

Lecture Notes in Computer Science 3785
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Kung-Kiu Lau Richard Banach (Eds.)

Formal Methods and
Software Engineering

7th International Conference
on Formal Engineering Methods, ICFEM 2005
Manchester, UK, November 1-4, 2005
Proceedings

13

Volume Editors

Kung-Kiu Lau
Richard Banach
University of Manchester
School of Computer Science
Oxford Road, Manchester M13 9PL, UK
E-mail: {kung-kiu,banach}@cs.man.ac.uk

Library of Congress Control Number: 2005934587

CR Subject Classification (1998): D.2.4, D.2, D.3, F.3

ISSN 0302-9743
ISBN-10 3-540-29797-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29797-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11576280 06/3142 5 4 3 2 1 0

Preface

This volume contains papers presented at the 7th International Conference on
Formal Engineering Methods (ICFEM 2005), 1–4 November 2005, Manchester,
UK.

Formal engineering methods are changing the way that systems are devel-
oped. With language and tool support, these methods are being used for semi-
automatic code generation, and for the automatic abstraction and checking of
implementations. In the future, they will be used at every stage of development:
requirements, specification, design, implementation, testing, and documentation.

The aim of ICFEM 2005 was to bring together those interested in the ap-
plication of formal engineering methods to computer systems. Researchers and
practitioners, from industry, academia, and government, were encouraged to at-
tend, and to help advance the state of the art.

The conference was supported by sponsorships from Microsoft Research,
USA, the Software Engineers Association of Japan, the University of Manch-
ester, Manchester City Council, Formal Methods Europe (FME) and the British
Computer Society Formal Aspects of Computing Specialist Group (BCS-FACS).
We wish to thank these sponsors for their generosity.

The final programme consisted of 3 invited talks and 30 technical papers
selected from a total of 74 submissions. The invited speakers were: Anthony
Hall, independent consultant, UK; Egon Börger, University of Pisa, Italy; John
Rushby, SRI, USA. Their talks were sponsored by BCS-FACS, Microsoft Re-
search and FME respectively. We wish to thank the invited speakers for their
inspiring talks.

Our heartfelt thanks go to all the members of the Programme Committee
for their hard and conscientious work in reviewing and selecting the papers at
various stages. I would also like to thank all the additional reviewers for their
efforts and professionalism.

For organizing ICFEM 2005, we would like to thank the workshops and tuto-
rials chair Mike Poppleton, the publicity chair Kenji Taguchi, the local organi-
zation chair Dave Lester, and the web-masters Elton Ballhysa and Faris Taweel.
Their efforts were pivotal for the success of ICFEM 2005.

Finally, we would like to thank all the authors who submitted papers and all
the conference attendees.

September 2005 Kung-Kiu Lau and Richard Banach
Manchester

Organization

Conference Chair

Richard Banach University of Manchester, UK

Programme Chair

Kung-Kiu Lau University of Manchester, UK

Programme Committee

Farhad Arbab CWI and Leiden University, The Netherlands;
University of Waterloo, Canada

Richard Banach University of Manchester, UK
Luıs Soares Barbosa Minho University, Portugal
Mike Barnett Microsoft Research, USA
Eerke Boiten University of Kent, UK
Tommaso Bolognesi CNR-ISTI, Italy
Marcello Bonsangue Leiden University, The Netherlands
Jonathan P. Bowen London South Bank University, UK
Manfred Broy Technische Universität München, Germany
Bettina Buth HAW Hamburg, Germany
Ana Cavalcanti University of York, UK
Michel Charpentier University of New Hampshire, USA
Jim Davies University of Oxford, UK
Jin Song Dong National University of Singapore, Singapore
Kai Engelhardt University of New South Wales and NICTA,

Australia
Colin Fidge Queensland University of Technology, Australia
Mamoun Filali Amine Université Paul Sabatier, France
John Fitzgerald University of Newcastle upon Tyne, UK
Marc Frappier Université de Sherbrooke, Canada
Dimitra Giannakopoulou USRA/NASA Ames, USA
Chris George United Nations University, China
Wolfgang Grieskamp Microsoft Research, USA
Lindsay Groves Victoria University of Wellington, New Zealand
Henri Habrias Université de Nantes, France
Andrew Ireland Heriot-Watt University, UK
Thomas Jensen IRISA/CNRS, France
Soon-Kyeong Kim University of Queensland, Australia
Steve King University of York, UK
Rom Langerak University of Twente, The Netherlands
James Larus Microsoft Research, USA
Kung-Kiu Lau University of Manchester, UK

VIII Organization

Mark Lawford McMaster University, Canada
Yves Ledru LSR/IMAG, Domaine Universitaire, France
Peter A. Lindsay University of Queensland, Australia
Shaoying Liu Hosei University, Japan
Zhiming Liu UNU-IIST, China
Brendan Mahony Defence Science and Technology Organisation,

Australia
Tiziana Margaria University of Göttingen, Germany
Brad Martin US Department of Defense, USA
Dominique Mery Université Henri Poincaré Nancy 1, France
Huaikou Miao Shanghai University, China
Alexandre Mota Federal University of Pernambuco, Brazil
David Naumann Stevens Institute of Technology, USA
Richard Paige University of York, UK
Iman Poernomo King’s College London, UK
Fiona Polack University of York, UK
Michael Poppleton University of Southampton, UK
Steve Reeves University of Waikato, New Zealand
Ken Robinson University of New South Wales, Australia
Abhik Roychoudhury National University of Singapore, Singapore
Harald Ruess SRI International, USA
Motoshi Saeki Tokyo Institute of Technology, Japan
Thomas Santen Technische Universität Berlin, Germany
Klaus-Dieter Schewe Massey University, New Zealand
Wolfram Schulte Microsoft Research, USA
Kaisa Sere Åbo Akademi University, Finland
Paul Strooper University of Queensland, Australia
Asuman Suenbuel SAP Research, USA
Paul A. Swatman University of South Australia, Australia
Kenji Taguchi National Institute of Informatics, Tokyo, Japan
Sofiene Tahar Concordia University, Canada
Tetsuo Tamai University of Tokyo, Japan
T.H. Tse University of Hong Kong, China
Margus Veanes Microsoft Research, USA
Charles Wallace Michigan Technological University, USA
Farn Wang National Taiwan University, Taiwan
Wang Yi Uppsala University, Sweden
Jim Woodcock University of York, UK

Additional Referees

Pascal André
Marcelo Arenas
Christian Attiogbé

Jean-Paul Bodeveix
Jeremy Bryans
Michael Butler

Manuela Xavier
Robert Colvin
Hugo ter Doest

Organization IX

Yuzhang Feng
David Faitelson
Benoit Fraikin
Amjad Gawanmeh
Frédéric Gervais
Irina Mariuca

Gheorghita
Ben Gorry
Jens Grabowski
Olga Grinchtein
Juan Guillen-Scholten
Neil Henderson
Lutz Kettner
Bas Luttik
Tom Maibaum

Frank Marschall
Tim McComb
Sun Meng
Haja Moinudeen
Shin Nakamima
O. Nasr
Lemai Nguyen
Corina Pasareanu
Pascal Poizat
M. Rached
Rodrigo Ramos
Pritam Roy
Johann Schumann
Emil Sekerinski
Qin Shengchao

Rakesh Shukla
Colin Snook
Maria Sorea
Graham Steel
Bernhard Steffen
Jing Sun
Willem Visser
Nabil Wageeh
Marina Waldén
Geoffrey Watson
James Welch
Mohamed Zaki
Sergiy Zlatkin

Table of Contents

Invited Talks

Realising the Benefits of Formal Methods
Anthony Hall . 1

A Compositional Framework for Service Interaction Patterns and
Interaction Flows

Alistair Barros, Egon Börger . 5

An Evidential Tool Bus
John Rushby . 36

Specification

Derivation of UML Class Diagrams as Static Views of Formal B
Developments

Akram Idani, Yves Ledru, Didier Bert . 37

29 New Unclarities in the Semantics of UML 2.0 State Machines
Harald Fecher, Jens Schönborn, Marcel Kyas,
Willem-Paul de Roever . 52

The Semantics and Tool Support of OZTA
Jin Song Dong, Ping Hao, Shengchao Qin, Xian Zhang 66

Modelling

An Abstract Model for Process Mediation
Michael Altenhofen, Egon Börger, Jens Lemcke . 81

How Symbolic Animation Can Help Designing an Efficient Formal Model
Fabrice Bouquet, Frédéric Dadeau, Bruno Legeard 96

Security

A Theory of Secure Control Flow
Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, Jay Ligatti 111

Game Semantics Model for Security Protocols
Mourad Debbabi, Mohamed Saleh . 125

XII Table of Contents

Communication

Towards Dynamically Communicating Abstract Machines in the B
Method

Nazareno Aguirre, Marcelo Arroyo, Juan Bicarregui, Lucio Guzmán,
Tom Maibaum . 141

Sweep-Line Analysis of TCP Connection Management
Guy Edward Gallasch, Bing Han, Jonathan Billington 156

2/3 Alternating Simulation Between Interface Automata
Yanjun Wen, Ji Wang, Zhichang Qi . 173

Development

Formal Model-Driven Development of Communicating Systems
Linas Laibinis, Elena Troubitsyna, Sari Leppänen, Johan Lilius,
Qaisar Malik . 188

Jahuel: A Formal Framework for Software Synthesis
I. Assayad, V. Bertin, F.-X. Defaut, Ph. Gerner, O. Quévreux,
S. Yovine . 204

Modelling and Refinement of an On-Chip Communication Architecture
Juha Plosila, Pasi Liljeberg, Jouni Isoaho . 219

Testing

Finding Bugs in Network Protocols Using Simulation Code and
Protocol-Specific Heuristics

Ahmed Sobeih, Mahesh Viswanathan, Darko Marinov,
Jennifer C. Hou . 235

Adaptive Random Testing by Bisection with Restriction
Johannes Mayer . 251

Testing Real-Time Multi Input-Output Systems
Laura Brandán Briones, Ed Brinksma . 264

Verification

Formal Verification of a Memory Model for C -Like Imperative
Languages

Sandrine Blazy, Xavier Leroy . 280

Table of Contents XIII

Symbolic Verification of Distributed Real-Time Systems with Complex
Synchronizations

Farn Wang . 300

An Improved Rule for While Loops in Deductive Program Verification
Bernhard Beckert, Steffen Schlager, Peter H. Schmitt 315

Using St̊almarck’s Algorithm to Prove Inequalities
Byron Cook, Georges Gonthier . 330

Automatic Refinement Checking for B
Michael Leuschel, Michael Butler . 345

Slicing an Integrated Formal Method for Verification
Ingo Brückner, Heike Wehrheim . 360

A Static Communication Elimination Algorithm for Distributed System
Verification

Francesc Babot, Miquel Bertran, August Climent 375

Incremental Verification of Owicki/Gries Proof Outlines Using PVS
Arjan J. Mooij, Wieger Wesselink . 390

Using Three-Valued Logic to Specify and Verify Algorithms of
Computational Geometry

Jens Brandt, Klaus Schneider . 405

Tools

An Automated Approach to Specification-Based Program Inspection
Shaoying Liu, Fumiko Nagoya, Yuting Chen, Masashi Goya,
John A. McDermid . 421

Visualizing and Simulating Semantic Web Services Ontologies
Jun Sun, Yuan Fang Li, Hai Wang, Jing Sun . 435

A Model-to-Implementation Mapping Tool for Automated Model-Based
GUI Testing

Ana C.R. Paiva, João C.P. Faria, Nikolai Tillmann,
Raul A.M. Vidal . 450

ClawZ: Cost-Effective Formal Verification for Control Systems
M.M. Adams, P.B. Clayton . 465

XIV Table of Contents

SVG Web Environment for Z Specification Language
Jing Sun, Hai Wang, Sasanka Athauda, Tazkiya Sheik 480

Author Index . 495

Realising the Benefits of Formal Methods

Anthony Hall

22 Hayward Road, Oxford OX2 8LW, UK
anthony@anthonyhall.org

I keep six honest serving-men
(They taught me all I knew);
Their names are What and Why and When
And How and Where and Who.

Rudyard Kipling

Abstract. The web site for this conference states that: “The challenge
now is to achieve general acceptance of formal methods as a part of
industrial development of high quality systems, particularly trusted sys-
tems.” We are all going to be discussing How to achieve this, but before
that we should maybe ask the other questions: What are the real bene-
fits of formal methods and Why should we care about them? When and
Where should we expect to use them, and Who should be involved? I will
suggest some answers to those questions and then describe some ways
that the benefits are being realised in practice, and what I think needs
to happen for them to become more widespread.

1 What Have Formal Methods Ever Done for Us?

Formal methods consist of writing formal descriptions, analyzing those descrip-
tions and in some cases producing new descriptions – for example refinements –
from them. In what way is this a useful activity? First, experience shows that
the very act of writing the formal description is of benefit: it forces the writer
to ask all sorts of questions that would otherwise be postponed until coding. Of
course, that’s no help if the problem is so simple that one can write the code
straight away, but in the vast majority of systems the code is far too big and de-
tailed to be a useful description of the system for any human purpose. A formal
specification, on the other hand, is a description that is abstract, precise and in
some senses complete. The abstraction allows a human reader to understand the
big picture; the precision forces ambiguities to be questioned and removed; and
the completeness means that all aspects of behaviour - for example error cases -
are described and understood.

Second, the formality of the description allows us to carry out rigorous anal-
ysis. By looking at a single description one can determine useful properties such
as consistency or deadlock-freedom. By writing different descriptions from dif-
ferent points of view one can determine important properties such as satisfaction
of high level requirements or correctness of a proposed design.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 1–4, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 A. Hall

There are, however, stronger claims sometimes made for formal methods that
are not, in my opinion, justified. The whole notion of proof as qualitatively supe-
rior to other analysis methods seems to me wrong: proof is no more a guarantee
of correctness than testing, and in many cases far less of one. Furthermore, for-
mal methods are descriptive and analytic: they are not creative. There is no
such thing as a formal design process, only formal ways of describing and ana-
lyzing designs. So we must combine formal methods with other approaches if we
actually want to build a real system.

2 Why Bother?

There sometimes seems to be a belief that formal methods are somehow morally
better than other approaches to software development, and that they can lead
to the holy grail of zero defect software. This is nonsense, and the fact that
it’s so obviously untrue is part of the reason for the strong backlash against
formal methods. What is true, however, is that formal methods contribute to
demonstrably cost-effective development of software with very low defect rates.
It is economically perverse to try to develop such software without using them.

Furthermore, formal methods provide, for free, the kind of evidence that
is needed in heavily regulated industries such as aviation. They demonstrate
responsible engineering and give solid reasons for trust in the product. As more
and more industries demand such trust, formal methods become increasingly
attractive.

In trying to realise the benefits, therefore, we should be looking at cost-
effective methods that address the major risks and that provide tangible evidence
of trustworthiness. That is not the same as looking for perfection or proving every
single piece of code.

3 When Do Formal Methods Bring Benefit?

It is well known that the early activities in the lifecycle are the most important. It
follows that the most effective use of formal methods is at these early stages: re-
quirements analysis, specification, high-level design. In contrast, a lot of research
in formal methods has concentrated on low-level design and programming. The
early use of formal methods does pose challenges: we need better notations and
tools to address large scale specification issues.

As well as concentrating on the early lifecycle, formal methods need to be
used from the start of each activity, not as a check at the end. We should con-
centrate, I believe, on correct construction rather than post-hoc analysis. Lots
of experience with analysis tools tells us that it is far easier and more effective
to demonstrate the correctness of a well constructed program than to analyse
a poorly constructed one to find the numerous flaws that it contains. However,
there is a real human problem in persuading people to think carefully rather
than adopting the classic hack and test approach to programming.

Realising the Benefits of Formal Methods 3

4 Where Are They Best Used?

Formal methods traditionally live in a ghetto where they are applied to critical
parts of critical systems. While I don’t believe that they will ever be widely
applied to fast-moving software such as web pages where the occasional failure
is tolerated or even expected, there is an increasing amount of software where
failure is becoming unacceptable and costly, and we need to extend the reach of
formal methods to a wide range of systems such as banks, cars, telecommunica-
tions and domestic appliances.

Even where they have been used, formal methods have often been seen as
a specialist activity divorced from the main development. Although there are
some successful projects that have followed this approach, it is not a viable
approach for most organisations. I believe strongly that formal methods will
only be accepted when they clearly add value to mainstream development and
verification activities.

5 Who Uses Formal Methods?

It follows from the previous point that everyone on a project needs to come
into contact with formal methods. This is clearly a challenge: current formal
notations are notoriously opaque, and formal methods tools are almost all hard
to use. We need two things to happen.

First, there needs to be a change in attitude among developers, to accept
that like engineers in any other discipline they need to use relevant mathematics
as a daily part of their job.

Second, we need to make the mathematics more relevant and palatable, and
integrate it better into the other less frightening notations that people are used
to.

6 How Can We Realise the Benefits?

The previous sections have provided a pretty challenging list of issues for formal
methods practitioners and researchers. In this section I will describe one process,
Correctness by Construction (CbyC), which I believe starts to address these
issues. CbyC aims to be a Lean Development process: there are, remarkably,
commonalities between its philosophy and that of many so-called Agile processes.
In particular it is strongly risk-driven, demands that all activities add value to
the final product, and is based on tight feedback at every stage. Its big difference
is the use of the most rigorous practical notation for each artifact, giving the
maximum opportunity for analysis.

CbyC has some successful projects under its belt, but there is a long way
to go before it or anything like it is a mainstream process. I will conclude by
looking at the challenges for formal methods researchers and tool developers if
they are going to support a practical process on a large scale in industry. Here
are some examples of questions that need to be answered:

4 A. Hall

– How can we write perspicuous yet analysable descriptions of large systems
without getting bogged down in detail?

– How can we validate formal descriptions with end users and other stakehold-
ers?

– How can we integrate formal notations with more conventional notations like
class diagrams, sequence diagrams or deployment diagrams?

– How can formal methods tools interwork with informal documents, require-
ments management tools, CASE tools, test generators, change and configu-
ration management systems?

– How can we describe and prove refinements on to distributed, asynchronous,
multiprocessing platforms that use COTS middleware?

– How can we use formal descriptions to generate system tests automatically?
– How can we automate other verification methods such as model checking

and proof?

All these are practical, important questions. Some of them require research; many
of them require collaboration between practitioners and researchers to put into
practice ideas that we have all been developing for many years.

A Compositional Framework for Service

Interaction Patterns and Interaction Flows

Alistair Barros1 and Egon Börger2

1 SAP Research Centre Brisbane, Australia
alistair.barros@sap.com

2 Università di Pisa, Dipartimento di Informatica,
I-56125 Pisa, Italy

boerger@di.unipi.it

Abstract. We provide precise high-level models for eight fundamental
service interaction patterns, together with schemes for their composi-
tion into complex service-based business process interconnections and
interaction flows, supporting software-engineered business process man-
agement in multi-party collaborative environments. The mathematical
nature of our models provides a basis for a rigorous execution-platform-
independent analysis, in particular for benchmarking web services func-
tionality. The models can also serve as accurate standard specifications,
subject to further design leading by stepwise refinement to implementa-
tions.

We begin by defining succinct rigorous models to mathematically capture the
behavioral meaning of four basic bilateral business process interaction patterns
(Sect. 1), together with their refinements to four basic multilateral interaction
patterns (Sect. 2). We then illustrate with characteristic examples how by ap-
propriate combinations and refinements of these eight fundamental patterns one
can define arbitrarily complex interaction patterns of distributed service-based
business processes that go beyond simple request-response sequences and may
involve a dynamically evolving number of participants. This leads to a definition
of the concept of process interaction flow or conversation, namely via multi-agent
distributed interaction pattern runs (Sect. 3). We point to various examples in
the literature on web-service-oriented business process management, which illus-
trate the models and concepts defined here.

We start from the informal business process interaction pattern descriptions
in [2]1, streamlining, generalizing or unifying them where the formalization sug-
gested to do so. Our models provide for them an accurate high-level view one
can consider as ground model (blueprint) definition, in the sense defined in [4],
clarifying open issues and apt to direct the further detailing, by stepwise refine-
ment in the sense defined in [5], to an executable version as for example BPEL
code. Since for the semantics of the forthcoming BPEL standard a formal model
has been provided in [15,24,13,14], such refinements can be mathematically in-
vestigated to prove their correctness with respect to the ground model, thus
preparing for the application of verifying compiler techniques [17,10].
1 All the not furthermore qualified quotes in this paper are from there.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 5–35, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

6 A. Barros and E. Börger

For the modeling we use the Abstract State Machines (ASMs) method with
its ASM ground model and ASM refinement techniques, extending the pattern
description scheme outlined in [8,9]. The support the ASM notion offers to ex-
press the dynamics of abstract state changes allows us to provide a high-level
state-based view of service inter-action patterns, where the behavioral interface
is defined through pattern actions performed by submachines, which remain
largely abstract due to the intention to leave the design space open for further
refinements to concrete pattern instantiations. Most of what we use below to
model service interaction patterns by ASMs is self-explanatory, given the se-
mantically well-founded pseudo-code character of ASMs, an extension of Finite
State Machines (FSMs) by a general notion of state. For the sake of completeness
we sketch in the appendix (Section 5) what is needed for a correct understand-
ing: the simple semantics of ASMs as extension of FSMs by generalized memory
locations together with the ASM classification of locations and functions that
supports modularity in high-level system descriptions. A recent tutorial intro-
duction into the ASM method for high-level system design and analysis is avail-
able in [7]. For a more detailed textbook presentation of the method see the
AsmBook [12].

1 Basic Components of Bilateral Interaction Patterns

The basic bilateral (one-to-one) interaction patterns we have identified are char-
acterized by four component type ASMs, refinements of which suffice to compose
any other bilateral interaction pattern of whatever structural complexity: Send
and Receive and their sequential combinations SendReceive (for sending a re-
quest followed by receiving a response) and ReceiveSend (for receiving a request
followed by sending a response). Each of these pattern components describes one
side of an interaction, as illustrated in Figure 1, so that all the basic bilateral
interaction pattern ASMs we define in this section are mono-agent machines or
modules.

1.1 Pattern Send

Different versions for sending are considered, depending on whether the delivery
is reliable (guaranteed) or not and whether, in case of reliable delivery, the action
is blocking or non-blocking. Also the possibility is contemplated that the send
action may result in a fault message in response or that a periodic resending of
a message is performed.

Fig. 1. Basic Bilateral Interaction Pattern Types

Service Interaction Patterns and Interaction Flows 7

For each version it is required that the counter-party may or may not be
known at design time. This is reflected by the following possibly dynamic func-
tion, associating a recipient to each message. In case the recipient depends on
further parameters, one has to refine recipient(m) by adding those parameters
to the function to determine recipient(m, param).

recipient :Message → Recipient
recipient :Message × Param → Recipient

All considered types of the send pattern use an abstract machine BasicSend
(m) with the intended interpretation that message m is sent to recipient(m), or
to recipient(m, param) in case some additional recipient parameters are given by
the context. Some patterns also use the notation BasicSend(m, r) where r =
recipient(m, param). This abstraction will be refined below, e.g. to capture
broadcasting instead of bilateral sending. It also reflects that the underlying
message delivery system is deliberately left unspecified.

To indicate that a faulty behavior has happened at the receiver’s side as
result of sending message m, we use an abstract monitored predicate Faulty(m)
with the intended interpretation that a fault message in response has arrived.
Possible faults originating at the sender’s side, during an attempt to send a
message m, are captured by a SendFaultHandler, typically triggered by a
condition not OkSend(m). A typical refinement of OkSend(m) would be that
there exists a channel, connecting the sender to the recipient, which is open to
send m.

We therefore have two abstract methods, a machine which does a FirstSend
(m) without further resending and a machine to HandleSendFault(m). These
two machines use, as guards for being triggered, abstract monitored predi-
cates SendMode(m) respectively SendFaultMode(m). A typical assumption on
the underlying scheduler for calling these machines will be that for each m,
SendFaultMode(m) can become true only after SendMode(m) has been true.

To formalize sending messages whose delivery is requested to be guaran-
teed by an acknowledgement, a machine SetWaitCondition will typically
Initialize a shared predicate WaitingFor(m), whose role is to record that the
sender is still waiting for an acknowledgement which informs that m has been
delivered. In case of a BlockingSend(m), the blocking effect is formalized by set-
ting status := blocked(m). Here status itself is not parameterized by m given
that its role is to possibly block the Send machine from further sending out
other messages (see below the discussion of the blocking case).

FirstSend(m) = if SendMode(m) then 2

if OkSend(m) then
BasicSend(m)

2 For notational succinctness we assume the firing of this rule to be preemptive.
This means that when the rule is applied because SendMode(m) became true,
SendMode(m) becomes false as a result of this application. Usually such an preemp-
tiveness assumption is automatically guaranteed through further refinement steps.

8 A. Barros and E. Börger

if AckRequested(m) then SetWaitCondition(m)
if BlockingSend(m) then status := blocked(m)

HandleSendFault(m) = if SendFaultMode(m) then
SendFaultHandler(m)3

As typical assumption SendMode(m) and not OkSend(m) implies SendFault
Mode(m) = true.

Send&Check = {FirstSend(m),HandleSendFault(m)}4

Send Without Guaranteed Delivery. For the instantiation of Send&Check
to SendnoAck it suffices to require AckRequested and BlockingSend to be always
false.

MODULE SendnoAck = Send&Check
where 5 forall m AckRequested(m) = BlockingSend(m) = false

Guaranteed Non-blocking Send. For the instantiation of Send&Check to
SendackNonBlocking with guaranteed delivery, but without blocking effect, it suf-
fices to require AckRequested to be always true resp. BlockingSend to be always
false and to further detail the abstract submachine SetWaitCondition(m).
This machine has to Set various deadlines and to Initialize the predicate
WaitingFor(m),6 which is reset to false typically through an action of the
recipient(m) upon receipt of m, e.g. by sending an acknowledgement message
under a reliable messaging protocol7. Among the various deadlines occurring in
different patterns we mention here deadline(m) and sendTime(m), which are
typically used to define Timeout(m) by (now − sendTime(m) > deadline(m)),
using a system time function now to which sendTime(m) is set in Set. We
also mention a function frequency(m) which will help to define the frequency
of events expected by the sender, e.g. the arrival of response messages or the
ResendTime(m) at which m has to be resent periodically (see below). A fre-
quent requirement on the scheduler is that SendFaultMode(m) is implied by a
Timeout(m), although some patterns come with Timeout concepts which are
not related to faulty message sending and therefore trigger other machines than
TimeoutFaultHandlers.
3 As for FirstSend(m) we assume also the firing of HandleSendFault(m) to be

preemptive.
4 By this notation we indicate that Send&Check consists of the two methods

FirstSend and HandleSendFault, callable for any legal call parameter m, what-
ever may be the parameter passing mechanism.

5 Notationally we use unrestricted quantifiers, assuming that their underlying range
is clear from the context.

6 This predicate reflects the not furthermore specified message delivery system. In
some cases below it will be refined by providing further details for its definition.

7 The limit case is possible that Initialize(WaitingFor(m)) sets WaitingFor(m) :=
false in case of immediate and safe delivery.

Service Interaction Patterns and Interaction Flows 9

MODULE SendackNonBlocking = Send&Check
where

forall m AckRequested(m) = true and BlockingSend(m) = false
SetWaitCondition(m) =

Initialize(WaitingFor(m))
Set(deadline(m), sendTime(m), frequency(m), . . .)

Guaranteed Blocking Send. For the instantiation of Send&Check to
SendackBlocking with guaranteed delivery and blocking effect, we require both
AckRequested and BlockingSend to be always true, refine SendMode(m) to status
= readyToSend and add a submachine UnblockSend(m). Its role is to switch
back from blocked(m) to an unblocked status, typically readyToSend , and to
PerformAction(m) to be taken upon the end of the waiting period.8

For a succinct formulation of the refinement of SetWaitcondition we use
the following notation introduced in [6]: M addRule R denotes the parallel
composition of M and R.

M addRule R =
M
R

To avoid confusion among different machines, which occur as submachine
of machines N ,N ′ but within those machines carry the same name M , we use
indexing and write MN respectively MN ′ .

MODULE SendackBlocking = Send&Check ∪ {UnblockSend(m)}
where

forall m AckRequested(m) = BlockingSend(m) = true
SendMode(m) = (status = readyToSend)
SetWaitCondition(m) = SetWaitConditionSendackNonBlocking

(m)
addRule status := blocked(m)

UnblockSend(m) = if UnblockMode(m) then
Unblock(status)
PerformAction(m)

UnblockMode(m) = (status = blocked(m) and not WaitingFor(m))
SendFaultMode(m) = (Faulty(m) and status = blocked(m) and
WaitingFor(m))

Send with Resending. In case one wants a still not delivered message to be
resent from time to time, it suffices to periodically trigger an additional ma-
chine ReSend(m) 9 until the WaitingFor(m) value has changed to false—or
8 We use here an abstract machine Unblock(status) instead of status :=

readyToSend to be prepared for further refinements of PerformAction which
could include status updates, in coordination with a corresponding refinement of
Unblock(status).

9 The period is determined by a predicate ResendTime(m), which typically is defined
in terms of the function lastSendTime(m) and the monitored system time now .

10 A. Barros and E. Börger

a Faulty(m) event triggers HandleSendFault(m), which typically is assumed
to stop ReSending. We write the pattern for any SendType considered above,
namely t ∈ {noAck , ackNonBlocking, ackBlocking}. We foresee that message
copies are variations newVersion(m,now) of the original m, where the varia-
tion may depend on the current time now .

MODULE SendtResend = Sendt ∪ {ReSend(m)}
where

ReSend(m) = if ResendMode(m) then
BasicSend(newVersion(m,now))
lastSendTime(m) := now

ResendMode(m) = ResendTime(m) and WaitingFor(m)

For a pictorial representation of SendackBlockingResend see Figure 2. It gener-
alizes the Alternating Bit Sender control state ASM diagram in [p.243][12].

Fig. 2. Blocking Send with Acknowledgement and Resend

We reassume here the definition of the set of SendTypes considered in this
paper:

SendType = {noAck , ackNonBlocking, ackBlocking}
∪{noAckResend , ackNonBlockingResend , ackBlockingResend}

1.2 Pattern Receive

We formalize a general form for receiving messages, which can be instantiated to
the different versions discussed in [2], depending on whether the action is blocking
or non-blocking, whether messages which upon arrival cannot be received are

Service Interaction Patterns and Interaction Flows 11

buffered for further consumption or discarded and whether an acknowledgement
is required or not. Also the possibility is contemplated that the receive action
may result in a fault message.

For each version it is required that the party from which the message will
be received may or may not be known at design time. This is reflected by the
following possibly dynamic function, associating a sender to each message.

sender :Message → Sender

We use abstract predicates checking whether a message m is Arriving10

and ToBeAcknowledged and whether our machine is ReadyToReceive(m) and
in case it is not whether the message is ToBeDiscarded or ToBeBuffered , in
which cases the action is described by abstract machines to Consume(m),
Discard(m), Buffer(m) or to send an Ack(m) message or a faultMsg(m) to
the sender(m). For the buffering submachine we also forsee the possibility that
upon DequeueTime, which is typically defined in terms of the enqueueTime of
messages, a Dequeue action is required. We leave it as part of the here not fur-
thermore specified submachines Discard(m) and Enqueue(m) to acknowledge
by BasicSend(discardOrBufferMsg(m), sender(m)) a received but discarded or
buffered message m where required. Similarly one may consider sending a further
acknowledgement as part of the Dequeue submachine.

Receive(m) = if Arriving(m) then
if ReadyToReceive(m) then

Consume(m)
if ToBeAcknowledged(m) then BasicSend(Ack(m), sender(m))

elseif ToBeDiscarded(m) then
Discard(m)

else Buffer(m)
where Buffer(m) =

if ToBeBuffered(m) then
Enqueue(m)
enqueueTime(m) := now

if DequeueTime then Dequeue

Remark. Note that Consume and Discard are typically realized at the
application (e.g. BPEL) level, whereas Buffer(m) belongs to the system level
and is usually realized through lower level middleware functionality.

Instances of Receive(m). It is now easy to define special versions of Receive
by restricting some of the abstract guards.

Receiveblocking can be defined as Receive where no message is discarded
or buffered, so that for an Arriving(m) that is not ReadyToReceive(m), the
machine is ‘blocked’ (read: cannot fire its rule for this m) until it becomes
ReadyToReceive(m), formally speaking where there is no DequeueTime and for
each message m holds:
10 The intended interpretation of Arriving(m) is that m is in the message channel or

in the message buffer.

12 A. Barros and E. Börger

ToBeDiscarded(m) = false = ToBeBuffered(m).

Receivediscard can be defined similarly as Receive where arriving messages, if
they cannot be received at arrival time, are discarded, so that for each message m
holds:

ReadyToReceive(m) = false ⇒ ToBeDiscarded(m) = true.

Receivebuffer can be defined as Receive where arriving messages, if they can-
not be received at arrival time, are buffered, formally where for each message m
holds:

ReadyToReceive(m) = false ⇒
ToBeDiscarded(m) = falseToBeBuffered(m) = true.

For each of the preceding Receive instances one can define a version
Receiveack with acknowledgement, namely by requiring that for each mes-
sage m it holds that ToBeAcknowledged(m) = true; analogously for a version
ReceivenoAck without acknowledgement, where it is required that
ToBeAcknowledged(m) = false holds for each message m.

We reassume here the definition of the set of ReceiveTypes considered above,
where we add the distinction among those with and those without acknowledge-
ment, depending on whether ToBeAcknowledged(m) is true or not for every m:

ReceiveType = {blocking, buffer , discard} ∪
{noAckBlocking,noAckBuffer , ackBlocking, ackBuffer}

1.3 Pattern Send/Receive

This pattern is about receiving a response to a previously sent request. One can
define this pattern as a combination of the machines for the send and the receive
pattern. The requirement of “a common item of information in the request and
the response that allows these two messages to be unequivocally related to one
another” is captured by two dynamic predicates11 RequestMsg and ResponseMsg
with a function requestMsg, which identifies for every m ∈ ResponseMsg the
requestMsg(m) ∈ RequestMsg to which m is the responseMsg.12

For the non-blocking version of the pattern, sending a request message is
made to precede the call of Receive for the response message m by refin-
ing the Receive-guard Arriving(m) through the condition that the message
which Arrived is a ResponseMsg. If no acknowledgement of the response is re-
quested, it suffices to require ToBeAcknowledged(m) = false for each m. Another
natural assumption is that after having Initialized WaitingFor(m) through
FirstSend(m), WaitingFor(m) is set at the recipient(m) to false in the moment
responseMsg(m) is defined. For the blocking version this assumption guarantees
that both Receive and UnblockSend can be called for the responseMsg(m).
We formulate the Send/Receive pattern for any pair (s , t) of SendType and
ReceiveType.
11 We identify sets with unary predicates.
12 This view of ResponseMsg can be turned into a refined view by distinguishing at

each agent ReceivedResponseMsges from ToBeSentResponseMsges.

Service Interaction Patterns and Interaction Flows 13

MODULE SendReceives,t = Sends ∪ {Receivet (m)}
where

Arriving(m) = Arrived(m) and m ∈ ResponseMsg
ResponseMsg = {m | m = responseMsg(requestMsg(m))}

1.4 Pattern Receive/Send

This pattern is a dual to the Send/Receive pattern and in fact can be com-
posed out of the same constituents, but with different refinements for some of
the abstract predicates to let receiving a request precede sending the answer.
The different versions of the pattern are reflected by the different versions for
the constituent machines for the Receive or Send pattern. The refinement of
SendMode(m) by adding the condition m ∈ ResponseMsg guarantees that send-
ing out an answer message is preceded by having received a corresponding request
message, a condition which is represented by a predicate ReceivedMsg.

MODULE ReceiveSendt,s = {Receivet (m)} ∪ Sends

where
SendMode(m) = SendModet (m) and m ∈ ResponseMsg
ResponseMsg = {responseMsg(m) | ReceivedMsg(m)}

An example of this bilateral service interaction pattern appears in the web
service mediator model defined in [1], namely in the pair of machines to Receive
Requests and to SendAnswers.

2 Basic Multilateral Interaction Patterns
(Composition of Basic Bilateral Interaction Patterns)

In this section four basic multi-party interaction patterns are identified for each of
the four basic bilateral interaction pattern ASMs of the previous section, namely
by allowing multiple recipients or senders: Send messages (representing requests
or responses) to multiple recipients, Receive responses or requests from multiple
senders, SendReceive to send requests to multiple interaction partners followed
by receiving responses from them, similarly ReceiveSend to receive requests from
multiple interaction partners followed by sending responses to them.

Each of these patterns describes one side of the interaction, as illustrated
in Figure 3, so that all the components we define in this section are mono-
agent ASM machines or modules. Refinements of the identified basic multilateral
interaction pattern ASMs suffice to compose any other multilateral interaction
pattern of whatever structural complexity.

2.1 One-to-Many Send Pattern

This pattern describes a broadcast action where one agent sends messages to
several recipients. The requirement that the number of parties to whom a mes-
sage is sent may or may not be known at design time is reflected by having a
dynamic set Recipient . The condition that the message contents may differ from

14 A. Barros and E. Börger

Fig. 3. Basic Multilateral Interaction Pattern Types

one recipient to another can be captured by a dynamic function msgContent for
“instantiating a template with data that varies from one party to another”.

msgContent :MsgTemplate × Recipient → Message

Variations of the pattern can be captured by refining the abstract predicates like
FaultMode(m) or SendMode(m) accordingly13 and refining the BasicSend com-
ponent by forall r ∈ Recipient do AtomicSendtype(m,r)(msgContent(m, r)),
where the new abstract machine AtomicSend plays the role of the atomic send-
ing mechanism for broadcasting messages to multiple recipients. We forsee that
it can be of a type which depends on messages m and their recipients r .

OneToManySends = Sends

where
BasicSend(m) = forall r ∈ Recipient(m) do
AtomicSendtype(m,r)(msgContent(m, r))

2.2 One-from-Many Receive Pattern

This pattern describes correlating messages, received from autonomous multiple
parties, into groups of given types, whose consolidation may complete success-
fully, e.g. into a single logical request, or trigger a failure process. “The arrival
of messages needs to be timely enough for their correlation as a single logical
request.” The pattern can be defined by adding to a refinement of Receive a
new module GroupRules whose components manipulate groups by creating,
consolidating and closing them.

The refinement of Receive consists first of all in adapting the predicate
ReadyToReceive(m) to mean that the current state is Accepting the type of
arriving message. The type(m) serves to “determine which incoming messages
should be grouped together”. The machine Consume(m) is detailed to mean
that m is accepted by and put into its current (possibly newly created) corre-
lation group currGroup, which depends on the type(m). By the constraint that

13 For example SendMode(m) could be refined for the guaranteed block-
ing send by stipulating SendMode(m) ≡ status = forall r ∈
Recipient ReadyToSendTo(m, r) and refining WaitingFor(m) to forall
r ∈ RecipientExpectedToAnswer(m) WaitingFor(m, r) or to forsome r ∈
RecipientExpectedToAnswer(m) WaitingFor(m, r).

Service Interaction Patterns and Interaction Flows 15

a message, to be inserted into its correlation group, has to be accepted by its
currGroup, we reflect a stop condition, which is needed because in the pattern
“the number of messages to be received is not necessarily known in advance”.
The definition of ToBeDiscarded(m) as the negation of Accepting(m) reflects
that no buffering is foreseen in this scheme.

The machine CreateGroup(type) to create a correlation group of the given
type reflects that following the pattern requirements, groups can be created
not only upon receipt of a first message (namely as part of Consume), but
“this can occur at any time”. To InitializeGroup for a newly created element
g ∈ Group(t) comes up to make it the currGroup of type(g) = t , Accepting and
with the timer(g) set to the current system time now .

The group closure machines CloseCurrGroup and CloseGroup reset
Accepting for their argument (namely currGroup or a group type) to false in
case a Timeout , imposed on the correlation process, or a group completion event
respectively a ClosureEvent for a correlation type does occur.

To Consolidate a group g upon its completion into a single result, the
two cases are forseen that the correlation “may complete successfully or not
depending on the set of messages gathered” in g, wherefore we use abstract
machines to ProcessSuccess(g) or ProcessFailure(g).

MODULE OneFromManyReceivet = {Receivet} ∪GroupRules
where
ReadyToReceive(m) = Accepting(type(m))
Consume(m) =

let t = type(m) in
if Accepting(currGroup(t))

then insert m into currGroup(t)
else InitInsert(m,new(Group(t)))

InitInsert(m, g) =
InitializeGroup(g)
insert m into g

ToBeDiscarded(m) = not Accepting(type(m))
GroupRules = {CreateGroup(type),Consolidate(group),

CloseCurrGroup(type),CloseGroup(type)}

CreateGroup(type) = if GroupCreationEvent(type) then
let g = new(Group(type)) in InitializeGroup(g)

InitializeGroup(g) =
Accepting(g) := true
currGroup(type(g)) := g
timer(g) := now

Consolidate(group) = if Completed(group) then
if Success(group)

then ProcessSuccess(group)
else ProcessFailure(group)

16 A. Barros and E. Börger

CloseCurrGroup(type) =
if Timeout(currGroup(type)) or Completed(currGroup(type))

then Accepting(currGroup(type)) := false
CloseGroup(type) =

if ClosureEvent(type) then Accepting(type) := false

This formalization permits to have at each moment more than one correlation
group open, namely one currGroup per message type. It also permits to have
at each moment messages of different types to arrive simultaneously. It assumes
however that per message type at each moment only one message is arriving. If
this assumption cannot be guaranteed, one has to refine the Consume machine
to consider completing a group by say m1 of m simultaneously arriving messages
and to create a new group for the remaining m−m1 ones (unless the completion
of a group triggers the closure of the group type).

2.3 One-to-Many Send/Receive Pattern

This pattern is about sending a message to multiple recipients from where re-
sponses are expected within a given timeframe. Some parties may not respond
at all or may not respond in time. The pattern can be composed out of the ma-
chine OneToManySend and the module OneFromManyReceive, similarly
to the composition of the SendReceive modules out of Send and Receive.
For this purpose the sending machine used in OneToManySend is assumed
to contain the SetWaitCondition submachine to initialize sendTime(m) :=
now . This value is needed to determine the Accepting predicate in the module
OneFromManyReceive to reflect that “responses are expected within a given
timeframe”. Remember that the refinement of the Receive-guard Arriving(m)
guarantees that OneToManySend has been called for requestMsg(m) before
OneFromManyReceive is called to Receive(m).

MODULE OneToManySendReceives,t =
OneToManySends ∪OneFromManyReceivet

where
Arriving(m) = Arrived(m) and m ∈ ResponseMsg

An instance of this multilateral service interaction pattern appears in the web
service mediator model defined in [1], realized by the machine pair FeedSend
Req and ReceiveAnsw. The former is an instance of OneToManySend, the
latter is used as a OneFromManyReceive until all expected answers have
been received.

2.4 One-from-Many Receive/Send Pattern

This pattern is symmetric to OneToManySendReceive and can be simi-
larly composed out of OneToManySend and OneFromManyReceive but
with a different refinement, namely of the SendMode predicate, which guaran-
tees that in any round, sent messages are responses to completed groups of

Service Interaction Patterns and Interaction Flows 17

received requests. Since several received messages are correlated into a single
response message, which is then sent to multiple recipients, responseMsg is de-
fined not on received messages, but on correlation groups of such, formed by
OneFromManyReceive.

MODULE OneFromManyReceiveSendt,s =
OneFromManyReceivet ∪OneToManySends

where SendMode(m) =
SendMode(m)s and m = responseMsg(g) for some g ∈ Group with
Completed(g)

This pattern generalizes the abstract communication model for distributed
systems proposed in [16] as a description of how communicators route messages
through a network, namely by forwarding into the mailboxes of the Recipients
(read: via OneToManySend) the messages found in the communicator’s mail-
box (read: via OneFromManyReceive). The core of this communicator model
is the ASM defined in [16, Sect.3.4], which exhibits “the common part of all
message-based communication networks” and is reported to have been applied
to model several distributed communication architectures.

3 Composition of Basic Interaction Patterns

In this section we illustrate how to build complex business process interaction
patterns, both mono-agent (bilateral and multilateral) and asynchronous multi-
agent patterns, from the eight basic interaction pattern ASMs defined in the
preceding sections. There are two ways to define such patterns: one approach
focusses on refinements of the interaction rules to tailor them to the needs of
particular interaction steps; the other approach investigates the order and timing
of single interaction steps in (typically longer lasting) runs of interacting agents.

To illustrate the possibilities for refinements of basic interaction pattern
ASMs, which exploit the power of the general ASM refinement notion [5], we de-
fine two bilateral mono-agent patterns, namely an instance CompetingReceive
of Receive and a refinement MultiResponse of the bilateral SendReceive.
We define TransactionalMulticastNotification, a mono-agent multilat-
eral instance of the multilateral OneToManySendReceive and a generaliza-
tion of the well-known Master-Slave network protocol. We define MultiRound
OneToManySendReceive, an iterated version of OneToManySend
Receive. As examples for asynchronous multi-agent patterns we define four
patterns: Request with Referral, Request with Referral and Notification, Re-
layed Request, Dynamic Routing.

The list can be extended as needed to include any complex or specialized
monoagent or multiagent interaction pattern, by defining combinations of re-
finements of the eight basic bilateral and multilateral interaction pattern ASMs
identified in the preceding sections.

At the end of this section we shortly discuss the investigation of interaction
pattern ASM runs and link the management of such runs to the study of current
thread handling disciplines.

18 A. Barros and E. Börger

3.1 Competing Receive Pattern

This pattern describes a racing between incoming messages of various types,
where exactly one among multiple received messages will be chosen for a spe-
cial Continuation of the underlying process. The normal pattern action is
guarded by waitingForResponses contained in expected messages of different
types, belonging to a set Type; otherwise an abstract submachine will be called
to ProcessLateResponses. The Continuation submachine is called for only
one ReceivedResponse(Type), i.e. one response of some type t ∈ Type, and is ex-
ecuted in parallel with another submachine to ProcessRemainingResponses.
The interaction is closed by updating waitingForResponse to false. The choice
among the competing types of received response events is expressed by a possi-
bly dynamic and here not furthermore specified select ion function to select one
received response of some type. An abstract machine EscalationProcedure
is foreseen in case of a Timeout (which appears here as a monitored predicate). It
is natural to assume that EscalationProcedure changes waitingForResponse
(Type) from true to false. Apparently no buffering is foreseen in this pattern, so
that ToBeDiscarded(m) is defined as negation of ReadyToReceive(m).

An ASM with this behavior can be defined as a refinement of Receive(m) as
follows. We define ReadyToReceive(m) to mean that up to now waitingForRes-
ponse(Type) holds and no Timeout occurred. This notion of ReadyToReceive(m)
describes a guard for executing Receive which does not depend on m. In fact we
have to make CompetingReceive work independently of whether a message ar-
rived or not, in particular upon a Timeout . Therefore also Arriving(m) has to be
adapted not to depend on m, e.g. by defining it to be always true.14 The subma-
chine Consume is refined to formalize the normal pattern action described above
(which may be parameterized by m or not), whereas ToBeDiscarded(m) de-
scribes that either a Timeout happened or the system is not waitingForResponse
(Type) any more, in which case Discard formalizes the abnormal pattern be-
havior invoking EscalationProcedure or ProcessLateResponses.

CompetingReceive = Receive
where

Arriving(m) = true
ReadyToReceive(m) =

waitingForResponse(Type) and not Timeout
Consume =

let ReceivedResponse(Type) = {r | Received(r) and Response(r , t)
forsome t ∈ Type}

if ReceivedResponse(Type) �= ∅ then
let resp = select(ReceivedResponse(Type))

Continuation(resp)
ProcessRemainingResp(ReceivedResponse(Type) \ {resp})

14 These stipulations mean that the scheduler will call CompetingReceive indepen-
dently of any message parameter, which is a consequence of the above stated re-
quirements.

Service Interaction Patterns and Interaction Flows 19

waitingForResponse(Type) := false
ToBeDiscarded(m) = Timeout or not waitingForResponse(Type)
Discard =

if not waitingForResponse(Type) then ProcessLateResponses
if Timeout then EscalationProcedure

3.2 Contingent Request

This pattern has multiple interpretations. It can be defined as an instance of
SendReceive, where the Send(m) comes with the ReSend submachine to re-
send m (maybe to a new recipient) if no response is received from the previous
recipient within a given timeframe. I can also be defined as a combination of
CompetingReceive with ReSend. In both cases the function newVersion re-
flects that the recipient of that version may be different from the recipient of the
original.

3.3 Multi-response Pattern

This pattern is a multi-transmission instance of the SendReceive pattern,
where the requester may receive multiple responses from the recipient “un-
til no further responses are required”. It suffices to refine the Receive-guard
readyToReceive according to the requirements for what may cause that no fur-
ther responses r will be accepted (and presumably discarded) for the request m,
namely (a response) triggering to reset FurtherResponseExpected(m) to false or
a Timeout(m) due to the expiry of either the request deadline(m) (time elapsed
since the sendTime(m), set in SetWaitCondition(m) when the request m was
sent) or a lastResponseDeadline(m) (time that elapsed since the last response
to request message m has been received).

To make this work, SetWaitCondition(m) has to be refined by adding
the initialization rule FurtherResponseExpected(m) := true. To Receive re-
sponse messages m, Consume(m) has to be refined by adding the rule
lastResponseTime (requestMsg(m)) := now , so that the timeout pred-
icate Expired(lastResponse Deadline(m)) can be defined with the help
of lastResponseTime(m). For the refinement of SetWaitCondition and
Consume we use the notation M addRule R from [6] to denote the paral-
lel composition of M and R.

MODULE MultiResponses,t = SendReceives,t

where
SetWaitCondition(m) = SetWaitConditionSendReceives,t

(m)
addRule FurtherResponseExpected(m) := true

ReadyToReceive(m) = FurtherResponseExpected(requestMsg(m)) and
not Timeout(requestMsg(m))

Consume(m) = ConsumeSendReceives,t
(m)

addRule lastResponseTime(requestMsg(m)) := now
ToBeDiscarded(m) = not ReadyToReceive(m)
Timeout(m) = Expired(deadline(m)) or
Expired(lastResponseDeadline(m))

20 A. Barros and E. Börger

3.4 Transactional Multicast Notification

This pattern generalizes the well-known Master-Slave network protocol investi-
gated in [19,12]. In each round a notification m is sent to each recipient in a
possibly dynamic set Recipient(m). The elements of Recipient(m) are arranged
in groups, allowing in groups also further groups as members, yielding a possibly
arbitrary nesting of groups. Within each group g a certain number of members,
typically between a minimum acceptMin(m, g) and a maximum acceptMax (m, g)
number, are expected to “accept” the request m within a certain timeframe
Timeout(m). Recipients “accept” m by sending back an AcceptMsg to the mas-
ter.

The pattern description given below defines the master program in the
master-slave protocol, whereas in applications it is typically assumed that each
slave uses a blocking Send machine. The master ASM can be defined as a
refinement of the OneToManySendReceive pattern with blocking Send.
WaitingFor(m) is refined to not Timeout(m), so that the blocking condition
status = blocked(m) appears as waiting mode for receiving AcceptMsges from
Recipients in response to the notification m. The nested group structure is rep-
resented as a recipientTree(m) whose nodes (except the root) stand for groups
or recipients. The set Leaves(reci- pientTree(m)) of its leaves defines the set
Recipient(m); for each tree node n which is not a leaf the set children(n) repre-
sents a group. Since for each inner node there is only one such group, we keep
every corresponding currGroup(t) open by defining it as Accepting. We can de-
fine type(r) = r so that currGroup(r) for any response message r collects all the
AcceptMsgs which are received from brothers of sender(r).

SetWaitCondition(m) is extended by a machine to InitializeMinMax
(m) and a machine to InitializeCurrGroup(m) for each group. The
Acceptance notion for tree nodes has to be computed by the master itself, namely
as part of PerformAction (m). We abstract from the underlying tree walk al-
gorithm by defining Accept as a derived predicate, namely by recursion on the
recipientTree(m) as follows, starting from the AcceptMsg concept of response
messages accepting the notification m. By | X | we denote the cardinality of the
set X .

Accept(n) ⇔ acceptMin(m, children(n)) ≤| {c ∈ children(n) | Accept(c)} |
Accept(leaf)⇔ some r ∈ ResponseMsg(m) with AcceptMsg(r)
was received from leaf

It may happen that at Timeout(m) more than acceptMax (m, g) accept-
ing messages did arrive. Then a “priority” function chooseAccChildren is used
to choose an appropriate set of accepting children among the elements of
g = children(n). The elements of all these chosen sets constitute the set
chosenAcc Party(root) of recipients chosen among those who accepted the no-
tification m. Both functions are defined as derived functions by a recursion on
the recipientTree (m) as follows:

Service Interaction Patterns and Interaction Flows 21

chooseAccChildren(n) ={
∅ if | AcceptChildren(n) |< acceptMin(m, children(n))
⊆min,max AcceptChildren(n) else

where
AcceptChildren(n) = {c ∈ children(n) | Accept(n)}
min = acceptMin(m, children(n))
max = acceptMax (m, children(n))
A ⊆l,h B ⇔ A ⊆ B and l ≤| A |≤ h

chosenAccParty(leaf) =
{
{n} if Accept(n)
∅ else

chosenAccParty(n) =
⋃

c∈chooseAccChildren(n) chosenAccParty(c)

The submachine PerformAction(m), which in case that
Accept(root(recipientTree(m))) holds is executed in UnblockMode(m),
Processes the fullRequest(m) for the chosenAccParty at the
root(recipientTree(m)), taking into account also the other recipients. Oth-
erwise a RejectProcess is called.

To formulate the refinement of SetWaitcondition we use again the nota-
tion M addRule R from [6] to denote the parallel composition of M and R.
OTMSR stands as abbreviation for OneToManySendReceiveackBlocking,t .

MODULE TransactionalMulticastNotifyt =
OneToManySendReceiveackBlocking,t

where 15

WaitingFor(m) = not Timeout(m)
SetWaitCondition(m) = SetWaitconditionOTMSR(m)

addRule
InitializeMinMax(m)
InitializeCurrGroup(m)

where
InitializeMinMax(m) = forall g = children(n) ∈ recipientTree(m)

Initialize(acceptMin(m, g), acceptMax (m, g))
InitializeCurrGroup(m) = forall r ∈ Recipient(m)

currGroup(r) := ∅
type(response) = response
Accepting(response)= response∈AcceptMsg andnotTimeout(requestMsg(response))
currGroup(response) = currGroup(sender(response))
currGroup(recipient) = brothers&sisters(recipient) ∩ {leaf | Accept(leaf)}
Accepting(currGroup(r)) = true
PerformAction(m) =

if Accept(root(recipientTree(m))) then
let
accParty = chosenAccParty(root(recipientTree(m)))
others = Leaves(recipientTree(m)) \ accParty in

15 One could probably delete the GroupRules since they are not used by this pattern.

22 A. Barros and E. Börger

Fig. 4. Transactional Multicast Notify

else RejectProcess(m)

For a pictorial representation of TransactionalMulticastNotify (with-
out arrows for the responses) see Figure 4, where the leaves are represented by
circles and the groups by rectangles.

3.5 Multi-round One-to-Many Send/ReceivePattern

This pattern can be described as an iteration of (a refinement of) the OneTo
ManySendReceive components OneToManySend and OneFromMany
Receive. The number of one-to-many sends followed by one-from-many receives
is left unspecified; to make it configurable one can introduce a corresponding
roundNumber counter (into the SendMode guard and the SetWaitCondition).

The dynamic set Recipient guarantees that the number of parties where
successive requests are sent to, and from where multiple responses to the current
or any previous request may be received by the sender, may be bounded or
unbounded. There is also no a priori bound on the number of previous requests,
which are collected into a dynamic set ReqHistory.

The main refinement on sending concerns the submachine SetWait
Condition, which has to be adapted to the fact that WaitingFor , sendTime
and blocked may depend on both the message template m and the recipi-
ent r . Furthermore this submachine has to record the message template as new
currRequest and to store the old currReq into the ReqHistory, since incoming
responses may be responses to previous request versions. The pattern description
speaks about responses to “the request” for each request version, so that we use
the request template m to define currRequest (and Group types below)16. Also
the guard SendMode(m) is refined to express (in addition to the possible status
condition) that forall r ∈ Recipient(m) a predicate ReadyToSendTo(m, r)
holds, where this predicate is intended to depend on the responses returned
so far (defined below as a derived set ResponseSoFar).

The main refinement on receiving concerns the definition of type(m) for
any m ∈ ResponseMsg as the requestMsg(m) that triggered the response m.
This reflects that each response message is assumed to be a response to (ex-
actly) one of the sent requests. However, every request r is allowed to trigger
more than one response m from each recipient (apparently without limit), so
that the function responseMsg is generalized to a relation responseMsg(m, r).
16 Otherwise one could define currReq(r) := msgContent(m, r) for each recipient r .

Process(fullRequest(m), accParty , others)

Service Interaction Patterns and Interaction Flows 23

Therefore currGroup(request) represents the current collection of responses re-
ceived to the request . It remains to reflect the condition that “the latest re-
sponse . . . overrides the latest status of the data . . . provided, although pre-
vious states are also maintained”. Since the pattern description contains no
further requirements on the underlying state notion, we formulate the condition
by the derived set ResponseSoFar defined below and by adding to Consume
an abstract machine MaintainDataStatus to allow one to keep track of the
dataStatus of previous states, for any request. OTMSR stands as abbreviation
for OneToManySendReceive.

MODULE MultiRoundOneToManySendReceive = OneToManySendReceive
where

SendMode(m) = SendMode(m)OTMSR and
forall r ∈ Recipient(m) ReadyToSendTo(m, r)

SetWaitCondition(m) =
forall r ∈ Recipient(m)

Initialize(WaitingFor(m, r))
sendTime(m, r) := now
status := blocked(m, r)

insert currRequest into ReqHistory
currRequest := m

type(m) = requestMsg(m)
Consume(m) = Consume(m)OTMSR

addRule MaintainDataStatus(Group(requestMsg(m)))

ResponseSoFar =
⋃
{Group(m) | m ∈ ReqHistory} ∪ {currGroup(currReq)}

3.6 Request With Referral

This pattern involves two agents, namely a sender of requests and a receiver
from where “any follow-up response should be sent to a number of other par-
ties . . .”, in particular faults, which however “could alternatively be sent to
another nominated party or in fact to the sender”. Apparently sending is un-
derstood without any reliability assumption, so that the sender is simply for-
malized by the module SendnoAck . For referring sent requests, the appropriate
version of the Receive machine is used, with the submachine Consume re-
fined to contain OneToManySend for the set Recipient(m) encoded as set
of followUpResponseAddressees extracted from m. As stated in the require-
ment for the pattern, followUpResponseAddr may be split into disjoint sub-
sets failureAddr and normalAddr . Since the follow-up response parties (read:
Recipient(m)) may be chosen depending on the evaluation of certain conditions,
followUpResponseAddr can be thought of as a set of pairs of form (cond , adr)
where cond enters the definition of SendMode(m).

2-Agent ASM RequestReferral =
Sender agent with module SendnoAck

Referral agent with module Receive

24 A. Barros and E. Börger

where
Consume(m) = OneToManySend(Recipient(m))
Recipient(m) = followUpResponseAddr(m)

For a pictorial representation of RequestReferral see Figure 5.

Fig. 5. Request with Referral and Advanced Notification

A refinement of RequestReferral has the additional requirement of an
advanced notification, sent by the original sender to the other parties and in-
forming them that the request will be serviced by the original receiver. This
requirement comes with the further requirement that the sender may first send
his request m to the receiver and only later inform the receiver (and the to-
be-notified other parties) about Recipient(m). These two additional require-
ments can be obtained by refining in RequestReferral the SendnoAck by
a machine with blocking acknowledgment—where WaitingFor(m) means that
Recipient(m) is not yet known and that Timeout(m) has not yet happened—and
the PerformAction(m) submachine as a OneToManySend of the notifica-
tion guarded by known(Recipient(m).

2-Agent ASM NotifiedRequestReferral =
Sender agent with module SendackBlocking ∪ {OneToManySend}

where
WaitingFor(m) = not known(Recipient(m)) and not Timeout(m)
PerformAction(m) =

if not known(Recipient(m)) then SendFailure(m)
else OneToManySend(advancedNotif (m))

Referral agent with module Receive
where

Consume(m) = OneToManySend(Recipient(m))
Recipient(m) = followUpResponseAddr(m)

3.7 Relayed Request Pattern

The RelayedRequest pattern extends Request Referral by the additional re-
quirement that the other parties continue interacting with the original sender
and that the original receiver “observes a “view” of the interactions including
faults” and that the interacting parties are aware of this “view”. To capture
this we refine RequestReferral by equipping the sender also with a machine
to Receive messages from third parties and by introducing a set Server of
third party agents, each of with is equipped with two machines Receive and

Service Interaction Patterns and Interaction Flows 25

Send&Audit where the latter is a refinement of Send by the required observer
mechanism.

For a pictorial representation of RelayedRequest see Figure 6.

Fig. 6. Relayed Request

n+2-Agent ASM RelayedRequest =
2-Agent ASM RequestReferral

where module(Sender) =
moduleRequestReferral(Sender) ∪ {Receive}

n Server agents with module {Receive,Send&Audit}
where
Send&Audit = Sends with

BasicSend = BasicSends ∪
{if AuditCondition(m) then BasicSends(filtered(m))}

Using as subcomponent NotifiedRequestReferral yields Notified
RelayedRequest.

3.8 Dynamic Routing

This pattern comes with a dynamic set of agents: a first party which “sends
out requests to other parties” (an instance of OneToManySend) but with the
additional requirement that “these parties receive the request in a certain order
encoded in the request. When a party finishes processing its part of the overall
request, it sends it to a number of other parties depending on the “routing slip”
attached or contained in the request. This routing slip can incorporate dynamic
conditions based on data contained in the original request or obtained in one of
the “intermediate steps”.”

In this way the third parties become additional pattern agents to receive
requests, process them and forward them to the next set of recipients. Further-
more, this set of agents is dynamic: “The set of parties through which the request
should circulate might not be known in advance. Moreover, these parties may
not know each other at design/build time.”

We therefore have a first sender agent with module OneToManySend con-
cerning its set Recipient(sender). We then have a dynamic set of RoutingAgents
which can Receive request messages m with routingSlip(m) and Consume re-
quests by first Processing them and then forwarding a furtherRequest
(m, currState(router)), which may depend not only on the received (and thereby

26 A. Barros and E. Börger

without loss of generality of the original) request message, but also on data
in the router state currState(router) after message processing. Thus also the
routingSlip(m, currState(router)) may depend on the original request and router
data. The Recipient set depends on the router agent and on the routingSlip infor-
mation. For the intrinsically sequential behavior we make use of the seq operator
defined for ASMs in [11] (see also [12]).

Multi-Agent ASM DynamicRouting =
Agent sender with module OneToManySend(Recipient(sender))
Agents router ∈ RouterAgent each with module Receive
where
Consume(m) =

Process(m)seq OneToManySend(furtherRequest(m,currState(router)))
(Recipient(router , routingSlip(m, currState(router))))

3.9 Defining Interaction Flows (Conversations)

In the preceding section the focus for the composition of basic interaction pat-
terns into more complex ones was on combination and refinement of basic in-
teraction pattern ASMs, i.e. on how the interaction rules (read: the programs)
executed by the communicating agents can be adapted to the patterns under
consideration. An equally important different view of interaction patterns is fo-
cussed instead on the run scenarios, that is to say on when and in which order
the participating agents perform interaction steps by applying their interaction
rules. This view is particularly important for the study of interaction structures
which occur in long running processes, whose collaborations involve complex
combinations of basic bilateral or multilateral interaction pattern ASM moves.

As an example for an interaction structure in a long running process con-
sider a one-to-many-send-receive to short-list candidate service providers, which
may be followed by a transactional multi-cast to issue service requests to se-
lected providers, where finally individual providers may use relayed requests for
outsourcing the work.

An elementary example is the well-known coroutining pattern, which is char-
acterized by two agents a1 and a2 each equipped with a SendnoAck and a
Receive module. The typical scenario is a distributed run where an application
of SendnoAck by a1 precedes firing Receive by a2, which (as consequence of
the execution of Consume at a2) is followed by an application of SendnoAck by
a2 and eventually triggers an execution of Receive at a1.

Such interactions structures resemble conversations or interaction flows be-
tween collaborating parties. This concept is captured by the notion of asyn-
chronous runs of multi-agent service interaction pattern ASMs, i.e. ASMs whose
rules consist of some of the basic or composed service interaction pattern ASMs
defined in the preceding sections. Such runs, also called distributed runs, are par-
tial orders of moves of the participating agents, each of which is (read: executes)
a sequential ASM, constrained by a natural condition which guarantees that in-
dependent moves can be put into an arbitrary execution order without changing

Service Interaction Patterns and Interaction Flows 27

the semantical effect. 17 We therefore define a conversation or interaction flow
to be a run of an asynchronous service interaction pattern ASM, where such an
ASM is formally defined by a set of agents each of which is equipped with some
(basic or complex, bilateral or multilateral) service interaction pattern modules
defined in the previous sections.

A theory of such interaction flow patterns is needed, which builds upon the
knowledge of classical workflow analysis [25]. A satisfactory theory should also
provide possibilities to study the effect of allowing some agents to Start or
Suspend or Resume or Stop such collaborations (or parts of them), the effect
such conversation management actions have for example on security policies, etc.
This naturally leads to investigate the impact of current thread handling meth-
ods (see for example [26,23,22]) on business process interaction management.

4 Conclusion and Outlook

We would like to see the ASM models provided here (or modified versions
thereof) be implemented in a provably correct way, e.g. by BPEL programs,
and be used as benchmarks for existing implementations. We would also like to
see other interaction patterns be defined as combinations of refinements of the
eight basic bilateral and multilateral service interaction pattern ASMs defined
here. In particular we suggest the study of conversation patterns (business pro-
cess interaction flows), viewed as runs of asynchronous multi-agent interaction
pattern ASMs.

5 Appendix: The Ingredients of the ASM Method

The ASM method for high-level system design and analysis (see the Asm-
Book [12]) comes with a simple mathematical foundation for its three con-
stituents: the notion of ASM, the concept of ASM ground model and the notion
of ASM refinement. For an understanding of this paper only the concept of ASM
and that of ASM refinement have to be grasped,18 whose definitions support the
intuitive understanding of the involved concepts. We use here the definitions first
presented in [7,3] and [5].

5.1 ASMs = FSMs with Arbitrary Locations

The instructions of an FSM program are pictorially depicted in Fig. 7, where i , j1,
. . . , jn are internal (control) states, condν (for 1 ≤ ν ≤ n) represents the input
condition in = aν (reading input aν) and ruleν the output action out := bν

(yielding output bν), which goes together with the ctl state update to jν . Control
state ASMs have the same form of programs and the same notion of run, but
the underlying notion of state is extended from the following three locations:
17 Details on this definition of partial order ASM run can be found in [12, pg.208].
18 For the concept of ASM ground model (read: mathematical system blueprint) see

[4].

28 A. Barros and E. Börger

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

Fig. 7. Viewing FSM instructions as control state ASM rules

a single internal ctl state that assumes values in a not furthermore structured
finite set
two input and output locations in, out that assume values in a finite alphabet

to a set of possibly parameterized locations holding values of whatever types.
Any desired level of abstraction can be achieved by permitting to hold values of
arbitrary complexity, whether atomic or structured: objects, sets, lists, tables,
trees, graphs, whatever comes natural at the considered level of abstraction.
As a consequence an FSM step, consisting of the simultaneous update of the
ctl state and of the output location, is turned into an ASM step consisting of
the simultaneous update of a set of locations, namely via multiple assignments
of the form loc(x1, . . . , xn) := val , yielding a new ASM state.

This simple change of view of what a state is yields machines whose states
can be arbitrary multisorted structures, i.e. domains of whatever objects coming
with predicates (attributes) and functions defined on them, structures program-
mers nowadays are used to from object-oriented programming. In fact such a
memory structure is easily obtained from the flat location view of abstract ma-
chine memory by grouping subsets of data into tables (arrays), via an association
of a value to each table entry (f , (a1, . . . , an)). Here f plays the role of the name
of the table, the sequence (a1, . . . , an) the role of a table entry, f (a1, . . . , an) de-
notes the value currently contained in the location (f , (a1, . . . , an)). Such a table
represents an array variable f of dimension n, which can be viewed as the cur-
rent interpretation of an n-ary “dynamic” function or predicate (boolean-valued
function). This allows one to structure an ASM state as a set of tables and thus
as a multisorted structure in the sense of mathematics.

In accordance with the extension of unstructured FSM control states to ASM
states representing arbitrarily rich structures, the FSM-input cond ition is ex-
tended to arbitrary ASM-state expressions, namely formulae in the signature of
the ASM states. They are called guards since they determine whether the up-
dates they are guarding are executed.19 In addition, the usual non-deterministic
interpretation, in case more than one FSM-instruction can be executed, is re-
placed by the parallel interpretation that in each ASM state, the machine exe-
cutes simultaneously all the updates which are guarded by a condition that is
true in this state. This synchronous parallelism, which yields a clear concept of
19 For the special role of in/output locations see below the classification of locations.

Service Interaction Patterns and Interaction Flows 29

locally described global state change, helps to abstract for high-level modeling
from irrelevant sequentiality (read: an ordering of actions that are independent
of each other in the intended design) and supports refinements to parallel or
distributed implementations.

Including in Fig. 7 ctl state = i into the guard and ctl state := j into the
multiple assignments of the rules, we obtain the definition of a basic ASM as a set
of instructions of the following form, called ASM rules to stress the distinction
between the parallel execution model for basic ASMs and the sequential single-
instruction-execution model for traditional programs:

if cond then Updates

where Updates stands for a set of function updates f (t1, . . . , fn) := t built from
expressions ti , t and an n-ary function symbol f . The notion of run is the same
as for FSMs and for transition systems in general, taking into account the syn-
chronous parallel interpretation.20 Extending the notion of mono-agent sequen-
tial runs to asynchronous (also called partially ordered) multi-agent runs turns
FSMs into globally asynchronous, locally synchronous Codesign-FSMs [18] and
similarly basic ASMs into asynchronous ASMs (see [12, Ch.6.1] for a detailed
definition).

The synchronous parallelism (over a finite number of rules each with a finite
number of to-be-updated locations of basic ASMs) is often further extended by
a synchronization over arbitrary many objects in a given Set , which satisfy a
certain (possibly runtime) Property:

forall x ∈ Set with Property(x) do
rule(x)

standing for the execution of rule for every object x , which is element of Set and
satisfies Property. Sometimes we omit the key word do. The parts ∈ Set and
with Property(x) are optional.

ASM Modules. Standard module concepts can be adopted to syntactically
structure large ASMs, where the module interface for the communication with
other modules names the ASMs which are imported from other modules or
exported to other modules. We limit ourselves here to consider an ASM module
as a pair consisting of Header and Body. A module header consists of the name
of the module, its (possibly empty) import and export clauses, and its signature.
As explained above, the signature of a module determines its notion of state and
thus contains all the basic functions occurring in the module and all the functions
which appear in the parameters of any of the imported modules. The body of
20 More precisely: to execute one step of an ASM in a given state S determine all the

fireable rules in S (s.t. cond is true in S), compute all expressions ti , t in S occuring
in the updates f (t1, . . . , tn) := t of those rules and then perform simultaneously all
these location updates if they are consistent. In the case of inconsistency, the run is
considered as interrupted if no other stipulation is made, like calling an exception
handling procedure or choosing a compatible update set.

30 A. Barros and E. Börger

an ASM module consists of declarations (definitions) of functions and rules. An
ASM is then a module together with an optional characterization of the class
of initial states and with a compulsory additional (the main) rule. Executing an
ASM means executing its main rule. When the context is clear enough to avoid
any confusion, we sometimes speak of an ASM when what is really meant is an
ASM module, a collection of named rules, without a main rule.

ASM Classification of Locations and Functions. The ASM method im-
poses no a priori restriction neither on the abstraction level nor on the com-
plexity nor on the means of definition of the functions used to compute the
arguments and the new value denoted by ti , t in function updates. In support
of the principles of separation of concerns, information hiding, data abstraction,
modularization and stepwise refinement, the ASM method exploits, however,
the following distinctions reflecting the different roles these functions (and more
generally locations) can assume in a given machine, as illustrated by Figure 8
and extending the different roles of in, out , ctl state in FSMs.

A function f is classified as being of a given type if in every state, every
location (f , (a1, . . . , an)) consisting of the function name f and an argument
(a1, . . . , an) is of this type, for every argument (a1, . . . , an) the function f can
take in this state.

Semantically speaking, the major distinction is between static and dynamic
locations. Static locations are locations whose values do not depend on the
dynamics of states and can be determined by any form of satisfactory state-
independent (e.g. equational or axiomatic) definitions. The further classification
of dynamic locations with respect to a given machine M supports to distinguish
between the roles different ‘agents’ (e.g. the system and its environment) play
in using (providing or updating the values of) dynamic locations. It is defined
as follows:

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

Fig. 8. Classification of ASM functions, relations, locations

Service Interaction Patterns and Interaction Flows 31

controlled locations are readable and writable by M ,
monitored locations are for M only readable, but they may be writable by
some other machine,
output locations are by M only writable, but they may be readable by some
other machine,
shared locations are readable/writable by M as well as by some other ma-
chine, so that a protocol will be needed to guarantee the consistency of
writing.
Monitored and shared locations represent an abstract mechanism to specify

communication types between different agents, each executing a basic ASM.
Derived locations are those whose definition in terms of locations declared as
basic is fixed and may be given separately, e.g. in some other part (“module” or
“class”) of the system to be built. The distinction of derived from basic locations
implies that a derived location can in particular not be updated by any rule of
the considered machine. It represents the input-output behavior performed by
an independent computation. For details see the AsmBook [12, Ch.2.2.3] from
where Figure 8 is taken.

A particularly important class of monitored locations are selection locations,
which are frequently used to abstractly describe scheduling mechanisms. The
following notation makes the inherent non-determinism explicit in case one does
not want to commit to a particular selection scheme.

choose x ∈ Set with Property(x) do
rule(x)

This stands for the ASM executing rule(x) for some element x , which is arbi-
trarily chosen among those which are element of Set and satisfy the selection
criterion Property. Sometimes we omit the key word do. The parts ∈ Set and
with Property(x) are optional.

We freely use common notations like let x = t in R, if cond then R else S ,
etc. When refining machines by adding new rules, we use the following nota-
tion introduced in [6]: M addRule R denotes the parallel composition of M
and R. Similarly M minusRule R denotes N for M = N ,R. To avoid confu-
sion among different machines, which occur as submachine of machines N ,N ′ but
within those machines carry the same name M , we use indexing and write MN

respectively MN ′ .

Non-determinism, Selection and Scheduling Functions. It is adequate to
use the choose construct of ASMs if one wants to leave it completely unspecified
who is performing the choice and based upon which selection criterion. The only
thing the semantics of this operator guarantees is that each time one element
of the set of objects to choose from will be chosen. Different instances of a
selection, even for the same set in the same state, may provide the same element
or maybe not. If one wants to further analyze variations of the type of choices
and of who is performing them, one better declares a Select ion function, to
select an element from the underlying set of Cand idates, and writes instead of
choose c ∈ Cand do R(c) as follows, where R is any ASM rule:

32 A. Barros and E. Börger

σ1 · · · σn

n steps of M ∗

�State S∗ S∗′

�

�

≡
�

�

≡

�State S S ′

m steps of M

τ1 · · · τm

≡ is an equivalence notion between data
in locations of interest in corresponding states.

Fig. 9. The ASM refinement scheme

let c = Select(Cand) in R(c)

The functionality of Select guarantees that exactly one element is chosen. The
let construct guarantees that the choice is fixed in the binding range of the let.
Declaring such a function as dynamic guarantees that the selection function ap-
plied to the same set in different states may return different elements. Declaring
such a function as controlled or monitored provides different ownership schemes.
Naming these selection functions allows the designer in particular to analyze and
play with variations of the selection mechanisms due to different interpretations
of the functions.

5.2 ASM Refinement Concept

The ASM refinement concept is a generalization of the familiar commutative
diagram for refinement steps, as illustrated in Figure 9.

For an ASM refinement of an ASM M to an ASM M ∗, as designer one has
the freedom to tailor the following “handles” to the needs for detailing the design
decision which leeds from M to M ′:

a notion of refined state,
a notion of states of interest and of correspondence between M -states S and
M ∗-states S ∗ of interest, i.e. the pairs of states in the runs one wants to relate
through the refinement, including usually the correspondence of initial and
(if there are any) of final states,
a notion of abstract computation segments τ1, . . . , τm , where each τi repre-
sents a single M -step, and of corresponding refined computation segments
σ1, . . . , σn , of single M ∗-steps σj , which in given runs lead from correspond-
ing states of interest to (usually the next) corresponding states of inter-
est (the resulting diagrams are called (m,n)-diagrams and the refinements
(m,n)-refinements),

Service Interaction Patterns and Interaction Flows 33

a notion of locations of interest and of corresponding locations, i.e. pairs of
(possibly sets of) locations one wants to relate in corresponding states, where
locations represent abstract containers for data,
a notion of equivalence ≡ of the data in the locations of interest; these local
data equivalences usually accumulate to a notion of equivalence of corre-
sponding states of interest.

The scheme shows that an ASM refinement allows one to combine in a nat-
ural way a change of the signature (through the definition of states and of their
correspondence, of corresponding locations and of the equivalence of data) with
a change of the control (defining the “flow of operations” appearing in the cor-
responding computation segments).

Once the notions of corresponding states and of their equivalence have been
determined, one can define that M ∗ is a correct refinement of M if and only if
every (infinite) refined run simulates an (infinite) abstract run with equivalent
corresponding states, as is made precise by the following definition. By this defi-
nition, refinement correctness implies for the special case of terminating runs the
inclusion of the input/output behavior of the abstract and the refined machine.
Definition Fix any notions ≡ of equivalence of states and of initial and final
states. An ASM M ∗ is called a correct refinement of an ASM M if and only if
for each M ∗-run S ∗

0 ,S ∗
1 , . . . there is an M -run S0,S1, . . . and sequences i0 < i1 <

. . . , j0 < j1 < . . . such that i0 = j0 = 0 and Sik ≡ S ∗
jk

for each k and either
both runs terminate and their final states are the last pair of equivalent
states, or
both runs and both sequences i0 < i1 < . . ., j0 < j1 < . . . are infinite.

Often the M ∗-run S ∗
0 ,S ∗

1 , . . . is said to simulate the M -run S0,S1, The states
Sik ,S

∗
jk

are the corresponding states of interest. They represent the end points
of the corresponding computation segments (those of interest) in Figure 9, for
which the equivalence is defined in terms of a relation between their correspond-
ing locations (those of interest). Sometimes it is convenient to assume that ter-
minating runs are extended to infinite sequences which become constant at the
final state.

M ∗ is called a complete refinement of M if and only if M is a correct refine-
ment of M ∗.

This definition of ASM refinement underlies numerous successful applications
of ASMs to high-level system desing and analysis (see the survey in the history
chapter in [12]) and generalizes and integrates well-known more specific notions
of refinement (see [20,21] for a detailed analysis).

Acknowledgement. The bulk of the work on this paper was done when the
second author was on sabbatical leave at SAP Research, Karlsruhe, Germany.
We thank M. Altenhofen and W. Reisig for critical comments on earlier versions
of this paper.

34 A. Barros and E. Börger

References

1. M. Altenhofen, E. Börger, and J. Lemcke. An abstract model for process mediation.
In R. Banach, editor, Proc. 7th International Conference on Formal Engineering
Methods (ICFEM 2005), LNCS. Springer, 2005.

2. A. Barros, M. Dumas, and A. ter Hofstede. Service interaction patterns: Towards a
reference framework for service-based business process interconnection. Technical
Report FIT-TR-2005-02 (To be presented at BPM’2005, Third International Con-
ference on Business Process Management 2005, September 2005, Nancy, France),
Faculty of Information Technology, Queensland University of Technology, Brisbane
(Australia), March 2005.

3. E. Börger. High-level system design and analysis using Abstract State Machines.
In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Current Trends in
Applied Formal Methods (FM-Trends 98), volume 1641 of Lecture Notes in Com-
puter Science, pages 1–43. Springer-Verlag, 1999.

4. E. Börger. The ASM ground model method as a foundation of requirements engi-
neering. In N.Dershowitz, editor, Verification: Theory and Practice, volume 2772
of LNCS, pages 145–160. Springer-Verlag, 2003.

5. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–
257, 2003.

6. E. Börger. Linking architectural and component level system views by abstract
state machines. In C. Grimm, editor, Languages for System Specification and
Verification, CHDL, pages 247–269. Kluwer, 2004.

7. E. Börger. The ASM method for system design and analysis. A tutorial intro-
duction. In B. Gramlich, editor, FroCoS 2005, volume 3717 of Lecture Notes in
Artificial Intelligence, pages 264–283. Springer, 2005.

8. E. Börger. Design pattern abstractions and Abstract State Machines. In
D. Beauquier, E. Börger, and A. Slissenko, editors, Proc.ASM05, pages 91–100.
Université de Paris 12, 2005.

9. E. Börger. From finite state machines to virtual machines (Illustrating de-
sign patterns and event-B models). In E. Cohors-Fresenborg and I. Schwank,
editors, Präzisionswerkzeug Logik–Gedenkschrift zu Ehren von Dieter Rödding.
Forschungsinstitut für Mathematikdidaktik Osnabrück, 2005. ISBN 3-925386-56-4.

10. E. Börger. Linking content definition and analysis to what the compiler can verify.
In Proc.IFIP WG Conference on Verified Software: Tools, Techniques, and Exper-
iments, Lecture Notes in Computer Science, Zurich (Switzerland), October 2005.
Springer.

11. E. Börger and J. Schmid. Composition and submachine concepts for sequential
ASMs. In P. Clote and H. Schwichtenberg, editors, Computer Science Logic (Pro-
ceedings of CSL 2000), volume 1862 of Lecture Notes in Computer Science, pages
41–60. Springer-Verlag, 2000.

12. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

13. R. Farahbod. Extending and refining an abstract operational semantics of the web
services architecture for the business process execution language. Master’s thesis,
Simon Fraser University, Burnaby, Canada, July 2004.

14. R. Farahbod, U. Glässer, and M. Vajihollahi. Abstract operational semantics of
the Business Process Execution Language for web services. Technical Report SFU-
CMPT-TR 2004-03, Simon Fraser University School of Computing Science, April
2004.

Service Interaction Patterns and Interaction Flows 35

15. R. Farahbod, U. Glässer, and M. Vajihollahi. Specification and validation of the
Business Process Execution Language for web services. In W. Zimmermann and
B. Thalheim, editors, Abstract Sate Machines 2004, volume 3052 of Lecture Notes
in Computer Science, pages 78–94. Springer-Verlag, 2004.

16. U. Glässer, Y. Gurevich, and M. Veanes. Abstract communication model for dis-
tributed systems. IEEE Transactions on Software Engineering, 30(7):1–15, July
2004.

17. C. A. R. Hoare. The verifying compiler: A grand challenge for computing research.
J. ACM, 50(1):63–69, 2003.

18. L. Lavagno, A. Sangiovanni-Vincentelli, and E. M. Sentovitch. Models of compu-
tation for system design. In E. Börger, editor, Architecture Design and Validation
Methods, pages 243–295. Springer-Verlag, 2000.

19. W. Reisig. Elements of Distributed Algorithms. Springer-Verlag, 1998.
20. G. Schellhorn. Verification of ASM refinements using generalized forward simula-

tion. J. Universal Computer Science, 7(11):952–979, 2001.
21. G. Schellhorn. ASM refinement and generalizations of forward simulation in data

refinement: A comparison. Theoretical Computer Science, 336(2-3):403–436, 2005.
22. R. F. Stärk. Formal specification and verification of the C# thread model. Theo-

retical Computer Science, 2005. To appear.
23. R. F. Stärk and E. Börger. An ASM specification of C# threads and the .NET

memory model. In W. Zimmermann and B. Thalheim, editors, Abstract State
Machines 2004, volume 3052 of Lecture Notes in Computer Science, pages 38–60.
Springer-Verlag, 2004.

24. M. Vajihollahi. High level specification and validation of the Business Process
Execution Language for web services. Master’s thesis, School of Computing Science
at Simon Fraser University, April 2004.

25. W. M. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow
patterns. Distributed and Parallel Databases, 14(3):5–51, July 2003.

26. C. Wallace, G. Tremblay, and J. N. Amaral. An Abstract State Machine specifica-
tion and verification of the location consistency memory model and cache protocol.
J. Universal Computer Science, 7(11):1089–1113, 2001.

An Evidential Tool Bus

John Rushby

Computer Science Laboratory, SRI International,
333 Ravenswood Ave, Menlo Park California 94025, USA

Rushby@csl.sri.com

Abstract. Theorem provers, model checkers, static analyzers, test gen-
erators. . . all of these and many other kinds of formal methods tools can
contribute to the analysis and development of computer systems and
software. It is already quite common to use several kinds of tools in a
loose combination: for example, we might use static analysis and then
model checking to help find and eliminate design flaws prior to undertak-
ing formal verification with a theorem prover. And some modern tools,
such as test generators, are built using model checkers, predicate abstrac-
tors, decision procedures and constraint solvers as components in tight
combination.

But we can foresee a different kind of combination where many tools
and methods are used in ad hoc combination within a single analysis.
For example, static analysis might yield invariants that enable decision
procedures to build a predicate abstraction whose reachable states are
calculated as a BDD and then concretized to yield a strong invariant for
the original system; the invariant then enables properties of the original
system to be verified by highly automated theorem proving.

This sort of combination clearly requires an integrating platform –
a tool bus – to connect the various tools together; but the capabili-
ties required go beyond those of platforms such as Eclipse. The entities
exchanged among clients of the bus – proofs, counterexamples, specifica-
tions, theoreems, counterexamples, abstractions – have logical content,
and the overall purpose of the bus is to gather and integrate evidence for
verification or refutation.

In this paper I propose requirements for such an “evidential tool bus,”
and sketch a possible architecture.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, p. 36, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Derivation of UML Class Diagrams as Static

Views of Formal B Developments�

Akram Idani, Yves Ledru, and Didier Bert

Laboratoire Logiciels, Systèmes, Réseaux - IMAG,
B.P. 72 - F-38402 - Saint Martin d’Hères Cedex - France
{Akram.Idani, Yves.Ledru, Didier.Bert}@imag.fr

Abstract. Although formal methods provide excellent techniques for
the precise description of systems, understanding these descriptions is
often restricted to experts. This paper investigates a practical solution
to assist the understanding of a formal specification, written in B, by
providing a complementary view of the specification as UML class dia-
gram. Our technique improves the state of the art by taking into account
operations in the construction of the diagram, through the use of concept
formation techniques. A documentation tool automates the approach. It
has been applied to several specifications built independently of the tool.

Keywords: Method integration, B, UML, Formal concept analysis.

1 Introduction

Formal methods are nowadays the most rigorous way to produce software. Sev-
eral safety critical industries, like the railway industry, have perceived the bene-
fits of such approaches and significant developments like the Paris Meteor subway
have been partially performed using formal methods [2]. Companies like Siemens
Transport [2], Clearsy [15], or Gemplus [6] have used B [1] as the central method
for either code or model developments. Still, while formal methods provide solu-
tions to the verification problem (“do the system right”), the validation problem
(“do the right system”) remains a major challenge for formal methods engineers.

In the last decade, graphical specification techniques such as UML [5] have
become a widespread communication support for software projects. A study
[16], which compared the use of the B method and the use of UML on the same
project, concluded that B led to better precision than UML while UML produced
more intuitive and readable documents. The authors advocated a combination
of both methods.

In the area of model-based specification techniques, efforts have been devoted
to translating annotated UML diagrams into B [11,13,12] and Z or Object-Z
[7,10] specifications. Such approaches are useful to give a semantics to the graph-
ical diagrams, but the generated formal text obeys strict translation rules which
do not always fit the needs of formal methods engineers.
� This work is partially supported by the EDEMOI project of the French national ACI

Sécurité informatique.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 37–51, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

38 A. Idani, Y. Ledru, and D. Bert

This paper investigates the reverse approach, trying to give some ways to ex-
tract UML class diagrams from B specifications. The goal is to provide a (partial)
documentation of existing B specifications. Fig. 1 shows how our documentation
activities are integrated with the overall B development process. The bottom of
the figure shows a classical B development. The B developer builds the initial B
specification from the customer needs, and then constructs and proves a series
of refinements until he reaches an implementation. On top of the figure, the doc-
umentation process presented in this paper builds UML views from the various
formal documents (abstract specification and refinements) produced during the
development. They are intended to be read by the customer, or by some certifica-
tion authority, to validate that the B development fits with the customer needs.
This validation process favours the involvement of users who are not trained in
formal methods, but still get a semi-formal and partial view on the contents of
the actual formal development.

Customer
needs specification

Abstract B Refinement 1 Refinement n Implementation Code

UML
views Documentation Process

developer
B

Customer

...

reads / validates

produces

studies

produces Formal B development

Fig. 1. The proposed documentation process

Early work in the production of UML documentation from B specifications
includes [17,8] which define sets of rules in order to construct static views, such
as class diagrams, from the analysis of the data structures of the B specifica-
tion. Other efforts extract the behaviour of a specification to represent it as a
state transition diagram [4] or as a set of scenarios [14]. Our approach adds two
significant improvements to the early works in this domain.

– Existing approaches [17,8] construct a class diagram from the analysis of
the data modeled in the specification. Operations modeled in the specifica-
tion are not taken into account in this construction. In [9], we proposed to
improve the existing approaches by applying concept formation techniques.
These techniques take into account the links between data and operations
to identify relevant classes. This paper builds on the principles of [9] but
introduces a new notion, named pertinent context, and an algorithm that
improves the potential for automation.

– A tool has been built on the basis of these notions and algorithm. The
tool automates the production of UML diagrams as much as possible and
reduces the interaction with its user to the sole identification of a target for
each operation. This paper also evaluates the approach by reporting on the
application of the tool to several B specifications.

Derivation of UML Class Diagrams as Static Views 39

2 A Simple Example

Several formal specifications of this paper are taken from the EDEMOI project1

which aims at modeling airport security. They give a formal model of security
procedures applied to passengers and their luggage in an airport. Example 1
shows a specification which abstracts from passengers and luggage and only
considers the objects carried by passengers or included in their luggage. It models
how objects are loaded either in the cabin or in the hold luggage compartment
of an airplane. Objects which are loaded in the cabin transit through a boarding
room and may only leave it when the gate is open.

Graphical Documentation. Before we present the formal specification in detail,
let us have a look at the class diagram generated by our tool (Fig. 2)2. The B
specification corresponds to two classes: Objects and BoardingRoom.

Some objects may be used to attack an airplane. Two boolean attributes
(unauthorized in cabin and unauthorized in hold) are used to qualify such
objects. unauthorized in cabin marks the objects that passengers may not
bring in the aircraft cabin (e.g. bombs or weapons), unauthorized in hold
marks those objects that may not be carried in the hold luggage (e.g. bombs).
Since hold luggage is not accessible to passengers during the flight some objects
that are dangerous in the cabin are authorized in the hold luggage (e.g. a razor).

Objects

-in hold : Boolean

-unauthorized in hold : Boolean

-in cabin : Boolean

-unauthorized in cabin : Booelan

+loading in cabin(bb : BoardingRoom)

+loading in hold()

+boarding : BoardingStatus

+opening boarding()

+closing boarding()

BoardingRoom

+enter boarding room(bb : BoardingRoom)

room of �

* 0..1

Fig. 2. Class diagram generated by our approach (case 1 of Fig. 5)

Two additional attributes (in cabin and in hold) record if the object has
been effectively loaded in either the cabin or in the hold compartment of some
aircraft3. Operations loading in hold and loading in cabin are used to modify
the values of these attributes.

Objects which are intended to be loaded in the cabin must go through a
boarding room before being brought on-board. They must wait in the boarding
room until it becomes open. Operation enter boarding room modifies the asso-
ciation room of to link an object to a boarding room. Class Boarding Room

1 http://www-lsr.imag.fr/EDEMOI/
2 The rest of the paper details how we build this diagram from the B specification.
3 In this model, the cabins of all aircrafts are abstracted as a single cabin, and similarly

for the hold luggage compartments.

40 A. Idani, Y. Ledru, and D. Bert

includes a single attribute boarding, which denotes the current status of the
room (open or closed), and two operations to change the value of this attribute.

Formal Specification. The B specification was written before the production of
the UML diagram. Three constant sets are introduced: the set of all objects
(Objects), the set of all boarding rooms (BoardingRoom), and an enumerated
set which gives the possible status of a boarding gate (open or closed).

The objects which are not authorized in the cabin or in the hold compart-
ment are modelled as two constant subsets of Objects. Similarly, the objects
actually loaded in some cabin or hold compartment are modelled as variable
subsets of Objects. Invariant properties mandate that these sets do not include
unauthorized objects. Variable boarding is a function which gives the status of
the gate associated to a boarding room, and room of associates a boarding
room to objects. An invariant property constrains the domain of this function
to objects which are authorized in a cabin.

The rest of the specification includes the initialisation (all variable sets are
empty and all gates are closed), and the associated operations. The PRE field of
these operations specifies a pre-condition, i.e. an assertion which must be true at
the initial state of the operation (e.g. the precondition of enter boarding room
checks that the object is authorized in cabin). The non-deterministic statement
ANY v WHERE Q THEN A END means that action A is performed for an
arbitrary value v that satisfies predicate Q. For example, loading in hold loads
in some hold compartment, an arbitrary authorized object.

Example 1.

MACHINE SecureFlight
SETS
Objects;
BoardingRoom;
BoardingStatus = {open,closed}

CONCRETE CONSTANTS
unauthorized in cabin,
unauthorized in hold

PROPERTIES
unauthorized in cabin ⊆ Objects ∧
unauthorized in hold ⊆ Objects

VARIABLES
in cabin, in hold, boarding, room of

INVARIANT
in cabin ⊆ Objects ∧ in hold ⊆ Objects ∧
in hold ∩ unauthorized in hold = ∅ ∧
in cabin ∩ unauthorized in cabin = ∅ ∧
boarding ∈

BoardingRoom → BoardingStatus ∧
room of ∈ Objects �→ BoardingRoom ∧
dom(room of) ∩

unauthorized in cabin = ∅
INITIALISATION
in cabin, in hold, room of := ∅ , ∅ , ∅ ||
boarding := BoardingRoom × {closed}

OPERATIONS
enter boarding room(oo,bb) =
PRE

oo ∈ Objects ∧bb ∈ BoardingRoom ∧
oo �∈ unauthorized in cabin ∧

oo �∈ dom(room of)
THEN room of := room of ∪ {oo �→ bb}
END;
opening boarding (bb)=
PRE bb ∈ BoardingRoom ∧

boarding(bb) = closed
THEN boarding(bb) := open
END ;
closing boarding (bb)=
PRE bb ∈ BoardingRoom ∧

boarding(bb) = open
THEN boarding(bb) := closed
END ;
loading in cabin =
ANY bb WHERE
bb ∈ BoardingRoom ∧ boarding(bb) = open
THEN

ANY oo WHERE
oo ∈ Objects ∧ bb = room of(bb)
THEN

in cabin := in cabin ∪ {oo}
END

END ;
loading in hold =
ANY oo WHERE

oo ⊆ Objects ∧
oo ∩ unauthorized in hold= ∅

THEN in hold := in hold ∪ oo
END

END

Derivation of UML Class Diagrams as Static Views 41

Short Comparison of the UML and B Specifications. As we can see, the UML
specification does not include all the information conveyed in the B specification:
invariant properties and the detailed description of operations are missing. Still
the graphical description provides the overall structure of the specification by
listing the main classes and relations, and linking operations to these classes.

By presenting the UML diagram first, we focus on a global synthetic view of
the specification, then we can go into details by browsing the B specification.

3 A Concept Formation Technique

3.1 Identifying Class Candidates

The data of B specifications, declared in sections sets, constants and vari-
ables, and which are sets or relations, are called “data concepts”. In the ex-
ample, data concepts correspond to every abstract set (Objects, BoardingRoom,
BoardingStatus), or subset (in cabin, in hold, unauthorized in cabin, unautho-
rized in hold) and relation (boarding, room of). A data concept d represents the
B object denoted by B(d). Each data concept (Data) is associated to a “type”
by function Type:

Type ∈ Data→ {Set, SubSet, Relation}

In our approach, the goal of the first step is to identify the data concepts
which are candidate to become classes in the UML diagrams derived from the
B specifications. The analysis is based on the links between data concepts and
operations of the specification. So, we define a data concept dependence
relation I between data concepts Data and operations O:

Definition 1. A data concept dependence relation is I ∈ Data ↔ O, where
(d, o) ∈ I means that data concept d is used by operation o. We denote by D
the set of data concepts which are actually used by at least one operation, i.e.
D = dom(I).

One could consider three kinds of “use” modes: read access, write access
(modification of the data) and require access (access in operation precondition).
In this paper, we choose to only take into account the occurrences of data con-
cepts in the body of the operations (uniformly read and write accesses).

In our example, D includes all the concepts listed above, except BoardingSta-
tus. Fig. 3 displays I for the example.

Given a set of data concepts S, Op(S) denotes the set of operations common
to all data concepts in S:

Op(S) =̂ {o | o ∈ O ∧ ∀ d · (d ∈ S ⇒ (d, o) ∈ I)}

For example, Op({room of, Objects}) = {loading in cabin, enter boarding room}.
The UML diagrams express encapsulation of operations in classes. Amongst the
data concepts, some are associated to more operations than others, for example,

42 A. Idani, Y. Ledru, and D. Bert

loading loading

in hold unauthorized in cabinunauthorized

Objects BoardingRoom

opening closing

boarding

in hold in cabin boarding boarding
enter boarding

room

in hold in cabin
room of

� �

� � �

	�

 � � ��

�
�

�

Fig. 3. A bipartite graph showing the relation I for the SecureFlight System

Op({room of}) ⊂ Op({Objects}). Therefore, Objects can be considered as a
better class candidate than room of .

In the following, in order to identify the best class candidates, we introduce
the notion of maximal data concept and the notion of class concept. A data
concept d is maximal, if for any other data concept s in the specification, the
set of operations using d is not strictly included in the set of operations using s.

Definition 2. For a data concept dependence relation I and d ∈ D:

maximal(d) ⇔ ∀ s · (s ∈ D − {d} ⇒ Op({d}) �⊂ Op({s}))

We call max(I) the set of all maximal concepts of I.

In our example, max(I) = {Objects, BoardingRoom}. Both maximal con-
cepts are of type Set, but it may happen that subsets or relations correspond to
maximal concepts.

We consider the relation Incl between data concepts, which refers to the
inclusion property on the B objects they represent.

Definition 3. Relation Incl ∈ Data ↔ Data is such that for all d where
Type(d) = Set or Subset:

(d′, d) ∈ Incl ⇐ Type(d′) = Relation∧ dom(B(d′)) ⊆ B(d)
(d′, d) ∈ Incl ⇐ Type(d′) = Relation∧ ran(B(d′)) ⊆ B(d)
(d′, d) ∈ Incl ⇐ Type(d′) = Subset∧ B(d′) ⊆ B(d)

We say that a data concept is a class concept if it is a maximal set or subset
concept, or if it relates by relation Incl+ to a maximal data concept.

Definition 4. For a data concept dependence relation I, for data concepts d of
type Set or SubSet, then d ∈ Classes(I) iff one of the following items inductively
holds: 1. maximal(d)

2. ¬maximal(d) ∧ ∃ d′ · (d′ ∈ Data ∧ (d′, d) ∈ Incl ∧ d′ ∈ Classes(I))

Notice that data concepts c that are in Classes(I) are not necessarily in
D. For these data concepts, obviously, Op(c) is empty. In example 1, we obtain
max(I) = Classes(I) = {Objects, BoardingRoom}. This means that the two
data concepts Objects and BoardingRoom may be converted into UML classes.

Derivation of UML Class Diagrams as Static Views 43

The set of private operations of a class concept c is the set of operations
using c and not shared by any other class concept c′:

OPrivate(c) =̂ {o | ∀ c′ · (c′ ∈ Classes(I) ∧ c′ �= c ⇒ o ∈ Op({c})−Op({c′}))}

3.2 Grouping Data Concepts and Operations into Contexts

The second step of our approach builds the class candidates by grouping the
remaining data concepts and the operations around the class concepts.

The following definition is inspired by [3]. It introduces the notion of context
which gathers a set of data concepts, where at least one is a class concept,
together with a set of operations, each of them using at least one data concept
of the context.

Definition 5. A context of the data concept dependence relation I is a pair
F = (D′,O′) with: D′ ⊆ Data and D′ ∩ Classes(I) �= ∅

O′ ⊆ O and O′ ⊆ I[D′]4

We introduce the notion of pertinent context which is commented below:

Definition 6. A pertinent context of I is a context F = (D′,O′)
with: ∀ c · (c ∈ D′ ∧ c ∈ Classes(I)⇒ OPrivate(c) ⊆ O′)

∀ d · (d ∈ D′ ∧ d �∈ Classes(I)⇒ I[{d}] ∩ O′ �= ∅)

The first rule mandates that private operations are encapsulated with their
corresponding class, because there is no other place to store them. For exam-
ple, OPrivate(Objects) = {loading in hold}, which means that a context which
includes the class concept Objects is pertinent if it includes loading in hold.

Non-class concepts of a context will end up as attributes of the class. The
second rule is motivated by the fact that each attribute of the class should be
manipulated by at least one operation of the class.

The set of pertinent contexts partition the set of class concepts and the set
of operations, so that each class and each operation appears only once in the
class diagram. The following section will give an algorithm to build such a set
of pertinent contexts.

4 An Algorithm to Identify a Set of Pertinent Contexts

4.1 Description of the Algorithm

Our algorithm is built on relation J ∈ (O ∪Data) ↔ Data, which is defined as
I−1∪Incl. Its graph is refered to as a concept network. A concept network relates
the considered operations to their data concepts (relation I−1), and the data
concepts themselves (sets, sub-sets and relations) by relation Incl. The concept
network issued from the specification of example 1 is represented in Fig. 4. For
the sake of readability, the machine name is put over the operations.
4 R[S] is the image of set S by relation R.

44 A. Idani, Y. Ledru, and D. Bert

SecureFlight

loading loading

in hold unauthorized in cabin
unauthorized

Objects

 �

BoardingRoom

opening closing
� �

boarding

in hold in cabin boarding boarding
enter boarding

room

�

in hold
in cabinroom of

� �

� �

� �

�

��

� �

� �

�
� �
 �� �

Fig. 4. The concept network derived from the SecureFlight System

The algorithm consists of three steps:

(i) For each operation o, choose a class concept c (c ∈ Classes(I)) such that
there exists a path from o to c in the concept network. c is said to be the
target of o. So, function Target, given by the user, is a total function from
the operations to the class concepts:

Target ∈ O → Classes(I)

(ii) For each class concept c such that c ∈ ran(Target), form a context F =
(D′,O′) defined by: O′ = Target−1(c)

D′ = {c} ∪ (J +[O′] ∩ ((J −1)+[{c}]))
The set D′ contains the data concepts which are used by operations O′

(through I−1[O′]) and which include theses data (transitively by Incl), but
also which are transitively included in the class concept c.

(iii) Check that all the data concepts in D are member of a context. If some data
concept d′ ∈ D does not belong to a context, then place d′ in a context which
contains at least one operation which uses d′.

The algorithm contains two levels of non-determinism: the choice of the
Target function (step (i)) and the choice of the context, for data concepts which
are not in (J +[O′] ∩ ((J −1)+[{c}])) for any element c of the target (step (iii)).
Given a target function, the algorithm can list all the possible assignments for the
second non-determinism, so providing a way for the user to determine the good
choice between them, or to change its target function if no choice is adequate.

4.2 Validation of the Algorithm

We can prove that the contexts built by this algorithm are pertinent.

1. The contexts built by the algorithm satisfy the properties of contexts: each
context includes a class concept, and the operations of the context are mem-
bers of Op(D′). This second property results from the formation of the

Derivation of UML Class Diagrams as Static Views 45

data elements of the context: for each o in a context c, {c} ∪ (J +[{o}] ∩
((J −1)+[{c}])) is not empty, because Target is a total function5.

2. All private operations of a class concept c have necessarily this class concept
as their only possible target and are included in the context built from c if
c is the target, or from a superset of c.

3. If a data concept appears in a context, then there is an operation which uses
it, either at step (ii) or step (iii).

It can be noticed that all operations and all data concepts of relation I belong
to the contexts built by the algorithm. However, not all the class concepts are
necessarily put in these contexts. The final choice of the user can determine
a grouping which fits well to the visualization of the notions involved in the
specification.

4.3 Application of the Algorithm to the Example

The concept network of Fig. 4 has the following properties:

– It features two class concepts: Classes(I) = {Objects, BoardingRoom}
– For each operation, we can list the possible targets:

– Target(loading in hold) ∈ {Objects}
– Target(loading in cabin) ∈ {Objects, BoardingRoom}
– Target(enter boarding room) ∈ {Objects, BoardingRoom}
– Target(opening boarding) ∈ {BoardingRoom}
– Target(closing boarding) ∈ {BoardingRoom}

In the first step of the algorithm, we choose a target for each operation. Three
private operations (loading in hold, opening boarding, closing boarding) have
only one possible target. We have two choices for the targets of operations
loading in cabin and enter boarding room. Let us choose Objects as the tar-
get of both operations6.

In the second step, we build two contexts, one for each class concept.

– The context associated to BoardingRoom has operations opening boarding,
closing boarding. It also includes the boarding concept which is in
J +[opening boarding, closing boarding] ∩ ((J −1)+[{BoardingRoom}]).

– The other context is associated to Objects. It includes the private operation
loading in hold, and operations loading in cabin and enter boarding room.
It also includes data concepts: in hold, unauthorized in hold, in cabin,
room of , and unauthorized in cabin in the same way.

The third step verifies that all data concepts are taken into account which is
the case here. Let an other choice of the target function be with loading in cabin
and enter boarding room with BoardingRoom.
5 Totality of the function is actually enforced by the tool.
6 This choice may result from modeling concerns such as the fact that the user feels

that Objects play a central role in this specification, and that most operations should
be associated to this class.

46 A. Idani, Y. Ledru, and D. Bert

Target(loading in cabin) = Objects
Target(enter boarding room) = Objects

class concept Objects class concept BoardingRoom
Concept Type Concept Type

in hold SubSet concepts boarding Relation
unauthorized in hold SubSet Operations opening boarding

concepts in cabin SubSet closing boarding
room of Relation
unauthorized in cabin SubSet
loading in hold

operations loading in cabin
enter boarding room

Target(loading in cabin) = BoardingRoom
Target(enter boarding room) = BoardingRoom

class concept Objects class concept BoardingRoom
Concept Type Concept Type

concepts in hold SubSet boarding Relation
unauthorized in hold SubSet concepts in cabin SubSet

operations loading in hold room of Relation
unauthorized in cabin SubSet
opening boarding

Operations closing boarding
enter boarding room
loading in cabin

Fig. 5. Two possible contexts from the SecureFlight System

After step (ii), data concepts in hold,unauthorized in hold are in the con-
text of Objects, while room of and boarding are in the context of BoardingRoom.
Data concepts in cabin and unauthorized in cabin are not assigned to. At step
(iii), they become elements of context BoardingRoom, because they are used by
operations of this context.

Fig. 4 can lead to four different sets of contexts, depending on the choices
of the targets for non-private operations. In Fig. 5, we show the two possible
configurations explained above.

5 Contexts Transformation Rules

5.1 From Contexts to Classes

The last step of our approach transforms the contexts into classes. We have
defined a set of rules to support this transformation, but for space and clarity
reasons, we will give an informal presentation of these rules. Fig. 2 and 6 give
the class diagrams for both contexts of Fig. 5.

Each context is transformed into a class whose name is the class concept
which is at the origin of the context, and whose operations are the operations
of the context. All operations are declared as “public” by default, including
the ones appearing in Oprivate. This is motivated by observing that operations
that set or get some attribute of the class need to be public although they
only access information of a single class and appear in Oprivate. Operations
opening boarding and closing boarding fall into this category.

The other concepts of a context will be translated into class attributes or
associations between classes.

Derivation of UML Class Diagrams as Static Views 47

Objects

-in hold : Boolean

-unauthorized in hold : Boolean

+in cabin : Boolean

+unauthorized in cabin : Booelan +loading in cabin(oo : Objects)

+loading in hold()

-boarding : BoardingStatus

+opening boarding()

+closing boarding()

BoardingRoom

+enter boarding room(oo : Objects)

room of �

* 0..1

Fig. 6. The derived class diagram for case 2 of Fig. 5

Concepts of type Relation are transformed into UML associations if they
link two classes. For example, room of is defined between concepts Objects and
BoardingRoom, and is translated into a UML association. Some relations do
not link a pair of class concepts, they are then translated as attributes of the
class corresponding to their context, or may lead to the creation of new classes.
For example, boarding links BoardingRoom to BoardingStatus, which is not a
class concept. It is translated into an attribute of type BoardingStatus in class
BoardingRoom.

Attributes of type Subset are translated into boolean attributes if they cor-
respond to subsets of their class. For example, in hold is a subset of Objects
and it is translated as a boolean attribute. By default, all attributes are private
to the class (denoted by a “-” sign).

Another interesting case is when an attribute has few connections to the class
concept. For example, in the second set of contexts, where BoardingRoom is the
target of non-private operations, in cabin is in the context of BoardingRoom
but has no direct link to it. The reason why it is located in this context is that it
is used by loading in cabin. A naive, and erroneous, translation would turn it
into an attribute in cabin : Objects[∗]7. This translation is erroneous because it
defines a functional dependency between a boarding room and its associated set
in cabin; as a result there would be several sets of in cabin objects, one set per
boarding room. One way to solve this problem is to declare in cabin as a static
attribute of BoardingRoom. Another way is to translate it as a public attribute
of class Object and make sure that there exist an association (here room of)
which allows loading in cabin to have access to this information.

Other rules, allow the creation of subclasses, such as admittedP in Fig. 8.

5.2 Discussion

This paper has proposed an approach to represent a B specification as a class
diagram. From a B specification, we construct a set of pertinent contexts, which
are then translated into the class diagram. Compared to our previous proposal
[9], the current approach builds on the same principles but introduces the notion
of pertinent context and richer translation rules.

– The approach is automated and requires only a few user interaction. On the
one hand, in the construction of pertinent contexts, the only activity left

7 The attribute in cabin is a set-valued attribute of type Objects.

48 A. Idani, Y. Ledru, and D. Bert

Fig. 7. The B/UML Tool

to the user is the choice of the Target function. On the other hand, the
translation of pertinent contexts into classes builds on very systematic rules,
which require no user input.

– The translation rules bring more flexibility in the construction of subclasses.
In our previous approach, each subset led to a subclass. In our example, the
four attributes of Objects would have led to four subclasses, which tends to
make the class diagram more complex.

Both improvements, reduction of user interaction and lower number of sub-
classes, are motivated by our wish to scale up the approach to larger specifica-
tions. Reduction of user interaction is a trivial requirement when large specifi-
cations are considered. The careful treatment of subclasses appeared as another
requirement when we tried to apply our approach to larger examples, such as
those presented in the next section.

6 The B/UML Tool

6.1 Overview of the Tool

In order to automatically generate the graphs and class diagrams presented in
the previous sections, we built a tool based on the algorithm of Sect. 4. Fig. 7,
shows a class diagram derived by the tool from the SecureFlight machine. Several
class diagrams can be produced from the SecureFlight machine depending on the
choice of targets of operations. In the ”target” window, the user selects the set
of targets corresponding to the operations and the tool automatically generates
the corresponding class diagram. Optionally, graphs such as the data concept
dependance relation and the concept network are also displayed by the tool.
They can be useful to understand precisely how the tool came to a given result.

Derivation of UML Class Diagrams as Static Views 49

6.2 Evaluation

The tool was used experimentally on several specifications either taken from
the examples of the ProB tool [14] (BookStore and TravelAgency) or developed
independently in our laboratory (Parking and SecureFlight). Two specifications
(Parking and SecureFlight) involve refinement steps. We produced a single B
machine for each refinement step by manually flattening the specifications. Table
1 gives several measures of the input specifications (number of data concepts and
operations, number of lines), and of the resulting diagrams (percentage of data
concepts and operations represented, number of diagrams that can be generated
depending on the choice of targets).

These experiments show that the tool can be applied to non trivial specifi-
cations (see Fig. 8). The diagrams generated for all specifications but ”Parking”
cover 100% of the data concepts and operations. For Parking, coverage is partial
because the specification features a significant number of data concepts which
are not sets, subsets or relations, but are typically integer variables. Further
work is needed to broaden the scope of our method and address such variables.

The last column gives the number of class diagrams which can be constructed
for each specification. This number increases with the number of class concepts
and operations, because it allows a wider variety of Target functions. As this
number increases for developments which involve a large number of refinement
steps, further help should be provided by the tool to help selecting the right
targets, and keep this selection consistent through the refinement steps.

6.3 Comparison with Other Approaches

Our tool gives comparable or better results than the existing approaches [17,8].
In [17], Tatibouet et al generate a class for every machine, set and relation. In
fact, applying these rules to the SecureFlight machine of example 2 leads to
10 classes linked by numerous associations to a central class which contains all
operations of the specification. For SecureFlight4, our tool generates at most 7
classes (Fig. 8), while the approach of Tatibouet et al leads to 26 classes. We
believe that our diagrams are simpler and therefore more readable.

In [8], Fekih et al have proposed a more flexible approach based on the
application of rules selected by the user. These rules are quite informal and
further work is needed to reach a sufficient level of formality to allow some tool

Table 1. Case studies

Data Operations Source Operation Concept Class
concepts lines coverage coverage Diagrams

BookStore 5 6 119 100% 100% 1
TravelAgency 23 10 296 100% 100% 1
Parking1 22 20 364 20% 64% 2
Parking2 25 24 462 21% 64% 2
SecureFlight0 5 2 80 100% 100% 1
SecureFlight1 10 2 142 100% 100% 3
SecureFlight2 12 3 158 100% 100% 8
SecureFlight3 15 4 192 100% 100% 16
SecureFlight4 17 6 222 100% 100% 108

50 A. Idani, Y. Ledru, and D. Bert

+ controledB : BOOLEAN
+ screenedB : BOOLEAN

registeredB

+ loading_in_hold(bb:screnedB,bb:controledB)

admittedP

+ passing_the_screening_point()

registeredP

− baggage_control[0..1] : Result
− baggage_screening : Result
+ cloadedB : BOOLEAN
+ sloadedB : BOOLEAN

Baggages

+controling_baggages(bb:registeredB)
+screening_baggages(bb:registeredB)

Passengers

− register_checks[0..1] : Result
+ screenedP : BOOLEAN
− boarding_check[0..1] : Result
+ screening_check : Result

+ check_in_desk_registration(bb:{Baggages})
+ loading_in_cabin(pp:screnedP)

1..* 1

baggage_owner

Fig. 8. A class diagram issued from the SecureFlight4 machine

support for their approach. We believe that a careful application of their rules
can lead to similar class diagrams as the ones we produce. But this requires a
lot more involvement of the user than the single selection of targets.

Compared to these existing works, our approach based on concept formation
features a better treatment of operations. In Tatibouet’s approach, all opera-
tions are grouped in a single class, while in Fekih’s approach the distribution of
operations into classes is left to the choice of the user, without specific rules.

7 Conclusion and Perspectives

Graphical formalisms are often considered as the most efficient techniques to
describe complex systems in an understandable way, while formal techniques
offer excellent tools to prepare precise and consistent specifications. This paper
has proposed an original approach and its tool support for the construction of
class diagrams from a formal analysis of B specifications. First, a concept network
is built in order to find groups of concepts called formal contexts. Then, these
are translated into class diagrams. Still, our approach suffers several limitations:
– The major limit of the resulting diagrams is that they give a less complete

information than that which could be expressed in a formal specification.
Other views, such as the dynamic views are needed to provide a more complete
graphical documentation of the B specification. Early work in this direction
includes [4] which proposed a tool to produce state-transition diagrams from
formal B specifications.

– The approach does not support all types that appear in B specifications. Func-
tion Type (Sect. 3), is neither defined for basic types such as integer variables
nor for complex structures such as power sets or relations which link relations.
Further work is needed to explore ways to translate such structures.

– Another limit is the support of specification composition constructs, i.e. in-
cludes, imports and sees and the support for refinement. As far as refine-
ments and includes are concerned, developments are manually flattened into
a single B machine. We are developing a tool that automates this flattening.
These limitations offer thus interesting research perspectives. We are also

conscious that the quality of the graphical descriptions produced from a B spec-
ification needs to be evaluated through carefully designed experiments.

Derivation of UML Class Diagrams as Static Views 51

The B method has received a lot of interest in the last decade from the
scientific community. We hope that the technique described in this paper will
contribute to its integration outside of the traditional formal method community.

References

1. J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, 1996.

2. P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. METEOR: A successful
application of B in a large project. In Proc. of FM’99: World Congress on Formal
Methods, volume 1709 of LNCS, pages 369–387. Springer-Verlag, 1999.

3. G. Bernhard and W. Rudolf. Formal concept analysis. Springer, 1999.
4. D. Bert, M.-L. Potet, and N. Stouls. GeneSyst: a tool to reason about behavioral

aspects of B event specifications. Application to security properties. In Proc. of
ZB2005, volume 3455 of LNCS. Springer-Verlag, 2005.

5. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language user
guide. Addison Wesley Longman Publishing Co., Inc., 1999.

6. L. Casset. Development of an embedded verifier for java card byte code using
formal methods. In FME’02, volume 2391 of LNCS. Springer-Verlag, 2002.

7. S. Dupuy, Y. Ledru, and M. Chabre-Peccoud. An Overview of RoZ : a Tool for
Integrating UML and Z Specifications. In 12th Conf. on Advanced information
Systems Engineering-CAiSE’2000, volume 1789 of LNCS. Springer-Verlag, 2000.

8. H. Fekih, L. Jemni, and S. Merz. Transformation des spécifications B en
des diagrammes UML. In AFADL : Approches Formelles dans l’Assistance au
Développement de Logiciels, 2004.

9. A. Idani and Y. Ledru. Object Oriented Concepts Identification from Formal B
Specifications. In Proc. of 9th Int. Workshop on Formal Methods for Industrial
Critical Systems, volume 133 of ENTCS, pages 159–174. Elsevier, 2005.

10. S.-K. Kim and D. Carrington. Formalizing the UML class diagram using object-z.
In UML’99 - The Unified Modeling Language. Beyond the Standard. 2nd Int. Conf.,
Fort Collins, CO, USA, volume 1723 of LNCS, pages 83–98. Springer-Verlag, 1999.

11. R. Laleau and F. Polack. Coming and going from UML to B: A proposal to support
traceability in rigorous IS development. In ZB’2002 – Formal Specification and
Development in Z and B, LNCS 2272, pages 517–534. Springer-Verlag, 2002.

12. K. Lano. Formal object-oriented development. Springer-Verlag, 1995.
13. H. Ledang and J. Souquières. Contributions for modelling UML state-charts in B.

In Integrated Formal Methods, IFM 2002, volume 2335 of LNCS, 2002.
14. M. Leuschel and M. Butler. ProB: A Model Checker for B. In FME 2003: Formal

Methods, LNCS 2805, pages 855–874. Springer-Verlag, 2003.
15. G. Pouzancre. How to Diagnose a Modern Car with a Formal B Model? In ZB

2003: Formal Specification and Development in Z and B. Springer-Verlag, 2003.
16. M. Satpathy, R. Harrison, C. Snook, and M. Butler. A Comparative Study of For-

mal and Informal Specifications through an Industrial Case Study. In FSCBS’01:
IEEE/ IFIP Wkshp on Formal Specification of Computer-Based Systems, 2001.

17. B. Tatibouet, A. Hammad, and J.C. Voisinet. From an abstract B specification
to UML class diagrams. In 2nd IEEE Int. Symposium on Signal Processing and
Information Technology (ISSPIT’2002), Morocco, December 2002.

29 New Unclarities in the Semantics of UML 2.0

State Machines�

Harald Fecher, Jens Schönborn, Marcel Kyas, and Willem-Paul de Roever

Christian-Albrechts-Universität zu Kiel, Germany
{hf, jes, mky, wpr}@informatik.uni-kiel.de

Abstract. UML 2.0, which is the standard modeling language for
object-oriented systems, has only an informally given semantics. This
is in particular the case for UML 2.0 state machines, which are widely
used for modeling the reactive behavior of objects. In this paper, a list
of 29 newly detected trouble spots consisting of ambiguities, inconsisten-
cies, and unnecessarily strong restrictions of UML 2.0 state machines is
given and illustrated using 6 state machines having a problematic mean-
ing; suggestions for improvement are presented. In particular, we show
that the concepts of history, priority, and entry/exit points have to be
reconsidered.

1 Introduction

UML has become the standard modeling language for object-oriented systems.
UML state machines are one of the most important constituents of UML, since
they are widely used for modeling the reactive behavior of objects. UML state
machines have evolved from Harel’s statecharts [4] and their object-oriented
version [5]. The fact that the semantics of UML is only informally described
leads to many ambiguities and inconsistencies in earlier versions of UML, see for
example [9,11]. Many of the detected ambiguities and inconsistencies are ruled
out in UML 2.0 [8], but new ones are added.

We present a list of 29 newly detected ambiguities, inconsistencies and un-
necessarily strong restrictions of UML 2.0 (behavioral) state machines [8, p. 573–
639], which we found during an attempt to define their formal semantics [10].
These unclarities are illustrated on 6 state machines, which are legal according
to [8] but having a problematic meaning. Some of the listed unclarities are se-
rious, i.e., they cannot straightforwardly be eliminated. This holds, e.g., for the
concepts of history, priority, and entry/exit points, which are discussed in Sub-
section 3.1 till Subsection 3.3, where also suggestions for improvement are given.
Our suggestions for improving UML state machines lead to a simplified and less
ambiguous semantics, in particular, all serious unclarities are eliminated.

� Part of this work has been financially supported by IST project Omega (IST-2001-
33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2).

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 52–65, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

29 New Unclarities in the Semantics of UML 2.0 State Machines 53

2 UML 2.0 State Machines

The basic concepts of UML 2.0 state machines are states and transitions between
them. A state may contain regions1 (called direct subregions of that state) and
a region must contain states (called direct substates of that region) such that
this hierarchy yields a tree structure. States that contain at least one region are
called composite states, otherwise, they are called simple states. For example
state 1 in Fig. 1 is a simple state, state 3 is a composite state containing one
region, and state 0 is a composite state containing two regions.

� �

� �0

� �� �
1 � �� �

2�t0 � �
� �3

� �� �
5 � �

� �4

� �� �
6�t1

�t2

Fig. 1. State machine

A configuration describes the currently active states, where exactly one direct
substate of an active region must be active and all regions of an active state
must be active. For example, {0, 1, 3, 5} is a configuration in Fig. 1. A state may
have associated an entry behavior (evoked when the state becomes active), an
exit behavior (evoked when the state becomes deactivated), and a doActivity
behavior (sequence of actions, which may be (partially) executed when the state
is active). In the following, to execute doActivities means the partial execution
of such action sequences.

The environment may send events to the state machine. These events are
collected in the event pool of the state machine. A state machine may either
execute doActivities of active states or may dispatch a single event from its
event pool to trigger transitions.

Beside its source and target, a transition consists of an event, a guard (a
boolean expression), and an action sequence. A transition is enabled if its source
state is currently active, its event is dispatched from the event pool, and its guard
evaluates to true. Among the enabled transitions, those are fired which belong
to a maximal set whose elements are pairwise conflict-free. Two transitions are
in conflict if the intersection of the set of states that will be left by the firing of
these transitions is non empty. A state s will be left by the firing of transitions
t if it is active and either a substate of the source state of t or, roughly spoken,
the transition points outside the border of s. For example, state 3 and 5 have to
be left in Fig. 1 by the firing of transition t1 or by the firing of t2. Hence, t1 and
t2 are in conflict.

The firing of transition t leads, in this order, (i) to the deactivation of the
states that will be left by the firing of t together with the execution of the exit
behavior of these states, (ii) the execution of the actions of t (which we simply
call the execution of t), and (iii) the activation of its target states (the transition’s
1 Multiple regions of a state are separated by a dashed line.

54 H. Fecher et al.

target state together with the non-active states ‘crossed’ by the transition and
some substates of the target state via a default mechanism) together with the
execution of the entry behavior of these states. UML state machines follow the
run-to-completion assumption, i.e., “an event occurrence can only be taken from
the pool and dispatched if the processing of the previous current occurrence is
fully completed” [8, p. 617].

There also exist different kinds of additional pseudostates, which are not
allowed to occur in configurations, and which have special interpretations. For
example, a choice pseudostate, which is depicted by a diamond-shaped symbol
(see Fig. 5), leads to a new decision concerning which of its outgoing transitions
will be fired without completing the run-to-completion step. In other words, the
guards of transition leaving a choice pseudostate are evaluated when the choice
pseudostate is left, contrary to guards of other transitions, which are evaluated
when an event is dispatched. Further pseudostates are described in the next
section. Transitions may also have pseudostates as their sources or targets. A
compound transition is, roughly spoken, a transition obtained by subsuming
transitions involving pseudostates. In particular, one (single) transition between
states is also a compound transition. The semantics of firing transitions is defined
on compound transitions.

3 Semantical Unclarities of UML 2.0 State Machines

The unclarities discussed here are categorized as:

Incompleteness: meaning that no clear statement is made.
Inconsistency: meaning that parts are in contradiction with other parts.
Ambiguity: meaning that interpretations in more than one way are possible.
Equivocality: meaning that it is unclear whether the implicitly given interpre-

tation is the intended one.

3.1 History Pseudostates

An initial pseudostate of composite state s indicates how the substates of s are
entered if a transition t with target state s was fired: after firing t, the unique
transition leaving the initial pseudostate of s, called initial transition, will be
fired. A history pseudostate of a region r is used to activate those substates of
r that were active when r was the last time active. The shallow history concept
considers only the direct substates of r, whereas that of deep history considers
also deeper nested substates. In case r was not active before or the last active
direct substate of r is a final state, the history default transition, which is the
unique transition leaving the history pseudostate, is fired instead. Final states
are special simple states. Initial pseudostates are depicted by a solid filled circle,
a deep history pseudostate by a circle containing an ‘H*’, and a final state by a
circle surrounding a solid filled circle, see, e.g., Fig. 2.

29 New Unclarities in the Semantics of UML 2.0 State Machines 55

Inconsistency 1. On the one hand, history pseudostates belong to regions [8,
p. 598]. On the other hand, the semantics of a history pseudostate is defined for
its containing state [8, p. 591] and, therefore, no meaning of history pseudostates
belonging to multiple regions of a composite state is defined.

We proceed by applying the definition of its semantics to its containing
region.

Incompleteness 2. The firing of transitions is only defined for compound tran-
sitions, which do not include history or initial pseudostates [8, p. 625]. Hence,
the semantics of firing transitions that point to history pseudostates (or initial
pseudostates) is not defined.

The solution to allow also history and initial pseudostates as targets of a
compound transition does not eliminate all unclarities:

Incompleteness 3. May a transition to a history pseudostate be fired if the
guard of the history default transition evaluates to false and either the corre-
sponding region was not visited before or a final state of the corresponding region
was last active?

UML 2.0 only mentions implicitly that initial transitions and history default
transitions have to point to default states [8, p. 591], thus:

Equivocality 4. Is it really the case that transitions from initial pseudostates
or from history pseudostates may not point to pseudostates (such as a choice
pseudostate)?

��t0� �� �1

�

t1
�

t2

�

t3

�

t4

�t5

� �

� �2

�H� �

� �� �
3

���
t6 ��

� �

� �4

��
� �� �
5

�t9 �
� �� �
6

� � �� �
7

�H�

�
�t8

� t7

Fig. 2. History illustration

Improvement: Interpret history and initial pseudostates as choice points with
additional semantics. Then more than one transition may leave a history or a
initial pseudostate, and may point to pseudostates; the model is ill-formed (i.e.,
any behavior is possible) when a history (or initial) pseudostate is reached and
all guards of the outgoing transitions evaluate to false.

Ambiguity 5. The semantical behavior of transitions that point to a deep his-
tory pseudostate from inside the region containing the history pseudostate is not
clear.

56 H. Fecher et al.

Consider, e.g., the firing sequence (t0, t3, t5, t2, t7, t6) in Fig. 2. Then which one
of the states 3,5,6,7 is active? The comment given at [8, p. 591], which concerns
the last active configuration before exiting, favors state 6, whereas the recursive
application of the shallow history rule [8, p. 606] favors state 5, and when ‘last
active’ does not correspond to the exiting of the state then state 3 would be
active.

Furthermore, the recursive application approach mentioned leads to the fol-
lowing unclarities:

Equivocality 6. Is it really the case that also the deeper nested final states will
not be activated in case of a deep history activation?

Consider, e.g., the firing sequence (t0, t2, t9, t5, t1) in Fig. 2. Then state 7 is active
and not the final state that is contained in state 4.

Ambiguity 7. How is the default activation for nested substates determined in
case of deep history activation. Are they determined by the initial transitions or
are they determined by the default history states of the corresponding regions?

Consider, e.g., the firing sequence (t0, t1) in Fig. 2. Then, is state 6 or state 7
active?

Ambiguity 8. How is the history information reset when a final state is
reached? Are only the direct substates reset or are all substates reset?

Consider, e.g., the firing sequence (t0, t2, t8, t5, t4) in Fig. 2. Then state 7 is active
if the firing of t6 also resets state 4. Otherwise, state 5 is active.

Improvement: We suggest to store the history information at the point in time
when the region is left. The ‘last active’ direct substate, instead of the ‘last active’
subconfiguration, is stored (deep history will use this information recursively),
which reduces the complexity. The history information of region r is set to a ‘not-
visited’ value, whenever (i) r was not visited before, or (ii) r or an outer region
of r was exited after a final state was reached there. The firing of a transition
pointing to a deep history pseudostate h of region r (i) fires the default history
transition of h (where a default entering determined by the initial transitions
takes place in its target) if the history information of r yields the ‘non-visited’
value, or (ii) recursively activates the states stored in the history information
(also the stored final states) otherwise.

Our suggestion has the advantage that (a) no configuration that partly consist
of history information and partly consist of default information is generated; (b)
a default history entering just corresponds to the firing of the corresponding
history default transition; and (c) entering a region where a final state was last
active has the same behavior as if the region was not visited before.

Concerning our examples this suggestions yields that (i) state 5 is active after
the firing of (t0, t3, t5, t2, t7, t6) in Fig. 2; (ii) the final state contained in state 4
is active after (t0, t2, t9, t5, t1); (iii) state 6 is active after (t0, t1); and (iv) state
7 is active after (t0, t2, t8, t5, t4).

29 New Unclarities in the Semantics of UML 2.0 State Machines 57

3.2 Priority

Priority between transitions is used to rule out some nondeterminism in deter-
mining the set of transitions that may fire. “By definition, a transition originating
from a substate has higher priority than a conflicting transition originating from
any of its containing states” [8, p. 618]. Join pseudostates define a set of states,
rather than a single state, as source of a compound transition. Fork pseudostates
define a set of states, rather to a single state as target of a compound transi-
tion. Join and also fork pseudostates are depicted by a short heavy bar as, e.g.,
illustrated in Fig. 3.

Inconsistency 9. The definition of priority of joined transition (“The priority
of joined transitions is based on the priority of the transition with the most tran-
sitively nested source state” [8, p. 618]) is not well defined and in contradiction
to the algorithm describing the determination of the sets of transitions that will
be fired [8, p. 618].

The priority definition for join transitions is not well defined, since the ‘most
transitively nested source state’ (the state that has the the greatest distance to
the outermost region) cannot be uniquely determined and, therefore, the priority
between transitions cannot be uniquely determined. For example, it is not clear
if transition t0 in Fig. 3 has priority over t1 or not. The contradiction between

� �

� �
� �
� �� �� � � �

� �� �� �
� �

� �
� �
� �
� �
� �� �� �

� �

� �
� �
� �
� �
� �� �� �

��t0

 !

"
"
"#

�t1

$
$
$$% &
&'

�t2

�
�
�(

)
))*

�t3��t4 �t5

 ! "
"#

��t6

Fig. 3. Priority illustration

the priority definition for join transitions and the algorithm is illustrated on the
following example: In Fig. 3, transition t2 has priority over t3 with respect to the
priority definition for joined transition, but t3 has priority over t2 with respect
to the algorithm.

The algorithm mentioned contains the sentence: “For each state at a given
level, all originating transitions are evaluated to determine if they are enabled”
[8, p. 618].

Ambiguity 10. The interpretation of level is not clear. Does it correspond to
the maximal distance to a simple state or does it correspond to the distance to
the outermost region?

For example, if level corresponds to the maximal distance to a simple state, then
in Fig. 3 transition t4 has priority over t5 and over t6, and t6 has priority over t5.

58 H. Fecher et al.

On the other hand, if level corresponds to the distance to the outermost region,
then t6 has priority over t4 and over t5, and no priority between t4 and t5 exists.

Improvement: Use the definition given by the algorithm except that level is
ignored2: t has priority over t′ if every source state of t is a substate of a source
state of t′ and one is a proper one. Then in Fig. 3 transition t6 has priority
over t4 and no further priorities exist between t4, t5, and t6. The advantage
of this definition is that the priority relation is completely determined by the
source states (e.g., further substates are irrelevant, which is not the case if level
is interpreted as distance to simple states).

3.3 Entry/Exit Points

Another unclarity concerns entry/exit points. Entry/exit points are pseudostates
that belong to state machines or to composite states. “An entry pseudostate [and
symmetrically, an exit pseudostate] is used to join an external transition termi-
nating on that entry point to an internal transition emanating from that entry
point” [8, p. 601]. Entry (exit) points are depicted by a small circle (respectively,
by a small circle with a cross) on the border of the state machine or composite
state.

Inconsistency 11. Is it really the case that entry points (respectively, exit
points) only exist at the topmost region of a state machine [8, p. 591] (i.e.,
cannot belong to composite state), since entry points (respectively, exit points)
belonging to composite states are explicitly discussed at [8, pp. 592,594,603].

In the following, we assume that entry/exit points are also allowed at composite
states. Junction pseudostates describe sets of transitions obtained by combining
any incoming transition with an outgoing transition.

Inconsistency 12. On the one hand, the entry (exit) behavior of a state is
executed between the transition pointing to an entry (respectively, exit) point
and the transition leaving that entry (exit) point [8, pp. 601,606] (e.g., the entry
behavior of state 0 in Fig. 4 is executed in between transitions t0 and t1). On the
other hand, entry (exit) pseudostates are considered as junction pseudostates [8,
pp. 607-608] and, therefore, the entry behavior of state 0 is executed after the
execution of transitions t0 and t1 [8, pp. 625-628].

The approach to drop the correspondence to junction pseudostates does not
eliminate all unclarities as illustrated in the following:

Incompleteness 13. How is the behavior defined if an exit point is reached that
does not have an outgoing transition? Is this an ill-formed situation?

2 Ignoring level yields less priorities and, therefore, the approaches where level is in-
terpreted can be considered as a refinement step in the sense that less executions
are allowed.

29 New Unclarities in the Semantics of UML 2.0 State Machines 59

� �
� �0

� �� �
3

� �� �
2�	×�t2

�	 �t4�
t3

�	�t1

� �� �
5

� �� �
4

�t5
� �� �
1�t0 � �� ��

� �
� �
� �� ��	� �	×�� �� � � �� ��

� �
� �
� �� ��	 �� �� �

� �

� �
� �� �
� �� �
&&�
���

�	

Fig. 4. Entry/exit point illustration

Incompleteness 14. It is not explicitly mentioned that the invocation of the
exit (entry) behavior of a state enforced through an exit (respectively, entry) point
corresponds to the point in time when the state is exited (respectively, entered).
Furthermore, it is not even clear if the state is always exited in this situation.

For example, consider Fig. 4. Suppose the compound transition consisting of
t2, t3, t4 is fired. Is then only the exit (respectively, entry) behavior of state
0 executed without exiting state 0? This question is essential for execution of
doActivities and conflict determination.

In the following, we assume that a state is immediately left after executing
its exit behavior and that a state is immediately entered before executing its
entry behavior.

Equivocality 15. The deepest state (or region) containing the source and target
state of a transition (called the least common ancestor of the transition) is not
sufficient to determine the conflict relation.

For example, in Fig. 4 the compound transition consisting of t2, t3, t4 is in con-
flict with transition t5, since the firing of each transition will exit state 4 (if a
composite state, like 0, is exited all its substates have to be exited). But the
least common ancestor of these transition yields different subregions of state 0.

Incompleteness 16. May transitions (or transition paths on pseudostates)
point from entry points to exit points as, e.g., depicted in the second picture
of Fig. 4?

More problematic, transitions from an entry point belonging to state s may
point outside s (probably by using pseudostates in between), which contra-
dicts the invariant that after a run-to-completion step a configuration will be
reached [8, p. 617]. Furthermore, transitions pointing from inside state s to an
entry point belonging to s would execute the entry behavior of an already active
state. Therefore:

Incompleteness 17. The following restrictions are needed: Every transition
path on pseudostates starting at an entry (exit) point of a composite state s
may only leave (respectively, enter) that state through an exit (respectively, en-
try) point of s.
Any transition path on pseudostates starting from outside (inside) a composite
state s or from an exit (respectively, entry) point of s and which (i.e., that path)
does not contain an entry (respectively, exit) point of s may not end at an exit
(entry) point of s.

60 H. Fecher et al.

For example, the third and the fourth state machine of Fig. 4 should be not
allowed.

Inconsistency 18. Consider the state machine of Fig. 5. Suppose t0 will be
fired. Then state 0 has to be left (independent whether transition t1 or t3 will
be taken). But if t1 will be fired, state 0 is left after the execution of t1 (and,
therefore, after t0) by the semantics of exit points [8, p. 606]. On the other hand,
if t3 will be fired, then state 0 has to be left before transition t0 is executed, since
states have to be left before the compound transition is executed [8, pp. 627].

In particular, no allowed execution order exists if the execution of the exit
behavior of state 0 changes the evaluation of the guard of t1 to true and of t2 to
false.

Fig. 5. Entry/exit point illustration (2)

Inconsistency 19. Consider the state machine of Fig. 5. On the one hand, by
the semantics of exit pseudostates state 6 has to be left after the execution of t5.
On the other hand, state 4 has to be exited before transition t5 is executed, since
states have to be left before the compound transition is executed [8, pp. 627].
Furthermore, state 4 may only be exited if all its active substates are exited,
hence state 6 has to be exited before t5 is executed.

Equivocality 20. Transitions from fork pseudostates may not point to entry
points or to history pseudostates, since transitions from fork pseudostates may
not point to pseudostates [8, p. 624].

Equivocality 21. Transitions from exit points may not point to join pseu-
dostates, since transitions pointing to join pseudostates may not have pseu-
dostates as their sources [8, p. 624].

Improvement: Many unclarities can be avoided by forbidding transitions cross-
ing state borders. Instead, use always entry/exit points. This has the consequence
that only the substates of the source (target) states of a compound transition are
exited (respectively, entered) before (respectively, after) the transition is executed;
all other states are exited (respectively, entered) in between the execution of the
transition.

Furthermore, exit (entry) points should be considered as join (respectively,
fork) pseudostates, where the source of a transition pointing to an exit point of
state s has to be a direct substate of s or an exit point of a direct substate of s.
The same holds, for transitions leaving entry points of s, except that they may
also point to direct subpseudostates of s. Note that in this approach no explicit
join or fork pseudostates are needed.

29 New Unclarities in the Semantics of UML 2.0 State Machines 61

3.4 Transitions

It is unclear whether the default state (the target of an initial transition) has
to be a direct substate. More problematic is that an initial transition may point
outside its region, which contradicts, similarly to Incompleteness 17, the invari-
ant that after a run-to-completion step a configuration will be reached [8, p. 617].
Therefore:

Incompleteness 22. The following restriction is needed: Transitions from ini-
tial pseudostates or from history pseudostates may only point to substates of the
region that directly contains the corresponding pseudostate.

For example, the state machine on the left hand side of Fig. 6 should not be
allowed, since if state 0 is entered by default then states 0 and 1 become active.
The reason is that these states are direct substates of the same region and that
only one direct substate of a region may be active [8, p. 605].

� �� �
1 � �

� �0��t1 � �� �
2 � �

� �3

� �� �
4 �∗ � �� �

5 � �
� �
� �
� �� �� � � �� �&&����

�∗

� �
� �� �� � � �� ��

Fig. 6. Disallowed and allowed state machines

Another restriction, which is necessary to guarantee the above mentioned
configuration invariant, concerns local transitions, i.e., transitions with transition
kind ‘local’. A local transition differs from a normal (i.e., external) transition in
the sense that if it is fired, its source state is not exited (only the substates of
the source state) [8, p. 634].

Incompleteness 23. The following restriction is needed: A local transition may
only point to its source state or to substates (properly reached through a fork
pseudostate) of its source state.

For example, the second state machine of Fig. 6 is not allowed, since if the local
transition3 fires, then state 3 remains active and state 5 becomes active, which
is forbidden, as explained before. On the other hand, the third state machine of
Fig. 6 does not yield any semantical problems.

Inconsistency 24. Transitions crossing regions, as illustrated in the fourth pic-
ture of Fig. 6, are forbidden [8, p. 627], but their meaning is explicitly de-
scribed [8, p. 627].

If guards with side effects are used [8, p. 624,627], an ill-formed situation
occurs and therefore no behavior can be guaranteed.

Incompleteness 25. How should it be ensured that the evaluation of guards
does not need time, which is a side effect?

3 Local transitions are illustrated by the attached symbol ∗.

62 H. Fecher et al.

Improvement: One possibility is to make the observable time steps so coarse
that the execution time of the guards cannot be observed.

Another possibility is to allow only guards that depend on single boolean at-
tributes, which are, e.g., calculated by the entry behavior. In order to obtain a
dynamic dependency, these boolean attributes can be updated by doActivities.

3.5 Nondeterminism

The determination of the set of firing transitions is not completely determinis-
tic [8, pp. 618], since not always a priority between conflicting transitions exist.
Suppose transitions t0 and t1 are enabled in Fig. 7, then either t0 or t1 fires.

� �� �
0

 �t10

� �

� �1

� �� �
3 �t2+++�

t0 � �� �
5 ��t4

� �� �
4 �t3,,,� t1 � �� �

6 � �� �
8

� �
� �7

� �� �
9 ��t8

--.t6

//�
t7

� �� �
2� t9

---. t5

Fig. 7. Illustration of a state machine for nondeterminism

UML 2.0 seems to enforce at least determinism between the selection of
transitions that have the same source state: “Each event name may appear more
than once per state if the guard conditions are different” [8, p. 609].

Ambiguity 26. What does different guard conditions mean? Does it mean that
for each pair of guards, there exists a situation where one of the guards is true
and the other is false? Does different guards mean mutually exclusive guard con-
ditions (i.e., no two guards may be true at the same time), as enforced for com-
pletion transitions4 [8, p. 626]?

The order in which transitions of a compound transition fire is not com-
pletely deterministic. More precisely, transitions to a join pseudostate (respec-
tively, leaving a fork pseudostate) can be fired in any order. In UML 2.0, there
is a contradiction in the definition of the execution order of the initial transition
of a composite state that is a target of a firing transition (such as t4 after firing
t10):

Inconsistency 27. “The entry behavior of the composite state is executed before
the behavior associated with the initial transition” [8, p. 605] is in contradiction
to the fact that “A transition to the enclosing state represents a transition to the
initial pseudostate in each region” [8, p. 600] and that actions corresponding to
a compound transition are executed before entry behaviors [8, p. 627-628].

4 Completion transitions are transitions that do not have an explicit trigger. They are
triggered if their source states are completed. Roughly spoken, a state is completed if
its doActivities are terminated and their direct subregions, if existing, have reached
a final state.

29 New Unclarities in the Semantics of UML 2.0 State Machines 63

For example, after firing transition t10 in Fig. 7, must the entry behavior of state
1 be executed before transition t4 or must transition t4 be executed before the
entry behavior of state 1?

Ambiguity 28. Suppose transitions to the enclosing state represent transitions
to the initial pseudostate: In which order are actions of transitions from fork
pseudostates and actions of the enabled initial transitions executed? Is there a
depth-first or branching-first strategy? Is the order completely nondeterministic
(except for the fact that actions of transitions to outer states have to be executed
first)?

For example, if t5 fires in Fig. 7, then it is not clear which of the execution
sequences (t6, t7, t8), (t6, t8, t7), (t7, t6, t8) are allowed.

Equivocality 29. Is it really the case that the actions of the initial transition
do not have to be executed before the entry behavior of the target state of the
initial transition, in case of default entry?

For example, after the firing of t9 in Fig. 7, it is not clear whether t4 may also
be executed after the entry behavior of state 5.

4 Conclusion and Related Work

We have presented 29 inconsistencies, ambiguities, forgotten restrictions, and un-
necessary strong restrictions in UML 2.0 state machines. Some of the unclarities
are serious, i.e., their elimination is not straightforward. This holds for history
pseudostates, priority, exit/entry points, and assuring side-effect-free guards.
The serious problems are eliminated by our improvements.

Many of the detected unclarities also exist in earlier versions of UML. In
particular, most unclarities concerning history pseudostates5 (Unclarities 2-5
and 7), all unclarities concerning priority, and the assurance of side-effect-free
guards also exists in UML 1.5 [7]. Entry/exit points do not exist in UML 1.5.
The semantics of history and priority with respect to join pseudostates in UML
1.x are defined in the literature as follows:

In the work of van der Beeck [12], concerning history, ‘last active’ does not
correspond to the exiting of the state. Furthermore, a transition t has priority
over t′ if the least common ancestor of t is below the least common ancestor of
t′, i.e., this yields a weaker priority concept concerning join pseudostates.

The history information in the work of Börger et al. [1] corresponds to the
‘last active configuration’. Furthermore, when a state is entered via history, the
history information is forgotten, i.e., in this case the semantics of transitions
pointing to the history pseudostates from inside the region is unclear. Join pseu-
dostates are encoded by completion transitions and, therefore, a priority principle
similar to the one in [12] is used.

