis function (RBF) kernel, which is the kernel used more frequently. The
kernel function K(xi, xj) in an RBF kernel is given by K(xi, xj) = exp(−γ||xi−
xj ||2), γ > 0.

SVMs with RBF kernels have two parameters, namely, C, the penalty pa-
rameter of the error term (C > 0) and γ, the width of the RBF kernels. These
parameters have great influence on performance and therefore their values must
be carefully selected for a given problem. In this work, model selection is car-
ried out via 10-fold cross-validation on training data. A grid search procedure
on C and γ is performed, whereby pairs of (C, γ) are tried and the one with
the best cross-validation accuracy is selected [11]. A practical method for iden-
tifying good parameters consists in trying exponentially growing sequences of C
and γ. In our experiments, the sequence used was C = 2−5, 2−3, · · · , 215, and
γ = 2−15, 2−13, · · · , 23 [11].
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2.2 Weighted Support Vector Machines

Weighted support vector machine (WSVM) was proposed to address two im-
portant problems which appear quite often in pattern recognition, namely, (1)
classification problems with imbalanced datasets, that is, datasets in which the
classes are not equally represented; and (2) classification problems in which a
classification error of one type is more expensive or undesirable than other [10].

The idea of WSVM consists in penalizing with higher penalty the most un-
desirables types of errors [10,6]. For this purpose, WSVMs have one weight wi

per class. In WSVMs each class i has a different penalty parameter Ci. This is in
contrast to the original SVM, which has only one the penalty parameter of the
error term (C > 0) (equation (1)), which is used for all classes. The parameter
Ci in WSVMs is set to wiC. In practice, higher values of wi should be used for
classes with smaller number of samples.

The motivation for considering WSVMs in our problem is that our dataset is
imbalanced, in particular, we have quite few cases of failure of dental implants
(as detailed in section 3).

2.3 Constructive RBF Neural Networks

The DDA algorithm is a very fast constructive training algorithm for RBF and
probabilistic neural networks (PNNs) [5,4]. In most problems training is finished
in only four to five epochs. The algorithm has obtained good performance in a
number of problems, which has motivated a number of extensions to the method
recently proposed in the literature [17,16,15].

An RBF trained by DDA is referred as RBF-DDA. The number of units
in the input layer represents the dimensionality of the input space. The input
layer is fully connected to the hidden layer. RBF-DDAs have a single hidden
layer. The number of hidden units is automatically determined during training.
Hidden units use Gaussian activation functions. RBF-DDA uses 1-of-n coding in
the output layer, with each unit of this layer representing a class. Classification
uses a winner-takes-all approach, whereby the unit with the highest activation
gives the class. Each hidden unit is connected to exactly one output unit. Each of
these connections has a weight Ai. Output units uses linear activation functions
with values computed by

f(−→x ) =
m∑

i=1

Ai ×Ri(−→x ) (2)

where m is the number of RBFs connected to that output.
The DDA training algorithm is constructive, starting with an empty hidden

layer, with units being added to it as needed. The centers of RBFs, −→ri , and their
widths, σi are determined by DDA during training. The values of the weights of
connections between hidden and output layers are also given by DDA.

The complete DDA algorithm for one training epoch is shown in Fig. 1.
The algorithm is executed until no changes in the parameters values (number of



A Comparative Study on SVM and Constructive RBF Neural Network 1019

hidden units and their respective parameters and weights values) are detected.
This usually takes place in only four to five epochs [5]. This natural stopping
criterion leads to networks that naturally avoid overfitting training data [5,4].

1: // reset weights:
FORALL prototypes pk

i DO
Ak

i = 0.0
ENDFOR
2: // train one complete epoch
FORALL training pattern (−→x , c) DO

IF ∃pc
i : Rc

i (−→x ) ≥ θ+ THEN
3: // sample covered by existing neuron of the same class

Ac
i+ = 1.0

ELSE
4: // “commit”: introduce new prototype

add new prototype pc
mc+1 with:

−→r c
mc+1 = −→x

Ac
mc+1 = 1.0

mc+ = 1
5: // adapt radii

σc
mc+1 = maxk �=c∧1≤j≤mk

{σ : Rc
mc+1(−→r k

j ) < θ−}
ENDIF

6: // “shrink”: adjust conflicting prototypes
FORALL k �= c, 1 ≤ j ≤ mk DO

σk
j = max{σ : Rk

j (−→x ) < θ− }
ENDFOR

ENDFOR

Fig. 1. DDA algorithm for one training epoch

The DDA algorithm relies on two parameters in order to decide about the
introduction of new prototypes (RBF units) in the networks. One of these pa-
rameters is a positive threshold (θ+), which must be overtaken by an activation
of a prototype of the same class so that no new prototype is added. The other is a
negative threshold (θ−), which is the upper limit for the activation of conflicting
classes [5,4].

A trained RBF-DDA network holds the following two equations for every
training pattern −→x of class c [5,4]:

∃i : Rc
i (−→x ) ≥ θ+ (3)

∀k �= c, 1 ≤ j ≤ mk : Rk
j < θ− (4)

Notice that the above conditions do not guarantee the correct classification
of all training patterns, because they hold for hidden units, not for output units.

During training, the DDA algorithm creates a new prototype for a given
training pattern −→x only if there is no prototype of the same class in the network
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whose output Ri(−→x ) ≥ θ+. Otherwise, the algorithm only increments the weight
Ai of the connection associated with one of the RBFs (of the same class of the
training pattern) which gives Ri(−→x ) ≥ θ+ (step 3 of Fig. 1). When a new
prototype is introduced in the network, its center will have the value of the
training vector −→x and the weight of its connection to the output layer is set to
1 (step 4 of Fig. 1). The width of the Gaussian will be chosen in such a way that
the outputs produced by the new prototype for existing prototypes of conflicting
classes is smaller than θ− (step 5 of Fig. 1). Finally, there is a shrink phase, in
which the widths of conflicting prototypes are adjusted to produce output values
smaller than θ− for the training pattern −→x (step 6 of Fig. 1).

Originally, it was assumed that the value of DDA parameters would not
influence classification performance and therefore the use of their default values,
θ+ = 0.4 and θ− = 0.1 , was recommended for all datasets [5,4]. In contrast, it
was observed more recently that, for some datasets, the value of θ− considerably
influences generalization performance in some problems [17]. To take advantage
of this observation, a method has been proposed for improving RBF-DDA by
carefully selecting the value of θ− [17].

In the RBF-DDA with θ− selection method, the value of the parameter θ− is
selected via cross-validation, starting with θ− = 0.1 [17]. Next, θ− is decreased
by θ− = θ− × 10−1. This is done because it was observed that performance
does not change significantly for intermediate values of θ− [17]. θ− is decreased
until the cross-validation error starts to increase, since smaller values lead to
overfitting [17]. The near optimal θ− found by this procedure is subsequently
used to train using the complete training set [17]. The algorithm is shown in
Fig. 2.

θ−
opt = θ− = 10−1

Train one RBF-DDA with θ− using the reduced training set and test on the validation
set to obtain V alError = MinV alError
REPEAT

θ− = θ− × 10−1

Train one RBF-DDA with θ− using the reduced training set and test on the
validation set to obtain V alError

IF V alError < MinV alError
MinV alError = V alError
θ−

opt = θ−

ENDIF
UNTIL V alError > MinV alError OR θ− = 10−10

Train one RBF-DDA with θ−
opt using the complete training set

Test the optimized RBF-DDA on the test set

Fig. 2. Optimizing RBF-DDA through θ− selection
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3 Experiments

3.1 Data Set

The input variables considered in this work were chosen by an expert (oral
surgeon) based on his previous experience. According to the expert, the most
important factors which influence the success or failure of a dental implant are
those shown in table 1. Some of those factor were also considered in a recent
study which used statistical techniques for analyzing dental implant failure [12].
Table 1 shows the input variables together with their possible values in our data
set.

Table 1. Input variables

Name Possible values
Age (years) from 17 to 74

Gender {male, female}
Implant position { posterior maxilla, anterior maxilla,

posterior mandible, anterior mandible }
Implant type {conventional, surface treatment}

Surgical technique {conventional, complex}
Smoker? {yes, no}

Previous illness
or medical treatment? {no, yes (diabetes), yes (osteoporosis), yes (radiotherapy) }

The distribution of the dependent variable in our problem is shown in table
2. This is a classification problem with seven classes. One of the classes indicates
failure whereas the remaining six classes indicate success, with a variable period
of time. Note that this is an imbalanced dataset, since the number of samples
per class is quite different.

Table 2. Distribution of dependent variable

Class Frequency Percentage
1 (success - up to 1 year) 2 1.27%
2 (success - from 1 to 2 years) 24 15.29%
3 (success - from 2 to 3 years) 25 15.92%
4 (success - from 3 to 4 years) 21 13.38%
5 (success - from 4 to 5 years) 16 10.19%
6 (success - five years or more) 62 39.49%
7 (failure) 7 4.46%
Total 157 100%
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3.2 Experimental Setup

Due to the small number of examples in our data set we have used 10-fold cross-
validation in order to compare the machine learning techniques. This is a well
known technique widely used to compare classifiers whenever data is scarce [2].
In 10-fold cross-validation the data set is divided in ten disjoints subsets (folds)
[2]. Subsequently, the classifier is trained using a data set composed of nine of
these subsets and tested using the remaining one. This is carried ten times,
always using a different subset for testing. Finally, the cross-validation error is
computed as the mean of the ten test errors thus obtained.

In order to improve even more our comparison, we have firstly generated ten
versions of our data set by randomly distributing the patterns. Therefore, each
data set contains the same patterns yet in different orders. This means that the
subsets used in 10-fold cross-validation are different for each random distributed
version of our original data set.

We have performed 10-fold cross-validation using each of the ten randomly
ordered versions of our data set. Hence, for each classifier, one hundred simula-
tions were carried out (including the training and test phases).

In the case of weighted SVM (WSVM), we have employed the following values
for the weights per class: w1 = 12, w6 = 0.3, and w7 = 4. For the remaining
classes, wi = 1. These values were selected according to the distribution of the
samples per class in our dataset, presented in table 2.

3.3 Results and Discussion

In this study we are interested in comparing the machine learning techniques
in our problem regarding the classification error and the complexity of the clas-
sifiers, that is, the number of training prototypes stored by each of them. The
simulations using RBF-DDA with parameter selection [17] were carried out using
SNNS [19], whereas SVM and weighted SVM simulations used LIBSVM [6].

Table 3 compares the classifiers with respect to both 10-fold cross-validation
errors and the respective number of training prototypes stored by each classifier.
Each line of this table shows the 10-fold cross validation error and number of
stored prototypes obtained by each classifier using a different version of our data
set (with random order of the patterns). The table also presents the mean and
standard deviation of the error and of the number of stored prototypes over the
ten versions of our data set obtained by each classifier.

The results of table 3 show that SVM and RBF with θ− selection achieved
equivalent classification performance (around 24% mean error). The best results
obtained by RBF with θ− selection (shown in table 3) used θ− = 0.01. In spite
of the similar accuracies obtained, RBF-DDA was able to build considerably
smaller classifiers than SVMs in this problem. Hence, in this problem RBF-DDA
with θ− selection achieved a better trade-off between accuracy and complexity
compared to SVM. RBF-DDA with θ− selection is also much faster to train than
SVMs, which can be also an important advantage in practical applications.
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Table 3. Comparison of classifiers: 10-fold cross-validation errors and number of pro-
totypes stored

RBF-DDA with SVM weighted SVM
θ− selection (w1 = 12, w6 = 0.3, w7 = 4)

Random set 1 26.03% [73.9] 25.64% [111.6] 23.72% [109.2]
Random set 2 22.09% [73.9] 24.36% [101.0] 23.72% [98.8]
Random set 3 23.61% [73.2] 23.08% [108.7] 23.08% [107.3]
Random set 4 24.09% [73.7] 23.08% [102.5] 22.44% [99.1]
Random set 5 22.73% [73.7] 24.36% [106.5] 22.44% [104.2]
Random set 6 24.52% [73.7] 24.36% [101.6] 23.72% [103.4]
Random set 7 24.94% [73.9] 23.72% [101.6] 22.44% [98.8]
Random set 8 26.97% [73.7] 24.36% [97.5] 23.72% [95.1]
Random set 9 26.06% [73.2] 24.36% [107.2] 23.72% [102.5]
Random set 10 24.06% [73.9] 23.08% [102.3] 23.08% [103.4]

mean 24.51% [73.68] 24.04% [104.05] 23.21% [102.18]
st.dev 1.53% [0.27] 0.81% [4.27] 0.59% [4.28]

The use of WSVM in our problem produced a small improvement in per-
formance compared to both RBF-DDA with θ− selection and SVM, as shown
in table 3. WSVM outperformed SVM in our problem and at the same time
produced slightly smaller classifiers (table 3 shows that WSVM stored 102.18
prototypes in the mean whereas SVM stored 104.05).

Next, we compared the classifiers regarding both the performance and the
number of prototypes stored using Student paired t-test. In order to compare
two classifiers using the Student paired t-test, we first perform 10-fold cross-
validation using the same training and test sets for each of the classifiers. Sub-
sequently, we compute the collection of test errors, {xi} for the first classifier
and {yi} for the second one. Then, we compute di = xi − yi, which is used to
compute t as follows

t =
d̄√
s2

d/k
(5)

where d̄ is the mean of di, sd is the standard deviation of di and k is the number
of folds. In our experiments, we have performed 10-fold cross-validation, thus
k = 10. Moreover, we employ 95% confidence level. For this confidence level,
the t-student distribution table with k − 1 = 9 gives z = 2.262. Hence, for 95%
confidence level, the results produced by two classifiers being compared will be
considered statistically different only if t > z or t < −z.

