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Abstract. Control system software now plays a key role on many plat-
forms, including aircraft and automobiles. However, as control system
software has been performing increasingly complex tasks, the associated
software development, maintenance and certification costs have escalated
significantly. The ClawZ toolset is dedicated to the formal verification of
control system software. By using some novel ideas, it achieves the high-
est levels of assurance whilst not suffering from the prohibitively high
costs normally associated with applying formal verification. It has been
successfully used in the certification of the Flight Control Computer of
the Eurofighter Typhoon aircraft. This paper outlines the toolset, and
explains how the approach used to build it enables formal verification
costs to be dramatically reduced whilst not compromising on soundness.
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1 Introduction

1.1 Control Systems

A control system is a mechanism for controlling physical attributes of a platform,
according to user inputs and measured physical attributes of the platform and its
environment. Control systems occur in a wide range of platform domains, from
higher-end domains such as aircraft, automobiles and nuclear and chemical plant,
down to simpler lower-end domestic domains such as central heating systems and
washing machines.

Over the past 30 years, digital control systems have replaced analogue elec-
tronic control systems in virtually all domains. This has given considerable scope
for making control systems more sophisticated, and control systems in higher-
end domains have indeed been getting increasingly complex. For example, Flight
Control Computers (FCCs), that control an aircraft’s flight surfaces to give it
stability and manoeuvrability in the air, have become increasingly sophisticated
in fighter aircraft, to achieve improved manoeuvrability and a reduction in the
pilot’s workload.
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However this increased complexity comes at a cost. Many of these higher-end
domains, such as aircraft and nuclear plant, are safety-critical and thus plat-
forms have to be developed to high standards and then certified to be safe. The
costs of developing, maintaining and certifying control system software for these
platforms have escalated so much that together they can now represent a large
proportion of overall platform costs. Other domains, such as automobiles, involve
high-volume products, and reliability problems with safety-related features are
requiring expensive product recalls, that are cutting deep into manufacturers’
low profit margins.

1.2 Simulink

The use of graphical control system design tools is helping to improve the sit-
uation. Instead of designing control systems on paper and then only finding
problems further down the line during software testing, control system design
engineers are able to simulate the behaviour of the control system at the design
stage, finding problems with the functionality and performance. This saves on
expensive iterations of the software development cycle. The most widely used
graphical control system design tool is Simulink [1].
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Fig. 1. The Simulink diagram for Pump

In Simulink, a control system specification is expressed in a graphical form
called a Simulink diagram. A Simulink diagram consists of a collection of inputs,
outputs and blocks, all connected by wires. Each block also has its own inputs
and outputs, and is either a basic block, corresponding to a primitive operation
such as sum or multiplication, or a subsystem block, corresponding to a sub-
diagram. Opening a subsystem block will reveal the sub-diagram and its internal
blocks and wires. See Figure 1 for a simple example of a Simulink diagram.
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1.3 Formal Verification

Formal verification often plays an important role in the certification of safety-
critical platforms. This is used because it provides very high levels of assurance
for finding certain important classes of software error. However, the tools re-
quired for performing formal verification are normally prohibitively expensive to
use. This is due to two main factors: they require highly-skilled expert analysts,
and they require a high degree of user interaction. The costs of using formal
verification tools are so high that formal verification, despite the useful extra
assurance it can offer, is rarely performed outside safety-critical domains, and,
even within safety-critical domains, mainly only for the certification of software.

ClawZ is a toolset for the formal verification of software1. It differs from other
formal verification toolsets in that it is dedicated to a specific verification domain.
In particular, it is dedicated to the verification of control system software that
has been specified in Simulink and implemented in Ada. By taking advantage of
this fact, the toolset enables analysts to interact with it at a more abstract level
than with most formal verification toolsets. This enables the analyst’s expertise
to be reduced, whilst at the same time considerably reducing the amount of user
interaction required. This can result in dramatically reduced formal verification
costs. Despite the cost savings, the assurance gained by using ClawZ has in no
way been compromised, and in fact it achieves even higher assurance than many
existing formal verification toolsets. In principle, the approach used to build the
toolset is equally applicable to other verification domains.

