
Scheduling Efficiently for Irregular Load
Distributions in a Large-scale Cluster�

Bao-Yin Zhang1, Ze-Yao Mo1, Guang-Wen Yang2, and Wei-Min Zheng2

1 Institute of Applied Physics and Computational Mathematics,
Beijing, 100088, P.R. China

2 Department of Computer Science and Technology, Tsinghua University,
Beijing, 100084, P.R. China

zby@tsinghua.edu.cn

Abstract. Random stealing is a well-known dynamic scheduling algo-
rithm. However, in a large-scale cluster, an idle node must randomly steal
many times to obtain a task from another node, especially, this problem
severely affects performance in systems where only a few nodes generate
most of the system workload. In this paper, we present an efficient dy-
namic scheduling algorithm, Transitive Random Stealing (TRS) based on
random stealing, which makes any idle node rapidly obtain a task from
another node for irregular load distributions in a large-scale cluster. Then
by the random baseline technique, we experimentally compare TRS with
Shis, one of load balance policies in the EARTH system, and random steal-
ing for different load distributions in the Tsinghua EastSun cluster and
show that TRS is a highly efficient scheduling algorithm for irregular load
distributions in a large-scale cluster. Finally, TRS is implemented in the
Jcluster environment, a high performance Java parallel environment, and
an experiment result is given in the HKU Gideon 300 cluster.

Keywords: Scheduling, irregular load distribution, large-scale cluster,
transitive random stealing.

1 Introduction

The availability of high speed networks and increasingly powerful commodity
microprocessors is making the usage of clusters of computers an appealing vehicle
for cost-effective parallel computing. The scale of the clusters is becoming more
and more large, which is up to hundreds of and thousands of nodes. In order to
achieve scalable performance, it is important to evenly schedule the workload
among the processing nodes. Two basic approaches [6] to dynamically scheduling
task loads can be found in current literature - random stealing and work sharing.

Random stealing attempts to steal a task from a randomly selected node when
a node finds its own task queue empty, repeating steal attempts until it succeeds.
Random stealing is provably efficient in terms of time, space, and communication

� This work is supported by Chinese NSF for DYS granted by No. 60425205 and
National Postdoctor Science Foundation of China.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 39–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

40 B.-Y. Zhang et al.

for the class of fully strict computations [4, 13]; and the natural work stealing al-
gorithm is stable [2]. Communication is only initiated when nodes are idle. When
the system load is high, no communication is needed, causing the system to be-
have well under high loads. Some systems that implement random stealing include
Cilk [3], Jaws [8], and Satin [9]. Cilk [3] provides an efficient C-based runtime sys-
tem for multithreaded parallel programming with a random stealing scheduler.
JAWS [8] efficiently schedule load over a dynamically varying computing infras-
tructure with random stealing algorithm, Satin [9] presents a system for running
divide-and-conquer programs on distributed memory systems with random steal-
ing. The EARTHruntime system [7] supported several dynamic loadbalancer poli-
cies, which goal is to design simple balancers that deliver good load distribution
with minimum overheads. But a virtual ring network topology is adopted in all the
balancers with nodes numbered clock-wise. The authors of the paper [5] evaluate
these load-balancing schedulers for a fine-grain multithreading environment.

In this paper, we study the dynamic scheduling algorithms for a large-scale
cluster. For random stealing in a large-scale cluster, an idle node must randomly
steal many times to obtain a task from another node. Especially, this problem
severely affects performance in systems where only a few nodes generate most of
the system workload [12]. For overcoming this problem, Shis, one of load balance
policies in the EARTH system [5], which slightly modifies random stealing was
to remember the originating node (history information) from which a task was
last received, and to send requests directly to that node. The authors of the
paper [11], present two relatively complicated adaptive location policies which
record more history information for global scheduling algorithms.

Here we present a scheduling algorithm, Transitive Random Stealing (TRS),
which further improves Shis not only remember the originating node from which
a task is stolen but also forward the information of the node to other remote
nodes which want to steal a task from it. With the transitive policy, TRS can
make any node obtain a task faster with less times to steal in a large-scale clus-
ter, reduce the idle time for all nodes and improve the overall performance of
the system. Then by the random baseline technique, we experimentally com-
pare the performance of TRS with Shis and random stealing for different load
distributions in the Tsinghua EastSun cluster, and show that TRS outperforms
Shis and random stealing in all test cases. Finally, TRS is implemented in the
Jcluster environment [1], a high performance Java parallel environment, and an
experiment result is given on HKU Gideon 300 cluster.