5 Note that final states do not reset the history information in UML 1.5.

64 H. Fecher et al.

In [3], where no history pseudostates are considered, priority is handled as a
variation point. Nevertheless, the authors make the suggestion that a transition t
has lesser or equal priority than t′ if every source state of t is below a source state
of t′. This differs from our suggestion, e.g., in Fig. 3 transition t4 has priority
over t1 in their suggestion, whereas no priority between t4 and t1 exists in our
suggestion.

In [2], priority is also handled as variation point and in [6] join transitions
are compiled away, but an exact definition of the transformation is missing and,
therefore, the used priority schema is unclear. Both works do not consider his-
tory pseudostates. Most of the other works on the semantics of UML 1.x state
machines, see, e.g., the references given in [10], do not consider join or history
pseudostates and, therefore, do not cover the related problems. We are not
aware of works different from ours [10] that define formal semantics of UML 2.0
state machines.

Future work is to define a precise formal semantics with respect to all the sug-
gested improvements, e.g., our semantics [10] does not handle entry/exit points
and choice pseudostates. The redefinition concept in UML 2.0 state machines
has to be examined, e.g., to clarify to which extent redefinition corresponds to
a refinement concept.

References

1. E. Börger, A. Cavarra, and E. Riccobene. Modeling the Dynamics of UML State
Machines. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract
State Machines: Theory and Applications, volume 1912 of LNCS, pages 223–241.
Springer-Verlag, 2000.

2. R. Eshuis, D. N. Jansen, and R. Wieringa. Requirements-level semantics and
model checking of object-oriented statecharts. Requirements Engineering Journal,
7:243–263, 2002.

3. S. Gnesi, D. Latella, and M. Massink. Modular semantics for a uml statechart dia-
grams kernel and its extension to multicharts and branching time model-checking.
The Journal of Logic and Algebraic Programming, 51(1):43–75, 2002.

4. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, July 1987.

5. D. Harel and E. Gery. Executable object modeling with statecharts. Computer,
30(7):31–42, July 1997.

6. J. Lilius and I. P. Paltor. Formalising UML state machines for model checking.
In R. France and B. Rumpe, editors, UML, volume 1723 of LNCS, pages 430–445.
Springer-Verlag, 1999.

7. Object Management Group. OMG Unified Modeling Language Specification, Ver-
sion 1.5, 2003. http://www.omg.org/cgi-bin/doc?formal/03-03-01.

8. Object Management Group. UML 2.0 Superstructure Specification, Oct. 2004.
(updated version). http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

9. G. Reggio and R. Wieringa. Thirty one problems in the semantics of uml 1.3
dynamics. In OOPSLA’99 workshop, Rigorous Modelling and Analysis of the UML:
Challenges and Limitations, 1999.

29 New Unclarities in the Semantics of UML 2.0 State Machines 65

10. J. Schönborn. Formal semantics of UML 2.0 behavioral state machines. Master’s
thesis, Christian-Albrechts Universität zu Kiel, 2005. http://www.informatik.

uni-kiel.de/ jes/jsFsemUMLsm.pdf.
11. A. J. H. Simons and I. Graham. 30 things that go wrong in object modelling with

uml 1.3. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications
of Businesses and Systems, pages 237–257. Kluwer Academic, 1999.

12. M. von der Beeck. A structured operational semantics for UML-statecharts. Soft-
ware and System Modeling, 1(2):130–141, 2002.

The Semantics and Tool Support of OZTA

Jin Song Dong1, Ping Hao1,�, Shengchao Qin2, and Xian Zhang1

1 National University of Singapore
{dongjs, haoping, zhangxi5}@comp.nus.edu.sg

2 University of Durham, UK
shengchao.qin@durham.ac.uk

Abstract. In this work, we firstly enhance OZTA, a combination of Object-Z and
Timed Automata, by introducing a set of timed patterns as language constructs
that can specify the dynamic and timing features of complex real-time systems in
a systematic way. Then we present the formal semantics in Unifying Theories of
Programming for the enhanced OZTA. Furthermore, we develop an OZTA tool
which can support editing, type-checking of OZTA models as well as projecting
OZTA models into TA models so that we can utilize TA model checkers, e.g.,
Uppaal for verification.

Keywords: Timed Patterns, Semantics, Tool and Verification.

1 Introduction

The specification of complex real-time systems requires powerful mechanisms for mod-
elling state, concurrency and real-time behavior. Integrated formal methods are well
suited for presenting complete and coherent requirement models for complex systems.
This research area has been active for a number of years (e.g. [4, 3]) with a particular
focus on integrating state based and event based formalisms (e.g. [9, 18]). However,
the challenge is how to provide a systematical semantic model for the integrated for-
mal languages, and how to analyze and verify these models with tool support? For the
first issue, we believe Unifying Theories of Programming (UTP) [13] is particularly
well suited for giving formal semantics for the integrated specification languages and
it has been used to define other integrated formalisms [12, 13]. For the second issue,
we believe one effective approach is to project the integrated requirement models into
multiple domains so that existing specialized tools in these corresponding domains can
be utilized to perform the checking and analyzing tasks.

OZTA [6] is an integrated formal language which builds on the strengths of Object-
Z (OZ) [8, 15] and Timed Automata (TA) [1, 19] in order to provide a single notation
for modelling the static, dynamic and timing aspects of complex systems as well as
for verifying system properties by reusing Timed Automata’s tool support. One novel
aspect of OZTA is its communication mechanism which supports partial and sometime
synchronization [6].

The basic OZTA notation has been briefly described in an introductory paper [6]
and this paper enhances the OZTA notation by extending its automaton part with time

� Author for correspondence: haoping@comp.nus.edu.sg

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 66–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

The Semantics and Tool Support of OZTA 67

pattern structures. However the main purpose of this paper is to formalize the semantics
of OZTA and present an OZTA tool we developed for its editing, type-checking and
projection.

The rest of the paper is organized as follows, section 2 presents syntax of OZTA with
extension of timed patterns; section 3 provides semantics of OZTA; section 4 shows the
tool support of OZTA; and lastly section 5 gives the conclusion.

2 Extending OZTA with Timed Patterns

OZTA specifications are combinations of Object-Z schemas with Timed automatons.
Timed Automata, with powerful mechanisms for designing real-time models using mul-
tiple clocks, has well developed automatic tool support. However, if TA is considered
to be used to capture real-time requirements, then one often need to manually cast those
timing patterns into a set of clock variables with carefully calculated clock constraints,
which is a process that is close to design rather than specification. In our previous
paper [7], we studied time automata patterns and found that a set of common timed
patterns, such as deadline, timeout, waituntil, can be used to facilitate TA design in a
systematic way. In this paper before presenting the semantics of OZTA, we firstly give a
full version of the OZTA syntax, in which the automaton part of the the OZTA notation
is extended with timed pattern structures. The enhanced specification of OZTA syntax
with the notion of timed patterns is presented as follows:

Specification ::= CDecl; ...; CDecl
CDecl ::=� Visiblist; InheritC; StateSch; INIT; StaOp; [TADecl]
Visiblist ::= VisibAttr; VisibOp
InheritC ::= InheritCName
StateSch ::= CVarDecl
CVarDecl ::= v : T
StaOp ::= Δ(AttrName | ActName), CVarDecl • Pred(u, v′)
TADecl ::= ClockDecl; TA
ClockDecl ::= x : Clock
TA ::= State | State • Inv(x, n) | [(Event)][(Reset(x))][(Guard(x, n))] • TA | Wait (x, n)

| TA • Deadline (x, n) | TA • WaitUntil (x, n) | TA • Timeout(x, n) • TA
| TA; TA | TA � TA | TA � TA | μ X • TA(X) | TA1 ‖ TA2 • S

State ::= StaOp | StaCtr
Event ::= Event | Event! | Event?
Reset ::= (:=)〈〈Clock × N〉〉
Guard ::= (<=)〈〈Clock × N〉〉 | (>=)〈〈Clock × N〉〉 | (<)〈〈Clock × N〉〉

| (>)〈〈Clock × N〉〉 | (∧)〈〈Φ × Φ〉〉 | true
Invar ::= (<=)〈〈Clock × N〉〉 | (<)〈〈Clock × N〉〉 | true
S ::= { �↔ }〈〈Event× Event〉〉 | { ↔ }〈〈Event× Event〉〉 | { → }〈〈Event× Event〉〉

in which, the argument x represents a certain clock, and n is a natural number; StaCtr
represents a control state and StaOp is an operation state corresponding to an Object-
Z operation; State • Inv(x, n) specifies a state with a local invariant; Event, Reset(x),
Guard(x, n) are transition labels, which respectively specifies event (Event! is an output

68 J.S. Dong et al.

A1 A2

Fig. 1. Sequential Composition ‘;’

x :=0

A

x<=t

Fig. 2. Deadline ‘Deadline(x, t)’

A2

A1

Fig. 3. External Choice ‘�’

0ss

A

Fig. 4. Recursion‘u s0 • A(s0)’

event, Event? is an input event), clock reset and clock constraint; the three branches of
S respectively represent the construct of handshaking synchronization, partial synchro-
nization and sometime synchronization; the rest of the TA expressions are the timed
automata patterns which can be directly utilized to construct timed automata.

2.1 The Pattern Structure

Each of the pattern expressions has a graphic presentation and the semantics of these
expressions will be examined later. One related work is Wafula and Swatmanon’s work
on a diagrammatic illustration of Object-Z Specifications [17]. Some TA patterns are
presented in Figure 1 - 4, the rest can be found in [7]. In these graphical TA patterns,
an automaton A is abstracted as a triangle, the left vertex of this triangle or a circle
attached to the left vertex represents the initial state of A, and the right edge represents
the terminal state of A. For example, Figure 1 demonstrates how two timed automatons
can be sequentially composed. By linking the terminal state of A1 with the initial state
of A2, the resultant automaton passes control from A1 to A2 when A1 goes to its terminal
state. Figure 2 shows one of the common timing constraint patterns – deadline. There is
a single clock x. When the system switches to the automaton A, the clock x gets reset to
0. The local invariant x <= t covers each state of the timed automaton A and specifies
the requirement that a switch must occur before t time unit for every state of A. Thus
the timing constraint expressed by this automaton is that A should terminate no later
than t time units. Figure 3 shows the external choice pattern of two timed automatons
A1 and A2 which share an initial state, and the environment has the choice to trigger
one of them by different external events. Figure 4 illustrates the recursion pattern of a
timed automaton A, s0 is the fixed point, The recursion is achieved by diverting all the
transitions from pointing to s0 to the initial state of A.

2.2 An Example: Frog Puzzle Game

A traditional frogs puzzle game is that: given seven stones, three white frogs at left
facing right and three black frogs at right facing left. A frog can move in the direction

The Semantics and Tool Support of OZTA 69

it is facing to an empty stone, which is adjacent or is reached by jumping over a frog on
an adjacent stone. To complex the puzzle, we add some timing constraints to the moves
of frogs, i.e., each frog takes at least 1 time units but no more than 2 time units to move
to its next position. We define that the puzzle is solved if a sequence of moves can be
found that will exchange the positions of the black and white frogs within 30 time units.
The OZTA model of this frog puzzle is given as follow,

Posn == 1..7

Puzzle

wf , bf : P Posn
nf : Posn
win : B

#wf = 3 ∧ #bf = 3

INIT

wf = {1, 2, 3} ∧ bf = {5, 6, 7}
nf = 4

BlackMove
Δ(bf , nf)

¬(bf = {1, 2, 3} ∧ wf = {5, 6, 7}
∧ nf = 4) ∧ nf ′ rightb nf
bf ′ = bf ∪ {nf} − {nf ′}

Lose1

Δ(win)

win′ = false

Win
Δ(win)

bf = {1, 2, 3} ∧ wf = {5, 6, 7} ∧
nf = 4
win′ = true

WhiteMove
Δ(wf , nf)

¬(bf = {1, 2, 3} ∧ wf = {5, 6, 7} ∧
nf = 4)
nf ′ leftw nf
wf ′ = wf ∪ {nf} − {nf ′}

Lose2

Δ(win)

nf �∈ rightb(| bf |) ∧ nf �∈ leftw(| wf |)
win′ = false

x, y : clock

BlackMove

y<=2

s1

Win

Lose_1

s0

WhiteMove

y<=2

Lose_2

x:=0 count

x<=30

y:=0
x<30

y>=1

x>30

y:=0
x<30

y<=1

70 J.S. Dong et al.

rightb : Posn ↔ Posn

∀ i, j : Posn •
i rightb j ⇔ i = j + 1 ∨ i = j + 2

leftw : Posn ↔ Posn

∀ i, j : Posn •
i leftw j ⇔ i = j− 1 ∨ i = j− 2

In this model, we define the empty stone also as a frog object nf . BlackMove cap-
tures the position exchanges between the black frogs and the empty stone; same for
WhiteMove; Win defines the situation when the puzzle is solved. The game begins with
a count event after its initial state; player will lose the game when the time is out as
described by (x > 30) • Lose1 or whenever the frogs are all jammed by each other in
the middle way as described by Lose2. The graphical TA part of the model can be de-
rived from the following textual specification according to the sequential composition,
external choice, deadline, waituntil, and recursion patterns:

TA = μ Y • (x := 0)(count) •
μ X • ((x < 30) • BlackMove • Deadline(y, 2) • WaitUntil(y, 1); X)

� ((x < 30) • WhiteMove • WaitUntil(y, 1) • Deadline(y, 2); X)

� ((x <= 30) • Win; Y) � ((x > 30) • Lose1; Y) � (Lose2; Y)

To illustrate the synchronization mechanism of OZTA, we consider several puzzle-
solving competition systems:

The handshaking synchronization operator ↔ indicates

that the two switches labelled count in the objects of p0,

p1 were identical, i.e., the automata must synchronize on

these switches, as illustrated in Figure 5(1). The product of

the two timed automata effectively ensures that the two puz-

zles start to be solved at same time point in the competition

while operating independently and concurrently.

PuzzleC1

p0, p1 : Puzzle

(p0 ‖ p1) • {p0.count ↔ p1.count}

The partial synchronization operator → indicates that

whenever the p0.count is taken, then there must be syn-

chronization with the switch p1.count. However, the switch

p1.count can occur independent of the switch p0.count.

The partial synchronization between p0 and p1 is illus-

trated in Figure 5(2).

PuzzleC2

p0, p1 : Puzzle

(p0 ‖ p1) • {p0.count → p1.count}

The sometime synchronization operator �↔ indicates that

when any of the switches p0.count or p1.count is taken

there may or may not be synchronization with the switch

p1.count or p0.count respectively. The sometime synchro-

nization between p0 and p1 is illustrated in Figure 5(3).

PuzzleC3

p0, p1 : Puzzle

(p0 ‖ p1) • {p0.count �↔ p1.count}

The Semantics and Tool Support of OZTA 71

p0.s0 p0.s1

p1.s0 p1.s1

p0.s0 p0.s1

p1.s0 p1.s1

p0.s0 p0.s1

p1.s0 p1.s1

count

count

(1)

count

(2)

count

p1.count

p0.count

count

count

p1.count

(3)

Fig. 5. Handshaking, Partial and Sometime Synchronization

3 The Semantics of OZTA

Before building the semantic model for OZTA, we need to choose an appropriate model
of time. There are two typical time models: a discrete model and a continuous model.
The current semantic model for OZTA [6] is a primitive operational semantics based
on continuous time without pattern features. To make our model with the extension of
timed patterns and more apt for exploration of algebraic refinement laws, we choose the
discrete model. The discrete time model has also been adopted by the Sherif and He’s
work [14] on the semantics for time Circus [12] and Qin, Dong and Chin’s work [13]
on the semantics for TCOZ.

3.1 The Automata Model

The following meta variables are introduced in the alphabet of the observations of the
OZTA automata behavior, some of which are similar to those in the previous UTP
semantic frameworks [13]. The key difference is that we now take consideration of
clock variable updates.

– ok, ok′: Boolean. These two variables are introduced to denote the observations of
automaton initiation and termination. ok records the observation that the automa-
ton has started. When ok is false, the automaton has not started, so no observation
can be made. ok′ records the observation that the automaton has terminated or has
reached an intermediate stable state. The automaton is deadlock when ok’ is false.

– wait, wait′: Boolean. When wait is true, it states that the automaton starts in an
intermediate state. When wait′ is true, the automaton has not terminated; when it is
false, it indicates a final observation.

– state, state′: Var → Value. In order to record the state of data variables(class at-
tributes and local variables) that occur in an automaton, these two variables are
introduced to map each variable to a value in the corresponding observations.

– tr, tr′: seq(seq Event × PEvent). The two variables are introduced to record the
sequence of observations on the interactions between an automaton and its envi-
ronment. tr records the observations that occurred before the automaton starts and
tr′ records the final observation. Each element of the sequence represents an obser-
vation over one time unit. Each observation element is composed of a tuple, where
the first element of the tuple is the sequence of events that occurred during the time

72 J.S. Dong et al.

unit, and the second one is the associated set of refusals at the end of the same time
unit. The set Event denotes all possible communicating events.

– trace: seq Event. This variable is used to record a sequence of events that take place
so far since the last observation. It can be derived from tr, tr′ as the following:

flat(tr) � trace = flat(tr′)

where � is a concatenation operator and flat :

seq(seq(Event× PEvent)→ seq Event

flat(〈〉) =̂ 〈〉 flat(〈(es, ref)〉 � tr) =̂ es � flat(tr)

– cval, cval′: Clock → N∪{NULL}. Among which Clock denotes all clock variables;
N is the set of natural number; NULL is a number of no meaning, denoting the
situation that the clock has not been enabled yet.

Some other definitions are given to facilitate the description of OZTA semantics.

– The predicate no interact(trace) denotes that there are no communication events
recorded in trace.

no interact(s) =̂ s = 〈〉

– The operator ◦ is the composition of two sequentially made observations. For two
observation predicate P(v, v′), Q(v, v′), where v, v′ represents respectively the ini-
tial and final versions of all observation variables, the composition of them is:

P(v, v′) ◦ Q(v, v′) =̂ ∃ v0 • P(v, v0) ∧ Q(v0, v′)

– A binary relation � is the ordinary subsequence relation between sequences of the
same type.

– The predicate clock update(x, n) denotes that the value of clock variable x is up-
dated to a natural number n.

clock update(x, n) =̂ cval′ = cval⊕ {x �→ n}

3.2 The Semantics of Automata with Patterns

In this section, the observation model for OZTA automata is developed. We use TA to
stand for the semantics of an automaton TA instead of the term [[TA]] in UTP. Before
we go into the detail of the semantics for each Automata expressions, A healthiness
condition R must be satisfied by the semantics predicate TA for any automaton, which
is defined as,

R(TA) =̂ TA = (TA ∧ tr
t
� tr′)

tr
t
� tr′ states that, given two timed traces, tr and tr′, tr′ is an expansion of tr [13].

The Semantics and Tool Support of OZTA 73

State and Control Operation.

– State Operation
StaOp =̂ Δ(b), a : T • Pred(u, v′) =̂ ok′ ∧ ¬ wait′ ∧ no interact(trace) ∧
(∀ x : dom cval | cval(x) �= NULL • clock update(x, #tr′ − #tr)) ∧ ((∃ val1 •
state′ = state ⊕ {a �→ val1}) ◦ (∃ val • state′ = state ⊕ {a �→ val} ∧ Pred
(state(u), state′(v′))))
In an operation state, time may progress, no event occurs, state will be updated.
NULL means the clock has no value, and it has not been initialized yet.

– Control Operation
StaCtr =̂ ok′ ∧ ¬ wait′ ∧ no interact(trace) ∧ (∀ x : dom cval | cval(x) �=
NULL • clock update(x, #tr′ −#tr))
In a control state, time may progress, no event occurs and no state updates.

– Urgent state
StaU =̂ (StatOP ∨ StaCtr) ∧ #tr′ = #tr
The semantics of an urgent state is that the automaton will pass the control from
the urgent state to a next state without delay.

– Init State
StaI =̂ ok′ ∧ ¬wait′ ∧ tr = 〈〉 ∧ no interact(trace) ∧ ∀ x : dom cval • cval(x) =
NULL)
The sequence of observations of an OZTA model starts from an initial state. The
value of each clock variable is initially set to NULL.

Local Invariant. In verification tools, e.g. Uppaal, local invariants are often restricted
to constraints that are downwards closed, i.e., in the form: x < n or x ≤ n, where n is
natural number.

State • (x < n) =̂ x ∈ dom cval ∧ (State ∧ (cval(x) + #tr′ − #tr) < n ∧ (∀ c :
dom cval | cval(c) �= NULL • clock update(x, cval(c) + #tr′ −#tr)) ∨ Stop)

State • (x <= n) =̂ x ∈ dom cval ∧ (State ∧ (cval(x) + #tr′ −#tr) ≤ n ∧ (∀ c :
dom cval | cval(c) �= NULL • clock update(x, cval(c) + #tr′ −#tr)) ∨ Stop)

Clock Reset. Reset(x) =̂ ok′ ∧ ¬wait′ ∧ #tr′ = #tr ∧ state′ = state ∧ x ∈
dom cval ∧ clock update(x, 0)

It can also be described in this way,
Reset(x) • TA =̂ Reset(x); TA
Consecutive clock reset operations are combined into one atomic reset operation.

Event. Event =̂ ok′ ∧ ¬wait′ ∧ trace = 〈Event〉 ∧ state′ = state ∧ #tr′ = #tr
It can also be described in this way,
Event • TA =̂ Event; TA

Clock Constraint. An automaton can be guarded by clock constraints. The clock-
guarded automaton Guard(x, n) • TA behaves as TA if the condition Guard(x, n) is
initially satisfied.

Guard(x, n) • TA =̂ (∃ x : Clock • x ∈ dom cval) ∧ (Guard(x, n) ∧ TA ∨
¬ Guard(x, n)
∧ Stop)

74 J.S. Dong et al.

It enjoys the following properties:

– false • TA = Stop
– true • TA = TA
– Guard(x, n) • Stop = Stop
– Guard1(x1, n1) • (Guard2(x2, n2) • TA) =

(Guard1(x1, n1) ∧ Guard2(x2, n2)) • TA
– Guard(x, n) • (TA1; TA2) = (Guard(x, n) • TA1); • TA2

Wait. The Wait construct specifies an automaton in which time idles for n time units
then terminates.

Wait(x, n) =̂ ok′ ∧ ¬ wait′ ∧ #tr′ − #tr = n ∧ (∀ i : #tr′ < i < #tr •
no interact(π1(tr′(i))))

It is subjected to the following laws.

– WAIT n1; WAIT n2 = WAIT(n1 + n2)
– STOP • Timeout(x, n) • TA = WAIT n; TA

Deadline. The Deadline construct TA • Deadline imposes a timing constraint on a
timed automaton, which requires that TA should terminate no later than n time units.

TA • Deadline(x, n) =̂ (ok ∧ x ∈ dom cval ∧ clock update(x, 0)) ◦ (TA ∧ #tr′ −
#tr ≤ n)

WaitUntil. The WaitUntil construct TA • WaitUntil(x, n) constrains automation TA to
finish its process no less than n time units.

TA • WaitUntil(x, n) =̂ (TA ∧ (#tr′ − #tr ≥ n)) ∨ ((∃ tro • tr � tro �
tr′ ∧ #tro − #tr < n) ∧ ((ok ∧ x ∈ dom cval ∧ clock update(x, 0)) ◦
TA[tro/tr′, true/ok′, false/wait′] ◦Wait(x, n − (#tro −#tr))[tro/tr]))

Timeout. The Timeout construct TA1 • Timeout(x, n) • TA2 specifies that if no tran-
sition has been triggered for n time units in timed automaton TA1, then TA1 will be
timeout and the control will be passed to TA2.

TA1 • Timeout(x, n) • TA2 =̂ (ok ∧ x ∈ dom cval ∧ clock update(x, 0)) ◦ ((TA1 ∧
no interact(trace) ∧ #tr′ −#tr ≤ n) ∨ (∃ k : #tr < k ≤ tr + n, ∃ tro • π1(tr′(k)) �=
〈 〉 ∧ tr � tro ∧ #tro−#tr = k ∧ (∀ i : #tr < i < #tr+k • no interact(π1(tr′(i))) ∧
tro(i) = tr′(i)) ∧ TA1[tro/tr]) ∨ (∃ tro • tr � tro ∧ #tro −#tr = n ∧ (∀ i : #tr < i <
#tr + n • no interact(π1(tr′(i))) ∧ tro(i) = tr′(i)) ∧ TA2[tro/tr]))

Recursion. We define the semantics of recursion same as [13],
μ X • TA(X) =̂ �{X | X � TA(X)}, where X is the fixed point.

Parallel Composition. The parallel composition of two automatons represents all the
possible behaviors of both automatons which are synchronized on a specific set of
events and on the time when the events occur.

In addition to the handshake synchronization, OZTA also supports other two syn-
chronization mechanisms, namely, partial synchronization and sometime synchroniza-
tion.

The Semantics and Tool Support of OZTA 75

Given a parallel composition TA1 |[E]| TA2 • S, where E denotes the set of events
that TA1 and TA2 will communicate with, and S contains elements of the form a → b,
a �↔ b (E ∩ event(S) = ∅), the notation a → b ∈ S simply indicates that event a
from TA1 must be synchronized with event b from TA2, but event b can occur indepen-
dently of a. Given a �↔ b ∈ S, it indicates that event a from TA1 and b from TA2 may
synchronize with each other, or occur independently.

This parallel composition is defined in terms of the general parallel merge operator
‖M in UTP [10]:

A1 |[E]| A2 • S =̂ (((A1; idle) ‖M A2) ∨ (A1 ‖M (A2; idle)));

((ok ⇒ SKIP) ∧ (¬ok ⇒ tr
t
� tr′))

Take note that SKIP is a semantic predicate which preserves the observations, that
is, SKIP =̂ (obs′ = obs), where obs denotes all observables.

An idle process, which may either wait or terminate, follows after each of the two
automatons. This is to allow each of the automatons to wait for its partner to terminate.

idle =̂ ok′ ∧ no interact(trace) ∧ state′ = state

The merge predicate M is defined as,
M =̂ ok′ = (0.ok ∧ 1.ok) ∧ wait′ = (0.wait ∨ 1.wait) ∧ state′ = (0.state ⊕

1.state) ∧ tr′ ∈ syn(0.tr, 1.tr, E, S) ∧ #tr′ = #0.tr = #1.tr ∧ cval′ = 0.cval⊕1.cval
Given two timed traces tr1, tr2, and a set of events E, and a set of pairs of par-

tial/sometime synchronizations S, the set syn(tr1, tr2, E, S) is defined inductively as fol-
lows.

syn(tr1, tr2, E, ∅) =̂ syn(tr2, tr1, E, ∅)
syn(〈〉, 〈〉, E, S) =̂ {〈〉}
syn(〈(t, r)〉, 〈〉, E, S) =̂ {〈(t′, r)〉 | t′ ∈ (t ‖

E S
〈〉)}

syn(〈〉, 〈(t, r)〉, E, S) =̂ {〈(t′, r)〉 | t′ ∈ (〈〉 ‖
E S

t)}

syn(〈(t1, r1)〉� tr1, 〈(t2, r2)〉� tr2, E, S) =̂
{〈(t′, r′)〉� u | t′ ∈ (t1 ‖

E S
t2) ∧ r′ = r1 ∪ r2 ∧

u ∈ syn(tr1, tr2, E, S)}

s ‖
E S

t is used to merge untimed traces s and t into one untimed trace, where E is the

set of events to be synchronized, S is the set of partial/sometime synchronization pairs.
In the following clauses, e, e1 are representative elements of E (events), x, x1 repre-

sent communication events not residing in E or S, a → b, a1 → b1 are representative
partial synchronization pairs from S, while c �↔ d, c1 �↔ d1 are representative sometime
synchronization pairs from S. Let y, y1, y2 ∈ {x, x1, b, b1, c, d, c1, d1}.

Let z, z1, z2 ∈ {e, a, e1, a1}. Moreover, we use k(a, b) to denote the synchronization
of a and b.

76 J.S. Dong et al.

s ‖
E ∅

t =̂ t ‖
E ∅

s 〈〉 ‖
E S
〈〉 =̂ {〈〉}

〈z〉 ‖
E S
〈〉 =̂ 〈〉 ‖

E S
〈z〉 =̂ {}

〈y〉 ‖
E S
〈〉 =̂ 〈〉 ‖

E S
〈y〉 =̂ {〈y〉}

〈y〉�s ‖
E S
〈z〉�t =̂ {〈y〉�l | l∈(s ‖

E S
〈z〉�t)}, z→y �∈S

〈z〉�s ‖
E S
〈y〉�t =̂ {〈y〉�l | l∈(〈z〉�s ‖

E S
t)}, z→y �∈S

〈e〉�s ‖
E S
〈e〉�t =̂ {〈e〉�l | l ∈ (s ‖

E S
t)}

〈z1〉�s ‖
E S
〈z2〉�t =̂ {}, where z1 �= z2

〈y1〉�s ‖
E S
〈y2〉�t =̂ {〈y1〉�l | l ∈ (s ‖

E S
〈y2〉�t)}∪

{〈y2〉�l | l ∈ (〈y1〉�s ‖
E S

t)}, where y1 �↔ y2 �∈ S

〈a〉�s ‖
E S
〈b〉�t =̂ {〈k(a, b)〉�l | l ∈ (s ‖

E S
t)}∪

{〈b〉�l | l ∈ (〈a〉�s ‖
E S

t)}

〈b〉�s ‖
E S
〈a〉�t =̂ {〈k(a, b)〉�l | l ∈ (s ‖

E S
t)}∪

{〈b〉�l | l ∈ (s ‖
E S
〈a〉�t)}

〈c〉�s ‖
E S
〈d〉�t =̂ {〈k(c, d)〉�l | l ∈ (s ‖

E S
t)}∪

{〈c〉�l | l ∈ (s ‖
E S
〈d〉�t)} ∪ {〈d〉�l | l ∈ (〈c〉�s ‖

E S
t)}

A network of timed automata is the parallel composition A1 ‖ A2 ‖ ... ‖ An of a set
of timed automata A1, A2, ..., An.

3.3 The Semantics of Class

OZTA has two kinds of classes, active and passive ones. The behavior of (an object of)
an active class can be specified by a record of its continuous interactions with its envi-
ronment via its time automaton specifications, whereby any update on its data state is
hidden. Passive class does not have its own thread of control and its state and operations
(processes) are available for use by its controlling object.

In order to address issues like class encapsulation and dynamic typing that are es-
sential for object-orientation, a class model is established which is very similar with
[13, 11] except that the Timed Communicating Sequential Process (TCSP) operations
are replaced with timed automatons. More detailed information on the semantics of
class model can be referred to [13].

4 OZTA Tool

This section introduces the tool OZTA we developed for OZTA notation.
OZTA is a tool for modelling, type-checking and projecting complex real-time

systems. It mainly consists of four components, i.e., a GUI editor, a type checker, a

The Semantics and Tool Support of OZTA 77

LATEX code generator and a model translator to Uppaal [2] for verification. The input
language is based on the syntax and semantics we presented in the previous sections.
The output of OZTA can either be LATEX source files of OZTA models or an XML rep-
resentation of OZTA models (Similar work on the XML representation of Z language
family can be found in [16]); OZTA can also generate projections of OZTA models
which is ready to be taken as input for simulation and verification in Uppaal.

Figure 6 provides an overview of OZTA:

XM L Parse r Editor

OZTA
XML Do cume nt

La Tex Do cume nt
XM L
Sche ma

O ZTA
X ML Do cume nt

Use r Edit

Latex
Trans fe r

Checker

A DT

G raphical U ser Inte rface

Erro r Re po rt

Sc anne r

Uppaal
Tra nslat e r

Uppa al XM L
Docu ment

Fig. 6. Class Diagram of OZTA

4.1 GUI Editor with Pattern Support

The graphical editor has a main editing panel which consists of a schema editing part
and a timed automaton editing part. Implemented with the timed patterns, the editor
can support a more systematic design of timed automata. Automatons are generated in
a top-down way. Firstly an abstracted default automatonA of an external choice pattern
is automatically generated on the TA editing panel according to its established schema
part of the model. Each branch of A is also an abstracted automaton and respectively
represents one of the operation schemas defined on the schema editing panel. The de-
signer can later embody these branches by recursively applying certain patterns until
the behavior of the automaton meets its requirements.

4.2 Type Checker

The major functionalities of our OZTA type checker are to check syntax errors and to
check static semantic errors in the OZTA specification. A full set of type checking rules
can be found in our technical report [5].

4.3 LATEX Code Generator

This generator outputs the LATEX source file and EPS files for an OZTA model, which
can be directly complied and viewed in LATEX tools such as WinEdt.

4.4 Translator

A model translator is developed and integrated with OZTA. It extracts TA and state
variables information from OZTA notation and generates an XML representation of
Uppaal model for further embodiment and verification.

78 J.S. Dong et al.

OZTA to Uppaal. Uppaal is a useful integrated tool for modelling, simulation and veri-
fication of real-time systems. The simulation in Uppaal enables examination of possible
dynamic executions of a system during early design (or modelling) stages and thus pro-
vides an inexpensive mean of fault detection prior to verification by the model checker
which covers the exhaustive dynamic behavior of the system. Its model checker is to
check invariant and bounded liveness properties by exploring the symbolic state space
of a system, i.e., reachability analysis in terms of symbolic states represented by con-
straints. The description language of Uppaal is a timed automaton extended with a set
of locally declared clocks, variables and constants. By projecting an OZTA model to a
TA model, we can reuse Uppaal to simulate the dynamic behaviors the OZTA model
and verify its various kinds of properties.

s0

s1

Wf1
y<=2

Wf2

y<=2

Wf3
y<=2

Bf1

y<=2

Bf2

y<=2

Bf3

y<=2

Win

Lose_1

Lose_2

x:=0,wf[0]:=1,wf[1]:=2,wf[2]:=3,
bf[0]:=5,bf[1]:=6,bf[2]:=7,nf:=4

y:=0,temp:=nf

nf==wf[1]+1,
wf[0]+wf[1]+wf[2]!=18,
x<30

y:=0,temp:=nf

nf==wf[2]+1,
wf[0]+wf[1]+wf[2]!=18,
x<30

y:=0,temp:=nf

nf==wf[0]+1,
wf[0]+wf[1]+wf[2]!=18,
x<30

y:=0,temp:=nf

nf==bf[1]-1,
bf[0]+bf[1]+bf[2]!=6,
x<30

y:=0,temp:=nf

nf==bf[2]-1,
bf[0]+bf[1]+bf[2]!=6,
x<30

y:=0,temp:=nf

nf==bf[0]-1,
bf[0]+bf[1]+bf[2]!=6,
x<30

x<=30,nf==4,
wf[1]+wf[2]+wf[0]==18

y>=1
nf:=wf[1],wf[1]:=temp

y>=1
nf:=wf[2],wf[2]:=temp y>=1

nf:=wf[0],wf[0]:=temp

y>=1
nf:=bf[1],bf[1]:=temp

y>=1
nf:=bf[2],bf[2]:=temp

y>=1
nf:=bf[0],bf[0]:=temp

win:=1

nf==wf[1]+2,
wf[0]+wf[1]+wf[2]!=18,
x<30
y:=0, temp:=nf

nf==wf[2]+2,
wf[0]+wf[1]+wf[2]!=18,
x<30
y:=0,temp:=nf

nf==wf[0]+2,
wf[0]+wf[1]+wf[2]!=18,
x<30
y:=0,temp:=nf

nf==bf[1]-2,
bf[0]+bf[1]+bf[2]!=6,
x<30
y:=0,temp:=nf

nf==bf[2]-2,
bf[0]+bf[1]+bf[2]!=6,
x<30
y:=0,temp:=nf

nf==bf[0]-2,
bf[0]+bf[1]+bf[2]!=6,
x<30
y:=0,temp:=nf

x>=30

win:=0

nf!=bf[0]-1,nf!=bf[0]-2,
nf!=bf[1]-1,nf!=bf[1]-2,
nf!=bf[2]-1,nf!=bf[2]-2,
nf!=wf[0]+1,nf!=wf[0]+2,
nf!=wf[1]+1,nf!=wf[1]+2,
nf!=wf[2]+1,nf!=wf[2]+2win:=0

Fig. 7. Frog Puzzle Model in Uppaal

Coupled with operation schema predicates and data structures, the semantics of op-
eration states in the TA part of an OZTA model is slightly different from those of states
in Uppaal. However, the main structure of the OZTA automata model is still consistent
with that of Uppaal model by regarding the OZTA operation states as abstracted au-
tomatons which need further implementation. This gap between the OZTA’s TA model
and Uppaal’s TA model can be remedied by some manual work on the operation states,
namely, to further embody these abstracted automatons by adding the data information.

For example, in the frog puzzle game, we map the state variables bf , wf , nf of its
OZTA model to the Uppaal model as global int variables bf [3], wf [3], nf . Due to the
limited expressiveness for data manipulation in Uppaal, we need to respectively expand

The Semantics and Tool Support of OZTA 79

BlackMove and WhiteMove into three branches. The predicates in the operation schemas
of the OZTA model are projected as guards on the corresponded transitions. The final
Uppaal model can be generated in this way as shown in Figure 7.

Although our projection can handle most of the TA information of an OZTA model,
one limitation needed to be pointed out is that, there is no verification tool yet which can
support checking the properties related with the partial synchronization and sometime
synchronization due to the novelty of this concept.

Model-Checking OZTA Models. To find the solution of this frog puzzle, we can check
the following property in Uppaal.

E <> P.Win

which means that there exists a sequence of moves that will exchange the positions of
the black and white frogs within 30 time units.

Uppaal verified that this property actually holds for this given model. Solutions of
the puzzle can be visualized in Uppaal’s simulator by running its diagnostics trace.

5 Conclusion

The contributions of the paper are listed as follows:

– We enhanced OZTA notation by introducing a set of timed patterns as language
construct that can specify the dynamic and timing features of complex real-time
systems in a systematic way.

– We presented a semantic model of OZTA in Unifying Theories of Programming
which provides the semantic foundation for language understanding, reasoning and
tool construction.

– We constructed an OZTA tool which can support editing, type-checking OZTA
models as well as transforming OZTA models into TA models so that we can utilize
TA model-checkers, e.g., Uppaal for verification.

In our future work, we plan to further enhance our OZTA tool by extending the
current set of TA patterns into a dynamic pattern library so that new patterns can be
defined by system designers and added into the pattern library for future reuse. We are
also interested to study other projections, e.g., OZTA to Alloy, so that various prop-
erties of an OZTA model can be analyzed in the projected domains. Another future
research work would be develop our own verification tool which based on constraint
logic programming.

Acknowledgement

We would like to thank Chen Qian, and He Kang for their part of work on the coding
of the OZTA tool.

80 J.S. Dong et al.

References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–
235, 1994.

2. J. Bengtsson, K. G. Larsen, F. Larsson, and P. Pettersson avd W. Yi. UPPAAL - a tool
suite for automatic verification of real-time systems. In Hybrid Systems III: Verification and
Control, pages 232–243. Springer, 1996.

3. E. Boiten, J. Derrick, and G. Smith, editors. IFM’04: Integrated Formal Methods, Lect.
Notes in Comput. Sci. Springer-Verlag, April 2004.

4. M. Butler, L. Petre, and K. Sere, editors. IFM’02: Integrated Formal Methods, Lect. Notes
in Comput. Sci. Springer-Verlag, October 2002.

5. J. S. Dong, P. Hao, S. C. Qin, and X. Zhang. OZTA. Technical report TRC6/05, School of
Computing, National University of Singapore, 2005.

6. J.S. Dong, R. Duke, and P. Hao. Integrating Object-Z with Timed Automata. In The 10th
IEEE International Conference on Engineering of Complex Computer System, Shanghai,
China, 2005.

7. J.S. Dong, P. Hao, S.C. Qin, J. Sun, and W. Yi. Timed Patterns: TCOZ to Timed Automata.
In The 6th IEEE International Conference on Formal Engineering Methods, Seattle, 2004.

8. R. Duke and G. Rose. Formal Object Oriented Specification Using Object-Z. Cornerstones
of Computing. Macmillan, March 2000.

9. C. Fischer and H. Wehrheim. Model-Checking CSP-OZ Specifications with FDR. In
IFM’99: Integrated Formal Methods, York, UK. Springer-Verlag, June 1999.

10. C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
11. Z. Liu J. He and X. Li. A relational model for specification of object-oriented systems.

Technical report 262, UNU/IIST, 2002.
12. A. Cavalcanti J. Woodcock. The Semantics of Circus. In The 2th International Conference

on Z and B, LNCS 2272, pages 184–203. Springer-Verlag, 2002.
13. S. C. Qin, J. S. Dong, and W. N. Chin. A Semantic Foundation of TCOZ in Unifying Theory

of Programming. In Formal Methods(FM’03), LNCS 2805, pages 321–340. Springer-Verlag,
2003.

14. A. Sherif and J. He. Towards a Timed Model for Circus. In The 2th IEEE International
Conference on Formal Engineering Methods, Shanghai, 2002.

15. G. Smith. The Object-Z Specification Language. Advances in Formal Methods. Kluwer
Academic Publishers, 2000.

16. M. Utting, I. Toyn, J. Sun, A. Martin, J. S. Dong, N. Daley, and D. Currie. Zml: Xml support
for standard Z. In 3nd International Conference of Z and B Users (ZB’03), LNCS. Springer,
June 2003.

17. E. N. Wafula and P. A. Swatman. FOOM: A Diagrammatic Illustration of Inter-Object Com-
munication in Object-Z Specifications. In The 1995 Asia-Pacific Software Engineering Con-
ference (APSEC’95). IEEE Press, December 1995.

18. J. Woodcock and A. Cavalcanti. The Semantics of Circus. In 2nd International Conference
on Z and B, volume 2272 of Lect. Notes in Comput. Sci., pages 184–203. Springer-Verlag,
2002.

19. X.Nicollin, J.Sifakis, and S.Yovine. Compiling Real-time Specifications into Extended Au-
toamta. In IEEE TSE Special Issue on Real-Time Systems, volume 18(9), pages 794–804,
1999.

An Abstract Model for Process Mediation�

Michael Altenhofen1, Egon Börger2, and Jens Lemcke1

1 SAP Research, Karlsruhe, Germany
{michael.altenhofen, jens.lemcke}@sap.com

2 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

On sabbatical leave at SAP Research, Karlsruhe, Germany
egon.boerger@sap.com

Abstract. We define a high-level model to mathematically capture the
behavioural interface of abstract Virtual Providers (VP), their refine-
ments and their composition into rich mediator structures. We show for
a Virtual Internet Service Provider example how to use such a model for
rigorously formulating and proving properties of interest.

1 Introduction

For the configuration [1] and composition [2,3] of Web services in interaction pro-
tocols, a central role is played by process mediation (see MIBIA [4], WSMF [5],
WebTransact [6]). We propose here an abstract model for mediators (Sects. 2, 3),
viewed as Virtual Providers (VP). The model supports provably correct media-
tor composition and the definition of appropriate equivalence concepts (Sect. 4),
which underlay algorithms for the discovery and run-time selection of services
satisfying given requests. In Sect. 5 we illustrate our definitions by a Virtual
Internet Service Provider (VISP) case study.

We start with a simple interaction model where each single request receives
a single answer from the VP, with no need to relate multiple requests. However,
to process single requests the VP has a hierarchical structure at its disposition:
Each request arriving at VP is viewed as root of a so-called seq/par tree of further
requests, which are forwarded to other providers. The children of a request node
represent subrequests which are elaborated in sequence. Each subrequest node
may have in turn children representing multiple subsubrequests, which are elab-
orated independently of each other. Nestings of such alternating seq/par trees
and other more sophisticated hierarchical subrequest structures can be obtained
by appropriate compositions of VPs as defined in Sect. 4.1.

The compositionality of our mediator model stems from an explicit separation
of its tree processing component from its communication interfaces for sending
and receiving requests and answers. This separation, defined in Sect. 2 on the
basis of an abstract message passing system, supports a flexible definition of the
service behaviour of VPs and of their behavioural equivalence (Sect. 4), which

� Work on this paper was partly funded by the EU-project DIP.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 81–95, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

82 M. Altenhofen, E. Börger, and J. Lemcke

also allows one to clearly identify the place of data mediation during the discovery
and runtime selection of providers able to satisfy given requests. Furthermore, the
separation of communication from proper request processing supports a smooth
integration of a variety of workflow and interaction patterns [7,8].

In Sect. 2.3 the single-request oriented model is refined by a notion of internal
state, so that the relevant information about previous requests, which may be
related to an incoming request, can be extracted from the internal state — in
practical Web applications typically by a wrapping session handling module.
This refinement step is only a tiny illustration of much more one can do to turn
our abstract VP model in a faithful way into fully developed mediator code.

As modelling framework we use Abstract State Machines (ASM),1 a form
of pseudo-code working on arbitrary structures. An introduction into the ASM
method for high-level system design and analysis is available in textbook form
in [9], but most of what we use here is self-explanatory. The various refinements
used are instances of the general ASM refinement concept defined in [10].

2 The Communication Interface of VirtualProviders

We see a Virtual Provider as an interface (technically speaking as an ASM
module VirtualProvider) providing the following five methods (read: ASMs):

ReceiveReq for receiving request messages (elements of a set InReqMssg
of legal incoming request messages) from clients,2

SendAnsw for sending answer messages (elements of a set OutAnswMssg)
back to clients,
Process to handle request objects, elements of a set ReqObj of internal
representations of ReceivedRequests, typically by sending to providers a series
of subrequests to service the currently handled request currReqObj ,3

SendReq for sending request messages (elements of a set OutReqMssg) to
providers (possibly other VPs, see the VP composition in Sect. 4.1),
ReceiveAnsw for receiving incoming answer messages (elements of a set
InAnswMssg) from providers.

This module view of VirtualProvider — as a collection of defined and callable
machines, without a main ASM defining the execution flow — separates the
specification of the functionality of VP components from that of their schedulers.
The underlying architecture is illustrated in Fig. 1.

1 This is not the place for a systematic comparison of different methods. The model
developed in this paper starts from scratch, which explains that, besides what is
cited in Sect. 6, there is no other related work we used.

2 Since instances of VirtualProvider can be composed (see Sect. 4.1), such a client
can be another VP’ asking for servicing a subrequest of a received request.

3 Since the underlying message passing system is abstract, VirtualProvider can
be instantiated in such a way that also Process itself can be a provider and thus
service a subrequest ‘internally’. This reflects that the mediation role for a request
is different from the role of actually servicing it.

An Abstract Model for Process Mediation 83

Fig. 1. Architecture

MODULE VirtualProvider =
ReceiveReq SendAnsw Process SendReq ReceiveAnsw

2.1 Abstract Message Passing

For sending and receiving request and answer messages we abstract from a con-
crete message passing system by using abstract communication interfaces (pred-
icates) for mail boxes of incoming and outgoing messages.

ReceivedReq in ReceiveReq expresses that an incoming request message
has been received from some client (supposed to be encoded into the mes-
sage).
ReceivedAnsw in ReceiveAnsw expresses that an answer message (to a pre-
viously sent supposed to be retrievable request message) has been received.
An abstract machine Send is used a) by SendAnsw for sending out answer
messages to requests back to the clients where the requests originated, b) by
SendReq for sending out requests to providers. We assume the addressees
to be encoded into messages.

We separate the internal preparation of outgoing messages in Process from
their actual sending in Send by using the following abstract predicates for mail
boxes of outgoing mail:

SentAnswToMailer expresses that an outgoing answer message (elaborated
from a Process internal representation of an answer) was passed to Send.
SentReqToMailer expresses that an outgoing request message (corresponding
to an internal representation of a request) has been passed to Send.

2.2 The Send and Receive Submachines

The interaction between a client and a VirtualProvider, which is triggered by
the arrival of a client’s request message so that ReceivedReq(inReqMsg) becomes
true, is characterized by creating a request object (a request ID, say element r of

84 M. Altenhofen, E. Börger, and J. Lemcke

a set ReqObj of currently alive request objects), which is appropriately initialized
by recording in an internal representation the relevant data, which are encoded
in the received request message. This includes decorating that object by an
appropriate status , say status(r) := started , to signal to (the scheduler for)
Process its readiness for being processed.

This requirement for the machine ReceiveReq is captured by the following
definition, which is parameterized by the incoming request message inReqMsg
and by the set ReqObj of current request objects of the VP. For simplicity of
exposition we assume a preemptive ReceivedReq predicate.4

ReceiveReq(inReqMsg,ReqObj) = if ReceivedReq(inReqMsg) then
CreateNewReqObj(inReqMsg,ReqObj)

where CreateNewReqObj(m,R) =
let r = new(R)5 in Initialize(r ,m)

The inverse interaction between a VP and a client, which consists in send-
ing back a message providing an answer to a previous request of the client,
is characterized by the underlying request object having reached, through fur-
ther Processing, a status where a call to SendAnsw with corresponding pa-
rameter outAnswMsg has been internally prepared by Process — namely by
setting the answer-mailbox predicate SentAnswToMailer for this argument to
true. Thus one can specify SendAnsw, and symmetrically SendReq with the
request-mailbox predicate SentReqToMailer , as follows:

SendAnsw(outAnswMsg ,SentAnswToMailer) =
if SentAnswToMailer(outAnswMsg) then Send(outAnswMsg)

SendReq(outReqMsg,SentReqToMailer) =
if SentReqToMailer(outReqMsg) then Send(outReqMsg)

For the definition of ReceiveAnsw we use as parameter the AnswerSet function
which provides for every requester r , which may have triggered sending some
subrequests to subproviders, the AnswerSet(r), where to insert (the internal
representation of) each answer contained in the incoming answer message.6

ReceiveAnsw(inAnswMsg,AnswerSet)7 =
if ReceivedAnsw(inAnswMsg) then

insert answer(inAnswMsg) into AnswerSet(requester(inAnswMsg))

4 Otherwise a Delete(inReqMsg) has to be added, so that the execution of
ReceiveReq(inReqMsg , ReqObj) switches ReceivedReq(inReqMsg) to false.

5 new is assumed to provide at each application a sufficiently fresh element.
6 The function requester(inAnswMsg) is defined below to denote the value of

seqSubReq in the state when the request message outReq2Msg(s) for the parallel
subrequest s was sent out to which the inAnswMsg is received now.

7 Without loss of generality we assume this machine to be preemptive (i. e.
ReceivedAnsw(inAnswMsg) gets false by firing ReceiveAnsw for inAnswMsg).

An Abstract Model for Process Mediation 85

Behavioural Interface Types. Through the definitions below, we link calls of
ReceiveReq and SendAnsw by the status function value for a currReqObj .
Thus the considered communication interface is of the “provided behavioural
interface” type, discussed in [11]: The ReceiveReq action corresponds to receive
an incoming request, through which a new reqObj is created, and occurs before
the corresponding SendAnsw action, which happens after the outgoing answer
message in question has been SentAnswToMailer when reqObj was reaching the
status deliver . The pair of machines SendReq and ReceiveAnsw in Process
realizes the symmetric “required behavioural interface” communication interface
type, where the Send actions correspond to outgoing requests and thus occur
before the corresponding ReceiveAnsw actions of the incoming answers to
those requests.

2.3 Refinement by a “State” Component

It is easy to extend ReceiveReq to equip VirtualProviders with some state
for recording information on previously received requests, to be recognized when
for such a request at a later stage some additional service is requested. The
changes on the side of Process defined below concern the inner structure of that
machine and its refined notion of state and state actions. We concentrate our
attention here on the refinement of the ReceiveReq machine. This refinement
is a simple case of the general ASM refinement concept in [10].

The first addition needed for ReceiveReq is a predicate NewRequest to
check, when an inReqMsg is received, whether that message contains a new re-
quest, or whether it is about an already previously received request. In the first
case, CreateNewReqObj as defined above is called. In the second case, in-
stead of creating a new request object, the already previously created request
object corresponding to the incoming request message has to be retrieved, using
some function prevReqObj (inReqMsg), to RefreshReqObj by the additional
information on the newly arriving further service request. In particular, a deci-
sion has to be taken upon how to update the status(prevReqObj (inReqMsg)),
which depends on how one wants the processing status of the original re-
quest to be influenced by the additional request or information presented
through inReqMsg. Since we want to keep the scheme general, we assume
that an external scheduling function refreshStatus is used in an update
status(r) := refreshStatus(r , inReqMsg).8 This leads to the following refinement
of ReceiveReq (we skip the parameters ReqObj , prevReqObj):

ReceiveReq(inReqMsg) = if ReceivedReq(inReqMsg) then
if NewRequest(inReqMsg) then

CreateNewReqObj(inReqMsg,ReqObj)
else let r = prevReqObj (inReqMsg) in RefreshReqObj(r , inReqMsg)

8 What if status(prevReqObj (inReqMsg)) is simultaneously updated by the refined
ReceiveReq and by Process as defined below? In case of a conflicting update
attempt the ASM framework stops the computation; At runtime such an inconsis-
tency is notified by ASM execution engines. Implementations will have to solve this
problem in the scheduler of VP.

86 M. Altenhofen, E. Börger, and J. Lemcke

3 The Processing Submachine of VirtualProviders

In this section we define the signature and the transition rules of the
ASM Process for the processing kernel of a VirtualProvider. The definition
provides a schema, which is to be instantiated for each particular Processing
kernel of a concrete VP by giving concrete definitions for the abstract functions
and machines we are going to introduce. For an example see Sect. 5.

Since we want to abstract from the scheduler, which calls Process for
particular current request objects currReqObj , we describe the machine as
parametrized by a global instance variable currReqObj ∈ ReqObj . The definition
is given in Fig. 2 in terms of control state ASMs, using the standard graphical
representation of finite automata or flowcharts as graphs with circles (for the
internal states, here to be interpreted as current value of status(currReqObj)),
rhombuses (for test predicates) and rectangles (for actions).

Fig. 2. Processing(currReqObj)

Figure 2 expresses that each Processing call for a started request ob-
ject currReqObj triggers to Initialize an iterative sequential subrequest process-
ing, namely of the immediate subrequests of this currReqObj , in the order defined
by an iterator over a set SeqSubReq(currReqObj). This reflects the first part of
the hierarchical VP request processing view, namely that each incoming (top
level) request object currReqObj triggers the sequential elaboration of a finite
number of immediate subrequests, members of a set SeqSubReq(currReqObj),
called sequential subrequests. As explained below, each sequential subrequest
may trigger a finite number of further subsubrequests, which are sent to exter-
nal providers where they are elaborated independently of each other, so that we
call them parallel subrequests of the sequential subrequest.

Process uses for the elaboration of the sequential subrequests of currReqObj
a submachine IterateSubReqProcessg specified below. Once Process has
FinishedSubReqProcessg, it compiles from currReqObj (which allows to access
AnswerSet(currReqObj)) an answer, say outAnswer(currReqObj), and trans-
forms the internal answer information a into an element of OutAnswMssg using
an abstract function outAnsw2Msg(a). We guard this answer compilation by a
check whether AnswToBeSent for the currReqObj evaluates to true.

For the sake of illustration we also provide here the textual definition of the
machine defined in Fig. 2. For this purpose we use a function initStatus to yield

An Abstract Model for Process Mediation 87

for a control state ASM its initial control status, which is hidden in the graphical
representation. The function seqSubReq(currReqObj) denotes the current item
of the iterator submachine IterateSubReqProcessg defined below.

Process(currReqObj) =
if status(currReqObj) = started then

Initialize(seqSubReq(currReqObj))
status(currReqObj) := subReqProcessg

if status(currReqObj) = subReqProcessg then
if FinishedSubReqProcessg then

CompileOutAnswMsg from currReqObj
status(currReqObj) := deliver

else
StartNextRound(IterateSubReqProcessg)

where
CompileOutAnswMsg from o = if AnswToBeSent(o) then

SentAnswToMailer(outAnsw2Msg(outAnswer(o))) := true
StartNextRound(M) = (status(currReqObj) := initStatus(M))

The submachine to IterateSubReqProcessg is an iterator machine defined in
Fig. 3. For every current item seqSubReq, it starts to FeedSendReq with a re-
quest message to be sent out for every immediate subsubrequest s of the current
seqSubReq, namely by setting SentReqToMailer(outReq2Msg(s)) to true. Here
outReq2Msg(s) transforms the outgoing request into the format for an outgoing
request message, which has to be an element of OutReqMssg. Since those imme-
diate subsubrequests, elements of a set ParSubReq(seqSubReq), are assumed to
be processable by other providers independently of each other, FeedSendReq
elaborates simultaneously for each s an outReqMsg(s).

Fig. 3. IterateSubReqProcessg

Simultaneously IterateSubReqProcessg also Initializes the to be com-
puted AnswerSet(seqSubReq) before assuming status value waitingForAnswers ,
where it remains until AllAnswersReceived . When AllAnswersReceived , the ma-
chine IterateSubReqProcessg will ProceedToNextSubReq.

88 M. Altenhofen, E. Börger, and J. Lemcke

As long as during waitingForAnswers , AllAnswersReceived is not yet true,
ReceiveAnsw inserts for every ReceivedAnsw(inAnswMsg) the retrieved in-
ternal answer(inAnswMsg) representation into AnswerSet(seqSubReq) of the
currently processed sequential subrequest seqSubReq, which is supposed to be
retrievable as requester of the incoming answer message.

IterateSubReqProcessg =
if status(currReqObj) = initStatus(IterateSubReqProcessg) then

FeedSendReq with ParSubReq(seqSubReq(currReqObj))
Initialize(AnswerSet(seqSubReq(currReqObj)))
status(currReqObj) := waitingForAnswers

if status(currReqObj) = waitingForAnswers then
if AllAnswersReceived then

ProceedToNextSubReq
status(currReqObj) := subReqProcessg

where FeedSendReq with ParSubReq(seqSubReq) =
forall s ∈ ParSubReq(seqSubReq)

SentReqToMailer(outReq2Msg(s)) := true

For the sake of completeness we now define the remaining macros used in Fig. 3,
though their intended meaning should be clear from the chosen names. The
Iterator Pattern on SeqSubReq is defined by the following items:

seqSubReq, denoting the current item in the underlying set SeqSubReq ∪
{Done(SeqSubReq(currReqObj)) },
The functions FstSubReq and NxtSubReq operating on the set SeqSubReq
and NxtSubReq also on AnswerSet(currReqObj),
The stop element Done(SeqSubReq(currReqObj)), constrained by not being
an element of any set SeqSubReq.

Initialize(seqSubReq) = let r = FstSubReq(SeqSubReq(currReqObj)) in
seqSubReq := r
ParSubReq(r) := FstParReq(r , currReqObj)

FinishedSubReqProcessg =
seqSubReq(currReqObj) = Done(SeqSubReq(currReqObj))

ProceedToNextSubReq =
let o = currReqObj

s = NxtSubReq(SeqSubReq(o), seqSubReq(o),AnswerSet(o)) in
seqSubReq(o) := s
ParSubReq(s) := NxtParReq(s , o,AnswerSet(o))

This iterator pattern foresees that NxtSubReq and NxtParReq may be deter-
mined in terms of the answers accumulated so far for the overall request object,
i. e. taking into account the answers obtained for preceding subrequests.

An Abstract Model for Process Mediation 89

Initialize(AnswerSet(seqSubReq)) = (AnswerSet(seqSubReq) := ∅)

AllAnswersReceived = let seqSubReq = seqSubReq(currReqObj) in
for each req ∈ ToBeAnswered(ParSubReq(seqSubReq))

there is some answ ∈ AnswerSet(seqSubReq)

The definition foresees the possibility that some of the parallel subrequest
messages, which are sent out to providers, may not necessitate an answer
for the VP: A function ToBeAnswered filters them out from the condi-
tion waitingForAnswers to leave the current iteration round.

The answer set of any main request object can be defined as a derived function
of the answer sets of its sequential subrequests:

AnswerSet(reqObj) = Combine({AnswerSet(s) | s ∈ SeqSubReq(reqObj)})

4 Mediator Composition and Equivalence Notions

We show how to combine VirtualProviders and how to define their service
behaviour, which allows one to define rigorous equivalence notions for VPs one
can use a) to formulate algorithms for the discovery and runtime selection of
providers suitable to satisfy given requests, and b) to prove VP runtime proper-
ties of interest.

4.1 Composing VirtualProviders

Instances VP1, . . . ,VPn of VirtualProvider can be configured into a sequence
with a first VirtualProvider VP1 involving a subprovider VP2, which involves
a subprovider VP3, etc. For such a composition it suffices to connect the com-
munication interfaces in the appropriate way (see Fig. 1):

SendReq of VPi with the ReceiveReq of VPi+1, which implies that in
the message passing environment, the types of the sets OutReqMssg of VPi

and InReqMssg of VPi+1 match (via some data mediation).
SendAnsw of VPi+1 with the ReceiveAnsw of VPi , which implies that
in the message passing environment, the types of the sets OutAnswMssg
of VPi+1 and InAnswMssg of VPi match (via some data mediation).

Such a sequential composition allows one to configure mediator schemes (see
Fig. 4) where each element seq1 of a sequential subrequest set SeqSubReq1 of
an initial request can trigger a set ParSubReq(seq1) of parallel subrequests par1,
each of which can trigger a set SeqSubReq2 of further sequential subrequests seq2

of par1, each of which again can trigger a set ParSubReq(seq2) of further parallel
subrequests, etc. This provides the possibility of unfolding arbitrary alternating
seq/par trees. More complex composition schemes can be defined similarly.

4.2 Defining Equivalence Notions for VirtualProviders

To be able to speak about the relation between incoming requests and out-
going answers, one has to relate the elements of the corresponding sets InRe-
qMssg and OutAnswMssg on the provider side (the left hand side in Fig. 1) or

90 M. Altenhofen, E. Börger, and J. Lemcke

Fig. 4. Mediator Scheme

OutReqMssg and InAnswMssg on the requester side of a VirtualProvider
(the right hand side in Fig. 1). In the first case this comes up to unfold the
function originator , which for an outAnswMsg yields the inReqMsg to which
outAnswMsg represents the answer. In fact this information is retrievable by
CompileOutAnswMsg from the currReqObj , if it was recorded there by
CreateNewReqObj(inReqMsg,ReqObj) as part of Initialize.

One can then define the ServiceBehaviour(VP) of a Virtual Provider VP =
VirtualProvider as (based upon) the correspondence between any inReqMsg
and the outAnswMsg related to it by the originator function:

originator(outAnswMsg) = inReqMsg

Two VirtualProviders VP ,VP ′ can be considered equivalent if an equiva-
lence relation ServiceBehaviour(VP) ≡ ServiceBehaviour(VP ′) holds between
their service behaviours. To concretely define such an equivalence involves de-
tailing of the meaning of service ‘requests’ and provided ‘answers’, which comes
up to providing further detail of the abstract VP model in such a way that the
intended ‘service’ features and how they are ‘provided’ by VP become visible in
concrete locations.

On the basis of such definitions one can then formally define different VPs to
be alternatives for a Strategy pattern [12, p. 315] for providing requested services.
For the run-time selection of mediators, any suitable provider interface can be
viewed as one of the implementations (“mediator orchestration”) of a Strategy
pattern assigned to a requester interface. This provides the basis for investigating
questions like: How can one assure that a provider interface matches the Strategy
pattern of the requester? How and starting from which information can one build
automatically the Strategy pattern implementations?

5 Illustration: Virtual Internet Service Provider

One of the use cases in the DIP project (see http://dip.semanticweb.org) deals
with a Virtual Internet Service Provider (VISP). A VISP resells products that
are bundled from offerings of different providers. A typical example for such a
product bundle is an Internet presence including a personal Web server and a
personal e-mail address, both bound to a dedicated, user-specific domain name,

An Abstract Model for Process Mediation 91

e. g. michael-altenhofen.de. Such an Internet presence would require this do-
main name to be registered (at a central registry, e. g. DENIC).

Ideally, the VISP wants to handle domain name registrations in a unified
manner using a fixed interface. We assume now that this interface contains only
one request message RegisterDomain, requiring four input parameters:

DomainName, the name of the new domain that should be registered
DomainHolderName, the name of the domain owner
AdministrativeContactName the name of the domain administrator
TechnicalContactName, the name of the technical contact

On successful registration, the answer will contain four so-called RIPE-Handles,9

uniquely identifying in the RIPE database the four names provided in the request
message. We skip the obvious instantiation of VirtualProvider to formalize
this VISP.

5.1 A Possible VirtualProvider Refinement for RegisterDomain

We now consider the case that the VISP is extending it’s business into a new
country whose domain name registry authority implements a different interface
for registering new domain names, say consisting of four request messages:

RegisterDH (DomainHolderName),
RegisterAC (AdministrativeContactName),
RegisterTC (TechnicalContactName),
RegisterDN (DomainName,DO-RIPE-Handle,AC-RIPE-Handle,
TC-RIPE-Handle).

Fig. 5. VirtualProvider Instance

A VP instance for that scenario is depicted in Fig. 5.10 Within this VP, the
incoming request RegisterDomain is split into a sequence of two subrequests. The
9 RIPE stands for “Réseaux IP Européens”, see http://ripe.net.

10 We use mnemonic abbreviations for the request message and parameter names.

92 M. Altenhofen, E. Börger, and J. Lemcke

first subrequest is further divided into three parallel subrequests, each registering
one of the contacts. Once all answers for these parallel subrequests have been
received, the second sequential subrequest can be performed, whose outgoing
request message is constructed from the answers of the previous subrequest and
the DomainName parameter from the incoming request.

Using the notational convention of appending Obj when referring to the
internal representations of the different requests, we formalize this VP instance
by the following stipulations. We start with refining the Initialize ASM:

Initialize(RegisterDomainObj,RegisterDomain(DN, DHN, ACN, TCN) =
params(RegisterDomainObj) := {DN, DHN, ACN, TCN}
SeqSubReq(RegisterDomainObj) := {RegAccnts,RegDomain}
FstSubReq({RegAccnts,RegDomain}) := RegAccnts
NxtSubReq({RegAccnts,RegDomain},RegAccnts,) := RegDomain
NxtSubReq({RegAccnts,RegDomain},RegDomain,) := nil
FstParReq(RegAccnts,RegisterDomainObj) :=

{RegisterDH(DHN),RegisterAC(ACN),
RegisterTC(TCN)}

NxtParReq(RegDomain,RegisterDomainObj,AS) :=
{RegisterDN(DN, handle(DHRHObj),
handle(ACRHObj), handle(TCRHObj)}

AnswToBeSent(RegisterDomainObj) := true
ToBeAnswered({RegisterDH,RegisterAC,RegisterTC}) :=

{RegisterDH,RegisterAC,RegisterTC}
ToBeAnswered({RegisterDN}) := {RegisterDN}
status(RegisterDomainObj) := started

where
AS = {DHRHObj,ACRHObj,TCRHObj}

handle(X) =

⎧⎪⎪⎨
⎪⎪⎩
DHRH if X = DHRHObj
DNRH if X = DNRHObj
ACRH if X = ACRHObj
TCRH if X = TCRHObj

The derived function Combine computes the union of the two answer sets:

Combine(RegisterDomainObj) =
AnswerSet(RegAccnts) ∪AnswerSet(RegDomain)

Function answer maps an incoming message to its internal representation:

answer(inAnswMsg) =

⎧⎪⎪⎨
⎪⎪⎩

DHRHObj if inAnswMsg = DHRH
DNRHObj if inAnswMsg = DNRH
ACRHObj if inAnswMsg = ACRH
TCRHObj if inAnswMsg = TCRH

The abstract function Formatted is used to transform the parameters into the
format expected by the requester, in our case the VISP:

outAnsw2Msg({DHRHObj,DNRHObj,ACRHObj,TCRHObj}) =
Formatted({DNRH, DHRH, ACRH, TCRH})

An Abstract Model for Process Mediation 93

In [13] we give five other simple examples for refinements of VP to capture the
execution semantics of some workflow patterns discussed in [14].

5.2 Proving Properties for VirtualProviders

Once one has a mathematical model of VPs, this can be used to prove properties
of interest for the model and its refinements to executable code. We illustrate
this by a proof sketch that the two VISPs defined above are equivalent.

The claim follows if we can show the correctness of both VPs with re-
spect to the requested service, namely that any successful initial inReqMsg to
RegisterDomain(DN ,DHN ,ACN ,TCN) will receive an outAnswMsg containing
four RIPE-Handles, one for each of the RegisterDomain(DN ,DHN ,ACN ,TCN)
parameters. For the first VP this is trivial under the assumption
that the (sub)provider provides real RIPE handles as answers to
RegisterDomain(DN ,DHN ,ACN ,TCN) requests. For the refined VP, the claim
can be stated more precisely by saying that the following holds for every suc-
cessful pair of inReqMsg and corresponding outAnswMsg (the correspondence is
formally established by their belonging to one reqObj in VP; successful refers to
the fact that in the example VP we consider only the case of successful registra-
tions, without further interaction between requester and mediator):

Correctness Lemma
For corresponding successful inReqMsg, outAnswMsg holds :
RIPE -Handle(DomainName(inReqMsg)) =

DomainNameRipeHan(outAnswMsg)
RIPE -Handle(DomainHolderName(inReqMsg)) =

DomHolderNameRipeHan(outAnswMsg)
RIPE -Handle(AdminContactName(inReqMsg)) =

AdmContactNameRipeHan(outAnswMsg)
RIPE -Handle(TecContactName(inReqMsg)) =

TecContactNameRipeHan(outAnswMsg)

Here the function RIPE -Handle denotes a real-life RIPE handle, which uniquely
identifies its argument name in the RIPE database. DomainNameRipeHan, etc.
denote projection functions, which extract the corresponding information from
the outAnswMsg = Formatted({DNRH, DHRH, ACRH, TCRH}).
Proof. A simple analysis of VISP runs shows that an incoming request message
RegisterDomain(DN ,DHN ,ACN ,TCN) triggers VP to Send first three sub-
requests RegisterDH (DHN), RegisterAC (ACN), RegisterTC (TCN), which are
(assumed to be) answered by RIPE handles DHRH , ACRH , TCRH . Then VP
Sends the subrequest RegisterDN (DN ,DHRH ,ACRH ,TCRH), which is (as-
sumed to be) answered by a domain name ripe handle DNRH . By definition
of the answer function, the outAnswMsg contains a Formatted version of the
four RIPE handles obtained for the parameters in the inReqMsg, from where
the projection functions extract these RIPE handles.

We want to stress that the proof works only under the assumption that the
subproviders work correctly, i. e. that they provide upon request ripe handles for

94 M. Altenhofen, E. Börger, and J. Lemcke

domain holder names, administrative contact names, technical contact names
and domain names. This is the best one can prove for VP, which is only a medi-
ator and relies for the correctness of the provided service upon the correctness
of its subproviders.

6 Conclusions and Future Work

Our formal, high-level ASM model of process mediation provides a basis for
“communicating and documenting design ideas” and supports “an accurate and
checkable overall understanding” of the controversially discussed topic of process
mediation, a part of the Semantic Web services (SWS) usage process [4,5,6]. ASM
models can help to provide explicit, exact and formal specifications with an accu-
rate meaning of all underlying terms, needed to produce a consistent view of the
general SWS usage process. Furthermore, the ASM method allows to “isolate
the hard part of a system” [9, p. 14-15] and thus to concentrate on the essential
parts for refinement, targeted at bridging controversial approaches, like dynamic
composition vs. static composition, through explicitly showing their differences
by deriving them as different refinements of the same abstractions. We look for
more involved practical instantiations of VirtualProvider than the simple one
illustrated in Sect. 5. Another direction of research concerns replacing the simple
communication patterns used by VP by more complex ones. ReceiveReq and
SendAnsw are identified in [15] as basic bilateral service interaction patterns,
namely as mono-agent ASM modules Receive and Send; The FeedSendReq
submachine together with SendReq in Process realize an instance of the basic
multilateral mono-agent service interaction pattern called OneToManySend
in [15], whereas the execution of ReceiveAnsw in IterateSubReqProcessg
until AllAnswersReceived is an instance of the basic multilateral mono-agent
OneFromManyReceive pattern from [15]. One can refine VP to concrete busi-
ness process applications by enriching the communication flow structure built
from basic service interaction patterns as analysed in [15].

Besides the mediation and composition topics, VP has proven to be useful as
a basis for formal specifications of distributed semantic discovery frameworks.
As shown in [16], only minor changes on the VP structure are required in or-
der to specify a formal, high-level ASM model of distributed semantic discovery
services. The different distribution and semantic matchmaking strategies, de-
pending on the technology used for an implementation of a discovery service,
can be derived as different refinements of the same abstractions.

References

1. Stumptner, M.: Configuring web services. In: Proceedings of the Configuration
Workshop at the 16th European Conference on Artificial Intelligence (ECAI).
(2004) 10–1/10–6

2. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Planning and
monitoring web service composition. In: AIMSA. (2004) 106–115

An Abstract Model for Process Mediation 95

3. Lee, Y., Patel, C., Chun, S.A., Geller, J.: Compositional knowledge management for
medical services on semantic web. In: WWW (Alternate Track Papers & Posters).
(2004) 498–499

4. Bornhövd, C., Buchmann, A.: Semantically meaningful data exchange in loosely
coupled environments. In: Proceedings of the International Conference on Infor-
mation Systems Analysis and Synthesis (ISAS). (2000)

5. Fensel, D., Bussler, C.: The web service modeling framework wsmf. Electronic
Commerce Research and Applications 1 (2002) 113–137

6. Pires, P.F., Benevides, M.R.F., Mattoso, M.: Building reliable web services com-
positions. In: Web, Web-Services, and Database Systems. (2002) 59–72

7. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14 (2003) 5–51

8. Barros, A., Dumas, M., ter Hofstede, A.: Service interaction patterns: Towards a
reference framework for service-based business process interconnection. Technical
report, Faculty of IT, Queensland University of Technology (2005)

9. Börger, E., Stärk, R.F.: Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer (2003)

10. Börger, E.: The ASM refinement method. Formal Aspects of Computing 15 (2003)
237–257

11. Barros, A., Dumas, M., Oaks, P.: A critical overview of the web services choreog-
raphy description language (WS-CDL). White paper (2005)

12. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1995)

13. Altenhofen, M., Börger, E., Lemcke, J.: An execution semantics for mediation pat-
terns. In: Proc. of 2nd WSMO Implementation Workshop WIW’2005, Innsbruck,
Austria, CEUR Workshop Proceedings (2005) ISSN 1613-0073, online CEUR-
WS.org/Vol-134/lemcke-wiw05.pdf.

14. Cimpian, E., Mocan, A.: D13.7 v0.1 Process mediation in WSMX – WSMX working
draft (2005) http://www.wsmo.org/TR/d13/d13.7/v0.1/.

15. Barros, A., Börger., E.: A compositional framework for service interaction pat-
terns and communication flows. In: Proc. 7th International Conference on Formal
Engineering Methods (ICFEM). LNCS, Springer (2005)

16. Friesen, A.: A high-level specification for semantic web service discovery framework.
In preparation (2005)

How Symbolic Animation Can Help Designing

an Efficient Formal Model

Fabrice Bouquet, Frédéric Dadeau, and Bruno Legeard

Laboratoire d’Informatique (LIFC),
Université de Franche-Comté, CNRS - INRIA,

16, route de Gray - 25030 Besançon cedex, France
{bouquet, dadeau, legeard}@lifc.univ-fcomte.fr

Abstract. This paper presents a non-conventional application of sym-
bolic animation. We propose to assist the modeller in building an effi-
cient formal model, by automatically detecting potential weaknesses or
imprecisions in the model. We propose to detect inconsistencies within
the formal models written with pre- and postconditions, and to point
out unusual model properties, such as a weak invariant or unreachable
effects. Our approach is based on constraint solving technologies to per-
form the animation and to detect the various problems.

Keywords: Symbolic animation, properties detection, weak invariant,
strong preconditions, unreachable effects, constraints.

1 Introduction

The use of formal models is widely spread in the software design process. A
large variety of formal languages is available for formalizing specifications. Each
notation is most of the time well tool-supported, providing proof or model-
checking techniques to verify the model, to ensure that no invariants are violated
and so on. Apart from this verification process, there exists a need to build the
most complete model possible, which can not be done using verification. To
illustrate this statement, it is obvious to see that a model can be proved with
respect to its invariant if the latter contains only weak properties.

The validation phase consists in checking the conformance of the model w.r.t.
initial requirements usually written in natural language. One of the most impor-
tant techniques for validating a model is to animate it. Unlike many kinds of an-
imation, which require human intervention to select which operation to activate
and which input values to provide, we have chosen to use symbolic animation,
relying on a constraint solver, to perform the animation. The principle of sym-
bolic animation is to gather the system states within a constraint system, and
to consider the execution of an operation as solving a Constraint Satisfaction
Problem (CSP). As a consequence, the user no longer has to provide input values
when invoking each operation; inputs are constrained by their definition domain
and the operation’s preconditions.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 96–110, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

How Symbolic Animation Can Help Designing an Efficient Formal Model 97

In this paper, we propose a way to assist the modeller when writing a formal
model. We focus on models expressed using a pre- and postcondition seman-
tics, and we illustrate this approach using B abstract machines [1]. We perform
symbolic animation with customized algorithms to point out potential problems
that may occur in the model, and help the modeller in designing an efficient
model. By “efficient” we mean that we want the model not only to respect its
invariant, but to contain no unintended behaviour such as deadlocks, weak in-
variant, unactivable operations, etc. This is different from the model checking
point of view, since we propose to assist the modeller in the validation of the
formal model, by looking for specific imprecisions. Moreover, this process does
not require any human assistance and has therefore been fully automated, with
interesting results. In addition, this approach is complementary to the model
proof, since proof can lead to undecidability or non-termination problems. Our
proposal is to point out “warnings”, resulting of model’s imprecisions. The mod-
eller is then free to consider them or not, since the problems which have raised
warnings may be intended or not.

The paper is organized as follows. Section 2 gives an overview of the formal
notation. It also introduces a running example. Section 3 presents the symbolic
animation and the way it realized within our framework. Section 4 gives the
formal definitions that will be used in Section 5 to describe the kind of properties
we propose to detect. Section 6 presents the algorithms and techniques employed.
Finally, Section 7 presents the related work, and Section 8 concludes.

2 Formal Modeling

We use the B abstract machine notation [1], as a formal specification language
for our study. This section introduces the notation and an example which will
be used throughout the remainder of the paper.

2.1 The B Abstract Machine Notation

The B Abstract Machine Notation (AMN) has been introduced by J.-R. Abrial.
It consists of a language for expressing models as “machines”, which are the
highest level of abstraction existing within the B method. This notation makes
it possible to express abstract data types, such as sets, and provides a wide
syntax for expressing predicates with first order logic enriched by set and rela-
tional/functional symbols.

The AMN describes a system in terms of several clauses, each one represent-
ing a specific part of the system, expressed either by predicates, for the static
part (constants, assertions, invariant, etc.), or by generalized substitutions for
the dynamic part (variables, initialization and operations). The operational se-
mantics is given by a Labeled Transition System (LTS), where the transition
between the states are given by the operations.

A machine is proved if the invariant properties are established by the initial-
ization and preserved through the execution of an operation.

98 F. Bouquet, F. Dadeau, and B. Legeard

Fig. 1. The B machine of the process Scheduler

Definition 1 (B Machine Proof Obligations). Let Inv be the invariant
predicate and Init be the initialization substitution, the following predicate has
to be proved, to ensure that the initialization establishes the invariant:

[Init]Inv (1)

In order to prove that the preservation of the invariant by the different operations,
the following predicate has to hold for each operation Op of the machine:

Inv ⇒ [Op]Inv (2)

Remark: In these equations, we denote by [S]P the application of the general-
ized substitution S to the predicate P , as described in [1].

2.2 Running Example

Figure 1 presents the example which will be used throughout the remainder of
the paper. This example describes a simple process scheduler [4], and their access
to a shared resource. Each process is identified by a Process Identifier (PID).
Each process may be either active, when it accesses the resource, ready, when it
is asking for the resource but another process is already active, or waiting, when
the process is done with the resource. The set of process identifiers is a constant,
with a given value.

The model presents four operations. The first one, new, creates a new process
from the set of available processes, and puts it in the waiting state. On the other

How Symbolic Animation Can Help Designing an Efficient Formal Model 99

hand, the del operation deletes a waiting process. The ready operation moves a
waiting process to the active state, if no other process is currently active, or to
the ready state otherwise. Finally, the swap operation makes the active process
return to the waiting state, and a non-deterministic choice is made among the
ready processes to select the new active process. At the initial state, there are
no processes in the system.

3 Symbolic Animation

The symbolic animation is performed using an underlying constraint solver which
makes it possible to gather the system states within a constraint store. Express-
ing the operations in terms of before-after predicates leads to considering the
execution of an operation as a Constraint Satisfaction Problem between vari-
ables from both before and after states. In order to express the operations as
before-after predicates, we translate the generalized B substitutions according to
[1] (p. 262) into predicates. Moreover, we decompose these predicates into effect
predicates (called effects) which can be considered as a Disjunctive Normal Form
of the before-after predicates, onto which factorizing and re-ordering have been
applied, named the EDNF and described in [3].

Definition 2 (Effects). An effect is a subpart of an operation. It is denoted
by effectN (Op), where N is the number of the effect and Op is the name of the
operation.

op ∈ O ⇒ op = effect1(op) [] . . . [] effectN (op) (3)

We express with the [] operator the choice between different effects.

Throughout the remainder of the paper, we denote by Eff the set of effects
that can be extracted from all the operations of the considered machine.

Extracting an Effect. Effects are extracted from the EDNF of a before-after
predicate representing an operation. The variable assignments are expressed by
equalities between the primed version of the variable –representing the after-
value– and its new value. We introduce a choice operator [] to symbolize a
choice-point within the predicate.

Example 1 (Computation of the effects from example’s operation). The effects
extracted from the different operations of the example are given in Fig. 2. In
this figure, the skip operation states that the unmodified variables remain at the
same value. For space reasons, the state variables active, ready and waiting
are represented by their first letter (a, r , w respectively).

Note that the if...then...else...end structure is expressed as a choice-point
between two mutually exclusive predicates, and the any...where...then...end
structure is expressed as an existential quantification.

100 F. Bouquet, F. Dadeau, and B. Legeard

Fig. 2. Effects extracted from the operations of the Scheduler example

Operation Effect

new pp ∈ PID ∧ pp �∈ (a ∪ r ∪ w) ∧ w ′ = w ∪ {pp} ∧ skip

del pp ∈ w ∧ w ′ = w\{pp} ∧ skip

ready pp ∈ w ∧ w ′ = w \ {pp} ∧ a = ∅ ∧ a ′ = a ∪ {pp} ∧ skip
pp ∈ w ∧ w ′ = w \ {pp} ∧ a �= ∅ ∧ r ′ = r ∪ {pp} ∧ skip

swap pp ∈ a ∧ w ′ = w ∪ {pp} ∧ r = ∅ ∧ a = ∅ ∧ skip
pp ∈ a ∧ w ′ = w ∪ {pp} ∧ r �= ∅ ∧
(∃ pp1.pp1 ∈ r ∧ a ′ = {pp1} ∧ r ′ = r\{pp1}) ∧ skip

4 Preliminary Definitions

This section gives the preliminary definitions that will be used through the re-
mainder of the paper.

Definition 3 (System States). Let V be the set of system variables, and DV
be the set of variable domains of V. A system state is an instantiation of the
state variables according to their domain. The set of system states is denoted by
S, and we have:

S = V → DV (4)

The state space is built on the Cartesian product of the state variables’
domains. Notice that the variable’s domains have to be known and finite.

Example 2. In our example S is defined by:

S = { (active = X , ready = Y ,waiting = Z) |
(X ,Y ,Z) ∈ P(PID)× P(PID)× P(PID) }

4.1 Systems Transitions

A transition between two system states is defined by the activation of an effect.
The effects are extracted from the operations. An operation is defined by a 4-
tuple 〈O ,L,Pre,Post〉, where O is the operation name, L is the set of local
variables, Pre is the precondition of the operation, and Post is its postcondition,
expressed as a before-after predicate.

In the remainder of the paper, we will denote by Pre(T), the precondition
component of the transition T (either an effect or an operation). By extension, we
will also denote by Pre(T)(s) the evaluation of the precondition of the transition
T within the system state defined by s .

Definition 4 (Effect Activation). Let s1 and s2 be two system states from S,
let eff be an effect from the set of effects Eff . The activation of the effect eff
between s1 and s2 is possible if and only if the effect’s predicates are satisfiable.

s1
eff−→ s2 ⇔ Pre(eff)(s1) ∧ Post(eff)(s1, s2) holds (5)

How Symbolic Animation Can Help Designing an Efficient Formal Model 101

An operation is called “executable” if and only if one of its effects can be
activated from the considered state.

Definition 5 (Reachable States). A reachable state is a system state that
can be reached from one of the initial states and through a sequence of effect
activations. We denote by R(s) the fact that s is a reachable state, and we have:

∀ s ∈ S . Init(s)⇒R(s) (6)

∀ s1, s2 ∈ S . (R(s1) ∧ ∃ eff ∈ Eff / s1
eff→ s2) ⇒R(s2) (7)

We propose to replace the reachable states, which may only be known by
computing the complete reachability graph, with the virtually reachable states.

Definition 6 (Virtually Reachable States). A virtually reachable state is a
system state that can be reached by activating an effect from any states of the
system. We denote by VR(s) the fact that s is virtually reachable, and we have:

VR(s)⇔ ∃ s1 ∈ S / (∃ eff ∈ Eff /s1
eff→ s) (8)

4.2 Using Symbolic Animation

The use of symbolic animation induces the gathering of several states within a
single constrained state. As a consequence, and considering a constraint store C,
the concrete states associated to C, denoted by SC is defined by:

SC = {s ∈ S | C(s)} (9)

where C(s) means that the variables in state s satisfy the constraints of C.
Thus, activating an effect means moving from one constraint system to an-

other, which is the addition of the effect predicate to the original constraint
system. The consistency of the resulting constraint system determines whether
the effect is activable or not. The activation of effects from a constrained envi-
ronment is defined by:

SC1

effi(op)−→ SC2 (10)

Example 3 (Illustration of the activation of an effect). Consider the example in
Fig. 1, the activation of the effect from the new operation from a constraint
system SC1 = {(active = A, ready = R,waiting = W) | P1(A,R,W)} leads to a
constraint system SC2 defined by:

SC2 = {(active = A′, ready = R′,waiting = W ′) |
(P1(A,R,W) ∧ pp ∈ PID ∧ pp �∈ (A ∪ R ∪W)
W ′ = W ∪ {pp} ∧ A′ = A ∧ R′ = R)}

Symbolic animation is an efficient and powerful means to perform animation,
by gathering many “concrete” states under the scope of one constraint system.
As a consequence, this reduces the reachability graph size and leaves the user
free to instantiate or not the parameters of the operation.

102 F. Bouquet, F. Dadeau, and B. Legeard

4.3 System States and Invariant

The system states are given by the typing information. In the formal model this
information is given by the data types, or by a specific part of the invariant.

We propose to detect properties w.r.t. the set of states InvariantSystem states
respecting the invariant. We call invariant the properties,
written by the modeller, that the system has to preserve
at each state of the system. The invariant is presented as
a set of states, subset of the system states, as illustrated
hereby.

Example 4 (Illustration of the Invariant State Space). Consider the example
given in Fig 1. The invariant state space, denoted by Invxmpl , is given by:

Invxmpl = {(active = A, ready = R,waiting = W) |
(A ⊆ {p1, p2, p3, p4, p5} ∧ R ⊆ {p1, p2, p3, p4, p5} ∧
W ⊆ {p1, p2, p3, p4, p5} ∧ A ∩ R = ∅ ∧R ∩W = ∅ ∧
A ∩W = ∅ ∧ card(A) ≤ 1)}

(11)

5 Characterization of the Properties to Detect

This section presents the different properties we want to detect using the sym-
bolic animation. We suppose that the model has been proved (automatically
or interactively), i.e., that the invariant is established by the initialization and
preserved by the execution of the different operations.

Some of the properties that are presented here can be checked statically,
other may only be checked dynamically, by activating successive effects of the
system operations.

5.1 Statically Detectable Properties

We describe here the static properties we intend to detect. These properties will
concern the system states as well as the system transitions.

Definition 7 (Deadlock State). A deadlock state is defined as a state from
which no effect precondition holds.

∃ s ∈ S ∧ ∀ eff ∈ Eff . ¬Pre(eff)(s) (12)

The deadlock property is directly inspired from the model-checking tech-
niques. The consequence of reaching a deadlock state is that the system can not
evolve, and remains in this given state.

Definition 8 (Light Invariant Weakness). An invariant is said to be lightly
weak if and only if there exists states that satisfy the invariant without being
virtually reachable.

∃ s ∈ S/Inv(s) ∧ ¬VR(s) (13)

How Symbolic Animation Can Help Designing an Efficient Formal Model 103

If the model is proved, then we have the guarantee that the reachable states
satisfy the invariant. Reasoning on the state spaces, the set of reachable states
is included within the set of states respecting the invariant. Nevertheless, if the
invariant is (too) weak, then there may exist a large state space that satisfies
the invariant without being reachable, as displayed hereby. The objective is to
help the modeller in refining the model’s invariant so that the reachable system
states and the invariant are the tightest possible.

Thus, without performing any animation, it is pos-Reachable statesSystem states

Invariant states

sible to have a first idea of the presence of a weak
invariant. This statement has to be refined later us-
ing the symbolic animation, to compute on-the-fly the
unreachable states.

Definition 9 (Effect Inconsistency). An effect eff is said to be inconsistent
if and only if there exists no state from which the effect can be activated.

∀ s1 ∈ S . (¬∃ s2 ∈ S/s1
eff→ s2) (14)

We can notice that inconsistent effects are easily discarded by a proof engine,
since they directly lead the proof obligation to be obviously true. Nevertheless,
such a mistake, made by the modeller, may have important consequences, since
the model is “proved” for wrong reasons!

Definition 10 (General Effect Activability). An effect eff is said to be gen-
erally activable if and only if there exists a state in which its preconditions are
true.

∃ s ∈ S/Pre(eff)(s) (15)

The general effect activability property gives the modeller a first indication
on the executability of its operation. If no effect from a given operation can be
activated, then we can conclude that the operation can never be executed.

Definition 11 (Weak Preconditions). The precondition of the operation is
said to be weak if and only if the set of system states from which the opera-
tion effects can be activated is a strict subset of the system states satisfying the
preconditions of the considered operation.

Weak preconditions detection is similar to comparing the weakest precondi-
tion of the operation –computed by wp-calculus– and the actual precondition of
the operation. It helps detecting the state variables values, but also the input
values, which satisfy the preconditions, but are “filtered” for the execution of
the operation itself, and so, are obsolete.

Determining potential error statically is interesting, but not really sufficient
in the actual process. Therefore, we propose to refine our detections to put them
in a dynamic context, in order to get more accurate results.

104 F. Bouquet, F. Dadeau, and B. Legeard

5.2 Dynamically Detectable Properties

We describe here the properties we intend to detect using an automatically-
driven symbolic animation engine. The properties described here are already
checkable from the static point of view, but they bring more accurate results
when checked dynamically.

Definition 12 (Effect Activability). An effect is said to be activable if and
only if there exists a reachable state in which the precondition of the effect is
true.

∃ s ∈ S / R(s) ∧ Pre(eff)(s) (16)

where eff is the considered effect. By extension, the non-activability of an effect
is detected if and only if there is no reachable state that satisfy the preconditions
of the effect.

∀ s ∈ S .R(s) ⇒ ¬Pre(eff)(s) (17)

The detection of never activated effects leads –in practice– to pointing out
potentially too strong preconditions, that may be unintended by the modeller.
Since effects can be activable in a general context, an animation may detect that,
for a given search-depth, certain effect may never be activated.

Definition 13 (Weak Invariant). A weak invariant is detected when there
exists unreachable system states that satisfy the invariant.

∃ s ∈ S / Inv(s) ∧ ¬R(s) (18)

The invariant weakness detection refines the light invariant weakness detec-
tion in the sense that it focuses on the actual unreachable states that satisfy the
invariant.

Definition 14 (Reachable Deadlock). A reachable deadlock is detected when
there exists a reachable system state that does not satisfy any effect precondition.

∃ s ∈ S / (R(s) ∧ ∀ eff ∈ Eff . ¬Pre(eff)(s)) (19)

The general deadlock detection, working on the whole system state space, is
refined by the dynamic detection of deadlocks. If a deadlock is detected by the
previous method, the dynamic detection is in charge of checking whether or not
the deadlock states can be reached from the initial state.

After having characterized the properties we propose to check, we present how
these properties can be detected using CSP-solving and symbolic animation.

6 Processing the Detections

Our main contribution on these problems is the use of symbolic animation to pro-
cess these detections. The detections are processed using the BZ-Testing-Tools
[2] technology, which provides a symbolic animation engine and customized con-
straint solvers. After a short discussion on our process relevance, this section
presents the verification principles used for each detection, based on the defini-
tions given in the previous section.

How Symbolic Animation Can Help Designing an Efficient Formal Model 105

6.1 Preliminary Discussion

Since the reachability problem is undecidable, we have chosen to bound our
researches to a certain depth, which may guarantee the termination of our algo-
rithms. Usually, when looking for errors, such as breaking invariants and so on,
we can not ensure that if no error is found, then there actually is are errors. On
the other hand, if an error is found, we guarantee its existence, as explained in
[8]. In this particular case of potential error detections, it is the opposite.

When a problem is found, because of the search-depth limitation there is
no guarantee that this problem may still occur with a deeper search. On the
contrary, when no errors are found (e.g. all effects are activable) we have this
guarantee. We believe this is a real assistance to the modeller, despite the depth
limitation, since it can (i) improve the quality of the model, (ii) guarantee that
certain effects are reachable and consistent (which allows the modeller to focus on
the remaining effects), and (iii) help to explain why automated test generation
tools can not produce test cases for one particular operation/effect.

6.2 Processing Static Detections

Static detections are performed from the largest possible set of states. This is
represented by the typing invariant or the data typing. In practice, this set of
states is expressed by a constraint system, which only assigns the domains of
the state variables. On the example, it is given by the Sxmpl constraint system.
Most of the properties detection is then considered as a constraint satisfaction
problem (CSP).

Detecting Deadlocks. Deadlocks can be detected by checking the non-
satisfiability of all the effects preconditions within the constraint system rep-
resenting the state space to consider. Nevertheless, we can refine this process by
considering the virtually reachable state space VR. In this case, each effect is
activated from the state space constraint system, creating a new constraint sys-
tem which represents a subset of the virtually reachable states for the considered
effect. We can then perform the same verification. Restricted to a smaller set of
states, the results will be more accurate.

Let SCVR = {X | VR(X)} be the constraint system representing the virtually
reachable state space. The goal is then to find the values of the state variables
X that satisfy the constraint VR(X) ∧ ∀ eff ∈ Eff .¬Pre(eff). The solutions to
this CSP presents a counter-example representing a concrete deadlock state.

Detecting Light Invariant Weakness. A light invariant weakness is detected
by checking the satisfiability of the constraint systems representing the invariant
state space, SCinv = {X | Inv(X)} and and the refutation of the constraint
system representing the virtually reachable state space SCVR = {X | VR(X)}.

The goal is to find the values of the state variables X that satisfy the con-
straint Inv(X)∧¬VR(X). The solutions to this CSP presents a counter-example
illustrating the weakness of the invariant.

106 F. Bouquet, F. Dadeau, and B. Legeard

Detecting Effect Inconsistencies. Effect inconsistencies are deduced by re-
ducing the effect predicate within the constraint system representing the state
space. If the resulting store is inconsistent, then the effect is also inconsistent.

Example 5. Considering the Scheduler example in Fig. 1 and its state space
defined by Sxmpl described in example 4. By modifying the new operation, we
may have:

new(pp) =̂ PRE pp ∈ PID ∧ pp �∈ active ∧ pp �∈ ready ∧ pp �∈ waiting
THEN

IF (pp ∈ waiting) THEN
skip

ELSE
waiting := waiting ∪ {pp}

END
END;

which is not a mistake, but this may produce the following inconsistent effect
predicate, if we consider the if...then branch:

pp ∈ PID ∧ pp �∈ a ∧ pp �∈ r ∧ pp �∈ w ∧ pp ∈ w ∧w ′ = w ∧ a′ = a ∧ r ′ = r (20)

We detect an obvious inconsistency between pp �∈ waiting ∧ pp ∈ waiting . As a
consequence, the skip statement located in the if...then branch is unreachable.

This kind of errors is classic, in models as well as in programs, especially
when encapsulating if...then...else structures. Notice that this kind of error
can not be detected by the proof, since it simplifies the proof obligation formula
which becomes obviously true.

In case of parallel composition of substitutions, such as in B, the combination
of parallel predicates frequently creates inconsistent effects. Reporting them is
can be seen as insignificant, since it may represent “false negatives”, but it can
also be seen as an indication that the operation was not written in the most
efficient way, introducing contradictory predicates, as in the previous example.

Detecting General Effect Inactivability. Effects can be considered as inac-
tivable if the precondition of the effect can never be satisfied in any state of the
system. Once again, if the system’s invariant preservation is proved then we can
reason from the invariant state space.

We process the detection by reducing the effect preconditions within the
constraint system representing either the complete state space, or the invariant
state space.

Example 6 (Detecting an Inactivable Effect). Consider the example given in Fig.
1. By modifying the precondition of the del operation, we may have:

del(pp) =̂ PRE pp ∈ waiting ∧ pp ∈ ready THEN
waiting := waiting \ {pp}

END;

By trying to reduce this predicate within the constraint system representing the
invariant state space, we get an inconsistency between pp ∈ waiting ∧pp ∈ ready
(in the operation) and waiting ∩ ready = ∅ (in the invariant).

How Symbolic Animation Can Help Designing an Efficient Formal Model 107

This kind of error may also be found in multiple if...then...else...end struc-
tures. Once again, proof is unable to detect this kind of mistake, for the same
reasons.

Detecting Weak Preconditions. Weak preconditions are detected by reduc-
ing the precondition of the operation within the constraint system SC represent-
ing the state space S. In parallel, we activate all the possible effects from the SC

constraint system. As a consequence, new constraint systems, denoted by SC1 ,
. . ., SCN and representing the new states after the activation of N effects, ex-
tracted from the considered operation, are created. In these constraint systems,
the values of the variables before and the inputs are still available, and can then
be extracted. By refuting the constraints in SC with regard to constraints stored
in the SCi , we are able to exhibit values for inputs and state variables which are
allowed by the precondition of the operation, but are useless for the operation.
This indicates a weak precondition.

Example 7. Consider the following B operation, admitting one integer parame-
ter:

weak_pre(ii) =̂ PRE ii ∈ -100..100 THEN IF (ii > 0) THEN xx := ii END END;

The constraint system associated with the precondition is
SCx = {xx = X , ii = I | X ∈ dom(xx) ∧ I ∈ −100..100}

The constraint system resulting from the activation of the effect of weak_pre is
SCeff

= {xx ′ = X , ii = I | X = I ∧ I ∈ 0..100}
We can then deduce a range of values for the parameter ii that are not used:

ii ∈ −100..− 1.

6.3 Processing Detections Dynamically

We describe here the detections that are performed dynamically, i.e., by using a
symbolic animation mechanism. The basic idea is to perform a depth-first search
algorithm, and to perform verifications at each step of the animation. Operation
parameters are left unknown, and their value is constrained by the precondition
of the operation. Only the activable effects for a given state are considered. All
the algorithms work on this principle. The animation ends when the maximal
depth is reached.

The complexity of all these detection algorithms is, in the worst case, nd

where n is the number of effects, and d is the user-defined depth.

Detecting Never Activated Effects. The idea of this algorithm is to manage
a list of unactivated effects, initialized by all the effects extracted from all the
specification. Each time an effect is activated, it is removed from the list. When
the computation is over, the remaining list gives the never activated effects for
the specified depth.

Example 8 (Illustrating the Detection of a Never Activated Effect). Consider the
example given in figure 1. Suppose we add an operation that is consistent, even
w.r.t. the invariant, but which can never be activated.

108 F. Bouquet, F. Dadeau, and B. Legeard

test op(pp) =̂ PRE pp ∈ ready ∧ active = ∅ THEN
ready := ready \ {pp} ‖ active := {pp}

END;

With a depth of 5, the effect extracted from this operation can never be
activated. So, a warning is raised.

Detecting a Reachable Deadlock. At each step of the execution, we perform
the same verification as for the general deadlock detection. Thus, we refine this
latter by considering the reachable deadlocks, for a given depth. Once the dead-
lock is detected, a labeling provides a reachable execution sequence that leads
to this deadlock.

Example 9 (Illustrating a Deadlock Detection). By adding the following opera-
tion to the example in Fig. 1

create_deadlock(pp) =̂ PRE pp ∈ waiting ∧ ready = ∅ ∧ active = ∅ THEN
ready := ready ∪ {pp}

END;

Once the after-state of this operation/effect is reached, no operation can be
executed. The detection of this deadlock is performed within a few seconds, with
only a depth of 2, and a counter-example is generated, providing a path to this
state: Init −→ new(p1) −→ create_deadlock(p1)

Detecting a Weak Invariant. The detection of a weak invariant is based on
the parallel management of a constraint system, denoted by Sunrea , dedicated
to the representation of the unreached states. At each step of the animation,
the new resulting constraints are refuted in the Sunrea constraint system, to
symbolize that the unreachable states do not contain the current state.

Once the Sunrea constraint system becomes inconsistent, we can be sure that
all the invariant states are reachable and that the invariant is not weak. Oth-
erwise, a labeling of the constraint system provides a counter-example which
illustrates the invariant weakness.

Example 10 (Illustration of Weak Invariant Detection). On the example in Fig.
1, a counter-example is generated, that indicates a weak invariant, with the
search-depth of 5: active = ∅ ∧ ready = {p1} ∧ waiting = ∅.

By analyzing this counter-example, and by restoring its original meaning, it
states that there may exist processes that are ready –asking for the resource–
whereas there are no processes currently using the resource. This is a complete
nonsense w.r.t. the initial requirements, since we easily imagine that if a process
is asking for a free resource, then it should obviously have it. These cases can be
avoided by strengthening the invariant with: active = ∅ ⇒ ready = ∅.

7 Related Work

Among the symbolic animators, there exists ProB [6]. ProB is a model-checker
for B specifications. It also relies on a constraint solver, and performs a variety

How Symbolic Animation Can Help Designing an Efficient Formal Model 109

of detections on the models, such as unreachable operations, non-deterministic
operations, deadlocks, non-resetable states, and so on. The main difference with
our approach is that the constraints in ProB are only used to step through
a transition. When the transition has been executed, a labeling is performed
to extract all the concrete states and go on with the animation. This allows to
perform model-checking, but the major restriction is the combinatorial explosion
which restrains ProB to be used for small systems. On the contrary, by focusing
only on the constraints, without performing any labeling during the animation, it
is certainly impossible to perform model-checking, but the approach is perfectly
scalable since the BZ-Testing-Tools animation engine has been designed and
optimized for large-scale specifications. Moreover, we propose new kinds of model
properties, that could be adapted within the ProB model-checking system. In
addition, we do not restrict to B machines, since our internal format can be used
to express a variety of before-after semantics notations, such as Z, UML/OCL,
JML [5] or Statecharts.

Another close work is done by Miller and Strooper in [8]. In this context,
they use test-graphs to exhibit errors similar to the ones described here, within
Z models. Test-graphs partially model the states and the transitions of a speci-
fication being tested, representing states by nodes and transitions by arcs. The
main difficulty in this work is to derive a relevant test-graph. In our approach,
we replace test-graphs by the use of constraints to represent system states and
their transitions. This considerably simplifies the error detection process, and
more accurate results can be obtained.

Our approach seems also close to Symbolic Model Checking (SMC), presented
by Clarke et al. [9]. If the principle is similar, the purpose is different since model
checking aims at checking properties and not detecting potential weaknesses in
the model. Moreover, model checking needs the user to intervene to formalize
the (temporal) properties he wants to check. On the contrary, our approach is
fully automated and does not require additional effort from the modeller.

8 Conclusion

We have presented in this paper a way to use symbolic animation to detect
potential errors in a formal model written by a modeller. We have implemented
it in a specific module, which uses the symbolic animation engine of the BZ-
Testing-Tools framework. In this context, we are able to deal with all the input
languages of this framework to perform our detection. We have shown in this
paper the application to the B abstract machine notation, and we have illustrated
this approach on an example. First experimentats on mutual exclusion protocols
gave us an interesting feedback.

We believe that detecting potential model weaknesses is important because it
is an important help for the modeller to write an accurate model and properties,
especially the invariant. This approach is complementary to the proof verification
step, since a weak invariant (e.g. containing only typing information) can be
proved without any difficulties, but this success is not really sufficient, and does

110 F. Bouquet, F. Dadeau, and B. Legeard

not guarantee that the model actually does fit the initial requirements. The
importance of having strongest possible invariant is growing especially with the
new modeling languages which consists of assertions within the implementation,
such as JML [5] or SPEC# [7]. When performing runtime assertion checking,
we expect more possible errors to be found by this testing phase.

For the future, we plan to try our approach on industrial cases. This is the
current challenge for this kind of verification. Therefore, we will have to filter the
possible “false negatives”, so that our results are the most relevant possible. We
would also like to apply these detections to other modeling languages. This step
should be straightforward, since the animation engine of the BZ-Testing-Tools
technology works with an intermediate format, into which all the supported
languages are translated.

References

1. J.-R. Abrial. The B-book: assigning programs to meanings. Cambridge University
Press, 1996.

2. F. Ambert, F. Bouquet, S. Chemin, S. Guenaud, B. Legeard, F. Peureux, N. Vacelet,
and M. Utting. BZ-TT: A tool-set for test generation from Z and B using con-
traint logic programming. In Robert Hierons and Thierry Jerron, editors, Formal
Approaches to Testing of Software, FATES 2002 workshop of CONCUR’02, pages
105–120. INRIA Report, August 2002.

3. F. Bouquet, B. Legeard, N. Vacelet, and M. Utting. Faster Analysis of Formal
Specifications. In Proceedings of the 6th International Conference on Formal Engi-
neering Methods (ICFEM’04), LNCS, pages 239–258, Seattle, USA, November 2004.
Springer-Verlag.

4. J. Dick and A. Faivre. Automating the generation and sequencing of test cases
from model-based specifications. In Proceedings of the International Conference on
Formal Methods Europe (FME’93), volume 670 of LNCS, pages 268–284. Springer-
Verlag, April 1993.

5. G.T. Leavens, A.L. Baker, and C. Ruby. JML: a Java Modeling Language. In
Formal Underpinnings of Java Workshop (at OOPSLA ’98), October 1998.

6. M. Leuschel and M. Butler. ProB: A model checker for B. In Keijiro Araki, Stefania
Gnesi, and Dino Mandrioli, editors, FME 2003: Formal Methods, LNCS 2805, pages
855–874. Springer-Verlag, 2003.

7. K.R.M. Leino M. Barnett and W. Schulte. The Spec# Programming System:
An Overview. In Proceedings of the International Workshop on Construction and
Analysis of Safe, Secure and Interoperable Smart devices (CASSIS’04), volume 3362
of LNCS, pages 49–69, Marseille, France, March 2004. Springer-Verlag.

8. Tim Miller and Paul A. Strooper. Animation can show only the presence of errors,
never their absence. In Australian Software Engineering Conference, pages 76–88,
2001.

9. P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagrams
and SAT procedures for efficient symbolic model checking. In Proc. Computer Aided
Verification (CAV), volume 1855 of Lecture Notes in Computer Science, Chicago,
U.S.A., July 2000. Springer-Verlag.

A Theory of Secure Control Flow

Mart́ın Abadi1, Mihai Budiu2, Úlfar Erlingsson2, and Jay Ligatti3

1 Computer Science Department, University of California, Santa Cruz
2 Microsoft Research, Silicon Valley

3 Computer Science Department, Princeton University

Abstract. Control-Flow Integrity (CFI) means that the execution of a
program dynamically follows only certain paths, in accordance with a
static policy. CFI can prevent attacks that, by exploiting buffer over-
flows and other vulnerabilities, attempt to control program behavior.
This paper develops the basic theory that underlies two practical tech-
niques for CFI enforcement, with precise formulations of hypotheses and
guarantees.

1 Introduction

Many modern attacks against computers take advantage of software flaws, such
as buffer-overflow or integer-overflow vulnerabilities. The abundance of software
flaws, and the corresponding success of the attacks, has motivated substantial
defensive efforts. These efforts include systematic attempts to eliminate those
flaws from legacy software and to avoid them in new software, relying on pro-
grammer education and security reviews. Although these attempts have been at
least partly fruitful, one might be concerned about their cost, and also about
the possibility that they will not remove all flaws. Therefore, complementary
approaches have also been considered and sometimes adopted.

One such approach is the use of various mitigation tools. These tools can be
applied to code, more or less automatically, in order to reduce or eliminate the
effects of certain vulnerabilities. The goals of these tools include runtime detec-
tion of buffer overflows [4, 13], randomization and artificial heterogeneity [11, 20],
and tainting of suspect data [17]. Unfortunately, these tools often target only
specific classes of vulnerabilities. For example, stack canaries [4] address only
certain buffer overflows in the stack (and none in the heap). Moreover, these
tools offer imperfect, hard-to-define safeguards, which determined attackers can
defeat or circumvent [12, 14, 19].

Another approach is the adoption of high-level, type-safe languages, such as
Java and C#. These languages aim to guarantee general, fundamental proper-
ties that can be defined precisely and proved rigorously, in particular memory
safety. These properties contribute greatly to program security. Unfortunately,
implementation flaws and interoperation with low-level code can weaken the
guarantees. Furthermore, it is questionable whether every piece of software will
be written or rewritten in these languages. For instance, media codecs, automatic

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 111–124, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

112 M. Abadi et al.

memory management, and operating-system interrupt dispatching typically rely
on hand-written, optimized machine code; it seems unlikely that they will enjoy
the full benefits of high-level languages, even in new systems.

A third approach, which we advocate, is the enforcement of Control-Flow
Integrity (CFI). CFI means that program execution dynamically follows only
certain paths, in accordance with a statically specified policy given as a control-
flow graph (CFG). Many attacks aim to subvert execution and control software
behavior. For instance, a buffer overflow in an application may result in a call to
a sensitive system function, possibly a function that the application was never
meant to use [12]. An attack may also cause a jump into the middle of a function
body, or even into the middle of a multi-byte machine-code instruction (trigger-
ing the execution of a different instruction). The resulting behavior, while allowed
at the hardware level, is in contradiction with programmer intent. Since these
attacks invariably affect control flow, CFI can prevent them.

Like various mitigation tools, CFI enforcement can be applied to existing
source code and binaries. At the same time, CFI has much in common with
the properties guaranteed by high-level, type-safe languages. In particular, as
we demonstrate, CFI can be defined precisely and proved rigorously. In these
respects, CFI enforcement resembles the use of proof-carrying code (PCC) [10].
(Indeed, although research on PCC has emphasized memory safety, PCC could
be used for proving CFI, even under weak assumptions on memory.)

In a companion paper [2], we explore the benefits of CFI and present an
implementation. The implementation relies on machine-code rewriting that in-
struments software with runtime checks; it applies to legacy systems (e.g., code
compiled from C and C++ on x86 Windows) with only a modest performance
overhead. We also validate, experimentally, that CFI thwarts many types of ex-
ploits and several documented past attacks. Finally, we show that CFI can help
in the enforcement of additional security properties.

The CFG on which CFI relies should be designed to exclude unwanted soft-
ware behavior. Even a coarse CFG that prevents jumps into the middle of func-
tion bodies can be useful; such a coarse CFG is easy to obtain. A more precise
CFG, of the sort that could be derived by source-code analysis, might also pre-
vent certain dangerous sequences of system calls. Our machine-code rewriting
aims to guarantee CFI with respect to the CFG, whatever it is. Simple static
verification can ensure that the rewriting achieves the specified effect. This veri-
fication can be seen as a special case of PCC proof-checking, while the rewriting
obviates the need for explicit logical proofs. Only the verification is required
for establishing CFI; design or implementation flaws in the rewriting do not
compromise security.

This paper is concerned with the foundations of CFI. It develops the basic
theory that underlies our strategy for CFI enforcement. It includes a detailed
semantics for programs, definitions for program instrumentation (focusing on its
verification), and theorems about the executions of instrumented programs. We
regard this basic theory as central to our approach. The precise formulation of
hypotheses, guarantees, and proofs is a major difference between our approach

A Theory of Secure Control Flow 113

and those based on previous mitigation tools, and an important similarity with
research on high-level, type-safe languages. Furthermore, a formal approach is
useful not only for elucidating hypotheses and guarantees, but also as a guide
in the design and development of techniques. Indeed, in the course of our work,
we rejected several alternatives that made unclear assumptions or that offered
protection only in hard-to-define circumstances.

The main theorems of the paper establish that CFI holds for programs pro-
cessed according to either of two enforcement techniques, even with respect to
a powerful attacker that controls data memory. Although both techniques em-
ploy machine-code rewriting, they differ in their specifics and their assumptions.
Most noticeably, one technique requires that data memory not be executable.
This assumption, which we call NXD, thwarts some attacks on its own, but
not those that exploit unintended control transfers in pre-existing code, such
as “jump-to-libc” attacks [12]. Some architectures support NXD, and recent
versions of Windows use it [8]. NXD can also be implemented in software, with
support from the underlying operating system [11]. The second technique is a
refinement of the first with a built-in, inline implementation of NXD.

This second technique relies on a generalization of Software Fault Isolation
(SFI) [18] that we call Software Memory Access Control (SMAC). SFI provides
multiple domains of memory protection within a single address space. For SFI,
code inserted before each memory access ensures that the target memory ad-
dress is within a certain range. For SMAC, more generally, each instruction that
may perform a memory access is constrained to a particular range of addresses,
potentially a different one per instruction. CFI can facilitate the implementation
of SMAC for irregular architectures, such as the x86, on which traditional SFI
has been problematic [5]. One of the goals of this paper is to show that this
cooperation between CFI and SMAC is real, rather than an incorrect result of
informal circular reasoning.

Section 2 defines the setting for our work: a simple machine model and a
corresponding machine language. Section 3 discusses CFGs. Section 4 describes
and analyzes the first technique for CFI enforcement. Section 5 concerns the
second technique, in which CFI enforcement is combined with SMAC. Section 6
concludes. Some details of proofs and additional material can be found at our
website [3].

2 The Setting: Programs and Their Semantics

The machine model and the programs that we define in this section are typical
of formal studies in programming-language theory. For the sake of simplicity,
we work with a basic machine model and a small set of machine instructions
which enable us to study CFI but exclude virtual memory, dynamic linking,
threading, and other sophisticated features found in actual systems. Essentially,
our language is a minor variant of that of Hamid et al. [6]. We have yet to
attempt a similar investigation for the full x86 architecture and for the x86 code
sequences that our instrumentation inserts. We believe that such an investigation

114 M. Abadi et al.

would be feasible, particularly because of the similarities between our x86 code
sequences and those studied in this paper; on the other hand, the investigation
would certainly be laborious and may yield diminishing returns.

2.1 Machine Model

For our machine model, we define words, memories, register files, and states as
follows:

Word = {0, 1, ...}
Mem = Word →Word

Regnum = {0, 1, ..., 31}
Regfile = Regnum → Word
State = Mem × Regfile ×Word

We often adopt the notations w and pc for elements of Word , and M , R, and
S for elements of Mem , Regfile, and State, respectively. When S is a state, we
may write S.M , S.R, and S.pc for the Mem component, the Regfile component,
and the pc in S, respectively.

We further distinguish between code memory (Mc) and data memory (Md),
so we split memories into two functions with disjoint domains, each of them
contiguous. We assume that a statically defined program that comprises n > 0
instructions always occupies memory locations 0 to n − 1, with the first in-
struction of the program located at address 0. When we split a memory M
into Mc and Md , we write M = Mc |Md , provided Mc contains n > 0 in-
structions and the following constraints hold: dom(Mc) = {0..(n − 1)}, and
dom(Md) = dom(M)− dom(Mc), and Mc(a) = M(a) for all a ∈ dom(Mc), and
Md (a) = M(a) for all a ∈ dom(Md). We consider only states whose memory is
partitioned in this way. We write S.Mc to indicate the code memory of state S,
and S.Md for the data memory.

Similarly, we split register files into distinguished and general registers. When
we split R into R0−2 and R3−31 , we write R = R0−2 |R3−31 provided the follow-
ing constraints hold: dom(R0−2) = {r0, r1, r2}, and dom(R3−31) = {r3..r31},
and R0−2 (r) = R(r) for all r ∈ dom(R0−2), and R3−31 (r) = R(r) for all
r ∈ dom(R3−31). We distinguish the registers r0, r1, and r2 because we assume
that they are used only in CFI enforcement code. (In fact, in our x86 imple-
mentation, we need only one distinguished register and only at certain program
points. This feature is important in practice, since the x86 architecture has few
registers. While permanently reserving many registers for a special use is diffi-
cult, finding a free register now and then is easy.)

2.2 Instructions

Our language is that of Hamid et al. [6] plus a label instruction in which an
immediate value can be embedded and which behaves like a nop. (It is not too
hard to implement such a label instruction on common architectures.) The set
of instructions is:

A Theory of Secure Control Flow 115

If Dc(Mc(pc))= then (Mc|Md ,R, pc) →n

label w (Mc|Md ,R, pc + 1), when pc + 1 ∈ dom(Mc)

add rd , rs , rt (Mc|Md ,R{rd �→ R(rs) + R(rt)}, pc + 1),

when pc + 1 ∈ dom(Mc)

addi rd , rs ,w (Mc|Md ,R{rd �→ R(rs) + w}, pc + 1),

when pc + 1 ∈ dom(Mc)

movi rd ,w (Mc|Md ,R{rd �→ w}, pc + 1), when pc + 1 ∈ dom(Mc)

bgt rs , rt ,w (Mc|Md ,R,w), when R(rs) > R(rt) ∧ w ∈ dom(Mc)

(Mc|Md ,R, pc + 1),

when R(rs) ≤ R(rt) ∧ pc + 1 ∈ dom(Mc)

jd w (Mc|Md ,R,w), when w ∈ dom(Mc)

jmp rs (Mc|Md ,R,R(rs)), when R(rs) ∈ dom(Mc)

ld rd , rs(w) (Mc|Md ,R{rd �→ M (R(rs) + w)}, pc + 1),

when pc + 1 ∈ dom(Mc)

st rd(w), rs (Mc|Md{R(rd) + w �→ R(rs)}, R,pc + 1),

when R(rd) + w ∈ dom(Md) ∧ pc + 1 ∈ dom(Mc)

Fig. 1. Normal steps

Instr ::= instructions
label w label (with embedded constant)
add rd , rs , rt add registers
addi rd , rs ,w add register and word
movi rd ,w move word into register
bgt rs , rt ,w branch-greater-than
jd w jump
jmp rs computed jump
ld rd , rs(w) load
st rd (w), rs store
illegal illegal

where w is a word and rs , rt , and rd are registers. Thus, instructions may contain
words. Like Hamid et al., we omit the routine details of instruction storage and
decoding. We assume a function Dc : Word → Instr that decodes words into
instructions.

2.3 A Semantics of Programs Under Attack

In this section we give a first semantics for instructions. Figures 1 and 2 define
two binary relations on states, →n and →a.

– The relation→n models normal small steps of execution, that is, those steps
that may occur in the absence of an attacker. This relation is deliberately

116 M. Abadi et al.

(Mc|Md ,R0−2 |R3−31 , pc) →a (Mc|Md
′,R0−2 |R3−31

′, pc)

Fig. 2. Attacker steps

If Dc(M(pc))= then (M,R, pc) →n

label w (M,R, pc + 1)

add rd , rs , rt (M,R{rd �→ R(rs) + R(rt)}, pc + 1)

addi rd , rs ,w (M,R{rd �→ R(rs) + w}, pc + 1)

movi rd ,w (M,R{rd �→ w}, pc + 1)

bgt rs , rt ,w (M,R,w), when R(rs) > R(rt)

(M,R, pc + 1), when R(rs) ≤ R(rt)

jd w (M,R,w)

jmp rs (M,R,R(rs))

ld rd , rs(w) (M,R{rd �→ M (R(rs) + w)}, pc + 1)

st rd(w), rs (M{R(rd) + w �→ R(rs)},R, pc + 1)

Fig. 3. Normal steps (assuming less memory protection)

incomplete: many states are “stuck”, including those where Dc(Mc(pc)) =
illegal .

– The relation →a models attack steps. In such a step, an attacker may un-
conditionally and arbitrarily perturb data memory and non-distinguished
registers. For example, the attacker may modify a part of memory to con-
tain a bit pattern that appears elsewhere in memory. Thus, intuitively, the
attacker can read all of memory.

An attack step is quite similar to the possible effect of a computation
step in another execution thread (which our model does not represent). In
particular, another thread can access all of memory, and can arbitrarily
modify data memory. Moreover, registers are specific to a thread, and the
values of the registers of one thread might be affected by another thread
only if those values are read from memory (possibly after being “spilled”
into memory). An attack step therefore corresponds to a computation step
in another thread if the values of general registers may be read from memory
but those of distinguished registers are not. On the other hand, for simplicity,
an attack step need not be restricted to computable functions.

The relation →, defined below, is the union of →n and →a. Thus, this relation
represents a computation step in general, either a normal state transition or one
caused by an attacker.

S →n S ′

S → S ′
S →a S ′

S → S ′

A Theory of Secure Control Flow 117

In security, it is important to identify assumptions, and to justify them to the
extent possible, because an attacker that can invalidate assumptions can often
circumvent security enforcement. Our definitions embody several assumptions,
which we discuss next:

1. The definition of →n implies NXD (that is, that data cannot be executed
as code). Similarly, the definitions of →n and →a imply that code memory
cannot be modified at runtime. We call this property NWC. As indicated
in the introduction, NXD is often a reasonable assumption. NWC holds on
most current systems (except at special times, such as during the initial
loading of dynamic libraries).

2. The definition of →a allows for the possibility that the attacker is in control
of data memory. This aspect of the model of the attacker is conservative,
but unfortunately close to reality. Buffer overflows and other vulnerabilities
often allow an attacker to write to arbitrary locations in data memory even
before subverting control flow [12].

3. The definition of →a implies that the attacker cannot modify the distin-
guished registers r0, r1, and r2. In practice, one may ensure this property
by avoiding the use of r0, r1, and r2 outside the CFI enforcement code and
preventing those registers from “spilling” into memory. Our proofs require
only a weaker assumption, namely that the attacker cannot modify r0, r1,
and r2 during the execution of CFI enforcement code.

4. The machine model and the definition of →n exclude the possibility that a
jump would land in the middle of an instruction. In practice, many archi-
tectures (RISC architectures, in particular) exclude this possibility, and our
x86 CFI implementation prevents it. For simplicity, we do not address this
feature in the formal analysis.

2.4 A More Permissive Semantics of Programs Under Attack

Assumptions NXD and NWC do not hold in some settings, for example on
architectures without memory-protection facilities. We should therefore consider
an alternative to the program semantics of Section 2.3. For brevity, and since
there is no risk of ambiguity below, we reuse the symbols →n, →a, and →.

The resulting, relaxed definition of normal execution steps is in Figure 3.
These normal steps can arbitrarily violate NXD and NWC, possibly under the
indirect influence of an attacker. On the other hand, the rules for attack steps
and general steps remain those of Section 2.3. In particular, we still require that
an attack step cannot directly alter code memory, the distinguished registers, or
the program counter. We believe that these restrictions often hold in practice.
Moreover, they are necessary: without them, an attacker could trivially create
new code (outside the original CFG) and trigger its execution.

3 The CFG

Our instrumentation of a program relies on a CFG for the program, as specifi-
cation of a CFI policy. Next we discuss this CFG.

118 M. Abadi et al.

The nodes of the CFG are words that represent program addresses. Given
a graph G for Mc, and w ∈ dom(Mc), we let succ(w) be the set of words w′ ∈
dom(Mc) such that G has an edge from w to w′. We say that w′ is a destination
if there exists w such that Dc(Mc(w)) is a computed jump instruction (jmp rs)
and w′ ∈ succ(w).

We need not constrain how the CFG is obtained, or how it matches the exe-
cutions of the program before instrumentation. The CFG might be computed by
analyses, static or dynamic. It might also be derived, at least in part, from a se-
curity policy, for example one expressed as a security automaton [5, 7]. (For our
implementation, we derive the CFG by static analysis of binaries.) We do require:

1. If Dc(Mc(w0)) = label w , or add rd , rs , rt , or addi rd , rs ,w , or movi rd ,w ,
or ld rd , rs(w), or st rd (w), rs , then succ(w0) = {w0 + 1} ∩ dom(Mc).

2. If Dc(Mc(w0)) = bgt rs , rt ,w then succ(w0) = {w0 + 1,w} ∩ dom(Mc).
3. If Dc(Mc(w0)) = jd w then succ(w0) = {w} ∩ dom(Mc).
4. If Dc(Mc(w0)) = jmp rs then succ(w0) �= ∅.
5. Dc(Mc(w0)) = illegal then succ(w0) = ∅.
6. If w0, w1 ∈ dom(Mc), then succ(w0)∩ succ(w1) = ∅ or succ(w0) = succ(w1).

When these properties hold, we say that the graph in question is a CFG for Mc .
These properties hold by definition for many graphs that arise from code

analysis. Only the last one (6) is non-trivial. Property 6 is not essential—we
can avoid it at the cost of additional dynamic checks; on the other hand, it is
convenient and often reasonable. Property 6 can be satisfied by adding edges to
a graph; the additional edges result in a looser CFI policy. We believe that this
approach is satisfactory in practice: when most addresses are not destinations,
even a coarse CFG that allows control to flow from any jump instruction to any
destination can thwart many attacks. Alternatively, property 6 can be satisfied
by duplicating nodes where the condition is violated. In the extreme, unrealistic
case where the condition is violated at all nodes, we may rely on the following
construction: given a graph G, we define a new graph G′ such that the nodes of
G′ are pairs of nodes of G, and there is an edge from (a1, a2) to (b1, b2) in G′ when
b1 = a2 and there is an edge from a2 to b2 in G. (We omit the straightforward
proof that G′ satisfies property 6.)

Because of property 6, we can put destinations into equivalence classes. We
give each equivalence class an identifier, called an ID. We represent these IDs by
words. For a jmp instruction at address w in Mc, we let dst(w) be the ID of all
successors of w. Thus, dst(w) is the ID of any element of succ(w).

We write succ(Mc, G, w) and dst(Mc, G, w), instead of succ(w) and dst(w)
respectively, when we wish to be explicit on Mc and G.

4 CFI Enforcement (Without SMAC)

In this section we present and analyze our first technique for CFI enforcement.

4.1 CFI Enforcement by Instrumentation

CFI means that, during program execution, whenever a machine-code instruc-
tion transfers control, it targets a valid destination according to a given CFG.

A Theory of Secure Control Flow 119

For instructions that target a constant destination, this requirement can be dis-
charged statically. On the other hand, for computed control-flow transfers (whose
destination is determined at runtime), this requirement must be discharged with
a dynamic check.

Machine-code rewriting offers an attractive, realistic strategy for implement-
ing dynamic checks. Modern tools for binary instrumentation address the sub-
stantial technical difficulties of machine-code rewriting [15, 16].

Unfortunately, machine-code rewriting remains complex and tied to many
implicit compiler-specific details. Therefore, for the sake of trustworthiness, CFI
enforcement should preferably depend only on simple, final, static verification
steps that check that the instrumentation has produced an acceptable result.
These steps, but not the machine-code rewriting, will be part of the “trusted
computing base”.

For the present purposes, the verification steps consist in ensuring that a
code memory Mc and a CFG G for Mc satisfy the following conditions:

1. If n is the length of dom(Mc), then the instruction at n − 1 is illegal . (In
other words, the final instruction is illegal .)

2. If w0 ∈ dom(Mc) is a destination, then the instruction at w0 is label w,
where w is w0’s ID. Conversely, if w0 ∈ dom(Mc) holds a label instruction,
then w0 is a destination. (In other words, label instructions can be used only
for inline tagging with IDs. This requirement applies to code memory, but
not to data memory. In fact, the attacker may, at any time, write label w
into any location in data memory.)

3. If w0 ∈ dom(Mc) holds a jmp instruction, then this instruction is jmp r0

and it is preceded by a specific sequence of instructions, as follows:

addi r0, rs, 0
ld r1, r0(0)
movi r2, IMM
bgt r1, r2,HALT
bgt r2, r1,HALT
jmp r0

where rs is some register, HALT is the address of the illegal instruction
specified in condition (1), and IMM is the word w such that Dc(w) =
label dst(w0). This code compares the dynamic target of a jump, which
is initially in register rs, to the label instruction that is expected to be the
target statically. When the comparison succeeds, the jump proceeds. When
it fails, the program halts.

4. If bgt rs , rt ,w or jd w appear anywhere in Mc, then the target address w
does not hold a jmp instruction or the occurrences of the instructions

ld r1, r0(0)
movi r2, IMM
bgt r1, r2,HALT
bgt r2, r1,HALT

120 M. Abadi et al.

that precede a jmp instruction according to condition (3). The target address
may hold addi r0, rs, 0. (Note that (2) removes the possibility that a jmp
instruction can jump to another jmp instruction or to any of the preceding
instructions considered here.)

We let the predicate I(Mc, G) mean that Mc and its CFG G satisfy the con-
junction of the conditions above.

4.2 A Theorem About CFI

With these definitions, and under the semantics of Section 2.3, we can obtain
formal results about our instrumentation method.

Here we present a simple but fundamental result that expresses integrity
of control flow. The following theorem states that every execution step of an
instrumented program is either an attack step in which the program counter
does not change, or a normal step to a state with a valid successor program
counter. Thus, despite attack steps, the program counter always follows the
CFG.

Theorem 1. Let S0 be a state (Mc |Md , R, pc) such that pc = 0 and I(Mc , G),
where G is a CFG for Mc , and let S1, . . . , Sn be states such that S0 → S1 →
...→ Sn. Then, for all i ∈ 0..(n− 1), either Si →a Si+1 and Si+1.pc = Si.pc, or
Si+1.pc ∈ succ(S0.Mc, G, Si.pc).

The proof of this theorem consists in a fairly classical induction on executions,
with an invariant. In particular, the proof constrains the values of the distin-
guished registers within the instrumentation sequences, but puts no restrictions
on the use of these registers elsewhere in the program.

Although this theorem is fairly easy to state, it has strong consequences.
In particular, it implies that the attacker cannot cause the execution of code
that would appear unreachable according to the CFG. For example, if a certain
libc routine should not be reachable, then executing the code memory will
never result in running that routine. Thus, “jump-to-libc” attacks that target
dangerous routines (such as system in Unix and ShellExecute in Windows)
can be effectively thwarted.

As explained in the introduction, our first technique for CFI enforcement
depends on NXD. More specifically, the theorem depends on the formal version
of NXD, which says that, during execution, the targets of code transfers are
always in the domain of code memory. Without this property, the theorem would
fail, since data memory may well contain label w instructions that look like the
expected destinations of jmp instructions.

5 CFI Enforcement (with SMAC)

Our second technique for CFI enforcement builds on the first, eliminates the
need for NXD, and allows program execution steps to modify code memory.
While it may be viewed as a refinement of the first (perhaps via a simulation

A Theory of Secure Control Flow 121

relation), in this section we present it and study it on its own, as a complete and
separate mechanism.

SMAC has a number of applications beyond the one described here. For
instance, it can serve to protect a call stack in memory, and thereby serve to
strengthen CFI by matching calls and returns dynamically [2]. For brevity, we
do not formalize those applications in this paper.

5.1 CFI Enforcement by Instrumentation (with SMAC)

We assume that the minimum and maximum addresses of code and data memory
are known at instrumentation time, and let min(M) and max(M) respectively
return the minimum and maximum addresses in the domain of memory M .

The SMAC-based verification steps consist in ensuring that a code memory
Mc and a CFG G for Mc satisfy the following conditions:

1. If n is the length of dom(Mc), then the instruction at n− 1 is illegal .
2. If w0 ∈ dom(Mc) is a destination, then the instruction at w0 is label w,

where w is w0’s ID. Conversely, if w0 ∈ dom(Mc) holds a label instruction,
then w0 is a destination.

3. If w0 ∈ dom(Mc) holds at a st instruction, then this instruction is st r0(0), rs

and it is preceded by a specific sequence of instructions, as follows:

addi r0, rd, w
movi r1, max(Md)
movi r2, min(Md)
bgt r0, r1,HALT
bgt r2, r0,HALT
st r0(0), rs

where rd is some register, w is some offset (a word), and HALT is the address
of the illegal instruction specified in condition (1). This code constrains a
store to memory, with address initially given by R(rd) + w, to be between
min(Md) and max(Md). This constraint is imposed by two dynamic compar-
isons. When these two comparisons succeed, the store proceeds; otherwise,
the program halts.

4. If w0 ∈ dom(Mc) holds a jmp instruction, then this instruction is jmp r0

and it is preceded by a specific sequence of instructions, as follows:

addi r0, rs, 0
movi r1, max(Mc)
movi r2, min(Mc)
bgt r0, r1,HALT
bgt r2, r0,HALT
ld r1, r0(0)
movi r2, IMM
bgt r1, r2,HALT
bgt r2, r1,HALT
jmp r0

122 M. Abadi et al.

where rs is some register, HALT is the address of the illegal instruction
specified in condition (1), and IMM is the word w such that Dc(w) =
label dst(w0). This code is a combination of the code for jmp described in
Section 4 with an analogue of the code for st described above. As in the code
for st , an address is constrained to be within a range; here the range is the
domain of code memory, and the address is the dynamic target of a jump,
held in rs. Then, as in the code for jmp in Section 4, that dynamic target is
compared with the label instruction expected statically. The program halts
unless all checks succeed.

5. If bgt rs , rt ,w or jd w appear anywhere in Mc, then the target address w is
in code memory (that is, w ∈ dom(Mc)), and w does not hold st instructions
or any of the preceding instructions listed in (3), or jmp instructions or any
of the preceding instructions listed in (4), except possibly the first of these
instructions, namely addi r0, rd, w and addi r0, rs, 0, respectively.

We let the predicate Is(Mc, G) mean that Mc and its CFG G satisfy the con-
junction of the conditions above.

5.2 A Theorem About CFI with SMAC

With the relaxed semantics of Section 2.4 and the instrumentation of Section 5,
we obtain a direct analogue to Theorem 1.

Theorem 2. Let S0 be a state (Mc |Md , R, pc) such that pc = 0 and Is(Mc , G),
where G is a CFG for Mc , and let S1, . . . , Sn be states such that S0 → S1 →
...→ Sn. Then, for all i ∈ 0..(n− 1), either Si →a Si+1 and Si+1.pc = Si.pc, or
Si+1.pc ∈ succ(S0.Mc, G, Si.pc).

The proof of this theorem is analogous to that of Theorem 1.
Because SMAC is implemented by inline checks, it could be circumvented by

computed control-flow transfers into or around the code sequences that perform
the checks. Therefore, SMAC is intimately tied to CFI, which prevents such
subversive flows of control. Accordingly, our theorem is not about SMAC in
isolation, but rather about the combination of SMAC and CFI.

6 Conclusion

In this paper we study techniques for the enforcement of Control-Flow Integrity
(CFI). In a simple low-level language of the kind common in programming-
language theory, we give definitions for program instrumentation and theorems
about the executions of the instrumented programs. The rigorous clarification
of assumptions and guarantees is helpful in the development and validation of
software-security techniques, and more broadly beneficial for security. While our
theorems do not directly say that nothing bad will ever happen—and indeed CFI
does not prevent all security problems—they do imply fundamental properties
that exclude a variety of attacks.

A Theory of Secure Control Flow 123

Many attacks make use of the fact that, at the lowest levels of systems,
almost any behavior is considered valid—independently of whether the executing
software is written in a structured fashion, e.g., as high-level functions in C
or C++. For instance, even activity that is patently invalid for programs that
originate in high-level, structured languages (such as jumping into the middle of
a function body) is permitted at the hardware level. Similarly, even programs
that use very limited system functionality (such as those that only draw on the
screen but never use the file system or network) are typically allowed to invoke
any operating system service or runtime library routine.

CFI can align low-level behavior with high-level intent, as specified in a CFG.
In this respect, CFI is reminiscent of the use of typed low-level languages, such
as TAL [9], and of efforts to bridge the gaps between high-level languages and
actual behavior (e.g., [1]). Furthermore, the basic theory of CFI enforcement
that we develop in this paper relies heavily on fundamental ideas and techniques
of the modern literature on programming languages. We regard the viability
of this theory as an important feature of CFI. More broadly, we believe that
theories based on programming-language methods can enhance assurance and
provide guidance for a wide range of approaches to software security.

Acknowledgments. Mart́ın Abadi and Jay Ligatti participated in this work while
at Microsoft Research, Silicon Valley. Discussions with Greg Morrisett and Ilya
Mironov were helpful to this paper’s development and improved its exposition.
Milenko Drinic and Andrew Edwards of the Vulcan team were helpful to our
implementation efforts.

References

1. M. Abadi. Protection in programming-language translations. In K.G. Larsen,
S. Skyum, and G. Winskel, editors, Proceedings of the 25th International Collo-
quium on Automata, Languages and Programming, volume 1443 of Lecture Notes in
Computer Science, pages 868–883. Springer-Verlag, 1998. Also Digital Equipment
Corporation Systems Research Center report No. 154, April 1998.

2. M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Control-flow integrity: Prin-
ciples, implementations, and applications. In Proceedings of the ACM Conference
on Computer and Communications Security, 2005. A preliminary version appears
as Microsoft Research Technical Report MSR-TR-05-18, February 2005.

3. M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti. Further formal material
on CFI and SMAC. Manuscript, available at http://research.microsoft.com/

research/sv/gleipnir, 2005.

4. C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton. StackGuard: Automatic adaptive detection and preven-
tion of buffer-overflow attacks. In Proceedings of the Usenix Security Symposium,
pages 63–78, 1998.

5. Ú. Erlingsson and F.B. Schneider. SASI enforcement of security policies: A retro-
spective. In Proceedings of the New Security Paradigms Workshop, pages 87–95,
1999.

124 M. Abadi et al.

6. N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A Syntactic Approach
to Foundational Proof-Carrying Code. Technical Report YALEU/DCS/TR-1224,
Dept. of Computer Science, Yale University, 2002.

7. J. Ligatti, L. Bauer, and D. Walker. Edit automata: Enforcement mechanisms
for run-time security policies. International Journal of Information Security, 4(1–
2):2–16, February 2005.

8. Microsoft Corporation. Changes to functionality in Microsoft Windows XP SP2:
Memory protection technologies, 2004. http://www.microsoft.com/technet/

prodtechnol/winxppro/maintain/sp2mempr.mspx.
9. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed assembly

language. ACM Transactions on Programming Languages and Systems, 21(3):527–
568, 1999.

10. G. Necula. Proof-carrying code. In Proceedings of the 24th ACM Symposium on
Principles of Programming Languages, pages 106–119, January 1997.

11. PaX Project. The PaX project, 2004. http://pax.grsecurity.net/.
12. J. Pincus and B. Baker. Beyond stack smashing: Recent advances in exploiting

buffer overruns. IEEE Security and Privacy, 2(4):20–27, 2004.
13. O. Ruwase and M.S. Lam. A practical dynamic buffer overflow detector. In Pro-

ceedings of Network and Distributed System Security Symposium, pages 159–169,
2004.

14. H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the ef-
fectiveness of address-space randomization. In Proceedings of the ACM Conference
on Computer and Communications Security, pages 298–307, 2004.

15. A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binary transformation in a dis-
tributed environment. Technical Report MSR-TR-2001-50, Microsoft Research,
2001.

16. A. Srivastava and A. Eustace. ATOM: A system for building customized program
analysis tools. Technical Report WRL Research Report 94/2, Digital Equipment
Corporation, 1994.

17. G.E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution via
dynamic information flow tracking. In Proceedings of the International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
85–96, 2004.

18. R. Wahbe, S. Lucco, T.E. Anderson, and S.L. Graham. Efficient software-based
fault isolation. ACM SIGOPS Operating Systems Review, 27(5):203–216, 1993.

19. J. Wilander and M. Kamkar. A comparison of publicly available tools for dynamic
buffer overflow prevention. In Proceedings of the Network and Distributed System
Security Symposium, pages 149–162, 2003.

20. J. Xu, Z. Kalbarczyk, and R.K. Iyer. Transparent runtime randomization for
security. In Proceedings of the Symposium on Reliable and Distributed Systems,
pages 260–269, 2003.

Game Semantics Model for Security Protocols

Mourad Debbabi and Mohamed Saleh

Computer Security Laboratory,
Concordia Institute for Information Systems Engineering,

Concordia University
{debbabi, m saleh}@ciise.concordia.ca

Abstract. Our aim is to present a game semantics model for the spec-
ification of security protocols. Game semantics has been used to give
an operational flavor to denotational semantics, thereby combining the
best of both worlds by having an elegant mathematical structure and at
the same time describing steps of execution. Game semantics was suc-
cessfully used to prove full abstraction of PCF and has since been used
to describe the semantics of a variety of programming languages. It fits
naturally in the framework of security protocols as the interactions be-
tween communicating parties can be described as moves in a game, where
honest agents are the players and the intruder is the opponent. We pro-
pose a game-based calculus for the specification of security protocols.
First, we define games that represent interactions in security protocols,
these games are then used to ascribe denotational semantics to security
protocols.

1 Introduction

Security protocols while communicating over an insecure network. Some objec-
tives of a security protocol are [2]: Authentication of agents, confidentiality of
transmitted data, integrity of transmitted messages, and non-repudiation of mes-
sages. To meet these goals, cryptographic functions are used (e.g. encryption,
decryption, hashing, etc.). There remains however a number of very important
issues such as what messages to encrypt and with which keys, etc. All of these
issues are dealt with in the framework of security protocols, and they should
be dealt with correctly. This is a difficult task, even for very simple protocols.
Needham and Shroeder published the first cryptographic protocol in 1978 [17],
which was discovered to be flawed after 17 years of service. In this paper we
give a brief overview of the methods adopted for the specification and analysis
of security protocols. We also, present a game semantics model for the same
goal. The paper is organized in seven sections starting with the introduction. In
Section 2, we present a brief survey of security protocols specification and verifi-
cation methods. Section 3 deals with the syntax of a proposed security protocol
calculus, while Section 4 gives a brief introduction about games. In Section 5
the game-based model for security protocols is described, it is then used in Sec-
tion 6 to ascribe denotational semantics to security protocols. Finally, Section 7
concludes the paper.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 125–140, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

126 M. Debbabi and M. Saleh

2 Specification and Analysis of Security Protocols

Some specifications are informal narrations, written in what is called the
“standard notation” of security protocols. As an example, the notation A →
B : {NA}kAB means that agent A sends to B a nonce encrypted by the private
key shared between A and B. On the other hand, formal methods have been
used in the specification and analysis of security protocols. The pioneering work
was done by Dolev and Yao [9] and a survey is given in [16].

2.1 Formal Analysis of Security Protocols

Several methods are used for the verification of cryptographic protocols. Some
of these methods are general methods which are not specifically developed for
cryptographic protocols. For instance using CSP and the FDR model checker or
tools for specification languages such as LOTOS, Z etc. Other methods have been
specifically developed for cryptographic protocols. These include the inductive
approach, the strand space approach, logic-based approaches and approaches
based on process algebras. The inductive approach introduced by Paulson [18]
models a protocol as a set of traces, which are sequences of actions. Security prop-
erties such as secrecy and authentication can be defined on the set of traces of the
protocol and protocol rules are used to prove properties inductively. The strand
space approach [19] is based on sequences of actions called strands. In contrast to
the inductive approach, these are sequences of actions of an individual agent and
not of a global protocol interaction. Security properties are defined and proved
on the strand space that describes a protocol. Logic-based approaches model
and verify cryptographic protocols using logics based on knowledge and belief.
An example of this is the BAN logic [8]. Another approach is to develop formal
models based on the specification of the security protocol using process algebra
(e.g. the SPI calculus [3]). Novel approaches to the verification of cryptographic
protocols are also developed. The use of type systems for the verification of secu-
rity protocols is investigated in [1]. Game-theoretic approaches to the verification
of fair exchange protocols are investigated in [12], [13], and [14].

2.2 Security Protocols and Game Semantics

The idea of using games in logic specifications dates back to Lorenzen [15] who
viewed a logic proposition as a game between two players one trying to assert
it (the proponent) and the other trying to attack it (the opponent). This idea
was further developed by Andeas Blass [7], who used it to give semantics to
linear logic. Abramsky [5] and Hyland [11] then, both independently, used game
semantics to prove the full abstractness of PCF. The general idea behind game
semantics is to model the interaction between the system and the environment by
a game. A specific interaction is described by a strategy (sequence of moves) over
the game. The use of game semantics for the description of security protocols is
motivated by the the fact that game semantics can model the interaction between
agents and the intruder in a natural way. It gives a dynamic view of how the
protocol could proceed, especially when the execution of one step depends on all

Game Semantics Model for Security Protocols 127

steps executed thus far. It is important to note that the use of games in security
protocols was investigated in [13] where they followed a different approach than
that of game semantics as taken by Abramsky and Hyland. Another effort in
this regard is the Security Protocol Calculus (SPC) [6]. In this paper however
we follow a different path defining various games and giving a denotational
semantics to security protocols.

3 Syntax of Security Protocol

The proposed syntax of our GAme-based Security Protocol calculus (GASP) is
demonstrated by the following BNF grammar:

Prot ::= Decl . Comm | ε
Decl ::= κA � m . Decl | νA � m . Decl | ε

Comm ::= step i � A → B : m . Comm | ε
m ::= a | c | n | k | m, m | {m}k | m op m

(1)

Here A and B are communicating agents, m is a certain message, κA 	m means
m is part of the initial knowledge of A, and νA 	 m means m is fresh for A. The
syntax above means that a protocol is just a number of declarations, followed by
a number of communication steps. The last line is the syntax for messages. Here
op ∈ {+,−, ∗, /} and a ranges over agent names, c represents constant (text)
messages, n represents natural numbers, and k represents cryptographic keys.
The term m, m represents composed (concatenated) messages, and in some cases
concatenation is written m.m when it might be confused with elements in a set.
The term {m}k denotes encrypted messages, where k is the encryption key.