ClawZ has been successfully used in the certifications of three successive
versions of Eurofighter Typhoon’s FCC, one of the most advanced FCCs yet
produced. Its core control system functionality is implemented in 35,000 non-
comment, non-blank lines of Ada source code. Analysts were typically able to
formally verify around 50 to 80 lines of source code per day each. Although an
accurate comparison is difficult due to the differing nature of individual verifi-
cations, this clearly compares favourably with a typical 10 to 15 lines of source
code per day for using other toolsets in other industrial formal verifications (for
example, see [2, Overview, page 16]).

1.4 Overview

This paper outlines the ClawZ toolset, and explains how the approach used
to build the toolset enables formal verification costs to be dramatically reduced,
whilst not compromising on soundness. Rather than by appealing to a theoretical
framework, this claim about cost savings is backed up by pointing to industrial,
albeit anecdotal, experience of using the toolset.

In Section 2, an overview is given of how a ClawZ analysis is performed from
the perspective of the analyst. In Section 3, the architecture of the ClawZ toolset
is explained, as well as how this architecture ensures a high level of assurance.
Conclusions are drawn in Section 4.
1 The name ClawZ was previously used to refer to one component of the toolset, which

is now called Z Producer.
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procedure PUMP (COND : in REAL T;

STATE : in out REAL T;

GO : out REAL T)

is

TMP : REAL T;

begin

GO := STATE;

if COND > 1.0 then

TMP := 1.0;

else

TMP := COND;

end if;

if PUMPS GO < 2.0 then

STATE := 2.0 * TMP;

elsif PUMPS GO < 3.0 then

STATE := COND * TMP;

else

STATE := TMP;

end if;

end PUMP;

Fig. 2. The Ada subroutine implementation for Pump

2 Using ClawZ

In this section, an overview is given of how a ClawZ analysis is performed from
the perspective of the analyst. The intention is to give an impression of the
analyst tasks involved in using the toolset, and of the required degree of ana-
lyst interaction and expertise. This should give the reader an understanding of
how formal verification costs are so significantly reduced when compared with
traditional formal verification toolsets.

Throughout this section, statistics and screen shots are used to help give
a feel for the degree of analyst interaction required in a typical analysis. The
quoted statistics are for the analysis of a typical subroutine of 80 non-comment,
non-blank lines of Ada source code. Any references to computer execution time
relate to using a 2.2GHz Pentium IV processor with 1GB of RAM. The statistics
are rough figures, intended as a guide only, and are based on experiences from
the industrial analyses of Typhoon’s FCC as well as numerous other smaller
analyses. The true figures will vary, depending on the peculiarities of the system
being analysed. The screen shots are from the analysis of a non-trivial implemen-
tation of the Simulink diagram in Figure 1. See Figure 2 for this implementation,
written in 20 lines of Ada. Note that the reader is not expected to understand
the detail of these screen shots.

A ClawZ analysis verifies that a Simulink specification of a control system
is correctly implemented in Ada, and involves performing a separate analysis
for each Ada subroutine that implements part of the Simulink diagram (called



ClawZ: Cost-Effective Formal Verification for Control Systems 469

a control system subroutine). Note that the Ada source code may contain some
subroutines that only perform tasks outside the scope of what is specified in the
Simulink diagram. Such subroutines are not covered by a ClawZ analysis. Also
note that a ClawZ analysis just covers core functional correctness of the source
code, and does not cover classes of error such as run-time errors (e.g. overflow
or divide-by-zero) or program termination.

The analysis of a given subroutine breaks down into three principal stages:
specification, witnessing and interactive proof. The analyst skills required differ
between the stages, and analysts should be assigned to stages according to their
skill sets. The underlying mathematical model used in ClawZ is expressed in
the Z notation [3], and all analysts are required to be familiar with reading this
notation.

The graphical user interface to the ProofPower theorem prover [4], called
xpp, is used throughout an analysis, for viewing and editing Z, and for giving
interactive feedback during the witnessing and interactive proof stages. It also
helps to use Simulink, in conjunction with the toolset, to view Simulink diagrams,
although strictly speaking this is not necessary if a printout can be obtained.