The results of hypothesis tests using the Student test with 95% confidence
level for comparing the classifiers regarding classification errors are shown in
table 4. Table 5 compares the classifiers regarding the number of prototypes
stored. These results were computed from the results shown in table 3.

Table 4 shows that the difference in performance between the RBF-DDA
and SVM classifiers is not statistically significant. Conversely, the results of this
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Table 4. Hypothesis tests for classification errors

RBF-DDA (θ−) sel. × RBF-DDA (θ−) sel. × SVM ×
SVM Weighted SVM Weighted SVM

t = 1.02 t = 2.91 t = 3.88
not significant significant significant

table shows that the differences in performance between RBF-DDA and weighted
SVM as well as between SVM and WSVM are statistically significant.

Table 5 shows that the difference in the number of prototypes stored is sta-
tistically significant in the three comparisons performed.

Table 5. Hypothesis tests for number of prototypes stored

RBF-DDA (θ−) sel. × RBF-DDA (θ−) sel. × SVM ×
SVM Weighted SVM Weighted SVM

t = −21.93 t = −20.70 t = 3.02
significant significant significant

The results obtained in our simulations confirmed an observation that ap-
peared recently in the literature, namely, that SVMs, despite their strong the-
oretical foundations and excellent generalization performance in a number of
problems, are not the best choice for all classification and regression problems
[14]. Simpler methods such kNN and neural networks can achieve performance
comparable to or even better than SVMs in some classification and regression
problems [14]. In problems, such as the one considered in this paper, where
both classifiers obtained the same generalization performance, other performance
measures, such as training time, classification time and complexity must be com-
pared. In our case, the simulations showed that RBF-DDA with θ− selection was
better in terms of complexity and consequently in terms of classification time
as well. RBF-DDA with θ− selection certainly outperforms SVMs concerning
training time as well, since we need to select just one parameter whereas with
SVMs we need to select two parameters.

4 Conclusions

We have presented a comparative study on three machine learning techniques
for prediction of success of dental implants. The data set consisted of 157 ex-
amples concerning real-world clinical cases. The input variables concerned risk
factors for dental implants chosen by an expert (oral surgeon). The simulations
were carried out using ten versions of the data set with different random orders
of the patterns. For each random data set, the simulations were carried out via
10-fold cross-validation, due to the small size of the data set. The techniques
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compared were support vector machines (SVMs), weighted support vector ma-
chines (WSVMs) and RBF-DDA with θ− selection.

The classifiers considered in this study achieved similar classification per-
formance (around 24% of mean cross-validation error). Yet RBF-DDA with θ−

selection obtained smaller classifiers (73.68 mean number of prototypes) than
SVM (104.05 mean number of prototypes) and WSWVM (102.18 mean num-
ber of prototypes) . This can represent an advantage in practice for RBF-DDA
with θ− selection, since the memory requirement and the time to classify novel
patterns will be much smaller than those of SVM and WSWM. Nevertheless,
WSVM obtained a small improvement in performance (decrease in classfication
error around 1%) compared with RBF-DDA which was statistically significant
according to a Student paired t-test with 95% confidence level.

Future work includes considering other classifiers for this problem such as the
multilayer perceptron (MLP) and SVM with other kernel functions as well as
evaluating the classification accuracy per class. Another research direction con-
sists in determining the influence of each risk factor (input) on the classification
accuracy, such as was done in [9].
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A histogram of a set with respect a measurement represents the frequency of 
quantified values of that measurement in the samples. Finding the distance or 
similarity between histograms is important in pattern classification or clustering and 
image retrieval. Several measures of similarity between histograms have therefore 
been used in computer vision and pattern recognition. 

Most of the distance measures in the literature (there is an interesting compilation in 
[1]) consider the overlap or intersection between two histograms as a function of the 
distance value but do not take into account the similarity in the non-overlapping parts 
of the two histograms. For this reason, Rubner presented in [2] a new definition of the 
distance measure between histograms that overcomes this problem of non-
overlapping parts. Called Earth Mover’s Distance, it is defined as the minimum 
amount of work that must be performed to transform one histogram into another by 
moving distribution mass. This author used the simplex algorithm. Later, Cha 
presented in [1] three algorithms for obtaining the distance between one-dimensional 
histograms that use the Earth Mover’s Distance. These algorithms compute the 
distance between histograms when the type of measurements are nominal, ordinal and 
modulo in O(z), O(z) and O(z2), respectively, and where z the number of levels or 
bins. 

Often, for specific set measurements, only a small fraction of the bins in a histogram 
contains significant information, i.e. most of the bins are empty. This is more frequent 
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Abstract. In this paper we present a new method for comparing histograms. Its 
main advantage is that it takes less time than previous methods.  

The present distances between histograms are defined on a structure called 
signature, which is a lossless representation of histograms. Moreover, the type 
of the elements of the sets that the histograms represent are ordinal, nominal 
and modulo.  

We show that the computational cost of these distances is O(z’) for the ordi-
nal and nominal types and O(z’2) for the modulo one, where z’ is the number of 
non-empty bins of the histograms. In the literature, the computational cost of 
the algorithms presented depends on the number of bins in the histograms. In 
most applications, the histograms are sparse, so considering only the non-empty 
bins dramatically reduces the time needed for comparison.  

The distances we present in this paper are experimentally validated on image 
retrieval and the positioning of mobile robots through image recognition.  



If the statistical properties of the data are known a priori, the similarity measures can 
be improved by smoothing projections, as we can see in [3]. In [4] an algorithm was 
presented that used the intersection function, L1 norm, L2 norm and X2 test to compute 
the distance between histograms. In [5], the authors performed image retrieval based 
on colour histograms. Because the distance measure between colours is 
computationally expensive, they presented a low dimensional and easy-to-compute 
distance measure and showed that this was a lower boundary for the colour-histogram 
distance measure. An exact histogram-matching algorithm was presented in [6]. The 
aim of this algorithm was to study how various image characteristics affect colour 
reproduction by perturbing them in a known way. 

Given two histograms, it is often useful to define a quantitative measure of their 
dissimilarity in order to approximate perceptual dissimilarity as well as possible. We 
therefore believe that a good definition of the distance between histograms needs to 
consider the distance between the basic features of the elements of the set i.e. similar 
pairs of histograms defined from different basic features may obtain different 
distances between histograms. We call the distance between set elements the ground 
distance. 

In this paper we present the distances between histograms whose computational cost 
depends only on the non-empty bins rather than, as in the algorithms in [1,2], on the 
total number of bins. The type of measurements are nominal, ordinal and modulo and 
the computational cost is O(z’), O(z’) and O(z’2), respectively, where z’ is the number 
of non-empty bins in the histograms. In [7], we show that these distances are the same 
as the distances between the histograms in [1] but that the computational time for 
each comparison is lower when the histograms are large or sparse. We also depict the 
algorithms to compute them not shown here due to lack of space. 

The next sections are organised as follows. In section 2 we define the histograms and 
signatures. In section 3 we present three possible types of measurements and their 
related distances. In section 4 we use these distances as ground distances when 
defining the distances between signatures. In section 6 we address image retrieval 
problem with the proposed distance measures. Finally, we conclude by stressing the 
advantage of using the distance between signatures. 

In this section, we formally define histograms and signatures. We end this section 
with a simple example to show the representations of the histograms and signatures 
given a set of measurements. 

Let x be a measurement that can have one of T values contained in the set X={x1,...xT}. 
Consider a set of n elements whose measurements of the value of x are A={a1,...an}, 
where at∈X. 

when the dimensions of the element domain increase. In such cases, the methods that 
use histograms as fixed-sized structures are not very efficient. For this reason, Rubner 
[2] presented variable-size descriptions called signatures, which do not explicitly 
consider the empty bins. 

2   Histograms and Signatures 

2.1   Histogram Definition 
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denotes the number of elements of A that have value xi, then H(A)=[H1(A), …,HT(A)] 
where  

n and      (1)1 if 
0 otherwise 

AH ( )A ∑ C =




a = x= iA tCi i , t i t, 
t =1 

The elements Hi(A) are usually called bins of the histogram. 

Let H(A)=[H1(A), …,HT(A)] and S(A)=[S1(A), …,Sz(A)] be the histogram and the 
signature of the set A, respectively. Each Sk(A), 1≤k≤z≤T comprises a pair of terms, 
Sk(A)={wk ,mk}. The first term, wk, shows the relation between the signature S(A) and 
the histogram H(A). Therefore, if the wk=i then the second term, mk, is the number of 
elements of A that have value xi, i.e. mk=Hi(A) where wk<wt ⇔ k<t and mk>0. 

The signature of a set is a lossless representation of its histogram in which the bins of 
the histogram whose value is 0 are not expressed implicitly. From the signature 
definition, we obtain the following expression, 

( ) = m where 1≤ k ≤ z (2)Hwk
A k 

The extended signature is one in which some empty bins have been added. That is, 
we allow mi=0 for some bins. This is a useful structure for ensuring that, given a pair 
of signatures to be compared, the number of bins is the same and that each bin in both 
signatures represents the same bin in the histograms. 

In this section we show a pair of sets with their histogram and signature 
representations. This example is used to explain the distance measures in the next 
sections. Figure 1 shows the sets A and B and their histogram representations. Both 
sets have 10 elements between 1 and 8. The horizontal axis in the histograms 
represents the values of the elements and the vertical axis represents the number of 
elements with this value. 

1 4 5 
5 1 

4 1 
5 6 
6 

A

1 8 5 
5 5 
5 5 
5 8 
5 

B 

The histogram of the set A along measurement x is H(x,A), which is an ordered list 
consisting of the number of occurrences of the discrete values of x among the at. As
we are interested only in comparing the histograms and sets of the same measurement 
x, H(A) will be used instead of H(x,A) without loss of generality. If Hi(A), 1≤i≤T, 

2.2   Signature Definition 

2.3   Extended Signature  

2.4   Example 

Fig. 1. Sets A and B and their histograms  
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W1 
A = 1  

W2 
A = 4 

W3 
A = 5 

W4 
A = 6 

W1 
B = 1 

W2 
B = 5 

W3 
B = 8 

Figure 3 shows the extended signatures of the sets A and B with 5 bins. Note that the 
value that the extended signatures represents for each bin, wi, is the same for both 
signatures. 

W1 
A’ = W1 

B’ = 1  
W2 

A’= W2 
B’= 4 

W3 
A’= W3 

B’= 5 
W4 

A’= W4 
B’= 6 

W5 
A’= W5 

B’= 8 

We consider three types of measurements, called nominal, ordinal and modulo.  In a 
nominal measurement, each value of the measurement is a name and there is no 
relation, such as greater than or lower than, between them (e.g. the names of 
students). In an ordinal measurement, the values are ordered (e.g. the age of the 
students). Finally, in a modulo measurement, the values are ordered but they form a 
ring because of the arithmetic modulo operation (e.g. the angle in a circumference). 

Corresponding to these three types of measurements, we define three measures of 
difference between two measurement levels a∈ X and b∈ X, as follows: 

a) Nominal distance: 





0 
1 

The distance value between two nominal measurement values is either match or 
mismatch, which are mathematically represented by 0 or 1. 

if a b (3)=
d (a,b) =nom otherwise 

Figure 2 shows the signature representation of sets A and B. The length of the 
signatures is 4 and 3, respectively. The vertical axis represents the number of 
elements of each bin and the horizontal axis represents the bins of the signature. Set A 
has 2 elements with a value of 6 since this value is represented by the bin 4 (W4

A=6 ) 
and the value of the vertical axis is 2 at bin 4. 

Fig. 2. Signature representation of the sets A and B 

 

Fig. 3. Extended Signatures A’ and B’. The number of elements mi is represented graphically 
and the value of its elements is represented by wi 

3   Type of Measurements and Distance Between Them 
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A' A' B ' B 'respectively, where S ( )A' = {w , m } and S ( )B' = {w , m }. The number of bins of i i i i i i 

S(A) and S(B) is zA and zB and the number of bins of both extended signatures is z’. 

The nominal distance between the histograms in [5] is the number of elements that do 
not overlap or intersect. We redefine this distance using signatures as follows, 

z ' 

mi
A' − mi

B ' (6)D (S( ) ( )A , S B ) =∑nom 
i=1 

The ordinal distance between two histograms was presented in [6] as the minimum 
work needed to transform one histogram into another. Histogram H(A) can be 
transformed into histogram H(B) by moving elements to the left or to the right and the 
total number of all the necessary minimum movements is the distance between them. 
There are two operations. Suppose an element a that belongs to bin i. One operation is 
move left (a). This result of this operation is that element a belongs to bin i-1 and its 
cost is 1. This operation is impossible for the elements that belong to bin 1. Another 
operation is move right (a). Similarly, after this operation, a belongs to bin i+1 and 
the cost is 1. The same restriction applies to the right-most bin. These operations are 
graphically represented by right-to-left arrows and left-to-right arrows. The total 
number of arrows is the distance value. This is the shortest movement and there is no 
other way to move elements in shorter steps and transform one histogram to the other. 
The distance between signatures is defined as follows, 

 



(7)
z '−1 i 

∑(w )+ i (m )Dord (S( ) ( )A , S B ) = A' A' A' B '− −∑ 


w mi 1 j j 
i=1 j =1 

c) Modulo distance: 

2 (5)a − b if a − b ≤ T

T 

The distance value between two modulo measurement values is the interior difference 
of each element. 

