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Abstract. As storage systems scale from a few storage nodes to hundreds or 
thousands, data distribution and load balancing become increasingly important. 
We present a novel decentralized algorithm, RDIM (Replication Under 
Dynamic Interval Mapping), which maps replicated objects to a scalable 
collection of storage nodes. RDIM distributes objects to nodes evenly, 
redistributing as few objects as possible when new nodes are added or existing 
nodes are removed to preserve this balanced distribution. It supports weighted 
allocation and guarantees that replicas of a particular object are not placed on 
the same node. Its time complexity and storage requirements compare favorably 
with known methods. 

1   Introduction 

As the use of large distributed systems and large-scale clusters of commodity 
computers has increased, significant research has been devoted toward designing 
scalable distributed storage systems. Its applications now span numerous disciplines, 
such as: higher large-scale mail system, online numeric periodical, digital libraries, 
large online electric commerce system, energy research and simulation, high energy 
physics research, seismic data analysis, large scale signal and image processing 
applications, data grid application and peer-to-peer storage application, etc. Usually, it 
will no longer be possible to do overall upgrades of high performance storage 
systems. Instead, systems must grow gracefully over time, adding new capacity and 
replacing failed units seamlessly—an individual storage device may only last five 
years, but the system and the data on it must survive for decades. Since the capacities 
of storage nodes usually are non-uniform and storage nodes are dynamically changed 
in large-scale distributed storage systems, systems must distribute data objects among 
the storage nodes according to their capabilities and afford to immediately rebalance 
data objects distribution according to weight of storage nodes when storage nodes are 
changed. So we study the problem of designing flexible, adaptive strategies for the 
distribution of objects among a heterogeneous set of servers. Ideally, such a strategy 
should be able to adapt with a minimum amount of replacements of objects to 
changes in the capabilities of the servers so that objects are always distributed among 
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the servers according to their capabilities. Finally, Xin, et al.[1] reports that the mean 
time to failure (of a single disk) in a petabyte-scale (1015 bytes) storage system will be 
approximately one day. In order to prevent data loss, we must allow for data 
replication. Furthermore, the data replication scheme should guarantee that replicas of 
the same object get placed on different servers, or the effect of replication will be 
nullified. 

Previous techniques are able to handle these requirements only in part. For 
example, a typical method to map data object to storage nodes in an optimally 
balanced way is a simple Round-Robin (RR) assignment. The storage node number 
assigned to a given data object can be easily calculated using modular arithmetic: 
h(id)=id mod n, where id is object ID and n is the number of storage nodes in system. 
If storage nodes have the uniform capabilities, it can be used to distribute data objects 
evenly among n servers. However, they usually do not adapt well to a change in the 
capabilities. Moreover, If a new server is added, approximately the fraction n/(n+1) of 
the data objects must be moved from one storage node to another before the data can 
be accessed using the new mapping. For a large storage system, this leads to a long 
period of unavailability of data, which is not acceptable to many applications. In 
contrast, the minimum fraction that must be relocated to obtain a balanced mapping is 
approximately l / (n+1). A different approach is to maintain object-to-node mapping in 
a stored directory (SD). In this case, a directory of B entries is maintained in which 
the ith entry contains the node number assigned to object i, where B is the total 
number of objects and is usually a fairly large integer. Thus, each object can be 
individually assigned or reassigned to any storage node. When new storage nodes are 
added, individual objects are selected for relocation to the new nodes so that only the 
minimum amount of object is moved. However, this approach suffers from severe 
performance bottleneck problems and consumes a significant amount of memory. 
Litwin, et al. [2] has developed many variations on Linear Hashing (LH*), the LH* 
variants are limited in two ways: they must split buckets, and they have no provision 
for buckets with different weights. LH* splits buckets in half, so that on average, half 
of the objects on a split bucket will be moved to a new empty bucket, resulting in 
suboptimal bucket utilization and a “hot spot” of bucket and network activity between 
the splitting node and the recipient and the distribution is unbalanced after 
replacement. Moreover, the LH* variants do not support weighted allocation and data 
replication. Other data structures such as DDH [3] suffer from similar splitting issues. 
Choy, et al. [4] describes algorithms for perfect distribution of data to disks that move 
an optimally low number of objects when disks are added. However, these algorithms 
do not support weighting of disks, removal of disks and data replication. Brinkmann, 
et al. [5, 6] proposes a method for pseudo-random distribution of data to multiple 
disks using partitioning of the unit range. This method accommodates growth of the 
collection of disks by repartitioning the range and relocating data to rebalance the 
load. However, this method does not move an optimally number of objects of 
replacement, and does not allow for the placement of replicas. Honicky, et al. [7,8] 
presents algorithms for balanced distribution of data to disks that move an optimally 
low number of objects when disks are added, which supports weighting of disks and 
replication, but do not support removal of disks [7], however, the methods relies upon 
iterating for producing the same sequence of numbers regardless of the number 
actually required, and the large-scale iterations increase the lookup time. We present 
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an algorithm for balanced distribution of data to nodes that move probabilistically an 
optimally number of objects when nodes are added or removed, which supports 
weighting of nodes, but do not support replication [9]. 