3.1 Types of Messages

In our type system for messages, we have the following base types (sorts): Agent
(agent names), Cryptkey (cryptographic keys), Natural (natural numbers), Text
(constant messages, i.e., text), and Message (messages). A message is called
atomic if its type is one of the first four types listed above, which are subtypes
of Message. Typing rules for messages are given below:

a : Agent c : Text n : Natural k : Cryptkey m : Message

m1 : Message m2 : Message
m1, m2 : Message

k : Cryptkey m : Message
{m}k : Message

m1 : Natural m2 : Natural
m1 op m2 : Natural

3.2 Messages and Knowledge

To express an agent’s knowledge, we define the function Know : Agent →
sets[Message], that maps a principal’s name into the set M of messages known
to this principal. Here we adopt the notation in [10] to express the fact that the
function returns a set whose elements are of type Message. The set M satisfies
the conditions:

128 M. Debbabi and M. Saleh

(m ∈ M) ∧ (m′ ∈ M) ⇒ m op m′ ∈ M Arithmetic operation
(m op m′ ∈ M) ∧ (m′ ∈ M) ⇒ m ∈ M Arithmetic operation
(m op m′ ∈ M) ∧ (m ∈ M) ⇒ m′ ∈ M Arithmetic operation

(m ∈ M) ∧ (k ∈ M) ⇒ {m}k ∈ M Encryption
(m ∈ M) ∧ (m′ ∈ M) ⇒ m.m′ ∈ M Concatenation

({m}k ∈ M) ∧ (k ∈ M) ⇒ m ∈ M Decryption
({m}k ∈ M) ∧ (k′ ∈ M) ∧ (k′ = k−1) ⇒ m ∈ M Asymmetric decryption

m.m′ ∈ M ⇒ {m, m′} ⊂ M Deconcatenation

(2)

4 Games

In game semantics, a game is a sequence of plays (moves) between two parties
(players): A proponent P representing the system, and an opponent O represent-
ing the environment. Each move takes the form of a question Q or an answer
A. For instance, the environment can ask for a value (question), and the system
supplies this value (answer) directly, or asks the environment for more detail
(question), and so on. We adopt the convention that the opponent always makes
the first move then the game proceeds as alternating moves between player and
opponent. Formally a game G is a structure (MG, λG, PG) where [4]:

MG Set of game moves
λG : MG → {P, O} × {Q, A} Labeling function signature
λG = 〈λPO

G , λQA
G 〉 Labeling function definition

λPO
G : MG → {P, O} Labeling proponent/opponent moves

λQA
G : MG → {Q, A} Labeling question/answer moves

PG ⊆nepref Malt
G Non-empty, prefix closed set of sequences

(3)

We write M∗
G for the set of finite sequences over MG. A sequence s =

s1.s2 . . . sn has length |s| = n. Then, Malt
G is a subset of M∗

G containing se-
quences s such that for even i, λPO

G (si) = P , and for odd i, λPO
G (si) = O. The

domain PG (the game tree) is a set of sequences, each of these sequences rep-
resents a path in the game tree. The domains P even

G and P odd
G are the sets of

even- and odd- length sequences respectively. For any two sequences s and t,
pref(st) = s. For a set of sequences PG, Pref(PG) = {pref(s) | s ∈ PG}. A set
of sequences is prefix closed when Pref(PG) = PG. A deterministic strategy σ
on a game G is a subset σ ⊆ P even

G satisfying: ε ∈ σ, sab ∈ σ ⇒ s ∈ σ, and
sab ∧ sac ∈ σ ⇒ b = c. Here s, t, u, . . . represent sequences, and a, b, c, . . . repre-
sent single moves. Intuitively, a strategy is a path in the game tree that contains
an even number of moves.

For any two sets X and Y , let the set Z = X�Y be their disjoint union. If the
sequence s ∈ Z∗, then s � X ∈ X∗, which means s � X is the sequence obtained
by removing all the elements not in X from s. For any two games G and H , the
tensor product G⊗H defines a game whose set of moves is MG⊗H = MG�MH ,
the labeling function is then defined to be λG⊗H = [λG, λH]. The game tree
is: PG⊗H = {s ∈ Malt

G⊗H | (s � MG ∈ PG) ∧ (s � MH ∈ PH)}. As previously
mentioned, all games start by O making a move. Here O can decide to make a
move in G or H . The way the tensor product is defined makes that for any two
consecutive moves si and si+1 if si+1 is a move of a subgame different than that
of si, then λPO

G⊗H(si) = P and λPO
G⊗H(si+1) = O. This is called the switching

Game Semantics Model for Security Protocols 129

condition [4]. For any game G, its dual G⊥ is obtained by interchanging the
roles of the two players (P and O). The set of moves remains the same for both
games, just the labeling function is changed, i.e., moves of O become those of
P and vice versa. For any two games G and H , the game G � H is defined as
G⊥ ⊗H . In this case, the first move (by O) will always be in H . The switching
condition in G � H states that for any two consecutive moves si and si+1 if
si+1 is a move of a subgame different than that of si, then λPO

G⊗H(si) = O and
λPO

G⊗H(si+1) = P [4]. An enabling relation is defined over the set MG ∪{�}. The
enabling relation means that a move cannot be played unless it was enabled
(justified) by another move. The first move in the game is justified by �. The
enabling relation: m �G m′ means that m′ cannot be played unless m was
played first. It is important to note that this relation is not transitive.

5 Definition of Games for Security Protocols

5.1 Atomic Messages

As explained earlier, atomic messages are messages that are of type Agent,
Cryptkey, Natural, or Text. These types are represented by the games, Agt, Key,
Nat, Txt respectively. In addition, we define the game Msg to represent the type
Message. The idea is that games represent types, whereas strategies represent al-
gorithms. An example is given below on how to represent constants and variables
of the type Natural:

Nat
q O
n P

Nat � Nat
q O

q P
n′ O

n′ P

Emp
σ
� Nat

q
3

Nat
τ

� Nat
q O

q P
O
P

3 O
3 P

The game to the left represents constants of natural numbers, a certain strat-
egy over this game represents a particular constant, for instance the constant 3
is represented by the strategy σ = q.3. This means that the environment (O)
asks for a constant and the system (P) replies with the number 3. The game
in the middle represents variables of natural numbers, i.e., the lambda term
λx : Natural.x, which has type Natural → Natural (corresponding to the game
Nat � Nat). Any strategy τ over this game represents a variable and has the
form τ = q.q.n′.n′, where n′ is any natural number. If we apply the value 3 to
the lambda term above we get (λx : N.x)3 = 3, the equivalence of this operation
in game semantics is interaction between strategies (parallel composition plus
hiding). For any two strategies σ and τ , over the games G � H and H � I
respectively, the composed strategy σ; τ is formally defined as:

σ; τ = (σ‖τ)/H = {s � G, I | s ∈ σ‖τ}
σ‖τ = {s ∈ (MG + MH + MI)

∗ | s � G, H ∈ σ ∧ s � H, I ∈ τ} (4)

In order to conform with the definition of interaction between strategies,
we redefine the game of constant naturals to be Emp � Nat, where Emp is
the empty game (has no moves). We do this so that we can compose the two

130 M. Debbabi and M. Saleh

strategies σ : Emp � Nat (σ = q.3) and τ : Nat � Nat (τ = q.q.n′.n′). Now,
hiding the common Nat game will leave us with a Emp � Nat game which
represents the constant 3 as expected i.e., σ; τ = q.3. Of course, hiding is done
by removing whatever is included in the dashed rectangle (the last game to the
right in the figure above). We notice here how the copy cat strategy between the
two Nat games, where each player copies the other’s moves (represented by the
horizontal bar), served as a link between σ and τ . The copy cat strategy idG

over a game G and its dual is defined as:
idG = {s ∈ P even

G�G | ∀t even-length prefix of � s : t � G1 = t � G2} (5)

Here the superscripts are just used to differentiate between the two copies of the
game G. The same examples could be generalized to all types of atomic messages
mentioned above.

5.2 Composed Messages

The composed messages that we define here result from the outcome of two oper-
ations: Concatenation, and encryption. The game used to express the operation
of concatenation is the game Msg � Msg � Msg (representing type Message→
Message→ Message). The game used to represent the encryption operation is the
game Msg � Key � Msg. The specific algorithms of concatenation and encryp-
tion are expressed by strategies over the respective games. For instance the con-
catenation operation is represented by the strategy q.q.m1.q.m2.conc(m1, m2).
The encryption operation, on the other hand, is represented by the strategy
q.q.m.q.k.encr(m, k). Here, the functions conc : Message → Message → Message
and encr : Message → Cryptkey → Message represent the concatenation and
encryption operations respectively.

5.3 Communication Part of the Protocol

Single Communication Step. As mentioned above, a certain message of type
Message is considered as a play of the game Msg. The play in Msg proceeds as
follows: The environment (the channel, intruder) asks a principal (proponent)
for a message, and the principal, in turn, replies with a certain messages out of
a possible number (probably infinite) of messages. This means that any strategy
over Msg will have the form q.m, where m is a certain message. A communication
step, on the other hand, is represented by a strategy over the game Csg = Msg �
Msg. In this case, the succession of communication steps forming the protocol
specification is represented by a strategy over the game Csg⊗ Csg . . .⊗ Csg. We
need to define M : sets[Message] to be the set of all messages of type Message
i.e. M = {m|m : Message}. The formal definition of the game is given hereafter:

MMsg = {q} ∪ M
PMsg = {ε} ∪ {q} ∪ {q.m | m ∈ M}
λ(q) = OQ
∀m ∈ M � λ(m) = PA

(6)

We define the Communication Step Game Csg, where:
MCsg = {q1} ∪ {q2} ∪ {mi | m ∈ M, i ∈ {1, 2}}
λCsg(q

i) =
PQ i = 1
OQ i = 2 λCsg(m

i) =
OA ∀m ∈ M ∧ i = 1
PA ∀m ∈ M ∧ i = 2

(7)

Game Semantics Model for Security Protocols 131

The following enabling relation is defined over MCsg:

	 �Csg q2

q2 �Csg q1

q1 �Csg m1 ∀m ∈ M
m1 �Csg n2 ∀m,n ∈ M
The enabling relation affects the game tree:
PCsg = {ε} ∪ {q2, q2.q1} ∪ {q2.q1.m1} ∪ {q2.q1.m1.n2} ∀m, n ∈ M

(8)

We notice here that we used a superscript to differentiate between moves
in each game, since the set of moves is the disjoint union of the sets of the
individual games. We used the superscript 1 to denote moves of the game to the
left of �, and the superscript 2 for the other game. This is equivalent to denoting
the games as Msg1 � Msg2. The definition of the enabling relation in (8) makes
sure that n2 cannot be played unless m1 is played first (any sequence in the game
tree will be the prefix of a sequence in the form q2.q1.m1.m2). This results from
the fact that we assumed that in any communication step (Csg game) an honest
agent (the proponent) only sends a message in response to a message that they
received from the intruder. We clarify these ideas by taking as example the first
three steps of the Woo and Lam authentication protocol [20]: Step1. A→ B : A,
Step2. B → A : Nb, Step3. A→ B : {Nb}Kas . Examining Step 1, we notice that
A initiates the protocol. Since we assumed O (the channel) always plays first,
we assume A gets a start message “start” from the channel and replies with his
identity A. The “start” message serves as an action to begin the execution of
the protocol. In Step 2 B receives the message A from the channel and replies
with a nonce Nb, and other steps follow. We rewrite the first three steps as:

Step1. I → A : start
A → I : A

Step2. I → B : A
B → I : Nb

Step3. I → A : Nb

A → I : {Nb}Kas

(9)

The protocol description in (9) makes clear the role of the intruder I. Each
communication step has the form: I → X : mi followed by X → I : mj where X
is an honest agent. To respect the notation, a protocol will always end by an agent
X sending a terminate message to the intruder. The terminate message marks
the end of the protocol execution. Expressed this way, each communication step
can be captured as a strategy σ over the game Csg. The execution of a number
of steps in succession can be represented by a strategy over the tensor product
of a number of Csg games. As an example, Step1 and Step2 are represented as
a strategy over the game (Msg11 � Msg12) ⊗ (Msg21 � Msg22). This strategy
is the sequence q12.q11.start11.A12.q22.q21.A21.N22

b . Here, we note the use of
superscripts to identify different copies of the Msg game. The tensor product,
however, does not specify which game is played first (i.e., we can start by playing
the game of Step 2). This is why we need the enabling relation to specify the
order of moves.
Single Protocol Session (Functional View). The functional view of a se-
curity protocol describes how the protocol executes under the restriction that
all agents behave honestly (i.e., the intruder only forwards messages between
agents). For any protocol with N −1 communication steps, the Protocol Session

Game Psg[N] is defined by: Psg[N]
def
= !NCsg which is the tensor product of N

copies of the Csg game under the condition that no play can take place in the ith

copy unless a play was made in the (i−1)th copy. This insures that the protocol

132 M. Debbabi and M. Saleh

steps are done in order. The previous discussion is summarized by the following
equations:

Psg[N]

def
= !NCsg

!NCsg
def
= Csg1 ⊗ Csg2 . . . ⊗ Csgn ∀i′ > i � Csgi′ is started after Csgi

def
= (Msg11 � Msg12) ⊗ (Msg21 � Msg22) . . . ⊗ (MsgN1 � MsgN2)

(10)

The subscript [N] of the Psg game emphasizes the fact that this game is
parameterized over the value of N. We notice that each copy of the Csg game
is identified by a different superscript. Also, each Csg game contains two copies
of the Msg game. For instance Csgi is the game Msgi1 � Msgi2. Following the
same notation, moves are identified according to which copy of the Msg game
they belong, i.e., the move mir represents a message m played as a move in the
copy ir of the Msg game. For instance the moves m12 and m21 represent the
same message m played in different copies of the Msg game. We define Psg[N] as:

MPsg[N] = {qi1} ∪ {qi2} ∪ {mi1} ∪ {mi2} | m ∈ M, i ∈ {1, 2, . . . , N}

λPsg[N](q
ir) =

PQ r = 1
OQ r = 2 λPsg[N](m

ir) =
OA ∀m ∈ M ∧ r = 1
PA ∀m ∈ M ∧ r = 2

(11)

The enabling relation is defined as follows:

	 �Psg[N] q12

m(i−1)2 �Psg[N] qi2 m ∈ M ∀i ∈ {2, . . . N}
qi2 �Psg[N] qi1 ∀i ∈ {1, . . . N}
q11 �Psg[N] start

mN1 �Psg[N] terminate

qi1 �Psg[N] mi1 ∀i ∈ {2, . . . N} ∀m, n ∈ M � n(i−1)2 ∧ mi1 ⇒ m = n

mi1 �Psg[N] ni2 ∀m,n ∈ M ∀i ∈ {1, . . . N − 1}
(12)

The game tree PPsg[N]
is the set of sequences, that is a subset of Malt

Psg[N]
,

each sequence satisfies the switching condition, and the enabling relation. This
definition of the game tree is also valid for all games defined in the rest of the
paper. In the enabling relation, the first rule states that the game opens with a
move by the opponent in Csg1. Since Csg ends with a move by the proponent in
Msg2 (mi2), the second rule results in that the Csg games are played one after
the other (according to the order of the communication steps). The third rule
implies the switching conditions between Msg2 and Msg1, while the fourth and
fifth rules are special for the start and terminate messages respectively. The
sixth rule states that questions enable answers in Msgi1 (in any step) and that
these answers mi1 (by the intruder) equal the message received by the intruder
in the previous communication step (i.e., the message n(i−1)2). This is because
in the functional description of the protocol, we assume an honest intruder that
just forwards messages between different agents. The seventh rule states that ni2

cannot be played unless mi1 was played first (an agent does not send a message
to the intruder unless it received a message from the intruder in return). The
way the Psg[N] game is defined makes that the play proceeds in Csg1, followed
by Csg2 and so on till we reach CsgN where the play ends with the terminating

Game Semantics Model for Security Protocols 133

move. In this regard, a protocol with N − 1 communication steps has a type
expressed by the game Psg[N], where Psg[N] =!NCsg. The protocol itself is a
strategy σ : Psg[N] from the set of possible strategies over Psg[N]. This strategy is
obtained by replacing each move mir with the corresponding message from the
protocol specification.

Multiple Protocol Sessions (Functional View). Running multiple sessions
of the protocol can be represented by the game !MPsg[N] (assuming there are
M sessions). In this case, a certain run of M sessions of a protocol Prot can
be represented by a sequence of moves over the game Prt[M,N], where Prt[M,N] is
defined as follows:

Prt[M,N]
def
= !MPsg[N]

!MPsg[N]

def
= Psg1

[N] ⊗ Psg2
[N] . . . ⊗ PsgM

[N] ∀j′ > j Psgj′
[N] is started after Psgj

[N]
def
= Csg1,1 . . . ⊗ Csg1,N ⊗ Csg2,1 . . . ⊗ Csg2,N . . . ⊗ CsgM,1 . . . ⊗ CsgM,N

def
= (Msg1,11 � Msg1,12) . . . ⊗(Msg1,N1 � Msg1,N2)⊗

(Msg2,11 � Msg2,12) . . . ⊗(Msg2,N1 � Msg2,N2)⊗
. . . ⊗(MsgM,N1 � MsgM,N2)

(13)

The symbols are read as follows: Psgj
[N] is the jth copy of the Psg[N] game

(played in the jth session of the protocol), Csgj,i is the game played in the ith

communication step of the jth session, Msgj,ir is the rth copy of Msg played
in the ith communication step of the jth session, and finally mj,ir

1 is a certain
move m1 played in Msgj,ir. For a certain protocol of N−1 communication steps,
running M sessions of this protocol will result in the variables j, i, and r ranging
over the values {1, . . .M}, {1, . . .N}, and {1, 2} respectively. This can be seen
in (13).

MPrt[M,N] = {qj,i1} ∪ {qj,i2} ∪ {mj,i1} ∪ {mj,i2}
m ∈ M, j ∈ {1, . . . , M}, i ∈ {1, . . . , N}

λPrt[M,N](q
j,ir) =

PQ r = 1
OQ r = 2 λPrt[M,N](m

j,ir) =
OA ∀m ∈ M ∧ r = 1
PA ∀m ∈ M ∧ r = 2

(14)

The enabling relation is defined as follows:
	 �Prt[M,N] q1,12

mj,(i−1)2 �Prt[M,N] qj,i2 m ∈ M
qj,i2 �Prt[M,N] qj,i1 ∀j ∈ {1, . . . M} ∀i ∈ {1, . . . N}
qj,11 �Prt[M,N] start ∀j ∈ {1, . . . M}

mj,N1 �Prt[M,N] terminate m ∈ M ∀j ∈ {1, . . . M}
qj,i1 �Prt[M,N] mj,i1 ∀j ∈ {1, . . . M} ∀i ∈ {2, . . . N}

∀m,n ∈ M � nj,(i−1)2 ∧ mj,i1 ⇒ m = n
mj,i1 �Prt[M,N] nj,i2 ∀m,n ∈ M ∀j ∈ {1, . . . M} ∀i ∈ {1, . . . N − 1}

mj−1,12 �Prt[M,N] qj,12 ∀j ∈ {2, . . . M}

(15)

In the enabling relation above, the first rule states that the initial move of the
Prt[M,N] game is by the opponent in Csg1 (communication step 1) of session 1.
The second to the seventh rules control moves within a certain protocol session
j and were explained for the game Psg[N]. The eighth rule states that finishing
the first communication step of a certain session enables the first communication
step of the next session. The game tree PPrt[M,N] is defined as in the Psg[N] game.

134 M. Debbabi and M. Saleh

Single Protocol Session (Security View). In the security view of protocols,
we consider different manipulations that can be done by the intruder to messages
in order to execute an attack. To describe the security semantics of a protocol we
redefine the Psg[N] game to be the game Ssg[N], which describes a single session
of the protocol assuming intruder manipulations.

Ssg[N]

def
= ⊗NCsg

def
= Csg1 ⊗ Csg2 . . . ⊗ CsgN

def
= (Msg11 � Msg12) ⊗ (Msg21 � Msg22) . . . ⊗ (MsgN1 � MsgN2)

(16)

The difference between ⊗NCsg and !NCsg is that in the former we drop the
condition that if i > i′ then play in Csgi has to be started after Csgi′ . The
game Ssg[N] is defined as the game Csg but with the following changed enabling
relation:

	 �Ssg[N] qt2 t ∈ {1, . . . N}
qi2 �Ssg[N] qi1 ∀i ∈ {1, . . . N}
q11 �Ssg[N] start

mN1 �Ssg[N] terminate

qi1 �Ssg[N] mi1 ∀m ∈ M ∀i ∈ {2, . . . N}
mi1 �Ssg[N] qi′2 ∀m ∈ M ∀i, i′ ∈ {1, . . . N}, i �= i′

mi1 �Ssg[N] ni2 ∀m,n ∈ M ∀i ∈ {1, . . . N − 1}

(17)

In (17) above, the enabling relation is changed to reflect the fact that the
game can start in any communication step (any Csgi). Once intruder has sent a
message in this step (mt2 above), he can start any other step. This modification
to the enabling relation reflects in the game tree PSsg[N]

. The first line of the
enabling relation definition in (17) states this, to be consistent with the definition
of ⊗NG. Another major difference from the definition of the enabling relation of
Psg[N] is that we drop the condition that the intruder is restricted to forwarding
messages between agents. This is reflected in the fifth rule in the enabling relation
definition in (17). Here, we put no restrictions on answers by the intruder (mi1).
The only restriction will be that this answer (message) can be accepted by the
honest agent at step i of the protocol. This is protocol-specific and should be
determined by the semantic functions examining the protocol.

Multiple Protocol Sessions (Security View). In this case, the Prt[M,N] game
is redefined to be the game Spr[M,N]:

Spr[M,N]

def
= !MPsg[N]

!MPsg[N]

def
= Psg1

[N] ⊗ Psg2
[N] . . . ⊗ PsgM

[N] ∀j′ > j � Psgj′
[N] is started after Psgj

[N]
def
= Csg1,1 . . . ⊗ Csg1,N ⊗ Csg2,1 . . . ⊗ Csg2,N . . . ⊗ CsgM,1 . . . ⊗ CsgM,N

(18)

Game Semantics Model for Security Protocols 135

Definitions of moves and labeling functions of Spr[M,N] are the same as those
of Prt[M,N], but the enabling relation is changed to be:

	 �Spr[M,N] q1,t2 t ∈ {1, . . . N}
mj−1,i1 �Spr[M,N] qj,i′2 i, i′ ∈ {1, . . . N} ∀j ∈ {2, . . . M}

qj,11 �Spr[M,N] start

mj,N1 �Spr[M,N] terminate m ∈ M ∀j ∈ {1, . . . M}
qj,i2 �Spr[M,N] qj,i1 ∀j ∈ {1, . . . M} ∀i ∈ {1, . . . N}
qj,i1 �Spr[M,N] mj,i1 ∀m ∈ M ∀j ∈ {1, . . . M} ∀i ∈ {2, . . . N}

mj,i1 �Spr[M,N] nj,i2 ∀m,n ∈ M ∀j ∈ {1, . . . M} ∀i ∈ {1, . . . N}
mj,i1 �Spr[M,N] qj,i′2 ∀m ∈ M ∀j ∈ {1, . . . M} ∀i, i′ ∈ {1, . . . N}, i �= i′

(19)

The game tree PSpr[M,N]
is affected by the enabling relation, where the first

condition states that the play can begin in any step in Session 1. Notice that
the first move of this step has to be a question by the opponent (i.e., q1,t2).
Once the game has started in any step in a certain session, and the intruder has
sent a message in this step (mj−1,i1), he can start the play in any step in the
next session (qj,i′2), this is stated by the second condition. The third condition
is special for the start message, i.e., the start message is always enabled in
communication step 1 in any session. The fourth condition states the condition
for the termination of one session of the protocol (i.e., the reception of mj,N1).
The fifth, sixth and seventh rules put a condition on the sequence of moves
in any communication step in a certain session. They simply state that in any
communication step we cannot have a sequence qj,i2.mj,i2, this sequence means
that an agent sends a message to the intruder without first getting a message
form the intruder. This is to emphasize the rule that we established before that
each communication step is an exchange between the intruder and an agent,
where the intruder has to supply a message in order to get a message in return.
The eighth rule is similar to the second rule but for the same session. It states
that in any step in a certain session, once the intruder has sent a message in this
step (mj,i1), he can start the play in any step in the same session (qj,i′2).

6 Semantics

6.1 Protocol Types

Any type τ of a certain protocol can be defined by the following BNF grammar:
τ ::= Msg � Msg | τ ⊗ τ . To assign a type to a protocol we use the typing rules
below, where α, β, . . . represent single communication steps.

(Step)
�

α : Msg � Msg

(Comm)
α : Msg � Msg Comm : τ

α.Comm : (Msg � Msg) ⊗ τ

(Prot)
Decl : τ Comm : τ ′

Decl.Comm : τ ′

From the rules above, a protocol type τ will have the form (Msg � Msg)⊗
(Msg � Msg)⊗ . . . We define the function τ over the algebra of types.

136 M. Debbabi and M. Saleh

Msg = 0 Msg � Msg = 1 τ ′ ⊗ τ ′ = τ ′ + τ ′

6.2 Semantics of Messages

If σ is a strategy over the game Msg � Msg � Msg, we define the operator
U(�) such that U(σ) is the strategy over the game Msg ⊗Msg � Msg. This is
similar to the operation of un-currying in functional programming. For any three
Games G, H and F such that we have two strategies: The strategy σ : G � H ,
and the strategy τ : G � F . We define the strategy 〈σ, τ〉 as the strategy over
the game G � (H ⊗ F). The semantic function for messages is defined below.
The function encr : Message → Cryptkey → Message is the encryption function
and conc : Message → Message → Message is the concatenation function. The
semantic function S takes as arguments a certain message and returns a set of
sequences over the game that represents the type of the message.

S : Message→ Sτ

S[[a]] = {σ | σ : Emp � Agt} = {ε} ∪ {q.a | a : Agent}
S[[c]] = {σ | σ : Emp � Txt} = {ε} ∪ {q.c | c : Text}
S[[k]] = {σ | σ : Emp � Key} = {ε} ∪ {q.K | K : Cryptkey}
S[[n]] = {σ | σ : Emp � Nat} = {ε} ∪ {q.n | n : Natural}

The following is the concatenation algorithm, it is interpreted as a set of
sequences (strategies) over the game Msg � Msg � Msg. Each sequence in this
set is a prefix of the sequence q.q.m.q.m′.conc(m, m′) for all m, m′ ∈ M. The
underlying semantic function is given below:

S[[,]] = {σ : Msg � Msg � Msg | ∀m,m′ : Message . σ ∈ Σconc}
Where Σconc = {ε, q.q} ∪ {q.q.m.q} ∪ {q.q.m.q.m′.conc(m, m′)}. The follow-

ing is the concatenation algorithm applied to messages m1 and m2. Function
application is represented by interaction of strategies.

S[[m1, m2]] = {σ : Msg}, σ = 〈[[m1]], [[m2]]〉; U([[,]])

The following is the semantics of the encryption function:

S[[{ }]] = {σ : Msg � Key � Msg | ∀m : Message, k : Cryptkey . σ ∈ Σencr}

Where Σencr = {ε, q.q}∪{q.q.m.q}∪{q.q.m.q.k.encr(m, k)}. The following is
the encryption algorithm applied to a message and a key:

S[[{m}k]] = {σ : Msg}, σ = 〈[[m]], [[k]]〉; U([[{ }]])

6.3 Transmission of Messages

The honest agent, upon receiving a certain message, must check it against the
message he expects to receive at this particular step of the protocol. If the
message passes the check, the agent will accept it and continue the protocol,
otherwise he will terminate execution. The message, if accepted, will be added
to the agent’s knowledge and used in further communication steps. To formalize
this discussion, first we define the function knows : Know that given a principal’s
name will return the messages known to this principal as defined in (2). Then, we

Game Semantics Model for Security Protocols 137

define the function check : Agent → Know → Message → Message → Message.
This function given a principal’s name A, a message m and another message
m′, will check m′ against m. If there is no match, the function will return the
terminate message signifying the termination of the protocol execution. If, on
the other hand, m′ passes the check, the function will return the message that
will be added to the principal’s knowledge as a result of accepting m′.

check(A, knows, m,m′) =
if m is atomic then

if m ∈/ knows(A) then
m′

else if m ∈ knows(A) ∧ m = m′ then
m′

else if m ∈ knows(A) ∧ m �= m′ then
terminate

else if m = {m1}K then
if m1 ∈/ knows(A) ∧ K ∈/ knows(A) then

m′

else if m1 ∈ knows(A) ∧ K ∈/ knows(A) then
m′

else if m1 ∈/ knows(A) ∧ K ∈ knows(A) then
let m′

1 = decrypt(m′, K) in
{m′

1}K

end
else if m ∈ knows(A) ∧ K ∈ knows(A) then

if m′ = {m1}K then
m′

else
terminate

end
end

else if m = m1.m2 then
let m′

1.m
′
2 = m′ in

check(A, knows, m1, m
′
1) . check(A, knows, m2, m

′
2)

end
else if m = m1 op m2 then

if m1 ∈/ knows(A) ∧ m2 ∈/ knows(A) then
m′

else if m1 ∈ knows(A) ∧ m2 ∈/ knows(A) then
let m1 op m′

1 = m′ in
m1 op m′

1

end
else if m1 ∈/ knows(A) ∧ m2 ∈ knows(A) then

let m′
2 op m2 = m′ in

m′
2 op m2

end
else if m1 ∈ knows(A) ∧ m2 ∈ knows(A) then

if m′ = m1 op m2 then
m′

else
terminate

end
end

end

6.4 Protocol Semantics (Functional View)
A protocol is well-formed if no message is sent unless: The message is part of
the sender’s initial knowledge, the message has been previously received by the
sender, or the message can be deduced from initial knowledge and /or the set of
received messages. Hereafter we define first the function Wf Prot() that checks
a protocol for well-formedness, then we define the semantic function of a well-
formed protocol.

In the following let P , D and C be a certain protocol, declaration and com-
munication steps respectively. We also define the following:

knows : Know Function that returns the set of messages known to an agent
fresh : Know Function that returns the set of messages fresh to an agent
State

def
= Know× Know Definition of the type State

st : State Variable of type State
Bool Type of boolean values

We define the function D that scans declarations and updates the agent’s state
accordingly:

D : Decl → State → State
D[[κA � m.D]](knows, fresh) = D[[D]](knows † [A �→ knows(A) ∪ {m}], fresh)
D[[νA � m.D]](knows, fresh) = D[[D]](knows, fresh † [A �→ f(A) ∪ {m}])
D[[ε]](knows, fresh) = (knows, fresh)

138 M. Debbabi and M. Saleh

Now, we can define the function Wf Prot as:

Wf Prot : Prot → Bool
Wf Prot(P) = Wf Prot(D.C)

= Wf Comm(C)(D[[D]]([], []))
Wf Comm : Comm → State → Bool

Wf Comm(A → B : m.C)(knows, fresh) =
m ∈ (knows(A) ∪ fresh(A)) ∧ Wf Comm(C)(knows[B → knows(B) ∪ m], fresh)

Functional Semantics
To define the semantic function P of protocols we need the following defini-

tions in addition to the ones made we defined with the function Wf Prot:

ΣG Set of Strategies over the game G
s : Seq Sequence of moves
end : S → M Function that returns the last move in the sequence

The semantic function P will take as arguments a protocol and its type (the
game representing the protocol) and will return a strategy over this game.

P : Prot → τ ∈ τ . ΣPsg[τ]

P[[P]](τ) = P[[D.C]](τ)
= C[[C]](ε)(D[[D]]([], []))

The function D is defined above. The function C returns a strategy over the
game that represents the protocol type, assuming the intruder only forwards
messages between agents. It is defined as:

C : Comm → Seq → State → ΣPsg[τ]

C[[step i � A → B : m.C]](s)(knows, fresh) =
if s = ε then

C[[C]](q.q.start.m)(knows † [A �→ knows(A) ∪ {start}, I �→ knows(I) ∪ {m}], fresh)
else

C[[C]](s.q.q.end(s).m)(knows † [A �→ knows(A) ∪ {end(s)}, I �→ knows(I) ∪ {m}], fresh)
end

C[[ε]](s)(knows, fresh) =
if s = ε then

s
else

s.q.q.end(s).terminate
end

6.5 Protocol Semantics (Security View)

In security semantics, we investigate possible manoeuvres that can be performed
by the intruder in order to break the protocol’s security. For any protocol P that
has type τ , if we assume that there are M running sessions, the semantic function
in this case assigns to P a set of strategies over the game Spr[M,τ]. First, we define
the following:

sess : Session Session : → N sess is the session number.
PG : GameTree Game tree of the game G
P sub

G : GameTree P sub
G ⊆ PG a subset of the game tree of the game G (subtree)

The semantic function P accepts a protocol, the number of sessions to be
generated, and a protocol type. It returns a subset of the game tree of the game
Spr. This subset represent all possible sequences the game could proceed with.

Game Semantics Model for Security Protocols 139

P : Prot → M ∈ Natural . τ ∈ τ . P sub
Spr[τ,N]

P[[P]](M, τ) = P[[D.C]](M, τ)
= C[[C]](D[[D]]([], []))(ε)(PSpr[τ,N])

The function D is the same as the one defined above. The function C is de-
fined differently however, it returns a subset of the game tree of the game that
represents the protocol type. The way the function works is that it “cuts away”
irrelevant sequences of the game tree by substituting strategies representing ac-
tual protocol messages in their respective places in the game tree. It calls the
semantic function of messages S[[m]].

C : Comm → State → Seq → GameTree → GameTree
C[[step i � A → B : mi.C]](knows, fresh)(s)(PSpr[τ,N]) =

if i = 1 then
C[[C]](knows † [A �→ knows(A) ∪ {start}, I �→ knows(I) ∪ {mi}], fresh)
(s.mi)(Pτ [S[[start]]/PSpr[τ,N] � Msgsess,11, S[[mi]]/PSpr[τ,N] � Msgsess,12])

else
let m ∈ (knows(I) ∪ fresh(I))
in

let m′ = check(A, knows, end(s),m)
m′′ = check(A, knows, mi, m

′)
in
C[[C]](knows † [A �→ knows(A) ∪ {m′}, I �→ knows(I) ∪ {m′′}], fresh)
(s.m′′)(PSpr[τ,N] [S[[m′]]/Pτ � Msgsess,i1, S[[m′′]]/PSpr[τ,N] � Msgsess,i2])
end

end
end

C[[ε]](knows, fresh)(PSpr[τ,N]) =
PSpr[τ,N]

7 Conclusion

In this paper, we presented a model of security protocols that expresses both
communication and computation steps using a game semantics framework. This
model was then used to ascribe functional and security semantics to security
protocols. In order to specify the protocol, we presented a syntax that is an
enhanced version of the currently used standard notation for security protocols.
There remains issues to be investigated, for instance the elaboration of verifi-
cation techniques based on the model presented. Moreover, the syntax can be
extended to increase its expressiveness by adding the concept of time.

References

1. M. Abadi. Secrecy by typing in security protocols. Theoretical Aspects of Computer
Software, volume 1281 of LNCS, pages 611–638, 1997.

2. M. Abadi. Security protocols and their properties. In F.L. Bauer and R. Stein-
brueggen, editors, Foundations of Secure Computation, 20th Int. Summer School,
Marktoberdorf, Germany, pages 39–60. IOS Press, 2000.

3. M. Abadi and A. B. Gordon. A calculus for cryptographic protocols: The SPI calcu-
lus. In Proceedings of the 4th ACM Conference on Computer and Communications
Security, 1997.

4. S. Abramsky. Semantics of interaction: An introduction to game semantics. In
Proceedings of the 1996 CLiCS Summer School, Isaac Newton Institute, P. Dybjer
and A. Pitts, eds. (Cambridge University Press), 1997.

140 M. Debbabi and M. Saleh

5. S. Abramsky, P. Malacaria, and R. Jagadeesan. Full abstraction for PCF. In
Theoretical Aspects of Computer Software, pages 1–15, 1994.

6. K. Adi. Formal Specification and Analysis of Security Protocols. PhD thesis,
Universite Laval, 2002.

7. A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic,
56:183–220, 1992.

8. M. Burrows, M. Abadi, and R. Needham. A logic of authntication. Technical
report, Digital Systems Research Center.

9. D. Dolev and A. Yao. On the security of public key protocols. IEEE transactions
on information theory, 29(2):198–208, 1983.

10. W. M. Farmer. A basic extended simple type theory. Technical report, McMaster
University, 2001.

11. J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, III. Info.
and Comp., 163:285–408, 2000.

12. D. Kahler, R. Kusters, and T. Wilke. Deciding properties of contract signing pro-
tocols. In Proceedings of the 22nd Symposium on Theoretical Aspects of Computer
Science (STACS’05), 2005.

13. S. Kremer and J. Raskin. A game approach to the verification of exchange protocols
- application to non-repudiation protocols. In Proceedings of the Workshop on
Issues in the Theory of Security (WITS ’00), 2000.

14. S. Kremer and J. Raskin. Game analysis of abuse-free contract signing. In Pro-
ceedings of the 15th IEEE Computer Security Foundations Workshop (CSFW’02).
IEEE Computer Society Press, 2002.

15. K. Lorenz. Basic objectives of dialogue logic in historical perspective. Synthese
(Elsevier), 127(1–2), April/May 2001.

16. C. Meadows. Formal methods for cryptographic protocol analysis: Emerging issues
and trends. IEEE Journal on Selected Areas in Communication, 21(1):44–54, 2003.

17. R. Needham and M. Schroeder. Using encryption for authentication in large net-
works of computers. Communications of the ACM, 21(12), 1978.

18. L. C. Paulson. The inductive approach to verifying cryptographic protocols. Jour-
nal of Computer Security, (6):85–128, 1998.

19. J. Thayer, J. Herzog, and J. Guttman. Strand spaces: Proving security protocols
correct. Journal of Computer Security, (7):191–230, 1999.

20. T.Y.C. Woo and S.S. Lam. A lesson on authentication protocol design. Operating
Systems Review, pages 24–37, 1994.

Towards Dynamically Communicating Abstract

Machines in the B Method

Nazareno Aguirre1, Marcelo Arroyo1, Juan Bicarregui2, Lucio Guzmán1,
and Tom Maibaum3

1 Departamento de Computación, FCEFQyN,
Universidad Nacional de Ŕıo Cuarto,

Ruta 36 Km. 601, Ŕıo Cuarto (5800), Córdoba, Argentina
{naguirre, marroyo, lucio}@dc.exa.unrc.edu.ar
2 Rutherford Appleton Laboratory, Chilton, Didcot,

OXON, OX11 0QX, United Kingdom
J.C.Bicarregui@rl.ac.uk

3 Department of Computing & Software, McMaster University,
1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1

tom@maibaum.org

Abstract. In this paper we present an attempt to represent dynamic
communication links between abstract machines in the B method. The
approach complements a previously proposed extension to B, that sup-
ports dynamic creation and deletion of machine instances, providing
a mechanism for dynamically connecting or disconnecting machine in-
stances for communication. This mechanism is based on the concept of
connector, in the software architectures sense.

We propose an extension to B’s notation to support the definition of
connectors. The extension has been defined with the intention of making
it fully compatible with the standard B method, and allows one to enable
communication, under certain restrictions, between abstract machines in
a specification which presents dynamic creation and deletion of machine
instances. We present the extension, its semantics and an example il-
lustrating its use based on a producer-consumer specification. We also
discuss possible ways of extending the proposed connector definitions to
more general forms of communication.

Keywords: B method, structuring mechanisms, dynamic reconfigura-
tion, object orientation.

1 Introduction

The B formal specification language is one of the most successful model based
formalisms for software specification. It has an associated method, the B Method
[1], and commercial tool support, including proof assistance [5][7]. As all formal
methods, the B method provides a formal language in which one can describe
systems, allowing for analysis and verification of certain system properties prior

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 141–155, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

142 N. Aguirre et al.

to implementation. Moreover, the B method and its associated tools also cover
refinement, implementation and code generation [5][7].

Various facilities for structuring specifications are provided in B, helping to
make the specification and refinement activities scalable. However, the B method
has an important restriction regarding structuring mechanisms, namely, it does
not provide, as a structuring feature, the dynamic creation and deletion of mod-
ules or components. More precisely, all structuring mechanisms of B are static,
in the sense that they allow one to define abstract machines whose architectural
structure in terms of other components is fixed, i.e., it does not change at run
time [8].

In this context of static configurations of abstract machines in the B method,
communication between machines is achieved, essentially, in one of the following
ways:

– either one of the machines is contained in the other (and therefore the second
can access information from the first one respecting the visibility rules of the
corresponding structuring mechanism employed), or

– a common substructure of these machines is “factored away” as a separate
machine, and is shared in a “one writer-many readers” fashion [1]. Note that
in this case the communication is in an asynchronous mode.

As we mentioned, B lacks dynamic management of abstract machines. Dy-
namic management of the population of components is a feature often associated
with object oriented languages, since the replication of objects is intrinsic to these
languages [12]. In fact, dynamic management of “objects” is currently accepted
as a common software design practice, perhaps due to the success of object ori-
ented methodologies and programming languages. In order to allow for dynamic
management of components in B, it is not necessarily a good approach to extend
B to support fully fledged object orientation, since this would imply a significant
change to B’s neat syntax and semantics, and would excessively complicate the
tool support implementation (especially in relation to proof support). Neverthe-
less, we have been engaged in the development of extensions to the B method
to support dynamic creation and deletion of machines [2][3], but we have done
so trying to make the extensions fully compatible with the standard B method.
Indeed, we have complemented B’s structuring mechanisms with an extra clause,
the AGGREGATES. A clause AGGREGATES M ′ within the definition of a ma-
chine M intuitively indicates that M counts on a dynamic set of instances of
machines of type M ′, which can be created or deleted at run time [2]. More-
over, we have also shown how this clause can be treated at the refinement and
implementation stages of the B method [3].

As we have advocated, having a structuring mechanism that allows for the
dynamic creation/deletion of machine instances can favour the structuring of
specifications, and therefore, contribute to the decomposability of proof obliga-
tions and the understandability of system specifications [2]. However, allowing
for the dynamic creation and deletion of machine instances via the use of the AG-
GREGATES clause restricts the applicability of the above mentioned approaches
for communicating machines. This is not surprising, since these were designed

Towards Dynamically Communicating Abstract Machines in the B Method 143

for static architectural configurations of abstract machines. In fact, when try-
ing to achieve communication between dynamically generated machines (i.e., in
“dynamic architecture scenarios”), one usually ends up building complex and un-
structured specifications. The complexities associated with these specifications
are related to the fact that the specifier has to manually construct the machin-
ery for dynamic creation of “objects”, for managing the communication, etc,
usually all encapsulated in a single, flat abstract machine. Thus, we propose an
alternative, based on an extension to B’s notation to support the definition of
connectors [4]. The extension is built on top of standard B, i.e., specifications
written using the extension can be systematically translated into standard B
specifications. The extension we propose here allows one to define synchronous
communication between abstract machines in a specification with dynamic cre-
ation and deletion of machine instances. The mechanism we present is limited to
some specific kinds of communications, but, as we will also show, more general
forms of communication can also be characterised (although these need to be
asynchronous). As for our previously proposed extensions, this extension has
been defined with the intention of making it fully compatible with the standard
B method. We present the extension, its semantics and an example illustrating
its use based on a producer-consumer specification.

The remainder of this paper is organised as follows: In Section 2 we start
by showing how machines are typically communicated (statically) in B. We ar-
gue about the unsuitability of these mechanisms when combined with dynamic
aggregations of machines (Section 2.1). We then briefly describe the AGGRE-
GATES structuring mechanism, its use and semantics. We show how a system
with dynamic creation and deletion of components can be specified using aggre-
gation, but these cannot be connected for communication using B’s mechanisms
(Section 2.2). In Section 3 we present the syntax we propose for connectors in
B, and connectors’ intuitive meaning. In Section 4 we are engaged with the de-
scription of the semantics of connectors, in terms of standard B constructs. We
discuss the proof obligations associated with connector definitions (Section 4.2),
and show how connectors are used by means of an example. We end Section 4
enumerating some of the limitations that our connectors have for defining com-
munication between abstract machines, and discuss the characterisation of more
general forms of communication. Finally, in Section 5 we present our conclusions,
some comparison with related work and lines for future work.

2 Communicating Abstract Machines in the B Method

Let us introduce the problems that we attempt to solve (at least partially) in
this paper by means of an example. This example is a simple variant of a com-
ponent based specification given in [9] for the producer-consumer problem. Let
us suppose that we need to specify a system consisting of a producer that sends
“products” to a consumer. Assuming that the products are encoded as non-
zero integer numbers, and choosing to specify the producer and the consumer
as separate machines, one might define a basic machine Channel in order to

144 N. Aguirre et al.

MACHINE
Channel

VARIABLES
var

INVARIANT
var ∈ INT

INITIALISATION
var := 0

OPERATIONS
set(i) =̂ PRE i ∈ INT THEN var := i END;
x ←− get =̂ BEGIN x := var END

END

Fig. 1. A simple abstract machine used for communication between a producer and a

consumer

“implement” the communication, as in Fig. 1. Then, we can define the producer
and the consumer as structured definitions on top of machine Channel, as shown
in Figs. 2 and 3. Note that, for the sake of simplicity, we do not model the cor-
responding acknowledgement that the consumer should send after consuming
a product (note that without the acknowledgement, a producer can overwrite
a product before the consumer gets it). Such acknowledgements can be easily
“implemented” in a structured way, by taking a renamed copy of Channel, say
Channel’, and use it for “backward communication”, i.e., the consumer writes
on it (machine Consumer includes Channel’) and the producer reads it (ma-
chine Producer sees Channel’). Notice that machine Producer simultaneously
includes Channel (for forward communication) and sees Channel’ (for backward
communication), and the converse is true for machine Consumer.

This corresponds to one of the alternatives that a specifier has for specifying
the system, with producer and consumer as separate machines. Of course, one
could also decide to specify the whole system as a sole, flat abstract machine;
following this latter approach, although sound, does not favour the decomposi-
tion of the proofs of consistency (i.e., the proofs of the proof obligations) nor the
understandability of the specification (more detail on this in Section 5).

MACHINE
Producer

INCLUDES
Channel

VARIABLES
p-var

INVARIANT
p-var ∈ INT

INITIALISATION
p-var := 0

OPERATIONS
prod(x) =̂ PRE x �= 0 ∧ p-var = 0 THEN p-var := x END;
send =̂ PRE p-var �= 0 THEN p-var := 0 || set(p-var) END

END

Fig. 2. A specification of Producer including a channel

Towards Dynamically Communicating Abstract Machines in the B Method 145

MACHINE
Consumer

SEES
Channel

VARIABLES
c-var

INVARIANT
c-var ∈ INT

INITIALISATION
c-var := 0

OPERATIONS
obtain =̂ PRE var �= 0 ∧ c-var = 0 THEN c-var := var END;
cons =̂ PRE c-var �= 0 THEN c-var := 0 END

END

Fig. 3. A specification of Consumer “seeing” a channel

2.1 Communication in the Presence of Aggregation

Let us now suppose that we need to specify a system with a varying number
of producers and consumers, and with dynamism in the communication. For
instance, suppose that, besides dynamically creating and deleting producers and
consumers, we want to change dynamically the consumer a particular producer
produces for. In order to specify such a system, we are unable to use the option of
a common machine, such as Channel, for implementing the communication, since
changing the consumer to which a producer is “connected” would not be possible
to specify (it would require a dynamic change in the structural organisation
of the system specification, not supported in B). So, we are left with a flat,
unstructured machine as the only option for specifying this system, at least if
we use standard B.

However, in this paper, we will show how we can specify the above described
dynamic system of producers and consumers in a structured way, by using the
AGGREGATES clause. As we previously described, this structuring mechanism
intuitively allows one to manipulate a dynamic set of instances of the aggre-
gated machine. Of course, we cannot enable the communication between these
machines directly, so we first have to consider the uncommunicating versions of
producer and consumer, as shown in Fig. 4. (We will “connect” these machines
later.) Then, we can easily obtain a system with dynamic populations of (un-
communicating) producers and consumers, by aggregating these machines, as
in Fig. 5. Note that, in this case, we are able to create and delete producers
and consumers dynamically, but there is no interaction/communication between
producer instances and consumer instances.

2.2 The AGGREGATES Clause

The aggregation of an abstract machine relies on the (systematic) generation
of a population manager for the aggregated machine. A population manager of
an abstract machine M puts together the relativisation of the operations of M
(so they work for multiple instances) with operations that mimic the creation
and deletion of machines instances. To illustrate the use of AGGREGATES, and
its semantics in terms of a population manager, consider the simple machine

146 N. Aguirre et al.

MACHINE
Producer

VARIABLES
p-var

INVARIANT
p-var ∈ INT

INITIALISATION
p-var := 0

OPERATIONS
prod(x) =̂

PRE p-var = 0∧x ∈ INT−{0}
THEN p-var := x
END;

send() =̂
PRE p-var �= 0
THEN p-var := 0
END

END

MACHINE
Consumer

VARIABLES
c-var

INVARIANT
c-var ∈ INT

INITIALISATION
c-var := 0

OPERATIONS
obtain(x) =̂

PRE c-var = 0∧x ∈ INT−{0}
THEN c-var := x
END;

cons() =̂
PRE c-var �= 0
THEN c-var := 0
END

END

Fig. 4. Abstract Machines Producer and Consumer

MACHINE
SYSTEM

AGGREGATES
PRODUCER, CONSUMER

.

.

.
END

Fig. 5. Fragment of a machine aggregating Producer and Consumer

Producer that we show in Fig. 4. The corresponding population manager for
this abstract machine is shown in Figs. 6. Notice that, due to the automatic
generation of the managers, some conjuncts in the invariants are redundant. For
a detailed explanation of how these machines are synthesised see [2] .

The “AGGREGATES Producer” in the abstract machine System in Fig. 5
is simply interpreted as “EXTENDS ProducerManager”. Within System we
can manage the population of producers (resp. consumers) by invoking the
implicitly defined add Producer (resp. add Consumer) and del Producer (resp.
del Consumer). Furthermore, we can call Producer (resp. Consumer) operations,
now operating on particular live instances. Consider, for instance, a deliver
operation that enforces a live instance of Consumer to consume the product
produced by a live Producer p.

deliver(p, c) =̂
PRE

p ∈ ProducerSet ∧ c ∈ ConsumerSet ∧ p.p-var �= 0 ∧ c.c-var = 0
THEN

p.send || c.obtain(p.p-var)
END

Note that the AGGREGATES clause constitutes in effect a structuring mech-
anism: the consistency of machines aggregating other machines can be reduced
to the consistency of the aggregate, and a number of further conditions on the
aggregating machine. This is the case thanks to the fact that the population

Towards Dynamically Communicating Abstract Machines in the B Method 147

manager of a machine M is internally consistent by construction1, provided that
M is internally consistent. Then, the population manager of a basic machine
M is automatically constructed and can be hidden from the specifier, who can
use AGGREGATES as other conventional structuring mechanism of B [2]. More-
over, the population managers can be hidden from the developer even during
refinement and implementation [3].

MACHINE
Producer Manager

VARIABLES
p-var , ProducerSet

INVARIANT
(∀n · n ∈ ProducerSet ⇒ p-var(n) ∈ INT) ∧
(ProducerSet ⊆ NAME) ∧ (p-var ∈ ProducerSet → INT)

INITIALISATION
p-var , ProducerSet := ∅, ∅

OPERATIONS
prod(x, n) =̂

PRE n ∈ ProducerSet ∧ x ∈ INT − {0} ∧ p-var(n) = 0
THEN p-var(n) := x
END;

send(n) =̂
PRE n ∈ ProducerSet ∧ p-var(n) �= 0
THEN p-var(n) := 0
END;

add Producer(n) =̂
PRE n ∈ NAME − ProducerSet
THEN

ProducerSet := ProducerSet∪{n}||p-var := p-var∪{n, 0}
END;

del Producer(n) =̂
PRE n ∈ ProducerSet
THEN

p-var := {n} �− p-var ||
ProducerSet := ProducerSet − {n}

END;
END

Fig. 6. ProducerManager: Population manager of abstract machine Producer

We adopt the “dot notation” to access variables and operations of the aggre-
gated machines. For instance, the expression m.y represents the value of variable
y corresponding to instance m; analogously, the expression m.op(x) represents
a “call” to operation op, with argument x , corresponding to instance m (see
the definition of operation deliver). The prefix of an expression employing the
dot notation simply represents the “instance parameter” of the corresponding
operation or variable (i.e., m.y and m.op(x) are convenient ways of writing y(m)
and op(x ,m), respectively).

1 An abstract machine is internally consistent if it satisfies its proof obligations, i.e. if it
satisfies the requirements imposed in the B method for considering a machine correct.
Proof obligations for the correctness of an abstract machine include conditions such
as nonemptiness of the state space determined by the machine, or the preservation
of the machine’s invariant by the machine’s operations [1].

148 N. Aguirre et al.

3 Communicating Dynamically Generated Machines

We now consider how to enable communication between dynamically generated
machines. We propose to extend B’s notation with the definition of connectors
[4]. In software architectures [13], connectors represent communication “links”
between components, and have the particularity of being external to the defini-
tion of the related components. This is precisely what we need, a mechanism for
relating machine instances outside the definition of the interacting machines.

3.1 Connector Definitions in B

A connector consists of: (i) a name, (ii) a pair of participants (names of abstract
machines), and (iii) a list of connections. The purpose of connections is to define
how the operations of the participants are linked when two instances of the
participants are connected. Consider, for instance, the connector definition in
Fig. 7. This connector indicates that, whenever an instance p of Producer is
connected to an instance c of Consumer via R, then the occurrence of p.send()
forces the occurrence of (or makes a call to) c.obtain(p.p-var).

A connection can have one of the following forms:

op1 → op2
op1 ← op2

where op1 is an operation of the first participant and op2 is an operation of the
second one. The intended meaning of op1 → op2 is that op1 “calls” op2 ; the
connection in the other direction is interpreted in a similar way. Subsequently,
given a connection c, we will denote by src(c) the operation at the source of the
arrow, and by tgt(c) the operation at the target of the arrow.

For a connector R between two machines M1 and M2 to be well defined, we
have a number of syntactic conditions:

– Machines M1 and M2 must be unrelated (i. e., M1 cannot be defined in
terms of M2 and vice versa),

– if we have a connection op1 → op2 (resp. op1 ← op2), then op1 must be
an operation of M1 and op2 an operation of M2,

– if we have a connection c, then the formal parameters of src(c) must be
distinct variables different from the state variables of M1 and M2, and the
parameters of tgt(c) can only be linguistic elements of M1 or M2, or formal
parameters of src(c),

– a connector cannot contain two different connections c1 and c2 such that
src(c1) = src(c2).

We need to enforce these conditions to guarantee that we can build the machinery
for representing connections in B, as we will show in the next section.

3.2 Intuitive Meaning of Connectors

Connectors allow us to intuitively define relations between instances of abstract
machines. These relations also define an interaction between the related in-
stances, described by the connections. In order to clarify how connectors can

Towards Dynamically Communicating Abstract Machines in the B Method 149

CONNECTOR
R

PARTICIPANTS
Producer, Consumer

CONNECTIONS
send() → obtain(p-var)

END

Fig. 7. A connector for communicating producers and consumers

MACHINE
Prod Cons

AGGREGATES
Producer, Consumer WITH R

OPERATIONS
feedback(c, p) =̂

PRE c ∈ ConsumerSet ∧ p ∈ ProducerSet ∧ (p, c) ∈ RSet ∧
p.p-var = 0 ∧ c.c-var �= 0
THEN c.cons() || p.prod(c.c-var)
END

END

Fig. 8. An example of a machine with aggregation and connectors

be used in practice, let us define an abstract machine Prod Cons with dynamic
sets of producers and consumers related by R, shown in Fig. 8. Within ma-
chine Prod Cons, one can manage the population of producers and consumers
as explained before; furthermore, one can dynamically connect and disconnect in-
stances of producers and consumers by using two implicitly defined operations,
connect R(x, y) and disconnect R(x, y). As for the case of the AGGREGATES
clause, connectors have an “instance set”; for our example, the instance set cor-
responding to connector R is denoted by RSet (see the definition of operation
feedback).

Connector R then defines a relation between instances of producers and in-
stances of consumers. Besides this relation, connector R has an important effect
on the operations linked by R: whenever an instance p of Producer is related
to an instance c of Consumer, a call to p.send() enforces a synchronous call
to c.obtain(p.p-var), as the connection of R indicates. If a producer p is not
connected to a consumer c, then the effect of p.send() is not altered.

When a producer is connected to a consumer, we need to call the obtain
operation on the corresponding consumer; therefore, we need to unequivocally
determine which one is the consumer we have to call. So, we need to restrict
the relation RSet to be functional. Conversely, when we have a connection on
the other direction (e.g., from consumer to producer), we have to restrict the
relation RSet to be injective. These restrictions will be clarified in the next
section, regarding the semantics of connectors.

4 Semantics of Connectors

As we mentioned, it is our aim to extend the B method to support more sophis-
ticated mechanisms for specification, but we want to do so in a way compatible

150 N. Aguirre et al.

with standard B. This would ensure that one could remain using the extensive
work developed on B, as well as the traditional tool support. So, we have the
same intention with our extension supporting connectors. Our connector def-
initions can be mapped into specifications in standard B. More precisely, we
“implement” support for connectors as standard B specifications.

We build an abstract machine for the definition of a connector R relating
two machine (types) M1 and M2. This machine, that we call R Manager , is
structurally defined in terms of the managers for M1 and M2. Moreover, this
machine contains the redefinition of those operations involved in connections.
Then, a clause “AGGREGATES M1, M2 WITH R” within a machine M is sim-
ply interpreted as “EXTENDS R Manager .” Note that R Manager contains the
population managers for M1 and M2.

4.1 Building the Connector Manager

Let M1 and M2 be two internally consistent abstract machines, and R a syn-
tactically valid connector (see the syntactic conditions for valid connectors in
the previous section) with M1 and M2 as participants. Let us assume that there
are no name clashes between the definitions within M1 and M2 (note that name
clashes can be avoided via renaming). We start by constructing the managers
M1 Manager and M2 Manager , for M1 and M2. Since machines M1 and M2 are
internally consistent, we can ensure M1 Manager and M2 Manager are also con-
sistent [2]. Then, we “prime” the operations in M1 Manager and M2 Manager ,
and call the resulting machines M1 Manager ′ and M2 Manager ′, respectively.
The priming is necessary, because we will need to redefine some of the operations
(those involved in connections) of the related machines.

The general form of machine R Manager is shown in Fig. 9. As it can be seen,
this machine has a variable RSet , which represents the sets of active connectors.
As is forced by the invariant, only instances of the corresponding participants
can be connected. If the definition of R includes connections of the form op1 →
op2 , then the invariant is complemented with RSet ∈ M1Set+→ M2Set ; if the
definition of R includes connections of the form op1 ← op2 , then the invariant
is complemented with RSet−1 ∈ M1Set+→ M2Set (note that a given connector
can have both types of connections).

The operation for disconnecting instances is easily defined. On the other
hand, the operation for connecting machines depends on the types of connec-
tions. If a connection of type op1 → op2 is present in the definition of R, then
R connect has to preserve the functionality of RSet ; on the other hand, if a
connection of type op1 ← op2 is present in the definition of R, then R connect
has to preserve the injectivity of RSet . This gives us four possible definitions for
R connect , depending on the types of connections present. For instance, if we
only have connections of type op1 → op2 , then R connect is defined as follows:

R connect(x, y) =̂
PRE x ∈M1Set ∧ y ∈ M2Set THEN RSet(x) := y END

The other three possibilities are also easily defined, and are left as an exercise
for the interested reader.

Towards Dynamically Communicating Abstract Machines in the B Method 151

MACHINE
R Manager

EXTENDS
M1 Manager ′, M2 Manager ′

VARIABLES
RSet

INVARIANT
RSet ⊆ M1Set × M2Set ∧ . . .

INITIALISATION
RSet := ∅

OPERATIONS
R disconnect(x, y) =̂

PRE (x, y) ∈ RSet THEN RSet := RSet − {(x, y)} END
R connect(x, y) =̂ . . .
op1 (x) =̂

PRE pre(op1’(x)) THEN
(RSet [{x}] �= ∅ =⇒ op1’(x)||op2’(RSet(x)))[](RSet[{x}] = ∅ =⇒ op1’(x)) END

op3 (x) =̂ PRE pre(op3’(x)) THEN op3’(x) END

.

.

.
END

Fig. 9. The general form of a connector manager for machines M1 and M2

Notice the definition for operation op1 (x) in Fig. 9. This definition assumes
that we have a connection op1 → op2 . It has as a precondition the precondition
of the original op1 (x) operation (now primed). However, its effect, as shown
in the THEN section of its definition, depends on whether x has a connected
instance of M2 or not. In the case it has a connected instance, the operation
op2 ′ is called on the connected instance R(x) (here it becomes clearer why we
need to restrict RSet to be functional/injective), in parallel with op1’ (x); in the
case that x has no connected instance, we simply call op1’ (x).

The definition of op3 (x) in Fig. 9 assumes that op3 is not at the source of a
connection of R, and therefore, it only needs to call op3 ′(x).

4.2 Proof Obligations for Connector Definitions

The initialisation of the connector manager trivially respects the machine’s in-
variant (since the empty relation is both injective and functional). Also, oper-
ations R connect and R disconnect are defined to make them comply with the
machine’s invariant (as we said, R disconnect trivially preserves the invariant,
whereas R connect has four possible definitions, according to the types of connec-
tions present). However, some proof obligations which cannot be automatically
discharged will be generated from the connector manager. These have to do with
the way in which the original operations (the primed ones) are called. When-
ever the connector contains a connection op1 → op2 , the definition of op1 in
R Manager invokes op1’ respecting its precondition; however, it is not guaran-
teed by construction that the call to op2’ within the definition of op1 respects
the precondition of op2’ , and therefore this will have to be proved.

Essentially, these proof obligations force us to prove that, whenever we have
a connection op1 → op2 (resp. op1 ← op2), we guarantee that the precondition
of op2 (resp. op1) is subsumed by the precondition of op1 (resp. op2).

152 N. Aguirre et al.

4.3 An Example

As an example, let us build the connector manager for our example of produc-
ers and consumers related by our previously defined R connector. The resulting
machine is shown in Fig. 10. Note how operation send , which is involved in a
connection, has changed its definition. Also, note how the connect R operation
and the invariant look like for this particular case. Operation prod , which was not
involved in any connection, simply calls the original (now prod’) operation. No-
tice that, due to the automated generation of this specification, some (harmless)
redundancies emerge (see the invariant of the connector manager, for instance).

MACHINE
R Manager

EXTENDS
Producer Manager ′, Consumer Manager ′

VARIABLES
RSet

INVARIANT
RSet ⊆ ProducerSet × ConsumerSet ∧ RSet ⊆ ProducerSet+→ ConsumerSet

INITIALISATION
RSet := ∅

OPERATIONS
R disconnect(x, y) =̂

PRE (x, y) ∈ RSet THEN RSet := RSet − {(x, y)} END
R connect(x, y) =̂

PRE x ∈ ProducerSet ∧ y ∈ ConsumerSet
THEN RSet(x) := y
END

send(x) =̂
PRE x ∈ ProducerSet ∧ x.p-var �= 0 THEN
(RSet [{x}] �= ∅ =⇒ x.send’()||RSet(x).obtain’(x.p-var) []
(RSet [{x}] = ∅ =⇒ x.send’())
END

prod(i, x) =̂
PRE x ∈ ProducerSet ∧ (i �= 0) ∧ (x.p-var = 0)
THEN prod’(i, x)
END

.

.

.
END

Fig. 10. The manager for connector R, relating machines Producer and Consumer

4.4 Current Limitations of Connector Definitions

According to our definition of connectors, there exist various limitations on how
machine instances can be related.

First, connectors are just binary, i.e., they can involve only two participants.
It is not difficult to think of more general n-ary connectors, although the func-
tionality/injectivity restrictions on the corresponding relation will have to be
generalised (restrictions of the kind of functional dependencies as in databases
would be necessary for n-ary connectors).

Second, due to the functionality/injectivity restrictions, having a connector
of type op1 → op2 (resp. op1 ← op2) forbids having a one-to-many (resp. many-
to-one) connector “topology”. Clearly, the specifier cannot employ connectors, as

Towards Dynamically Communicating Abstract Machines in the B Method 153

we have defined them, for these kinds of communication. Nevertheless, in those
cases where our extension is applicable, the specifier gets a structured definition
of the dynamism, in which most of the proof obligations can be automatically
discharged (except those related to preconditions of operations at the target
of connections, as we explained). Furthermore, it is possible to generalise the
mechanism to connectors of arbitrary multiplicities, but in the general case the
communication needs to be done asynchronously, since it requires an iteration
mechanism. Of course, iteration is not available at the specification stage in
B, so it needs to be characterised as a transaction. Due to space restrictions,
we are unable to show in full detail the generalised form of connectors. But,
essentially, the mechanism is the following: Suppose that we have a connection
op1 → op2 in a connector R relating M1 and M2, and which requires a one-
to-many multiplicity. Then, the characterisation of n.op1 within R Manager
consists of:

1. a set remaining ⊆ M2Set , that keeps track of those instances waiting to be
called,

2. a boolean variable sending to indicate if the manager is engaged in a “send-
ing” transaction,

3. an extra operation send , that:
– if remaining is nonempty and sending is true, it nondeterministically

chooses an element m from remaining , removes it from remaining and
calls m.op2 ,

– if remaining is empty and sending is true, it finishes the sending trans-
action by setting sending to false.

4. the assertion sending = false is added as an extra precondition of all other
operations (i.e., the other operations are blocked if the connector manager is
involved in a sending transaction).

5 Conclusions and Future Work

We have defined an extension to the B method to support the definition of con-
nectors [4], in the software architectures sense [13]. The extension allows one to
relate dynamically generated instances of abstracts machines for communication.
The approach complements a previously proposed extension to B to support dy-
namic creation and deletion of machine instances, using additional structuring
mechanisms. The extension has been defined with the intention of making it fully
compatible with the standard B method. Indeed, specifications written using our
extensions are systematically mapped into standard B specifications.

The connector definitions that we propose allow us to enable the communi-
cation, under certain restrictions, between abstract machines in a specification
which presents dynamic creation and deletion of machine instances. The way in
which we provide semantics to the extension is based on the work in [6]. Although
the allowed forms of communication are restricted, the use of connectors favours
specification structuring (with its well known advantages for understandability
and simplification of proofs), and allows one to specify systems with structural

154 N. Aguirre et al.

dynamism at a higher level of abstraction. The provided level of abstraction
is based on ideas developed by the software architectures community, partic-
ularly, the view of component based systems as modules related by means of
connectors, and the externalisation of component interaction. This higher level
of abstraction might have a positive impact in the effort needed to complement
the B method with modern system design methodologies, such as object ori-
entation. In fact, currently there exist various approaches to the modelling of
object oriented features in B, particularly the work of H. Treharne [15], K. Lano
et al. [10] and C. Snook and M. Butler [14]. We believe that these approaches
might benefit from our characterisation of dynamic creation/deletion of machine
and connector instances, and their advantages in the decomposability of spec-
ifications. For example, in [15], classes and associations are translated into B
as an ad hoc unstructured specification; in [10], a notion similar to that of class
manager is the smallest unit of modularity (as opposed to our finer grained aggre-
gation mechanism); in [14], entire class diagrams are translated into B as single
abstract machines. Being able to exploit the modularisation of specifications
not only benefits the specifier by alleviating the proof efforts (by decomposing
proofs in smaller “lemmas”) and making specifications easier to understand [5];
modularisation also greatly improves analysability. For example, a structured B
specification of a system allows us to validate modules independently, via anima-
tion. It also allows fully automated verification mechanisms, such as those based
on model checking [11], to scale up and be applicable to a wider range of system
specifications, by contributing to cope with the well known combinatorial state
explosion problem.

As work in progress, we are currently working on a better developed gener-
alisation of connectors, that covers more cases of communication. We are also
studying the treatment of our connector definitions at refinement and imple-
mentation stages. Notice that, since our extensions to the B language are defini-
tional, the feasibility of refinement and implementation is guaranteed. Neverthe-
less, we are exploring ways of systematically producing correct implementations
for connector definitions, supplementing what has been done in [3] for machine
aggregation. Also, we are currently studying how our AGGREGATES structuring
mechanism, together with the support for connectors, combines with other struc-
turing mechanisms of B when the architectural organisation of a specification
involves various layers of abstract machines.

References

1. J.-R. Abrial, The B-Book, Assigning Programs to Meanings, Cambridge University
Press, 1996.

2. N. Aguirre, J. Bicarregui, T. Dimitrakos and T. Maibaum, Towards Dynamic
Population Management of Components in the B Method, in Proceedings of the
3rd International Conference of B and Z Users ZB2003, Turku, Finland, LNCS,
Springer-Verlag, 2003.

Towards Dynamically Communicating Abstract Machines in the B Method 155

3. N. Aguirre, J. Bicarregui, L. Guzmán and T. Maibaum, Implementing Dynamic
Aggregations of Abstract Machines in the B Method, in Proceedings of the Inter-
national Conference on Formal Engineering Methods ICFEM 2004, Seattle, USA,
LNCS, Springer-Verlag, 2004.

4. R. Allen and D. Garlan, Formalizing architectural connection, in Proceedings of
the Sixteenth International Conference on Software Engineering ICSE ‘94, IEEE
Computer Society Press, 1994.

5. The B-Toolkit User Manual, B-Core (UK) Limited, 1996.
6. J. Bicarregui, K. Lano and T. Maibaum, Towards a Compositional Interpretation of

Object Diagrams, in Proceedings of IFIP TC 2 working conference on Algorithmic
Languages and Calculi, Bird and Meertens (eds), Chapman and Hall, 1997.

7. Digilog, Atelier B - Générateur d’Obligation de Preuve, Spécifications, Technical
Report, RATP SNCF INRETS, 1994.

8. T. Dimitrakos, J. Bicarregui, B. Matthews and T. Maibaum, Compositional Struc-
turing in the B-Method: A Logical Viewpoint of the Static Context, in Proceedings
of the International Conference of B and Z Users ZB2000, York, United Kingdom,
LNCS, Springer-Verlag, 2000.

9. J.L. Fiadeiro and T. Maibaum, Design Structures For Object-Based Systems, in
S. Goldsack and S. Kent (eds.), Formal Aspects of Object-Oriented Systems. Pren-
tice Hall, 1994.

10. K. Lano, D. Clark and K. Androutsopoulos, UML to B: Formal Verification of
Object-Oriented Models, in Proceedings of the International Conference on Inte-
grated Formal Methods IFM 2004, Canterbury, United Kingdom, LNCS, Springer-
Verlag, 2004.

11. M. Leuschel and M. Butler, ProB: A Model Checker for B, in Proceedings of FM
2003, Pisa, Italy, LNCS, Springer-Verlag, 2003.

12. B. Meyer, Object-Oriented Software Construction, Second Edition, Prentice-Hall
International, 2000.

13. M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Dis-
cipline, Prentice-Hall, 1996.

14. C. Snook and M. Butler, UML-B: Formal modelling and design aided by UML,
Technical Report, Electronics and Computer Science, University of Southampton,
Southampton, United Kingdom, 2004.

15. H. Treharne, Supplementing a UML Development Process with B, in Proceedings of
FME 2002: Formal Methods– Getting IT Right, Denmark, LNCS 2391, Springer,
2002.

Sweep-Line Analysis of TCP Connection

Management

Guy Edward Gallasch, Bing Han, and Jonathan Billington

Computer Systems Engineering Centre,
School of Electrical and Information Engineering,

University of South Australia,
Mawson Lakes Campus, SA 5095, Australia
guy.gallasch@postgrads.unisa.edu.au

{bing.han, jonathan.billington}@unisa.edu.au

Abstract. Despite the widespread use of the Transmission Control Pro-
tocol (TCP) as the main transport protocol in the Internet, the proce-
dures for connection establishment and release are still not fully under-
stood. This paper extends the analysis of a Coloured Petri net model of
TCP’s Connection Management procedures by applying the state explo-
sion alleviation technique known as the sweep-line method. The protocol
is assumed to be operating over a reordering lossless channel. Termina-
tion and absence of deadlock properties are investigated for many scenar-
ios, including client-server and simultaneous connection establishment,
orderly release and abortion. The sweep-line method provides a reduc-
tion in memory usage of around a factor of 10 and allows investigation
of many scenarios that were previously out of the reach of conventional
methods.

Keywords: TCP Connection Management, State Space methods, Reach-
ability analysis, Sweep-line analysis, Coloured Petri Nets, Verification.

1 Introduction

The Transmission Control Protocol (TCP), originally specified in [21] using in-
formal narrative descriptions, a finite state machine and message sequence di-
agrams, provides a reliable data transfer service that ensures data is delivered
without loss, duplication or reordering. It has since been modified and improved
(e.g. see [1, 3, 8, 9, 14, 15, 16] although such complex protocols are notoriously
difficult to understand without the aid of formal methods.

TCP Connection Management encompasses the procedures for establishing
and terminating connections (TCP is a connection-oriented protocol). To fa-
cilitate greater understanding of the connection management procedures and
detection of errors therein, a detailed Coloured Petri net (CPN) model of TCP
Connection Management has been created and analysed in [12, 13]. This CPN
model is parameterised with a set of user commands to be issued to each TCP
entity and the maximum number of retransmissions of certain TCP segments.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 156–172, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Sweep-Line Analysis of TCP Connection Management 157

Many previous attempts have been made to verify the correctness of TCP
Connection Management. A good survey of the literature in this area is given
in [12]. In our own previous work [12, 13] termination properties, deadlocks and
language analysis were investigated for various connection establishment, release
and abortion scenarios and some problems were discovered and reported. How-
ever, the well-known state explosion problem [23] prevented analysis of scenarios
with larger values of the maximum number of retransmission parameters.

In this paper we focus on the verification of termination properties and ab-
sence of deadlocks. We attempt to alleviate the state space explosion problem
by applying the sweep-line state space exploration method [20] to the analysis
of our TCP Connection Management CPN. To do so, we identify ways in which
the CPN exhibits progress and then formalise them. This allows the sweep-line
method to delete states on-the-fly based on the notion of progress, thus reducing
peak memory usage and allowing larger state spaces to be investigated.

The contribution of this paper is threefold. Firstly, we believe this is the
first application of the sweep-line method to a complex connection management
protocol. We identify several sources of progress in the protocol, formalise them,
and combine them to obtain an effective progress mapping. The development of
effective progress mappings is still somewhat of an open question with the sweep-
line method. Secondly, through application of this progress measure we have been
able to extend our analysis of TCP Connection Management to configurations of
retransmission counters that were previously out of reach. Thirdly we evaluate
the effectiveness of the sweep-line method in this context.

The rest of this paper is organised as follows. Section 2 introduces our TCP
Connection Management CPN. In Section 3 the sweep-line method is briefly in-
troduced, multiple sources of progress are identified and a final combined progress
mapping is identified. This combined mapping is then applied to the analysis of
our CPN, the results of which are presented in Section 4. Conclusions are given
in Section 5. We assume the reader to be familiar with basic CPN concepts and
to have some basic knowledge of TCP procedures. For a thorough introduction
to CPNs we refer the reader to [17, 19].

2 CPN Model of TCP Connection Management

TCP Connection Management consists of a number of procedures, including
both normal (client-server) and simultaneous connection establishment and re-
lease, and abort procedures. Connection establishment is via a three way hand-
shake [22] and connection release is an orderly release. Details of TCP Connection
Management procedures can be found in e.g., [2, 12, 13]. A detailed Coloured
Petri net (CPN) model of TCP Connection Management has been developed
in [12, 13]. We introduce it briefly in the following subsections.

2.1 Modelling Scope and Assumptions

Since the scope of our model is confined to Connection Management, we do not
consider any parameters or segment fields associated with data transfer. We only

158 G.E. Gallasch, B. Han, and J. Billington

consider four of TCP’s user commands: active open, passive open, close and abort.
We consider that security and precedence are always met and we only consider
a single connection between users. This allows us just to model the commands
without their parameters. We only model the fields in the TCP segment header
and the TCB that are related to TCP connection management, so in our model
a segment only contains a sequence number, an acknowledgement number and
the control bits: SYN, ACK, FIN and RST (reset). Apart from the ACK bit,
there can only be one control bit set in a segment. Connection management
procedures only consume a small portion of the sequence number space, thus
we choose small values for the initial sequence numbers for each TCP entity to
avoid the complications of modelling modulo arithmetic. We assume that the
receive window is always big enough to accept incoming segments and we omit
the window field in segments and any checks associated with window size. Finally
we assume that segments can be lost, delayed, and re-ordered while traversing
the network. For more details on these assumptions please refer to [12].

2.2 Model Structure

The aim of the following subsections is to give a feel for the structure of the
model as we cannot go into details at anything other than a high level. For a
complete description of this model, please see [12].

The Hierarchy page of this model is shown in Fig. 1. The CPN model contains
a declarations page and 19 CPN pages. The 19 CPN pages are organised into a
tree structure, which comprises 4 hierarchical levels.

The top-level page is the TCP Overview page, which provides an abstract
view of TCP and its environment. This page is described in more detail in Sec-
tion 2.3. The second level contains the Event Processing page modelling TCP’s
responses to user commands, segment arrivals and retransmission timeout via
the third level pages User Commands, Segment Processing and Retransmissions
respectively. The User Commands page comprises three fourth level subpages:
open, close and abort. The Segment Processing page models the processing of
segments for each of TCP’s 11 states via 11 fourth level pages. The Retrans-
missions page models TCP retransmitting various segments, described in more
detail in Section 2.4. There is one instance of each page from the second level
downwards for each TCP entity, indicated by the inscriptions TCP’1 and TCP’2
on the arc from page TCP Overview to page Event Processing. The CPN model
contains 7 places (8 in total when you consider the two instances of the Retrans-
missions page), 19 substitution transitions and 97 executable transitions.

2.3 TCP Overview Page

As shown in Fig. 2, the TCP Overview page comprises 6 places, 2 substitution
transitions and 2 executable transitions. Places User 1 and User 2, typed by
colour set COMMAND, each model a set of TCP user commands to be issued
to the corresponding TCP entity by the corresponding user. Places TCB 1 and
TCB 2, typed by colour set TCB, model the transmission control block for each
TCP entity. Places H1 H2 and H2 H1, typed by SEG, model TCP buffers and

Sweep-Line Analysis of TCP Connection Management 159

Hierarchy#10010 Declarations#0

TCP_Overview#1

M Prime

Event_Processing#2

Segment_Processing#4

CLOSED#9

LISTEN#10

SYN_SENT#11

SYN_RECEIVED#12

ESTABLISHED#13

Open#6

User_Commands#3

Close#7

Abort#8

FIN_WAIT_1#14

FIN_WAIT_2#15

CLOSE_WAIT#16

CLOSING#17

LAST_ACK#18

TIME_WAIT#19

Retransmissions#5

TCP’1

TCP’2

Segment_Processing

User_Commands

Open

Close

Abort

CLOSED

LISTEN

SYN_SENT

SYN_RECEIVED

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

CLOSE_WAIT

CLOSING

LAST_ACK

TIME_WAIT

Retrans_Timeout

Fig. 1. The Hierarchy page of the TCP Connection Management CPN

all network storage (e.g., router buffers). H1 H2 models data flow from from
host 1 to host 2 and vice versa for place H2 H1. Transitions Lossy Channel1 and
Lossy Channel2 can be switched on and off by their guards to model lossy and
non-lossy channels respectively. We analyse non-lossy channels in this paper.

The two TCP entities are modelled by the substitution transitions named
TCP’1 and TCP’2, each corresponding to an instance of the Event Processing

160 G.E. Gallasch, B. Han, and J. Billington

TCP’2

HS

TCP’1

HS

H1_H2

SEG

H2_H1

SEG

User_1

COMMAND
1‘A_Open

User_2

COMMAND1‘P_Open

TCB_1

(CLOSED,
{RCV_NXT=0,
SND_NXT=0,
SND_UNA=0,
ISS=ISS_tcp1},
cls)

TCB

TCB_2

(CLOSED,
{RCV_NXT=0,
SND_NXT=0,
SND_UNA=0,
ISS=ISS_tcp2},
cls)

TCB

Lossy_Channel1

[false]

Lossy_Channel2

[false]

seg

seg

Fig. 2. Top level CPN page: TCP Overview

page. Places connected to each substitution transition correspond to matching
places on the Event Processing subpage.

Fig. 3 shows the declarations associated with the TCP Overview page. The
declarations are divided into four groups: (1) user commands, (2) TCP seg-
ments, (3) Transmission Control Block, and (4) initial send sequence numbers.
Comments are enclosed by (* and *).

The first group has one colour set, COMMAND (line 2), defining the set of user
commands under consideration. The second group (lines 3 – 12) defines a TCP
segment with the abstractions discussed in Section 2.1. CTLbit (line 4) defines
the four control bits SYN, ACK, FIN and RST from the TCP segment header [21].
ACKflag (line 5) defines the status of the ACK bit. SEG CTL (line 6) is the product
of the two colour sets CTLbit and ACKflag. The colour set SEG represents TCP
segments themselves. It is a record type that has three entries: SEQ, ACK and
CTL, modelling the sequence number, the acknowledgement number and the
control information in the TCP header, respectively. Finally, seg (line 12) is a
variable of type SEG used in arc inscriptions in the CPN model.

The third group (lines 13 – 26) defines the Transmission Control Block.
STATE (lines 14 – 16) is an enumeration of all the TCP entity states. SV (lines
17 – 21) defines the four sequence numbers that make up the TCP state variables:
RCV NXT (receive next sequence number); SND NXT (send next sequence num-
ber); SND UNA (send oldest unacknowledged); and ISS (initial send sequence
number). LISTENstat (line 22) stores the history of the TCP state, that is,
whether TCP entity has been in the LISTEN state previously (lis) or not (cls).
This is used to determine the state a TCP entity enters upon receiving a RST
segment in either the SYN SENT or SYN RCVD states. TCB (line 23) is a prod-
uct of colour sets STATE, SV and LISTENstat and defines a TCB. The variables
on lines 24 – 26 are used in inscriptions in the CPN model.

Sweep-Line Analysis of TCP Connection Management 161

1 (* User Commands *)
2 color COMMAND = with A Open | P Open | Close | Abort;
3 (* TCP Segments *)
4 color CTLbit = with SYN | RST | ACK | FIN;
5 color ACKflag = with on | off;
6 color SEG CTL = product CTLbit*ACKflag;
7 color Int = int;
8 color SEG = record
9 color SEQ: Int *

10 color ACK: Int *
11 color CTL: SEG CTL;
12 var seg: SEG;
13 (* Transmission Control Block *)
14 color STATE = with CLOSED | LISTEN | SYN SENT | SYN RCVD | EST |
15 color STATE = with CLOSE WAIT | LAST ACK | FIN W1 | FIN W2 |
16 color STATE = with CLOSING | TIME WAIT;
17 color SV = record
18 color RCV NXT: Int *
19 color SND NXT: Int *
20 color SND UNA: Int *
21 color ISS:Int;
22 color LISTENstat = with lis | cls;
23 color TCB = product STATE*SV*LISTENstat;
24 var s : STATE;
25 var v : SV;
26 var i : LISTENstat;
27 (* Initial Sequence Numbers *)
28 val ISS tcp1 = 10;
29 val ISS tcp2 = 20;

Fig. 3. Colour sets for places on page TCP Overview

Finally, the initial send sequence number for each TCP entity is represented
by ISS tcp1 (line 28) and ISS tcp2 (line 29) respectively. We chose a small value
of ISS for each TCP entity (i.e, 10 and 20), such that the sequence numbers will
not need to wrap.

2.4 The Retransmissions Page

The retransmission mechanism is modelled on page Retransmissions in Fig. 1. A
more detailed description of this page can be found in [12]. In brief, there is one
instance of this page for each TCP entity. This page contains a single place called
Retrans Counter that stores what is essentially a 5-tuple recording the number of
retransmissions that have occurred in each of the five states in the subset of states
RS = {SYN SENT, SYN RCVD, FIN WAIT 1, CLOSING, LAST ACK} ⊂ STATE.
Each element in the tuple is a pair ∈ RS× Int, with one element for each state
∈ RC. All retransmission counters are initialised to 0 and increment by 1 each
time a segment is retransmitted in one of the corresponding states.

162 G.E. Gallasch, B. Han, and J. Billington

Three types of segment can be retransmitted: SYN, SYNACK and FIN, with
a distinction made between retransmitting a FIN in the FIN WAIT 1 and/or
CLOSING state and the LAST ACK state. Each of these four types of retrans-
mission has a maximum value specified as a parameter to the model, as will be
seen in Section 4. The official TCP specification [21,3] is incomplete with respect
to the retransmission mechanism, but Wright and Stevens [24] specify a value of
two for the maximum retransmission counters for SYN and SYNACK. When the
number of retransmissions of any of the segments reaches its maximum value the
TCP entity aborts the connection, i.e., enters CLOSED and sends a RST to the
peer entity. When the abort occurs, the number of retransmissions contained in
the retransmission counter is reinitialised to 0.

3 Sweep-Line Analysis

3.1 The Sweep-Line Method

When conducting state space exploration, the primary reason for storing states in
memory is for comparison with newly generated states to determine whether they
have already been discovered. If the state space generation algorithm can identify
states that can no longer be reached from any unexplored states, then these
states can be safely deleted from memory while still guaranteeing full coverage
of the reachability graph. This reduces memory usage and (potentially) saves
time due to fewer comparisons being made between new states and states stored
in memory. The cost is the additional overhead introduced by the mechanism
that identifies states to be safely deleted.

The Sweep-line method allows identification of states that are guaranteed not
to be reachable again [5] or are unlikely to be reached again [20] by allowing the
user to define a progress measure P = (O,", ψ) which specifies a set of progress
values O, an ordering " ⊆ O × O on those values, and a progress mapping
ψ : M → O (where M represents all possible markings of the CPN [17]) from
states of the model to progress values. If the mapping is defined sensibly then
the ordering on the progress values can be used to determine on-the-fly whether
or not states with a given progress value are reachable. Such progress mappings
can be monotonic, i.e. the progress value of any given state must be no less than
the progress values of all successor states, or non-monotonic if this condition
does not hold.

When a state has a higher progress value than one of its immediate successors,
then this edge in the reachability graph is called a regress edge. The sweep-line
method deals with this by conducting multiple sweeps of the reachability graph.
The result is that some parts of the reachability graph may be generated more
than once, but the algorithm is guaranteed to both terminate and provide full
coverage of the reachability graph. For technical details of the operation of the
sweep-line method, please see [5, 20].

In this paper, we use a vector of integers as the set of progress values (O = Nn

for n ≥ 1) and a lexicographical ordering on the elements of the integer vectors
to give us ". Our progress mapping thus becomes ψ : M → Nn.

Sweep-Line Analysis of TCP Connection Management 163

3.2 Sources of Progress

Before identifying sources of progress in our CPN, we define some notation and
functions to be used in the formalisation of our progress mappings. Let M denote
a marking of the CPN, where M0 is the initial marking of the CPN and M(p)
denotes the marking of place p. We define four projection functions to extract
state information from what is essentially a single 6-tuple (a token of type TCB)
stored on each of TCB 1 and TCB 2. The marking of the TCB 1 and TCB 2 places
is actually a singleton multiset, so we firstly define a function that converts this
into its basis element:

Definition 1. Let SMS1 be the set of all singleton multisets over a basis set
S : SMS1 = {{(s, 1)} | s ∈ S}. A function that converts a singleton multiset to
its basis element is given by fc : SMS1 → S, where fc({(s, 1)}) = s.

Definition 2. The projection functions are given by

– State : STATE× Int4 × LISTENstat→ STATE,
where State(s, (rcvnxt, sndnxt, snduna, iss), stat) = s.

– SndNxt : STATE× Int4 × LISTENstat→ Int,
where SndNxt(s, (rcvnxt, sndnxt, snduna, iss), stat) = sndnxt.

– SndUna : STATE× Int4 × LISTENstat→ Int,
where SndUna(s, (rcvnxt, sndnxt, snduna, iss), stat) = snduna.

– RcvNxt : STATE× Int4 × LISTENstat→ Int,
where RcvNxt(s, (rcvnxt, sndnxt, snduna, iss), stat) = rcvnxt.

We also define five projection functions to extract the values of the retrans-
mission counters from the 5-tuple on the Retrans Counter place.

Definition 3. Let fc(M(Retrans Counter)) = ((SYN SENT, a), (SYN RCVD, b),
(LAST ACK, c), (FIN W1, d), (CLOSING, e)). The projection functions are given
by

– RetSynSent : (RS× Int)5 → Int,
where RetSynSent(fc(M(Retrans Counter))) = a

– RetSynRcvd : (RS× Int)5 → Int,
where RetSynRcvd(fc(M(Retrans Counter))) = b

– RetLastAck : (RS× Int)5 → Int,
where RetLastAck(fc(M(Retrans Counter))) = c

– RetFinW1 : (RS× Int)5 → Int,
where RetF inW1(fc(M(Retrans Counter))) = d

– RetClosing : (RS× Int)5 → Int,
where RetClosing(fc(M(Retrans Counter))) = e

TCP Major State Both TCP entities in the CPN model progress through
the major states defined by colour set STATE. We define an ordering on the
major states that preserves as closely as possible the order in which TCP enti-
ties progress through these states. Table 1 defines this ordering and a function

164 G.E. Gallasch, B. Han, and J. Billington

MajorState : STATE → N to map from states to integers. To help reduce the
amount of re-exploration we introduce a new major state, CLOSED F, to dif-
ferentiate between the initial CLOSED state and the final CLOSED state. This
does not invalidate the model as we only model one connection instance. We
now define the progress mapping ψ1

major state : M → N for TCP entity 1:

ψ1
major state(M) = MajorState(State(fc(M(TCB 1))))

The progress mapping ψ2
major state is defined analogously for TCP entity 2.

State Variables. The state variables stored within the singleton TCB tokens on
places TCB 1 and TCB 2 increase as the protocol progresses through connection
establishment and release, although there are instances where they reset to 0, i.e.
when a TCP entity enters CLOSED F or when a TCP server returns to LISTEN.
Given our modelling assumptions about the non-wrapping of sequence numbers
(described in Section 2.3) we can simply add the state variables together to
create the progress mapping ψ1

state vars : M → N for TCP entity 1 (given below)
and a corresponding progress mapping ψ2

state vars for TCP entity 2 (not shown).

ψ1
state vars(M) =SndNxt(fc(M(TCB 1))) + SndUna(fc(M(TCB 1)))+

RcvNxt(fc(M(TCB 1)))

User Commands. As model execution progresses the number of commands
to issue to each TCP entity (i.e. the number of tokens on the User 1 and User 2
places) decreases until there are no commands left to issue. This represents
progress and is captured by the mapping ψuser comm : M → N given below.

ψuser comm(M) = 4− |M(User 1)| − |M(User 2)|

We do not analyse any sets of user commands greater than size 2 on either User 1
or User 2, hence the ‘4’ in the equation.

Table 1. An ordering and corresponding mapping for TCP major states

state ∈ STATE MajorState(state)

CLOSED 1
LISTEN 2

SYN SENT 3
SYN RCVD 4

EST 5
FIN W1 6
FIN W2 7

CLOSE WAIT 8
CLOSING 9

LAST ACK 10
TIME WAIT 11
CLOSED F 12

Sweep-Line Analysis of TCP Connection Management 165

Retransmission Counters. The action of retransmitting a segment can be
considered as progress of a sort, as we are hopefully closer to our goal af-
ter retransmitting a segment than before retransmitting it. We capture this in
ψretrans : M → N5 shown below. Implicitly we define ψ1

retrans and ψ2
retrans for

instance 1 and 2 of Retrans Counter.
ψretrans(M)=(RetClosing(fc(M(Retrans Counter))),

RetLastAck(fc(M(Retrans Counter))),RetF inW1(fc(M(Retrans Counter))),

RetSynRcvd(fc(M(Retrans Counter))),RetSynSent(fc(M(Retrans Counter))))

We have weighted the retransmission counters to give greater weight to re-
transmissions occurring in states encountered later in the connection manage-
ment procedures, to reflect the mapping given by MajorState in Table 1.

(Decreasing) Channel Content. Once both TCP entities enter their final
states there may be many segments left in the channels. These are received
and processed by each TCP entity with little or no change to the marking of
the model apart from the marking of the channel places. We attempt to capture
some progress related to the change in both the number and type of the segments
in channel H1 H2 by mapping ψ1

ch content : M → N.

ψ1
ch content(M) =104 − 103 ∗ synsInH1 H2(M)− 102 ∗ finsInH1 H2(M)

− 101 ∗ acksInH1 H2(M)− 100 ∗ resetsInH1 H2(M)

The progress mapping ψ2
ch content is defined analogously. We weight the types

of segment according to how soon we expect to see that type of segment in
the channel, e.g. the presence of SYN segments in the channel results in lower
progress values than the presence of ACK segments. We use a base of 10 to con-
struct our weighting as there will never be more than 10 segments of a given type
in the channel at any one time. We check the validity of this assumption on-the-
fly during reachability graph generation. The function synsInH1 H2 takes the
multiset of segments on place H1 H2 and returns the number of SYN segments
in that multiset, and analogously for FIN, ACK and RST segments. Due to length
considerations we do not formally define these functions here.

3.3 Combining Sources of Progress

Based on intuition and experimental results for small configurations of the model,
the sources of progress and derived mappings are combined into the mapping
ψcombined : M → N16 which will be used to analyse our CPN model:

ψcombined(M) =(ψ1
retrans(M), ψ2

retrans(M), ψ1
major state(M), ψ2

major state(M),

ψ1
state vars(M), ψ2

state vars(M), ψuser comm(M),

ψ1
ch content(M) + ψ2

ch content(M))

A formal comparison of the performance of the sweep-line method with dif-
ferent orderings of progress mappings within ψcombined is beyond the scope of
this paper, however there are some interesting points worth highlighting.

166 G.E. Gallasch, B. Han, and J. Billington

The first is that we combine both ψ1
ch content and ψ2

ch content into one mapping
by adding them together. Interestingly, combining them in this way gave much
better performance than if one channel was given a greater significance than the
other. The second is that we give ψ1

retrans and ψ2
retrans greater significance than

everything else. While naive intuition would suggest that the TCP major state
progress should be given greatest significance, doing so resulted in significantly
worse performance. The third is that the mapping ψuser comm actually has no
effect on the performance of the sweep-line method, regardless of its position in
the vector ψcombined, as the action of a TCP entity receiving a user command
always corresponds to another action in the system that also represents progress.

3.4 Comparison with Previous Construction of Progress Mappings

In [11] an early incarnation of the sweep-line method was used to analyse the
Wireless Transaction Protocol (WTP), a part of the Wireless Application Pro-
tocol (WAP). The WTP consists of two protocol entities (an initiator and a
responder) communicating over a bidirectional channel and is similar to TCP
in many ways, at least superficially. This early version of the sweep-line method
required a monotonic progress mapping [5] and the existing software support
restricted the set of progress values to the set of integers. Sources of progress
identified for WTP included the internal state of the two interacting protocol en-
tities, the retransmission counters in each of the protocol entities and a progress
mapping that captured the decreasing number of messages in the channel in
both directions, but only when both initiator and responder were in their final
states. This work did not take into account the progress related to shrinking sets
of user commands.

A more recent investigation using the sweep-line method [10] involved the
analysis of the Internet Open Trading Protocol (IOTP) [4]. IOTP is a transaction
protocol involving four trading roles interacting via a set of document exchanges .
Here, progress was identified in the sequence numbers and retransmission coun-
ters of each trading role, in the progression of each trading role through its
internal states and the particular combination of document exchanges being un-
dertaken by the four trading roles at any point in time. The IOTP investigation
did not take into account the number or type of messages in the channels as
we do in ψ1

ch content and ψ2
ch content, nor was there any concept of a set of user

commands in the IOTP model analysed in [10].
Both the WAP and IOTP investigations uncovered very similar sources of

progress to those identified in this paper and gave us ideas as to what to examine
in the TCP Connection Management model to identify progress. These common
themes may contribute to a general methodology for the application of sweep-
line to communication and transaction protocols, although this is beyond the
scope of this paper.

4 Experimental Results

The TCP Connection Management CPN from Section 2 was analysed with the
sweep-line method using ψcombined over a lossless reordering channel. Tables 2

Sweep-Line Analysis of TCP Connection Management 167

and 3 show the 11 configuration classes (labelled A - K) that were investigated.
Table 2 describes the initial marking (M0) of places User 1 and User 2 while Ta-
ble 3 shows the initial marking of TCB 1 and TCB 2. Places H1 H2 and H2 H1
are always initially empty and both instances of the Retrans Counter place always
contain retransmission counters initialised to 0 for each of the five states in RS.
These places are therefore omitted from Tables 2 and 3. Configuration classes A
and B are used to analyse the client-server and simultaneous open procedures.
Configuration classes C-E examine the connection release procedures. The re-
maining classes investigate connection management procedures involving aborts.
For more details on these configuration classes, please see [12]. All experiments
were conducted on a Pentium 2.6 GHz PC with 1Gb RAM.

Each of the configurations A - K were investigated for different values of
the maximum number of retransmission parameters. Table 4 shows the results
obtained, where the first column gives the configuration being analysed and the
4-tuple gives the maximum number of retransmissions for each of the SYN and
SYNACK segments, and both cases of the FIN segment as described in Section 2.4.
A dash for any element in the 4-tuple signifies that the corresponding maximum
retransmission counter is not relevant for that particular configuration. For a
more detailed explanation, please see [12]. A dash is interpreted as a 0 with

Table 2. Initial markings of User 1 and User 2

Configuration Initial Markings
Class M0(User 1) M0(User 2)

A 1‘A Open 1‘P Open

B 1‘A Open 1‘A Open

C 1‘Close 1‘Close

D 1‘A Open + +1‘Close 1‘P Open + +1‘Close

E 1‘A Open + +1‘Close 1‘A Open + +1‘Close

F 1‘A Open + +1‘Abort 1‘P Open + +1‘Abort

G 1‘A Open + +1‘Abort 1‘A Open + +1‘Abort

H 1‘Close + +1‘Abort 1‘Close + +1‘Abort

I 1‘A Open + +1‘Close 1‘P Open + +1‘Abort

J 1‘A Open + +1‘Abort 1‘P Open + +1‘Close

K 1‘A Open + +1‘Close 1‘A Open + +1‘Abort

Table 3. Initial markings of TCB 1 and TCB 2

Configuration Initial Markings
Class M0(TCB 1) M0(TCB 2)

A - B 1‘(CLOSED, (0, 0, 0, 10), cls) 1‘(CLOSED, (0, 0, 0, 20), cls)

C 1‘(EST, (21, 11, 11, 10), cls) 1‘(EST, (11, 21, 21, 20), cls)

D - G 1‘(CLOSED, (0, 0, 0, 10), cls) 1‘(CLOSED, (0, 0, 0, 20), cls)

H 1‘(EST, (21, 11, 11, 10), cls) 1‘(EST, (11, 21, 21, 20), cls)

I - K 1‘(CLOSED, (0, 0, 0, 10), cls) 1‘(CLOSED, (0, 0, 0, 20), cls)

168 G.E. Gallasch, B. Han, and J. Billington

Table 4. Selected Sweep-line Results for Configurations A - K

Config. Conventional Sweep-line terminal deadlocks
total peak % % markings

nodes time nodes nodes time space time

A-(2,2,-,-) 2880 00:00:03 3118 1073 00:00:03 37.3 100.0 24 0

B-(2,1,-,-) 247977 03:40:24 268558 62643 00:15:14 25.3 6.9 63 0
B-(2,2,-,-) - - 1015905 153466 01:54:21 - - 126 0

C-(-,-,2,2) 87291 00:09:25 93213 10228 00:02:04 11.7 21.9 50 0

D-(1,0,1,1) 126098 00:48:35 135680 20179 00:05:23 16.0 11.1 32 0
D-(1,1,0,1) 65381 00:05:07 67921 17237 00:03:14 24 4
D-(1,1,1,0) - - 523790 61594 00:43:01 - - 52 0
D-(1,1,1,1) - - 825101 109919 01:34:42 - - 68 0

E-(0,0,1,1) - - 235342 39226 00:16:56 - - 16 0
E-(0,1,0,1) 328023 09:10:37 341323 70104 00:42:57 21.4 7.8 29 8
E-(0,1,1,0) - - 1603626 166639 03:16:23 - - 51 0
E-(0,1,1,1) - - 3209068 407333 16:14:37 - - 67 0
E-(1,0,0,1) - - 713661 175539 04:24:55 - - 32 8

F-(2,2,-,-) 14563 00:00:23 17444 3480 00:00:20 23.9 87.0 30 0

G-(1,1,-,-) 103670 00:10:59 110609 16669 00:03:35 16.1 32.6 60 0
G-(1,2,-,-) - - 492913 48165 00:26:53 - - 128 0
G-(2,1,-,-) - - 945299 125745 01:30:58 - - 135 0
G-(2,2,-,-) - - 4123514 376227 15:33:26 - - 288 0

H-(-,-,2,2) 229587 03:36:12 239384 22528 00:07:02 9.8 3.3 215 0

I-(2,2,1,-) 193990 02:02:58 226500 28449 00:11:43 14.7 9.5 42 0
I-(2,2,2,-) - - 431465 46054 00:32:25 - - 54 0

J-(2,2,1,-) 167525 00:46:06 182246 31480 00:08:43 18.8 18.9 48 0
J-(2,2,2,-) - - 362458 53278 00:25:04 - - 66 0

K-(0,2,1,-) - - 435917 55654 00:36:17 - - 44 0
K-(0,2,2,-) - - 881372 94966 01:48:13 - - 56 0
K-(1,0,2,-) - - 300509 59825 00:35:21 - - 32 0
K-(1,1,0,-) 264144 04:45:25 268862 25193 00:12:45 9.5 4.5 56 0
K-(1,1,1,-) - - 1791167 242801 08:18:18 - - 84 0
K-(1,1,2,-) - - 3632349 411259 28:42:11 - - 108 0
K-(1,2,0,-) - - 1503260 92610 03:12:25 - - 112 0
K-(2,0,0,-) - - 202276 30628 00:12:37 - - 36 0
K-(2,0,1,-) - - 1524996 266338 11:48:00 - - 54 0
K-(2,1,0,-) - - 2654613 187710 09:22:22 - - 126 0

Sweep-Line Analysis of TCP Connection Management 169

CLOSED CLOSED

SYN_SENT

FIN_WAIT_1

CLOSING

FIN_WAIT_2

(close)

FIN_WAIT_1

(close)

SYN_RCVD

TCP Entity 1 TCP Entity 2

ESTABLISHED

(passive open)

LISTENSYN (10)

FIN (21, 11)

SYN (20, 11)

ACK (11, 21)

FIN (11, 21)

ACK (22, 12)

(active open)

Fig. 4. Connection Release Failure in Configuration D

respect to the initial marking of the model. Except for configurations D and E
where each maximum number of retransmissions is limited to 1, we investigate
maximum numbers of retransmissions up to 2.

The second and third columns show the total number of nodes and the total
generation time for the full reachability graph, as reported in [12, 13]. Columns
4, 5 and 6 show the total number of states explored, the peak state storage
and the time taken for sweep-line exploration. The space and time used by the
sweep-line method relative to conventional generation is shown in columns 7 and
8. Column 9 shows the number of terminal markings detected and column 10
shows the number of terminal markings that are undesirable, which we discuss
below. Rows containing ‘-’ indicate configurations which were not able to be
generated with the conventional reachability algorithm of Design/CPN due to
memory constraints. We have omitted arc-related statistics from the table due
to size constraints.

To reduce unnecessary duplication of the results presented in [12, 13] we
include only the largest scenario that could be analysed using conventional gen-
eration for each configuration (plus another scenario for illustration purposes in
Configuration D). All other scenarios analysed are new results that could not be
obtained using conventional generation.

The sweep-line method has given us a reduction in peak state storage of
up to a factor of 10 and a reduction in time of up to a factor of 30, for large
configurations of the CPN model. This is quite reasonable when compared to
previous applications of the sweep-line method [10, 11] where a reduction of a
factor of around 6 was achieved for larger configurations.

All scenarios satisfied the termination properties defined in [12, 13] and all
but configurations D and E were free from deadlocks. Detailed analysis of the
deadlocks in configurations D and E has been carried out in [12, 13] and so will

170 G.E. Gallasch, B. Han, and J. Billington

not be duplicated here. In brief, the deadlock occurs because the connection
fails to release correctly. Figure 4 illustrates one such scenario for configuration
D (client-server establishment). This figure shows that the SYN sent by the TCP
server upon entering SYN RCVD is overtaken by the FIN sent when the server
receives a close command from its user. This FIN is then ignored by the client
as specified in RFC793 [21]. When the client receives a close command from its
user it sends a FIN which the server interprets as a simultaneous release request.
The server sends back an ACK and enters the CLOSING state. When the client
receives this ACK it enters the FIN WAIT 2 state. The system is now deadlocked,
with the client waiting for a FIN from the server to complete the graceful release
and the server waiting for an acknowledgement of its first FIN which will never
come.

Retransmission of the FIN when the TCP server is in the CLOSING state
prevents the deadlocks from occurring. As can be seen in Table 4, whenever the
maximum number of retransmissions is greater than 0 for a FIN when in the
FIN WAIT 1 or CLOSING state (the third element in the 4-tuple in column 1)
we can see that the deadlocks in configurations D and E no longer exist. For a
more detailed discussion please refer to [12, 13].

5 Conclusions and Future Work

TCP is a very complex protocol that is still not fully understood due to its com-
plexity. This is borne out by the fact that some 60 pages of errors were reported
in TCP implementations in [7]. A thorough understanding is very important,
particularly given that TCP is so widespread and is being used as the basis
for the development of new Internet protocols like the Datagram Congestion
Control Protocol (DCCP) [18] and the Stream Control Transmission Protocol
(SCTP) [6]. To aid in the understanding of TCP connection management a de-
tailed CPN model has been developed with a view to verifying its correctness.
Because the official TCP specification [21,3] is incomplete in terms of specifying
the retransmission mechanism our detailed CPN model is parameterised by the
maximum number of retransmissions of segments in four situations. Unfortu-
nately, the well known state explosion problem has prevented analysis of some
of the larger configurations of this model.

In this paper we have applied the sweep-line state space exploration method
to the analysis of the TCP Connection Management CPN operating over a loss-
less but reordering medium, in an attempt to alleviate the state explosion prob-
lem. We have successfully analysed the TCP Connection Management CPN for
many configurations that were previously not possible using conventional reacha-
bility graph methods, thus extending the analysis results reported in [12,13]. We
confirm the results that TCP terminates correctly for client-server and simulta-
neous connection establishment, orderly release after connection establishment,
and aborting of connections. We also confirm that TCP can deadlock under
some circumstances when the user initiates connection release before a connec-
tion is fully established and that this deadlock can be avoided by allowing the
retransmission of FIN segments.

Sweep-Line Analysis of TCP Connection Management 171

Applying the sweep-line method successfully to another non-trivial problem
is also significant in that we begin to see many common themes emerging in the
development of progress mappings for the analysis of communication protocols.
Looking to the future, there are three topics we would like to pursue. The first
is an evaluation and comparison of different combinations and orderings of com-
ponent progress mappings within the combined mapping ψcombined. The second
is application of the sweep-line method to the analysis of TCP Connection Man-
agement procedures operating over lossy and reordering media. The third is the
formalisation of generic guidelines for the successful application of the sweep-line
method to the verification of communication and transaction protocols, based
on our experience with TCP in this paper coupled with previous experience
in [11, 10].

References

1. M. Allman, V. Paxson, and W. Stevens. TCP Congestion Control. RFC 2581,
April 1999.

2. J. Billington, G. E. Gallasch, and B. Han. A Coloured Petri Net Approach to
Protocol Verification. In Lectures on Concurrency and Petri Nets, Advances in
Petri Nets, volume 3098 of Lecture Notes in Computer Science, pages 210–290.
Springer-Verlag, 2004.

3. R. Braden. Requirements for Internet Host – Communication Layers. RFC 1122,
October 1989.

4. D. Burdett. Internet Open Trading Protocol - IOTP Version 1.0. RFC 2801, IETF,
April 2000.

5. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State
Space Exploration. In Proceedings of TACAS 2001, volume 2031 of Lecture Notes
in Computer Science, pages 450–464. Springer-Verlag, 2001.

6. R. Stewart et al. Stream Control Transmission Protocol. RFC 2960, October 2000.

7. V. Paxson et al. Known TCP Implementation Problems. RFC 2525, March 1999.

8. S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649, December
2003.

9. S. Floyd and T. Henderson. The NewReno Modification to TCP’s Fast Recovery
Algorithm. RFC 2582, April 1999.

10. G.E. Gallasch, C. Ouyang, J. Billington, and L.M. Kristensen. Experiment-
ing with Progress Mappings for the Application of the Sweep-Line Analy-
sis fo the Internet Open Trading Protocol. In Fifth Workshop and Tu-
torial on Practical Use of Coloured Petri Nets and the CPN Tools. De-
partment of Computer Science, University of Aarhus, 2004. Available via
http://www.daimi.au.dk/CPnets/workshop04/cpn/papers/.

11. S. Gordon, L.M. Kristensen, and J. Billington. Verification of a Revised WAP
Wireless Transaction Protocol. In Proceedings of ICATPN’02, volume 2360 of
Lecture Notes in Computer Science, pages 182–202. Springer-Verlag, 2002.

12. B. Han. Formal Specification of the TCP Service and Verification of TCP Connec-
tion Management. PhD thesis, Computer Systems Engineering Centre, School of
Electrical and Information Engineering, University of South Australia, Adelaide,
Australia, December 2004.

172 G.E. Gallasch, B. Han, and J. Billington

13. B. Han and J. Billington. Termination Properties of TCP’s Connection Man-
agement Procedures. In Proceedings of ICATPN’05, Lecture Notes in Computer
Science. Springer-Verlag, 2005 (to appear).

14. V. Jacobson and R. Braden. TCP Extensions for Long Delay Paths. RFC 1072,
October 1988.

15. V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance.
RFC 1323, May 1992.

16. V. Jacobson, R. Braden, and L. Zhang. TCP Extension for High-Speed Paths.
RFC 1185, October 1990.

17. K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Vol. 1, Basic Concepts. Springer-Verlag, 2nd edition, 1997.

18. E. Kohler, M. Handley, and S. Floyd. Datagram Congestion Control Protocol.
draft-ietf-dccp-spec-11, March 2005.

19. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98–132, 1998.

20. L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety
Properties. In Proceedings of FME’02, volume 2391 of Lecture Notes in Computer
Science, pages 549–567. Springer-Verlag, 2002.

21. J. Postel. Transmission Control Protocol. RFC 793, September 1981.
22. C.A. Sunshine and Y. K. Dalal. Connection Management in Transport Protocols.

Computer Networks, pages 2(6):346–350, December 1978.
23. A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Ba-

sic Models, volume 1491 of Lecture Notes in Computer Science, pages 429–528.
Springer-Verlag, 1998.

24. G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Vol. 2 : The Implementation.
Addison-Wesley, 1995.

2/3 Alternating Simulation Between

Interface Automata�

Yanjun Wen, Ji Wang, and Zhichang Qi

National Laboratory for Parallel and Distributed Processing,
Changsha, P.R. China

{y.j.wen, ji.wang}@263.net

Abstract. Interface automata is a light-weight formalism to be used for
describing the temporal interface behaviors of software components. This
paper investigates the refinement of interface automata and shows its ap-
plication to serve as a semantic foundation for software architectural de-
scription languages. Firstly, inspired by 2/3 simulation, the 2/3 alternat-
ing simulation between interface automata is presented, and the corre-
sponding refinement relation is also derived between interface automata.
The distinguished feature is that it can preserve deadlock-freedom. Then,
a concise formal semantics is provided for the architectural description
language Wright, based on interface automata, where the checking of
compatibility and deadlock-freedom becomes simpler.

1 Introduction

Interface automata [1] is a light-weight formalism that captures the temporal
aspects of software component interfaces. Automatic compatibility checking and
refinement checking can be made to support component based software develop-
ment. It has been applied in several cases as a method for modelling the interface
behavior of software [2–5].

A remarkable feature of interface automata is its capability to model explic-
itly the assumptions of a component to environments. The virtue is due to the
special semantics of action synchronization when several automata are composed
in parallel. Concretely, on the one hand, an interface automaton can refuse some
actions at a state. On the other hand, if an interface automaton sends out some
action at a state, then there must exist another automaton which can accept
the action at that moment. In another words, all output actions must be ac-
cepted right now, while it is not required that all input actions be accepted at
all states. If an output action can not be accepted by any automaton, then a
failure takes place. If all failures can be avoided, then the system is compatible.
Thus both the static interfaces of actions and the dynamic behaviors determine

� Supported by National Natural Science Foundation of China under the grants
60233020 and 60303013, National Hi-Tech Programme (863) of China under the
grant 2005AA113130, and Program for New Century Excellent Talents in Univer-
sity.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 173–187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

174 Y. Wen, J. Wang, and Z. Qi

the compatibility of two interface automata. So, the component specification in
interface automata expresses not only its behavior, but also the assumptions to
environments.

With the new mechanism defined for action synchronization, the refinement
between interface automata is also defined differently. Roughly, an interface au-
tomaton refines another if it can provide more services (that is, accept more
actions) and send out fewer requests (that is, output fewer actions). This con-
travariant requirement on input actions and output actions is described by a new
simulation relation: alternating simulation [3]. The corresponding refinement can
preserve compatibility. That is to say, if an interface automaton is compatible
with the environment, then after replacing the automaton with a more refined
version, the new system is still compatible. This capability is described by the
theorem 4 of [1].

Although being able to preserve compatibility, the refinement between inter-
face automata can not preserve deadlock-freedom: if the abstract automaton is
compatible with the environment and their composition is deadlock-free, then
after replacing the abstract automaton with a more refined version the new sys-
tem may be deadlocked, yet compatible. Consider three interface automata P ,
P ′ and E such that P refines P ′, and P ′ is compatible with E. As mentioned
above, roughly, P refines P ′ if P can accept more actions and send out less
actions. However, if both P and E do not send out actions, the system may
get into deadlock. At the same time, P ′ and E may be able to avoid deadlock
because P ′ may send out some actions which can be accepted by E.

The main contributions of this paper is to present a new refinement between
interface automata, which can preserve deadlock-freedom. Technically, as a basis
of the new refinement, we present a new simulation, 2/3 alternating simulation,
which is an improvement to alternating simulation. The core idea comes from
the 2/3 simulation [6, 7] in CCS [8].

After the revisions to refinements, we explore the application by employing
interface automata as a formal basis for Wright [9–11], a famous architectural
description language (ADL). Although the research on ADLs has been paid lots
of attentions for several years, some improvement is still needed. For example, it
is pointed out in [12] that in order to ease the acceptance of ADLs by developers,
a simple formal semantics is needed. Wright adopts CSP [13] as its formal basis,
and supports the automatic verification of software architectures. However, the
testing rules of Wright are still somewhat complex and difficult to understand.
As shown in this paper, interface automata has some specific advantages in acting
as the formal basis of Wright. For example, the testing rule which is used
to check the compatibility between ports and roles will become much simpler,
if using interface automata as the semantic model. Additionally, simpler tests
are needed to ensure the deadlock-freedom property of the whole system after
attaching ports to the roles of a connector.

By the way, we also present an alternative fix solution to an existent de-
fect in [1], which is known and fixed in [14]. The difference is that instead of
restricting interface automata to be input-deterministic, we propose a conserva-

2/3 Alternating Simulation Between Interface Automata 175

tive definition of parallel composition between interface automata, avoiding to
influence the flexibility of modelling.

The rest of the paper is organized as follows. After Section 2 gives some con-
cepts of interface automata, Section 3 presents a conservative definition of par-
allel composition between interface automata. Then, Section 4 presents 2/3 al-
ternating simulation, and redefines the refinement between interface automata.
Section 5 provides a formal semantics for architectural connection which is de-
scribed in Wright. The conclusion is summarized finally.

2 Preliminary

Interface automata have been presented as a light-weight formalism for modelling
the interface behavior of software components.

Definition 1 (Interface Automata). An interface automaton is a structure

P =< VP , V init
P , AI

P , AO
P , AH

P , ΔP >

where

– VP is a set of states.
– V init

P ⊆ VP . It is a set of initial states and contains at most one state. If
V init

P = ∅, then P is called empty.
– AI

P , AO
P , and AH

P are mutually disjoint sets of input, output, and internal
actions. We denote by AP = AI

P ∪ AO
P ∪ AH

P the set of all actions, AL
P =

AO
P ∪ AH

P the set of all locally-controlled actions, and AX
P = AI

P ∪ AO
P the

set of all external actions.
– ΔP ⊆ VP ×AP × VP . It is a set of transitions.

The interface automaton P is closed if AX
P = ∅; otherwise it is open. An

action a ∈ AP is enabled at a state v ∈ VP if there exists a state v′ ∈ VP

such that (v, a, v′) ∈ ΔP . The set of input (output and internal, respectively)
actions which are enabled at the state v is denoted as AI

P (v) (AO
P (v) and AH

P (v),
respectively).

For an interface automaton P , two states s1, s2 ∈ VP , an action a ∈ AP , and
a finite action sequence α = a1a2 · · · an ∈ (AP)n, we define several relations as
follows.

– s1
a−→P s2 iff (s1, a, s2) ∈ ΔP .

– s1
τ−→P s2 iff s1

b−→P s2 for some b ∈ AH
P .

– s1
α−→P s2 iff s1

a1−→P
a2−→P · · ·

an−→P s2. Especially, s1
ε−→P s1.

where juxtaposition is a composition of relations.
Two interface automata are composable [1] if their actions are disjoint, except

that an input action of one may be an output action of the other.

176 Y. Wen, J. Wang, and Z. Qi

Definition 2 (Composable). Two interface automata P and Q are compos-
able if

AH
P ∩AQ = AH

Q ∩AP = AI
P ∩AI

Q = AO
P ∩AO

Q = ∅.

We let shared(P, Q) = AP ∩AQ.

The product [1] of interface automata is similar to the composition of I/O
automata [15], except that the shared actions are hidden.

Definition 3 (Product). If P and Q are composable interface automata, their
product P ⊗Q is the interface automaton defined by

VP⊗Q = VP × VQ

V init
P⊗Q = V init

P × V init
Q

AI
P⊗Q = (AI

P ∪AI
Q) \ shared(P, Q)

AO
P⊗Q = (AO

P ∪AO
Q) \ shared(P, Q)

AH
P⊗Q = AH

P ∪AH
Q ∪ shared(P, Q)

ΔP⊗Q = {((u, v), a, (u′, v)) | (u, a, u′) ∈ ΔP ∧ a /∈ shared(P,Q) ∧ v ∈ VQ}
∪ {((u, v), a, (u, v′)) | (v, a, v′) ∈ ΔQ ∧ a /∈ shared(P,Q) ∧ u ∈ VP }
∪ {((u, v), a, (u′, v′)) | (u, a, u′) ∈ ΔP ∧ (v, a, v′) ∈ ΔQ ∧ a ∈ shared(P,Q)}.

Definition 4 (Illegal States [1]). Given two composable interface automata
P and Q, the set Illegal(P, Q) ⊆ VP × VQ of illegal states of P ⊗ Q is the
following set:⎧⎨

⎩(u, v) ∈ VP × VQ | ∃a ∈ shared(P, Q).

⎛
⎝a ∈ AO

P (u) ∧ a /∈ AI
Q(v)

∨
a ∈ AO

Q(v) ∧ a /∈ AI
P (u)

⎞
⎠

⎫⎬
⎭ .

In the product of two interface automata, the compatible states are those
from which the environment can prevent all illegal states from being entered in
one or more steps.

Definition 5 (Compatible States). Consider two composable interface au-
tomata P and Q. A pair (u, v) ∈ VP⊗Q of states is compatible if the following
condition holds.

�(u′, v′) ∈ Illegal(P, Q).β ∈ (AL
P⊗Q)∗. (u, v)

β−→P⊗Q (u′, v′)

We write Cmp(P, Q) for the set of compatible states of P ⊗Q.

It is worth noting that this definition coincides with the original definition [1] of
compatible states.

Definition 6 (Compatible Interface Automata). Two interface automata
P and Q are compatible if they are nonempty, composable, and their initial
states are compatible.

2/3 Alternating Simulation Between Interface Automata 177

3 Parallel Composition of Interface Automata

The theorem 4 of [1] states two important properties of refinements between
interface automata. The first property is the preservation of compatibility. The
second one is compositionality: in order to check P ‖ Q � P ′ ‖ Q′, it is suffi-
cient to check both P � P ′ and Q � Q′. The two properties give support to
component-based design and compositional refinement checking.

However, the theorem does not hold in some cases because in the original
framework of interface automata there exist some minor defects, which are known
to the authors of [1]. They provide a patch in [14]. In their solution, interface
automata are limited to be input-deterministic, because the problems may arise
only when interface automata are nondeterministic on input actions. The lim-
itation weakens the flexibility in modelling interface behaviors. In this section,
we present an alternative solution, in which the limitation is not necessary.

Technically, we provide a conservative definition to the parallel composition
of interface automata. The idea is that instead of deleting incompatible states
we delete dangerous transitions.

In the paper, the notions defined in [1] are followed. For example, ExtEnI
P (u)

denotes the set of externally enabled input actions of P at the state u, and
ε−closureP (u) is the ε-closure of the state u in interface automaton P .

Definition 7 (Dangerous Transitions). Given two composable interface au-
tomata P and Q, a transition t = (s, a, s′) ∈ ΔI

P⊗Q is a dangerous transition of
P ⊗Q if the following condition is satisfied. The set of all dangerous transitions
of P ⊗Q is denoted as Δdgr

P⊗Q.

s ∈ Cmp(P, Q) ∧ ∃s′′ ∈ (VP⊗Q\Cmp(P, Q)). (s, a, s′′) ∈ ΔP⊗Q

According to the definition, all the transitions from compatible states to
incompatible states are dangerous; moreover, if a transition has the same source
state and action with a dangerous transition, then it is also dangerous. That is
to say, if (s, a, s′) is a dangerous transition, then all the transitions of the type
(s, a, ∗) are all dangerous, where ‘∗’ can be any state. The reason is that since
(s, a, s′) is a dangerous transition, the environment should not be allowed to
output the action a while P ⊗Q stays at the state s, and thus all transitions of
the type (s, a, ∗) are impossible to be triggered.

Definition 8 (Parallel Composition). Consider two composable interface
automata P and Q. The parallel composition P ‖ Q is defined as follows.

<VP⊗Q, V init
P⊗Q ∩Cmp(P, Q), AI

P⊗Q, AO
P⊗Q, AH

P⊗Q, ΔP⊗Q\Δdgr
P⊗Q>

In the original definition of parallel composition, the incompatible states are
deleted from the product. Correspondingly, all the transitions from compatible
states to incompatible states are deleted at the same time. However, these tran-
sitions compose only part of the dangerous transitions. Thus according to the
new definition, more transitions are excluded from parallel composition. After
redefining the parallel composition of interface automata, the theorem 4 of [1]
holds. In the next section, we will restate it according to the new definition.

178 Y. Wen, J. Wang, and Z. Qi

4 2/3 Alternating Simulation

The refinement of interface automata is based on alternating simulation. Al-
though being able to preserve compatibility, it can not preserve deadlock-
freedom. We illustrate this by the three interface automata shown in Figure 1.

Example 1. Interface automata In and Out describe respectively the behaviors
of a data-input interface and a data-output interface. At the state 0, In can
accept the message data and then enter the state 1, or accept the message close
and then terminate successfully at the state √. At state 1, In sends out a message
next to request for the next data. The behavior of the interface automaton Out
is just contravariant to In. Obviously, In and Out can work together nicely.
That is, they are compatible and deadlock-free.

Now consider the interface automaton Out′. At the state 0, Out′ can accept
the message next and then terminates successfully at the state √. But it can not
output any message at the state 0. Obviously, Out′ refines Out. Since In and Out
are compatible, it can be inferred that Out′ and In are also compatible. However,
if replacing Out with Out′, the new system (Out′ ‖ In) will be deadlocked: at
the state (0, 0), neither Out′ nor In can send out any message, and thus the
whole system is deadlocked. By the example, it can be seen that the refinement
between interface automata can not preserve deadlock-freedom.

In this section, in order to endow the refinements between interface automata
with the important capability of preserving deadlock-freedom, we present a new
simulation relation: 2/3 alternating simulation, and redefine the refinements be-
tween interface automata based on this new simulation.

(a) In

0

next?

close!

1

data!

0

next!

close?

1

data?

(b) Out

data closenext data next close

(c) Out'

0
next?

data closenext

Fig. 1. Interface automata In, Out and Out′

2/3 Alternating Simulation Between Interface Automata 179

In the following, we assume that every interface automaton P has a special
state s

√

P such that AP (s
√

P) = ∅, which means the successful termination of P .
Furthermore, for any two composable interface automata P and Q, both s

√

P‖Q

and s
√

P⊗Q are defined to be the state (s
√

P , s
√

Q).
The idea of 2/3 alternating simulation comes from the 2/3 simulation [6, 7]

in CCS [8]. The necessary adjustments are made to conform with the context of
interface automata.

Definition 9 (2/3 Alternating Simulations). Consider two interface au-
tomata P and Q. A binary relation �⊆ VP ×VQ is a 2/3 alternating simulation
from P to Q if for all state-pairs (u, v) ∈ �, the following conditions hold:

1. ExtEnI
P (u) ⊇ ExtEnI

Q(v) and ExtEnO
P (u) ⊆ ExtEnO

Q(v).
2. For all actions a ∈ ExtEnI

Q(v) ∪ExtEnO
P (u) and all states u′ ∈ ExtDestP

(u, a), there is a state v′ ∈ ExtDestQ(v, a) such that u′ � v′.
3. If there is a state u′′ ∈ ε−closureP (u) such that u′′ �= s

√

P and AP (u′′) ⊆
AI

P , then there is also a state v′′ ∈ ε−closureQ(v) such that v′′ �= s
√

Q and
AQ(v′′) ⊆ AI

Q.
4. If s

√

P ∈ ε−closureP (u), then there is a state v′′ ∈ ε−closureQ(v) such that
AQ(v′′) ⊆ AI

Q.

It can be seen that the difference between alternating simulation and 2/3 al-
ternating simulation lies in the third and fourth conditions, whose intuitive
meaning is that: in any compatible environment, if the more refined interface
automaton P can get into a deadlock state then the more abstract interface
automaton Q can also.

Based on 2/3 alternating simulation, we can define the refinements between
interface automata.

Definition 10 (Refinements). Consider two nonempty interface automata P
and Q. P refines Q, written P � Q, if the following conditions hold:

1. AI
P = AI

Q and AO
P = AO

Q.
2. There is a 2/3 alterating simulation � from P to Q such that for all states

u ∈ V init
P , there exists a state v ∈ V init

Q satisfying u � v.

It is worth noting that the original definition [1] of refinements requires that
AI

P ⊇ AI
Q and AO

P ⊆ AO
Q. However, as we have pointed out in [16], by a special

‘hiding’ operator the input actions in AI
P \ AI

Q can be deleted safely without
affecting the refinement relation between P and Q. Similarly, the output actions
in AO

Q \AO
P can also be added to the action set of P safely without affecting their

refinement relation. Thus in the definition below, we require that AI
P = AI

Q and
AO

P = AO
Q.

Theorem 1. � is a preorder.

The next theorem restates the theorem 4 of [1]. It shows that refinements
between interface automata can preserve compatibility. That is, if an interface

180 Y. Wen, J. Wang, and Z. Qi

automaton P ′ can work nicely (be compatible) in an environment Q, then after
substituting P ′ with a more refined version P the new system can work nicely
too. Due to the space limitation, we omit the proof of the theorem.

Theorem 2. Consider three interface automata P , P ′ and Q such that P and
Q are composable. If P ′ and Q are compatible and P � P ′, then P and Q are
also compatible and P ‖ Q � P ′ ‖ Q.

Definition 11 (Unique Internal-Action Condition). A set of interface au-
tomata P1, P2, . . . , Pn satisfies the unique internal-action condition if the fol-
lowing proposition holds:

∀i, j ∈ {1 . . . n}. i �= j → AH
Pi
∩APj = ∅.

Corollary 1. Consider a set of interface automata P , P ′, Q and Q′ that satis-
fies the unique internal-action condition. If P ′ and Q′ are compatible, P � P ′,
and Q � Q′, then P and Q are also compatible and P ‖ Q � P ′ ‖ Q′.

Proof. By P � P ′, it can be known that AI
P = AI

P ′ and AO
P = AO

P ′ . Similarly,
AI

Q = AI
Q′ and AO

Q = AO
Q′ . Because P ′ and Q′ are compatible, they are compos-

able of course. Since the set of interface automata P , P ′, Q and Q′ satisfies the
unique internal-action condition, it can be inferred that P and Q′, and P and
Q are both composable.

Because P ′ and Q′ are compatible, and P � P ′, by Theorem 2 we know that
P and Q′ are also compatible, and P ‖ Q′ � P ′ ‖ Q′. Moreover, because P
and Q′ are compatible, and Q � Q′, by Theorem 2 we know that P and Q are
also compatible, and P ‖ Q � P ‖ Q′. Since � is transitive, P ‖ Q � P ′ ‖ Q′

follows. �$

The corollary can be extended further.

Corollary 2. Consider a set of interface automata P1, P2, . . . , Pn, Q1, Q2, . . . ,
and Qn that satisfies the unique internal-action condition. If Q1, Q2, . . . , Qn are
compatible, and for all i ∈ {1 . . . n} it holds that Pi � Qi, then P1, P2, . . . , Pn

are also compatible and
∏n

i=1 Pi �
∏n

i=1 Qi.

4.1 Deadlock-Freedom

In this subsection, it is shown that refinements between interface automata can
preserve deadlock-freedom.

Definition 12 (Deadlock). Consider a nonempty and closed interface au-
tomaton P . Let V init

P = {qP }. a state sP ∈ VP is deadlocked if sP �= s
√

P and
AP (s

P
) = ∅. The set of all deadlock states of P is written Deadlock(P). P is

deadlocked if there is a state s
P
∈ (Deadlock(P)∩ ε−closureP (q

P
)). Otherwise,

P is deadlock-free.

The next theorem shows that refinements between closed interface automata
can preserve deadlock-freedom.

2/3 Alternating Simulation Between Interface Automata 181

Theorem 3. Consider two interface automata P and Q such that P � Q. If P
is deadlocked, then Q is also deadlocked.

Proof. By P � Q, it follows that P and Q are both nonempty, AI
P = AI

Q and
AO

P = AO
Q. Additionally, there is a 2/3 alternating simulation � from P to Q

such that the following proposition holds:

∀u ∈ V init
P . ∃v ∈ V init

Q . u � v.

Let V init
P = {qP } and V init

Q = {qQ}. Then qP � qQ follows. Suppose that
P is deadlocked. Then P and Q are both closed, and there is a state s

P
∈

Deadlock(P)∩ε−closureP (q
P
). Since s

P
∈ Deadlock(P), it follows that s

P
�= s

√

P

and AP (sP) = ∅. Thus AP (sP) ⊆ AI
P . Because qP � qQ and sP ∈ ε−closureP (qP),

there is a state s
Q
∈ ε−closureQ(q

Q
) such that s

Q
�= s

√

Q and AQ(s
Q
) ⊆ AI

Q.
However AI

Q = ∅. Thus AQ(s
Q
) = ∅ and s

Q
∈ Deadlock(Q). So Q is also

deadlocked. �$
The next theorem shows that refinements between open interface automata

can preserve deadlock-freedom. That is, if an interface automaton P ′ can work
nicely (be compatible and deadlock-free) in an environment Q, then after sub-
stituting P ′ with a more refined version P the new system can work nicely too.

Theorem 4. Consider a set of interface automata P , P ′ and Q such that (1) P ′

and Q are compatible, (2) P � P ′, and (3) the unique internal-action condition
is satisfied by them. If P ‖ Q is deadlocked, then P ′ ‖ Q is also deadlocked.

Proof. Because P ′ and Q are compatible, and P � P ′, by Corollary 2 it follows
that P and Q are compatible, and P ‖ Q � P ′ ‖ Q. If P ‖ Q is deadlocked, then
by Theorem 3 we know that P ′ ‖ Q is also deadlocked. �$

Reconsider the example 1. There is an alternating simulation �= {(0, 0)}
from Out′ to Out. However, � is not a 2/3 alternating simulation from Out′

to Out because AOut(0) � AI
Out while AOut′(0) ⊆ AI

Out′ . Since there exists
no 2/3 alternating simulation from Out′ to Out, Out′ � Out does not hold
according to the new definition of refinements. From this example, it can be
confirmed that the refinements based on 2/3 alternating simulation can preserve
deadlock-freedom.

5 Refinement of Wright Based on Interface Automata

Wright [9–11] is a famous architectural description language, which uses a
subset of CSP as its formal basis. In this section, we try to explore the possibility
of using interface automata as a new formal basis for Wright.

5.1 Introduction to Wright

Wright introduces a group of notations, such as components, connectors, ports,
roles and glues, to describe software architectures. We take a simple procedure-
call system as an example to illustrate the basic notations of Wright. Figure
2 describes the system in Wright.

182 Y. Wen, J. Wang, and Z. Qi

Fig. 2. A Procedure-Call System

The description can be divided into three parts. The first part describes
component and connector types. A component can have a set of ports and a
component-spec which specifies its implementation. Each port describes the be-
havior of the component at a logical point of interaction. A connector can have
a set of roles and a glue specification. Each role describes the expected behav-
ior of an interacting object, and the glue specification defines the behavior of
the connector, which interacts with each role. The roles of a connector can not
interact with each other directly. In the simple procedure-call system, there are
two components and one connector. Each component has only one port in this
specific example.

The second part is a set of component and connector instances. Each instance
specifies an actual entity that will appear at the configuration. In the third part,
the entities are combined together by attaching the ports to the roles. Each port
can be attached to at most one role, and vice versa.

Detailed introductions can be found in [10] and [11].

5.2 Formal Semantics

In Wright, the protocols of ports, roles and glues are all described in a subset of
CSP. In this paper, we describe the protocols in interface automata, and define
the semantics of connectors using interface automata as the formal basis, similar
to the use of CSP in [11] in Wright.

In order to endow irrelevant actions with different names, a relabelling oper-
ation is needed.

2/3 Alternating Simulation Between Interface Automata 183

Definition 13 (Relabelling). The relabelling of an interface automaton P on
a name L is the interface automaton Q defined as follows, written L:P .

– VQ = VP and V init
Q = V init

P .
– AI

Q = {L.a | a ∈ AI
P }, AO

Q = {L.a | a ∈ AO
P } and AH

Q = {L.a | a ∈ AH
P }.

– ΔQ = {(s, L.a, s′) | (s, a, s′) ∈ ΔP }.
– s

√

Q = s
√

P .

It can be seen that after relabelling, a prefix (L) is attached to each action
name. In an action name, each part that is separated by a dot is called a field of
the name. For the sake of simplicity, we assume that every internal-action name
of every constructor (such as port, role and glue) contains (before relabelling)
only one field and is globally unique. That is to say, there exists no constructor of
which an internal-action has the same name with an (internal or external) action
of another constructor. Since internal-action names can be renamed without
influencing the behavior of a constructor, the assumption above is appropriate.

Definition 14. The meaning of a connector description with roles R1, R2, . . . ,
Rn, and glue Glue is the interface automaton:

Glue ‖ (R1 :R1 ‖ R2 :R2 ‖ . . . ‖ Rn :Rn)

where Ri is the name of role Ri.

We assume that the role names of a connector are distinct with each other. After
relabelling, any two roles of a connector do not have the same action names, and
thus can not interact directly.

Definition 15. The meaning of attaching ports P1 . . . Pn as roles R1 . . . Rn of
a connector with glue Glue is the interface automaton:

Glue ‖ (R1 :P1 ‖ R2 :P2 ‖ . . . ‖ Rn :Pn).

The next theorem states that if the connector is deadlock-free and each port
refines the corresponding role, then after substituting the roles with the ports,
the whole system will still be deadlock-free.

Theorem 5. Consider a connector C = Glue ‖ (R1 :R1 ‖ R2 :R2 ‖ . . . ‖ Rn :Rn)
and ports P1 . . . Pn. If C is deadlock-free and for all i ∈ {1 . . . n} it holds that
Pi � Ri, then C′ = Glue ‖ (R1 :P1 ‖ R2 :P2 ‖ . . . ‖ Rn :Pn) is also deadlock-free.

Proof. For C is deadlock-free, C must be closed. Thus AI
Glue =

⋃n
i=1 AO

Ri:Ri
and

AO
Glue =

⋃n
i=1 AI

Ri:Ri
. Considering the fact that each internal-action name of

every constructor has only one field and is globally unique, it can be proved that
the unique internal-action condition is satisfied by the set of interface automata
Glue, R1 :R1, . . . , Rn :Rn, R1 :P1, . . . , and Rn :Pn.

Because for all i ∈ {1 . . . n}, Pi � Ri, it is obvious that Glue � Glue,
and for i ∈ {1 . . . n}, Ri :Pi � Ri :Ri. Since C is deadlock-free, Glue, R1 :R1, . . . ,
Rn :Rn are compatible. Moreover, we have known that the unique internal-action
condition is satisfied by the set of interface automata Glue, R1 :R1, . . . , Rn :Rn,
R1 :P1, . . . , and Rn :Pn. Thus by Corollary 2, it follows that C′ � C. Since C is
deadlock-free, by Theorem 3 we have that C′ is also deadlock-free. �$

184 Y. Wen, J. Wang, and Z. Qi

As mentioned above, Wright adopts CSP as its semantic model. Comparing
with CSP, the checking of compatibility and deadlock-freedom becomes simpler
when employing interface automata as the formal basis of Wright:

1. In Wright, in order to check the compatibility between ports and roles, the
following testing rule1 is checked:

A port P is compatible with a role R if
R+(αP\αR) " (P+(αR\αP) ‖ det(R)).

However, when based on interface automata, it is enough to check that
P � R. The simplicity is due to the capability of interface automata to ex-
press explicitly the assumptions to environments. As a contrast, in Wright
one has to calculate the assumptions (det(R)) separately. Thus using inter-
face automata as the semantic model, we can avoid the calculation of the
deterministic process det(R), which is complex.

2. In Wright, in order to ensure a system deadlock-free, three conditions2

should be satisfied: (1) the connectors should be conservative; (2) the con-
nectors should be deadlock-free; (3) Ports should be compatible with the
corresponding ports. However, when based on interface automata, only the
last two conditions are necessary.

5.3 Case Study

Reconsider the simple procedure-call system shown in Figure 2. The protocols of
the connector D-C-connector are displayed in Figure 3, including the protocols
of roles caller and definer, and the glue. In all figures, the transitions with the
same source and sink states are merged. It can be seen that the role definer
can accept a procedure-call request call at the initial state 0. It can also accept
an action close, which notifies the role to stop the procedure-call service. After
accepting the call request, definer can return signals return or fail to the client,
which mean respectively the result after executing successfully the procedure,
and the failure of execution.

The behavior of the ports request and provide is also described in interface
automata, as shown in Figure 4.

It can be seen that C = Glue ‖ (caller :caller ‖ definer :definer) is deadlock-
free. Furthermore, request � caller and provide � definer. Thus substituting
caller and definer with request and provide respectively, the new system
C′ = Glue ‖ (caller :request ‖ definer :provide) is also deadlock-free.

However, if the protocol of the port provide looks like the interface au-
tomaton provide′ shown in Figure 5, then after substitution, the new system
C′ = Glue ‖ (caller :request ‖ definer :provide′) will be deadlocked. The reason
lies in the fact that provide′ does not refine definer. It is worth mentioning that
according to the original definition of refinements between interface automata,
which is based on alternating refinements, provide′ refines definer indeed. There
1 See the definition 4 of [11].
2 See the theorem 1 of [11].

2/3 Alternating Simulation Between Interface Automata 185

(a) caller

0

return!
fail!

close?

1

call?

0

return?
fail?

close!

1

call!

(b) definer

(c) Glue

0 1
caller.close?

2

caller.call?

definer.call!

definer.return?

caller.return!

4

3

definer.close!

definer.fail?

caller.fail!

5

definer.call definer.return definer.fail

caller.call caller.return caller.fail

definer.close

caller.close

call close

return fail

call close

return fail

Fig. 3. Protocols of D-C-connector

(a) request

0

return!

close?

1

call?

0

return?
fail?

1

call!

(b) provide

call close

return fail

call close

return fail

Fig. 4. Protocols of Caller and Definer

is an alternating simulation �= {(0, 0), (1, 1), (√,√)} from provide′ to definer.
However, � is not a 2/3 alternating simulation from provide′ to definer because
Adefiner(1) � AI

definer while Aprovide′(1) ⊆ AI
provide′ . From this case, it can be

186 Y. Wen, J. Wang, and Z. Qi

0

close?

close?

1

call?

call close

return fail

Fig. 5. Interface automaton provide′

seen that if connectors are deadlock-free and ports refine their corresponding
roles, then after substitution the new system is still deadlock-free.

6 Conclusion

This paper attempts to improve the theory of interface automata from two as-
pects: parallel composition and refinement. The parallel composition is redefined
to provide an alternative fix solution to an existent defect. The solution can avoid
weakening the flexibility in modelling interface behaviors. The refinement is pre-
sented to achieve the capability of preserving deadlock-freedom. Technically, a
new simulation, 2/3 alternating simulation, is presented, whose core idea comes
from the 2/3 simulation in CCS. After these revision, we explore the application
by employing interface automata as the formal basis of Wright. The result
shows that interface automata can provide a simple and convenient semantic
foundation for component based development.

Our future work will attempt to analyze typical software architectures in the
framework of Wright and interface automata.

References

1. de Alfaro, L., Henzinger, T.A.: Interface automata. In: 9th Symposium on Foun-
dations of Software Engineering, ACM Press (2001)

2. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Jurdzinski, M., Mang, F.Y.C.:
Interface compatibility checking for software modules. In: Proceedings of the 14th
International Conference on Computer-Aided Verification. Volume 2404 of LNCS.,
Springer-Verlag (2002)

3. de Alfaro, L., Henzinger, T.A.: Interface theories for component-based design.
In: Proceedings of the First International Workshop on Embedded Software (EM-
SOFT). Volume 2211 of LNCS., Springer-Verlag (2001) 148–165

4. Jin, Y., Esser, R., Lakos, C., Janneck, J.W.: Modular analysis of dataflow process
networks. In Pezzè, M., ed.: FASE. Volume 2621 of Lecture Notes in Computer
Science., Springer (2003) 184–199

2/3 Alternating Simulation Between Interface Automata 187

5. Lee, E.A., Xiong, Y.: Behavioral types for component-based design. In: Memo-
randum UCB/ERL M02/29. University of California, Berkeley, CA 94720, USA
(2002)

6. Jifeng, H., Hoare, T.: Equating bisimulation with refinement. Technical Report
282, UNU-IIST, P.O.Box 3058, Macau (2003)

7. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94 (1991) 1–28

8. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc. (1989)
9. Allen, R., Garlan, D.: Formalizing architectural connection. In: Proceedings of the

Sixteenth International Conference on Software Engineering, Sorrento, Italy (1994)
71–80

10. Allen, R., Garlan, D.: The Wright architectural specification language. Techni-
cal report, Draft Report CMU-CS-96-TBD, Carnegie Melon University, School of
Computer Science, Pittsburgh PA (1996)

11. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transac-
tions on Software Engineering and Methodology 6 (1997) 213–249

12. Clarke, L.A.: Improving architectural description languages to support analysis
better. In: Proceedings of the International Workshop on the Role of Software Ar-
chitecture in Testing and Analysis (ROSATEA 1998), Marsala, Sicily, Italy (1998)
78–80

13. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. Journal of the ACM (JACM) 31 (1984) 560–599

14. de Alfaro, L., Henzinger, T.: Interface-based design. In: Engineering Theories
of Software Intensive Systems, proceedings of the Marktoberdorf Summer School,
Kluwer (2004)

15. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Quarterly
2 (1989) 219–246

16. Wen, Y., Wang, J., Qi, Z.C.: Bridging refinement of interface automata to forward
simulation of I/O automata. In Davies, J., Schulte, W., Barnett, M., eds.: ICFEM.
Volume 3308 of Lecture Notes in Computer Science., Springer (2004) 259–273

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 188 – 203, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Formal Model-Driven Development of
Communicating Systems

Linas Laibinis1, Elena Troubitsyna1, Sari Leppänen2, Johan Lilius1, and Qaisar Malik1

1 Åbo Akademi, Department of Computer Science,
Lemminkäisenkatu 14 A, FIN-20520 Turku, Finland

{Linas.Laibinis, Elena.Troubitsyna,
Johan.Lilius, Qaisar.Malik}@abo.fi

2 Nokia Research Center, Computing Architectures Laboratory,
P.O. Box 407, 00045, Helsinki, Finland
Sari.Leppanen@nokia.com

Abstract. Telecommunicating systems should have a high degree of availabil-
ity, i.e., high probability of correct and timely provision of requested services.
To achieve this, correctness of software for such systems should be ensured.
Application of formal methods helps us to gain confidence in building correct
software. However, to be used in practice, the formal methods should be well
integrated into existing development process. In this paper we propose a formal
model-driven approach to development of communicating systems. Essentially
our approach formalizes Lyra – a top-down service-oriented method for devel-
opment of communicating systems. Lyra is based on transformation and de-
composition of models expressed in UML2. We formalize Lyra in the B
Method by proposing a set of formal specification and refinement patterns re-
flecting the essential models and transformations of Lyra. The proposed ap-
proach is illustrated by a case study.

1 Introduction

Modern telecommunicating systems are usually distributed software-intensive sys-
tems providing a large variety of services to their users. Development of software for
such systems is inherently complex and error prone. However, software failures might
lead to unavailability or incorrect provision of system services, which in turn could
incur significant financial losses. Hence it is important to guarantee correctness of
software for telecommunicating systems.

Formal methods have been traditionally used for reasoning about software correct-
ness. However they are yet insufficiently well integrated into current development
practice. Unlike formal methods, Unified Modelling Language (UML) [10] has a
lower degree of rigor for reasoning about software correctness but is widely accepted
in industry. UML is a general purpose modelling language and, to be used effectively,
should be tailored to the specific application domain.

Nokia Research Center has developed the design method Lyra [8] – a UML-based
service-oriented method specific to the domain of communicating systems and com-
munication protocols. The design flow of Lyra is based on concepts of decomposition

 Formal Model-Driven Development of Communicating Systems 189

and preservation of the externally observable behaviour. The system behaviour is
modularised and organized into hierarchical layers according to the external commu-
nication and related interfaces. It allows the designers to derive the distributed net-
work architecture from the functional system requirements via a number of model
transformations.

