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Abstract. Performance and usability of deductive program verification
systems can be enhanced if specifications not only consist of pre-/post-
condition pairs and invariants but also include information on which
memory locations are modified by the program. This allows to separate
the aspects of (a) which locations change and (b) how they change, state
the change information in a compact way, and make the proof process
more efficient. In this paper, we extend this idea from method specifi-
cations to loop invariants; and we define a proof rule for while loops
that makes use of the change information associated with the loop body.
It has been implemented and is successfully used in the KeY software
verification system.

1 Introduction

The Idea of Specifying Change Information and a Motivating
Example. Deductive program verification systems are mostly based on pro-
gram logics, such as dynamic logic [11,13,12] and Hoare logic [3]. Their perfor-
mance and usability can be greatly enhanced if specifications of programs not
only consist of the usual pre-/post-condition pairs and invariants but also in-
clude additional information, such as knowledge about which memory locations
are changed by a program. More precisely, we associate with a program p a
set Modp of expressions, called the modifier set (for p), with the understanding
that Modp is part of the specification of p. Its semantics is that those parts of
a program state that are not referenced by an expression in Modp will never be
changed by executing p.

As a motivating example, consider the following program pmin that computes
the minimum of an array a of integers:

m := a[0]; i := 1;
while (i < length(a)) do

if (a[i] < m) then m := a[i]; fi
i := i+ 1;

od
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A correct (though incomplete) post-condition for this program is

φmin = (∀x)(0 ≤ x < length(a) → a[x] ≤ m)

stating that, after running pmin, the variable m indeed contains the minimum
of a. However, a specification that just consists of φmin is rather weak. The
problem is that φmin can also be established using, for example, a program that
sets m as well as all elements of a to 0, which of course is not the intended
behaviour. To exclude such programs, the specification must also state what the
program does modify (the variables i and m) and does not modify (the array a
and its elements). One way of doing this is to extend the post-condition with an
additional part

φinv = (∀x)(0 ≤ x < length(a) → a[x] = a′[x])

where a′ is a new array variable (not allowed to occur in the program) that
contains the “old” values of the array elements. To make sure a′ has the same
elements as a, the formula φinv must also be used as a pre-condition and, thus, be
turned into an invariant. In Dynamic Logic, this specification of pmin is written
as φinv → [pmin](φmin ∧ φinv).

But, then, φinv also has to be made part to the loop invariant

φloopinv = φinv ∧ 0 ≤ i ≤ length(a) ∧ (∀x)(0 ≤ x < i→ a[x] ≤ m)

that is used during the proof that pmin indeed satisfies its specification, making
that proof more complex and proof construction more difficult and less efficient.

In general, loop invariants are “polluted” by formulas stating what the loop
does not do. All relevant properties of the pre-state that need to be preserved
have to be encoded into the invariant, even if they are in no way affected by the
loop. Thus, two aspects are intermingled:

– Information about what intended effects the loop does have.
– Information about what non-intended effects the loop does not have.

This problem can be avoided by encoding the second aspect (i.e., the change
information) with a modifier set instead of adding it to the invariant. The two
aspects then get separated both in the specification and in the correctness proof,
as the (sub-)proofs that a program (a) satisfies its post-condition and (b) satisfies
its modifier set are also separated as well.

For our program pmin, an appropriate modifier set is

Modmin = {i,m} .

It states in a very compact and simple way that pmin only changes i and m and,
in particular, does not change the array a.

Besides the separation of the two different aspects, modifier sets have the
advantage that they encode what is changed, while invariants must encode all
locations that are not changed, which for non-trivial programs are many more.
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Extension to Loops. Modifier sets that are part of method or function spec-
ifications have been investigated before (see the section on related work). Now,
in this paper, we extend the idea of modifier sets from method specifications to
loop invariants. Here, as well, modifier sets allow

– to separate the aspects of which locations change and how they change,
– state the change information in a compact way
– make the proof process more efficient.

To achieve the latter point, we define a new Dynamic Logic proof rule for while
loops that makes use of the information contained in a modifier set for the loop
body (as is also described in the following, the rule can easily be adapted to other
program logics, such as Hoare logic).