In the algorithm, data objects are always distributed among the storage nodes 
according to their weights. When new nodes are added or existing nodes are removed, 
it distributes objects to nodes evenly, and redistributing as few objects as possible and 
preserves this balanced distribution. Moreover, our algorithm almost always moves a 
statistically optimal number of objects from every storage node in the system to each 
new storage node, rather than from one storage node to one storage node. It supports 
data replication and guarantees that replicas of a particular object are not placed on 
the same node. The algorithm is very fast, and scales with the number of storage 
nodes groups added to the system. Its time complexity and storage requirements 
compare favorably with known methods. The rest of the paper is organized as 
follows. Section 2 contains definitions, including descriptions of the measures of 
“goodness” of a mapping method that are of interest to us. Section 3 presents a self-
adaptive data objects placement algorithm supporting weighted allocation and 
replication. Section 4 gives performance analysis and simulation results. Section 5 
summarizes the paper.  

2   The Model and Definitions 

Given a positive integer B, the number of data objects, and a positive integer N, the 
number of storage nodes, and a positive integer R, the maximum degree of replication 
for an object, the problem is to construct a mapping f from the set of object id’s (0, 
1,2, . . . , B-1) and the replica number r (0≤r<R) of the object in question to the set of 
node id’s (0, 1,2, . . . , N-1). Typically, B is much larger than N. When an expansion 
occurs, the number of storage nodes increases from N to some N’, we have to 
construct a new mapping f’ to reassign the node number in N’ for data access. We can 
view a mapping method as a function M (x, r, p) that takes a data object id x, the 
replica number r and a representation p of a particular mapping, and returns a storage 
node id. That is, f (x, r) = M (x, r, p) where p is the representation of f. For example 
(no replication), for the RR method mentioned in the Introduction, the representation 
p is simply n, and M (x, p) = x mod n; for the SD method, p is a list (y0, y1, . . . yB-1) 
of integers, and M (x, p) = yx. 

Let the size of storage node i under the mapping f is li, which is the number of data 
objects that f maps to i. Let the weight of storage node i is wi. Measures of the 
goodness of a solution include the following: 

(1)  Balance. A mapping f from B objects onto N nodes is said to be balanced if for 
every pair of nodes in the system i and j, the expected ratio between the size of i 

and j is equal to the ratio of the weights assigned to i and j (i.e. 
j

i

j

i

w

w

l

l
= ). 

(2)  Mapping Complexity. This is the number of operations needed to compute f 
(x), given an object id x. 

(3)  Mapping Storage. This is the amount of storage needed to store a representation 
of the mapping. In placing upper bounds on the mapping storage of a particular 
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mapping method M (x, p), we bound only the storage needed for the 
representation p (which can, in general, depend on N, B, and the number of 
expansions), and we ignore the (constant) storage needed to hold an algorithm 
for computing M. 