From the beginning Lyra has been developed in such a way that it would be possi-
ble to bring formal methods (such as program refinement, model checking, model-
based testing etc.) into more extensive industrial use. A formalisation of the Lyra
development would allow us to ensure correctness of system design via automatic and
formally verified construction. The achievement of such a formalisation would be
considered as significant added value for industry.

In this paper we propose a set of formal specification and refinement patterns re-
flecting the essential models and transformations of Lyra. Our approach is based on
stepwise refinement of a formal system model in the B Method [1,13] – a formal
framework with automatic tool support. While developing a system by refinement, we
start from an abstract specification and gradually incorporate implementation details
into it until executable code is obtained. While formalizing Lyra, we single out a
generic concept of a communicating service component and propose patterns for
specifying and refining it. In the refinement process the service component is decom-
posed into a set of service components of smaller granularity specified according to
the proposed pattern. Moreover, we demonstrate that the process of distributing ser-
vice components between different network elements can also be captured by the
notion of refinement. The proposed formal specification and development patterns
establish a background for automatic generation of formal specifications from UML
models and expressing model transformations as refinement steps. Via automation of
the UML-based Lyra design flow we aim at smooth incorporation of formal methods
into existing development practice. The proposed approach is illustrated by a case
study – development of a 3GPP positioning system [15,16].

2 Lyra: Service-Based Development of Communicating Systems

Overview of Lyra. Lyra [8] is a model-driven and component-based design method
for the development of communicating systems and communication protocols. It has
been developed in the Nokia Research Center by integrating the best practices and
design patterns established in the area of communicating systems. The method covers
all industrial specification and design phases from prestandardisation to final imple-
mentation. It has been successfully applied in large-scale UML2-based industrial
software development, e.g., for specification of architecture for several network com-
ponents, standardisation of 3GPP protocols, implementation of several network proto-
cols etc.

Lyra has four main phases: Service Specification, Service Decomposition, Service
Distribution and Service Implementation. The Service Specification phase focuses on
defining services provided by the system and their users. The goal of this phase is to
define the externally observable behaviour of the system level services via deriving
logical user interfaces. In the Service Decomposition phase the abstract model pro-
duced at the previous stage is decomposed in a stepwise and top-down fashion into a
set of service components and logical interfaces between them. The result of this

190 L. Laibinis et al.

phase is the logical architecture of the service implementations. In the Service Distri-
bution phase, the logical architecture of services is distributed over a given platform
architecture. Finally, in the Service Implementation phase, the structural elements are
adjusted and integrated into the target environment, low-level implementation details
are added and platform-specific code is generated. Next we discuss Lyra in more
detail with an example.

Lyra by Example. We model part of a Third Generation Partnership Project (3GPP)
positioning system [15,16]. The positioning system provides positioning services to
calculate the physical location of a given item of user equipment (UE) in a mobile
network. We focus on Position Calculation Application Part (PCAP) – a part of the
positioning system allowing communication in a 3GPP network. PCAP manages the
communication between the Radio Network Controller (RNC) and the Stand-alone
Assisted Global Positioning System Serving Mobile Location Centre (SAS) network
elements. The functional requirements for the RNC-SAS communication have been
specified in [15,16].

The Service Specification phase starts from creating a domain model of the system.
It describes the system with the included system-level services and different types of
external users. Each association connecting an external user and a system level ser-
vice corresponds to a logical interface. For the system and the system level services
we define active classes, while for each type of an external user we define the corre-
sponding external class. The relationships between the system level services and their
users become candidates for PSAPs – Provided Service Access Points of the system
level services. The logical interfaces are attached to the classes with ports. The do-
main model for the Positioning system and its service PositionCalculation is shown
in Fig.1a and PSAP of the Positioning system – I_User PSAP is shown in Fig.1b. The
UML2 interfaces I_ToPositioning and I_FromPostioning define the signals and signal
parameters of I_user PSAP.

A valid execution order of signals on PSAP can be specified by the corresponding
use case and sequence diagrams. For the Positioning system, the use case diagram
would merely depict splitting the PositionCalculation use case into two main use
cases: successful and unsuccessful. The sequence diagrams would draft the communi-
cation in each use case. (We omit presentation of these diagrams for brevity). Finally,
we formally describe the communication between a system level service and its
user(s) in the PSAPCommunication state machine as illustrated in Fig.1c. The posi-
tioning request pc_req received from the user is always replied: with the signal pc_cnf
in case of success, and with the signal pc_fail_cnf otherwise.

To implement its own services, the system usually uses external entities. For in-
stance, to provide the PositionCalculation service, the positioning system should first
request Radio Network Database (DB) for an approximate position of User Equipment
(UE). The information obtained from DB is used to contact UE and request it to emit a
radio signal. At the same time, the Reference Local Measurement Unit (Refer-
enceLMU) is requested to emit a radio signal. The strengths of radio signals obtained
from UE and ReferenceLMU are used to calculate the exact position of UE. The cal-
culation is done by the Algorithm service provider (Algorithm), which provides the
user with the final estimation of the UE location. Let us observe that services provided
by the external entities partition execution of the PositionCalculation service into the

 Formal Model-Driven Development of Communicating Systems 191

corresponding stages. In the next phase of the Lyra development – Service Decompo-
sition – we focus on specifying service execution according to the identified stages.

<<ServiceSpecification>>
 Positioning

aPositioning : Positioning

aUser : User

<<usecase>>
PositionCalculation

Idle serving

I_FromPositioningI_ToPositioning

pc_req

pc_cnf

pc_fail_cnf

I_user

Fig. 1. (a) Domain model. (b) PSAP of Positioning. (c) State diagram.

In the Service Decomposition phase, we introduce the external service providers
into the domain model constructed previously, as shown in Fig 2a. The model in-
cludes the external service providers DB, UE, ReferenceLMU and Algorithm, which
are then defined as external classes. For each association between a system level ser-
vice and the corresponding external class we define a logical interface. The logical
interfaces are attached to the corresponding classes via ports called USAPs – Used
Sevice Access Points, as presented in Fig.2b.

To specify the required stages of service implementation, we decompose the be-
haviour of the main use cases accordingly. For instance, the successful calculation of
a UE position can be decomposed as shown in Fig.2c. The sequence diagrams (omit-
ted here) are created to model signalling scenarios for each stage of service imple-
mentation. Observe that the behaviour is modularised according to the related service
access points – PSAPs and USAPs. Moreover, the functional architecture is defined in
terms of service components, which encapsulate the functionalities related to a single
execution stage or other logical piece of functionality.

In Fig.2d we present the architecture diagram of the Positioning system. Here Ser-
viceDirector plays two roles: it manages the execution control in the system and han-
dles the communication on the PSAP. The behaviour of ServiceDirector is presented
in Fig.2e. The top-most state machine specifies the communication on PSAP, while
the state submachine Serving specifies a valid execution flow of the position calcula-
tion. The substates of Serving encapsulate the stage-specific behaviour and can
be represented as the corresponding submachines. In their turns, these machines
(omitted here) include specifications of the specific PSAP-USAP communications.

The modular system model produced at the Service Decomposition phase allows
us to analyse various distribution models. In the next phase – Service Distribution –
the service components are distributed over a given network architecture. The signal-
ling network protocols are used for communication between the service components
in distant network elements.

In Fig.3a we illustrate the physical structure of the distributed positioning system.
Here Positioning_RND and Positioning_SAS represent network elements in a UMTS
network. The Protocol Data Unit (PDU) interface Iupc is used in communication

(a) (b) (c)

192 L. Laibinis et al.

(a)

<<ServiceDecomposition>>
 Positioning

 ()
 ()
 ()

I_FromPositioningI_ToPositioning

I_User

I_ToUE

I_FromUE

I_FromDB

I_ToDB I_DB I_LMU I_ToLMU

I_FromLMU

I_Algorithm
I_ToAlgorithm

I_FromAlgorithm

 I_UE

(b)

(c) (d)

Architecture Diagram I_FromPositioning

I_FromDB

I_FromAlgorithm

I_FromUE

aDirector : ServiceDirector
I_FromLMUHandler

I_FromDBHandler

I_ToPositioning

I_User

I_DBHandler

I_AlgorithmI_UE

I_LMUHandler

I_AlgorithmHandlerI_UEHandler

I_User

I_positioning I_positioning

I_positioning I_positioning

I_DB I_LMU

I_FromUEHandler
I_FromAlgorithmHandler

I_ToUEHandler I_ToAlgorithmHandler

I_ToLMUHandler

I_DB

I_UE I_Algorithm

I_LMU

I_ToDBHandler

I_ToUE

I_FromLMU

I_ToAlgorithm

I_ToLMUI_ToDB

aDB : DBHandler aLMU : LMUHandler

anUE : UEHandler anAlgo : AlgoHandler

active <<ServiceDecomposition>> class

(e)

<<include>>

<<include>>

<<include>>

<<include>>

<<usecase>>
SuccessfulPositionCalculation

<<usecase>>
Successful_Algorithm_Invocation

<<usecase>>
Successful_UE_Enquiry

<<usecase>>
Successful_DB_Enquiry

<<usecase>>
Successful_LMU_Measurem ent

Idle s e rv ing

L M U _ M e a s ure m e nt

A lgo r ithm _ Invo c a tio n

D B _ E nquiry

U E _ Enquiry

pc _ re q

pc _ c nf

pc _ fa il_ c n f

[lm u_ o k]

[db_ o k]

[ue _ o k]

[a lgo _ o k]

xp_ pc _ o k

e p_ s e rv ing

Fig. 2. (a) Domain model. (b) PSAP and USAPs of Positioning. (c) Use case decomposition.
(d) PositionCalculation functional architecture. (e) ServiceDirector: PSAP communication and
execution control.

between the network elements. We map the functional architecture to the given physi-
cal structure by including the service components into the network elements. The
functional architecture of the SAS network element is illustrated in Fig 3b. The func-

aPositioning : Positioning

aUser : User

<<usecase>>
PositionCalculation

aDB : DB

anUE : UE

anAlgorithm : Algorithm

aRefLMU : ReferenceLMU

 Formal Model-Driven Development of Communicating Systems 193

(a) (b)

tionality of ServiceDirector specified at the Service Decomposition phase is now
decomposed and distributed over the given network. ServiceDirector_SAS handles the
PDU interface towards the RNC network element and controls the execution flow of
the positioning calculation process in the SAS network element.

Finally, at the Service Implementation phase we specify how the virtual PDU
communication between entities in different network nodes is realized using the un-
derlying transport services. We also implement data encoding and decoding, routing
of messages and dynamic process management. The detailed discussion of this stage
can be found elsewhere [8, 15, 16].

In the next section we give a brief introduction into our formal framework – the B
Method, which we will use to formalize the development flow described above.

Architecture Diagram

I_RNCToSAS
Iupc

sas : Positioning_SASmc : Positioning_RNC

active <<ServiceDistribution>> class Positioning

I_DBI_DB

I_UE I_UE Iupc

I_LMU

I_Algorithm

I_LMU

I_Algorithm

I_SASToRNC

I_User

I_User

Architecture Diagram

I_FromAlgorithm

aDirector : ServiceDirector_SAS
I_RNCToSAS Iupc

I_Algorithm

I_Algorithm

I_positioning

I_LMU

I_FromAlgorithmHandler

I_ToAlgorithmHandler
I_ToLMUHandler

I_Algorithm I_LM U

I_FromLMU

I_ToAlgorithm I_ToLMU
aLMU : LMUHandleranAlgo : AlgoHandler

active <<ServiceDistribution>> class
Positioning_SAS

I_LM U

I_FromLMUHandler

Iupc
I_SASToRNC

I_positioning

Fig. 3. (a) Architecture of service. (b) Architecture of Positioning_SAS.

3 Modelling in the B Method

The B Method: Background. The B Method [1] (further referred to as B) is an ap-
proach for the industrial development of highly dependable software. The method has
been successfully used in the development of several complex real-life applications
[4,9]. The tool support available for B provides us with the assistance for the entire
development process. For instance, Atelier B [13], one of the tools supporting the B
Method, has facilities for automatic verification and code generation as well as docu-
mentation, project management and prototyping. The high degree of automation in
verifying correctness improves scalability of B, speeds up development and, also,
requires less mathematical training from the users.

The development methodology adopted by B is based on stepwise refinement [1].
While developing a system by refinement, we start from an abstract formal specifica-
tion and transform it into an implementable program by a number of correctness pre-
serving steps, called refinements. A formal specification is a mathematical model of
the required behaviour of a system, or a part of a system.

The B method provides us with mechanisms for structuring the system architecture
by modularisation. A module is represented as an abstract machine. An abstract ma-
chine encapsulates state (a set of program variables) and operations of the specifica-
tion. The abstract machines can be composed by means of several mechanisms pro-
viding different forms of encapsulation. For instance, if the machine C INCLUDES
the machine D then all variables and operations of D are visible in C. However, to
guarantee internal consistency (and hence independent verification and reuse) of D,
the machine C can change the variables of D only via the operations of D.

194 L. Laibinis et al.

Each abstract machine is uniquely identified by its name. The state variables of the
machine are declared in the VARIABLES clause and initialised in the INITIALISATION
clause. The variables in B are strongly typed by constraining predicates of the
INVARIANT clause. All types in B are represented by non-empty sets.

The operations of the machine are defined in the OPERATIONS clause. The opera-
tions in B can be described as guarded statements of the form SELECT cond THEN
body END. Here cond is a state predicate, and body is a B statement. If cond is satis-
fied, the behaviour of the guarded operations corresponds to the execution of their
bodies. However, if cond is false, then execution of the corresponding operation is
suspended, i.e., the operation is in waiting mode until cond becomes true. Such B
operations are suitable for specifying system reactions on events, i.e., for modelling
common reactive systems.

B statements that we are using to describe a state change in operations have the fol-
lowing syntax:

S == x := e | IF cond THEN S1 ELSE S2 END | S1 ; S2 | x :: T |
 S1 || S2 | ANY z WHERE cond THEN S END

The first three constructs – assignment, the conditional statement and sequential com-
position have the standard meaning. The remaining constructs allow us to model non-
deterministic or parallel behaviour in a specification. For example, x :: T denotes a
nondeterministic assignment where any value from set T can be assigned to variable
x. Usually such statements are not implementable so they have to be refined (re-
placed) with executable constructs at some point of program development. The de-
tailed description of the B statements can be found elsewhere [1].

To illustrate basic principles of modelling in B, next we present our approach to
formal specification of a service component.

Modelling a Service Component in B. Above we have described a service compo-
nent as a coherent piece of functionality that provides its services to a service con-
sumer via PSAP(s). We used this term to refer to external service providers intro-
duced at the Service Decomposition phase. However, the notion of a service compo-
nent can be generalized to represent service providers at the different levels of ab-
straction. Indeed, even the entire Positioning system can be seen as the service com-
ponent providing the Position Calculation service. On the other hand, peer proxies
introduced at the lowest level of abstraction can also be seen as the service compo-
nents providing the physical data transfer services. Therefore, the notion of a service
component is central to the entire Lyra development process.

A service component has two essential parts: functional and communicational.
The functional part is a “mission” of a service component, i.e., the service(s) which it
is capable of executing. The communicational part is an interface via which the ser-
vice component receives requests to execute the service(s) and sends the results of
service execution.

Usually execution of a service involves certain computations. We call the B repre-
sentation of this part of service component an Abstract CAlculating Machine
(ACAM). The communicational part is correspondingly called Abstract Communicat-
ing Machine (ACM), while the entire B model of a service component is called Ab-

 Formal Model-Driven Development of Communicating Systems 195

stract Communicating Component (ACC). The abstract machine ACC below presents
the proposed pattern for specifying a service component in B.

 In our specification we abstract away from the details of computations required to
execute a service. Our specification of ACAM is merely a statement non-
deterministically generating results of the service execution in case of success or
failure. The communication with a service component is conducted via two channels
– inp_chan and out_chan – shared between the service component and the service
consumer. While specifying a service component, we adopt a systemic approach, i.e.,
model the service component together with the relevant part of its environment, the
service consumer. Namely, we model how the service consumer places requests to
execute a service in the operation env_req and reads the results of the service execu-
tion in the operation env_resp.

The operations read and write are internal to the service component. The service
component reads the requests to execute a service from inp_chan as defined in the
operation read. As a result of the execution of read, the request is stored into the in-
ternal data buffer input, so it can be used by ACAM while performing the required
computing. Symmetrically the operation write models placing the results of computa-
tions performed by ACAM into the output channel, so it can be read by the service
consumer. We reserve the abstract constants INPUT_NIL and OUT_NIL to model the
absence of data, i.e., the empty channel . The operations discussed above model
the communicational (ACM) part of ACC.

MACHINE ACC

VARIABLES inp_chan, input, out_chan, output

INVARIANT

 inp_chan : INPUT_DATA & input : INPUT_DATA &
 out_chan : OUT_DATA & output : OUT_DATA

INITIALISATION
 inp_chan, input := INPUT_NIL, INPUT_NIL ||
 out_chan, output := OUT_NIL, OUT_NIL

OPERATIONS

ACAM

calculate =
 SELECT not(input = INPUT_NIL) &
 (output = OUT_NIL)
 THEN
 CHOICE
 output ::
 OUT_DATA - {OUT_NIL,OUT_FAIL}
 OR
 output := OUT_FAIL
 END ||
 input := INPUT_NIL
 END;

END

ACM
env_req =
 SELECT inp_chan = INPUT_NIL THEN
 inp_chan :: INPUT_DATA - {INPUT_NIL}
 END;

read =
 SELECT not(inp_chan = INPUT_NIL) &
 (input = INPUT_NIL) THEN
 input,inp_chan := inp_chan,INPUT_NIL
 END;

write =
 SELECT not(output = OUT_NIL) &
 (out_chan = OUT_NIL) THEN
 out_chan,output := output,OUT_NIL
 END;

env_read =
 SELECT not(out_chan = OUT_NIL)
 THEN
 out_chan := OUT_NIL
 END

196 L. Laibinis et al.

Fig. 4. Translating UML2 model into the ACC pattern

We argue that the machine ACC can be seen as a specification pattern which can be
instantiated by supplying the details specific to a service component under construc-
tion. For instance, the ACM part of ACC models data transfer to and from the service
component very abstractly. While developing a realistic service component, this part
can be instantiated with real data structures and the corresponding protocols for trans-
ferring them.

In the next section we demonstrate how Lyra development flow can be formalized
as refinement and decomposition of an abstract communicating component (ACC).

4 Formal Service-Oriented Development

As described in Section 2, usually a service component is represented as an active
class with the PSAP(s) attached to it via the port(s). The state diagram depicts the
signalling scenario on PSAP including the signals from and to the external class mod-
elling the service consumer. Essentially these diagrams suffice to specify the service
component according to the ACC pattern proposed in Section 3. The general principle
of translation is shown in Fig.4.

Idle serving

env_req

env_resp

 aSC:SC

SC_PSAP

I_FromSCI_ToSC

The UML2 description of PSAP of the service component SC is translated into the

communicational (ACM) part of the machine ACC_SC specifying SC according to the
ACC pattern. The functional (ACAM) part of ACC_SC instantiates the non-
deterministic assignment of ACC by the data types specific to the modelled service
component. These translations formalize the Service Specification phase of Lyra.

In the next phase of Lyra development – Service Decomposition – we decompose
the service provided by the service component into a number of stages (subservices).
The service component can execute certain subservices itself as well as request the
external service components to do it. At the Service Decomposition phase two major
transformations are performed:

1. the service execution is decomposed into a number of stages (or subservices).
2. communication with the external entities executing these subservices is intro-

duced via USAPs.

Each transformation corresponds to a separate refinement step in our approach.

MACHINE ACC_SC
….
OPERATIONS
ACM
 env_req
 read
 write
 env_resp

ACAM
 calculate

END

 Formal Model-Driven Development of Communicating Systems 197

According to Lyra, the flow of the service execution is orchestrated by Service Di-
rector (often called a Mediator). It implements the behaviour of PSAP of the service
component as specified earlier, as well as co-ordinates the execution by enquiring the
required subservices from the external entities according to the execution flow.

Assume that the service component SC specified by the machine ACC_SC at the
Service Specification phase is providing the service S which is decomposed into the
subservices S1, S2, and S3. Moreover, let assume that the state machine of Service
Director defines the desired order of execution: first S1, then S2 and finally S3. The
UML2 representation of this is given in Fig.5, in which we also demonstrate that such
decomposition can be represented as a refinement of our abstract pattern ACC instan-
tiated to model SC.

This decomposition step focuses on refinement of the functional (ACAM) part of
ACC. As in ACAM, in the refinement of it - ACAM’- the operation calculate puts the
results of service execution on the output channel. However, calculate is now pre-
ceded by the operation director, which models Service Director orchestrating the
stages of execution. We introduce the variables S1_data, S2_data and
S3_data to model the results of execution of the corresponding stages. The operation
director specifies the desired execution flow by assigning corresponding values to the
variable curr_service. In general, execution of any stage of service can fail. In its turn,
this might lead to failure of the entire service provision. In this paper, due to the lack
of space, we omit the presentation of failures of service provision and error recovery
while specifying Service Director. The detailed description of this can be found in the
accompanying technical report [5].

To derive the pattern for translating UML2 diagrams modelling the functional ar-
chitecture and the platform-distributed service architecture at these two phases, we
should consider two general cases:

1. The service director of SC is “centralized”, i.e., it resides on a single network
element.

2. The service director of SC is “distributed”, i.e., different parts of the execution
flow are orchestrated by distinct service directors residing on different network
elements. The service directors communicate with each other while passing the
control over the corresponding parts of the flow.

In both cases the model of the initial service component SC looks as shown in Fig.6.
The service distribution architecture diagram for the first case is given in Fig.7.

It is easy to observe that the service component SC plays a role of the service con-
sumer for the service components SC1, SC2 and SC3. We specify the service compo-
nents SC1, SC2 and SC3 as the separate machines ACC_SC1, ACC_SC2, ACC_SC3
according to the proposed pattern ACC, as depicted in Fig.8. The process of translat-
ing their UML2 models into B is similar to specifying SC at the Service Specification
phase. The communicational (ACM) parts of the included machines specify their
PSAPs. To ensure the match between the corresponding USAPs of SC and PSAPs of
the external service components, we derive USAPs of SC from PSAPs of SC1, SC2
and SC3.

Besides defining separate machines to model the external service components, in
this refinement step we also define the mechanisms for communicating with them.
We refine the operation director to specify the communication on USAPs. Namely,
we replace the nondeterministic assignments modelling stages of the service execu-

198 L. Laibinis et al.

REFINEMENT ACC_R1_SC

REFINES ACC_SC

VARIABLES

 curr_service, handling_flag

INVARIANT

 curr_service : {SD, S1, S2,S3, CALC} &
 handling_flag : BOOL & ...

INITIALISATION

 curr_service, handling_flag := SD,FALSE ||
…

OPERATIONS

ACAM’

S1 = SELECT curr_service = S1
 THEN handling_flag := TRUE
 END;
S2 = …

S3 = …

director =
 SELECT handling_flag = TRUE THEN
 IF curr_service = SD THEN
 curr_service := S1
 ELSIF curr_service = S1 THEN
 S1_data :: S1_DATA-{S1_NIL};
 curr_service := S2
 ELSIF curr_service = S2 …
 ELSIF curr_service = S3
 THEN …
 curr_service := CALC
 END ||
 handling_flag := FALSE
 END;

calculate =
 SELECT (curr_service=CALC) & …
 THEN
 output,input := OUT_data,INPUT_NIL ||
 curr_service := SD
 END;

END

ACM…

tion by the corresponding signalling scenario: at the proper point of the execution
flow, director requests a desired service by writing into the input channel of the
corresponding included machine, e.g., SC1_write_ichan, and later reads the produced

<<include>>

<<include>>
<<include>>

<<use case>>
 S

<<use case>>
S1

<<use case>>
S2

<<use case>>
 S3

Idle serving

env_req

env_resp

S1

S3

S2

[S1_ok]

[S2_ok]

[S3_ok]

xp_ok

ep_serving

Fig. 5. Service decomposition and refinement

 Formal Model-Driven Development of Communicating Systems 199

Fig. 8. Refinement at Service Decomposition and Service Distribution phases

results from the output channel of this machine, e.g., SC1_read_ochan. Graphically
this arrangement is depicted in Fig.9.

Modelling case (2) of the distributed service director is more complex. Let assume
that the execution flow of the service component SC is orchestrated by two service
directors: the ServiceDirector1, which handles the communication on PSAP of SC
and communicates with SC1, and ServiceDirector2, which orchestrates the execution
of the SC2 and SC3 services. The architecture diagram depicting the overall arrange-
ment is shown in Fig.10.

The service execution proceeds according to the following scenario: via PSAP of
SC ServiceDirector1 receives the request to provide the service S. Upon this, via
USAP of SC, it requests the component SC1 to provide the service S1. After the result

REFINEMENT ACC_R2_SC
REFINES ACC_R1_SC
INCLUDES
 ACC_SC1, ACC_SC2, ACC_SC3

ACM of ACC_SC

ACAM’’
director =
 SELECT handling_flag = TRUE
 THEN
 IF curr_service = SD
 THEN
 curr_service := S1
 ELSIF curr_service = S1
 THEN
 SC1_write_ichan(input);
 S1_data <- SC1_read_ochan
 ELSIF curr_service = S2 …
 ELSIF curr_service = S3 …
 END ||
 handling_flag := FALSE
 END;

calculate =…

END

MACHINE ACC_SC1

ACM of ACC_SC1

SC1_write_ichan(SC1inp) …
SC1read…
SC1out<- SC1_read_ochan…
SC1write…

ACAM of ACC_SC1
calculate …

MACHINE ACC_SC2

ACM of ACC_SC2
SC2_write_ichan(SC2inp) …
SC2read…
SC2out<- SC2_read_ochan…
SC2write…

ACAM of ACC_SC2
calculate …

 MACHINE ACC_SC3
 …..

Fig. 7. Architecture diagram (case 1) Fig. 6. Service component with USAPs

I_ToS I_FromS

I_S1

I_S2

I_S3
I_ToS3

I_FromS3

I_FromS1

I_ToS1
I_FromS2

I_ToS2

I_User

I_User

I_S3 I_S3I_S2
I_S2

I_S1
I_S1

200 L. Laibinis et al.

Fig. 9. Architecture of formal specification Fig. 10. Architecture diagram (case 2)

 ACAM_SC1

ACM_SC1

SC1 ACAM_SC2 ACAM_SC3

 ACAM_SC

ACM_SC2 ACM_SC3

SC2 SC3

SC

ACC_SC

External service consumer

.

.

I_User

I_User

I_S3 I_S3

I_S2 I_S2

I_S1
I_S1

 ServiceDirector1

 ServiceDirector2

I_SDir1-SDir2

I_SDir1-SDir2

of S1 is obtained, ServiceDirector1 requests Service Director2 to execute the rest of
the service and return the result back. In its turn, ServiceDirector2 at first requests
SC2 to provide the service S2 and then SC3 to provide service S3. Upon receiving the
result from S3, it forwards it to ServiceDirector1. Finally, Service Director1 returns to
the service consumer the result of the entire service S via PSAP of SC.

This complex behaviour can be captured in a number of refinement steps. At first,
we observe that ServiceDirector2, co-ordinating execution of S2 and S3, can be mod-
elled as a “large” service component SC2-SC3 which provides the services S2 and S3.
Let us note that the execution flow in SC2-SC3 is orchestrated by the “centralized”
service director ServiceDirector2. We use this observation in our next refinement
step. Namely we refine the B machine modelling SC by including into it the machines
modelling the service components SC1 and SC2-SC3 and introducing the required
communicating mechanisms. In our consequent refinement step we focus on decom-
position of SC2-SC3. The decomposition is performed according to the proposed
scheme: we introduce the specification of ServiceDirector2 and decompose the func-
tional (ACAM) part of SC2-SC3. Finally, we single out separate service components
SC2 and SC3 as before and refine ServiceDirector2 to model communication with
them. The final architecture of formal specification is shown in Fig.11. We omit the
presentation of the detailed formal specifications – they are again obtained by the
recursive application of the proposed specification and refinement patterns.

At the consequent refinement steps we focus on
particular service components and refine them
(in the way described above) until the desired
level of granularity is obtained. Once all external
service components are in place, we can further
decompose their specifications by separating
their ACM and ACAM parts. Such decomposi-
tion will allow us to concentrate on the commu-
nicational parts of the components and further
refine them by introducing details of the re-
quired concrete communication protocols.

Discussion. In the proposed approach we have used our B formalisation of Lyra to
verify correctness of the Lyra decomposition and distribution phases. We have done
this by introducing generic patterns for communicating service components and then
associating the Lyra development steps with the corresponding B refinements on
these patterns. In development of real systems we merely have to establish by proof
that the corresponding components in a specific functional or network architecture are

Fig. 11. Architecture (case 2)

 ACAM_SC1

ACM_SC1

SC1

 ACAM_SC2 ACAM_SC3

 ACAM_SC

ACM_SC2 ACM_SC3

SC2 SC3

SC

ACC_SC

External service consumer

SC2-SC3
ACAM_SC2-SC3

ACM_SC2-SC3

 Formal Model-Driven Development of Communicating Systems 201

valid instantiations of these patterns. All together this constitutes a basis for automat-
ing industrial design flow of communicating systems.

The decomposition model that we have used for testing our approach is still rela-
tively simple. As a result, all refinement steps were automatically proved by AtelierB
–a tool supporting B. While describing the formalisation of Lyra in B, we considered
only the sequential model of service execution. However, parallel execution of ser-
vices is also a valid interpretation of the considered UML2 models. Currently we are
working on extending our B models to include parallel execution of services. Fur-
thermore, we will incorporate more sophisticated fault tolerance mechanisms (e.g.,
different types of fault recovery procedures) into our models. We foresee that such
extensions will make automatic proof of model refinements more difficult. However,
by developing generic proof strategies, we will try to achieve high degree of automa-
tion in formal verification of our models.

5 Conclusions

In this paper we proposed a formal approach to development of communicating dis-
tributed systems. Our approach formalizes Lyra [8] – the UML2-based design meth-
odology adopted in Nokia. The formalization is done within the B Method [1,13] – a
formal framework supporting system development by stepwise refinement. We de-
rived the B specification and refinement patterns reflecting models and model trans-
formations used in the development flow of Lyra. The proposed approach establishes
a basis for automatic translation of UML2-based development of communicating
systems into the specification and refinement process in B. Such automation would
enable a smooth integration of formal methods into existing development practice.
Since UML is widely accepted in industry, we believe that our approach has a poten-
tial for wide industrial uptake.

Lyra adopts the service-oriented style for development of communicating systems.
We presented the guidelines for deriving B specifications from corresponding UML2
models at each development stage of Lyra and validated the development by the cor-
responding B refinements. The major model transformations aim at service decompo-
sition and distribution over the given platform. The proposed formal model of com-
munication between the distributed service components is generic and can be instanti-
ated by virtually any concrete communication protocol.

The initial formalization of Lyra has been undertaken using model checking tech-
niques [8]. However, since telecommunicating systems tend to be large and data in-
tensive, this formalization was prone to the state explosion problem. Our approach
helps to overcome this limitation.

Development of distributed communicating systems has been a topic of ongoing
research over several decades. Our review of related work is confined to the consid-
eration of the recent research conducted within the B Method.

Treharne et al. [14] investigated verification of safety and liveness properties of
communicating components by combining the B Method and the process algebra
CSP. However, they do not consider service decomposition and distribution aspects of
communicating system development.

Boström and Walden [2] proposed a formal methodology (based on the B Method)
for developing distributed grid systems. In their approach the B language is extended

202 L. Laibinis et al.

with grid-specific features. In their work, the system development is governed by B
refinement. In our approach the system development is guided by the existing devel-
opment practice, so that the refinement process is hidden behind the facade of UML.

There is active research going on translating UML to B [3,6,7,11,12]. Among
these, the most notable is research conducted by Snook and Butler [11] on designing
the method and the U2B tool to support the automatic translation. In our future work
we are planning to integrate our efforts with the U2B developers to achieve the auto-
matic translation of Lyra into B. While doing this, we will focus specifically on trans-
lating models and model transformations used in Lyra to automate formalisation of
the entire UML-based development process in the domain of the communicating
distributed systems. We are already working on creating the Lyra UML2 metamodel,
which will assist us in achieving this goal. Furthermore, we are planning to further
enhance the proposed approach to address issues of fault tolerance, concurrency and
integration of process algebraic approaches to verify the dynamic properties of com-
munication protocols between network elements.

Acknowlegements. This work is supported by EU funded research project IST
511599 RODIN (Rigorous Open Development Environment for Complex Systems).
We are also grateful to anonymous reviewers for their very helpful comments.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. P.Boström and M.Waldén. An Extension of Event B for Developing Grid Systems, in H.

Treharne et al (Eds.), Formal Specification and Development in Z and B:,UK, 2005.
3. P.Facon, et al. Combining UML with the B formal method for the specification of database

applications. Research report, CEDRIC laboratory, Paris, 1999.
4. P.Behm, et al. METEOR: A successful application of B in a large project. In Wing et all

(editors), Proc. of the World Congress on Formal Methods. LNCS 1709, Springer, 1999.
5. L.Laibinis, E.Troubitsyna, S.Leppänen, J.Lilius, and Q.Malik. Formal Model-Driven De-

velopment of Communicating Systems. TUCS Technical Report No. 691. Finland, 2005.
6. K.Lano, D.Clark, and K.Adroutsopoulos. UML to B: Formal Verification of Object-

Oriented Models. In E.A.Boiten et al (Eds.): Integrated Formal Methods,. Springer, LNCS
2999.

7. H.LeDang and J.Souquieres. Integrating UML and B specification techniques. In Proc. of
the Workshop on Integrating Diagrammatic and Formal Specification Techniques, 2001.

8. S.Leppänen, M.Turunen, and I.Oliver. Application Driven Methodology for Development
of Communicating Systems.Forum on Specification and Design Languages. France, 2004.

9. MATISSE Handbook for Correct Systems Construction. 2003. http://www.esil.univ-
mrs.fr/~spc/matisse/Handbook/.

10. J.Rumbaugh, I.Jacobson, and G.Booch. The Unified Modelling Language Reference Man-
ual. Addison-Wesley, 1998.

11. C.Snook and M.Butler. U2B - A tool for translating UML-B models into B, in Mermet, J.,
Eds. UML-B Specification for Proven Embedded Systems Design. Springer, 2004.

12. C.Snook and M.Waldén. Use of U2B for Specifying B Action Systems. In Proc. of Work-
shop on Refinement of Critical Systems: Methods, Tools and Experience, France, 2002.

 Formal Model-Driven Development of Communicating Systems 203

13. Steria, Aix-en-Provence, France. Atelier B, User and Reference Manuals, 2001. Available
at http://www.atelierb.societe.com/index uk.html

14. H.Treharne et al. Composing Specifications Using Communication, in D. Bert et al (Eds.),
Proc. of Formal Specification and Development in Z and B, Finland. Springer, 2003.

15. 3GPP. Technical specification 25.305: Stage 2 functional specification of UE positioning
in UTRAN. See http://www.3gpp.org/ftp/Specs/html-info/25305.htm

16. 3GPP. Technical specification 25.453: UTRAN Iupc interface positioning calculation ap-
plication part (pcap) signalling. See http://www.3gpp.org/ftp/Specs/html-info/25453.htm

JAHUEL: A Formal Framework for Software Synthesis�

I. Assayad1, V. Bertin2, F.-X. Defaut1, Ph. Gerner1, O. Quévreux1, and S. Yovine1

1 VERIMAG, Centre Equation, 2 Ave. Vignate, 38610 Gières, France
2 STMicroelectronics, 850 rue Jean Monnet, 38921 Crolles, France

Abstract. We present a theoretically sound and automated model-based design,
analysis, and implementation framework for synthesizing correct-by-construction
code. Special emphasis is put on multi-threaded software and multi-processor
architectures. The framework consists in (1) a formal language which provides
platform-independent constructs to specify the behavior of an application using
an abstract execution model, and (2) a compilation chain for refining the appli-
cation abstract model into its concrete implementation on a target platform. The
prototype JAHUEL is currently being used for developing experimental industrial
applications.

1 Introduction

In current industrial engineering practices for developing embedded real-time systems,
application requirements and design constraints are spread out and do not easily inte-
grate and propagate through the development process. Moreover, the increasing com-
plexity of applications tends to enlarge the abstraction gap between application descrip-
tion and hardware. Consequently, ensuring non-functional requirements (e.g., timing
properties, resource management, ...) is costly and error-prone.

During the development cycle, two models of execution are distinguished. The first
one is the abstract model inherent to the specification of an application, which typically
corresponds to logically concurrent activites, with data and control dependencies. The
second one is the concrete execution model provided by a particular platform (run-time
system and hardware architecture). The problem consists in exploiting platform capa-
bilities (e.g., multithreading, pipelinening, dedicated devices, multiprocessors, ...) to
implement the abstract model, or eventually restricting the latter because of constraints
imposed by the concrete model (e.g., synchronous communication, shared memory,
single processor, bus contention, ...). In any case, the programmer must handle both
types of execution models during the development cycle. Therefore, there is a need
for (1) appropriate mechanisms for expressing these models, and (2) tools for formally
relating them, in order to produce executable code which (a) is correct with respect to
application’s logic, and (b) ensures non-functional requirements are met on the concrete
execution platform.

In this paper we are specially interested in two issues: concurrency and timing con-
straints. Current practices to handle them could be summarized as follows.

� Contact: Sergio.Yovine@imag.fr. Partially supported by MEDEA+ Project NEVA.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 204–218, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

JAHUEL: A Formal Framework for Software Synthesis 205

Run-Time Libraries and Compiler Directives. A very common practice consists in us-
ing a language with no support for concurreny or time (e.g., C), together with specific
libraries or system calls (e.g., POSIX threads or MPI [10]) provided by the underlying
runtime system or using compiler directives (e.g., OpenMP [18]).1 This approach has
several inconveniences. First, there is no way to distinguish between abstract and con-
crete execution models at program level, and therefore, the reason that motivated the
programmer’s choice (i.e., application design or platform capability) is irrecoverable
from program code. This gives rise to a messy development cycle, where application
design and system deployment are not handled separately, and application code is too
early customized for a specific target, therefore impeding reusability and portability.
Second, correctness verification is almost impossible due to system calls.

Domain-Specific Programming Languages. Another practice consists in using a lan-
guage with a (more or less formal) abstract execution model where time and concur-
rency are syntactic and semantic concepts (e.g., Lustre [11], Ada [5].) It is entirely
the role of the compiler to implement the abstract execution model on the target plat-
form. This approach enhances formal analysis. Nevertheless, these languages provide
no constructs for dealing with cross-cutting non-functional issues, and rely on a fully
automatic implementation phase that makes retargetting, platform exploration, and op-
timization hard to achieve. For instance, a typical industrial practice for exploiting mul-
tiprocessor architectures for synchronous programs consists in manually cutting the
code into pieces, and adding hand-written wrappers. This practice breaks down formal
analysis and suffers from the same inconveniences of the library/directives approach.
Although there is ongoing work to solve this problem for specific execution platforms
(e.g., [6]), there is no attempt neither to provide language support nor to develop a
general framework.

Modelling Frameworks and Architecture Description Languages. To some extent, some
of the abovementioned problems could be avoided using (domain-specific) architecture
description languages that provide means to integrate software and hardware models
(e.g., [4].) Still, in all ADL-based approaches we are aware of, description of the appli-
cation execution model is tied up to a platform-dependent execution model, which is,
consequently, implemented using platform primitives by direct translation of the appli-
cation code. Model-integrated development [14] also handles requirements composed
horizontally at the same level of abstraction. However, it does not seem to be well
adapted to reason about cross-cutting non-functional requirements that need vertical
propagation and composition through different abstraction layers. Platform-based de-
sign [20] is a methodology that supports vertical integration, but it is mainly focused on
composing functionality while abstracting away non-functional properties. PTOLEMY
II [19] is a design framework that supports composition of heterogeneous models of
concurrent computation, but it is oriented towards modeling and simulation rather than
to application-code synthesis.

Aspect-Oriented Software Development. Aspects could help in bridging the gap between
application’s specification and the actual platform-specific implementation. However, to

1 Java provides some mechanisms, but they are (typically) implemented using platform libraries.

206 I. Assayad et al.

our knowledge, current AOP-based approaches require an important programming ef-
fort, do not handle timing constraints, and are not specifically focused on code synthesis
for different platforms, but are typically used for monitoring and optimization [15].

To overcome the aforementioned problems, we think compilation tools and their as-
sociated technologies (analysis, optimization, ...) must play the central role of mapping
platform independent software into target execution platforms (operating system and
hardware), while ensuring at compile time that non-functional requirements provided
by system’s engineers will be met at runtime.

Integrating in the same toolset (1) a compiler, and (2) model-based formal analysis
and synthesis techniques for handling non-functional constraints and heterogeneous ar-
chitectures, is an innovative way to provide correct by construction code. This enables
code generation for specific platforms (including software-to-processor mapping and
scheduling), and platform-independent functional analysis, to be linked together in the
same tool-chain without semantic gap.

Such a framework will considerably increase the overall quality of industrial sys-
tems designed with these tools, guaranteeing the correctness of the resulting solution.
This approach enhances the applicability of formal verification and analysis techniques
in industrial design flows, leading to a significant reduction in overall system’s valida-
tion time.

Nevertheless, building representative models that adequately relate functional and
non-functional behavior, of both application software and execution platforms, is chal-
lenging [23]. Multi-threaded software and processors, and multi-processor architectures
bring in additional complexity.

To circumvent this complexity, we propose a framework consisting of a formal lan-
guage and its associated compilation chain. The purpose of the language is threefold.
First, it provides simple and platform-independent constructs to specify the behavior
of the application using an abstract execution model. Second, it provides semantic and
syntactic support for correctly refining the abstract execution model into the concrete
one. Third, the language and the compilation chain are extensible to easily support new
concrete execution models, without semantic break-downs. Besides, the language can
be used by the programmer to express program structure, functionality, requirements
and constraints, as well as by the compiler as a representation to be directly manipu-
lated to perform program analyses and program transformations to generate executable
code which achieves application requirements and complies to platform constraints.

In this paper, we present the basic language and its semantics, and the compilation
chain. The current prototype compilation-chain, called JAHUEL, is implemented using
an XML intermediate representation format, and Java for the algorithmic transforma-
tions. JAHUEL is connected with STMicroelectronics FlexCC2 compilation-suite [3].
We briefly illustrate the application of the framework on an industrial case study: an
MPEG-4 video encoder [1].

2 Informal Presentation of the Language

The underlying basic idea of our language, called FXML, is that computation units are
concurrent by default, while explicit precedences can be expressed to limit concurrency.

JAHUEL: A Formal Framework for Software Synthesis 207

The granularity of computation units is not fixed, the smaller grain is the assignment
or legacy code. Data dependencies are implicit, but can be explicitely added to express
data dependencies in legacy code.

FXML provides a forall primitive to declare several concurrent iterations of the
same block. This construct is similar to FORTRAN 95 with the difference that we do al-
low dependencies between iterations. FXML also has “parallel” and “sequential” com-
position, similar to CSP [13]. However, a major difference with CSP is that our “paral-
lel” composition does not entail parallel execution at runtime, but it is only a mechanism
to specify logically concurrent activities.

An important difference with other languages is that basic FXML does not provide
any specific synchronization or communication primitives (like channels or rendez-
vous). Instead, the basic language can be extended with non-functional information
about the concrete execution model (e.g., execution times, synchronization mecha-
nisms, number of processors), and the target platform (e.g., OpenMP, Pthreads, MPI).

2.1 A Simple Producer/Consumer

Let us start with a simple producer-consumer system to informally introduce FXML.
Fig. 1 (left) shows the C program of this system. Pragmas are the actual syntax used by
FlexCC2. The abstract syntax of FXML will be given later in this section. The concrete
syntax of FXML is defined as an XML schema, which is not presented here.

The pragmaparallel writer user declares that the C functionswriter()
and user() invoked by main() are logically concurrent. The abstract syntax symbol

#pragma code_block
#pragma parallel writer user
main()
{

writer(); /* /&/ */ user();
}

#pragma code_block
void writer ()
{

while (1) { write(); }
}

#pragma code_block
void user ()
{
#pragma period 15 us

while (1) { use(); }
}

int x = 0;

#pragma code_block
#pragma execution_time [0,5] us
void write()
{

x++;
printf("WRITER : x = %d\n", x);

}

#pragma code_block
#pragma execution_time [0,10] us
#pragma dependency
main.writer.write -> (x) main.user.use [0,100] us
void use()
{

printf("USER : x = %d\n", x);
}

Fig. 1. Simple producer/consumer

208 I. Assayad et al.

for parallel is /&/. Functions writer() and user() are non-terminating exe-
cutions, user() has a period of 15μs (pragma period). writer() calls write()
which has an execution time less or equal than 5μs. user() calls use() which com-
pletes in at most 10μs. dependency expresses that there is a data dependency between
write() and use() on x, with a freshness interval [0, 100], that is, use() can only
take place if the time elapsed since the last write() is less than 100μs.

FlexCC2 analyzes the program (pragmas and C code) and extracts a description of
it in the concrete XML syntax of FXML. Fig. 1 (right) shows a graphical representa-
tion of the program in (the XML representation of) FXML. The dotted arrow depicts
the dependency. The graph is also generated by FlexCC2. Functions write() and
use(), and variable x are considered as legacy C-code in FXML. The compilation
chain must preserve the data dependency, as well as the atomicity of the read and write
operations on variable x. This is done by adding the appropriate mutual exclusion and
synchronization mechanisms.

3 Formal Definition and Semantics of FXML

3.1 Syntax

The body of an FXML specification is composed of blocks called pnodes. The term
pnode stands for “presentation node”. This notion comes from model theory: a pnode
“presents” an abstract execution. Fig. 2 shows the abstract syntax for pnodes. The con-
crete syntax in XML is defined by an XML schema (not presented here).

Basic pnodes. nil denotes an empty set of executions. Let X be the set of variables.
Variables store values from a set V . An assignment α has the form x0 = ζ(x1, . . . , xn),
where xi ∈ X, i ∈ [0, n], and ζ : V n → V is a computable function. We write αi for
xi. A block of legacy code (legacy) and a function call (eval) are basic pnodes.

Conditional pnodes are of the form if ζ(x1, . . . , xn) then p else q, where p and q
are pnodes, and ζ : V n → V is a boolean function.

Sequential composition of p and q is the pnode p ; q.

Iterations. The pnodesfor(i = init(x1, . . . , xn);i = inc(i);test(i))[per=P] p,
and while(test(x1, . . . , xn))[per=P] p, express iterations: i is the iteration vari-
able, init : V n → N is a computable function that gives the initial value of i,
inc : N → N is the increment function, and test : N → V is a boolean function
that defines the looping condition. i is assumed not to be modified in p. The optional
declaration [per=P] gives the period of the loop, that is, the time distance between
two successive iterations of p.

Parallel Composition. FXML has two operators for expressing parallelism. The pnode
p/&/ q specifies that p and q are concurrent. Several parallel executions of p are spec-
ified by the pnode forall(i = init(x1, . . . , xn);i = inc(i);test(i)) p where i,
init, inc and test are as for for-loops.

Labeling. Pnodes can be labeled. L: p is a pnode.

JAHUEL: A Formal Framework for Software Synthesis 209

Dependencies. Let p be a (composite) pnode, with two descendants pi, i = 1, 2, labeled
L1 and L2, respectively. p{L1 [d]→ L2} specifies a dependency between p1 and
p2. Intuitively, this means that p2 can only occur after p1. The optional [d] expresses a
data dependency. 2 Fig. 1 shows a data dependency on variable x from write to use.

Let qi be iteration pnodes which are descendants of p, and pi be descendants of qi,
labeled Li, i = 1, 2. We write p {L1(k) [d]→ L2(f(k))} to express that there
is a (data) dependency between the occurrence pk

1 in the k-th iteration of q1, and the

occurrence of p
f(k)
2 in the f(k)-th iteration of q2. Examples of indexed dependencies

will be given in Sec. 5.

Timing Constraints. Besides periods attached to iterations, all pnodes can be anno-
tated with timing constraints. Let p be a pnode and, for simplicity, let a, b ∈ N3.
p[a,b] means that the execution time of p is in the interval [a, b]. Intervals can also
be associated with all dependencies. Let pi be descendants of p labeled Li, i = 1, 2.
p{L1→[a,b]L2} means that the time difference between the end of p1 and the start
of p2 belongs to the interval [a, b]. Temporal data dependencies are useful for specify-
ing freshness constraints: the written value cannot be read (e.g., appear in the right-hand
side of an assignment) if the time distance between the write and read operations is out-
side the specified interval. Fig. 1 shows a freshness constraint of 100μs on variable x
from write to use.

3.2 Executions

The semantics of an FXML specification is a set of executions. Intuitively, an execution
is a partial order of evaluated assignments. Before giving semantics to FXML specifi-
cations, we need to introduce some definitions.

Indexed assignments. An index is a list I of natural numbers and labels. 〈�1, . . .〉 de-
notes the list consisting of elements �1, . . ., and ◦ denotes concatenation of lists. An
indexed assignment is denoted αI . A set of indexed assignments is denotedA.

Timing. Time is modeled with a timing function τ : A → IR+ × IR+. We write,
τb(αI) = π1(τ(αI)), and τe(αI) = π2(τ(αI)), which denote respectively the begin-
ning and ending times of assignment αI . τ satisfies the set of indexed assignments A,
denoted τ |= A, iff for each αI ∈ A, τb(αI) ≤ τe(αI).

Dependencies Let Out = {x ∈ X | ∃αI ∈ A : x = α0} be the set of vari-

ables assigned in A. The relation
d−→⊆ A × A models data dependencies: for all

βJ ∈ A, for all βj , if βj ∈ Out, then there exists a unique αI ∈ A s.t. α0 = βj

and αI d−→ βJ . We write αI βj−→ βJ as a shorthand for αI d−→ βJ ∧ α0 = βj . τ

satisfies the data dependency relation
d−→, denoted τ |= d−→, iff for any αI , βJ ∈ A,

αI d−→ βJ =⇒ τe(αI) ≤ τb(βJ). The relation
;−→⊆ A×A gives an order between

2 This is not strictly necessary from a semantical point of view. Indeed, it is needed to be able to
express data dependencies hidden in legacy code. In this case, the data dependency declaration
is automatically inserted by the compiler during the data dependency analysis phase.

3 The actual syntax allows for more complex expressions.

210 I. Assayad et al.

indexed assignments in A, thus modeling sequential dependencies. τ satisfies
;−→, de-

noted τ |= ;−→, iff for any αI , βJ ∈ A, αI ;−→ βJ =⇒ τe(αI) ≤ τb(βJ). We define

−→= d−→ ∪ ;−→. τ satisfies −→, denoted τ |=−→, iff τ |= d−→ and τ |= ;−→.

Valuations. A can be seen as a family (nA | n ∈ N) of sets of indexed assignements,
where nA contains only indexed assignments αI ∈ A, where α is of the form x0 =
ζ(x1, . . . , xn). Let ν = (nν | n ∈ N) be a family of N-indexed valuation functions,
with nν : nA → V n+1. nν gives the value of variables for indexed assignments of A:
nν(αI) = (v0, v1, v2, . . . , vn), with v0 = ζ(v1, v2, . . . , vn). ν satisfies

d−→, denoted

ν |= d−→, iff for any αI ∈ nA, βJ ∈ mA, with nν(αI) = (v0, v1, v2, . . . , vn) and
mν(βJ) = (w0, w1, w2, . . . , wm), we have that αI βj−→ βJ =⇒ wj = v0.

Executions. An execution e is (X,A, V,
d−→,

;−→, τ, ν), s.t. τ |= A, τ |=−→, ν |= d−→.

Timing constraints. τb(e) = minαI∈Ae
τb(αI), and τe(e) = maxαI∈Ae

τe(αI), are
the starting and ending time of e, respectively.

Subexecutions. f is a subexecution of e, f ⊆ e, iffAf ⊆ Ae, and
d−→f= d−→e�Af×Af

,
;−→f=

;−→e�Af×Af
, τf = τe �Af

, nνf = nνe �nAf
, where � means “restricted to”.

Partitions. A partition of e is a collection of n, n > 1, subexecutions e1, e2, . . . , en, of
e, s.t. e1, e2, . . . , en are non-trivial, disjoint (Ai∩Aj = ∅ for i �= j), and

⋃
i=1,...,nAi =

A. We write e = e1 & e2 & . . . & en.

Sequential partition. A partition is sequential, denoted e = e1 ; e2 ; . . . ; en, if ∀αI ∈
Ai, β

J ∈ Aj : i < j =⇒ αI ;−→e βJ .

Sequence dependency. For h, f, g ⊆ e, we write f
;−→e g if h = f ; g.

Indexed executions. The indexing of e with K is the execution eK whereAeK is defined
s.t. for all αI ∈ Ae, αK◦I ∈ AeK .

3.3 Semantics

We use an algebraic definition of the semantics [8]. If p is a pnode and e is an execution,
e |= p means that e is an execution for p. The semantics of p is [[p]] = {e | e |= p}.

Nil. The semantics of nil is the empty execution (∅, ∅, ∅, ∅, ∅, ∅, ∅).

Assignments. e |= α iff Ae = {αI} for some index I .

Conditional Statements. e |= if ζ(x1, . . . , xn) then p else q iff e = e1; e2 with
e1 and e2 s.t. e1 |= ζ(x1, . . . , xn), with Ae1 = {αI}, and e2 |= p if nνe1 (αI) = true,
otherwise e2 |= q.

Sequential Composition. e |= p1;p2 iff e = e1 ; e2, s.t. ei |= pi, i = 1, 2.

JAHUEL: A Formal Framework for Software Synthesis 211

pnode
<< abstract >>

label (0..1) : string
declaration (0..1) : declaration
dep-list (0..1) : {dependency} (1..*)
read-var-list (0..1) : {var-name} (1..*)
written-var-list (0..1) : {var-name} (1..*)
execution-time (0..1) : execution-time

/&/

body (1..1) : body

;

body (1..1) : body
attribute :
execution (0..1) : { non-atomic ,

atomic} [non-atomic] for

var-name (1..1) : var-name
init (1..1) : a-exp
test (1..1) : b-exp
step (1..1) : a-exp
period (0..1) : period
body (1..1) : body

abort

cause (0..1) : string

body

{pnode} (1..*)

if-then-else

if (1..1) : condition (1..1) : condition
then (1..1) : body (1..1) : body
else (0..1) : body (1..1) : body

while

condition (1..1) : condition
period (0..1) : period
body (1..1) : body

forall
var-name (1..1) : var-name
init (1..1) : a-exp
test (1..1) : b-exp
step (1..1) : a-exp
body (1..1) : body

assignment

var-name (1..1) : var-name
expression (1..1) : expression

nil

legacy-code

code-type (1..1) : string
source-code (1..1) : string

eval

name (1..1) : string
args (0..1) : {variable} (1..*)
results (0..1) : {variable} (1..*)

legacy-eval

name (1..1) : string
code-type (1..1) : string
source-code (1..1) : string

function

name (1..1) : string
args (0..1) : {variable} (1..*)
results (0..1) : {variable} (1..*)
body (1..1) : body

legacy-function

name (1..1) : string
code-type (1..1) : string
source-code (1..1) : string

Fig. 2. Syntax of an FXML body

Iterations. Let S = {k1, . . . , kN} be the indexed set of the values taken by the iteration
variable i. S is defined by inc, which is increasing: i < j =⇒ ki ≤ kj . e |=
for(...) p iff e = f1

〈1〉 ; . . . ; fN
〈N〉, where fj |= p, j ∈ [1, N], and for every

αI ∈ mAfj (for any m ∈ N) with mνfj (αI) = (v0, v1, v2, . . . , vm): αl = i =⇒ vl =
kj . That is, the value of the iteration variable i is equal to kj in fj .

The semantics of while-loops is similar. Assignments are indexed using a hidden
variable, whose values are 1, . . . , N , when the loop stops after the N -th iteration. 4

e |= while(test(x1, . . . , xn)) p iff e = c1 ; f1
〈1〉 ; . . . ; cN ; fN

〈N〉 ; cN+1, where
cj |= test(x1, . . . , xn), j ∈ [1, N + 1], fj |= p, j ∈ [1, N], and the conditions evaluate
to true in cj , j ∈ [1, N], and to false in cN+1.

Parallel Composition. e |= p1 /&/ p2 iff e = e1 & e2, ei |= pi, i = 1, 2. Composition
is commutative and associative. The semantics of forall-loops is as follows. Let
S = {k1, . . . , kN} be the set of indices defined by inc. e |= forall(...) p iff
e = f1

〈1〉 & . . . & fN
〈N〉, where fj |= p, j ∈ [1, N], and for every αI ∈ mAfj (for

any m ∈ N) with mνfj (αI) = (v0, v1, v2, . . . , vm): αl = i =⇒ vl = kj .

Dependencies. Let p be a composite pnode, with two descendants pi, labeled Li, i =
1, 2. e |= p{L1 → L2} iff e |= p, and for each e2 ⊆ e, s.t. e2 |= p2, there exists

4 The semantics of a non-terminating loop is an infinite execution.

212 I. Assayad et al.

e1 ⊆ e, e1 |= p1, s.t. e1
;−→e e2. That is, every occurrence of p2 in an execution of

p should be preceeded by an occurrence of p1 in the same execution. Notice that there
might be more than one occurrence of p2 in the execution (e.g., due to iterations), but
only one of p1 is required to exist. The semantics for data dependencies (→d) is similar,

except that e1, e2 are s.t. e1
d−→e e2.

An execution e models the iteration dependency p {L1(k) → L2(f(k))} iff

e |= p, and for all k ∈ [1, N], if e
〈k〉
1 ⊆ e is a model of the k-th iteration of p1, i.e.,

e
〈k〉
1 |= p1, and e

〈f(k)〉
2 ⊆ e is a model of the f(k)-th iteration of p2, i.e., e

〈f(k)〉
2 |= p2,

then there is a sequential dependency between e
〈k〉
1 and e

〈f(k)〉
2 , i.e., e

〈k〉
1

;−→e e
〈f(k)〉
2 .

Similarly for iteration data dependencies.

Timing Constraints. e |= p[a,b] iff e |= p and τe(e) − τb(e) ∈ [a, b]. For de-
pendencies: e |= p{L1→[a,b]L2} iff e |= p[a,b], and for all ei ⊆ e, ei |= pi,
i = 1, 2, e1

;−→e e2 =⇒ τb(e2) − τe(e1) ∈ [a, b]. Similarly for temporal data de-
pendencies. For periods: e |= for(...) [per=P] p iff e |= for(...) p, where
e = f1

〈1〉 ; . . . ; fN
〈N〉, s.t., for all i ∈ [1, N], [τb(fi

〈i〉), τe(fi
〈i〉)] ⊆ [(i − 1)P, iP [.

Similarly for while-loops. 5

4 The Compilation Chain

4.1 Transformations

Compiling an FXML specification consists in transforming it until actual executable
code for a specific platform could be generated. Let L denote a language. Concretely,
L is given by an XML schema, where each element definition has an associated type.
Thus, the compilation chain looks like a sequence L0 �→∗ L0 �→ L1 �→∗ . . .Ln,
where Li �→∗ Li is a sequence of refinements without changing the language (e.g., by
adding new sequential dependencies), and Li �→ Li+1 is a transformation that adds
information not expressible in Li (e.g., the number of processors in the architecture, the
communication and synchronization mechanisms, ...).

For simplicity, we define a transformation from L to L′ to be an injective map
φ : L → L′, that is, every element of the XML schema L is in the set of elements L′.
For transformations more complex than injective maps see, e.g., [9]. Let EL be the set
of executions “of type L”, and Fφ : EL′ → EL be the “forgetting” function that forgets
all information that is specific to executions “of type L′”. φ : L → L′ is correct iff for
all executions e′ |=L′ φ(p) it follows that Fφ(e′) |=L p.

4.2 JAHUEL

JAHUEL is an FXML-based prototype compilation chain. The tool smoothly handles
different kinds of interacting non-functional issues as a mix of language features, anal-
yses, and transformations: (a) timing requirements of the application (such as deadlines,
periods and freshness), are part of the program and used for scheduling; (b) timing as-
sumptions about execution times can be either added by the programmer and passed

5 The principle is the same for non-terminating loops.

JAHUEL: A Formal Framework for Software Synthesis 213

to the back-end compiler as constraints, or synthesized by program analysis; and (c)
code optimization and scheduling are uniformly treated as transformations. JAHUEL is
constructed to be easily extended to cope with new execution models, by extending the
basic FXML schema and by adding transformations. JAHUEL provides some general
transformations that can be customized for different execution platforms.

4.3 Using JAHUEL: The Producer/Consumer Example

The starting point is the FXML specification extracted by FlexCC2 from the annotated
C program. Fig. 1(right) shows the graphical structure of the actual specification. Boxes
are pnodes. A composite pnode is connected by a plain arrow to its components. The
temporal data dependency on variable x from write to use is attached to the pnode
/&/ (labeled “parallel” in the figure). The dotted arrow only serves for visualisation
purposes (it is automatically added by FlexCC2 to the graphical representation).

JAHUEL performs a first transformation to put the input description into a canon-
ical form. Second, it applies a transformation where all dependencies are replaced by
a generic synchronization mechanism. This transformation, denoted G, generates an
extension of FXML, denoted FXMLg , with primitives mutex X (denoting a mutual
exclusive access on a set of variables X), signal L (for signaling the termination
of the execution of the pnode labeled L), and wait cond (for waiting until condition
cond is satisfied). Fig. 3 shows the transformation rules for a timed data dependency.
C1 is a continuous variable whose value evolves with time. The semantics is that the
value of C1 is the time elapsed since the termination of pnode L1. The test a ≤ C1
≤ b corresponds to the requirement τe(e) − τb(e) ∈ [a, b], in the semantics of timed
dependencies defined before. It is not difficult to define the semantics of FXMLg as an
extension of the semantics of FXML given in Sec. 3.

L1:p1

mutex{x}G(p1);C1:=0;signal L1

L2:p2

wait L1 ∧ a≤C1≤b;mutex{x}G(p2)

Fig. 3. Transformation G for a timed data dependency L1 d→[a,b] L2 on x

The generic synchronization structure is used to generate code for more concrete
mechanisms. Indeed, FXMLg allows factoring the processing of dependencies which
is a common step to all platform-dependent implementations guaranteeing the depen-
dency. FXMLg specifications can be transformed by JAHUEL to enable code-generation
for widely used mechanisms provided by real-time operating systems APIs (e.g.,
POSIX) and programming languages (e.g., Java): lock, unlock, wait, and
notify. We denote S the transformation and FXMLs the extension of FXMLg with
these constructs. For simplicity, we only give here the transformation rule for a timed
data dependency (Fig. 4), but JAHUEL handles all dependencies.

After having processed the dependencies, and generated the specification of the
producer/consumer in FXMLs, JAHUEL applies a generic transformation whose role is
to structure the representation for generating code for thread-based runtime platforms.
This gives a specification in FXMLth. The basic idea is simple: pnodes writer and
user composed with the parallel composition operator /&/ become threads. In the

214 I. Assayad et al.

L1:p1
lock(Lx);S(p1);unlock(Lx);lock(L1); C1:=0; L1.b:=true; notify(L1); unlock(L1)

L2:p2
lock(L1); while(!(L1.b ∧ a ≤ C1 ≤ b))wait(L1); unlock(L1)lock(Lx);S(p2);unlock(Lx)

Fig. 4. Transformation S for a timed data dependency

main pnode, the calls to legacy C-functions writer() and user() are wrapped-up
by an FXMLth-construct start whose (intuitive) meaning is launching a thread. The
semantics of FXMLth can be formally defined along the same lines of FXML.

From FXMLth, different transformations for specific thread interfaces (e.g.,
Pthreads, SystemC, ...) can be directly applied (e.g., using XSLT). Fig. 5 shows
part of the C+Pthreads and SystemC implementations generated by JAHUEL for the
example.

JAHUEL also implements a transformation into discrete-time stop-watch automata
to enable scheduler synthesis using the tool described in [17,16].

void User()
{
X_lock_simply(&thUser,&initialization);
X_unlock_simply(&thUser,&initialization);

X_clock User_LCLOCK;
X_clock_init(&User_LCLOCK);

while (true)
{
X_lock(&thUser,-1,&write_happened);

while (((write_happened_CONTROL) == (-1)) ||
(X_clock_get(&thUser,-1,&write_GCLOCK,"us") > 100))
{

X_wait(&thUser,-1,-1,&write_happened);
}

X_unlock(&thUser,-1,&write_happened);// end CTOR User

X_lock(&thUser,-1,&x_shared);

X_clock use_task_LCLOCK;
X_task_b(&thUser,-1,"use",&use_task_LCLOCK,0,10,"us");
use();
X_task_e(&thUser,-1,"use",&use_task_LCLOCK,0,10,"us");

X_unlock(&thUser,-1,&x_shared);

X_wait_for_period(&thUser,-1,&User_LCLOCK,15,"us");
}
}

SC_MODULE(User)
{
sc_inout<int> Synchro;

void User_function()
{

while (true)
{
while (Synchro == -1)
{

wait();
}

Synchro = -1;

wait(SC_ZERO_TIME);

}
} // end User_function

SC_CTOR(User)
{

SC_THREAD(User_function);
sensitive << Synchro;

} // end CTOR User
}; // end MODULE User

Fig. 5. Producer/consumer’s C+Pthreads (left) and SystemC (right) code

5 Case Study: An MPEG-4 Video Encoder

We have used the language and the tool for generating parallel implementations of an
MPEG-4 video encoder under development at STMicroelectronics. We have produced
code for different run-time platforms, such as Pthreads, OpenMP and MPI, and hard-
ware architectures. For the sake of simplicity, we present here only a part of the FXML
representation (and not the actual C code with pragmas) and the code synthesis phases
for a grid running MPI. More details about the full application can be obtained in [1].

Our FXML model describes the existing concurrency in the compression standard
originally hidden in the block diagram model [2]. The specification is composed of

JAHUEL: A Formal Framework for Software Synthesis 215

forall pnodes and legacy C functions, together with dependencies in the MPEG en-
coding algorithm. A frame is a W × H matrix of macroblocks, which contain pic-
ture data. The standard specifies computations on macroblocks, such as, motion es-
timation (ME), motion vector prediction (MVP), ..., and functional dependencies be-
tween computations. The main encode procedure is depicted in Fig. 6. For lack of
space, and to enhance readability, we do not present here the actual FXML specifica-
tion, but only a graphical representation of (part of) it. forall(x,y) is a shorthand
for: forall(x=0; x++; 0<=x<W){forall(y=0; y++; 0<=y<H)}. All de-
pendencies shown in Fig. 6 are iteration dependencies between instances of nested
foralls. For example, the standard specifies that the Choice computation on a mac-
roblock must be done after the motion estimation on it. This property is expressed
in FXML as the dependency ME(x,y)→Choice(x,y) which specifies that the
(x,y)-instance of the ME pnode (which encapsulates the legacy C function of the mo-
tion estimation algorithm) must finish before starting the (x,y)-instance of the Choice
pnode.

encode

/&/

��������������

�����������������������������������

���

��������������

�����������������������������

���������������������������������������

forall(x,y) forall(x,y) forall(x,y) forall(x,y) mb encode MBL

if (ptype==INTER)
ME

if (ptype==INTER)
MVP

ME(x-1,y) → MVP(x,y)
ME(x,y-1) → MVP(x,y)

ME(x+1,y-1) → MVP(x,y)

Choice
ME(x,y) → Choice(x,y)

if (ptype==INTER)
MVD

ME(x,y) → MVD(x,y)
MVP(x,y) → MVD(x,y)

Fig. 6. MPEG-4 encode function with macroblock dependencies

forall(x=0; x++; 0 <= x < W)
forall(y=0; y++; 0 <= y < H)

QiQ(x,y)=F[QiQ(x-1,y),QiQ(x-1,y-1),QiQ(x,y-1)]

Fig. 7. QiQ algorithm

Pnode mb encode is the parallel composition of several pnodes. One of these,
namely QiQ, is shown in Fig. 7. 6 The dependencies associated to (x,y)-instances of
QiQ are graphically represented by the matrix in Fig. 8 (left). Each bullet at position
(x,y) corresponds to the execution of QiQ(x,y). The arrows illustrate the dependen-
cies: QiQ(x-1,y-1), QiQ(x-1,y), and QiQ(x,y-1) must be computed before
QiQ(x,y). Indeed, these dependencies can be eliminated applying automatic paral-
lelization techniques (e.g., [7]) (Fig. 8 (right)) to obtain dependency-free foralls
which can be implemented without communication overhead. The transformed QiQ
specification is obtained by replacing the forall pnode by the sequential composi-
tion of three pnodes as shown in Fig. 9. Clearly, the new specification is a refinement of
the previous one.

At this point, we can take care of implementation constraints imposed by the run-
time platform. Let us first handle code-partitioning for functions f other than QiQ

6 QiQ computes the quantization and the inverse quantization functions specified in the standard.

216 I. Assayad et al.

�� ��

��

��

��

���
��

��
��

�

��

��

���
��

��
��

��

��

���
��

��
��

��

��

���
��

��
��

�� ����

���
��

��
��

��

��

���
��

��
��

��

��

���
��

��
��

��

��

���
��

��
��

�� ����

���
��

��
��

��

��

���
��

��
��

��

��

���
��

��
��

��

��

���
��

��
��

�

�� ���� �� �� ��

(x−1,y) (x,y)

(x,y−1)(x−1,y−1)

d−2 d−1 d

Fig. 8. QiQ dependencies

(which needs no further refinement). Let p the number of processors. We decide to
divide each dependency-freeforall into n tasks, where n > %H

p &. We choose n to be
the number of rows H . Pnodes of the form forall(0<=x<W,0<=y<H) f(x,y)
get transformed as forall(0<=y<H) for(0<=x<W) f(x,y), that is, a sequen-
tial execution of f on a row of macroblocks on one processor. This syntactic transfor-
mation is a refinement.

Let us now consider the task-to-processor mapping. The mapping consists in first
transforming the parallel composition (/&/) (Fig. 6) into a sequential one ;. This syn-
tactic transformation is a refinement and does not need adding new constructs. We now
assign to each forall pnode the whole set of processors. This is done by extending
the language to be able to attach a number of processors to pnodes.

for(0 <= d <= min(H,W)-1)
forall(0 <= y <= d)
QiQ(d-y,y)=F[QiQ(d-y,y),QiQ(d-y-1,y-1),QiQ(d-y,y-1)] ;

for(min(H,W) <= d <= max(H,W)-1)
forall(0 <= y <= min(H,W)-1)
QiQ(d-y,y)=F[QiQ(d-y,y),QiQ(d-y-1,y-1),QiQ(d-y,y-1)] ;

for(max(H,W) <= d <= H+W-1)
forall(d-max(H,W)+1 <= y <= min(H,W)-1)
QiQ(d-y,y)=F[QiQ(d-y,y),QiQ(d-y-1,y-1),QiQ(d-y,y-1)] ;

Fig. 9. Transformed QiQ

The last transformation produces the platform-dependent implementation of the
MPEG-4 encoder. In this case, we decided to generate code for MPI using a mas-
ter/slave organization and a dynamic scheduling strategy. Indeed, this phase requires
adding new constructs to account for platform characteristics (e.g., dynamic schedul-
ing, code distribution, ...). These constructs are not meant to be used by the programmer
who only needs to specify the appropriate compilation option. The tool will automati-
cally apply the corresponding model transformation, followed by the code generation
phase for the actual platform.

To evaluate the parallel encoder performances we measured the relative gain in
compression time G(p) = T1−Tp

T1
, where Tp is the execution time for p processors,

compared with the execution time T1 of the sequential implementation. Performance
results (detailed in [1]) show that even if the speedup is sub-linear, since some encoding
phases cannot be parallelized, the addition of new processing units to the architecture

JAHUEL: A Formal Framework for Software Synthesis 217

has a positive impact in encoding time: the parallel compression time is smaller than the
sequential time by nearly 15% for two processors and reaches nearly 70% for sixteen
processors. 7

6 Conclusions and Future Work

We have presented the FXML language for specifying concurrent real-time applica-
tions. FXML has a simple abstract execution model based on the notion of atomic as-
signment and dependencies. FXML can be incrementally extended with information
related to refinements of the abstract model into more concrete ones. A compiler is a
sequence of transformations going from a language (or model) to another (more con-
crete one). Based on this idea, we have developed the compilation chain JAHUEL that
provides several translation phases which can be easily customized for different runtime
platforms.

Our framework is grounded on well established notions such as program analysis
and transformation, refinement and scheduler synthesis. The main contribution of our
work is to have shown that these techniques could be put together into a pre-industrial,
extensible, and customizable compilation chain for generating code without semantic
break-downs along the way.

We are currently working on (1) applying our framework in other industrial applica-
tions, (2) strengthening the integration into FlexCC2, and (3) generating code for other
platforms. Special effort is being put on generating SystemC/TLM code. The main mo-
tivation for this is early prototyping, verification and testing of embedded applications
on simulated hardware platforms. Automated generation of both executable and simu-
lation code from the same formal model ensures simulation results are trustworthy.

Acknowledgements. We thank the anonymous reviewers for the helpful remarks.

References

1. I. Assayad, Ph. Gerner, S. Yovine, and V. Bertin. Modelling, analysis and implementation of
an on-line video encoder. In DFMA’05. IEEE Computer Society, 2005

2. Inf. tech - Coding of audio-visual objects - P. 2: Visual. Prentice Hall, ISO/IEC 14496-
2:2001.

3. V. Bertin, J.M. Daveau, P. Guillaume, T. Lepley, D. Pilat, C. Richard, M. Santana, T. Thery.
FlexCC2: An optimizing retargetable C compiler for DSP proc. EMSOFT’02, LNCS 2491.

4. P. Binns and S. Vestal. Formalizing software architectures for embedded systems. In EM-
SOFT’01. LNCS 2211, 2001.

5. A. Burns and A. Wellings. Concurrency in Ada. Cambridge University Press, 1998.
6. P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, P. Niebert. From Simulink to

SCADE/Lustre to TTA: a layered approach for distrib. embedded applications. LCTES’03.
7. A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic Parallelization. Birkhäuser,

Boston, 2000.
8. J. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. MIT Press, 1996.

7 Other implementations are currently under evaluation on different embedded platforms.

218 I. Assayad et al.

9. J. Goguen, G. Wang, Young-Kwang Nam, and Kai Lin. Abstract schema morphisms and
schema matching generation. Tech. Rep. DCSE, UCSD, 2004.

10. W. Groppa, E. Lusk, and A. Skjellum. Using MPI. Scientific and Engineering Computation.
MIT Press, 2nd edition, November 1999.

11. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow programming
language Lustre. Proc. IEEE, 79(9), Sept. 1991.

12. L.Hammond, B.A. Nayfeh, K.Olukotun. A single-chip multiprocessor. Comp., 30(9), 1997.
13. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
14. G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-integrated development of em-

bedded software. In Proc. IEEE, 91(1), 2003.
15. M. Kersten. Comparison of the leading AOP tools. In Aspect-Oriented Software Develop-

ment, AOSD’05. Industry track. Invited talk.
16. C. Kloukinas, C. Nakhli, and S. Yovine, A Methodology and Tool Support for Generating

Scheduled Native Code for Real-Time Java Applications, In EMSOFT’03, LNCS 2855.
2003.

17. C. Kloukinas and S. Yovine, Synthesis of Safe, QoS Extendible, Application Specific Sched-
ulers for Heterogeneous Real-Time Systems, In ECRTS’03, 2003.

18. www.openmp.org
19. http://ptolemy.eecs.berkeley.edu/ptolemyII
20. A. Sangiovanni-Vincentelli. Defining platform-based design. EEDesign, February 5, 2002.
21. M. Schlett. Trends in embedded-microprocessor design. IEEE Computer, 31(8), 1998.
22. J. Sifakis. Modeling real-time systems - challenges and work directions. In EMSOFT’01.

LNCS 2211, 2001.
23. J. Sifakis, S. Tripakis, and S. Yovine. Building models of real-time systems from application

software. Proceedings of the IEEE, 91(1):100–111, January 2003.

Modelling and Refinement of an On-Chip

Communication Architecture

Juha Plosila, Pasi Liljeberg, and Jouni Isoaho

Dept. of Information Technology,
University of Turku, Finland

{juha.plosila, pasi.liljeberg, jouni.isoaho}@utu.fi

Abstract. In this paper, we present a formal modeling and refinement
approach for on-chip communication architecture development, based
on the Action Systems formalism. Stepwise refinement from an abstract
high-level initial model to an implementable parallel switch based model
is discussed. The focus is on gradually decomposing the initial specifi-
cation into a composition of concurrently operating subsystems. Data
transactions are modelled with atomic message passing events via inter-
face procedures, for which a new notation is introduced. The concept is
demonstrated by a network-like pipelined bus platform.

1 Introduction

Advances in VLSI technology over recent years have considerably increased both
physical and functional complexity of single-chip systems, i.e., systems-on-chip
(SoC) [3,4]. One of the most important challenges in such systems is to manage
interaction within and between components. Hence, efficient ways to model,
develop, and verify on-chip communication media are needed. Formal methods
of concurrent programming can be used to abstractly specify the behavior of an
on-chip communication platform and to systematically refine the specification
towards an implementable more detailed model. The Action Systems [1] is one
of such methods. It provides a mathematical framework for design specification,
reasoning about concurrency, and correctness-preserving refinement of systems.

In this paper, the Action Systems formalism is used to stepwise decompose
the initial abstract model of a generic communication platform into a more
concrete hierarchical model composed of concurrently operating dedicated sub-
systems. Distinct action system components exchange information via remote
procedure calls, i.e., communication is based on atomic message-passing events,
where no shared (global) variables are used. A new notation for procedure based
communication is presented. As a case study, the method is applied to a network-
like pipelined bus [6] communication architecture.

2 Hierarchical Action Systems

Action Systems [1,2] is a state based formalism for concurrent system specifica-
tion and correctness-preserving development. It has its roots in an extended ver-
sion of the guarded command language of Dijkstra [5]. The basic building blocks

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 219–234, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

220 J. Plosila, P. Liljeberg, and J. Isoaho

of the formalism are called actions, which include, for example: skip (empty
statement), x := e ((multiple) assignment), x := x′.P (non-deterministic assign-
ment), P → B (guarded action), A1; . . .; Am (sequential composition), and A1

[] . . . [] Am (non-deterministic choice). Here x is a variable or a list of variables,
x′ symbolizes new values assigned to the variables x, e is an expression or a list
of expressions, P is a predicate i.e. boolean expression, and Aj , j=1, . . . , m as
well as B are actions.

An action is considered atomic. This means that only its state before and after
the execution can be observed, and when selected for execution, it is completed
without interference from other actions. Formal semantics of actions is defined
using Dijkstra’s weakest preconditions. The weakest precondition for an action
A to establish a postcondition Q is denoted by wp(A, Q). We have for example:
wp(skip, Q) =̂ Q, wp(x := x′.P, Q) =̂ (∀x′.P ⇒ Q[x′/x]), wp(P → B, Q) =̂ P
⇒ wp(B, Q). The guard gA of an action A is defined by gA =̂ ¬wp(A, false).
Considering a guarded action A =̂ P → B we have that gA = P ∧ gB. An
action A is said to be enabled in some state, if its guard is true in that state.
Otherwise A is disabled.

Non-atomic action compositions enable efficient modeling of complex system
behavior. In this paper, we will use the non-atomic sequential composition in
certain system models. Non-atomicity means that an action outside the com-
position can execute between two component actions of the construct, which is
not possible in the atomic sequential composition. We will use the bold semi-
colon (;) as the operator symbol for non-atomic sequences. It can be defined in
terms of the non-deterministic choice ([]) and an auxiliary local program counter
variable p (initialized to 1) as follows: (A1 ; A2) =̂ (p = 1 → A1; p := 2 []
p = 2 → A2; p := 1).

Action System. A hierarchical action system A (with a procedure interface) has
the form:

sys A (exp exported procedures; imp imported procedures) [generic parameters] ::
|[var local variables;

proc procedure (local and exported) definitions;
subsys subsystem instances;
actions list of actions;
init variable initialization;
exec

do action composition od ‖ subsystem composition
]|

The exported procedures are defined in the proc-clause of the system A, but are
called by other systems. The imported procedures are defined in and exported
by some other systems and called by the system A. The exported and imported
procedures are jointly refered to as interface procedures with which atomic mes-
sage passing events between systems can be modeled. The local, exported, and
imported procedures must be distinct. Each procedure may have a set of value
(val), result (res), and update (upd) parameters. Formal parameters are re-
placed with actual ones at each procedure call, and the operation carried out by
a procedure (procedure body) is considered a part of the calling atomic action.
Hence, procedures are treated as parametrizable subactions.

Modelling and Refinement of an On-Chip Communication Architecture 221

The local variables declared in the var-clause are exclusively used by the
system A. Their initial values are specified in the init-clause. The generic pa-
rameters typically deal with ranges of some variables, sizes of arrays, and other
static information needed by the system. The actions-clause lists the uniquely
named actions of the system. They may access the local variables of A and
contain calls to the local and imported procedures. In the subsys-clause, the
subsystem instances are defined, replacing the formal interface lists of the sub-
systems with the actual ones and giving a unique name for each instance. The
subsystems themselves, the components, are defined separately from the main
system A and may contain subsystems of their own.

The execution part, the exec-clause, contains an iteration (do-od-loop) of
the actions defined in the actions-clause. In this paper, the action composition
within the loop is either a non-deterministic choice ([]) or a combination of choices
and non-atomic sequences (;). The loop is composed in parallel (‖) with the
subsystem composition, i.e., the parallel composition of the subsystem instances
defined in the subsys-clause. In general, the parallel composition of the main
system’s loop and a subsystem instance S is interpreted as the loop do AM

[] S.AS od, where AM and AS represent the action compositions in the main
system and subsystem, respectively. The notation S.AS indicates that each local
identifier (action name, local variable, etc.) in the subsystem is provided with the
prefix “S.”, where S is the unique name of the subsystem instance given in the
subsys-clause of the main system. The prefixed identifiers are then implicitly
considered local distinct identifiers of the main system.

An action system operates as follows. First, the state variables are initialized
in the init-clause. Then the system’s do-od-loop, including also the actions of
the subsystems as explained above, starts to execute enabled actions one at
a time. Parallel execution is modeled by simultaneously enabled independent
actions which can be executed in any order (interleaved) without affecting the
result of computation. If all the actions of the system become disabled, the loop
temporarily stops and resumes execution when some other system enables at
least one of the actions via the interface procedures.

Composing Action Systems. Consider two hierarchical action systems A and B
with distinct local variables, exported and local procedures, subsystem instances,
and actions. The parallel composition of such systems A and B is denoted by
A ‖ B. It is defined to be another action system whose global and local identifiers
(procedures, variables, subsystem instances, actions) consist of the identifiers of
the component systems and whose exec-clause has the form: do A [] B od ‖ SA ‖
SB. Here A and B denote the action compositions, and SA and SB the subsystem
compositions in A and B, respectively. The constituent systems communicate via
their shared interface procedures. The definition of the parallel composition is
used inversely in system derivation to decompose a system description into a
composition of smaller separate systems or internal subsystems.

Quantified Constructs. Any action-level composition operator • ∈ { [], ; (atomic),
; (non-atomic) }, and the system-level parallel composition operator ‖ can be

222 J. Plosila, P. Liljeberg, and J. Isoaho

quantified using the notation defined as follows: [• 1 ≤ i ≤ n : A(i)] =̂ A(1) •
. . . • A(n), and [‖ 1 ≤ i ≤ n : A(i)] =̂ A(1) ‖ . . . ‖ A(n).

Procedure Based Communication. In this paper, we use remote procedures to
model communication channels between action systems. For this, a new notation
is introduced. Consider the parallel composition Snd ‖ Rec of the generic sender
and receiver systems given as

sys Snd (imp p) ::
|[var vS ;

actions
S : (S1; p(vS); S2);

exec do S od
]|

sys Rec (exp p) ::
|[var vR;

proc p(val x) : P ;
actions

R : (R1; await p; R2);
exec do R od

]|
where vS and vR are distinct variables accessed by the atomic actions S and R,
respectively. S1,2 and R1,2 denote arbitrary subactions of S and R. The interface
procedure p is defined in and exported by the receiver, and imported and called
by the sender with the variables vS as actual value parameters. The body P
of p can be any atomic action writing onto the variables vR. According to the
definition of the parallel composition of action systems, the exec-clause of the
composed system Snd ‖ Rec has the form: do S [] R od. The construct S []
R, where S calls p and R awaits such a call (await command), is regarded as
a single atomic action SR, defined by: SR =̂ (S1; R1; P [vS/x]; R2; S2). Hence,
communication is based on sharing an action, in which data is atomically passed
from Snd to Rec by executing the body P of the procedure p.

Refinement. Refinement means stepwise development of an abstract formal spec-
ification into a concrete implementable form in such a way that the logical prop-
erties of the original description are preserved throughout the derivation process.
Comprehensive studies on refinement can be found for example in [2].

We say that an abstract action A on is (correctly) refined by a concrete action
C, denoted A ≤ C, if the following condition holds for all possible postconditions
Q: I ∧ wp(A, Q) ⇒ wp (C, I ∧Q), where I represents the invariant that must be
preserved by the refinement. Similarly, refinement of an abstract action system
A by a concrete action system C is denoted by A ≤ C. Such a system-level re-
finement can be proven in terms of action-level refinements and some auxiliary
conditions dealing with validity of the invariant, enabledness of actions, termina-
tion of auxiliary internal computation introduced in the refinement, and possible
fairness issues.

3 Generic Platform Model

In this section, we present an Action Systems model S for a generic single-
chip system composed of n concurrently operating processing elements and a
communication platform providing a medium for data exchange between the
processors. The processing elements, hosts, are modeled by n distinct instances
Master(i) (with 0 ≤ i ≤ n−1) of an abstract tranceiver module M whose
task is to continuously send and receive data without actually processing it.
The communication platform, in turn, is modeled by a single instance Platform

Modelling and Refinement of an On-Chip Communication Architecture 223

of a module P which directs data from its n input ports to n output ports
according to the destination addresses specified by the attached sending hosts.
Communication channels between the system components are modeled by shared
interface procedures. The overall abstract system model S, regarded here as a
closed system for simplicity, is given as:

sys S() ::
|[const n : natural;

type datagram : record (src, dst : 0..n − 1; d : data);
proc M2P [0..n−1] (val datagram), P2M [0..n−1] (val datagram);
subsys

Platform : P (M2P [0..n−1],P2M [0..n−1])[n];
Master(i) : M (M2P [i], P2M [i])[i, n];

exec Platform ‖ [‖ 0 ≤ i ≤ n-1: Master(i)]
]|

where the subsystem modules M and P , with the host indentification number i
and host count n as generic parameters, are defined by:

sys M(exp P2M , imp M2P)[i, n : natural] ::
|[var dg : datagram ; mem : set of datagram ;

proc P2M (val a : datagram) :
(mem := mem ∪ {a});

actions
Snd : (dg.src := i;

dg.dst := x.((0 ≤ x < n) ∧ (x �= i));
dg.d := y.(y ∈ data); M2P (dg));

Rec : await P2M ;
exec do Snd [] Rec od

]|

sys P (exp M2P [0..n-1], imp P2M [0..n-1])

[n : natural] ::
|[proc M2P [i](val a : datagram) :

(P2M [a.dst](a));
actions
Trf (i) : await M2P [i];

exec do [[] 0 ≤ i ≤ n-1: Trf (i)] od
]|

Each host Master(i) is connected to Platform via two interface procedures
M2P [i] and P2M [i]. The former is used to transfer data from the host to the
platform, while the latter is used to transfer data from the platform to the host’s
local variable mem. Data (dg), prepared by the send action Snd of the host, is
of the type datagram , a 3-field record composed of the source and destination
addresses (dg.src, dg.dst) and the actual payload (dg.d). It is communicated via
the value parameters of the two interface procedures. The procedure M2P [i] is
exported by Platform, imported by Master(i), and called by the send action
Snd of Master(i). The procedure P2M [i], which constitutes the receive action
Rec of Master(i), is exported by Master(i), imported by Platform, and can be
called by any transfer action Trf (j), i.e., procedure M2P [j] in Platform, where
j �= i. The restriction j �= i comes from the fact that the above host module M
is specified not to send data to itself in the action Snd .

Hence, transfering a datagram dg from a source host dg.src to a destina-
tion host dg.dst is an atomic message-passing event, where Master(dg.src) calls
the procedure M2P [dg.src] in Platform which then further calls the procedure
P2M [dg.dst] in Master(dg.dst). Atomicity means here that when a transfer has
been selected for execution, it will be completed without interruption. Further-
more, transfers with different destination addresses are independent of each other
and can therefore be considered parallel when enabled simultaneously. Those si-
multaneously enabled transfers that have a same destination address, i.e., are
not independent, are considered sequential, selected for execution in a nondeter-
ministic (arbitrary) order.

224 J. Plosila, P. Liljeberg, and J. Isoaho

The module P can be thought to represent, at a very abstract level, a variety
of actual network-like communication platforms. In fact, it can be even viewed
as a shared bus model, if we consider P a completely sequential system, also
when executing independent simultaneously enabled actions. The module P in-
herently guarantees, by atomicity of transactions, that every initiated transfer
is completed, and that datagrams arrive to a host in the same order they were
sent from another host. Parallelism is still quite limited, as transfers with a same
destination address cannot be initiated simultaneously.

4 Increasing Parallelism by Pipelining

The initial specification P of the communication platform is first refined into
a more parallel and concrete model, in which receive events via a procedure
M2P [0..n−1] can take place concurrently with send events via the procedures
P2M [0..n−1], as separate independent actions. This is obtained by pipelining the
execution of the procedure M2P [i], which constitutes the transfer action Trf (i)
of P , into three separate phases: receive, move, and send, where receive and
send operations are independent and can thereby be considered parallel. The
transformation is platform independent in the sense that the resulting model
does not yet specify how a datagram is in practice propagated from a source
to a destination and can therefore be thought to represent still a number of ac-
tual on-chip transmission media. The environment model of the communication
platform, composed of the n hosts, is kept intact from now on.

As the first substep, the exported procedure M2P [i] of P is transformed into
an atomic sequence of three actions, i.e., we refine: M2P [i](a) ≤ (ibuf [i] := a;
Mov (i); Snd(ibuf [i].dst)), with

Mov (i) = ¬full [ibuf [i].dst] → obuf [ibuf [i].dst] := ibuf [i]; full [ibuf [i].dst] := true

Snd(j) = full [j] → P2M [j](obuf [j]); full [j] := false

Here ibuf [0..n−1] (input buffer) and obuf [0..n−1] (output buffer) are new local
array variables of the type datagram introduced to allow separation of the input
events from the output events. The idea is that data received from the host i
is first stored to the input buffer ibuf [i], then transfered (moved) by the action
Mov (i) to the destination output buffer obuf [j] (j = ibuf [i].dst), and finally sent
to the destination host j by the action Snd(j) which calls the interface procedure
P2M [j]. The enabledness of the actions Mov (i) and Snd(j) is controlled by the
element j of another new local variable, the boolean flag array full [0..n−1] used
to inform whether the destination output buffer obuf [j] is occupied (full [j] =
true) or vacant (full [j] = false).

Notice that the above local refinement of the procedure M2P (i) does not
yet change the operation of the system in any way, because atomicity is still
completely preserved. To take advantage of the introduced input and output
buffers, i.e., to enable parallel execution of the receive action ibuf [i] := a and the
send action Snd(j), we need to split the procedure into three separate atomic
entities. This is accomplished in practice by moving the actions Mov (i) and

Modelling and Refinement of an On-Chip Communication Architecture 225

Snd (j) from the procedure body to the do-od loop of the system, so that only
the receive event ibuf [i] := a is left in the procedure M2P [i]. Hence, considering
first a single sender host i and all possible receiver hosts j, 0 ≤ j ≤ n − 1, we
refine (simplified notation):

proc M2P [i](a) : (ibuf [i] := a; Mov (i); Snd(ibuf [i].dst));do Trf (i) od
≤
proc M2P [i](a) : (ibuf [i] := a); do (Rec (i) ; Mov (i)) [] [[] 0 ≤ j ≤ n − 1 : Snd (j)] od

where Trf (i),Rec (i) =̂ await M2P [i]. Observe that the correct order of the
receive and move actions Rec(i) and Mov (i) is enforced by the non-atomic se-
quential composition, while the ordering of Mov (i) and any subsequent send
action Snd(j) is based on the state of the flag full [j]. Snd(j) becomes enabled
when the corresponding move action has been executed (full [j] = true), and the
next occurrence of Mov (i) for the same destination j is postponed until Snd(j)
has been completed (full [j] = false).

The refined configuration thus preserves the order of the related receive,
move, and send events. However, as now Rec(i) and Snd(j) are independent
separate actions in the do-od loop accessing distinct variables ibuf [i] and obuf [j],
their execution is considered parallel whenever they are simultaneously enabled.
In other words, a new datagram can be received to ibuf [i] simultaneously with
sending the previous datagram from obuf [j], which was the main goal of this
refinement step. Furthermore, a send action Snd(j) can be considered concurrent
with any other send action Snd(j′) and the corresponding move action, where
the destination j′ differs from j (j′ �= j). This actually indicates that the above
refinement is valid only if we assume that the selection between simultaneously
enabled send actions is weakly fair , i.e., that every continuously enabled action
will eventually be selected for execution. Such a fairness property means here that
each initiated transfer is guaranteed to be eventually completed, as is inherently
the case in the initial platform model P with atomic transfers.

Including now all possible sender hosts i, 0 ≤ i ≤ n− 1, we finally obtain the
refined communication platform model P1 given below. In P1, all the n receive
actions Rec (i) are independent of each other and can therefore be considered
parallel. Also those move actions Mov (i) that access different destinations are
potentially concurrent. However, in order to have a valid refinement P ≤ P1, we
have to consider the selection between simultaneously enabled move actions in
P1 strongly fair , in addition to considering the selection between send actions
weakly fair as explained above. This is because if the move actions Mov (i) and
Mov (i′), where i �= i′, simultaneously try to access the same destination j,
the one selected for execution disables the other by setting full [j] to true. The
disabled move action is eventually re-enabled by the send action Snd (j), but
can again become temporarily disabled by another simultaneously enabled move
action with the same destination. By assuming strong fairness, i.e., that any
action which becomes enabled infinitely often will eventually be selected for
execution, we can conclude that each move action will be executed and that
each initiated transfer will eventually be completed. Then the behavior of the
new model P1 conforms to the initial model P , and the refinement P ≤ P1 is
valid.

226 J. Plosila, P. Liljeberg, and J. Isoaho

sys P1 (exp M2P [0..n − 1], imp P2M [0..n − 1]) [n : natural] ::

|[var ibuf [0..n−1],obuf [0..n−1] : datagram ; full [0..n−1] : boolean;
proc M2P [i](val a : datagram) : (ibuf [i] := a);
actions
Rec (i) : await M2P [i];

Mov (i) : ¬full [ibuf [i].dst] → obuf [ibuf [i].dst] := ibuf [i]; full [ibuf [i].dst] := true;

Snd (i) : full [i] → P2M [i](obuf [i]); full [i] := false;
init full := false;
exec do [[] 0 ≤ i ≤ n-1: (Rec(i) ; Mov (i)) [] Snd(i)] od

]|

5 Implementing Data Transfers

In this section, we show how the move action Mov (i) of the still generic platform
model P1 is further refined into a set of pipelined actions conforming to a specific
communication platform, a pipelined bus, which can be regarded as an extreme
simplification of a switching network and which will be used as the example
platform. Below, the pipelined bus architecture is briefly presented in Section
5.1, and refinement of the platform model P1 is then discussed in Section 5.2.

5.1 Case Study: Pipelined Bus

The pipelined bus [6], illustrated in Figure 1, is a distributed organization based
on self-timed communication both between switches and between a switch and
its host element. The pipelined bus can be simultaneously accessed by all the
attached processing elements. This is because the control is evenly distributed
among the asynchronously operating switches which buffer the data flow divid-
ing the transfer medium into segments which can transfer data simultaneously.
Furthermore, a segment between adjacent switches is capable to concurrent
transactions to both directions. Hence, the whole system acts as a self-timed
bidirectional pipeline providing a platform for modular construction of high-
performance systems.

...
1Element

Processing
2 n4Element

Processing
3 Element

Processing

Switch
...
...

Element
Processing

Element
Processing

SwitchSwitchSwitchSwitch

Fig. 1. Pipelined bus architecture

5.2 Introducing Shift Actions

To refine the platform model P1 of Section 4 towards a pipelined bus plat-
form model, two local array variables of the type datagram are first introduced:
rbuf [0..n−1] (right buffer) and lbuf [0..n−1] (left buffer). They are used to shift

Modelling and Refinement of an On-Chip Communication Architecture 227

data respectively to the right and to the left from a source host i to a destination
host j. A data item stored in the input buffer position ibuf [i] by the source host
i is first copied to the right buffer position rbuf [i], if j > i, or to the left buffer
position lbuf [i], if j < i. Then it is shifted step by step towards its destination
until the position rbuf [j] or lbuf [j] is reached. Finally, the shifted data item is
copied to the output buffer position obuf [j] from which it is further passed to
the destination host j completing the transfer. A right shift event copies the
contents of a buffer position rbuf [k] to the position rbuf [k+1] (i ≤ k ≤ j−1),
while a left shift event copies the contents of lbuf [k] to lbuf [k−1] (i ≥ k ≥ j+1).

The first step is to refine the action Mov (i) of the model P1 into Mov ′(i),
an atomic sequence of an insert action Ins (i), a number of right shift actions
RShift (k) and left shift actions LShift (k), and a remove action Rem (j) where
j = ibuf [i].dst: Mov (i) ≤ Mov ′(i), where

Mov ′(i) = (Ins (i); ([; i ≤ k ≤ j−1: RShift (k)] [] [; i ≥ k ≥ j+1: LShift (k)]);Rem (j))

Then, to enable parallel execution of the subactions of Mov ′(i) in a pipelined
manner, the atomicity of Mov ′(i) is broken, and the subactions are placed as
separate atomic entities into the system’s do-od-loop. The resulting refined
platform model P2 is as follows:

sys P2 (exp M2P [0..n-1], imp P2M [0..n-1]) [n : natural] ::
|[var rbuf [0..n − 1], lbuf [0..n − 1], ibuf [0..n − 1], obuf [0..n − 1] : datagram ;

fr[0..n − 1], fl[0..n − 1] : boolean;
proc M2P [i](val a : datagram) : (ibuf [i] := a);
actions
Rec (i) : await M2P [i];

Ins (i) : (ibuf [i].dst > i ∧ ¬fr[i] → rbuf [i], fr[i] := ibuf [i], true
[] ibuf [i].dst < i ∧ ¬fl[i] → lbuf [i], fl[i] := ibuf [i], true);

RShift (i) : fr[i] ∧ ¬fr[i+1] ∧ rbuf [i].dst �= i →
rbuf [i+1], fr[i], fr[i+1] := rbuf [i], false, true;

LShift (i) : fl[i] ∧ ¬fl[i−1] ∧ lbuf [i].dst �= i →
lbuf [i−1], fl[i], fl[i−1] := lbuf [i], false, true;

Rem (i) : (rbuf [i].dst = i ∧ fr[i] → obuf [i], fr[i] := rbuf [i], false
[] lbuf [i].dst = i ∧ fl[i] → obuf [i], fl[i] := lbuf [i], false);

Snd (i) : P2M [i](obuf [i]);
init fr, fl := false;
exec do [[] 0 ≤ i ≤ n-1: (Rec (i) ; Ins (i)) [] (Rem (i) ; Snd (i))]

[] [[] 0 ≤ i ≤ n-2 : RShift (i)] [] [[] 1 ≤ i ≤ n-1 : LShift (i)] od
]|

The action Ins (i) copies the data item stored in the input buffer to either the
left or right shift buffer depending on the destination address. The shifting from
a source i to a destination j is carried out by either the actions RShift (k), where
i ≤ k ≤ j−1, or LShift (k), where i ≥ k ≥ j+1. The action Rem (j) removes
the shifted data from the pipeline copying it from the shift buffer to the output
buffer. The new local boolean arrays fr [0..n−1] and fl [0..n−1], initialized to
false, act as flags indicating whether a position k in the right or left buffer is
empty (fr [k],fl [k] = false) or full (fr [k],fl [k] = true). Their role is to sequence
the execution of the right and left shift actions in an appropriate way.

Notice that the old flag full [i] in the previous model P1, indicating the status
of the output buffer position i, has been replaced in P2 with a non-atomic se-
quential composition between the actions Rem (i) and Snd (i). This simplification

228 J. Plosila, P. Liljeberg, and J. Isoaho

is possible, because in P2 a send operation can be enabled by the corresponding
unique remove operation only.

The right shift actions are indexed from 0 upto n−2 and the left shift actions
from n−1 downto 1. This is because at the right end of the pipeline (position
n−1) a right shift is not possible, and correspondingly at the left end (position
0) a left shift cannot be carried out. By analyzing P2 the following conclusions
on potential concurrency (independency) of the new actions can be drawn:
– Ins (i) can be parallel with RShift (j), where 0 ≤ i ≤ n−1 and 0 ≤ j ≤ n−2, except

when i = 0 ∧ j = 0. Correspondingly, Ins (i) can be parallel with LShift (j), where
0 ≤ i ≤ n−1 and 1 ≤ j ≤ n−1, except when i = n−1 ∧ j = n−1.

– RShift (i) can be parallel with LShift (j), where 0 ≤ i ≤ n−2 and 1 ≤ j ≤ n−1.
– RShift (i) can be parallel with RShift (j), where 0 ≤ i ≤ n−2 and 0 ≤ j ≤ i−2 or

i+2≤ j ≤ n−2. Correspondingly, LShift (i) can be parallel with LShift (j), where
1 ≤ i ≤ n−1 and 1 ≤ j ≤ i−2 or i+2≤ j ≤ n−1.

– Rem (i) can be parallel with RShift (j), where 0 ≤ i ≤ n−1 and 0 ≤ j ≤ n−2,
except when i = n−1 ∧ j = n−2. Correspondingly, Rem (i) can be parallel with
LShift (j), where 0 ≤ i ≤ n−1 and 1 ≤ j ≤ n−1, except when i = 0 ∧ j = 1.

– Rem (i) can be parallel with Ins (j), where 0 ≤ i, j ≤ n−1.
– Rem (i) (Ins (i)) can be parallel with Rem (j) (Ins (j)), where i �= j.

Hence, several datagrams can concurrently propagate in P2 from different sources
towards different destinations in a pipelined fashion. To be able to conclude that
the refinement P1 ≤ P2 is valid, a number of fairness assumptions needs to be
made, just like in the previous refinement presented in Section 4:
– Selection between simultaneously enabled right and left shift actions RShift (i) and

LShift (j), for all possible i and j, is considered weakly fair.
– Selection between simultaneously enabled remove actions Rem (i) and Rem (j), for

i �= j, is considered weakly fair.
– Selection between an insert action Ins (i) and the right (left) shift action RShift (i−1)

(LShift (i+1)), which can be simultaneously enabled and can temporarily disable
each other, is considered strongly fair.

– Selection between the two components of a remove action Rem (i) is considered
strongly fair when they are simultaneously enabled, i.e., when both rbuf [i] and
lbuf [i] contain data heading towards the host i.

These fairness assumptions guarantee that every initiated non-atomic move
operation in the refined platform model P2 will eventually be completed.

6 Extracting Switches

The next step is to develop the platform model P2 into a parallel composition of
n subsystem instances modeling the switches or transfer stages of the pipelined
bus (see Figures 1 and 2). Each stage will be connected to one of the n hosts. This
decomposition operation includes introduction of new local procedures for inter-
stage communication and dividing the global and local identifiers (procedures,
variables, actions) into groups from which the subsystem instances are created.
Only spatial decomposition is carried out — the functionality of the system is
not enhanced by the refinement, i.e., the degree of atomicity and thereby the
degree of parallelism remains actually the same as before.

Modelling and Refinement of an On-Chip Communication Architecture 229

6.1 Generic Decomposition Step

Let us first study a decomposition step considering a simple generic system
module M of the form

sys M (EA, EB) ::
|[var vA, vB ;

actions
AB : (A1; B; A2);
OA; OB ;

init vA, vB := vA0, vB0;
exec do AB [] OA [] OB od

]|

where the action AB consists of the subactions A1,2 and B such that the sub-
actions A1,2 access only the variables vA, while the subaction B reads the vari-
ables vA but writes onto the variables vB. The variables vA and vB are distinct:
vA ∩ vB = ∅. The symbolic procedures EA and EB model the interface to the
environment accessing the variables vA and vB, respectively. OA and OB denote
those actions of M that exclusively access the variables vA and vB, respectively.

Decomposition of M is based on procedurizing the subaction B of AB. This
new local procedure, which will act as a communication channel between the
eventual subsystems, is here called A2B. As the result, we obtain the systemM′

given below. The refinement M ≤ M′ is quite straightforward containing the
simple action-level transformation AB ≤ (A [] W). Atomicity is preserved, and
other actions are kept intact.

Notice that the actions in the exec-clause of M′ are grouped to reflect the
division between two subsystem instances that will be created as the next trans-
formation step. Hence, by first renaming the identifiers a ∈ {vA, A, OA} to IA.a
and the identifiers b ∈ {vB, W, OB} to IB .b, and then using the definition of the
parallel composition of subsystems (Section 2), we refine M′ ≤ M′′, where the
new system M′′ and its components A and B are given below.

sys M′ (EA, EB) ::
|[var vA, vB ;

proc A2B(val x : data) : (B[x/vA]);
actions

A : (A1; A2B(vA); A2);
W : await A2B;
OA ; OB ;

init vA, vB := vA0, vB0;
exec do (A [] OA) [] (W [] OB) od

]|

sys M′′ (EA, EB) ::
|[proc A2B(val data);

subsys
IA : A (EA, A2B);
IB : B (EB , A2B);

exec IA ‖ IB

]|

sys A (Ef
A; imp A2Bf) ::

|[var vA;
actions

A : (A1; A2Bf (vA); A2);

OA[Ef
A/EA];

init vA := vA0;
exec do A [] OA od

]|

sys B (Ef
B ; exp A2Bf) ::

|[var vB ;

proc A2Bf (val x : data) : (B[x/vA]);
actions

W : await A2Bf ;

OB [Ef
B/EB];

init vB := vB0;
exec do W [] OB od

]|

The subsystem instances IA (component A) and IB (component B) commu-
nicate atomically via the procedure A2B which transfers data from IA to IB . To
exemplify instantiation of subsystems, formal names, indicated by a superscript
’f ’, are used for the interface procedures of the above component systems A and

230 J. Plosila, P. Liljeberg, and J. Isoaho

B. These formal names are then replaced with the actual names in the subsys-
clause of M′′. For the instance IA we have the mapping [EA,A2B /Ef

A,A2Bf],
and for the instance IB we have the mapping [EB,A2B /Ef

B,A2Bf].

6.2 Decomposition of the Platform Model

The decomposition operation discussed above is now applied to the platform
model P2 of Section 5.2. First, the shift operations performed by the actions
RShift (i) and LShift (i) are procedurized by refining: RShift (i) ≤ (RFwd (i) []
RRec (i+1)) and LShift (i) ≤ (LFwd (i) [] LRec (i−1)), where

RFwd (i) = rbuf [i].dst �= i ∧ fr[i] → R[i+1](rbuf [i]); fr[i] := false
LFwd (i) = lbuf [i].dst �= i ∧ fl[i] → L[i−1](lbuf [i]); fl[i] := false
RRec (i+1) = await R[i+1] , LRec (i−1) = await L[i−1]

The new local procedures R[i], where 1 ≤ i ≤ n−1, and L[i], where 0 ≤ i ≤
n−2, are used to forward data right and left on the buffer arrays rbuf and
lbuf , respectively. By calling R[i] (L[i]) the contents of rbuf [i−1] (lbuf [i+1]) is
copied to rbuf [i] (lbuf [i]). The procedures R[i] and L[i] will act as communication
channels between the platform’s switches and are defined by

proc R[i](val a : datagram) : (¬fr[i] → rbuf [i], fr[i] := a, true);
proc L[i](val a : datagram) : (¬fl[i] → lbuf [i], fl[i] := a, true);

By introducing the above procedures, the flat platform model P2 can be
transformed into a hierarchical model P3 (see Figure 2) by refining P2 ≤ P3.

sys P3 (exp M2P [0..n-1], imp P2M [0..n-1]) [n : natural] ::
|[proc R[1..n−1] (val datagram), L[0..n−2] (val datagram);

subsys

Stage(0) : T l (M2P [0], L[0], P2M [0], R[1]);

Stage(i) : T (M2P [i], R[i], L[i], P2M [i], R[i+1], L[i-1])[i];

Stage(n−1) : T r (M2P [n−1], R[n−1], P2M [n−1], L[n−2]);

exec Stage(0) ‖ [‖ 1 ≤ i ≤ n−2: Stage(i)] ‖ Stage(n−1)
]|

Here the component T , the switch model for 1 ≤ i ≤ n−1, is defined by
sys T (exp M2P, RR , LR ; imp P2M, RS , LS) [i : natural] ::

|[var rbuf, lbuf, obuf, ibuf : datagram; fr, fl : boolean;
proc

M2P (val a : datagram) : (ibuf := a);

RR (val a : datagram) : (¬fr → rbuf , fr := a, true);

LR (val a : datagram) : (¬fl → lbuf , fl := a, true);
actions
Rec : await M2P ; RRec : await RR ; LRec : await LR ;

Ins : (ibuf .dst > i ∧ ¬fr → rbuf , fr := ibuf , true
[] ibuf .dst < i ∧ ¬fl → lbuf , fl := ibuf , true);

RFwd : rbuf .dst �= i ∧ fr → RS (rbuf); fr := false;

LFwd : lbuf .dst �= i ∧ fl → LS (lbuf); fl := false;

Rem : (rbuf .dst = i ∧ fr → obuf , fr := rbuf, false
[] lbuf .dst = i ∧ fl → obuf , fl := lbuf , false);

Snd : P2M(obuf);
init fr, fl := false;
exec do (Rec ; Ins) [] RRec [] LRec [] RFwd [] LFwd [] (Rem ; Snd) od

]|

In T , the formal interface procedures RR (receives right-moving data) and
LS (sends left-moving data) correspond to the actual interface procedures R[i]
and L[i−1] of the switch instance Stage(i) in P3, modeling the interface to

Modelling and Refinement of an On-Chip Communication Architecture 231

the left-hand-side neighboring switch instance Stage(i−1). The formal interface
procedures LR (receives left-moving data) and RS (sends right-moving data), in
turn, correspond to the actual interface procedures L[i] and R[i+1] of Stage(i),
modeling the interface to the right-hand-side neighboring switch Stage(i+1).
Observe that the identification number or address of the stage, i, is specified as
a generic parameter of the component T .

For i = 0 and i = n−1 the transfer stage models are simpler than the
above general model T for 1 ≤ i ≤ n−2. This is because in the left-end stage
(i = 0) there is no left-hand-side interface, and, correspondingly, in the right-
end stage (i = n−1) there is no right-hand-side interface. The left-end stage
model T l is obtained from T by removing the actions RRec and LFwd and the
corresponding interface procedures RR and LS . Similarly, the right-end stage
model T r is obtained from T by removing the actions LRec and RFwd and the
interface procedures LR and RS .

Notice that the local array variables v[i] of the previous platform model P2,
where v ∈ {ibuf , obuf , rbuf , lbuf , fr ,fl } and 0 ≤ i ≤ n−1, are replaced in P3 with
the unique instance-specific variables Stage(i).v, where v are now local variables
of each subsystem component T , T l, or T r. The same applies to any indexed
action name A(i): it is renamed to Stage(i).A in the new platform model P3.

LL[1]L[0]
LS

RRRS

LR

M2P[n−1]M2P[n−2]M2P[2]M2P[1]M2P[0]M2P[0..n−1]

P2M[n−2]

R[2]R[1]

P2M[0] P2M[1] P2M[n−1]P2M[2]P2M[0..n−1]

[n−2]...

...RR

LR

RS

LS

RS

LR

RR

LS

...

...

R

LS

RS

LR

RR
[n−1]

T TTT T
P 3

2P l r

Fig. 2. Refining P2 into P3

7 Refinement of the Switches

The decomposition process is completed by developing the switch (transfer stage)
model T into a parallel composition of three distinct subsystems (see Figure
3). One of them acts as the stage’s interface module being responsible of data
exchange with the attached host module via the interface procedures M2P and
P2M . The two others, the right and left repeaters , take care of forwarding data
to the neighboring stages in the opposite directions and, by communicating with
the interface module, receiving and removing data to and from the pipelined
communication platform. The refinement does not increase parallelism of the
system but focuses only on increasing modularity by spatial decomposition.

The transformation is started by procedurizing the buffer update operations
carried out by the insert action Ins (updates rbuf and lbuf) and remove action
Rem (updates obuf) of the transfer stage model T . The following action-level
refinements are performed:

(Rec ; Ins) ≤ ((Rec ; Ins ′) [] IRRec [] ILRec)
(Rem ; Snd) ≤ (RRem [] LRem [] (ORec ; Snd))

232 J. Plosila, P. Liljeberg, and J. Isoaho

where
Ins ′ = (ibuf .dst > i → IPR (ibuf) [] ibuf .dst < i → IPL (ibuf))
IRRec, ILRec = await IPR , await IPL
RRem = rbuf .dst = i ∧ fr → OPR (rbuf); fr := false
LRem = lbuf .dst = i ∧ fl → OPL (lbuf); fl := false
ORec = (await OPR [] await OPL)

where the introduced local procedures IPR (“input to right”), IPL (“input to
left”) , OPR (“output from right”), and OPL , (“output from left”) which will
be used as communication channels between the interface module and the two
repeaters, are specified as

proc IPR (val a : datagram) : (¬fr → rbuf , fr := a, true)
proc IPL (val a : datagram) : (¬fl → lbuf , fl := a, true)
proc OPR (val a : datagram) : (obuf := a)
proc OPL (val a : datagram) : (obuf := a)

By analyzing the created new actions and the unchanged actions of T , we
can conclude that the boolean flags fr and fl can be replaced with non-atomic
sequential compositions by further refining:

(RRec [] IRRec [] RFwd [] RRem) ≤ ((RRec ′ [] IRRec′) ; (RFwd ′ [] RRem′))
(LRec [] ILRec [] LFwd [] LRem) ≤ ((LRec ′ [] ILRec′) ; (LFwd ′ [] LRem′))

where the primed actions are obtained by straightforwardly removing the boolean
variables fr and fl from the corresponding unprimed actions or from the proce-
dures referenced by the unprimed actions. For example:

RRem′ = rbuf .dst = i → OPR (rbuf)
IRRec′ = await IPR ′ , where: proc IPR ′(val a) : (rbuf := a)

After the above preparatory refinements, we can decompose the switch model
into a composition of an interface unit and two independent instances of a single
repeater component. To summarize, we have the overall refinement T ≤ T 1,
where the decomposed switch model T 1, as shown in Figure 3, is defined by

sys T 1 (exp M2P , RR , LR ; imp P2M , RS , LS)[i : natural] ::

|[proc IPR (val datagram), IPL (val datagram),
OPR (val datagram), OPL (val datagram);

subsys
RepeaterR : R(RR , IPR , RS , OPR)[i];

RepeaterL : R(LR , IPL , LS , OPL)[i];

Interface : I(M2P , OPR , OPL , P2M , IPR , IPL)[i];

exec RepeaterR ‖ RepeaterL ‖ Interface
]|

where the interface module I and the repeater module R are given as
sys I (exp M2P , OPR , OPL ;

imp P2M , IPR , IPL) [i : natural] ::
var obuf , ibuf : datagram ;
|[proc

M2P (val a : datagram) : (ibuf := a);

OPR (val a : datagram) : (obuf := a);

OPL (val a : datagram) : (obuf := a);
actions
Rec : await M2P ;
Ins : (ibuf .dst > i → IPR (ibuf)

[] ibuf .dst < i → IPL (ibuf));

ORec : (await OPR [] await OPL);

Snd : P2M (obuf);
exec do (Rec ; Ins) [] (ORec ; Snd) od

]|

sys R (exp PRV , IP ; imp NXT , OP)
[i : natural] ::

|[var buf : datagram ;
proc
PRV (val a : datagram) : (buf := a);

IP(val a : datagram) : (buf := a);
actions
Rec : await PRV ; IRec : await IP;

Fwd : buf .dst �= i → NXT (buf);

Rem : buf .dst = i → OP(buf);

exec do (Rec [] IRec) ; (Fwd [] Rem) od
]|

Modelling and Refinement of an On-Chip Communication Architecture 233

In the repeater component R, the formal interface procedures PRV (“previous”)
and NXT (“next”) represent the interfaces to the corresponding repeaters in the
two neighboring transfer stages, and the procedures IP (“input”) and OP (“out-
put”) model the communication channels between the repeater and the stage’s
own interface module. In the right repeater instance RepeaterR, the procedures
PRV , NXT , IP, and OP correspond to, respectively, the procedures RR , RS ,
IPR , and OPR of the transfer stage model T 1. In the left repeater instance
RepeaterL, they correspond to, respectively, the procedures LR , LS , IPL , and
OPL of T 1. Furthermore, the actions Rec , IRec, Fwd , and Rem ofR correspond
to, respectively, the above mentioned actions RRec ′, IRRec′, RFwd ′ and RRem′

in the case of the right repeater, and LRec ′, ILRec′, LFwd ′ and LRem′ in the
case of the left repeater. The local variable buf of R, in turn, corresponds to the
variable rbuf or lbuf of the original transfer stage model T .

RS

IPR

RR

OPR IPL OPL

RR

LS LR

RS

IPL OPL

IP
R

O
P

R
1

N
X

T

P
R

V

OPIP

OPIP
N

X
T

P
R

V

M2BB2M

LRLS

B2M M2B

R

T

R
T

I

Fig. 3. Refinement of T into T 1

8 Conclusion

A formal approach, based on the Action Systems formalism, to model and refine
an on-chip communication platform was presented. The considered transforma-
tion steps included pipelining of data transfers and spatial decomposition of
system models. Communication between components was modelled by remote
procedure calls, for which a novel notation was introduced. We will continue the
work by focusing on refinement of procedure based communication channels into
concrete variable based channels and transformation of refined Action Systems
models into signal transition graph (STG) models which can be automatically
synthesized into gate-level circuit netlists.

References

1. R. Back and K. Sere. “From Action Systems to Modular Systems.” Software —
Concepts and Tools, 17, p. 26-39, Springer-Verlag, 1996.

2. R. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.
Springer-Verlag. April 1998.

3. H. Bakoglu. Circuits, Interconnections, and Packaging for VLSI. Addison-Wesley,
1990.

234 J. Plosila, P. Liljeberg, and J. Isoaho

4. W. Dally and J. Poulton. Digital System Engineering. Cambridge University Press,
1998.

5. E. Dijkstra. A Discipline of Programming. Prentice Hall Series in Automatic Com-
putation, Prentice Hall, 1976.

6. P. Liljeberg, J. Plosila and J. Isoaho. “Self-Timed communication platform for
implementing high-performance system-on-chip” in VLSI Journal of Integration,
Elsevier, Volume 38, Issue 1, pages 43-67, October 2004.

Finding Bugs in Network Protocols Using

Simulation Code and Protocol-Specific
Heuristics

Ahmed Sobeih, Mahesh Viswanathan, Darko Marinov, and Jennifer C. Hou

Department of Computer Science,
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

{sobeih, vmahesh, marinov, jhou}@uiuc.edu

Abstract. Traditional network simulators perform well in evaluating
the performance of network protocols but lack the capability of verifying
the correctness of protocols. To address this problem, we have extended
the J-Sim network simulator with a model checking capability that ex-
plores the state space of a network protocol to find an execution that
violates a safety invariant. In this paper, we demonstrate the usefulness
of this integrated tool for verification and performance evaluation by an-
alyzing two widely used and important network protocols: AODV and
directed diffusion. Our analysis discovered a previously unknown bug in
the J-Sim implementation of AODV. More importantly, we also discov-
ered a serious deficiency in directed diffusion. To enable the analysis of
these fairly complex protocols, we needed to develop protocol-specific
search heuristics that guide state-space exploration. We report our find-
ings on discovering good search heuristics to analyze network protocols
similar to AODV and directed diffusion.

1 Introduction

Network simulators have been used for decades to provide an environment for
a protocol designer to build a prototype of a network protocol and evaluate its
performance. One major deficiency of traditional network simulators, however,
is that they only evaluate the performance of network protocols in scenarios
provided by the designer but can not exhaustively analyze possible scenarios for
correctness. For example, a network simulator can evaluate the performance of a
routing protocol but cannot check whether this protocol may suffer from routing
loops. If the error cases do not appear (and hence cannot be investigated) in the
scenarios studied, subtle errors in the protocol specification/implementation may
not be identified in the simulation. These errors may then eventually manifest
themselves after the protocol has been implemented and deployed. In the light
of recent research [1] that creates a physical implementation of a protocol from
the existing simulation code, without modification, this seems to be highly likely.
Therefore, building an integrated tool that allows a network protocol designer
to both verify a prototype and evaluate its performance is an important task.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 235–250, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

236 A. Sobeih et al.

Design of special-purpose model checkers for network simulator code enjoys
several benefits over using general-purpose verification tools. First, it saves the
protocol designer the task of building a special-purpose model of the protocol
for verification and a separate model for performance analysis. Since building a
formal model of a protocol is an onerous, time-consuming and error-prone task,
by designing special-purpose model checkers for network simulator code, we not
only ensure that verifying a protocol is easier for the designer but also ensure that
the model being verified is consistent with the implementation. Second, using a
model checker for C or Java (like [2,3,4,5,6,7]) to verify the protocol code along
with the simulator code might likely be intractable due to the complexity of the
general-purpose simulator code.

We have built a tool that extends J-Sim [8]—a component-based network sim-
ulator written entirely in Java—with the model checking [9] capability to explore
the state space created by a network protocol up to a (configurable) maximum
depth in order to find violations of a safety property (e.g., the absence of rout-
ing loops). We previously provided a proof-of-concept case study [10] in which
we used our tool to model-check an automatic repeat request (ARQ) protocol.
In this paper, we demonstrate the usefulness and effectiveness of our tool in
analyzing much more complicated protocol code. We examine two widely used
and fairly complex network protocols: the Ad-Hoc On-Demand Distance Vector
(AODV) routing protocol [11, 12] for wireless ad hoc networks and the directed
diffusion protocol [13] for wireless sensor networks. These are reasonably com-
plex protocols whose J-Sim implementations (not including the J-Sim library)
have about 1200 and 1400 lines of code, respectively. Our choice of AODV and
directed diffusion was motivated by their potential to become representative
routing and data dissemination protocols, respectively, in ad hoc networks and
sensor networks. We investigate whether these protocols satisfy the loop-free
safety property, i.e., data packets are not routed through loops.

Our surprising discoveries illustrate the practical importance of our tool.
First, we find a previously unknown bug in the J-Sim implementation of AODV.
This shows that even if the protocol specification [12] is correct, the simula-
tor code could have bugs that may eventually find their way to the deployed
implementation. Second, we identify a serious deficiency in the directed diffu-
sion protocol [13] not only in its J-Sim implementation. Specifically, our tool
produces scenarios leading to corruption of data caches due to timeouts and/or
node reboots in a sensor network. This deficiency would result in data packets
being routed in a loop.

To analyze such large protocol implementations, we have developed search
heuristics that better guide the model checker to discover bugs. Specifically,
we develop best-first search (BeFS) strategies that exploit properties inherent
to the network protocol and the safety property being checked. An interesting
and important research question is how to determine a suitable BeFS strategy
for a specific network protocol. In this paper, we make an attempt towards
answering this question by studying the performance of several BeFS strategies
for both AODV and directed diffusion. Unlike [3, 14, 15, 16], we found that the

Finding Bugs in Network Protocols 237

strategies need to explicitly make use of both protocol-specific characteristics
and the property being verified in order to be successful. The results show that
using good protocol-specific heuristics outperforms standard breadth-first search
(BFS) and depth-first search (DFS) strategies.

In this paper, we make the following contributions. First, we demonstrate the
ability of our tool to find bugs in complex network protocols with large simulation
code. Second, we discover a previously unknown deficiency in directed diffusion.
Third, we report our findings on discovering good protocol-specific heuristics to
analyze network protocols similar to AODV and directed diffusion.

The rest of the paper is organized as follows. In Section 2, we give an overview
of the model checking framework in J-Sim, and in Section 3, we present our
performance results. In Section 4, we discuss related work. Finally, we conclude
the paper in Section 5 with a list of future research work.

2 The Model Checking Framework

The model checker, that we incorporated into J-Sim, is an explicit-state model
checker [9] that checks a network protocol by executing the J-Sim simulation
code of that network protocol directly and exploring the state space on-the-
fly until either a counterexample disproving a safety property is found or the
state space is explored up to a maximum depth (MAX DEPTH). In order
to explore the state space created by a network protocol, the notion of the
“state” has to be adequately defined. To this end, the model checker makes
use of the GlobalState class. A state is an instance of GlobalState. The model
checking procedure modelCheck, shown in Figure 1, keeps track of three instances
of GlobalState; namely, initialState (the initial state of the network protocol),
currentState (the current state being explored) and nextState (one of the possible
successors of the current state). As shown in Figure 1, the two major data
structures are NonVisitedStates (which stores the states that have not yet been
visited) and AlreadyVisitedStates (which stores the states that have already been
visited). Figure 1 presents a stateful search that avoids visiting a state if another
equivalent state has already been visited before (i.e., a state that already exists
in AlreadyVisitedStates). AlreadyVisitedStates stores concrete states, and two
states s1 and s2 are considered equivalent if s1.equals(s2) returns true.

In each state in the state space, some transitions (i.e., events) may or may not
be enabled, and an enabled transition may generate multiple successor states.
For instance, a packet arrival event may generate multiple successor states. This
is because if the network contains two packets m1 and m2 whose destination
is node n, two successor states can be generated depending on whether node n
receives m1 first and then m2 or receives m2 first and then m1. In modelCheck,
the enabling function (Figure 1, line 9) returns the number of possible successor
states (zero if the event is disabled). For each state being explored (currentState),
modelCheck generates all the possible successor states (nextState) by executing
the event handlers of the events that are enabled in currentState. However, since
an event handler is only invoked from modelCheck but actually executed inside

238 A. Sobeih et al.

procedure modelCheck()
1. AlreadyVisitedStates = { } ;
2. NonVisitedStates = { initialState } ;
3. while (| NonVisitedStates | > 0) {
4. currentState = NonVisitedStates.remove() ;
5. if (currentState does not exist in AlreadyVisitedStates) {
6. AlreadyVisitedStates = AlreadyVisitedStates ∪ { currentState } ;
7. for (all protocol entities p) { /* for all protocol entities */
8. for (all possible events e) { /* for all events */
9. NumberOfNextStates = e.EnablingFunction(p) ;

10. for (int i = 0 ; i < NumberOfNextStates ; i++) {
11. CopyFromModelToEntities(currentState) ;
12. nextState = currentState ; /* Start with nextState equal to currentState */
13. nextState.depth += 1 ; /* Increment the depth of nextState */
14. e.EventHandler(p) ; /* Invoke e’s event handler */
15. CopyFromEntitiesToModel(nextState) ;
16. if (nextState does not exist in AlreadyVisitedStates) {
17. if (nextState.verifySafety() == false) {
18. printPath(nextState) ; exit ;

} /* end if safety property is violated at nextState */
19. else if (nextState.depth < MAX_DEPTH)
20. NonVisitedStates = NonVisitedStates ∪ { nextState } ; } } } } } }

Fig. 1. Stateful model checking procedure

the protocol entities (i.e., the classes that implement the network protocol being
model-checked) themselves, modelCheck must first restore the state of the pro-
tocol entities to the state reflected in currentState before the execution of the
event handler. This is achieved by the CopyFromModelToEntities() function call
(line 11). After the execution of the event handler (line 14), the CopyFromEn-
titiesToModel() function is called (line 15) to extract the new state information
from the protocol entities and copy them to nextState. If nextState has not been
visited before (line 16), modelCheck then checks whether nextState violates a
safety property (line 17). (The network protocol designer specifies the safety
property that needs to be checked as a Java method whose output is true/false.)
If so, a counterexample is printed by calling the printPath() function (line 18);
otherwise, nextState is added to NonVisitedStates (line 20) in order to be ex-
plored later if its depth is strictly less than MAX DEPTH . Adding a state to
NonVisitedStates (line 20) or AlreadyVisitedStates (line 6) needs a function that
creates a copy of a state (e.g., clone()).

It should be mentioned that the model checking process is not fully auto-
mated. To model-check a network protocol, the protocol designer needs to do
the following:
1. Provide an implementation of GlobalState (including writing the safety prop-

erty as a Java method, the function equals, and a function that creates a
copy of a state), and specify how to construct the initial state. To reduce the
protocol designer’s burden, we provide an implementation of a class, called
SystemState, that includes the protocol-independent information (e.g., the
depth of a state, which event generated the state). GlobalState, which can
be implemented as a sub-class of SystemState, includes the protocol-specific
information.

2. Specify (a) the set of events that exist in the network protocol, (b) when each
event is enabled, and (c) how each event is handled (i.e., an event handler

Finding Bugs in Network Protocols 239

that makes a transition from one state to another). Note that the protocol
designer has to write the event handlers anyway in order to have a working
prototype of the network protocol in J-Sim, even if he/she does not intend
to model-check the protocol.

3. Provide implementations for CopyFromModelToEntities() and CopyFromEn-
titiesToModel(). To facilitate programming, we make use of ports (a feature
provided by J-Sim) to provide a seamless interface between components; in
this case, between the model checker and the protocol entities [17].

4. (Required only in the case of using a BeFS strategy) Write a Java method
that assigns to each state a metric that represents how “good” this state is.
The model checking procedure will explore the “best” state first.

3 Evaluation and Results

We applied the model checking framework to the J-Sim implementations of the
AODV (Section 3.1) and directed diffusion (Section 3.2) protocols. For each
protocol, we give an overview of the key functionality, describe the protocol
actions and property being checked, present several BeFS heuristics, discuss
detected errors, and show performance results for model checking. We ran all
experiments on a Pentium 4 1.6 GHz machine with Microsoft Windows XP
2002 SP2 with 1 GB memory. We used Sun’s Java 2 SDK 1.4.2 JVM with
512 MB allocated memory.

3.1 AODV Routing in Multihop Wireless Ad Hoc Networks

Overview of AODV. The implementation of AODV [11] in J-Sim is based
on the AODV Draft (version 11) [12]. In AODV, each node n in the ad hoc
network maintains a routing table. A routing table entry (RTE), at node n, to
a destination node d contains, among other fields: nexthopn,d (the address of
the node to which n forwards packets destined for d), hopsn,d (the number of
hops needed to reach d from n) and seqnon,d (a measure of the freshness of
the route information). Each RTE is associated with a lifetime. Periodically, a
route timeout event is triggered invalidating (but not deleting) all the RTEs
that have not been used (e.g., to send or forward packets to the destination)
for a time interval that is greater than the lifetime. Invalidating a RTE involves
incrementing seqnon,d and setting hopsn,d to ∞.

When a node n requires a route to a destination d, it broadcasts a route
request (RREQ) packet. When a node receives the RREQ, if it has a fresh
enough route to d (or it is d itself), it satisfies the RREQ by unicasting a route
reply (RREP) packet back to n; otherwise, it rebroadcasts the RREQ. The
unicast RREP travels back to n. Each intermediate node along the path of
RREP sets up a forward pointer to the node from which the RREP came, thus
establishing a forward route to d, and forwards the RREP packet to the next
hop towards n. If node m offers node n a new route to d, n compares seqnom,d

of the offered route to seqnon,d, and accepts the route with the greater sequence

240 A. Sobeih et al.

number. If the sequence numbers are equal, the offered route is accepted only if
hopsn,d > hopsm,d.

Each node maintains two monotonically increasing counters: seqnon and
bidn. When node n broadcasts a RREQ packet, it includes the current value
of bidn in the RREQ packet and then increments bidn. Therefore, the pair
< n, bidn > uniquely identifies a RREQ packet. Each node, receiving the RREQ
packet from node n, keeps the pair < n, bidn > in a broadcast ID cache so that
it can later check if it has already received a RREQ with the same source ad-
dress and broadcast ID. Each entry in this cache has a lifetime. Periodically, a
broadcast ID timeout event is triggered causing the deletion of entries in the
cache that have expired.

Model Checking AODV. We next present the steps that we follow to model-
check AODV. These steps constitute a generic methodology for model-checking
a network protocol in J-Sim.
(1) Definitions of the global state, the initial state, state equality and safety
property: We define GlobalState as a tuple that has two components; namely,
the protocol state and the network cloud. The protocol state of a node n in-
cludes n’s routing table, broadcast ID cache, seqnon and bidn. The network
cloud models the network as an unbounded set that contains AODV packets,
and also maintains the neighborhood information. A broadcast AODV packet
whose source is node s is modeled as a set of packets, each of which is destined
for one of the neighbors (i.e., the nodes that are within the transmission range)
of s.

In the initial global state, the network does not contain any packets and
the AODV process at each node is initialized as specified by the constructor of
the AODV class in J-Sim. Specifically, the AODV process starts with an empty
routing table, empty broadcast ID cache, seqnon = 2 and bidn = 1.

Two states, s1 and s2, are considered equal if they have the same (unordered)
set of AODV packets, the same neighborhood information, and for each node n,
s1 and s2 have equal corresponding values for seqnon, bidn, and node n’s routing
table and broadcast ID cache (each viewed as an unordered set of entries).

An important safety property in a routing protocol such as AODV is the
loop-free property. Consider two nodes n and m such that m is the next hop of
n to some destination d; i.e., nexthopn,d = m. The loop-free property can be
expressed as follows [18, 3]:

((seqnon,d < seqnom,d) ∨ (seqnon,d == seqnom,d ∧ hopsn,d > hopsm,d))

(2) Events: Next, we specify the set of events, when each event is enabled, and
how each event is handled. The events can be listed as follows:
T0 Initiation of a route request to a destination d: This event is enabled if the

node does not have a valid RTE to the destination d. The event is handled
by broadcasting a RREQ.

T1 Delivering an AODV packet to node n: This event is enabled if the network
contains at least one AODV packet such that n is the destination (or the
next hop towards the destination) of the packet and n is one of the neighbors

Finding Bugs in Network Protocols 241

of the source of the packet. The event is handled by removing this packet
from the network and forwarding it to node n.

T2 Restart of the AODV process at node n: This event may take place because
of a node reboot. The event is always enabled and is handled by reinitializing
the state of the AODV process at node n.

T3 Loss of an AODV packet destined for node n: This event is enabled if the
network contains at least one AODV packet that is destined for node n. The
event is handled by removing this packet from the network.

T4 Broadcast ID timeout at node n: This event is enabled if there is at least one
entry in the broadcast ID cache of node n. The event is handled by deleting
this entry.

T5 Timeout of the route to destination d at node n: This event is enabled if n
has a valid RTE to d. The event is handled by invalidating this RTE.

(3) Use of protocol-specific properties to facilitate a BeFS strategy: A suitable
BeFS strategy for exploring the state space of AODV can be obtained by in-
specting the loop-free property. A node, which does not have a valid RTE to the
destination d, does not affect the truth value of the loop-free property. There-
fore, a suitable BeFS strategy (which we call AODV-BeFS-1) is to consider a
state s1 better than a state s2 if the number of valid RTEs to any node in s1 is
greater than that in s2. Another BeFS strategy (which we call AODV-BeFS-2)
can also be obtained by inspecting the loop-free property, which can be rewritten
as follows:

(((seqnon,d − seqnom,d) < 0) ∨ (seqnon,d == seqnom,d ∧ ((hopsm,d − hopsn,d) < 0)))

Therefore, the greater (seqnon,d − seqnom,d) and/or (hopsm,d − hopsn,d) in
a state s, the more likely s is close to an error. Hence, AODV-BeFS-2 considers
a state s1 better than a state s2 if the following summation

S = n�=d((seqnon,d − seqnom,d) + (hopsm,d − hopsn,d))

in s1 is greater than that in s2, where nexthopn,d = m. The summation S includes
only the nodes n and m that have valid RTEs to the destination d. If none of the
nodes have a valid RTE to d, S is set to −∞. In addition to AODV-BeFS-1 and
AODV-BeFS-2, we also study the performance of the following BeFS strategies:

1. AODV-BeFS-3: This strategy considers a state s1 better than a state s2 if
the number of valid RTEs to the destination d in s1 is greater than that in
s2. However, if s1 and s2 are equally good, s1 is considered better than s2 if
the number of valid RTEs to any node in s1 is greater than that in s2.

2. AODV-BeFS-4: Since a valid RTE is established upon receiving a RREP
packet, AODV-BeFS-4 considers a state s1 better than a state s2 if the
number of RREP packets in s1 is greater than that in s2.

3. AODV-BeFS-5: AODV-BeFS-5 is the same as AODV-BeFS-4, except that if
s1 and s2 are equally good under the condition specified in AODV-BeFS-4,
s1 is considered better than s2 if the number of valid RTEs to any node in
s1 is greater than that in s2.

242 A. Sobeih et al.

Errors Discovered. We consider an initial state of an ad hoc network consist-
ing of 3 nodes: n0, n1 and n2 (the only destination node) arranged in a chain
topology where each node is a neighbor of both the node to its left and the node
to its right (if any exists). Although this initial state is simple, it ensures that n0

requires a multihop route to reach n2; i.e., AODV multihop routing is needed.
We will study larger network topologies later in this section. In the course of
model checking, we have discovered an error (which we call Counterexample
1) in the J-Sim implementation of AODV caused by not following part of the
AODV specification. Conceptually, if nexthop0,2 = 1 and the AODV process at
n1 restarts, the net effect is that all the RTEs stored at n1 will be deleted. As a
result, n1 may later accept a route that was offered by n2 with a lower sequence
number than that of n0 (i.e., seqno0,2 > seqno1,2), hence violating the loop-free
property. We also manually injected two errors (which we call Counterexamples
2 and 3 respectively): in Counterexample 2, seqnon,d is not incremented when
a RTE is invalidated and in Counterexample 3, a RTE is deleted (instead of
invalidated) when its lifetime expires. The model checking framework was able
to find these two errors too.1 A routing loop may occur due to either of these
two errors because if nexthop0,2 = 1 and a route timeout event takes place at
n1, in either Counterexample 2 or 3, if n1 is later offered a route to n2 by n0,
this route will be accepted (because in Counterexample 2, hops1,2 = ∞; hence,
hops1,2 > hops0,2; whereas in Counterexample 3, seqno0,2 > seqno1,2). The in-
terested reader is referred to [17] for a detailed account (along with the traces)
of the three counterexamples.

Performance of the Search Strategies. Table 1 gives the performance eval-
uation criteria: (i) time, (ii) space, and (iii) number of transitions explored
for finding the three counterexamples using several search strategies, including
breadth-first (BFS) and depth-first (DFS). As shown in Table 1, AODV-BeFS-
1 achieves an order of magnitude reduction with respect to the performance
criteria when compared to BFS. Also, the choice of the BeFS strategy has an
impact on the performance. For instance, as shown in Table 1, AODV-BeFS-2
performs worse than AODV-BeFS-1 for the three counterexamples. This is be-
cause AODV-BeFS-2 requires a node (and its next hop towards the destination)
to have valid RTEs to the destination. This may not be true in the first few
stages (i.e., lower depths) of the search space. Therefore, in the first few stages
of the search, the nonvisited states may look equally good and thus, AODV-
BeFS-2 may not be able to explore the states that are most likely to lead to the
error first. AODV-BeFS-3 tackles this problem by further differentiating equally
good states by using a two-level best-first search approach. As shown in Table 1,
AODV-BeFS-1 and AODV-BeFS-3 outperform the other BeFS strategies be-
cause they are more able to guide the BeFS towards the error even at the lower
depths of the search space.

Next, we study the effect of the size of the network on the performance of the
model checking framework in J-Sim. As shown in Table 2, the model checking
1 For Counterexamples 2 and 3, we require that the counterexample contain at least

one state that is generated due to the route timeout event, T5.

Finding Bugs in Network Protocols 243

Table 1. AODV case study: Time (in seconds) and space (in number of states explored)

requirements and the number of transitions explored for finding the three counterexam-

ples in a 3-node chain ad-hoc network using different search strategies. MAX DEPTH

= 10.

Counterexample 1 Counterexample 2 Counterexample 3
Time Space Transitions Time Space Transitions Time Space Transitions

BFS 4262.039 19886 40445 4231.124 20072 40781 4094.928 19056 39489
DFS 940.672 1844 21135 962.935 1833 20979 893.896 1817 20814
AODV-BeFS-1 139.310 1156 7493 137.168 1151 7440 127.053 1150 7431
AODV-BeFS-2 833.719 1753 19617 810.035 1750 19581 775.766 1739 19468
AODV-BeFS-3 14.882 535 2118 14.120 535 2079 14.400 534 2070
AODV-BeFS-4 367.038 1626 14151 3905.015 4901 44851 365.215 1617 14051
AODV-BeFS-5 347.529 1923 13577 3076.274 4649 38853 323.515 1889 13101

Table 2. AODV case study: Time (in seconds) and space (in number of states explored)

requirements and the number of transitions explored for finding Counterexample 3 in

a N-node chain ad-hoc network using AODV-BeFS-1

N MAX DEPTH Time Space Transitions
3 15 0.200 93 134
4 20 12.609 575 1971
5 25 944.769 3256 19803
6 30 1393.955 2640 25052
7 35 3784.462 3339 46532

framework was able to find a counterexample in larger network topologies within
reasonable time and space requirements.

3.2 Directed Diffusion in Wireless Sensor Networks (WSNs)

Overview of Directed Diffusion. Directed diffusion [13] is a data-centric
information dissemination paradigm for wireless sensor networks (WSNs). In
directed diffusion, a sink node periodically broadcasts an INTEREST packet,
containing the description of a sensing task that it is interested in (e.g., de-
tecting a chemical weapon in a specific area). INTEREST packets are diffused
throughout the network (e.g., via flooding), and are used to set up exploratory
gradients. A gradient is the direction state created in each node that receives
an INTEREST, where the gradient direction is set toward the neighboring node
from which the INTEREST is received. Each node maintains an interest cache.
Each interest entry in this cache corresponds to a distinct interest and stores
information about the gradients that a node has (up to one gradient per neigh-
bor) for that interest. Each gradient in an interest entry has a lifetime that is
determined by the sink node. When a gradient expires, it is removed from its
interest entry. When all gradients in an interest entry have expired, the interest
entry itself is removed from the interest cache.

When an INTEREST packet arrives at a sensor node that senses data which
matches the interest (this sensor node is called a source node), the source node
prepares DATA packets (each of which describes the sensed data) and sends them
to neighbors for whom it has a gradient once every exploratory interval. Each

244 A. Sobeih et al.

node also maintains a data cache that keeps track of recently seen DATA packets.
When a node receives a DATA packet, if the DATA packet has a matching data
cache entry, the DATA packet is discarded; otherwise, the node adds the received
DATA packet to the data cache and forwards the DATA packet to each neighbor
for whom it has a gradient. As a result, DATA packets are forwarded toward the
sink node(s) along (possibly) multiple gradient paths.

Upon receipt of a DATA packet, a sink node reinforces its preferred neighbor
that is determined based on a data-driven local rule. For instance, the sink node
may reinforce any neighbor from which it received previously unseen data (i.e.,
the neighbor from which it first received the latest data matching the interest).
The data cache is used to determine that preferred neighbor. In order to reinforce
a neighbor, the sink node sends a positive reinforcement packet to that neighbor
to inform it of sending data at a smaller interval (i.e., higher rate) than the
exploratory interval, thereby establishing a reinforced gradient (also called data
gradient) towards the sink node. The reinforced neighbor will in turn reinforce
its preferred neighbor. This process repeats all the way back to the data source,
resulting in a reinforced path (i.e., a chain of reinforced gradients) between the
source and the sink nodes.

Model Checking Directed Diffusion. In order to illustrate the applicability
of the model checking framework, we follow the same steps given in Section 3.1.

(1) Definitions of the global state, the initial state, state equality and safety prop-
erty: To model-check directed diffusion, we use the same definitions of Global-
State and network cloud that were introduced in Section 3.1. On the other hand,
since the protocol state is protocol-specific, the protocol state in directed diffu-
sion includes each node’s interest cache and data cache. In the initial global state,
the network does not contain any packets and the directed diffusion process at
each node starts with an empty interest cache and an empty data cache.

Two states, s1 and s2, are considered equal if they have the same (unordered)
set of packets, the same neighborhood information, and for each node n, s1 and s2

have correspondingly equal node n’s interest cache and data cache (each viewed
as an unordered set of entries).

An important safety property in the directed diffusion protocol is the loop-free
property of the reinforced path. Consider two nodes n and m where RPath(n, m)
is true if and only if there is a reinforced path from n to m. The loop-free property
can be expressed as follows:

¬ (RPath(n, m) ∧ RPath(m, n))

(2) Events: The events can be listed as follows:

T0 Initiation of a sensing task by node n: This event is enabled if n is a sink
node. The event is handled by broadcasting an INTEREST packet.

T1 Delivering a packet to node n: This event is enabled if the network contains
at least one packet that is destined for node n such that node n is one of
the neighbors of the source of the packet. The event is handled by removing
this packet from the network and forwarding it to node n.

Finding Bugs in Network Protocols 245

T2 Restart of the directed diffusion process at node n: This event may take
place because of a node reboot. The event is always enabled and is handled
by reinitializing the state of the directed diffusion process at node n.

T3 Loss of a packet destined for node n: This event is enabled if the network
contains at least one packet that is destined for node n. The event is handled
by removing this packet from the network.

T4 Gradient timeout at node n: This event is enabled if the interest cache of
node n contains at least one interest entry that has at least one gradient.
The event is handled by deleting this gradient.

T5 Data cache timeout2 at node n: This event is enabled if there is at least
one entry in the data cache of node n. The event is handled by deleting this
entry.

(3) Use of protocol-specific properties to facilitate a BeFS strategy: In the course
of model-checking AODV, AODV-BeFS-1 and AODV-BeFS-3 provided compar-
atively good performance results. We use these two BeFS strategies to devise
two corresponding BeFS strategies for directed diffusion. In particular, as the
loop-free property involves only valid RTEs to a destination d in AODV; by
analogy, the loop-free property involves only reinforced gradients in directed dif-
fusion. Similarly, forwarding of data packets in AODV is based on the next hop
information stored in the valid RTEs; by analogy, forwarding of data packets in
directed diffusion is based on the gradients established at the nodes. Therefore,
two good BeFS strategies for exploring the state space of directed diffusion are:

1. DD-BeFS-1: This strategy considers a state s1 better than a state s2 if the
total number of both exploratory and reinforced gradients in s1 is greater
than that in s2.