Loops in general can—and in practice often will—change a finite but unknown
number of memory locations (though in our simple motivating example pmin the
number of changed locations is known to be 2). A loop may, for example, change
all elements in a list whose length is not known at proof time but only at run
time. Therefore, to handle loops, we use an extended version of modifier sets
that can describe location sets of unknown size (the modifier sets for methods
described in [6] cannot do that).

Related Work. The Java Modeling Language (JML) [14,15] allows to express
change information for Java methods via what in JML jargon is called assignable
clauses.

The ESC/Java tool (Extended Static Checker for Java) [9] uses a subset
of JML as assertion language; an extension of ESC/Java for checking JML
assignable clauses is described in [8]. Despite the undisputed usefulness of this
tool its results are still very preliminary: failing assertions of a rather simple
kind go undetected and failures are reported, where in reality the assertion is
correct. In [22], a static analysis algorithm is proposed that checks assignable
clauses for a simple object-oriented in vitro language. Correctness is proved via
abstract interpretation over a trace semantics.

Daikon [18,10] is a heuristic approach to automatic detection of likely invari-
ants by analysing program runs with concrete input values.

In [6], we have defined a precise semantics for method modifier sets and
defined a transformation on first-order formulas based on modifier sets such
that Γ → φMod implies validity of Γ → [p]φ, where φMod is the transformation
of φ using the modifier set Mod that is part of the specification of method p. This
transformation can be used to employ modifier sets for proving the correctness
of methods. However, it is restricted to modifier sets describing sets of memory
location of fixed size, and it cannot easily be adapted to loop invariants—though
the basic idea is similar to the new loop rule we present here.

Further related work is the Hoare calculus for a variant of C that is developed
within the Verisoft project [21]. It allows to add simple modifier sets to procedure
specifications. In [7], a method is presented that does not use explicit modifier
sets but assumes that only what is mentioned in the pre- and post-condition
may be changed.
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Implementation in the KeY System. The work reported in this paper has
been carried out as part of the KeY project [1,2]. The goal of this project is to
develop a tool supporting formal specification and verification of Java Card
programs within a commercial platform for UML based software development.

Both the modifier set technique for methods from [6] and the rule for handling
rules presented in this paper have been implemented in KeY. Experiments show
that the performance of the prover is greatly enhanced using these extensions.
KeY also contains functionality for verifying correctness of modifier sets [20].

Plan of This Paper. After reviewing the necessary pre-requisites in Section 2,
we define our extended version of modifier sets in Section 3, which allows to
describe location sets of unknown size. In Section 4, we introduce the notion of
quantified updates. These updates, that are used in our verification rules, can be
seen as a form of generalised substitutions. The new loop rule that makes use of
modifier sets for loop bodies is introduced in Section 5. The implementation of
the rule is described in Section 6. In Section 7, we give an extended example for
its application. And, finally, in Section 8 we draw some conclusions.

2 Program Logic

To keep things simple in the paper, we consider as a programming language a
simple deterministic while-language with assignments, if-then-else, while-loops,
and arrays (due to lack of space we refrain from a formal definition of syntax
and semantics). However, our approach applies to all deterministic programming
languages whose semantics can be described by Kripke structures in terms of
Def. 1. In the KeY tool we have implemented the invariant rule for the real
object-oriented language Java Card taking all the difficulties likes aliasing and
abrupt termination into account (see Sect. 6).

The program logic we consider in this paper is an instance of Dynamic
Logic (DL) which is a multi-modal logic with a modality [p] for every program p
of the considered programming language. The formula [p]φ expresses that, if
the program p terminates in a state s, then φ holds in s. A formula ψ → [p]φ
expresses that, for every state s1 satisfying pre-condition ψ, if a run of the pro-
gram p starting in s1 terminates in s2, then the post-condition φ holds in s2. For
deterministic programs, there is exactly one such world s2 (if p terminates) or
there is no such world (if p does not terminate). The formula ψ → [p]φ is thus
equivalent to the Hoare triple {ψ}p{φ}. In contrast to Hoare logic, the set of
formulas of DL is closed under the usual logical operators.

