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Abstract. This paper presents a quorum-based group k-mutual exclu-
sion algorithm for open distributed computing systems that can evolve
their behavior based on membership changes in the environment. The al-
gorithm consists of two main layers; the quorum-consensus and quorum-
reconfiguration. The quorum consensus layer is used to handle requests
from and to the application layer, and it directly adopts a proposed k-
coterie based algorithm of the group k-mutual exclusion in the static
environments without any change to its protocol. Thus, the message
complexity and quorum availability are the same as in the static environ-
ments. The quorum reconfiguration reconstructs information structure of
the k-coterie by simply implementing the properties of two quorum input
operations called coterie-join and coterie-cross. The reconfiguration layer
is simple to use and has a great ability to complete any operation during
reconfiguration powerfully thus system does not enter the halt state.

1 Introduction

The distributed mutual exclusion is one of the most fundamental issues in the
study of distributed control and management problems that arises when multiple
computing nodes compete for a shared resource in an uncoordinated way. The
problem is to design a safety synchronization such that at most one node is al-
lowed to use the resource at a time. The problem of k-mutual exclusion (k-mutex)
and group mutual exclusion (GME) are the two well studied natural generaliza-
tions of the mutual exclusion. The k-mutex guarantees at most k (≥ 1) nodes
can be allowed to use a single resource simultaneously, and the GME synchro-
nizes conflicting nodes in sharing m resources such that at most one resource
can be used by some concurrent nodes. Recently, Vidyasankar [1] introduced
group k-mutex as the generalization of the k-mutex and GME problems in a
shared-memory environment. The problem is to design a conflict resolution such
that at most k (out of m) resources can be used by some concurrent nodes.

As mentioned, let us consider a distributed system consisting of n nodes,
which share undetermined number of resources1. The system is said to be group
k-mutual exclusive if the following requirements hold:

1 The paper have further relaxed the assumption of the original problem that the
nodes have no knowledge about the entire set of the shared resources.
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– k-mutual exclusion: at most k resources are allowed to be used by some
concurrent nodes at a time.

– concurrent entering: nodes which request the allowable resources can use
them simultaneously at a time.

– liveness: a node requesting a resource will eventually succeed.

Quorum consensus approaches are the well-known solution to any conflict
resolution which is generalized from the mutual exclusion. The class of these
solutions gives a significant interest in fault-tolerant of node and communication
failures that may lead to network partitioning [2, 3]. Coterie based algorithm is a
typical quorum consensus for mutual exclusion: A node can use the resource only
if it obtains permissions from all nodes in any quorum of a coterie, and since each
quorum intersects with each other and each node only issues one permission, the
mutual exclusion can be guaranteed. In the GME, Joung [4] have proposed an m-
group quorum system for GME quorum consensus, however, construction of such
a good quorum system (i.e., a non-dominated m-group quorum system) arises
a more difficult problem. Moreover, the coterie based of the mutual exclusion
can directly be adopted to this problem; i.e., the conflicting nodes simply use a
coterie to manage their mutual exclusive accessions to the requested resources.
The k-coterie based algorithms are a particular quorum consensus on the k-
mutex problem. There at most k pairwise disjoint quorums in a k-coterie, thus
at most k nodes can use it so as to achieve the k-mutex safety requirement.
Furthermore, the k-coterie based algorithm can also be used for the group k-
mutex in the static environments. In this paper, we firstly present a k-coterie
based group k-mutex algorithm in the static environments and adopt it forward
to the open distributed environments.

Open distributed computing systems are built on the highly volatile networks
in the sense that the rate of membership changes (i.e., nodes joining and leaving
the system) is very high. The system consists of a set P of an undetermined
number of nodes which communicate in a message passing manner using a re-
liable FIFO bidirectional link and share a nonempty set R of an undetermined
number of resources. A node can be created and removed either by user or by
another node or even joining and leaving the system by itself. We assume that
each node has its own memory and it may fail according to fail-stop failure model
in [5]. If a node is created (or join), removed (or leave) or get fails then it can
be detected by some other nodes in the system. When a new node is created
or joining to the system, it should firstly verify the current configuration of the
system.