In the rest of this paper, we first give the transitive random stealing algorithm
in next section. Section 3 evaluates the performance of TRS, Shis and random
stealing by the random baseline technique. We show an experiment result on
HKU Gideon 300 cluster in Jcluster environment in Section 4. Finally, Section
5 concludes our works.

2 Design the Transitive Random Stealing Algorithm

Our design philosophy for scheduling algorithms is to reduce the idle time for all
nodes, rather than balancing work loads equally on all nodes. A node is said to

Scheduling Efficiently for Irregular Load Distributions 41

be in the idle state when it has no tasks to execute. Distributing the workload
during application execution is achieved by sending the tokens to the schedulers
on remote nodes. A token contains all the necessary information to create a new
task. A Task is a piece of code that is to executed, possibly in parallel with other
tasks. Tokens are stored in the task queue on each node.

In the following, we give the transitive random stealing algorithm in detail.
First, we show you a figure to illustrate an architecture of a task scheduler based
on TRS.

resourse m
anager

recomId

task
scheduler���

���
���

task queue

seek rem
ote task

rem
ote seek

return recomId

seek local task

tasks dynamically
spawning tasks

user
adding

task

user m
onitor info of node

Fig. 1. An architecture of a task scheduler based on TRS

Here resource manager is responsible for adding or deleting nodes and main-
tains an active list of nodes in the cluster. Task queue is a double-ended queue to
store tokens that have been spawned dynamically by tasks or have been added
by user, but not yet executed. New tokens spawned dynamically by tasks are
pushed into the queue from one end and tokens are also popped from the same
end for execution on the local node. On the other hand, new tokens added by
user are pushed into the queue from the other end, and a token is also popped
from the other end of the task queue when remote nodes asks for tasks. The
recomId is a variable which remembers the nodeId of other remote node.

The transitive policy is simple and TRS can be easily implemented. But with
this simple transitive policy, TRS can make any idle node obtain a task from

42 B.-Y. Zhang et al.

The main-loop function for stealing tasks from another nodes:
void run(){
While(true){

if (idle of node){
if (local task queue has tokens){

get a token to execute;
}else{

if (recomId is blank){
randomly select a remote node from the list of nodes,
and ask for a token from it;

}else{
ask for a token from the remote node whose nodeId is recomId;

}
wait to receive an answer message;
update its recomId with the recomId in the answer message;
if (the answer message includes a token){
execute the token;

}
}

}else{
wait for some task running over;;

}
}

}
The function for answering the request of another nodes:
Message answer(){
if (local task queue has tokens){

return a message with its own nodeId as recomId and a token
from local task queue;

}else{
return a message with its recomId and no tokens;

}
}

Pseudo code of the transitive random stealing algorithm

another node with less times to steal in a large-scale cluster. As a result, this
will greatly reduce the idle time for all nodes and improve the scalability of
the system. At the same time, TRS inherits the advantages of simple random
stealing policy: communication is only initiated when nodes are idle. When the
system load is high, no communication is needed, causing the system behave
well under high loads.

As we can see, a few more bytes (recomId) is sent in the replying message
for TRS than Shis and RS. But the time and bandwidth of the communication
are very similar for those messages with little different sizes. In a sense, the
key factor which influences the network communication overhead is the times of
sending messages.

Scheduling Efficiently for Irregular Load Distributions 43

Note. In some very special conditions, there may be a loop transition of the
recomId. In order to avoid this case, the implementation of the algorithm can
limit the times of transition of the recomId. In fact, in the later experiments,
we empirically limit the times of transition of recomId by max{[log2n − 3], 1},
where n is the number of the nodes in the cluster.

3 Performance Evaluation Based on Random Baseline
Technique

In this section, by the random baseline technique, we experimentally compare
TRS with Shis, one of load balance policies in the EARTH system, and random
stealing for different load distributions on the Tsinghua EastSun cluster which
has 32 nodes (4×Xeon III 700s, Fast Ethernet, Redhat 8.1). Here we implement
each of the three algorithm as an MPI application in which a process simulates a
node. The processes implement two threads except the process with rank 0, one
thread for dealing the main loop, the other for handling the request. The process
with rank 0, by the random baseline technique, implements a task generator
which distributes the same load distributions to the other processes for the three
algorithms respectively.