The semantic domains used to interpret DL formulas are Kripke structures
K = (S, ρ), where S is the set of states for K and ρ is the transition relation
interpreting programs. Since we consider deterministic programs, ρ is a (partial)
function, i.e., for every program p, ρ(p) : S → S. The states s ∈ S are typed first-
order structures s, for some fixed signature Σ. We restrict attention to purely
functional signatures Σ and we work under the constant domain assumption,
i.e., for any two states s1, s2 ∈ S the universes of s1 and s2 are the same set U .
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We sometimes refer to U as the universe of K. Furthermore we assume that the
set of states S of any Kripke structure K consists of all first-order structures with
signatureΣ over some fixed universe. Some symbols of the signature are declared
rigid and have a fixed interpretation for all s ∈ S. E.g., addition + on integers
cannot be changed by executing a program and will therefore be declared rigid.
In contrast, the interpretation of non-rigid function symbols may differ from
state to state. E.g., program variables occur as non-rigid 0-ary function symbols
(constants) in Σ, and n-dimensional arrays are represented by non-rigid n-ary
function symbols (i.e., a[i1, ..., in] is the same as a(i1, . . . , in) (similarly, object
attributes in an object-oriented language can be represented by unary function
symbols). The interpretation of a function symbol f in a state s is denoted
by fs. Logical variables, which are different from program variables, never occur
in programs. They are rigid in the sense that if a value is assigned to a logical
variable, it is the same for all states.

Once the signature Σ and the universe U are fixed, the set S of states is also
fixed and our Kripke structures will only differ in the state transition function ρ
interpreting programs. When a programming language is chosen (in this case a
while-language), the possible choices for ρ have to be restricted as well, such that
the constructs of the programming language are interpreted in the right way.

From now on, we assume that a fixed set KΣ of Kripke structures K = (S, ρ)
is given that, as described above, depends (only) on the signature Σ, the uni-
verse U , and the restrictions on ρ, i.e., the semantics of our while-language with
arrays. The set S of states is the same for all elements of KΣ .

Definition 1. Let S be the set of all first-order structures over signature Σ
with some fixed universe U . Then, the semantics of the programming language
is given by a set KΣ of Kripke structures that all share S as their set of states.

Definition 2. A Σ-formula φ is called valid if

s, β |= φ

for every state s ∈ S of every Kripke structure (S, ρ) ∈ KΣ and every variable
assignment β (mapping logical variables to elements of the universe U).

3 Modifier Sets

A modifier set Modp for a program p is a set of ground terms denoting locations
(i.e., the terms must not contain logical variables but they can contain program
variables, which are constants in the logic). In contrast to [6] where modifier sets
are written as lists of ground terms of fixed length, we consider in this paper
modifier sets describing location sets of unknown size, since while loops in general
may modify an unknown number of locations that depends on the state in which
the loop is started. Of course, such modifier sets can no longer be represented
as simple enumerations of ground terms. Rather, we use formulas to define the
set of ground terms that may change.
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Definition 3. Let χj be a Dynamic Logic formula over Σ, f j ∈ Σ a non-rigid
function symbol, and tj1, . . . , t

j
nj

terms (j ≥ 1). Then, the set

{ 〈χ1, f1(t11 . . . , t
1
n1

)〉, . . . , 〈χk, fk(tk1 . . . , t
k
nk

)〉 }
of pairs is a modifier set.

Intuitively, a location f(s1, . . . , sn) may be changed by a program p when
started in a state s if the modifier set for p contains an element 〈χ, f(t1, . . . , tn)〉
and there is variable assignment β such that the following conditions hold:

1. s, β |= ti
.= si for 1 ≤ i ≤ n, i.e. β assigns the free logical variables occurring

in ti values such that ti coincides with si.
2. s, β |= χ, i.e. the characteristic formula χ holds for the variable assignment β.

A modifier set Mod is said to be correct for a program p if p at most changes
the value of locations mentioned in Mod.

Definition 4. Let Mod be a modifier set and let S be the set of states.
A pair (s1, s2) ∈ S × S satisfies Mod, denoted by

(s1, s2) |= Mod ,

iff, for

(a) all n-ary function symbols f ∈ Σ (n ≥ 0),
(b) all n-tuples o1, . . . , on from the universe U ,

the following condition holds:

fs1(o1, . . . , on) 	= fs2(o1, . . . , on)

implies that there is a pair 〈χ, f(t1, . . . , tn)〉 ∈ Mod and a variable assignment β
such that

oi = ts1,β
i (1 ≤ i ≤ n) and s1, β |= χ .

The modifier set Mod is correct for a program p, if

(s1, s2) |= Mod

for all state pairs (s1, s2) ∈ ρ(p).

