
Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 21 – 32, 2005.
© Springer-Verlag Berlin Heidelberg 2005

RDIM: A Self-adaptive and Balanced Distribution for
Replicated Data in Scalable Storage Clusters∗

Zhong Liu, Nong Xiao, and Xing-Ming Zhou

Institute of Computer, National University of Defense Technology,
Changsha, China, 410073
Liuzhong@zhmail.com

Abstract. As storage systems scale from a few storage nodes to hundreds or
thousands, data distribution and load balancing become increasingly important.
We present a novel decentralized algorithm, RDIM (Replication Under
Dynamic Interval Mapping), which maps replicated objects to a scalable
collection of storage nodes. RDIM distributes objects to nodes evenly,
redistributing as few objects as possible when new nodes are added or existing
nodes are removed to preserve this balanced distribution. It supports weighted
allocation and guarantees that replicas of a particular object are not placed on
the same node. Its time complexity and storage requirements compare favorably
with known methods.

1 Introduction

As the use of large distributed systems and large-scale clusters of commodity
computers has increased, significant research has been devoted toward designing
scalable distributed storage systems. Its applications now span numerous disciplines,
such as: higher large-scale mail system, online numeric periodical, digital libraries,
large online electric commerce system, energy research and simulation, high energy
physics research, seismic data analysis, large scale signal and image processing
applications, data grid application and peer-to-peer storage application, etc. Usually, it
will no longer be possible to do overall upgrades of high performance storage
systems. Instead, systems must grow gracefully over time, adding new capacity and
replacing failed units seamlessly—an individual storage device may only last five
years, but the system and the data on it must survive for decades. Since the capacities
of storage nodes usually are non-uniform and storage nodes are dynamically changed
in large-scale distributed storage systems, systems must distribute data objects among
the storage nodes according to their capabilities and afford to immediately rebalance
data objects distribution according to weight of storage nodes when storage nodes are
changed. So we study the problem of designing flexible, adaptive strategies for the
distribution of objects among a heterogeneous set of servers. Ideally, such a strategy
should be able to adapt with a minimum amount of replacements of objects to
changes in the capabilities of the servers so that objects are always distributed among

∗ Supported by the National Basic Research Program 973 of China (No.2003CB317008).

22 Z. Liu, N. Xiao, and X.-M. Zhou

the servers according to their capabilities. Finally, Xin, et al.[1] reports that the mean
time to failure (of a single disk) in a petabyte-scale (1015 bytes) storage system will be
approximately one day. In order to prevent data loss, we must allow for data
replication. Furthermore, the data replication scheme should guarantee that replicas of
the same object get placed on different servers, or the effect of replication will be
nullified.