2.1 The Specification Stage

In the specification stage, the Ada subroutine’s specification components are
created. These capture the intended behaviour of the subroutine in terms of the
Simulink diagram and the input and output parameters of the Ada subroutine.

Firstly, the analyst produces the subroutine’s block list, that lists exactly
those blocks in the Simulink diagram that are intended to be implemented by
the Ada subroutine. An Ada subroutine will often correspond to a single Simu-
link subsystem block, in which case it is sufficient for the analyst simply to
identify just this one Simulink block, although sometimes it is necessary to iden-
tify numerous blocks. The collection of the parts of the Simulink diagram that
correspond to the block list is called an artificial subsystem block, since it can
be considered to have its own inputs, outputs and internal blocks although it
does not itself necessarily correspond to an actual Simulink subsystem block.
The process of identifying the subroutine’s blocks can be helped by examining
the software’s design documentation.

Secondly, the analyst defines a data refinement retrieve relation between all
of the artificial subsystem’s inputs and outputs, and corresponding input and
output parameters of the Ada subroutine. This will often be a simple one-to-one
mapping. See Figure 3 for an example data refinement relation. The left-hand
sides of the equalities in the data refinement relation refer to Simulink wires,
and the right-hand sides refer to Ada variables.

Finally, the analyst may have to identify a precondition for the Ada sub-
routine. Usually a subroutine will assume nothing about the variables it reads.
However, some subroutines make assumptions, and these need to be explicitly
identified as preconditions in order to complete the subroutine’s verification.
These usually only become apparent during the witnessing stage, and need to
be justified once identified. Often a subroutine’s precondition will be established
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Fig. 3. CONTROLoPUMP Interface, the data refinement relation for Pump

in another control system subroutine. Such a precondition will then become a
postcondition of the subroutine that establishes it.

The specification stage will typically require a total of around 30 to 70 lines
of input from the analyst. This will typically take around half an hour to an
hour. The analyst performing the specification stage needs to be able to read
Simulink diagrams and to be aware of the subtleties of writing a formal specifi-
cation.

The important point to note about this stage is that there is no need for the
analyst to laboriously construct a detailed specification of an Ada subroutine’s
behaviour. The analyst just provides the key components of the specification,
and the toolset will fill out the details automatically (see Section 3.1).

2.2 The Witnessing Stage

The witnessing stage takes up the bulk of the analysis effort. In this stage, the
analyst constructs a witness script, which justifies in detail how the Ada sub-
routine body correctly implements its specification. This is done by identifying
correspondences between wires in the Simulink diagram and the values of Ada
variables at specific points in the subroutine’s body.

The analyst constructs the witness script by interacting with a tool called
RSG, via the xpp interface. See Figure 4 for an example of an interactive RSG
session. The witness script is edited in the upper window, and is entered for
interactive RSG feedback, which appears in the lower window.
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Fig. 4. The interactive session from the witnessing stage for Pump. The open if com-

mand is about to be entered, for witnessing the second Ada if statement in Figure 2.

A witness script needs to account for every Simulink wire in the subroutine’s
artificial subsystem in terms of values of Ada variables, called witnesses. RSG
ensures that this is done by maintaining a wavefront of wires in the Simulink
diagram, where wires behind the wavefront have already been accounted for. The
user is prompted to supply a witness for any wire on the current wavefront. RSG
enables the analyst to step through the subroutine body to reach an appropriate
point for supplying a given witness. When a wire’s witness has been supplied,
the wavefront advances along that wire. A witness script is complete when the
wavefront has crossed the entire diagram, from inputs to outputs.

Often, a suitable witness is self-evident because the Ada source code closely
mirrors the detail of the Simulink diagram, in which case RSG will supply an
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appropriate suggested witness, derived by symbolic execution of the specfication.
However, there will usually be a few witnesses that the analyst has to construct
manually. This will be when the Ada source code has departed from the detail
of the Simulink diagram, perhaps in order to achieve greater efficiency.

A witness script for a typical 80 line subroutine will be around 100 to 150 lines
long. This will typically take around two to three hours to construct. However,
note that the witnessing stage is not necessarily complete once a witness script
has first been completed.