Example 1. Consider the following program, where a is a one-dimensional array
of integers.

i := 0; j := 0; while (i < length(a)) do a[i] := a[i] ∗ 2; i := i+ 1; od

We assume that the size s = length(a) of the array is not fixed in advance but
unknown. Thus, for giving a correct modifier set, it is not possible to enumerate
the locations a[0], a[1], . . . , a[s] as s is not known.

However, a correct modifier set for the above program can be written as

{〈0 ≤ x < length(a)〉, a[x]〉, 〈true, i〉, 〈true, j〉} .

illustrating that modifier sets are not necessarily minimal (j is not modified).
The modifier set {〈0 ≤ x < length(a)〉, a[x]〉} is not correct for the above pro-

gram, since i is actually changed by the program.
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4 Quantified Updates

The rules in calculi for deductive program verification (such as Hoare logic or
Dynamic Logic) in a certain sense symbolically execute the program to be ver-
ified. And, usually, a state update, i.e., an assignment like x := t, is done by
applying a substitution that replaces occurrences of x by t. This straightforward
method works fine for simple programming languages but causes problems for
more complex languages like Java Card. In Java Card (as in all other object-
oriented programming languages) the same object may be referenced by several
different reference variables (aliasing). We face the aliasing problem already for
our simple while-language, because it contains arrays. An assignment a[i] := 5
changes the value of a[j] if i .= j, i.e., a[i] and a[j] reference the same same ar-
ray element. As a consequence, every array assignment causes a case distinction
making verification infeasible. This is even more true for object-oriented lan-
guages where every assignment to an object attribute causes case distinctions.
The solution to this problem proposed in [4] and implemented in the KeY System
are so-called updates. The idea is to not immediately perform substitutions for
assignments. Rather assignments are collected as state updates and not applied
before the program has been completely symbolically executed. The advantage
of this method is that assignments often cancel out previous ones rendering case
distinctions for alias analysis unnecessary.

Definition 5 (Syntax of updates). The set of Dynamic Logic formulas is
extended as follows. For all non-rigid ground terms t, and all terms v, if φ is a
formula, then {t := v}φ is a formula as well. The expressions {t := v} are called
updates.

The formula {t := v}φ has the same semantics as [t := v;]φ. Thus, one might
ask why updates are introduced as a separate syntactic category instead of using
assignments. Indeed, the goal of postponing the symbolic execution of state
changes can be achieved without updates. However, there are some immediate
extensions to updates that cannot be mimicked with assignments. E.g., one can
introduce quantified updates that use a logical formula to describe the state
change. This is a useful extension in the current context and is introduced below.

Anyway, it is important to note that updates are introduced for efficiency
reasons but do not make the logic more expressive. A formula φ containing
updates can always be transformed (in a uniform way) into an formula φ′ without
updates such that φ is valid iff φ′ is valid. Therefore, the idea of modifier sets
for loop bodies and the rule we introduce in the following section work just as
well in calculi without updates.

The transformation for removing an update basically works by performing the
symbolic execution that the state update represents (i.e., it does what updates
try to avoid). It introduces new variables for preserving the old values of the
changed variables (the value before the update is applied). However, due to
aliasing the set of variables (or locations) that is affected by an update cannot
be determined syntactically. Rather, all references (of compatible types) have to
be checked for whether they point to the location that is updated or not.
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Example 2. We consider the DL formula

(a[i] .= 0 ∧ a[j] .= 0) → {a[i] := a[i] + 1}a[j] .= 0

which holds iff i 	 .= j. The transformed formula without updates is

(a′[i] .= 0 ∧ a′[j] .= 0) → ( a[i] .= a′[i] + 1 ∧
(i 	 .= j → a[j] .= a′[j]) ∧
(i .= j → a[j] .= a′[i] + 1) ) → a[j] .= 0 .

We now extend the idea of updates to quantified updates, a generalised form
of updates proposed in [19] that allows to update arbitrary sets of locations
described by a characteristic formula.

Definition 6 (Syntax of quantified updates). The set of Dynamic Logic
formulas is extended as follows. For all DL formulas χ, terms f(t1, . . . , tn)
with a non-rigid function symbol f , and (arbitrary) terms v, if φ is a DL for-
mula, then {χ ? f(t1, . . . , tn) := v}φ is a DL formula as well. The expressions
{χ ? f(t1, . . . , tn) := v} are called quantified updates.