In this section, we present the nominal, ordinal and modulo distances between 
signatures. For the following definitions of the distances and for the algorithms 
section, we assume that the extended signatures of S(A) and S(B) are S(A’) and S(B’), 

d (a,b) =mod − a − b otherwise 

b) Ordinal distance: 

(4)dord (a,b) = a − b 

The distance value between two ordinal measurement values is computed by the 
absolute difference of each element. 

4   Distance Between Signatures 

4.1   Nominal Distance  

4.2   Ordinal Distance 
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can move from the last bin to the first one with the operations move right (T) in the 
histogram case or move right (wz’) in the signature case. 

The cost of these operations is calculated as for the cost of the operations in the 
ordinal distance except for the movements of blocks from the first bin to the last or 
vice versa. For the distance between histograms, the cost, as in all the movements, is 
one. For the distance between signatures,  the real distance between bins or the length 
of the arrows has to be considered. The cost of these movements is therefore the sum 
of three terms (see figure 4.a): (a) the cost from the last bin of the signature, wz’, to the 
last bin of the histogram, T; (b) the cost from the last bin of the histogram, T, to the 
first bin of the histogram, 1; (c) the cost from the first bin of the histogram, 1, to the 
first bin of the signature, w1. The costs are then calculated as the length of these terms. 
The cost of (a) is T-wz’, the cost of (b) is 1 (similar to the cost between histograms) 
and the cost of (c) is w1-1. Therefore, the final cost from the last bin to the first or vice 
versa between signatures is w1-wz’+T. 

Dmod(H(A),H(B)) 

1  2  3  4 5  6  7  8 

Dmod(S(A’),S(B’)) 

1  2  3  4  5 

X1  X1  X1 

(a)    (b) 

The arrows do not have a constant size (or constant cost) but depend on the distance 
between bins. If element a belongs to bin i, the result of operation move left (a) is that 
the element a belongs to bin i-1 and its cost is wi − wi−1 . Similarly, after the 

operation move right(a), the element a belongs to bin i+1 and the cost is wi+1 − wi . 
In equation (7), the number of arrows that go from bin i to bin i+1 is described by the 
inner addition and the cost of these arrows is wi+1 − wi . 

One major difference in modulo type histograms or signatures is that the first bin and 
the last bin are considered to be adjacent to each other. It therefore forms a closed 
circle due to the nature of the data type. Transforming a modulo type histogram or 
signature into another while computing their distance should allow cells to move from 
the first bin to the last bin, or vice versa, at the cost of a single movement. Now, cells 
or blocks of earth can move from the first bin to the last bin with the operation move 
left (1) in the histogram case or move left (w1) in the signature case. Similarly, blocks 

4.3   Modulo Distance 

Fig. 4. (a) The three terms that need to be considered in order to compute the cost of moving 
blocks from the last bin to the first or vice versa in the modulo distance between signatures. (b) 
Arrow representation of the modulo distance in case of the histograms and signatures. 

Example. Figure 4.b shows graphically the minimum arrows needed to get the 
modulo distance in (a) the histogram case and (b) the signature case. The distance is 
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between signatures). The cost of the movement of blocks from the first bin to the last 
or vice versa is w1-wz’+T and the cost of the other movements is wA’

i+1-w A’
i. The term 

c represents the chains of left arrows or right arrows added to the current arrow 
representation. The absolute value of c at the end of the expression is the number of 
chains added to the current representation. It comes from the cost of the arrows from 
the last bin to the first or vice versa. 

Example. Figure 5 shows five different transformations of signature S(A) to signature 
S(B) and their related costs. In the first transformation, one chain of right arrows is 
added (c=1). In the second transformation, no chains are added (c=0), so the cost is 
the same as the ordinal distance. In the third to the last transformations, 1, 2 and 3 
chains of left arrows are added, respectively. We can see that the minimum cost is 6 
and c=-2, the distance value is 6 for the modulo distance and 14 for the ordinal 
distance. 

X1 X3 X1 X1 X2 
X1 X3 X1 X1 X2

X3  X1  X1  X2 X1 X3 X1 X1 X2 
X1 X3 X1 X1 X2 

1  2 3 4 5 1 2 3  4 5 1 2  3 4 5 1  2  3  4 5 1 2 3 4 5 

c=1 c=0        c=-1            c=-2          c=-3
        cost=22                  cost=14           cost=10                 cost=6                      cost=12 

obtained as in the ordinal example except that the arrows from the first bin to the last 
are allowed or vice versa. The value of the distance between signatures is 
2x1+2x1+2x1=6. In this signature representation, the cost of the two arrows that go 
from the first bin to the last bin is one. This is because w1=1 (the first bin in the 
histogram representation) and w5=8 (the last bin in the histogram representation, 
T=8). This cost is then 1-8-8=1. 

Due to the previously explained modulo properties, we can transform one signature or 
histogram into another in several ways. In one of these ways, there is a minimum 
distance whose number of movements (or the cost of the arrows and the number of 
arrows) is the lowest. If there is a borderline between bins that has both directional 
arrows, they are cancelled out. These movements are redundant, so the distance 
cannot be obtained through this configuration of arrows. To find the minimum 
configuration of arrows, we can add a complete chain in the histogram or signature of 
the same directional arrows and the opposite arrows on the same border between bins 
are then cancelled out.  The modulo distance between signatures is defined as 


mod ∑

The cost of moving a block of earth from one bin to another is not 1 but the length of 
the arrows or the distance between the bins (as explained in the ordinal distance 




 i'−1 (8)z (w )+ i (m )( ( ) ( ), )S A S B A A A B A A' ' ' ' ' 'D Tmin − − −+




) + ( +∑


w c m w1 w c= i j j1 'z
 

c i j=1 =1 

Fig. 5. Five different transformations of signature S(A) to signature S(B) with their related c 
and cost obtained 
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 Length Increase 
Speed 

Correct. Decrease in 
Correct. 

Histo. 265 1 78% 1 
Signa. 235 1.12 78% 1 
Sig100 157 1.68 78% 1 
Sig200 106 2.50 69% 0.88 
Sig300 57 4.64 57% 0.73 

 Length Increase 
Speed 

Correct. Decrease in 
Correct. 

Histo. 265 1 86% 1 
Signa. 215 1.23 86% 1 
Sig100 131 2.02 85% 0.98 
Sig200 95 2.78 73% 0.84 
Sig300 45 5.88 65% 0.75 

 Length Increase 
Speed 

Correct. Decrease in 
Correct. 

Histo. 65,536 1 81% 1 
Signa. 245 267.49 81% 1 
Sig. 1 115 569.87 81% 1 
Sig. 2 87 753.28 67% 0.82 
Sig. 3 32 2048.00 55% 0.67 

 Length Increase 
Speed 

Correct. Decrease in 
Correct. 

Histo. 65,536 1 89% 1 
Signa. 205 319.68 89% 1 
Sig. 1 127 516.03 89% 1 
Sig. 2 99 661.97 78% 0.87 
Sig. 3 51 1285.01 69% 0.77 

To show the validity of our new method, we first tested the ordinal and modulo 
distances between histograms and between signatures. We used 1000 images (640 x 
480 pixels) obtained from public databases. To validate the ordinal distance, we 
calculated the histograms from the illumination coordinate with 28 levels (table 1) and 
with 216 levels (table 3). Also, to test the modulo distance, the histograms represented 
the hue coordinate with 28 levels (table 2) and with 216 levels (table 4). Each table 
below shows the results of 5 different tests. In the first and second rows, the distance 
between histograms and signatures, respectively, are computed. In the other three 
rows, the distance between signatures is computed but, in order to reduce the length 
of the signature (and therefore increase the speed), the bins with fewer elements than 
100, 200 or 300 in tables 1 and 2 and fewer elements than 1, 2 or 3 in tables 3 and 4 
were removed. The first column shows the number of bins of the histogram (first cell) 
or signatures (the other four cells). The second column shows the increase in speed if 
we use signatures instead of histograms. It is calculated as the ratio between the run 
time of the histogram method and that of the signature method. The third column 
shows the average correctness. The last column shows the decrease in correctness as a 
result of using the signatures with filtered histograms, which is obtained as the ratio of 
the correctness of the histogram to the correctness of each filter. 

Tables 1 to 4 show that our method is more useful when the number of levels 
increases, since the number of empty bins tends to increase. Moreover, the increase is 
greater when comparing the histograms of the hues, because the algorithm has a 
quadratic computational cost. Note that in the case of the first filter (third experiment 
in the tables), there is no decrease in correctness although the increase in speed is 
greater than with the signature method. 

5   Experiment with Colour Images 

Table 1. Illumination 28 bins. Ordinal histogram. Table 3.  Illumination  216 
 

bins.  Ordinal 
histogram. 

Table 2. Hue 28 
 
bins. Modulo histogram. Table 4. Hue 216

 
bins. Modulo histogram. 
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We have presented the nominal, ordinal and modulo distance between signatures. We 
have shown that signatures are a lossless representation of histograms and that 
computing the distances between signatures is the same as computing the distances 
between histograms but with a lower computational time. We have validated these 
new distances with a huge amount of real images and observed an important saving of 
time since most of the histograms are sparse. Moreover, when we applied filtering 
techniques to the histograms, the number of bins of the signatures decreased, so the 
run time of their comparison also decreased. 

6   Conclusions 
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Abstract. Median associative memories (MEDMEMs) first described in [1] 
have proven to be efficient tools for the reconstruction of patterns corrupted 
with mixed noise. First formal conditions under which these tools are able to 
reconstruct patterns either from the fundamental set of patterns and from 
distorted versions of them were given in [1]. In this paper, new more accurate 
conditions are provided that assure perfect reconstruction. Numerical and real 
examples are also given.  

1   Introduction 

An associative memory (M) as described in [1] can be viewed as a device that relates 
input patterns and output patterns: yMx →→ , with x and y, respectively the input 

and output patterns vectors. Each input vector forms an association with a 
corresponding output vector. The associative memory M is represented by a matrix 

whose ij-th component is ijm . M is generated from a finite a priori set of known 

associations, known as the fundamental set of associations, or simply the fundamental 
set (FS). If ξ is an index, the fundamental set is represented as: 

( ){ }p,,2,1|, K=ξξξ yx  with p the cardinality of the set. Patterns that form the 

fundamental set are called fundamental patterns. If it holds that 

{ }pK,2,1∈∀= ξξξ   yx , then M is auto-associative, otherwise it is hetero-

associative. A distorted version of a pattern x  to be recalled will be denoted as x~ . If 

when feeding a distorted version of wx  with { }pw ,,2,1 K∈  to an associative 

memory M, then it happens that the output corresponds exactly to the associated 

pattern wy , we say that recalling is robust, if wx  is not distorted recalling is perfect. 

Several models for associative memories have emerged in the last 40 years. Refer for 
example to [3-6]. 

In [1] we first described an associative model based on the functioning of well-
known median operator. Also in this paper was given a first set of formal conditions 
under which the proposed set of memories operate. In this paper, we provide more 
accurate conditions for the functioning of these memories. Examples with synthetic 
and real data are also given. 
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2   Basics of Median Associative Memories 

Two associative memories are fully described in [1]. Due to space limitations, only 
hetero-associative memories are described. Auto-associative memories can be 

obtained simple by doing { }pK,2,1∈∀= ξξξ   yx . Let us designate hetero-

associative median memories as HAM-memories. Let nZx ∈  and mZy ∈  two 

vectors. To operate HAM memories two operations are required, one for memory 

training: Α  and one for pattern recall: Β .  

2.1   Memory Construction 

Two steps are required to build the HAM-memory: 

Step 1:  For each p,,2,1 L=ξ , from each couple ( )ξξ yx ,  build matrix: 

( )[ ] nm

t

×Α
ξξ xy  as: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
nmnmmm

n

n

t

xyxyxy

xyxyxy

xyxyxy

×

Α

ΑΑΑ

ΑΑΑ
ΑΑΑ

=

,,,

,,,

,,,

21

22212

12111

L

MOMM

L

L

x y   (1) 

 
Step 2:  Apply the median operator to the matrices obtained in Step 1 to get matrix 

M  as follows:  

( )[ ]tp
ξξ

ξ
xymedM Α=

=
1

.            (2) 

The ij-th component M is given as follows:  

( )ξξ

ξ ji

p

ij xym ,
1

Α=
=

med .    (3) 

2.2   Pattern Recall 

We have two cases: 

Case 1: Recall of a fundamental pattern. A pattern wx , with { }pw ,,2,1 L∈  is 

presented to the memory M and the following operation is done: 

wxM Β .     (4) 
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The result is a column vector of dimension n, with i-th component given as: 

( ) ( )w
jij

n

ji
w xmx ,

1
Β=

=Β medM .   (5) 

Case 2: Recall of a pattern from an altered version of it. A pattern x~  (altered 

version of a pattern wx  is presented to the HAM memory M and the following 
operation is done: 

xM ~
Β .     (6) 

Again, the result is a column vector of dimension n, with i-th component given as: 

( ) ( )jij

n

ji xm ~,~
1

Β=
=Β medxM .   (7) 

Operators Α and Β might be chosen among those already proposed in the literature. 
In this paper we adopt operators Α and Β used in [6]. Operators Α and Β are defined 
as follows: 

( ) yxyx −=Α ,      (8.a) 

( ) yxyx +=Β ,      (8.b) 

Conditions, for perfect recall of a pattern of the FS or from an altered version of 
them, according to [1] follow: 

Theorem 1 [1]. Let ( ){ }p,,2,1|, K=ααα yx  with 
nRx ∈α

, mRy ∈α  the 

fundamental set of an HAM-memory M and let ( )γγ yx ,  an arbitrary fundamental 

couple with { }p,,1 L∈γ . If 0
1

=
= ij

n

j
εmed , mi ,,1L= , ( )γγε jiijij xym ,Α−=  then 

( ) miii K1, ==Β
γγ yxM . 