Previous techniques are able to handle these requirements only in part. For
example, a typical method to map data object to storage nodes in an optimally
balanced way is a simple Round-Robin (RR) assignment. The storage node number
assigned to a given data object can be easily calculated using modular arithmetic:
h(id)=id mod n, where id is object ID and n is the number of storage nodes in system.
If storage nodes have the uniform capabilities, it can be used to distribute data objects
evenly among n servers. However, they usually do not adapt well to a change in the
capabilities. Moreover, If a new server is added, approximately the fraction n/(n+1) of
the data objects must be moved from one storage node to another before the data can
be accessed using the new mapping. For a large storage system, this leads to a long
period of unavailability of data, which is not acceptable to many applications. In
contrast, the minimum fraction that must be relocated to obtain a balanced mapping is
approximately l / (n+1). A different approach is to maintain object-to-node mapping in
a stored directory (SD). In this case, a directory of B entries is maintained in which
the ith entry contains the node number assigned to object i, where B is the total
number of objects and is usually a fairly large integer. Thus, each object can be
individually assigned or reassigned to any storage node. When new storage nodes are
added, individual objects are selected for relocation to the new nodes so that only the
minimum amount of object is moved. However, this approach suffers from severe
performance bottleneck problems and consumes a significant amount of memory.
Litwin, et al. [2] has developed many variations on Linear Hashing (LH*), the LH*
variants are limited in two ways: they must split buckets, and they have no provision
for buckets with different weights. LH* splits buckets in half, so that on average, half
of the objects on a split bucket will be moved to a new empty bucket, resulting in
suboptimal bucket utilization and a “hot spot” of bucket and network activity between
the splitting node and the recipient and the distribution is unbalanced after
replacement. Moreover, the LH* variants do not support weighted allocation and data
replication. Other data structures such as DDH [3] suffer from similar splitting issues.
Choy, et al. [4] describes algorithms for perfect distribution of data to disks that move
an optimally low number of objects when disks are added. However, these algorithms
do not support weighting of disks, removal of disks and data replication. Brinkmann,
et al. [5, 6] proposes a method for pseudo-random distribution of data to multiple
disks using partitioning of the unit range. This method accommodates growth of the
collection of disks by repartitioning the range and relocating data to rebalance the
load. However, this method does not move an optimally number of objects of
replacement, and does not allow for the placement of replicas. Honicky, et al. [7,8]
presents algorithms for balanced distribution of data to disks that move an optimally
low number of objects when disks are added, which supports weighting of disks and
replication, but do not support removal of disks [7], however, the methods relies upon
iterating for producing the same sequence of numbers regardless of the number
actually required, and the large-scale iterations increase the lookup time. We present

 RDIM: A Self-adaptive and Balanced Distribution 23

an algorithm for balanced distribution of data to nodes that move probabilistically an
optimally number of objects when nodes are added or removed, which supports
weighting of nodes, but do not support replication [9].

In the algorithm, data objects are always distributed among the storage nodes
according to their weights. When new nodes are added or existing nodes are removed,
it distributes objects to nodes evenly, and redistributing as few objects as possible and
preserves this balanced distribution. Moreover, our algorithm almost always moves a
statistically optimal number of objects from every storage node in the system to each
new storage node, rather than from one storage node to one storage node. It supports
data replication and guarantees that replicas of a particular object are not placed on
the same node. The algorithm is very fast, and scales with the number of storage
nodes groups added to the system. Its time complexity and storage requirements
compare favorably with known methods. The rest of the paper is organized as
follows. Section 2 contains definitions, including descriptions of the measures of
“goodness” of a mapping method that are of interest to us. Section 3 presents a self-
adaptive data objects placement algorithm supporting weighted allocation and
replication. Section 4 gives performance analysis and simulation results. Section 5
summarizes the paper.

2 The Model and Definitions

Given a positive integer B, the number of data objects, and a positive integer N, the
number of storage nodes, and a positive integer R, the maximum degree of replication
for an object, the problem is to construct a mapping f from the set of object id’s (0,
1,2, . . . , B-1) and the replica number r (0≤r<R) of the object in question to the set of
node id’s (0, 1,2, . . . , N-1). Typically, B is much larger than N. When an expansion
occurs, the number of storage nodes increases from N to some N’, we have to
construct a new mapping f’ to reassign the node number in N’ for data access. We can
view a mapping method as a function M (x, r, p) that takes a data object id x, the
replica number r and a representation p of a particular mapping, and returns a storage
node id. That is, f (x, r) = M (x, r, p) where p is the representation of f. For example
(no replication), for the RR method mentioned in the Introduction, the representation
p is simply n, and M (x, p) = x mod n; for the SD method, p is a list (y0, y1, . . . yB-1)
of integers, and M (x, p) = yx.

Let the size of storage node i under the mapping f is li, which is the number of data
objects that f maps to i. Let the weight of storage node i is wi. Measures of the
goodness of a solution include the following:

(1) Balance. A mapping f from B objects onto N nodes is said to be balanced if for
every pair of nodes in the system i and j, the expected ratio between the size of i

and j is equal to the ratio of the weights assigned to i and j (i.e.
j

i

j

i

w

w

l

l
=).

(2) Mapping Complexity. This is the number of operations needed to compute f
(x), given an object id x.

