
Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 49 – 57, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Content-Based Load Balancing Algorithm for
Metadata Servers in Cluster File Systems*

Junho Jang, Saeyoung Han, Sungyong Park, and Jihoon Yang

Department of Computer Science and
Interdisciplinary Program of Integrated Biotechnology,

Sogang University, Seoul, Korea
{jj, syhan, parksy, yangjh}@sogang.ac.kr

Abstract. A metadata service is one of the important factors to affect the
performance of cluster file systems. We propose a content-based load balancing
algorithm that dynamically distributes client requests to appropriate metadata
servers based on the types of metadata operations. By replicating metadata and
logging update messages in each server rather than moving metadata across
servers, we significantly reduce the response time and evenly distribute client
requests among metadata servers.

1 Introduction

It is reported from SPEC that up to 60% of user requests in cluster files systems are
metadata operations [1]. Due to the large amount of metadata operations, some cluster
file systems use a separate metadata server or a cluster of metadata servers for
scalability and availability [2][3][4][5].

A key question in the design of such systems is how to partition the metadata among
metadata servers to maintain both high performance and scalability. The first approach,
known as directory sub-tree partitioning, partitions the metadata along the directory
sub-tree, which suffers from severe bottleneck due to the hot spots. As an alternative, a
pure hashing approach [2] is introduced. This approach hashes the filename to
distribute the namespace among the metadata servers evenly. This requires metadata
servers to maintain the directory hierarchy, and further requires them to repartition the
namespace among the servers whenever a metadata server is added or removed from
the cluster. Another approach such as Lazy Hybrid (LH) [3] combines both approaches
to address the problems above. However, all the approaches above are based on the
static mechanism such that a metadata server is designated when a new metadata
structure is created. This prevents client requests from being distributed fairly among
the metadata servers based on current load conditions.

This paper proposes a content-based load balancing algorithm for metadata servers
that dynamically distributes client requests to appropriate metadata servers based on
the types of metadata operations. In order to distribute client requests dynamically, a
dispatcher is used. In addition to distributing client requests dynamically, the

* This work was supported by grant No. R01-2003-000-10627-0 from the Basic Research

Program of the Korea Science & Engineering Foundation.

50 J. Jang et al.

dispatcher also shares Indirect Metadata Table (ITL) with all the metadata servers and
adjusts assigned entries among metadata servers, reflecting current load conditions.
Although the capacity of the dispatcher is critical to the overall cluster system
performance, emerging hardware technologies for switching reduces the relaying
overhead significantly, which ensures us to assume sufficient capacity of dispatcher.

The rest of this paper is organized as follows. In chapter 2 we present an overview
of metadata management schemes used in cluster file systems. Chapter 3 presents the
detail mechanism of content-based load balancing algorithm. Its analysis and
experimental result are presented in chapter 4. Chapter 5 summarizes our work and
concludes this paper.

2 Related Work

The first approach to allocating metadata among metadata servers in cluster file
systems is the hierarchical directory sub-tree partitioning. This approach partitions the
file system namespace according to the structure of directory sub-tree and the
metadata of each directory sub-tree is managed by individual metadata server. This
technique suffers from severe bottleneck when a single file, directory, or directory
hierarchy must be traversed to determine the permissions of each file that is accessed.

The second approach, pure hashing, distributes the namespace among metadata
servers by hashing the file identifier, file name, or other related values. This results in
more balanced workloads than directory sub-tree partitioning. Vesta parallel file
system [2] is a representative method of pure hashing. The hash function of Vesta file
system uses the full pathname as an input key, and outputs the identifier of the
metadata server and the location of the metadata inside the server. This pure hashing
guarantees direct accesses to metadata without traversing all the metadata servers
along the directory hierarchy, but it does not support the directory path-based file
permission using access control list. Moreover, for some expensive operations such as
changing directory name, removing directory, and adding or removing of metadata
servers, a large number of metadata should be moved across metadata servers, which
leads to long response time and clients should wait for a long period of time for their
requests.