(4)  Object Relocation. When a mapping f is replaced with another mapping f ’ as 
the result of an expansion, the object relocation of the expansion is the number 
of objects that are assigned to different nodes by f and f’, i.e., the number of 
object id’s x such that f (x) ≠ f’(x) and 0≤x<B. 

3   Replication Under Dynamic Interval Mapping 

3.1   Representation of the Mapping 

We assume that system storage nodes are partitioned into sub-clusters; sub-clusters 
consist of identical storage nodes that are added, removed, and reweighed as a group. 
The entire storage system consists of multiple server sub-clusters, accreted over time. 
In most systems, sub-clusters of storage nodes have different properties—newer 
storage nodes are faster and have more capacity. We must therefore add weighting to 
the algorithm to allow some storage nodes to contain a higher proportion of objects 
than others. We assign weight factor wj to a single storage node in sub-cluster j. This 
factor will likely be a number that describes the power (such as capacity, throughput, 
or some combination of the two) of the storage node. Suppose that we are in a 
situation where m expansions have occurred. Part of the representation of the 
mapping is the sequence N0, Nl , N2, . . . , Nm, where N0>0 is the number of storage 
nodes initially, and Nj is the total number of storage nodes after the jth expansion. It is 
convenient to define N-1=0. Let dj=Nj-Nj-1 for 0≤j≤m. Thus, at the jth expansion, dj 
storage nodes are added to the existing Nj-1 storage nodes to create a new total of Nj 
storage nodes. Note that dj>0 for 0≤j≤m, since Nj-1<Nj. In what follows, we assume 
that the numbers dj is also stored, although an alternative is to recompute a particular 
dj whenever it is needed. Define the jth sub-cluster, for 0≤j≤m, to be storage nodes 
with id’s in the interval [Nj-1, Nj). (For integers zl and z2 with z1<z2, the interval [zl, z2) 
contains all integers z with z1≤z<z2.) Thus, dj is the number of storage node in the jth 
sub-cluster. 

Suppose that we have a random function H: {0, 1, . . . , M} → [0,1), the function H 
maps the data object’s id uniformly at random to real numbers in the interval [0,1). 
The basic idea of the mapping is to map the space [0, B) of data object id’s into 
intervals in [0,1) and divide the interval [0, 1) into different length intervals according 
to weight of sub-clusters; All objects mapped to the same interval are mapped to 
storage nodes that belong to the same sub-cluster. A storage node can contain objects 
from several different intervals. When sub-clusters are changed, current intervals are 
divided into more small intervals rather than the interval [0,1) is redefined and 
different intervals are reassigned into new sub-clusters, resulting in data objects 
replacement. 

In addition to m, the Nj’s, and the dj’s, the rest of the representation of the mapping 
consists of the following: 
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(1) An integer k≥1, the number of intervals. 
(2) Real numbers ai for 0≤i≤k where 
0=a0<a1<a2<…<ak=1 
The ith interval is [ai-1, ai), for 1≤i≤k. We imagine that the intervals are ordered 

from left to right, and we say that the ith interval is to the left of the jth interval (and 
that the jth is to the right of the ith) if i < j. 

(3) Nonnegative integers bi, for 1≤i≤k. For the ith interval [ai-1, ai), the number bi is 
the sub-cluster number associated with this interval. Thus, 0≤bi<m. All data objects 
H(x) in [ai-1, ai) are mapped to storage nodes in sub-cluster bi, Define sub-cluster(x) = 
bi, for all H(x) in [ai-1, ai). 

In general, several intervals can be mapped to the same sub-cluster; that is, we can 
have bi= bj, for different i and j. 

(4) Nonnegative real numbers ci, for 1≤i≤k. For each i, the number ci, is the total 
length of intervals of objects x’s H(x) in intervals to the left of the ith interval 
(i.e.,H(x) <ai-1) such that x is mapped to a sub-cluster bi, (i.e., sub-cluster(x) = bi). The 
ci’s are helpful in computing the mapping. Note that ci is the total length of intervals 
of objects x in intervals to the left of the ith such that x is mapped to sub-cluster bi. 
We call ci the offset adjustment of the ith interval. 

