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Preface

Welcome to the proceedings of ISPA 2005 which was held in the city of Nanjing.
Parallel computing has become a mainstream research area in computer science and
the ISPA conference has become one of the premier forums for the presentation of new
and exciting research on all aspects of parallel computing. We are pleased to present
the proceedings for the 3rd International Symposium on Parallel and Distributed
Processing and Applications (ISPA 2005), which comprises a collection of excellent
technical papers, and keynote speeches. The papers accepted cover a wide range of
exciting topics, including architectures, software, networking, and applications.

The conference continues to grow and this year a record total of 968 manuscripts
(including workshop submissions) were submitted for consideration by the Program
Committee or workshops. From the 645 papers submitted to the main conference, the
Program Committee selected only 90 long papers and 19 short papers in the program.
Eight workshops complemented the outstanding paper sessions.

The submission and review process worked as follows. Each submission was
assigned to two Program Committee members for review. Each Program Committee
member prepared a single review for each assigned paper or assigned a paper to an
outside reviewer for review. In addition, the program chairs, vice program chairs, and
general chairs read all papers when a conflicting review result occured. Given the
large number of submissions, each Program Committee member was assigned
roughly 15-20 papers. Based on the review scores, the program chairs along with the
vice program chairs made the final decision.

The excellent program required a lot of effort from many people. First, we would
like to thank all the authors for their hard work in preparing submissions to the
conference. We deeply appreciate the effort and contributions of the Program
Committee members who worked very hard to select the very best submissions and to
put together an exciting program. The effort of the external reviewers is also deeply
appreciated. We are also very grateful to Prof. Sartaj Sahni, Prof. Pen-Chung Yew, and
Prof. Susumu Horiguchi for accepting our invitation to present keynote speeches.
Thanks go to the workshop chairs for organizing eight excellent workshops on several
important topics related to parallel and distributed computing and applications.

We deeply appreciate the tremendous efforts of the vice program chairs, Prof. Ivan
Stojmenovic, Prof. Mohamed Ould-Khaoua, Prof. Mark Baker, Prof. Jingling Xue,
and Prof. Zhi-Hua Zhou. We would like to thank the general co-chairs, Prof. Jack
Dongarra, Prof. Jiannong Cao, and Prof. Jian Lu, for their advice and continued
support. Finally, we would like to thank the Steering Committee chairs, Prof. Sartaj
Sahni, Prof. Yaoxue Zhang, and Prof. Minyi Guo for the opportunity to serve as the
program chairs as well as their guidance through the process. We hope that the
attendees enjoyed this conference, found the technical program to be exciting, and
had a wonderful time in Nanjing.

Yi Pan and Daoxu Chen
ISPA 2005 Program Co-chairs
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Abstract. We review the data structures that have been proposed for the
forwarding and classification of Internet packets. Data structures for both
one-dimensional and multidimensional classification as well as for static and
dynamic rule tables are reviewed. Sample structures include multi-bit one- and
two-dimensional tries, quad trees, binary trees on binary trees, and list of hash
tables.
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Using Speculative Multithreading for General-Purpose
Applications
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Abstract. As multi-core technology is currently deployed in computer industry
primarily for limiting power consumption and improving system throughput,
continued performance improvement of a single application on such systems
remains an important and challenging task. Using thread-level parallelism
(TLP) to improve instruction-level parallelism (ILP), i.e. to improve the number
of instructions executed per clock cycle, has shown to be effective for many
general-purpose applications. However, because of the program characteristics
of these applications, effective speculative schemes at both thread and
instruction levels are crucial. In the past few years, we have seen significant
progress being made in the architectures and the compiler techniques to support
such thread-level speculative execution model. In this talk, we will discuss
these architectural and compiler issues, in particular, the compiler techniques
that could support speculative multithreading for general-purpose applications.
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Abstract. With a tremendous growth in the Internet traffic, next generation
network have been requiring a large increase in transmission capacity, switch-
ing-system high-throughput and high-performance optical networking. Wave-
length Division Multiplexing (WDM) technology has been increased to the
number of wavelengths per fiber hundreds or more with each wavelength oper-
ating at the rates of 10Gbps or higher. Thus, the use of all-optical (photonic)
networks based on the WDM technology is considered promising to provide
peta-bit bandwidth for next generation Internet. To enable the future peta-bit
photonic networks, deliberate studies are deserved for some key techniques,
such as the ultra-high speed all-optical switching, high performance routing and
wavelength assignment (RWA), efficient restoration and protection, etc. This
paper provides you with the knowledge about dense WDM networks, high-
speed optical switching architectures, high performance routing and wavelength
assignment, efficient restoration, as well as prospective vision of future
photonic Internet.