(3) Mapping Storage. This is the amount of storage needed to store a representation
of the mapping. In placing upper bounds on the mapping storage of a particular

24 Z. Liu, N. Xiao, and X.-M. Zhou

mapping method M (x, p), we bound only the storage needed for the
representation p (which can, in general, depend on N, B, and the number of
expansions), and we ignore the (constant) storage needed to hold an algorithm
for computing M.

(4) Object Relocation. When a mapping f is replaced with another mapping f ’ as
the result of an expansion, the object relocation of the expansion is the number
of objects that are assigned to different nodes by f and f’, i.e., the number of
object id’s x such that f (x) ≠ f’(x) and 0≤x<B.

3 Replication Under Dynamic Interval Mapping

3.1 Representation of the Mapping

We assume that system storage nodes are partitioned into sub-clusters; sub-clusters
consist of identical storage nodes that are added, removed, and reweighed as a group.
The entire storage system consists of multiple server sub-clusters, accreted over time.
In most systems, sub-clusters of storage nodes have different properties—newer
storage nodes are faster and have more capacity. We must therefore add weighting to
the algorithm to allow some storage nodes to contain a higher proportion of objects
than others. We assign weight factor wj to a single storage node in sub-cluster j. This
factor will likely be a number that describes the power (such as capacity, throughput,
or some combination of the two) of the storage node. Suppose that we are in a
situation where m expansions have occurred. Part of the representation of the
mapping is the sequence N0, Nl , N2, . . . , Nm, where N0>0 is the number of storage
nodes initially, and Nj is the total number of storage nodes after the jth expansion. It is
convenient to define N-1=0. Let dj=Nj-Nj-1 for 0≤j≤m. Thus, at the jth expansion, dj
storage nodes are added to the existing Nj-1 storage nodes to create a new total of Nj
storage nodes. Note that dj>0 for 0≤j≤m, since Nj-1<Nj. In what follows, we assume
that the numbers dj is also stored, although an alternative is to recompute a particular
dj whenever it is needed. Define the jth sub-cluster, for 0≤j≤m, to be storage nodes
with id’s in the interval [Nj-1, Nj). (For integers zl and z2 with z1<z2, the interval [zl, z2)
contains all integers z with z1≤z<z2.) Thus, dj is the number of storage node in the jth
sub-cluster.

Suppose that we have a random function H: {0, 1, . . . , M} → [0,1), the function H
maps the data object’s id uniformly at random to real numbers in the interval [0,1).
The basic idea of the mapping is to map the space [0, B) of data object id’s into
intervals in [0,1) and divide the interval [0, 1) into different length intervals according
to weight of sub-clusters; All objects mapped to the same interval are mapped to
storage nodes that belong to the same sub-cluster. A storage node can contain objects
from several different intervals. When sub-clusters are changed, current intervals are
divided into more small intervals rather than the interval [0,1) is redefined and
different intervals are reassigned into new sub-clusters, resulting in data objects
replacement.

In addition to m, the Nj’s, and the dj’s, the rest of the representation of the mapping
consists of the following:

 RDIM: A Self-adaptive and Balanced Distribution 25

(1) An integer k≥1, the number of intervals.
(2) Real numbers ai for 0≤i≤k where
0=a0<a1<a2<…<ak=1
The ith interval is [ai-1, ai), for 1≤i≤k. We imagine that the intervals are ordered

from left to right, and we say that the ith interval is to the left of the jth interval (and
that the jth is to the right of the ith) if i < j.

(3) Nonnegative integers bi, for 1≤i≤k. For the ith interval [ai-1, ai), the number bi is
the sub-cluster number associated with this interval. Thus, 0≤bi<m. All data objects
H(x) in [ai-1, ai) are mapped to storage nodes in sub-cluster bi, Define sub-cluster(x) =
bi, for all H(x) in [ai-1, ai).

In general, several intervals can be mapped to the same sub-cluster; that is, we can
have bi= bj, for different i and j.