3.2   Computation of the Mapping 

The algorithm becomes slightly more complicated when we add replication because 
we must guarantee that no two replicas of an object are placed on the same server, 
while still allowing the optimal placement and migration of objects to new sub-
clusters. Given a data object id x and its replica number r, the way to compute the 
mapping is first to determine the number of replicas which belong in each sub-cluster 
according to its weight, and find the interval [ai-l, ai) to which x belongs, and then to 
compute the mapping using bi, Nj-1, and dj (j=bi). Once it has determined that a 
particular sub-cluster should contain u replicas of an object, it selects u storage nodes 
randomly from that sub-cluster. Pseudo-code for the mapping computation is given by 
Algorithm 1 in Figure 1, where 0=u0<u1<u2<…<um=1, the interval length of [uj-1, uj) 
is the weight rate of the jth sub-cluster. 

 

Fig. 1. Algorithm for mapping computation 

Algorithm 1: Mapping Computation 
Input: A object id x and its replica number r 
Find i such that H(x) is in [ai-1, ai) 
j = bi 

if (r = 0) 
 Return Nj-1 + x mod dj 
else 
 Find j such that H(r) is in [uj-1, uj)  

choose a random prime number p> dj  
Return Nj-1 + (x +r*p) mod dj  

end if 
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3.3   The Initial Representation 

Initially, when there are no expansions have occurred, the representation is given by 
m=0, k=1, a0=0, a1=1, b1=c1=0, and d0=N0, Thus, the mapping is exactly given by 
y=x+r*p mod N0.where p is a random prime number (p> N0) 

When the number of storage nodes is changed, the representation of the mapping 
must be modified Assume that we are in a situation where m expansions have 
occurred previously (for some m≥0) and that we have a representation of the 
mapping, from B data objects to Nm storage nodes, as described above; call this 
mapping the old mapping. There are two cases. 

3.4   Adding Sub-cluster 

Suppose that the (m+1)th sub-cluster is added, which consists of storage nodes in [Nm, 
Nm+1). The basic idea is, for each sub-cluster j with 0≤j≤m, to move the proper 
number of objects from sub-cluster j to the (m+1)th sub-cluster so as to produce a new 
balanced mapping from B objects to Nm+1 nodes. Among the objects in sub-cluster j, 
the ones with a larger random number H(x) are moved. This has the effect that if an 
object stays in the same sub-cluster, then it remains mapped to the same node. So for 
each sub-cluster j with 0≤j≤m, there will be a splitting point sj such that, for each 
object x mapped to sub-cluster j in the old mapping, if H(x)<sj, then object x remains 
in  sub-cluster j in the new mapping, and if H(x)≥sj, then object x is moved to the new  

 

Fig. 2. Algorithm for computing adding cluster actions 

Algorithm 2: Computation of Adding Cluster Actions 
Input: A new number Nm+l of Nodes 

total = ∑
+

=

1

0

*
m

j
jj wd  

for j =0 to m 
tj = dj*wj/total 

end for 
w = 0 
for i = 1 to k 

j = bi 
if tj≥(ai-ai-1+ci) then 

Ai = Null 
else if tj≤ci then 

Ai = Move(w) 
w = w + ai-ai-l 

else 
s =ai-1 + tj - ci, 
Ai = Split(s,w) 
w = w +ai - s 

end for 
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(m+1)th sub-cluster in the new mapping. If ai-l<sj<ai, for some interval [ai-l, ai) with 
bi=j in the representation of the old mapping, then this interval will be split into two 
intervals, [ai-l, sj) that remains mapped to sub-cluster j, and [sj, ai) that is mapped to 
the (m+1)th sub-cluster. To make the following description of mapping expansion 
independent of implementation, the result is given as a set of actions to be performed. 
There is an action A associated with each interval [ai-l,ai) in the representation of the 
old mapping. There are three types of actions: 

1.  If Ai = Null, then objects in the interval [ai-l, ai) do not move. The sub-cluster 
number and the offset adjustment of the interval do not change. 