2. DD-BeFS-2: This strategy considers a state s1 better than a state s2 if the
number of reinforced gradients in s1 is greater than that in s2. However, if s1

and s2 are equally good, s1 is considered better than s2 if the total number
of both exploratory and reinforced gradients in s1 is greater than that in s2.

Along a similar line of arguments, we also devise the following BeFS strategies:

1. DD-BeFS-3: Since a reinforced gradient is established upon receiving a pos-
itive reinforcement packet, DD-BeFS-3 considers a state s1 better than a
state s2 if the number of positive reinforcement packets in s1 is greater than
that in s2.

2. DD-BeFS-4: DD-BeFS-4 is the same as DD-BeFS-3, except that if s1 and s2

are equally good under the condition specified in DD-BeFS-3, s1 is considered
better than s2 if the total number of both exploratory and reinforced gradients
in s1 is greater than that in s2.

2 For practical reasons, previously received DATA packets can not be kept in the data
cache for an indefinitely long time; otherwise, the size of the data cache can increase
arbitrarily. In the implementation of directed diffusion in J-Sim, each DATA packet
in the data cache is associated with a lifetime. Periodically, a data cache timeout
event is triggered causing the deletion of entries in the cache that have expired.

246 A. Sobeih et al.

3. DD-BeFS-5: This strategy considers a state s1 better than a state s2 if the
total number of data cache entries at all nodes in s1 is greater than that in
s2.

4. DD-BeFS-6: DD-BeFS-6 is the same as DD-BeFS-5, except that if s1 and s2

are equally good under the condition specified in DD-BeFS-5, s1 is considered
better than s2 if the total number of both exploratory and reinforced gradients
in s1 is greater than that in s2.

Errors Discovered. Next, we give two previously unknown errors that the
model checking framework in J-Sim was able to discover in directed diffusion
(which we call Counterexamples 1 and 2 respectively). We consider an initial
state that consists of a chain topology of 4 nodes: n0 (the only sink node), n1, n2

and n3 (the only source node). The errors take place because in directed diffusion,
the interest and gradient setup mechanisms themselves do not guarantee loop-
free reinforced paths between the source and the sink nodes. In order to prevent
loops from taking place, the data cache is used to suppress previously seen DATA
packets. However, we discover that, in case of (a) a node reboot (which effectively
deletes all the entries in the data and interest caches) and/or (b) the deletion of
a DATA packet from the data cache, a loop may be created. For instance, in the
4-node chain topology, if n1 accepts a DATA packet sent by n2, n2 becomes n1’s
preferred neighbor. Now, if n2 deletes the DATA packet from its data cache due
to a data cache timeout (Counterexample 1) or a node reboot (Counterexample
2), it may later accept the DATA packet sent by n1 (because it will be previously
unseen data) causing n1 to become n2’s preferred neighbor. Therefore, n1 and
n2 may positively reinforce each other causing a loop in the reinforced path. In
fact, positive reinforcement packets may not eventually reach the source node
causing a disruption in the reinforced path (i.e., the reinforced path may include
a loop that does not include the source node).3 The interested reader is referred
to [19] for a detailed account, and traces, of the two counterexamples.

Performance of the Search Strategies. Table 3 gives the performance of
the various search strategies in finding the two counterexamples. As shown in
Table 3, DD-BeFS-1 provides comparatively good results in terms of time and
space requirements and the number of transitions explored for finding a violation
of a safety property. Furthermore, DD-BeFS-4 outperforms DD-BeFS-3, and
DD-BeFS-6 outperforms DD-BeFS-5. This is because both DD-BeFS-4 and DD-
BeFS-6 are two-level BeFS strategies that use DD-BeFS-1 if the non-visited
states are equally good and are thus more able to guide the BeFS in the lower
depths of the search space than DD-BeFS-3 and DD-BeFS-5 respectively.

Table 4 gives the time and space requirements and the number of transitions
explored for finding Counterexample 1 in a chain topology consisting of N nodes
using DD-BeFS-4. For sensor networks consisting of more than four nodes, both
BFS and DFS failed to find counterexamples.
3 For Counterexample 2, we require that the counterexample contain at least one state

that is generated due to a node reboot event, T2. Furthermore, in order to show that
the error may still take place even if the data cache timeout event, T5, does not
happen (i.e., the data cache size is infinite), we disabled T5.

Finding Bugs in Network Protocols 247

Table 3. Directed diffusion case study: Time (in seconds) and space (in number of

states explored) requirements and the number of transitions explored for finding the

two counterexamples in a 4-node chain sensor network using different search strategies.

N/A indicates that the model checker was not able to find a counterexample in 8 hours.

Counterexample 1, MAX DEPTH = 15 Counterexample 2, MAX DEPTH = 20
Time Space Transitions Time Space Transitions

BFS 22287.938 21224 84530 N/A N/A N/A
DFS 23876.914 4736 95706 N/A N/A N/A
DD-BeFS-1 3.475 200 1051 3900.118 6026 41132
DD-BeFS-2 4.026 200 1168 12189.227 6640 57124
DD-BeFS-3 19536.362 4630 93924 N/A N/A N/A
DD-BeFS-4 0.981 124 469 726.024 1870 17656
DD-BeFS-5 N/A N/A N/A N/A N/A N/A
DD-BeFS-6 24743.349 12920 72911 N/A N/A N/A

Table 4. Directed diffusion case study: Time (in seconds) and space (in number of

states explored) requirements and the number of transitions explored for finding Coun-

terexample 1 in a N-node chain sensor network using DD-BeFS-4

N MAX DEPTH Time Space Transitions
4 15 0.981 124 469
5 20 335.833 925 11816
6 25 857.303 1346 19245
7 30 1538.152 1985 27640
8 35 7244.277 3679 59093

3.3 Lessons Learned

In this subsection, we summarize the lessons that we learned. First, the ability
of the model checking framework to model-check large and complex network
protocols such as AODV and directed diffusion demonstrates that the model
checking framework is general enough and not tied to a particular network pro-
tocol. Specifically, for model-checking another network protocol, one needs to
follow the steps that we followed in sections 3.1 and 3.2.

Second, we demonstrate that the use of BeFS strategies (that leverage protocol-
specific properties) reduces the time and space requirements by several orders of
magnitude. Based on the results obtained for the BeFS strategies that we stud-
ied, we recommend deriving the BeFS strategy from properties inherent to the
network protocol and the safety property being checked. This is justified by the
fact that AODV-BeFS-1 (and DD-BeFS-1) provided good performance results
in terms of time and space requirements and number of transitions explored for
finding a violation of a safety property. Furthermore, using a two-level BeFS
strategy, in which a BeFS strategy such as AODV-BeFS-1 (or DD-BeFS-1) is
used if the nonvisited states are equally good, also improved the performance.
This is justified by the fact that AODV-BeFS-5 outperforms AODV-BeFS-4,
DD-BeFS-4 outperforms DD-BeFS-3, and DD-BeFS-6 outperforms DD-BeFS-5.

4 Related Work

Our work is inspired by previous work on model-checking the implementation
code directly for C and C++ (e.g., CMC [3, 14] and VeriSoft [20]). Although

248 A. Sobeih et al.

CMC has been applied to model-check Linux implementations of networking
code (e.g., AODV and TCP), the major distinction between our approach and
CMC is that CMC uses protocol-independent properties in guiding the best-first
search. It does so by attempting to focus on states that are the most different
from previously explored states. However, our approach uses protocol-dependent
properties, which exploit properties inherent to the network protocol and the
safety property being checked, to guide the best-first search strategy. Likewise,
VeriSoft uses protocol-independent techniques, namely partial-order reduction
(POR) using the persistent/sleep sets [20]. Traditional POR was static, but
recent work shows how to perform dynamic POR [21]. POR can be combined
with BeFS strategies; while POR determines what transitions to explore, BeFS
determines the order in which to explore them [22].

In contrast to model-checking the implementation code directly, conventional
model checkers (e.g., SPIN [23], SMV [24], Murphi [25]) require that the system
be first specified using a high-level modeling language. This may not be desirable,
as the process of describing the system in a high-level modeling language is time-
consuming, painstaking, and error-prone. To deal with this problem, there has
been recent work (e.g., [26,2,27,7]) on translating programming languages (e.g.,
Java) into the input modeling languages of several conventional model checkers.
However, this may not be always feasible because some features of C or Java
(e.g., bit operations) do not have corresponding ones in the destination modeling
language. Therefore, our approach of model-checking the simulation code, which
has to be written by a network protocol designer anyway for the purpose of
performance evaluation, directly reduces the network protocol designer’s effort
and avoids the limitations of the input languages of conventional model checkers.
This also provides an important advantage when compared to previous work
on testing and verification of network protocols (e.g., [28, 29]), which requires
building another model for verification purposes.

Java PathFinder [30] performs model checking at the bytecode level. This
involved building a new Java Virtual Machine that is called from the model
checker to interpret Java bytecode. In contrast, our approach does not require
any modifications to the Java Virtual Machine. Our approach, however, requires
the user to provide the code for state manipulation (Section 2). Java PathFinder
provides automatic manipulation of the entire Java states (including stack and
heap); to use Java PathFinder for a tractable checking of protocol simulation
code in J-Sim, the user would still need to manually provide the code that
manipulates state by abstracting the stack and parts of the heap.

The idea of using best-first search strategies and/or heuristics to expedite
the model checking process has been explored in previous work (e.g., [15, 22,
31, 32, 33]). However, what distinguishes our work is that we study the use of
protocol-specific heuristics in model-checking the simulation code directly and
we focus on a specific domain; namely, routing protocols for wireless ad hoc and
sensor networks, and attempt to discover effective protocol-specific heuristics
that enable a best-first search strategy to find counterexamples with less time and
space requirements than classic breadth-first and depth-first search strategies.

Finding Bugs in Network Protocols 249

5 Conclusions and Future Work

This paper presents our research on extending the J-Sim network simulator with
the capability of verifying network protocols using on-the-fly model checking. We
demonstrate the effectiveness of the model checker to model-check two widely
used and fairly complex network protocols: AODV and directed diffusion. To
the best of our knowledge, the deficiency identified in directed diffusion has not
been discovered before. Experimental results show that the model checker is able
to find violations of a safety property within acceptable time and space require-
ments. Furthermore, we study several best-first search strategies for both AODV
and directed diffusion, and provide recommendations based on our results.

We have identified several research avenues for future work. First, we intend
to extend the model checker to check general temporal properties. Second, the
experiments reported in this paper require considerable manual effort; in fu-
ture research, we will consider how to reduce such manual effort. An important
research question is how to (semi-)automatically derive the heuristics from the
simulation code and the safety property. Another interesting research avenue lies
in studying to what extent symbolic model checking can expedite model-checking
the simulation code.

References

1. A. K. Saha, K. To, S. PalChaudhuri, S. Du, and D. B. Johnson, “Physical im-
plementation of ad hoc network routing protocols using unmodified ns-2 models,”
ACM MobiCom’04, Poster.

2. K. Havelund, “Java Pathfinder, a translator from Java to Promela,” in Proc. of
SPIN’99.

3. M. Musuvathi, D. Y.W. Park, A. Chou, D. R. Engler, and D. L. Dill, “CMC: A
pragmatic approach to model checking real code,” in Proc. of OSDI’02.

4. T. Ball, and S. K. Rajamani, “The SLAM Toolkit,” in Proc. of CAV’01.
5. S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith, “Modular Verification of

Software Components in C,” in Proc. of ICSE’03.
6. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy Abstraction,” in

Proc. of POPL’02.
7. A. Farzan, F. Chen, J. Meseguer, and G. Rosu, “Formal analysis of Java programs

in JavaFAN,” in Proc. of CAV’04.
8. J-Sim, “http://www.j-sim.org/”
9. E. M. Clarke, O. Grumberg, and D. Peled, Model Checking, MIT Press, 1999.

10. A. Sobeih, M. Viswanathan, and J. C. Hou, “Check and Simulate: A case for
incorporating model checking in network simulation,” in Proc. of ACM-IEEE
MEMOCODE’04.

11. C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector routing,” in
Proc. of IEEE WMCSA’99.

12. C. E. Perkins, E. M. Royer, and S. Das, “Ad hoc on demand distance vector (aodv)
routing,” IETF Draft, January 2002.

13. C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable
and robust communication paradigm for sensor networks,” in Proc. of ACM Mo-
biCom’00.

250 A. Sobeih et al.

14. M. Musuvathi and D. R. Engler, “Model checking large network protocol imple-
mentations,” in Proc. of NSDI’04.

15. S. Edelkamp, S. Leue and A. Lluch-Lafuente, “Directed Explicit-State Model
Checking in the Validation of Communication Protocols,” International Journal
on Software Tools for Technology Transfer (STTT), vol. 5, no. 2-3, pp. 247–267,
March 2004.

16. P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for heuristic deter-
mination of minimum path cost,” IEEE Transactions on Systems Science and
Cybernetics, vol. 4, pp. 100–107, 1968.

17. A. Sobeih, M. Viswanathan and J. C. Hou, “Incorporating Bounded Model Check-
ing in Network Simulation: Theory, Implementation and Evaluation,” Tech. Rep.
UIUCDCS-R-2004-2466, Department of Computer Science, University of Illinois
at Urbana-Champaign, July 2004.

18. K. Bhargavan, D. Obradovic, and C. A. Gunter, “Formal verification of standards
for distance vector routing protocols,” Journal of the ACM, vol. 49, no. 4, pp.
538–576, July 2002.

19. A. Sobeih, M. Viswanathan and J. C. Hou, “Bounded Model Checking of Net-
work Protocols in Network Simulators by Exploiting Protocol-Specific Heuristics,”
Tech. Rep. UIUCDCS-R-2005-2547, Department of Computer Science, University
of Illinois at Urbana-Champaign, April 2005.

20. P. Godefroid, “Model checking for programming languages using VeriSoft,” in
Proc. of ACM POPL’97.

21. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking
software. In Proc. of ACM POPL’05.

22. P. Godefroid and S. Khurshid. Exploring very large state spaces using genetic
algorithms. In Proc. of TACAS’02.

23. G. J. Holzmann, “The model checker SPIN,” IEEE Trans. on Software Engineer-
ing, vol. 23, no. 5, pp. 279–295, May 1997.

24. K. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.
25. D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang, “Protocol verification as a

hardware design aid,” in Proc. of IEEE ICCD’92.
26. D. Y. Park, U. Stern, J. U. Skakkebæk, and D. L. Dill. Java model checking. In

Proc. of IEEE ASE’00.
27. J. Corbett, M. Dwyer, J. Hatcliff, C. Păsăreanu, Robby, S. Laubach, and H. Zheng.

Bandera: Extracting finite state models from Java source code. In Proc. of ICSE’00.
28. D. Lee, D. Chen, R. Hao, R. E. Miller, J. Wu, and X. Yin, “A formal approach for

passive testing of protocol data portions,” in Proc. of IEEE ICNP’02.
29. G. N. Naumovich, L. A. Clarke, and L. J. Osterweil, “Verification of communication

protocols using data flow analysis,” in Proc. of ACM SIGSOFT’96.
30. W. Visser, K. Havelund, G. Brat, and S.Park, “Model checking programs,” in

Proc. of IEEE ASE’00.
31. J. Tan, G. S. Avrunin, L. A. Clarke, S. Zilberstein, and S. Leue. Heuristic-guided

counterexample search in FLAVERS. In Proc. of ACM SIGSOFT’04/FSE-12.
32. C. H. Yang and D. L. Dill. Validation with guided search of the state space. In

Proc. of ACM/IEE DAC’98.
33. A. Groce and W. Visser “Heuristics for Model Checking Java Programs,” Inter-

national Journal on Software Tools for Technology Transfer (STTT), vol. 6, no. 4,
pp. 260–276, August 2004.

Adaptive Random Testing by Bisection with

Restriction

Johannes Mayer

University of Ulm,
Dept. of Applied Information Processing,

89069 Ulm, Germany
johannes.mayer@uni-ulm.de

Abstract. Random Testing is a strategy to select test cases based on
pure randomness. Adaptive Random Testing (ART), a family of algo-
rithms, improves pure Random Testing by taking common failure pattern
into account. The best—in terms of the number of test cases necessary
to detect the first failure—ART algorithms, however, are too runtime
inefficient. Therefore, a modification of a fast, but not so good ART
algorithm, namely ART by Bisection, is presented. This modification re-
quires much less test cases than the original method while retaining its
computational efficiency.

1 Introduction

An important part of software quality assurance is software testing, i. e. the exe-
cution of a program with the intention to detect failures [1]. It is, however, quite
time-consuming to generate a large number of test cases. Furthermore, reliability
estimates are not possible for arbitrary strategies for test case generation. There-
fore, Random Testing [2–6], i. e. the random generation of test cases, has been
proposed. It allows to make reliability predictions [4, 7, 8]. Being compared to
partition testing [9–13], i. e. the partitioning of the input (or output) domain and
the generation of test cases from each element of the partition, it has proven to
be inferior under certain circumstances [9,11]. Furthermore, Myers [1] criticized
that Random Testing does not use information about the program under test.
Therefore, Adaptive Random Testing (ART) [12] has been proposed that per-
formes better than pure Random Testing for common failure patterns in terms of
test cases necessary to detect the first failure. This aim is achieved through wide
spread test cases. The best ART algorithms (D-ART [12] and RRT [14–16]),
however, require a huge amount of distance computations. Recently, ART algo-
rithms inspired by partition testing have been published [17]. These algorithms
require much less runtime. Their performance measures in terms of the number
of test cases necessary to detect the first failure are better than that of pure
Random Testing, but not nearly as good as the best ART algorithms. There-
fore, a combination of ART by Bisection [17] with the notion of restriction [14]
is presented. The result is an ART algorithm that does not require any distance
computation at all, but performs (in terms of the test cases necessary to detect

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 251–263, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

252 J. Mayer

the first failure) better than the fast ART algorithms [17] and for some failure
patterns even better than all common ART algorithms. The performance of the
presented algorithm is at least much better than that of the original method [17]
for other failure patterns, while still being as fast as the original method [17].

The following section presents preliminaries regarding the notation and com-
mon failure patterns. The novel algorithm is described in Section 3. An empirical
evaluation of the proposed algorithm is described and discussed in Section 4, fol-
lowed by a conclusion.

2 Preliminaries

2.1 Notation

The input domain is assumed to be bounded. The failure rate, i. e. the percentage
of failure-causing inputs, is denoted θ. For a finite input domain of size d with
m failure-causing inputs, θ = m/d.

The F-measure is the number of test cases necessary to detect the first failure.
This is a very natural measure for the performance of a testing strategy, since
often testing is stopped when the first failure is detected. The F-measure has been
used in all publications on ART. It is therefore ideal for comparison purposes.

For Random Testing with uniform usage profile and replacement, the theoret-
ical mean F-measure is equal to 1/θ. For example, for a failure rate of θ = 0.01,
the theoretical mean F-measure of random testing with replacement is 100.

2.2 Failure Patterns

Chan et al. [10] describe three typical patterns failure-causing inputs form within
the input domain (cf. Figure 1). The block pattern (cf. Figure 1a) describes the
situation where the failure-causing inputs are located next to each other within a
small region of the input domain. The strip pattern (cf. Figure 1b) is achieved if
the failure-causing inputs form a narrow strip within the input domain. Finally,
the situation when there are many wide spread failure-causing inputs or small

Fig. 1. Block, strip, and point patterns in a two-dimensional input domain

Adaptive Random Testing by Bisection with Restriction 253

clusters is described by the point pattern (cf. Figure 1c). According to Chan
et al. [10], the block and the strip failure pattern are the most common. These
patterns support the intuition of ART that wide spread test cases have a higher
probability of earlier detecting failures.

3 The Algorithm

ART by Bisection [17] is an ART algorithm that iteratively divides the input
domain into equally sized sub-domains and randomly selects a test case from each
of these sub-domains in random order. This algorithm is very efficient regarding
runtime. However, it has a significant higher F-measure than D-ART and RRT,
since nearby test cases cannot be avoided sufficiently (cf. Figure 2). Using the

Test 2

Test 1Test 3

Test 4

Fig. 2. Nearby test cases possible with ART by Bisection

idea of restriction, the following algorithm proceeds as ART by Bisection, but
it selects the test cases from restricted sub-domains. This restriction can easily
be achieved and has the effect that the inputs have a (decreasing) minimum
distance. Through this minimum distance, nearby test cases can partially be
prohibited other than with ART by Bisection [17].

It is assumed that the two-dimensional input domain is rectangular with
lower left corner (xmin, ymin) and upper right corner (xmax, ymax).1 Therefore,
the inputs are two-dimensional vectors (x, y) of real values with xmin ≤ x ≤ xmax

and ymin ≤ y ≤ ymax. It can trivially be adapted to a bounded region of integers
or higher dimensional input domains. The exclusion factor f must be chosen
from [0, 0.5).

Algorithm 1: Adaptive Random Testing by Bisection with Restriction

1. Initialize the listof untestedregionsLuntestedwith{{(xmin, ymin)(xmax, ymax)}}.
Initialize the list of tested regions Ltested with the empty list.

2. While Luntested is not empty:
(a) Randomly select a test region T = {(x0, y0)(x1, y1)} from Luntested and

remove it.
1 Such rectangles are denoted {(xmin, ymin)(xmax, ymax)} in the following.

254 J. Mayer

f·w

f·h

f·w

f·h

Test 1

w

h

f·h

f·w

f·h

f·w

Test 2

Test 1

w

h

f·h

f·w f·w

f·h

Test 2

Test 1

Test 3

w

h

f·h

f·w f·w

f·h

Test 2

Test 1

Test 3

Test 4

Test 5

w

h

Fig. 3. ART by Bisection with Restriction: Some steps of the algorithm

(b) Randomly select a point (x, y) from within the restricted test region
T ′ := {(x0 + fw, y0 + fh)(x1 − fw, y1 − fh)}.

(c) If the point (x, y) is a failure-causing input, report failure and terminate.
(d) Otherwise append (T, (x, y)) to Ltested.

3. Initialize Ltemp with the empty list.
4. For each element ({(x0, y0)(x1, y1)}, (x, y)) from Ltested:

(a) Let T := {(x0, y0)(x1, y1)}. Furthermore, let w := x1 − x0 be the width
of T and h := y1 − y0 be the height of T .

(b) If w ≥ h, divide T into the two regions T1 := {(x0, y0)(x0+w/2, y1)} and
T2 := {(x0 + w/2, y0)(x1, y1)}. Otherwise divide T into the two regions
T1 := {(x0, y0)(x1, y0 + h/2)} and T2 := {(x0, y0 + h/2)(x1, y1)}.

Adaptive Random Testing by Bisection with Restriction 255

(c) If (x, y) ∈ T2, exchange T1 and T2.
(d) Add (T1, (x, y)) to Ltemp and T2 to Luntested.

5. Copy Ltemp into Ltested and proceed with step 2.

The algorithm starts with the whole input domain as the initial sub-domain (cf.
Figure 3a). Within each sub-domain that does not contain a previously executed
test case a test case is selected randomly within a restriction of the respective
sub-domain, in each pass. The sub-domains are processed in a random order. If
all sub-domains contain a previously executed test case, they are bisected and
the next pass starts as long as no failure is detected.

Figure 3 illustrates several steps of the algorithm. The initial sub-domain is
the input domain. The algorithm selects the first test case from the restricted
input domain (cf. Figure 3a). Thereafter, all sub-domains—at the moment, there
is only one—are bisected (cf. Figure 3b). The right sub-domain contains the
previously executed test case. For this reason, another test case is chosen from
the restricted left sub-domain. Then, both sub-domains are bisected again (cf.
Figure 3c). There are four sub-domains now, and the upper-left and the lower-
right sub-domain contain already executed test cases. One test case is, thus,
chosen in the restricted lower-left sub-domain and the other is chosen in the
restricted upper-right sub-domain. After further bisection (cf. Figure 3d) there
are eigth sub-domains, and four of them contain previously executed test cases.
An “empty” (i. e. without previously executed test cases) sub-domain is chosen
and Test Case 5 is generated within this restricted domain.

4 Simulation Study

The mean F-measure has to be determined to measure the performance of the
presented algorithm. However, this seems not to be straightforward—at least
theoretically. Therefore, the Monte Carlo method is applied to determine this
characteristic through simulation.

4.1 Preliminaries

Let X1, . . . , Xn be idependent and identically distributed random variables.
Xn := 1

n

∑n
1 Xi is the sample mean of the Xi. According to the central limit

theorem [18],

Xn − μ

σ/
√

n

is standard Gaussian distributed as n approaches infinity. It is also a good ap-
proximation for n ≥ 30 (a common rule of thumb). μ denotes the true mean
and σ2 the true variance of the Xi. Since usually μ and σ are unknown, they
are replaced by the sample mean Xn and the square root of the sample variance

256 J. Mayer

S2
n :=

1
n− 1

n∑
i=1

(Xi −Xn)2

as an approximation, respectively.
It follows that

|Xn − μ| ≤ σ√
n
· Φ−1

(
2− α

2

)

on confidence level 1 − α and for n ≥ 30, where Φ−1(·) denotes the inverse
standard Gaussian distribution function. Furthermore, σ can be approximated
by Sn. Therefore, it is possible to determine the accuracy of an estimation Xn

on confidence level 1− α.

4.2 The Simulation Design

For the simulations, the sample size n was chosen 50000, i. e. the algorithm
was run with 50000 randomly chosen failure patterns. The confidence level 1−
α was chosen 0.99. In a table for the Gaussian distribution one can look up
Φ−1(0.995) ≈ 2.58. Therefore,

|Xn − μ| ≤ Sn√
50000

· 2.58 ≈ 0.01154 · Sn.

The failure pattern was randomly generated. The area θA of the failure pat-
tern was determined by the failure rate θ and the area A of the input domain.
For the block pattern, a square was chosen randomly, totally within the input
domain. For the strip pattern, two adjacent sides and two points on these sides
were chosen randomly. The strip was then constructed centered on the line con-
necting these points and its width was computed so that the strip had the desired
area θA. Points near the corners were rejected to avoid overly wide strips. For
the point pattern, 50 non-overlapping discs with equal radius lying totally within
the input domain where randomly generated to achieve the total area θA.

The first part of the simulations were to investigate the performance of the
presented ART algorithm and to find suitable values for the factor f . These
simulations were done for the following

– failure rates: 0.01, 0.005, 0.002, 0.001, 0.0005
– failure patterns: block, strip, and point
– factors f : 0.0, 0.05, 0.1, 0.15, 0.2, . . . , 0.45.

The second part of the simulations was performed in order to compare the
novel ART algorithm with related ART algorithms. The parameters of the vari-
ous ART methods were chosen as suggested in the respective publications: RRT
(R = 1.5), D-ART (k = 10), ART by Random Partitioning with Localization
and RRT (R = 0.4) resp. D-ART (k = 3), and ART by Bisection with Restric-
tion (f = 0.3). (The last parameter has been determined by the first part of the
simulations.) In this case, the above failure rates and patterns were also used
complemented by the point pattern with 10 discs.

Adaptive Random Testing by Bisection with Restriction 257

4.3 Results and Discussion

Tables 1–3 show the results of the first part of the simulations. Each table con-
tains the relative2 empirical mean F-measure for one particular failure pattern
and all factors f and all failure rates θ. The accuracy of the mean is also given

Table 1. The mean F-measure of ART by Bisection with Restriction related to the
theoretical mean F-measure of Random Testing for the block failure pattern

θ = 0.01 θ = 0.005 θ = 0.002 θ = 0.001 θ = 0.0005

f = 0 0.745
(±0.007)

0.741
(±0.007)

0.737
(±0.007)

0.741
(±0.007)

0.736
(±0.007)

f = 0.05 0.713
(±0.007)

0.711
(±0.007)

0.709
(±0.007)

0.714
(±0.007)

0.708
(±0.007)

f = 0.1 0.689
(±0.007)

0.691
(±0.007)

0.689
(±0.007)

0.697
(±0.007)

0.698
(±0.007)

f = 0.15 0.679
(±0.007)

0.672
(±0.007)

0.689
(±0.006)

0.688
(±0.007)

0.693
(±0.006)

f = 0.2 0.668
(±0.007)

0.670
(±0.006)

0.678
(±0.006)

0.678
(±0.007)

0.685
(±0.006)

f = 0.25 0.660
(±0.007)

0.662
(±0.006)

0.674
(±0.006)

0.674
(±0.006)

0.686
(±0.006)

f = 0.3 0.661
(±0.007)

0.662
(±0.006)

0.681
(±0.006)

0.674
(±0.006)

0.684
(±0.007)

f = 0.35 0.662
(±0.007)

0.669
(±0.007)

0.689
(±0.007)

0.687
(±0.007)

0.694
(±0.007)

f = 0.4 0.683
(±0.007)

0.686
(±0.007)

0.705
(±0.007)

0.693
(±0.007)

0.716
(±0.007)

f = 0.45 0.715
(±0.007)

0.711
(±0.007)

0.727
(±0.007)

0.709
(±0.007)

0.738
(±0.007)

on confidence level 99% below the mean. The minimum of each column is in
bold face.

The optimal factor f is between 0.25 and 0.3 for the block failure pattern,
between 0.3 and 0.4 for the strip failure pattern, and is not obvious for the point
failure pattern.

To determine the best choice for the factor f , a relative squared distance
criterion has been used as follows: For each failure pattern p, failure rate θ, and
factor f , the relative empirical mean F-measure is denoted Fp,θ,f . For fixed p
and θ, let Fmin

p,θ := minf{Fp,θ,f}. Then, the relative squared difference is

df,p :=
∑

θ

(
Fp,θ,f − Fp,θ

Fp,θ

)2

for one single failure pattern, and

df :=
∑

p

df,p

2 To the theoretical mean F-measure of pure Random Testing (with replacement).

258 J. Mayer

Table 2. The mean F-measure of ART by Bisection with Restriction related to the
theoretical mean F-measure of Random Testing for the strip failure pattern

θ = 0.01 θ = 0.005 θ = 0.002 θ = 0.001 θ = 0.0005

f = 0 0.922
(±0.010)

0.945
(±0.011)

0.963
(±0.011)

0.972
(±0.011)

0.984
(±0.011)

f = 0.05 0.915
(±0.010)

0.932
(±0.010)

0.958
(±0.011)

0.967
(±0.011)

0.982
(±0.011)

f = 0.1 0.905
(±0.010)

0.928
(±0.010)

0.955
(±0.011)

0.962
(±0.011)

0.975
(±0.011)

f = 0.15 0.901
(±0.010)

0.918
(±0.010)

0.953
(±0.011)

0.964
(±0.011)

0.975
(±0.011)

f = 0.2 0.889
(±0.010)

0.915
(±0.010)

0.944
(±0.011)

0.958
(±0.011)

0.977
(±0.011)

f = 0.25 0.894
(±0.010)

0.915
(±0.010)

0.945
(±0.011)

0.958
(±0.011)

0.968
(±0.011)

f = 0.3 0.889
(±0.010)

0.905
(±0.010)

0.942
(±0.011)

0.955
(±0.011)

0.970
(±0.011)

f = 0.35 0.889
(±0.010)

0.908
(±0.010)

0.936
(±0.010)

0.957
(±0.011)

0.968
(±0.011)

f = 0.4 0.887
(±0.009)

0.909
(±0.010)

0.953
(±0.011)

0.951
(±0.011)

0.968
(±0.011)

f = 0.45 0.885
(±0.010)

0.914
(±0.010)

0.948
(±0.011)

0.953
(±0.011)

0.972
(±0.011)

Table 3. The mean F-measure of ART by Bisection with Restriction related to the
theoretical mean F-measure of Random Testing for the point failure pattern with 50
discs

θ = 0.01 θ = 0.005 θ = 0.002 θ = 0.001 θ = 0.0005

f = 0 0.987
(±0.011)

0.990
(±0.011)

0.987
(±0.011)

0.985
(±0.011)

0.980
(±0.011)

f = 0.05 0.961
(±0.011)

0.960
(±0.011)

0.971
(±0.011)

0.981
(±0.011)

0.985
(±0.011)

f = 0.1 0.956
(±0.011)

0.957
(±0.011)

0.971
(±0.011)

0.975
(±0.011)

0.968
(±0.011)

f = 0.15 0.956
(±0.011)

0.959
(±0.011)

0.969
(±0.011)

0.970
(±0.011)

0.974
(±0.011)

f = 0.2 0.954
(±0.011)

0.963
(±0.011)

0.963
(±0.011)

0.971
(±0.011)

0.975
(±0.011)

f = 0.25 0.947
(±0.011)

0.966
(±0.011)

0.974
(±0.011)

0.980
(±0.011)

0.972
(±0.011)

f = 0.3 0.949
(±0.011)

0.956
(±0.011)

0.970
(±0.011)

0.972
(±0.011)

0.975
(±0.011)

f = 0.35 0.953
(±0.011)

0.959
(±0.011)

0.969
(±0.011)

0.973
(±0.011)

0.975
(±0.011)

f = 0.4 0.949
(±0.011)

0.963
(±0.011)

0.968
(±0.011)

0.971
(±0.011)

0.973
(±0.011)

f = 0.45 0.950
(±0.011)

0.961
(±0.011)

0.966
(±0.011)

0.965
(±0.011)

0.971
(±0.011)

Adaptive Random Testing by Bisection with Restriction 259

Table 4. Determination of the optimal factor f for ART by Bisection with Restriction
through the relative squared difference

block strip point sum

f = 0 0.05520 0.00532 0.00433 0.06485
f = 0.05 0.01924 0.00300 0.00089 0.02314
f = 0.1 0.00594 0.00175 0.00029 0.00798
f = 0.15 0.00214 0.00105 0.00019 0.00339
f = 0.2 0.00035 0.00035 0.00019 0.00089
f = 0.25 0.00001 0.00039 0.00051 0.00092
f = 0.3 0.00009 0.00008 0.00018 0.00036
f = 0.35 0.00121 0.00008 0.00022 0.00152
f = 0.4 0.00744 0.00035 0.00017 0.00797
f = 0.45 0.02742 0.00026 0.00007 0.02775

Table 5. The mean F-measure of the respective ART method related to the theoretical
mean F-measure of Random Testing for the block failure pattern

θ = 0.01 θ = 0.005 θ = 0.002 θ = 0.001 θ = 0.0005

RRT 0.648
(±0.005)

0.633
(±0.005)

0.612
(±0.005)

0.603
(±0.005)

0.595
(±0.005)

D-ART 0.673
(±0.006)

0.659
(±0.006)

0.650
(±0.006)

0.639
(±0.006)

0.635
(±0.006)

ART-RP 0.768
(±0.008)

0.777
(±0.008)

0.791
(±0.008)

0.795
(±0.008)

0.794
(±0.008)

ART-Bi. 0.735
(±0.007)

0.738
(±0.007)

0.734
(±0.007)

0.740
(±0.007)

0.734
(±0.007)

ART-RP Loc. RRT 0.681
(±0.006)

0.686
(±0.006)

0.690
(±0.007)

0.697
(±0.007)

0.698
(±0.007)

ART-RP Loc. D-ART 0.707
(±0.007)

0.713
(±0.007)

0.721
(±0.007)

0.725
(±0.007)

0.731
(±0.007)

ART-Bi. Res. 0.658
(±0.007)

0.663
(±0.006)

0.674
(±0.006)

0.679
(±0.007)

0.686
(±0.006)

for all failure patterns. The values of Fp,θ,f are given in Tables 1–3. The values of
df,p are given in the first three columns of Table 4. The fourth column contains
the values of df . The factor f = 0.3 has minimal squared difference df . Therefore,
this choice for f is optimal for ART by Bisection with Restriction.

For the optimal factor f = 0.3 the F-measure is between 0.661 and 0.684 for
the block failure pattern, between 0.889 and 0.97 for the strip failure pattern,
and between 0.949 and 0.975 for the point pattern (with 50 discs).

Tables 5–8 show the results of the second part of the simulation study—
the comparison of ART by Bisection with Restriction with other common ART
methods.

For the block failure pattern the relative mean F-measure is between 0.658
and 0.686 for the new ART method. This is close to the results for RRT and D-
ART if the failure rate is high. And otherwise the difference between the relative

260 J. Mayer

Table 6. The mean F-measure of the respective ART method related to the theoretical
mean F-measure of Random Testing for the strip failure pattern

θ = 0.01 θ = 0.005 θ = 0.002 θ = 0.001 θ = 0.0005

RRT 0.866
(±0.010)

0.910
(±0.010)

0.932
(±0.011)

0.943
(±0.011)

0.962
(±0.011)

D-ART 0.869
(±0.010)

0.903
(±0.010)

0.934
(±0.011)

0.958
(±0.011)

0.958
(±0.011)

ART-RP 0.950
(±0.010)

0.967
(±0.011)

0.968
(±0.011)

0.983
(±0.011)

0.992
(±0.011)

ART-Bi. 0.916
(±0.010)

0.943
(±0.011)

0.957
(±0.011)

0.969
(±0.011)

0.990
(±0.011)

ART-RP Loc. RRT 0.927
(±0.010)

0.937
(±0.010)

0.958
(±0.011)

0.969
(±0.011)

0.978
(±0.011)

ART-RP Loc. D-ART 0.922
(±0.010)

0.948
(±0.010)

0.967
(±0.011)

0.973
(±0.011)

0.979
(±0.011)

ART-Bi. Res. 0.885
(±0.009)

0.907
(±0.010)

0.937
(±0.010)

0.956
(±0.011)

0.965
(±0.011)

Table 7. The mean F-measure of the respective ART method related to the theoretical
mean F-measure of Random Testing for the point failure pattern with 10 discs

θ = 0.01 θ = 0.005 θ = 0.002 θ = 0.001 θ = 0.0005

RRT 0.975
(±0.010)

0.958
(±0.010)

0.942
(±0.010)

0.936
(±0.010)

0.924
(±0.010)

D-ART 0.960
(±0.010)

0.946
(±0.010)

0.929
(±0.010)

0.919
(±0.010)

0.926
(±0.010)

ART-RP 0.945
(±0.011)

0.948
(±0.011)

0.949
(±0.011)

0.953
(±0.011)

0.952
(±0.011)

ART-Bi. 0.934
(±0.010)

0.933
(±0.010)

0.931
(±0.010)

0.930
(±0.010)

0.932
(±0.010)

ART-RP Loc. RRT 0.926
(±0.010)

0.927
(±0.010)

0.926
(±0.010)

0.921
(±0.010)

0.929
(±0.010)

ART-RP Loc. D-ART 0.930
(±0.010)

0.929
(±0.010)

0.932
(±0.010)

0.936
(±0.010)

0.936
(±0.010)

ART-Bi. Res. 0.871
(±0.009)

0.881
(±0.010)

0.899
(±0.010)

0.900
(±0.010)

0.903
(±0.010)

mean F-measure of ART by Bisection and Restriction and RRT is at most 0.09.
However, for the fast ART methods (ART with Random Partitioning, short
ART-RP, ART by Bisection, short ART-Bi., ART with Random Partitioning and
Localization with RRT/D-ART), ART by Bisection and Restriction is optimal—
even better than ART with Random Partitioning and Localization with RRT,
that requires significantly more runtime.

The relative mean F-measure is between 0.885 and 0.965 for the presented
ART algorithm and the strip failure pattern. These values are quite close to
those of the RRT and D-ART methods. They are only worse by at most 0.02,
which is close to the accuracy (the sum of both accuracies). As for the block
failure pattern, ART by Bisection with Restriction is optimal among the fast

Adaptive Random Testing by Bisection with Restriction 261

Table 8. The mean F-measure of the respective ART method related to the theoretical
mean F-measure of Random Testing for the point failure pattern with 50 discs

θ = 0.01 θ = 0.005 θ = 0.002 θ = 0.001 θ = 0.0005

RRT 1.022
(±0.011)

1.003
(±0.011)

1.000
(±0.011)

0.995
(±0.011)

0.986
(±0.011)

D-ART 1.002
(±0.011)

1.006
(±0.011)

0.989
(±0.011)

0.986
(±0.011)

0.985
(±0.011)

ART-RP 0.979
(±0.011)

0.980
(±0.011)

0.982
(±0.011)

0.986
(±0.011)

0.992
(±0.011)

ART-Bi. 0.986
(±0.011)

0.986
(±0.011)

0.977
(±0.011)

0.977
(±0.011)

0.975
(±0.011)

ART-RP Loc. RRT 0.967
(±0.011)

0.972
(±0.011)

0.981
(±0.011)

0.987
(±0.011)

0.987
(±0.011)

ART-RP Loc. D-ART 0.984
(±0.011)

0.983
(±0.011)

0.985
(±0.011)

0.984
(±0.011)

0.989
(±0.011)

ART-Bi. Res. 0.948
(±0.011)

0.948
(±0.011)

0.968
(±0.011)

0.964
(±0.011)

0.970
(±0.011)

ART methods. The relative mean F-measure is by between 0.013 and 0.031
better than those for the other “fast” methods.

The results for the point pattern with 10 discs and with 50 discs are surpris-
ing: The proposed ART algorithm achieves the best relative mean F-measure
for both point patterns and all failure rates. For 10 discs, the relative mean F-
measure is between 0.871 and 0.903, which is an improvement of at least between
0.019 and 0.055 over the values for all the other ART methods. For 50 discs, the
relative mean F-measure is between 0.948 and 0.97, which is an improvement of
at least between 0.005 and 0.019 over the values for all the other ART methods.

The proposed ART method, thus, performs best (among all ART methods)
for the point pattern, and best (among all “fast” ART methods) for the block and
the strip pattern. Due to its computational efficiency, ART by Bisection with
Restriction is the best choice among the “fast” ART methods and altogether
a very good choice. The F-measure of RRT and D-ART is significantly better
than that of the proposed method in case of the block failure pattern. However,
the runtime of RRT and D-ART is at least quadratic in the number of test
cases generated, whereas it is linear for the presented algorithm. Therefore, the
proposed method is in each case a very good choice.

As the original method ART by Bisection, ART by Bisection with Restriction
retains important properties: It has properties of the Equal-Size-Equal-Number
and the Proportional Sampling strategies. Each sub-domain is of the same size,
and the same number of test cases is chosen from each sub-domain. Therefore,
ART by Bisection with Restriction has also at least the same probability of
detecting at least one failure, in addition to the smaller number of test cases
necessary to detect the first failure.

As with all Adaptive Random Testing methods, the proposed algorithm only
solves the generation of the test cases from bounded rectangular two-dimensional
input domains. This can, however easily be adapted to higher dimension. More
complex inputs need special treatment.

262 J. Mayer

As with all Random Testing methods, the proposed algorithm only shows a
method to generate test inputs. However, a test oracle, i. e. a program that eval-
uates the outputs and decides “pass” or “no pass”, is also required for efficient
test execution. This is the key problem in software testing and not covered by
the present paper.

5 Conclusion

Based on ART by Bisection, which iteratively bisects the input domain and
randomly selects test cases from all “empty” sub-domains, a novel ART method,
namely ART by Bisection with Restriction, has been presented. This algorithm
selects the test cases from restricted sub-domains. One of the advantages of the
new algorithm is its computational efficiency, besides its simplicity. A simulation
study has been performed to compute the mean F-measure, the mean number
of test cases necessary to detect the first failure. For the simulation study, all
common failure patterns (block, strip, and point) and a set of failure rates have
been used. In the first part of the simulation study, the optimal factor used for
the restriction has been determined. It turned out that it is optimal to have a
restriction by two times 30% of the width resp. the height of the sub-domains.
The second part of the simulation study compared the novel ART algorithm
with common ART methods. Surprisingly, the new method is best (among all
ART methods) for the point failure pattern, and best (among all “fast” ART
methods) for the block and the strip failure pattern. Taking the runtimes into
account, the proposed method is also a good alternative to RRT and D-ART for
the block failure pattern, since RRT and D-ART have at least quadratic runtime,
whereas the presented algorithm has linear runtime.

The comparison of the proposed method with other ART algorithms was
done with a simulation study using artificially simulated failure patterns. A
comparison using real programs with randomly seeded bugs would be desirable
to gain a more reliable and more practical performance comparison.

Acknowledgement

The author is grateful to T.Y. Chen for discussions and help regarding the
simulation of failure patterns.

References

1. Myers, G.J.: The Art of Software Testing. Wiley, New York (1979)
2. Agrawal, V.D.: When to use random testing. IEEE Transactions on Computers

27 (1978) 1054–1055
3. Duran, J.W., Ntafos, S.C.: An evaluation of random testing. IEEE Transactions

on Software Engineering 10 (1984) 438–444
4. Hamlet, R.: Random testing. In: Encylopedia of Software Engineering. Wiley

(1994) 970–978

Adaptive Random Testing by Bisection with Restriction 263

5. Loo, P.S., Tsai, W.K.: Random testing revisited. Information and Software Tech-
nology 30 (1988) 402–417

6. Schneck, P.B.: Comment on “when to use random testing”. IEEE Transactions on
Computers 28 (1979) 580–581

7. Frankl, P.G., Hamlet, R.G., Littlewood, B., Strigini, L.: Evaluating testing methods
by delivered reliability. IEEE Transactions on Software Engineering 24 (1998) 586–
601

8. Frankl, P.G., Hamlet, R.G., Littlewood, B., Strigini, L.: Correction to: Evaluating
testing methods by delivered reliability. IEEE Transactions on Software Engineer-
ing 25 (1999) 286

9. Weyuker, E.J., Jeng, B.: Analysing partition testing strategies. IEEE Transactions
on Software Engineering 17 (1991) 703–711

10. Chan, F.T., Chen, T.Y., Mak, I.K., Yu, Y.T.: Proportional sampling strategy:
Guidelines for software testing practitioners. Information and Software Technology
38 (1996) 775–782

11. Chen, T.Y., Yu, Y.T.: On the relationship between partition and random testing.
IEEE Transactions on Software Engineering 20 (1994) 977–980

12. Chen, T.Y., Tse, T.H., Yu, Y.T.: Proportional sampling strategy: A compendium
and some insights. The Journal of Systems and Software 58 (2001) 65–81

13. Hamlet, R.G., Taylor, R.: Partition testing does not inspire confidence. IEEE
Transactions on Software Engineering 16 (1990) 1402–1411

14. Chan, K.P., Chen, T.Y., Towey, D.: Restricted random testing. In Kontio, J.,
Conradi, R., eds.: Proceedings of the 7th European Conference on Software Quality
(ECSQ 2002). Volume 2349 of Lecture Notes in Computer Science., Springer (2002)
321–330

15. Chan, K.P., Chen, T.Y., Towey, D.: Normalized restricted random testing. In:
Proceedings of the 18th Ada-Europe International Conference on Reliable Software
Technologies. Volume 2655 of Lecture Notes in Computer Science., Springer (2003)
368–381

16. Chan, K.P., Chen, T.Y., Kuo, F.C., Towey, D.: A revisit of adaptive random testing
by restriction. In: Proceedings of the 28th International Computer Software and
Applications Conference (COMPSAC 2004), IEEE Computer Society (2004) 78–85

17. Chen, T.Y., Eddy, G., Merkel, R., Wong, P.K.: Adaptive random testing through
dynamic partitioning. In: Proceedings of the 4th International Conference on Qual-
ity Software (QSIC 2004), IEEE Computer Society (2004) 79–86

18. Casella, G., Berger, R.L.: Statistical Inference. Wadsworth Group, Duxbury, CA,
USA (2002)

Testing Real-Time Multi Input-Output Systems

Laura Brandán Briones and Ed Brinksma

Faculty of Computer Science, University of Twente,
P.O.Box 217, 7500AE Enschede, The Netherlands

{brandanl, brinksma}@cs.utwente.nl

Abstract. In formal testing, the assumption of input enabling is typi-
cally made. This assumption requires all inputs to be enabled anytime. In
addition, the useful concept of quiescence is sometimes applied. Briefly,
a system is in a quiescent state when it cannot produce outputs.

In this paper, we relax the input enabling assumption, and allow some
input sets to be enabled while others remain disabled. Moreover, we also
relax the general bound M used in timed systems to detect quiescence,
and allow different bounds for different sets of outputs.

By considering the tiocoM theory, an enriched theory for timed test-
ing with repetitive quiescence, and allowing the partition of input sets
and output sets, we introduce the mtiocoM relation. A test derivation
procedure which is nondeterministic and parameterized is further devel-
oped, and shown to be sound and complete wrt mtiocoM.

1 Introduction

Testing is the dominating validation activity in industry today. The necessity to
improve it is urgent. The formal approach to testing and test generation, which
aims to automatically generate test cases from models of the system under test
(SUT), provides a structured way to improve and control the quality of testing.

Formal testing theory was introduced by De Nicola and Hennessy in their
seminal paper [17], further elaborated in [16,9]. The first attempts to use De
Nicola-Hennessy testing theory for finding algorithms to derive tests automati-
cally from formal specifications were made by Brinksma in [3,4]. Tretmans [19]
studied test generation for I/O transition systems. Building on this work, Heerink
[8] extended the theory to deal with multiple channels, providing a more realistic
scenario. These two approaches, depicted on Figure 1 (left) do not consider time
in their models (i.e. are untimed). Recently, Tretmans’ theory was extended to
the timed setting by the authors [5], as shown in Figure 1 (top right).

It seems natural to ask whether a timed testing theory can also be extended
to deal with multiple channels, thus completing Figure 1 (bottom right). In this
paper we answer this question affirmatively, and we extend our theory [5] to
account for multiple channels.

In black box, or functional, testing the model specifies the intended commu-
nication between the system and its environment, typically in terms of inputs
(or stimuli) and outputs (or responses). In addition, the assumption of input
enabling is commonly required. This assumption requests all inputs to a SUT

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 264–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Testing Real-Time Multi Input-Output Systems 265

�

�

I/O

�

Time

I/O

�I/O

Channels
??

Fig. 1. Relation between test generation approaches

to be allowed at any time. A test case, then, provides inputs to the SUT and
observes outputs from it. When it is not possible to recognize differences in the
observable behaviour of two systems, it is concluded the systems are equal, i.e.
a system is defined by its observable behaviour. In other words, the richer the
observable behaviour is, the richer the distinguishing power of the test is. One
way to improve this observable behaviour is by using the concept of quiescence.
Briefly, a system is in a quiescent state when it cannot produce outputs without
further inputs.

In [5] a real-time testing theory is formulated for quiescent time systems,
which is parameterized by a bound M that is the explicit representation of the
time a system should idle until quiescence can be concluded. Treating quiescence
as a special sort of system output provides us with information to differentiate
systems that have intuitively different deadlocking properties (cf. [5,12,19]).

In this paper we introduce the model of timed multi input-output transition
systems TMIOTS. They model timed systems that communicate with the en-
vironment via multiple input and output channels. This allows us to consider
input enabling and quiescence properties not only for an entire system but also
on a per channel basis, thus relaxing global system assumptions.

Formally, channels are represented as a partitioning of the sets of input and
output actions, each partition class defining the inputs (outputs) belonging to
an individual input (output) channel. Following the ideas of Heerink [8] for the
untimed case, we replace input enabledness by the requirement that for each
input channel either all inputs are allowed, or they are all blocked. Often, this
requirement is quite natural: a cash machine with a PIN card inserted would
not accept the insertion of another card in the same slot.

In a similar way, we relax the treatment of quiescence by replacing the global
bound M of tiocoM , by a vector of bounds M = 〈M1, · · · , Mn〉 for the different
output channels. In tiocoM the global bound M is a parameter which inform
for how long a system should wait before conclude quiescent. Relaxing the global
bound M for a vector of bounds means that we will not have to wait for the
slowest response time to conclude the quiescence of a faster channel.

The combination of these ideas is formalized as the mtiocoM conformance
relation. We develop a test derivation procedure for mtiocoM, which is shown to
be sound and complete. Therefore, our work can be seen as a real-time extension
of Heerink’s mioco theory, which introduced the channel-based treatment of
input enabling/blocking and quiescence in the untimed setting.

266 L. Brandán Briones and E. Brinksma

Organization of the Paper. The paper consists of two main parts: Models
and Relations (Section 2) and Test Generation Framework (Section 3). In the
first part, starting from a simple model and a simple conformance relation we
build in three steps (Subsections: 2.1, 2.2 and 2.3) an extended model and its
conformance relation mtiocoM. In the second part, we develop a parameterized
nondeterministic test derivation procedure and prove that the set of test are
sound and complete with respect to the mtiocoM relation. Finally, Section 4
presents the conclusions of the paper. To save space we omitted the proof of
lemmas and theorems in this paper, but they can be found in the extended
version of this paper [6].

2 Models and Relations

This section presents three related models, and a conformance relation is for-
mulated for each of them. First, we introduce timed transition systems and the
tmior relation. Later on, the timed transition relation is extended with qui-
escence and refusals and a parameterized relation is defined: mtiorf relation.
Finally, the concept of observed outputs set is introduced and the mtiocoM re-
lation is given. Throughout, a model of a cash machine is used as a running
example.

2.1 A Basic Model and Relation
Basically, a timed labelled transition system is a labelled transition system ex-
tended with time delay transitions. This leads to three types of actions: time-
passage actions, visible actions and the special internal action τ . All except the
time-passage actions are thought of as occurring instantaneously, i.e. without
consuming time. To specify time, a continuous dense time domain is used.

Definition 1. A Timed Labelled Transition System (TLTS) is a 4-tuple
〈S, s0, LτT ,→〉, where

• S is a non-empty set of states. With s0 ∈ S as the initial state.
• LτT � L∪{τ}∪T are the actions L including the internal action τ and time-

passage actions. Where τ �∈ L and T � {d | d ∈ IR≥0} with L ∪ {τ} ∪ T = ∅
• → ⊆ (S × LτT × S) is the timed transition relation with the following con-

sistency constraints: ∀ d, d1, d2 ∈ T ; ∀ s, s′, s′′ ∈ S

− Time Determinism whenever s
d−→ s′ and s

d−→ s′′ then s′ = s′′

− Time Additivity (∃ s′ : s
d1−→ s′

d2−→ s′′) if and only if s
d1+d2−→ s′′

− Null Delay s
0−→ s′ if and only if s = s′.

The labels in LT (LT � L∪T) represent the observable actions of a system,
i.e. labelled actions and passage of time. The τ label represents an unobservable
internal action. A transition (s, μ, s′) ∈ → is denoted as s

μ→ s′. A computation
is a finite or infinite sequence of transitions:

s0
μ1→ s1

μ2→ s2
μ3→ · · · μn−1→ sn−1

μn→ sn(→ . . .)
When a timed labelled transition system has the set of actions partitioned

into input and output actions is called a timed input-output transition system,

Testing Real-Time Multi Input-Output Systems 267

denoted as TIOTS(LI , LU) where LI represents the set of inputs and LU the set
of outputs.

Our framework is based on timed transitions systems even though all exam-
ples we present are given as timed automata. In comparison, a timed automata
have less expressiveness than a timed transition systems but they have a more
compact representation. The relation between a timed automata and its corre-
sponding semantics in terms of timed transition system can be found in [18].

Example 1. Our example is an adapted version of the cash machine in [8]. Fig-
ure 2 is the representation of a cash machine where a card can be inserted and for
a limited period of time a PIN can be typed in. After the machine has decided if
the PIN was correct, an amount of money can be requested. In case the machine
has sufficient money, it will return the card and then give the requested money.
If there is not enough money it will produce an error and return the card. In
case the PIN or the amount of money are to late the machine return the card.

Throughout the paper we denote an input as a label followed with a ?-symbol
and an output with a !- symbol. The example shows a system where there are in-
puts, outputs and real-time constraints. In terms of Definition 1 the cash machine
is specified as a TIOTS(LI , LU) where 〈S, s0, LτT ,→〉, with S = {q0, · · · , q11},
s0 = q0, LI = {card?, P IN?, amount?} and LU = {card!, amount!, Ok!,
Err−P !, Err−a!}.

��q0

�
card?
x :=0�q1

�card!

�q2

�
PIN?
x≤5
x :=0

�card!
x >5 �q3

� amount!

�q4

�
Err-P!
� �x≤5�

τ
x≤5

�
τ

x≤5 �q6

�
Ok!

x :=0 �q7

�
amount?

x≤5
x :=0

�

card!
x >5

�q8

�

card!

�q9

�Err-a!

� �x≤5�
τ

x≤5

�
τ

x≤5

�q11

�
Ok!

Fig. 2. A cash machine, a modified version of [8]

To explicitly encode the inability for a state to perform any action in a set A
or any internal action τ , we extend the timed transition relation with self-loop
transitions: s

A→ s, in case A is a refusal of s

s
A→ s′ � ∀ μ ∈ (A ∪ {τ}) : s

μ

�→ ∧ s = s′.
We use the well-known notation: p

σ⇒ to denote that there exists a reachable
state q from p by performing σ while abstracting from the internal actions. In
the rest of the paper, we do not always distinguish between p a TLTS and its
initial state s0, e.g. we write p

σ⇒ instead of s0
σ⇒.

268 L. Brandán Briones and E. Brinksma

Definition 2. Let p be an TLTS(L), with P a set of states in p, then
f-ttraces(p) = {σ ∈ (P(L) ∪ LT)∗ | p

σ⇒}, P(L) denotes the power set of L
ttraces(p) = f-ttraces(p) ∩ L∗

T
init(p) = {μ ∈ LτT | ∃ p′ : p

μ→ p′}
der(p) = {p′ | ∃ σ ∈ L∗

T : p
σ⇒ p′}

P after σ = {p′ | ∃ p ∈ P : p
σ⇒ p′}

p is deterministic if and only if ∀ σ ∈ L∗
T : |{p} after σ| ≤ 1.

As expected, a timed trace (ttrace) is a standard trace extended with time.
A failure ttrace (f-ttrace) is a ttrace extended with sets of actions that can not
be performed, in other words actions that are refused. The init is the set of all
possible actions from a given state, the der is the set of all reachable states from
a given state, and the after is the set of all states reachable after a given ttrace.
We call a system deterministic if for all ttrace’s it has at most one reachable
state.

In Figure 2 we can observe that the init(q0) = {card?}, the der(q0) is the
set of all states {q1, · · · , q11} and ({q11, q9} after Ok!) = {q8}. Moreover, we can
recognize the cash machine is not deterministic.

As we already anticipated in the introduction, the novelty of this paper is to
consider real-time transition systems where the input set and output set are par-
titioned into subsets, called channels. More precisely, a TIOTS(LI ,LU) is a timed
input-output transition system TIOTS(LI , LU) where the set of inputs and out-
puts are partitioned into channels LI = {L1

I , · · · , Ln
I } and LU = {L1

U , · · · , Lm
U }.

The partition in channels gives us the possibility to introduce the first relation
: tmior (Definition 3). This relation refers to the inclusion of f-ttraces where the
refusals can only be full channels.

Definition 3. Let p and q be TIOTS(LI ,LU), then
q "tmior p � f-ttraces(q) ∩ (LT ∪ LI ∪ LU)∗ ⊆ f-ttraces(p).

2.2 An Extended Model and Relation

The tmior relation, from Section 2.1 induced us to define an extension of TIOTS
where the input and output sets are subdivides in channels. Then, a timed multi
input-output transition system (TMIOTS(LI ,LU)) is a TIOTS(LI , LU) where,
in each reachable state each input channel is either blocked or all inputs of that
channel are accepted (input enabling for particular channels). More formally:

Definition 4. For LI = {L1
I , · · · , Ln

I } and LU = {L1
U , · · · , Lm

U } a Timed Multi
Input-Output Transition System p TMIOTS(LI ,LU) is a TIOTS with LI =
∪

1≤i≤n
Li

I and LU = ∪
1≤j≤m

Lj
U , where

∀ s ∈ der(p) : (∀ μ ∈ Li
I : s

μ

�→) ∨ (∀ μ ∈ Li
I : s

μ→)
Moreover, whenever a channel Li

I is blocked in state s, it is denoted γi(s).

Example 2. It is possible to see the cash machine of Figure 2 as a TMIOTS
(LI ,LU) 〈S, s0, LτT ,→〉, where S = {q0, · · · , q11}, s0 = q0, LI = {L1

I , L
2
I} and

Testing Real-Time Multi Input-Output Systems 269

LU = {L1
U , L2

U , L3
U} with L1

I = {card?}, L2
I = {PIN?, amount?} and L1

U =
{card!}, L2

U = {amount!}, L3
U = {Ok!, Err−P !, Err−a!}. With the corresponding

saturation for each channel (i.e. every state with an outgoing transition labeled
by input from a channel, is assumed, to have the rest of the inputs from that
channel as self-loop transitions. Even when this might not be explicit).

Since the definition of TMIOTS(LI ,LU) implies input enabling or no input at
all for each channel, we use it only when the input enabling property is necessary.
Otherwise, we use the more general notation TIOTS(LI ,LU), implying TIOTS
with the input and output sets partitioned in channels.

The notion of quiescence is crucial, since some systems can only be distin-
guished by their quiescent states. Intuitively, the underlying idea is that the
environment may observe not only output actions, but also the absence of out-
put actions (i.e. in a given state, the system does not emit any output for the
environment to observe).

There are two possible ways to deal with quiescence. First, we may consider
the situation in which the environment can only observe one channel. In this case,
it is not relevant for the notion of quiescence whether the remaining channels stay
silent or not. Second, we may consider the environment to be able to observe all
possible channels. In this case, to conclude quiescence in one particular channel
Lj

U must imply that the remaining channels stay silent for at least the period of
time Lj

U stayed silent. We adopt the latter direction, assuming an environment
which can observe simultaneously all channels. This choice fits well with the
testing framework of [5], where tests synchronize on all output actions. Partial
observations of system output can be dealt with by considering modified SUTs
where the unobservable channels have become internal actions to the system.

Definition 5. Let p be a TIOTS(LI ,LU) with s an state of p is called Lj
U -

quiescent, denoted δj(s), if and only if ∀ μ ∈ Lj
U : ∀ d ∈ IR+ : s

μ(d)

�⇒ . Where s
d⇒

is used as the syntactic sugar for ∃ s′ : s
d⇒ s′

μ⇒, and s
μ(d)

�⇒ its corresponding
negation.

We would like to point out that in the non-timed framework, the quiescence
definition uses a single arrow notation →, namely without abstracting from τ
transitions. In the timed case this is not possible. For example, take the definition
above with a single arrow, and the following system, with o! ∈ Lj

U : s
d→ s′

τ→
s′′

d′
→ s′′′

o!→. Then, with the new definition the state s is quiescent because is
not possible to reach from s′′ from s with a single arrow. Consequently, in timed
systems it is essential that the definition of quiescent have double arrow.

With the definition of Lj
U -quiescence, we extend the timed transition relation

to include self-loop transitions for refusals and quiescence. Therefore, s
γi

→ s if

and only if s refuses Li
I , and s

δj

→ s if and only if s is Lj
U -quiescent. We denote

p a TIOTS(LI ,LU) with the extended timed transition relation for refusals and
quiescence as Δ(p). A consequence of this extension is: f-ttraces(p)∩ (LT ∪LI ∪

270 L. Brandán Briones and E. Brinksma

LU)∗ = ttraces(Δ(p)). Therefore, using this notation we can re-write the tmior
relation as: q "tmior p if and only if: ttraces(Δ(q)) ⊆ ttraces(Δ(p)).

Example 3. Figure 3 illustrates the cash machine with the extended timed tran-
sition relation with refusals(γi) and quiescence(δj). To avoid too much detail, it
is assumed that in each state without a self-loop for refusal of an input channel,
all the absent inputs of that channel have self-loop transitions in that state.

��q0

�

card?
x :=0

"" 0
γ2δ1δ2δ3

�q1

�card!

//
--.

γ1
γ2

δ2
δ3

�q2

�

PIN?
x≤5
x :=0

�card!
x >5

//
--.

γ1

δ2
δ3

�q3

� amount!

//
--.

γ2

δ1

δ3

�q4

�
Err-P!

--
//1

γ1

δ1

δ2

� �x≤5�
τ

x≤5

�
τ

x≤5
 ""#
γ1

δ1δ2

�q6

�

Ok!
x :=0

//
--.

γ1

δ1

δ2

�q7

�

amount?
x≤5
x :=0

�

card!
x >5

--
//1

γ1

δ2

δ3

�q8

�

card!

//
--.

γ1

γ2

δ2

δ3

�q9

�Err-a!

 ""#
γ1γ2δ1δ2

� �x≤5�
τ

x≤5

�
τ

x≤5
 ""#

γ1γ2δ1δ2

�q11

�
Ok!

//
--.

γ1

γ2

δ1
δ2

L1
I = {card?} ⇒ γ1

L2
I = {PIN?, amount?} ⇒ γ2

L1
U = {card!} ⇒ δ1

L2
U = {amount!} ⇒ δ2

L3
U = {Ok!, Err-P!, Err-a!} ⇒ δ3

Fig. 3. A cash machine, a modified version of [8]

An immediate problem, in black box testing, is how to detect quiescence in
implementations. Given that a quiescent state in an implementation is only rec-
ognizable after a period of time where there was no output observations, it is
necessary to fix for how long a test should be waiting before concluding quies-
cence. Therefore, we define three properties. First, we define what it means for
a state to be quiescent with respect to a channel and a particular time bound.
Intuitively, for a state to be quiescent on a channel wrt a particular bound means
that all reachable states after delaying by the given bound are quiescent on that
particular channel. More precisely, a state of a system is Mj-quiescent, for an
output channel j, if and only if all reachable states from that state after Mj are
quiescent. Second, the definition is extended to all state in the system. Third,
the definition is extended to include all output channels.

Definition 6. Let p be a TIOTS(LI ,LU) with S as its states, s ∈ S and M an
ordered set of bounds M = 〈M1, · · · , Mm〉 : ∀ 1 ≤ j ≤ m : Mj ∈ IR≥0, then

• s is Mj-quiescent if and only if ∀ s′ ∈ (s after Mj) : s′ ∈ Lj
U -quiescent

• p is Mj-quiescent if and only if ∀ s ∈ S :Mj-quiescent(s)
• p is M-quiescent if and only if ∀ 1 ≤ j ≤ m : Mj-quiescent(q).

Testing Real-Time Multi Input-Output Systems 271

An interpretation of this definition is that for a tester to check for quiescence
in channel j, it is enough with wait a period of time equal to Mj , without
observing outputs. There are two important principles involved in this definition.
We are spending different times for detecting quiescence for different channels.
Moreover, we assume that after delaying by the corresponding bound of a channel
there will not be any spontaneous output on that channel.

Lemma 1. If a system p ∈TIOTS(LI ,LU) is Mj-quiescent with S as its states

and s ∈ S, then: δj(s) � ∀ μ ∈ Lj
U : ∀ d ∈ IR≥0 : d ≤Mj : s

μ(d)

�⇒ .

Corollary 1. Let p ∈ TIOTS(LI ,LU) be M-quiescent with S as its states,
s ∈ S, and M = 〈M1, · · · , Mm〉, then

∀ j = 1, · · · , m : (δj(s)⇔ (∀ μ ∈ Lj
U : ∀ d ∈ IR≥0 : d ≤Mj : s

μ(d)

�⇒)).

Considering the cash machine in Figure 3 for M = 〈M1, M2, M3〉 with M1 =
6, M2 = 6 and M3 = 6 we can recognize that state q0 is M1-quiescent.

Since in an implementation we can detect quiescence only with the obser-
vation of absence of outputs for a period of time, and using the property of
M-quiescence for a system, we define the mtiorf relation, parameteraized by
M. In the traces considered in mtiorf a δj can only occur after Mj timed units.

Definition 7. Let p be a TIOTS(LI ,LU) and q be a M-quiescent TMIOTS
(LI ,LU), then

q "M
mtiorf p if and only if ΔM(q) ⊆ ΔM(p)

where for r ∈ TIOTS(LI ,LU), with ε as the empty word:
ΔM(r) � ttraces(Δ(r)) ∩

⋃
i

⋃
j

(((T ∪ {ε}) · (L ∪ γi)) ∪Mj · δj)∗.

2.3 The Relation: mtiocoM

Up to now, we considered relations built up from information based on knowledge
of the behaviour of both specifications and implementations. A relation that uses
information from the behaviour of only the specification is more desirable in the
context of black box testing, which is our main goal in the present paper. To
this end, we now define the observed output set, which condenses the whole
information as perceived by the environment, and a more practical notation in
the form of nttraces.

Similarly to the definition of nttraces for tiocoM theory in [5], we present
the normalized ttraces for TMIOTS.

Definition 8. Let p be M-quiescent and σ be a ttraces in Δ(p), then

• σ is a normalized ttrace if and only if σ ∈ ∪
i
∪
j

(T ·(L ∪ γi ∪ δj))∗

• nttraces(p) = {σ ∈ ∪
i
∪
j

(T ·(L ∪ γi ∪ δj))∗ | p
σ⇒}

• for nttraces σ = d0δ
1d1γ

1d2a! we also write σ̂ = δ1(d0)γ1(d1)a!(d2).

272 L. Brandán Briones and E. Brinksma

Moreover, the definition of nttraces already assumes that TIOTS(LI ,LU)
systems have the timed transition relation extended, implying

nttraces(Δ(r)) = nttraces(r).
An example of an nttrace in the cash machine is:

card?(3)PIN?(2)Err−P !(5)γ1(6)card!(0).
For consistency, we need to prove that with this new notation we are not

losing expressiveness, as it is crucial to have that the inclusion of nttraces for
two systems is equal to the inclusion of ttraces for the corresponding extended
systems. This result is given in the following lemma.

Lemma 2. Let p1, p2 ∈ TIOTS(LI ,LU), then
ttraces(Δ(p1)) ⊆ ttraces(Δ(p2)) if and only if nttraces(p1) ⊆ nttraces(p2).

The observed output set of a given set of states P , denoted obsOutM(P), is
defined as the union of two sets: the set of output actions enriched with quiescent,
denoted obsOutoM, and the set of refusals, denoted obsOutrM. Hence, obsOutoM
is the set of outputs that could happen after a period of time plus the special
symbol δj(Mj) expressing quiescence on output channel j in case a reachable
state after Mj is quiescent on channel j. And, the set obsOutrM is the set of
refusals γi(d) for each input channel i that is refused after d timed units.

Definition 9. Let P be a set of states of a TIOTS(LI ,LU) with timed transition
relation extended, then:
obsOutM(P) = ∪

p∈P
obsOutoM(p)

⋃
∪

p∈P
obsOutrM(p)

where: obsOutoM(p) = {μ(d) | μ ∈ LU ∧ p
μ(d)⇒ } ∪ ∪

j
{δj(Mj) | p

δj(Mj)⇒ }

obsOutrM(p) = ∪
i
{γi(d) | ∀ μ ∈ Li

I : p
μ(d)

�⇒ }
A immediate and useful consequence of this definition is that a system has an
nttrace if and only if the observed output set, obsOutM, of the system after that
nttrace is not empty.

Lemma 3. Let p ∈ TIOTS(LI ,LU) and σ ∈ nttraces, then
obsOutM(p after σ) = ∅ if and only if σ �∈ nttraces(p).

We also prove that the parameterized mtiorf relation is equal to checking
the inclusion of observed output set for all nttraces that only have δj after Mj

timed units.

Lemma 4. Let p be TIOTS(LI ,LU) and q be M-quiescent TMIOTS(LI ,LU),
then q "M

tmiorf p if and only if ∀ σ ∈ ΔM :

obsOutM(q after σ) ⊆ obsOutM(p after σ).

Finally, we are in position to define the mtiocoM relation, based solely
on information from the observed output set and the specification. Particularly,
without any internal knowledge of the implementation, which complies with the
requirement of black box testing.

Testing Real-Time Multi Input-Output Systems 273

For p a specification in TIOTS(LI ,LU) and q an implementation in TMIOTS
(LI ,LU): q will be mtiocoM to p if and only if the observed output set of q,
after every nttrace of p is a subset of the observed output set of p after the same
nttrace.

Definition 10. Let p be a TIOTS(LI ,LU) and q be M-quiescent TMIOTS
(LI ,LU), then:
q mtiocoM p � ∀ σ∈ΔM(p) : obsOutM(q after σ) ⊆ obsOutM(p after σ).

The mtiocoM relation is a parameterized timed relation that consider qui-
escent for each particular channel. Moreover, in the next section, we use this
relation to build our test derivation framework over TMIOTS(LI ,LU).

3 Test Generation Framework

In this section we define the concept of real-time test cases, the nature of their
execution, and the evaluation of their success or failure. Later, a test generation
procedure is presented for mtiocoM relation. Moreover, it is shown that this
procedure is sound and complete.

A test case t is a TIOTS(LI ,LU)〈S, s0, LT ∪ {δ},→〉 such that is determin-
istic and has bounded behaviour, in the sense that all computations have finitely
many action occurrences and its accumulative time is bounded. The set of states
also contains the terminal states pass and fail without outgoing transitions. For
any state different from pass and fail there exists a bounded time to observe
quiescence or to be able to make an input action. Moreover, tests under consid-
eration are deterministic and therefore τ -transitions are not allowed. The class
of test cases over LI and LU is denoted as TTEST (LI,LU). A test suite T is a
set of test cases: T ⊆ TTEST (LI,LU). Again, to simplify notation we represent
tests as timed automata.

A test run of an implementation with a test case is modelled by the syn-
chronous parallel execution of the test case together with the implementation
under test. This run continues until no more interactions are possible, i.e. until
a deadlock occurs.

Definition 11. Let t be a test in TTEST (LI,LU) and imp be a M-quiescent
implementation in TMIOTS(LI ,LU), then

• Running a test case t with an implementation imp is modelled by the parallel
operator || : TTEST (LI,LU)×TMIOTS(LI ,LU) → TIOTS(LI ,LU) which
is defined by the following inference rules:

imp
τ→ imp′ * t||imp

τ−→ t||imp′

t δj

→ t′ * t||imp
δj

−→ t′||imp

t
γi

→ t′, imp
μ

�−→ imp′, μ ∈ Li
I * t||imp

γi

−→ t′||imp

t
μ−→ t′, imp

μ−→ imp′, μ ∈ L * t||imp
μ−→ t′||imp′

t d−→ t′, imp
d−→ imp′, d ∈ IR≥0 * t||imp

d−→ t′||imp′

274 L. Brandán Briones and E. Brinksma

• A test run of t with an implementation imp, is a σ in ΔM (t||imp) leading
to a terminal state of t. Then, an implementation imp passes test case t, if
all their test runs lead to the pass state of t. Moreover, an implementation
imp passes a test suite T, if it passes all test cases in T. And finally, if
imp does not pass the test suite, it fails.

test run of t and imp � ∃ imp′ : (t||imp
σ⇒ pass||imp′) or

(t||imp
σ⇒ fail||imp′)

imp passes t � ∀ σ ∈ ΔM : ∀ imp′ : t||imp
σ

�⇒ fail||imp′

imp passes T � ∀ t ∈ T : imp passes t
imp fails T � ∃ t ∈ T : imp pa�sses t.

If an implementation can behave nondeterministically, then different test
runs of the same test case may lead to different terminal states with different
verdicts. This implies that an implementation passes a test case if an only if all
possible test runs lead to the verdict pass.

For the description of test cases we use a process algebraic behavioural no-
tation with a syntax inspired by LOTOS [10]:

B � a; B | B + B | Σ B
where a ∈ LT γδ (LT γδ � LT ∪{γi | 1≤ i≤n}∪{δj | 1≤j≤m}), B is a countable
set of behaviour expressions, and axioms plus inference rules are:

a ∈ L * a; B a→ B′

a = d, d′ < d * d; B d′
−→ d− d′; B

a = d * B
d−→ B′

B1
μ→ B′

1, μ ∈ LT γδ * B1 + B2
μ→ B′

1

B2
μ→ B′

2, μ ∈ LT γδ * B1 + B2
μ→ B′

2

B
μ→ B′, B ∈ B, μ ∈ LT γδ * Σ B μ→ B′

Here, we use μ(d) as syntactic sugar for d; μ, following Definition 8.

3.1 Test Case Generation Procedure

We define a procedure to generate test cases from a given specification in TIOTS
(LI ,LU). Similar to [19,5] test cases result from the nondeterministic, recursive
application of three test generation steps: (1) termination, (2) inputs (including
refusals), and (3) waiting for outputs (including quiescence).

The construction steps involve negations of predicates of the form: o(d) ∈
obsOutM(S) or γi(d) ∈ obsOutM(S); which on the general level of TMIOTS are
undecidable. Then, the procedure given here, should be seen as a meta-algorithm
that can be used to generate tests effectively for subclasses of TMIOTS for
which these predicates are decidable, such as timed automata [11,13] with sub
partitioning of the input and output sets.

Testing Real-Time Multi Input-Output Systems 275

1. termination
22�� pass

2. inputs
choose k ∈ [0, Max{M1, · · · , Mm})
and μ ∈ LI 22�x := 0

��
��

x ≤ k

/////////�

o1!

x=d1

�

"
"t1

�
�

�
���

on!

x=dn�

"
"tn

�oj(dj) ∈ obsOutM(S)

· · ·

3
3
3
3
3
33�

μ

x=k�

"
"tμ

�

γi

x=k�

"
"tγi

"
"
"
""�

δu

x=Mu�
fail

�ol(dl) /∈ obsOutM(S)

· · · · · ·

&
&
&
&&�

o1!

x=d1�
fail

---------�

o
n′ !

x=d
n′

�
fail

3. waiting for outputs
choose j

22�x := 0

��
��
x ≤Mj

/////////�

o1!

x=d1

�

"
"t1

�
�

�
���

on!

x = dn�

"
"tn

�oj(dj) ∈ obsOutM(S)

· · ·

3
3
3
3
3
33�

δj

x=Mj�

"
"tδj

"
"
"
""�

δu

x=Mu �
fail

�ol(dl) /∈ obsOutM(S)

· · · · · ·

&
&
&
&&�

o1!

x=d1�
fail

---------�

o
n′ !

x=d
n′

�
fail

1. termination
t := pass

It is possible to stop the recursion at any time using this step.
2. inputs

t := Σ{oj(dj); tj | oj ∈ LU ∧ dj < k ∧ oj(dj) ∈ obsOutM(S)}
+ {μ(k); tμ | μ ∈ Li

I ∧ ∃ s ∈ S : γi(k) �∈ obsOutM(s)}
+ {μ(k); fail | μ ∈ Li

I ∧ ∀ s ∈ S : γi(k) ∈ obsOutM(s)}
+ {γi(k); fail | μ ∈ Li

I ∧ γi(k) �∈ obsOutM(S)}
+ {γi(k); tγi | μ ∈ Li

I ∧ γi(k) ∈ obsOutM(S)}
+ Σ{δu(Mu); fail | Mu ∈ M∧Mu < k ∧ δu(Mu) /∈ obsOutM(S)}
+ Σ{ol(dl); fail | ol ∈ LU ∧ ol(dl) /∈ obsOutM(S)}

where x is a clock, k is a timed variable and tj , tμ and tγi are obtained by
recursively applying the algorithm to (S after oj(dj)), (S after μ(k)) and
(S after γi(k)), respectively.

3. waiting for outputs

t := Σ{oj(dj); tj | oj ∈ LU ∧ oj(dj) ∈ obsOutM(S)}
+ Σ{δj(Mj); tδj | δj ∈ obsOutM(S after Mj)}
+ Σ{δj(Mj); fail | δj /∈ obsOutM(S after Mj)}
+ Σ{δu(Mu); fail | Mu ∈ M∧MU <Mj ∧ δu(Mu) /∈ obsOutM(S)}
+ Σ{ol(dl); fail | ol ∈ LU ∧ ol(dl) /∈ obsOutM(S)}

276 L. Brandán Briones and E. Brinksma

where x is a clock and tj and tδj are obtained by recursively applying the
algorithm for (S after oj(dj)) and (S after δj(Mj)), respectively.

Note 1. Case 2: inputs and case 3: waiting for outputs are overlapping. If in a
derivation of the input case test there exists an arrow for a δu, then it is clear
that the test will never succeed to make the input or check for γi. This knowledge
could be used, once it is known that an arrow for δu exists for the inputs case,
the test could be forced to choose the waiting for outputs case with j = u. On
the other hand, this overlapping can improve the speed of an error detection.

Note 2. In case 2: inputs, to check γi seams to mean that we should check that
for all μ in Li

I the impossibility to do μ at a precise time. However, this is not
feasible in practice, at least in one step. It is possible to try with any input in
that channel, thanks to the input enabling assumption.

Example 4. Figure 4 shows a test for the cash machine. The test checks that it
is not possible to ask for money before a card is authenticated. Then a card and
a PIN are inserted and if the PIN was correct it is possible to ask for money.

For simplicity, in the figure the outputs are represented as follows: card! as
c!, amount! as a!, Ok! as o!, Err−P ! as eP ! and Err−a! as ea!.

Soundness. The test generation procedure presented is sound with respect
to mtiocoM relation. This very important property is shown in the following
theorem.

Theorem 1. Let spec be a specification in TIOTS(LI ,LU), then for all M-
quiescent implementations imp in TMIOTS(LI ,LU) and all test cases t obtained
from spec by the above procedure:

&&�
x :=0�� ��x≤2

//////�eP!
fail

4
4

4
4�ea!

�
�

��c!

5
5

55�o!

3
3
33�a!
�

γ2

x=2
x :=0�� ��x≤2

//////�eP!
fail

4
4

4
4�ea!

�
�

��c!

5
5

55�o!

3
3
33�a!
�

card?
x=2
x :=0�� ��x≤2

//////�eP!
fail

4
4

4
4�ea!

5
5

55�o!

3
3
33�a!
�

PIN?
x=2
x :=0�� ��x≤5

fail

4
4

4
4�ea!

�
�

��c!

3
3
33�a!
�

Ok!
x≤5
x :=0

6
6
6
6�

eP!
x≤5

pass

�� ��x≤2

//////�eP!
fail

4
4

4
4�ea!

5
5

55�o!

3
3
33�a!
�

amount?
x=2
x :=0�� ��x≤5

fail

4
4

4
4�eP!

�
�

��c!

5
5

55�o!

3
3
33�a!
�

Ok!
x≤5

6
6
6
6�

ea!
x≤5

pass����//////�eP!
fail

4
4

4
4�ea!

�
�

��c!

5
5

55�o!

3
3
33�a!
�

card!

����//////�eP!
fail

4
4

4
4�ea!

�
�

��c!

5
5

55�o!
�

amount!

Fig. 4. A test case for the cash machine

Testing Real-Time Multi Input-Output Systems 277

imp mtiocoM spec ⇒ imp passes t.

The proof of this theorem as well as that of the following on completeness
build on the notion of saturation of nttraces. Its definition can be found, together
with the proofs, in [6].
Completeness. The test generation procedure is also exhaustive in the sense
that for each non-conforming implementation a test case can be generated that
detects the non-conformance.

Theorem 2. Let spec be a specification in TIOTS(LI ,LU), then for all M -
quiescent implementation imp in TMIOTS(LI ,LU) with: imp mti �ocoMspec,
there exists a test case t generated from spec by the above procedure such that:

imp pa�sses t.

The exhaustiveness of our test generation procedure, similar to the one in
[5], is less useful than the corresponding result in the untimed case. There, the
repeated execution of the test generation algorithm in a fair, nondeterministic
manner, will generate for every error a test exposing it in finite time. This is not
feasible for the real-time case, as the number of potential test cases is uncountable
because of the underlying continuous time domain. It is possible to recover such
limit-completeness by considering suitable equivalent classes of errors (i.e. an
implementation has either all or no errors of a given class), such that a repeated
test generation procedure will automatically expose an error in every equivalence
class. This is ongoing work.

4 Conclusions

To the best of our knowledge, we propose the first attempt to generate test cases
from multi input-output real-time specifications. More specifically, our contribu-
tions are:

• We show how the concept of multi input-output transition systems can be
applied to the modelling of real-time systems.

• We develop a new parameterized conformance relation using the enriched
real-time multi input-output transition systems.

• The relevance of the model and its theory for test generation is illustrated
by modification of a small but realistic example of a cash machine due to
Heerink [8].

Related Work. Heerink’s work in [8] is an extension of Tretmans’ ioco theory
[19]. Its testing theory is based on singular observers: only one output channel
is observed at the time. In [15] a similar theory is presented with an alterna-
tive type of observers: all-observer, which can observe all the output channels
simultaneously. Both approaches are concerned with untimed systems. In [5] a
test generation framework for real-time systems with repetitive quiescence is
presented, extending the Tretmans’ ioco theory [19] for real-time systems. This
framework is the basis for the approach taken in this paper.

278 L. Brandán Briones and E. Brinksma

Of the wealth of literature on test generation for real-time systems we men-
tion the related work that can be found in [11,14], but these authors consider
neither quiescence nor multiple channels. A related approach involving symbolic
data can be found in [7].
Future Work. We are continuing our work along three lines. First, we are
studying the limit-completeness over our approach as explained above. Second,
we are working on a more detailed comparison of the present approach and the
tiocoM theory [5]. Finally, we are working on the implementation of the multiple
input-output theory as an extension of the TorX tool [1,2].

References

1. A. Belinfante, J. Feenstra, R. deVries, J. Tretmans, N. Goga, L. Feijs, S. Mauw,
and L. Heerink. Formal test automation: A simple experiment. In G. Csopaki,
S. Dibuz, and K. Tarnay, editors, Int. Workshop on Testing of Communicating
Systems 12, pages 179–196. Kluwer, 1999.

2. H. Bohnenkamp and A. Belinfante. Timed testing with torx. In J. Fitzgerald,
I.J. Hayes, and A. Tarlecki, editors, FM 2005: Formal Methods, pages 173–188.
Springer, 2005.

3. E. Brinksma. On the existence of canonical testers. In Memorandum INF-87-5.
University of Twente, Enschede, The Netherlands, 1987.

4. E. Brinksma. A theory for the derivation of tests. In Protocol Specification, Testing,
and Verification VIII, North-Holland, page 6374. S. Aggarwal and K. Sabnani,
1988.

5. L. Brandán Briones and E. Brinksma. A test generation framework for quiescent
real-time systems. In Formal Approaches to Software Testing: 4th International
Workshop, FATES, volume 3395/2005. Springer-Verlag GmbH. Extended Ver-
sion http://fmt.cs.utwente.nl/research/testing/files/BBB04.ps.gz, 2004.

6. L. Brandán Briones and E. Brinksma. Testing real-time multi input-output sys-
tems. Extended Version. Number TR-CTIT-05-40. http://fmt.cs.utwente.nl/
re-search/testing/files/BBB05.ps.gz, 2005.

7. L. Frantzen, J. Tretmans, and T.A.C. Willemse. Test generation based on symbolic
specifications. In FATES 2004. Springer-Verlag, 2005.

8. L. Heerink. Ins and outs in refusal testing. In PhD thesis, 1998.
9. M. Hennessy. Algebraic theory of processes. In Foundations of Computing. Series.

The MIT Press, 1988.
10. ISO8807. A formal description technique based on the temporal ordering of obser-

vational behaviour. Int. Organization for Standardization, 1989.
11. M. Krichen and S. Tripakis. Black-box conformance testing for real-time systems.

In SPIN 2004, pages 109–126. Springer-Verlag Heidelberg, 2004.
12. R. Langerak. A testing theory for lotos using deadlock detection. In Proceedings

of the IFIP WG 6.1 Ninth int. Symp. on Protocol Spec., Testing, and Verification,
pages 87–98. IFIP, 1990.

13. K. Larsen, M. Mikucionis, and B. Nielsen. Real-time system testing on-the-fly.
In K Sere, M Walden, and A Karlsson, editors, The 15th Nordic Workshop on
Programming Theory (NWPT), Åbo Akademi University, Turku, Finland, oct 2003.
Extended abstract.

14. K. Larsen, M. Mikucionis, and B. Nielsen. Online testing of real-time system using
uppaal. In Formal Approaches to Software Testing, Linz, Austria, 2004.

Testing Real-Time Multi Input-Output Systems 279

15. Z. Li, J. Wu, and X. Yin. Testing multi input/output transition system with
all-observer. In TestCom, pages 95–111, 2004.

16. R. De Nicola. Extensional equivalences for transition systems. In Acta Informatica,
page 24:211237, 1987.

17. R. De Nicola and M.C.B. Hennessy. Testing equivalences for processes. In Theo-
retical Computer Science, page 34:83133, 1984.

18. J. Springintveld, F. Vaandrager, and P. D’Argenio. Testing timed automata. The-
oretical Computer Science, 254(1–2):225–257, 2001.

19. J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. In
Software-Concepts and Tools, 17(3), pages 103–120. Also: Technical Report N0.
96-26, Center for Telematics and Information Technology, University of Twente,
The Netherlands, 1996.

Formal Verification of a Memory Model
for C -Like Imperative Languages

Sandrine Blazy and Xavier Leroy

INRIA Rocquencourt,
78 153 Le Chesnay cedex, France

{Sandrine.Blazy, Xavier.Leroy}@inria.fr

Abstract. This paper presents a formal verification with the Coq proof
assistant of a memory model for C -like imperative languages. This model
defines the memory layout and the operations that manage the mem-
ory. The model has been specified at two levels of abstraction and im-
plemented as part of an ongoing certification in Coq of a moderately-
optimising C compiler. Many properties of the memory have been ver-
ified in the specification. They facilitate the definition of precise formal
semantics of C pointers. A certified OCaml code implementing the mem-
ory model has been automatically extracted from the specifications.

1 Introduction

Formal verification of computer programs – be it by model checking, program
proof, static analysis, or any other means – obviously requires that the semantics
of the programming language in which the program is written be formalized in
a way that is exploitable by the verification tools used. In the case of program
proofs, these formal semantics are often presented as operational semantics or
specialized logics such as Hoare logic. The need for formal semantics is even
higher when the program being verified itself operates over programs: compilers,
program analyzers, etc. In the case of a compiler, for instance, no less than
three formal semantics are required: one for the implementation language of the
compiler, one for the source language, and one for the target language. More
generally speaking, formal semantics “on machine” (that is, presented in a form
that can be exploited by verification tools) are an important aspect of formal
methods.

Formal semantics are relatively straightforward in the case of declarative pro-
gramming languages such as pure functional or logic languages. Many programs
that require formal verification are written in imperative languages, however.
These languages feature assignments to variables and in-place modification of
data structures. Giving semantics to these imperative constructs requires the
development of an adequate memory model, that is, a formal description of the
memory layout and the operations over it. The memory model is often one of the
most delicate parts of a formal semantics for an imperative programming lan-
guage: an excessively concrete memory model (e.g. representing the memory as a

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 280–299, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Formal Verification of a Memory Model 281

single array of bytes) can fail to validate algebraic laws over loads and stores that
are actually valid in the programming language and thus make program proofs
more difficult; an excessively abstract memory model can fail to account for e.g.
aliasing or partial overlap between memory areas, thus causing the semantics to
be incorrect.

This paper reports on the design, formalization and verification, using the
Coq proof assistant, of a memory model for C -like imperative languages. In
addition to being widely used for programming safety-critical software, C and
related languages are challenging from the standpoint of the memory model,
because they feature both pointers and pointer arithmetic, on the one hand, and
isolation and freshness guarantees on the other. For instance, pointer arithmetic
can result in aliasing or partial overlap between the memory areas referenced by
two pointers; yet, it is guaranteed that the memory areas corresponding to two
distinct variables or two successive calls to malloc are disjoint. This stands in
contrast with both higher-level imperative languages such as Java, where two
distinct references always refer to disjoint data, and lower-level languages such
as machine code, where unrestricted address arithmetic invalidates all isolation
guarantees.

The memory model presented here is used in the formal verification of a
moderately-optimising compiler that translates a large subset of the C pro-
gramming language down to PowerPC assembly code [13]. The memory model
is used by the formal semantics of all languages manipulated by the compiler:
the source language (large subset of C), the target language (subset of PowerPC
assembly), and 5 intermediate languages that bridge the semantic gap between
source and target. Certain passes of the compiler perform non-trivial transfor-
mations on memory allocations and accesses: for instance, the auto variables of
a C function, initially mapped to individually-allocated memory blocks, are at
some point mapped to sub-blocks of a single stack-allocated activation record,
which at a later point is extended to make room for storing spilled temporaries.
Proving the correctness (semantic preservation) of these transformations require
extensive reasoning over the memory model, using the properties of this model
given further in the paper.

The remainder of this paper is organized as follows. Section 2 presents how
we have formally verified a compiler with the Coq proof assistant. Section 3
describes the formal verification of our memory model. Section 4 explains how
OCaml code has been automatically generated from this verification. Section 5
discusses related work. Finally, section 6 concludes.

2 Certification of a C -Like Compiler

The formal verification of a compiler is the formal proof of the following equiva-
lence result: any source program that terminates on some final memory state is
compiled into a program that also terminates and produces the same memory
state. Usually, such an equivalence result relies on a more general notion of equiv-
alence between memory states. But, our memory model aims at facilitating this

282 S. Blazy and X. Leroy

correctness proof and it is designed in such a way that the memory states are the
same at the end of the execution of source and compiled programs. The correct-
ness result is not proved directly but in several steps. Each step corresponds to a
transformation (that is, either a translation or an optimisation) achieved by the
compiler. Each correctness proof of a transformation proceeds by induction on
the execution of the original program using a simulation lemma: if the original
program executes one statement, the transformed program executes zero, one or
several statements.

Our compiler treats a large subset of C. It compiles any C program in which
jump statements (i.e. goto, setjmp and longjmp) are not allowed, and functions
have a fixed number of arguments. The expression evaluation order is defined
in the compiler: expressions are evaluated from left to right, thus leaving less
freedom to the compiler. Furthermore, as dynamic allocation of variables is done
explicitly in C by calling the library functions malloc and free, the semantics
of these functions is not defined in our formal semantics and there is no garbage
collector in the compiler. The proof that these functions ensure lack of dangling
pointers is thus out of the scope of this paper.

The formal verification of the memory model belongs to an ongoing formal
verification with the Coq proof assistant of this compiler, and it consists of:

– a formal specification at several levels of abstraction a memory model,
– a formal proof about many properties of this memory model,
– the automatic generation from the specification of a certified code that ver-

ifies the same properties as the formal specification.

The Coq proof assistant [1,4] consists mainly of a language called Gallina for
writing formal specifications and a language for developing mathematical proofs
to verify some properties on the formal specifications. Gallina relies on the Cal-
culus of Inductive Constructions, a higher-order typed λ−calculus with depen-
dent types and capabilities for inductive definitions. Proving a simple property
consists in writing interactively proof commands that are called tactics. Tactics
may also consist of user-defined tactics, thus making it possible to decompose a
property into simpler reasoning steps and to reuse proof scripts.

Coq provides a way to structure specifications in large units called modules.
The Coq module system [7] reuses the main features of the OCaml module sys-
tem. A module is a collection of definitions of types, values and modules. It
consists of two parts: a signature and an implementation. The signature of a
module is an abstract specification of the components that must occur in all
possible implementations of that module. The type of a module is its signature.
Modules can be parametrised by modules. Parametrised modules are called func-
tors (i.e. functions from modules to modules). One way to build modules is to
apply a functor. The other way is to build it definition by definition. A module
may be associated with a signature to verify that the definitions of the mod-
ule are compatible with the signature. Properties may be defined in modules.
When a property is defined in the signature of a module, it must be proved in
any implementation of this module. The property is thus called an axiom (resp.
theorem) in the signature (resp. implementation) of the module.

Formal Verification of a Memory Model 283

Coq provides also an automated mechanism for extracting functional pro-
grams from specifications [14]. The extraction from a Coq function or proof
removes all logical statements (i.e. predicates) and translates the remaining con-
tent to a program written in OCaml. As the extracted program verifies the same
properties as the Coq specification, the extracted code is called the certified code.
The Coq extraction mechanism handles the module system: Coq modules are ex-
tracted to OCaml modules, Coq signatures are extracted to OCaml signatures,
and Coq functors are extracted to OCaml functors.

3 Formal Specification

This section describes the formal verification in Coq of our memory model. It
specifies the memory layout and the operations that manage the memory. This
formal specification is written at two levels of abstraction:

– The abstract specification is suitable for most of imperative languages. It
defines a general memory model, parametrised by some characteristics of
the language it applies to (e.g. the values of the language), and properties
that need to be verified by a more concrete specification.

– The concrete specification is devoted to C -like languages with pointer arith-
metic. It implements the operations defined in the abstract specification,
and proves that they satisfy the abstract specification. The properties that
have been stated in the abstract specification are proved in the concrete
specification. Other properties are also stated (and proved) in the concrete
specification.

This section presents two concrete specifications. The first one is devoted to an
infinite memory model of a C compiler. The second one defines a finite memory
model that corresponds to the first concrete specification. In this paper, we
will use familiar mathematical notation to present our development in Coq. For
instance, inductive definitions will be presented in BNF format and Coq arrows
will be replaced by either conjunctions or implications.

3.1 Abstract Specification

The abstract specification defines the memory layout in terms of records and
maps. Several types are left unspecified. The operations that manage the memory
are only defined by their types. Some axioms are also defined in the abstract
specification.

Memory Layout. Figure 1 describes the types that specify the memory layout.
The memory is separated into four areas that do not overlap:

– the free memory called memfree that can be allocated during the execution
of a program,

– the null memory called memnull that is not accessible during the execution
of a program,

284 S. Blazy and X. Leroy

– the memory called memdata that stores data,
– the memory called memcode that stores code, i.e. the procedures of a pro-

gram. 1

The type of memory is called Tmem. It is a record whose four fields repre-
sent the four areas. Each area is represented by a map (that is, a partial finite
function) of type Tmemi from blocks identifiers Tblock to blocks Tblock i, where
i denotes a memory area. Tblock is an ordered type and ≤ denotes an order
relation on Tblock. A block consists of a low bound, a high bound and a map
from offsets Tofs (i.e. cells identifiers) to memory cells Tcell i. Tcell i is equipped
with a comparison relation that we write =. The high and low bounds of a block
are block identifiers. The contents of the cells in a block depend on the area the
block belongs to. Usually, each cell of the data area stores a value on a given
number of bytes. Each cell of the code area stores a procedure (i.e. a C func-
tion). Each cell of the null area stores either a deallocated cell or a null cell that
has never been deallocated.

The types that are left unspecified in the abstract specification are related to
the way blocks and cells are addressed (cf. Tblock and Tofs) and to the contents
of memory cells (cf. Tcelli , ∀i ∈ {data, free, null} and Tprocedure). The four
areas of the memory are handled in a similar way. For space reasons, this paper
focuses on the memory area that stores data.

Memory layout:
Tmem ::= {memdata := Tmemdata

;memfree := Tmemfree

;memnull := Tmemnull

;memcode := Tmemcode }
Memory areas:

∀i ∈ {data, free, null, code}, Tmemi ::= Map (Tblock ,Tblock i)

Memory blocks:
∀i ∈ {data, free, null}, Tblock i ::= {high := Tblock

; low := Tblock
; contents := Map (Tofs,Tcelli) }

Tblock code ::= Tprocedure

Fig. 1. Abstract specification of the memory layout: type definitions

Figure 2 defines some relations between blocks and memory and some of their
properties. The relation called valid data block states that a block b is valid with
respect to a memory m if it has been allocated in the area of m that stores data
1 In the sequel of this paper, we use the word procedure to denote a C function. The

word function is reserved to Coq mathematical functions that are defined in the
specification.

Formal Verification of a Memory Model 285

(i.e. it belongs to the domain of the map m.memdata.). This relation is often used
as a precondition in the operations that manage the memory (see for instance
the definition of load in figure 5). The axiom called valid not valid diff states
that any block is either valid or not.

The relation called block agree is an agreement relation between blocks. Two
blocks belonging to two memories agree between two bounds called lo and hi if
they share a same identifier b and if each of their cells that is between the bounds
lo and hi, stores the same value. This relation is an equivalence relation: it verifies
the three axioms called block agree refl, block agree sym and block agree trans.

The relation called extends states that a memory m2 extends another mem-
ory m1 if each valid block b of m1 is also a block of m2. More precisely, if b
identifies a valid block (m1.memdata)(b) of m1, then it identifies also a bigger
block (m2.memdata)(b) of m2 (i.e. a block such that its cells are included in
the cells of (m2.memdata)(b)) and both blocks agree between the bounds of the
smallest block m1(b). The picture of figure 2 shows an example of two such
blocks. The compilation process relies on a run-time stack of memory blocks
called stack frames. At the beginning of the compilation process of a program,
a stack frame is allocated for each instance of a called procedure. Information
that are computed in further steps of the compilation process are stored in stack
frames and reused in further steps of the process. The relation called extends is
useful to specify the extension of stack frames during the compilation process.

Memory Management. The main operations that manage the memory are
alloc, free, load and store. They are specified in the figure 3, where alloc, load and
store are related to the memory area that stores data. Similar operations related
to the memory area that stores code have also been specified. Each operation
that manage the memory may fail (e.g. alloc may fail if there are no free cells
left). Thus, its results is of type option(τ). The values of such a type are either
None (when the operation fails) or Some(v) where v is of type τ .

load and store operations are parametrised by memory chunks. A memory
chunk indicates the size and the type of accessed data. Its type is called Tchunk
and is left unspecified in the abstract specification. Memory chunks ensure that
each load operation follows a store operation that supplied the value retrieved
by the load. For instance, when an operation such as (store chunk1 m1 b ofs1
= Some m2) is followed by an operation such as (load chunk2 m b ofs2) then
the load does not fail only if chunk1, chunk2, ofs1 and ofs2 are compatible.

The functionalities of the memory management operations are the following:

– alloc is the function that allocates a block with given bounds. If it does not
fail, this function yields a newly allocated block and the modified memory.

– free is the function that deallocates a given block of data.
– load is the function that given a memory chunk fetches the value stored in a

given block of data.
– store is the function that given a memory chunk stores a value in a given

block of data. The load (resp. store) function fails if the value to load (resp.
store) is not compatible with the memory chunk and the offset (e.g. if the

286 S. Blazy and X. Leroy

Definition valid data block (m: Tmem) (b: Tblock) := b ∈ domain(m.memdata).

Axiom valid not valid diff:
∀ (m: Tmem) (b b’ : Tblock),
valid data block m b ∧ ¬(valid data block m b’) ⇒ b �= b’.

Definition block agree (b: Tblock) (lo hi : Tblock) (m1 m2 : Tmem) :=
∀ ofs ∈ [lo,hi],
((m1.memdata)(b).contents)(ofs) = ((m2.memdata)(b).contents)(ofs).

Axiom block agree refl:
∀ (m: Tmem) (b: Tblock) (lo hi : Tblock),

block agree b lo hi m m.

Axiom block agree sym:
∀ (m1 m2 : Tmem) (b: Tblock) (lo hi : Tblock),
block agree b lo hi m1 m2 ⇒

block agree b lo hi m2 m1.

Axiom block agree trans:
∀ (m1 m2 m3 : Tmem) (b: Tblock) (lo hi : Tblock),
block agree b lo hi m1 m2 ∧ block agree b lo hi m2 m3 ⇒

block agree b lo hi m1 m3.

Definition extends (m1 m2 : Tmem) :=
∀ (b: Tblock),

valid data block m1 b ⇒
(m2.memdata)(b).low ≤ (m1.memdata)(b).low ∧
(m1.memdata)(b).high ≤ (m2.memdata)(b).high ∧
block agree b (m1.memdata)(b).low (m1.memdata)(b).high m1 m2

(m2.memdata) (b)

(m1.memdata) (b)

(m2.memdata) (b).high(m2.memdata) (b).low

(m1.memdata) (b).high

(m1.memdata) (b).low

Fig. 2. Abstract specification of the memory layout: properties

memory chunk is to large). As these functions are left unspecified at the
abstract level, this property consists of axioms such as loaded block is valid
and loaded block is in bounds that will be proved once the functions will be
defined.

The axiom called loaded block is in bounds uses a property called in bounds
that defines when a value may be loaded from or stored in the two bounds
of a block. in bounds is used as a precondition that triggers loads and stores
in memory. As block identifiers and offsets are left unspecified in the abstract
specification, in bounds is also left unspecified. It is a relation, i.e. a function

Formal Verification of a Memory Model 287

Memory management operations:

alloc : Tmem → Tblock → Tblock → option (Tmem ∗ Tblock)
free : Tmem → Tblock → option (Tmem)
load : Tchunk → Tmem → Tblock → Tofs → option (Tvalue)
store : Tchunk → Tmem → Tblock → Tofs → Tvalue → option (Tmem)

Relation between blocks and memory chunks:

in bounds : Tchunk → Tofs → Tblock → Tblock → Prop

Some properties of memory management operations:

Axiom loaded block is valid:
∀ (chunk : Tchunk) (m: Tmem) (b: Tblock) (ofs: Tofs) (v :Tvalue),
load chunk m b ofs = Some v ⇒

valid data block m b.

Axiom loaded block is in bounds:
∀ (chunk : Tchunk) (m: Tmem) (b: Tblock) (ofs: Tofs) (v : Tvalue),
load chunk m b ofs = Some v ⇒

in bounds chunk ofs (m.memdata)(b).low (m.memdata)(b).high.

Axiom valid block store:
∀ (chunk : Tchunk) (m1 m2 : Tmem) (b b’ : Tblock) (ofs: Tofs) (v : Tvalue),
store chunk m1 b’ ofs v = Some m2 ∧
valid data block m1 b ⇒

valid data block m2 b.

Axiom store agree:
∀ (chunk : Tchunk) (m1 m2 m1’ m2’ : Tmem) (b b’ : Tblock)

(lo hi : Tblock) (ofs: Tofs) (v : Tvalue),
block agree b lo hi m1 m2 ∧
store chunk m1 b’ ofs v = Some m1’ ∧
store chunk m2 b’ ofs v = Some m2’ ⇒

block agree b lo hi m1’ m2’.

Axiom load extends:
∀ (chunk : Tchunk) (m1 m2 : Tmem) (b: Tblock) (ofs: Tofs) (v : Tvalue),
extends m1 m2 ∧
load chunk m1 b ofs = Some v ⇒

load chunk m2 b ofs = Some v.

Fig. 3. Abstract specification of the memory management

that yields values of a type called Prop. This Coq type is used to define logical
propositions.

Other properties of the operations that manage the memory express that the
relations between blocks are preserved by the memory management operations.
For instance, the axiom called valid block store expresses that the load operation
does not invalidate valid blocks. More precisely, it states that if a value v is
stored in a memory m1.memdata, any block b that was valid before the operation

288 S. Blazy and X. Leroy

remains valid after. The axiom called store agree states that the store operation
preserves the agreement relation. The axiom load extends states that the load
operation preserves the extension relation. Figure 3 shows only some axioms of
the specification. Similar axioms have been defined for all memory management
operations.

3.2 Implementation of an Infinite Memory

This section presents an implementation of our memory model that is devoted
to a C-like compiler. The implementation of values and addresses is adapted to
C pointer arithmetic and the implementation of memory chunks follows the C
arithmetic types. In this implementation, the memory is unlimited and thus the
allocation never fails. New properties of the memory management are added in
this implementation.

For each language manipulated by our compiler, we have encoded in Coq
operational semantics rules that detail how the memory is accessed and modified
during the execution of a program. For instance, the evaluation of a procedure
respects the following judgements of the source and target languages of the
compiler (called respectively C and PPC):

Gc * pc, lv, m ⇒ v, m′ states that in the global environment Gc and the memory
m, the evaluation in C of the procedure pc called with the list of values lv of
its arguments computes a value v. The memory at the end of the evaluation
in C is m′.

Gppc * r, m ��	 r′, m′ states that in the global environment Gppc, the evaluation
in PPC of the current function updates the set of registers r into r′ and the
memory m into m′.

These semantics rely on the memory management operations. For instance,
in the dynamic semantics of PPC, references to variables correspond to explicit
loads and stores. There are 13 load instructions and 10 store instructions in
PPC. In the dynamic semantics of C:

– A block of memory is allocated for each declared variable. The cells of the
block that stores an array consist of the elements of the array.

– Such a block is deallocated at the end of the scope of the variable.
– The evaluation of a left value loads a value from memory.
– The execution of any assignment statement is based on the load and store

operations.

Memory Layout. Figure 4 defines the types that were left unspecified in the
abstract specification in figure 1. The blocks and the offsets of a block are iden-
tified by integers. The sizes of stored values are one, two, four and eight bytes.
Values are either undefined values, or integers or floats or non null pointer values.
The undefined value Vundef is a junk value that represents the value of unini-
tialised variables. A value of type pointer is either the integer 0 (that represents
the NULL pointer) or a pair of a block identifier (that is, the address of the first
cell of the block) and an offset between the block and the cell the pointer points

Formal Verification of a Memory Model 289

to. This representation of pointers is adapted to C pointer arithmetic. For in-
stance, the expression (Vptr b ofs) + (Vint i) evaluates to the pointer value
(Vptr b Vint (ofs + i)) if this evaluation does not fail. In other words, the
only integers i that can be added to a pointer value are those such that (ofs +
i) is in the bounds of the block b. Another example is the comparison between
pointers: two pointers that are not NULL may be compared only if they point to
a same block.

Addresses:
Tblock ::= Z
Tofs ::= Z

Values:
Tcelldata ::= Tsize ∗ Tvalue a data cell is a pair of a size and a value
Tsize ::= {1, 2, 4, 8} number of bytes of a cell
Tvalue ::= Vint Tinteger integer

| Vfloat Tfloat float
| Vptr Tblock Tofs pointer (a block and an offset)
| Vundef undefined value

Fig. 4. An implementation of the memory layout

Usually, properties of memory layouts are classified into separation, adjacency
and containment properties [26]. This is also the kind of properties of our memory
model. Separation and adjacency of memory blocks are valid in our model by
construction. By construction, each memory block belongs to only one memory
area. Two different blocks are also separated by construction since a cell of a
block can not be accessed from another block. The containment property we use
is the extends relation.

Memory Management. The memory chunks that were left unspecified in
figure 3 are implemented in figure 5 in the following way: integers are stored
on either one, two or four bytes, and floats are stored on either four or eight
bytes. Integers that are stored on one or two bytes are either signed or unsigned.
Pointer values are implemented by integers stored on four bytes.

The alloc and free functions never fail. The allocation method is linear. load
chunk m b ofs fails when b does not identify a block of the data area of m and
when the property in bounds chunk ofs b is not true. The load function calls
the load result function in order to load each cell that needs to be loaded in the
block b from the offset ofs. The load result function fetches a value in memory
and casts this value to a value of a type defined by a memory chunk, when the
memory chunk is compatible with the value. Memory chunks determine also if a
block needs to be filled with digits. For instance, when an integer that is stored
on one or two bytes is loaded, it is automatically extended to four bytes (by the
function called load result), either by adding zeroes if the integer is unsigned, or

290 S. Blazy and X. Leroy

by replicating the sign bit if the integer is signed (see the function cast1signed
called by load result). The load result function fails if the memory chunk is not
compatible with the value, for instance if it attempts to load a float value when
the memory chunk corresponds to an integer. For space reasons, the definition
of this function is not fully detailed in figure 5.

Memory chunks:
Tchunk ::= Mint1signed signed integer stored on one byte

| Mint1unsigned unsigned integer stored on one byte
| Mint2signed signed integer stored one on two bytes
| Mint2unsigned unsigned integer stored on two bytes
| Mint4 integer stored on four bytes
| Mfloat4 float stored on four bytes
| Mfloat8 float stored on eight bytes

Memory management operations:

Definition size chunk (chunk : Tchunk) := . . .
(* number of bytes corresponding to chunk, e.g. 4 for Mint4 *)

Definition in bounds (chunk : Tchunk) (ofs: Tofs) (lo hi : Tblock) :=
lo ≤ ofs ∧ ofs + size chunk chunk ≤ hi.

Definition load result (chunk : Tchunk) (v : Tvalue) :=
match chunk, v with

| Mint1signed, Vint n : Some (Vint (cast1signed n))
(* values are casted in order to fit the memory chunks *)

| . . .
| Mint4, Vptr b ofs : Some (Vptr b ofs)
| Mfloat4, Vfloat f : Some (Vfloat (singleoffloat f))
| . . .
| , : None

(* erroneous cases, e.g. an integer chunk such as Mint4 and a float value *)
end.

Definition load (chunk : Tchunk) (m: Tmem) (b: Tblock) (ofs: Tofs) :
if valid data block m b ∧ in bounds chunk ofs m(b).low m(b).high
then load result chunk . . .

(* the second parameter is the value that is found in cell b at offset ofs *)
else None.

Fig. 5. An implementation of the memory management

Some new properties of the operations that manage the memory are defined
in the implementation. They have not been defined in the abstract specification
because they rely on the implementation of the memory management operations.
These properties express that the memory blocks remember correctly the stored
values. More precisely:
1. If an operation updates a block of a memory area by storing a value in it,

then the content of this block becomes this value,

Formal Verification of a Memory Model 291

2. and the other blocks of memory are not modified.
3. A block which is modified by an operation belongs to the memory that results

from the modification.

These properties are often called the good variable properties [25]. Our certifi-
cation uses them in order to prove analogous properties on stack frames built
by the compiler. As these properties are related to memory blocks consisting of
memory cells, their proof relies on analogous properties for memory cells.

Figure 6 specifies some of the good variable properties. In the two theorems
called load store same and load store other, a value v is stored in a memory m1
at the offset ofs1 of a block b1, given a memory chunk called chunk. The resulting
memory is called m2. The first theorem called load store same states that v is
also the value that is loaded in m2 at the address where it has been stored. The
second theorem called load store other states that the store operation of v (in a
block b1 at the offset ofs1) does not change any other value of the memory, i.e.
any other value that is fetched either in another block b2 or in the same block b1
but at another valid offset ofs2. An offset is valid in a block if there are enough
remaining cells in the block in order to store a value form this offset.

Theorem load store same:
∀ (chunk : Tchunk) (m1 m2 : Tmem) (b1 : Tblock) (ofs1 : Tofs) (v : Tvalue),
store chunk m1 b1 ofs1 v = Some m2 ⇒

load chunk m2 b1 ofs1 = Some (load result chunk v).

Theorem load store other:
∀ (chunk1 chunk2 : Tchunk) (m1 m2 : Tmem) (b1 b2 : Tblock)

(ofs1 ofs2 : Tofs) (v : Tvalue),
store chunk1 m1 b1 ofs1 v = Some m2 ∧
(b1 �= b2 ∨ ofs2 + size chunk chunk2 ≤ ofs1 ∨ ofs1 + size chunk chunk1 ≤ ofs2)

⇒ load chunk2 m2 b2 ofs2 = load chunk2 m1 b2 ofs2.

Fig. 6. Some good-variable properties

Other properties are related to the high and low bounds of memory blocks.
They express the compatibility between the bounds of a block and the offset
from where a value is stored or loaded in that block. For instance, the theorem
low bound store of figure 7 states that if a value v is stored in a memory m1,
then the resulting memory m2 has the same low bound as m1. Finally, a few
other relations between the memory management operations. For instance, the
theorem called store alloc states that a value may be stored from a given offset
in a newly allocated block if the memory chunk and the offset are compatible
with the bounds of this block.

3.3 Implementation of a Finite Memory

The execution of a source program may exceed the memory of the target ma-
chine. Thus, we have implemented another memory model where the size of

292 S. Blazy and X. Leroy

Theorem low bound store:
∀ (chunk : Tchunk) (m1 m2 : Tmem) (b b’ : Tblock) (ofs: Tofs) (v : Tvalue),
store chunk m1 b ofs v = Some m2 ⇒

(m2.memdata)(b’).low = (m1.memdata)(b’).low.

Theorem store alloc:
∀ (chunk : Tchunk) (m1 m2 : Tmem) (b lo hi : Tblock) (ofs: Tofs) (v : Tvalue),
alloc m1 lo hi = Some (m2, b) ∧
in bounds chunk ofs lo hi ⇒

∃ m3 | store chunk m2 b ofs v = Some m3.

Fig. 7. Other properties of memory management operations

memory cells and the number of blocks in each memory area are finite. The
only difference with the previous model relies in the implementation of the alloc
operation: the allocation of a block fails if there is no free cell left. Thus, the the-
orems such as store alloc that are defined in the first implementation still hold
in this second implementation. When the allocation does not fail, it behaves as
the allocation of the infinite memory. This is shown in figure 8. The theorem
alloc finite to infinite results from the definition of both allocation operations.

Abstract specification:

alloc : Tmem → Tofs → Tofs → option (Tmem ∗ Tblock)

Two implementations:

Definition alloc1 (m:Tmem) (lo hi : Tblock) :=
Some . . . (* never fails *)

Definition alloc2 (m:Tmem) (lo hi : Tblock) :=
if (* no free cell left *) then None
else alloc1 m lo hi.

Theorem alloc finite to infinite:
∀ (m1 m2 : Tmem) (b lo hi : Tblock),
alloc2 m1 lo hi = Some (m2, b) ⇒ alloc1 m1 lo hi = Some (m2, b).

Fig. 8. Reuse of the allocation operation

The compilation of a program fails as soon as an allocation fails. As each step
of the compilation process allocates memory blocks, there are many opportunities
for the compiler to fail. In the memory that stores data, the evolution of block
allocation during the compilation process is the following. For each instance of
a called procedure:

– The dynamic semantics of C allocates a block for each declared variable.
– The translation from C to the first intermediate language L1 of the com-

piler allocates a single block for all the local variables of the procedure that

Formal Verification of a Memory Model 293

are either of array type or whose addresses are taken. Thus the number of
allocated blocks decreases but the size of each block increases.

In the case of the translation from C to L1, the size of all allocated blocks in
the data area is the same in the semantics of C and L1. In other translations from
one intermediate language Li to another intermediate language Lj, the number
of allocated blocks increases slightly. The translation allocates indeed the blocks
that correspond to the blocks of Li but also other blocks that are built by the
translation of long expressions made up of several variables and function calls.

Concerning the memory area that stores code, each translation of the com-
pilation process computes information that need to be stored in memory. At the
end of the process, all the information have been computed and the target code
may be emitted. If for instance a translation from one intermediate language
Li to another intermediate language Lj occurs, the semantics of Li allocates
as many blocks as the dynamic semantics of Lj . However, the blocks allocated
by the dynamic semantics of Lj are becoming bigger. For instance, the return
address of a called procedure is only known (and stored) at the end of the com-
pilation process. As the translations do not preserve the contents of memory
blocks, they may fail because they translate blocks into bigger blocks. Thus:

– During the compilation process, any translation fails when it translates a
block into a bigger block.

– The execution of a translated program may fail, although the execution of
the program does not fail.

With such a finite memory model, we prove the following correctness result
for each translation: if the translation of a program does not fail, if that program
terminates on some final memory state, and if the translated program also ter-
minates, then it terminates on the same memory state. This property is weaker
than the property we prove for an infinite memory model.

Instead of defining a more precise memory model, we intend to perform
a static analysis that will track the amount of allocated memory for a given
compilable program and compute an approximation of this amount if the control
flow graph of the program is acyclic. We will then have to prove an equivalence
result between the execution of the program and its execution in a stack discipline
language where only one block is allocated. This will require the definition of
such a language and the proof of semantic equivalence between this language
and the corresponding language of the compiler.

4 From Formal Specifications to Code

This section gives an overview of the architecture of the Coq development. Fig-
ures 9 and 10 show the Coq modules that have been built in order to formally
verify the memory model. OCaml modules have been automatically generated
from them. The generated modules have the same architecture as the Coq mod-
ules. The Coq extraction mechanism removes the axioms and theorems, and
more generally the terms of type Prop.

294 S. Blazy and X. Leroy

The abstract specification consists of the three signature modules of fig-
ure 9. They are declared with the keyword Module Type. The module called
MEM PARAMS collects the parameters of the memory model. These are Coq
variables of type Set that Coq uses to type abstract specifications. They define
the contents and the addressing of memory cells and are left abstract in the signa-
ture modules. The module called MEM LAYOUT specifies the memory layout.
It defines the functions and axioms that are detailed in figures 1 and 2. These
definitions refer to unspecified types (e.g. Tblock) that are declared in a module
called MemP of type MEM PARAMS. The module called MEM OPS specifies
the memory management operations. It defines the functions and axioms that
are detailed in figure 3.

Module Type MEM PARAMS.
Parameters Tchunk,Tofs,Tcell, Tvalue: Set.
. . .

End MEM PARAMS.

Module Type MEM LAYOUT.
Declare Module MemP : MEM PARAMS.

Record Tblockdata := {high: Tblock ; low : Tblock ; contents: Map (Tblock, Tcell)}.
. . .
Record Tmem := {memdata: Map (Tblock, Tblockdata); . . . }.

Definition valid data block (m:Tmem)(b:Tblock) := ∃ v, m.memdata(b) = Some v.

Axiom valid not valid diff:
∀ m b b’, valid data block m b ∧ ¬(valid data block m b’) ⇒ b �= b’.

End MEM LAYOUT.

Module Type MEM OPS.
Declare Module MemP : MEM PARAMS.
Declare Module MemL: MEM LAYOUT.

Parameter load: Tchunk → Tmem → Tblock → Tofs → option Tvalue.
. . .

Axiom loaded block is valid:
∀ chunk m b ofs v, load chunk m b ofs = Some v ⇒ valid data block m b.

. . .

End MEM OPS.

Fig. 9. Architecture of the specification (signature modules)

The figure 10 shows the modules that implement the signature
modules. For instance, the module MEM PARAMS IMPL implements
the module MEM PARAMS (see figures 4 and 5). The module called
MAKE MEM LAYOUT is the functor that builds a module of type
MEM LAYOUT from a module of type MEM PARAMS. All axioms that

Formal Verification of a Memory Model 295

have been defined in the signature modules are proved in the implementation
modules (thus becoming theorems). For instance, figure 10 shows the proof
script of the theorem called valid not valid diff. This is a very simple proof
script that consists of a few Coq tactics. In this example, the proof script
unfolds the definitions and prove by contradiction that b can not be equal to b’.
More generally, these tactics can be user defined and correspond to the steps
that would be used in a hand proof. They are reused to prove interactively the
theorems.

Module MAKE MEM LAYOUT (P : MEM PARAMS)
<: MEM LAYOUT with Module MemP := P.

. . .
Theorem valid not valid diff:

∀ m b b’, valid data block m b ∧ ¬(valid data block m b’) ⇒ b �= b’.
Proof. intros; red ; intros; subst b; contradiction. Qed.

End MAKE MEM LAYOUT.

Module MEM PARAMS IMPL <: MEM PARAMS.
Definition Tblock := Z .
Inductive Tchunk := Mint1signed | Mint1unsigned | . . .
. . .

End MEM PARAMS IMPL.

Module MEM LAYOUT IMPL <: MEM LAYOUT :=
MAKE MEM LAYOUT MEM PARAMS IMPL.

Module MEM OPS IMPL <: MEM OPS.
Module MemP := MEM PARAMS IMPL.
Module MemL := MEM LAYOUT IMPL.

Definition load (chunk : Tchunk) (m: Tmem) (b:Tblock) (ofs: Tofs) : option Tvalue
:= . . .

Theorem loaded block is valid: ∀ chunk m b ofs v,
load chunk m b ofs = Some v ⇒ valid data block m b.

Proof. . . . Qed.

Theorem load store same: ∀ chunk m1 m2 b1 ofs1 v,
store chunk m1 b1 ofs1 v = Some m2 ⇒

load chunk m2 b1 ofs1 = Some (load result chunk v).
Proof. . . . Qed.

End MEM OPS IMPL.

Fig. 10. Architecture of the specification (implementation modules)

Our memory model consists of several thousands lines of Coq specifications
and proofs. The compilable OCaml modules that have been automatically ex-
tracted from the Coq specifications implement the operations that manage the
memory.

296 S. Blazy and X. Leroy

5 Related Work

Several low-level memory models (often called architecture-centric models) have
been defined. They are dedicated to hardware architectures and study the impact
of features such as write buffers or caches, especially in multiprocessor systems.
For instance, [22] uses a term rewriting system to define a memory model that
decomposes load and store operations into finer-grain operations. This model
formalises the notions of data replication and instruction reordering. It aims as
defining the legal behaviours of a distributed shared-memory system that relies
on execution trace of memory accesses. These memory models are lower-level
than ours (thus relying on a very different representation of memory) and are
not dedicated to C -like languages.

Other research has concentrated on the formalisation of properties of pro-
grams that manipulate recursive data structures defined by pointers. New logics
that capture common storage invariants have also been defined in order to fa-
cilitate and automate the proof of properties about pointers. These logics are
based on separation logic [5], an extension of Hoare logic where assertions may
refer to pointer expressions in a more concise and meaningful way. Two operators
facilitate the expression of memory properties in separation logic: a separative
conjunction allows one to express the separation of one piece of memory with
respect to another, a separating implication allows one to introduce hypotheses
about the memory layout. The definition of a refinement calculus for the sep-
aration logic is currently investigated [16]. In the near future, separation logic
should be implemented, as is Hoare logic in tools dedicated to the B method.

Some ideas of separation logic have been formalised in Isabelle/HOL in order
to verify the correctness of Java programs with pointers [15]. [9] presents a
tool for formally proving that a C program is free of null pointer dereferencing
and out-of-bounds array access. Some of our properties of memory management
operations are also stated in [15] and [9].

Another way to prove properties about programs involving pointers is to de-
fine type systems that enable compilers to detect errors in programs. Some type
systems are dedicated to a specific part of a compiler (e.g. assembly code [8]).
Type systems for memory management have been applied for low-level mem-
ory management [24]. For instance, typed region systems where each memory
location has an intended type and an actual type, have been defined to verify
garbage collectors.

Much work has been done on verifying the complete correctness of a compiler.
[11] and [3] use refinement as a compilation model. In the former, a refinement
calculus is defined to support the compilation of programs written in an idealised
high-level language into the .NET assembler. The aim of this work is to refine
the whole compilation process and this approach is not automated by tools.
The latter uses a term rewriting system to reduce programs into normal forms
representing target programs.

The translation validation approach [18,19,10,20,21] aims at validating every
run of the compiler, producing a formal proof that the produced target code is a
correct implementation of the source code. This approach is based on program

Formal Verification of a Memory Model 297

checking and on static analysis. It has been applied a lot for validating a variety
of compiler optimizations, with a recent focus on loop transformations [27]. In the
proof carrying code approach [17,2,12], the compiler is rewritten in a certifying
compiler that produces both a compiled code and a proof term of some properties
(called safety rules) to verify, that have been added in the source program.
Safety rules are written in first-order predicate logic extended with predicates
for type safety and low-level memory safety. Many specialised type systems have
been used in this approach tat has been extensively applied to Java bytecode
certification.

Our work belongs to a project that investigates the feasibility of formally
verifying the correctness of a C -like compiler itself. The goal is to write the
compiler directly in the Coq specification language. Other projects that develop
machine-checked proofs of compiler correctness focus on data flow analyses and
other compiler transformations [6,23]. They do not require a memory model as
precise as ours.

6 Conclusion

This paper has presented a formalisation and a verification in Coq of a memory
model for C -like languages. Thanks to the use of Coq modules, this formalisa-
tion has been specified at two levels of abstraction. Two concrete specifications
have been implemented from an abstract specification. They describe an infinite
memory and a finite memory. Both memory models have a similar behaviour ex-
cept in the case of failure of the allocation of memory blocks. A significant part
of the specifications and correctness proofs have been factored out through the
use of modules. The memory model has been implemented as part of an ongoing
certification of a moderately-optimising C compiler. This compiler relies on 7
different languages whose formal semantics refer to the memory model, and on
transformations that require extensive reasoning over the memory model. Many
properties have been proved and certified programs have been synthesised from
the formalisation.

A limitation of our compiler is that the correctness proofs of the transforma-
tions use simulation lemmas that apply only when every statement of the source
code is mapped to zero, one or several statements of the transformed code. This
is not sufficient to prove the correctness of more sophisticated optimisations such
as code motion, lifting of loop-invariant computations or instruction scheduling,
where computations occur in a different order in the source and transformed
code. Because of this limitation, we envision to define a notion of equivalence
between memory states and to perform these optimisations on a higher-level
intermediate language, whose big-step semantics make it easier to reorder com-
putations without worrying about intermediate computational states that are
not equivalent.

Another current focus is the formalisation of non-terminating programs. The
languages of our compiler are defined by big-step semantics that hide non-
termination of programs. Our correctness proof states that any source program

298 S. Blazy and X. Leroy

that terminates on some final memory state is compiled into a program that
also terminates, produces the same memory state and calls the same functions
in the same contexts. Previous experiments in the writing of small-step seman-
tics showed us that they are not adapted for proving on machine properties such
as semantic equivalence between languages. We intend to define semantics that
collect more information than big-step semantics but that are not as concrete as
small-step semantics.

Acknowledgements

We would like to thank C.Dubois and P.Letouzey for fruitful discussions about
this work.

References

1. The Coq proof assistant. http://coq.inria.fr.
2. A.W. Appel. Foundational proof-carrying code. In IEEE Symp. on Logic in Com-

puter Science (LICS), page 247, Washington, DC, USA, June 2001.
3. A.Sampaio. An algebraic approach to compiler design, volume 4 of AMAST series

in computing. World Scientific, 1997.
4. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development

Coq’Art: The Calculus of Inductive Constructions. Springer Verlag, 2004.
5. R. Bornat. Proving pointer programs in Hoare logic. In 5th Conf. on Mathematics

of Program Construction, pages 102–126. Springer-Verlag, 2000.
6. D. Cachera, T. Jensen, D. Pichardie, and V. Rusu. Extracting a Data Flow Anal-

yser in Constructive Logic. In Proc. of Europ. Symp. on Programming (ESOP’04),
number 2986 in Lecture Notes in Computer Science, pages 385–400. 2004.

7. J. Chrząszcz. Modules in Type Theory with Generative Definitions. PhD thesis,
Warsaw Univerity and University of Paris-Sud, January 2004.

8. D.Yu and Z. Shao. Verification of safety properties for concurrent assembly code.
In Int. Conf. on Functional Programming (ICFP), pages 175–188, Snowbird, USA,
September 2004.

9. J.-C. Filliâtre and C. Marché. Multi-Prover Verification of C Programs. In 6th Int.
Conf. on Formal Engineering Methods (ICFEM), volume 3308 of Lecture Notes in
Computer Science, pages 15–29, Seattle, November 2004. Springer-Verlag.

10. G. Goos and W. Zimmermann. Verification of compilers. In Correct System Design,
Recent Insight and Advances, , pages 201–230, London, UK, 1999. Springer-Verlag.

11. G.Watson. Compilation of refinement for a practical language. In 5th Int. Conf. on
Formal Engineering Methods (ICFEM), volume 2885 of Lecture Notes in Computer
Science, Singapore, November 2003. Springer-Verlag.

12. N. Hamid, Z. Shao, V. Trifonov, S. Monnier, and Z. Ni. A syntactic approach to
foundational proof-carrying code. Journal of Automated Reasoning, 31(3-4):191–
229, September 2003.

13. X. Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. 2005. draft, submitted for publication.

14. P. Letouzey. Programmation fonctionnelle certifiée – L’extraction de programmes
dans l’assistant Coq. PhD thesis, Université Paris-Sud, July 2004.

Formal Verification of a Memory Model 299

15. F. Mehta and T. Nipkow. Proving pointer programs in higher-order logic. In Auto-
mated Deduction (CADE-19), volume 2741 of Lecture Notes in Computer Science,
pages 121–135. Springer-Verlag, 2003.

16. I. Mijajlovic and N. Torp-Smith. Refinement in separation context. In Second
workshop on semantics, program anlysis and computing analysis for memory man-
agement (SPACE), Venice, Italy, January 2004.

17. G. Necula. Proof carrying code. In Proc. of Principles Of Progamming Languages
Conf. (POPL), January 1997.

18. G. Necula. Translation validation for an optimizing compiler. In ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI), pages 83–95,
2000.

19. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Proc. of the
4th Int. Conf. on Tools and Algorithms for Construction and Analysis of Systems
(TACAS), pages 151–166, London, UK, 1998. Springer-Verlag.

20. M. Rinard and D. Marinov. Credible compilation with pointers. In Workshop on
Run-Time Result Verification (RTRV), Trento, Italy, July 1999.

21. X. Rival. Symbolic transfer function-based approaches to certified compilation. In
Principles Of Progamming Languages Conf. (POPL), pages 1–13. 2004.

22. X. Shen, Arvind, and L. Rudolph. Commit-reconcile & fences (CRF): a new mem-
ory model for architects and compiler writers. In ISCA ’99: 26th symposium on
Computer architecture, pages 150–161, Washington, DC, USA, 1999.

23. S.Lerner, T.Millstein, E.Rice, and C.Chambers. Automated soundness proofs for
dataflow analyses and transformations. In Principles Of Progamming Languages
Conf. (POPL), Long Beach, USA, 2005.

24. S.Monnier. Typed regions. In workshop on semantics, program anlysis and com-
puting analysis for memory management (SPACE), Venice, Italy, January 2004.

25. R.D. Tennent and D.R. Ghica and. Abstract models of storage. Higher-Order and
Symbolic Computation, 13(1/2):119–129, 2000.

26. D. Walker. Stacks, heaps and regions: one logic to bind them. In Second workshop
on semantics, program anlysis and computing analysis for memory management
(SPACE), Venice, Italy, January 2004. invited talk.

27. Y.Hu, C.Barrett, B.Goldberg, and A. Pnueli. Validating more loop optimizations.
In Workshop on Compiler Optimization Meets Compiler Verification (COCV), Ed-
inburgh, UK, 2005.

Symbolic Verification of Distributed Real-Time

Systems with Complex Synchronizations�

Farn Wang

Dept. of Electrical Engineering, National Taiwan University,
1, Sec. 4, Roosevelt Rd., Taipei, Taiwan 106, ROC

+886-2-33663602; FAX:+886-2-23671909
farn@cc.ee.ntu.edu.tw

http://cc.ee.ntu.edu.tw/~farn

http://cc.ee.ntu.edu.tw/~val

Abstract. CSP-style synchronizations have been used extensively in the
construction of mathematical models for the verification of embedded
systems. Although they allow for the modeling of complex cooperation
among many processes in a natural environment, not many tools have
been developed to support the modeling capability in this regard. In
this paper, we first give examples to argue that special algorithms are
needed for the efficient verification of systems with complex synchroniza-
tions. We then define our models of distributed real-time systems with
synchronized cooperation among many processes. We present algorithms
for the construction of BDD-like data-structures for the characterization
of complex synchronizations among many processes. We present weak-
est precondition algorithms that take advantage of the just-mentioned
BDD-like data-structures for the efficient verification of complex real-
time systems. Finally, we report experiments and argue that the tech-
niques could be useful in practice.

Keywords: distributed, real-time, model-checking, verification, synchro-
nization.

1 Introduction

In the verification of distributed real-time systems, the appropriate abstraction
of the system behaviors is crucial to the balance between the precision of the
models and the efficiency of verification. For instance, if we model how a missile is
directed to hit a jet-fighter at the granularity of sub-atomic particle interaction,
then of course we have an extremely precise model. However, such cumbersome
models can also involve too many details irrelevant to the verification of the
system and likely incur infeasible and unnecessary computing resource require-
ment. One commonly used abstraction technique is to model several events as
� The work is partially supported by NSC, Taiwan, ROC under grants NSC 92-2213-E-

002-103, NSC 92-2213-E-002-104, and by the System Verification Technology Project
of Industrial Technology Research Institute, Taiwan, ROC (2004).

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 300–314, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Symbolic Verification of Distributed Real-Time Systems 301

!hitting

?hitting

!explosion
!explosion

!explosion

?explosion

?explosion

?explosion

Fig. 1. A system with one missile and 4 jet-fighters

a simultaneous happening. For example, in figure 1, we have a system of an
anti-aircraft missile and multiple hostile jet-fighters. There are two events: the
‘hitting’ of the missile on a jet-fighter and the observations of the ‘explosion’
of the hapless jet-fighter by other jet-fighters. On one hand, the hitting event
is an interaction between the missile and the hapless jet-fighter. On the other
hand, right after the hitting event, the explosion event is broadcasted to all
the remaining enemy jet-fighters and may affect their actions afterwards. In most
verification tasks, what happen in the split-second between the hitting event
and the explosion event does not matter. To the missile launcher, what mat-
ters is when it can start tracking the next target. To the remaining jet-fighters,
what matters is their reaction after the observation. Thus, it is only natural to
model the hitting event and the explosion event as a simultaneous happening.
Modeling them as two separate events only unnecessarily adds to the verification
complexity and does not help engineers in analyzing the behavior of the system.

One language device designed to model simultaneous actions in two pro-
cesses is the channel concept for binary synchronization in Hoare’s CSP (Com-
municating Sequential Processes) [9]. Conceptually, the device glues two process
transitions1 from two different processes to model a global transition.2 Such a
device can greatly help to improve the modularity of model descriptions. In the
above-mentioned anti-aircraft missile example, the action that a missile hits a
jet-fighter can be modeled with a channel named hitting between the missile
and the hapless jet-fighter. The language device !hitting represents the sending
(or output) event by the missile through the channel while ?hitting represents
the receiving (or input) event by the hapless jet-fighter through the same chan-

1 A process transition models the observation of a global state-change from a process
in a concurrent system.

2 A global transition models a global state-change and could be the simultaneous in-
teraction of several process transitions.

302 F. Wang

nel. Two process transitions labeled respectively with the sending event and
receiving event through the same channel must happen at the same instant to
make a global transition. Modeling such a global transition as two synchronized
process transitions can greatly enhance the modularity in model construction.

Although the CSP-style channels are good for binary synchronizations be-
tween two parties, we can use them to construct complex global transitions out
of many simultaneous process transitions. For example, in figure 1, the event
that the missile hits one jet-fighter can cause an explosion observed by the other
three jet-fighters. By constructing the following 5 process transitions,

?explosion

?explosion

?explosion

!hitting
// a process transition by the missile

// a process transition by the hapless jet-fighter
?hitting !explosion !explosion !explosion

// process transitions by the remaining jet-fighters

we can glue the five process transitions to make a global transition that models
the simultaneity of the hitting event and the observations of the explosion
event. The above-mentioned idea of using binary synchronizations to construct
complex interactions among many processes, although plausible, has not been
supported by many verification tools [4,16]. In this paper, we investigate the vari-
ous issues involved in implementing the idea for the model-checking of communi-
cating timed automata [10]. There are two issues involved in the implementation.
First, “how do we generate the set of global transitions ?” Intuitively, we can first
record, for each event type σ, the process transitions with ?σ and those with !σ.
Then we use this recording and some heuristics to enumerate the set of global
transitions. However, this enumeration can be expensive because in practice the
number of elements in this enumeration can be of exponential complexity to the
input size. The reason is that a particular synchronization label (say !σ), can be
labeled on many process transitions of the same process. For example, suppose
that when an explosion happens, a jet-fighter can observe the event in one
of two modes: cruise and evasive maneuver with different triggering condi-
tions. Thus, we need to construct two process transitions respectively from these
two modes to receive the explosion event for each jet-fighter process. In other
words, a surviving jet-fighter can execute either of these two process transitions,
one from the cruise mode and the other from the evasive maneuver mode,
to receive an explosion event. If there are n such surviving jet-fighters, there
are 2n such synchronization combinations. Thus, even just to enumerate all the
synchronization combinations may have become infeasible when large numbers
of jet-fighters are involved. One contribution of the paper is the presentation of
an algorithm that takes advantage of the data-sharing capability of BDD-like
data-structures to calculate the symbolic characterizations of global transitions.

The second issue in the implementation is “how do we efficiently evaluate
the weakest precondition of global transitions when the number of such global
transitions is exponential to the input size ?” Another contribution of this pa-
per is the presentation of an algorithm that uses the data-sharing capability of
BDD-like data-structures [3, 5, 12] to effectively avoid the explicit enumeration

Symbolic Verification of Distributed Real-Time Systems 303

of all global transitions in the evaluation of weakest preconditions of discrete
transitions. Please note that the two issues are not specific to distributed real-
time systems. Our techniques can also apply whenever we need to analyze the
synchronization combinations in a set of (untimed or timed) processes.

We have endeavored to implement the ideas and carried out experiments to
see how our ideas work in practice. What we have found is that for global transi-
tions with simple synchronizations, weakest precondition calculation with direct
enumeration of such global transitions can be more efficient. However, for global
transitions with complex synchronizations involving many processes, calculation
that takes advantage of data-sharing capability of BDD-like data-structures re-
sults in higher efficiency. In this article, we also propose a hybrid scheme that
uses a threshold for the number of processes involved in a global transition to
decide which way we should use for the weakest precondition calculation through
the global transition. The experiment shows that the techniques could really be
useful in the verification of real-world projects. The tool and benchmarks can be
downloaded for free at http://cc.ee.ntu.edu.tw/~val.

2 Safety Analysis Problem of Communicating Timed
Automata

We use the widely accepted model of communicating timed automata (CTA)
[2, 10, 15] to describe the transitions in dense-time state-spaces. A CTA is
a set of process timed automata (PTA) that communicate with one another
through CSP-style synchronization channels. Each PTA is a finite-state automa-
ton equipped with a finite set of clocks which can hold nonnegative real-values.
At any moment, the PTA can stay in only one mode (or control location). Each
mode is labeled with an invariance condition on clocks. In its operation, a group
of the process transitions can be triggered when the corresponding synchroniza-
tion requirement is met and the corresponding triggering conditions are satisfied.
Upon being triggered, the PTAs instantaneously transit from their source modes
to their respective destination modes and reset some clocks to zero. In between
transitions, all clocks increase their readings at a uniform rate.

For convenience, given a set P of atomic propositions and a set X of clocks,
we use B(P, X) as the set of all Boolean combinations of atoms of the forms p
and x ∼ c, where p ∈ P , x ∈ X ∪ {0}, ‘∼’ is one of ≤, <, =, >,≥, and c is an
integer constant.

Definition 1. process timed automata (PTA) A PTA is given as a tuple
〈Σ, X, Q, I, μ, E, γ, λ, τ, π〉 with the following restrictions. Σ is a finite set of
event names. X is a finite set of clocks. Q is a finite set of modes. I ∈ B(Q, X)
is the initial condition. μ : Q �→ B(∅, X) defines the conjunctive invariance
condition of each mode. E is the finite set of process transitions. γ : E �→
(Q × Q) defines the source and destination modes of each process transition.
λ : (E ×Σ) �→ Z defines the number of instances of an event type that happen
on each process transition. For e ∈ E and σ ∈ Σ,

304 F. Wang

idle

busy collision

?start

?start

1

2

3

bus

?end

4
!collision

!collision

busy

idle

!end
x<=5

5

sender 1

!start
x:=0

?collision

?collision

busy

idle

!end
x<=5

!start
x:=0

?collision

?collision

8

7

6. . .
.

sender m − 1

4m − 1

4m

4m − 3

4m − 2

Fig. 2. the model of bus-contending systems

• if λ(e, σ) < 0, it intuitively means that |λ(e, σ)| messages of type σ must be
received by the process executing process transition e;

• if λ(e, σ) = 0, it intuitively means that the execution of process transition e
does not involve the reception or transmission of messages of type σ; and

• if λ(e, σ) > 0, it intuitively means that |λ(e, σ)| messages of type σ must be
transmitted by the process executing process transition e.

Such a general scheme allows for the modeling of broadcasting and multicasting
of many generic transmission events. τ : E �→ B(∅, X) and π : E �→ 2X respec-
tively defines the conjunctive triggering condition and the clock set to reset of
each process transition.

Definition 2. Communicating timed automata (CTA) A CTA is a tuple
〈Σ, A1, . . . , Am〉 where for each 1 ≤ p ≤ m, Ap is a PTA like
〈Σ, Xp, Qp, Ip, μp, Ep, γp, λp, τp, πp〉. The concurrency (or number of processes)
of the CTA is m. For each 1 ≤ p ≤ m, Ap is also called process p.

For convenience of presentation, we assume that for all 1 ≤ p < p′ ≤ m,
Xp ∩Xp′ = ∅, Qp ∩Qp′ = ∅, and Ep ∩ Ep′ = ∅. Given an x ∈ Xp, q ∈ Qp, and
e ∈ Ep, we let proc(x) = p, proc(q) = p, and proc(e) = p represent the process
indices of x, q, e respectively.

In figure 2, we have a bus-contending system with one bus PTA and m
sender PTAs. The circles represent modes while the arcs represent process tran-
sitions, which may be marked with synchronization labels (e.g., !start, ?end,
!collision, . . .), triggering conditions (e.g., x ≤ 5), and assignments (e.g.,
x := 0;). For convenience, we have labeled the process transitions with num-
bers. In the system, a sender process may synchronize through channel start
with the bus to start sending messages on the bus. While one sender is using
the bus, another may also synchronize through channel start to start placing
messages on the bus and corrupt the bus contents. When this happen, the bus
then send m bus collision signals to all the senders through transition 4.

Definition 3. states Suppose we have a CTA M = 〈Σ, A1, . . . , Am〉 where for
each 1 ≤ p ≤ m, Ap = 〈Σ, Xp, Qp, Ip, μp, Ep, γp, λp, τp, πp〉. A state of M is a
valuation from {1, . . . , m} ∪

⋃
1≤p≤m Xp such that

Symbolic Verification of Distributed Real-Time Systems 305

• for each 1 ≤ p ≤ m, ν(p) ∈ Qp defines the mode of process p in state ν;
• for each x ∈

⋃
1≤p≤m Xp, ν(x) ∈ R+ defines the reading of clock x in state

ν. (R+ is the set of non-negative reals.)
Given δ ∈ R+, ν + δ is a new state that agrees with ν except that for all
x ∈

⋃
1≤p≤m Xp, (ν + δ)(x) = ν(x) + δ. Given an X ⊆

⋃
1≤p≤m Xp, νX is a

new state that agrees with ν except that for every x ∈ X , νX(x) = 0. Given a
Q ⊆

⋃
1≤p≤m Qp of process modes such that ∀1 ≤ p ≤ m(|{q | q ∈ Q∩Qp}| ≤ 1),

νQ is the new state that agrees with ν except that ∀q ∈ Q∧Qp, (νQ)(p) = q.

We say a state ν satisfies a state predicate η ∈ B(

⋃
1≤p≤m Qp,

⋃
1≤p≤m Xp)

iff the following inductive conditions are satisfied.
• ν |= q iff ν(proc(q)) = q;
• ν |= x ∼ c iff ν(x) ∼ c;
• ν |= η1 ∨ η2 iff ν |= η1 or ν |= η2;
• ν |= ¬η1 iff it is not the case that ν |= η1.