(4) Nonnegative real numbers ci, for 1≤i≤k. For each i, the number ci, is the total
length of intervals of objects x’s H(x) in intervals to the left of the ith interval
(i.e.,H(x) <ai-1) such that x is mapped to a sub-cluster bi, (i.e., sub-cluster(x) = bi). The
ci’s are helpful in computing the mapping. Note that ci is the total length of intervals
of objects x in intervals to the left of the ith such that x is mapped to sub-cluster bi.
We call ci the offset adjustment of the ith interval.

3.2 Computation of the Mapping

The algorithm becomes slightly more complicated when we add replication because
we must guarantee that no two replicas of an object are placed on the same server,
while still allowing the optimal placement and migration of objects to new sub-
clusters. Given a data object id x and its replica number r, the way to compute the
mapping is first to determine the number of replicas which belong in each sub-cluster
according to its weight, and find the interval [ai-l, ai) to which x belongs, and then to
compute the mapping using bi, Nj-1, and dj (j=bi). Once it has determined that a
particular sub-cluster should contain u replicas of an object, it selects u storage nodes
randomly from that sub-cluster. Pseudo-code for the mapping computation is given by
Algorithm 1 in Figure 1, where 0=u0<u1<u2<…<um=1, the interval length of [uj-1, uj)
is the weight rate of the jth sub-cluster.

Fig. 1. Algorithm for mapping computation

Algorithm 1: Mapping Computation
Input: A object id x and its replica number r
Find i such that H(x) is in [ai-1, ai)
j = bi

if (r = 0)
 Return Nj-1 + x mod dj
else
 Find j such that H(r) is in [uj-1, uj)

choose a random prime number p> dj
Return Nj-1 + (x +r*p) mod dj

end if

26 Z. Liu, N. Xiao, and X.-M. Zhou

3.3 The Initial Representation

Initially, when there are no expansions have occurred, the representation is given by
m=0, k=1, a0=0, a1=1, b1=c1=0, and d0=N0, Thus, the mapping is exactly given by
y=x+r*p mod N0.where p is a random prime number (p> N0)

When the number of storage nodes is changed, the representation of the mapping
must be modified Assume that we are in a situation where m expansions have
occurred previously (for some m≥0) and that we have a representation of the
mapping, from B data objects to Nm storage nodes, as described above; call this
mapping the old mapping. There are two cases.

3.4 Adding Sub-cluster

Suppose that the (m+1)th sub-cluster is added, which consists of storage nodes in [Nm,
Nm+1). The basic idea is, for each sub-cluster j with 0≤j≤m, to move the proper
number of objects from sub-cluster j to the (m+1)th sub-cluster so as to produce a new
balanced mapping from B objects to Nm+1 nodes. Among the objects in sub-cluster j,
the ones with a larger random number H(x) are moved. This has the effect that if an
object stays in the same sub-cluster, then it remains mapped to the same node. So for
each sub-cluster j with 0≤j≤m, there will be a splitting point sj such that, for each
object x mapped to sub-cluster j in the old mapping, if H(x)<sj, then object x remains
in sub-cluster j in the new mapping, and if H(x)≥sj, then object x is moved to the new

Fig. 2. Algorithm for computing adding cluster actions

Algorithm 2: Computation of Adding Cluster Actions
Input: A new number Nm+l of Nodes

total = ∑
+

=

1

0

*
m

j
jj wd

for j =0 to m
tj = dj*wj/total

end for
w = 0
for i = 1 to k

j = bi
if tj≥(ai-ai-1+ci) then

Ai = Null
else if tj≤ci then

Ai = Move(w)
w = w + ai-ai-l

else
s =ai-1 + tj - ci,
Ai = Split(s,w)
w = w +ai - s

end for

 RDIM: A Self-adaptive and Balanced Distribution 27

(m+1)th sub-cluster in the new mapping. If ai-l<sj<ai, for some interval [ai-l, ai) with
bi=j in the representation of the old mapping, then this interval will be split into two
intervals, [ai-l, sj) that remains mapped to sub-cluster j, and [sj, ai) that is mapped to
the (m+1)th sub-cluster. To make the following description of mapping expansion
independent of implementation, the result is given as a set of actions to be performed.
There is an action A associated with each interval [ai-l,ai) in the representation of the
old mapping. There are three types of actions:

1. If Ai = Null, then objects in the interval [ai-l, ai) do not move. The sub-cluster
number and the offset adjustment of the interval do not change.