Once a witness script has been completed, the analyst then submits it to
the toolset for processing and waits for the results. During this time, the toolset
is generating a set of Z conjectures to be proved, called verification conditions,
and attempting to prove them automatically. If all these verification conditions
are provable, then the Ada subroutine meets its specification. The proof side of
the processing is carried out by a tool called Supertac. After a wait of typically
around a minute or two, the toolset reports back the results in the form of the
total number of verification conditions generated and the total number that have
been proved automatically. There tends to be almost one verification condition
generated per line of source code analysed, and so a typical 80 line subroutine
will have around 50 to 70 verification conditions.

If all have been proved automatically, then the analysis for that subroutine is
complete and the subroutine has been shown to correctly implement its specifica-
tion. If there are any unproved verification conditions, the analyst must examine
the proof output file. In this file, any unproved verification conditions have been
simplified. Supertac ensures that a simplified verification condition will be prov-
able if and only if its original unsimplified verification condition is provable. A
simplified verification condition will typically be 5 to 15 lines of Z.

On examining the proof output file, the analyst must grade each simpli-
fied verification condition. If every verification condition is graded as provable,
then the subroutine is passed on to the interactive proof stage of the analysis.
Otherwise, the analyst must determine why there are unprovable verification
conditions. This may be due to an analyst error, either in constructing the sub-
routine’s specification components or its witness script. If this is the case, then
the analysis is iterated from the relevant stage. However, if a verification condi-
tion is unprovable, but this is not due to an analyst error, then a genuine error
has been found, either in the Simulink diagram or its Ada implementation.

In practice, most unproven verification conditions will be due to an error in
the witness script. The simplified verification condition will contain information
about the part of the witness script it relates to, to help the analyst locate the
error. The next most common explanation for an unproven verification condition
is that it is provable, but Supertac has not managed to prove it completely.
Supertac will complete the proof of around 95% to 98% of provable verification
conditions. A typical 80 line subroutine will have all but one or two of its provable
verification conditions completely proved by Supertac.

There will typically be two to four iterations before all the witnessing errors
are ironed out, typically taking half an hour each. The most complex subroutines
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to analyse will be those that deviate from the structure of the Simulink diagram
in many ways, and it will usually take many more iterations to reach a correct
witness script for these.

To perform the witnessing stage effectively, the analyst needs to be able to
read Simulink diagrams and Ada programs, and to have a good knowledge of
how to interact with RSG. These are all skills that are quickly picked up by
university software engineering graduates. However, the analyst also needs to be
able to assess the provability of Z conjectures, which is a less common skill.

There are two important points to note about this stage. Firstly, due to the
relatively abstract level of interaction with RSG, it involves considerably less
effort than with the corresponding activity in other formal verification toolsets.
The analyst does not have to construct a detailed refinement script, or be fa-
miliar with all the subtleties of algorithmic program refinement. Secondly, due
to Supertac’s high level of proof automation, there can be an easy separation
of duties between the witnessing analyst and the interactive proof analyst. The
analyst performing the witnessing stage does not have to be familiar with the
highly-skilled and time-consuming task of interactive formal proof, and can usu-
ally produce a correct witness script, albeit after a few iterations, before any
remaining unproved verification conditions are passed on for interactive proof.

2.3 The Interactive Proof Stage

The interactive proof stage involves using the xpp interface to construct an
interactive proof script for every remaining unproved verification condition for
the subroutine. These verification conditions will already have been graded as
provable during the witnessing stage.

The verification conditions are proved using the ProofPower theorem prover.
Interactive proofs are carried out within a proof environment that closely cor-
responds to HOL’s subgoal package [5]. A proof involves the analyst applying a
series of proof tactics to a proof goal. The analyst can make the proof branch into
several parts, called subgoals. A proof is complete when all subgoals have been
reduced to true. As well as having access to ProofPower’s tactics for reasoning
about Z, the analyst also has access to specialised tactics used in the implemen-
tation of Supertac. Occasionally, the analyst performing the interactive proof
will notice that a verification condition has been wrongly graded as provable, in
which case it will be passed back to the witnessing stage for regrading.