Example 3. The quantified update {0 ≤ i < length(a) ? a[i] := 0}φ assigns 0 to
all elements of the array a.

Quantified updates—in contrast to “simple” updates (Def. 5)—may contain
clashes. For example, the update {0 ≤ i ≤ 1 ? c := i} tries to assign to the non-
rigid constant c both the values 0 and 1. We define that, in case of a clash, an
arbitrary (unknown) but fixed element is used. However, the updates we consider
in this paper cannot contain clashes by construction. And without clashes, the
semantics of the formula {χ ? t := v}φ is the same as that of the transformed
formula (∀Cl)((χ → {t := v}φ) ∧ (¬χ→ φ)). Thus, as with simple updates, a for-
mula containing quantified updates can always be transformed into an equivalent
formula without them.

Definition 7 (Semantics of quantified updates). Let s be a state, and let

U = {χ ? f(t1, . . . , tn) := v}
be a quantified update.

The state U(s) is defined as follows: U(s) coincides with s except for the
interpretation of the function symbol f , which is defined by

V (o1, . . . , on) = {vals,β(v) | vals,β(χ) = tt and vals,β(ti) = oi (1 ≤ i ≤ n),
where β is a variable assignment}

fU(s)(o1, . . . , on) =

⎧
⎨

⎩

w if V (o1, . . . , on) = {w}
fs(o1, . . . , on) if V (o1, . . . , on) = ∅
w ∈ V (o1, . . . , on) arbitrarily otherwise

for all elements o1, . . . , on of the universe.
The semantics of the application Uφ of a quantified update U to a formula φ

is defined by
s |= Uφ iff U(s) |= φ .
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5 Invariant Rule Using Change Information

5.1 Motivation

Before we present our invariant rule that uses modifier sets and the change
information they encode, we recall what the invariant rule in Dynamic Logic
(with updates) looks like:

Γ � UInv, ∆ Inv, ε � [α]Inv Inv, ¬ε � φ
Γ � U [while ε do α od]φ, ∆

(1)

Intuitively the above rule states that, if one can find an invariant Inv such that
the three premisses hold, which state that (a) Inv holds in the beginning, (b) Inv
is indeed an invariant, and (c) the conclusion φ follows from Inv and the negated
loop condition ε, then φ holds after executing the loop (provided it terminates).

As a motivation for why using change information is useful, consider the
following example program p defined as

q; i := 0; while (i < length(a)) do a[i] := 0; i := i+ 1; od ,

where q is a (sub-)program. In order to prove some post-condition φ under the
pre-condition ψ for p we have to show the validity of the DL formula ψ → [p]φ.
Using our DL sequent calculus, symbolic execution of q results in a sequence U of
updates describing the program state after execution of q. Then, considering that
the while loop simply assigns all the elements of array a the value 0, an obvious
invariant for the loop might be i ≤ length(a) ∧ (∀x)(0 ≤ x < i→ a[x] .= 0) . In
fact, this is an invariant for the loop (i.e., it holds at the beginning of the loop
and holds after each iteration of the loop body) but it is not strong enough to
entail the post-condition φ in general, i.e. the third premiss of the loop rule does
not hold. The reason is that the second and the third premiss of the invariant
rule omit the formulas Γ,∆ and the sequence U of updates, i.e., all information
about the state reached before running the while loop is lost though it may be
unrelated to the array a (one can construct similar examples where the second
premiss does not hold). The only way to keep this information—as long as no
modifier sets are used—is to add it to the invariant which, as already explained
in the introduction, has several disadvantages.

The invariant rule proposed in this paper allows to keep as much context
information as possible without explicitly encoding the context in the invariant.
This is achieved by only throwing away those parts of Γ,∆ and U (i.e., of the
descriptions of the initial state) that may be changed by the loop. Anything that
remains unchanged is kept and can be used to establish the invariant (second
premiss) and the post-condition (third premiss).

Our new rule is still available if, for some reason, no modifier sets is known
for the loop body. In that case, it assumes that the loop potentially changes
everything, and it then coincides with the traditional invariant rule. However,
programmers usually know what is changed by a piece of code and can (or even
should) annotate the code with the appropriate information.