A PTA cannot execute its process transitions by its own. According to CSP’s
semantics [9], a process transition can be executed if and only if all its received
messages have been sent out by some processes at the same time and all its
transmitted messages have also been received by some processes at the same
time. Thus, several process transitions may have to be grouped together for
simultaneous execution. Now we have to define what a legitimate synchronization
combination is in order not to violate the widely accepted interleaving semantics.
A transition plan is a set T ⊆

⋃
1≤p≤m Ep such that there is at most one element

in T from each Ep, i.e., ∀1 ≤ p ≤ m, |Ep ∩ T | ≤ 1. If Ep ∩ T = ∅, it means that
process p does not participate in transition plan T .

A transition plan is consistent iff each output event from a process is received
by exactly one unique corresponding process with a unique matching input event.
Formally speaking, in a consistent transition plan T , for each channel σ, the
number of output events must match that of input events. Or in arithmetic,
∀σ ∈ Σ(

∑
e∈T λ(e, σ) = 0).

However, that a transition plan is consistent does not mean it is atomic in
the sense of interleaving semantics. For example, we may have four processes
that respectively may execute transitions e1, e2, e3, e4. Suppose these four tran-
sitions are respectively labeled with synchronization labels ‘!a,’ ‘!a,’ ‘?a,’ and ‘?a.’
Then plans {e1, e3}, {e1, e4}, {e2, e3}, and {e2, e4} are all consistent. Moreover,
{e1, e2, e3, e4} is also consistent but not quite compatible with the interleaving
semantics since it is not minimal. Here minimality means the transition plan can-
not be broken down to two smaller non-empty and consistent transition plans.
Thus, we would like also to require all our transition plans to be both consistent
and minimal. A consistent and minimal transition plan is called a (legitimate)
global transition. For example, in figure 2, for any k ≥ 1, process transitions
1 and 4k + 1 can combine to be a global transition. Also process transitions
4, 7, . . . , 4m + 3 can make a global transition since m ‘!collision’ on process
transition 4 matches m ‘?collision’ respectively labeled on process transitions
7, . . . , 4m + 3.

306 F. Wang

Note that the empty set is a valid global transition since it is consistent and
minimal. Intuitively, it represents the global transition of ‘no action.’

Given two states ν, ν′ of a CTA M and a global transition T , we say ν transits
to ν′ through T , in symbols ν

T−→ ν′, iff ν is identical to ν′ except that
• for all e ∈ T ∩ Ep, γ(e) = (ν(proc(e)), ν′(proc(e))); and
• ν |=

∧
e∈T τproc(e)(e); and

•
(
ν

⋃
e∈T πproc(e)(e)

) ⋃
e∈T {ν′(proc(e))} = ν′.

Definition 4. runs Suppose we are given a CTA M = 〈Σ, A1, A2, . . . , Am〉 such
that for each 1 ≤ p ≤ m, Ap = 〈Σ, Xp, Qp, Ip, μp, Ep, γp, λp, τp, πp〉. A run of M
is an infinite sequence of state-time pairs (ν1, t1)(ν2, t2) . . . (νk, tk) such
that t1t2 . . . tk is a monotonically increasing real-number (time) divergent
sequence and for all k ≥ 1,
• for all t ∈ [0, tk+1 − tk], νk + t |=

∧
1≤p≤m μp(νk(p)); and

• there is a global transition T such that νk + tk+1 − tk
T−→ νk+1.

For convenience of discussion, we adopt safety analysis as our verification
framework. Given a safety predicate η ∈ B(

⋃
1≤p≤m Qp,

⋃
1≤p≤m Xp) and a run

(ν1, t1)(ν2, t2) . . . (νk, tk) of a CTA, we say the run satisfies η iff for every
k ≥ 1 and every t ∈ [0, tk+1 − tk], νk + t |= η. A CTA is safe with respect to η
iff for every run (ν1, t1) of the CTA such that ν1 |=

∧
1≤p≤m Ip, the run

satisfies η. Our safety analysis problem asks whether a given CTA is safe with
respect to a given safety predicate.

3 Symbolic Characterization of Global Transitions

To implement a model-checker with general and flexible global transitions, we
need to know what the global transitions in a CTA are. A straightforward way to
do this is to try out every subset T of

⋃
1≤p≤m Ep with ∀1 ≤ p ≤ m(|T ∩Ep| ≤ 1)

and check if T is both consistent and minimal. But this could be infeasible in
practice. For example, in figure 2, as the number of senders increases to an
arbitrary natural number m, since signal ‘collision’ emulates a broadcasting,
process transition 4 will then be labeled with m ‘!collision.’ Thus the number
of global transitions for collisionwill be 2m which is of exponential complexity.
Moreover, in a well-designed programming language, all the senders may very
likely share the same procedure template. Thus, the program input size is roughly
the size of one sender procedure template plus the size of one bus procedure
template. This makes the exponential blow-up even more unbearable.

In the following, we first prove an equivalence condition for the minimality
and consistency of transition plans. The condition helps us understand the inter-
actions among the synchronizers in a global transition. Based on this condition,
we then present an algorithm, which may very well avoid the exponential blow-up
in enumerating the global transitions in the average cases, for the construction of
a symbolic characterization of global transitions. In short, the symbolic charac-
terization is a BDD-like data-structure, which allows us to take advantage of the
data-sharing capability of BDD-like data-structures for efficient manipulation.

Symbolic Verification of Distributed Real-Time Systems 307

For convenience of presentation, we use positive integers to index the process
transitions. For each process p, we introduce variable Tp, which records the tran-
sition to be executed by process p in a global transition. Specifically, Tp =⊥ if
process p does not participate in the global transition. For the system in figure 2,
the characterization is in figure 3. In the characterization, the label on a node

3 4

109

6
5

[11, 12]

T1

T2 T2 T2

T3 T3 T3

true

[1, 2]

[7, 8]⊥

T3

⊥

T2

⊥⊥

⊥

Fig. 3. The symbolic characterization of global transitions for the CTA in figure 2

together with the label on an outgoing arc specifies the participation of a process
in a global transition. For example, the arc labeled with 3 from the root means
that T1 = 3, i.e., process 1 executing process transition 3 in a global transition.
A root-to-sink path specifies global transitions. For example, in figure 3, the fol-

lowing path �T1
[1,2]−→ �T2

⊥−→ �T3
9−→ true represents global transitions {1, 9} and

{2, 9}. The set of all root-to-sink paths in such a characterization represents the
set of all global transitions.

Given a transition plan T , a synchronization plan ΨT for T represents how
the output events of each process are to be received by the corresponding input
events of peer processes. Formally speaking, ΨT is a mapping from T × Σ × T
to Z such that
• if ΨT (e, σ, e′) ≥ 0, it represents the number of event σ sent form process

transition e (by process proc(e)) to be received by process transition e′ (by
process proc(e′)) in T .

• if ΨT (e, σ, e′) ≤ 0, its absolute value represents the number of event σ re-
ceived by process transition e (by process proc(e)) to be sent from process
transition e′ (by process proc(e′)) in T .

Thus ΨT (e, σ, e′) = −ΨT (e′, σ, e). A synchronization plan ΨT is consistent iff for
all e ∈ T , the total number of inputs and outputs for each σ ∈ Σ is consis-
tent with λproc(e)(e, σ). Formally speaking, this means that

∑
e′∈T ΨT (e, σ, e′) =

λproc(e)(e, σ). From now on, we shall assume that all our synchronization plans
are consistent.

A sequence e1 . . . ek of process transitions in a synchronization plan ΨT is
called a connecting sequence between e1 and ek in ΨT iff for each 1 ≤ i < k,
there is a σi ∈ Σ such that ΨT (ei, σi, ei+1) �= 0. We have the following lemma,

308 F. Wang

which helps laying the keel of our algorithm for the construction of the symbolic
characterization of global transitions.

Lemma 1. A consistent transition plan T is minimal iff for all synchronization
plans ΨT , we cannot partition T into non-empty consistent transition plans Ṫ , T̈
such that for each two transitions ė ∈ Ṫ , ë ∈ T̈ , there is no connecting sequence
between ė and ë in ΨT .

The proof of the lemma is omitted due to page-limit. Lemma 1 implies that
we can use connecting sequences to construct the symbolic characterization of
global transitions. Intuitively, a global transition T is a maximal set of process
transitions such that there is a synchronization plan ΨT and between any two
elements in T , there must be a connecting sequence in ΨT . For each e ∈ T , the
connecting sequences from e compose a spanning tree in T . We use the follow-
ing recursive procedure to construct the characterization of global transitions.
Conceptually, we start a nondeterministic process to traverse the connecting
sequences from each process transition at statement (a). In each recursive invo-
cation, we make a nondeterministic choice of the value of ΨT (e, σ, e′) for some
e, σ, e′ at statement (c). Also we need a mapping H : Σ �→ Z to record the
numbers of standing receiving and sending requests for the signals in Σ. Given
σ ∈ Σ and z ∈ Z, notationally, H [σ ← z] is a mapping identical to H except
that H(σ) = z.

global-transitions(M) /* M is a CTA M = 〈Σ, A1, A2, . . . , Am〉 such that

for each 1 ≤ p ≤ m, Ap = 〈Σ, Xp, Qp, Ip, μp, Ep, γp, λp, τp, πp〉. */ {
Φ := ∅; φ := false;

for each e ∈ 1≤p≤m Ep, do { . (a)

H := ∅; for σ ∈ Σ, H := [σ ← λproc(e)(e, σ)];

φ := φ ∨ (Tproc(e) = e ∧ rec-global-transitions(H, {proc(e)}));
}
return φ;

}

rec-global-transitions(H, K) {
if ∃φ((H,K, φ) ∈ Φ), return φ; . (b)

if ∀σ ∈ Σ(H(σ) = 0),

{ φ := 1≤p≤m;p �∈K Tp =⊥; Φ := Φ ∪ {(H, K, φ)}; return φ; } (c)

φ := false;

get one σ ∈ Σ such that H(σ) �= 0;

for each 1 ≤ p ≤ m such that p �∈ K, do {
for each e ∈ Ep such that H(σ) · λproc(e)(e, σ) < 0, do {

H ′ := H ; for σ′ ∈ Σ, H ′ := H ′[σ′ ← H(σ′) + λproc(e)(e, σ
′)]; (d)

φ := φ ∨ (Tproc(e) = e ∧ rec-global-transitions(H ′, K ∪ {proc(e)}));
} }
Φ := Φ ∪ {(H,K, φ)}; return φ; . (e)

}

Symbolic Verification of Distributed Real-Time Systems 309

The procedure basically traverses through all trees composed of the connect-
ing sequences. What makes it efficient is that we use the set variable Φ to record
the argument pairs that have already been processed. Suppose we have recur-
sively invoked rec-global-transitions() by picking e1, . . . , ek at statement (d)
when we enter a particular instance of rec-global-transitions() to execute
statement (b). At this moment, the record for the current invocation is a triple
like (H, K, φ). Here H is the accumulation of the standing transmission and re-
ceiving events along e1, . . . , ek, i.e., for each σ ∈ Σ, H(σ) =

∑
1≤i≤k λ(ei, σ).

K shows which processes have already participated in the global transition, i.e.,
K = {proc(ei) | 1 ≤ i ≤ k}. φ is the result BDD-like data-structure for argu-
ment pair H and K. In statement (b), every time when we find out that the
argument pair has been processed before, we simply return the recorded result
and save the computation resources. If the argument pair has not been pro-
cessed before, we calculate and record the result in either statement (c) or (e).
Statement (c) takes care of the case that a minimal transition plan has been
generated. Statement (e) is executed when further traversing is still needed by
invoking rec-global-transitions() to explore further along the connecting
sequences.

The set of global transitions for CTA M can be enumerated as the set of root-
to-sink paths in global-transitions(M). For convenience of presentation, we
let ΓM = global-transitions(M).

4 Weakest Precondition Calculation for Backward
Reachability Analysis

To calculate a representation of the backwardly reachable state-space, we need
two basic procedures, one for the computation of weakest preconditions of all
global transitions and the other for those of backward time-progressions. We call
the former xplans bck() and the latter time bck(). Specifically, xplans bck(η)
returns the weakest precondition of states in description η through any global
transitions. time bck(η) returns the weakest precondition of state description
η through backward time-progress. Details about time bck() can be found in
[8,11,14]. In subsections 4.1 and 4.2, we discuss two algorithms of xplans bck().
The two ways both involve double-loops. The former is traditional in that it
enumerates all paths (i.e. global transitions) in ΓM to calculate a weakest pre-
condition. The latter is our innovation and takes advantage of the BDD-like
data-structure ΓM to calculate the weakest precondition of all global transitions
as a whole.

With these two basic procedures, the backward reachability procedure, de-
noted reachable bck(η1, η2), which characterizes the state-space for ∃η1Uη2

[8, 11, 12, 14], can be implemented as the least fixpoint of equation:

Y = η2 ∨ (η1 ∧ time bck(η1 ∧ xplans bck(Y)))

310 F. Wang

i.e., reachable bck(η1, η2) ≡ lfpY. (η2 ∨ (η1 ∧ time bck(η1 ∧ xplans bck(Y)))).
The monotonicity of F in fixpoint equation Y = F (Y) and finite structures of
CTA state-space [1] together ensure the computability of the least fixpoint.

We can answer the safety of a CTA with respect to a safety predicate η by
calculating

∧
1≤p≤m Ip ∧ reachable bck(true,¬η). If the cacluation results in

false, the system is safe. Otherwise it is unsafe.
Note that all the symbolic state-space characterizations can be represented as

either sets of pairs of modes and DBMs [6] or BDD-like data-structures [11,12].
Our algorithms are independent of the representation scheme of η.

4.1 Algorithm I for xplans bck()

We use for each 1 ≤ p ≤ m, a variable modep that records the current mode of
process p. We need a procedure, FM elim(η, W), that implements the Fourier-
Motzkin elimination [7] of variables in W from predicate η. There could be
clock variables and mode variables in W . Geometrically, FM elim(η, W) is the
projection of η on the space without dimensions W . Algebraically, given W =
{w1, . . . , wh}, FM elim(η, W) = ∃w1∃w2 . . .∃wh(η). The implementation of
FM elim() with BDD-like data-structures for dense-time spaces has been dis-
cussed in [12]. The first implementation of xplans bck(η) is as follows.

xplans bck(η) /* with context CTA M */ {
Let ψ := false;

for each T in the set of global transitions in ΓM , do { . (f)

φ := η ∧ e∈T ;x∈πproc(e)
x = 0 ∧ e∈T ;γ(e)=(q,q′) modeproc(e) = q′; (g)

φ := FM elim φ, e∈T (π(e) ∪ {modeproc(e)}) ; . (h)

ψ := ψ ∨ φ ∧ e∈T ;γ(e)=(q,q′) τ (e) ∧ modeproc(e) = q ; .(i)

}
return ψ;

}

Algorithm I is realized as a double-loop. It first enumerates all paths (i.e.
global transitions) in ΓM in the outer-loop (at statement (f)) and then enumer-
ates the process transitions (at statement (g)) in the current global transition
in the inner-loop to calculate a weakest precondition. Statement (g) calculates
the postcondition right after a global transition. Statement (h) calculates the
precondition right before the assignments (or clock-resets) of the global transi-
tion. Statement (i) calculates the preconditions right at the satisfaction of the
triggering conditions of all the participating process transitions.

Algorithm I may perform badly when there are too many global transitions.
This could be the case when there are synchronization plans involving all pro-
cesses and each process can participate in such plans with many process tran-
sitions. Suppose G is the number of global transitions. In the worst case, G
can be exponential to the input sizes in bits. But when there is no such huge
synchronization plan, this algorithm can be efficient in that it extracts the state-
predicate into G small chunks to calculate weakest preconditions.

Symbolic Verification of Distributed Real-Time Systems 311

4.2 Algorithm II for xplans bck()

Algorithm II works on η ∧ ΓM in the following way.

xplans bck(η) /* with context CTA M */ {
Let η := η ∧ ΓM ;

for each 1 ≤ p ≤ m, do { . (j)

ψ := η ∧ (Tp =⊥);

for each e ∈ Ep with γ(e) = (q, q′), { . (k)

φ := η ∧ (Tp = e) ∧ x∈πp(e) x = 0 ∧ (modep = q′); . (l)

ψ := ψ ∨ FM elim (φ, π(e) ∪ {modep}); . (m)

}
η := ψ;

}
η = η ∧ 1≤p≤m(Tp =⊥ ∨ e∈Ep;γ(e)=(q,q′)(Tp = e ∧ modeproc(e) = q ∧ τp(e)); . . (n)

return FM elim(η, {T1, . . . , Tm}); . (o)

}

Algorithm II is also a double-loop (at statements (j) and (k)). Suppose after
the (p − 1)’st iteration of the outer loop, the value of ψ is ψp−1. In the p’th
iteration of the outer loop, it partitions ψp−1 into |Ep|+1 chunks. For the chunk
for Tp = e, statement (l) calculates the postcondition through the assignments
(or clock-resets) of process transition e. Then, statement (m) calculates the pre-
condition before the assignments (or clock-resets) of process transition e. After
the preconditions of the assignments (or clock-resets) of all process transitions
have been considered, statement (n) then takes into consideration the triggering
conditions of all process transitions. Variables T1, . . . , Tm can then be removed
with the Fourier-Motzkin elimination with statement (o).

The number of iterations of the inner loop of algorithm II is always∑
1≤p≤m |Ep|. Thus, it does not suffer from the possible combinatorial explo-

sion of global transition count as algorithm I does. But in iteration p of the
outer loop, it partitions η into |Ep| + 1 chunks to calculate weakest precondi-
tions. Since |Ep|+1 is independent of the concurrency size, when the concurrency
is high, such chunks can be large BDD-like data-structures with complexities ex-
ponential to the input sizes in bits. Usually the performance of BDD operations
may degrade as the sizes of the BDDs increase.

4.3 A Hybrid Scheme to Combine Algorithms I and II

As mentioned in the last two subsections, algorithm I may show its drawbacks
when the number of global transitions is large. And algorithm II could show its
drawbacks when the number is small. We have designed a hybrid of algorithms I
and II so that global transitions of smaller sizes can be handled with algorithm
I while those of larger sizes can be with algorithm II. Specifically, we have a
run-time threshold parameter β so that global transitions of sizes ≤ β will be
evaluated with algorithm I and those of sizes > β will be evaluated with algo-

312 F. Wang

rithm II. In our experiment, we have observed that usually smaller values of β,
like 2, 3, or 4, engender good verification performance.

5 Implementation and Experiments

We have implemented the ideas in our model-checker/simulator, RED version
6.0 with the new BDD-like data-structure, CRD (Clock-Restriction Diagram)
[12,13,15]. Due to page-limit, we only report experiment with the following four
benchmarks that use global transitions involving all processes.
• CSMA/CD [16]: This is the Ethernet bus arbitration protocol with the idea

of collision-and-retry. There can be one bus process and m sender processes.
Global transitions involving all processes happen when the bus process sends
out collision signals to all senders at the same time. We want to verify that
at any moment, at most one process is in the transmission mode for ≥ 52
time units.

• SAM, Missile against hostile jet-fighters: This is the system illustrated in
figure 1. There can be a missile process and m jet-fighter processes. It is
assumed that for a system with m jet-fighters, the missile updates its status
2m+1 times more frequently than the jet-fighters. Global transitions involv-
ing all processes happen when a hapless jet-fighter is hit and the explosion
is observed by all the other jet-fighters. The properties we want to verify is
that no jet-fighter can stay close to the target for more than 2m time units.

• FIFO channel: There can be a user process, a queue manager process, and
m queue slot processes. We use a local variable number of each slot process
to record the position of the slot in the queue. Global transitions involving
all processes happen when the queue head slot is dequeued and the other
occupied slot processes must decrement their numbers. We want to verify
that the values of variables number correctly record the queue formation.

• ARP, Ethernet address resolution protocol: This protocol is used by a sender
to get the Ethernet address (48 bits long) of the receiver in Ethernet. Initially,
the sender onlys know the IP address of the receiver. There are one sender
process and m receiver processes. Global transitions involving all processes
happen when the sender broadcasts the IP address of the receiver along
the Ethernet. We want to verify that when the sender starts sending the
messages, it knows the correct Ethernet address of the receiver.

The four benchmarks are all parameterized, i.e., the concurrency sizes are ad-
justable through the parameter m. We use parameterized benchmarks so that we
can observe how our techniques scale with respect to concurrency sizes, which
are a major factor for combinatorial explosion in verification complexity.

In table 1, please find the performance data. For each benchmark, we collected
data with β = 0 (corresponding to running Algorithm II alone), a medium value
for β (corresponding to running the hybrid scheme), and the maximum value for
β, i.e., the number of processes (corresponding to running Algorithm I alone).
The medium values for β were chosen through trials and errors. We found that
the medium values equal to the sizes of small global transitions usually engender
the best verification performance.

Symbolic Verification of Distributed Real-Time Systems 313

Table 1. Performance data of scalability with respect to number of processes

spec. m β = 0 medium β values β =# procs

CSMA/CD 2 0.01s/47k 0.00s/28k 0.00s/21k
3 0.05s/86k 0.03s/54k 0.06s/43k

medium β 4 0.20s/134k 0.11s/89k 0.26s/93k
values = 2 5 0.42s/192k 0.40s/138k 1.73s/208k

6 0.84s/304k 0.78s/299k 12.9s/499k
7 1.70s/681k 1.76s/674k 132s/1262k
8 3.37s/1551k 3.79s/1546k 2572s/3316k
9 7.56s/3548k 7.76s/3541k
10 18.4s/8075k 18.5s/8072k
11 54.2s/18272k 51.5s/18274k N/A
12 144s/41105k 146s/41083k
13 385s/91826k 397s/91873k

SAM 2 0.18s/92k 0.17s/45k 0.10s/45k
3 1.29s/188k 0.75s/132k 0.80s/130k

medium β 4 6.01s/387k 4.03s/352k 4.60s/400k
values = 2 5 26.5s/899k 17.3s/752k 23.6s/931k

6 99.4s/1763k 61.5s/1344k 144s/1959k
7 284s/3195k 185s/2205k 750s/5703k
8 734s/5204k 537s/3384k N/A

FIFO 2 0.04s/72k 0.02s/51k 0.02s/51k
3 0.22s/172k 0.15s/103k 0.17s/152k

medium β 4 0.59s/346k 0.31s/231k 0.79s/428k
values = 4 5 1.46s/620k 1.27s/471k 4.97s/1230k

6 5.07s/1023k 4.32s/872k 84.9s/3728k
7 24.0s/1665k 18.2s/1540k 938s/11734k
8 90.0s/3853k 76.7s/3372k N/A
9 304s/9035k 290s/9894k

ARP 2 0.55s/186k 0.40s/149k 0.40s/141k
3 5.59s/526k 3.21s/460k 3.92s/615k

medium β 4 72.0s/1578k 33.0s/1105k 58.7s/2709k
values = 2 5 872s/7318k 435s/5837k 703s/13494k

6 8575s/84086k 4194s/84087k N/A

data collected on a Pentium 4 Mobile 1.6GHz with 256MB memory running LINUX;
s: seconds; k: kilobytes of memory in data-structure; N/A: not available;

As can be seen from the data, the techniques proposed in this work really
help in enhancing the verification performance of our model-checker. Invariably,
when the number of global transitions is big, running Algorithm I alone always
ends up with the worst performance.

Against three out of the four benchmarks, the hybrid scheme performs better
than Algorithm II. But even when the hybrid scheme performs worse (against
CSMA/CD), the difference in performance is still very small. The experiment
data seems to suggest that the hybrid scheme could be a safe choice. More
experiments could be carried out to check this conjecture in the future.

Note that we did not compare our implementation with famous tools like
Kronos [16] and UPPALL [4] since they do not support complex behaviors con-
structed out of binary synchronizations. Thus it could be difficult for them to
run the high-level behavior models used in our experiment.

6 Conclusion

Successful verification of complex systems demands both an appropriate ab-
straction level and efficient verification techniques for such systems. Toward this

314 F. Wang

end, we have made the following contributions: (1) A flexible synchronization
scheme to model complex high-level behaviors in distributed real-time systems.
(2) A BDD-based algorithm to calculate the characterizations of complex syn-
chronizations among process transitions. (3) A BDD-baase algorithm for the
weakest preconditions of all transition synchronizations calculated in a bulk. (4)
A hybrid scheme to tune the performance our techniques.

References

1. R. Alur, C. Courcoubetis, D.L. Dill. Model Checking for Real-Time Systems, IEEE
LICS, 1990.

2. R. Alur, D.L. Dill. Automata for modelling real-time systems. ICALP’ 1990, LNCS
443, Springer-Verlag, pp.322-335.

3. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L.Dill, L.J. Hwang. Symbolic Model
Checking: 1020 States and Beyond, IEEE LICS, 1990.

4. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, Wang Yi. UPPAAL - a Tool
Suite for Automatic Verification of Real-Time Systems. Hybrid Control System
Symposium, 1996, LNCS, Springer-Verlag.

5. R.E. Bryant. Graph-based Algorithms for Boolean Function Manipulation, IEEE
Trans. Comput., C-35(8), 1986.

6. D.L. Dill. Timing Assumptions and Verification of Finite-state Concurrent Sys-
tems. CAV’89, LNCS 407, Springer-Verlag.

7. J.B. Fourier. (reported in:) Analyse des travaux de l’Académie Royale des Sciences
pendant l’année 1824, Partie Mathématique, 1827.

8. T.A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine. Symbolic Model Checking for
Real-Time Systems, IEEE LICS 1992.

9. C.A.R. Hoare. Communicating Sequential Processes, Prentice Hall, 1985.
10. A. Shaw. Communicating Real-Time State Machines. IEEE Transactions on Soft-

ware Engineering 18(9), September, 1992.
11. F. Wang. Efficient Data-Structure for Fully Symbolic Verification of Real-Time

Software Systems. TACAS’2000, LNCS 1785, Springer-Verlag.
12. F. Wang. Efficient Verification of Timed Automata with BDD-like Data-Structures,

STTT (Software Tools for Technology Transfer), Vol. 6, Nr. 1, June 2004, Springer-
Verlag; special issue for the 4th VMCAI, Jan. 2003, LNCS 2575, Springer-Verlag.

13. F. Wang. Model-Checking Distributed Real-Time Systems with States, Events,
and Multiple Fairness Assumptions. AMAST’2004, LNCS 3116, Springer-Verlag.

14. F. Wang, P.-A. Hsiung. Efficient and User-Friendly Verification. IEEE Transactions
on Computers, Jan. 2002.

15. F. Wang, G.-D. Huang, F. Yu. Symbolic Simulation of Real-Time Concurrent Sys-
tems. 9th RTCSA, Feb. 2003, LNCS 2968, Springer-Verlag.

16. S. Yovine. Kronos: A Verification Tool for Real-Time Systems. International Jour-
nal of Software Tools for Technology Transfer, Vol. 1, Nr. 1/2, October 1997.

An Improved Rule for While Loops in

Deductive Program Verification

Bernhard Beckert1, Steffen Schlager2, and Peter H. Schmitt2

1 University of Koblenz-Landau, Institute for Computer Science,
D-56072 Koblenz, Germany
beckert@uni-koblenz.de

2 Universität Karlsruhe, Institute for Theoretical Computer Science,
D-76128 Karlsruhe, Germany

{schlager, pschmitt}@ira.uka.de

Abstract. Performance and usability of deductive program verification
systems can be enhanced if specifications not only consist of pre-/post-
condition pairs and invariants but also include information on which
memory locations are modified by the program. This allows to separate
the aspects of (a) which locations change and (b) how they change, state
the change information in a compact way, and make the proof process
more efficient. In this paper, we extend this idea from method specifi-
cations to loop invariants; and we define a proof rule for while loops
that makes use of the change information associated with the loop body.
It has been implemented and is successfully used in the KeY software
verification system.

1 Introduction

The Idea of Specifying Change Information and a Motivating
Example. Deductive program verification systems are mostly based on pro-
gram logics, such as dynamic logic [11,13,12] and Hoare logic [3]. Their perfor-
mance and usability can be greatly enhanced if specifications of programs not
only consist of the usual pre-/post-condition pairs and invariants but also in-
clude additional information, such as knowledge about which memory locations
are changed by a program. More precisely, we associate with a program p a
set Modp of expressions, called the modifier set (for p), with the understanding
that Modp is part of the specification of p. Its semantics is that those parts of
a program state that are not referenced by an expression in Modp will never be
changed by executing p.

As a motivating example, consider the following program pmin that computes
the minimum of an array a of integers:

m := a[0]; i := 1;
while (i < length(a)) do

if (a[i] < m) then m := a[i]; fi
i := i + 1;

od

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 315–329, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

316 B. Beckert, S. Schlager, and P.H. Schmitt

A correct (though incomplete) post-condition for this program is

φmin = (∀x)(0 ≤ x < length(a)→ a[x] ≤ m)

stating that, after running pmin, the variable m indeed contains the minimum
of a. However, a specification that just consists of φmin is rather weak. The
problem is that φmin can also be established using, for example, a program that
sets m as well as all elements of a to 0, which of course is not the intended
behaviour. To exclude such programs, the specification must also state what the
program does modify (the variables i and m) and does not modify (the array a
and its elements). One way of doing this is to extend the post-condition with an
additional part

φinv = (∀x)(0 ≤ x < length(a)→ a[x] = a′[x])

where a′ is a new array variable (not allowed to occur in the program) that
contains the “old” values of the array elements. To make sure a′ has the same
elements as a, the formula φinv must also be used as a pre-condition and, thus, be
turned into an invariant. In Dynamic Logic, this specification of pmin is written
as φinv → [pmin](φmin ∧ φinv).

But, then, φinv also has to be made part to the loop invariant

φloopinv = φinv ∧ 0 ≤ i ≤ length(a) ∧ (∀x)(0 ≤ x < i→ a[x] ≤ m)

that is used during the proof that pmin indeed satisfies its specification, making
that proof more complex and proof construction more difficult and less efficient.

In general, loop invariants are “polluted” by formulas stating what the loop
does not do. All relevant properties of the pre-state that need to be preserved
have to be encoded into the invariant, even if they are in no way affected by the
loop. Thus, two aspects are intermingled:

– Information about what intended effects the loop does have.
– Information about what non-intended effects the loop does not have.

This problem can be avoided by encoding the second aspect (i.e., the change
information) with a modifier set instead of adding it to the invariant. The two
aspects then get separated both in the specification and in the correctness proof,
as the (sub-)proofs that a program (a) satisfies its post-condition and (b) satisfies
its modifier set are also separated as well.

For our program pmin, an appropriate modifier set is

Modmin = {i, m} .

It states in a very compact and simple way that pmin only changes i and m and,
in particular, does not change the array a.

Besides the separation of the two different aspects, modifier sets have the
advantage that they encode what is changed, while invariants must encode all
locations that are not changed, which for non-trivial programs are many more.

An Improved Rule for While Loops in Deductive Program Verification 317

Extension to Loops. Modifier sets that are part of method or function spec-
ifications have been investigated before (see the section on related work). Now,
in this paper, we extend the idea of modifier sets from method specifications to
loop invariants. Here, as well, modifier sets allow

– to separate the aspects of which locations change and how they change,
– state the change information in a compact way
– make the proof process more efficient.

To achieve the latter point, we define a new Dynamic Logic proof rule for while
loops that makes use of the information contained in a modifier set for the loop
body (as is also described in the following, the rule can easily be adapted to other
program logics, such as Hoare logic).

Loops in general can—and in practice often will—change a finite but unknown
number of memory locations (though in our simple motivating example pmin the
number of changed locations is known to be 2). A loop may, for example, change
all elements in a list whose length is not known at proof time but only at run
time. Therefore, to handle loops, we use an extended version of modifier sets
that can describe location sets of unknown size (the modifier sets for methods
described in [6] cannot do that).

Related Work. The Java Modeling Language (JML) [14,15] allows to express
change information for Java methods via what in JML jargon is called assignable
clauses.

The ESC/Java tool (Extended Static Checker for Java) [9] uses a subset
of JML as assertion language; an extension of ESC/Java for checking JML
assignable clauses is described in [8]. Despite the undisputed usefulness of this
tool its results are still very preliminary: failing assertions of a rather simple
kind go undetected and failures are reported, where in reality the assertion is
correct. In [22], a static analysis algorithm is proposed that checks assignable
clauses for a simple object-oriented in vitro language. Correctness is proved via
abstract interpretation over a trace semantics.

Daikon [18,10] is a heuristic approach to automatic detection of likely invari-
ants by analysing program runs with concrete input values.

In [6], we have defined a precise semantics for method modifier sets and
defined a transformation on first-order formulas based on modifier sets such
that Γ → φMod implies validity of Γ → [p]φ, where φMod is the transformation
of φ using the modifier set Mod that is part of the specification of method p. This
transformation can be used to employ modifier sets for proving the correctness
of methods. However, it is restricted to modifier sets describing sets of memory
location of fixed size, and it cannot easily be adapted to loop invariants—though
the basic idea is similar to the new loop rule we present here.

Further related work is the Hoare calculus for a variant of C that is developed
within the Verisoft project [21]. It allows to add simple modifier sets to procedure
specifications. In [7], a method is presented that does not use explicit modifier
sets but assumes that only what is mentioned in the pre- and post-condition
may be changed.

318 B. Beckert, S. Schlager, and P.H. Schmitt

Implementation in the KeY System. The work reported in this paper has
been carried out as part of the KeY project [1,2]. The goal of this project is to
develop a tool supporting formal specification and verification of Java Card
programs within a commercial platform for UML based software development.

Both the modifier set technique for methods from [6] and the rule for handling
rules presented in this paper have been implemented in KeY. Experiments show
that the performance of the prover is greatly enhanced using these extensions.
KeY also contains functionality for verifying correctness of modifier sets [20].

Plan of This Paper. After reviewing the necessary pre-requisites in Section 2,
we define our extended version of modifier sets in Section 3, which allows to
describe location sets of unknown size. In Section 4, we introduce the notion of
quantified updates. These updates, that are used in our verification rules, can be
seen as a form of generalised substitutions. The new loop rule that makes use of
modifier sets for loop bodies is introduced in Section 5. The implementation of
the rule is described in Section 6. In Section 7, we give an extended example for
its application. And, finally, in Section 8 we draw some conclusions.

2 Program Logic

To keep things simple in the paper, we consider as a programming language a
simple deterministic while-language with assignments, if-then-else, while-loops,
and arrays (due to lack of space we refrain from a formal definition of syntax
and semantics). However, our approach applies to all deterministic programming
languages whose semantics can be described by Kripke structures in terms of
Def. 1. In the KeY tool we have implemented the invariant rule for the real
object-oriented language Java Card taking all the difficulties likes aliasing and
abrupt termination into account (see Sect. 6).

The program logic we consider in this paper is an instance of Dynamic
Logic (DL) which is a multi-modal logic with a modality [p] for every program p
of the considered programming language. The formula [p]φ expresses that, if
the program p terminates in a state s, then φ holds in s. A formula ψ → [p]φ
expresses that, for every state s1 satisfying pre-condition ψ, if a run of the pro-
gram p starting in s1 terminates in s2, then the post-condition φ holds in s2. For
deterministic programs, there is exactly one such world s2 (if p terminates) or
there is no such world (if p does not terminate). The formula ψ → [p]φ is thus
equivalent to the Hoare triple {ψ}p{φ}. In contrast to Hoare logic, the set of
formulas of DL is closed under the usual logical operators.

The semantic domains used to interpret DL formulas are Kripke structures
K = (S, ρ), where S is the set of states for K and ρ is the transition relation
interpreting programs. Since we consider deterministic programs, ρ is a (partial)
function, i.e., for every program p, ρ(p) : S → S. The states s ∈ S are typed first-
order structures s, for some fixed signature Σ. We restrict attention to purely
functional signatures Σ and we work under the constant domain assumption,
i.e., for any two states s1, s2 ∈ S the universes of s1 and s2 are the same set U .

An Improved Rule for While Loops in Deductive Program Verification 319

We sometimes refer to U as the universe of K. Furthermore we assume that the
set of states S of any Kripke structure K consists of all first-order structures with
signature Σ over some fixed universe. Some symbols of the signature are declared
rigid and have a fixed interpretation for all s ∈ S. E.g., addition + on integers
cannot be changed by executing a program and will therefore be declared rigid.
In contrast, the interpretation of non-rigid function symbols may differ from
state to state. E.g., program variables occur as non-rigid 0-ary function symbols
(constants) in Σ, and n-dimensional arrays are represented by non-rigid n-ary
function symbols (i.e., a[i1, ..., in] is the same as a(i1, . . . , in) (similarly, object
attributes in an object-oriented language can be represented by unary function
symbols). The interpretation of a function symbol f in a state s is denoted
by fs. Logical variables, which are different from program variables, never occur
in programs. They are rigid in the sense that if a value is assigned to a logical
variable, it is the same for all states.

Once the signature Σ and the universe U are fixed, the set S of states is also
fixed and our Kripke structures will only differ in the state transition function ρ
interpreting programs. When a programming language is chosen (in this case a
while-language), the possible choices for ρ have to be restricted as well, such that
the constructs of the programming language are interpreted in the right way.

From now on, we assume that a fixed set KΣ of Kripke structures K = (S, ρ)
is given that, as described above, depends (only) on the signature Σ, the uni-
verse U , and the restrictions on ρ, i.e., the semantics of our while-language with
arrays. The set S of states is the same for all elements of KΣ .

Definition 1. Let S be the set of all first-order structures over signature Σ
with some fixed universe U . Then, the semantics of the programming language
is given by a set KΣ of Kripke structures that all share S as their set of states.

Definition 2. A Σ-formula φ is called valid if

s, β |= φ

for every state s ∈ S of every Kripke structure (S, ρ) ∈ KΣ and every variable
assignment β (mapping logical variables to elements of the universe U).

3 Modifier Sets

A modifier set Modp for a program p is a set of ground terms denoting locations
(i.e., the terms must not contain logical variables but they can contain program
variables, which are constants in the logic). In contrast to [6] where modifier sets
are written as lists of ground terms of fixed length, we consider in this paper
modifier sets describing location sets of unknown size, since while loops in general
may modify an unknown number of locations that depends on the state in which
the loop is started. Of course, such modifier sets can no longer be represented
as simple enumerations of ground terms. Rather, we use formulas to define the
set of ground terms that may change.

320 B. Beckert, S. Schlager, and P.H. Schmitt

Definition 3. Let χj be a Dynamic Logic formula over Σ, f j ∈ Σ a non-rigid
function symbol, and tj1, . . . , t

j
nj

terms (j ≥ 1). Then, the set

{ 〈χ1, f1(t11 . . . , t1n1
)〉, . . . , 〈χk, fk(tk1 . . . , tknk

)〉 }
of pairs is a modifier set.

Intuitively, a location f(s1, . . . , sn) may be changed by a program p when
started in a state s if the modifier set for p contains an element 〈χ, f(t1, . . . , tn)〉
and there is variable assignment β such that the following conditions hold:

1. s, β |= ti
.= si for 1 ≤ i ≤ n, i.e. β assigns the free logical variables occurring

in ti values such that ti coincides with si.
2. s, β |= χ, i.e. the characteristic formula χ holds for the variable assignment β.

A modifier set Mod is said to be correct for a program p if p at most changes
the value of locations mentioned in Mod.

Definition 4. Let Mod be a modifier set and let S be the set of states.
A pair (s1, s2) ∈ S × S satisfies Mod, denoted by

(s1, s2) |= Mod ,

iff, for

(a) all n-ary function symbols f ∈ Σ (n ≥ 0),
(b) all n-tuples o1, . . . , on from the universe U ,

the following condition holds:

fs1(o1, . . . , on) �= fs2(o1, . . . , on)

implies that there is a pair 〈χ, f(t1, . . . , tn)〉 ∈ Mod and a variable assignment β
such that

oi = ts1,β
i (1 ≤ i ≤ n) and s1, β |= χ .

The modifier set Mod is correct for a program p, if

(s1, s2) |= Mod

for all state pairs (s1, s2) ∈ ρ(p).

Example 1. Consider the following program, where a is a one-dimensional array
of integers.

i := 0; j := 0; while (i < length(a)) do a[i] := a[i] ∗ 2; i := i + 1; od

We assume that the size s = length(a) of the array is not fixed in advance but
unknown. Thus, for giving a correct modifier set, it is not possible to enumerate
the locations a[0], a[1], . . . , a[s] as s is not known.

However, a correct modifier set for the above program can be written as

{〈0 ≤ x < length(a)〉, a[x]〉, 〈true, i〉, 〈true, j〉} .

illustrating that modifier sets are not necessarily minimal (j is not modified).
The modifier set {〈0 ≤ x < length(a)〉, a[x]〉} is not correct for the above pro-

gram, since i is actually changed by the program.

An Improved Rule for While Loops in Deductive Program Verification 321

4 Quantified Updates

The rules in calculi for deductive program verification (such as Hoare logic or
Dynamic Logic) in a certain sense symbolically execute the program to be ver-
ified. And, usually, a state update, i.e., an assignment like x := t, is done by
applying a substitution that replaces occurrences of x by t. This straightforward
method works fine for simple programming languages but causes problems for
more complex languages like Java Card. In Java Card (as in all other object-
oriented programming languages) the same object may be referenced by several
different reference variables (aliasing). We face the aliasing problem already for
our simple while-language, because it contains arrays. An assignment a[i] := 5
changes the value of a[j] if i

.= j, i.e., a[i] and a[j] reference the same same ar-
ray element. As a consequence, every array assignment causes a case distinction
making verification infeasible. This is even more true for object-oriented lan-
guages where every assignment to an object attribute causes case distinctions.
The solution to this problem proposed in [4] and implemented in the KeY System
are so-called updates. The idea is to not immediately perform substitutions for
assignments. Rather assignments are collected as state updates and not applied
before the program has been completely symbolically executed. The advantage
of this method is that assignments often cancel out previous ones rendering case
distinctions for alias analysis unnecessary.

Definition 5 (Syntax of updates). The set of Dynamic Logic formulas is
extended as follows. For all non-rigid ground terms t, and all terms v, if φ is a
formula, then {t := v}φ is a formula as well. The expressions {t := v} are called
updates.

The formula {t := v}φ has the same semantics as [t := v;]φ. Thus, one might
ask why updates are introduced as a separate syntactic category instead of using
assignments. Indeed, the goal of postponing the symbolic execution of state
changes can be achieved without updates. However, there are some immediate
extensions to updates that cannot be mimicked with assignments. E.g., one can
introduce quantified updates that use a logical formula to describe the state
change. This is a useful extension in the current context and is introduced below.

Anyway, it is important to note that updates are introduced for efficiency
reasons but do not make the logic more expressive. A formula φ containing
updates can always be transformed (in a uniform way) into an formula φ′ without
updates such that φ is valid iff φ′ is valid. Therefore, the idea of modifier sets
for loop bodies and the rule we introduce in the following section work just as
well in calculi without updates.

The transformation for removing an update basically works by performing the
symbolic execution that the state update represents (i.e., it does what updates
try to avoid). It introduces new variables for preserving the old values of the
changed variables (the value before the update is applied). However, due to
aliasing the set of variables (or locations) that is affected by an update cannot
be determined syntactically. Rather, all references (of compatible types) have to
be checked for whether they point to the location that is updated or not.

322 B. Beckert, S. Schlager, and P.H. Schmitt

Example 2. We consider the DL formula

(a[i] .= 0 ∧ a[j] .= 0)→ {a[i] := a[i] + 1}a[j] .= 0

which holds iff i � .= j. The transformed formula without updates is

(a′[i] .= 0 ∧ a′[j] .= 0) → (a[i] .= a′[i] + 1 ∧
(i � .= j → a[j] .= a′[j]) ∧
(i .= j → a[j] .= a′[i] + 1))→ a[j] .= 0 .

We now extend the idea of updates to quantified updates, a generalised form
of updates proposed in [19] that allows to update arbitrary sets of locations
described by a characteristic formula.

Definition 6 (Syntax of quantified updates). The set of Dynamic Logic
formulas is extended as follows. For all DL formulas χ, terms f(t1, . . . , tn)
with a non-rigid function symbol f , and (arbitrary) terms v, if φ is a DL for-
mula, then {χ ? f(t1, . . . , tn) := v}φ is a DL formula as well. The expressions
{χ ? f(t1, . . . , tn) := v} are called quantified updates.

Example 3. The quantified update {0 ≤ i < length(a) ? a[i] := 0}φ assigns 0 to
all elements of the array a.

Quantified updates—in contrast to “simple” updates (Def. 5)—may contain
clashes. For example, the update {0 ≤ i ≤ 1 ? c := i} tries to assign to the non-
rigid constant c both the values 0 and 1. We define that, in case of a clash, an
arbitrary (unknown) but fixed element is used. However, the updates we consider
in this paper cannot contain clashes by construction. And without clashes, the
semantics of the formula {χ ? t := v}φ is the same as that of the transformed
formula (∀Cl)((χ → {t := v}φ) ∧ (¬χ→ φ)). Thus, as with simple updates, a for-
mula containing quantified updates can always be transformed into an equivalent
formula without them.

Definition 7 (Semantics of quantified updates). Let s be a state, and let

U = {χ ? f(t1, . . . , tn) := v}

be a quantified update.
The state U(s) is defined as follows: U(s) coincides with s except for the

interpretation of the function symbol f , which is defined by

V (o1, . . . , on) = {vals,β(v) | vals,β(χ) = tt and vals,β(ti) = oi (1 ≤ i ≤ n),
where β is a variable assignment}

fU(s)(o1, . . . , on) =

⎧⎨
⎩

w if V (o1, . . . , on) = {w}
fs(o1, . . . , on) if V (o1, . . . , on) = ∅
w ∈ V (o1, . . . , on) arbitrarily otherwise

for all elements o1, . . . , on of the universe.
The semantics of the application Uφ of a quantified update U to a formula φ

is defined by
s |= Uφ iff U(s) |= φ .

An Improved Rule for While Loops in Deductive Program Verification 323

5 Invariant Rule Using Change Information

5.1 Motivation

Before we present our invariant rule that uses modifier sets and the change
information they encode, we recall what the invariant rule in Dynamic Logic
(with updates) looks like:

Γ * UInv, Δ Inv, ε * [α]Inv Inv, ¬ε * φ
Γ * U [while ε do α od]φ, Δ

(1)

Intuitively the above rule states that, if one can find an invariant Inv such that
the three premisses hold, which state that (a) Inv holds in the beginning, (b) Inv
is indeed an invariant, and (c) the conclusion φ follows from Inv and the negated
loop condition ε, then φ holds after executing the loop (provided it terminates).

As a motivation for why using change information is useful, consider the
following example program p defined as

q; i := 0; while (i < length(a)) do a[i] := 0; i := i + 1; od ,

where q is a (sub-)program. In order to prove some post-condition φ under the
pre-condition ψ for p we have to show the validity of the DL formula ψ → [p]φ.
Using our DL sequent calculus, symbolic execution of q results in a sequence U of
updates describing the program state after execution of q. Then, considering that
the while loop simply assigns all the elements of array a the value 0, an obvious
invariant for the loop might be i ≤ length(a) ∧ (∀x)(0 ≤ x < i→ a[x] .= 0) . In
fact, this is an invariant for the loop (i.e., it holds at the beginning of the loop
and holds after each iteration of the loop body) but it is not strong enough to
entail the post-condition φ in general, i.e. the third premiss of the loop rule does
not hold. The reason is that the second and the third premiss of the invariant
rule omit the formulas Γ, Δ and the sequence U of updates, i.e., all information
about the state reached before running the while loop is lost though it may be
unrelated to the array a (one can construct similar examples where the second
premiss does not hold). The only way to keep this information—as long as no
modifier sets are used—is to add it to the invariant which, as already explained
in the introduction, has several disadvantages.

The invariant rule proposed in this paper allows to keep as much context
information as possible without explicitly encoding the context in the invariant.
This is achieved by only throwing away those parts of Γ, Δ and U (i.e., of the
descriptions of the initial state) that may be changed by the loop. Anything that
remains unchanged is kept and can be used to establish the invariant (second
premiss) and the post-condition (third premiss).

Our new rule is still available if, for some reason, no modifier sets is known
for the loop body. In that case, it assumes that the loop potentially changes
everything, and it then coincides with the traditional invariant rule. However,
programmers usually know what is changed by a piece of code and can (or even
should) annotate the code with the appropriate information.

324 B. Beckert, S. Schlager, and P.H. Schmitt

An important advantage of using modifier sets is that usually a loop only
changes few locations and only these locations must be put in a modifier set. On
the other hand, using the traditional rule, all locations that do not change and
whose value is of importance have to be included in the invariant and, typically,
the number of locations that are not changed by the loop is much bigger than
the number of locations that are actually changed. Of course, in general not
everything that remains unchanged is needed to establish the post-condition in
the third premiss. But when applying the invariant rule it is often not obvious
what information must be preserved, in particular if the loop is followed by a
non-trivial program. That can lead to repeated failed attempts to find the right
invariant that allows to complete the proof. Whereas, to figure out the locations
that are possibly changed by the loop, it is usually enough to look at the small
piece of code in the loop body.

5.2 The New Invariant Rule for Dynamic Logic

Let Mod be a modifier set that is correct for the loop body α. The basic idea of the
new version of the loop rule we define in this section is that the context Γ, Δ,U is
not removed from the second and third premiss. Then, however, information on
locations appearing in the context Γ, Δ,U that are mentioned in Mod must not
be used. It must be removed. To meet this requirement, we introduce so-called
anonymous updates which assign an arbitrary unknown value (represented by a
Skolem symbol) to the locations mentioned in the modifier set and, thus, since
nothing is known about the new unknown values, destroy the information on
these (and only these) locations.

Definition 8 (Anonymous Update). Let

Modp = {〈χ1, f1(t1, . . . , tn1)〉, . . . , 〈χm, fm(t1, . . . , tnm)〉}

be a correct modifier set for a program p. For every fi, let fsk
i be a fresh rigid

function symbol with the same arity as fi. Then, the sequence V = V1 · · · Vm of
quantified updates where

Vi = {χi ? fi(ti, . . . , tni) := fsk
i (t1, . . . , tni)}

is called an anonymous update with respect to Modp. By abuse of terminology
we call the new function symbols fsk

i Skolem functions.

Now, we can proceed to define the new invariant rule for while loops using
change information:

Γ * UInv, Δ Γ, UV(Inv ∧ ε) * UV [α]Inv, Δ Γ, UV(Inv ∧ ¬ε) * UVφ, Δ
Γ * U [while ε do α od]φ, Δ

(2)

where V is an anonymous update (Def. 8) w.r.t. the modifier set Mod, which is
correct for the loop body α (Def. 4).

Depending on the particular proof goal, the context encoded in Γ, Δ,U may
only be needed in either the second or the third premiss of the rule and not in

An Improved Rule for While Loops in Deductive Program Verification 325

both of them. In that case, the premiss where the context is not needed can be
simplified and replaced by the corresponding premiss from the classical Rule (1).
If both premisses are simplified, Rules (2) and (1) become identical.

Theorem 1 (Soundness). Let Inv be an arbitrary formula and V an anony-
mous update w.r.t. a correct modifier set Modα for the loop body α.

If all premisses of Rule (2) are valid in all states, then its conclusion is valid
in all states.

Proof. See [5].

Even the main focus in this paper is on Dynamic Logic, the approach is not
restricted to this particular logic. A version of the improved invariant rule for
Hoare logic can be found in [5].

6 Implementation

We have implemented the invariant rule that uses change information in the
KeY system for the programming language Java Card. Advanced features like

Fig. 1. KeY prover window with the example from Sect. 7 after applying the invariant

rule

326 B. Beckert, S. Schlager, and P.H. Schmitt

abrupt termination, exceptions, side-effects of expressions, break- and continue-
statements of a real object-oriented language like Java Card make the imple-
mented rule more involved than the one presented above. For example, in case of
side-effects the invariant rule cannot be applied directly. Beforehand, the follow-
ing rule has to be applied that performs a program transformation and ensures
that the loop condition does not have side-effects

Γ * U [boolean b = expr ; while (b) {α′; b = expr ; }]φ, Δ
Γ * U [while (expr) {α}]φ, Δ

where b is a new Boolean variable and α′ is the result of inserting the state-
ment b = expr ; in front of every continue-statement in the loop body α.

Fig. 1 shows the KeY prover window with the example from Sect. 7. The
lower left pane displays the proof tree with three open branches corresponding
to the three premisses of the invariant rule. For better user interaction, the goals
are labelled with“Invariant Initially Valid”,“Body Preserves Invariant”, and“Use
Case”. The right pane shows the sequent that is currently under consideration.
Rules can be applied automatically by pressing the button in the upper left
corner or interactively using the mouse: pointing at a certain term or formula
highlights the respective item and pressing the left mouse button offers (only)
those rules that are applicable at this position.

7 Extended Example

The example in this section is based on the calculus and the loop rule imple-
mentation in the KeY tool, i.e., the target programming language is Java (more
precisely Java Card but the difference does not matter here), and the specifi-
cation language is UML/OCL [17,16] or—as in the example—JML [15].

The JML specification of the Java method swapMax (see Fig. 2) states that,
if the pre-condition (requires clause, lines 1–2) consisting of

a. a is not null and
b. the length of a is greater than zero

holds in the beginning, then after the execution of swapMax the following post-
condition (ensures clause, lines 3–7) holds:

a. there exists an index such that the elements of a at position index and zero
are swapped,

b. the element at position zero is greater than or equal to the elements at all
other positions, and

c. all elements at positions different from zero and the index remain unchanged.

In other words, the post-condition says that the method swaps the greatest
element and the element at position zero and all other elements remain un-
changed. In JML post-conditions, one can use \old(expr) to refer to the value
of expr at the beginning of the method.

An Improved Rule for While Loops in Deductive Program Verification 327

/*@ requires
2 @ a!=null && a.length > 0;

@ ensures
4 @ (\ exists int idx ; 0 <= idx && idx<\old(a).length;

@ a[idx]==\old(a)[0] && a[0]==\old(a)[idx] &&
6 @ (\ forall int i ; 0 <= i && i<\old(a).length;

@ a[0] >= a[i] && (i!=0 && i!=idx ==> a[i]==\old(a)[i])));
8 @*/

void swapMax(int[] a) {
10 int counter = 0, int index = 0;

/*@ loop invariant
12 @ 0<=counter && counter<=a.length &&

@ 0<=index && index<a.length &&
14 @ (\ forall int x; x>=0 && x<counter; a[index]>=a[x]);

@ assignable index , counter;
16 @*/

while (counter<a.length) {
18 if (a[counter] > a[index])

index = counter;
20 counter = counter+1;

}
22 int tmp = a[index];

a[index] = a[0];
24 a [0] = tmp;

}

Fig. 2. JML specification and Java implementation of method swapMax

The body of swapMax is divided into two parts. In the first part (lines 17–21),
we iterate through the elements of array a and store the index of the greatest
element in variable index. In the second part (lines 22–24), the elements at
position index and zero are swapped.

Using JML, it is possible to annotate loops with loop invariants. The invari-
ant in our example states that

a. counter and index stay in the correct range (lines 12–13), and
b. the element at position index is greater than or equal to all elements at

positions zero to counter − 1 (line 14).

The only locations that are modified in the loop body are index and counter.
To make this information explicit we use the assignable clause of JML (line 15).1

The KeY tool is able to use the invariant given as annotation in the code
when applying an invariant rule. Our example can be proved almost fully au-
tomatically using the above invariant. The only user interaction required is the

1 Following the JML standard [15] assignable clauses, which are the JML-equivalent
of modifier sets, are restricted to methods. Recent discussions on the JML mailing
list suggest that the assignable clause will also be applicable to loops in the future.

328 B. Beckert, S. Schlager, and P.H. Schmitt

simple instantiation of the existential quantifier in the post-condition with the
term index at the end of the proof.

Using the traditional invariant rule, the above invariant is not strong enough.
Fig. 3 shows the additional conjuncts that have to be added to the invariant in
order to prove the post-condition using the classical loop rule.

/*@ (\ forall int x; x>=0 && x<counter; a[x]==\old(a)[x]) &&
2 @ a.length==\old(a.length) && a.length>0 && a==\old(a) && a!=null

@*/

Fig. 3. Additional conjuncts for the invariant preserving the context information

Line 1 expresses that the elements in array a are the same before and after
execution of the loop body. Line 2 states that the length of the array does not
change and is greater than zero and that the array reference a is an invariant of
the loop and is different from null.

As one can see, the invariant for the traditional rule is more complicated and
has to contain information not directly related to the while loop (there is an
indirect relationship, however, since the additional conjuncts express what the
loop does not do).

8 Conclusion

We have extended the idea of modifier sets from to method specification to loops,
and have defined a DL loop invariant rule that makes use of such change infor-
mation. Our new definition of quantified modifier sets overcomes the restrictions
from [6], where modifier sets could only describe location sets of fixed length.
The new loop rule has been implemented in the KeY System and in experiments
has proved to be a great improvement over rules not using change information.

References

1. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hähnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P.H. Schmitt. The KeY tool. Software
and System Modeling, 4:32–54, 2005.

2. W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle, W. Menzel,
and P.H. Schmitt. The KeY approach: Integrating object oriented design and
formal verification. In M. Ojeda-Aciego, I. P. de Guzman, G. Brewka, and L. M.
Pereira, editors, Proceedings, Logics in Artificial Intelligence (JELIA), Malaga,
Spain, LNCS 1919. Springer, 2000.

3. K. R. Apt. Ten years of Hoare logic: A survey – part I. ACM Transactions on
Programming Languages and Systems, 1981.

4. B. Beckert. A dynamic logic for the formal verification of Java Card programs. In
I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and Security.
Revised Papers, Java Card 2000, International Workshop, Cannes, France, LNCS
2041, pages 6–24. Springer, 2001.

An Improved Rule for While Loops in Deductive Program Verification 329

5. B. Beckert, S. Schlager, and P.H. Schmitt. An Improved Rule for While Loops in
Deductive Program Verification. Technical Report in Computing Science 2005-26,
Fakultät für Informatik, Universität Karlsruhe, Germany, September 2005. Avail-
able at http://i12www.ira.uka.de/~schlager/publications/TRInvRule.ps.gz.

6. B. Beckert and P.H. Schmitt. Program verification using change information. In
Proceedings, Software Engineering and Formal Methods (SEFM), Brisbane, Aus-
tralia, pages 91–99. IEEE Press, 2003.

7. A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure
specifications. IEEE Transactions on Software Engineering, 21(10):785–798, 1995.

8. N. Cataño and M. Huisman. Chase: A static checker for JML’s assignable clause. In
Proceedings, Verification, Model Checking and Abstract Interpretation (VMCAI),
LNCS 2575, pages 26–40. Springer, 2003.

9. D. L. Detlefs, K.R.M. Leino, G. Nelson, and J.B. Saxe. Extended static checking.
Research Report 159, Compaq Systems Research Center, 1998.

10. M. D. Ernst. Dynamically Discovering Likely Program Invariants. PhD thesis,
University of Washington, Seattle, August 2000.

11. D. Harel. Dynamic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, Volume II: Extensions of Classical Logic. Reidel, 1984.

12. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. The MIT Press, 2000.
13. D. Kozen and J. Tiuryn. Logic of programs. In J. van Leeuwen, editor, Handbook

of Theoretical Computer Science, chapter 14, pages 89–133. Elsevier, 1990.
14. G.T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed design.

In Haim Kilov, Bernhard Rumpe, and Ian Simmonds, editors, Behavioral Specifi-
cations of Businesses and Systems, chapter 12, pages 175–188. Kluwer Academic
Publisher, 1999.

15. G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06z, Iowa State
University, Department of Computer Science, December 2004.

16. Object Modeling Group. UML 2.0 OCL Specification, October 2003.
17. Object Modeling Group. UML 2.0 Superstructure Specification, October 2004.
18. J. H. Perkins and M.D. Ernst. Efficient incremental algorithms for dynamic de-

tection of likely invariants. In Proceedings of the ACM SIGSOFT 12th Symposium
on the Foundations of Software Engineering (FSE 2004), pages 23–32, Newport
Beach, CA, USA, November 2–4, 2004.

19. P. Rümmer. A Language for Sequential, Parallel and Quantified Updates of First-
order Structures, 2005. Forthcoming.

20. R. Sasse. Proof obligations for correctness of modifies clauses. Studien-
arbeit, Fakultät für Informatik, Universität Karlsruhe, 2004. Available at
http://i12www.ira.uka.de/~key/doc/2004/sasse2004.pdf.

21. N. Schirmer. A verification environment for sequential imperative programs in
Isabelle/HOL. In F. Baader and A. Voronkov, editors, Proceedings, Logic for Pro-
gramming, Artificial Intelligence, and Reasoning(LPAR), LNAI 3452, pages 398–
414. Springer, 2004.

22. F. Spoto and E. Poll. Static analysis for JML’s assignable clauses. In Proceedings,
Foundations of Object-Oriented Languages (FOOL10), 2003.

Using St̊almarck’s Algorithm to Prove

Inequalities

Byron Cook and Georges Gonthier

Microsoft Research

Abstract. St̊almarck’s 1-saturation algorithm is an incomplete but fast
method for computing partial equivalence relations over propositional
formulae. Aside from anecdotal evidence, until now little has been known
about what it can prove. In this paper we characterize a set of formulae
with bitvector-inequalities for which 1-saturation is sufficient to prove
unsatisfiability. This result has application to fast predicate abstraction
for software with fixed-width bit-vectors.

1 Introduction

St̊almarck’s n-saturation algorithm [7,12] is a method for automatically finding
consequences of propositional logic formulae. The complexity of n-saturation is
O(g2n+1), where g is the number of nodes in the graph representing the formula.
In practice, when n ≤ 2, St̊almarck’s algorithm is fast but incomplete. The
limited forms of saturation (where n ≤ 2) can be used in situations when com-
pleteness is not required. Alternatively, if completeness is required, it can be used
as a method of pruning the search space traversed with complete techniques—as
was done in [1]. The advantage to this approach is the fact that St̊almarck’s algo-
rithm can infer many consequences simultaneously. The disadvantage, given that
the limited forms of saturation are not complete, is that little is known about
the category of formulae for which they are sufficient to prove unsatisfiability.

The goal of this paper is to address the question of what 1-saturation can
prove with respect to an important class of formulae that often arise during
model checking: transitive arguments using arithmetic relations such as ≤, < and
= over Boolean vectors. Informally stated, we show that St̊almarck’s algorithm
can prove the unsatisfiability of unsatisfiable formulae containing inequalities
on vectors of Boolean variables, such as . . . w ≤ x ∧ . . . ∧ x ≤ y ∧ . . . ∧ y ≤
z ∧ . . . ∧ ¬(w ≤ z) ∧ . . ., or . . . w = x ∧ . . . ∧ x < y ∧ . . . ∧ y ≤ z ∧ . . . ∧ z ≤
w ∧ . . ., etc. The aspect that makes proving this difficult is the fact that the
outcome of saturation greatly depends on how ≤, <, and = are represented in
the propostional formulae.

1.1 Application

The motivation for this paper is rooted in our search for fast proof methods
for propositional reasoning within the Slam software model checker for C pro-

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 330–344, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Using St̊almarck’s Algorithm to Prove Inequalities 331

grams1. We would like to find fast approximative methods that are guaranteed
to be able to prove at least a certain limited class of properties.

Slam currently treats program variables as unbounded integers, and treats
bitwise operations as uninterpreted functions. In reality C programs are primar-
ily written over fixed-width types, and often use bitwise operators in non-trivial
ways. In order to switch Slam’s semantics from arbitrary-length to the more
accurate fixed-width types we must adapt our methods used to improve the
performance of Slam’s implementation of predicate abstraction [6,10].

The key step behind predicate abstraction is the computation of coverings.
A covering C of a formula f is a set of monomials drawn from a set of predicates
P such that for all m ∈ C, m ⇒ f . In principle the covering can be computed by
enumerating over candidate monomials and calling an automatic theorem prover
(such as Cogent [4] or Zapato [3]) with arithmetic support to determine which
monomials imply f .

The strongest covering can be computed using enumeration over all 3|P |

possible monomials. However, as described in [9,10], a faster approach is to use
incomplete symbolic decision procedures that quickly compute an approximation
of the needed coverings. Later, if the approximation is not strong enough, we
use a technique described in [2] to lazily refine the quality of the abstraction.

St̊almarck’s algorithm is a candidate method for computing these appoxima-
tive coverings when a bit-level semantics is used (see [4] for more information on
the encoding of C expressions into propositional logic). But how good will the
approximative coverings be if 1-saturation is used? Since the vast majority of the
formulae involved in this application involve ≤, <, and =, it is important that
our initial incomplete abstraction method at least finds the connections between
these relations even if it is incomplete over others. This is the question that we
are addressing in this paper.

2 St̊almarck’s Algorithm

In this section we provide a formal definition for St̊almarck’s n-saturation algo-
rithm and a sound but incomplete validity procedure based on 1-saturation. We
also prove a number of basic properties about the algorithm.

Finite Boolean vectors are sequences whose elements can be - (true), ⊥
(false), propositional variables, and negated propositional variables. Fig. 1 de-
fines the set of all finite Boolean vectors, S. We use subscripts to indicate in-
dexing into vectors. For example, if x is a Boolean vector, then x5 represents
the element at the 5th position of x. Vectors are addressed starting at 1. We use
superscripts to differentiate between vectors. For example, x1 and x2 should be
considered different vectors. They could, of course, have equivalent values.

A partial equivalence relation (PER) over a set S is a relation that is transi-
tive and symmetric. A PER may not necessarily be defined for all arguments in
S, but it is reflexive for those in which it is. A finite PER (or FPER) is defined
only for a finite subset of S.
1 Slam is the basis of Microsoft’s Static Driver Verifier product [11].

332 B. Cook and G. Gonthier

B ::= � | ⊥
V ::= . . . | p | q | r | . . .
E ::= B | V | ¬V
S ::= 〈E1, . . . , En〉

Fig. 1. Grammar defining Finite Boolean vectors

St̊almarck’s algorithm is defined in terms of finite PERs over the type E
(from Fig. 1). For simplicity we will fix the set of variables for which PERs that
we consider are defined. We define =, < and ≤ on finite PERs in the standard
way using when the PER is treated as a set of pairs. We say that a PER R is
unsatisfiable iff R(-,⊥):

Unsatisfiable(R) � R(-,⊥)

We assume that redundant ¬ symbols in arguments to equivalence relations are
removed. For example, ¬- is treated as an alternative notation for ⊥ and ¬(¬x)
is considered the same as x.

Let R be a PER. As in [12], we use the notation R(x ≡ y) to represent a union
operation over the equivalence classes in the PER. This operation constructs a
new relation based on R where x and y’s equivalence classes have been merged.
This can be (naively) implemented as:

R(x ≡ y) �
{
E2 if Unsatisfiable(Q)
Q if ¬Unsatisfiable(Q)

where Q � (R ∪ {(x, y), (y, x), (¬x,¬y), (¬y,¬x)})∗

P ∗ is the transitive closure of the relation P . We assume the existence of a base
finite PER called Base that is defined for - and ⊥:

Base = {(-,-), (⊥,⊥)}

We assume that all finite PERs are constructed from Base and a series of ≡
operations. Quantification over finite PERs will be limited to this set.

A meet operation over finite PERs is defined as: Meet(Q, R) � Q ∩R.

Lemma 1. ∀A, B, C. A ≤ B ∧A ≤ C ⇒ A ≤Meet(B, C)

Lemma 2. ∀R, x, y. R ≤ R(x ≡ y)

Lemma 3. ∀x, y, R. R(x ≡ y)(x, y)

Fig. 2 defines a function called Initial which constructs a finite identity
PER. The type FPER is used to represent finite PERs. The polymorphic type
constructor FSet is used to represent finite sets. We assume that a foreach
statement over a finite set (as found in Fig. 2) always terminates so long as
the loop’s body terminates. Therefore (given that the ≡ operation terminates)
Initial terminates.

Using St̊almarck’s Algorithm to Prove Inequalities 333

FPER Initial (FSet<Formulae> S)

{
FPER R := Base;
foreach x ∈ S { R := R(x≡x); }
return R;

}

Fig. 2. Initial – Constructs a finite identity PER

2.1 Triples

The first step in St̊almarck’s algorithm is to break the input propositional logic
formula into an equisatisfiable directed acyclic graph represented as a set of
triples. A triple is defined by the grammar T ::= E ⇔ (E ⇒ E) | E ⇔ (E ⇔
E). We assume the existence of a function, called Triples, which returns the
representative directed acyclic graph together with a variable representing the
original input. As an example, let ≤n, <n, and =n be defined as:

x ≤n y �
{
- if n = 0
(¬xn ∨ yn) ∧ ((¬xn ⇔ yn) ∨ (x ≤n−1 y)) if n > 0

x <n y �
{
⊥ if n = 0
(¬xn ∨ yn) ∧ ((¬xn ⇔ yn) ∨ (x <n−1 y)) if n > 0

x =n y �
∧

i∈{1...n} xi ⇔ yi

Let x and y be 1-length Boolean vectors. In this case we assume that Triples
will produce the following output:

Triples(x ≤1 y) = (β1

, (ρ1
1 ⇔ (¬x1 ⇔ y1)) ∧ (ρ1

2 ⇔ (x1 ⇒ y1))
∧ (ρ1

3 ⇔ (¬ρ1
1 ⇒ β2)) ∧ (¬β1 ⇔ (ρ1

2 ⇒ ¬ρ1
3))

∧ (β2 ⇔ -)
)

The variable β1 is equisatisfiable with x ≤1 y when constrained by these triples.
The variables ρ1

1, ρ1
2, ρ1

3 and β1 are assumed to be previously unused. In the case
where the vectors are of length 2, Triples would return:

Triples(x ≤2 y) = (β1

, (ρ2
1 ⇔ (¬x2 ⇔ y2)) ∧ (ρ2

2 ⇔ (x2 ⇒ y2))
∧ (ρ2

3 ⇔ (¬ρ2
1 ⇒ β3)) ∧ (¬β2 ⇔ (ρ2

2 ⇒ ¬ρ1
3))

∧ (ρ1
1 ⇔ (¬x1 ⇔ y1)) ∧ (ρ1

2 ⇔ (x1 ⇒ y1))
∧ (ρ1

3 ⇔ (¬ρ1
1 ⇒ β2)) ∧ (¬β1 ⇔ (ρ1

2 ⇒ ¬ρ1
3))

∧ (β3 ⇔ -)
)

334 B. Cook and G. Gonthier

The relation LTE is defined in Fig. 3. This relation takes three inputs (i,
p, and q) and produces an output o. The t is used as a source of intermediate
variables. We can use this relation to characterize the translation of triples over
≤n:

Triples(x ≤n y) = (β1,∧i∈{1...n}{LTE(βi, βi+1, xi, yi, ρ
i)} ∧ βn+1 ⇔ -)

where β and ρ are families of fresh variables. Think of LTE as a basic cell (or
circuit building-block). The β variables are used to establish communication
between other cells. Triples(x ≤n y) has a similar definition:

Triples(x <n y) = (β1,∧i∈{1...n}{LTE(βi, βi+1, xi, yi, ρ
i)} ∧ βn+1 ⇔ ⊥)

LTE(o, i, p, q, t) � (t1 ⇔ (¬p ⇔ q)) GT(o, i, p, q, t) � (t1 ⇔ (p ⇔ q))
∧ (t2 ⇔ (p ⇒ q)) ∧ (¬t2 ⇔ (p ⇒ q))
∧ (t3 ⇔ (¬t1 ⇒ i)) ∧ (¬t3 ⇔ (t1 ⇒ ¬i))
∧ (¬o ⇔ (t2 ⇒ ¬t3)) ∧ (o ⇔ (¬t2 ⇒ t3))

EQ(o, i, p, q, t) � (t1 ⇔ (p ⇔ q)) ∧ (¬o ⇔ (t1 ⇒ ¬i))

Fig. 3. The relations LTE, GT, and EQ

We can negate LTE to produce GT, also defined in Fig. 3. We can use GT
to characterize the translation of triples over the negation of ≤n:

Triples(¬(x ≤n y)) = (β1,∧i∈{1...n}{GT(βi, βi+1, xi, yi, ρ
i)} ∧ βn+1 ⇔ ⊥)

To characterize the =n relation we can use EQ (Fig. 3):

Triples(x =n y) = (β1,∧i∈{1...n}{EQ(βi, βi+1, xi, yi, ρ
i)} ∧ βn+1 ⇔ -)

2.2 0-Saturation

The function in Fig. 4, called ZeroSaturate, implements a version of 0-satura-
tion. Essentially ZeroSaturate iteratively applies the 0-saturation step func-
tion ZeroSaturateStep from Fig. 9 until a fixpoint is reached. Note that
Fig. 9 appears later in the paper so that the proofs in Section 3.1 are easier to
follow.

Lemma 4. ZeroSaturateStep terminates.

Proof. By the structure of ZeroSaturateStep’s control-flow graph and the
termination assumption about foreach statements over finite sets. �

Using St̊almarck’s Algorithm to Prove Inequalities 335

FPER ZeroSaturate(FPER Q,FSet<Formulae> F)

{
FPER newQ := ZeroSaturateStep (Q,F);

if (newQ �= Q) {
return ZeroSaturate(newQ,F);

} else {
return Q;

}
}

Fig. 4. ZeroSaturate: 0-saturation algorithm

Lemma 5. ∀R, F. R ≤ ZeroSaturateStep(R, F)

Proof. All paths through ZeroSaturateStep lead to an update of R with ≡
or R itself. Therefore, by Lemma 2, R ≤ ZeroSaturateStep(R, F). �
Lemma 6. ZeroSaturate computes a fixpoint.

Proof. The powerset of finite PERs over a fixed set of variables is a finite set. By
Lemma 5, ZeroSaturateStep is order-preserving. Therefore, by the Knaster-
Tarski fixpoint theorem ([5], p.93), ZeroSaturate computes a fixpoint. �
Lemma 7. ∀R, F. R ≤ ZeroSaturate(R, F)

Proof. By induction on the structure of ZeroSaturate. Due to Lemma 6
we know that the result of ZeroSaturate is a finite composition of appli-
cations of ZeroSaturateStep. By Lemma 5 and the transitivity of ≤, R ≤
ZeroSaturate(R, F). �
2.3 General n-Saturation

St̊almarck’s n-saturation procedure is defined in Fig 5. Based on this procedure,
we also define a validity procedure, called St̊almarckValidity, in Fig. 6. The
function Vars, when applied to a finite PER, returns the variables for which the
PER is defined.

Lemma 8. ∀R, F, n. R ≤ Saturate(n, R, F)

Proof. By induction on n with Lemma 7 in the base case and an argument based
on Lemma 2 and Lemma 1 in the inductive case. �
Lemma 9. Saturate computes a fixpoint.

Proof. The powerset of finite PERs over a fixed set of variables is a finite set.
By Lemma 8, Saturate is order-preserving. Therefore, by the Knaster-Tarski
fixpoint theorem, Saturate computes a fixpoint. �
Lemma 10. ∀R, F, v, n ≥ 0. ZeroSaturate(R, F) ≤ SaturateStep(n, v,
R, F)

Proof. By induction on n, the definition of Saturate, and Lemma 1. �
We use the following two properties to structure the proof in Section 3.

336 B. Cook and G. Gonthier

1 FPER Saturate(int n,FPER R,FSet<Formulae> F)

2 {
3 if (n<1) { return ZeroSaturate(R,F); }
4 FPER prevR;

5 do {
6 prevR := R;

7 foreach v ∈ Vars(F) {
8 R := SaturateStep(n,v,R,F);
9 }

10 } while (R �= prevR);

11 return R;

12 }
13
14 FPER SaturateStep(int n,Formulae v,FPER R,FSet<Formulae> F)

15 {
16 assume(n>0);

17 FPER R1 := Saturate(n-1,R(v≡⊥),F)

18 FPER R2 := Saturate(n-1,R(v≡�),F)

19 return Meet(R1,R2);
20 }

Fig. 5. St̊almarck’s Saturate algorithm

bool St̊almarckValidity(Formulae f)

{
Formulae root;

FSet<Formulae> F;

(root,F) := Triples(¬f);
FPER S := Initial(Vars(F));
FPER Q := Saturate(1,S(root≡�),F);

return Unsatisfiable(Q);
}

Fig. 6. St̊almarckValidity: a validity procedure based on 1-saturation

3 What Can 1-Saturation Prove?

Now that we have defined St̊almarck’s algorithm we are prepared to reason about
what it can prove. Due to Lemma 9 we know that Saturate does terminate and
that there is a finite PER that is a fixpoint of Saturate. We use the symbol ⇔̇
to denote this relation. The reasoning in this section is about the equivalences
contained in ⇔̇.

In this paper we consider formulae of the following form:
∧

E ⇒
∨

F , where
{R1(x1, x2), . . . ,Rk−1(xk−1, xk)} ⊆ E and Rk(x1, xk) ∈ F . The idea is that the
Ris are instances of ≤, <, etc. We assume that x1 . . . xk are Boolean vectors of

Using St̊almarck’s Algorithm to Prove Inequalities 337

length n. The proof could be easily generalized to cases where the vectors are
of different size—we limit ourselves to n-length vectors to simplify the notation.
We assume that there exists a family of relations (or cells), C, such that for all
j ∈ {1, . . . , k − 1},

Triples(Rj(x, y)) = (βj
1, e ∧i∈{1...n} {Cj,i(βj

i , β
j
i+1, xi, yi, ρ

j,i)} ∧ βj
n+1 ⇔ -)

We assume that Triples(¬(
∧

E ⇒
∨

F)) is equivalent to Triples(
∧

(E∪¬F)).
If we push the ¬ through F (which is in disjunctive form) the result is another
conjuction. Therefore, for our purposes, it is sufficient to consider the following
conjunction ∧

{R1(x1, x2), . . . ,Rk−1(xk−1, xk),¬Rk(x1, xk)}

and then assume that

Triples(¬Rk(x, y)) = (βk
1 ,∧i∈{1...n}{Ck,i(βk

i , βk
i+1, xi, yi, ρ

k,i)} ∧ βk
n+1 ⇔ ⊥)

Fig. 7 displays an instance of this configuration where n = 3 and k = 4.

�

�
β1

4

x2
3

�x1
3

�C1,3

�
β1

3

x2
2

�x1
2

�C1,2

�
β1

2

x2
1

�x1
1

�C1,1

�
β1

1

�

�

�
β2

4

x3
3

��C2,3

�
β2

3

x3
2

��C2,2

�
β2

2

x3
1

��C2,1

�
β2

1

�

�

�
β3

4

x4
3

��C3,3

�
β3

3

x4
2

��C3,2

�
β3

2

x4
1

��C3,1

�
β3

1

�

⊥

�
β4

4

x4
3

�x1
3

�C4,3

�
β4

3

x4
2

�x1
2

�C4,2

�
β4

2

x4
1

�x1
1

�C4,1

�
β4

1

�

Fig. 7. An example configuration of triples where n = 3 and k = 4. C1,1 to C4,3

represent cells (see Fig. 3 for examples of cells).

We will prove that, when several properties hold of {R1(x1, x2), . . ., Rk−1

(xk−1, xk), ¬Rk(x1, xk)} that St̊almarckValidity(
∧

E ⇒
∨

F) = -. We
assume (based on Lemma 10) that the first iteration of saturation in Fig. 5 will
find βi

1 ⇔̇ - for each i ∈ {1, . . . , k}.

Assumption 1. ∀i ∈ {1, . . . , k}. βi
1 ⇔̇ -.

338 B. Cook and G. Gonthier

This is a key assumption: it allows us to ignore the exact structure of the original
formula and relations that are passed to Saturate. In the case of

∧
E ⇒

∨
F ,

this will be found by 0-saturation. There may be many additional triples and
equivalences, and they may have incrementally been added or discovered—but
all we need to know is that each component in the transitive argument has been
asserted to -.

We structure the proof of St̊almarckValidity(
∧

E ⇒
∨

F) = - as fol-
lows:

– We define four predicates (PosRgtRipple, PosLftRipple, NegRgtRip-
ple, NegLftRipple) over the signature of the cells (Ci,j) used in each
Ri and then constrain the cells using three of these predicates—the fourth
predicate is not strictly required due to an uninteresting technicality.

– We inductively find a set of equivalences in ⇔̇.
– We then use the equivalences in ⇔̇ to demonstrate Unsatisfiable(⇔̇).

The predicates are defined in Fig. 8. In a later section we prove that they hold
for LTE, GT, EQ, etc.

These predicates are used to represent relationships between the β variables
and x variables. For example, PosRgtRipple(0, C) holds when (by using 0-
saturation over C) we can prove that if both the output β-variable and left-hand
input-variable are true, then the input β-variable and right-hand input-variable
must be true.

Assumption 2. ∀i ∈ {1 . . . k − 1}, j ∈ {1 . . . n}. PosRgtRipple(0, Ci,j)

In Fig. 7 this corresponds to asserting that the cells in the first three columns are
constrained by PosRgtRipple. The next assumption corresponds to asserting
that the cells in the fourth column are constrained by NegRgtRipple.

Ripple(n, T, a, b, c, d, v) � ∀Q. [Q(a,�) ∧ Q(c, v)] ⇒ [R(b,�) ∧ R(d, v)]
where R = Saturate(n, Q, T)

PosRgtRipple(n, C) � ∀T, a, b, x, y, w.
C(a, b, x, y, w) ⊆ T ⇒ Ripple(n, T, a, b, x, y,�)

PosLftRipple(n, C) � ∀T, a, b, x, y, w.
C(a, b, x, y, w) ⊆ T ⇒ Ripple(n, T, a, b, y, x,�)

NegRgtRipple(n, C) � ∀T, a, b, x, y, w.
C(a, b, x, y, w) ⊆ T ⇒ Ripple(n, T, a, b, x, y,⊥)

NegLftRipple(n, C) � ∀T, a, b, x, y, w.
C(a, b, x, y, w) ⊆ T ⇒ Ripple(n, T, a, b, y, x,⊥)

Fig. 8. The relation Ripple, and several specialized versions of it

Using St̊almarck’s Algorithm to Prove Inequalities 339

Assumption 3. ∀j ∈ {1 . . . n}. NegRgtRipple(0, Ck,j)

Assumption 4. ∀i ∈ {1 . . . k − 1}, j ∈ {1 . . . n}. NegLftRipple(0, Ci,j)

Lemma 11.

∀i ∈ {1 . . . k}, m ∈ {0 . . . n}. (βi
m+1 ⇔̇ -)∧ (∀j ∈ {1 . . . k}. m > 0 ⇒ xi

m ⇔̇ xj
m)

Proof. By induction on m.

Base case (m = 0): (∀j ∈ {1 . . . k}. m > 0 ⇒ xi
m ⇔̇ xj

m) is trivially true. By
Assumption 1, βi

m+1 ⇔̇ -. �
Inductive case (m > 0): Assume that we are splitting on the variable x1

m (in
Fig. 5). We prove this lemma by cases.
Case x1

m ≡ ⊥ (line 17 of Fig. 5): By Lemma 7 and Lemma 3, R1(x1
m,⊥).

By the inductive hypothesis, ∀i ∈ {1 . . . k}. R1(βi
m,-). By Assumption 3,

NegRgtRipple(0, Ck,m). Therefore, because Ck,m(βk
m, βk

m+1, x
1
m, xk

m,
ρk), we know that R1(xk

m,⊥). By Assumption 4, NegLftRipple(0, Ci,m)
for i ∈ {1 . . . k−1}. By induction on i and Assumption 4, ∀i ∈ {1, . . . , k}.
R1(xi

m,⊥) and ∀i ∈ {1 . . . k}. R1(βi
m+1,-). By the transitivity of PERs,

we know that ∀i, j. R1(xi
1, x

j
1). �

Case x1
m ≡ - (line 18 of Fig. 5): By Lemma 7 and Lemma 3, R2(x1

m,-).
By the inductive hypothesis, ∀i ∈ {1 . . . k}. R2(βi

m,-). By Assump-
tion 2, PosRgtRipple(0, Ci,m) for i ∈ {1 . . . k − 1}. Therefore, by in-
duction on i and Assumption 2, ∀i ∈ {1, . . . , k}. R2(xi

m,-) and ∀i ∈
{1 . . . k}. R2(βi

m+1,-).. By the transitivity of PERs, ∀i, j. R2(xi
m, xj

m).
�

Because R1(xi
m, xj

m) and R2(xi
m, xj

m), by Lemma 1, xi
m ⇔̇ xj

m. Similarily,
because R1(βi

m+1,-) and R2(βi
m+1,-), βi

m+1 ⇔̇ -. �
�

Theorem 1. Unsatisfiable(⇔̇)

Proof. As a consequence of Lemma 11, βk
n+1 ⇔̇ -. However, by definition,

Triples(¬Rk(x1, xk)) is

∧i∈{1...n}{Ck,i(βk
i , βk

i+1, x
1
i , x

k
i , ρk,i)} ∧ βk

n+1 ⇔ ⊥)

Therefore, βk
n+1 ⇔̇ ⊥. By the transitivity of ⇔̇, - ⇔̇ ⊥. And therefore, Unsatis-

fiable(⇔̇). �

3.1 Proving Conditions About LTE, GT and EQ

We now use Theorem 1 to show that St̊almarckValidity can reliably prove
transitive arguments using =n, <n, and ≤n from Section 2.1. By Theorem 1, if
we prove the relations PosRgtRipple, PosLftRipple, etc for LTE, GT, and
EQ then we know that St̊almarckValidity can prove transitive arguments
of the form

∧
E ⇒

∨
F , where E and F contain terms with ≤n, <n, and =n

applied to vectors of Boolean variables.
During the following proofs we are implicitly using Lemmas 6 and 7. That

is, we assume throughout these proofs that Q ≤ R.

340 B. Cook and G. Gonthier

FPER ZeroSaturateStep (FPER R,FSet<Formulae> T) {
foreach t ∈ T {
switch(t) {
pattern (X ⇔ (Y ⇒ Z)):

/*Z01*/ if (R(X,⊥) && ¬ R(Y ,�)) { return R(Y ≡ �); }
/*Z02*/ if (R(X,⊥) && ¬ R(Z,⊥)) { return R(Z ≡ ⊥); }
/*Z03*/ if (R(Z,�) && ¬ R(X,�)) { return R(X ≡ �); }
/*Z04*/ if (R(Y ,⊥) && ¬ R(X,�)) { return R(X ≡ �); }
/*Z05*/ if (R(X,Y) && ¬ R(X,�)) { return R(X ≡ �); }
/*Z06*/ if (R(X,¬Z) && ¬ R(X,�)) { return R(X ≡ �); }
/*Z07*/ if (R(Y ,Z) && ¬ R(X,�)) { return R(X ≡ �); }
/*Z08*/ if (R(Y ,¬Z) && ¬ R(X,Z)) { return R(X ≡ Z); }
/*Z09*/ if (R(Y ,�) && ¬ R(X,Z)) { return R(X ≡ Z); }
/*Z10*/ if (R(Z,⊥) && ¬ R(X,¬Y)) { return R(X ≡ ¬Y); }

break;

pattern (X ⇔ (Y ⇔ Z)):
/*Z11*/ if (R(X,Y) && ¬ R(Z,�)) { return R(Z ≡ �); }
/*Z12*/ if (R(Y ,Z) && ¬ R(X,�)) { return R(X ≡ �); }
/*Z13*/ if (R(X,Z) && ¬ R(Y ,�)) { return R(Y ≡ �); }
/*Z14*/ if (R(X,¬Y) && ¬ R(Z,⊥)) { return R(Z ≡ ⊥); }
/*Z15*/ if (R(Y ,¬Z) && ¬ R(X,⊥)) { return R(X ≡ ⊥); }
/*Z16*/ if (R(X,¬Z) && ¬ R(Y ,⊥)) { return R(Y ≡ ⊥); }
/*Z17*/ if (R(X,�) && ¬ R(Y ,Z)) { return R(Y ≡ Z); }
/*Z18*/ if (R(X,⊥) && ¬ R(Y ,¬Z)) { return R(Y ≡ ¬Z); }
/*Z19*/ if (R(Y ,�) && ¬ R(X,Z)) { return R(X ≡ Z); }
/*Z20*/ if (R(Y ,⊥) && ¬ R(X,¬Z)) { return R(X ≡ ¬Z); }
/*Z21*/ if (R(Z,�) && ¬ R(X,Y)) { return R(X ≡ Y); }
/*Z22*/ if (R(Z,⊥) && ¬ R(X,¬Y)) { return R(X ≡ ¬Y); }

break;

}
}
return R;

}

Fig. 9. ZeroSaturateStep – Function used in ZeroSaturate

Lemma 12. PosRgtRipple(0,LTE) and NegLftRipple(0,LTE)

Proof. Recall the definition of LTE from Fig. 3:

LTE(o, i, p, q, t) � (t1 ⇔ (¬p ⇔ q))
∧ (t2 ⇔ (p ⇒ q))
∧ (t3 ⇔ (¬t1 ⇒ i))
∧ (¬o ⇔ (t2 ⇒ ¬t3))

We can assume Q(o,-) ∧ R = ZeroSaturate(Q, T) ∧ LTE(o, i, p, q, t) ⊆ T
and we must prove the following three conditions Q(p,-)⇒ R(q,-), Q(q,⊥)⇒

Using St̊almarck’s Algorithm to Prove Inequalities 341

R(p,⊥), and R(p, q) ⇒ R(i,-). By R(o,-), R(¬o,⊥). By Case Z01 in Fig. 9,
R(t2,-). By Case Z02 in Fig. 9, R(¬t3,⊥), hence R(t3,-).

– Assume Q(p,-). By Case Z09 in Fig. 9, R(t2, q). Because R(t2,-), by tran-
sitivity, R(q,-). �

– Assume Q(q,⊥). By Case Z10 in Fig. 9, R(p,¬t2). Therefore, R(¬p, t2).
Because R(t2,-), R(¬p,-). Hence, R(p,⊥). �

– Assume R(p, q). by Case Z15 in Fig. 9, R(t1,⊥). Therefore, by Case Z09 in
Fig. 9, R(t3, i). Because R(t3,-), by transitivity of PERs, R(i,-). �

�

Lemma 13. PosLftRipple(0,GT) and NegRgtRipple(0,GT)

Proof. Recall the definition of GT from Fig. 3:

GT(o, i, p, q, t) � (t1 ⇔ (p ⇔ q))
∧ (¬t2 ⇔ (p ⇒ q))
∧ (¬t3 ⇔ (t1 ⇒ ¬i))
∧ (o ⇔ (¬t2 ⇒ t3))

We can assume Q(o,-) ∧ R = ZeroSaturate(Q, T) ∧ GT(o, i, p, q, t) ⊆ T
and we must prove that Q(q,-) ⇒ R(p,-), Q(p,⊥) ⇒ R(q,⊥), and R(p, q) ⇒
R(i,-).

– Assume Q(q,-). By Case Z03 in Fig. 9, R(¬t2,-). Therefore, by Case Z09
in Fig. 9 R(o, t3). Because Q(o,-), by transitivity of PERs, R(t3,-). Hence,
R(¬t3,⊥). By Case Z01 in Fig. 9, R(t1,-). By Case Z17 in Fig. 9, R(p, q).
Because R(q,-), Q(p,-). �

– Assume Q(p,⊥). By Case Z04 in Fig. 9, R(¬t2,-). Using the same argument
as above, R(p, q). Because R(p,⊥), by transitivity, R(q,⊥),

– Assume R(p, q). By Case Z07 in Fig. 9, R(¬t2,-). Therefore, by Case Z09
in Fig. 9, R(o, t3). By transitivity, R(t3,-). That is, R(¬t3,⊥). By Case Z02
in Fig. 9, R(¬i,⊥). Therefore, R(i,-). �

�

Lemma 14. PosRgtRipple(0,EQ),PosLftRipple(0,EQ),NegRgtRipple
(0,EQ), and NegLftRipple(0,EQ).

Proof. Recall the definition of EQ from Fig. 3.

EQ(o, i, p, q, t) � (t1 ⇔ (p ⇔ q)) ∧ (¬o ⇔ (t1 ⇒ ¬i))

We can assume Q(o,-) ∧R = ZeroSaturate(Q, T)∧EQ(o, i, p, q, t) ⊆ T and
we must prove that Q(p,-)⇒ R(q,-), Q(q,⊥) ⇒ R(p,⊥), Q(p,⊥)⇒ R(q,⊥),
Q(q,-) ⇒ R(p,-), and R(p, q) ⇒ R(i,-). By R(o,-), R(¬o,⊥). By Case Z01
in Fig. 9, R(t1,-). By Case Z17 in Fig. 9, R(p, q). The first 4 cases are true by
transitivity of PERs. The 5th case is true by Case Z02 in Fig. 9. �

342 B. Cook and G. Gonthier

Alternative Implementations. There are many other ways to implement ≤,
<, and =. For example, we could define ≤ in terms of < and =:

x ≤n y � x <n y ∨ x =n y

In this case, we can find a LTE′—displayed in Fig. 10—such that

(β1
3 ,∧i∈{1...n}{LTE′(βi, βi+1, xi, yi, ρ

i)} ∧ βn+1 ⇔ 〈⊥,-〉 ∧ β1
3 ⇔ (β1

1 ∨ β1
2))

We have proven the same result as Theorem 1 for this implementation. Unfor-
tunately we had to modify the proof and Ripple predicate sufficiently that we
are not able to include this proof here.

LTE′(o, i, p, q, t) � LTE(o1, ii, p, q, t′) ∧ EQ(o2, i2, p, q, t′′)

Fig. 10. LTE′: an alternative to LTE. Assume that t′ and t′′ are vectors with

fresh variables. Note that the ∧ is only asserting the triples in LT and EQ and

not asserting that the answer is < and =. LTE′’s first and second parameters are

Boolean vectors of size 2.

Another possibility is displayed in Fig. 11. This is based on an implementation
where the unneccesary ⇔ has been removed:

x ≤n y �
{
- if n = 0
(¬xn ∨ yn) ∧ ((¬xn ∧ yn) ∨ (x ≤n−1 y)) if n > 0

LTE′′(o, i, p, q, t) � (t1 ⇔ (q ⇒ p))
∧ (t2 ⇔ (p ⇒ q))
∧ (t3 ⇔ (t1 ⇒ i))
∧ (¬o ⇔ (t2 ⇒ ¬t3))

Fig. 11. LTE′′: an alternative to LTE Assume that t′ and t′′ are vectors with fresh

variables.

Lemma 15. PosRgtRipple(0,LTE′′) and NegLftRipple(0,LTE′′)

Proof. We can assume Q(o,-)∧R = ZeroSaturate(Q, T)∧LTE′′(o, i, p, q, t)
⊆ T and we must prove the following three conditions Q(p,-) ⇒ R(q,-),
Q(q,⊥) ⇒ R(p,⊥), and R(p, q) ⇒ R(i,-) (assuming that either R(p,-) or
R(q,⊥)). By Q(o,-), Q(¬o,⊥). By Case Z01 in Fig. 9, R(t2,-). By Case Z02
in Fig. 9, R(t3,-). The first two conditions are proved by the same argument
used in Lemma 12. As for the final condition: if R(p,-) then, by Case Z03 in
Fig. 9, R(t1,-). If R(q,⊥) then, by Case Z04 in Fig. 9, R(t1,-). Since (in either
case) R(t1,-), by Case Z09 in Fig. 9, R(t3, i). Because R(t3,-), by transitivity
of PERs, R(i,-). �

Using St̊almarck’s Algorithm to Prove Inequalities 343

4 Conclusion

St̊almarck’s 1-saturation is a fast but incomplete method of computing finite
partial equivalence relations over propositional logic formulae. It can be used
in situations when completeness is not required or as a method of pruning the
search space traversed by more complete techniques such as backtracking.

We have proved that, under several implementations of inequalities for finite
vectors, 1-saturation can be used to compute transitive arguments. This pro-
vides some intuition as to what St̊almarck’s algorithm can prove. Notably, we
now know that a limited form of 2-saturation can be used to compute a useful
approximation of transitive closure over relations such as ≤ that is representable
by equivalences in the triples. This is precisely what Slam needs.

This paper could be a starting point for future efforts of the same kind. There
are other incomplete SAT-based techniques—such as recursive learning [8]—
that play a role that is similar to St̊almarck’s algorithm. We would also like
to prove more results about St̊almarck’s algorithm (or a similar procedure),
such that we could get a complete characterization of its relative completeness
over propositional logic extended with linear arithmetic and uninterpreted func-
tions. As these proofs are quite tedious (especially the proofs about the relations
PosRgtRipple, etc)—we would like to automate them in a mechanical theorem
prover.

Acknowledgements. Koen Classen, John Harrison, and Mary Sheeran have
made helpful comments regarding this work.

References

1. G. Andersson, P. Bjesse, B. Cook, and Z. Hanna. A proof engine approach to
solving combinational design automation problems. In 2002 Design Automation
Conference, 2002.

2. T. Ball, B. Cook, S. Das, and S. K. Rajamani. Refining approximations in software
predicate abstraction. In TACAS 04: Tools and Algorithms for Construction and
Analysis of Systems. Springer-Verlag, 2004.

3. T. Ball, B. Cook, S. K. Lahiri, and L. Zhang. Zapato: Automatic theorem proving
for predicate abstraction refinement. In CAV 04: International Conference on
Computer-Aided Verification, 2004.

4. B. Cook, D. Kroening, and N. Sharygina. Cogent: Accurate theorem proving for
program verification. In To appear at CAV 05: Conference on Computer Aided
Verification, 2005.

5. B. A. Davey and H. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, 1990.

6. S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV
97: Conference on Computer Aided Verification, 1997.

7. J. Harrison. St̊almarck’s method as a HOL derived rule. In TPHOLs 96: Interna-
tional Conference on Theorem Proving in Higher Order Logics, 1996.

8. W. Kunz and P. K. K. Recursive learning: An attractive alternative to the decision
tree for test generation in digital circuits. In ITC’92: International Test Conference,
1992.

344 B. Cook and G. Gonthier

9. S. K. Lahiri, T. Ball, and B. Cook. Predicate abstraction via symbolic decision
procedures. In To appear at CAV 05: Conference on Computer Aided Verification,
2005.

10. S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic approach to predicate ab-
straction. In CAV 03: International Conference on Computer-Aided Verification,
pages 141–153, 2003.

11. Microsoft Corporation. Static Driver Verifier. Available at www.microsoft.com/
whdc/devtools/tools/SDV.mspx.

12. M. Sheeran and G. St̊almarck. A tutorial on St̊almarck’s proof procedure for
propositional logic. Formal Methods in System Design, 16(1), January 2000.

Automatic Refinement Checking for B

Michael Leuschel1,2 and Michael Butler1

1 School of Electronics and Computer Science,
University of Southampton,

Highfield, Southampton, SO17 1BJ, UK
{mjb, mal}@ecs.soton.ac.uk

2 Institut für Informatik, Heinrich-Heine Universität Düsseldorf,
Universitätsstr. 1, D-40225 Düsseldorf
leuschel@cs.uni-duesseldorf.de

Abstract. Refinement is a key concept in the B-Method. While refine-
ment is at the heart of the B Method, so far no automatic refinement
checker has been developed for it. In this paper we present a refinement
checking algorithm and implementation for B. It is based on using an
operational semantics of B, obtained in practice by the ProB animator.
The refinement checker has been integrated into ProB toolset and we
present various case studies and empirical results in the paper, showing
the algorithm to be surprisingly effective. The algorithm checks that a
refinement preserves the trace properties of a specification. We also com-
pare our tool against the refinement checker FDR for CSP and discuss
an extension for singleton failure refinement.

Keywords: B-Method, Tool Support, Refinement Checking, Model Check-
ing, Animation, Logic Programming, Constraints.1

1 Introduction

The B-method is a well-established theory and methodology for the rigorous
development of computer systems and programs. B was originally devised by
Abrial [1] and has been applied to a wide range of safety-critical applications.

B is based on the notion of abstract machine. The variables of an abstract
machine are typed using set theoretic constructs such as sets, relations and
functions. Each machine has a certain number of operations that can update the
variables of the machine, as well as an invariant specified using predicate logic.

Refinement is a key concept in the B-Method. It allows one to start from
a high-level specification and then gradually refine it into an implementation,
which can then be automatically translated into executable code. While there is
tool support for proving refinement via semi-automatic proof (within Atelier-B
[24], the B-Toolkit [19], and now also Click’n Prove[3]), there has been up to now

1 This research is being carried out as part of the EU funded projects: IST 511599
RODIN (Rigorous Open Development Environment for Complex Systems) and IST-
2001-38059 ASAP (Advanced Specialization and Analysis for Pervasive Systems).

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 345–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

346 M. Leuschel and M. Butler

no automatic refinement checker in the style of FDR [12] for CSP [15,21]. The
proof-based approach to refinement checking requires that a gluing invariant be
provided. In contrast, with our automatic approach no gluing invariant needs
to be provided. The proof based approach to refinement is a labour intensive
activity. Indeed, when a refinement does not hold it may take a while for a B
user to realise that the proof obligations cannot be proven, resulting in a lot of
wasted effort. In this paper we wish to speed up B development time by providing
an automatic refinement checker that can be used to locate errors before any
formal refinement proof is attempted. In some cases the refinement checker can
actually be used as an alternative to the prover,2 but in general the method
presented in this paper is complementary to the traditional B tools.

In this paper we formalise the notion of refinement checking and present an
algorithm which is at the heart of an automatic refinement checker. This new
refinement checker has been implemented and integrated within the ProB val-
idation tool for the B method [16]. At the heart of ProB is a fully automatic
animator implemented mainly in SICStus Prolog. The undecidability of animat-
ing B is overcome in ProB by restricting animation to finite sets and integer
ranges, while efficiency is achieved by delaying the enumeration of variables as
long as possible. ProB comprises various visualization facilities [18] to display
the state space in a user-friendly way. ProB also contains a model checker [9]
which tries to find a sequence of operations that, starting from an initial state,
leads to a state which violates the invariant (or exhibits some other error, such
as deadlocking, assertion violations, or abort conditions). To compute the set of
reachable states of a B machine the model checker makes use of the same under-
lying interpreter as the animator. In fact, the ProB interpreter can be viewed as
providing the operational semantics of a B machine. In this paper we will re-use
the same ProB interpreter as the foundation of the refinement checker. In the
case where a refinement is violated, the refinement checker displays a sequence
of operations that can be performed by the “refinement” machine but not by
the specification.

2 Scheduler Example

In this section we present a small example of a specification and its refinement
in B to help motivate the work. Later we will be more precise about the meaning
of refinement and refinement checking. Familiarity with B notation is assumed
in the remainder of the paper.

Figure 1 presents a B specification (Scheduler0) of a system for scheduling
processes on a single resource. In this model, each process has a state which is
either idle, ready to become active or active whereby it controls the resource.
The current set of processes is modelled by the variable proc and the pst variable
maps each current process to a state. There is a further invariant stating that
there should be no more than one active process (pst−1[{active}], the image
2 Namely when all sets and integer ranges are already finite to start with and do not

have to be reduced to make animation by ProB feasible.

Automatic Refinement Checking for B 347

of {active} under the inverse of pst, represents the set of active processes).
Scheduler0 contains events for creating new processes, making a process ready,
allowing a process to take control of the resource (enter) and allowing a process
to relinquish control (leave). Each of these events is appropriately guarded by a
WHEN clause3. In particular, the enter event is enabled for a process p when p
is ready and no other process is active.

MACHINE Scheduler0
SETS

PROC;
STATE = {idle, ready,active}

VARIABLES proc, pst
INVARIANT

proc ∈ P(PROC) ∧
pst ∈ proc → STATE ∧
card(pst−1[{active}]) ≤ 1

INITIALISATION proc, pst := {}, {}

OPERATIONS
new(p : PROC) =̂

WHEN
p ∈ PROC \ proc

THEN
pst(p) := idle ‖
proc := proc ∪ {p}

END;

ready(p : PROC) =̂
WHEN

pst(p) = idle
THEN

pst(p) := ready
END;

enter(p : PROC) =̂
WHEN

pst(p) = ready ∧
pst−1[{active}] = {}

THEN
pst(p) := active

END;

leave(p : PROC) =̂
WHEN

pst(p) = active
THEN

pst(p) := idle
END

Fig. 1. Scheduler specification

Figure 2 presents a B refinement of Scheduler0. In this refinement, instead of
mapping each current process to a state, we have a pool of idle processes idleset
and a queue of ready processes readyq. We also have a flag indicating whether
or not there is a process currently active (activef). When activef is true, the
identity of the currently active process is stored in activep. The queue of ready
processes means that processes will become active in the order in which they
became ready4. Now the enter event is enabled for process p when p is the first
element in the queue and there is no active process.

We expect that Scheduler1 is a valid refinement of Scheduler0 since any
sequence of operations in Scheduler0 should also be possible in Scheduler1.
Refinement checking of Scheduler0 against Scheduler1 with our tool for a max-
imum of three processes (PROC = {p1, p2, p3}) finds no counterexamples. If
we were to weaken the guard of the refined enter event, removing the clause
activef = FALSE, this weaker refinement would allow more than one process
3 WHEN is the the Event B syntax for the SELECT clause of classical B.
4 In the ready event, readyq ← p represents appending of p to the end of readyq.

348 M. Leuschel and M. Butler

MACHINE Scheduler1
REFINES Scheduler0
VARIABLES

proc, idleset, readyq,activep, activef
INVARIANT

idleset ∈ P(PROC) ∧
readyq ∈ seq(PROC) ∧
activep ∈ PROC ∧
activef ∈ BOOL

INITIALISATION
proc := {} || readyq := [] ||
activep :∈ PROC ||
activef := FALSE ||
idleset := {}

OPERATIONS

new(p : PROC) =̂
WHEN

p ∈ PROC \ proc
THEN

idleset := idleset ∪ {p} ‖
proc := proc ∪ {p}

END;

ready(p : PROC) =̂
WHEN

p ∈ idleset
THEN

readyq := readyq ← p ||
idleset := idleset \ {p}

END;

enter(p : PROC) =̂
WHEN

readyq �= [] ∧
p = first(readyq) ∧
activef = FALSE

THEN
activep := p ||
readyq := tail(readyq) ||
activef := TRUE

END;

leave(p : PROC) =̂
WHEN

activef = TRUE ∧
p = activep

THEN
idleset := idleset ∪ {p} ||
activef := FALSE

END

Fig. 2. Refinement of the scheduler

to take control of the single resource. In terms of operation sequences, it would
allow sequences in the refinement in which, for example, enter(p1) is followed by
enter(p2) without leave(p1) occurring in between. It would thus be an incorrect
refinement. The following counterexample is generated by ProB for the incor-
rect refinement: new(p1), new(p2), ready(p1), ready(p2), enter(p1), enter(p2).
This counterexample discovered by ProB is a trace allowed by the incorrect re-
finement that is not a trace of the specification Scheduler0.

3 Refinement Checking for B

In this section we outline the B notion of refinement. We also outline the trace
behaviour of B machines and trace refinement for B machines and relate it to
standard B refinement.

Classical B distinguishes between an enabling condition (guard) and a pre-
condition. ProB supports guards but not preconditions5. If we ignore precon-
5 The B syntax supported by ProB allows preconditions, but they are treated as

guards. The more recent Event B approach [4] supports guards but not preconditions.

Automatic Refinement Checking for B 349

ditions but allow for guards, then all B operations have a normal form defined
by a predicate P relating before state v and after state v′ as follows [1, Chapter
6]: ANY v′ WHERE P (v, v′) THEN v := v′ END.

Classical B refinement is expressed in terms of a gluing invariant which links
concrete states to abstract states. The meaning of operations in B is defined in
terms of weakest precondition formulae as are the refinement proof obligations
for B. In this paper we will find it more convenient to take a standard relational
view of operations and gluing invariants. This view is easily reconciled with the
generalised substitution notation by treating the predicate P in the normal form
for operations above as characterising a relation between before and after states.

The proof obligations for B correspond to the standard relational definition
of forward simulation.6 Let R be the gluing relation, AI and CI be the abstract
and concrete initial states respectively and AOP and COP stand for correspond-
ing abstract and concrete operations. The usual relational definition of forward
simulation is as follows [14]:

– Every initial concrete state must be related to some initial abstract state:
c ∈ CI =⇒ ∃a ∈ AI · c R a

– If states are linked and the concrete one enables an operation, then the
abstract state should enable the corresponding abstract operation and both
operations should result in states that are linked: c R a ∧ c COP c′ =⇒
∃a′ · a AOP a′ ∧ c′ R a′

The proof obligations for refinement are automatically generated from the
gluing invariant and the definitions of the abstract and concrete operations by,
e.g., AtelierB or the BToolkit. The user can then try to prove these using the
semi-automatic provers of those systems. If the proof obligations are all proven,
every execution sequence performed by the refinement machine can be matched
by the abstract machine [8]. Automatic refinement checkers work directly on the
execution sequences and try to disprove refinement by finding traces that can
be performed by the refinement machine but not by the specification. For this
we need to formalise the notions of execution sequences (traces) for B.

Traces. The use of event traces to model system behaviour is well-known from
process algebra, especially CSP [15]. Although event traces are not part of the
standard semantic definitions in B, many authors have made the link between
B machines and event traces including [8,10,23].

For a B operation of the form X←−op(Y)=̂S, we regard execution of ope-
ration op with input value a resulting in output value b as corresponding to
the occurrence of event op.a.b. An event trace is a sequence of such events and
the behaviour of a system may be defined by a set of event traces. For exam-
ple, the following is a possible trace of the scheduler specification of Figure 1:
〈 new.p1, new.p2, ready.p1, ready.p2, enter.p1, leave.p1 〉.

The state space of a machine is defined as the cartesian product of the types
of each of the machine variables. We represent the machine variables by a vector

6 This is easy to demonstrate by using the normal form for operations characterised
by a before-after predicate and the weakest precondition rules for B.

350 M. Leuschel and M. Butler

v. The normal form for a B operation operating on v with inputs x and outputs y
is characterised by a predicate P (x, v, v′, y). Characterising a B operation of the
form X←− op(Y) as a predicate in this way gives rise to a labelled transition
relation on states: state s is related to state s′ by event op.a.b, denoted by
s →M

op.a.b s′, when P (a, s, s′, b) holds. This transition relation →M
e is lifted to

traces using relational composition: →M
〈〉 = ID and →M

〈e〉t = →M
e ; →M

t .
Now t is a possible trace of machine M if →M

t relates some initial state to some
state reachable through trace t: t ∈ traces(M) = ∃c, c′ · c ∈ CI ∧ c →M

t c′.

Trace Refinement Checking. A machine M is a trace refinement of a machine
N if any trace of N is a trace of M , that is, any trace that is possible in the
concrete system is also possible in the abstract system. It is straightforward
to show by induction over traces that if we can exhibit a forward simulation
between M and N with some gluing relation, then M is trace refined by N . It
is known that forward simulation is not complete, i.e., there are systems related
by trace refinement for which it not possible to find a forward simulation. The
related technique of backward simulation together with forward simulation make
simulation complete [14]. A backward simulation is defined as follows:

c ∈ CI ∧ c R a =⇒ a ∈ AI

c COP c′ ∧ c′ R a′ =⇒ ∃a · c R a ∧ a AOP a′

The B tools produce proof obligations for forward simulation only. There are
cases of refinement where, although the trace behaviour of the concrete sys-
tem is more deterministic, an individual concrete operation is less deterministic
than its corresponding abstract operation. Backwards refinement is required in
such cases. Typical developments B involve the reduction of nondeterminism in
operations so that forward simulation is sufficient in most cases.

A single complete form of simulation can be defined by enriching the glu-
ing structure. Gardiner and Morgan [13] have developed a single complete sim-
ulation rule by using a predicate transformer for the gluing structure. Such
a predicate transformer characterises a function from sets of abstract states
to sets of concrete states. Refinement checking in ProB works by construct-
ing a gluing structure between the concrete and abstract states as it traverses
the state spaces of both systems. So that we have a complete method of re-
finement checking, the ProB checking algorithm constructs a gluing structure
that relates concrete states with sets of abstract states: R ∈ C ↔ P(A).
On successful completion of an exhaustive refinement checking run the con-
structed gluing structure R will relate each individual concrete initial state
to the set of abstract initial states and for each pair of corresponding con-
crete and abstract states, the following simulation condition will be satisfied:
c R as ∧ c COP c′ =⇒ ∃as′ · as AOP as′ ∧ c′ R as′. Here as and as′

represent sets of abstract states and as AOP as′ is defined as AOP [as] = as′. It
can be shown by induction over traces that this entails trace refinement, i.e., a
successful outcome of the algorithm guarantees trace refinement. Because ProB
works on finite state systems, the algorithm always terminates. Completeness of

Automatic Refinement Checking for B 351

the algorithm is proven by demonstrating that whenever the outcome is failure,
then there is a violation of trace refinement.

4 The Algorithm

We now present an algorithm to perform refinement checking. The gluing struc-
ture discussed in the previous Section is stored in Table, and for every entry
(c, A) the algorithm checks whether all operations of the concrete state c can be
matched by some abstract state in A; if not, a counter example has been found,
otherwise all concrete successor states are computed and put into relation with
the corresponding abstract successor states. To ensure termination of the algo-
rithm it is crucial to recognise when the same configuration is re-examined. This
is done by the check “(ConcNode,AbsNodes) ∈ Table”. If that check succeeds
we know that we can safely stop looking for a counter example. Indeed, if one
counter example exists we know that we can find a shorter version starting from
the configuration that is already in the Table.

In the previous section we have introduced the relation→M , where s →M
op.a.b

s′ signifies that the operation op can be performed with inputs a and outputs b
in state s, resulting in a new state s′ of the machine M . For the algorithm below
it is convenient to also model the initialisations by adding a special state root,
and extending →M such that root →M

initialise machine s holds for all valid initial
states s of the machine M .

Algorithm 4.1[Refinement Checking]

Input: An abstract machine MA and a refinement machine MR

Table := {} ; Res := refineCheck(root,{root});
if Res = 〈〉 then println ’Refinement OK’
else println(’Counter Example:’,Res)
end if

function refineCheck(ConcNode,AbsNodes)
if (ConcNode,AbsNodes) ∈ Table then

return 〈〉
else

Table := Table ∪ {(ConcNode,AbsNodes)};
for all CSucc,Op such that ConcNode →MR

Op CSucc do

TraceS := concat(Trace,[(Op,CSucc)]);

ASuccs := {as | ∃an ∈ AbsNodes ∧ an →MA
Op as};

if ASuccs = ∅ then
return TraceS

else
Res := refineCheck(CSucc,ASucss,TraceS);
if Res �= 〈〉 then return Res; end if

end if
end for

end if
end function

352 M. Leuschel and M. Butler

Implementation. We have actually performed two implementations of the
above algorithm. The first one is implemented inside the ProB toolset, i.e.,
using SICStus Prolog. The tabling is done by maintaining a Prolog fact database
which is updated using assert/1. The second implementation has been done in
XSB Prolog. The code of the XSB refinement checker is almost identical, but
instead of using a Prolog fact database it uses XSB’s efficient tabling mechanism
[22]. As we will see later, this implementation is faster than the SICStus Prolog
one, but the overhead of starting up a new XSB Prolog process and loading the
states space is only worth the effort for larger state spaces with no or difficult
to find counter examples. From a pragmatic point of view, this approach also
requires the ProB user to separately install XSB Prolog.

For both implementations the abstract state space currently has to be com-
puted beforehand (using ProB). To ensure completeness of the refinement check-
ing, it should be fully computed. However, our refinement checker also allows
the abstract state space to be only partially computed. In that case, the refine-
ment checker will detect whether enough of the state space has been computed
to decide the refinement (and warn the user if not).

For the SICStus Prolog implementation the state space of the implementation
can, but does not have to be computed beforehand. In other words, the imple-
mentation state space will be expanded on-the-fly, depending on how the refine-
ment checking algorithm proceeds. This is of course most useful when counter
examples are found quickly, as in those cases only a fraction of the state space
will have to be computed. In future work we plan to enable this on-the-fly ex-
pansion also for the abstract state space. For the XSB implementation, running
separately from ProB, this interaction is currently not possible, and hence both
the abstract and implementation state space have to be computed beforehand.

5 Experiments

To test our refinement checker we have conducted a series of experiments with
various models. As well as using the scheduler example from Section 2, we have
experimented with a much larger development of a mechanical by press by Abrial
[2]. The development of the mechanical press started from a very abstract model
and went through several refinements. The final model contained “about 20
sensors, 3 actuators, 5 clocks, 7 buttons, 3 operating devices, 5 operating modes,
7 emergency situations, etc.” [2]. We were able to apply our new refinement
checker to successfully validate various refinement relations. Furthermore, as no
abstraction was required for ProB (i.e., all sets were already finite to start
with), the refinement checker can actually be used in place of the traditional
B refinement provers. In other words, were thus able to automatically prove
refinement using our new tool. To check the ability of our tool to find errors
we have also applied it to an erroneous refinement (m2 err.ref), and ProB was
able to locate the problem in a few seconds. We have also experimented with a
simple example of a server allowing clients to log in. Precise timings and results
for these and other experiments are presented in the next subsections.

Automatic Refinement Checking for B 353

Consistency Checking. In a first phase we have performed classical consis-
tency and deadlock checking on our examples using ProB’s model checker. The
results can be found in Table 1, and give an indication of the size of the state
space and how expensive it is to compute the operational semantics. The ex-
periments were all run on a PowerPC G5 Dual 2.5 GHz, running Mac OS X
10.3.9, SICStus Prolog 3.12.1 and ProB version 1.1.5. Note, while the machine
had 4.5 Gigabyte of RAM, only 256 Megabyte are available in SICStus Prolog
3.12 for dynamic data (such as the state space of B machines). scheduler0.mch
and scheduler1.ref are the machines presented above in Section 2 for 3 processes,
while scheduler0 6.mch and scheduler1 6.ref are the same machines but for 6 pro-
cesses. The machines m0.mch, m1.ref, m2.ref, m2 err.ref, and m3.ref are from
the mechanical Press example discussed above. Server.mch is a simple B machine
describing the server example, while ServerR.ref is a refinement thereof.

Refinement Checking. Table 2 are the results of performing various refine-
ment checks on these machines. Entries marked with an asterisk mean that no
previous consistency checking was performed, i.e., the operational semantics of
the implementation machine was computed on-the-fly, as driven by the refine-
ment checker. For entries without an asterisk the experiment was run straight
after the consistency checking of Table 1, i.e., the operational semantics was
already computed and the time is thus of the refinement checking proper. The
figures show that our checker was very effective, especially if counter examples
existed.

In Table 3 we have conducted some of the experiments where the refine-
ment checker is run as a separate process using XSB Prolog [22], rather than
inside ProB under SICStus Prolog. Our experiments confirm that XSB’s tabling
mechanism leads to a more efficient refinement checking (cf. the third column).
However the time to start up XSB and load the state space is not negligible,
meaning that the XSB approach does not always pay off. This can be seen in the
fourth column which contains the total time for loading and checking: e.g., the
approach pays off for the m2.ref check against m1.ref (overall gain of 30 seconds)
but not for the smaller examples nor when a counter example is found quickly.

Comparison with FDR. We have compared our new refinement checker
against the most widely known refinement checker, namely FDR [12]. FDR is
a commercial tool for the validation of CSP specifications [15]. While B ma-
chines cannot easily be translated into CSP, the state space explored by ProB
can easily be translated into a CSP specification using just choice and process
definitions. While this automatically generated CSP is not a typical CSP spec-
ification, it is still useful for two purposes. First, it allows us to evaluate our
refinement Algorithm 4.1 against the counterpart in FDR. Second, we can de-
termine whether it would make sense, from an implementation point of view, to
outsource the refinement checks to FDR, rather than using our own algorithm.
The experiments were conducted as follows. After consistency checking (Table 1)
the state space was saved as a simple CSP file using an export facility added to
ProB. Basically, every state was encoded as a separate CSP Process and defined

354 M. Leuschel and M. Butler

Table 1. ProB consistency checking and size of state space

Machine Time States Transitions

Server.mch 0.013 s 5 9
ServerR.ref 0.05 s 14 39

scheduler0.mch 46 s 55 190
scheduler1.ref 0.93 s 145 447
scheduler0 6.mch 41.37 s 2,188 14,581
scheduler1 6.ref 501.61 s 37,009 145,926

m0.mch 3.19 s 65 9,924
m1.ref 20.38 s 293 47,574
m2.ref 44.29 s 393 59,588
m2 err.ref 31.51 s 405 61,360
m3.ref 364.90 s 2,693 385,496

Table 2. ProB refinement checking and size of refinement relation

Refinement Specification Time Size of table

Successful refinements:

ServerR.ref Server.mch* 0.05 s 14
” Server.mch 0.00 s ”

scheduler1.ref scheduler0.mch* 0.73 s 145
” scheduler0.mch 0.00 s ”
scheduler1 6.ref scheduler0 6.mch 3.80 s 37,009

m1.ref m0.mch* 25.4 s 585
” m0.mch 6.28 s ”
m2.ref m0.mch 8.10 s 785
m2 err.ref m0.mch 8.13 s 809
m2.ref m1.ref 70.57 s 3,804
m3.ref m0.mch 51.96 s 5,345
m3.ref m1.ref 429.37 s 24,039
m3.ref m2.ref 333.85 s 21,205

Counter examples found:

scheduler1err.ref scheduler0.mch* 0.12 s 19
scheduler1err 6.ref scheduler0 6.mch* 1.80 s 121
m1.ref m2.ref 0.01 s 13
m2 err.ref m1.ref* 4.22 s 92
” m1.ref 0.03 s ”

by an external choice of all the outgoing transitions. Every transition was repre-
sented by a CSP prefix operation, were the right-hand side is the CSP Process
corresponding to the destination state of the transition. To obtain the left-hand
side, operation arguments were flattened out, e.g., the operation new(p1) got
translated into a new CSP channel new p1.7 As an illustration, here are the first
few lines for m0.mch:
7 This had no impact for the mechanical press examples written in Event B style, as

there are no operation arguments in any of the machines anyway.

Automatic Refinement Checking for B 355

Table 3. ProB refinement checking using XSB Prolog

Refinement Specification Checking Time Total Time

Successful refinements:

ServerR.ref Server.mch 0.00 s 0.06 s

scheduler1.ref scheduler0.mch 0.00 s 0.11 s

m1.ref m0.mch 2.85 s 13.76 s
m2.ref m1.ref 26.66 s 40.24 s
m3.ref m2.ref 136.12 s 219.03 s

Counter examples found:

m1.ref m2.ref 0.00 s 22.68 s
m2 err.ref m1.ref 0.01 s 12.79 s

Nroot = initialise_machine->N3448 [] initialise_machine->N3449 []

initialise_machine->N3450 [] initialise_machine->N3451

N3448 = demarrer_presse->N3452 [] presse_descend->N3450 [] ...

FDR 2.8.1 was then run on the same hardware as for the earlier experiments
to check CSP trace refinement and the results can be found in Table 4. Timings
do not include the time needed to load the CSP file, but include the compilation,
normalization and checking time of FDR. Due to a small bug in the TclTk
interface of FDR timings were not displayed for ServerR.ref and scheduler1.ref;
but the response was very quick. For scheduler1 6.ref FDR ran approximatively
3 hours (but again precise timings were not displayed). For the other examples
FDR spent most of the time on compilation and normalization of the CSP model.
This means subsequent refinement checks of the same combination of machines
would have been substantially faster. In practice, however, there is only one
refinement check that one is interested in for any two machines (namely that the
“refinement” machine is a refinement of the specification machine).

We have also modelled the scheduler and its refinement in CSP by hand
using what we believe is a natural CSP style using CSP constructs such as par-
allelism and synchronization wherever possible. These are named scheduler1.csp
and scheduler0.csp and for 3 processes and scheduler1 6.csp and scheduler0 6.csp
for 6 processes. We had to manually limit the size of the communication queue
for FDR to terminate (this was not necessary in the B model), but after that
refinement checking worked fine. After feedback from Michael Goldsmith from
Formal Systems, we have also tested versions that were better suited for FDR,
named Gscheduler1 6.csp and Gscheduler0 6.csp for 6 processes.

For checking m1.ref against m0.mch it can be noted that our algorithm is
about 16 times faster than FDR (one has to compare the 101 s against 6.28 s as
the computation of the operational semantics has in both cases been done before-
hand by ProB; arguably FDR is at a disadvantage as the state space is in CSP
form rather than stored as facts in a Prolog database). For the scheduler1 6.ref
check against scheduler0 6.ref our implementation is even roughly 2800 times
faster than using FDR. Our relatively simple refinement checking algorithm thus
proves surprisingly effective in practice. When counter examples exist the differ-

356 M. Leuschel and M. Butler

Table 4. Refinement checking on the already expanded state space with FDR

Refinement Specification Time States Transitions

Successful refinements:

ServerR.ref Server.mch < 1s 5 9

scheduler1.ref scheduler0.mch < 1s 69 205
scheduler1 6.ref scheduler0 6.mch +/- 3 hours 10,529 41,281
scheduler1.csp scheduler0.csp < 1 s 68 204
scheduler1 6.csp scheduler0 6.csp +/− 100s 10,528 41,280
Gscheduler1 6.csp Gscheduler0 6.csp +/− 2s 130,768 630,720

m1.ref m0.mch 101 s 447 71,910
m2.ref m1.ref 152 s 3,239 492,401

Counter examples found:

m1.ref m2.ref 120 s 2 8
m2 err.ref m1.ref 150 s 464 71,107

ence is even more pronounced, as FDR spends a lot of effort on compiling and
normalising the CSP specification before (quickly) finding the counter example.
One explanation is that FDR’s compilation is not well adapted to large, mono-
lithic processes. Another point is that our algorithm normalises the abstract
state space on the fly rather than beforehand. Indeed, Algorithm 4.1 can also
be viewed as linking concrete states with sets of abstract states, by exploring
in parallel all possible alternatives of the abstract machine. This corresponds to
normalisation in FDR [12], but done on-the-fly rather than beforehand. Thus,
when a counter example is found (quickly) only a fraction of the abstract space
will have been normalised. Furthermore, even when no counter example is found,
only that part of the abstract system is normalised which is in common with
the implementation. As the implementation often has more restricted behaviour,
this can result in big reductions and allows our tool to handle bigger examples.
FDR’s approach would only pay off if one did many refinement checks of the
same abstract system, covering a large part of its state space, and if one has
enough memory to normalise the entire abstract system. In our particular case
studies, this was not the case. Note that for the well designed Gscheduler1 6.csp
CSP specification, FDR was able to exploit properties of CSP to achieve very
good performance (2 s compared to 100s for the unoptimised CSP and 3.8 s
for ProB). We plan to undertake a more thorough comparison of ProB and
FDR by comparing more examples modelled naturally in CSP and naturally in
B. Still, as a preliminary conclusion, we can state that our algorithm compares
favourably with FDR and that FDR is for the moment not very well suited for
checking CSP models which directly encode fully expanded transition systems.

6 Extensions

Singleton Failures. We have extended our refinement checking algorithm to
also check singleton failure refinement (see, e.g., [6]). A singleton failure trace is a
pair consisting of a trace t as defined earlier and either the empty set or singleton

Automatic Refinement Checking for B 357

Table 5. ProB refinement checking using singleton failures

Refinement Specification Time Size of table

Successful refinements:

ServerR.ref Server.mch* 0.07 s 14

Counter examples found:

scheduler1.ref scheduler0.mch* 0.06 s 9
m1.ref m0.mch* 0.05 s 2
m2.ref m1.ref * 0.07 s 2
m3.ref m2.ref * 0.08 s 2

set containing a single operation F (with arguments). The intuitive meaning of
(t, {F}) is that the machine can perform all the operations in the trace t and
then be in a state where the operation F is not enabled, i.e., can be refused. The
meaning of (t, ∅) is that the machine can perform all the operations in t and then
all operations are enabled for all possible arguments. A machine m1 is said to be
a singleton failure refinement of m0 iff all singleton failure traces of m1 are also
singleton failure traces of m0. Singleton Failures refinement can be situated in
between trace refinement and CSP’s failure refinement as implemented in FDR
(in the latter, rather than talking about an single operation that can be refused
one talks about sets of possible combinations of operations that can be refused).

To implement singleton failure refinement checking, Algorithm 4.1 has been
extended to check for an additional condition when a counter example is found.
More precisely, the function refineCheck (ConcNode, AbsNodes) also looks for ope-
ration calls that are possible in all states in AbsNodes but not in ConcNode.

As B does not have the distinction between internal and external choice,
singleton failure refinement is mainly useful for refinements that should not de-
crease the choices offered by the machine, e.g., data refinement or when moving
non-deterministic choices later. Note, however, when treating parameters of B
operations, a choice of input values could be treated as an external choice, while
a choice of output values could be treated as internal. In future, we plan to make
this distinction. (It is not necessary to make this distinction for trace refinement,
since the traces model does not distinguish internal and external choice.)

Some empirical results can be found in Table 5. All experiments were run
on-the-fly, i.e., the implementation transition was not computed beforehand. As
one can see, several refinement checks that were successful using trace refinement
now yield a counter example. For example, for the m1.ref vs m0.mch check the
algorithm finds the counter example (〈initialise machine〉, demarrer presse),
meaning that there is an initial state of m1.ref where demarrer presse is not
enabled, but in all initial states of m0.mch this operation is enabled.

Application to B and CSP. In recent work [7] we have shown how to combine
B and CSP for specification purposes (a specification is partly written in B
and partly in CSP) or for property checking of B machines (the CSP is used
as a temporal property that a B machine must satisfy). Our new refinement
checker is language independent, in the sense that any interpreter plugged into

358 M. Leuschel and M. Butler

the ProB toolset can be used. In practice this means that we can check whether
a B machine is a refinement of a CSP machine, or the other way around. For
example, the mutual exclusion property of the scheduler of Section 2 can be
specified as the following CSP process: LOCK = enter?p → leave.p→ LOCK.
We can check that both B schedulers (Figures 1 and 2) are trace refinements
of the LOCK CSP process. We can also check whether a combined B/CSP
specification is a refinement of another combined specification. One can even
use other formalisms, such as Object Petri nets as implemented in [11]. All this
opens up new possibilities for validation.

7 Related and Future Work, and Conclusion

The idea of using (tabled) logic programming for verification is not new. The
inspiration for the current refinement checker came from the earlier developed
CTL model checker presented in [17]. Another related work is [5], which presents
a bisimulation checker written in XSB Prolog.

In future, we plan to extend the refinement checker to also allow on-the-fly
expansion of the abstract state space. We also wish to move away from the pure
depth first strategy that it currently employs; using a similar mixed breadth-first
depth-first strategy as the ProB model checker. This should allow the refinement
checker to be applied when the abstract and implementation state spaces are big
or even infinite. In our approach, no gluing invariant needs to be provided by
the user. Another extension to our approach would be to check whether a gluing
invariant provided by the user can be satisfied. This is the approach taken by
Robinson for Z refinement using the Possum animation tool [20]. To improve the
scalability we are also looking at symbolic state space reduction techniques.

We have presented the first automatic refinement checker for B. The checker is
implemented within ProB and has been applied to various case studies. Our ex-
periments have shown that, at least for the case studies under consideration, the
algorithm is very effective and surprisingly competitive. Its ability to normalise
the abstract machine on-the-fly seemed to be a key ingredient of its success.

Acknowledgements: We would like to thank Michael Goldsmith and anony-
mous referees of ICFEM for their useful feedback. We are also grateful to Letu
Yang for his help in the B to CSP translator.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. J.-R. Abrial. Case study of a complete reactive system in Event-B: A

mechanical press controller. In Tutorial at ZB’2005, 2005. Available at
http://www.zb2005.org/.

3. J.-R. Abrial and D. Cansell. Click’n prove: Interactive proofs within set theory. In
D. A. Basin and B. Wolff, editors, Proceedings TPHOLs 2003, LNCS 2758, pages
1–24. Springer, 2003.

4. J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In D. Bert,
editor, Second International B Conference, April 1998.

Automatic Refinement Checking for B 359

5. S. Basu, M. Mukund, C. R. Ramakrishnan, I. V. Ramakrishnan, and R. M. Verma.
Local and symbolic bisimulation using tabled constraint logic programming. In
Proceedings ICLP’01, LNCS 2237, pages 166–180, November 2001. Springer.

6. C. Bolton and J. Davies. A comparison of refinement orderings and their associated
simulation rules. Electr. Notes Theor. Comput. Sci., 70(3):440 –453, 2002.

7. M. Butler and M. Leuschel. Combining CSP and B for specification and prop-
erty verification. In J. Fitzgearld, I. Hayes, and A. Tarlecki, editors, Proceedings
FM’2005, LNCS 3582, pages 221–236. Springer, 2005.

8. M. J. Butler. An approach to the design of distributed systems with B AMN. In
J. P. Bowen, M. G. Hinchey, and D. Till, editors, Proceedings ZUM ’97, LNCS
1212, pages 223–241. Springer, 1997.

9. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
10. S. Dunne and S. Conroy. Process refinement in B. In H. Treharne, S. King, M. C.

Henson, and S. Schneider, editors, Proceedings ZB 2005, LNCS 3455, pages 45–64.
Springer, 2005.

11. B. Farwer and M. Leuschel. Model checking object Petri nets in Prolog. In Pro-
ceedings PPDP ’04, pages 20–31, 2004. ACM Press.

12. Formal Systems (Europe) Ltd. Failures-Divergence Refinement — FDR2 User
Manual.

13. P. H. B. Gardiner and C. Morgan. A single complete rule for data refinement.
Formal Asp. Comput., 5(4):367–382, 1993.

14. J. He, C. A. R. Hoare, and J. W. Sanders. Data refinement refined. In B. Robinet
and R. Wilhelm, editors, ESOP 86, LNCS 213, pages 187–196. Springer, 1986.

15. C. A. R. Hoare. Communicating Sequential Processes. Prentice–Hall, 1985.
16. M. Leuschel and M. Butler. ProB: A Model Checker for B. In K. Araki, S. Gnesi,

and D. Mandrioli, editors, Proceedings FME 2003, Pisa, Italy, LNCS 2805, pages
855–874. Springer, 2003.

17. M. Leuschel and T. Massart. Infinite state model checking by abstract interpreta-
tion and program specialisation. In A. Bossi, editor, Proceedings of LOPSTR’99,
LNCS 1817, pages 63–82, 2000.

18. M. Leuschel and E. Turner. Visualizing larger states spaces in ProB. In H. Tre-
harne, S. King, M. Henson, and S. Schneider, editors, Proceedings ZB’2005, LNCS
3455, pages 6–23. Springer-Verlag, April 2005.

19. B-Core. B-toolkit manuals. 1999.
20. N. J. Robinson. Checking z data refinements using an animation tool. In D. Bert,

J. P. Bowen, M. C. Henson, and K. Robinson, editors, Proceedings ZB 2002, LNCS
2272, pages 62–81. Springer, 2002.

21. A. Roscoe. The Theory and Practice of Concurrency. Prentice–Hall, 1998.
22. K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database

engine. In Proceedings SIGMOD’94, pages 442–453, Minneapolis, May 1994. ACM.
23. S. Schneider and H. Treharne. Communicating B machines. In D. Bert, J. P. Bowen,

M. C. Henson, and K. Robinson, editors, Proceedings ZB 2002, LNCS 2272, pages
416–435. Springer, 2002.

24. Steria. Atelier B, user and reference manuals. 1997.

Slicing an Integrated Formal Method for

Verification�

Ingo Brückner1 and Heike Wehrheim2

1 Universität Oldenburg, Department Informatik, 26111 Oldenburg, Germany
ingo.brueckner@informatik.uni-oldenburg.de

2 Universität Paderborn, Institut für Informatik 33098 Paderborn, Germany
wehrheim@uni-paderborn.de

Abstract. Model checking specifications with complex data and be-
haviour descriptions often fails due to the large state space to be pro-
cessed. In this paper we propose a technique for reducing such specifica-
tions (with respect to certain properties under interest) before verifica-
tion. The method is an adaption of the slicing technique from program
analysis to the area of integrated formal notations and temporal logic
properties. It solely operates on the syntactic structure of the specifica-
tion which is usually significantly smaller than its state space. We show
how to build a reduced specification via the construction of a so called
program dependence graph, and prove correctness of the technique with
respect to a projection relationship between full and reduced specifica-
tion. The reduction thus preserves all properties formulated in temporal
logics which are invariant under stuttering, as for instance LTL−X .

1 Introduction

Modelling complex systems usually involves the description of different views.
In the UML this is facilitated by providing designers with a large number of
different diagram types for modelling various aspects of systems. In the area
of formal modelling notations integrated formal methods allow for a convenient
specification of different views. Integrated formalisms combine different existing
notations while still giving a semantics to the combination and thus preserving
the formal rigour in a design. Models of complex systems in integrated specifica-
tion formalisms usually contain views describing state-based aspects plus views
describing the dynamic behaviour. A number of such integrations have been
proposed in recent years [5,21,18,12,16,6,11]. They often combine state-based
notations like Z or B with process algebras like CCS or CSP.

In this paper, we will be concerned with verifying specifications written in an
integrated notation. Applications of model checking techniques often fail for such
specifications due to the large amount of data (coming from the state-based side)

� This work was partly supported by the German Research Council (DFG) as part
of the Transregional Collaborative Research Center “Automatic Verification and
Analysis of Complex Systems” (SFB/TR 14 AVACS, www.avacs.org).

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 360–374, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Slicing an Integrated Formal Method for Verification 361

combined with the large number of interleavings of parallel components (com-
ing from the process algebra side). Consequently, the development of techniques
for avoiding the state explosion problem is even more compelling for integrated
formalisms. Here, we propose a method for reducing the specification (and as
a consequence its state space) by removing all those parts which are irrelevant
for the validity of a particular property under interest. The technique for deter-
mining relevant (or irrelevant) parts is an adaption of the slicing technique from
program analysis to formal specifications. Slicing has originally been introduced
by Weiser [20] (for an overview see [17]) to reduce programs for debugging. It
basically involves the construction of a program dependence graph which pre-
cisely reflects the dependencies in a program. On this graph it is possible to
determine the parts of a program which might affect the value of a variable at a
certain program point. The irrelevant parts can then be sliced away. A similar
principle is applied in hardware verification under the name cone of influence
reduction [4]. In software verification slicing has for instance been applied to
Java [7], PROMELA [13], and SAL [19]. Being a static analysis technique slicing
just operates on the syntactic level of the program, and a reduction of this can
substantially facilitate the following model checking.

This work builds on previous ideas for slicing Object-Z specifications [2].
Here, we present a slicing technique for an integrated specification language.
The formalism, called CSP-OZ [5], is a combination of the process algebra CSP
[8] with the state-based formalism Object-Z [15]. For this notation we show
how to construct graphs reflecting the mutual dependencies in a specification,
in particular between the Object-Z and the CSP part. The slicing criteria are
temporal logic formulae over atomic propositions (speaking about the state of the
Object-Z part) and events (speaking about occurrence of operations of the CSP
part). Instead of looking at one particular logic, we take a more general approach.
We show that our reduction preserves properties formulated in any (linear-time)
logic which is invariant under stuttering, i.e. which cannot distinguish between
runs of a system which are equivalent up to some stuttering steps (defined by
a set of irrelevant atomic propositions and events). This is obtained by proving
that the runs of the reduced specification are projections of the runs of the full
specification, projection being a particular form of stuttering. A logic fulfilling
the requirements is for instance LTL−X (linear time temporal logic without Next
operator) or the state/event based interval logic proposed in [2].
The paper is structured as follows. The next section introduces CSP-OZ by
means of a small example and moreover defines a Kripke structure semantics
for CSP-OZ. In section 3 we present the dependence graph construction and the
slicing algorithm. The slicing algorithm will be proven correct with respect to a
projection relationship in section 4. The last section concludes.

2 CSP-OZ Specifications: An Example

For illustrating our approach we use a CSP-OZ specification of an air condition
system. Initially the air condition is off. When it is switched on (workswitch),

362 I. Brückner and H. Wehrheim

it starts to run. While running, the air condition either heats or cools the room
and simultaneously allows the user to switch the mode (modeswitch), refill fuel
(refill) or switch it off again. Cooling or heating is modelled by a consumption
of one unit of fuel (consume) and an emission of hot or cold air (dtemp). For the
specification we first define the mode of operating and a type for the fuel.

Mode ::= heat | cool Fuel == 0..100

AC
chan workswitch, consume, off chan modeswitch : [m? : Mode]
chan refill : [f ? : Fuel] chan dtemp : [t ! : Mode]
chan level : [f ! : Fuel]

main = workswitch → On
On = (Operate ||| Work) � main
Work = consume → dtemp → level → Work

� off → SKIP

Operate = modeswitch → Operate
� refill → Operate
� workswitch → SKIP

work : B
mode : Mode; fuel : Fuel

Init

¬work
mode = heat

effect workswitch
Δ(work)

work ′ = ¬work

enable consume

work ∧ fuel > 5

effect consume
Δ(fuel)

fuel ′ = fuel − 1

effect modeswitch
Δ(mode); m? : Mode

mode ′ = m?

effect dtemp
t ! : Mode

t ! = mode

effect level
f ! : Fuel

f ! = fuel

enable off

¬work

enable refill

fuel < 100

effect refill
Δ(fuel); f ? : Fuel

fuel ′ = min(fuel + f ?, 100)

The first part of the class defines its interface towards the environment. The
next part specifies its dynamic behaviour, i.e. the allowed ordering of method
execution. It is defined via a set of CSP process equations. The operators appear-
ing here are prefixing → (sequencing), sequential composition �, interleaving |||
(parallel composition with no synchronisation) and external choice �. The third
part of a CSP-OZ class describes the attributes of the class and the methods.
For every method we might have an enabling schema fixing a guard for the
method execution (enabling schemas equivalent to true are left out) and an ef-
fect schema describing the effect of a method upon execution. For instance, for
method consume the enabling schema tells us that the air condition has to be
on and a minimal amount of fuel is necessary for consume to take place, and
that upon execution one unit of fuel is consumed. The method level on the other
hand is always enabled, it just displays the current level of fuel.

Slicing an Integrated Formal Method for Verification 363

The semantics of such specifications is defined in terms of labelled Kripke
structures. In contrast to ordinary Kripke structures, transitions are labelled
with events. This allows us to also use temporal logics for property specification
which talk about execution of events.

Definition 1. Let AP be a non-empty set of atomic propositions, E an alphabet
of events (consisting of method names plus values of parameters).

An (event-)labelled Kripke structure K = (S ,S0,→,L) over AP and E con-
sists of a finite set of states S , a set of initial states S0 ⊆ S, a transition relation
→⊆ S × E × S and a labelling function L : S → 2AP .

For our example atomic propositions might for instance be mode = cool or
fuel > 5. The Kripke structure for a CSP-OZ class is derived in two steps: first,
we separately compute the semantics of the CSP and the Object-Z part. In a
second step, we combine the Kripke structure of the components by parallel
composition. In the following we assume a global set of atomic propositions AP
and events E which are built over method names m ∈ M , i.e. an event e has the
form m.i .o where m is the name of a method and i and o are (potential) values
for input and output parameters. The transition relation for the CSP part is
computed via the operational semantics of CSP [14].

Definition 2. The Kripke structure semantics of the CSP part main of a CSP-
OZ class is the labelled Kripke structure KCSP = (LCSP , {main},→CSP ,LCSP)
with LCSP being the set of all CSP terms, →CSP the transition relation derived
via the operational semantics of CSP and LCSP (P) = AP for all P ∈ LCSP .

In the states of the Kripke structure for the CSP part all atomic propositions
hold since the CSP part makes no restrictions on values of attributes of the class.

Definition 3. The Kripke structure semantics of the Object-Z part
C = (State, Init , (enable m)m∈M , (effect m)m∈M) of a CSP-OZ class is the
labelled Kripke structure KOZ = (State, Init ,→OZ ,LOZ) with the transition re-
lation →OZ= {(s ,m.i .o, s ′) | enable m(s , i) ∧ effect m(s , i , o, s ′)}, and the
labelling function LOZ (s) = {p ∈ AP | s |= p}.

The states of the Kripke structure are simply the set of bindings of the state
schema. These two Kripke structures are then combined via parallel composi-
tion. In the following we assume the alphabet of the CSP part and the set of
methods in the Object-Z part to be equal, thus synchronisation takes places on
all methods. Only one event remains which is executed by the CSP part alone,
the invisible event τ which might arise out of internal choices in CSP processes.

Definition 4. The parallel composition of two labelled Kripke structures1 Ki =
(Si ,S0,i ,→i ,Li), i ∈ {1, 2} over the same sets of atomic propositions AP and
events E, K1 || K2, is the Kripke structure K = (S ,S0,→,L) with

1 Note that our definition is symmetric, while for the parallel composition of CSP and
Object-Z Kripke structures we assume only the CSP side to have τ transitions.

364 I. Brückner and H. Wehrheim

– S = S1 × S2, S0 = S0,1 × S0,2,

– → =
{

((s1, s2), e, (s ′1, s
′
2))

∣∣∣∣ (s1 −e→1 s ′1 ∧ s2 −e→2 s ′2)
∨ (s1 −τ→1 s ′1 ∧ s ′2 = s2) ∨ (s2 −τ→2 s ′2 ∧ s ′1 = s1)

}
– L(s) = L(s1) ∩ L(s2), where s = (s1, s2).

For describing properties of CSP-OZ classes we can now use any temporal logic
which can be interpreted on labelled Kripke structures. For the purpose of this
paper we assume the logic to be a linear-time logic, i.e. which is interpreted
on the paths without considering the branching structure. We furthermore only
consider paths which are fair [4] with respect to a set of events.

Definition 5. Let K = (S ,S0,−→,L) be a Kripke structure. An infinite sequence
of events and states s0e1s2e3s4 . . . is a path of the Kripke structure iff s0 ∈ S0

and (si , ei+1, si+2) ∈→ holds for all i ≥ 0, i even.
A path is fair with respect to a set of events E ′ ⊆ E (or E ′-fair) iff inf (π) ∩

E ′ �= ∅ where inf (π) = {e ∈ E | ∃ infinitely many i ∈ N : ei = e}.
Here, we will not introduce one particular logic, but instead only assume that our
logic is invariant under projection, i.e. that it cannot distinguish paths where one
is a projection of the other onto some set of atomic propositions and events of
interest. A precise definition of projection is given in section 4. A temporal logic
fulfilling this requirement is for instance the next-less part of LTL or the state-
event interval logic presented in [2]. For our example we use the former logic.
One property of interest for our air condition specification could for instance be
whether the amount of fuel is always greater than 5 when the air condition is on
(which in fact is not true): ϕ := �(work ⇒ fuel > 5).
The main purpose of the technique proposed in this paper is to determine now
which part of the specification actually has to be considered when checking
for the property, i.e. whether it is possible to check the property on a reduced
specification S red such that the following holds (where S |= ϕ stands for ”the
formula ϕ holds on the Kripke structure of the specification S”):

S |= ϕ iff S red |= ϕ

As we will see it is possible to omit both some of the attributes and some of the
methods of the air condition for checking our property.