Corollary 1 [1]. Let ( ){ }p,,2,1|, K=ααα yx , nRx ∈α , mRy ∈α . A HAM-

median memory M has perfect recall if for all p,,1L=α , MM =α  where 

( )tξξ xyM Α=  is the associated partial matrix to the fundamental couple 

( )αα yx ,  and p  is the number of couples. 

Theorem 2 [1]. Let ( ){ }p,,2,1|, K=ααα yx , nRx ∈α , mRy ∈α  a FS with 

perfect recall. Let nR∈αη  a pattern of mixed noise. A HAM-median memory M 

has perfect recall in the presence of mixed noise if this noise is of median zero, this is 

if αηα ∀=
=

,0
1

j

n

j
med . 
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2.3   Case of a General Fundamental Set 

In [2], it was shown that due to, in general, a fundamental set (FS) does not satisfy the 
restricted conditions imposed by Theorems 1 and its Corollary. In [2] it is proposed 
the following procedure to transform a general FS into an auxiliary FS’ satisfying the 
desired conditions: 

TRAINING PHASE: 

Step 1. Transform the FS into an auxiliary fundamental set (FS’) satisfying Theorem 1:  

1) Make contD = , a vector. 

2) Make ( ) ( )1111 ,, yxyx = .  

3) For the remaining couples do { 
For 2=ξ  to p { 

D+= −1
xx

ξξ
; ξξξ xxx −=ˆ ; D+= −1

yy
ξξ

; 
ξξξ yyy −=ˆ . 

}  

Step 2. Build matrix M in terms of set FS’: Apply to FS’ steps 1 and 2 of the training 
procedure described at the beginning of this section. 

RECALLING PHASE: 

We have also two cases, i.e.: 

Case 1: Recalling of a fundamental pattern of FS:  

1) Transform ξx  to 
ξx  by applying the following transformation: 

ξξξ
xxx ˆ+= . 

2) Apply equations (4) and (5) to each 
ξx  of FS’ to recall 

ξy .  

3) Recall each 
ξy  by applying the following inverse transformation: 

ξξξ yyy ˆ−= . 

Case 2: Recalling of a pattern ξy  from an altered version of its key: ξx~ :  

1) Transform ξx~  to 
ξx  by applying the following transformation: 

ξξξ xxx ˆ~ += . 

2) Apply equations (6) and (7) to 
ξx  to get 

ξy , and 

3) Anti-transform  
ξy  as 

ξξξ yyy ˆ−=  to get 
ξy . 

3   New Results About MEDMEMs 
 

In general, noise added to a pattern does not satisfy the conditions imposed by 
Theorem 2. The following new results (in the transformed domain) state the 
conditions under which MEDMEMS present perfect recall under general mixed noise: 
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Theorem 3. Let ( ){ }p,,2,1|, K=ααα yx , 
nRx ∈α

, mRy ∈α a fundamental set 

D+=+ ξξ xx 1 , D+=+ ξξ yy 1 , p,,2,1 K=ξ , ( )TddD ,,L= , 

Constd = . Without lost of generality suppose that is p  odd. Thus the associative 

memory ( )Tξξ xyM Α=  has perfect recall in the presence of noise if less than 

1
2

1 −+n
 of the elements of any of the input patterns are distorted by mixed noise. 

In other words, it is enough that less than 50% of the elements of a pattern of the 
FS be distorted by mixed noise of any level so that the pattern is perfectly recalled. 
Let us verify this with an example: 

Example 1. Let us suppose the following fundamental set of patterns in the 
transformed domain, obtained from a general FS as explained in section 2.3: 

=

1

3

0

1

2

1x
, =

3

1

2
1y ; =

6

8

5

6

7

2x , =
8

6

7
2y  and =

11

13

10

11

12

3x
, =

13

11

12
3y . 

According to Corollary 1, one can easily verify that: 

( ) −−
−

== Α

20321

02101

11210
11 T

xyM . 

In this case, as 5=n , then according to Theorem 3 it is enough that no more than 

21
2

15 =−+
 elements of any of the patterns keys is contaminated with mixed noise 

for perfect recall of its corresponding pattern. Let us verify this with an example. Let 

us suppose the following distorted version of key 
2x , where second and fifth 

components (underlined) have been highly modified: 

( )T1285337~ =x . 

When applying equations (6) and (7), we have that: 

( )
( )
( )

==
8

6

7

14,8,8,35,8

12,6,6,33,6

13,7,7,34,7
~

med

med

med

xM B
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As we can appreciate the recalled pattern exactly corresponds to the pattern: 
2y . 

In case more than 50% of the elements of a key pattern are distorted by mixed 
noise, the recalled pattern in the transformed domain is an additive multiple of the 

corresponding pattern 
ξy . Let us verify this with the following example: 

Example 2. Let us suppose the following distorted version of key pattern 
2x  of 

example 1, where as reader can appreciate four components (underlined) appear 
modified: 

( )T810769~ =x . 

When applying equations (6) and (7), we have: 

( )
( )
( )

==
10

8

9

10,10,10,8,10

8,8,8,6,8

9,9,9,7,9
~

med

med

med

xM B
. 

Note how in this case the recalled version of 
2y , 

ξ
recalledy , in the transformed 

domain differs in 2 with respect two the original one. 
The preceding fact can be formally expressed by the following: 

Proposition 1. If a distorted key pattern 
ξx~  does satisfies the conditions imposed by 

Theorem 3, the recalled version, 
ξ
recalledy , is additive multiple of the corresponding 

pattern 
ξy . 

The following result provides sufficient conditions under which a fundamental 
pattern has perfect recall if more than 50% of its elements are distorted by mixed 
noise: 

Theorem 4. Let ( ){ }p,,2,1|, K=ξξξ yx , 
nRx ∈α

, 
mRy ∈α

 a 

fundamental set D+=+ ξξ xx 1 , D+=+ ξξ yy 1 , p,,2,1 K=ξ , 

( )TddD ,,L= , .Constd =  Without lost of generality suppose that is p  odd. 

Thus the associative memory ( )Tξξ xyM Α=  has perfect recall in the presence of 

noise if more than 1
2

1 −+n
 of its components are distorted by noise with absolute 

magnitude less than 2/d . The index of its corresponding pattern is given by: 

( ) pyxmdi l
jBj

l
,,1,,minarg 11 L== ξξ . 
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Example 3. The absolute magnitude of the noise added to key pattern 
2x  in example 

2 is less than 5.22/52/ ==d  unities, thus according to Theorem 4: 

( ) ( ) 2129,79,29minarg,minarg 11 =−−−==
l

lk
jBj

l
yxmdi . 

Thus, the pattern associated to the distorted key is 
2y  as predicted by Theorem 4. A 

special case of Theorem 4 is given by the following: 

Corollary 2. Let ( ){ }p,,2,1|, K=ξξξ yx , 
nRx ∈α

, 
mRy ∈α

 a 

fundamental set D+=+ ξξ xx 1 , D+=+ ξξ yy 1 , p,,2,1 K=ξ , 

( )TddD ,,L= , .Constd =  Without lost of generality let us suppose that p  is 

odd. Thus the associative memory ( )Tξξ xyM Α=  has perfect recall in the 

presence of noise if all the components of any pattern are distorted but the absolute 
magnitude of the noise added to them is less than 2/d . The index of its 

corresponding pattern is given by: ( ) pyxmdi l
jBj

l
,,1,,minarg 11 L== ξξ . 

Example 4. Let us suppose the following distorted version of key 
2x  of example 1 

where now all elements have been modified: 

( )T710359~ =x . 

By applying equations (6) and (7), we have: 

( )
( )
( )

==
9

7

8

9,10,6,7,10

7,8,4,5,8

8,9,5,6,9
~

med

med

med

xM B
. 

The index of the corresponding pattern is obtained as: 

( ) ( ) 2128,78,28minarg,minarg 11 =−−−==
l

lk
jBj

l
yxmdi . 

Thus, the pattern associated to the distorted key is 
2y  as expected. 

4   Experiments with Real Patterns 

In this section, it is shown the applicability of the results given in section 3. 
Experiments were performed on different sets of images. In this paper we show the 
results obtained with photos of five famous mathematicians. These are shown in  
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Figure 1. The images are 5151×  pixels and 256 gray-levels. To build the memory, 

each image ( )jif ,5151×  was first converted to a pattern vector ξx  of dimension 

2,601 ( 5151× ) elements by means of the standard scan method, giving as a result 

the five patterns [ ] 5,,1,260121 KL == ξξξξξ xxxx . It is not difficult to see 

that this set of vectors does not satisfy the conditions established by Theorem 1 and its 
Corollary. It is thus transformed into an auxiliary FS by means of the transformation 
procedure described in section 2.3, giving as a result the transformed patterns: 

[ ] 5,,1,260121 KL == ξξξξξ zzzz . It is not difficult to see in the transformed 

domain, each transformed pattern vector is an additive translation of the preceding 
one. 

 

Fig. 1. Images of the five famous people used in the experiments. (a) Descartes. (b) Einstein. 

(c) Euler. (d) Galileo, and (e) Newton. All Images are 5151×  pixels and 256 gray levels. 

First pattern vector 1z  was used to build matrix M . Any other pattern could be 

used due to according to Corollary 1: MMMM ==== 521 K . To build matrix 
M , equations 1-3 were used.  

4.1   Recalling of the Fundamental Set of Images 

Patterns 1z  to 5z  were presented to matrix M  for recall. Equations 6 and 7 were 
used for this purpose. In all cases, as expected, the whole FS of images was perfectly 
recalled. 

4.2   Recalling of a Pattern from a Distorted Version of It 

Three experiments were performed. In the first experiment the effectiveness of 
Theorem 3 was verified when less than 50% of the pixels of an image was distorted 
by mixed noise. In the second experiment the effectiveness of Theorem 4 was 
verified when all pixels of an image were distorted with noise but with absolute 
magnitude less than 2/d . In the third experiment, the pixels of an image were 
distorted in such a way that they do not satisfy Theorems 3 to 4, no perfect recall 
should thus occur. 
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4.2.1   Effectiveness of Theorem 3 
In this case the five images shown in Figure 1 were corrupted with mixed noise in 
such a way that less than half of its pixels changed in their values. For each photo 
several noisy versions with different levels of salt and pepper noisy were generated. 
Figure 2 shows 5 of these noisy images. Note the level of added distortion. When 
applying the recalling procedure described in Section 2.3, as specified by Theorem 3 
in all cases as shown in Figure 2(b) the desired image was of course perfectly 
recalled. 

 

Fig. 2. (a) Noisy images used to verify the effectiveness of Theorem 3 when less than 50% of 
the elements of patterns are distorted by noise. (b) Recalled images. 

4.2.2   Effectiveness of Theorem 4 
In this case all elements of the five images shown in Figure 1 were distorted with 
mixed noise but respecting the restriction that the absolute magnitude of the level of 
noise added to a pixel is inferior to 2/d . For each image a noisy version was 
generated. The five noisy versions are shown in Figure 3(a). When applying the 
recalling procedure described in section 2.3, as expected in all cases the desired image 
was perfectly recalled. Figure 3(b) shows the recalled versions. 

4.2.3   Results When Recalling Conditions Are Not Satisfied  
One experiment was performed. In the case more than 50% of the elements of each 
pattern were distorted with saturating salt and pepper noise. In this case mainly salt 
noise was added to the images. One noisy version for each image was generated in 
each case. Figure 4(b) show the noisy versions for each image. Figure 4(c) show the 
corresponding recalled versions. As can be appreciated in some cases, the desired 
image is correctly recalled. In others it is associated to other image. 
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Fig. 3. (a) Noisy images used to verify the effectiveness of Corollary 2 when the absolute 

magnitude of the noise added to the pixels is less than 2/d . (b) Recalled versions. 

 

Fig. 4. (a) Original images. (b) Noisy images used to verify the effectiveness of the 
propositions when more than 50% of the elements of patterns are distorted by noise with 

absolute magnitude of noise added greater than 2/d . In this case 99% of the elements of the 
images were altered. The ratio between salt noise and pepper noise added to the elements was 
99 to 1. (c) Recalled images. 

 



1046 H. Sossa and R. Barrón 

5   Conclusions and Present Research 

In this paper we have presented some new results about median memories recently 
introduced in [1]. The new propositions provide new conditions under which the 
proposed memories can perfectly recalled a pattern of a given fundamental set in the 
presence of mixed noise. 

Actually, we are looking for more general results for perfect recall. We are also 
investigating the performance of the proposed memories with other operators 
different form min, max and median. We are also searching for more efficient 
methods to speed up the learning and recalling procedures.  
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Abstract. Automatic Indexing of Broadcast News is a developing research area 
of great recent interest [1]. This paper describes the development steps for de-
signing an automatic index system of broadcast news for both Basque and 
Spanish. This application requires of appropriate Language Resources to design 
all the components of the system. Nowadays, large and well-defined resources 
can be found in most widely used languages, but there is a lot of work to do 
with respect to minority languages. Even if Spanish has much more resources 
than Basque, this work has parallel efforts for both languages. These two lan-
guages have been chosen because they are evenly official in the Basque 
Autonomous Community and they are used in many mass media of the Com-
munity including the Basque Public Radio and Television EITB [2]. 