324 B. Beckert, S. Schlager, and P.H. Schmitt

An important advantage of using modifier sets is that usually a loop only
changes few locations and only these locations must be put in a modifier set. On
the other hand, using the traditional rule, all locations that do not change and
whose value is of importance have to be included in the invariant and, typically,
the number of locations that are not changed by the loop is much bigger than
the number of locations that are actually changed. Of course, in general not
everything that remains unchanged is needed to establish the post-condition in
the third premiss. But when applying the invariant rule it is often not obvious
what information must be preserved, in particular if the loop is followed by a
non-trivial program. That can lead to repeated failed attempts to find the right
invariant that allows to complete the proof. Whereas, to figure out the locations
that are possibly changed by the loop, it is usually enough to look at the small
piece of code in the loop body.

5.2 The New Invariant Rule for Dynamic Logic

Let Mod be a modifier set that is correct for the loop body α. The basic idea of the
new version of the loop rule we define in this section is that the context Γ,∆,U is
not removed from the second and third premiss. Then, however, information on
locations appearing in the context Γ,∆,U that are mentioned in Mod must not
be used. It must be removed. To meet this requirement, we introduce so-called
anonymous updates which assign an arbitrary unknown value (represented by a
Skolem symbol) to the locations mentioned in the modifier set and, thus, since
nothing is known about the new unknown values, destroy the information on
these (and only these) locations.

Definition 8 (Anonymous Update). Let

Modp = {〈χ1, f1(t1, . . . , tn1)〉, . . . , 〈χm, fm(t1, . . . , tnm)〉}
be a correct modifier set for a program p. For every fi, let fsk

i be a fresh rigid
function symbol with the same arity as fi. Then, the sequence V = V1 · · · Vm of
quantified updates where

Vi = {χi ? fi(ti, . . . , tni) := fsk
i (t1, . . . , tni)}

is called an anonymous update with respect to Modp. By abuse of terminology
we call the new function symbols fsk

i Skolem functions.

Now, we can proceed to define the new invariant rule for while loops using
change information:

Γ � UInv, ∆ Γ, UV(Inv ∧ ε) � UV [α]Inv, ∆ Γ, UV(Inv ∧ ¬ε) � UVφ, ∆
Γ � U [while ε do α od]φ, ∆

(2)

where V is an anonymous update (Def. 8) w.r.t. the modifier set Mod, which is
correct for the loop body α (Def. 4).

Depending on the particular proof goal, the context encoded in Γ,∆,U may
only be needed in either the second or the third premiss of the rule and not in
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both of them. In that case, the premiss where the context is not needed can be
simplified and replaced by the corresponding premiss from the classical Rule (1).
If both premisses are simplified, Rules (2) and (1) become identical.

Theorem 1 (Soundness). Let Inv be an arbitrary formula and V an anony-
mous update w.r.t. a correct modifier set Modα for the loop body α.

If all premisses of Rule (2) are valid in all states, then its conclusion is valid
in all states.

Proof. See [5].

Even the main focus in this paper is on Dynamic Logic, the approach is not
restricted to this particular logic. A version of the improved invariant rule for
Hoare logic can be found in [5].

6 Implementation

We have implemented the invariant rule that uses change information in the
KeY system for the programming language Java Card. Advanced features like

Fig. 1. KeY prover window with the example from Sect. 7 after applying the invariant

rule
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abrupt termination, exceptions, side-effects of expressions, break- and continue-
statements of a real object-oriented language like Java Card make the imple-
mented rule more involved than the one presented above. For example, in case of
side-effects the invariant rule cannot be applied directly. Beforehand, the follow-
ing rule has to be applied that performs a program transformation and ensures
that the loop condition does not have side-effects

Γ � U [boolean b = expr ; while (b) {α′; b = expr ; }]φ, ∆
Γ � U [while (expr) {α}]φ, ∆

where b is a new Boolean variable and α′ is the result of inserting the state-
ment b = expr ; in front of every continue-statement in the loop body α.

Fig. 1 shows the KeY prover window with the example from Sect. 7. The
lower left pane displays the proof tree with three open branches corresponding
to the three premisses of the invariant rule. For better user interaction, the goals
are labelled with“Invariant Initially Valid”,“Body Preserves Invariant”, and“Use
Case”. The right pane shows the sequent that is currently under consideration.
Rules can be applied automatically by pressing the button in the upper left
corner or interactively using the mouse: pointing at a certain term or formula
highlights the respective item and pressing the left mouse button offers (only)
those rules that are applicable at this position.