3 Slicing

Slicing means reducing a program or specification such that the reduced pro-
gram/specification only contains those parts of the full specification which can
influence a certain property under interest called the slicing criterion.

In order to determine these influences, slicing needs precise information about
dependencies between different parts of a program/specification. Such dependen-
cies are represented in a program (or system) dependence graph2. This section
explains the construction of program dependence graphs for CSP-OZ classes and
their slicing with respect to some temporal logic formula ϕ.
2 We stick to the word program, although we treat specifications.

Slicing an Integrated Formal Method for Verification 365

Control flow graph. In preparation for the construction of the program de-
pendence graph we first construct the specification’s control flow graph (CFG)
which represents the execution order of the specification’s schemas according to
the specification’s CSP processes. Starting with the start .main node, its nodes
(n ∈ N) and edges (−→ ⊆ N ×N) are derived from the syntactical elements of
the specification’s CSP part, based on an inductive definition for each CSP oper-
ator. Nodes either correspond to schemas of the Object-Z part (like enable m)
or to operators in the CSP part (like nodes interleave and uninterleave for op-
erator ||| or nodes extchoice and unextchoice for operator �). We refrain from
giving a precise definition here. The result of this inductive definition for the first
two process definitions in our AC example specification can be seen in fig. 1.

interleaveenable workswitch

start .Onstart .main

effect workswitch

call .On

call .Workcall .Operate

.

ret .Operate ret .Work

uninterleave

seq

call .main

Fig. 1. Part of the control flow graph for the AC specification

Note, that we assume each syntactical CSP element and each associated CFG
node to have a unique name. This can, for example, be achieved by extending
their names by an index that represents the position of their textual occurrence
inside the specification. For sake of clarity we omit these indices here.

Program dependence graph. The program dependence graph (PDG) represents
data and control dependencies between nodes of the CFG. Thus both graphs
have the same set of nodes (n ∈ N), but not the same set of edges. An edge
connects two nodes in the PDG if control or data dependencies exist between
these nodes according to the definitions given below. Before we continue with the
construction of the PDG we first introduce some abbreviations. When reasoning
about paths inside the CFG, we let pathCFG(n,n ′) denote the set of sequences
of CFG nodes that are visited when walking along CFG edges from node n to
node n ′. When we refer to the sets of variables appearing inside schemas asso-
ciated to PDG nodes, we let mod(n) denote the set of variables appearing in
primed form (those modified by the method of the node), ref(n) denote the set
of variables appearing in unprimed form (those referenced by the method of the
node), and vars(n) = mod(n) ∪ ref (n) denote the set of all variables inside the
schema.

366 I. Brückner and H. Wehrheim

The further construction of the PDG starts with the introduction of control
dependence edges (⊆ N ×N). The idea behind these edges is to represent the
fact that an edge’s source node controls whether the target node will be executed.
In particular, a node cannot be control dependent on itself. We distinguish the
following types of control dependence edges:

– Control dependence due to nontrivial precondition exists between an enable
node and its effect node iff the enable schema is non-empty (i.e. not equiv-
alent to true).

– Control dependence due to external (resp. internal) choice exists between
an extch (resp. intch) node and its immediate CFG successors.

Additionally, some further control dependence edges are introduced in order to
achieve a well-formed graph:

– Call and termination edges exist between a call (resp. term) node and its
associated start (resp. ret) node.

– Start and return edges exist between a start (resp. ret) node and its imme-
diate CFG successor.

Finally, all previously defined (direct) control dependence edges are extended to
CFG successor nodes as long as they do not bypass existing control dependence
edges. The idea of this definition is to integrate indirectly dependent nodes (that
would otherwise be isolated) into the PDG.

– Indirect control dependence edges exist between two nodes n and n ′ iff
∃π ∈ pathCFG(n,n ′) : ∀m,m ′ ∈ ranπ : m m ′ ⇒ m = n

The idea of data dependence edges (� ⊆ N × N) is to represent the influence
that one node might have on a different node by modifying some variable that
the second node references. Therefore, the source node always represents an
effect schema, while the target node may also represent an enable schema.
We distinguish the following types of data dependence edges:

– Direct data dependence exists between two nodes n and n ′ iff there is a CFG
path between both nodes without any further modification of the relevant
variable: ∃ v ∈ (mod(n) ∩ ref(n ′)) , ∃π ∈ pathCFG(n,n ′) :

∀m ∈ ran π : v ∈ mod(m) ⇒ (m = n ∨m = n ′)

– Interference data dependence exists between two nodes n and n ′ iff both
nodes are located in different CFG branches attached to the same interleav-
ing operator: mod(n) ∩ ref(n ′) �= ∅ ∧ ∃m = interleave :

∃π ∈ pathCFG(m,n) ∧ ∃π′ ∈ pathCFG(m,n ′) : ran π ∩ ran π′ = {m}

The resulting program dependence graph for the AC specification is depicted in
fig. 2. Note, that two aspects of the PDG have been slightly modified in order to
achieve a more concise graphical representation without changing the outcome
of the slicing algorithm for the given example.

Slicing an Integrated Formal Method for Verification 367

1. The separate nodes for enable and effect schemas have been combined
into one single node for each event.

2. Instead of explicitly drawing all control dependence edges originating from
one node to different target nodes, this set of edges is represented by a single
edge between the first node and a box around the set of target nodes.

Fig. 2. Program dependence graph for the AC specification

Backward slice. For our purpose, slicing is used to determine that part of the
specification that is directly or indirectly relevant for the property to be verified.
Computation of this slice starts from the set of events Eϕ and the set of variables
Vϕ that appear directly in the given formula ϕ. Based on this slicing criterion
(Eϕ, Vϕ) we can determine the set of PDG nodes with direct influence on the
property under interest:

Nϕ= {n | mod(n) ∩ Vϕ �= ∅} ∪ {n | ∃ e ∈ Eϕ : n = enable e}

From this initial set of nodes we compute the backward slice by a reachability
analysis of the PDG. The resulting set contains all nodes that lead via an ar-
bitrary number of control or data dependence edges to one of the nodes that
already are in Nϕ. Additional to all nodes from Nϕ, the backward slice contains
therefore also all PDG nodes with indirect influence on the given property, i.e.
it is the set of all relevant nodes for the specification slice:

368 I. Brückner and H. Wehrheim

N ′ = {n ′ ∈ N | ∃n ∈ Nϕ : n ′ (∪�)∗ n}

Thus relevant events are those associated to nodes from N ′

E ′ = {e | ∃n ∈ N ′ : n = enable ei ∨ n = effect ei}

and relevant variables are those associated to nodes from N ′: V ′ =
⋃

n∈N ′
vars(n).

Reduced specification. Having determined the sets E ′ and V ′ which might influ-
ence the property (formula) under interest the slice of a specification can next
be determined. In contrast to the original specification it contains

– only channels from E ′,
– only CSP process definitions that are projections (as defined in sect. 4, def. 8)

of CSP process definitions from the original specification onto E ′,
– inside the state schema only variables from V ′,
– inside the Init schema only predicates restricting variables from V ′, and
– only Object-Z schemas associated with events from E ′.

When slicing the class AC with respect to the formula ϕ := �(work ⇒ fuel > 5),
i.e. Nϕ = {| workswitch, consume, refill |}3, the result is:

N ′ = N \ {effect modeswitch , effect dtemp, effect level}
E ′ = E \ {| modeswitch, dtemp, level |}, V ′ = V \ {mode}

This leads to the following specification slice:

AC
chan workswitch, consume, off chan refill : [f ? : Fuel]

main = workswitch → On
On = (Operate � Work) � main
Work = consume → Work

� off → SKIP

Operate = Operate
� refill → Operate
� workswitch → SKIP

work : B; fuel : Fuel
Init

¬work

effect workswitch
Δ(work)

work ′ = ¬work

enable consume

work ∧ fuel > 5

effect consume
Δ(fuel)

fuel ′ = fuel − 1

enable off

¬work

enable refill

fuel < 100

effect refill
Δ(fuel); f ? : Fuel

fuel ′ = min(fuel + f ?, 100)

3 Let {| M |} denote the set of events over the set of methods M .

Slicing an Integrated Formal Method for Verification 369

The reductions achieved by applying our slicing algorithm to this example are:

1. Event modeswitch has been removed together with variable mode, which is
sensible, since the air condition’s mode (heating or cooling) does not have
any influence on the slicing criterion (property �(work ⇒ fuel > 5)).

2. Events dtemp and level have been removed, which is also sensible, since
neither modelling the effect on the environment (dtemp) nor communicating
the current amount of fuel (level) influences the given property.

To summarise, the specification’s state space has not only been reduced with
respect to its control flow space (events dtemp, modeswitch and level) but also
with respect to its data state space (variable mode).

Note, that neither original nor sliced AC specification satisfies the given
property, so the verification result will be negative in both cases. Nevertheless,
this is exactly what we wanted to achieve: A specification slice must satisfy a
slicing criterion if and only if the original specification does so.

In the next section we will show that our slicing algorithm guarantees this
outcome for any specification and any slicing criterion (formulated in a linear-
time stuttering invariant logic).

4 Correctness

In this section we show correctness of the slicing algorithm, i.e. we show that
the Kripke structure of the reduced specification is a projection of that of the
full specification. As a consequence, the property (and slicing criterion) ϕ (if
formulated in a projection-invariant logic) then holds on the full specification if
and only if it holds on the reduced specification.

We start with the definition of the notion of projection that is used in the
actual correctness proof. The projection relation is first defined on paths and
then lifted to Kripke structures. Intuitively, when computing the projection of
a given path onto a set of atomic propositions and a set of events, one divides
the path into blocks such that all states inside a block are projection-equivalent
(i.e. they coincide on the given set of atomic propositions) and all events inside
a block are irrelevant events (i.e. events not from the given set of events) ex-
cept for the last event which is a relevant event (i.e. an event from the given
set of events). The projection of the original path contains then any path such
that for each of the blocks of the original path all states and irrelevant events
are mapped onto one single state of the new path, while the relevant event re-
mains in the new path as illustrated in the following sketch of a projection of a
path:

Block 0 Block 1 Block 2 Block 3
π = s0 e0 s1 e1 s2 e2 s3 e3 s4 e4 . . .

Pr(π) . r0 e1 r1 e2 r2 e4 . . .

370 I. Brückner and H. Wehrheim

Definition 6. Let π = s0e0s1e1s2e2s3 . . . be an E ′-fair path over a set of atomic
propositions AP and a set of events E ⊇ E ′. The projection of π onto a set
of atomic propositions AP ′ and a set of events E ′ (PrAP ′,E ′(π)) contains any
E ′-fair path ρ = r0f0r1f1r2f2r3 . . . such that there is a sequence of indices 0 =
i0 < i1 < i2 < . . . (that divides π into blocks) and the following holds:

– ∀ k ≥ 0: L(sik)∩AP ′ = L(sik+1)∩AP ′ = · · · = L(sik+1−1)∩AP ′ = L(rk)∩AP ′

(relevant atomic propositions do not change within a block and are the same
in the correspondent state of ρ),

– ∀ l ∈ N, ∀ k : il ≤ k < il+1 − 1 : ek �∈ E ′ (no relevant events inside a block),
– ∀ l ≥ 1 : eil−1 = fl−1 ∈ E ′ (transitions between blocks are labelled with the

same relevant event as the correspondent transition of ρ).

For comparing the Kripke structures we restrict the definition to fair paths since
we are only considering satisfaction of formulae on fair paths.

Definition 7. Let Ki = (Si ,S0,i ,→i ,Li), i ∈ {1, 2}, be labelled Kripke struc-
tures over a set of atomic propositions AP and a set of events E, AP ′ ⊆ AP a
subset of the atomic propositions and E ′ ⊆ E a subset of the events. K2 is in the
projection of K1 onto AP ′ and E ′ (K2 ∈ PrAP ′,E ′(K1)) iff the following holds:

1. For each E ′-fair path π in K1 there exists an E ′-fair path π′ in K2 such that
π′ ∈ PrAP ′,E ′(π),

2. and vice versa, for each E ′-fair path π′ in K2 there exists an E ′-fair path π
in K1 such that π′ ∈ PrAP ′,E ′(π).

Given a temporal logic which is interpreted on paths (i.e. a linear time logic)
and which is invariant under projections, such a projection relationship between
two Kripke structures then guarantees that formulae which only mention propo-
sitions from AP ′ and events from E ′ hold for either both or none of the Kripke
structures. Note that projection is a particular form of stuttering.

In the following we will show how such a projection relationship can be proven
between full and sliced specification. For this we now first have to give a precise
definition of the residual CSP processes which remain after slicing with respect
to some set of events E ′.

Definition 8. Let P be the right side of a process definition from the CSP part
of a specification and E be the set of events that appear in the specification. The
projection of P w.r.t. a set of events E ′ ⊆ E is inductively defined:

1. skip|E ′ := skip and stop|E ′ := stop

2. (e → P)|E ′ :=
{

P |E ′ if e �∈ E ′

e → P |E ′ else
3. (P ◦Q)|E ′ := P |E ′ ◦Q |E ′ with ◦ ∈ {; , �,�, �}

The projection of the complete CSP part w.r.t. a set of events E ′ ⊆ E is defined
by applying the above definition to each process definition.

Next, we start the actual correctness proof with several lemmas showing the
relationships between CSP processes and events and variables which remain in

Slicing an Integrated Formal Method for Verification 371

the specification. Due to space restrictions we only present the main ideas of the
proofs. The complete proofs can be found in [1].
Our first lemma states that the projection of each residual CSP process asso-
ciated to a state inside a projection block as defined in definition 6 can mimic
the behaviour of the residual CSP process associated to the last state of the
projection block, i.e. the relevant event at the end of the block is enabled at any
previous step inside the block when computing the CSP projection.

Lemma 1 (Transitions of CSP process projections). Let Pj , . . . ,Pj+k+1

be CSP processes, E ′ a set of relevant events, ej+1, . . . , ej+k−2 irrelevant events
(�∈ E ′), and ej+k a relevant event (∈ E ′), such that

Pj
ej+1−→ Pj+2

ej+3−→ . . .
ej+k−2−→ Pj+k−1

ej+k−→ Pj+k+1

is a valid transition sequence. Then the following holds4:

P
ej+k−→ Pj+k+1|E ′ with P ∈ {Pj |E ′ , . . . ,Pj+k−1|E ′}

Proof: The proof builds up on another lemma considering the case of a single
CSP transition: Either this transition is labelled with a relevant event e ∈ E ′

or with an irrelevant event e �∈ E ′. In the former case it is easy to see that the
associated projection also can perform this event e, while in the latter case some
further considerations lead to the conclusion that the associated projection will
finally perform the same relevant event as the original process. Both cases are
shown by induction over the structure of the respective CSP processes. For the
proof of the present lemma we then only need to combine these two cases in an
induction over the length of the projection block and come to the desired result.
Next, we bridge the gap between transition sequences that we can observe for
CSP processes and paths that are present in the associated control flow graph.

Lemma 2 (CSP transition sequences and control flow graph paths).
Let C be a class specification, CFG the control flow graph of C , KCSP the Kripke
structure associated to the CSP part of C , and P e−→ Q

f−→ R a transition
sequence of KCSP . Then the two nodes enable e and enable f of CFG are
related in either one of the following ways:

1. There exists a path in CFG which leads from enable e to enable f .
2. There exists a node interleavei in CFG which has enable e and enable f

as successors in different branches.

Proof: The proof consists of two layers of induction over the structure of P
and Q such that each possible combination of CSP constructs is considered and
shown to fall into one of the two cases mentioned in the lemma.
Our last lemma states that the set of irrelevant events appearing inside a pro-
jection block does not have any influence on the relevant variables (resp. atomic
propositions) associated to the states inside the block.
4 Note, that Pj |E ′ = . . . = Pj+k−1|E ′ does not necessarily hold.

372 I. Brückner and H. Wehrheim

Lemma 3 (No influence of irrelevant events on relevant variables). Let
C be a class specification with an associated Kripke structure K , let

(sj ,Pj)
ej+1−→ (sj+2,Pj+2)

ej+3−→ . . .
ej+k−2−→ (sj+k−1,Pj+k−1)

ej+k−→ (sj+k+1,Pj+k+1)

be a transition sequence that is part of a path of K. Let furthermore E ′ be the
set of relevant events computed by the slicing algorithm with respect to some
formula ϕ (with an associated set of variables Vϕ), and ej+1, . . . , ej+k−2 �∈ E ′,
and ej+k ∈ E ′. Then the following holds:

sj |V = . . . = sj+k−1|V with V = Vϕ ∪
⋃

e∈{ei∈E ′|i≥j}
ref (e)

Proof: We show this by contradiction: Supposed, the equality does not hold,
we show that this implies the existence of a data dependence between an event
inside the block and the relevant event. In consequence, this leads to the event
inside the block being a member of the set of relevant events.
Now we come to our main theorem that states the existence of a projection
relationship between the Kripke structures associated to the original and to the
sliced specification.

Theorem 1. Let C full be a class specification and C red the class obtained when
slicing C full wrt. a formula ϕ, associated with sets of events Eϕ, variables Vϕ

and atomic propositions APϕ over Vϕ. Let E ′ and AP ′ be the set of events and
atomic propositions, respectively, which the slicing algorithm delivers as those
of interest (in particular Eϕ ⊆ E ′ and Vϕ ⊆ V ′). Let furthermore K full (resp.
K red) be the corresponding Kripke structures. Then the following holds:

K red ∈ PrAPϕ,E ′(K full)

Proof: According to the definition of the projection relation we need to consider
two cases: (1) We have to show that for any E ′-fair path of K full we can construct
an E ′-fair path of K red and (2) vice versa. For both directions we define a set
of variables V i that contains all variables associated to the slicing criterion and
for each position i of the respective path all variables that are referenced by
relevant events ei ∈ E ′ at position i or beyond:

V i = Vϕ ∪
⋃

e∈{ej∈E ′|j≥i}
ref (e)

1. Let π = s0e1s2e3 . . . be an E ′-fair path of K full with si = (sOZ
i ,Pi). We

construct a sequence ρ′ = t0f1t2f3 . . . with ti = (tOZ
i ,Qi) and

tOZ
i : sOZ

i |V i
Qi : Pi |E ′ fi :

{
ei if ei ∈ E ′

nop else

Out of ρ′ we construct a sequence ρ by eliminating all subsequences of the
form nop ti . We have to show that ρ is an E ′-fair path of K red . To this

Slicing an Integrated Formal Method for Verification 373

end we use induction over the length of ρ where we apply lemma 3 and
lemma 1 when showing that we can remove some intermediate sequences
from the original path such that all schemas and all process definitions from
the reduced specifications are satisfied.

2. Let ρ = t0f1t2f3 . . . be an E ′-fair path of K red with ti = (tOZ
i ,Qi). We

inductively construct a path of K full

π = s0e1
0 s2

0e3
0 . . . sn0

0 e1s2e1
2s2

2e3
2 . . . sn2

2 e3s4e1
4 s2

4 . . .

with si of the form (sOZ
i ,Pi) and s j

i of the form (sOZ ,j
i ,P j

i) such that
sOZ ,j
i |V i

= sOZ
i |V i

= tOZ
i |V i

and the P j
i are intermediate processes towards

P j ,ni

i which projected onto E ′ gives Qi , and ei = fi ∈ E ′ and ej
i �∈ E ′.

In the induction we apply lemma 3 to show that we can safely insert the
necessary additional steps in the Object-Z part of ρ such that the associated
schemas of the full specification are satisfied. Furthermore, we apply lemma 2
to show that these additional steps are possible according to the process
definitions from the full specification such that π is indeed a path of K full .

5 Conclusion

In this paper we have proposed a slicing algorithm for an integrated formal
method covering state-based as well as behaviour-oriented aspects. We have
shown correctness of the algorithm with respect to a projection relationship
between the paths of the full and the reduced specification (starting from some
set of relevant variables and events). Thus the reduction preserves formulae
(speaking about these relevant variables and events) of any linear-time temporal
logic which is invariant under projection. Slicing can thus help to reduce the
specification before verification. Since the program dependence graph is in size
linear in the syntactic representation of the specification (and thus usually much
smaller than the state space), slicing can also be carried out in cases when model
checking is too complex. Furthermore, the program dependence graph only has
to be constructed once for every specification, only backward reachability has
to be computed for every formula. Our slicing technique acts as a preparatory
step in the verification of CSP-OZ specifications; the following model checking
step is carried out by a constraint-based abstraction refinement model checker
as recently proposed by Hoenicke and Maier [9].

In the future we plan to extend this technique to a third modelling dimen-
sion, namely timing requirements as covered by the formalism CSP-OZ-DC [10]
(an extension of CSP-OZ with Duration Calculus). Furthermore, in order to
complete the process of slicing and model checking, a non-trivial problem still
remains to be solved: How can we relate a counterexample obtained for a reduced
specification to a corresponding one for the original specification?

Related work. There are two strands of research which touch upon our work. The
first is on slicing of formal specifications, which has mainly been done for Z spec-
ifications [3,22]. These works, however, do not consider verification, i.e. slicing

374 I. Brückner and H. Wehrheim

is not carried out with respect to temporal logic properties of the specification.
The second area of related work concerns slicing used for reducing programs
before verification, as for instance done in [7] for Java (preserving LTL−X prop-
erties) and in [19] for SAL programs (preserving CTL∗

−X properties). Slicing for
integrated specification techniques has so far not been considered.

References

1. I. Brückner and H. Wehrheim. Slicing CSP-OZ Specifications for Verification.
Technical Report 7, SFB/TR 14 AVACS, http://www.avacs.org/, 2005.

2. I. Brückner and H. Wehrheim. Slicing Object-Z Specifications for Verification. In
ZB 2005, volume 3455 of LNCS, pages 414–433. Springer-Verlag, 2005.

3. D. Chang and D. Richardson. Static and Dynamic Specification Slicing. In ACM
SIGSOFT ISSTA, pages 138–153. ACM, 1994.

4. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
5. C. Fischer. CSP-OZ: A Combination of Object-Z and CSP. In FMOODS ’97,

volume 2, pages 423–438. Chapman & Hall, 1997.
6. W. Grieskamp, M. Heisel, and H. Dörr. Specifying Embedded Systems with Stat-

echarts and Z: An Agenda for Cyclic Software Components. In Egidio Astesiano,
editor, FASE ’98, volume 1382 of LNCS, pages 88–106. Springer, 1998.

7. J. Hatcliff, M. Dwyer, and H. Zheng. Slicing Software for Model Construction.
Higher-order and Symbolic Computation, 13(4):315–353, 2000.

8. C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
9. J. Hoenicke and P. Maier. Model-checking specifications integrating processes, data

and time. In FM 2005, volume 3582 of LNCS, pages 465–480. Springer, 2005.
10. J. Hoenicke and E.-R. Olderog. CSP-OZ-DC: A Combination of Specification

Techniques for Processes, Data and Time. NJC, 9(4):301–334, 2002.
11. ISO/IEC. Enhancements to LOTOS (E-LOTOS) – International Standard

15437:2001. ISO/IEC – Information technology, 2001.
12. B. Mahony and J.S. Dong. Timed communicating Object-Z. IEE Transactions on

Software Engineering, 26(2):150–177, 2000.
13. L. Millett and T. Teitelbaum. Issues in Slicing Promela and its Applications to

Model Checking. Software Tools and Technology Transfer, 2(4):343–349, 2000.
14. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1998.
15. G. Smith. The Object-Z Specification Language. Kluwer Academic Publisher, 2000.
16. G. Smith and J. Derrick. Specification, Refinement and Verification of Concurrent

Systems. Formal Methods in System Design, 18(3):249 – 284, 2001.
17. F. Tip. A Survey of Program Slicing Techniques. Journal of Programming Lan-

guages, 3(3):121–189, 1995.
18. H. Treharne and S.A. Schneider. Communicating B Machines. In ZB 2002, volume

2272 of LNCS, pages 416–435. Springer, 2002.
19. N. Shankar V. Ganesh, H. Saidi. Slicing SAL. Technical report, SRI International,

http://theory.stanford.edu/, 1999.
20. M. Weiser. Programmers use slices when debugging. Communications of the ACM,

25(7):446–452, 1982.
21. J.C.P. Woodcock and A.L.C. Cavalcanti. The Semantics of Circus. In ZB 2002,

volume 2272 of LNCS, pages 184–203. Springer-Verlag, 2002.
22. Fangjun Wu and Tong Yi. Slicing Z Specifications. SIGPLAN, 39(8):39–48, 2004.

A Static Communication Elimination Algorithm

for Distributed System Verification�

Francesc Babot, Miquel Bertran, and August Climent

Informàtica La Salle, Universitat Ramon Llull, Barcelona
{fbabot, miqbe, augc}@salleURL.edu

Abstract. A schema of communication elimination laws for distributed
programs and systems is mathematically justified in a new equivalence,
which was introduced in a recent work. A complete set of applicability
conditions is derived for them. A formal communication elimination al-
gorithm, applying the laws as reductions, is mathematically justified for
an important class of distributed programs and systems, whose commu-
nications are outside the scope of selections. The analysis provides the
basis for extensions to general statements. State-vector reduction stands
as one of the motivations for this static analysis approach. It has already
been applied in an equivalence proof of a non-trivial pipelined distributed
system, reported in prior works. The state-vector reduction obtained in
this proof, yielding a reduction factor of 2−607 for the upper-bound on
the number of states, is presented in this communication.

1 Introduction

Imperative notations with explicit parallelism and synchronous communication
statements provide an intuitive, explicit, and complete framework to express
distributed programs and systems with perspective and clarity. OCCAM [1,2,3],
the simple programming language SPL of Manna and Pnueli [4,5], PROMELA
of the SPIN model checker [6], and the shared-variable language++, SVL++, in
[7] are representatives of them.

Automatic verification approaches work on the transition system of the pro-
gram, defining the semantics of the distributed system. This transition system
has often infinitely many states, and always a large size compared to the size
of the program modeling the distributed system, which is always finite. For in-
stance, if the number of variables is n, each holding an integer of m bits, the
number of states may be of the order of 2n×m, whereas the size of the program
remains of an order close to n only. These considerations suggest that static
automatic verification approaches, avoiding the transition system, working di-
rectly on the program would have less computational complexity, in principle.
Following this line of work, static analysis methods for state reduction [8,9,10]
have been proposed as a step prior to model checking. They reduce the size of
the transition system and hence the complexity of model checking.
� Work partially supported by the CICYT under project TIC2003-09420-C02-02.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 375–389, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

376 F. Babot, M. Bertran, and A. Climent

Along the same direction, work towards the justification of a static analy-
sis algorithm for formal simplification of a distributed program by eliminating
its inner communications, has been undertaken [11,12]. Different static trans-
formation systems were proposed in [13,14,15], without communication elimina-
tion. The communication elimination algorithm applies a set of equivalence laws
suitable for communication elimination. The resulting inner communication-free
program can be transformed interactively, with another set of laws, into a se-
quential program with less variables than the initial distributed program, but
equivalent to it. Altogether, this constitutes a distributed program simplification
(DPS) proof which can be combined with model checking or interactive verifica-
tion as a succeeding step, reducing overall proof complexity. In many cases, only
an equivalent purely sequential program has to be verified. It is remarked that,
within DPS, only communication elimination for selection-free programs (see
below) is algorithmic, automatic. This communication reports on substantial
state-space reductions obtained in a DPS proof of a pipelined processor model.

The algorithm applies both proper communication elimination and auxiliary
laws. The latter, although not eliminating any communication, are necessary in
order to transform the program into a form ready for a proper elimination law
to be applied. A set of laws for OCCAM was given in [16]. Although a simple
communication elimination law was included, rather than communication elimi-
nation, the focus there was to obtain normal forms and to define the semantics
of the notation. Communication closed layered systems were introduced in [17],
and some laws for them are given in [7] in the framework of SVL++. The aim
there was formal design by transformation. For instance, sequential-parallelism
and iteration unfolding transformations. No communication elimination law was
reported. Some laws for SPL are given in [4], with an SPL semantics based on
fair transition systems (FTS), but none is for communication elimination.

A set of relations suitable for communication elimination was given and
proved sound in [11], showing the necessity of avoiding strong fairness, and where
the notion of equivalence was assimilated to congruence, a very strong equiva-
lence. This had the drawback of limiting the formulation of most communication
elimination laws to unidirectional refinements. A weaker equivalence, in which
all laws are equivalences was presented and studied in [12].

A communication elimination proof of a distributed fast Fourier transform
was outlined in [11]. A DPS proof of a pipelined processor model, carried out
with the help of a tool which implements a communication elimination algo-
rithm, has been reported in [18]. These proofs used the communication elimi-
nation laws. Nevertheless, neither their mathematical justification, with their
applicability conditions, nor that of the communication elimination algorithm
have been published. This is accomplished in the present work, where the proper
communication elimination laws are mathematically justified in the new weaker
equivalence and their complete set of applicability conditions is derived. In addi-
tion, a communication elimination reduction algorithm is proposed and justified.

The paper is organized as follows. After a section on notation and necessary
background notions, a section on bounded communication statements follows.

A Static Communication Elimination Algorithm 377

These are used to define and study communication elimination laws and the
algorithm in the following section. Extension to more general statements is given
next. After this, substantial results on reduction of an upper bound on the
number of states are reported. A section on conclusions and further work ends
the paper.

2 Notation and Equivalence

2.1 Basic Notions and Auxiliary Laws

A reduced version of SPL is used. The basic statements are skip, nil, stop,
the assignment u:= e, send α ⇐ e, and receive α ⇒ u. We limit our work to
synchronous channels α, which will be referred to as channels. In them both
the sender and the receiver wait for each other before exchanging a value and
continuing execution. Communication statements will be referred to as commu-
nications. Both channels and variables are declared globally.

Concatenation is n-ary: [S1; · · · ; Sn] . The iterations are [while c do S] ,
where c is a boolean expression, and [loop forever do S] , which is defined as
[while true do S]. The cooperation statement is also n-ary: [S1|| · · · ||Sn] . Its
substatements Sj are its top parallel statements. The cooperation is the least com-
mon ancestor (LCA) of them. It will be assumed throughout the paper that the
Sj ’s are disjoint, in the sense that they only share read variables, and that they
communicate values through synchronous channels only. The regular selection
and the communication selection statements are non-deterministic and have, res-
pectively, the forms [b1, S1 or · · ·or bn, Sn] and [b1, c1, S1 or · · ·or bn, cn, Sn],
where the bi’s are boolean expressions referred to as boolean guards, and the ci’s
are synchronous communication statements referred to as communication guards.
Statement labels, such as l in l : S, are used to refer to statements.

Two statements are ordered by the concatenation ordering if their LCA is a
concatenation statement. This corresponds to the execution order.

Internal channels communicate parallel substatements within a statement S,
and are considered to be hidden from the outside. An external channel of S is any
other channel within S. Internal communication and external communication will
mean communication substatements of S over internal and external channels,
respectively. Two internal communications of S form a matching communica-
tion pair if they are parallel, and one is an output and the other an input over
the same channel. Two pairs are disjoint when they share no communication.
Statements A and B are said to communicate when they are parallel and at least
a communication in A and another in B form a matching pair.

There are both proper elimination and auxiliary laws. The latter, although
not eliminating any communication directly, are needed to transform a statement
to a form where a proper communication elimination law can be applied. Some
intuitive auxiliary laws are available in [11], where it is shown that many of them
do not hold when strong fairness is assumed. Some of them are the congruences
nil; S ≈ S , S|| nil ≈ S, S; skip ≈ S, S|| skip≈ S. In addition, both sequential
and parallel composition are associative. The latter is also commutative.

378 F. Babot, M. Bertran, and A. Climent

2.2 Interface Equivalence

The proper communication elimination laws to be presented in this work do not
hold for congruence. A weaker equivalence has been introduced in [12] under the
name of input/output equivalence, which is referred to here as interface equiv-
alence. A summary of the related notions is given now. Congruent statements
are always interface equivalent but not vice versa. The proper communication
elimination laws are interface equivalences.

In the semantics of fair transition systems (FTS) [4,5], a statement S denotes
a FTS with states and transitions. A computation is a sequence of states of the
FTS denoted by S, starting at an initial state with a transition taking any state
to its successor. A reduced behavior, with respect to a set of observed variables
O is a computation whose components of variables outside this set and whose
stuttering steps are deleted. This semantics is extended here by adding to the
set O an auxiliary variable for each channel in S which is not in I, the set of
internal channels. The extended set O is referred to as interface set.

Auxiliary variables are also named channel variables, and record the value
passed at the last communication event of the channel. An interface behavior is
the extension of the notion of reduced behavior to the extended set O. Thus,
it records the history of values associated to both variables and channels of the
interface. The relative order of value changes of different variables and channels
is preserved in interface behaviors. However, interface equivalence, the weaker
equivalence which is needed, can neglect this order and still preserve the in-
put/output relation. Then, instead of comparing behaviors, components of be-
haviors are compared. Components are lists of values taken by a given variable
within the behavior, with independence of those taken by the other variables.
The following definitions depend on this notion.

Definition 1 (Equivalence of interface behaviors). Two interface behav-
iors are equivalent when they share the same interface set, and for all its variables
the two components of both behaviors are equal.

Definition 2 (Interface equivalent statements). Two statements S1 and
S2 are interface equivalent with respect to an interface set O, written S1 =O S2,
when any interface behavior of any of them is equivalent to an interface behavior
of the other.

3 Bounded Communication Statements

The analysis of communication elimination is started below for some bounded
communication (BC) statements. This and other required notions are introduced
in this section, where S and I denote such a statement and the set of its internal
channels, respectively.

Definition 3 (Bounded Communication Statement). A statement S is
said to be of bounded communication if it meets the following requirements:

A Static Communication Elimination Algorithm 379

1. All its parallel substatements are disjoint, in the sense that they only read
their shared data variables, should they have some.

2. Any internal communication is outside iteration bodies.

Execution of a bounded communication statement generates only a finite
number of communication events.

Definition 4 (Communication front). The communication front of S, writ-
ten ComFront(I,S), is the subset of minimal elements of the set of communication
statements in its concatenation ordering.

Guards of communication selection statements may be in this set.

Definition 5 (Set of competing pairs). The set of competing pairs of S,
written CompPairs(I,S) is, by definition,

{ (l, m) | l, m ∈ ComFront(I, S) ∧ l matches m }

Lemma 1 (Non-Communicating Heading Statements). Let G be either
a communication � over α ∈ I or a communication selection statement in S
one of whose guards is a communication statement � over α ∈ I, and � ∈
ComFront(I, S). Let H be a statement in S which precedes G in its concate-
nation order. Then, H does not communicate with any substatement P of S
which is parallel to G.

Definition 6 (Selection-free BC-statement). A selection-free BC-
statement is a BC-statement all of whose internal communications are outside
the scope of both selections and communication selections.

The execution of a selection-free BC-statement generates a constant finite
number of internal communication events. The analysis will be limited to these
BC-statements. For any of its matching pairs (l, m) ∈ CompPairs(I, S), S
always has a cooperation substatement which is the LCA of statements l and
m. Gl and Gm are the top statements, in this cooperation, corresponding to l
and m, respectively.

Lemma 2 (Standard form of pair-embedding top statements). Symbol
x denotes both l and m.

– Let (l, m) ∈ CompPairs(I, S), and α be its channel.
– Let Gx, either Gl or Gm, be the top statement, embedding either l or m, of

the LCA cooperation of l and m.
– For k = 0, 1, . . . , let T x

k and P x
k be bounded communication statements, in

general with internal and external communications ; and Hx
k be statements

which do not have internal communications.
– Let Gx

0 be either one of the communication statements α ⇐ e and α ⇒ u .
– Let Gx

k = Hx
k−1; [G

x
k−1||P x

k−1]; T
x
k−1 , for k = 1, 2, . . . , be a sequence

of statements.

380 F. Babot, M. Bertran, and A. Climent

– Then, S can be transformed into a congruent statement such that the embed-
ding top parallel substatements Gx, for x = l and x = r, have been replaced
by a statement of the form of Gx

nx
for some finite integers nl and nr, respec-

tively.

Justification. The reasoning is made for x = l, the other case would be similar.
It is clear that the statement Gl

0 can be identified within Gl, as either one of its
two possible forms in the lemma. Now, since S is selection-free and BC, Gl

0 can
be neither within the scope of any selection statement nor within any proper
alternative of a general communication selection statement. Hence, the LCA of
Gl

0 is either a concatenation or a cooperation.
In the former case P l

0 is the nil statement, H l
0 and T l

0 correspond to the
statements preceding and succeeding Gl

0 in the concatenation. Hence, Gl
1 can be

identified as
Gl

1 = H l
0; [G

l
0|| nil]; T l

0

In the latter case, where the LCA of Gl
0 is a cooperation, if one of its top

parallel statements is the other Gr, then nl = 0, Gl = Gl
0. Otherwise, P l

0 corres-
ponds to all the parallel statements, and Gl

1 can be identified as

Gl
1 = H l

0; [Gl
0||P l

0]; T l
0

where H l
0 or T l

0 may be nil. In the above cases, where Gl
1 has been identified

within Gl, the process can be continued. The same reasoning made with Gl
0 can

be applied now to Gl
1, either terminating or obtaining Gl

2. Hence, an inductive
process can be followed. But this process cannot go on forever since Gl is of finite
size. Therefore, it will stop at some Gl

nl
, after a finite number of iterations nl,

as the lemma states. Congruence with the initial Gl follows from the fact that
all the nil statements can be introduced by some of the auxiliary laws, always
congruences, cited in section 2 and justified in [11]. �

4 Elimination from Selection-Free BC-Statements

The elimination of a single matching pair is considered first. The recursive eli-
mination of all the internal communications of S will be considered later. The
simplest case corresponds to [α⇐ e || α ⇒ u] ≈ [u := e] which we identify
with [Gl

0||Gr
0] ≈ G0. As it will be shown later, for the more complex forms the

elimination law is defined for an arbitrary k ≥ 0 as

Hl
k;

Gl
k || P l

k ;

T l
k

||

Hr
k ;

Gr
k || P r

k ;

T r
k

=O

Hl
k || Hr

k ;

Gk || P l
k || P r

k ;

T l
k || T r

k

where the H statements have no inner communication. When this equivalence is
identified with [Gl

k+1 || Gr
k+1] =O Gk+1, a recursive definition of Gl

k, Gr
k, and

Gk is obtained. For a given value of k = k0, the corresponding law would be cons-
tructed recursively, applying the same equivalence to the inner Gk, which stands

A Static Communication Elimination Algorithm 381

for [Gl
k−1||Gr

k−1], for k = k0, k0 − 1, · · · , 1. Finally, the last inner parallelism
[Gl

0||Gr
0] would be replaced by the corresponding right hand side G0 of the basic

congruence given earlier, and the law for k = k0 would thus be obtained. There
is a law for any finite integer k = 0, 1, · · · which may be applied as a reduction
from left to right in order to eliminate a single communication pair.

Observe that some substatements, like T l
k and P r

k , are parallel in one side but
not in the other. This disordering may introduce deadlock. Nevertheless, there
are cases where deadlock is not introduced. For instance, for some communication
closed layer systems. These systems, together with their laws, are treated in [7],
with a semantics different to the one used here. But the laws also hold in our
semantics. The following is an example which we need later.

Lemma 3 (Communication-closed-layers). Let the statement pairs
(A1, B2) and (A2, B1) be non-communicating, and [B1; A1] be disjoint with
[B2; A2]. Then

[[B1; A1]||[B2; A2]] =O [[B1||B2]; [A1||A2]]

and either both sides are deadlock-free or none of them is.

Justification. The only statements which change their concatenation order
relation are the pairs which do not communicate. Therefore deadlock can not be
introduced, since processes can only wait for internal communications to occur.
Also, the same pairs are disjoint as a consequence of the assumptions. This
guarantees that variable components do not change. Hence, interface behaviors
of both sides remain equivalent. See subsection 2.2. �

Lemma 4 (G-statement pairing equivalence). Let all parallel statements
below be disjoint and O be the union of all variables and channel variables in
them, but excluding the variables of internal channels. Let H l and Hr contain
no communication statements over internal channels. Then

Hl;

Gl || P l ;

T l

||

Hr ;

Gr || P r ;

T r

=O

Hl || Hr ;

Gl || Gr || P l || P r ;

T l || T r

provided that the following statement pairs do not communicate: (P l, T r),
(P r, T l), (Gl, T r), (Gr, T l) . Also, under the same conditions, either both sides
are deadlock-free or none of them is.

Justification. One of the changes of the concatenation order of the substate-
ments of both sides of the equivalence is due to T l, which is parallel to Hr, Gr,
and P r in the left but in concatenation with the same statements in the right.
However, it remains parallel to T r in both sides. A similar change takes place
in relation to T r. Due to this, the lemma follows by a two-fold application of
lemma 3, the communication restrictions of our lemma, and the fact that the H
statements do not have internal communications (see lemma 1). �

382 F. Babot, M. Bertran, and A. Climent

The communication elimination law presented earlier, would be derived by
the iterative application of the equivalence of lemma 4, from left to right start-
ing at the outermost level max(nl, nr) (see lemma 2) . For the moment, it can
be assumed that nl = nr. The general case is treated after theorem 4. The re-
strictions of lemma 4 should be fulfilled at each application. But in addition,
in all the other applications, [Gl||Gr] at the right hand side of the equivalence
of lemma 4 is reduced to G with the same equivalence, applying it from left
to right. Now, the substatements that change order, considered in the justifi-
cation of lemma 4 above, have P l and P r, at the outer level, in parallel. This
may be a further source of deadlock. The following lemma formulates the condi-
tions for deadlock prevention in this new situation. Some notation is introduced
before.

Definition 7 (Communication precedence). Let C be a statement which is
clear in a given context, and statements A and B be parallel to C. Then, the
symbolism cw(A) < cw(B) will mean that, within C, the communications with
A precede, in the concatenation order, all the communications with B.

Lemma 5 (Reduction of G-statement parallelism). Let the equivalence
of lemma 4 be represented as Ḡl||Ḡr =O Ḡ , where the substatements of the
three Ḡ’s and the statements below satisfy the conditions stated in it. Then

H̄l || H̄r ;

Ḡl || Ḡr || P̄ l || P̄ r ;

T̄ l || T̄ r

=O

H̄l || H̄r ;

Ḡ || P̄ l || P̄ r ;

T̄ l || T̄ r

provided that, within P̄ l and P̄ r,

cw(P l) < cw(T r) , cw(P r) < cw(T l) , cw(Gl) < cw(T r) , cw(Gr) < cw(T l)

Also, under the same conditions, either both sides are deadlock-free or none of
them is.

Justification. In order to obtain the right hand side of the equivalence of this
lemma, the equivalence of lemma 4 is applied to the inner parallelism between
Ḡl and Ḡr. The only statements which are parallel to Ḡl and Ḡr in the left hand
side statement are P̄ l and P̄ r. Also, they are the only ones which are parallel to
Ḡ in the right hand side statement. But, in the G-statement pairing equivalence,
the statements (P l, T r), (P r, T l), (Gl, T r), and (Gr, T l) are parallel in the l.h.s.
but concatenated in the above order in the r.h.s., therefore the communications
with these statements within P̄ l and P̄ r must have the same order, should they
exist. But this holds if the communication order restrictions of the lemma are
fulfilled. Finally, the equivalence follows from lemma 4. �

All the restrictions of lemma 4, that have to be fulfilled in the iterative
application to [Gl

n+1||Gr
n+1] of the equivalence in it, are gathered in the following

A Static Communication Elimination Algorithm 383

Theorem 1 (Non-communication restrictions for eliminability). A set
of necessary conditions to be fulfilled by [Gl

n+1||Gr
n+1] for the eliminability of

its communication pair (l, m) is that the following substatement pairs do not
communicate

1. (P l
i , T

r
k) and (P r

i , T l
k) for k ∈ [0, n] and i ∈ [0, k] .

2. (T r
i , T l

j) for i, j ∈ [0, n] , i �= j .

Justification. In order to obtain the elimination law stated at the beginning
of this section, the equivalence of lemma 4 is applied from left to right for k = n
first. At this outermost level, its non communication restrictions apply to the
pairs (P l

n, T r
n),(Gl

n, T r
n) and the two symmetric ones (P r

n , T l
n),(Gr

n, T l
n). But Gl

n

in the second pair can be split, for n > 0 , into all of its substatements, giving
the restrictions (P l

i , T
r
n),(T l

i , T
r
n), for i = n− 1, n− 2, · · · , 1, 0. Together with the

first pair, these can be re-expressed as

(P l
i , T

r
n), for i = 0, · · · , n, and (T l

i , T
r
n), for i = 0, · · · , n− 1, for n > 0.

Proceeding similarly with the two symmetric restriction pairs (P r
n , T l

n),(Gr
n, T l

n),
the following additional restriction pairs are obtained

(P r
i , T l

n), for i = 0, · · · , n, and (T r
i , T l

n), for i = 0, · · · , n− 1, for n > 0.

However, similar restrictions have to hold at all levels k = n, n − 1, · · · , 1 of
application of the above reduction. But for n = 0 we have still the restrictions

(P l
0, T

r
0) , (Gl

0, T
r
0) , (P r

0 , T l
0) , (Gr

0, T
l
0)

Putting together all the P -T restrictions, we have that, for each k = 0, 1, · · · ,
n the following communication restrictions should hold (P l

i , T
r
k), and (P r

i , T l
k),

for i = 0, 1, · · · , k, which is restriction 1 of the lemma. Putting together all the T -
T restrictions, we have: (T l

i , T
r
k),(T r

i , T l
k), for k = 1, · · · , n and i = 0, · · · , k− 1.

But this is equivalent to restriction 2 of the lemma. Restrictions (Gl
0, T

r
0)

and (Gr
0, T

l
0) can be ignored since Gl

0 and Gr
0, which form a matching pair,

communicate among themselves only. �

In a similar manner, all the restrictions of lemma 5 are gathered in the
following

Lemma 6 (Broad communication order restrictions). A set of commu-
nication order restrictions to be fulfilled by [Gl

n+1||Gr
n+1] for the eliminability of

its communication pair (l, m), without introducing deadlock, is that for k ∈ [1, n]
and i ∈ [0, k − 1], within P l

k and P r
k

cw(P l
i) < cw(T r

i) , cw(P r
i) < cw(T l

i) , cw(Gl
i) < cw(T r

i) , cw(Gr
i) < cw(T l

i) .

Justification. We keep track of the communication order restrictions of lemma
5 in the recursive application to [Gl

n+1||Gr
n+1] of the equivalence of lemma 4, as a

reduction from left to right. Thus, concerning P l
n and P r

n , the second outermost
application gives the restrictions

384 F. Babot, M. Bertran, and A. Climent

cw(P l
n−1) < cw(T r

n−1) , cw(P r
n−1) < cw(T l

n−1)
and

cw(Gl
n−1) < cw(T r

n−1) , cw(Gr
n−1) < cw(T l

n−1).

Similarly, the next outermost application gives restrictions on the commu-
nications of P l

n−1 and P r
n−1 but also on those of P l

n and P r
n , since the two

latter statements are also parallel to Pn−2 , Tn−2 and to Gn−2 , Tn−2. These
restrictions on the communications within these four P statements are

cw(P l
n−2) < cw(T r

n−2) , cw(P r
n−2) < cw(T l

n−2) , cw(Gl
n−2) < cw(T r

n−2) ,
cw(Gr

n−2) < cw(T l
n−2)

Within P l
n and P r

n only , and continuing until the last application, at k = 1,
the following communication restrictions should hold: for i ∈ [0, n− 1],

cw(P l
i) < cw(T r

i) , cw(P r
i) < cw(T l

i) , cw(Gl
i) < cw(T r

i) ,
cw(Gr

i) < cw(T l
i) .

These conditions should also hold within P l
k and P r

k , for all k ∈ [1, n] and
i ∈ [0, k − 1], as the lemma states. �

Theorem 2 (Communication order restrictions for eliminability). The
set of restrictions of lemma 6 to be fulfilled by [Gl

n+1||Gr
n+1] for the eliminabil-

ity of its communication pair (l, m), without introducing deadlock, can be re-
expressed as follows: for all k ∈ [2, n], within P l

k and P r
k ,

cw(P l
j) < cw(T r

i) , cw(P r
j) < cw(T l

i) , for i ∈ [0, k − 1] and j ∈ [0, i]

cw(T l
j) < cw(T r

i) , cw(T r
j) < cw(T l

i) , for i ∈ [1, k − 1] and j ∈ [0, i− 1]

and for k = 1, within P l
1 and P r

1

cw(P l
0) < cw(T r

0) , cw(P r
0) < cw(T l

0) .

Justification. The statements Gl
i and Gr

i in the last two conditions of lemma
6 can be replaced by all their substatements P s and T s, with the exception of
Gl

0 and Gr
0, obtaining the equivalent conditions: for k ∈ [2, n] within P l

k and P r
k ,

and for i ∈ [1, k − 1] and j ∈ [0, i− 1]

cw(P l
j) < cw(T r

i) , cw(T l
j) < cw(T r

i)

cw(P r
j) < cw(T l

i) , cw(T r
j) < cw(T l

i)

The case of i = 0 gives the restrictions cw(Gl
0) < cw(T r

0), cw(Gr
0) < cw(T l

0)
within P l

k and P r
k for k ∈ [2, n] , which need not be included since (Gl

0, G
r
0) is a

pair whose two communications communicate between themselves only.
We still have the restrictions for k = 1, within P l

1 and P r
1 : cw(Gl

0) < cw(T r
0),

cw(Gr
0) < cw(T l

0) , which can be removed by the same reason as before.
The above P -T restrictions can be put together with the P -T restrictions of

lemma 6, holding for i ∈ [0, k − 1]. This results in the following conditions: for
k ∈ [2, n] within P l

k and P r
k ,

A Static Communication Elimination Algorithm 385

cw(P l
j) < cw(T r

i), cw(P r
j) < cw(T l

i), for i ∈ [0, k − 1] and j ∈ [0, i]

cw(T l
j) < cw(T r

i), cw(T r
j) < cw(T l

i), for i ∈ [1, k − 1] and j ∈ [0, i− 1]

and for k = 1, within P l
1 and P r

1 ,

cw(Gl
0) < cw(T r

0) , cw(Gr
0) < cw(T l

0)

cw(P l
0) < cw(T r

0) , cw(P r
0) < cw(T l

0)

as the lemma states. The G-T restrictions are not in the lemma since they always
hold, because Gl

0 communicates only with Gr
0 only and vice versa. �

Theorem 3 (Elimination from a standard form binary cooperation).
Let S = [Gl

n||Gr
n], be selection-free, and its two top statements have the standard

form given in lemma 2. Let G0 = [u := e] , and for k = 1, 2, . . .

Gk = [H l
k−1||Hr

k−1]; [Gk−1||P l
k−1||P r

k−1]; [T
l
k−1||T r

k−1]

Then Gn =O [Gl
n||Gr

n] , iff [Gl
n||Gr

n] satisfies the conditions of theorems 1
and 2. Either both sides are deadlock-free or none of them is.

Justification. The equivalence is obtained applying the following steps:

(1)- Recursive application of the equivalence of lemma 4, starting at [Gl
n||Gr

n] as
above, until the following statement is obtained

Hl
n−1 || Hr

n−1 ;

· · ·

Hl
0 || Hr

0 ;

[Gl
0 || Gr

0] || P l
0 || P r

0 ;

T l
0 || T r

0

|| · · ·

· · ·

;

T l
n−1 || T r

n−1

(2)- Application, to its inner statement [Gl
0||Gr

0] , of the congruence [Gl
0||Gr

0] ≈
G0, as a reduction from left to right. Thus, the equivalence Gn =O [Gl

n||Gr
n] is a

direct consequence of lemma 4 and the congruence of step 2. In the present sce-
nario of disjoint processes communicating only via synchronous communications,
the only possible cause of deadlock is waiting at communications that can never
take place. This can only happen with communications within substatements
that change from being parallel in [Gl

n||Gr
n] to being concatenation ordered in

Gn. The possible situations are captured by theorems 1 and 2. Deadlock-freeness
follows from the satisfaction of the conditions stated in them. �

S may be deadlock-free but some of the applicability conditions fail. Given
a general selection-free BCS with a non-empty set of competing pairs, the elim-
ination of any pair is feasible under the conditions of the following

386 F. Babot, M. Bertran, and A. Climent

Theorem 4 (Elimination from a selection-free BCS). Let p = (l, m) be
one of the pairs in CompPairs(I,S), and the top statements of the LCA paral-
lelism of l and m be Gl and Gr. Then S can be transformed into an interface
equivalent statement without p if the standard forms of order n = max(nl, nr)
of the two top statements satisfy the conditions of theorems 1 and 2.

In general, the orders nl and nr of the standard forms of Gl and Gm will
not be equal. Then, if nl > nr we make n = nl and construct Gr

n by inserting
nl − nr layers of nil H , P , and T statements immediately around Gr

0. One pro-
ceeds similarly in the opposite case. The insertion can be done in other ways,
but the innermost one leads to maximum parallelism.

Justification. Due to commutativity and associativity of parallelism, S can al-
ways be transformed into S[Gl||Gm], where the binary parallelism of the embed-
ding top statements has been isolated. Then S[Gl||Gm] =O S[Gl

n||Gm
n] =O S[Gn]

by lemma 2, theorem 3, and monotonicity of interface equivalence. �

Assuming that the conditions of theorems 1 and 2 hold, the term Elim{(l,r),S}
will represent the statement resulting after elimination of (l, r) from S. Thus, the
result of the above theorem may be written as S =O Elim{(l,r),S}.

Lemma 7 (Elimination commutativity of disjoint pairs). Let p1 and p2

be two disjoint competing pairs of S. Then
Elim{p2, Elim{p1, S}} =O Elim{p1, Elim{p2, S}}

Justification. One has that S =O Elim{p1, S} and S =O Elim{p2, S}.
But, for the same reason Elim{p2, S} =O Elim{p2, Elim{p1, S}} and
Elim{p1, S} =O Elim{p1, Elim{p2, S}}. The desired result follows, since the
left hand sides of the last two equivalences are both equivalent to S. �

Lemma 8 (Elimination of a set of disjoint competing pairs). Let ncp

be the cardinality of CompPairs(I,S), all of whose pairs cpi, i = 1, · · · , ncp are
disjoint. Then, S =O Elim{cp1, Elim{cp2, · · · , Elim{cpncp, S} · · ·}}

=O Elim{cpp(1), Elim{cpp(2), · · · , Elim{cpp(ncp), S} · · ·}} , where
< p(1), · · · , p(ncp) > is any permutation of < 1, · · · , ncp >.

Justification. This follows by linear induction. The base case, where ncp = 2
holds by lemma 7. For the induction step, assume that the result is true for
ncp = k, then S =O Elim{cpp(1), Elim{cpp(2), · · · , Elim{cpp(k), S} · · ·}} for
any permutation < p(1), · · · , p(k) > of the first k integers. But any permutation
of the first k + 1 integers can be obtained from a suitable permutation of the
first k integers by inserting the integer k + 1 at a convenient position l. Also,

Elim{cpk+1, S} =O S
=O Elim{cpk+1, Elim{cpp(1), Elim{cpp(2), · · · , Elim{cpp(k), S} · · ·}}}

After some applications of lemma 7, cpk+1 can be moved to the l-th position.�

Assuming that all the pairs are mutually disjoint, the following communica-
tion elimination algorithm is a consequence of the above results:

A Static Communication Elimination Algorithm 387

failure := F
while ¬failure ∧ { S has a competing pair p}

do (failure,S):= PElim(p, S);
if ¬failure

then if ComFront(I, S)=∅
then terminate with success
else terminate with deadlock

else terminate with failure

Procedure PElim is the extension of Elim which checks applicability conditions.
It transforms Gl and Gr into standard form, as in the proof of lemma 2. Af-
ter structure matching and application of the law, nil statements are eliminated
with the basic congruences. When a true boolean result is returned, the appli-
cability conditions were not satisfied. When the loop terminates without failure,
CompPairs(I,S) of the final statement is empty. When at the same time there
is still some communication left in the communication front, this indicates that
no match can be found for it. Then the initial statement is not deadlock-free.

5 Extensions

This section summarizes an extension of the communication elimination proof.
Its application scope is widened to encompass a very common form of non-BCS.

Distributed program simplification (DPS) is a proof whose first step is con-
structed by the communication elimination algorithm. The resulting equivalent
form has parallelism between disjoint substatements but no internal communi-
cations. Its next step, parallelism to concatenation transformation, applies per-
mutation laws for transforming the parallel compositions of disjoint processes to
interface equivalent sequential forms. A sequential program interface equivalent
to the initial one is obtained. The third and last step of DPS is redundant vari-
able elimination. State-vector reduction comes with this last step. More details
are given in [19].

Now the DPS proof will be extended to the following very common form
of non-BCS: S = [S1|| · · · ||Sm] , where the Sk’s are of the form Sk =
loop forever do Bk. The Bk’s are BC statements. Since they have communi-
cation statements and appear within indefinite iterations, the whole statement
is non-BC.

Assume that we unfold nk times the loop of each top substatement Sk, thus
obtaining the statement Su = [Bn1

1 ; S1|| · · · ||Bnm
m ; Sm] , where the Bnk

k ’s
stand for the concatenation of nk copies of Bk : Bk; · · · ; Bk .

We can apply DPS to Su partially, only considering its internal communica-
tions in the Bnk

k statements. Assume that we succeed and obtain B; E , where
B has no internal communication but the ending statement E may be non-BC,
it may have both parallelism and inner communication. Assume also that B; E
is also reduced by DPS, partially as before, to B; B; E . Then, as a consequence
of finite induction, S =O [Bn; E] for any finite integer n, where Bn is both
inner parallelism and communication free. In the frequent case where the first

388 F. Babot, M. Bertran, and A. Climent

elimination yields B; S, i.e. E = S, then S =O loop forever do B and
the right hand side statement has no inner communication. In many practical
systems this occurs already for nk = 1 ; k = 1, ... , m.

6 State-Vector Reduction Example

The DPS equivalence proof of a four stage pipelined processor model [20], with
only register to register ALU instructions, but with forwarding circuits and two
levels of parallelism, carried out with the help of a tool embedding the commu-
nication elimination algorithm, is reported in [18,19,12]. A very clear verification
result would be to show that the complex pipelined processor is equivalent to
the following simple purely sequential fetch-execute loop

reg ::= V NCycle(reg, mem) ::

for k := 1..n do
ir := mem(pc);
pc := pc + 1;
reg(ir.rd) := alures(ir.func, reg(ir.rs1), reg(ir.rs2))

This is what the DPS proof does. Thus, the state vector was reduced from 1689, for
the parallel model, to 1082 bits, for the equivalent sequential model, a reduction
of 607 bits. The bits common to both forms were distributed among the following
variables: 32 general purpose registers reg(.) of 32 bits each (32×32=1024), the
program counter pc, 32 bits, and the instruction register ir, 26 bits. The opcode
field was not necessary for the simplified model, the func field sufficed. Thus, the
reduction ratio of the upper bound on the number of states was 2−607.

7 Conclusions and Future Work

The mathematical justification of proper communication elimination laws in a
new distributed system equivalence criterion, published recently, has been car-
ried out. Prior to that work, the laws were justified as unidirectional refinement
relations only. This limited their applicability. The detailed mathematical justifi-
cation of the applicability conditions for the laws has been covered as well. These,
together with other results, have lead to the presentation of a communication
elimination algorithm for selection-free BC statements. This algorithm generates
automatically a communication elimination proof, when applicability conditions
hold. The proof may be continued, interactively, into a distributed system sim-
plification proof, eliminating parallelism and redundant variables. Extension of
the proof to a very common non-BC statement has been given as well.

Based on these new results, and on other previously published results, a non-
trivial distributed system simplification proof of a pipelined processor model has
been undertaken. An impressive state number upper bound reduction has been
obtained and reported in this communication.

Altogether, this work provides a grounding base for the extension of the al-
gorithm to proper bounded communication statements, whose inner communi-
cations may stand under the scope of selections. A general algorithm for commu-
nication elimination and distributed program simplification, and its application
to distributed algorithms of increasing complexity, is now envisageable.

A Static Communication Elimination Algorithm 389

Acknowledgements

We thank the encouragement received during the last years from Zohar Manna,
Bernd Finkbeiner, and Tomas Uribe.

References

1. INMOS-Limited: Occam Programming Manual. Prentice Hall (1985)
2. INMOS-Limited: Occam 2 Reference Manual. Prentice Hall (1988)
3. Jones, G.: Programming in Occam. Prentice Hall (1987)
4. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.

Specification. Springer (1991)
5. Manna, Z., Pnueli, A.: Temporal Verification of Reactive Systems. Safety. Springer

(1995)
6. Holtzmann, G.: Design and Validation of Computer Protocols. Prentice Hall (1991)
7. de Roever, W.P., de Boer, F., Hanneman, U., Lakhnech, Y., Poel, M., Zwiers,

J.: Concurrency Verification: Introduction to Compositonal and Noncompositional
Methods. Cambridge University Press (2001)

8. Yorav, K., Grumberg, O.: Static Analysis for State-space Reductions. Formal
Methods in System Design 25 (2004) 67–96

9. Kurshan, R., Levin, V., Minea, M., Peled, D., Yenigun, H.: Static Partial Order
Reduction. In Steffen, B., ed.: Proceedings of TACAS’98. Volume 1384 of LNCS.,
Noordwijkerhout, The Netherlands, Springer (1998) 335–357

10. Clarke, E.M., Grumberg, O., Long, D.: Model Cheking and Abstraction. ACM
Transactions on Programming Languages and Systems 16 (1994) 1512–1542

11. Bertran, M., Babot, F., Climent, A., Nicolau, M.: Communication and Parallelism
Introduction and Elimination in Imperative Concurrent Programs. In Cousot,
P., ed.: Static Analysis. 8th International Symposium, SAS 2001. Volume 2126 of
LNCS., Paris, France, Springer (2001) 20–39

12. Bertran, M., Babot, F.X., Climent, A.: An Input/output Semantics for Distributed
Program Equivalence Reasoning. Electronic Notes in Theoretical Computer Sci-
ence 137 (2005)

13. Francesco, N.D., Santone, A.: A Transformation System for Concurrent Processes.
Acta Informatica 35 (1998) 1037–1073

14. Schenke, M., Olderog, E.R.: Transformation Design for Real-Time Systems. part
i: From Requirements to Program Specifications. Acta Informatica 36 (1999) 1–65

15. Schenke, M.: Transformation Design for Real-Time Systems. part ii: From Program
Specifications to Programs. Acta Informatica 36 (1999) 67–96

16. Roscoe, A., Hoare, C.: The laws of OCCAM programming. Theoretical Computer
Science 60 (1988) 177–229

17. Elrad, T., Francez, N.: Decomposition of Distributed Programs into Communica-
tion Closed Layers. Science of Computer Programming 2 (1982) 155–173

18. Babot, F., Bertran, M., Riera, J., Puig, R., Climent, A.: Mechanized Equivalence
Proofs of Pipelined Processor Software Models. In: Actas de las III Jornadas de
Programación y Lenguajes, Alicante, Universitat d’Alacant (2003) 91–104

19. Babot, F.X.: Contributions to Communication Elimination Proofs for Distributed
Program Simplification. Ph.d. dissertation, Escola Tècnica Superior d’Enginyeria
Electrònica i Informàtica La Salle, Universitat Ramon Llull (2005)

20. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., San Mateo, California (1990)

Incremental Verification of Owicki/Gries Proof

Outlines Using PVS�

Arjan J. Mooij and Wieger Wesselink

Technische Universiteit Eindhoven,
Department of Mathematics and Computer Science,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{A.J.Mooij, J.W.Wesselink}@tue.nl

Abstract. Verifications of parallel programs are frequently based on
automated state-space exploration techniques known as model checking.
To avoid state-space explosion problems, theorem proving techniques can
be used, for example by manually annotating programs with suitable as-
sertions and using these assertions to prove their correctness (e.g. using
the Owicki/Gries theory). We propose a method to support assertion-
based methods with theorem provers like PVS. Emphasis is on the typi-
cal incremental character of assertion-based methods, and on automated
strategies for proving correctness of the proof outlines.

1 Introduction

Verifications of parallel programs are frequently based on state-space exploration
techniques. A nice property of such techniques is that human input is hardly re-
quired, but a serious drawback is the well-known state-space explosion problem.
To avoid this, and to be able to prove more general properties of parallel pro-
grams, theorem proving techniques can be used. For example, programs can be
verified by annotating them with suitable assertions and using these assertions
to prove the programs’ correctness (e.g. using the Owicki/Gries theory [OG76]).
Although human input is required to develop the annotation and to perform the
proof, in this way also infinite-state systems can be verified.

In [MW03] we have demonstrated that such methods can be used to an-
alyze (the correctness of) industrial protocol standards. This is illustrated on
the distributed spanning tree protocol for dynamic networks from a draft IEEE
1394.1 standard, which could not be verified using model checking. We have
reconstructed and proved the correctness of a version of the (not yet proved)
algorithm in the draft standard. To this end we have used the assertion-based
method of Feijen/van Gasteren [FvG99], that supports the construction of par-
allel algorithms hand-in-hand with their correctness proof.

Despite this result, the required amount of human effort needs to be signifi-
cantly reduced to enhance the practical applicability of assertion-based methods.
� This research is supported by the NWO under project 016.023.015: “Improving the

Quality of Protocol Standards”.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 390–404, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Incremental Verification of Owicki/Gries Proof Outlines Using PVS 391

In this paper we focus on the related proof efforts. Since current theorem provers
offer a lot of automatization, we address the integration of automated theorem
provers with assertion-based methods. In this way we can also assess the practical
usability of current automated theorem provers.

Applications of assertion-based methods (not only [FvG99]) are typically
incremental: an initially incomplete annotation is extended repeatedly until all
proof obligations can be proved. In contrast to much related work that focuses
on formalizations, the emphasis of our approach is on this incremental nature.

To experiment with our approach, we have implemented a tool that uses the
PVS [ORS92] theorem prover as a back-end. The effectiveness of the automated
proof strategies is illustrated on some case studies, including a handshake register
[Hes98] and the spanning tree protocol [MW03] mentioned before.

Overview The remainder of this paper is structured as follows. In Section 2 we
discuss some basic techniques that we use. In Section 3 we evaluate related work,
after which we describe the main ingredients of our approach in Section 4. Based
on these ingredients, in Section 5 we discuss the tool that we have developed
and the generated PVS input files. In Section 6 we present the practical results
that we have obtained. Finally, in Section 7 we conclude this paper.

2 Preliminaries

2.1 Processes, Actions and Assertions

A parallel system consists of a (possibly dynamic) collection of processes. The
execution of the program for a single process results in a sequence of atomic
actions; the execution of a parallel program results in an interleaving1 of these
individual sequences. So an atomic action is an action that is guaranteed to
be executed without interference of any other action. A control point (or an
interleaving point) in a process’ program is a location between two subsequent
atomic actions of the process. A process is said to be “at a control point” if
execution of the process’ program so far ended at the control point.

An annotated program is a program that is annotated with assertions. An
assertion is a predicate on the state of the system and it is located at a control
point. An assertion at a process’ control point is correct if the state of the system
satisfies the assertion whenever the process is at the control point. A correctly-
annotated program (or a proof outline) is a program in which all assertions are
correct.

2.2 Running Example: Parallel Linear Search

As a running example we use a parallel linear search algorithm, which solves the
following problem: Given a number of boolean functions on the naturals, find a
value that is mapped by one of these functions to the value true. A collection of
1 Since we ignore progress issues, we do not address fairness of the interleaving.

392 A.J. Mooij and W. Wesselink

var f : [comp → [nat → bool]],
x : [comp → nat],
b : bool

0: {inv b ⇒ (∃c:comp : fc(xc))}
par (c : comp):

1:
do ¬(b ∨ fc(xc)) →

2: {¬fc(xc)}
xc := xc + 1

od
3: ; {(∃c:comp : fc(xc))}

b := true
4: {(∃c:comp : fc(xc))}

rap
5: {(∃c:comp : true) ⇒ (∃c:comp : fc(xc))}

Fig. 1. Parallel linear search

processes has to be used, such that for each function there is a process that is
completely dedicated to the function.

A solution is the annotated program of Figure 1, which is a generalization of
the two-process version in [FvG99]. The upper part consists of the declaration
of the variables, in which the type comp denotes the set of process identifiers.
For each process c, function fc is the corresponding given function. Variable b is
a shared program variable of type boolean, and for each process c, variable xc is
a local program variable of type natural.

The lower part contains the annotated program. The numbers that are fol-
lowed by a colon are labels that identify the control points. Each assertion P is
denoted as {P}, and each invariant I (i.e. an abbreviation of an assertion that is
placed just before the parallel composition and at each control point within) is
denoted as {inv I}. The assertions and invariants at the first control point are
also the precondition of the program. What remains are some statements, in-
cluding a parallel composition (par) over the elements of type comp, a repetition
(do), a sequential composition (;) and two assignments (:=).

A brief argument for the correctness of this algorithm is that each process c
performs a linear search on its function fc. Once a value true has been found,
the witness index xc remains unchanged and shared variable b is set to true
after which all processes terminate. If termination of the system needs to be
guaranteed, it is important to assume that the post-assertion (at label 5) can be
established by assignments to x, and that initially (∀c:comp : xc = 0) holds.

2.3 Hoare Triples and the Theory of Owicki/Gries

A basic notion for the correctness of assertions is a Hoare triple [Hoa69]. A
Hoare triple {P} S {Q} is a boolean that has the value true if and only if each

Incremental Verification of Owicki/Gries Proof Outlines Using PVS 393

terminating execution of statement S that starts from a state satisfying predicate
P is guaranteed to end up in a final state satisfying predicate Q. This definition
expresses partial correctness, since termination is not considered.

Hoare triples for atomic statements are usually defined using weakest liberal
preconditions. The weakest liberal precondition (wlp for short) of a statement S
is a predicate transformer, to be denoted by wlp.S. The wlp.S of a predicate Q,
to be denoted by wlp.S.Q, is the weakest precondition P such that {P} S {Q}
is a correct Hoare triple. More formally {P} S {Q} ≡ [P ⇒ wlp.S.Q], in
which the square brackets are a shorthand for “for all states”, i.e. as a universal
quantifier binding all free variables. In what follows, the following two properties
of Hoare triples {P} S {Q} are important: they are anti-monotonic in P , and
(universally) conjunctive in Q.

Composite statements are usually flattened into atomic actions using small
theorems. E.g., a selection statement {P} if B → {Q} S fi {R} with inner asser-
tion Q is flattened into an atomic evaluation of guard B (with proof obligation
[P ∧B ⇒ Q]) and a statement {Q} S {R}.

Partial Correctness. For the (partial) correctness of an annotation we use
the Owicki/Gries theory [OG76] in the terminology of [FvG99]. It states that an
assertion P in a process is correct whenever the following two conditions hold:

– local correctness is guaranteed, i.e. if P is an initial assertion then P is
implied by the precondition of the program, and if P is preceded by atomic
action2 {Q} S then P is established by that action, i.e. {Q} S {P} is a
correct Hoare triple; and

– global correctness (or maintenance, or interference freedom) under each
atomic action {Q} S in the other processes is guaranteed, i.e. {P ∧Q} S {P}
is a correct Hoare triple.

For the running example, global correctness of the assertion at control point
3 of a process c under the assignment at control point 2 of a process d : d �= c
follows from the following (correct) Hoare triple:

{(b ⇒ (∃c:comp : fc(xc))) ∧ (∃c:comp : fc(xc)) ∧ ¬fd(xd)}
xd := xd + 1
{(∃c:comp : fc(xc))}

The wlp that is needed to prove this Hoare triple reads as follows:

wlp.(xd := xd + 1).(∃c:comp : fc(xc)) ≡ (∃c:comp : c �= d ∧ fc(xc)) ∨ fd(xd + 1)

2.4 Method of Feijen/vanGasteren

Before a program’s correctness can be proved using the theory of Owicki/Gries,
a full annotation must have been invented. Therefore it was even believed that
the theory of Owicki/Gries could not be used for the design of programs.
2 Atomic action S with pre-assertion P is denoted as {P} S.

394 A.J. Mooij and W. Wesselink

To start verifying an annotation before the full annotated program has been
developed, rely-guarantee methods (see e.g. [XdRH97]) have been proposed.
These methods allow to verify each single process based on a rely-guarantee
abstraction of the other processes. However, during program development it is
likely that such abstractions are not available. Others focus on constructing the
annotation (together with the program) and on verifying parts of it as soon as
possible. In the remainder of this section we illustrate this by describing the
recently-developed programming method of Feijen/van Gasteren [FvG99].

Method. The method of Feijen/van Gasteren addresses the construction of par-
allel programs hand-in-hand with a suitable annotation and correctness proof.
Being based on the style of [Dij76], assertions play an important role. We first
summarize some conventions. Multiple assertions can be placed at a control
point. Such a sequence of assertions denotes their conjunction, and the asser-
tions are called co-assertions. Since Hoare triples {P} S {Q} are conjunctive in
Q, the correctness of individual co-assertions can be proved independently. A
queried assertion is an assertion which correctness has not yet been proved.

Program development starts by expressing the program’s specification in
terms of queried assertions and a preliminary program. Then, one-by-one, all
queried assertions must become correct assertions (as described below). When
all assertions (including those related to the original specification) are correct
assertions, the developed program is correct with respect to the specification.

If a queried assertion’s correctness (in the current annotated algorithm) can-
not yet be proved, there are mainly two solutions (which can also be combined):

– introduce additional queried assertions in the current annotation such that
the given assertion is correct in the extended annotation;

– modify the algorithm such that the given assertion is correct in the modified
algorithm’s annotation.

An important issue is whether these two steps can endanger correctness of
the prior assertions. Since Hoare triples {P} S {Q} are anti-monotonic in P ,
introducing additional assertions cannot endanger the correctness of the prior
assertions. However, modifying the algorithm may turn all correct assertions
into queried assertions again. The typically-used modifications of the algorithm
are inserting statements (for local correctness) and changing atomic actions. In
the common case that the changes of the atomic actions can only reduce the
program’s behavior, the correctness of the annotation is maintained.

3 Related Work

Tool support for formal methods is a very active research area. In spite of
the enormous interest in techniques related to model checking, some (recent)
work addresses axiomatic proofs based on Hoare logic and on the theory of
Owicki/Gries. In this overview of related work, we ignore model checking and
discuss some work on using theorem provers for the verification of programs.

Incremental Verification of Owicki/Gries Proof Outlines Using PVS 395

In [Hoo98] and related publications, there are experiments in modeling proof
rules in PVS. The emphasis is on distributed real-time systems, and reusable
theories about time have been developed. However, the models of case studies
look ad-hoc, and exploiting automatization of PVS is not a key issue.

Other related work originates from formalizations of the Java programming
language, e.g. in [Ábr05, JP03]. Distracting complications in such a language are
many object-orientation issues. In [JP03] parallelism is excluded, and in [Ábr05]
emphasis is on formalization instead of exploiting theorem prover capabilities.
Getting closer to our methodological goals, [Fra99] addresses the construction of
sequential programs and their correctness proofs in the style of [Dij76].

3.1 Theory of Owicki/Gries in Isabelle

The most-related work is [PN02, NPN99], in which the Owicki/Gries theory is
formalized in the Isabelle [Pau94] theorem prover. This work has nice theoretical
aspects. The formalization does not refer explicitly to control points, which in-
deed are not contained in the Owicki/Gries theory itself. And because the proof
obligations are generated within the Isabelle theorem prover, soundness with
respect to operational semantics has been proved.

For practical use, there is a dedicated Isabelle tactic. To prove an annotated
program, a user submits a goal of the shape “this given annotated program
is correct” to the theorem prover. Then the tactic is applied to conclude that
this goal follows from a large proof obligation, consisting of the corresponding
Owicki/Gries proof obligations. Afterwards, this large proof obligation needs to
be proved using the theorem prover’s usual techniques. For effective practical
use, this approach has some disadvantages which we discuss in Section 4.

4 Design Points

Although the approach of [PN02] is related to our goals, it does not effectively
support incremental assertion-based methods. In what follows we discuss the
problems and the way we propose to overcome them. We will not compare the
theorem provers in detail, although in Section 6 we briefly address this issue.

4.1 Decomposing the Proof Obligation

To verify an annotated program, the tactic of [PN02] generates one big combined
proof obligation, which is related to the fact that the tactic is incorporated in
the theorem prover. Afterwards, the theorem prover is used to try to prove the
generated proof obligation. Such an approach has two disadvantages.

First, dealing with large proof obligations heavily relies on the capabilities of
theorem provers to reduce them into smaller chunks that can easily be proved.
As mentioned by [JP03], this easily becomes a bottleneck since there are limits to
the size of proof obligations before theorem provers become very time consuming

396 A.J. Mooij and W. Wesselink

(or running out of memory). In this respect, it is advantageous to split proof
obligations into smaller ones before employing a theorem prover.

The second problem origins from the incremental and iterative nature of
assertion-based methods. In typical applications, a program and its annotation
are repeatedly modified as required for parts of their proof that cannot yet
be completed. Since these frequent changes are usually small, many parts of a
previous proof attempt can be reused, at least theoretically. So a lot of theorem
proving work can be saved by splitting proof obligations into reusable parts.

To maximally reuse unchanged parts of the proof obligation, we split the
proof obligation such that the typical steps in the methods only affect a mini-
mal number of parts. In correspondence with the structure of the Owicki/Gries
theory, this can be achieved by splitting according to the assertion being proved,
to local or global correctness and to the particular statement being involved.
Thus the individual parts of the proof obligation are identified by a triple (“lo-
cal/global”, assertion, statement).

4.2 Stabilizing the Proof Scripts

A frequently occurring step in assertion-based methods is adding an assertion.
Apart from new proof obligations for correctness of the assertion, the assertion
also pops up in some existing proof obligations. More specifically, if we consider
the wlp-versions of the proof obligations, it pops up in the antecedent of the
implication. This weakens (or “makes more true”) the proof obligations, thanks
to anti-monotonicity (see Sections 2.3 and 2.4), and hence their correctness is
maintained. However, there is no guarantee that the old proof script of the
theorem prover is also a proof script for the new proof obligation. In practice
this hinders the effective use of theorem provers for incremental methods.

Instead of trying to correct the old proof scripts, we ensure that there are no
textual changes in these proof obligations, nor in the ingredients employed by the
old proof scripts. To that end, we need to fully decouple the assertions from each
other. Consider the typical example [P ∧Q ⇒ Z] (e.g. a proof obligation for local
correctness) with predicates P , Q and Z. To decouple Z from P and Q, we use
the principle of indirect inequality and obtain (∀X : [X ⇒ P ∧Q] ⇒ [X ⇒ Z]),
assuming that predicate X is fresh (i.e. not yet in use). Then P and Q can be
decoupled using that implication is conjunctive in its consequent:

(∀X : [X ⇒ P] ∧ [X ⇒ Q] ⇒ [X ⇒ Z])

In a theorem prover this can be modeled as proof obligation [X ⇒ Z], after
declaring dummy predicate X as a logical variable and posing the two axioms
[X ⇒ P] and [X ⇒ Q]. If (later on) this proof obligation should be weakened
into [P ∧Q ∧R ⇒ Z], then only an axiom [X ⇒ R] needs to be added. Hence
correctness of the old proof script for [X ⇒ Z] cannot be endangered as long
as all used axioms are employed explicitly. Note that these introduced axioms
cannot cause soundness problems, since dummy X was fresh.

Instead of introducing a fresh predicate X for each proof obligation, we can
exploit the structure of the Owicki/Gries theory to reuse some of them. Namely,

Incremental Verification of Owicki/Gries Proof Outlines Using PVS 397

the antecedent of the implication in each proof obligation is the conjunction of
all assertions at one or two control points. We introduce a fresh predicate per
control point, relate it to the corresponding assertions using axioms, and use
(combinations of) these predicates instead of the dummy predicate explained
before. In case there are two control points involved, viz. for global correctness
proofs, this can be justified by applying the technique of indirect inequality to
[P ∧Q ⇒ Z] twice, yielding:

(∀X,Y : [X ⇒ P] ∧ [Y ⇒ Q] ⇒ [X ∧ Y ⇒ Z])

4.3 Exploiting Invariants

Often some assertions are located at several control points. Such assertions are
typically invariants, and usually many of their proof obligations (and proofs)
are almost identical. Instead of treating invariants just as an abbreviation, for
effective practical use their redundant proof load must be reduced. To this end
we replace their proof obligations by a smaller collection of proof obligations
that abstract from the individual control points.

Apart from the well-known repetition invariants supported by [PN02], we also
consider invariants of parallel compositions, i.e. assertions that are placed at the
control point of the parallel composition and at all control points within. There
are three kinds of proof obligations for invariants: local correctness at the control
point of the parallel composition, invariance under each atomic statement within
the parallel composition, and global correctness under each statement outside
the parallel composition. We locate such invariants as a special assertion at the
control point of the parallel composition (see e.g. label 0 in Figure 1).

5 Experimental Environment

In this section we describe the experimental environment we have built, which
is schematically depicted in Figure 2. Our proof generator reads the annotated
program, and recursively decomposes it into atomic actions and assertions. Then
internally the corresponding proof obligations are generated independent of the
target theorem prover. Finally input files for the specific theorem prover (e.g.
PVS) are generated that consist of proof obligations and corresponding proof
scripts. Afterwards they are verified by the theorem prover in batch-mode.

In case some proof obligations are not successfully verified by the theorem
prover, there are two options:

Fig. 2. Architecture

398 A.J. Mooij and W. Wesselink

– the proof obligation does not hold, and hence the annotated program must
be adapted (according to the assertion-based method);

– the proof obligation holds, but the generated proof script is not appropriate.

In the latter case, the user can influence the proof scripts by supplying proof
guidance. In either case, afterwards our tool is used again to generate the new
proof obligations and proof scripts.

In what follows, we first describe how to model the program in PVS, and then
we show the generated proof obligations. Finally, we explain the generated proof
scripts and the opportunities to influence them using proof guidance. Various
illustrations on parts of the running example of Section 2.2 are included.

5.1 Program Model

In this section we discuss our model of atomic statements and assertions in PVS.

Identifiers. For the reuse as discussed in Section 4, we need identifiers for the
assertions and statements. We only explicitly assign identifying labels to the
control points, and identify the assertions and statements by the label of their
control point and some serial number (or character). For example, the invariant
at the control point with label 0, and the statement and assertion at the control
point with label 2 in the running example are referred to as inv 0a, stat 2 and
ass 2a.

Data Types. Elementary data types are standardly available in PVS, so only
the additional domain-specific data types need to be modeled. In the running
example only a type comp for the process identifiers needs to be defined.

comp: type

Then a type state can be defined as a record that contains all variables. It
will be used to denote states of the entire program.

state: type = [# f : [comp→ [nat→ bool]] ,
x : [comp → nat] ,
b : bool

#]

Annotation. The two types of annotation, viz. assertions and invariants, are
just predicates on the state.

inv 0a: pred[state] =
lambda (s : state): s‘b ⇒ exists (c : comp): s‘f(c)(s‘x(c))

ass 2a(c : comp): pred[state] =
lambda (s : state): not(s‘f(c)(s‘x(c)))

Note that in the language of PVS, s‘b selects field b from record s.

Incremental Verification of Owicki/Gries Proof Outlines Using PVS 399

Statements. Recall that we only need to address the atomic statements, since
their composition into larger statements is part of the program’s structure (see
also Section 2.3). The atomic actions are typically assignments and evaluations
of guards. We model the assignments using their wlp. Since for a guard of a
repetition, evaluation to true and evaluation to false are two different atomic
actions, we do not model them as a predicate transformer wlp but as a predicate.

wlp stat 2(c : comp)(p : pred[state]): pred[state] =
lambda (s : state): p(s with [‘x(c) := s‘x(c) + 1])

guard 1a(c : comp): pred[state] =
lambda (s : state): not(s‘b or s‘f(c)(s‘x(c)))

5.2 Proof Obligations

Using these definitions, we can describe the generated proof obligations. We will
distinguish between local correctness, global correctness and invariance.

Control Points. Before presenting the proof obligations for correctness of the
annotated program, we first address the implementation of the technique as
described in Section 4.2. For each control point, say with label i, we introduce a
logical variable lab i, and relate it with axioms to the assertions and invariants
that hold at the control point.

lab 2: [comp → pred[state]]

lab 2 inv 0a: axiom
forall (s : state): forall (c : comp): lab 2(c)(s) ⇒ inv 0a(s)

lab 2 ass 2a(c : comp): axiom
forall (s : state): forall (c : comp): lab 2(c)(s) ⇒ ass 2a(c)(s)

Similarly for each control point, say with label i, in which a parallel compo-
sition starts, we define a logical variable scp i, and relate it with an axiom to
the control points in the scope of the parallel composition.

scp 0: pred[state]

def scp 0: axiom
forall (s : state):

scp 0(s) = (lab 0(s)
or (exists (c : comp): lab 1(c)(s))
...
or (exists (c : comp): lab 4(c)(s)))

The main use of this axiom is to prove relations between scp variables and
invariants, like the relations between control points and assertions above.

scp 0 inv 0a: lemma
forall (s : state): scp 0(s) ⇒ inv 0a(s)

400 A.J. Mooij and W. Wesselink

Local Correctness. Now we consider the proof obligations for local correctness
of the assertions and invariants. We assume that the initial assertion of the
program is the precondition of the program. Recall that if an assertion {P} is
not an initial assertion, then it must be established by the preceding statement
{Q} S, i.e. {Q} S {P} must be a correct Hoare triple. We directly generate the
proof obligations in their wlp version.

loc ass 4a stat 3: lemma
forall (s : state):

forall (c : comp): lab 3(c)(s) ⇒
wlp stat 3(c)(ass 4a(c))(s)

Such a lemma “loc ass 4a stat 3”, for local correctness of assertion ass 4a by
preceding atomic statement stat 3, is structured as follows:

– For all states,
– and for all processes (that are about to execute the statement),
– the statement establishes the post-assertion.

Global Correctness. Then we continue with global correctness. Recall that
each assertion {P} of a process must be maintained under each statement {Q} S
that can be executed by another process, i.e. {P ∧Q} S {P} must be a correct
Hoare triple. We directly generate the proof obligations in their wlp version.

glob ass 3a stat 2: lemma
forall (s : state):

forall (c : comp): lab 3(c)(s) ⇒
forall (d : comp): lab 2(d)(s) ⇒

not(c = d) ⇒
wlp stat 2(d)(ass 3a(c))(s)

Such a lemma “glob ass 3a stat 2”, for global correctness of assertion ass 3a
under statement stat 2, is structured as follows:

– For all states,
– and for all processes that are at the control point of the assertion,
– and for all processes that are about to execute the statement,
– if the processes are different (i.e. in the largest common prefix of the en-

closing parallel compositions of the control point and the statement, not all
identifying variables are equal),

– the statement (re-)establishes the assertion.

Invariance. Finally we address invariance. In case the statement to be consid-
ered is outside the parallel composition of the invariant, invariance is just global
correctness (see above) with the first “lab ” replaced by “scp ”. If the statement
is inside the parallel composition of the invariant, then the invariant must be
maintained under executions of the statement in each process.

Incremental Verification of Owicki/Gries Proof Outlines Using PVS 401

inv inv 0a stat 2: lemma
forall (s : state):

scp 0(s) ⇒
forall (c : comp): lab 2(c)(s) ⇒

wlp stat 2(c)(inv 0a)(s)

Such a lemma “inv inv 0a stat 2”, for invariance of invariant inv 0a under
statement stat 2, is structured as follows:

– For all states,
– and for all processes that are within the parallel composition,
– and for all processes that are about to execute the statement,
– the statement (re-)establishes the invariant.

5.3 Proof Scripts

For these generated proof obligations, proof scripts are generated that rely on the
automatization offered by PVS. Such an automated proof might be feasible since
atomic actions are typically simple. Furthermore, proving these proof obligations
might be easier than proving correctness of the algorithm, since an annotation
can be exploited. However, we must be prepared that human intervention in the
proof is required, so we also discuss some possibilities for human guidance.

Default Script. The default proof script consists of the following three parts:

(skosimp* :preds? t)

(lemma “lab 2 ass 2a”)
(inst -1 “s!1” “c!1”)
... ...

(branch (grind :if-match nil)
((then (try (reduce) (fail) (skip))

(then (inst? :if-match all) (then (reduce :if-match all) (fail))))))

The first command decomposes the top-level structure of the proof obligation
and introduces skolem constants (and type constraints) for the bound variables,
viz. for the state and for the identifying variables of the processes. Then the ax-
ioms that relate control points to assertions are explicitly employed (as required
in Section 4.2), and the known constants are substituted.

From a logical point of view, the order in which the axioms are introduced is
irrelevant. However, in our practical experience PVS turns out to prioritize the
last introduced axioms, which can have serious consequences for the run-time
performance. We exploited the heuristic that for a global correctness proof of an
assertion it is usually very important to use that the assertion holds. Hence, we
ensured that the corresponding axiom is introduced in the end.

What remains in the script is the real work, consisting of some strategies to
automatically complete the proof. It is in fact an extension of the “lazy-grind”

402 A.J. Mooij and W. Wesselink

strategy. First it applies “grind” without quantifier instantiation, and then it
repeatedly tries the normal “reduce” with heuristic quantifier instantiation. If
this “reduce” does not complete the proof, then repeatedly all instantiations of a
bound variable are substituted and “reduce” is applied again. This proof script
does not use induction, since we simply did not need it. The reason is probably
that recursion is often encoded in a repetition.

Proof Hints. During execution of the default proof script, the strategies become
more time-consuming. In that case, it is often effective to interrupt the prover
after a while and to apply proof hints, since usually developers can easily indicate
which assertions are not relevant for a proof. Using proof hints, the generated
proof script can be improved by reducing the employed collection of assertions.
In [GGH05] such proof hints, or dependency relations, were provided as an a-
posteriori summary of a huge interactive proof.

Manual Proof. Suppose a generated proof script is very time consuming, or
it cannot prove the proof obligation. If the proof obligation does hold, then
the user can manually develop a PVS proof script and provide it to our tool.
However, for effective verifications manual proofs should not be necessary too
often.

6 Experiments

In this section we summarize some experiments to investigate the strength of
our method, and in particular of the developed proof scripts. We have applied
the environment as described in Section 5 to some fully-annotated algorithms.

6.1 Small Algorithms

We have first experimented with some simple known annotated algorithms from
[FvG99, Moo02, PN02]: parallel linear search, wait-free consensus protocol, mon-
itored phase synchronization, mutual exclusion (semaphores, ticket algorithm
and Peterson’s algorithm for two processes). The parallel linear search example
has revealed a peculiarity of the automated strategies of PVS.

The antecedent of the assertion at control point 5 (see Section 2.2), viz.
(∃c:comp : true), is correctly skolemized to true after introducing a skolem con-
stant of type comp. However, it turns out that the automated strategies do
not use this skolem constant, and hence the antecedent has effectively been
weakened to just true. The result is that the proof obligation is not automati-
cally provable, although we could finally circumvent this problem using a work-
around.

Using our tool environment, correctness of these examples has been proved
fully-automatically without using any proof guidance. On a current desktop
computer, each example required less than a minute of time. Our results are
better than the ones in [PN02, NPN99], e.g. for the ticket algorithm they require
human intervention to provide explicit case distinctions.

Incremental Verification of Owicki/Gries Proof Outlines Using PVS 403

Since [GH98] rates the automation in Isabelle and PVS as comparably good,
we have initiated some experiments with Isabelle as a back-end. The first ex-
periences indicate that from our practical perspective, the automatization in
Isabelle performs less effective than the automatization in PVS, especially in
treating quantifications. Since quantifications occur frequently, this seriously in-
creases the required amount of manual interaction with the prover.

6.2 Larger Algorithms

We have also verified two larger algorithms. First of all, we have verified the fully-
annotated “wait-free handshake register” of [Hes98]. In [Hes98] it is mentioned
that it took some eight hours to construct his mechanical proof in the NQTHM
prover. Using our default proof script, correctness of this annotated algorithm
has been proved within five minutes on a current desktop computer.

The most-complicated algorithm we have verified is the distributed spanning
tree algorithm in appendix A of [MW03]. It needs to be mentioned that there is a
huge gap in complexity between this algorithm and the other algorithms we have
discussed. In particular, dynamic networks play a role and there are complicated
assertions and statements. This verification effort has revealed one small error
in the manually constructed annotation. After strengthening one invariant in a
straightforward manner, the annotated algorithm has been proved.

For this spanning tree algorithm, almost 90% of the generated proof obliga-
tions has been proved fully-automatically. The larger part of the remainder has
been proved using proof hints, and finally manual proofs have been used for less
than 4% of the proof obligations. Some automated proofs have been interrupted
after a while in order to save time, so these results might be improved by running
the default scripts much longer.

7 Conclusions and Further Work

We have demonstrated that assertion-based methods can be successfully applied
in the correctness proof of moderately sized parallel programs. Using our tool
that generates proof obligations and proof scripts, and feeds them to PVS, more
than 95% of the proof obligations of the real-life case study [MW03] could be
handled automatically. By splitting proof obligations into small chunks, and by
designing proof scripts that are robust against common program modifications,
we have made our approach suitable for incremental methods like [FvG99].

For further work, the proof scripts may be refined, e.g. by including clever
case analysis, and by the use of additional theorem provers. Based on these
techniques, also experiments need to be done with incremental developments,
e.g. in the style of [FvG99]. Thereto suitable interaction between a user and the
tool is required, and some additional strategies need to be implemented.

Acknowledgements. We thank Johan Koudijs for carrying out experiments with
the Isabelle theorem prover.

404 A.J. Mooij and W. Wesselink

References

[Ábr05] E. Ábrahám. An Assertional Proof System for Multithreaded Java - Theory
and Tool Support. PhD thesis, Universiteit Leiden, 2005.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs, 1976.

[Fra99] M. Franssen. Cocktail: A tool for deriving correct programs. In Workshop
on Automated Reasoning, April 1999.

[FvG99] W. H. J. Feijen and A. J. M. van Gasteren. On a method of multiprogram-
ming. Springer-Verlag, 1999.

[GGH05] H. Gao, J. F. Groote, and W. H. Hesselink. Lock-free dynamic hash tables
with open addressing. Distributed Computing, 17:21–42, 2005.

[GH98] D. Griffioen and M. Huisman. A comparison of PVS and Isabelle/HOL.
In Theorem Proving in Higher Order Logics, TPHOLs ’98, volume 1479 of
LNCS, pages 123–142. Springer-Verlag, 1998.

[Hes98] W. H. Hesselink. Invariants for the construction of a handshake register.
Information Processing Letters, 68:173–177, 1998.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commu-
nications of the ACM, 12(10):576–580, 1969.

[Hoo98] J. Hooman. Developing proof rules for distributed real-time systems with
PVS. In Workshop on Tool Support for System Development and Verifica-
tion, volume 1 of BISS Monographs, pages 120–139. Shaker Verlag, 1998.

[JP03] B. Jacobs and E. Poll. Java program verification at Nijmegen: Develop-
ments and perspective. Report NIII-R0318, University of Nijmegen, 2003.

[Moo02] A. J. Mooij. Formal derivations of non-blocking multiprograms. Computer
Science Report 02-13, Technische Universiteit Eindhoven, October 2002.

[MW03] A. J. Mooij and W. Wesselink. A formal analysis of a dynamic distributed
spanning tree algorithm. Computer Science Report 03-16, Technische Uni-
versiteit Eindhoven, December 2003.

[NPN99] T. Nipkow and L. Prensa Nieto. Owicki/Gries in Isabelle/HOL. In Fun-
damental Approaches to Software Engineering (FASE’99), volume 1577 of
LNCS, pages 188–203. Springer-Verlag, 1999.

[OG76] S. Owicki and D. Gries. An axiomatic proof technique for parallel programs
I. Acta Informatica, 6:319–340, 1976.

[ORS92] S. Owre, J. Rushby, and N. Shankar. PVS: A prototype verification system.
In Conference on Automated Deduction, volume 607 of LNAI, pages 748–
752. Springer-Verlag, 1992.

[Pau94] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS.
Springer-Verlag, 1994.

[PN02] L. Prensa Nieto. Verification of Parallel Programs with the Owicki-Gries
and Rely-Guarantee Methods in Isabelle/HOL. PhD thesis, Technische Uni-
versität München, 2002.

[XdRH97] Q. Xu, W.-P. de Roever, and J. He. The rely-guarantee method for veri-
fying shared variable concurrent programs. Formal Aspects of Computing,
pages 149–174, 1997.

Using Three-Valued Logic to Specify and Verify
Algorithms of Computational Geometry

Jens Brandt and Klaus Schneider

University of Kaiserslautern,
Reactive Systems Group, Department of Computer Science,

P.O. Box 3049, 67653 Kaiserslautern, Germany
http://rsg.informatik.uni-kl.de

Abstract. Many safety-critical systems deal with geometric objects. Reasoning
about the correctness of such systems is mandatory and requires the use of basic
definitions of geometry for the specification of these systems. Despite the intu-
itive meaning of such definitions, their formalisation is not at all straightforward:
In particular, degeneracies lead to situations where none of the Boolean truth val-
ues adequately defines a geometric primitive. Therefore, we use a three-valued
logic for the definition of geometric primitives to explicitly handle such degener-
ate cases. We have implemented a three-valued library of linear geometry in an
interactive theorem prover for higher order logic which allows us to specify and
verify entire algorithms of computational geometry.

1 Introduction

Many applications like motion planning in robotics or collision detection of autonomous
vehicles have to consider the positions of physical objects in their environment. For
most of these applications, it is sufficient to model the considered objects as polygons
(or polyhedra) in an Euclidian plane (or space). This way, these applications directly
rely on algorithms of computational geometry [6]. In particular, basic geometric primi-
tives are used to develop software systems for controlling the spatial behaviour of phys-
ical objects like autonomous vehicles.

Although these algorithms are not new, their use in upcoming safety-critical embed-
ded systems, used e.g. in automobiles, calls for a more rigorous treatment to guarantee
the correctness for all possible inputs. To this end, formal definitions of geometric ob-
jects and primitives are required to specify and verify fundamental algorithms of com-
putational geometry. At a first glance, the definition of geometric primitives appears to
be easy, since they can be depicted in a natural and intuitive way. However, even def-
initions of simple geometric primitives are not at all straightforward, since they have
to cover all possible cases: For example, what is the intersection point of two line seg-
ments, if both line segments are identical or share a common endpoint? Such degenerate
cases [6] make clear that consistent definitions, that have to hold for all algorithms, are
subtle. In fact, many algorithms only work under certain preconditions on the inputs as
e.g. that all input points are pairwise distinct, or that no three input points are collinear.

Even worse, we found that for some primitives, there is no ‘good’ definition at all.
For example, to define whether a point on the edge of a polygon belongs to the interior

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 405–420, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

406 J. Brandt and K. Schneider

or not, leads to problems in one or the other algorithm. In our opinion, the best solution
is to make these degenerate cases explicit so that definitions and algorithms can directly
handle them in a way that is appropriate for the context algorithm. To this end, we
employ a three-valued logic to define geometric primitives. In the abovely mentioned
example, we can express that a point is inside, outside, or on the edge of a polygon.

Moreover, we propose the use of higher order logics and corresponding theorem
provers to consistently reason about the correctness of geometric algorithms. To this
end, we extended the HOL theorem prover [10] by a library on two-dimensional analytic
geometry that consists of three-valued geometric primitives. This library is not only
useful to reason more efficiently about algorithms using two-valued primitives, it may
also be viewed as the core of a software library for three-valued computational geometry
[2] that is sometimes more concise than the corresponding two-valued version.

Our work deviates from previous work on reasoning about geometric problems with
theorem provers in several ways: In particular, Wu’s work [18] on translating geometric
propositions to an algebraic form, i.e. equations between polynomials, is well-known.
Various researchers improved and finally implemented this approach. Several hundred
theorems about basic geometric objects like lines, triangles, and circles have been auto-
matically proven with these theorem provers [5]. However, this approach is limited to
reason about particular instances of geometric problems, but can not be used to reason
about algorithms to solve classes of geometric problems, which is our concern.

The work closest to ours is that of Pichardie and Bertot [15]: Based on the work
of Knuth [12], they formalised basic principles of convex hull algorithms. As in our
approach, the orientation primitive (see Section 3.3) plays a central role to gain a new
level of abstraction. In contrast to our work, they used two-valued logic to formalise
geometric primitives. As a consequence of this, they circumvent problems of degenerate
cases by modifying the orientation primitive or perturbing the input data. Furthermore,
their scope is restricted to convex hull algorithms.

In this paper, we focus on the formalisation of two-dimensional, linear objects like
lines, segments and polygons using three-valued geometric primitives. Due to lack of
space, we only focus on the definition of the three-valued geometric primitives and
show how degenerate cases are handled with appropriate definitions. Detailed defini-
tions, in particular, the code for the HOL library, as well as further case studies like
the verification of the Cohen-Sutherland clipping algorithm [9], are available on our
website.

This paper is organised as follows: Section 2 describes the formalisation of analytic
geometry and discusses the problem of degenerate cases in computational geometry.
Section 3 presents our three-valued logic and its use for specifying geometric properties
and primitives. Section 4 shows corresponding proof techniques and illustrates them
with the help of a small example. Finally, Section 5 draws some conclusions.

2 Prerequisites

In mathematics, geometry is usually formalised in the vector space Rn. However, real
computers use floating point arithmetic of a limited precision, so that rounding errors
appear as further problems. To circumvent these problems, we use rational numbers of
arbitrary precision. The use of rational numbers is motivated by the observation that

Using Three-Valued Logic to Specify and Verify Algorithms 407

most algorithms only deal with linear objects like lines and polygons, so that all op-
erations can be performed on rational numbers. As the HOL system does not directly
provide rational numbers, we formalised them on our own.

2.1 Formalisation of Basic Analytic Geometry

Since we investigate problems of two-dimensional geometry, a vector is given by an
ordered pair of rationals (rat#rat), encapsulated in a new type vec.

Definitions. For this type, we make the following definitions: 0 denotes the zero vector,
and ux and uy denote the unit vectors. The components of a vector v can be accessed
by xv and yv , respectively. A vector can be mirrored, rotated and multiplied by a scalar.
A pair of vectors can be added and subtracted.

vec mir def *def mir(v1) = (−xv1 ; −yv1)
vec orth def *def orth(v1) = (yv1 ; −xv1)

vec scale def *def r1 · v1 = (r1 · xv1 ; r1 · yv1)
vec add def *def v1 + v2 = (xv1 + xv2 ; yv1 + yv2)
vec sub def *def v1 − v2 = (xv1 − xv2 ; yv1 − yv2)

Multiplication of vectors is not uniquely defined: In addition to the dot product, the
cross product is well-known. For the two-dimensional case, it does not exist per se, but
a related product that is sometimes called perp dot product does exist: This is the dot
product where the first vector is replaced by the perpendicular vector. With its help, the
linear dependency of two vectors is easily defined.

sprod def *def v1 ◦ v2 = xv1 · xv2 + yv1 · yv2

cprod def *def v1 × v2 = xv1 · yv2 − yv1 · xv2

lindep def *def lindep(v1, v2) = (v1 × v2 = 0)

Theorems. The vectors vec form a vector space over the rational numbers rat. As
consequence of this, various arithmetic laws can be derived. For example, the cross
product has the following properties (inter alia):

CPROD RDISTRIB * (v1 + v2)× v3 = (v1 × v3) + (v2 × v3)
CPROD RSUM * v1 × (v1 + v2) = v1 × v2

Clearly, our library also includes important theorems of linear algebra like the two-
dimensional case of Cramer’s rule for the solution of a system of linear equations.

VEC CRAMERS RULE * ¬(v1 × v2 = 0)→ ((v0 = r1 · v1 + r2 · v2) =
(r1 = (v0 × v2)/(v1 × v2)) ∧ (r2 = (v1 × v0)/(v1 × v2)))

We have also proved that the linear dependency relation is an equivalence relation and
that it commutes with various vector operations.

2.2 Degenerate Cases

Most algorithms of computational geometry are designed for the ‘general case’: De-
pending on the algorithm, several preconditions are assumed, e.g. no points coincide,
given lines are not parallel, or that no three lines intersect in a common point. Thus,
so-called degenerate cases pose a well-known problem to algorithms in computational
geometry [7, 14].

408 J. Brandt and K. Schneider

(a) (b) (c) (d) (e) (f)

Fig. 1. Cases of the parity algorithm

As an example, consider the parity algorithm, which determines whether a point p is
inside or outside of a polygon P : It counts the intersections of an arbitrary ray starting
in p with edges of the polygon P . If the number of intersections is odd, p is inside;
otherwise p is outside P . Figure 1 shows the possible cases, where the ray is drawn
with a dotted line and some edges of polygon P are drawn with straight lines: (a) and
(b) show simple cases without any problems. (c) to (f) show degenerate cases where
either a vertex or an edge of the polygon is on the ray. To make the parity algorithm
work correctly, we have to define some of the cases as intersections: cases (c) and (e)
are intersections, whereas cases (d) and (f) are not.

Degenerate cases like the above mentioned ones require a substantial amount of
additional effort. Since there are numerous degenerate cases, it is not recommended to
directly address them in the algorithms as special cases. Instead, some other methods
have been proposed that we briefly discuss in the remainder of this section.

Symbolic Perturbations. A popular method to handle degenerate cases is the sym-
bolic perturbation of degenerate inputs [7], which resolves degeneracies by simply hid-
ing them (black box method). Intuitively, each geometric coordinate is replaced with
a symbolically perturbed coordinate, given by a polynomial of an infinitesimal small
number ε. Substitution of the symbolically perturbed coordinates in a primitive ex-
pression results in a polynomial in the variable ε with coefficients determined by the
original geometric coordinates. The sign of the expression is given by the sign of the
first nonzero coefficient, where coefficients are taken in increasing order of powers of ε.
This resolves all degeneracies of the considered primitive. Programs that use this tech-
nique tend to be smaller and more robust: the tedious treatment of many special cases
is replaced by a single consistent perturbation scheme.

While this method is certainly a useful tool for the implementation of geometric
algorithms, existing perturbation schemes have shown not to be as applicable as desired
[4]. First, symbolic perturbations give the programmer a rather unsatisfactory choice:
either to find an approximation of the original problem, or to find a precise solution of
an approximation of the original problem. In some applications, both choices might be
inappropriate, and a post-processing step is then required that determines the exact solu-
tion of the original problem. Besides its negative impact on the runtime, the complexity
of the solution can be significantly increased. Second, symbolic perturbations need to
be worked out in detail, a task that may be very complex. This has been done only for a
few geometric primitives. Finally, objects that are constructed by the algorithm (e.g. in-
tersection points) are often forbidden in the computation, because their perturbation

Using Three-Valued Logic to Specify and Verify Algorithms 409

function depends on the construction of the object and is much more complicated than
the one for a primitive object.

Explicit Treatment of Degeneracies. The explicit treatment of degeneracies suffers
from the enormous number of cases. As an example, consider the intersection of two
line segments: In general position, two segments either do not intersect or intersect at
a point interior to both segments. Two intersecting segments in special position may
overlap, share a common endpoint or have one segment endpoint interior to the other
segment – and each case exists in various slightly different variations. Hence, it is ob-
vious that a systematic analysis is indispensable.

As another example, consider the problem to check whether a point is on the edge,
inside, or outside a polygon. Assume that the points on the edge are considered to be
outside the polygon (i.e. polygons are ‘open’ point sets). However, if we calculate the
difference of two polygons by a set difference, the result is possibly a polygon that con-
tains points on its edge. There are two ways to solve the problem: The first one is to
modify the definition of the difference. The second one is not to decide whether points
on the edge are inside or outside, and therefore using an undetermined, third value for
these points. This naturally motivates the use of a three-valued logic that we explain
in the following section. Three-valued logic allows us to describe geometric properties
and algorithms more precisely and more compactly without enumerating many tedious
cases. Note that although these cases do not disappear, three-valued logic makes it pos-
sible to handle them in a systematic and concise way.

3 Using Three-Valued Logics in Analytic Geometry

Classical mathematical logic is bivalent, i.e. there are two possible truth values: true
and false. The law of the excluded middle is one of the foundations of the classical
two-valued logic: A proposition P is either true or false, and there is no other choice.

In the early 1920s, the Polish philosopher and logician Jan Lukasiewicz dealt with
philosophical problems like Aristotle’s paradox of the sea battle. He pointed out that
these problems can be solved by introducing a third value. In the following, a lot of
mathematicians engaged in this domain of logics, among them Stephen C. Kleene. In
the late 1930s, he introduced his three-valued logics for the analysis of partial recur-
sive primitives [11, 1]. Within his work, the third truth value modeled situations where
expressions are undefined.

Today, many-valued logics have found many applications in computer science. For
example, they are applied to solve problems of database systems, artificial intelligence,
simulation of hardware circuits, [8, 13], and program analysis [16, 17].

3.1 Three-Valued Logic Operators

Reconsider the example of the point in polygon at the end of Section 2.2. The area of
a polygon is described by a function that maps each point of the plane to one of the
three truth values: true (T) is assigned to all points inside, false (F) to all outside, while
the points on the edge are assigned U (which is interpreted as ‘borderline’ or generally,
degenerate case).

410 J. Brandt and K. Schneider

¬̈
F T
U U
T F

∧̈ F U T

F F F F
U F U U
T F U T

∨̈ F U T

F F U T
U U U T
T T T T

Fig. 2. Truth tables of basic logical operators

→̈ F U T

F T T T
U U U T
T F U T

↔̈ F U T

F T U F
U U U U
T F U T

⊕̈ F U T

F F U T
U U U U
T T U F

∗̈ F U T

F F F F
U F U T
T F T T

Fig. 3. Truth tables of →̈ , ↔̈ , txor and ∗̈

These considerations give rise to the definitions of the basic three-valued connec-
tives shown in Figure 2: The negation ¬̈ interchanges the inside and the outside of a
polygon, and all points of the edge remain on the edge. The conjunction ∧̈ represents
the intersection of two polygons P1 and P2: Points that are both in polygon P1 and in
polygon P2 belong to the intersection. Points that are either outside P1 or P2 are not part
of the intersection. Finally, points that are located on the edge of one polygon and not
outside the other, are on the edge of the intersection. The disjunction ∨̈ can be derived
analogously. Hence, the operators ¬̈, ∧̈ and ∨̈ correspond to the basic connectives of
Kleene’s three-valued logic [11].

Definitions. Starting from these definitions, we introduce further operators: implication
→̈ , equivalence ↔̈ , exclusive-or ⊕̈ and a modified conjuction ∗̈ . Figure 3 gives their
truth tables. While →̈ , ↔̈ and ⊕̈ are defined with the help of the basic operators, ∗̈
(whose meaning will be explained in Section 3.3) is defined by its truth table.

imp3 def *def t1 →̈ t2 = ¬̈t1 ∨̈ t2
equ3 def *def t1 ↔̈ t2 = t1 ∧̈ t2 ∨̈ ¬t1 ∧̈ ¬t2
xor3 def *def t1 ⊕̈ t2 = ¬t1 ∧̈ t2 ∨̈ t1 ∧̈ ¬t2

We extend the theory by existential and universal quantification. To this end, we recall
the disjunctive interpretation of ∃ and the conjunctive interpretation of ∀ (also known
as substitution interpretation for finite universes) that defines ∃x.P (x) =

∨
x∈Dx

P (x)
and ∀x.P (x) =

∧
x∈Dx

P (x), respectively. For our HOL theory, we chose the follow-
ing, more feasible definition, which corresponds to the previous one:

exists3 def *def ∃̈P = if (∃x.P (x) = T) thenT else
(if (∀x.P (x) = F) thenF elseU)

forall3 def *def ∀̈P = if (∀x.P (x) = T) thenT else
(if (∃x.P (x) = F) thenF elseU)

A closer inspection of the truth tables of the basic connectives ¬̈, ∧̈ , and ∨̈ reveals
that these operations imply a natural ordering by the degree of truth: F < U < T. In the
context of this ordering, ¬̈ just reverses the values, ∧̈ chooses the least one of its two

Using Three-Valued Logic to Specify and Verify Algorithms 411

�̈ F U T

F U T T
U F U T
T F F U

�̈ F U T

F U F F
U T U F
T T T U

�̈ F U T

F U F U
U T U T
T U F U

�̈ F U T

F U T U
U F U F
T U T U

Fig. 4. Truth tables of �̈, �̈, �̈ and �̈

≤ F U T

F T T T
U F T T
T F F T

≥ F U T

F T F F
U T T F
T T T T

� F U T

F T T T
U T T F
T T F T

Fig. 5. Truth tables of ≤, ≥ and �

operands and ∨̈ analogously the greatest one. Moreover, existential quantification ∃̈x
computes the maximum of a function P : Dx → T, whereas universal quantification
∀̈x computes the minimum. Hence, we define a relation �̈ : T× T → T that compares
two truth values (see Figure 4). Consistently with the other operators, it will return U
if both arguments are identical. The relation �̈ is obtained by swapping the operands.
Besides this ordering, there is yet another natural ordering which is given by the amount
of knowledge: U < F and U < T. Figure 4 gives the truth tables of �̈ and �̈.

Integrating Two-Valued and Three-Valued Propositions. Introducing three-valued for-
mulas into a two-valued environment like HOL poses the problem of integrating both
logics. First, how are two-valued terms embedded into three-valued formulas? This di-
rection is rather simple; the definition of the required embedding operator �̈ : B → T
is straightforward: true is mapped onto T, and false is mapped onto F. Second, how
are three-valued formulas transformed to the Boolean domain? This depends on the
proposition: In some situations, T should be the only designated truth value; in other
cases, it suffices that a proposition P is ‘at least U’. Although, this can be expressed by
¬(P = F), we introduce two new relations≤ and≥ to improve the readability. By their
help, all relevant cases (P = F, P ≤ U, P ≥ U, P = T) can be described concisely
(see Figure 5).

3.2 Geometric Objects

The definitions on vectors as given in Section 2.1 are the basis of the formalisation of
geometric objects. Vectors are the basic objects of analytic geometry, which are used
to define all other objects. With the exception of points (that are represented by their
position vectors and thus, are equivalent to vectors), all geometric objects are formed
by sets of points that are the solution of a proposition. For example, a line given by two
(different) points p and q, consists of all points (x; y) that are a solution of the following
equation:

line : ∃λ. (x; y) = (xp; yp) + λ · (xq − xp; yq − yp)

412 J. Brandt and K. Schneider

Analogously, a square with the vertices (0; 0), (1; 0), (1; 1) and (0; 1) is defined by the
following inequations:

square : 0 < x ∧ x < 1 ∧ 0 < y ∧ y < 1

Using classical logic, all characteristic propositions are two-valued (as above). Thus, a
point is either a solution or not, i.e. it is either part of the object or not. In contrast, we
use three-valued propositions to explicitly express degenerate points. These degenerate
points are related with the edges and endpoints of objects: Inequations describe two-
dimensional objects and degenerates points are located on the edge of the object, i.e. at
the transition between the interior and the exterior of an object. Equations generally
describe one-dimensional objects with special cases located at the ‘end’ of these objects.
In both cases, the degeneracies are an effect of inequations, which can be seen as the
actual source of degeneracies.

Hence, we introduce three-valued inequations between rational numbers. In the case
where the left hand side is equal to the right hand side, the validity of the inequation is
undefined:

les3 def *def r1 ≺ r2 = if (r1 < r2) thenT else
(if (r2 < r1) thenF elseU)

The relation ≺ has the following properties:

RAT LES3 REF * (r1 ≺ r1) = U
RAT LES3 ANTISYM * ¬̈(r2 ≺ r1) = (r1 ≺ r2)

RAT LES3 TRANS * (r1 ≺ r2) ∗̈ (r2 ≺ r3) � (r1 ≺ r3)
Using this relation, we define in the following other geometric objects. We thereby focus
on two-dimensional linear objects, i.e. lines, rays, segments and rectangles. Circles,
curves, and objects of higher dimensions are not considered, since they are not relevant
for most applications. Nevertheless, the principles that are presented in the following
can be applied to them, too.

Lines, Rays and Segments. In analytic geometry, a line is usually defined by its para-
metric equation (see first equation in the previous section). To convert the classic def-
inition of a line to a three-valued one, all two-valued operators are exchanged by their
three-valued counterparts:

line : ∃̈λ. (x; y) = (xp; yp) + λ · (xq − xp; yq − yp)

For a line l, there is no difference between the two-valued and three-valued case: l
contains all points (x; y) that are a solution of the traditional, two-valued equation. A
ray and a line segment can be specified similarly: For the ray, we add the condition that
λ must be positive, and for a line segment, λ must be greater than 0 and less than 1.
With these restrictions, the starting points of these objects are degenerate points.

ray : ∃̈λ. (x; y) = (xp; yp) + λ · (xq − xp; yq − yp) ∧̈ (0 ≺ λ)
segment : ∃̈λ.(x; y) = (xp; yp) + λ · (xq − xp; yq − yp) ∧̈ (0 ≺ λ) ∧̈ (λ ≺ 1)

HOL Theory of Lines. In our HOL theory, lines, rays, and line segments are rep-
resented by the same type line. A line is represented by a pair of different vectors,

Using Three-Valued Logic to Specify and Verify Algorithms 413

which represent the points in the parametric equation. We use the constructor
−−−−→
(v1, v2)

that converts two vectors v1 and v2 to a line (a new data type). After the construction of

a line � =
−−−−→
(v1, v2), the points v1 and v2 used for the construction of the line, can still

be accessed by the following functions: beg(
−−−−→
(v1, v2)) := v1 and end(

−−−−→
(v1, v2)) := v2.

The following functions define the point sets of a line, a ray or a segment. They
correspond to the definitions of the previous paragraph.

on line def *def

onLine(�, v) = ∃̈λ. v = beg(�) + λ · (end(�)− beg(�))
on ray def *def

onRay(�, v) = ∃̈λ. v = beg(�) + λ · (end(�)− beg(�)) ∧̈ (0 ≺ λ)
on seg def *def

onSeg(�, v) = ∃̈λ. v = beg(�) + λ · (end(�)− beg(�)) ∧̈ (0 ≺ λ) ∧̈ (λ ≺ 1)

3.3 Geometric Primitives

Most geometric algorithms rely on a small number of geometric primitives. Among
them, there are primitives that take some input and classify it as one of a constant
number of possible cases, as e.g.:

– Position of two points. A point p is left from a point q iff χleft(p, q) := xq−xp > 0.
Analogously, point p is below q iff χbelow(p, q) := yq − yp > 0.

– Orientation of three points. The points p, q and r define a left turn iff

χlturn(p, q, r) :=

∣∣∣∣∣∣
xp yp 1
xq yq 1
xr yr 1

∣∣∣∣∣∣ > 0 (1)

Degeneracies with respect to such a primitive P are inputs x that cause the characteristic
function to become zero χP (x) = 0. Following the approach presented in Section 3,
the result U is returned in these cases.

Three-Valued Primitives. To define the primitives, we use the three-valued less-than
relation ≺ of the previous section. Since all primitives of the previous section compare
their result with zero, we additionally introduce the following predicate:

rat pos def *def pos(r) = 0 ≺ r

With their help, primitives for determining whether one point is on the left or below of
another point are defined as follows:

left def *def left(v1, v2) = pos(xv2 − xv1)
below def *def below(v1, v2) = pos(yv2 − yv1)

Note that these primitives are three-valued. The following theorems prove some sort of
reflexivity, antisymmetry and transitivity laws.

LEFT REF * left(v1, v1) = U
LEFT ASYM * left(v1, v2) = ¬̈left(v2, v1)

LEFT TRANS * left(v1, v2) ∗̈ left(v2, v3) � left(v1, v3)
LEFT TRANS makes use of the connectives ∗̈ and � , which usually appear together
in a proposition. They allow a succinct description of the following cases:

414 J. Brandt and K. Schneider

– If both left(v1, v2) = T and left(v2, v3) = T, then left(v1, v3) = T.
– If left(v1, v2) = T and left(v2, v3) = U or vice versa, then left(v1, v3) = T.
– If left(v1, v2) = U and left(v2, v3) = U, then left(v1, v3) = U.
– If left(v1, v2) = F or left(v2, v3) = F, then nothing is said about left(v1, v3).

The orientation primitives can be defined analogously:

lturn def *def lturn(v1, v2, v3) = pos((v2 − v1)× (v3 − v2))
rturn def *def rturn(v1, v2, v3) = lturn(v3, v2, v1)

Again, various properties are proven for the orientation primitive:

LTURN REF * lturn(v1, v1, v2) = U
LTURN SYM * lturn(v1, v2, v3) = lturn(v2, v3, v1)

LTURN ASYM * lturn(v1, v2, v3) = ¬̈lturn(v2, v1, v3)

LTURN TRIAN *
lturn(v1, v2, v4) ∗̈ lturn(v2, v3, v4) ∗̈ lturn(v3, v1, v4) � lturn(v1, v2, v3)

LTURN TRANS * (lturn(v1, v2, v3) ∧̈ lturn(v1, v2, v4) ∧̈ lturn(v1, v2, v5) ≥ U)→
lturn(v1, v3, v4) ∗̈ lturn(v1, v4, v5) � lturn(v1, v3, v5)

LTURN MOD1 * (onRay(
−−−−→
(v2, v3), v4) = T)→ lturn(v1, v2, v3) = lturn(v1, v2, v4)

LTURN MOD2 * (onRay(
−−−−→
(v4, v3), v2) = T)→ lturn(v1, v2, v4) = lturn(v1, v3, v4)

These theorems are three-valued reformulations of the ones that can be found in [15].
The first three theorems (LTURN REF, LTURN SYM and LTURN ASYM) state that a
sequence in which a point appears at least twice is a degenerate case. Moreover, a
sequence can be rotated without changing the orientation, and two points can be inter-
changed with negating the orientation of the sequence. LTURN TRIAN describes the
situation depicted in Figure 6 (a): If a point is on the positive side of three pairwise con-
nected segments, they form a triangle with positive orientation. LTURN TRANS proves
the transitivity of the left-turn primitive under the condition that the three points v3, v4

and v5 lie on the positive side of a segment from v1 to v2 (see Figure 6 (b)). The last

v1

v2

v3

v4

(a) (b)

v3

v4

v5

v2v1

v2

v3

v4

v1

v2

v3

v4

v1

(c) (d)

Fig. 6. Properties of left orientation primitive

Using Three-Valued Logic to Specify and Verify Algorithms 415

two theorems (Figure 6 (c) and (d)) are used in [15] to handle degenerate cases. Ac-
tually, they are not needed in our approach, since LTURN TRIAN already covers these
cases. This illustrates the advantages of our approach: We always address general and
degenerate cases at the same time, which makes the description succinct and readable.
The same holds for later implementations that are made with three-valued data types.

4 Proof Techniques

In the previous section, we presented a way to specify geometric properties and algo-
rithms with the help of three-valued logic. If a geometric algorithm is verified and all
decisions of the algorithm depend on three-valued primitives, it can be analysed system-
atically. The following section presents theorems, conversions, and tactics to simplify
this task.

4.1 Three-Valued Logic

Ternary Algebra. The system 〈T, ∨̈ , ∧̈ , ¬̈, F, T, U〉 is a ternary algebra [3]: In addi-
tion to the laws of commutativity, associativity, distributivity, absorption and de Morgan
as known from a Boolean algebra, the following theorems can be used for the transfor-
mation of three-valued terms:

CONJ TERNARY * a ∧̈ ¬̈a ∧̈U = a ∧̈ ¬̈a
DISJ TERNARY * a ∨̈ ¬̈a ∨̈U = a ∨̈ ¬̈a

Variations of Two-Valued Tactics. For interactive proofs, the theory offers several
tactics that are adapted from the two-valued domain.

– LOG3_GEN_TAC strips the outermost universal quantifier from the conclusion of a
goal. When applied to A *? ∀̈x. P , it reduces the goal to A *? P [x′/x] where x′

is a variant of x chosen to avoid clashing with any variables free in the assumption
list of the goal. This tactic reduces both ∀̈x. P (x) = T and ∃̈x. P (x) = F, since
both express universal goals.

– LOG3_EXISTS_TAC reduces an existentially quantified goal to one involving a spe-
cific witness. When applied to a term u and a goal ∃̈x. P , LOG3_EXISTS_TAC
reduces the goal to P [u/x] (substituting u for all free instances of x in P , with
variable renaming if necessary to avoid free variable capture).

– LOG3_DISCH_TAC moves the antecedent of a (three-valued) implicative goal into
the assumptions.

– LOG3_CONJ_TAC reduces a conjunctive goal to two separate subgoals. When ap-
plied to a goal A *? t1 ∧̈ t2, the tactic reduces it to the two subgoals corresponding
to each conjunct separately.

– LOG3_EQ_TAC reduces a goal of equivalence of three-valued terms to forward and
backward implication. When applied to a goal A *? t1 ↔̈ t2, the tactic EQ_TAC

returns the subgoals A *? t1 →̈ t2 and A *? t2 →̈ t1.
– Given a term u, LOG3_CASES_TAC applied to a goal produces three subgoals, one

with u = T as an assumption, one with u = U, and one with u = F. A simple and
very effective tactic to automatically prove simple theorems about the three-valued

416 J. Brandt and K. Schneider

logic is LOG3_EXPLORE_TAC: It performs a case distinction on all free variables of
the type T and then uses the simplifier of the theory.

Reduction to Two-Valued Terms. A powerful tactic to prove goals specified in three-
valued logic is the transformation to two-valued terms with a subsequent application
of the traditional tactics for two-valued goals. For this purpose, a number of rewrite
rules are provided that split up a three-valued proposition into positive atomic sub-
proposition of the form P = c, P ≤ c or P ≥ c (where c ∈ {F, U, T}) connected
by two-valued operators. The complete reduction step is implemented by the tactic
LOG3_CALC_TAC and involves the following steps:

– Elimination of non-constant expressions on the right hand side of equations and
inequations:
LOG3 CASES EQ * (a = F) ∧ (b = F) ∨ (a = U) ∧ (b = U)∨

(a = T) ∧ (b = T) = (a = b)
LOG3 CASES LEQ * (a = F) ∧ (b = F) ∨ a ≤ U ∧ (b = U) ∨ (b = T) = a ≤ b
LOG3 CASES GEQ * (b = F) ∨ a ≥ U ∧ (b = U) ∨ (a = T) ∧ (b = T) = a ≥ b

In order to eliminate non-constant expressions on the right hand side, these rules
must be applied from the right to the left. Of course, unconditional rewriting with
these rules does not terminate.

– Elimination of proposition of the form P = U: As the following theorems only
consider the cases P = F, P = T, P =≤ U and P =≥ U, rewriting (from right to
left) with the following theorem eliminates propositions of the form P = U.
LOG3 LEQ GEQ UU * a ≤ U ∧ a ≥ U = (a = U)

– Elimination of depending connectives: By rewriting with the definitions of →̈ , ↔̈ ,
⊕̈ and ∃̈, all terms only consist of basic connectives.

– Elimination of basic connectives: All basic three-valued connectives can be reduced
to two-valued connectives by the rewriting with theorems of the following form:
LOG3 NOT CALC * ((¬̈t = F) = (t = T)) ∧ ((¬̈t = T) = (t = F))∧

(¬̈t ≤ U = t ≥ U) ∧ (¬̈t ≥ U = t ≤ U)
LOG3 AND CALC * (a ∧̈ b = F) = (a = F) ∨ (b = F))∧

(a ∧̈ b = T) = (a = T) ∧ (b = T))∧
(a ∧̈ b) ≤ U = a ≤ U ∨ b ≤ U)∧
(a ∧̈ b) ≥ U = a ≥ U ∧ b ≥ U

LOG3 EXT CALC * ((�̈ a = F) = ¬a) ∧ ((�̈ a = T) = a)∧
(�̈ a ≤ U = ¬a) ∧ �̈ a ≥ U = a

LOG3 FORALL CALC * ((∀̈x. P (x) = F) = ∃b. P (b) = F)∧
((∀̈x.P (x) = T) = ∀b. P (b) = T)∧
((∀̈x.P (x) ≤ U) = ∃b. P (b) ≤ U)∧
(∀̈x.P (x) ≥ U) = ∀b. P (b) ≥ U

– Elimination of negative terms: All two-valued negations in front of subterms can
be eliminated, leaving better understandable expressions.
LOG3 NOT2 CALC * (¬(a = F) = a ≥ U) ∧ (¬(a = T) = a ≤ U)∧

(¬(a = U) = (a = F) ∨ (a = T))∧
(¬(a ≤ U) = (a = T)) ∧ ¬(a ≥ U) = (a = F)

LOG3 ABS NOT * (�̈¬a) = ¬̈(�̈ a)

Using Three-Valued Logic to Specify and Verify Algorithms 417

4.2 Vectors and Rational Numbers

Conversions and tactics that calculate vector and rational number expressions are pro-
vided. VEC_CALCTERM_TAC applies the calculation rules to a term, VEC_CALC_TAC to
all terms of the type Q2. With the help of these tactics and the two theorems VEC_EQ
and RAT_EQ, the equality of two vectors is reduced to the equalities between integers,
which can be solved by the integer decision procedures of the HOL system. In this way,
a lot of simple theorems can be automatically proven.

4.3 Example

We illustrate our approach by the convex hull algorithm presented in [6]. It divides the
computation of the convex hull into two parts: the upper part and the lower part of the
hull (see Figure 7 (a)). In this section, we focus on the construction of the lower part.

upper hull

lower hull

(a) (b)

v1

v2

v3

v4 (c)

Fig. 7. Computation of the convex hull

Formalisation. The algorithm takes a list of points L, which is sorted in lexicographic
order (denoted as lexSorted(L)), i.e. points are first sorted by their x-coordinates and if
the x-coordinates should be the same, then the y-coordinates determines the ordering.
The points are iteratively added to the lower part of the convex hull. After each addition,
it is checked whether the last three points make a left turn. If this is not the case, the
middle point is deleted. These steps are repeated until the last three points make a
left turn, or there are only two points left (the leftmost point and the added point).
Figure 7 (b) illustrates this procedure. Formally, the construction of the lower hull can
be described by the following functions1:

normalise lower *def (normLow([]) = [])∧
(normLow([e1]) = [e1])∧
(normLow([e1; e2]) = [e1; e2])∧
(normLow((e1 :: e2 :: e3 :: L)) =

if lturn(e1, e2, e3) = T then e1 :: e2 :: e3 :: L
else normLow((e1 :: e3 :: L)))

hull lower *def (hullLow([]) = [])∧
(hullLow(e :: L) = normLow(e :: hullLow(L)))

1 [] denotes the empty list, [e1; e2] a list containing the two elements e1 and e2, and e :: L
denotes the concatenation of a new leftmost element e to an existing list L.

418 J. Brandt and K. Schneider

IfL has at least three elements, normLow(L) deletes the second element if the first three
elements should not form a left turn, and hullLow applies this function to all sublists of
a list L.

Specification. A sequence of points is part of the convex hull if for two consecutive
points, all other points lie on the left hand side of the line passing those points. We
define the corresponding predicate lconvex recursively: A sequence of no elements or
one element is always convex. Each additional point that is added must lie on the left of
all former edges of the constructed convex hull (lpoint), and all points must lie on the
left side of the edge that is created by the insertion of the new point (ledge).

left edge *def (ledge(e1, e2, []))∧
(ledge(e1, e2, e :: L) = (lturn(e, e1, e2) = T) ∧ ledge(e1, e2,L))

left point *def (lpoint(e, []))∧
(lpoint(e, [e1]))∧
(lpoint(e, e1 :: e2 :: t) =

(lturn(e, e2, e1) = T) ∧ lpoint(e, e2 :: L))
left convex *def (lconvex([]))∧

(lconvex([e1]))∧
(lconvex(e1 :: e2 :: L) =

ledge(e1, e2,L) ∧ lpoint(e1, e2 :: L) ∧ lconvex(e2 :: L))

Verification. The verification is done in several steps. First, by applying the definitions,
it is proven that every sublist of three points in the result make a left turn.

left chain *def (lchain([]))∧
(lchain([e1]))∧
(lchain([e1; e2]))∧
(lchain(e1 :: e2 :: e3 :: L) =

(lturn(e1, e2, e3) = T) ∧ lchain(e2 :: e3 :: L))
LEFT CHAIN HULL LOWER * lchain(L0)⇒ lchain(hullLow(L0)L1)

Then, under the condition of a lexicographic ordering a kind of transitivity (see Figure 7
(c)) is derived. To prove this, the lexicographic conditions are translated to left turn
conditions before the transitivity of the left-turn predicate LTURN TRANS is used. With
the help of this lemma, an induction results the desired theorem CVX LOWER.

CVX TRANS LOWER * (lturn(v1, v2, v3) = T) ∧ (lturn(v2, v3, v4) = T)∧
(v1 ≺lex v2 = T) ∧ (v2 ≺lex v3 = T) ∧ (v3 ≺lex v4 = T)
⇒ (lturn(v1, v3, v4) = T)

CVX LOWER * lexSorted(L) ∧ lchain(L) ⇒ lconvex(L)

Note that in the proofs, we do not have to address the degenerate cases explicitely.
We exploit that theorems like LTURN TRANS subsume many cases. Thus, the correct-
ness of the algorithm is guaranteed for all cases: in particular for the situation that two
subsequent input points have the same y-coordinate or there are collinear points in the
input set.

Using Three-Valued Logic to Specify and Verify Algorithms 419

5 Conclusions

In this paper, we addressed the problem of specifying and verifying algorithms of com-
putational geometry. Starting from applications like motion planning or collision detec-
tion, we formalised basic geometric objects and primitives used in analytic geometry.
The main contribution of this paper is to consistently use three-valued logic for this pur-
pose. To this end, we defined a three-valued logic in the theorem prover HOL and used it
for the formalisation of geometric primitives in the presence of degenerate cases. Using
the HOL theorem prover, we proved numerous theorems and provided various tactics
for automating parts of proofs. In particular, we use efficient tactics to translate three-
valued goals to two-valued ones. In this way, conventional tactics and proof tools can
be used for automated reasoning.

We evaluated our approach by small examples. They all show that our approach is
very suitable: The specifications are both precise and compact; the integrated consid-
eration of degenerate cases with the help of three-valued logic makes both algorithms
and proofs simpler and clearer. At the same time, all advantages of traditional proof
techniques are preserved due to the possible reduction to two-valued expressions.

Our next and more ambitious verification project is the development of a formally
proven map overlay algorithm [6] that is suited for applications in safety-critical em-
bedded systems. For this algorithm, some more foundations are required, as e.g. an
appropriate formalisation of plane graphs [19].

References

1. L. Bolc and P. Borowik. Many-Valued logics. Springer, 1992.
2. J. Brandt and K. Schneider. Dependable polygon-processing algorithms for safety-critical

embedded systems. In International Conference on Embedded And Ubiquitous Computing
(EUC), LNCS, Nagasaki, Japan, 2005. Springer.

3. J. Brzozowski and C.-J. Seger. Asynchronous Circuits. Springer, 1995.
4. C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric computations. In

Symposium on Discrete Algorithms (SODA), pages 16–23, Arlington, Virginia, USA, 1994.
ACM.

5. S. Chou, X. Gao, and J. Zhang. Machine Proofs in Geometry. World Scientific, Singapore,
1994.

6. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry.
Springer, 2000.

7. H. Edelsbrunner and E. Mücke. Simulation of simplicity: a technique to cope with degenerate
cases in geometric algorithms. ACM Transactions on Graphics, 9(1):66–104, 1990.

8. E. Eichelberger. Hazard detection in combinational and sequential switching circuits. IBM
Journal of Research and Development, 9:90–99, 1965.

9. J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics: Principles and Practice.
Addison Wesley, 2000.

10. M. Gordon and T. Melham. Introduction to HOL: A Theorem Proving Environment for
Higher Order Logic. Cambridge University Press, 1993.

11. S. Kleene. Introduction to Metamathematics. North Holland, 1952.
12. D. Knuth. Axioms and Hulls, volume 606 of LNCS. Springer, 1992.
13. S. Malik. Analysis of cycle combinational circuits. IEEE Transactions on Computer Aided

Design, 13(7):950–956, July 1994.

420 J. Brandt and K. Schneider

14. K. Mehlhorn and S. Näher. The LEDA Platform of Combinatorial and Geometric Computing.
Cambridge University Press, 1999.

15. D. Pichardie and Y. Bertot. Formalizing convex hull algorithms. In R. Boulton and P. Jack-
son, editors, Higher Order Logic Theorem Proving and its Applications (TPHOL), volume
2152 of LNCS, pages 346–361, Edinburgh, Scotland, UK, 2001. Springer.

16. T. Reps, M. Sagiv, and R. Wilhelm. Static program analysis via 3-valued logic. In R. Alur
and D. Peled, editors, Conference on Computer Aided Verification (CAV), volume 3114 of
LNCS, pages 15–30, Boston, MA, USA, 2004. Springer.

17. T. Schuele and K. Schneider. Three-valued logic in bounded model checking. In Formal
Methods and Models for Codesign (MEMOCODE), Verona, Italy, 2005. IEEE Computer
Society.

18. W.-T. Wu. On the decision problem and the mechanization of theorem proving in elementary
geometry. Scientia Sinica, 21:157–179, 1978.

19. M. Yamamoto, S. Nishizaki, and M. Hagiya. Formalization of planar graphs. In E. Schubert,
P. Windley, and J. Alves-Foss, editors, Higher Order Logic Theorem Proving and its Applica-
tions (TPHOL), volume 971 of LNCS, pages 369–384, Aspen Grove, Utah, USA, September
1995. Springer.

An Automated Approach to Specification-Based

Program Inspection�

Shaoying Liu1, Fumiko Nagoya1, Yuting Chen1,
Masashi Goya1, and John A. McDermid2

1 Department of Computer Science,
Faculty of Computer and Information Sciences, Hosei University, Tokyo, Japan

2 Department of Computer Science, University of York, UK

Abstract. In this paper, we describe how formal specification is adopted
to improve the commonly used verification and validation technique
known as program inspection, in order to establish a more rigorous, re-
peatable, and efficient inspection process than the conventional practice.
We present a systematic approach to inspecting program code on the ba-
sis of the relation between functional scenarios defined in a specification
and execution paths implemented in its program. We report a prototype
tool for the approach to support both forward and backward inspection
strategies, and a case study of inspecting an Automatic Teller Machine
system to evaluate the performance of the approach and the tool.

1 Introduction

Program inspection has become a commonly used technique for verification of
programs in industry since it was developed by Michael E. Fagan at IBM in the
1970s [1]. The essence of the technique is to detect errors in programs by hu-
man inspectors through reading and analyzing programs, based on some criteria.
Many researchers have contributed to the progress of the technology by estab-
lishing various reading techniques [2, 3, 4, 5] and inspection processes [6, 7, 8],
but most of the existing techniques do not take formal specification into account
in program inspection, simply because formal specification is not available in
most industrial software development projects. With the continual development
of formal methods, however, many industrial sectors have gradually adopted for-
mal specification techniques [9, 10, 11, 12]. Although formal specifications are
becoming more widely used, formal proof has achieved less industrial acceptance,
due to cost and limitations of tools. However, inspection can be a practical ap-
proach for verification and validation, especially when the application domain is
not safety-critical; even in safety critical applications inspection has an impor-
tance. The problem is how to make inspection techniques rigorous so that they
can be applied effectively and repeatedly in practice.

� This work is supported by the Ministry of Education, Culture, Sports, Science, and
Technology of Japan under Grant-in-Aid for Scientific Research on Priority Areas
(No. 16016279).

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 421–434, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

422 S. Liu et al.

In this paper, we describe an automated approach to program inspection
that utilizes the power of formal specification to tackle the problem. Our in-
spection approach shares Parnas’ idea described in [13] in that the use of formal
specification is advocated, but develops the idea further to establish precise and
detailed instructions on how a formal specification can be used to help systematic
program inspection.

Specifically, a functional specification is treated as a document to define
a collection of functional scenarios. Each scenario defines a specific functional
requirement or service in terms of taking input and generating output. A sce-
nario can be defined by a predicate expression in the model-oriented specifi-
cation languages at the unit level (e.g., operation) or a series of state transi-
tions at the system level. Our inspection approach suggests that the program
be examined to ensure that every functional scenario defined in the specifica-
tion is implemented correctly by a set of execution paths in the program. An
execution path is a sequence of operations and/or conditions in a program,
starting from one of the start operations or conditions and terminates at one
of the end operations or conditions of the program. The case study described
in Section 6 shows that derivation of both functional scenarios in a specifica-
tion and necessary execution paths in a program can be automatically per-
formed by a software tool, hence inspection can be performed systematically and
efficiently.

Our major contributions in this paper include (1) the establishment of the
principle and strategies for program inspection based on the relation between
functional scenarios and their corresponding execution paths, (2) the design of
the algorithms and rules for automating the activities involved in our inspection
approach, (3) the implementation of a prototype software tool to support the
activities involved in an inspection process, and (4) the presentation of a case
study of inspecting an Automated Teller Machine (ATM) system to evaluate the
performance of the approach and the tool.

The remainder of this paper is organized as follows. Section 2 describes the
principles underlying the inspection approach. Section 3 discusses the issues of
how to derive functional scenarios from a specification and execution paths from
a program, respectively. Section 4 discusses the process of inspecting execution
paths in a program. Section 5 reports a prototype tool for our inspection ap-
proach, while Section 6 presents a case study using the tool. Finally, in Section
7 we conclude the paper and point out future research.

2 The Principle of Specification-Based Inspection

To facilitate the discussion of the principle, we first need to define all the related
notions concerned with both specifications and programs. This paper focuses on
the description of how our inspection approach is applied to an operation defined
with pre- and postconditions, and will discuss the extension of the approach to
software integration level in a future publication.

An Automated Approach to Specification-Based Program Inspection 423

2.1 Basic Concepts in Specification

Without losing generality in model-oriented specifications (e.g., VDM, Z, B,
SOFL), we can assume that an operation is defined by pre- and postconditions.

Definition 1. Anoperation OP is a five tuple [OPiv ; OPov; OPev ; OPpre; OPpost],
where OPiv denotes the set of all the input variables, OPov the set of all the output
variables, and OPev the set of all the related external variables (state variables),
OPpre and OPpost represent the pre- and postconditions of OP , respectively, and it
satisfies the following condition:

V ariables(OPpre) ∪ V ariables(OPpost) ⊆ (OPiv ∪OPov ∪OPev).

where V ariables(C) denotes the set of all variables occurring in predicate C
(such as OPpre and OPpost). For example, let C = x > 0 ∧ y < x + 1. Then
V ariables(C) = {x, y}.

All the other concepts concerned with operations defined below are based on
the structure of an operation defined in Definition 1.

Definition 2. Let OPeviv denote the set of all ‘rd’ external variables and deco-
rated ‘wr’ external variables (e.g., ˜x) of OP . Let OPevov denote the set of all
‘wr’ undecorated external variables of OP . Then OPev = OPeviv ∪OPevov .

An ‘rd’ (readable) external variable of operation OP provides an unmodifi-
able input value to the operation. A ‘wr’ (writable) external variable (e.g., x)
provides both an input value, represented by the decorated variable (e.g., ˜x),
and represents an output value, denoted by the undecorated variable (e.g., x) of
operation OP . We call the variables of OPeviv input external variables and the
variables of OPevov output external variables of OP , respectively.

Definition 3. A predicate C in OPpost is called a guard condition if and only
if it contains neither output variables of OPov nor output external variables of
OPevov (part of OPev).

Note that an implication of this definition is that both the boolean values
true and false if they appear in OPpost are guard conditions.

Definition 4. A predicate expression D in OPpost is called a defining condi-
tion if and only if it does not contain any guard condition as its constituent
expression.

For example, let the operation Search be defined as follows:
Search = [{x}; {index}; {list}; true;

x ∈ elems(list)∧ (∃i∈inds(list) · list(i) = x ∧ index = i) ∨
¬x ∈ elems(list) ∧ index = 0],

where x (input variable) denotes an integer, index (output variable) a natural
number, and list (a readable external variable) a sequence of integers; elems(list)
denotes the set of all elements on the sequence list, and inds(list) represents
the index set of list.

424 S. Liu et al.

If input x is a member of list, its index (location) in the list will be represented
by the variable index as the result of the operation; otherwise, index = 0 will
be the result. In this specification, the conditions x ∈ elems(list) and ¬x ∈
elems(list) are both guard conditions, while (∃i∈inds(list) ·list(i) = x∧index = i)
and index = 0 are both defining conditions.

Definition 5. Let OP be an operation and OPpost = C1 ∧D1 ∨C2 ∧D2 ∨ · · · ∨
Cn ∧ Dn, where Ci (i ∈ {1, 2, ..., n}) is a guard condition and Di is a defining
condition. Then, a functional scenario fs of OP is a conjunction Ci ∧Di, and
such a form of postcondition is called a functional scenario form or FSF for
short.

Consider the operation Search above as an example. Its postcondition is in
a FSF in which the two functional scenarios x ∈ elems(list) ∧ (∃i∈inds(list) ·
list(i) = x ∧ index = i) and ¬x ∈ elems(list) ∧ index = 0 are included. Since
any predicate can be converted into an equivalent disjunctive normal form (if
quantified expressions are treated as atomic predicates) and any postcondition
in a disjunctive normal form can be converted into an equivalent FSF using
Algorithm 1 described in Section 3, the postcondition of any operation can
be converted into an equivalent FSF. Note that simply treating a disjunctive
clause in the disjunctive normal form of a postcondition as a functional scenario
is not necessarily correct in supporting our inspection approach. For example,
let x > 0 ∧ (y = x ∨ y = −x) ∨ x ≤ 0 ∧ y = x + 1 be the postcondition of an
operation, where x is the input and y the output. It states that when x > 0,
y is defined either as x or as −x (the specifier does not care which definition
will be implemented). In this case, if we convert it into the disjunctive normal
form x > 0 ∧ y = x ∨ x > 0 ∧ y = −x ∨ x ≤ 0 ∧ y = x + 1, and treat each of
the two disjunctive clauses x > 0 ∧ y = x and x > 0 ∧ y = −x as an individual
functional scenario, and require the existence of corresponding execution paths
in the program to implement both of them, we may not find a satisfactory
answer in the program, since the programmer may (legitimately) have decided
to implement only clause x > 0∧y = x as a refinement of x > 0∧(y = x∨y = −x).

If the testing of the precondition of an operation is enforced in its imple-
mentation (in case it is not tested by the environment before the operation is
called), we must take the precondition into account as well in forming the FSF
of the operation; that is, we need to convert the conjunction OPpre ∧ OPpost

rather than merely OPpost into an equivalent FSF. Since this does not increase
technical difficulties compared to the conversion of OPpost, for simplicity we only
consider OPpost in deriving functional scenarios discussed in this paper.