1   Introduction 

Automatic Indexing of Broadcast News is a topic of growing interest for the mass 
media in order to take maximum output of their recorded resources. Actually, it is a 
challenging problem from researchers’ point of view, due to many unresolved issues 
like speaker changes and overlapping, different background conditions, large vocabu-
lary, etc. In order to achieve significant results in this area, high-quality language 
resources are required. Since the main goal of our project is the development of an 
index system of broadcast news in the Basque Country, our approach is to create 
resources for all the languages used in the mass media. The analysis of the specific 
linguistic problematic indicates that both Basque and Spanish are official in the 
Basque Autonomous Community and they are used in the Basque Public Radio and 
Television EITB [2] and in most of the mass media of the Basque Country (radios and 
newspapers). Thus it is clear that both languages have to be taken into account to 
develop an efficient index system. Therefore, all of the tools (ASR system, NLP sys-
tem, index system) and resources (digital library, Lexicon) to be developed will be 
oriented to create a bilingual system in Basque and Spanish. 

Spanish has been briefly studied for development of these kind of systems but the 
use of Basque language (a very odd minority language) introduces a new difficulty to 
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the development of the system, since it needs specific tools and the resources avail-
able are fewer. 

Basque is a Pre-Indo-European language of unknown origin and it has about 
1.000.000 speakers in the Basque Country. It presents a wide dialectal distribution, 
including six the main dialects, and this dialectal variety entails phonetic, phonologic, 
and morphologic differences.  

Moreover, since 1968 the Royal Academy of the Basque Language, Euskaltzaindia 
[3] has been involved in a standardisation process of Basque. At present, morphology, 
which is very rich in Basque, is completely standardised in the unified standard 
Basque, but the lexical standardization process is still going on. The standard Basque, 
called “Batua”, has nowadays a great importance in the Basque community, since the 
public institutions and most of the mass media use it. Furthermore, people who have 
studied Basque as a second language use "Batua" as well.  

Hence, we have made use of the standard version of Basque as well as the standard 
Spanish in the development of the resources presented in this work.  

The following section describes the main morphological features of the language 
and details the statistical analysis of morphemes using three different textual samples. 
Section 3 presents the resources developed. Section 4 describes the processing of the 
data. Finally, conclusions are summarised in section 5. 

2   Morphological Features of Basque 

Basque is an agglutinative language with a special morpho-syntactic structure inside 
the words [4] that may lead to intractable vocabularies of words for a CSR when the 
size of task is large. A first approach to the problem is to use morphemes instead of 
words in the system in order to define the system vocabulary [5].  

This approach has been evaluated over three textual samples analysing both the 
coverage and the Out of Vocabulary rate, when we use words and pseudo-morphemes 
obtained by the automatic morphological segmentation tool AHOZATI [6]. 

Table 1. Main characteristics of the textual databases for morphologic analysis 

 STDBASQUE NEWSPAPER BCNEWS 
Text amount 1,6M 1,3M 2,5M 
Number of words 197,589 166,972 210,221 
Number of pseudo-morphemes 346,232 304,767 372,126 
Number of sentences 15,384 13,572 19,230 
Vocabulary size in words 50,121 38,696 58,085 
Vocabulary size in pseudo-morphemes 20,117 15,302 23,983 
 

Table 1 shows the main features of the three textual samples relating to size, num-
ber of words and pseudo-morphemes and vocabulary size, both in words and pseudo-
morphemes for each database [6].  

Figure 1 shows some of the interesting conclusions derived of this analysis. The 
first important outcome of our analysis is that the vocabulary size of pseudo-
morphemes is reduced about 60% (Fig. 1, a) in all cases relative to the vocabulary 



 Language Resources for a Bilingual Automatic Index System 1049 

size of words. Regarding the unit size, Fig. 1 (b) shows the plot of Relative Frequency 
of Occurrence (RFO) of the pseudo-morphemes and words versus their length in 
characters over the textual sample named STDBASQUE. Although only 10% of the 
pseudo-morphemes in the vocabulary have fewer than four characters, such small 
morphemes have an Accumulated Frequency of about 40% in the databases (the Ac-
cumulated Frequency is calculated as the sum of the individual pseudo-morphemes 
RFO) [7]. 
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Fig. 1. (a) Vocabulary size of the words and pseudo-morphemes in the three textual samples 
and (b) Relative Frequency of Occurrence (RFO) of the words and pseudo-morphemes in rela-
tion to their length in characters (STDBASQUE sample) 

To check the validity of the unit inventory, units having less than 4 characters and 
having plosives at their boundaries were selected from the texts. They represent some 
25% of the total. This high number of small and acoustically difficult recognition 
units could lead to an increase of the acoustic confusion, and could also generate a 
high number of insertions (Fig. 2 over the textual sample EGUNKARIA[8]). 
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Fig. 2. Relative Frequency of Occurrence (RFO) of small and acoustically difficult recognition 
units in BCNEWS sample 
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Finally, Fig. 3 shows the analysis of coverage and Out of Vocabulary rate over the 
textual sample BCNEWS. When pseudo-morphemes are used, the coverage in texts is 
better and complete coverage is easily achieved. OOV rate is higher in this sample. 
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Fig. 3. Coverage (a) and OOV rate (b) for the textual sample BCNEWS 

3   Resources Developed 

Resources in Spanish 

• 6 hours of video in MPEG4 (WMV 9) format of “Teleberri” program, the daily 
program of broadcast news in Spanish, directly provided by the Basque Public 
Radio and Television EITB [2]. 

• 6 hours of audio (WAV format) extracted from the video (MPEG4) files. 
• 6 hours of audio transcription in XML format containing information about 

speaker changes, noises and music fragments, and each word’s phonetic and 
morphologic information. 

• 1 year of scripts, in text format, of the “Teleberri” program. The text is divided in 
sentences and paragraph. 

• 1 year of local newspapers in Spanish Gara [9], in text format. The text is divided 
in sentences and paragraph. 

• Lexicon extracted from the XML transcription files, including morphologic, 
phonologic and orthographic information. 

Resources in Basque 

• 6 hours of video in MPEG4 (WMV 9) format of “Gaur Egun” program, the daily 
program of broadcast news in Basque directly provided by the Basque Public Ra-
dio and Television EITB [2]. 

• 6 hours of audio (WAV format) extracted from the video (MPEG4) files. 
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• 6 hours of audio transcription in XML format containing information about 
speaker changes, noises and music fragments, and each word’s phonetic and or-
thographic transcription including word’s lemma and Part-Of-Speech disambigu-
ated tags. 

• 1 year of scripts, in text format, of the “Gaur Egun” program. 
• 1 year of local newspapers in Basque (Euskaldunon Egunkaria [8]), in text for-

mat. 
• Lexicon extracted from the XML transcription files, including phonologic, ortho-

graphic, and morphologic information. 

4   Processing Methodology 

Processing of the Video Data 

The video data used in this work has been provided directly by the Basque Public 
Radio and Television. The format used to store the broadcast contents is MPEG4 
(WMV 9), and the Basque Public Radio and Television has been very kind offering us 
all these resources. 

The ASR system developed doesn’t actually use the useful graphical information 
of the videos, but the images have been used thoroughly during transcription in order 
to find additional information that could enrich the transcription, as names and de-
scriptions of speakers, translation of foreign speakers’ words, description tables and 
maps, etc. 

In the near future some specific image information retrieval techniques could be 
incorporated to the ASR system. 

Processing of the Audio Data 

The audio data has been extracted out from the MPEG4 video files, using FFmpeg 
free software1. The audio files have been stored in WAV format (16 KHz, linear, 16 
bits). 

When the audio data was ready, the XML label files were created manually, using 
the Transcriber free tool [10]. The XML files include information of distinct speakers, 
noises, and paragraphs of the broadcast news. The transcription files follow the con-
ventions defined in the COST278 project and they contain extra phonetic and ortho-
graphic information of each of the words. Some of the recommendations and features 
described by the Linguistic Data Consortium in [11] have been also included for a 
better interpretation of the transcription files. 

These features include identification of the dialect used by speakers, correct spell-
ing of mispronounced words, language marks for any inclusion of foreign speech in 
the transcription, and identification numbers for related topics in both Basque and 
Spanish Broadcast News. 

Table 2 shows a simplified sample of the enriched version of the transcription for 
Basque. Some of the morphological information has been deleted to easier reading of 
the example. 
                                                           
1 Available online at http://ffmpeg.sourceforge.net 
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Table 2. Simplified sample of the output of the Transcriber free tool [10] enriched with mor-
pho-syntactic information of Basque 

<Sync time="333.439"/> 

+horretarako /hortarako/<Word lemma=”hori” POS=”ADB”/> 

+denok /danok/<Word lemma=”dena” POS=”IZL”/> 

lagundu<Word lemma=”lagundu” POS=”ADI”/> 

behar<Word lemma=”behar” POS=”ADI”/> 

dugu<Word lemma=”*ukan” POS=”ADL”/> 

. 

</Turn> 

<Turn mode="spontaneous" fidelity="high" start-
Time="335.182" endTime="336.065"> 

<Sync time="335.182"/> 

^Batasunak<Word lemma=”9batasuna” POS=”IZB”/> 

As Basque is an agglutinative language with very rich inflection variety [4], 
Basque XML files include morphologic information such as each word’s lemma and 
Part-Of-Speech tag. This information could be very useful in the development of 
Language Models for the recognition of continuous Speech in this context. 

Using this transcribed information, a Lexicon for each language has been extracted. 
The Lexicon stores information of each different word that appears in the transcrip-
tion. This information could be very useful for developing speech recognition tools as 
well as many other NLP applications. 

Processing of the Textual Data 

There are two independent types of textual resources: The text extracted from the 
newspapers Gara [9] and Euskaldunon Egunkaria [8]), and the scripts of the "Tele-
berri" and "Gaur Egun" programs. These last resources are very interesting because 
they are directly related (date, program) with the texts read in the broadcast news both 
in Spanish and Basque. 

All of them were processed to include morphologic information such as each 
word’s lemma and Part-Of-Speech tag. Using all the information, a Lexicon for each 
language has been extracted taken into account the context of the word in order to 
eliminate the ambiguity. The Lexicon stores information of each different word that 
appears in the transcription, and this information could be very useful for developing 
speech recognition tools. Table 3 shows some examples of the lexicon information. 

The first column of Table 3 shows some example of the words as they have been 
transcribed from the Broadcast News audio recording. The alternative transcriptions 
of the word are spotted in second place, and the morphological information is later 
added, and it includes morpho-syntactic information, lemma information [4] and its 
corresponding sub-lexical unit segmentation as explained in [6]. 
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Table 3. Sample of the Lexicon for Basque, including information extracted of the morphol-
ogic analysis of the transcription 

Input Transcription Morphological Analysis LEMA Morphological 
segmentation 

 ADJ IZO DEK GEN MG 
DEK ABS NUMS 
MUGM ;  

euskaldun=en=a; 

ADJ IZO DEK GEN 
NUMP MUGM DEK 
ABS NUMS MUGM ; 

euskaldun=en=a; 

euskaldunena ewS.'kal.du.ne.'2na 

 ADJ IZO GRA SUP 
DEK ABS NUMS 
MUGM  

euskaldun 

euskaldun=en=a 

 IZE ARR DEK GEN 
NUMP MUGM ;  

margolari=en; margolarien mar.'Go.la.r6i.'2en 

IZE ARR DEK GEN 
NUMP MUGM DEK 
ABS MG  

margolari 

margolari=en 

mar.'Go.la.r6i.'2t&san margolaritzan 

mar.'Go.la.r6i.'2t&c~an 

 IZE ARR DEK NUMS 
MUGM DEK INE  

margolaritza margolaritz=an 

mar.'go.la.r6i.'2t&sa  IZE ARR; IZE ARR 
DEK ABS MG ; 

margolaritza; 

mar.'go.la.r6i.'2t&c~a  IZE ARR DEK ABS 
NUMS MUGM  

margolaritza; 

margolaritza 

  

margolaritza 

margolaritz=a 

5   Concluding Remarks 

In this paper a developing system for automatic indexing of bilingual Broadcast  
News has been presented. Its development entails the compilation of resources for 
both Basque and Spanish, which are the official languages in the Basque Country, and 
they are used in the Basque Public Radio and Television EITB [2] and in most of the 
mass media of the Basque Country. 

Resources for Basque have been explained in more detail, since it is a minority lan-
guage with special problematic. Since it is an agglutinative language, analysis of cover-
age and words OOV has been carried out in order to develop an appropriate Lexicon. 

Finally, we would like to remark that lexicons are enriched using morphologic and 
phonetic information, not just extracting a word list, so this information could be 
useful in future development of more sophisticated approaches in ASR systems and 
transcription of Broadcast News. 
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Abstract. Automatic semantic annotation of video streams allows to
extract significant clips for archiving and retrieval of video content. In
this paper, we present a system that performs automatic annotation
of soccer videos, detecting principal highlights, and recognizing identity
of players. Highlight detection is carried out by means of finite state
machines that encode domain knowledge, while player identification is
based on face detection, and on the analysis of contextual information
such as jersey’s numbers and superimposed text captions. Results ob-
tained on actual soccer videos shows overall highlight detection rates of
about 90%. Lower, but still promising, accuracy is achieved on the very
difficult player identification task.

1 Introduction and Background Work

To provide effective archiving and retrieval of video material, video streams
must be annotated with respect to its semantic content, producing metadata
that is attached to the video data and stored in databases. This will permit,
for example, to produce special video summaries for a sport program such those
that recollect the best actions occurred during a typical soccer turn, or those
where are notable actions of a certain player. In this case the parts of the video
containing important highlights must be selected and edited to create a new
video sequence. One limitation to the diffusion of this practice is due to the fact
that manually summarizing, annotating or tagging video is a cumbersome and
expensive process. This has motivated recently the investigation of techniques
to extract semantic information automatically from sports video sequences. At
semantic level, video annotation regards the identification and recognition of
meaningful entities and events represented in the video. Semantic video anno-
tation is obtained combining observed features and patterns, like settings, text
captions, people and objects, highlights and events, and domain knowledge. The
latter is required in order to reduce the semantic gap between the observable
features of the multimedia material and the interpretation that a user have. A
good review of multimodal video annotation is provided in [16].