2. If Ai = Move(c), then all objects in the interval [ai-l, ai) are moved to the 
(m+1)th sub-cluster. The sub-cluster number of the interval is changed to m, 
and c becomes the new offset adjustment of the interval. 

3. If Ai = Split(s, c) , then the interval [ai-l, ai) is split into two intervals, [ai-l, s) and 
[s, ai). Objects with H(x) in [s, ai) are moved to the (m+1)th sub-cluster, and c is 
the offset adjustment of the interval [s, ai). Objects in [ai-1,s) do not move; the sub-
cluster number and offset adjustment of [ai-l,s) are identical to those of [ai-l, ai) in 
the old mapping. 

Pseudocode for computing the appropriate actions is given by Algorithm 2 in 
Figure 2. 

 

Fig. 3. Algorithm for computing removing cluster actions 

Algorithm 3: Computation of Removing Cluster Actions 
Input: A removed rth cluster 

total = ∑
≠=

m

rjj
jj wd

,0

*  

for j =0, j≠r to m 
tj = dj*wj/total 

end for 
j = 0 
for each interval [ai-1,ai) with bi=r 

if j≠r then 
t = total interval length of the cluster j 
if (tj – t) ≥ (ai-ai-1) then 

Ai = Move (t) 
t = t + ai-ai-1 

else 
s = tj – t + ai-1 

Ai = Split(s, t) 
j = j + 1 

end if 
end for 
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3.5   Removing Sub-cluster 

Suppose that the rth sub-cluster is removed, which consists of storage nodes in [Nr-1, 
Nr). The basic idea is to move the proper number of objects from sub-cluster r to other 
sub-cluster j with 0≤j≤m and j≠r, so as to produce a new balanced mapping from B 
objects to Nm–dr nodes. So for each interval [ai-l,ai) of the rth sub-cluster, either the all 
the interval [ai-l,ai) is moved to some sub-cluster j with 0≤j≤m and j≠r, or there will be 
a splitting point s such that, [ai-l,s) is moved to some sub-cluster j, [s, ai) is remained 
to next movement To make the following description of mapping expansion 
independent of implementation, the result is given as a set of actions to be performed. 
There is an action A associated with each interval [ai-l,ai) of the rth sub-cluster. There 
are two types of actions: 

1. If Ai = Move(c), then all objects in the interval [ai-l, ai) are moved to sub-cluster 
j. The sub-cluster number of the interval is changed to j, and c becomes the new 
offset adjustment of the interval. 

2. If Ai = Split(s, c) , then the interval [ai-l, ai) is split into two intervals, [ai-l, s) and 
[s, ai). Objects with H(x) in [ai-l, s) are moved to sub-cluster j, and c is the offset 
adjustment of the interval [ai-l, s). Replace the interval [ai-l, ai) of the rth sub-
cluster with [s, ai] and continue. 

Pseudocode for computing the appropriate actions is given by Algorithm 3 in 
Figure 3. 

The RDIM method has the following property: 

• The number of objects placed in a sub-cluster is proportional to the total 
length of intervals mapped to the corresponding sub-cluster. 

• The number of objects placed in any sub-cluster is proportional to its weights. 
• When storage nodes are changed, the number of objects migrated is the 

minimum. 

Since objects are distributed evenly to storage node in any sub-cluster by the 
algorithm for mapping computation. So we draw the conclusion that the dynamic 
interval mapping is balanced algorithm and the number of objects relocated is the 
minimum. 

4   Performance and Simulation Results Analysis 

4.1   Performance 

Since both mapping complexity and mapping storage depend on the number k of 
intervals, it is useful to have an upper bound on k as a function of m. The following 
gives such a bound. 