The existing distributed quorum consensus can run correctly on top of net-
work layer of the open distributed environments, since they are designed as a re-
silient solution against node and communication failures. However, the member-
ship changes by the leaving and joining nodes will adversely decrease availability
of the quorum system. The contention is the reliability that can be gained by
developing a core set of distributed algorithms that are aware of the underlying
volatility in the network. Lawi et al.[6] have proposed a wait-avoidance mecha-
nism in reconfiguring quorum system for mutual exclusion so as to prevent this
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drawback. Their algorithm mainly consists of two layers that separately works;
the quorum-consensus and -reconfiguration. The quorum consensus layer is used
to handle requests from and to the application layer, and it directly adopts the
coterie based algorithm for group mutual exclusion in the static environments.
The quorum reconfiguration layer reconstructs information structure of the co-
terie by implementing the two quorum input operations called coterie-join and
-cross operations. The coterie join operation is used when a set of nodes have
leaved from the system while some others are joining, and the coterie cross is
implemented to the algorithm when there is only a set of joining nodes enter
the system. In this paper, we extend the results in [6] by showing that; the k-
coterie based algorithm of the group k-mutex can also be used in their quorum
consensus layer, and the quorum reconfiguration layer can also be adopted in
reconfiguring k-coteries.

2 The Quorum Consensus Layer

2.1 k-Coteries

Definition 1. [7] A nonempty set of sets, C, is a k-coterie under a set of nodes
P iff C satisfies the following properties:

1. Non-intersection: For any h-set H = {Q1, . . . , Qh ∈ C | Qi ∩ Qj = ∅, i �=
j}, h < k, there exists Q ∈ C such that Q ∩ Qi = ∅, 1 ≤ i ≤ h.

2. Intersection: For any (k + 1)-set K = {Q1, . . . , Qk+1} ⊆ C, there exists a
pair Qi, Qj ∈ K such that Qi ∩ Qj �= ∅, 1 ≤ i, j ≤ k + 1, i �= j.

3. Minimality: Qi � Qj, ∀Qi, Qj ∈ C, i �= j. �

The quorum consensus layer has two sections that alternate accessed re-
peatedly: a possibly nonterminating noncritical section (NCS) and a terminat-
ing critical section (CS). The layer stays in the NCS when there is no request
to use a resource from the application layer and enters the CS whenever it
has an access right to a requested resource. The CS is a specified part of the
code in which node uses the resource. A node executes a trying protocol to en-
treat an access right so as to enter the CS, and executes an exit protocol after
leaved the CS and thus returns back to the NCS again. Therefore, the prob-
lem in this layer is to design a safety synchronization in the form of trying and
exit protocols to be executed, respectively, immediately before and after the
CS which satisfies the safety requirements of group k-mutex (as mentioned in
Section 1).

Let C be a k-coterie. Each node in P has local variables AGREE, DISAGREE,
PERM and QUEUE, respectively, keeps the set of nodes which have agreed (by
message ack), the set of nodes which have not yet agreed (by message wait),
the set of requests in which pi has give its permission but has not yet received a
message reclaim, and the ordered set of requests in which pi has replied wait
messages. For conciseness, we roughly give a curt description how the k-group
mutex algorithm works for this layer in Figure 1.
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Trying Section { // When node pi wishes to access a resource ri

1: Selects a quorum Q from C;
2: send req(ti, pi, ri) to ∀p ∈ Q; // ti is the pi’s current logical time
3: Inserts pj(∈ Q) answering ack into AGREE;
4: if (∃Q ∈ C, Q ⊆ AGREE) then state := Critical Section;
5: else-if { // If there exists pj(∈ Q) answers wait
6: Inserts pj answering wait into DISAGREE;
7: Selects another quorum Q′ ∈ C such that(

Q′ ∩ DISAGREE = ∅)
and

(
Q′ = max{|Q ∩ AGREE|})

;
8: if (there is no quorum satisfy) then state := Wait;
9: Q := (Q′ − Q) and goto line 2; } }
Exit Section { // When node pi leaves resource ri

1: send exit to ∀pj ∈ (AGREE ∩ DISAGREE)}
When pi receives req(tj, pj , rj) message {
1: // Let 〈ty, py〉 is the highest priority in QUEUE;
2: if (PERM = ∅ or rj = ry) then
3: send ack to pj and inserts req(tj, pj , rj) to PERM;
4: else-if { // If there exists req(tx, px, rx) in PERM and rj 
= ry