Lazy Hybrid (LH) [3] addresses the above problems by combining the advantages
of both approaches and adding capabilities such as global logging and delayed
updates. The metadata location is determined by hashing the full pathname, which
allows direct accesses to the metadata without traversing all of the metadata servers
that stores directories along the path. However, hierarchical directories are maintained
in order to provide standard directory semantics and operations such as ls. Lazy
update policies allow for efficient metadata updates when the file/directory names or
their permissions are changed or when metadata servers are added to or removed from
the system. Moreover, a dual-entry access control list structure is maintained for any
file permissions to be determined directly without traversing the entire path. When a
large amount of metadata has to be moved at a time, the real location is globally
logged in all the metadata servers, instead of moving metadata. Later, upon the first
access after global logging, the metadata is actually moved. By using the delayed
updates, the initial operation is very fast and only a little overhead is incurred at the

 A Content-Based Load Balancing Algorithm for Metadata Servers 51

time when each of the modified metadata is accessed first. On the other hand, when
the requests generated by the clients are bursty, this scheme leads to the concentration
of the requests on a particular metadata server holding the real metadata, and suffers
from the performance degradation due to the overhead incurred by forwarding client
requests.

To address these shortcomings due to the static determination of metadata servers
on each client, we propose a dynamic load balancing algorithm based on a dispatcher.
The dispatcher periodically collects load information from the metadata servers and
forwards client requests to appropriate server based on the content of each request.

3 Content-Based Load Balancing Algorithm

In this section, we present the detailed schemes used in the content-based dynamic
load balancing algorithm.

3.1 Architecture

Fig. 1 shows the structure of the metadata server cluster. This cluster consists of
several metadata servers and a dispatcher that relays the request from clients to
appropriate metadata servers. Given the information of the file included in a request,
the dispatcher hashes the full pathname of the file to produce a hash value indicating
the index into the Indirect Lookup Table (ILT). The index found in the entry of the
ILT specifies which metadata server currently stores the metadata for that file. After
determining appropriate metadata server, the dispatcher forwards the requests to the
selected metadata server or broadcasts it to all the metadata servers depending on the
content of the request. The detailed operations will be described in the next section.

...
Local

storage

Metadata ServersNetwork Clients

Dispatcher

Fig. 1. Architecture for load balancing

In this architecture, all the metadata servers and the dispatcher should share the
same ITL as well as the same hash function. Using these, each metadata server
determines independently whether it is responsible for the requested file or not, and
then stores, retrieves, or modifies the metadata of the file. Moreover, each metadata
server caches the inode information of all the files and directories, and stores the
directory hierarchies in order to improve the performance of metadata operations.

52 J. Jang et al.

In order to efficiently distribute the load among metadata servers, all metadata
servers report their load conditions to the dispatcher periodically. Based on this
information, the dispatcher adjusts the ILT and then redistributes it to all the metadata
servers.

3.2 Metadata Operations

To ensure the consistency of metadata among metadata servers, our algorithm writes
and logs metadata write operations on every metadata servers. Since our algorithm
uses a full pathname as an input into the hash functions, some operations, such as
changing directory name, adding or removing of metadata server, and ITL
adjustment, result in a large amount of metadata movement across the metadata
servers. To reduce the overhead incurred by moving metadata, we replicate metadata
among all the metadata servers, and log all the metadata modification messages.
While the requests such as simply looking up metadata for files or directories are
handled by one designated metadata server, the requests for writing metadata or
logging some operations are broadcast to all the metadata servers concurrently. As a
result, all the metadata servers have the same metadata information. For some
retrieval operations for directories or file attributes that require metadata modification
(i.e., update “last access time” field), we divide the operations into two steps: looking
up metadata and updating the “last access time” field.

When a file or a directory needs to be retrieved, the dispatcher uses a hash function
(using the full pathname) to locate the appropriate metadata server in constant time and
ask the designated server to reply with the metadata information related to the file or the
directory. The modification message for the “last access time” field is then broadcast
and all the servers update and log the information. On the other hand, except for the
operations related to the attribute manipulation, all the metadata operations related to
changing directory structure require the modification of directory hierarchy in addition
to updating inode information. For example, the directory removal operation requires
the deletion of all the subdirectories. Changing directory name should rearrange all the
metadata for the files, subdirectories, and the files under the subdirectories across the
metadata servers since the hash values need to be changed.

It should be noted that changing the directory hierarchy requires the movement of a
large amount of metadata. In our approach, each metadata server is supposed to
execute the operation at the same time and thereby eliminate the movement of
metadata. Considering that the file system operations are mostly read operations (with
the ratio of 9:1 in office environments), replication is much more reasonable than
metadata movement in general cluster file system environment [8].