1 Introduction

The Internet is experiencing an exponential growth in bandwidth demand from
large numbers of users in multimedia applications and scientific computing, as well
as in academic communities and military. Also, recent broadband service delivery
such as; high capacity contents delivery services, video stream transport, large vol-
ume file transfer, and numerous broadband/wideband data services have been push-
ing carriers and internet service providers to provide an end-to-end optical network
from a huge numbers of users home to enterprises. With the development of Wave-
length Division Multiplexing (WDM) technology, the number of wavelengths per
fiber has been increased to hundreds or more with each wavelength operating at the
rates of 10Gbps or higher. Thus, the use of photonic networks based on the WDM
technology is considered promising to provide peta-bit bandwidth for next genera-
tion Internet [1].

To enable the future peta-bit photonic networks, deliberate studies are deserved
for some key techniques, such as the ultra-high speed photonic switching, high per-

" This research is supported partially by JSPS Grand-in-Aid Scientific Research 17300010 and
The Telecommunications Advancement Foundation.
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formance routing and wavelength assignment (RWA), efficient restoration and pro-
tection, etc. This paper provides you with the knowledge about dense WDM net-
works, high-speed optical switching architectures, high performance routing and
wavelength assignment, efficient restoration, as well as prospective vision of future
photonic Internet.

2 Photonic Networks

An optical network is a communications network in which information is transmitted
entirely in the form of optical or infrared transmission signals. In a true photonic (all-
optical) network, every switch and every repeater works with infrared transmission or
visible-light energy. Photonic networks have several advantages over electrical and
optical transmission. A single optical fiber can carry hundreds or more of different
wavelengths, each beam having its own set of modulating signals. This is known as
Wave-Division Multiplexing (WDM).

2.1 Wavelength Division Multiplexing (WDM)

The very high carrier frequency of light also allows the use of multiple different fre-
quency carriers on the same light beam or in the same optical fiber. During the late
1970s to the middle 1990s, fiber transmission roughly capacity doubled each year. In
the late of 1990s, WDM technology achieved the significant enhancement in aggre-
gate transmission bit-rate to terabits-per-second. It also provides multiply network
capacity, increases the capacity of the interconnection system, and reduces the amount
of cabling required in the system. More recent WDM researches have been achieving
practical high-speed WDM systems deployable over long distance and dense wave-
length division multiplexing (DWDM) [2]. In modern DWDM systems, each wave-
length is used as s separate client channel to establish path connectivity in an optical
network [3].

Drop ports

(a) (b)

Fig. 1. (a) Two 3x3 switches used to connect two self-healing rings. (b) Working of add/drop
ports.
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With rapid advances in WDM technology such as DWDM add/drop multiplex-
ers(ADMs), wideband optical amplifiers, stable single frequency laser, novel optical
cross-connects (OXCs), optical networking has been more focused. Khandker and
Horiguchi [4] proposed WDM self-healing ring networks using 3x3 widesense non-
blocking optical switches. Figure 1 shows two 3x3 nonblocking optical switches of
WDM add/drop. Thus, WDM networks with mesh topology have recently caught
much more interest than ever due to the mesh-in-nature Internet backbones that are
considered more capacity-efficient and survivable. In WDM mesh networks, all-optical
photonic switch is a key network element equipped with a WDM switching node.