2.2 Basic Concepts Relating to Programs

In this section, we define all the necessary concepts relating to programs, such as
program graph and execution path. The program graph of a program is intended
to be a syntactically alternative representation of the program that only involves
conditions and basic operations, and it offers the base for deriving execution
paths in our inspection approach.

An Automated Approach to Specification-Based Program Inspection 425

Definition 6. A program graph is a directed graph, represented by a four tuple
(V , So, R, Eo), where V is a set of vertices, each representing either an operation
or a condition; So ⊆ V is the set of start vertices; R ⊆ V × V is a relation over
V ; and Eo ⊆ V is a set of end vertices.

A program graph contains a set of vertices denoted by V . Each vertex can
be either an operation or a condition. Each operation is defined by a basic
statement (assignment or method call) in a programming language, say Java, and
each condition is represented by a logical expression. Note that we deliberately
disallow operations in V that are defined by compound statements (e.g., if-
else, while, for statements) in Java, because each of them can be decomposed
into either a single execution sequence or a set of execution sequences of basic
statements. There is a unique set of vertices, denoted by So, whose elements are
contained in V ; each element of So represents a starting point of an execution of
the program. There is also a set of end vertices, denoted by Eo, whose elements
are included in V ; each element of Eo represents a terminating point of an
execution of the program. In addition to the individual vertices in V , a program
defines behaviors resulting from either conditional or unconditional executions of
operations in V in certain orders. The relation R defines the order of execution
of vertices. If a vertex is an operation, by execution of the vertex we mean the
execution of the operation; but if it is a condition, by execution of the vertex
we mean the evaluation of the condition. Let the pair (x, y) ∈ R represents a
sequential execution of vertex x, then vertex y. Note that (x, y) �= (y, x) holds
in general.

A program graph can be depicted graphically. For example, the program
graph Searchg, which implements the operation Search described in Section 2,
is defined as follows:

Searchg = ({i = 1, i <= len(list), ¬i <= len(list), x == list(i),
¬x == list(i), i = i + 1, index = i, index = 0},
{i = 1},
{(i = 1, i <= len(list)), (i = 1, ¬i <= len(list),

(i <= len(list), x == list(i)), (i <= len(list), ¬x == list(i)),
(x == list(i), i = i + 1), (¬x == list(i), index = i),
(i = i + 1, i <= len(list)), (i = i + 1, ¬i <= len(list)),

(¬i <= len(list), index = 0)},
{index = i, index = 0}) .

The program graph contains eight vertices, one start vertex (i = 1), nine edges,
and two end vertices (index = i and index = 0). It can be represented graphically
by a control flow diagram, as shown in Figure 1, so that each operation vertex is
represented by an operation node (rectangle) and each pair of a condition and its
negation vertices are represented by a single condition node (elongated hexagon)
with ‘T’ and ‘F’ marks. Thus, the node containing the condition i <= len(list) in
Figure 1, for example, actually represents two condition vertices of the program
graph: the one containing the condition i <= len(list) and the one containing
¬i <= len(list), where len(list) yields the length of list. The character ‘T’

426 S. Liu et al.

Fig. 1. The graphical representation of a program graph

denotes the boolean value true and ‘F’ denotes false. Note that the directed
line from the vertex i = i+1 to the vertex containing the condition i <= len(list)
actually describes two relationships (i = i + 1, i <= len(list)) and (i = i + 1,
¬i <= len(list)). In the program graph, we try to use the same syntax as Java,
so operator <= means ≤, == denotes equality, and i = i + 1, for example,
represents an assignment.

To facilitate the presentation of rules and algorithms in this paper, we use
P.V , P.So, P.R, and P.Eo to denote the set of vertices, the set of start vertices,
the relation, and the set of end vertices of program graph P , respectively.

Definition 7. Let P = (V , So, R, Eo) be a program graph. An execution path
of P is a path of the graph starting from any vertex in So and ending at any
vertex in Eo.

An execution path, or simply path, of a program graph can be represented
by a sequence of vertices: [v1, v2, ..., vn], where v1 ∈ So and vn ∈ Eo, and each
vi (i ∈ {1, 2, ..., n}) is a member of V . For example, the program graph Searchg

given above includes the following three paths (in addition to many others):

[i = 1, ¬i <= len(list), index = 0]
[i = 1, i <= len(list), x == list(i), index = i]
[i = 1, i <= len(list), ¬x == list(i), i = i + 1, ¬i <= len(list), index = 0]

2.3 The Principle of Specification-Based Inspection

Having defined the necessary concepts previously, we can now describe the prin-
ciple of specification-based inspection by formally defining the two inspection
strategies: forward inspection and backward inspection.

Definition 8. Let Fs = {f1, f2, ..., fn} be the set of all the functional scenarios
defined in specification S and Ep = {p1, p2,..., pm} be the set of all the possible
execution paths of program P . Then, P satisfies S if and only if there exists a
mapping M : Fs → power(Ep) that satisfies the following condition:

∀f∈Fs∃q∈power(Ep) ·M(f) = q ,

An Automated Approach to Specification-Based Program Inspection 427

where power(Ep) denotes the power set of Ep, and M(f) = q (q ⊆ Ep) means
that the set of execution paths q implements correctly the functional scenario f
defined in specification S.

Definition 9. Let f be a functional scenario and q be a set of execution paths.
Then M(f) = q iff the following condition holds:

∀s,s′∈Σabs
· f(s, s′) ⇒ ∃p∈q∃t∈Σcon · s = Ψ(t) ∧ s′ = Ψ(p(t))

where Σabs and Σcon denote the set of states on which the operation is defined in
the specification and the set of states of its corresponding program, respectively;
Ψ : Σcon → Σabs is a function that yields an abstract state (e.g., s) in the speci-
fication for a given concrete state (e.g., t) in the program; and an execution path
is treated as a state transformer (e.g., path p transforms state t to state p(t)).

A set of execution paths q satisfies functional scenario f if and only if the
existence of any pair of initial and final abstract states s and s′ satisfying f (note
that f may contain both initial and final state variables) ensures that the final
state s′ is generated by executing one of the paths in q at the initial concrete
state t representing s in the program. We call inspection for verifying whether
there exist paths to satisfy any given functional scenario ‘forward inspection’,
indicating the intuition of ‘moving’ forward to a program from its specification
in an inspection.

Although it may not be ideal, a program in practice may often implement
more functions than required in its specification. This point is not difficult to
understand if we consider the situations of software development in industry.
A specification for a program may not be completed due to some possible con-
straints (e.g., time, difficulties in formalization of requirements) or may not be
updated timely to keep the consistency with the implemented program due to
limited time and/or budget. For this reason, we propose a backward inspection
strategy to ensure that every path in the program will be inspected.

Definition 10. Let Fs = {f1, f2, ..., fn} be the set of all the functional scenarios
in operation specification S and Ep = {p1, p2,..., pm} be the set of all the possible
execution paths of program P . Then, P is defined by S if and only if there exists
a mapping H : Ep → Fs that satisfies the following condition:

∀p∈Ep∃f∈Fs ·H(p) = f

where H(p) = f means that the execution path p contributes to the implemen-
tation of the functional scenario f . Inspection based on this principle is called
‘backward inspection’.

Definition 11. A specification S is consistent with a program P if and only if
P satisfies S and P is defined by S.

The aim of inspecting a program with both the forward and backward in-
spection strategies is to verify whether the program is consistent with its speci-
fication. In the case of an inspection failing to establish the consistency between
a specification and its corresponding program, the inspection result is expected

428 S. Liu et al.

to provide useful information to the developers (e.g., designer, programmer) for
either completing their specification and program or paying more attention to
those incorrectly defined functional scenarios or incorrectly implemented execu-
tion paths.

3 Derivation of Functional Scenarios and Execution
Paths

The derivation of both functional scenarios and execution paths are two funda-
mental activities involved in our inspection approach. In this section, we focus on
the discussion of algorithms and/or rules for deriving functional scenarios from
an operation specification and for deriving execution paths from a program in
Java, respectively.

3.1 Derivation of Functional Scenarios

As before, we let operation OP = [OPiv ; OPov; OPev; OPpre; OPpost]. Then we
use Algorithm 1 to derive the functional scenario form for the OPpost in which
all the functional scenarios are included. To describe the algorithm, the following
notation is needed.

1. OUTPv(OP) represents the collection of all output and final external (un-
decorated) variables of the operation OP .

2. INPv(OP) denotes the collection of all input and initial external (decorated)
variables of the operation OP .

3. Voe(OP, E) denotes the set of variables from OUTPv(OP) which occur in
the predicate E.

4. Vie(OP, E) denotes the set of variables from INPv(OP) which occur in the
predicate E.

Algorithm 1

No.1 Express the postcondition OPpost in disjunctive normal form: P1 ∨ P2 ∨
· · · ∨ Pn, each Pt (t ∈ {1, 2, ..., n}) being a conjunction of atomic predicates
and/or quantified expressions.

No.2 For each Pt = R1 ∧ R2 ∧ · · · ∧ Rm, construct the partition {B1, B2} for
the set {R1, R2, ..., Rm} that satisfies the conditions:

(1) Ri ∈ B1 ⇒ Voe(OP, Ri) = ∅, i ∈ {1, 2, ..., m}
(2) Ri ∈ B2 ⇒ Voe(OP, Ri) �= ∅.

No.3 For each predicate set Bk where k ∈ {1, 2}, form the conjunction Qk =∧
i∈s Ri, where s = {i ∈ {1, 2, ..., m} · Ri ∈ Bk} and it can be empty for B1

or B2 (e.g., when Pt = true).
No.4 Express Pt as the conjunction of every such Qk: Pt = Q1 ∧Q2 (Q1 corre-

sponds to the guard condition, while Q2 corresponds to the defining condition
given in Definitions 3 and 4, respectively).

An Automated Approach to Specification-Based Program Inspection 429

No.5 Construct the partition {A1, A2, ..., Aw} for the set {P1, P2, ..., Pn}
obtained from Step 4 that satisfies the conditions: Pi, Pj ∈ Ak ⇒ Qi

1 = Qj
1,

assuming Pi = Qi
1 ∧Qi

2, Pj = Qj
1 ∧Qj

2, i, j ∈ {1, 2, ..., n}, k ∈ {1, 2, ..., w}.
No.6 For each Ak, produce a predicate PAk

= Q1∧ (
∨

l∈{1,2,...,u} Ql
2), assuming

P1, P2, ..., Pu are members of Ak; u ≤ n; and each Pl = Q1 ∧Ql
2, where Q1

is a common guard condition and Ql
2 is a defining condition.

No.7 Express OPpost in the functional scenario form: PA1 ∨ PA2∨ · · · ∨ PAw ,
where each Ak denotes a functional scenario defined in Definition 5.

The essential idea of this algorithm is to convert the disjunctive normal form
of a postcondition to an equivalent FSF by reorganizing all the disjunctive clauses
with the same guard condition as a single functional scenario while maintaining
the structure of the rest of the postcondition.

3.2 Derivation of Execution Paths

The derivation of execution paths from a Java program is performed in two steps:
first a program is analyzed by a parser to generate its program graph and then
the paths are produced based on the program graph. We apply a constrained
depth-first searching algorithm for traversing a program graph to discover all the
necessary paths of a program graph. A necessary path indicates that either itself
needs to be inspected or a set of similar paths together implementing the same
functional scenario needs to be inspected. For example, the algorithm generates
only two execution paths for each loop: (1) the execution path that covers the
loop condition and the loop body once and (2) the path that covers the negation
of the loop condition but no loop body. Although not all the paths representing
all the possible executions of the loop body are generated by the algorithm
due to the difficulty in determining them based only on the syntax of the loop
statement, the generated paths related to the loop statement are intended to
remind the inspector to consider all the possible cases based on the inspector’s
intellectual analysis and engineering judgement. Since the algorithm for path
generation results from only a slight modification to the standard algorithm for
searching paths in a directed graph [14], we omit it for brevity.

4 Inspection of Execution Paths

To inspect the execution paths against their functional scenarios, we take two
steps. The first step is to link scenarios to their corresponding paths and the sec-
ond step is to analyze the paths to detect errors. The linking of scenarios to paths
can be automatically performed if all the variables and the logical expressions
used in the specification are preserved directly in the program; otherwise, it can
be performed manually with tool support. The reading of paths can be done by
taking the two strategies described in Definitions 8 and 10, respectively. Taking
the forward strategy, the inspector concentrates on the examination of whether
or not every scenario defined in the specification is implemented correctly by a

430 S. Liu et al.

single or set of paths in the program. While using the backward strategy, the
inspector can focus on checking whether every path in the program contributes
to the implementation of any scenario defined in the specification. The discovery
of any inconsistency between the specification and the corresponding program
will indicate the existence of potential errors, either in the specification or in
the program, and the nature of the discrepancy can be determined based on a
rigorous analysis. The analysis may be conducted only by the inspector, but to
be more effective in practice, it is better to be carried out by a group of people
together, including the inspector, the specifier, and the programmer, if they are
available within the allowed timetable.

Our tool, described in Section 5, effectively supports the inspection of each
path by automatically highlighting every statement or condition under exami-
nation, providing a well-designed graphical user interface to enable the inspector
to input his or her comments on any detected errors or any issue concerned with
the statement or condition, and automatically recording and categorizing the
comments. After the inspection of a path is finished, a systematic inspection
result report will be displayed in appropriate forms.

5 A Prototype Tool

We have constructed a prototype tool, called SBPIT (Specification-Based Pro-
gram Inspection Tool) to support our inspection approach with three person-year
efforts. The tool was designed using SOFL [15] and implemented in Java. It is an
integration of two sub-tools and it supports SOFL as the specification language
and Java as the programming language. One sub-tool supports the forward in-
spection strategy, while another supports the backward strategy. To support an
inspection using the forward strategy, the tool displays the content of a selected
specification in a window, and then automatically generates a list of all its func-
tional scenarios. To link each scenario to its corresponding execution paths in the
program, the tool will switch to display the content of the corresponding program
on a specific area in the GUI (graphical user interface), and automatically generate
its programgraph so that it is displayed on an adjacent window, and automatically
generate all the necessary execution paths based on the program graph. Then, the
tool supports the inspector to link each scenario to some execution paths in the
program by automatically highlighting the current scenario, and recording the as-
sociation between scenarios and the corresponding paths. Once a specific scenario
is selected, its corresponding paths will be displayed based on the recorded asso-
ciation relation obtained previously. The inspector can carry out the inspection of
each path based either on the program graph (which is represented by a control
flow diagram) or the source code of the program. The source code and the program
graph are connected by hyperlinks. Figure 2 shows a snapshot of the GUI of the
tool supporting the forward inspection strategy for an operation (we call it process
in SOFL) Withdraw in the ATM system used in our case study. The left pane of
the GUI shows the list of generated paths from the program displayed in the mid-
dle pane. The program graph shown in the right pane of the GUI is automatically

An Automated Approach to Specification-Based Program Inspection 431

Fig. 2. A snapshot of the inspection tool supporting forward strategy

generated from the program. The bottom-right pane of the GUI displays a single
scenario for the current inspection.

Taking the backward strategy for an inspection needs to go through the same
process, but the starting point is the source code of the program rather than its
specification. For the sake of brevity, we omit the detailed descriptions of this
and other features of the tool.

6 A Case Study

The goal of our case study of inspecting an ATM system is to assess the effec-
tiveness of the inspection approach in detecting errors and the efficiency of the
tool in supporting the inspection approach. The selection of the ATM system for
the case study was made mainly based on the consideration of its critical nature,
commercial impact, and the availability of its formal specification in SOFL. The
specification is implemented in Java and the corresponding program is organized
in a package including eleven Java files, and the interfaces of the related methods
in the classes are similar to those of their operation specifications.

We started the case study by inserting eighty-one errors in the program in-
dependently of the inspectors. Those errors are divided into three categories by
the person who inserted them (the third author of the paper), which are compo-
nent redundancy, component scarcity, and component distortion. A component
redundancy error means that some extra function or variable is inserted into the
program. A component scarcity error implies that some original component of
the program is deleted from the program. A component distortion error means
that some component in the program is modified so that it may not provide the
correct functions. We choose those types of errors because they are concerned
with the consistency between the specification and the program.

432 S. Liu et al.

The inspections were conducted by three different inspectors (the first, sec-
ond, and fourth authors). Two inspections were conducted using our tool, while
another one was performed manually (without using the tool at all), in order
to find out how useful the tool is. In the case of using the tool, one inspector,
called A, used the forward inspection strategy and another, called B, used the
backward strategy. In the case of manual inspection, the inspector, called C,
mainly took the forward inspection strategy, but also took the backward strat-
egy for the inspection of the paths not covered during the forward inspection.
Table 1 shows the inspection result of inspector A. The overall effectiveness of
error detection in this case is EffectivenessA = 71.6%, where the effectiveness is
calculated using the following formula.

Effectiveness =
Number of inserted errors detected
Total number of inserted errors

Table 1. Inspection result of inspector A

Error Type Number Detected Effectiveness

Component redundancy 12 9 0.750

Component scarcity 32 21 0.656

Component distortion 37 28 0.757

Total 81 58 0.716

In addition to the effectiveness, we also evaluate the inspection efficiency
with the formula

Efficiency =
Effectiveness of the inspection
Time to inspect the program

× 100 .

Inspector A spent seven hours for the inspection, the inspection efficiency is
therefore EfficiencyA ≈ (0.716 / 7)× 100 ≈ 10.23, that is, the average effective-
ness per unit time (‘hour’ in our case).

Table 2 shows the inspection result of inspector B. The inspection effective-
ness in this case is EffectivenessB ≈ 55.6%. Since inspector B took eight hours
to perform the inspection, the inspection efficiency is EfficiencyA ≈ (0.556 /
8)× 100 ≈ 6.95.

Table 2. Inspection result of inspector B

Error Type Number Detected Effectiveness

Component redundancy 12 5 0.417

Component scarcity 32 16 0.500

Component distortion 37 24 0.649

Total 81 45 0.556

In contrast to the above two inspections using the tool, the inspection result
of inspector C without using the tool indicates a lower effectiveness of error

An Automated Approach to Specification-Based Program Inspection 433

Table 3. Inspection result of inspector C

Error Type Number Detected Effectiveness

Component redundancy (type 1) 12 5 0.417

Component scarcity (type 2) 32 10 0.313

Component distortion (type 3) 37 16 0.432

Total 81 31 0.383

detection (EffectivenessC ≈ 38.3%), as shown in Table 3, and a much lower
inspection efficiency, which is EfficiencyC ≈ (0.383/13)×100≈ 2.92. The reason
for the much lower efficiency is that inspector spent a much longer time (thirteen
hours) than the other two inspectors.

Our experience in the case study suggests that ease of understanding of the
program structure based on the functional scenarios in the specification con-
tributed considerably to the higher effectiveness and efficiency of the inspection
with the forward inspection strategy, though it may be extremely difficult to
assert in general that the forward strategy is superior to the backward strategy.
Furthermore, the automation provided by the tool made many activities (e.g.,
derivations of scenarios and paths) much more efficient than those in the manual
inspection, it helped the inspectors using the tool to easily and quickly analyze
paths against their scenarios and to detect errors. Of course, we understand that
these preliminary results require further validation through more extensive case
studies and ultimately industrial-scale application. For the sake of space, we omit
the explanation of other more detailed issues concerned with the case study.

7 Conclusions and Future Research

This paper introduced a specification-based inspection approach to detecting
errors in programs. The essential principle of the approach is to check whether
every functional scenario in a specification is implemented by some execution
paths in its program and whether every execution path contributes to the im-
plementation of some functional scenario. Two inspection strategies, known as
forward and backward strategies, are proposed for inspections. We have built a
prototype tool to support the inspection approach and conducted a case study
to evaluate the effectiveness of the approach and the efficiency of the tool. The
result shows that both forward and backward strategies are rather effective for
finding errors, and the tool is effective in efficiently supporting the inspection
approach. Meanwhile, our experience in the case study also indicated the poten-
tial challenge in the application of the method in practice. The reason is that
specifications may often be incomplete and their structures may be quite dif-
ferent from those of their programs, thus linking scenarios in specifications to
paths in their programs would be difficult and time-consuming.

More research is needed to enhance the practicality, efficiency, and capability
of our inspection approach for verification and validation of program systems in
general. We are interested in investigating more effective methods for linking

434 S. Liu et al.

scenarios in a specification to paths in its program and in extending the ap-
proach to deal with architecture level verification and validation. We are also
interested in investigating potential benefits in extending these techniques to
safety-critical code, where the use of inspection is often a precursor to other
forms of verification [16].

Acknowledgements. We would like to thank Tomoya Sano for his contribution
to the building of the prototype tool.

References

[1] M. E. Fagan. Design and Code Inspections to Reduce Errors in Program Devel-
opment. IBM Systems Journal, 15(3):182–211, 1976.

[2] A. A. Porter, H. P. Siy, and L. G. Votta. A Review of Software Inspections.
Advances in Computers, 42:39–76, 1996.

[3] O. Laitenberger and J-M. DeBaud. An Encompassing Life-Cycle Centric Survey
of Software Inspection. Journal of Systems and Software, 50(1):5–31, 2000.

[4] T. Gilb and D. Graham. Software Inspection. Addison-Wesley, 1993.
[5] NASA. Software Formal Inspection Process Standard. NASASTD-2202-93, 1993.
[6] D. L. Parnas and D. M. Weiss. Active Design Reviews: Principles and Practice.

In 8th International Conference on Software Engineering, pages 132–136, 1985.
[7] J. C. Knight and E. A. Myers. An Improved Inspection Technique. Communica-

tions of the ACM, 36(11):51–61, 1993.
[8] D. L. Parnas and M. Lawford. The Role of Inspection in Software Quality Assur-

ance. IEEE Transactions on Software Engineering, 29(8):674–676, August 2003.
[9] Peter Gorm Larsen, John Fitzgerald, and Tom Brookes. Applying Formal Speci-

fication in Industry. IEEE Software, 13(3):48–56, May 1996.
[10] C. L. Heitmeyer. Applying the SCR Requirements Method to a Weapons Control

Panel: an Experience Report. In Proceedings of the Second Workshop on Formal
Methods in Practice, pages 92–102. ACM Press, 1998.

[11] G. Babin and F. Lustman. Application of Formal Methods to Scenario-based
Requirements Engineering. International Journal of Computers and Applications,
23(3):141–151, 2001.

[12] S. Sahara. An Experience of Applying Formal Method on a Large Business Appli-
cation (in Japanese). In Proceedings of 2004 Symposium of Science and Technol-
ogy on System Verification, pages 93–100, Osaka, Japan, Feb. 4-6 2004. National
Institute of Advanced Industrial Science and Technology (AIST).

[13] D. L. Parnas, J. Madey, and M. Iglewski. Precise Documentation of Well-
Structured Programs. IEEE Transactions on Software Engineering, 20(12):948–
976, December 1994.

[14] Michael T. Goodrich and Roberto Tamassia. Data Structures and Algorithms in
Java. John Wiley & Sons, Inc, 2001.

[15] S. Liu. Formal Engineering for Industrial Software Development Using the SOFL
Method. Springer-Verlag, 2004.

[16] F.O. Iwu, A. Galloway, I. Toyn, and J.A. McDermid. Practical Formal Specifi-
cation for Embedded Control Systems. In INCOM’04: 11th IFAC Symposium on
Information Control Problems in Manufacturing, page 6pp, April 2004. Special
session on formal methods: promising solutions to improve industrial controllers’
dependability.

Visualizing and Simulating Semantic Web

Services Ontologies

Jun Sun1, Yuan Fang Li1, Hai Wang2, and Jing Sun3

1 School of Computing, National University of Singapore
{sunj, liyf}@comp.nus.edu.sg

2 Department of Computer Science, University of Manchester
hai.wang@cs.man.ac.uk

3 Department of Computer Science, The University of Auckland
j.sun@cs.auckland.ac.nz

Abstract. The development of Web Services has transformed the World
Wide Web into a more application-aware information portal. The vari-
ous standards ensure that Web Services are interpretable and extensible,
opening up possibilities for simple services to be combined to build com-
plex ones. The Semantic Web presents a new mechanism for users and
software agents to discover, describe, invoke, compose and monitor Web
services. For these purposes the Semantic Web Services (OWL-S) on-
tologies have been developed to provide vocabularies to describe Web
Services in a precise and machine-understandable way. It is necessary to
ensure the ontological descriptions of the services capture the intended
meaning as erroneous description may cause invocation of wrong services,
with wrong parameters, resulting in undesired outcome. In this paper,
we propose to apply software engineering method and tools to visual-
ize, simulate and verify OWL-S process models. Namely, Live Sequence
Charts (LSCs) is used to model services, capturing the inner workings of
services, and its tool support Play-Engine is used to perform automated
visualization, simulation and checking.

Keywords: Semantic Web Services, OWL-S, LSC, Play-Engine.

1 Introduction

The World Wide Web has evolved from a static information repository to a
current dynamic distributed information sharing and processing source. Web
Services [2,3] are one of the latest endeavors in this evolution. Together with
layers of XML-based open standards [19,18,3], Web Services provide a frame-
work for automated service advertisement, discovery, invocation, composition
& inter-operation and execution monitoring. Web applications can be dynam-
ically discovered, invoked and simple services can be composed to build more
complex ones.

The Semantic Web [1] is another frontier of the Web development that is
believed by many as the future of the Web, in which software agents can coop-
erate to accomplish tasks without human supervision. Web resources are given

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 435–449, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

436 J. Sun et al.

well-defined meaning so that they are readily available to human users as well
as machines to understand and process. Resources on the Web are expressed
in terms of ontologies, which define concepts and relationships of a particular
domain. Based on description logics, OWL (Web Ontology Language) has been
published by W3C as a Proposed Recommendation.

A Semantic Web Services ontology, the OWL-S [17], is currently being de-
veloped to semantically specify Web services. Expressed in OWL, it is a meta-
ontology aimed at supplying the service producers/consumers with a core set
of machine-interpretable vocabularies for precisely describing the properties and
capabilities of Web services. It can be foreseen that the blending of OWL-S
and various Web Services standards will present a more automated, effective
approach to developing, deploying and utilizing Web services. As OWL-S on-
tologies define what a service (sometimes referred to as a process) does, how it
works and what are its inputs, outputs, preconditions and effects (IOPEs), it
is necessary that they capture the correct information. Erroneous definition of
preconditions, for example, may make a service invoked when it should not be.
Hence, tool support, especially reasoning and simulation tool support is highly
desirable for Semantic Web Services developers.

A number of reasoning engines have been developed for ontology languages
RDF, DAML+OIL and OWL, such as FaCT [11] and RACER [5]. All these tools
are concentrated on deducing subsumption relationship (deducing whether one
OWL class is a “sub class” of another class) and checking consistency of static
Semantic Web ontologies. We foresee that, since OWL-S emphasize on service
description, forthcoming tool support ought to efficiently capture the dynamic
aspects of services.

In this paper, we propose to use the software engineering language Live Se-
quence Charts (LSCs) [4] and its tool support Play-Engine [8] to visualize and
simulate OWL-S process model ontologies, which capture the essential informa-
tion about how a service is to be invoked, executed and the expected result and
outputs. LSCs are a broad extension of the classic Message Sequence Charts
(MSCs [13]). They capture communicating scenarios between system compo-
nents rigorously. LSCs distinguish scenarios that must happen from scenarios
that may happen, conditions that must be fulfilled from conditions that may
be fulfilled, etc. Together with various high-level operators like bounded loop,
if-then-else, LSCs may well be used to specify complicated inter-object system
requirements. One of the novel aspects of LSCs is that they allow a “play-in/play-
out” approach to simulate and verify the requirements without implementing the
underlying object systems [7], which is realized in Play-Engine. It allows users to
interactively introduce a set of LSCs as behavioral requirements and automat-
ically drive the execution of the requirements by employing formal verification
techniques.

The essential idea of capturing OWL-S process models using LSCs is that a
OWL-S process model may be perfectly viewed as describing a scenario of the
interactions between a service-using agent and the service-providing agent. The
benefits of modeling OWL-S process models as LSCs are many-fold:

Visualizing and Simulating Semantic Web Services Ontologies 437

– Allowing service designers to enjoy the visual power of LSCs by visually
designing OWL-S process models in Play-Engine. As LSCs are expressed
in XML, they can be easily transformed back to OWL-S ontologies when a
service designer is satisfied with the simulation runs in Play-Engine.

– Using Play-Engine to simulate services without implementing them. By
smart playing-out [6] OWL-S process models in Play-Engine, unwanted sce-
narios may be discovered early in the design stage.

– Tapping Play-Engine’s ability of interacting with dynamic linked libraries
(.dlls) such as COM, COM+, ActiveX Controls, service designers can more
easily write LSCs specifications by directly calling functions from Web ser-
vices defined as these libraries, therefore integrate existing Web services with
OWL-S process models.

Moreover, we believe that mature development of the synthesis and verification
techniques of LSCs and MSCs offers helpful guidance on designing and verifying
Web Services.

The rest of the paper is organized as follows. In Section 2, an overview of
Web Services, the Semantic Web, ontology languages RDF, OWL and OWL-S,
the language LSC and tool Play-Engine is briefly presented. In Section 3, we
present the transformation rules from OWL-S process model ontology to LSCs.
The air ticket search and booking case study is introduced in Section 4. It is the
running example of the paper. In this section, we also demonstrate how Play-
Engine can be used to run automatic simulation of services and verify properties
dynamically. Finally, Section 5 concludes the paper and discusses future work
directions.

2 Overview

This section is devoted to a brief introduction of Semantics Web and Web Ser-
vices, LSCs and Play-Engine. Interested readers are referred to [17] and [8] for
detailed features of OWL Web Services and LSCs, respectively.

2.1 Semantic Web and Web Services

Web Services is a W3C coordinated effort to define a set of open and industry-
supported specifications to provide a standard way of coordination between dif-
ferent software applications in a variety of environments. A Web service is defined
as “a software system designed to support interoperable machine-to-machine in-
teraction over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service in a
manner prescribed by its description using SOAP messages, typically conveyed
using HTTP with an XML serialization in conjunction with other Web-related
standards” [2].

The various specifications in the Web services domain are all based on XML,
making information processing and interchange easier. However, as XML Schema

438 J. Sun et al.

only defines the syntax of a document, it is hard for software agents to understand
the semantics of a Web service described using these specifications. A language
that is both syntactically well-formed and semantical is therefore desirable.

The Semantic Web [1] is an envisioned extension of the current Web, in
which resources are given machine-understandable, unambiguous meaning so
that software agents can cooperate to accomplish complex tasks without human
supervision. Resources in Semantic Web are marked up using ontologies, defining
concepts of and relationships between resources. Ontology languages give basic
vocabularies for expressing ontologies. The Web Ontology Language (OWL) [15]
is the de-facto ontology language. Given a particular domain, OWL uses classes
to represent abstract knowledge, use properties to relate different classes and use
individuals to represent concrete entities that belong to various classes. It lays
the foundation on which other ontologies can build.

OWL-S is an OWL-based Web service ontology, which supplies Web service
producers/consumers with a core set of markup language constructs for describ-
ing the properties and capabilities of their Web services in an unambiguous,
computer-interpretable form. OWL-S was expected to enable the tasks of ‘auto-
matic Web service discovery’, ‘automatic Web service invocation’ and ‘automatic
Web service composition and inter-operation’. OWL-S consists of three essen-
tial types of knowledge about a service: the profile, the process model and the
grounding. Figure 1 shows the high-level architecture of an OWL-S ontology. A
ServiceProfile tells what the service does. It is the primary construct by which
a service is advertised, discovered and selected. The ServiceGrounding tells how
the service is used. It specifies how an agent can access a service by specifying,
for example, communication protocol, message format, port numbers, etc.. The
primary concern of our work in this paper is the OWL-S ServiceModel (also
called process model), which tells how the service works. Thus, the class Service
is described By a ServiceModel. It includes information about the service’s inputs,
outputs, preconditions and effects. It also shows the component processes of a
complex process and how the control flows between the components.

Fig. 1. Architecture of OWL-S Ontology

Visualizing and Simulating Semantic Web Services Ontologies 439

The OWL-S process model is intended to provide a basis for specifying the
behavior of a wide array of services. There are two chief components of an OWL-
S process model – the process, and process control model. The process describes
a Web Service in terms of its input, output, precondition, effects and, where ap-
propriate, its component subprocess. The process model enables planning, com-
position and agent/service inter-operation. The process control model – which
describes the control flow of a composite process and shows which of various in-
puts of the composite process are accepted by which of its sub-processes – allows
agents to monitor the execution of a service request. The constructs to specify
the control flow within a process model include Sequence, Split, Split+Join, If-
Then-Else, Repeat-While and Repeat-Until. The full list of control constructs in
OWL-S and its semantics can be found in the latest version of OWL-S [17].

2.2 LSC and Play-Engine

LSCs are a powerful visual formalism which serves as an enriched requirements
specification language. There are two kinds of charts in LSCs. Existential charts
are mainly used to describe possible interactions between participants in early
stages of system design. At a later stage, knowledge becomes available about
when a system run has progressed far enough for a specific usage of the system
to become relevant. Universal charts are then used to specify behaviors that
should always be exhibited. A universal chart may be preceded by a pre-chart,
which serves as the activation condition for executing the main chart. Whenever
a communication sequence matches a pre-chart, the system must proceed as
specified by the main chart. A chart typically consists of multiple instances,
which are represented as vertical lines. Along with each line, there are a finite
number of locations (i.e. the joint points of instances and messages). A location
carries the temperature annotation for progress within an instance. Message
passing between instances is represented as horizontal lines. Cold conditions are
used to assistant specifying complex control structures like guarded-choice, do-
while. Hot conditions are asserted to assure critical properties at certain point
of execution. Typically, a system is described by a set of LSCs, both universal
charts and existential charts. LSCs support advanced MSC features like co-
region, hierarchy and etc. For details on features of LSCs, refer to [7]. LSCs
are far more expressive than MSCs, which makes them capable of expressing
complicated inter-objects system requirements.

An interaction-based model specifies the desired inter-object relationships be-
fore a system is actually constructed. It is beneficial if the model can be simulated
and tested so as to detect inconsistencies and under-specification. One of the sig-
nificance of LSCs is that descriptions in the LSC language can be executed by
Play-Engine without implementing the underlying object system. Play-Engine
is a tool recently developed to support an approach to the specification, valida-
tion, analysis and execution of LSCs, called “play-in” and “play-out”. Behavior
is “played in” directly from the system’s user interface, and as this is being done
the Play-Engine continuously constructs LSCs. Later, behavior can be “played
out” freely from the user interface, and the tool executes the LSCs directly, thus

440 J. Sun et al.

driving the system’s behavior. When “playing out”, Play-Engine computes a
“maximal response” to a user-provided event, called a super-step. During the
computing of a super-step, hot conditions are evaluated. If any hot condition
evaluates to false, a violation is caught. Otherwise, simulation continues with
the user provided events. This way, users may detect undesired behaviors al-
lowed by the specification early in the development. The basic play-out engine
arbitrarily explores a single super-step, hence possibly running into problems.
The smart play-out approach uses model checking to compute a valid super-step
if it exists. Alternatively, test case may be supplied by the users as existential
charts so that Play-Engine may guide the system accordingly to verify a scenario
of interactions between the user and system is possible.

3 Modeling OWL-S with LSCs

In this section, we concentrate on the process model of OWL-S and abstract
away the service grounding details. The key idea of using LSCs to visualize and
simulate the OWL-S process models is to use an LSC universal chart capturing
a process model. In other words, each process is viewed as describing a possible
communicating scenario between a service-using agent and the service-providing
agent. For each process model, we assume there is a pre-service request from
the service-using agent to the service-providing agent that identifies the service
to perform, which corresponds to the service grounding phase that we ignore in
this work. For instance, the request() message in Figure 3 is a pre-service re-
quest from a HolidayBookingAgent to a BdgtChker. Once a pre-service request
is exchanged between the service-using agent and the service-providing agent,
subsequent interactions follow precisely as defined in the service definition (the
process model).

The classes of processes of a OWL-S ontology are categorized into three
groups: atomic, composite and simple. An atomic process corresponds to the
actions that a service can perform by engaging it in a single interaction, i.e. a one-
step service that expects a bundle of inputs and produces a bundle of outputs.
An atomic process is a “black box” representation; that is, no description is
given of how the process works (apart from inputs, outputs, preconditions, and
effects). The following are a list of process features of atomic processes.

– process.hasInput: It specifies one of the inputs of the service.
– process.hasLocal: It specifies one of the local parameters. Local parameters

are only used in atomic processes.
– process.hasOutput: It specifies one of the outputs of the service.
– process.hasPrecondition: It specifies one of the pre-conditions of the service.

Preconditions are evaluated with respect to the client environment before the
process is invoked.

– process.hasResult: It specified one of the effects of the service. Result con-
ditions are effectively meant to be ‘evaluated’ in the server context after the
process has executed.

Visualizing and Simulating Semantic Web Services Ontologies 441

Basically, a service defined by an atomic process is translated to an LSC uni-
versal chart preceded by a pre-chart containing only the pre-service request.
An atomic process has always two participants, i.e. service-using agent and
service-providing agent if the participants are skipped in the OWL-S ontol-
ogy. Otherwise, participants in an ontology are translated to instances in the
chart. According to [17], “inputs and outputs specify the data transformation
produced by the process”, hence they are identified with communication be-
tween different participants in the main chart. If a process has a precondition, it
cannot be performed successfully unless the precondition is true. Pre-condition
of a service is, therefore, identified with a shared cold condition (among all
participants) at the very beginning of the main chart. Thus, if the condition
is violated, the chart terminates and hence the process (service) is not per-
formed. Post-condition of the inCondition properties in process.hasResult are
conjoined and identified with a shared hot condition at the end of the chart
so that if the post-condition is violated, an error is raised by Play-Engine. The
withOutput properties are then identified with communications after the hot
condition.

The data bindings are analyzed to identify the correspondence between dif-
ferent inputs and outputs and local variables (if there are). Besides, built-in
functions in the process models are translated to external functions in LSC
(Play-Engine) and local variables are identified with variables associated with
the instances in the chart.

Composite processes are composed of sub-processes, and specify constraints
on the ordering and conditional execution of these sub-processes. These con-
straints are captured by the “composedOf” property. Composite processes are
constructed using control constructs and references to processes called PER-
FORMs. These are analogous to function calls in procedural language function
bodies. PERFORM itself is a kind of control construct specifying where the client
should invoke a process provided by some server. PERFORM may be references
to atomic or other composite processes. PERFORM are composed using other
control constructs. The minimal initial set includes Sequence, Split, Split+Join,
Any-Order, Condition, If-Then-Else, Iterate, Repeat-While and Repeat-Until. We
summarize the list of control constructs in Table 1 (according to OWL-S 1.1).

In the following, we discuss how composite services are systematically trans-
formed to LSCs. We present the transformation in the following as transforma-
tion rules for each and every control construct in Table 1.

– Sequence: It is naturally translated to sequential communications along the
vertical lines in a chart. If a sub-process itself is composed by other processes,
the sub-process is transformed to a sub-chart or a pre-service request in
case the sub-process is reused in other processes. Variables in the output
bindings are parameterized with the message so that they are unified with
the variables in the invoked processes.

– Split: Because no specification about waiting or synchronization is made
among the bag of process components, processes in Split correspond to mul-
tiple pre-service requests grouped as a co-region so that the ordering of the

442 J. Sun et al.

Table 1. A Partial Summary of the OWL-S constructs

OWL-S Constructs Description
process:Sequence Executes a list of processes in order.
process:Split Executes a bag of processes concurrently.
process:Split+Join Executes a bag of processes concurrently with bar-

rier synchronization.
process:Any-Order Execute a bag of processes in any order but not

concurrently.
process:Choice Chooses between alternatives and executes.
process:If-Then-Else Tests the if-condition. If true executes the “Then”

branch, if false executes the “Else” branch.
process:iterate Serves as the common superclass of Repeat-While

and Repeat-Until and potentially other specific it-
eration constructs.

Repeat-While Iterates execution of a bag of processes until the
while Condition becomes true.

Repeat-Until Iterates execution of a bag of processes until the
until Condition becomes true.

timeout Interval of time allowed for completion of the pro-
cess component (relative to the start of process
component execution).

execution of the components are not constrained. Each pre-service request
will in term activate an LSC modeling the corresponding service.

– Split-Join: Because of the possible barrier synchronization, it is transformed
to LSCs similarly as Split with additional 0-buffered communication cor-
responding to the barrier synchronization. The 0-buffered communication
events are shared by all LSCs modeling the invoked services. Therefore, the
synchronization is made among all sub-processes. Moreover, the location
where the co-region is is set to be hot so that completion of all components
are guaranteed.

– Unordered: All components must be executed. This is transformed to LSCs
exactly as Split except all locations in LSCs corresponding to the compo-
nents are set to be hot so that completion of all components are guaranteed.

– Choice: This corresponds to the SELECT -Case construct in LSCs. Thus, a
choice in OWL-S is transformed to a SELECT -Case sub-chart with equally
distributed possibility.

– If-Then-Else: The exact same construct if -then-else is available in LSCs.
The If-condition and Else-condition are mapped to cold conditions in the
respective sub-chart. The only problem is to syntax-rewrite the logical ex-

Visualizing and Simulating Semantic Web Services Ontologies 443

pression used in OWL-S (represented in DRS1 or SWRL [12] or perhaps
KIF2) properly to logical expression in LSCs.

– Repeat-While and Repeat-Until: Whether the test occurs at a fixed place
within the iteration or runs asynchronously varies from subclasses to subclass
of these classes. The former is transformed to a looping sub-chart in LSCs
with a shared cold condition (corresponding to the condition in the service
definition) at the end of the sub-chart. The latter is transformed to a looping
sub-chart in LSCs with a cold condition (corresponding to the negation of
the condition in the service definition) at the end of the sub-chart.

– timeout: It is mapped to a timer set event followed by a timeout event in
LSCs containing the respective process components.

The transformation rules for composite processes are applied inductively.
One of the difficulties of using LSCs to simulate the OWL-S process models
is to do the correct data binding and data computation. We assume that a
simple underlying data and functional model of the system is supplied by the
users, i.e. the underlying system variables and the implementation of the external
functions and so on. To simulate the set of process models interactively, we may
build a simple user interface to trigger environmental events manually. A simple
user-interface is built with a button for triggering every process model. Play-
Engine supports such user-interface built with Visual Basic, and plays-out the
corresponding LSCs according the user interaction through the interface.

4 Case Study

This section illustrates the approach with an example of an online holiday book-
ing system.

4.1 System Scenario

The holiday booking system is a Web portal offering access to information about
air tickets and hotels. This Web portal provides automated air ticket and hotel
booking services to users who are planning their holidays.

In the course of operation, the customer submits a request, which includes
the information about the destination, travelling time and maximum budget,
to the holiday booking agent. Upon receiving the request, the holiday book-
ing agent tries to find the most suitable air ticket and hotel based on infor-
mation in the customer’s preferences, which have been obtained from his on-
line, OWL-encoded profile. The preferences may include the preferred airlines,
hotels, etc. Following that, the holiday booking agent calculates if the total
cost overruns the budget limit. If the total cost is more than customer’s bud-
get, the holiday booking agent tries to find another cheaper hotel or ticket. If
there is no ticket and hotel combination that can be found within the budget,
1 cf. http://www.daml.org/services/owl-s/1.0/conditions.html
2 cf. http://logic.stanford.edu/kif/dpans.html

444 J. Sun et al.

Fig. 2. Holiday booking System

the customer will be notified. Otherwise the booking agent shows the informa-
tion about the matched ticket and hotel to the customer. If the customer is
satisfied, he/she submits his/her credit card information to the holiday book-
ing agent. The holiday booking agent asks a third-part credit checking agent
to check if the card is valid with sufficient credit. If it is, the book will be
made.

Figure 2 is a RDF graph of the service ontology. It shows part of the OWL-
S process model for the holiday booking agent3. The holiday booking service
has a composite process BookingProcess which sequentially performs four sub-
processes – SearchT icketHotel, CheckBudget, CheckCredit and PlaceOrder.
SearchTicketHotel is a composite process as well, which performs two atomic
process, SearchHotel and SearchT icket, in parallel. The complete OWL-S pro-
cess model can be found at http://www.cs.man.ac.uk/~hwang/booking.xml.

Being part of our case study, the following is the process model of an atomic
OWL-S service ontology that checks whether the current air ticket and hotel
prices are within user budget, given as inputs the air ticket price (variable X1),
hotel accommodation cost (variable X2) and the user’s budget (variable X3)4. As
output, this atomic service returns true for variable Check_Budget_result if

3 The diagram has been slightly revised for presentation purpose.
4 These variables are represented as budget ticket Cost, budget hotel Cost and
budget total Cost in the ontology, respectively.

Visualizing and Simulating Semantic Web Services Ontologies 445

X3 ≤ X1 + X2, and false otherwise. For atomic processes, the inputs must come
from the service-using agent.

<process:AtomicProcess rdf:ID="CheckBudget">

<process:hasInput><process:Input rdf:ID="budget_hotel_Cost">

<process:parameterType rdf:datatype="&xsd;#nonNegativeInteger"/>

</process:Input></process:hasInput>

<process:hasInput><process:Input rdf:ID="budget_ticket_Cost">

<process:parameterType rdf:datatype="&xsd;#nonNegativeInteger"/>

</process:Input></process:hasInput>

<process:hasInput><process:Input rdf:ID="budget_total_Cost">

<process:parameterType rdf:datatype="&xsd;#nonNegativeInteger"/>

</process:Input></process:hasInput>

<process:hasOutput><process:Output rdf:ID="Check_Budget_result">

<process:parameterType rdf:datatype="&xsd;#anyURI">&xsd;#boolean

</process:parameterType></process:Output></process:hasOutput>

<process:hasResult>

<process:Result rdf:ID="Within_budget">

<process:withOutput>

<process:OutputBinding>

<process:toParam rdf:resource="#Check_Budget_result"/>

<process:valueData rdf:datatype="&xsd;#boolean">true

</process:valueData></process:OutputBinding></process:withOutput>

<process:inCondition>

<expr:KIF-Condition>

<expr:expressionBody>

(>= ?budget_total_Cost

(+ ?budget_ticket_Cost ?budget_hotel_Cost))

</expr:expressionBody>

</expr:KIF-Condition>

</process:inCondition>

</process:Result>

</process:hasResult>

<process:hasResult>

<process:Result rdf:ID="beyond_budget">

...

</process:Result>

</process:hasResult>

</process:AtomicProcess>

Figure 3 shows an LSC universal chart capturing the necessary interac-
tions between a service-using agent and a budget-checking agent cooperating
in the above atomic service. Once the service-using agent requests the service
CheckBudget (after determining whether the service meets its needs by ex-
ploring the service profile), necessary information like budget_ticket_Cost and
budget_hotel_Cost is supplied by the service-using agent. The budget-checking
agent replies with true, if the budget is at least as much as the sum of the air
ticket and hotel prices, and false otherwise.

446 J. Sun et al.

Fig. 3. LSC Example: Budget checking

4.2 Simulation

Figure 4 shows in Play-Engine part of the LSC of the HolidayBooking process
model. Given a set of inputs including departure and destination cities, outbound
and inbound dates, budgets, etc., the service will search for valid air tickets and
hotels. Finally if such flights and hotel accommodation are available, it will
proceed to book the flight and room.

Our simulation begins with building a simple Graphical User Interface (GUI)
for interactively introducing external events. A systematic approach is to build
one GUI component for each user-accessible Web service. In our example, only
one Web service is accessible to service-using agents, namely HolidayBooking.
The simple GUI is shown in the left bottom corner of Figure 4. Play-Engine
allows user-defined variables and external function through ActiveX DLLs. For
the purpose of simulation before actual implementation, an abstract “implemen-
tation” capturing only necessary details of the system is sufficient. However, if
the underlying data and functional system is implemented using techniques com-
patible with ActiveX DLLs, e.g. ASP, .NET, Play-Engine may import the actual
implementation of the underlying system and perform the simulation.

From our experiences, symbolic messages and instances are very helpful for
capturing the OWL-S process models compactly. After building the LSC model,
a user may interactively play out the system by initiating an (or a series of) ex-
ternal event and check how the system proceeds step-by-step. Assertion can be
inserted freely by introducing hot conditions in the LSCs. During simulation, a
violation of the hot condition will be caught by Play-Engine. This way, inconsis-

Visualizing and Simulating Semantic Web Services Ontologies 447

Fig. 4. Simulation Screen Shot

tency and under-specification is detected intuitively. In case an external process
(to be offered by third party) is assumed, the user may specify the possible out-
put of the process manually or Play-Engine would use model-checking techniques
to automatically find a valid value (if the variables have finite domain). In our
example, during simulation, windows are popped up for the user to specify the
ticket price and the hotel price. Alternatively, a user may build a test case of
the system as an existential chart (with assertions) and let Play-Engine do the
guided play-out according the existential chart.

In Figure 4, the HolidayBooking process is invoked by two different service-
using agents. Hence, two copies of the chart HolidayBooking (according to the
HolidayBooking process) are monitored. With simulation run of this scenario,
where a number of service-using agent are using the ticket-booking service, we
gain confidence that the same shared resource (e.g. ticket vacancy) are accessed
exclusively.

5 Conclusion

In this paper, we propose to use LSCs and Play-Engine to visualize and simulate
OWL-S process models. The significance and novel aspects can be summarized
as follows. Firstly, by transforming an OWL-S service model ontology into an
LSC, service developer can design the services in a more visual and intuitive
manner. In XML format, the LSCs can be easily transformed back to OWL-

448 J. Sun et al.

S. Secondly, we may simulate the interactions without implementing the Web
service (exploring the service grounding), and be able to gain confidence of the
service models. The key point of this approach is that a Web service can be
naturally viewed as a desired usage of the web agent, i.e., a scenario of the
interaction between the service-using agent the service-providing agent. Thirdly,
as Play-Engine supports dynamic linked libraries such as COM and ActiveX
Controls, Web services written in these libraries can be more easily transformed
to LSCs, from which the OWL-S service model may be derived. Hence, our
approach also facilitates the integration of Web services with OWL-S. Moreover,
we presented a travel booking case study to demonstrate our approach.

There are a number of future work directions that we deem as worthwhile
to pursue. First of all, it is necessary to develop programs to automatically
construct LSCs from the OWL-S process models to make this approach more
practical. Recently an OWL-S editor has been developed5 as a plug-in for the
Protégé OWL Editor [14]. It will be valuable for OWL-S developers if they can
obtain feedback, in terms of simulation results, from Play-Engine simulations
directly to the editor. Hence, such a deep linking between Play-Engine and the
OWL-S editor is desirable. Besides LSC and Play-Engine, formal languages such
as CSP [9] can also be considered to represent OWL-S ontologies and their tool
support, such as the FDR [16] or SPIN [10] model checkers, may also be used to
perform verification tasks.

We foresee that Web Services will be a new and fruitful application domain of
Software Engineering (SE) methods and tools. Our approach, along with other
approaches on applying SE methods to the Web domain, offers both experience
and possible tool supports for developing Web services languages and techniques.

Acknowledgement

The second author would like to thank Singapore Millennium Foundation6 for
the financial support. This work was supported in part by HyOntUse Project
(GR/S44686) funded by the UK Engineering and Physical Science Research
Council.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):35–43, 2001.

2. D. Booth, M. Champion, C. Ferris, F. McCabe, E. Newcomer, and D. Orchard. Web
Services Architecture. http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/,
Feb. 2004.

3. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. W3C, 1.1 edition, March 2001.
http://www.w3c.org/TR/wsdl.

5 cf. http://owlseditor.semwebcentral.org/index.shtml
6 cf. http://www.smf-scholar.org/

Visualizing and Simulating Semantic Web Services Ontologies 449

4. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts.
In Proceedings of the IFIP TC6/WG6.1 Third International Conference on For-
mal Methods for Open Object-Based Distributed Systems (FMOODS), page 451.
Kluwer, B.V., 1999.

5. V. Haarslev and R. Möller. RACER User’s Guide and Reference Manual: Version
1.7.6, Dec. 2002.

6. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out. In OOPSLA
Companion, pages 68–69, 2003.

7. D. Harel and R. Marelly. Specifying and Executing Behavioral Requirements:
The Play-In/Play-Out Approach. Technical Report MCS01-15, The Weizmann
Institute of Science Rehovot, Israel, 2002.

8. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer-Verlag, 2003.

9. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

10. G. Holzmann. The model checker spin. IEEE Trans. on Software Engineering,
23(5):279–295, May 1997. Special issue on Formal Methods in Software Practice.

11. I. Horrocks. The FaCT system. Tableaux’98, LNCS, 1397:307–312, 1998.
12. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.

SWRL: A Semantic Web Rule Language Combining OWL and RuleML.
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/, May 2004.

13. ITU. Message Sequence Chart(MSC), Nov 1999. Series Z: Languages and general
software aspects for telecommunication systems.

14. H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Protégé OWL
Plugin: An Open Development Environment for Semantic Web Applications. In
Proceedings of the Third International Semantic Web Conference (ISWC 2004),,
Hiroshima, Japan, Nov. 2004.

15. M. K. Smith and C. Welty and D. L. McGuinness (editors). OWL Web Ontology
Language Guide. http://www.w3.org/TR/2004/REC-owl-guide-20040210/, 2004.

16. A. W. Roscoe. Theory and Practice of Concurrency. International Series in Com-
puter Science. Prentice-Hall, 1997.

17. The OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
http://www.daml.org/services/owl-s/ , 2004.

18. UDDI. Universal Description, Discovery, and Integration of Business for the Web,
October 2001. http://www.uddi.org.

19. W3C. Simple Object Access Protocol (SOAP) 1.1, 2000.
http://www.w3c.org/TR/SOAP.

A Model-to-Implementation Mapping Tool for

Automated Model-Based GUI Testing

Ana C.R. Paiva1, João C.P. Faria1,2, Nikolai Tillmann3, and Raul A.M. Vidal1

1 Engineering Faculty of the University of Porto
2 INESC Porto,

Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
(apaiva, jpf, rmvidal)@fe.up.pt

3 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
nikolait@microsoft.com

Abstract. This paper presents extensions to Spec Explorer to automate
the testing of software applications through their GUIs based on a formal
specification in Spec�. Spec Explorer, a tool developed at Microsoft Re-
search, already supports automatic generation and execution of test cases
for API testing, but requires that the actions described in the model are
bound to methods in a .Net assembly. The tool described in this paper
extends Spec Explorer to automate GUI testing: it adds the capability to
gather information about the physical GUI objects that are the target of
the user actions described in the model; and it automatically generates
a .Net assembly with methods that simulate those actions upon the GUI
application under test. The GUI modelling and the overall test process
supported by these tools are described. The approach is illustrated with
the Notepad application.

1 Introduction

Today’s software systems usually feature Graphical User Interfaces (GUIs). GUIs
have become an important and accepted way of interacting with today’s software.
GUIs get more and more established in daily lives, and this makes us more
dependent on their correct functioning. However, testing of GUIs is difficult
because very few tools and techniques are available to aid the testing process.
Currently used GUI testing methods are almost ad hoc and require the test
designer to manually develop test cases, identify the conditions to check during
test execution, determine when to check these conditions, and evaluate whether
the GUI software is adequately tested.

There have been efforts to automate GUI testing. Some tools, called Cap-
ture/Replay tools (www.testingfaqs.org/t-gui.html), are commercially available.
They record user interactions to replay them later.

Other approaches exist to automate test case generation. Given expected out-
puts for certain inputs, existing code can be analyzed for conformance. However,
this can only be done after the code has been written. An approach that can
be applied in earlier phases of the software development process is specification-
based (or model-based) testing. Here, a GUI model must be constructed and,

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 450–464, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Model-to-Implementation Mapping Tool 451

depending on the nature of the model, different techniques can be used to gen-
erate test cases [1] which in turn can be used to verify conformance between
an implementation and the specification. Some formal models allow automatic
generation of test inputs and expected outputs. During the process of writing a
specification, inconsistencies and usability problems are often found. This results
in time and money savings. Also, the construction of models enables the analysis
of alternative designs without having to code them.

Spec Explorer (research.microsoft.com/SpecExplorer), from Microsoft Re-
search, is an example of an advanced model-based testing tool. It fully automates
the generation and execution of test cases from an annotated model, and it pro-
vides an easy way to relate specification actions and implementation methods.
However, when used to test GUIs, significant effort is required to map the user
actions described in the model to real actions in the GUI under test.

The main contributions of this paper are a modelling pattern for GUIs and
the GUI mapping tool:

– It reduces the manual work required to test an application through its GUI.
– It bridges the gap between a model written in a high-level modelling language

and the simulation of user events.
– It promotes a modelling pattern in which GUI components can be specified

as reusable classes controlled by a window manager.

The tool is implemented as an extension to Spec Explorer.
The paper is organized along the activities of the proposed GUI test pro-

cess: the next section presents an overview; section 3 explains how GUIs can
be modelled adequately with Spec�; section 4 describes how Spec Explorer au-
tomatically generates test cases; the main contributions are in section 5, where
the new GUI mapping tool is described; and section 6 describes test execution.
Related work is discussed in section 7 and the last section summarizes the re-
sults achieved and points out future work. The Notepad application is used as
a running example.

2 Overview of the Model-Based GUI Testing Process

The goal of model-based testing is to check if an implementation of a software
system conforms to its specification. The specification captures the requirements
and enables checking if those requirements are fulfilled by an implementation.
Given an implementation and a specification of a software system, the generic
activities involved in model-based testing are (1) test case generation (from the
specification), (2) test case execution, and (3) comparison of the actual results
obtained from the implementation with the expected results described by the
specification (which plays the role of a test oracle). A formal specification is
necessary to automatically generate test cases and expected results. If the spec-
ification is also executable (as is the case for Spec�), and test inputs are given,
expected results can be obtained by executing the specification.

452 A.C.R. Paiva et al.

2.1 Automated Model-Based Testing with Spec Explorer

Spec Explorer[2] is a software modelling and testing tool from Microsoft Re-
search. Formal executable models are written in the abstract state machine lan-
guage (AsmL) (research.microsoft.com/fse/AsmL) or Spec� [3], a superset of C�.

Some of the methods in the specification are annotated as actions represent-
ing possible transitions of a transition system. Actions can have pre-conditions,
written as “requires” clauses that define the states in which actions are enabled.

From the model, a Finite State Machine (FSM) is derived, from which test
cases (sequences of actions with actual inputs) are automatically generated.

Conformance between the model and an implementation can be established
by binding the model actions to implementation methods, executing the test
cases in “lock-steps” on both the model and the implementation, and comparing
their results. The implementation can be written in any .Net language.

Spec Explorer also supports “on-the-fly” testing. In this case, the test gen-
eration and test execution are combined in a single algorithm.

2.2 Automated Model-Based Testing of GUI Applications with
Spec Explorer and the GUI Mapping Tool

Fig. 1 presents the main activities and artefacts involved in testing GUI appli-
cations with Spec Explorer extended with our GUI mapping tool.

As already mentioned, to perform conformance tests with Spec Explorer, a
binding or mapping between the model actions and implementation methods
in a .Net assembly must be provided. For APIs exposed by other means, some
glue code might be needed to map forth and back the data and method calls.
For instance, when the applications functionality is only exposed through its
GUI, then the application must be driven through the GUIs abstraction layer,
by simulating the actions of a user interacting with it. That is the role of the
GUI mapping code in Fig. 1.

In previous experiences of using Spec Explorer to model and test GUI appli-
cations [4], the authors realised that, even in the case of simple applications such
as Notepad, the manual building of the GUI mapping code was unpractical and
required too much effort. To solve that problem, we developed a GUI mapping
tool integrated with Spec Explorer.

The GUI mapping tool assists the user in relating the (“logical”) model
actions to “physical” actions on “physical” GUI objects. A major difficulty that
is solved by the tool is the identification of the physical GUI objects that the
model actions refer to. The mapping code is automatically generated from high-
level mapping information. See section 5 for further information.

3 GUI Modelling with Spec� and Spec Explorer

The behaviour of GUIs can be modelled by state machines, with transitions
triggered by user actions. State machines can be useful to guide the testing of
software systems [5], although they suffer from the state explosion problem.

A Model-to-Implementation Mapping Tool 453

Fig. 1. Overview of the GUI modelling and testing process

The way of modelling with Spec Explorer has been inspired by Abstract
State Machines (ASMs). ASMs [6] provide a way to model any system at any
level of abstraction. This is adequate for GUI modelling, because, depending on
the context, one may want to model user actions at different levels of abstraction:
at operating system level (where a click event is the sequence of pressing and
releasing the mouse button); at API level (where a click event is seen as an
atomic action); at user task level; etc.

Independently of the abstraction level considered (lower level messages, or
higher level messages constructed from sequences of lower level messages), a GUI
implementation places the messages in a queue and processes those messages in
order. This behaviour can also be adequately modelled as an ASM with guarded
actions which fire only when appropriate messages are fetched from the queue.

A model written in Spec� describes a possibly infinite state transition system.
States are modelled by state variables. Some of the methods in the specification
are annotated as actions that represent the possible transitions of a transition
system. These actions can have pre-conditions, written as “requires” clauses
that define the states in which they are enabled. Thus, actions can be seen as
the guarded update rules of an ASM. It is important to note that the states
can have a very rich structure. In the case of GUIs, this allows to model the
GUIs state faithfully from a user perspective. For example, a state variable can
hold the textual content of a field. Methods annotated as actions can be used to
model complex user actions (enter a string into a field, issue a command, loading
content from a file, etc.) and describe their effects on the state of the system.

A simplified excerpt of a Spec� model of the Notepad application is shown
in Spec. 1. An extensive model can be found in www.fe.up.pt/˜apaiva/MyNote-
pad.pdf. It covers the behaviour of the Open, Save, Find, and Replace dialogs.

454 A.C.R. Paiva et al.

It consists of 35 actions, and 32 helper methods. The window manager consists
of 6 methods. The model was written within one week. To complete the model,
less than one week’s time would be needed.

namespace MyNotepad;

// State variables

string text="",selText=""; bool dirty=false; int posCursor=0;

// Start and close the Notepad application

[Action] void LaunchNotepad()

requires !IsOpen("Notepad"); {

AddWindow("Notepad","",false);

//... state variables initialization ...

}

[Action] void Close()

requires IsEnabled("Notepad"); {

if (dirty) AddWindow("MsgClose","Notepad",true);

else { RemoveWindow("Notepad");

//... reset variables to initial values }

}

[Action] void MsgSaveChangesBeforeClose(string option)

requires IsEnabled("MsgClose"); {

RemoveWindow("MsgClose");

switch (option){

case "No": RemoveWindow("Notepad"); return;

case "Yes": AddWindow("Save"); return;

case "Cancel": return;

default: return;}

}

// change and query the content of the main window

[Action] string GetText()

requires isEnabled("Notepad"); { return text;

}

[Action] void InsText(string typedTxt)

requires IsEnabled("Notepad"); {

text = text.Substring(0,posCursor-selTxt.Length) + typedTxt

+ text.Substring(posCursor,text.Length-posCursor);

posCursor = posCursor selTxt.Length+typedTxt.Length;

selTxt = ""; dirty = true;

}

Spec. 1. Excerpt of a Spec� model of the Notepad application

We discuss the modelling techniques illustrated in the Spec� excerpt above.
For modularity reasons, except for trivial applications, the top-level windows

of the application are better modelled in separate namespaces or classes. In
the example shown, the MyNotepad namespace refers to the main window of the
Notepad application. The complete model has other namespaces corresponding
to the Save, Open, Find and Replace dialog windows.

Inside each module (namespace or class) corresponding to a top-level window,
we model its abstract state with state variables, and we model the possible

A Model-to-Implementation Mapping Tool 455

user actions on that window with methods annotated as actions. To enable
conformance testing of the outputs displayed to the user, methods annotated as
actions should also be provided to observe the state of the GUI that is exposed
to the users’ eyes. A query method can be provided for each observable state
variable, with the name of the variable and a suitable prefix (e.g. GetText in
the example above). Spec Explorer allows designating such actions as probes. A
probe only observes the current state and does not change it. Probes are treated
differently from ordinary actions during test case generation, as we will see later.

All the actions inside each module, except the one that launches the applica-
tion, have at least one pre-condition: that the corresponding window is enabled.
A window is enabled when it is open and does not have a child modal window
on top. When a modal window is open (e.g. the Save and Open windows in
the Notepad application), the other windows of the application are disabled.
Since this is a common feature of GUIs, a separate reusable module - a window
manager - was created to handle it.

The window manager provides the following self-explanatory helper methods.
We omit modifiers like public in the presentation.

AddWindow(windowName, parentWindowName, isModal)

RemoveWindow(windowName)

IsEnabled(windowName)

IsOpen(windowName)

When a method opens/closes a window it should add/remove that window
to/from the window manager. When a window is removed, all its child windows
are also removed. Message boxes are also registered in the window manager but
need not be modelled as separate modules (e.g. MsgClose in the example above).

The window manager methods and its state are part of the model.

4 Test Case Generation with Spec Explorer

Spec Explorer automatically generates test cases in two steps (Fig. 2) from a
Spec� or AsmL specification. In the first step, a FSM is generated from a Spec�
or AsmL specification. In the second step, test cases that fulfill certain coverage
criteria are generated from the FSM.

The FSM is generated by bounded exploration of the state space of the model.
Some techniques available to prune the exploration are:

1. state filters - boolean expressions that determine which states to explore;
2. restriction of the domains - the domains of the parameters are bounded

to a finite set of possible values;
3. equivalence classes - this technique partitions states into equivalence

classes and prevents further exploration from any state of such a class once
a specified number of representatives has been reached;

4. reduction based on hierarchical structure - this technique was devel-
oped by the authors to reduce the size of the FSM obtained from a GUI

456 A.C.R. Paiva et al.

Fig. 2. Test case generation

model [4]. The FSM is organized in a hierarchical model and that structure
is the input to the FSM reduction algorithm. In our experiences, a reduction
by around 50% of the number of states can usually be achieved.

The pruning of exploration becomes crucial when modelling and testing
GUIs. That is because testing an application through its GUI by simulating
user events entails a significant overhead resulting in much slower test execution
than testing an application through its API. The main challenge is to generate
a test suite of manageable size while still guaranteeing adequate testing.

As soon as the FSM is constructed, and the coverage criteria chosen, a traver-
sal engine is used to unwind the resulting FSM to produce behavioural tests that
fulfil the coverage criteria. The coverage criteria can be set to full transition cov-
erage, shortest path to a set of user-defined states, or a random walk. Actions
designated as probes are checked in every state of the resulting tests, and do not
take part in coverage considerations.

In the Notepad example, the full transition coverage criterion was used to
generate the test cases. Other coverage criteria, more adapted to GUI testing
[7], can be easily added to the Spec Explorer tool through its API.

5 Model-to-Implementation Mapping with the GUI
Mapping Tool

The aim of the GUI mapping tool is to reduce the manual work involved in
model based testing of software applications through their GUI.

As already mentioned in the overview, the GUI mapping tool assists the
user in relating the logical actions described in the model to physical actions on
physical GUI objects of the application under test (AUT).

The GUI mapping tool (Fig. 3) has a front-end (Fig. 4) that shows the
mapping information gathered so far and gives access to the GUI Spy tool and
the GUI Mapping Code Generator. The Spy tool is used to get information about

A Model-to-Implementation Mapping Tool 457

Fig. 3. Architecture of the GUI mapping tool

Fig. 4. Front-end of the GUI mapping tool

physical GUI objects in the AUT, in a way similar to the Spy++ tool that ships
with Microsoft Visual Studio. The code generator exports to XML files and C�
the mapping information gathered. The C� code generated is based on calls to a
reusable GUI Test Library. Further details will be provided in the next sections.

5.1 The GUI Spy Tool

The GUI Spy Tool is accessible from the font-end of the GUI mapping tool (see
Fig. 4). It allows the user to point out the physical GUI object that is the target
of each logical action specified in the model.

458 A.C.R. Paiva et al.

After selecting the logical action in the main grid (first column), the user drags
and drops the Spy icon on top of the corresponding physical GUI object in the
AUT. If the desired GUI object is not visible, the user will have to interact also
with the AUT in order to make it visible. The physical properties of the GUI ob-
ject selected, as well as a logical name inferred by the tool (as will be explained

Fig. 5. Selection of the menu options

in the next section), are then displayed in
the grid (see Fig. 4). The Spy++ tool that
is shipped with Microsoft Visual Studio
can only gather information about proper
windows (or GUI objects with a window
handle). Our tool goes a bit further: it
can also gather information about win-
dow menus. So, when the tester wants to
establish a relation between a specifica-
tion method and an item inside a menu,
he can drag and drop the mouse on top
of the window that contains the menu at
which time another window (see Fig. 5) is
opened with all the submenu options, al-
lowing him to choose the submenu option
he wants. A similar option exists for con-
trols like tab pages and toolboxes.

5.2 Logical Names of GUI Objects

Every physical GUI object is associated with a logical name. This keeps indepen-
dence between specification and implementation levels and allows the generation
of code that is more readable and easier to construct manually, if desired.

Default logical names are automatically generated by the tool. The logical
name is equal to the namespace name followed by the name of the specifica-
tion method without prefix (Set, Get, etc.). In order to obtain the same logical
name for all the logical actions with the same target physical object, the names
of those actions should be constructed with a different prefix and the same
suffix.

5.3 XML Files Generated

The mapping information captured is saved into two XML text files:

1. a file with the mapping between model actions and the logical names of the
target GUI objects (GUI action/object mapping file in Fig. 3);

<Action id="internal void MyNotepad.Open()">

<LogicalName>MyNotepad.Open</LogicalName>

</Action>

2. a file with the mapping between logical names and physical properties of
GUI objects (GUI object mapping file in Fig. 3).

A Model-to-Implementation Mapping Tool 459

<GUIObject logicalName="MyNotepad.Open">

<ClassName>Notepad</ClassName>

<Caption>Untitled - Notepad</Caption>

<SubClassName>menu</SubClassName>

<SubOption>&Open...Ctrl+O</SubOption>

</GUIObject>

The mapping information needs to be gathered just once for each applica-
tion. But if the specification is changed and the mapping information has to be
updated, the XML files can be loaded by the GUI mapping tool for update. The
XML files can also be changed directly by the user.

These XML files are also used for code generation and test execution as is
explained in subsequent sections.

5.4 GUI Test Library

The C� code generated is based on calls to a reusable GUI test library that
provides methods to simulate the actions of a user interacting with a GUI ap-
plication and observe the content of GUI objects. This library was constructed
in C� extending a previous existing library to best fit our needs.

The GUI test library provides three kinds of methods (Code. 1):

– methods that act upon GUI objects simulating the user, like sending text
to a control that accepts text input (SendText). The target GUI object is
identified by its logical name. Each method may have additional parameters
with information needed to perform the action.

– methods that observe properties of GUI objects, like the text (GetText),
insertion point (GetInsertionPoint), and selected text (GetSelectedText) of
a text box. The target GUI object is also identified by its logical name. The
return value conveys the information requested.

– methods that provide physical information about GUI objects identified by
their logical names in order to identify those objects in the real AUT. This
information may be loaded from a XML file.

// To act upon GUI objects

void Click(string GUIObjName);

void SendText(string GUIObjName, string txt);

void SelectText(string GUIObjName, int start, int end);

void SelectSubOption(string GUIObjName, string option);

void SelectCheckBox(string GUIObjName, bool check);

void SelectMsgBoxOp(string GUIObjName, string option);

// To observe properties of GUI objects

string GetText(string GUIObjName);

string GetSelectedText(string GUIObjName);

int GetInsertionPoint(string GUIObjName);

bool GetCheckBox(string GUIObjName);

Code. 1. Examples of methods implemented in the GUI test library

460 A.C.R. Paiva et al.

5.5 Rules for Mapping Logical Actions in the GUI Test Library

Besides identifying the physical GUI object that is the target of each model
action, it is also necessary to select the appropriate method from the GUI test
library, which will simulate a physical action of the user on that GUI object.

The GUI mapping tool automatically infers the appropriate library method
based on the type of the GUI object, and the signature of the model action.

Some of the rules that are applied are:
– When the sub option is filled in the mapping information, we assume that the

logical action is modelling the action of a user selecting a sub menu option,
a tab option, or a tool button inside a toolbox (SelectSubOption method in
the test library). This is the case for Open, Close, and Find in Fig. 4.

– When a logical action with string parameter is mapped to a textbox, we
assume that the action is modelling an event sending text (SendText method
in the test library). This is the case for InsText and FindWhat in Fig. 4.

– When the logical action is an inspection method, has a string as return
value and is mapped to a textbox, we assume that it is modelling the eyes
of the user looking at the content of the textbox, thereby retrieving the text
(GetText method in the test library). This is the case for GetText in Fig. 4.

– When the logical action has neither parameters nor return values, and is
mapped to a button, we assume that physical action is to click the button
(Click method in the test library). This is the case for Cancel in Fig. 4

5.6 Code Generation

Spec Explorer requires that the actions in the model are bound to implemen-
tation methods (in a .Net assembly) with identical signatures (identical return
type, number of parameters, and parameters’ types). To fulfil this requirement,
the tool generates C� code with methods with the same signature as the model
actions, as illustrated in Code 2. For each logical action, a method is generated
with the same signature, calling the method of the GUI Test Library inferred
according to the rules described before, with the logical name of the target GUI
object as an additional parameter.

#region automatically generated code

class GeneratedCode{

void LaunchNotepad(){

LoadXMLObjMapping("C:\\temp\\Notepad.xml");

new App(@"Notepad.exe"); }

void Open() { UserEvents.SelectOption("Notepad.Open"); }

void InsText(string p0) { UserEvents.SendText("Notepad.Text",p0); }

string GetText() { return UserEvents.GetText("Notepad.Text"); }

//...

} #endregion

Code 2. Excerpt of the code generated automatically for the Notepad example

The start function launches the application and reads the information map-
ping logical to physical objects from the GUI object mapping file (in Fig. 3).

A Model-to-Implementation Mapping Tool 461

6 Test Execution

As soon as the mapping code is constructed, compiled into a library, a reference
to this library added to the Spec Explorer project, and the test cases are gener-
ated, the test cases can be executed autonomously without user intervention.

Lets assume we have a deterministic model. Then, each test case consists of
a sequence of steps. For each step, a specification action and its related imple-
mentation method are executed in locked step mode (e.g. the Close() method
in Fig. 6). At the implementation level, each method makes a call to a method
defined in the generic GUI test library (e.g. Click() in Fig. 6) that interacts
with the GUI AUT simulating the user actions. The probe actions (with the Get

prefix) get information about interaction objects properties that are compared
with the expected values obtained from the specification. The execution stops
when inconsistencies are detected.

Fig. 6. Test execution

In GUI testing, inconsistencies between the specification and the implemen-
tation can arise for several reasons:

1. the model is trying to act on a control that is not enabled or cannot be
found; or

2. the model is trying to act on a window that is not reachable or is not opened
(e.g., a modal dialog is open and the window we want to reach is behind
that dialog);

3. the expected result was not displayed (e.g., expected content of a text box).

During the testing of Notepad, we discovered one sequence of actions which
leads to an inconsistency between our intuitive model and the actual Notepad
application:

462 A.C.R. Paiva et al.

1. Type text.
2. Search for text using the find dialog (Ctrl-F). Close the dialog.
3. Open the replace dialog (Ctrl-H). Close the dialog.
4. Press the F3 key (shortcut for “Find Next”).

Then Notepad will search backwards instead of forwards. This is a sequence
of events that manual test would probably miss since it is not a common scenario.

7 Related Work

Today, many tools exist to develop GUI applications visually, but they do pro-
vide neither support for specifying or modelling GUIs including their functional
behaviour on a higher abstraction level nor for testing them in an effective way.
Yet, testing GUIs represents a significant amount of overall testing efforts. To
overcome this discrepancy, several kinds of testing tools were developed. These
tools can be classified into capture/replay, random input testing, unit testing
frameworks, and model-based.

With capture/replay tools, the tester builds a test script by interacting with
the GUI while his actions are recorded for later replay. This kind of tools
shifts the testing activity to the final phases of the software development pro-
cess since they can be only used when the GUI, or part of the GUI, is al-
ready constructed. Also, these tools do not provide any support to evaluate
the test script constructed according to coverage criteria. Examples of these
tools are WinRunner (www.mercury.com) and Rational Robot (www.ibm.com).
Changes to the implementation may require the recapturing of all affected test
scripts.

The goal of random input testing tools is to crash the system under test.
They generate test cases randomly and ignore any unexceptional outputs of
the system. These tools cannot detect incorrect behaviour, but they are the
most cost-effective for finding defects that crash the system. Panorama C/C++
(www.softwareautomation.com) is an example of this category.

Another possible approach is to program the test cases. Frameworks like
JUnit (www.junit.org) and NUnit (www.nunit.org) are of great help in organiz-
ing and executing test cases, particularly for API testing, but not in generating
those tests. In the case of GUI testing, many bugs can only be uncovered through
particular sequences of actions, which might arise in the daily use of the GUI.
Unit tests however are usually a few hand-written sequences of actions, which
tend to be very short. Thus, there is a high probability to miss these kinds of
errors. Another disadvantage of these tools is the required extra programming
effort.

Model-based testing tools can be used to test conformity between an im-
plementation and the specification. A high level of automation can be achieved
with these tools since the test case generation, the test case execution, and the
comparison of the expected results with actual results can all be automated.

The model is used to generate test cases that fulfil a given coverage criterion.
The techniques used to do it depend on the kind of specification used.

A Model-to-Implementation Mapping Tool 463

Belli, in [1], uses FSMs and regular expressions to model GUIs. He expands
the original model with illegal behaviour and generates test cases that can bring
the system into legal or into faulty states.

Shehady et al., in [8], use Variable Finite State Machines (VFSM) to model
GUIs and to cope with FSM scaling problems. VFSMs are FSMs with an added
condition associated to each transition. The VFSM is converted into a FSM to
generate test cases using the partial W algorithm [9]. The test cases are applied
to the GUI and the results obtained are compared with the results expected.
The comparison is performed at the end of the test case execution so that, even
if the inconsistencies are found at the beginning of the test cases, the execution
of an entire case is required.

Memon et al., in [10], use hierarchical structures to model GUIs. They define
operators corresponding to user actions. Such low level operators can be com-
bined to form upper levels. A technique based on Artificial Intelligence gets a set
of operators, and an initial and a goal states, to produce a sequence of operators.

In general, when the source code of the software application is available,
white-box testing can be applied by analysing the source code and applying
coverage criteria on the implementation to measure the quality of tests. However,
often source code is not available, and black-box testing must be performed. In
these cases, using model-based testing allows to apply coverage metrics on the
model as a quality measurement. Although model-based testing can have many
advantages like the automatic generation of test cases, it also often suffers from
the gap between the modelling paradigm and the implementation interface. In
addition to absent source code, often the access to the actual functionality of
the software application is barred, in our case by a GUI that represents the only
interface to the software.

The tool presented in this paper overcomes these limitations of black-box
testing GUIs with the automatic generation of the mapping code that allows
interacting with a software application.

8 Conclusions and Future Work

We have presented a tool which reduces the effort to test applications through
their GUI based on a formal specification in Spec�. This tool is an extension of
the Spec Explorer tool, developed by Microsoft Research that already supports
the modelling, test case generation, and test case execution. An overview of the
GUI model and test process is provided and the components of Spec Explorer
as well as the components of the tool extensions are described.

Our tool has some limitations: it doesn’t deal with internationalization i.e.
variable name mappings; it only addresses Windows applications; and it is not
possible to test external effects like output of a printer.

Spec Explorer together with the GUI mapping tool can be used to test ex-
isting software applications, or it can be used to assist the development of new
software applications and to test them through their GUI. In the former case,
a reverse engineering process could be useful to construct a model, or part of

464 A.C.R. Paiva et al.

the model, of an arbitrary application exhibited by its GUI. In the latter case,
the specification of the application (or part of the application) is constructed
and afterwards the application is implemented and tested using automatically
generated mapping code.

We used the Notepad application as a running example to illustrate our
approach, and we found an inconsistency with the intuitive model.

Our future work will be to derive a technique to reverse engineer an existing
GUI application by automatic exploration through the application’s GUI and
automatic generation of a Spec� model, in a way similar to the one presented by
Memon in [11]. Such a model will usually not be complete and only capture the
coarse structure of the application; nevertheless, it can serve as a starting point
for further manual modelling. This will allow us to apply our approach to bigger
application without the effort of constructing their entire models from scratch.

References

1. F. Belli, “Finite State Testing and Analysis of Graphical User Interfaces”, ISSRE
2001 - The 12th International Symposium on SW Reliability Engineering, Hong
Kong, 2001.

2. C. Campbell, W. Grieskamp, L. Nachmanson, W. Schulte, N. Tillmann, and M.
Veanes, “Model-Based Testing of Object-Oriented Reactive Systems with Spec
Explorer”, Microsoft Research MSR-TR-2005-59, May 2005.

3. M. Barnett, K. R. M. Leino, and W. Schulte, “The Spec� Programming System:
An Overview”, CASSIS’04 - International workshop on Construction and Analysis
of Safe, Secure and Interoperable Smart devices, Marseille, 2004.

4. A. C. R. Paiva, N. Tillmann, J. C. P. Faria, and R. F. A. M. Vidal, “Modeling and
Testing Hierarchical GUIs”, ASM 2005 - 12th International Workshop on Abstract
State Machines, Paris - France, 2005.

5. Y. Gurevich, “Evolving Algebras 1993: Lipari Guide,” in Specification and Valida-
tion Methods, E. Brger, Ed.: Oxford University Press, 1995, pp. 9-36.

6. W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes, “Generating Finite State
Machines from Abstract State Machines”, ISSTA 2002, International Symposium
on SW Testing and Analysis, 2002.

7. A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage Criteria for GUI Test-
ing”, 8th European SW Engineering Conference (ESEC) and 9th ACM SIGSOFT
International Symposium on the Foundations of SW Engineering (FSE-9), 2001.

8. R. K. Shehady and D. P. Siewiorek, “A Method to Automate User Interface Testing
Using Variable Finite State Machines”, 27th International Symposium on Fault-
Tolerant Computing, 1997.

9. S. Fujiwara, G. v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi, “Test
selection based on finite state models”, IEEE Transactions on SW Engineering,
vol. 17, pp. 591-603, 1991.

10. A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI Test Case Gen-
eration Using Automated Planning”, IEEE Transactions on SW Engineering, vol.
27, 2001.

11. A. Memon, I. Banerjee, and A. Nagarajan, “GUI Ripping: Reverse Engineering of
Graphical User Interfaces for Testing”, WCRE2003 - The 10th Working Conference
on Reverse Engineering, Victoria, British Columbia, Canada, 2003.

ClawZ: Cost-Effective Formal Verification for

Control Systems

M.M. Adams and P.B. Clayton

Systems Assurance Group, QinetiQ
m.adams@eris.qinetiq.com, p.clayton@eris.qinetiq.com

Abstract. Control system software now plays a key role on many plat-
forms, including aircraft and automobiles. However, as control system
software has been performing increasingly complex tasks, the associated
software development, maintenance and certification costs have escalated
significantly. The ClawZ toolset is dedicated to the formal verification of
control system software. By using some novel ideas, it achieves the high-
est levels of assurance whilst not suffering from the prohibitively high
costs normally associated with applying formal verification. It has been
successfully used in the certification of the Flight Control Computer of
the Eurofighter Typhoon aircraft. This paper outlines the toolset, and
explains how the approach used to build it enables formal verification
costs to be dramatically reduced whilst not compromising on soundness.

Keywords: industrial formal verification, refinement, formal proof, Z,
ProofPower, safety-critical software, real-time software, control systems,
Simulink, Ada, Eurofighter Typhoon.

1 Introduction

1.1 Control Systems

A control system is a mechanism for controlling physical attributes of a platform,
according to user inputs and measured physical attributes of the platform and its
environment. Control systems occur in a wide range of platform domains, from
higher-end domains such as aircraft, automobiles and nuclear and chemical plant,
down to simpler lower-end domestic domains such as central heating systems and
washing machines.

Over the past 30 years, digital control systems have replaced analogue elec-
tronic control systems in virtually all domains. This has given considerable scope
for making control systems more sophisticated, and control systems in higher-
end domains have indeed been getting increasingly complex. For example, Flight
Control Computers (FCCs), that control an aircraft’s flight surfaces to give it
stability and manoeuvrability in the air, have become increasingly sophisticated
in fighter aircraft, to achieve improved manoeuvrability and a reduction in the
pilot’s workload.

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 465–479, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

466 M.M. Adams and P.B. Clayton

However this increased complexity comes at a cost. Many of these higher-end
domains, such as aircraft and nuclear plant, are safety-critical and thus plat-
forms have to be developed to high standards and then certified to be safe. The
costs of developing, maintaining and certifying control system software for these
platforms have escalated so much that together they can now represent a large
proportion of overall platform costs. Other domains, such as automobiles, involve
high-volume products, and reliability problems with safety-related features are
requiring expensive product recalls, that are cutting deep into manufacturers’
low profit margins.

1.2 Simulink

The use of graphical control system design tools is helping to improve the sit-
uation. Instead of designing control systems on paper and then only finding
problems further down the line during software testing, control system design
engineers are able to simulate the behaviour of the control system at the design
stage, finding problems with the functionality and performance. This saves on
expensive iterations of the software development cycle. The most widely used
graphical control system design tool is Simulink [1].

1

Out1

1/z

Unit DelayProduct2

Multiport
Switch

min

MinMax2

min

MinMax1

max

MinMax

uint8

Data Type
Conversion

1

Constant8

2

Constant5

1

Constant4

3.2

Constant3

2

In2

1

In1

Fig. 1. The Simulink diagram for Pump

In Simulink, a control system specification is expressed in a graphical form
called a Simulink diagram. A Simulink diagram consists of a collection of inputs,
outputs and blocks, all connected by wires. Each block also has its own inputs
and outputs, and is either a basic block, corresponding to a primitive operation
such as sum or multiplication, or a subsystem block, corresponding to a sub-
diagram. Opening a subsystem block will reveal the sub-diagram and its internal
blocks and wires. See Figure 1 for a simple example of a Simulink diagram.

ClawZ: Cost-Effective Formal Verification for Control Systems 467

1.3 Formal Verification

Formal verification often plays an important role in the certification of safety-
critical platforms. This is used because it provides very high levels of assurance
for finding certain important classes of software error. However, the tools re-
quired for performing formal verification are normally prohibitively expensive to
use. This is due to two main factors: they require highly-skilled expert analysts,
and they require a high degree of user interaction. The costs of using formal
verification tools are so high that formal verification, despite the useful extra
assurance it can offer, is rarely performed outside safety-critical domains, and,
even within safety-critical domains, mainly only for the certification of software.

ClawZ is a toolset for the formal verification of software1. It differs from other
formal verification toolsets in that it is dedicated to a specific verification domain.
In particular, it is dedicated to the verification of control system software that
has been specified in Simulink and implemented in Ada. By taking advantage of
this fact, the toolset enables analysts to interact with it at a more abstract level
than with most formal verification toolsets. This enables the analyst’s expertise
to be reduced, whilst at the same time considerably reducing the amount of user
interaction required. This can result in dramatically reduced formal verification
costs. Despite the cost savings, the assurance gained by using ClawZ has in no
way been compromised, and in fact it achieves even higher assurance than many
existing formal verification toolsets. In principle, the approach used to build the
toolset is equally applicable to other verification domains.

ClawZ has been successfully used in the certifications of three successive
versions of Eurofighter Typhoon’s FCC, one of the most advanced FCCs yet
produced. Its core control system functionality is implemented in 35,000 non-
comment, non-blank lines of Ada source code. Analysts were typically able to
formally verify around 50 to 80 lines of source code per day each. Although an
accurate comparison is difficult due to the differing nature of individual verifi-
cations, this clearly compares favourably with a typical 10 to 15 lines of source
code per day for using other toolsets in other industrial formal verifications (for
example, see [2, Overview, page 16]).

1.4 Overview

This paper outlines the ClawZ toolset, and explains how the approach used
to build the toolset enables formal verification costs to be dramatically reduced,
whilst not compromising on soundness. Rather than by appealing to a theoretical
framework, this claim about cost savings is backed up by pointing to industrial,
albeit anecdotal, experience of using the toolset.

In Section 2, an overview is given of how a ClawZ analysis is performed from
the perspective of the analyst. In Section 3, the architecture of the ClawZ toolset
is explained, as well as how this architecture ensures a high level of assurance.
Conclusions are drawn in Section 4.
1 The name ClawZ was previously used to refer to one component of the toolset, which

is now called Z Producer.

468 M.M. Adams and P.B. Clayton

procedure PUMP (COND : in REAL T;

STATE : in out REAL T;

GO : out REAL T)

is

TMP : REAL T;

begin

GO := STATE;

if COND > 1.0 then

TMP := 1.0;

else

TMP := COND;

end if;

if PUMPS GO < 2.0 then

STATE := 2.0 * TMP;

elsif PUMPS GO < 3.0 then

STATE := COND * TMP;

else

STATE := TMP;

end if;

end PUMP;

Fig. 2. The Ada subroutine implementation for Pump

2 Using ClawZ

In this section, an overview is given of how a ClawZ analysis is performed from
the perspective of the analyst. The intention is to give an impression of the
analyst tasks involved in using the toolset, and of the required degree of ana-
lyst interaction and expertise. This should give the reader an understanding of
how formal verification costs are so significantly reduced when compared with
traditional formal verification toolsets.

Throughout this section, statistics and screen shots are used to help give
a feel for the degree of analyst interaction required in a typical analysis. The
quoted statistics are for the analysis of a typical subroutine of 80 non-comment,
non-blank lines of Ada source code. Any references to computer execution time
relate to using a 2.2GHz Pentium IV processor with 1GB of RAM. The statistics
are rough figures, intended as a guide only, and are based on experiences from
the industrial analyses of Typhoon’s FCC as well as numerous other smaller
analyses. The true figures will vary, depending on the peculiarities of the system
being analysed. The screen shots are from the analysis of a non-trivial implemen-
tation of the Simulink diagram in Figure 1. See Figure 2 for this implementation,
written in 20 lines of Ada. Note that the reader is not expected to understand
the detail of these screen shots.

A ClawZ analysis verifies that a Simulink specification of a control system
is correctly implemented in Ada, and involves performing a separate analysis
for each Ada subroutine that implements part of the Simulink diagram (called

ClawZ: Cost-Effective Formal Verification for Control Systems 469

a control system subroutine). Note that the Ada source code may contain some
subroutines that only perform tasks outside the scope of what is specified in the
Simulink diagram. Such subroutines are not covered by a ClawZ analysis. Also
note that a ClawZ analysis just covers core functional correctness of the source
code, and does not cover classes of error such as run-time errors (e.g. overflow
or divide-by-zero) or program termination.

The analysis of a given subroutine breaks down into three principal stages:
specification, witnessing and interactive proof. The analyst skills required differ
between the stages, and analysts should be assigned to stages according to their
skill sets. The underlying mathematical model used in ClawZ is expressed in
the Z notation [3], and all analysts are required to be familiar with reading this
notation.

The graphical user interface to the ProofPower theorem prover [4], called
xpp, is used throughout an analysis, for viewing and editing Z, and for giving
interactive feedback during the witnessing and interactive proof stages. It also
helps to use Simulink, in conjunction with the toolset, to view Simulink diagrams,
although strictly speaking this is not necessary if a printout can be obtained.

2.1 The Specification Stage

In the specification stage, the Ada subroutine’s specification components are
created. These capture the intended behaviour of the subroutine in terms of the
Simulink diagram and the input and output parameters of the Ada subroutine.

Firstly, the analyst produces the subroutine’s block list, that lists exactly
those blocks in the Simulink diagram that are intended to be implemented by
the Ada subroutine. An Ada subroutine will often correspond to a single Simu-
link subsystem block, in which case it is sufficient for the analyst simply to
identify just this one Simulink block, although sometimes it is necessary to iden-
tify numerous blocks. The collection of the parts of the Simulink diagram that
correspond to the block list is called an artificial subsystem block, since it can
be considered to have its own inputs, outputs and internal blocks although it
does not itself necessarily correspond to an actual Simulink subsystem block.
The process of identifying the subroutine’s blocks can be helped by examining
the software’s design documentation.

Secondly, the analyst defines a data refinement retrieve relation between all
of the artificial subsystem’s inputs and outputs, and corresponding input and
output parameters of the Ada subroutine. This will often be a simple one-to-one
mapping. See Figure 3 for an example data refinement relation. The left-hand
sides of the equalities in the data refinement relation refer to Simulink wires,
and the right-hand sides refer to Ada variables.

Finally, the analyst may have to identify a precondition for the Ada sub-
routine. Usually a subroutine will assume nothing about the variables it reads.
However, some subroutines make assumptions, and these need to be explicitly
identified as preconditions in order to complete the subroutine’s verification.
These usually only become apparent during the witnessing stage, and need to
be justified once identified. Often a subroutine’s precondition will be established

470 M.M. Adams and P.B. Clayton

Fig. 3. CONTROLoPUMP Interface, the data refinement relation for Pump

in another control system subroutine. Such a precondition will then become a
postcondition of the subroutine that establishes it.

The specification stage will typically require a total of around 30 to 70 lines
of input from the analyst. This will typically take around half an hour to an
hour. The analyst performing the specification stage needs to be able to read
Simulink diagrams and to be aware of the subtleties of writing a formal specifi-
cation.

The important point to note about this stage is that there is no need for the
analyst to laboriously construct a detailed specification of an Ada subroutine’s
behaviour. The analyst just provides the key components of the specification,
and the toolset will fill out the details automatically (see Section 3.1).

2.2 The Witnessing Stage

The witnessing stage takes up the bulk of the analysis effort. In this stage, the
analyst constructs a witness script, which justifies in detail how the Ada sub-
routine body correctly implements its specification. This is done by identifying
correspondences between wires in the Simulink diagram and the values of Ada
variables at specific points in the subroutine’s body.

The analyst constructs the witness script by interacting with a tool called
RSG, via the xpp interface. See Figure 4 for an example of an interactive RSG
session. The witness script is edited in the upper window, and is entered for
interactive RSG feedback, which appears in the lower window.

ClawZ: Cost-Effective Formal Verification for Control Systems 471

Fig. 4. The interactive session from the witnessing stage for Pump. The open if com-

mand is about to be entered, for witnessing the second Ada if statement in Figure 2.

A witness script needs to account for every Simulink wire in the subroutine’s
artificial subsystem in terms of values of Ada variables, called witnesses. RSG
ensures that this is done by maintaining a wavefront of wires in the Simulink
diagram, where wires behind the wavefront have already been accounted for. The
user is prompted to supply a witness for any wire on the current wavefront. RSG
enables the analyst to step through the subroutine body to reach an appropriate
point for supplying a given witness. When a wire’s witness has been supplied,
the wavefront advances along that wire. A witness script is complete when the
wavefront has crossed the entire diagram, from inputs to outputs.

Often, a suitable witness is self-evident because the Ada source code closely
mirrors the detail of the Simulink diagram, in which case RSG will supply an

472 M.M. Adams and P.B. Clayton

appropriate suggested witness, derived by symbolic execution of the specfication.
However, there will usually be a few witnesses that the analyst has to construct
manually. This will be when the Ada source code has departed from the detail
of the Simulink diagram, perhaps in order to achieve greater efficiency.

A witness script for a typical 80 line subroutine will be around 100 to 150 lines
long. This will typically take around two to three hours to construct. However,
note that the witnessing stage is not necessarily complete once a witness script
has first been completed.

Once a witness script has been completed, the analyst then submits it to
the toolset for processing and waits for the results. During this time, the toolset
is generating a set of Z conjectures to be proved, called verification conditions,
and attempting to prove them automatically. If all these verification conditions
are provable, then the Ada subroutine meets its specification. The proof side of
the processing is carried out by a tool called Supertac. After a wait of typically
around a minute or two, the toolset reports back the results in the form of the
total number of verification conditions generated and the total number that have
been proved automatically. There tends to be almost one verification condition
generated per line of source code analysed, and so a typical 80 line subroutine
will have around 50 to 70 verification conditions.

If all have been proved automatically, then the analysis for that subroutine is
complete and the subroutine has been shown to correctly implement its specifica-
tion. If there are any unproved verification conditions, the analyst must examine
the proof output file. In this file, any unproved verification conditions have been
simplified. Supertac ensures that a simplified verification condition will be prov-
able if and only if its original unsimplified verification condition is provable. A
simplified verification condition will typically be 5 to 15 lines of Z.

On examining the proof output file, the analyst must grade each simpli-
fied verification condition. If every verification condition is graded as provable,
then the subroutine is passed on to the interactive proof stage of the analysis.
Otherwise, the analyst must determine why there are unprovable verification
conditions. This may be due to an analyst error, either in constructing the sub-
routine’s specification components or its witness script. If this is the case, then
the analysis is iterated from the relevant stage. However, if a verification condi-
tion is unprovable, but this is not due to an analyst error, then a genuine error
has been found, either in the Simulink diagram or its Ada implementation.

In practice, most unproven verification conditions will be due to an error in
the witness script. The simplified verification condition will contain information
about the part of the witness script it relates to, to help the analyst locate the
error. The next most common explanation for an unproven verification condition
is that it is provable, but Supertac has not managed to prove it completely.
Supertac will complete the proof of around 95% to 98% of provable verification
conditions. A typical 80 line subroutine will have all but one or two of its provable
verification conditions completely proved by Supertac.

There will typically be two to four iterations before all the witnessing errors
are ironed out, typically taking half an hour each. The most complex subroutines

ClawZ: Cost-Effective Formal Verification for Control Systems 473

to analyse will be those that deviate from the structure of the Simulink diagram
in many ways, and it will usually take many more iterations to reach a correct
witness script for these.

To perform the witnessing stage effectively, the analyst needs to be able to
read Simulink diagrams and Ada programs, and to have a good knowledge of
how to interact with RSG. These are all skills that are quickly picked up by
university software engineering graduates. However, the analyst also needs to be
able to assess the provability of Z conjectures, which is a less common skill.

There are two important points to note about this stage. Firstly, due to the
relatively abstract level of interaction with RSG, it involves considerably less
effort than with the corresponding activity in other formal verification toolsets.
The analyst does not have to construct a detailed refinement script, or be fa-
miliar with all the subtleties of algorithmic program refinement. Secondly, due
to Supertac’s high level of proof automation, there can be an easy separation
of duties between the witnessing analyst and the interactive proof analyst. The
analyst performing the witnessing stage does not have to be familiar with the
highly-skilled and time-consuming task of interactive formal proof, and can usu-
ally produce a correct witness script, albeit after a few iterations, before any
remaining unproved verification conditions are passed on for interactive proof.

2.3 The Interactive Proof Stage

The interactive proof stage involves using the xpp interface to construct an
interactive proof script for every remaining unproved verification condition for
the subroutine. These verification conditions will already have been graded as
provable during the witnessing stage.

The verification conditions are proved using the ProofPower theorem prover.
Interactive proofs are carried out within a proof environment that closely cor-
responds to HOL’s subgoal package [5]. A proof involves the analyst applying a
series of proof tactics to a proof goal. The analyst can make the proof branch into
several parts, called subgoals. A proof is complete when all subgoals have been
reduced to true. As well as having access to ProofPower’s tactics for reasoning
about Z, the analyst also has access to specialised tactics used in the implemen-
tation of Supertac. Occasionally, the analyst performing the interactive proof
will notice that a verification condition has been wrongly graded as provable, in
which case it will be passed back to the witnessing stage for regrading.

This stage is the most skilled stage to perform, and a thorough knowledge
of ProofPower’s proof tactics is required. It typically takes 15 to 30 minutes
to prove each simplified verification condition, although some can take several
hours. However, because 95% to 98% of the verification conditions have been
automatically proved, and those that have not have been largely simplified, in-
teractive proof takes up the smallest proportion of the overall analysis effort.

The important point to note about this stage is that, due to Supertac’s high
level of proof automation, very little of the highly-skilled activity of performing
interactive proof is necessary. The amount of interactive proof required is less
than a tenth of what is typically required in other formal verificaiton toolsets.

474 M.M. Adams and P.B. Clayton

3 The ClawZ Approach

In this section, the components of the ClawZ toolset and how they fit together
are described in more detail. As well as explaining how the toolset works, the
intention is to give an understanding of how the approach used to build the
toolset can be applied to other verification domains.

3.1 The ClawZ Architecture

The ClawZ toolset is composed of six tools: Z Producer [6,4], RSG, DAZ2 [7,4],
Supertac, ProofPower [4] and CPS. The central tool in the toolset is DAZ. This
is a tool for performing formal refinement between a Z specification and Ada
source code. All the other tools revolve around DAZ. Z Producer translates
a Simulink diagram into a Z specification, ultimately used by DAZ. RSG is
used as an interactive tool for creating a witness script, but its main role is
to translate the witness script into a DAZ refinement script. The Supertac and
ProofPower theorem provers are used to prove verification conditions that are
output from DAZ as a result of processing a refinement script. Finally, CPS is
ClawZ’s Unix command line environment, and acts as a front end for much of
the analyst interaction with the toolset, as well as performing house keeping
tasks. See Figure 5 for a diagram illustrating the architecture of the toolset.

The refinement supported by DAZ is loosely based on Carroll Morgan’s al-
gorithmic refinement calculus [8]. A refinement script starts with a specification
statement for a block of source code. The specification statement defines what
the source code block is supposed to do. It consists of three parts: a frame, that
lists the variables that are allowed to change in the source code block; a precon-
dition, that can be assumed about the values of variables on entry to the block;
and a postcondition, that must be upheld on exiting the block. The pre- and
postconditions are expressed in Z.

The specification statement can then be refined to source code under a series
of refinement steps. In intermediate refinement steps there will be a mixture of
source code and specification statements. Each refinement step results in verifica-
tion conditions being generated by DAZ. DAZ can output the set of verification
conditions and the Ada source code resulting from the refinement. Every veri-
fication condition of every refinement step must be proved in order to establish
that the source code meets its specification.

Before a subroutine can undergo interactive witnessing with RSG, it requires
a specification statement. This is constructed using the components supplied
by the analyst during the specification stage (see Section 2.1). The subroutine’s
block list is read in by CPS, which uses it to construct an input command for
Z Producer. Z Producer then outputs a Z translation of the artificial subsystem
corresponding to these blocks. CPS then combines this Z artificial subsystem
with the subroutine’s data refinement relation and any preconditions and post-

2 DAZ has also been known as the Compliance Tool and the Compliance Notation
Tool.

ClawZ: Cost-Effective Formal Verification for Control Systems 475

Data refinement
relation

Subroutine
pre/postcondition

Block list

Subroutine
specification

Witness script

Verification
conditions

Refinement script

Ada output file

source code
Ada subroutine

proof script
Interactive

A X B
Tool X takes A
and produces B

A influences analyst
in production of B

BA

Key

automatic tool output

written by analyst

input

Z Producer

Simulink
diagram

DAZ

Supertac/ProofPower

Proof results

RSG

Fig. 5. The architecture of the ClawZ toolset

476 M.M. Adams and P.B. Clayton

conditions associated with the subroutine to form a specification statement for
the subroutine. This is all done in the execution of one CPS command.

Once a witness script has been produced by the analyst (see Section 2.2),
CPS passes it, the subroutine’s specification statement and the subroutine’s
Ada source code to RSG, which results in a DAZ refinement script being gener-
ated. For reasons explained in Section 3.2, this refinement script outputted by
RSG has the starting point, i.e. the subroutine’s specification statement, miss-
ing. CPS then combines the subroutine’s specification statement with RSG’s
output to form a complete refinement script. This complete refinement script is
then submitted to DAZ, which results in a set of verification conditions and an
Ada output file being generated. For reasons explained in Section 3.2, CPS then
checks that the Ada subroutine output from DAZ is syntactically equivalent to
the original Ada subroutine source code. Supertac is then run on every verifica-
tion condition generated. Finally, CPS summarises the results of the Supertac
run to the screen. Again, this is all done in the execution of one CPS command.

Before the ClawZ toolset was invented, a few parts of control systems were
analysed by manually writing DAZ refinement scripts and performing all formal
proofs interactively by using ProofPower (but still using Z Producer to trans-
late Simulink), and so it is possible to compare the times taken. The speed up
achieved by using ClawZ is impressive. The refinement script for a typical sub-
routine would take around one month to produce, and the verification conditions
would take around one month to prove. Using ClawZ this is all done in about a
day, and can mostly be performed by an analyst with considerably less expertise.
This speed up of 50 times is not wholly representative, since there was probably
considerable scope for improving the manual process. However, it gives an idea
of the order-of-magnitude improvement that has taken place.

The sizes of the intermediate objects passed between the tools can vary con-
siderably, but tend to be large. For a typical 80 line Ada subroutine, the refine-
ment script outputted by RSG tends to range from 1,000 to 10,000 lines. Note
that, in terms of numbers of lines, the witness script written by the analyst is
around 10 to 50 times shorter than the resulting refinement script. Also note that
the witness script is considerably more abstract than the refinement script, and
so less susceptible to tedious errors in detail. Individual verification conditions
tend to range from 100 to 1,000 lines of Z.

For the examples that can be compared, these objects tend to be around
4 times the size of those produced in the pre-ClawZ days. The reason for the
increase in size is ultimately due to the systematic way in which RSG works,
where automation is introduced at the expense of some conciseness. Raw refine-
ment scripts and verification conditions are never seen by the analyst, and so
conciseness is not an issue unless it impacts significantly on execution time.

The success of Supertac in being able to prove such huge verification condi-
tions automatically is down to two main factors. The first is that the verification
conditions are rarely as complicated as they might first seem, and much of the
proof of a verification condition involves relatively trivial reductions. However,
it would be insufficient for Supertac to only perform such trivial reductions,

ClawZ: Cost-Effective Formal Verification for Control Systems 477

since the proofs of most verification conditions would still require some complex
reasoning taking several hours to perform interactively.

The second main factor is that Supertac is designed with the context in
which these verification conditions are generated in mind. Z Producer creates Z
specifications that follow a well defined structure, computer programs for control
systems tend to be written in similar ways, RSG generates refinement scripts in
a highly systematic way and DAZ generates verification conditions according to
a strict set of rules. It was possible to take all of these conventions into account
when designing Supertac.

So, in summary, the architecture of ClawZ revolves around the classic formal
verification toolset model of using a translator, a formal refinement tool and a
theorem prover. The way that ClawZ differs is that it incorporates additional
tools, in particular RSG and Supertac, that shield the analyst from tedious
details normally associated with formal verification, and so enable analyst input
and expertise to be dramatically reduced. These additional tools are able to
achieve this by being dedicated to a specific verification domain.

3.2 Soundness

Formal verification tools are useful for providing positive evidence that soft-
ware correctly meets its specification, as well as for finding errors. This positive
evidence is very important if a toolset is being used for the certification of safety-
critical software. Thus it is important that there is a high degree of confidence
in the soundness of a formal verification toolset.

The success of ClawZ in being able to analyse software at relatively low cost is
almost entirely due to the RSG and Supertac tools. However, equivalents of these
tools do not exist in other formal verification toolsets, and they are implemented
in several thousand of lines of source code. A concern might be that errors in
RSG or Supertac may compromise the soundness of the toolset.

RSG, however, cannot introduce unsoundness to ClawZ. This is because all
that RSG does, ultimately, is produce a refinement script. The way in which the
refinement script was constructed does not affect soundness. If we assume that
DAZ itself is sound, then it is impossible for anything, including RSG or the
witnessing analyst or someone manually writing a refinement script, to fool it.
DAZ will only produce verification conditions that are all provable if the initial
specification statement in the refinement script is correctly implemented by the
refined source code in the refinement script.

It might be possible to fool the analyst, however, by feeding DAZ a refine-
ment script that has an initial specification statement that does not reflect the
analyst’s specification, or a refinement script that refines to source code different
from the original. To give a pathological example, regardless of the analyst in-
put in the specification and witnessing stages, DAZ could be presented with an
initial specification statement that has a postcondition of “true” that is refined
to a “null” Ada statement. This would result in all the verification conditions
being provable, regardless of whether the original source code met its intended
specification. However such situations cannot happen due to RSG, since it is

478 M.M. Adams and P.B. Clayton

CPS, and not RSG, that inserts the initial specification statement, and since
CPS checks that the Ada source code resulting from the refinement is syntacti-
cally (and thus semantically) equivalent to the original source code. Thus RSG,
by the way that it is used, cannot introduce unsoundness to ClawZ.

Supertac, too, cannot affect the soundness of ClawZ, but for different reasons.
Supertac is built on top of the ProofPower theorem prover, which is an LCF-
style theorem prover [9]. A theorem prover is said to be sound if it is only
possible to prove conjectures that are true. Great care is taken to make theorem
provers sound. However, they are large programs that perform highly complex
manipulations. Given the subtleties of mathematics, it is very difficult to ensure
that nowhere in the large theorem prover program is a mistake that introduces
unsoundness. There are numerous steps that can be taken to reduce the risk of
this, but the most effective is to make the theorem prover LCF-style [10].

In the implementation of an LCF-style theorem prover, a special data type
is reserved for theorems, i.e. conjectures that have been proved. Strong data
typing of the programming language is then used to ensure that theorems can
only be constructed from a kernel of operations, called primitive inference rules.
New operations to prove conjectures can be defined outside the kernel, but they
must ultimately be implemented in terms of the primitive inference rules. Thus
an LCF-style theorem prover is sound so long as its primitive inference rules are
sound and the small amount of source code implementing these is correct.

ProofPower’s primitive inference rules are based on the HOL logic system [5].
This is the most widely used logic system used for LCF-style theorem provers,
and is one of the simplest, and so it is perhaps the best logic system to use to
minimise the risk of unsoundness. Thus ProofPower, being a HOL-based, LCF-
style theorem prover, has a very high pedigree for soundness. Also, any new proof
operations built on top of ProofPower cannot introduce unsoundness, because
they must ultimately be defined in terms of primitive inference rules. So, since
Supertac is built on top of ProofPower, which is an LCF-style theorem prover,
it cannot introduce unsoundness.

Thus the additional tools incoporated into ClawZ, i.e. RSG and Supertac,
that differentiate ClawZ from traditional formal verification toolsets and enable
it to be used so much more cost-effectively, are incorporated in such a way that
cannot compromise soundness of the overall toolset.

4 Conclusions

Control systems play an important role in modern society, and the increasing
complexity of their software is causing the associated development, maintenance
and certification costs to escalate. The ClawZ toolset is dedicated to the formal
verification of control system software, and has been successfully applied to the
industrial formal verification of Eurofighter Typhoon’s FCC at much reduced
certification costs when compared with other formal verification toolsets. ClawZ
adapts the classic formal verification toolset architecture by including two novel
components, RSG and Supertac, that are key to achieving its effectiveness.

ClawZ: Cost-Effective Formal Verification for Control Systems 479

RSG enables the analyst to construct a relatively abstract witness script
instead of the refinement script that is required with existing formal verifica-
tion toolsets. This enables the costly task of manual program refinement to be
replaced by a much simpler, although still non-trivial, task. Supertac highly au-
tomates the formal proof, completing over 95% of verification condition proofs
entirely automatically, and simplifying the remainder for interactive proof. This
greatly reduces the costly task of interactive formal proof, and enables the wit-
ness script construction and interactive proof roles to be easily separated.

By being tailored to a specific verification domain, namely the verification
of control system software specified in Simulink and implemented in Ada, these
two components dramatically reduce the amount of analyst input and expertise
required to perform formal verification. Furthermore, they are incorporated into
the toolset in such a way that guarantees they cannot introduce unsoundness.

Although the toolset enables highly productive verification as it stands, there
is still significant scope for improvement to help further reduce analyst time and
expertise. Both RSG and Supertac could provide more feedback to the analyst
to help in tracking down analyst errors more quickly. Also, Supertac could be
enhanced to further automate verification condition proof.

There is nothing about this approach to building a formal verification toolset
that limits it to this specific verification domain. Such an approach could equally
be used to verify systems implemented in other programming languages, or spec-
ified in other design notations. Also, the scale of the cost reductions brought
about by ClawZ opens up the prospect of much wider use of formal verification,
including during development, and perhaps even for non safety-critical code.
This approach could therefore have a profound impact on the use of formal
verification in industrial applications.

References

1. The Mathworks Inc.: Using Simulink. 5th edn. (2002)
2. TA Consultancy Services Ltd.: MALPAS Training Course Notes. 2nd edn. (1995)
3. J.Woodcock, J.Davies: Using Z: Specification, Refinement and Proof. 1st edn.

Prentice Hall (1996)
4. Lemma 1 Ltd. website: www.lemma-one.com.
5. M.J.C.Gordon, T.F.Melham, eds.: Introduction to HOL: A Theorem Proving En-

vironment for Higher Order Logic. Cambridge University Press (1993)
6. C.O’Halloran, A.Smith: Verification of Picture Generated Code. In: 14th IEEE

ASE, IEEE Computer Society Press (1999)
7. C.O’Halloran, A.Smith: Don’t Verify, Abstract! In: 13th IEEE ASE, IEEE Com-

puter Society Press (1998)
8. C.Morgan: Programming from Specifications. 2nd edn. Prentice Hall (1994)
9. M.Gordon, A.Milner, C.Wadsworth: Edinburgh LCF – A Mechanical Logic of

Computation. In: LNCS 78, Springer-Verlag (1979)
10. J.Harrison: Metatheory and Reflection in Theorem Proving: A Survey Critique.

Technical report, University of Cambridge Computer Laboratory (1995)

SVG Web Environment for Z Specification

Language

Jing Sun1, Hai Wang2, Sasanka Athauda1, and Tazkiya Sheik1

1 Department of Computer Science,
The University of Auckland, New Zealand

j.sun@cs.auckland.ac.nz

{sath002, fshe009}@ec.auckland.ac.nz
2 Department of Computer Science,

The University of Manchester, United Kingdom
hai.wang@cs.man.ac.uk

Abstract. This paper presents a web environment for the Z formal spec-
ification language using the Scalable Vector Graphics (SVG) technology.
The Z Specification Web Editor (ZSWE) is the first prototype of a web
based graphical editor for the Z specification language. It not only sup-
ports graphical editing and global accessibility for the Z formal specifi-
cations, but also provides model comprehension facilities such as schema
expansion, specification navigation and model querying. This paper out-
lines the requirement, design and implementation of the tool and its
future improvements.

Keywords: Z formal specification language, Web based tool support,
Scalable Vector Graphics.

1 Introduction

Formal methods is defined as mathematically based techniques for the specifi-
cation, development and verification of software and hardware systems [1]. The
well-defined semantics and syntax of formal specification languages make them
suitable for precisely capturing and formally verifying system requirements. Z
is a formal specification language based on set theory and predicate logic [2].
It has been widely used in both industry and academic research for the spec-
ification and verification of software systems. The World Wide Web (WWW)
acts as a promising environment for software specification and design because it
allows sharing design models and providing hyper textual links among the mod-
els. Formal methods like the CafeOBJ system [3] have included an environment
supporting formal specification over the Internet. Schemas using pure Z nota-
tion on the web based on HTML and Java Applet have also been investigated
by Bowen et al. [4] and Ciancarini et al. [5]. Although HTML has been success-
ful in presenting information on the Internet, the lack of content information
and the overburdened use of the display tags have made the efficient retrieval
and exchange of information content more difficult to achieve. In 2001, Sun et
al. proposed an XML/XSL approach in presenting the Z/Object-Z languages

K.-K. Lau and R. Banach (Eds.): ICFEM 2005, LNCS 3785, pp. 480–494, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

SVG Web Environment for Z Specification Language 481

on the web [6]. It uses the XSL Transformation language to translate the XML
form of Z/Object-Z models into HTML for automated browser display. In their
approach, XML has been introduced as an interchange format for document-
ing Z specifications. However, the graphical support of the resulting Z model
display was still restricted on using HTML only. In this paper, we present an
approach of using the Scalable Vector Graphics (SVG) to implement a web based
environment for the Z specification language1. SVG is a World Wide Web Con-
sortium (W3C) recommended language for describing two-dimensional graphics
and graphical applications in XML. It can overcome the poor graphical support
in using HTML for displaying Z specifications on the web. The Z Specification
Web Editor (ZSWE) prototype tool presented in the paper uses the standard Z
Markup Language (ZML) format defined by Utting et al. in 2003 [7]. The ZSWE
tool not only supports true graphical editing for the Z formal specifications, but
also provides model comprehension facilities such as schema expansion, specifi-
cation navigation and model querying. There is some related work in providing
editing facility for the Z notation, such as the functions in Z/EVES, ZETA and
CADiZ. From an editing support point of view, most of those tools only provide
limited editing facility of Z specifications. Compared to our approach, they are
lack of additional model comprehension functions such as specification naviga-
tion and model querying. In comparison with other approaches in presenting
Z models on the web, our SVG prototype tool also provides a better graphical
display and editing supports for Z models over the internet.

The remainder of the paper is organized as follows. Section 2 introduces
background information on Z, ZML and SVG. In section 3, we discuss the var-
ious aspects regarding a specification environment for the Z language. Section
4 presents the architecture design of the web based specification prototype tool
- ZSWE. In section 5, we present some implementation issues of the ZSWE.
Section 6 gives an overview of the prototype tool. Section 7 concludes the paper
and discusses future improvements.

2 Background

2.1 The Z Formal Specification Language

Z [2] is a state-based formal language based on ZF set theory and first-order
predicate logic. It is specially suited to model system data and state changes. A
Z specification typically includes a number of state and operation schema defi-
nitions. A state schema encapsulates variable declarations and related invariant
predicates. An operation schema defines the relationship between the ‘before’
and ‘after’ states corresponding to one or more state schemas. Complex schema
definitions can be composed from the simple ones using the schema calculus. Z
has been widely adopted to specify a range of software systems. The following
is a state schema example of a Birthday Book specification taking from [2].

1 This work was supported in part by HyOntUse Project (GR/S44686) funded by the
UK Engineering and Physical Science Research Council.

482 J. Sun et al.

BirthdayBook

known : PNAME

birthday : NAME �→ DATE

known = dom birthday

The above defines a basic structure of a birthday book. The variable known
represents the set of people in the birthday book; and the variable birthday
is a partial function that associates the people’s names with their birth dates.
The state invariant imposes that the known set is set of the people who already
had their birthday recorded. Other operations such as ‘add’ or ‘find’ a birthday
record can be defined accordingly. In this paper, we will be using this Birthday
Book example to illustrate the requirements of a Z specification editor.

2.2 The Z Markup Language

EXtensible Markup Language (XML) is a global standard for representing infor-
mation in a textual format. The Z Markup Language (ZML) is defined to serve
as an XML interchange format for documenting Z specifications by Utting et al.
in [7]. Its syntax was based on the Z ISO International Standard format [8]. It
is recommended by the Community Z Tools Initiative (CZT) group that future
tool development on Z should follow this XML convention. In addition, a li-
brary of Java classes has been developed for the parser support of the ZML files.
The following denotes a partial ZML representation of the variable declaration
‘known : PName’ in the Birthday Book state schema example.

<VarDecl>

<DeclName>

<Word>known</Word>

</DeclName>

<PowerExpr>

<RefExpr Mixfix="false">

<RefName>

<Word>NAME</Word>

</RefName>

</RefExpr>

</PowerExpr>

</VarDecl>

We can see from the above example that ZML has a complex syntax structure
and it is intended for machine (tool) interpretation only.

2.3 Scalable Vector Graphics

Scalable Vector Graphics (SVG) is a language for describing two-dimensional
graphics on the web using a standard XML format [9]. It supports three types
of graphic objects:

SVG Web Environment for Z Specification Language 483

– Vector graphic shape: SVG provides pre-defined graphical shapes and a
path element which can be used to create any arbitrary two-dimensional
shape.

– Text: SVG has several elements that displays text in different layouts.
– Image: SVG supports other types of graphical images to be embedded in

SVG documents.

The data representation of conventional images is quite different to SVG.
Conventional images are broken into small pixels and the description (e.g., color
of the pixel) of each of these pixels has to be stored. Therefore, these images hold
a large file size. On the other hand, SVG provides the type of shape required
to be drawn, the coordinates, and the style of the shape in XML format. This
information can be translated by the SVG plug-in on the web browser as the
shape is displayed. An example of an SVG file that generates a simple rectangle
is shown below:

<svg width="100" height="100">

<rect x="10" y="10" width="50" height="50" style="fill:red"/>

</svg>

As shown in this example, the ‘rect’ tag informs the browser that the shape
is a rectangle with the coordinates and style of the rectangle provided. SVG also
supports the following aspects, which we found useful in developing the ZSWE
prototype tool:

– Animation support: SVG provides animation support on graphical shapes.
Such animation support includes dynamically changing the location, size,
style of a shape.

– Zoom-in and zoom-out: SVG supports zoom in/out features on its graph-
ical shapes. The graphical quality of the shape is maintained during the
zoom-in and zoom-out.

– Unicode support: SVG provides support to display Unicode symbols.
– DOM functionality: Since SVG is in XML format, other programming

languages can use the DOM functions to create the SVG DOM which can
be used to locate and access SVG content information.

3 Aspects of a Z Specification Editor

In this section we describe some of the key issues related to a web based editor for
the Z specification language. We summarize our requirements into five different
aspects, i.e., graphical display, schema expansion, specification navigation, model
querying, and specification validation.

3.1 Graphical Display

A Z specification consists of schema boxes and mathematical expressions. Z is a
language based on set theory and predicate logic, which consists of a rich set of

484 J. Sun et al.

mathematical symbols. The following defines the AddBirthday operation schema
in the Birthday Book example.

AddBirthday

ΔBirthdayBook

name? : NAME

date? : DATE

name? �∈ known

birthday ′ = birthday ∪ {name? �→ date?}

The AddBirthday operation allows the users to add new birthday records into
the system based on the pre-condition that the person has not been recorded
before. From the above example, we can see that the first requirement of a
Z specification editor is to support elegant graphical display of Z schema box
drawings and the usage of mathematical symbols such as ‘�∈’,‘∪, ‘�→’ and so on.

3.2 Schema Expansion

In a Z specification, the full definition of a schema can be obtained by expanding
the inclusion section of the schema. For example, the expanded view of the
AddBirthday schema in the previous subsection is as follows.

AddBirthday

known, known ′ : P NAME

birthday , birthday ′ : NAME �→ DATE

name? : NAME

date? : DATE

known = dom birthday

known ′ = dom birthday ′

name? �∈ known

birthday ′ = birthday ∪ {name? �→ date?}

The above gives the full definition of the AddBirthday schema by expanding
the definitions inside the ‘ΔBirthdayBook ’ expression. Another form of expan-
sion is the Z schema calculus. In a Z specification, complex operations can be
constructed by using schema calculus operators such as ‘∧’, ‘∨’ and so on. For
example, a ‘robust’ version of the RAddBirthday operations can be specified by
using the conjunction and disjunction operators on the AddBirthday, Success
and AlreadyKnown schemas in the Birthday Book example as follows.

Success

result ! : REPORT

result ! = ok

AlreadyKnown

ΞBirthdayBook

name? : NAME

result ! : REPORT

name? ∈ known

result ! = already known

SVG Web Environment for Z Specification Language 485

RAddBirthday = (AddBirthday ∧ Success) ∨ AlreadyKnown

The RAddBirthday operation will insert a new record into the birthday book or
report the record has already been stored. The full definition of the RAddBirthday
schema can be obtainedby expanding the definitions in the AddBirthday,Success
and AlreadyKnown schemas as follows.

RAddBirthday

known, known ′ : P NAME

birthday , birthday ′ : NAME �→ DATE

name? : NAME

date? : DATE

result ! : REPORT

known = dom birthday

known ′ = dom birthday ′

(name? �∈ known ∧ birthday ′ = birthday ∪ {name? �→ date?} ∧ result ! = ok)

∨ (name? ∈ known ∧ birthday ′ = birthday ∧ result ! = already known)

Other forms of schema operators include schema composition ‘o9’, implication
‘⇒’, negation ‘¬’ and piping ‘>>’, which have been discussed in many Z books
[2]. The schema expansion is useful for analysis, review and reasoning about Z
specifications. For instance, in the case of calculating the pre-/post-conditions
related to a particular scheme operation, it is necessary to expand (unfold) the
full definition of schema before the calculation. Thus, the second requirement of
the Z specification editor is to support automatic schema expansions to display
a full definition of a schema as needed.

3.3 Specification Navigation

In a large Z model that contains quite a number of schemas, it is sometimes
hard for the users to keep track of all the definitions. In this case, it is desirable
for the users to be able to navigate from one point of definition to another by
referring to a schema name or a variable type. For example, in the following
FindBirthday schema, if the users would like to refer to the original definition
of the BirthdayBook, they should be able to navigate to its point of definition by
referring to the BirthdayBook schema name inside the operation. Similarly, vari-
able types, such as NAME, DATE, etc., should have the navigation facility as well.

FindBirthday

ΞBirthdayBook

name? : NAME

date! : DATE

name? ∈ known

date! = birthday(name?)

486 J. Sun et al.

As mentioned earlier, this kind of navigation feature is very useful when the user
is dealing with a large Z specification that contains quite a number of schema
definitions. It will not only help the user to obtain a good understanding of the
relationships among the schemas, but also provide easy accessibility for all the
definitions in the specification. Thus, the third requirement of a Z specification
editor is to support specification navigation that allows the users to navigate
from one point of the definition to another inside a Z model.

3.4 Model Querying

The idea of querying a Z model comes from the concept of specification compre-
hension, i.e., to obtain a better understanding of what has been modeled in the
specification. In general, specification comprehension is analogous to program
understanding. But the former is more complicated than program understand-
ing because programs are executable, while specifications are not necessarily to
be so [10]. Thus it is desirable for a specification tool to provide means for the
users to enhance the understanding of the static properties of a formal model it
represents. The query of a Z model is to fulfill such a comprehension facility. We
summarized four types of query functions on a Z model as follows.

– Schema query: provides information on the schemas in a Z model, such
as where this schema is used and how it is used, i.e., being included in or
modified in other schemas.

– Variable query: provides information on the variables in a schema, such
as the type of variables (state/input/output), in which schema or operation
the variable is defined or used, etc.

– Operation query: provides information on the operations in a Z model,
such as the variables and predicates that an operation has and so on.

– Reference query: provides cross-reference information on the schemas in
a Z model.

Querying is considered as a usability function. It is not an implicit element
of a Z specification. For example, Z schemas, functions, and its variables and
predicates can be considered as containing implicit elements of the Z model. But
model querying is search functionality for locating these implicit elements and
providing a better understanding of the underlying Z specification. Thus, the
fourth requirement of the Z specification editor is to support model querying
functions that allows the users to explore the static properties inside a Z model.

3.5 Specification Validation

Specification validation denotes the process of determining whether the spec-
ification is correct and a true reflection of the requirements that is meant to
capture. We summarized three levels of validation associated to a particular Z
model.

SVG Web Environment for Z Specification Language 487

– Syntax checking: to check whether a Z expression is written properly ac-
cording the Z language syntax.

– Type checking: to check whether an expression is correct according to the
type checking rules of the Z language. For example, we could define a syn-
tactically correct expression such as ‘x : N1’ where ‘x’ takes values from
the positive nature number set. But if we later assign a value of negative
integer to ‘x’, this is where a type inference error is occurred. Type check-
ing [11] techniques are usually applied for validating these kind of errors in
a specification.

– Semantic checking: to check the logical correctness of a Z specification.
Even if a Z specification is syntactically and type correct, there are still pos-
sibilities that the logical statements in the model might conflict each other
or the dynamic behaviors of the model does not truly reflects the require-
ment. These errors are related to the semantic meanings of the Z model.
Semantic checking usually requires more complicated techniques than that
of syntax and type checking. In general, theorem proving and specification
animation [12] are two approaches that can be used for the semantic checking
process.

We believe that a Z specification editing tool should provide some mecha-
nism to allow the users to validate whether their specifications are correct. Thus,
our last requirement of a Z specification editor is to support specification vali-
dation for checking the correctness of a Z model. In this section, we discussed
some general aspects related to a Z specification editing tool. And our prototype
implementation should closely follow some of these requirements.

4 Architecture Design of the ZSWE

Software architecture is an important level of description for the development
of software systems. It represents the high level structure of a system, which
comprise the definitions of software components involved, the external visible
properties of those components, and the communications among the compo-
nents. When consider the architecture of a web based application, there are
two major type of approaches, i.e., client-side based architecture and server-side
based architecture. Client-side applications are loaded from server and reside in
memory of the client machines. Complicated computations are done on the client
machines without having to request them from the server. Although this lessens
the overburdens on the server, the initial loading and response times of client-side
applications are slow. This is one of the major drawbacks of the approach. On
the other hand, server-side architecture handles all the complex computations on
the server and sends the results back to the client. Therefore, the client machine
is not under heavy load and acts as a simple web browser that posts requests
and display the results. This also provides the use of less bandwidth and gain-
ing faster web responses, as all processing is done on the server and web pages
are dynamically presented. In nowadays, as the web servers become increasingly

488 J. Sun et al.

powerful in terms of the computational capability, more and more web based
softwares choose the server-side architecture to provide an easy accessible and
‘thin client’ application. We decided to implement our ZSWE prototype tool on
the server side for the same reason. Figure 1 shows an overview of the sever-side
component architecture of the tool.

Controller

User

Fig. 1. ZSWE server-side architecture

As shown in the diagram, the client-side consists of the web browser, SVG
plug-in, and the client requests. It is the communication point between the server
and the actual client. The user can create/upload a Z specification to the server,
modify the information in the Z specification, or download an updated Z spec-
ification from the server. Note that the standard ZML syntax mentioned in
section 2.2 is chosen as the input/output interchange format for documenting
the Z specification in our tool. The server-side of the tool consists of components
that handles the corresponding computation of SVG elements. When a ZML file

SVG Web Environment for Z Specification Language 489

is uploaded to the server, the ‘ZMLReader’ component on the server processes
the file and generates the ZML-DOM representation of the specification. This
DOM is then passed to the ‘ZElementContainer’ component which creates the
‘ZElement’ objects according the information presented in the ZML-DOM. The
users can add new Z definitions, or update the existing definitions of a Z model.
This is also performed by sending the updating information to the server, the
‘ZElementUpdater’ component on the server finds the corresponding ‘ZElement’
object from the ‘ZElementContainer’ and performs the update. Once each of
the ‘ZElement’ objects has been created or updated, a SVG representation of
the specification is generated through the ‘SVGGenerator’ component. After the
server creates the graphical representation of the Z model in SVG format, it is
sent back to the client as a SVG file. The SVG plug-in which runs inside the
web browser identifies this file as a SVG document, and translates its tags into
proper graphical elements. Finally, these graphical elements are displayed in the
web browser.

Figure 1 also describes the architecture in a Model View Controller (MVC)
structure. MVC is a common architecture used by the modern software devel-
opers to increase modularity of the code. It divides the code into three mod-
ules: Model, View, and Controllers, which enables data flow between the Model
and View via the Controller. Each of these three modules acts independently
to maintain consistency. MVC architecture is commonly used in server-side de-
velopment because it enables the maintenance of multiple views of the same
system. As highlighted in the above diagram, the class structures is divided
in to major sub-components: Model, View and Controller. The Model contains
the components such as ‘ZMLReader’, ‘ZElementContainer’, ‘ZElement’ and so
on, to read the ZML file, creates its DOM, breaks the ZML-DOM into Z ele-
ments such as schemas, functions, definitions etc. The View can be considered
as all the SVG content related components such as the ‘SVGObject’, and the
server-side PHP script that generates them because these SVG files contain the
graphical interface of the tool. Finally, the data updating components such as
the ‘ZElementUpdater’ and the PHP script that maps the user actions to model
updates can be considered as the Controller elements of the MVC model. And
the updater script that performs the updates of SVG representation and the Z
element object also act as a Controller element.

5 Implementation Issues of the ZSWE

The main techniques involved in the implementation of the ZSWE prototype
tool are Scalable Vector Graphics (SVG), Hypertext Pre-processor (PHP) and
ECMA scripting.

5.1 SVG and ECMA Scripting

Our main issue in the implementation was to combine data information between
SVG and HTML. Since both HTML and SVG support web scripting functions,

490 J. Sun et al.

ECMA scripting is used for the implementation. ECMA scripting is a standard
for describing a web scripting language that can create a rich environment for a
web site. It provides built-in methods and classes to support XML-DOM. A web
browser allows ECMA scripting for client-side computing and also provides for
events such as mouse events, change of focus, image and page loading, selection
and form submission etc. It can be embedded in HTML and PHP to allow for
animation of objects and events. This scripting language is very useful in web
application as it provides the functionalities of object oriented programming that
cannot be achieved by using plain HTML. The following is an example that uses
ECMA scripting to perform dynamic updates on SVG elements by catching the
events triggered by these elements:

<svg width="100" height="100" onload=init(evt)>

<desc>

<script language="text/ecmascript">

<![CDATA[

var svgdoc;

function init(evt){

svgdoc=evt.getTarget().getOwnerDocument();

}

function mousePress(name){

var element=svgdoc.getElementById(name);

element.setAttribute ("height", "40");

}

]]>

</script>

<rect id="rectangle" x="10" y="10" width="40" height="100"

style="fill:red" onmouseclick="mousePress(’rectangle’)"/>

</desc>

</svg>

As show in the above code segment, the ECMA functions are embedded
inside the SVG content. When these SVG content is loaded onto a web browser,
the ‘onload’ event calls the ‘init’ method in the ECMA script. This method
assigns the SVG-DOM root object to a variable. As highlighted above, the SVG
‘rect’ element has an unique ID and a mouse-click event. When the user clicks
on the rectangle, the ‘onmouseclick’ event calls the ‘mousePress’ method in
the ECMA script, and sends the rectangle ID as its input. This method uses the
ID to get the rectangle object from the SVG-DOM. Then it changes the height
attribute of the rectangle object, which dynamically effects on the graphical
display.

5.2 SVG and PHP

When developing web based applications on the server-side, there are special
programming languages to handle the computation mechanism. We chose the
Hypertext Pre-processor (PHP) script language in our implementation. PHP
provides a good set of functions that are used for extracting and modifying

SVG Web Environment for Z Specification Language 491

information from XML documents. PHP version 4 and above includes functions
that can generate XML documents using XML-DOM. Therefore, the SVG code
can be generated by creating the XML nodes that represent the SVG pages. The
following is a segment of PHP code for generating the SVG example shown in
section 2.3.

$root = $doc->create_element("svg");

$root = $doc->append_child($root);

$root->set_attribute ("width", "100");

$root->set_attribute ("height", "100");

$rect = $doc->create_element("rect");

$rect = $root->append_child($rect);

$rect->set_attribute ("x", "10");

$rect->set_attribute ("y", "10");

$rect->set_attribute ("width", "50");

$rect->set_attribute ("height", "50");

$rect->set_attribute ("style", "fill:read");

The code segment displayed above first creates a new SVG canvas and set
its size, then create a SVG rectangle element and appends it to SVG canvas as a
child node. The position, size and the style attributes of the SVG rectangle are
set accordingly. From the above example, we can see that by using PHP we are
able to easily generate and modify SVG representations of Z models and sent
them back to the web browser for displaying.

6 ZSWE in Action

The ZSWE prototype tool consists of three main pages, i.e., the index page, the
SVG display page and the Z schema editing page2.

6.1 SVG Z Model Display

The SVG display page provides the main functionalities of the tool, such as
model display, schema expansion, navigation and querying. Figure 2 illustrates
the SVG display page of the ZSWE tool. The Z specification model is displayed
on the left hand side of the page. Navigation points are provided for each of
the schema names and type declarations to allow quick references among the
definitions. The down arrows represent expansion points inside the specification
to allow the user to view the full definition of a schema. The schema expansion
function was implemented using the SVG animation technique. In addition, a
zoom in/out feature was provided for the display page to allow the user to zoom
in and out on the Z models. On the right hand side of the page are the button
panel and the query panel. The button panel contains buttons for creating new
schema, give type, axiom definition and so on. There are two additional buttons
2 The Z Specification Web Editor (ZSWE) prototype tool is available at
http://www.cs.auckland.ac.nz/~jingsun/ZFSE/pages/index.php

492 J. Sun et al.

Fig. 2. The SVG display page

on bottom of the button panel where one is used to view the ZML document of
the current Z specification, and the other to download the ZML file.

Model querying is an important functionality that has been implemented in
the ZSWE tool. The query panel consists of four types of querying buttons, i.e.,
variable query, schema query, operational query, and reference query. Each of the
query functions provides model comprehension facilities described in section 3.4.
For example, in the case of a schema query, when the user click on the ‘Schema
Query’ button, a list of all the schema names in the Z model are displayed on the
query panel. After one of these listed schema names is selected, the query panel
provides the names of other schemas that has extended or used the selected
schema.

6.2 Z Schema Editing

By clicking on the editing the Z definitions button in Figure 2, a Z schema editing
page can be invoked to allows the user to make changes to the schema defini-
tions. The schema editing page can also be opened by the create new definition
buttons on the SVG display page. Figure 3 shows the functionality provide by
the ZWSE schema editing page. New variables and predication definitions of a
schema are input on the right panel and updated to the SVG display panel on
the left. A mathematics symbol panel is provided to assist the user for inputting
Z mathematical expressions. It uses the SVG Unicode representations for the dis-
playing of the mathematical symbols. Note that our mathematics symbol panel

SVG Web Environment for Z Specification Language 493

Fig. 3. Z schema editing page

adopts some of the symbol layout from the Z/EVES tool. After the modifications
have been made, new updates on the specifications are displayed on the main
SVG display page. The user can download an updated version of the ZML file
of the Z specification. As we mentioned in section 3.5, a Z specification editor
should provide some mechanism for checking the correctness of the Z model. In
our ZSWE prototype tool, we have implemented a syntax checking facility for
validating whether the Z specification is written according to a proper Z syntax.
The syntax checking is based on XML schema validation mechanism. Every time
when a Z specification is uploaded, its XML representation is validated against
the ZML schema definition.

7 Conclusion

In this paper, we presented a web environment for the Z formal specification
language. Different aspects of a Z specification editor were discussed. The design
and implementation of the Z Specification Web Editor (ZSWE) prototype tool
using the SVG technology was presented. Our ZSWE tool not only supports
graphical editing and global accessibility for the Z formal specifications on the
internet, but also provides model comprehension facilities such as schema expan-
sion, specification navigation and model querying. In addition, the ZSWE tool
also provides a basic Z syntax checking facility.

For the future extensions, firstly, our idea of the Z web environment can be
easily adopted to other formal specification languages such as Object-Z [13],
TCOZ [14] and so on. Both Object-Z and TCOZ have XML representations

494 J. Sun et al.

of their langauge syntaxes, thus such extensions should be straightforward. Sec-
ondly, as our ZSWE tool only supports syntax checking facility of the Z language
at the moment, one of the immediate future work could be to add type and some
semantic checking facilities into the prototype environment. Finally, our Z web
environment is currently an anonymous web user application. By providing a
login name and password for each user, online saving of the Z specification mod-
els can be achieved. This would enable different users to work on a same Z
specification model collaboratively and continuously.

References

1. From Wikipedia: (The Free Encyclopedia) Available at: http://en.wikipedia.
org/wiki/Formal methods.

2. Spivey, J.: The Z Notation: A Reference Manual. 2nd edn. International Series in
Computer Science. Prentice-Hall (1992)

3. Futatsugi, K., Nakagawa, A.: An Overview of CAFE Specification Environment.
In Hinchey, M., Liu, S., eds.: the IEEE International Conference on Formal Engi-
neering Methods (ICFEM’97), Hiroshima, Japan, IEEE Computer Society Press
(1997)

4. Bowen, J.P., Chippington, D.: Z on the Web using Java. [15] 66–80
5. Ciancarini, P., Mascolo, C., Vitali, F.: Visualizing Z notation in HTML documents.

[15] 81–95
6. Sun, J., Dong, J.S., Liu, J., Wang, H.: Object-Z Web Environment and Projections

to UML. In: WWW-10: 10th International World Wide Web Conference, ACM
Press (2001) 725–734

7. Utting, M., Toyn, I., Sun, J., Martin, A., Dong, J.S., Daley, N., Currie, D.: ZML:
XML Support for Standard Z. In: 3nd International Conference of Z and B Users
(ZB’03). LNCS, Springer (2003)

8. Developed by members of the Z Standards Panel, Project Editor: Toyn,
I.: Z Notation: Final Committee Draft, CD 13568.2 (1999) Available at:
http://www.cs.york.ac.uk/~ian/zstan/.

9. World Wide Web Consortium (W3C): (Scalable Vector Graphics (SVG)) Available
at: http://www.w3.org/Graphics/SVG/ .

10. Hayes, I., Jones, C.: Specifications are not (necessarily) executable. Software Eng.
Journal 4 (1989) 330–339

11. Dong, J.S., Li, Y.F., Sun, J., Sun, J., Wang, H.: XML-based static type checking
and dynamic visualization for TCOZ. In: 4th International Conference on Formal
Engineering Methods, Springer-Verlag (2002) 311–322

12. Sun, J., Dong, J.S., Liu, J., Wang, H.: A XML/XSL Approach to Visualize
and Animate TCOZ. In: The 8th Asia-Pacific Software Engineering Conference
(APSEC’01), IEEE Press (2001) 453–460

13. Smith, G.: The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers (2000)

14. Mahony, B., Dong, J.S.: Timed Communicating Object Z. IEEE Transactions on
Software Engineering 26 (2000)

15. Bowen, J.P., Fett, A., Hinchey, M.G., eds.: ZUM’98: The Z Formal Specifica-
tion Notation, 11th International Conference of Z Users, Berlin, Germany, 24–26
September 1998. Volume 1493 of Lect. Notes in Comput. Sci., Springer-Verlag
(1998)

Author Index

Abadi, Mart́ın 111
Adams, M.M. 465
Aguirre, Nazareno 141
Altenhofen, Michael 81
Arroyo, Marcelo 141
Assayad, I. 204
Athauda, Sasanka 480

Babot, Francesc 375
Barros, Alistair 5
Beckert, Bernhard 315
Bert, Didier 37
Bertin, V. 204
Bertran, Miquel 375
Bicarregui, Juan 141
Billington, Jonathan 156
Blazy, Sandrine 280
Börger, Egon 5, 81
Bouquet, Fabrice 96
Brandán Briones, Laura 264
Brandt, Jens 405
Brinksma, Ed 264
Brückner, Ingo 360
Budiu, Mihai 111
Butler, Michael 345

Chen, Yuting 421
Clayton, P.B. 465
Climent, August 375
Cook, Byron 330

Dadeau, Frédéric 96
de Roever, Willem-Paul 52
Debbabi, Mourad 125
Defaut, F.-X. 204
Dong, Jin Song 66

Erlingsson, Úlfar 111

Faria, João C.P. 450
Fecher, Harald 52

Gallasch, Guy Edward 156
Gerner, Ph. 204
Gonthier, Georges 330

Goya, Masashi 421
Guzmán, Lucio 141

Hall, Anthony 1
Han, Bing 156
Hao, Ping 66
Hou, Jennifer C. 235

Idani, Akram 37
Isoaho, Jouni 219

Kyas, Marcel 52

Laibinis, Linas 188
Ledru, Yves 37
Legeard, Bruno 96
Lemcke, Jens 81
Leppänen, Sari 188
Leroy, Xavier 280
Leuschel, Michael 345
Li, Yuan Fang 435
Ligatti, Jay 111
Lilius, Johan 188
Liljeberg, Pasi 219
Liu, Shaoying 421

Maibaum, Tom 141
Malik, Qaisar 188
Marinov, Darko 235
Mayer, Johannes 251
McDermid, John A. 421
Mooij, Arjan J. 390

Nagoya, Fumiko 421

Paiva, Ana C.R. 450
Plosila, Juha 219

Qi, Zhichang 173
Qin, Shengchao 66
Quévreux, O. 204

Rushby, John 36

Saleh, Mohamed 125
Schlager, Steffen 315
Schmitt, Peter H. 315
Schneider, Klaus 405
Schönborn, Jens 52

496 Author Index

Sheik, Tazkiya 480
Sobeih, Ahmed 235
Sun, Jing 435, 480
Sun, Jun 435

Tillmann, Nikolai 450
Troubitsyna, Elena 188

Vidal, Raul A.M. 450
Viswanathan, Mahesh 235

Wang, Farn 300
Wang, Hai 435, 480
Wang, Ji 173
Wehrheim, Heike 360
Wen, Yanjun 173
Wesselink, Wieger 390

Yovine, S. 204

Zhang, Xian 66

	Frontmatter
	Invited Talks
	Realising the Benefits of Formal Methods
	A Compositional Framework for Service Interaction Patterns and Interaction Flows
	An Evidential Tool Bus

	Specification
	Derivation of UML Class Diagrams as Static Views of Formal B Developments
	29 New Unclarities in the Semantics of UML 2.0 State Machines
	The Semantics and Tool Support of OZTA

	Modelling
	An Abstract Model for Process Mediation
	How Symbolic Animation Can Help Designing an Efficient Formal Model

	Security
	A Theory of Secure Control Flow
	Game Semantics Model for Security Protocols

	Communication
	Towards Dynamically Communicating Abstract Machines in the B Method
	Sweep-Line Analysis of TCP Connection Management
	2/3 Alternating Simulation Between Interface Automata

	Development
	Formal Model-Driven Development of Communicating Systems
	{\sc Jahuel}: A Formal Framework for Software Synthesis
	Modelling and Refinement of an On-Chip Communication Architecture

	Testing
	Finding Bugs in Network Protocols Using Simulation Code and Protocol-Specific Heuristics
	Adaptive Random Testing by Bisection with Restriction
	Testing Real-Time Multi Input-Output Systems

	Verification
	Formal Verification of a Memory Model for {\itshape C}-Like Imperative Languages
	Symbolic Verification of Distributed Real-Time Systems with Complex Synchronizations
	An Improved Rule for While Loops in Deductive Program Verification
	Using St{\aa}lmarck's Algorithm to Prove Inequalities
	Automatic Refinement Checking for B
	Slicing an Integrated Formal Method for Verification
	A Static Communication Elimination Algorithm for Distributed System Verification
	Incremental Verification of Owicki/Gries Proof Outlines Using PVS
	Using Three-Valued Logic to Specify and Verify Algorithms of Computational Geometry

	Tools
	An Automated Approach to Specification-Based Program Inspection
	Visualizing and Simulating Semantic Web Services Ontologies
	A Model-to-Implementation Mapping Tool for Automated Model-Based GUI Testing
	ClawZ: Cost-Effective Formal Verification for Control Systems
	SVG Web Environment for Z Specification Language

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