2. If Ai = Move(c), then all objects in the interval [ai-l, ai) are moved to the
(m+1)th sub-cluster. The sub-cluster number of the interval is changed to m,
and c becomes the new offset adjustment of the interval.

3. If Ai = Split(s, c) , then the interval [ai-l, ai) is split into two intervals, [ai-l, s) and
[s, ai). Objects with H(x) in [s, ai) are moved to the (m+1)th sub-cluster, and c is
the offset adjustment of the interval [s, ai). Objects in [ai-1,s) do not move; the sub-
cluster number and offset adjustment of [ai-l,s) are identical to those of [ai-l, ai) in
the old mapping.

Pseudocode for computing the appropriate actions is given by Algorithm 2 in
Figure 2.

Fig. 3. Algorithm for computing removing cluster actions

Algorithm 3: Computation of Removing Cluster Actions
Input: A removed rth cluster

total = ∑
≠=

m

rjj
jj wd

,0

*

for j =0, j≠r to m
tj = dj*wj/total

end for
j = 0
for each interval [ai-1,ai) with bi=r

if j≠r then
t = total interval length of the cluster j
if (tj – t) ≥ (ai-ai-1) then

Ai = Move (t)
t = t + ai-ai-1

else
s = tj – t + ai-1

Ai = Split(s, t)
j = j + 1

end if
end for

28 Z. Liu, N. Xiao, and X.-M. Zhou

3.5 Removing Sub-cluster

Suppose that the rth sub-cluster is removed, which consists of storage nodes in [Nr-1,
Nr). The basic idea is to move the proper number of objects from sub-cluster r to other
sub-cluster j with 0≤j≤m and j≠r, so as to produce a new balanced mapping from B
objects to Nm–dr nodes. So for each interval [ai-l,ai) of the rth sub-cluster, either the all
the interval [ai-l,ai) is moved to some sub-cluster j with 0≤j≤m and j≠r, or there will be
a splitting point s such that, [ai-l,s) is moved to some sub-cluster j, [s, ai) is remained
to next movement To make the following description of mapping expansion
independent of implementation, the result is given as a set of actions to be performed.
There is an action A associated with each interval [ai-l,ai) of the rth sub-cluster. There
are two types of actions:

1. If Ai = Move(c), then all objects in the interval [ai-l, ai) are moved to sub-cluster
j. The sub-cluster number of the interval is changed to j, and c becomes the new
offset adjustment of the interval.

2. If Ai = Split(s, c) , then the interval [ai-l, ai) is split into two intervals, [ai-l, s) and
[s, ai). Objects with H(x) in [ai-l, s) are moved to sub-cluster j, and c is the offset
adjustment of the interval [ai-l, s). Replace the interval [ai-l, ai) of the rth sub-
cluster with [s, ai] and continue.

Pseudocode for computing the appropriate actions is given by Algorithm 3 in
Figure 3.

The RDIM method has the following property:

• The number of objects placed in a sub-cluster is proportional to the total
length of intervals mapped to the corresponding sub-cluster.

• The number of objects placed in any sub-cluster is proportional to its weights.
• When storage nodes are changed, the number of objects migrated is the

minimum.

Since objects are distributed evenly to storage node in any sub-cluster by the
algorithm for mapping computation. So we draw the conclusion that the dynamic
interval mapping is balanced algorithm and the number of objects relocated is the
minimum.