2.2 Photonic Packet Switching

One of the most widely adopted photonic switching technologies is based on circuit-
switching, in which a lightpath is set up between two nodes for relatively a long pe-
riod of time. In such a network also called a wavelength-routed (WR) network, the
lightpaths provisioned along fibers are switched according to their wavelengths. In the
past, the WR approach could be effective and acceptable in the Internet backbone.
The network control architecture is overlaid by multiple existing protocols, such as IP
over ATM over WDM or IP over ATM over SONET over WDM. The existence of
the immediate layer(s) together has solved the discrepancy between the upper IP and
the underlying WR based WDM layer. With the emergence of GMPLS protocols,
people started to think about IP over WDM architecture in which IP packets are
launched directly upon the WDM infrastructure such that it eliminates the overhead
and redundancy caused by overlaying multiple protocols.

In such a circumstance, Photonic Packet Switching (PPS) is the most straightfor-
ward way to the photonic Internet. It statistically multiplexes the incoming IP packets
to a common wavelength channel in the optical domain. It also bears most of the
advantages inherent from the conventional IP networks. Figure 2 illustrates photonic

BW Capacity
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Fig. 2. Photonic network evolution from point-to-point WDM to photonic packet
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network progress and evolution from per-to-per WDM to photonic packets. However,
due to the fact that the current technology barrier in practically implementing PPS is
still huge [5], Optical Burst Switching (OBS) [6][7] is a very promising alternative for
the future optical network data plane to deal with the burst and dynamic Internet traf-
fic with high efficiency.

Optical switching technologies are viable for the next generation Internet where
high-performance packet transport is facilitated by switching in the optical layer.

3 Optical Switches

Optical switches are useful in designing optical cross-connect to reduce the cell loss
probability. For applications that require a high data transmission rate, low error rate
and low delay, rearrangement of the states of switching elements in the optical net-
work is not desirable, making nonblocking switching increasingly important for opti-
cal networks. Besides, if traffic arrives at input ports asynchronously then a switching
network is required to be nonblocking to handle the traffic efficiently. In such cases
signals at each input port can be instantly delivered to their destination ports if the
destination ports are free and rearrangement of states of internal switching elements
will thus be minimized. Thus, nonblocking switching provides a promising technol-
ogy for the development of photonic networks.

3.1 Nonblocking Optical Switches Using Directional-Coupler (DC)

The basic 2x2 switch element in optical switching systems is usually a directional-
coupler (DC) that is created by manufacturing two waveguides close to each other.
There are two ways in which optical paths can interact in planar switching networks.
First, two optical channels on different waveguides cross each other in order to obtain
a particular topology. We call this a channel crossover. Alternatively, two paths shar-
ing a switching element will experience some undesired coupling from one path to the
other. This is called switch crossover [8]. Experimental results reported in [9] showed
that it is possible to make crosstalk from passive intersections of optical waveguides
negligible.

Chikama et al.[10] pointed out that Crossbar networks suffer from huge signal loss
and crosstalk, and therefore cannot be directly employed in optical networks [11][12].
A double crossbar has been proposed for a strictly nonblocking and zero crosstalk
network with an increased loss (2N) and number of switching elements (2N2).
Spanke's [13] network has zero crosstalk with reduced signal loss (2log,N) with huge
hardware cost (2N2-2N). M. Vaeze et.al in [14][15] have proposed a multiplane ban-
yan switch architecture that has much less crosstalk, loss and switch complexity. But
they have not mentioned how signals are routed to the right planes. Either the
switches in the planes have to be able to decode the destination address or the signal
should be sent to the right plane by other switching elements. In either case access
circuitry will be quite complex, which introduce hardware overhead.

Khandker et. al. [16] have proposed a recursive network architecture, RN(N,m) in
which an NxN strictly nonblocking switch network can be constructed with given
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mxm size of strictly nonblocking switch. They have expanded RN(N,m) into
GRN(N,M,n,m) with NxM switch size [17]. Figure 3 shows RN(N,2) network. They
also proved that even with a 2x2 optical switch as the building block the RN(N,2) has
O(log,N) signal loss and constant crosstalk for switch crossover.
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(a) RN(N,2) (b) 8x8 GRN with 2x2 building blocks

Fig. 3. Nonblocking Recursive Optical Switching Networks

3.2 Vertically Stacked Optical Banyan (VSOB) Networks

A large-scale optical switch is usually composed of numerous basic switching ele-
ments (SEs) grouped in multiple stages along with the optical links arranged in a
specified interconnection pattern. Figure 4 shows a novel optical switch structure is
the vertical stacking of multiple copies (planes) of a banyan network [18]. The result-
ing networks, namely vertically stacked optical banyan (VSOB) networks, preserve
all the good properties of the banyan networks, such as simple switch setting ability
(self-routing) and small depth [19][20]. These properties are attractive for DC-based
optical switching systems because loss and attenuation of an optical signal are propor-
tional to the number of couplers that the optical signal passes through. In this paper,
we focus on the VSOB networks that are free of first-order crosstalk in SEs (we refer
to this as crosstalk-free hereafter).