Unlike the directory write operations, the writing operations for files do not require
any modification of the directory hierarchy. However, they are also carried out
concurrently at each metadata server to ensure the metadata coherency.

3.3 Adjustment of Indirect Lookup Table (ILT)

Since each file system operation requires different amount of computational power and
each file has different access frequencies, some metadata servers may be overloaded
more than the others. This may cause longer response time and decrease overall system

 A Content-Based Load Balancing Algorithm for Metadata Servers 53

performance. Moreover, since the entire metadata server may not have the same
computing power, we should adjust the imbalance through reconstructing the ITL.

The goal of our algorithm is that all the metadata servers have similar load
conditions approaching to the average load and minimize the change of designated
metadata server. In order to do this, our algorithm should first determine the metadata
servers whose load exceeds the overall average, and calculate the amount of extra
load for each metadata server, Extra(mdsi), by subtracting the average load from its
own load. The metadata server with negative Extra(mdsi) value can handle more
metadata by assigning more ILT entries taken from the metadata server with positive
Extra(mdsi). In order to distribute the overloaded entries to other metadata servers,
based on the load per entry Loade(mdsi), we determine the maximum number of ILT
entries EEi for any overloaded metadata server i, satisfying that

Extra (mdsi) - Loade (mdsi) x EEi ≥ 0,

where 0 ≤ EEi ≤ the number of ILT entries handled currently by mdsi.
Any metadata server j with negative Extra(mdsi) may take the entries from i as

many as maximum EEj. That is, the following should be satisfied

Extra (mdsj) + Loade (mdsj) x EEj ≤ 0,

where EEj ≥ 0. In order to take the load more aggressively, we allow each metadata
server with more available capacity than Loade (mdsj) / 2 to take one more entry.
Therefore, the above formula can be changed like this.

Extra (mdsj) - Loade (mdsj) / 2 + Loade (mdsj) x EEj ≤ 0,

where EEj ≥ 0. Fig.2 shows an example of the adjustment of ITL so that all the
metadata servers have quite evenly distributed load around the average load.

Index

0

1

2

256

...

3

0

1

2

1

1

MDS

ILT

50 %

70 %

50 %

50 %

Load in MDS

Index

0

1

2

256

...

3

0

1

2

4

0

MDS

ILT

55.49 %

55.49 %

53.65 %

53.27 %

Load in MDS

Readjust
of ILT

Fig. 2. Example of ILT Adjustment

4 Performance Evaluations

4.1 Experimental Environment

We evaluate our algorithm using CSIM 9.0, a process-oriented discrete-event
simulator [8]. The simulations are performed on Intel Pentium-III (800 MHz dual
CPU) running Linux Kernel 2.6. The detailed parameters are presented in Table 1.

In this evaluation, we measure the load of each metadata server to see how well the
client requests are distributed. The average response time from the clients is also

54 J. Jang et al.

measured. The ratio of read accesses and write accesses is 9:1. We evaluate our
algorithm and compare it with those of Vesta and LH3.

Table 1. Parameters for the simulation

The number of MDS 8
Metadata size 256 Bytes
Average memory cache search time 0.155 msec for 10MB
Memory cache hit ratio 90%
Disk access time 1.561 msec for 1 metadata
Network transfer time 0.209 msec for 1 metadata

4.2 Results

Figures 3 through 5 show the load condition of each metadata server for Vesta, LH3,
and our approach, respectively. In order to obtain current load at each metadata
server, we measure the number of requests waiting to be processed at each server for
a period of 20,000 milliseconds.

Fig. 3. Number of requests waiting for services in each metadata server (Vesta)

Fig. 4. Number of requests waiting for services in each metadata server (LH3)

103

L
O
A
D

155
L
O
A
D

 A Content-Based Load Balancing Algorithm for Metadata Servers 55

Fig. 5. Number of requests waiting for services in each metadata serer (proposed approach)

As you can see from Fig. 3 and Fig. 4 (Vesta and LH3 cases), for some of metadata
servers, the number of waiting requests is much larger than those of the others. This
implies that the client requests are forwarded heavily onto some metadata servers and
the load is not fairly distributed among all the metadata servers. On the other hand,
Fig. 5 (our approach) shows that the requests are well distributed all over the metadata
servers. Moreover, while the average load of our approach is a little bit higher than
that of Vesta, the variance is remarkably smaller (see Table 2). This also indicates that
replicating metadata is more efficient for distributing client requests than moving
metadata throughout the network.