Due to their huge commercial appeal sports videos represent an important
application domain for video automatic annotation [20]. Sport shots can be clas-
sified into the most common scene types, that are playfield, players’ close-ups
and crowd, using edges, segments and color information. From playfield shots it
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is possible to perform sport classification based on the characteristics of the play-
field like ground color and lines. Solutions for recognition of specific highlights
have been proposed for different sports like soccer, tennis, basketball, volleyball,
baseball, American football. Usually these methods exploit low and mid level
audio and visual cues, such as the detection of referee’s whistle, excited speech,
color and edge related features, playfield zone identification, players and ball
tracking, motion indexes, etc. and relate them to a domain knowledge of the
sports or of the video producers. In the first case knowledge of the sports rules
and typical actions are used, in the second case the production rules employed
by directors, like the presence of slow motion replays, are used. Good examples
are reported in [17]for tennis, in [21] for basketball, in [11] and [13] for football
and in [1], [6], [19] for soccer.

Several researchers have also focussed on the identification of people in the
video for the purpose of video semantic annotation. Person recognition by means
of association of interpreted textual content - extracted from text captions - to
faces - automatically detected from skin tone analysis - has been investigated in
the context of news video in [14], and more recently in [3] and [4]. Two important
recent works for people identification are [7] and [15].

In this paper we present recent results of our research for providing rich
annotations of highlights in soccer. The definition of highlights is based on formal
methods (using finite state machines) and is detected through a model checking
engine. Highlight detection is based on a limited set of visual cues, which are
derived from low–level features such as edges, shapes and color. To provide
a richer annotation, we add details related to the players who take part in a
particular highlight occurrence using information extracted from faces, jersey
numbers and superimposed text captions, which are usually present in the video
stream.

The paper is organized as follows. In Sect. 2, we briefly introduce peculiarities
that can be exploited for modeling highlights in soccer, providing details on
estimation of visual cues, and on the model checking algorithm. Detection and
recognition of the player is discussed in Sect.3. Players that are not identified
in this process are then linked by similarity to one of the labeled faces (3.4).
Examples of highlight recognition and superimposed caption extraction and face
detection and recognition are shown in Sect.4 and 5, together with indications
of results obtained. Conclusions and future work are discussed in Sect. 6.

2 Soccer Video Highlight Detection

Our solution for highlight modeling and detection employs finite state machines
(FSMs). States represent main phases in which actions can be decomposed.
Events indicate transitions from one state to the other: they capture the relevant
steps in the progression of the play and are expressed in terms of a logical
combination of a few visual cues, the camera motion, the playfield zone that is
framed and the position of soccer players extracted from the video stream. Time
constraints, for example a minimum temporal duration, can be applied to state
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[SUCCESS]

[FAILURE]
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play is around
the goal box

otherwise otherwise otherwise
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towards the goal post

1 2 ENDINIT

Fig. 1. The informal model of a shot on goal highlight in the soccer domain

transitions [1]. Fig. 1 shows how the essential phases of a shot on goal highlight
have been represented as a FSM.

In the following we discuss in detail the solutions adopted for the estimation
of the visual cues and the each separate detector and players’ annotation.

2.1 Estimation of Visual Cues

Camera Motion. In soccer, ball instantaneous position and motion direction
are important cues for the understanting of the play. A well known production
rule of soccer videos is that the director uses the main camera to follow the ball
and the play. For this reason, we rely on camera motion as a somewhat rough,
but reliable estimate of the speed and the direction of the ball. As the main
camera is observing the soccer playfield in a fixed position, a 3-parameter image
motion estimation algorithm capturing horizontal and vertical translations and
isotropic scaling is sufficient to get a reasonable estimate of camera pan, tilt and
zoom. Motion estimation algorithm that has been used is an adaptation to the
sports videos domain of the algorithm reported in [2], that is based on corner
tracking and motion vector clustering. As it works with a selected number of
salient image locations, the algorithm can cope with large displacements due to
fast camera motion. The algorithm employs deterministic sample consensus to
perform a statistical motion grouping. This is particularly effective to cluster
multiple independent image motions, and is therefore suitable for the specific
case of sports videos to separate camera motion from the motion of individual
players.

Playfield Zone Estimation. To estimate playfield zone, the playfield is first
partitioned in several, possibly overlapping zones, which are defined so that
the change from one to the other indicates a change in the play. In general,
a typical camera view is associated with each playfield zone, and we exploit
common patterns of these views to recognize which zone is framed. Fig. 2 shows
the partition of the playfield that we have used. Each zone is recognized using
a dedicated Nàıve Bayes classifier, which takes as input a (vector-quantized)
descriptor. The descriptor itself is derived from low–level features such as edge,
shape and color. Since classifiers have identical structure, large differences in
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Fig. 2. Playfield partition for soccer

their outputs are likely to be significant, so we choose the classifier with the
highest output probability as the one identifying the zone currently framed.

Player Position and Speed. Players’ position is instrumental for the recogni-
tion of those highlights that are characterized by a typical deployment of players
on the playfield, like all “free shots”. For these highlights, both camera and play-
ers are usually still at the start of the action, allowing a robust estimation of the
position of players, so that typical configurations of the deployment can be rec-
ognized. We exploited the knowledge of the actual planar model of the playfield
to estimate automatically the homography [10] which maps any imaged play-
field point (x, y) onto the real playfield point (X,Y ). Players are first detected
as “blobs” from each frame by color differencing to identify their position on
the frame. Bottom-end point of each detected template is remapped onto the
playfield model trough the estimated homography. Assuming the pinhole cam-
era projection model, the image-to-playfield transformation has the form of a
planar homography. Since we are provided with a set of line segments as the
result of image segmentation, the homography is estimated using four line cor-
respondences. If [a b c]T such that ax + by + c = 0 is the image of a playfield
line [A B C ]T , it holds:

[a b c]T = K [A B C ]T , (1)

with K = HT , and H is the image–to–model homography.
The output of the registration process is then used to build a compact rep-

resentation of how the players are deployed, such as the histogram of players’
occupation of playfield zones. The presence or absence of players in the areas
contributes to discriminate between three classes of free kicks, namely penalty
kicks, corner kicks and free kicks with wall.

Motion information of objects and/or athletes that are present in the scene
is obtained from the same motion processing and clustering used for camera
motion estimation. In fact, we cluster motion magnitude and direction of pixels
that are moving independently. This measure is sufficient to detect characteristic
acceleration and deceleration of groups of players when actions change somewhat.

2.2 Model Checking

To recognize highlights from the occurrence of the visual cues, operational models
are used to perform model checking over the FSMs that model the highlights.
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The combination of the measures of the visual cues that are estimated, are
checked against each highlight model in parallel. The model checking algorithm
works as follows: in the main loop, the visual features that are used to detect
the occurrence of highlights (e.g. line segments, players’ blobs, playfield color)
are extracted from each frame. From these features, descriptors related to the
three visual cues previously discussed are computed. Visual cues are discretized:
for example, for soccer videos we have 12 possible values for the cue playfield
zone, 5 values (both in horizontal and vertical direction) for the camera motion,
and 3 different values for the player position descriptor. Hence, a 4-dimensional
vector is input in all models at each instant, and the constraints associated
with transitions from the current state are checked. If a constraint is verified,
the current state is updated, leading either to an advancement in the model
evolution, or to a rejection of the current segments (hence resetting the model).
Whenever a model progresses from the initial state, the current frame number is
stored, to mark the beginning of a possible highlight; if the model succeeds-i.e. a
highlight is identified-the current frame number is also stored to mark the end of
an actual highlight, otherwise the initial frame number information is discarded.

3 Player Identification

Player identification in sports videos is a complex task, mainly because of player’s
fast motion and frequent occlusions. Only close-up views are useful for recog-
nition; however also in close–up views players may exhibit large variations in
pose and expression, making them sometimes hard to recognize even for a hu-
man observer. On the positive side, close-up shots in sports videos have a strong
visual appearance. In fact, players wear colored jerseys, usually decorated with
some stripes or logos, and most important, showing the player’s number. The
player’s jersey number is unique during an international tournament, and can be
used to recognize players identity either analyzing a graphic screen, or checking
an existing database, such as those available on the UEFA Euro 2004 website.
Superimposed text captions are also shown to point out some interesting details
about the player currently framed. They can be used as well to extract important
information that is useful for the player identification.

These considerations lead to the fact that, for the purpose of player’s iden-
tification, face recognition is not the only possible approach. We decided to
exploit the information present in close-up shots with frontal faces and super-
imposed text captions and or the player’s jersey number. After this first step,
non-identified faces are in turn analyzed in order to understand if a face is similar
to any of the faces already annotated using text or jersey’s number.

In the following we discuss in detail the solutions adopted for each separate
detector and players’ annotation.

3.1 Face Detection

Detection of faces is achieved trough an implementation of the algorithm pro-
posed by Viola and Jones [18]. We briefly outline here the algorithm, referring
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the reader to the original paper by Viola and Jones, and their subsequent work.
Basically, the algorithm employs several simple classifiers devoted to signal the
presence of a particular feature of the face, like the alignment of the two eyes
or the symmetry in frontal views. A large number of these simple features is
initially selected. Then, a classifier is constructed by selecting a small number
of important features using AdaBoost [8]. A feature is weighted combination of
pixel sums of two rectangles, and can be computed for each pixel in constant
time using auxiliary images like the Summed Area Table (SAT), which is defined
as follows:

SAT (x, y) =
∑
i≤y

∑
j≤x

I(i, j)

where I is the original image. Rotated version of the SAT are employed to
compute rotated features. The current algorithm uses the templates of Fig. 3 to
compute features: Computation of a single feature f at a given position (x, y)
requires to subtract the sum of the intensity values of all the pixels lying under
the white rectangle of a template (pw) from the sum of the intensity values of all
the pixels lying under the black rectangle (pb) of the same template: f(x, y) =∑

i pb(i)−
∑

i pw(i).

Fig. 3. Rectangle features by the face and number detection algorithm

In the current implemementation, the algorithm has been trained to detect
frontal and quasi-frontal faces. Training has been carried out with a few hun-
dreds of positive examples taken from a standard face dataset, and another 100
examples manually cropped from soccer video sequences. To deal with the prob-
lem of false detection we defined a face verification procedure which is run within
the bounding box of each hypothesized face. For each detected face, we produce
a color histogram of the region immediately below the face bounding box. The
histogram is applied to the Hue component in the HSV color space, normalized
w.r.t. white, black, and 5 shades of gray. This histogram is clearly dominated
by the principal color of the team jersey, which shows histograms for players
belonging to different teams in the same game. For each detected faces, this
context color histogram c is compared to a reference histograms r, using the χ2

statistics. As a second verification step we perform eye detection directly using
the intensity values. Pixels of the region of interest are first transformed into the
YCrCB color space. Then, the eye map is obtained, combining two separate lu-
minance and chrominance maps. Once the shapes present in the final map have
been separated, roundness is checked to assess if they correspond to eye pupils
value is greater than a threshold the shape is considered as possible eyes. After
that, the position of the eye is considered and a region that has two eye-like
regions in the appropriate positions is finally considered to be a face.
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3.2 Detection and Recognition of Jersey’s Numbers

Detection of numbers depicted on player’s jerseys is achieved using the same
approach as for faces. Official rules of most important soccer organization (like
UEFA and FIFA) state that jerseys must be decorated with such numbers on
their front, and that size of the numbers must be within a certain range. More-
over, numbers are in the range from 1 to 22, and remains assigned to each player
for the entire tournament. We train a different detector for each number from 1
to 22. We found that this approach is far more reliable that having classifiers for
digits 0-9, because two digits numbers are not always well separated, and so they
tend to cause missed detections. Moreover, detecting each digit separately would
force us to impose constraints on spatial arrangement of detected digits which
are not easy to verify in the cases where numbers are not perfectly horizontal.

Each detector acts as a dichotomizer, allowing us to directly recognize which
is the particular number that has been detected. Each classifier has been trained
with 50 positive and 100 negative examples, the latter being randomly selected
from images, while the former have been manually cropped. Other positive exam-
ples have been generated with graphic programs or obtained by small rotations
of some selected images. Templates for numbers are such that bounding box side
is about 30 pixels wide.

3.3 Superimposed Text Detection and Recognition

To locate text captions containing player’s name and other useful information,
we exploited typical production rules of sports videos. These are basically the
fact that to enhance readability of characters, producers use luminance contrast
(luminance is not spatially sub-sampled in the TV standards) and captions with
names of athletes occupy a horizontal box. The algorithm for superimposed
text detection we have developed is based on spatio-temporal analysis of image
corners and has been described in detail in [4]. An image location is defined
as a corner if the intensity gradient in a patch around is distributed along two
preferred directions (non-isotropic condition). Therefore, in correspondence with
corners the gradient auto–correlation matrix has large and distinct eigenvalues.
Corners are detected from:

A =
(
〈I2

x〉 〈IxIy〉
〈IxIy〉 〈I2

y 〉

)
c(x, y) = detA− k tr2A with k = 0.04

if c(x, y) is above a predefined threshold, where subscripts denote partial dif-
ferentiation with respect to the coordinate axis, and brackets indicate Gaussian
smoothing. The first term of the equation has a significant value only if both
eigenvalues are different from zero, while the second term inhibits false corners
along the borders of the image.