Lot of results are available for VSOB networks, such as [21][22][23], and their
main focus has been on determining the minimum number of planes required for
nonblocking VSOB networks. Analytical models have also been developed to under-
stand the blocking behaviors of VSOB networks that do not meet the hardware re-
quirement for nonblocking. None of these models, however, have considered the
probability of network components failing in their determination of blocking prob-
ability. With the gain in importance of fault-tolerant capability of optical switching
networks, performance modeling of VSOB networks in presence of network failure
becoming critical for the adoption of VSPB networks in practical applications.
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Jiang et al. [24][25][26][27] have proposed an analytical model for the blocking
probability of VSOB networks that incorporates link failure probability. The new
model can guide network designers to determine the effects of link failure and reduc-
tion in the number of planes on the blocking behaviors of VSOB networks. They also
conducted simulation to validate the model. The analytical and simulation results
indicate that our model is accurate and the blocking behavior of a VSOB network is
very similar to that of a fault-free one for a reasonable small link failure probability.
Chen et al. [28][29] have analyzed the blocking probability of horizontally expanded
and vertically stacked optical banyan (HVOB) networks.

Inputs Outputs

Banyan network
Plane 1

Banyan network
Plane 2

Banyan network

Plane m

(a) 16x16 Banyan-type network (b) The vertical stacking scheme

Fig. 4. Vertical stacked optical Banyan nonblocking network (VSOB)

3.3 MEMs and SOA Optical Switches

A number of current researches in photonic switching present challenges to product a
large scale matrix switches in low-cost as well as high-speed optical switches in
highly reliable system. NTT [30] developed 8x8 optical matrix switch employs
Mach-Zehnder interferometer with thermo-optic phase shifter as switching unit.
Thermo-Optic switch is featured by smaller package and lower power consumption
than mechanical switches. The switching time is around 2 msec, which is acceptable
for use in optical cross-connect (OXC) and optical add/drop multiplexing (OADM)
nodes.

Matxer et al. [31] proposed thermo-optical digital switch array integrated in silica
on silicon. The switch is composed of two interacting waveguide arm though which
light propagates. Heating one of the arms changes its refractive index, and the light
is transmitted down one path rather than the other. However, the scalability of this
technology is limited by the relative high power consumption due to heating
waveguides.

Micro-electro-mechanical systems (MEMs) are use for telecommunication applica-
tions recently. Since MEMs creates so many mirrors on a single chip, the cost per
switching element is relatively low, but MEMS is fairly slow to switching due to
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moving parts. Lucent Technologies developed two-axis motion MEMs optical cross-
connect mirror and also developed large-scale 2D-MEMs switches with 256 x 256
OXC switching array. The optical loss varies with the selected input and output ports
in 2D-MES because of the difference in optical path length.

Fujitsu [32] developed 3D-MEMs optical switch by a government-supported OBS
R&D initiative in 2001-2005. A large-scale matrix switch of 128x128 with a msec-
order switching time was fabricated in one chip using the 3D-MEMs free-space
transmission type switch. For the high-speed switching, they developed comb-driven
MEMS mirror whose speed is over 10 times faster than that of conventional parallel
plate mirror. 3D-MEMs optical switch is more suitable for use in fabricating a large-
scale 1000x1000 switching system than a digital optical switch and the optical loss in
the 3D-MEMs is lower than in the 2D-MEMs.