5: Inserts req(tj , pj , rj) into QUEUE;
6: if 〈tj , pj〉 > min{〈tx, px〉, 〈ty, py〉} then send wait to pj ;
7: else-if // If 〈tj , pj〉 is the highest priority in QUEUE
8: send reclaim to py ; } }
When pi receives exit message from pj {
1: Removes req(tj, pj , rj) from PERM;
2: if ( PERM = ∅ and QUEUE 
= ∅) then {
3: // Let 〈ty, py〉 is the highest priority in QUEUE;
4: for each (req(tj , pj , rj) ∈ QUEUE and rj = ry) {
5: Moves req(tj , pj , rj) from QUEUE to PERM;
6: send ack to pj ; } } }
When pi receives reclaim message from pj {
1: if (pi not in CS and pj ∈ AGREE) then {
2: Moves pj from AGREE to DISAGREE;
3: send relinquish to pj ; } }
When pi receives relinquish message from pj : {
1: // Let 〈ty, py〉 is the highest priority in QUEUE;
2: send ack to py ;
3: Inserts req(ty, py, ry) into PERM }

Fig. 1. A distributed group k-mutex algorithm for static environments

2.2 Non-dominated k-Coteries

Definition 2. [3] C is a dominated k-coterie under P iff there exists a k-coterie
D (under P) such that
1. C �= D,
2. ∀Q ∈ C, ∃S ∈ D, S ⊆ Q.

If there is no such D, then C is non-dominated (or, an ND k-coterie). �
It is easy to observe that if a system using a dominated k-coterie is opera-

tional in the occurrence of failures then a system using an ND k-coterie is also
operational, but the opposite is not always true. Hence, reliability of an ND
k-coterie is better then the dominated one. Another advantage of ND k-coteries
is the lower cost of message complexity (since every quorums in an ND k-coterie
are subset of the quorums in the dominated k-coterie).

Neilsen [8] have proposed a helpful theorem to check whether a coterie is
dominated or not. The theorem can be relaxed to further the k-coteries as well.
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Theorem 1. C is a dominated k-coterie under a set of node P iff there exists a
set X ⊆ P such that the following conditions hold.

1. Non-intersection: There exists h-set H = {Q1, . . . , Qh ∈ C | Qi ∩ Qj =
∅, i �= j}, h < k − 1, such that X ∩ Qi = ∅.

2. Intersection: For any k-set K = {Q1, . . . , Qk} ⊆ C, there exist Qi ∈ K
such that Qi ∩ X �= ∅.

3. Minimality: ∀Q ∈ C, Q � X .

3 Quorum Reconfiguration

The quorum reconfiguration layer mainly based on the reconfiguration algorithm
posed by Lawi et al.[6] which uses two quorum input operations in reconfiguring
the quorum system of the mutual exclusion; i.e., coterie-join and -cross. We have
extended their results for k-coteries and directly adopt them in this layer.

For the following subsections, let C1 and C2 be k-coteries under P1 and P2,
respectively, and P1 ∩ P2 = ∅.

3.1 Coterie Join Operation

Definition 3. [8] Let x be a node in P1. A coterie join operation for inputs C1
and C2 produces a quorum set (C1 
x C2) defined by

(C1 
x C2) = {(Q1 − {x}) ∪ Q2 | Q1 ∈ C1, Q2 ∈ C2 and x ∈ Q1}
∪ {Q1 | Q1 ∈ C1 and x /∈ Q1}. �

Jiang and Huang [9] have proved the following results.

Theorem 2. Let C3 = (C1 
x C2), then

1. C3 is a k-coterie under P3 ⊆ P1 ∪ P2.
2. C3 is an ND k-coterie only if C1 and C2 are both ND k-coteries.
3. C3 is dominated, if either C1 or C2 is dominated.

The following can easily be proved using mathematical induction.

Corollary 3. Let C1, C2, . . . , Cm be k-coteries under P1, P2, . . . , Pm,
respectively. For any X = {x1, x2, . . . , xm−1 | xi ∈ Pi}, then C = (C1 
x1

· · · 
xm−1 Cm) is a k-coterie under P ⊆ ∪m
i=1Pi.