In order to stress to test the performance of algorithms on the different
load distributions, we make use of the task generator generating different load
distributions instead of scheduling some real parallel programs. The task gen-
erator generates three types of load distributions uniformly distributed on all

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

1

2

3

4

5

6

7
x 10

4

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Uniformly Distributed on all nodes

 RS
Shis
TRS

Fig. 2. Task load uniformly distributed on all nodes

44 B.-Y. Zhang et al.

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

2

4

6

8

10

12

14
x 10

4

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Uniformly Distributed on half of all nodes

 RS
Shis
TRS

Fig. 3. Task load uniformly distributed on half of all nodes

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

1

2

3

4

5

6

7

8
x 10

5

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Uniformly Distributed on 1/8 of all nodes

 RS
Shis
TRS

Fig. 4. Task load uniformly distributed on 1/8 of all nodes

nodes, half of all nodes and 1/8 of all nodes, two types of binomial distribu-
tions, Bi(n, 1/3) and Bi(n, 1/8), where n is the number of the nodes. From the
knowledge of Statistics, the binomial distribution Bi(n, p) approaches the Pois-
son distribution, when the number n is large, and the probability p is small. The
five types of load distributions all distribute 5n tasks to the nodes for 10 times,

Scheduling Efficiently for Irregular Load Distributions 45

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Distributed on Bi(n,1/3)

 RS
Shis
TRS

Fig. 5. Task load distributed on Bi(n, 1/3)

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.5

1

1.5

2

2.5

3
x 10

5

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Distributed on Bi(n,1/8)

 RS
Shis
TRS

Fig. 6. Task load distributed on Bi(n, 1/8)

46 B.-Y. Zhang et al.

where n is the number of the nodes. In addition, we assume that every task has
the same executing time and every node has the same power of computing.

For obtaining a good performance, the algorithm must make any idle node
obtain a task faster with less times to steal. Therefore, we compare the perfor-
mance of the three algorithms by counting the total number of stealing tasks
from remote nodes for each algorithm (the total number includes the times
of stealing nothing from remote nodes). The experiments are implemented in
the Jcluster environment, a high performance Java parallel environment which
provides MPI-like message passing interface on the Tsinghua EastSun cluster.
Figure 2,3,4,5,6 illustrate the results for the five type of load distribution.

For the task load distribution uniformly distributed on all nodes, the difference
of the performance for the three algorithms is small on the small-scale clusters, how-
ever, with the increase of the size of the nodes, TRS behaves with the good perfor-
mance. For the task load distributions uniformly distributed on half of all nodes
and on 1/8 of all nodes, binomial distributions, Bi(n, 1/3) and Bi(n, 1/8), TRS
exhibits a much better performance than Shis and random stealing, especially, for
the large-scale clusters.Therefore,we can conclude that TRS is a high performance
scheduling algorithm for irregular load distributions in a large-scale cluster.

4 An Experiment Result in the Jcluster Environment

Jcluster environment [1] that provides a high performance PVM-like and MPI-
like message passing interface implements the TRS algorithm to schedule the

1 16 32 48 64
1

8

16

24

32

40

48

56

64

16−Queen problem on Gideon 300 cluster

S
pe

ed
up

No. of nodes

 linear
16−Queen

Fig. 7. 16-Queen problem on HKU Gideon 300 cluster

Scheduling Efficiently for Irregular Load Distributions 47

tasks dynamically in a large-scale cluster. Here a divide-and-conquer program,
16-Queen problem, is used to stress to test the task scheduler based on TRS.
There are more than 2,200 subtasks which will be dynamically spawned on some
nodes to be scheduled. With the help of Prof. Francis C.M. Lau, Prof. C.L. Wang
and Weijian Fang, the test for 16-Queen problem has been held on HKU Gideon
300 cluster (Pentium IV 2.0 GHz, Fast Ethernet, redhat 8.0, Jdk 1.4.0) at the
University of Hong Kong. Figure 7 illustrates the results.

The efficiency of the speedup reaches up to 91.73% on 64 nodes, which ex-
hibits an efficient scheduling of TRS on the real platform.