A semiconductor (laser) optical amplifier (SOA) is now emerging from laborato-
ries into commercial availability. SOA production for use in optical add/drop optical
switching is rising rapidly. SOA optical switching is achieved by changing between
two stages of SOA. The SOA response time is very fast with switching speed of nsec-
order. For implementation of SOA optical switch, many technical problems and fabri-
cation problems are still remained. SOA assemblies for wavelength conversion will
be a key factor in future all-optical networks.

4 High-Performance Routing and Wavelength Assignment

Photonic networks using wavelength-division- multiplexing (WDM) technology are
now considered very promising to meet the huge bandwidth demand of next genera-
tion Internet. In WDM wavelength-routed networks, data is switched and routed in
all-optical domain via lightpaths. The Routing Wavelength and Assignment (RWA)
problem concerns in determining a path and a wavelength to establish lightpaths for
connection requests. RWA problem play an important role in improving the per-
formance of WDM networks [33][34]. Without wavelength converters, the same
wavelength must be assigned on every link of a lightpath, this referred to as the
wavelength-continuity constraint. RWA problem can be classified into the static
RWA and dynamic RWA problems. In the static RWA problem, the connection
requests are given in advance. In contrast, the dynamic RWA considers the case
where the connection requests arrive randomly. The dynamic RWA is more chal-
lenging; therefore, heuristic algorithms are usually employed in resolving this prob-
lem.

4.1 Dynamic RWA

In this paper, we focus on the dynamic RWA problem under the wavelength-
continuity constraint. To solve this problem, there are static routing approaches such
as shortest-path routing (SP) or alternate shortest-path routing (ASP) [35]. These
approaches compute statically a set of shortest paths without acquiring the current
network state. One advantage of alternate shortest-path routing is its simplicity, e.g.
small setup time and low control overhead, while providing a significantly lower
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blocking probability than shortest path routing [36]. Adaptive routing approaches
such as adaptive-unconstraint routing using exhaustive search (AUR-E) [37] or least-
loaded routing (LLR) [38] are more efficient than static routing methods in terms of
blocking probability. However, the main problems of these adaptive routing methods
are longer setup delay and higher control overhead, including the requirement of
global network’s state on each node. To solve this problem, Li et al. [39] proposed an
alternate dynamic routing algorithm, called fixed-paths least congestion (FPLC). This
algorithm routes a connection request on the least congested path out of a set of pre-
determined paths. It is shown that FPLC outperforms the fixed-alternate routing
method. The authors also proposed furthermore the FPLC-N(k) method using
neighborhood information from only k& links on each searched path. This method is
employed as a trade-off between network performance versus setup delay and control
overhead [40].

4.2 Hybrid Ant-Based Routing and RWA

We proposed a hybrid ant-based routing algorithm (HABR) using mobile agent ap-
proach [41] [42] in combining with alternate method to solve the dynamic RWA
problem. Inspired from the behaviors of natural ant system, a new class of ant-based
algorithms for network routing is currently being developed. We developed an alter-
nate dynamic routing and wavelength assignment algorithm using ant-based mobile
agent approach and to compare its performance with other alternate methods. Our
motivation is that alternate routing methods such as ASP or FPLC are based on a set
of fixed pre-computed paths, which can limit the network performance in terms of
blocking probability. Thus, we proposed to use a new routing table structure P-route
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on each network node that contains a set of P feasible paths between a source-
destination pair. Based on the current information of network congestion, ant-based
mobile agents will continuously update these routing tables so that the alternate routes
are more likely the candidates for a connection request. Thus, this can reduce the
blocking probability while still maintaining a small setup time like other alternate
methods.

Figure 5 shows the example networks. Figure 6 shows simulation results on the
Network Simulator (NS-2). It is seen that with a suitable number of ants and small
value of P, our algorithm can outperform alternate shortest-path (ASP) and the fixed-
paths least congestion (FPLC) routing algorithm in terms of blocking probability.

5 Saurvivability in WDM

WDM networks have the capability of provisioning huge bandwidth, and it is ex-
pected that the WDM will be a dominant technology for the next generation photonic
Internet. As WDM networks carry more and more data, failure of any part in such
networks and the resulting inability to move data around quickly may have tremen-
dous economic impacts. For this reason, survivability issues in high bandwidth WDM
networks have become an important area of research in recent years.