3.2 Coterie Cross Operation

Definition 4. [6] A coterie cross operation for inputs C1 and C2 produces a
quorum set defined by, (C1 ⊗ C2) = {Q1 ∪ Q2 | Q1 ∈ C1 and Q2 ∈ C2}. �

Theorem 4. [6] Let C′ and C′′ be coteries under P ′ and P ′′, respectively, and
P ′ ∩ P ′′ = ∅. If C = (C′ ⊗ C′′), then
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1. C is a coterie under P ⊆ P ′ ∪ P ′′.
2. C is an ND-coterie only if C′ and C′′ are both ND-coteries.
3. C is dominated, if either C′ or C′′ is dominated.

We have extended results in Theorem 4 for k-coteries as follows.

Theorem 5. Let C4 = (C1 ⊗ C2). Then,

1. C4 is a k-coterie under P4 ⊆ P1 ∪ P2.
2. C4 is an ND k-coterie only if both C1 and C2 are ND k-coteries.
3. C4 is dominated only if either C1 or C2 is dominated k-coterie..

3.3 The Reconfiguration Algorithm

The quorum reconfiguration layer simply implements the two operations intro-
duced in the previous two subsections, but for the conciseness, we roughly outline
how it works as follows. Let C be the the current k-coterie of the system.

1. When there are sets joining nodes X and leaving nodes Y : The algorithm
firstly partitions the set X into m (≤ |Y |) disjoint sets and constructs m
independent k-coteries C1, . . . , Cm under X1, . . . , Xm, respectively, and cre-
ates a new coterie Ctemp = C. Each node yi ∈ Y is replaced by Ci iteratively
using coterie cross operation, Ctemp = Ctemp
yi Ci, i = 1 . . . , m. The iterated
result of Ctemp is stored to C as the new quorum configuration.

2. When there is only a set X of joining nodes: The algorithm simply creates a
k-coterie C′ under X and restores C with (C ⊗ C′) as the new configuration.

Note that the coterie cross operation can also be implemented in case 1, however,
the result k-coterie will be dominated. Let C′ be k-coterie under the set X of
joining nodes and P ∩ X = ∅. Let x ∈ P is the leaving node, then

(C ⊗ C′) = (C 
x C′) \ {Q | Q ∈ C and x /∈ Q}

Thus, there exists a set Z ∈ {Q | Q ∈ C and x /∈ Q} satisfies the Theorem 1.

4 Performance Analysis

The number of messages required per entry to the CS is the same as for the
mutual exclusion [10] and hence for the k-mutex algorithm [7] in the static
environments. The message complexity of the algorithm in the best case is 3ε and
can be bounded from above by 6ε in the worst case, where ε = max{|Q| | Q ∈ C}.

Let C1 and C2 be k-coteries under P1 and P2, respectively, and C = C1 
x C2,
x ∈ P1, or C = C1 ⊗ C2.

Theorem 6. |Q| ≤ 2 max{|Q′| | Q′ ∈ C1 or Q′ ∈ C2}, ∀Q ∈ C.

Now, let ‖C‖ (resp., ‖C1‖ and ‖C2‖) defines rank of coterie C (resp., C1 and
C2); i.e., the number of quorums in coterie C (resp., C and C).
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Theorem 7. If C1 and C2 are majority ND k-coteries, then

1. ‖C‖ = ‖C1‖ × ‖C2‖, when C = C1 ⊗ C2, and
2. ‖C‖ ≥ ‖C2‖ ×

(|P1|−1
q−1

)
, q = � |P1|+1

k+1 �, when C = C1 
x C2.

5 Conclusions

We have proposed a quorum based group k-mutex algorithm for open distributed
environments in this paper. The algorithm consists of two main parts, i.e., the
quorum-consensus and quorum-reconfiguration, each of which placed in differ-
ent layers and work separately. The quorum consensus layer directly adopts a
k-coterie based algorithm for group k-mutex in the static environments which
is also proposed in this paper. Thus, its message complexity and quorum avail-
ability performances are the same as in the static environments.
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