THEOREM 1. If k intervals are produced as the result of m expansions to the 
number of storage nodes, then 

k≤
2

1
m*(m+1) + 1 
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Proof. The proof is by induction on m. Initially (when m=0) there is one interval. 
Assuming that the bound holds for m expansions, we prove it for m+1 expansion. Just 
before the (m+1)st expansion, there are m+1 sub-clusters, 0 through m. For each of 
these sub-clusters, there will be at most one interval that is mapped to the sub-cluster 
and that is split during the (m+1)st expansion. So the (m+1)st expansion causes at 
most m+1 intervals to be split, thus creating at most m+1 new intervals. Therefore, 
using the induction hypothesis, the total number of intervals after m+1 expansions is 

at most 
2

1
m*(m+1)+1+(m+1)=

2

1
(m+1)*(m+2)+1.  
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(a) Time per lookup per replica as the number of sub-clusters increases 
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(b)Time per lookup compared to linear and nlogn functions 

Fig. 4. Time for looking up an object versus the number of sub-clusters in the system 
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In the implementation, the numbers ai, bi, ci, dj, and Nj, are stored in random-access 
tables or tree, The Find operation in Algorithm 1 is done by binary search in the table 
or the tree. Obviously, mapping complexity is O(log k) and mapping storage is O(k). 
By Theorem 1, mapping complexity is O(log m ) and mapping storage is O(m2). 

In our algorithm, we need a random function H, which maps the objects uniformly 
at random to real numbers in the interval [0,1). We select the Mersenne Twister[10] 
as the random function H in the implementation of our algorithm. 

In order to quantify the real world performance of our algorithm, we tested the 
average time per lookup under many different configurations for a system with 1000000 
objects and 4 replicas per object. First, we ran a test starting with 10 storage nodes in a 
single sub-cluster and computed the average time for these 4000000 lookups, and then 
added sub-clusters, 10 storage nodes at a time, and timed the same 4000000 lookups 
over the new server organization. Figure 4(a) shows the per-object per-replica lookup 
time with slightly growth rates for the capacity of the most recently added sub-clusters, 
even with 100 sub-clusters in the system, the amortized lookup time is less than 3 µs on 
the 1.4GHz Pentium Ⅳ on which we ran these experiments; In Figure 4(b), we can see 
that the line for lookups grows far slower than linear and NlogN. 

4.2   Data Distribution 

We evaluate the balanced distribution of data objects supporting weighted allocation 
and replication. The simulation system includes 3 sub-clusters; the first sub-cluster 
includes three storage nodes with weight 1, the second sub-cluster includes two 
storage nodes with weight 3, the third sub-cluster includes four storage nodes with 
weight 5, the maximum degree of replication for each object is 3. The 100000, 
200000, 400000, 800000 data objects from four clients are sent respectively to storage 
nodes. Figure 5 show that data objects sent from four clients and the total sums are 
always distributed among the storage nodes according to their weights. 
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Fig. 5. The distribution of data objects according to nodes weight 
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Fig. 6. The redistribution of data objects after adding two clusters 
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Fig. 7. The redistribution of data objects after removing one cluster 

Then, we evaluate the balanced redistribution of data objects supporting weighted 
allocation by adding two sub-clusters and removing one sub-cluster respectively. (1) 
Add two sub-clusters, the first sub-cluster includes two storage nodes with weight 7; 
the second sub-cluster includes two storage nodes with weight 9. (2) Remove the 
second sub-cluster, which includes two storage nodes with weight 3. Figure 6 and 
Figure 7 show that data objects sent from four clients and the total sums are always 
redistributed among the storage nodes according to their weights after adding or 
removing sub-cluster. 



32 Z. Liu, N. Xiao, and X.-M. Zhou 

5   Conclusions 

In this paper, we propose a self-adaptive and balanced distribution algorithm for 
replicated data objects in scalable storage clusters, which distributes objects to nodes 
evenly, redistributing as few objects as possible when new nodes are added or 
existing nodes are removed to preserve this balanced distribution. It supports 
weighted allocation and guarantees that replicas of a particular object are not placed 
on the same node. Its time complexity and storage requirements compare favorably 
with known methods.  
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