4 Performance and Simulation Results Analysis

4.1 Performance

Since both mapping complexity and mapping storage depend on the number k of
intervals, it is useful to have an upper bound on k as a function of m. The following
gives such a bound.

THEOREM 1. If k intervals are produced as the result of m expansions to the
number of storage nodes, then

k≤
2

1
m*(m+1) + 1

 RDIM: A Self-adaptive and Balanced Distribution 29

Proof. The proof is by induction on m. Initially (when m=0) there is one interval.
Assuming that the bound holds for m expansions, we prove it for m+1 expansion. Just
before the (m+1)st expansion, there are m+1 sub-clusters, 0 through m. For each of
these sub-clusters, there will be at most one interval that is mapped to the sub-cluster
and that is split during the (m+1)st expansion. So the (m+1)st expansion causes at
most m+1 intervals to be split, thus creating at most m+1 new intervals. Therefore,
using the induction hypothesis, the total number of intervals after m+1 expansions is

at most
2

1
m*(m+1)+1+(m+1)=

2

1
(m+1)*(m+2)+1.

0
0. 5

1
1. 5

2
2. 5

3
3. 5

1 11 21 31 41 51 61 71 81 91

Co
m

pu
ta

tio
n

tim
e(

us
)

(a) Time per lookup per replica as the number of sub-clusters increases

0

20

40

60

80

100

1 11 21 31 41 51 61 71 81 91
Number of sub- clust er s

Co
m

pu
ta

tio
n

tim
e(

us
)

Our algor i t hm Linear NlogN

(b)Time per lookup compared to linear and nlogn functions

Fig. 4. Time for looking up an object versus the number of sub-clusters in the system

Number of sub- clust er s

30 Z. Liu, N. Xiao, and X.-M. Zhou

In the implementation, the numbers ai, bi, ci, dj, and Nj, are stored in random-access
tables or tree, The Find operation in Algorithm 1 is done by binary search in the table
or the tree. Obviously, mapping complexity is O(log k) and mapping storage is O(k).
By Theorem 1, mapping complexity is O(log m) and mapping storage is O(m2).

In our algorithm, we need a random function H, which maps the objects uniformly
at random to real numbers in the interval [0,1). We select the Mersenne Twister[10]
as the random function H in the implementation of our algorithm.

In order to quantify the real world performance of our algorithm, we tested the
average time per lookup under many different configurations for a system with 1000000
objects and 4 replicas per object. First, we ran a test starting with 10 storage nodes in a
single sub-cluster and computed the average time for these 4000000 lookups, and then
added sub-clusters, 10 storage nodes at a time, and timed the same 4000000 lookups
over the new server organization. Figure 4(a) shows the per-object per-replica lookup
time with slightly growth rates for the capacity of the most recently added sub-clusters,
even with 100 sub-clusters in the system, the amortized lookup time is less than 3 µs on
the 1.4GHz Pentium Ⅳ on which we ran these experiments; In Figure 4(b), we can see
that the line for lookups grows far slower than linear and NlogN.

4.2 Data Distribution

We evaluate the balanced distribution of data objects supporting weighted allocation
and replication. The simulation system includes 3 sub-clusters; the first sub-cluster
includes three storage nodes with weight 1, the second sub-cluster includes two
storage nodes with weight 3, the third sub-cluster includes four storage nodes with
weight 5, the maximum degree of replication for each object is 3. The 100000,
200000, 400000, 800000 data objects from four clients are sent respectively to storage
nodes. Figure 5 show that data objects sent from four clients and the total sums are
always distributed among the storage nodes according to their weights.