This stage is the most skilled stage to perform, and a thorough knowledge
of ProofPower’s proof tactics is required. It typically takes 15 to 30 minutes
to prove each simplified verification condition, although some can take several
hours. However, because 95% to 98% of the verification conditions have been
automatically proved, and those that have not have been largely simplified, in-
teractive proof takes up the smallest proportion of the overall analysis effort.

The important point to note about this stage is that, due to Supertac’s high
level of proof automation, very little of the highly-skilled activity of performing
interactive proof is necessary. The amount of interactive proof required is less
than a tenth of what is typically required in other formal verificaiton toolsets.



474 M.M. Adams and P.B. Clayton

3 The ClawZ Approach

In this section, the components of the ClawZ toolset and how they fit together
are described in more detail. As well as explaining how the toolset works, the
intention is to give an understanding of how the approach used to build the
toolset can be applied to other verification domains.

3.1 The ClawZ Architecture

The ClawZ toolset is composed of six tools: Z Producer [6,4], RSG, DAZ2 [7,4],
Supertac, ProofPower [4] and CPS. The central tool in the toolset is DAZ. This
is a tool for performing formal refinement between a Z specification and Ada
source code. All the other tools revolve around DAZ. Z Producer translates
a Simulink diagram into a Z specification, ultimately used by DAZ. RSG is
used as an interactive tool for creating a witness script, but its main role is
to translate the witness script into a DAZ refinement script. The Supertac and
ProofPower theorem provers are used to prove verification conditions that are
output from DAZ as a result of processing a refinement script. Finally, CPS is
ClawZ’s Unix command line environment, and acts as a front end for much of
the analyst interaction with the toolset, as well as performing house keeping
tasks. See Figure 5 for a diagram illustrating the architecture of the toolset.

The refinement supported by DAZ is loosely based on Carroll Morgan’s al-
gorithmic refinement calculus [8]. A refinement script starts with a specification
statement for a block of source code. The specification statement defines what
the source code block is supposed to do. It consists of three parts: a frame, that
lists the variables that are allowed to change in the source code block; a precon-
dition, that can be assumed about the values of variables on entry to the block;
and a postcondition, that must be upheld on exiting the block. The pre- and
postconditions are expressed in Z.

The specification statement can then be refined to source code under a series
of refinement steps. In intermediate refinement steps there will be a mixture of
source code and specification statements. Each refinement step results in verifica-
tion conditions being generated by DAZ. DAZ can output the set of verification
conditions and the Ada source code resulting from the refinement. Every veri-
fication condition of every refinement step must be proved in order to establish
that the source code meets its specification.

Before a subroutine can undergo interactive witnessing with RSG, it requires
a specification statement. This is constructed using the components supplied
by the analyst during the specification stage (see Section 2.1). The subroutine’s
block list is read in by CPS, which uses it to construct an input command for
Z Producer. Z Producer then outputs a Z translation of the artificial subsystem
corresponding to these blocks. CPS then combines this Z artificial subsystem
with the subroutine’s data refinement relation and any preconditions and post-

2 DAZ has also been known as the Compliance Tool and the Compliance Notation
Tool.
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conditions associated with the subroutine to form a specification statement for
the subroutine. This is all done in the execution of one CPS command.

Once a witness script has been produced by the analyst (see Section 2.2),
CPS passes it, the subroutine’s specification statement and the subroutine’s
Ada source code to RSG, which results in a DAZ refinement script being gener-
ated. For reasons explained in Section 3.2, this refinement script outputted by
RSG has the starting point, i.e. the subroutine’s specification statement, miss-
ing. CPS then combines the subroutine’s specification statement with RSG’s
output to form a complete refinement script. This complete refinement script is
then submitted to DAZ, which results in a set of verification conditions and an
Ada output file being generated. For reasons explained in Section 3.2, CPS then
checks that the Ada subroutine output from DAZ is syntactically equivalent to
the original Ada subroutine source code. Supertac is then run on every verifica-
tion condition generated. Finally, CPS summarises the results of the Supertac
run to the screen. Again, this is all done in the execution of one CPS command.