5.1 Active Restoration

In the active restoration scheme [43], a Dijkstra algorithm- based two-step-approach
[44] is used to compute for each connection request a primary lightpath and multi-
ple backup paths that start from the nodes along the primary path and end at the
source node of the path, respectively. Here, a backup path starting from a node of
the primary path is just the shortest path from that node to the source node that is
link-disjoint with the primary path. If enough wavelength channels are available
along the primary path, the connection request is accepted and the routing informa-
tion of all backup paths is then stored in the nodes of the primary path for possible
restoration.

On the other hand, if the primary path can not be established due to the lack of
resource, the connection is blocked. In this scheme, we define a node along the
primary path a supported node if there do exists a backup path from the node to the
source node; an unsupported node, otherwise. The active scheme works as follows.
Upon a link failure happens along the primary path, the immediate downstream
node next to the failure checks successively the availability of the pre-defined
downstream backup paths until it finds the first available backup path (in this case,
the corresponding supported node is referred as the restoration node) or it fails to
find a free backup path among all these downstream backup paths. In the former
case, the immediate downstream node next to the failure will send a Failure Notifi-
cation Message (FNM) to the restoration node which then send a setup message to
the source node through the backup path. In the later case, the restoration of this
lightpath fails.
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We use the example in Figure 7 to illustrate the main idea of active restoration. Let
node v, be the source node and node v, is the destination node, and the primary path is
(Vo-V1-V2-v3-vy). Suppose the link between v, and v, fails, the node v, will detect a LOL
(Loss of Light) failure. Since node v, is an unsupported node, it will check succes-
sively which backup path can be employed for traffic restoration. If the first backup
path (e.g. vo- vs- V) is available for restoration, node v; will send a FNM to the resto-
ration node v,. As soon as node v, receives the FNM, it will immediately send a set up
message to the source node through the backup path (v,- vs- vy). Once the source node
Vo accepts the set up message, it reroutes all data to the backup path vy-vs-v,, then data
will go through the rest of primary path to the destination node. If the backup path of
the first supported node is not available for restoration, the backup paths of the fol-
lowing supported nodes will be investigated (e.g. V3-v7-v,-Vs-vy then, v4-v7-vy-vs-vp). If
none of these backup paths is available due to the lack of network resources, the res-
toration of this lightpath fails.

Fig. 7. Active restoration

5.2 Proactive and Reactive Restoration

The approaches to ensuring survivability can be generally classified as proactive
protection and reactive restoration. With the former, a backup lightpath is computed
and wavelength channels are reserved for it at the time the primary lightpath is estab-
lished. If both primary and backup lightpaths are available for a demand, the demand
is accepted. Extensive research has been done on proactive protection of WDM net-
works [45] [46]. While proactive protection yields a 100% restoration guarantee
since a backup lightpath is always available to carry the disrupted traffic when a
primary lightpath fails, it usually suffers a high blocking probability and resource
redundancy. In the reactive restoration, a backup lightpath is searched after the pri-
mary lightpath is interrupted. Several lightpath restoration schemes for WDM net-
works have been reported recently [47] [48]. Although reactive restoration is more
efficient in terms of capacity usage and blocking probability, it may lead to an unac-
ceptable long restoration time due to its global search for a backup lightpath. As the
proactive protection experiences a very high blocking probability and huge network
resource redundancy while the reactive restoration results in a very long restoration
time, a novel active restoration scheme, in which a primary lightpath is guarded by
multiple backup paths that are predefined but not reserved along the primary path,
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was proposed recently [49] to compromise the proactive protection and reactive
restoration schemes such that good performance can be achieved. Probabilistic mod-
eling is an efficient approach to analyzing network performance, and many analytical
models have been proposed for calculating the blocking probability in WDM net-
works [50] [51].