7 Extended Example

The example in this section is based on the calculus and the loop rule imple-
mentation in the KeY tool, i.e., the target programming language is Java (more
precisely Java Card but the difference does not matter here), and the specifi-
cation language is UML/OCL [17,16] or—as in the example—JML [15].

The JML specification of the Java method swapMax (see Fig. 2) states that,
if the pre-condition (requires clause, lines 1–2) consisting of

a. a is not null and
b. the length of a is greater than zero

holds in the beginning, then after the execution of swapMax the following post-
condition (ensures clause, lines 3–7) holds:

a. there exists an index such that the elements of a at position index and zero
are swapped,

b. the element at position zero is greater than or equal to the elements at all
other positions, and

c. all elements at positions different from zero and the index remain unchanged.

In other words, the post-condition says that the method swaps the greatest
element and the element at position zero and all other elements remain un-
changed. In JML post-conditions, one can use \old(expr) to refer to the value
of expr at the beginning of the method.
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/*@ requires
2 @ a!=null && a.length > 0;

@ ensures
4 @ (\ exists int idx ; 0 <= idx && idx<\old(a).length;

@ a[ idx]==\old(a)[0] && a[0]==\old(a)[idx] &&
6 @ (\ forall int i ; 0 <= i && i<\old(a).length;

@ a[0] >= a[i] && (i!=0 && i!=idx ==> a[i]==\old(a)[i])));
8 @*/

void swapMax(int[] a) {
10 int counter = 0, int index = 0;

/*@ loop invariant
12 @ 0<=counter && counter<=a.length &&

@ 0<=index && index<a.length &&
14 @ (\ forall int x; x>=0 && x<counter; a[index]>=a[x]);

@ assignable index , counter;
16 @*/

while (counter<a.length) {
18 if (a[counter] > a[index])

index = counter;
20 counter = counter+1;

}
22 int tmp = a[index];

a[ index ] = a[0];
24 a [0] = tmp;

}
Fig. 2. JML specification and Java implementation of method swapMax

The body of swapMax is divided into two parts. In the first part (lines 17–21),
we iterate through the elements of array a and store the index of the greatest
element in variable index. In the second part (lines 22–24), the elements at
position index and zero are swapped.

Using JML, it is possible to annotate loops with loop invariants. The invari-
ant in our example states that

a. counter and index stay in the correct range (lines 12–13), and
b. the element at position index is greater than or equal to all elements at

positions zero to counter − 1 (line 14).

The only locations that are modified in the loop body are index and counter.
To make this information explicit we use the assignable clause of JML (line 15).1

The KeY tool is able to use the invariant given as annotation in the code
when applying an invariant rule. Our example can be proved almost fully au-
tomatically using the above invariant. The only user interaction required is the

1 Following the JML standard [15] assignable clauses, which are the JML-equivalent
of modifier sets, are restricted to methods. Recent discussions on the JML mailing
list suggest that the assignable clause will also be applicable to loops in the future.
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simple instantiation of the existential quantifier in the post-condition with the
term index at the end of the proof.

Using the traditional invariant rule, the above invariant is not strong enough.
Fig. 3 shows the additional conjuncts that have to be added to the invariant in
order to prove the post-condition using the classical loop rule.

/*@ (\ forall int x; x>=0 && x<counter; a[x]==\old(a)[x]) &&
2 @ a.length==\old(a.length) && a.length>0 && a==\old(a) && a!=null

@*/

Fig. 3. Additional conjuncts for the invariant preserving the context information

Line 1 expresses that the elements in array a are the same before and after
execution of the loop body. Line 2 states that the length of the array does not
change and is greater than zero and that the array reference a is an invariant of
the loop and is different from null.

As one can see, the invariant for the traditional rule is more complicated and
has to contain information not directly related to the while loop (there is an
indirect relationship, however, since the additional conjuncts express what the
loop does not do).

8 Conclusion

We have extended the idea of modifier sets from to method specification to loops,
and have defined a DL loop invariant rule that makes use of such change infor-
mation. Our new definition of quantified modifier sets overcomes the restrictions
from [6], where modifier sets could only describe location sets of fixed length.
The new loop rule has been implemented in the KeY System and in experiments
has proved to be a great improvement over rules not using change information.
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