Table 2 shows the average response time of all three approaches. As the table
shows, our approach has minimum average response time although it doesn’t include
the processing time at the dispatcher. Under the assumption that we can implement
the dispatcher with quite good performance, the processing time at the dispatcher can
be ignored. Table 3 also shows that our approach significantly outperforms other
approaches.

Table 2. Average numbers of requests waiting for services and the variances

 Vesta LH3 Our approach
Average # of requests waiting 2.11 4.35 3.13
Variance 10.56 95.10 0.14

Table 3. Average response time for each approach

 Vesta LH3 Our approach
Average response time (msec) 11.93 32.04 6.39

In order to explain the relationship between the performance of dispatcher and the
response time of client requests, we introduce a formula using queuing theory. For
example, the response time at the dispatcher R can be written as

λ−
=

C
R

1 ,

�

L
O
A
D

68

56 J. Jang et al.

where C is the service rate at the dispatcher and λ is the arrival rate of client requests
[10]. When λ is unchanged, the only factor that affects the response time is C. If C is
much larger than λ, a dispatcher can forward the client requests to appropriate metadata
server immediately on receiving a request. If C is approximately equal to λ but is not
smaller than λ, the response time increases rapidly because of the processing delay at
the dispatcher. If C is smaller than λ, the arrival rate of client requests exceeds the
capacity of a dispatcher, and thereby the response time can’t be measured.

Based on the fact described above, we measure the average response time
including the processing time at the dispatcher. As you can see from Fig. 6, the
response time increases exponentially as we increase 1/C values. The average
response time of our approach is lower than those of Vesta and LH until 1/C is up to
0.8. However, our approach suffers from long response time when 1/C goes close to
λ, which implies that the performance of dispatcher becomes the bottleneck of overall
cluster system. On the other hand, we can expect performance improvement when the
arrival rate of client requests is below 93% of service rate of the dispatcher in this
experiment.

λ

Vesta (11.93m s)

LH 3 (32.04 m s)

Thresho ld o f

P erform ance (93%)

λ

Vesta (11.93m s)

LH 3 (32.04 m s)

Thresho ld o f

P erform ance (93%)

Fig. 6. Effect of the performance of dispatcher

5 Conclusion

In this paper, we have proposed a content-based load-balancing algorithm for
metadata servers in cluster file system, where the client requests are handled
differently according to their contents, and the loads of the metadata servers are
redistributed by dynamically adjusting the indirect metadata table periodically. By
replicating the metadata and logging update messages, all the metadata servers
concurrently execute the update operations on metadata, which minimizes the
metadata movements.

Through our performance evaluation, we have showed that our dynamic load
balancing algorithm outperformed existing metadata management schemes used in
traditional cluster file systems. We are currently investigating further about the effect
of the performance of dispatcher on the overall system performance in the metadata
cluster.

 A Content-Based Load Balancing Algorithm for Metadata Servers 57

References

1. SPEC, SFS 3.0 Documentation Version 1.0, Standard Performance Evaluation Corporation,
2001.

2. Peter F. Corbett et al., The vesta parallel file system, ACM Transactions on Computer
Systems(TOCS), 14(3), pp.225-264, Aug. 1996.

3. Scott A. Brandt et al., Efficient Metadata Management in Large Distributed Storage
Systems, Proceedings of the 11th IEEE NASA Goddard Conference on Mass Storage
Systems and Technologies, Apr. 2003.

4. Peter J. Braam et al., The Lustre Storage Architecture, Cluster File Architecture, Cluster
File System. Inc, Mar. 2003.

5. Jin Xiong et al., Design and Performance of the Dawning Cluster File System, IEEE
International Conference on Cluster Computing(Cluster’03), Dec. 2003.

6. Bourke T., Server Load Balancing, O’Reilly and Associates, Sebastopol, 2001.
7. Daniel P. Bovet et al., Understanding the Linux Kernel, O’Reilly and Associates,

Sebastopol, 2003.
8. http://www.mesquite.com

	Introduction
	Related Work
	Content-Based Load Balancing Algorithm
	Architecture
	Metadata Operations
	Adjustment of Indirect Lookup Table (ILT)

	Performance Evaluations
	Experimental Environment
	Results

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