Before the ClawZ toolset was invented, a few parts of control systems were
analysed by manually writing DAZ refinement scripts and performing all formal
proofs interactively by using ProofPower (but still using Z Producer to trans-
late Simulink), and so it is possible to compare the times taken. The speed up
achieved by using ClawZ is impressive. The refinement script for a typical sub-
routine would take around one month to produce, and the verification conditions
would take around one month to prove. Using ClawZ this is all done in about a
day, and can mostly be performed by an analyst with considerably less expertise.
This speed up of 50 times is not wholly representative, since there was probably
considerable scope for improving the manual process. However, it gives an idea
of the order-of-magnitude improvement that has taken place.

The sizes of the intermediate objects passed between the tools can vary con-
siderably, but tend to be large. For a typical 80 line Ada subroutine, the refine-
ment script outputted by RSG tends to range from 1,000 to 10,000 lines. Note
that, in terms of numbers of lines, the witness script written by the analyst is
around 10 to 50 times shorter than the resulting refinement script. Also note that
the witness script is considerably more abstract than the refinement script, and
so less susceptible to tedious errors in detail. Individual verification conditions
tend to range from 100 to 1,000 lines of Z.

For the examples that can be compared, these objects tend to be around
4 times the size of those produced in the pre-ClawZ days. The reason for the
increase in size is ultimately due to the systematic way in which RSG works,
where automation is introduced at the expense of some conciseness. Raw refine-
ment scripts and verification conditions are never seen by the analyst, and so
conciseness is not an issue unless it impacts significantly on execution time.

The success of Supertac in being able to prove such huge verification condi-
tions automatically is down to two main factors. The first is that the verification
conditions are rarely as complicated as they might first seem, and much of the
proof of a verification condition involves relatively trivial reductions. However,
it would be insufficient for Supertac to only perform such trivial reductions,
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since the proofs of most verification conditions would still require some complex
reasoning taking several hours to perform interactively.

The second main factor is that Supertac is designed with the context in
which these verification conditions are generated in mind. Z Producer creates Z
specifications that follow a well defined structure, computer programs for control
systems tend to be written in similar ways, RSG generates refinement scripts in
a highly systematic way and DAZ generates verification conditions according to
a strict set of rules. It was possible to take all of these conventions into account
when designing Supertac.

So, in summary, the architecture of ClawZ revolves around the classic formal
verification toolset model of using a translator, a formal refinement tool and a
theorem prover. The way that ClawZ differs is that it incorporates additional
tools, in particular RSG and Supertac, that shield the analyst from tedious
details normally associated with formal verification, and so enable analyst input
and expertise to be dramatically reduced. These additional tools are able to
achieve this by being dedicated to a specific verification domain.

3.2 Soundness

Formal verification tools are useful for providing positive evidence that soft-
ware correctly meets its specification, as well as for finding errors. This positive
evidence is very important if a toolset is being used for the certification of safety-
critical software. Thus it is important that there is a high degree of confidence
in the soundness of a formal verification toolset.

The success of ClawZ in being able to analyse software at relatively low cost is
almost entirely due to the RSG and Supertac tools. However, equivalents of these
tools do not exist in other formal verification toolsets, and they are implemented
in several thousand of lines of source code. A concern might be that errors in
RSG or Supertac may compromise the soundness of the toolset.

RSG, however, cannot introduce unsoundness to ClawZ. This is because all
that RSG does, ultimately, is produce a refinement script. The way in which the
refinement script was constructed does not affect soundness. If we assume that
DAZ itself is sound, then it is impossible for anything, including RSG or the
witnessing analyst or someone manually writing a refinement script, to fool it.
DAZ will only produce verification conditions that are all provable if the initial
specification statement in the refinement script is correctly implemented by the
refined source code in the refinement script.

It might be possible to fool the analyst, however, by feeding DAZ a refine-
ment script that has an initial specification statement that does not reflect the
analyst’s specification, or a refinement script that refines to source code different
from the original. To give a pathological example, regardless of the analyst in-
put in the specification and witnessing stages, DAZ could be presented with an
initial specification statement that has a postcondition of “true” that is refined
to a “null” Ada statement. This would result in all the verification conditions
being provable, regardless of whether the original source code met its intended
specification. However such situations cannot happen due to RSG, since it is
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CPS, and not RSG, that inserts the initial specification statement, and since
CPS checks that the Ada source code resulting from the refinement is syntacti-
cally (and thus semantically) equivalent to the original source code. Thus RSG,
by the way that it is used, cannot introduce unsoundness to ClawZ.