5 Conclusion and Further Works

In this paper, we present the Transitive Random Stealing algorithm (TRS) which
provides an efficient scheduling policy making any idle node rapidly obtain a task
from other remote node for irregular load distributions in a large-scale cluster.
Then by the random baseline technique, we experimentally compare TRS with
Shis, one of load balance policies in the EARTH system, and random stealing for
different load distributions on the Tsinghua EastSun cluster and conclude that
TRS is a highly efficient scheduling algorithm for irregular load distributions in
a large-scale cluster. Finally, Jcluster environment implements a task scheduler
based on TRS to obtain a good experiment result for 16-Queen problem on
HKU Gideon 300 cluster. In the future, more real parallel applications will be
developed to evaluate the algorithm on some real platforms.

Acknowledgements

We are very grateful to Prof. Francis C.M. Lau, Prof. C.L. Wang and Weijian
Fang in the University of Hong Kong for their warmhearted help.

References

1. http://vip.6to23.com/jcluster/
2. Berenbrink, P., Friedetzky, T., Goldberg, L.A., “The Natural Work-Stealing Algo-

rithm is Stable”, SIAM Journal on Computing, Vol. 32(5), pp. 1260-1279, 2003.
3. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., and

Zhou, Y., “Cilk: An efficient multithreaded runtime system”, Proceedings of the 5th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP’95, Santa Barbara, California, pp. 207-216, July 1995.

4. Blumofe, R.D., and Leiserson, C.E., “Scheduling Multithreaded Computations by
Work Stealing”, Proceedings of the 35th Annual IEEE conference on Foundations
of Computer Science (FOCS’94), Santa Fe, New Mexico, November 20-22, 1994.

5. Cai, H., Olivier Maquelin, Prasad Kakulavarapu, and Gao, G.R., “Design and
Evaluation of Dynamic Load Balancing Schemes under a Fine-grain Multithreaded
Execution Model”, Proc. of the Multithreaded Execution Architecture and Com-
pilation Workshop, Orlando, Florida, January 1999. Delaware, May 1999.

48 B.-Y. Zhang et al.

6. Eager, D.L., Lazowska, E.D., and Zahorjan, J., “A Comparison of Receiver-
Initiated and Sender-Initiated Adaptive Load Sharing”, Performance Evaluation,
Vol. 6, pp. 53-68, 1986.

7. Herbert H.J. Hum, Olivier Maquelin, Kevin B. Theobald, Xinmin Tian, Xinan
Tang, Guang R. Gao, Phil Cupryk, Nasser Elmasri, Lau-rie J. Hendren, Al-
berto Jimenez, Shoba Krishnan, Andres Marquez, Shamir Merali, Shashank S.
Nemawarkar, Prakash Panangaden, Xun Xue, and Yingchun Zhu. “A design study
of the EARTH multiprocessor”, Proceedings of the IFIP WG 10.3 Working Confer-
ence on Parallel Architectures and Compilation Techniques, PACT ’95 (Lubomir
Bic, Wim Bohm, Paraskevas Evripidou, and Jean-Luc Gaudiot, eds.), Limassol,
Cyprus, ACM Press, pp. 59-68, June 27-29, 1995.

8. Mao, Z.M., So, H.S.W., Woo, A., “JAWS: A Java Work Stealing Scheduler Over
a Network of Workstations”, Technical report, The University of California at
Berkeley, June 1998.

9. Rob V. van Nieuwpoort, Kielmann, T., and Bal, H., “Satin: Efficient Parallel Divide
and Conquer in Java”, Proc. Euro-Par 2000, Munich, Germany, pp. 690-699, Aug.
29-Sep. 1, 2000.

10. Sanders, P., “Randomized receiver initiated load balancing algorithms for tree
shaped computations”, The Computer Journal, Vol. 45(5), pp. 561-573, 2002.

11. Shivaratri, N.G., and Krueger, P., “Two Adaptive Location Policies for Global
Scheduling Algorithms”, IEEE International Conference on Distributed Computing
Systems, 1990.

12. Shivaratri, N.G., Krueger, P., and Ginghal, M., “Load Distributing for Locally
Distributed Systems”, IEEE Computer, Vol 25(12), pp. 33-44, Dec. 1992.

13. Wu, I.C., and Kung, H., “Communication Complexity for Parallel Divide and Con-
quer”, 32nd Annual Symposium on Foundations of Computer Science (FOCS’91),
San Juan, Puerto Rico, pp. 151-162, Oct. 1991.

	Introduction
	Design the Transitive Random Stealing Algorithm
	Performance Evaluation Based on Random Baseline Technique
	An Experiment Result in the Jcluster Environment
	Conclusion and Further Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