Following the text localization several steps for text recognition are per-
formed. They involve binarization, temporal integration and image enhancement.
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Fig. 4. Left - examples labeled by means of text or number. Right - an unlabeled
example to be assigned to one of the labels. Lines represent possible correct pairings.

In our experiments, we have used a freely available OCR software [9]. The tool
provides a good separation between different words, while making some mistakes
in character recognition. In order to recognize player’s names, we deal with this
problem using an approximate string matching algorithm to perform query on
a database of players’ names.

3.4 Face Matching

To assign every non-identified face to one of the player classes we exploit the fact
that players are a fixed and somewhat limited population. More in detail, we
considered each annotated example as an individual, avoiding to merge clusters
relative to the same player.

An example of this situation is given in Fig.4, where the unlabeled face in the
center must be assigned to one of the labeled faces, which are (a subset of) faces
annotated by means of number or text caption. The faces on the first row of the
left side, and of the first and third row of the right side represent the same player.
Considering each row as a distinct individual, we built a compact representa-
tion based on local facial features. This has the effects of increasing inter-class
distances in our classification task, but at the cost of having an increased num-
ber of classes. Hence, for the unlabeled example there are three possible correct
pairings. In practice, to label an unknown face, we require to find a face of the
same player with a similar pose and expression.

To cope with the large variation of poses and expressions we followed a part-
based approach to recognition, similarly to [15], using the SIFT descriptors [12].
We experimented with several part–based representation schemes, and obtained
the most satisfying results using three SIFT descriptor centered on the two eyes
(20 × 20 pixel, with the face size normalized to be 80 pixels wide), and on the
midpoint of the eyes (15×30 pixels). This choice is motivated by the facts that a)
these are the most robust facial features to detect and track troughout the shots
and b) the lower part of the face is often characterized by appearance changes
due to variation in expression, that exceed those due to identity changes. The
basic SIFT descriptor has been modified to avoid to include in the descriptor
non-face part of the image. In particular, we rely on skin–maps to adaptively
compute the weights of the components of the SIFT descriptor. For each pixel
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of the patch, its weight in the descriptor is cut to zero as the pixel falls off the
region defined by the skin–map.

The matching process begins by obtain a single face track for each of the
frontal faces found in a shot. A face track is a set of consecutive faces of the
same player in the same shot. The detected face is used as a starting point to
initialize the track. First, a skin-tone model is built for the face. This is done by
collecting an histogram in the CbCr space of the bounding box, and then using
the dominant color as a skin tone. Then, eyes are tracked throughout the shot,
using a simple correlation based tracker that uses eyes-centroids as measure. To
avoid false track, the eye search is performed within a limited region (10 pixels)
centered on the last observation, and completely included in the region delimited
by the skin map. As the tracker looses the eye-tracks, the face track is closed
and a compact representation of the whole track is produced.

Similarity between face tracks is computed using the minimum distance be-
tween the two sets. If U is a face track corresponding to a non–labeled player,
and L is a labeled face track, their distance is computed as follows:

d(U,L) = min
i,j
‖Ui − Lj‖,

where Ui and Lj are two 384–length vector, and their distance is measured using
the l1 norm. A single track may be labeled with several labels. A threshold has
been set such that no more than three labels are assigned to the same player. In
the worst case, correction of multiple annotations must be done manually with
little effort.

4 Highlights Detection Results

Experiments have been carried out with videos of soccer games provided by BBC
Sports Library and recorded off-air from other broadcasters. Videos recorded at
full PAL resolution and 25 fps. The overall test set includes over 100 sequences
with typical soccer highlights, of duration from 15 seconds to 1.5 minutes. The
relative frequency of the different types of highlights reflects that of a typical
soccer game. Tables 1 and 2 show precision, misclassification and miss rates for
the principal soccer highlights. It can be noticed that, for most of the highlights,
correct detection is close to 90%.

5 Player Identification Results

The player identification method of Sect.3 has been tested on the same material
of the experiments on highlight detection. On average, the system selected about
6000 frames for each game, providing 4 minutes of close-up shots with name/face
association. The average number of players identified is 12 for game, without
repetition. Figure 5 shows key–frames taken from shots where the either a face
and a number have been found, or a face and text have been found. Table 3
reports performance of the number, face and text detectors, averaged on the



Automatic Annotation of Sport Video Content 1075

Table 1. Precision and misclassification rates of soccer highlight automatic annotation

HIGHLIGHT CLIP EVENT
DETECTED Forward launch Shot on goal Placed kick Attack act. Counter att. No highlight

Forward launch 89.75% 1.67% 0.00% 0.0% 0.00% 8.58%
Shot on goal 1.52% 93.90% 0.00% 0.00% 0.00% 4.58%
Placed kick 0.00% 0.00% 89.75% 0.00% 0.00% 10.25%
Attack action 1.50% 1.10% 0.00% 96.40% 1.00% 0.00%
Counter attack 0.00% 0.00% 0.00% 8.33% 83.34% 8.33%

Table 2. Miss rates of soccer highlight automatic annotation

HIGHLIGHT MISSES
Forward launch Shot on goal Placed kick Attack action Counter attack

5.12% 13.05% 7.05% 25.00% 20.10%

Fig. 5. Examples of key frames selected by the system from a Euro 2004 game. The
face in the last frame was not detected, but the player was correctly labeled using its
number.

duration of a game. Reported ground truth (column “present”), is referred to
single player close–up shots, those that are of interest for desired annotation.
Table 4 reports average results obtained running the system on the duration of
a game. Not surprisingly, detection of face-caption shots is most reliable than
detection of face-number shots. This is mainly due to misdetections of the face
and number detectors, while the closed caption detector correctly detects nearly
all the shots where a caption was present. Moreover, the number of close-up
shots detected is fairly low if compared with the total number of close-up shots,
where identification is not performed because neither jersey’s number nor text
caption was present. However, it must be noticed that player’s close up occurring
during the most interesting moments of the game (after a goal for instance) are
usually detected by the system.

Table 3. Face, number and text detector performances

Detector Present Detected Correct False Missed
Face 112 98 90 8 22
Numbers 36 24 20 16 4
Text 12 11 11 1 0
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Table 4. Detailed results of the annotation of a single game

Correct
Total number of close-up shots 112
Face-number shots present 36
Numbers of distinct players present 18
Face-number shots detected 24 20
Face-caption shots present 12
Face-caption shots detected 11 11
Number of annotated shots 31 27
Number of distinct players identified 13 10

Fig. 6. Face matching experiment. Left: ground truth data. 9 players annotated with
their name, plus a “null” class, comprised of unlabeled players. Right: results based on
face matching. Some examples were not labeled, since they were not found similar to
any labeled example. Crosses indicate incorrect assignments.
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5.1 Face Matching Results

To test the face matching scheme of Sec. 3.4, we picked 10 correctly identified
faces from the various games present in our testbed, and 30 non–labeled face
tracks, for which ground truth was manually obtained. Of these, 25 tracks had a
matching face in the annotated set, while the other 5 were completely new to the
system. Results are shown in Fig. 6. To keep the result more readable, we avoid
the multiple labeling scheme described in Sec. 3.4, and we simply assign a face
track to the closest face in the labeled dataset. Also, in this experiment the goal
is to test the performance of the face matching module, hence we deliberately
avoid to use context information, such as the color of the player’s jersey, to rule
out obvious false matches (e.g., assigning a player to the wrong team).

6 Conclusions and Future Work

We presented solutions to perform automatic annotation of soccer video for
the principal highlights and active players by exploiting a limited set of visual
cues and a-priori knowledge of the rules and development of the soccer play.
Improvements in the performance of player identification might require more
discriminative face representation schemes and new and more effective solutions
for jersey number detection.
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Abstract. In this paper the authors use the framework of conformal
geometric algebra for the treatment of robot vision tasks. In this mathe-
matical system we calculated projective invariants using omnidirectional
vision for object recognition. We show the power of the mathematical
system for handling differential kinematics in visual guided tracking.

1 Introduction

This paper shows the power of conformal geometric algebra for different tasks
of robot vision. In this framework we calculate projective invariants using om-
nidirectional vision. These invariants are utilized for object recognition. We also
treat the problem of the control of a robot binocular system which is used for 3D
visual tracking. For the control strategy we utilize a novel geometric formulation
of the involved Jacobian for the differential kinematics.

The rest of this paper is organized as follows: We give a brief description of
the geometric algebra and also of the conformal geometric algebra in section II.
In section III we explain the projective invariants. In section IV we explain the
projective invariants using omnidirectional vision. Section V is devoted to the
differential kinematics and control of a pan-tilt unit. The experimental analysis
is given in section VI and the conclusions are in section VI.

2 Geometric Algebra

In general, a geometric algebra Gn is a n-dimensional vector space V n over the
reals. We also denote with Gp,q,r a geometric algebra over V p,q,r where p, q, r
denote the signature p, q, r of the algebra. If p �= 0 and q = r = 0 the metric is
Euclidean Gn, if just r = 0 the metric is pseudoeuclidean Gp,q and if non of them
are zero the metric is degenerate. See [3,2] for a more detailled introduction to
conformal geometric algebra.
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We will use the letter e to denote the vector basis ei. In a geometric algebra
Gp,q,r, the geometric product of two basis vectors is defined as

eiej =


1 for i = j ∈ 1, ..., p
−1 for i = j ∈ p + 1, ..., p+ q
0 for i = j ∈ p + q + 1, ..., p+ q + r

ei ∧ ej for i �= j

(1)

2.1 Conformal Geometric Algebra

In the Euclidean space the composite of displacements is complicated because
rotations are multiplicative but translations are additive. In order to make trans-
lations multiplicative too, we use the Conformal Geometric Algebra [3,2].

In the generalized homogeneous coordinates for points in the Euclidean space,
we need that they be null vectors and also lie on the intersection of the null cone
Nn+1 (the set of all null vectors) with the hyperplane

Pn+1(e, e0) = {X ∈ Rn+1,1 | e(X − e0) = 0}, (2)

that is

Nn
e = Nn+1 ∩ Pn+1(e, e0) = {x ∈ Rn+1,1|X2 = 0. X · e = −1} (3)

which is called the homogeneous model of En, also called the horosphere (see
Fig. 1) in hyperbolic geometry.

Fig. 1. Simplex at a0 with tangent a1 ∧ a2

The points that satisfy the restrictions X2 = 0 and X · e = −1 are

X = x +
1
2
x2e + e0 (4)

where x ∈ Rn and X ∈ Nn. The origin is e0 = 1
2 (en+1− en+2) and the point at

infinity e = en+1 + en+2.
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Table 1. Entities in conformal geometric algebra

Entity IPNS Representation OPNS (Dual)
Representation

Sphere S=p+ 1
2 (p2−ρ2)e+e0 S∗=A∧B∧C∧D

Point X=x+ 1
2x2e+e0 X∗=S1∧S2∧S3∧S4

Plane Π∗=A∧B∧C∧e

Line L∗=A∧B∧e

Circle Z=S1∧S2 Z∗ = A ∧ B ∧ C

Point Pair PP=S1∧S2∧S3

Note that this is a bijective mapping. From now and in the rest of the paper
the conformal points will be denoted by an italic uppercase letter (X), and the
Euclidean points will be denoted by boldpoint at lowercase letters x.

In table 1 we show the geometric entities of the conformal geometric algebra.
Note that in the IPNS representation the point is a sphere with radius zero. In
the dual representation the sphere is calculated using 4 points that lie on it.

Simplexes and Conformal Points. Evaluating the outer product of r linearly
independent conformal points a0, a1, . . . , ar, where r ≤ n and n is the maximum
grade of the algebra. The outer product of r conformal points is

a0 ∧ a1 ∧ · · · ∧ ar = Ar + e0A+
r +

1
2
eA−

r −
1
2
EA±

r , (5)

where

Ar = a0 ∧ a1 ∧ · · · ∧ ar,

A+
r =

r∑
i=0

(−1)ia0 ∧ · · · ∧ ǎi ∧ · · · ∧ ar = (a1 − a0) ∧ · · · ∧ (ar − a0),

A−
r =

r∑
i=0

(−1)ia2
i a0 ∧ · · · ∧ ǎi ∧ · · · ∧ ar,

A±
r =

r∑
i=0

r∑
j=i+1

(−1)i+j(a2
i − a2

j)a0 ∧ · · · ∧ ǎi ∧ · · · ∧ ǎj ∧ · · · ∧ ar. (6)

Note that Ar is the moment of the simplex with tangent (boundary) A+
r .

The outer product a0 ∧ a1 ∧ · · · ∧ ar represents a sphere when Ar = 0

a0 ∧ a1 ∧ · · · ∧ ar = −[e0 −
1
2
eA−

r (A+
r )−1 +

1
2
A±

r (A+
r )−1]EA+

r (7)

where the center and radius of the sphere

c =
1
2
A±

r (A+)−1, ρ2 = c2 + A−
r (A+)−1. (8)
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3D Rigid Motion. In conformal geometric algebra we can perform rotations
by means of an entity called rotor which is defined by

R = exp

(
θ

2
l
)

, (9)

where l is the bivector representing the dual of the rotation axis. To rotate an
entity, we simply multiply it by the rotor R from the left and the reverse of the
rotor R̃ from the right,

Y = RXR̃ . (10)

If we want to translate an entity we use a translator which is defined as

T =
(

1 +
et

2

)
= exp

(
et
2

)
. (11)

With this representation the translator can be applied multiplicatively to an
entity similarly to the rotor, by multiplying the entity from the left by the
translator and from the right with the reverse of the translator,

Y = TXT̃ . (12)

Finally, the rigid motion can be expressed using a motor which is the com-
bination of a rotor and a translator

M = TR , , (13)

thus the rigid body motion of an entity is described with

Y = MXM̃ . (14)

Also a motor can be defined using the exponential representation with a line
representing its axis

M = exp

(
−θ
2

ICL∗
)

, (15)

note that the line must be normalized to one.