Supertac, too, cannot affect the soundness of ClawZ, but for different reasons.
Supertac is built on top of the ProofPower theorem prover, which is an LCF-
style theorem prover [9]. A theorem prover is said to be sound if it is only
possible to prove conjectures that are true. Great care is taken to make theorem
provers sound. However, they are large programs that perform highly complex
manipulations. Given the subtleties of mathematics, it is very difficult to ensure
that nowhere in the large theorem prover program is a mistake that introduces
unsoundness. There are numerous steps that can be taken to reduce the risk of
this, but the most effective is to make the theorem prover LCF-style [10].

In the implementation of an LCF-style theorem prover, a special data type
is reserved for theorems, i.e. conjectures that have been proved. Strong data
typing of the programming language is then used to ensure that theorems can
only be constructed from a kernel of operations, called primitive inference rules.
New operations to prove conjectures can be defined outside the kernel, but they
must ultimately be implemented in terms of the primitive inference rules. Thus
an LCF-style theorem prover is sound so long as its primitive inference rules are
sound and the small amount of source code implementing these is correct.

ProofPower’s primitive inference rules are based on the HOL logic system [5].
This is the most widely used logic system used for LCF-style theorem provers,
and is one of the simplest, and so it is perhaps the best logic system to use to
minimise the risk of unsoundness. Thus ProofPower, being a HOL-based, LCF-
style theorem prover, has a very high pedigree for soundness. Also, any new proof
operations built on top of ProofPower cannot introduce unsoundness, because
they must ultimately be defined in terms of primitive inference rules. So, since
Supertac is built on top of ProofPower, which is an LCF-style theorem prover,
it cannot introduce unsoundness.

Thus the additional tools incoporated into ClawZ, i.e. RSG and Supertac,
that differentiate ClawZ from traditional formal verification toolsets and enable
it to be used so much more cost-effectively, are incorporated in such a way that
cannot compromise soundness of the overall toolset.

4 Conclusions

Control systems play an important role in modern society, and the increasing
complexity of their software is causing the associated development, maintenance
and certification costs to escalate. The ClawZ toolset is dedicated to the formal
verification of control system software, and has been successfully applied to the
industrial formal verification of Eurofighter Typhoon’s FCC at much reduced
certification costs when compared with other formal verification toolsets. ClawZ
adapts the classic formal verification toolset architecture by including two novel
components, RSG and Supertac, that are key to achieving its effectiveness.
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RSG enables the analyst to construct a relatively abstract witness script
instead of the refinement script that is required with existing formal verifica-
tion toolsets. This enables the costly task of manual program refinement to be
replaced by a much simpler, although still non-trivial, task. Supertac highly au-
tomates the formal proof, completing over 95% of verification condition proofs
entirely automatically, and simplifying the remainder for interactive proof. This
greatly reduces the costly task of interactive formal proof, and enables the wit-
ness script construction and interactive proof roles to be easily separated.

By being tailored to a specific verification domain, namely the verification
of control system software specified in Simulink and implemented in Ada, these
two components dramatically reduce the amount of analyst input and expertise
required to perform formal verification. Furthermore, they are incorporated into
the toolset in such a way that guarantees they cannot introduce unsoundness.

Although the toolset enables highly productive verification as it stands, there
is still significant scope for improvement to help further reduce analyst time and
expertise. Both RSG and Supertac could provide more feedback to the analyst
to help in tracking down analyst errors more quickly. Also, Supertac could be
enhanced to further automate verification condition proof.

There is nothing about this approach to building a formal verification toolset
that limits it to this specific verification domain. Such an approach could equally
be used to verify systems implemented in other programming languages, or spec-
ified in other design notations. Also, the scale of the cost reductions brought
about by ClawZ opens up the prospect of much wider use of formal verification,
including during development, and perhaps even for non safety-critical code.
This approach could therefore have a profound impact on the use of formal
verification in industrial applications.
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