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1 2 3 4 5 6 7 8 9
Storage node ID

N
um

be
r

of
 o

bj
ec

ts

C li ent 1
Cli ent 2
Cl i ent 3
Cl i ent 4
Tot al

Fig. 5. The distribution of data objects according to nodes weight

 RDIM: A Self-adaptive and Balanced Distribution 31

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 10 11 12 13
Storage node ID

N
um

be
r

of
 o

bj
ec

ts

Cl ient 1
Cl ient 2
Cl ient 3
Cl ient 4
Total

Fig. 6. The redistribution of data objects after adding two clusters

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7
Storage node ID

N
um

be
r

of
 o

bj
ec

ts

C l ient 1
Client 2
Client 3
Cl ient 4
Total

Fig. 7. The redistribution of data objects after removing one cluster

Then, we evaluate the balanced redistribution of data objects supporting weighted
allocation by adding two sub-clusters and removing one sub-cluster respectively. (1)
Add two sub-clusters, the first sub-cluster includes two storage nodes with weight 7;
the second sub-cluster includes two storage nodes with weight 9. (2) Remove the
second sub-cluster, which includes two storage nodes with weight 3. Figure 6 and
Figure 7 show that data objects sent from four clients and the total sums are always
redistributed among the storage nodes according to their weights after adding or
removing sub-cluster.

32 Z. Liu, N. Xiao, and X.-M. Zhou

5 Conclusions

In this paper, we propose a self-adaptive and balanced distribution algorithm for
replicated data objects in scalable storage clusters, which distributes objects to nodes
evenly, redistributing as few objects as possible when new nodes are added or
existing nodes are removed to preserve this balanced distribution. It supports
weighted allocation and guarantees that replicas of a particular object are not placed
on the same node. Its time complexity and storage requirements compare favorably
with known methods.

References

[1] Q. Xin, E. L. Miller, D. D. E. Long, S. A. Brandt, T. Schwarz, and W. Litwin. Reliability
mechanisms for very large storage systems. In Proceedings of the 20th IEEE / 11th
NASA Goddard Conference on Mass Storage Systems and Technologies, pages 146–156,
Apr. 2003.

[2] W. Litwin, M.-A. Neimat, and D. A. Schneider. LH*—a scalable, distributed data
structure. ACM Transactions on Database Systems, 1996, 21(4): 480-525.

[3] R. Devine. Design and implementation of DDH: A distributed dynamic hashing
algorithm. In Proceedings of the 4th International Conference on Foundations of Data
Organization and Algorithms, pages 101–114, 1993.

[4] D. M. Choy, R. Fagin, and L. Stockmeyer. Efficiently extendible mappings for balanced
data distribution. Algorithmica, 1996, 16:215-232.

[5] A. Brinkmann, K. Salzwedel, and C. Scheideler. Efficient, distributed data placement
strategies for storage area networks. In Proceedings of the 12th ACM Symposium on
Parallel Algorithms and Architectures (SPAA), ACM Press. Extended Abstract. 2000,
119-128.

[6] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact, adaptive placement schemes
for non-uniform capacities. In Proceedings of the 14th ACM Symposium on Parallel
Algorithms and Architectures (SPAA), Winnipeg, Manitoba, Canada , Aug. 2002. 53-62.

[7] R. J. Honicky and E. L. Miller. A fast algorithm for online placement and reorganization
of replicated data. In Proceedings of the 17th International Parallel & Distributed
Processing Symposium, Nice, France, Apr. 2003.

[8] R. J. Honicky and E. L. Miller. Replication under scalable hashing: A family of
algorithms for scalable decentralized data distribution. In Proceedings of the 18th
International Parallel & Distributed Processing Symposium (IPDPS 2004), Santa Fe, NM,
Apr. 2004. IEEE.

[9] Zhong Liu, Xing-Ming Zhou. An Adaptive Data Objects Placement Algorithm For Non-
Uniform Capacities, In Proceedings of the 3rd International Conference on Grid and
Cooperative Computing, WuHan, Oct. 2004.

[10] M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator", ACM Trans. on Modeling and
Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.

	Introduction
	The Model and Definitions
	Replication Under Dynamic Interval Mapping
	Representation of the Mapping
	Computation of the Mapping
	The Initial Representation
	Adding Sub-cluster
	Removing Sub-cluster

	Performance and Simulation Results Analysis
	Performance
	Data Distribution

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