3 Invariants

An invariant is a property that remains unchanged under certain class of trans-
formation. Within the context of vision, we are interested in determining the
invariants of an object under perspective projection. The cross-ratio of four
collinear points is a well known 1D-invariant under projective transformations
but it can be extended to 2D, so we can use it for image invariants. In the 2D
case we need five points in the 3D case we need six points. In the 3D space these
invariants can be interpreted as the cross-ratio of tetrahedral volumes.
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Now, for the 2D case we need five points, an example of a 2D invariant is

Inv2 =
(X5 ∧X4 ∧X3)I−1

p2 (X5 ∧X2 ∧X1)I−1
p2

(X5 ∧X1 ∧X3)I−1
p2 (X5 ∧X2 ∧X4)I−1

p2
, (16)

where Ip2 = e1 ∧ e2 ∧ e− denotes the pseudoscalar of the 2D projective space.
If we use conformal points the outer product of three points leads to a circle,

so with four circles we can compute the 2D invariants. Also note that we use the
Ar (6) part of the circle (the moment of the simplex) to calculate the invariant.

C1 = X5 ∧X4 ∧X3, C2 = X5 ∧X2 ∧X1, (17)
C3 = X5 ∧X1 ∧X3, C4 = X5 ∧X2 ∧X4. (18)

Let Ar,k denote the Ar part of the k-circle Ck where k = 1 . . . 4. Then the
invariant using the moment Ar of the simplex is

Inv2 =
Ar,1I

−1
E Ar,2I

−1
E

A+
r,3I

−1
E A+

r,4I
−1
E

. (19)

4 Invariants and Omnidirectional Vision

The projective invariants do not hold in the catadioptric image, but they do in
the image sphere. Therefore we must take some points in the catadioptric image
and project them to the sphere. Once we do this we can proceed to calculate the
invariants using four circles.

First we will show briefly that projective invariants in the plane are equivalent
to projective invariants in the S2 sphere (image sphere), see Fig. 2. According
our previous work [1] we define the point F (in this case it will be equal to e0),
then the unit sphere is

S = e0 −
1
2
e . (20)

Now, let x1, x2, ...x5 be points in the Euclidean space with conformal repre-
sentation

Xi = xi +
1
2
x2

i e + e0, for i = 1 . . . 5. (21)

Then we project the points in the space to the sphere and that give us the
projected points say U1, U2, . . . U5.

In the other hand, the image plane ΠI (in order to compare the invariants)
is defined as

ΠI = e2 + e . (22)

We project first the points to the plane and then we intersect the plane with
each line

Qi = L∗
i ·ΠI for i = 1 . . . 5. (23)
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The point Qi is a flatpoint which is the outer product of a conformal point
with the null vector e (the point at infinity). To obtain the conformal point from
the flatpoint we can use

Vi =
Qi ∧ e0

(−Qi · E)E
+

1
2

(
Qi ∧ e0

(−Qi · E)E

)2

e + e0 . (24)

Using (18) we calculate the two sets of four circles, one for the points Ui

and one for Vi. With each set of circles we calculate the two invariants using
(19), after comparing this two invariants we will see that them are the same.
Therefore, we now know that if we project the points in the catadioptric image
to the sphere we have again the projective invariants.

a) b)

c)

Fig. 2. Different views of points in the space projected to the (image) sphere and to
the (image) plane used to compare the calculated invariants. a) Global view of points
projected to the sphere and to the plane, b) Points projected in the sphere with the
circles formed to calculate the invariants and c) Points projected in the plane with its
circles formed to calculate the invariants.

We have seen a brief introduction to several topics necessaries to understand
the experimental results. In the next section we will see an application of the
given theory.

5 Differential Kinematic Control for a Pan-Tilt Unit

We will show an example using our formulation of the Jacobian. This is the
control of a pan-tilt unit.
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5.1 System

We can implement velocity control for a pan-tilt unit (PTU Fig. 3.a) easily
assuming three degree of freedom (we call it virtual component), the PTU has
similar kinematic behavior as a robot of three D.O.F.

a) b)

Fig. 3. a) Binocular stereo system fastened on a pan tilt unit. b) Abstraction of the
stereo system.

In order to carry out a velocity control, we need first to compute the direct
kinematics, this is very easy to do, because we know the axis lines:

L1 = −e31, L2 = e12 + d1e1e∞, L3 = e1e∞. (25)

Since Mi = e−
1
2 qiLi and M̃i = e

1
2 qiLi , we can compute the position of end

effector as:
xp(q) = x′

p = M1M2M3xpM̃3M̃2M̃1, (26)

The estate variable representation of the system is as follows
ẋ′

p = x′ ·
(
L′

1 L′
2 L′

3
)u1

u2
u3


y = x′

p

(27)

where the position of end effector at home position xp is the conformal mapping
of xpe = d3e1 + (d1 + d2)e2, the line L′

i is the current position of Li and ui is
the velocity of the i-junction of the system. As L3 is an axis at infinity M3 is a
translator, that is, the virtual component is a prismatic junction.

5.2 Linearization Via Feedback

Now the following state feedback control law is chosen in order to get a new
linear an controllable system.u1

u2
u3

 =
(
x′

p · L′
1 x′

p · L′
2 x′

p · L′
3
)−1

v1
v2
v3

 (28)
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Where V = (v1, v2, v3)T is the new input to the linear system, then we rewrite
the equations of the system

{
ẋ′

p = V
y = x′

p
(29)

5.3 Asymptotic Output Tracking

The problem of follow a constant reference xt is solved computing the error
between end effector position x′

p and the target position xt as er = (x′
p∧xt) ·e∞,

the control law is then given by.

V = −ke (30)

This error is small if the control system is doing it’s job, it is mapped to an
error in the joint space using the inverse Jacobian.

U = J−1V (31)

Computing the Jacobian J = x′
p ·

(
L′

1 L′
2 L′

3
)

j1 = x′
p · (L1), j2 = x′

p · (M1L2M̃1), j3 = x′
p · (M1M2L3M̃2M̃1) (32)

Once that we have the Jacobian is easy to compute the dqi using Crammer’s
rule.

u1
u2
u3

 = (j1 ∧ j2 ∧ j3)−1 ·

V ∧ j2 ∧ j3
j1 ∧ V ∧ j3
j1 ∧ j2 ∧ V

 (33)

This is possible because j1∧j2∧j3 = det(J)Ie. Finally we have dqi which will
tend to reduce these errors. Due to the fact that the Jacobian has singularities
then we should use the pseudo inverse of Jacobian.

5.4 Pseudo-Inverse of Jacobian

To avoid singularities we compute the pseudo inverse of Jacobian matrix J =[
j1 j2

]
. Using the pseudo-inverse of Moore-Penrose

J+ = (JTJ)−1JT (34)

Now evaluating J in (34)

J+ =
1

det(JTJ)

(
(j2 · j2)j1 − (j2 · j1)j2
(j1 · j1)j2 − (j2 · j1)j1

)
(35)
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And Using Clifford algebra we could simplify further this equation

det(JTJ) = (j1 · j1)(j2 · j2)− (j1 · j2)2 = (|j1||j2|)2 − (|j1||j2|)2cos2(θ), (36)
= (|j1||j2|)2sin2(θ) = |j1 ∧ j2|2 (37)

calling θ the angle between vectors. By the way each row of J+ could be simplify
as follows: (j2·j2)j1−(j2·j1)j2 = j2·(j2∧j1) and (j1·j1)j2−(j2·j1)j1 = j1·(j1∧j2).

Now the equation (34) can be rewritten as

J+ =
1

|j1 ∧ j2|2

(
j2 · (j2 ∧ j1)
j1 · (j1 ∧ j2)

)
=
(
j2 · (j2 ∧ j1)−1

j1 · (j1 ∧ j2)−1

)
(38)

Using this equation we can compute the input as U = J+V that is equal to

U = (j1 ∧ j2)−1 ·
(
V ∧ j2
j1 ∧ V

)
(39)

5.5 Visual Tracking

The target point is calculate using two calibrated cameras (see Figure 3.b), on
each camera we estimate the center of mass of the object in movement in order
to do a retroprojection and estimate the 3D point. to compute the mass center
first we subtract the current image Ic to an image in memory Ia, the image
in memory is the average of the last N images, this help us to eliminate the
background.

Ik(t) = Ic(t)− Ia(t− 1) ∗N, Ia(t) = (Ia(t− 1) ∗N + Ic)/(N + 1) (40)

After that the moment of x and y is computed and they are divided by the mass
(pixels in movement) that is, the intensity difference between the current image
and the image on memory give us the mass center.

xo =

∫ n

0

∫m

0 Ikydxdy∫ n

0

∫m

0 Ikdxdy
, yo =

∫ n

0

∫m

0 Ikxdxdy∫ n

0

∫m

0 Ikdxdy
(41)

When the camera moves the background changes and its necessary to reset
N to 0 to restart the process of track.

6 Experimental Results

In this section we present two experiments: the first illustrates the use of the
theory of invariants and omnidirectional vision for object recognition and the
second the control of a binocular head for tracking.
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Fig. 4. a) Mobile robot. b) Omnidirectional vision system. c) Recognition procedure.

6.1 Object Recognition

The omnidirectional image has the advantage of a bigger field of view, see Fig.
4.a-b. This capability allows to see all the objects around the robot without
moving it. In contrast to the stereo system, which does not see all the objects
or in some cases none of them (see Fig. 5).

Before we use the omnidirectional system we must calibrate it with this we
mean find the mirror center, focal length, skew and aspect ratio. The objective
of the experiment is that the robot should recognize an object from different
objects lying on three tables located around the robot. The recognition process
consists of various steps that are show in Fig. 4.c .

To recognize an object we first take features from the catadioptric image, then
these features are projected onto the unit sphere. With this features in the sphere
we calculate the circles formed with them (see Eq. 18). Finally, the invariants are
calculated with Eq. 19 which are equivalent to the projective invariants. These
invariants are compared with the previously acquired invariants in the library to
identify the object. The key points of an object are selected by hand. If they are
accurate enough, our procedure can recognize the objects correctly. In general
this kind of invariants are a bit sensitive to noise, due to the illumination changes
and computations. In order to diminish the effect of noise in the data, we can
compute several invariants related with the object, so that the accuracy of the
recognition is increased. Utilizing an automatic corner detector the procedure of
object recognition using our method can be carried out in real time.

Once that the object is recognized we rotate the robot until the object is in
front of the stereo system. Since the object is now visible to the stereo camera,
we can use an inverse kinematic approach to grasp the object. In our case we
chose for the approach of [4] which is very interesting. Such approach models the
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a) d)

b) c) e) f)

Fig. 5. Initial state of the experiment: a) Omnidirectional view, b-c) Left and right
images of the stereo system (out of target). Robot grasps an object: d) Omnidirectional
view, e-f) Left and right images of the stereo system (loocking at the target).
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Fig. 6. (Upper row) Velocity components: a) x; b) y; c) z, (the rough curves are of the
3D object motion). (Lower row) Some views of a tracking sequence.

joints of the robot arm using spheres, circles, lines and planes which are entities
very easy to handle in conformal geometric algebra. In Figures 5.d-f we show the
robot grasping an object.

6.2 Visually Controlled Tracking

In Figure 6 we can appreciate the smooth trajectory of the tracking. The rough
behavior of the 3D object motion is compensated by a PD controller using our
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geometric Jacobian approach. Note that 3D motion of the pan-tilt unit is not
disturbed by the big peaks of the 3D object motion.

7 Conclusions

In this article we have chosen the coordinate-free system of conformal geometric
algebra for the design of algorithms useful for robot perception and action. In
this framework we calculate the invariants of circles in the sphere and used them
to recognize objects with the advantage of the bigger field of view offered by
the omnidirectional vision system. We also showed an interesting application of
3D tracking using a new formulation of a geometric Jacobian for the differential
kinematics.
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Amezquita Gómez, Nicolás 93
Andreadis, I. 977
Angeles-Yreta, A. 319
Arcay, Bernardino 506, 566
Atkinson, Gary A. 103
Atsalakis, A. 891, 977
Ayaquica-Mart́ınez, I.O. 368

Badekas, E. 1005
Bad́ıa-Contelles, José M. 302
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Chávez-Aragón, Alberto 997
Chen, Kefei 81
Chen, Ming 51
Cheng, Yun 440
Coelho, Luis 498
Costa, Antonio H.M. 905
Cruz-Enriquez, Héctor 593

da Silva Junior, Antonio M. 377
Dafonte, Carlos 566
Dafonte, José Carlos 506
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Kälviäinen, Heikki 710
Kamarainen, Joni-Kristian 710
Kardec Barros, Allan 460

Kim, Soo-Hong 339
Kittler, J. 1055
Klapuri, Anssi 869
Kober, Vitaly 34, 295
Kopanja, Lazar 825
Kropotov, Dmitry 252
Kuri-Morales, Angel Fernando 262

Laurentini, Aldo 804
Lazo Cortés, Manuel 518
Lee, Ho 794
Lee, Jeongjin 339, 547
Lensu, Lasse 710
León, Dionne 42
Li, Peng 701
Liu, Yongguo 81
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Peñagarikano, M. 1047
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