6 Conclusions

The key for success of photonic networks is a high level of integration with low-cost,
highly reliable and standardized optical components. MEMs and array technologies
have been manufacturing large-scale optical switches such as 3D-MEMs switches.
Advanced technologies realize SOA switches, hybrid integration of active and passive
optical components in Photonic Integrated Circuits (PICs) as well as and Planar
Lightwave Circuits (PLCs). These advanced, highly functional, integrated, and low-
cost photonic components are making the evolution of photonic networking tech-
nologies from mesh optical transport network to photonic packet network in next-
generation photonic Internet.
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Technologies and Considerations for Developing
Internet and Multiplayer Computer Games: A Tutorial
(Extended Abstract)
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Games are universal and probably as old as humankind. Today the development of
computer technology, especially the development of fast networks and the Internet,
brings games a faster growth than ever before. Game design and development is now a
fast-growing entertainment field, with a lot to offer professionally and creatively. In
fact, from IT professional’s point of view, creating computer games provides us with all
the usual technical challenges associated with software development, such as
requirement analysis, architectural design, rapid prototyping, HCI, parallel and
distributed processing, code reuse, programming, performance evaluation, testing and
maintenance. It also provides challenges on other exciting aspects, such as
storyboarding, screenplays, illustration, animation, sound effects, music, and social
impact. By developing a computer game from start to finish, one would be able to
acquire multi-disciplinary knowledge to become an IT professional for the modern era.

The main aim of this tutorial is to survey the major theory and techniques behind
the design and implementation of multiplayer and Internet games, and to understand
the application of the knowledge to the development of working multiplayer and
Internet games. Upon completion of this tutorial, people should have a basic
understanding of the technologies used in multiplayer and Internet game
development, along with the ability to expand on this knowledge to carry out further
research and development of Internet and multiplayer computer games

This tutorial has four parts. The first part discusses theoretical issues in developing
Internet and multiplayer computer games. Topics in this part include: chronology of
game programming, essentials for game design and development; design strategies for
multiplayer computer games (MCGs); basic architectures of MCGs and MCG
components; tools for MCG development, and challenges for developing MCGs. The
second part focuses on the technological issues in developing Internet and multiplayer
computer games. Topics in this part include: game servers, networking technologies,
Internet database technologies, and security issues. The third part deals with a number
of considerations in developing Internet games. Topics in this part include: design
considerations for Internet games, development considerations for Internet games, and
launching and managing an online game. The last part of the tutorial briefly discusses
the rationales and the structure of a university course in games design and development.

The audience of this tutorial includes researchers, practitioners, and technical
officers from academic, business and government. No specific knowledge is required.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 17-18, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Anyone with a basic knowledge of computing and an interest in the Internet and
multiplayer computer games will be able to understand the materials presented in the
tutorial. The length of the tutorial will be three hours.

Outline

Part 1: Theoretical Issues in Developing Internet and Multiplayer Computer Games
Chronology of game programming

Essentials for game design and development

Design strategies for multiplayer computer games (MCGs)

Basic architectures of MCG and MCG components

Tools for MCG development

Challenges for developing MCG

A S

Part 2: Technological Issues in Developing Internet and Multiplayer Computer
Games

7. Game servers

8. Networking technologies

9. Internet database technologies

10. Security issues

Part 3: Considerations in Developing Internet Games
11. Design considerations for Internet games
12. Development considerations for Internet games
13. Launching and managing an online game

Part 4: A Course in Games Design and Development
14. Rationales for university courses in games design and development
15. An example course design: Bachelor of Information Technology (Games
Design and Development)
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As we know, the performance of networks systems is dependent on the end-to-end
cost of communication mechanisms. Routing is a process of finding a path from the
source node to the destination node in a given network system. The ability to route
message efficiently becomes increasingly important. Routing in mesh-connected
networks, such as 2-D meshes, has been commonly discussed due to the structural
regularity for easy construction and the high potential legibility for variety of
algorithms.

This tutorial will provide a survey of the existing routings which can be applied in
2-D meshes, including a variety of wireless network routings and sensor network
routings. We will focus on the use of network topology information in the routing
process. Our current research on information model for routing in 2-D meshes is also
introduced. The main aim is to offer the audience another chance to understand the
importance of information technology, as well as the opportunities in further research.

The tutorial has three parts. In the first part, the 2-dimentional mesh networks,
simply 2-D meshes, will be introduced. A 2-D mesh interconnection network is one of
direct networks, which are also called router-based networks. Then, the wormhole
routing and agent routing in such 2-D meshes will be discussed. After that, we present
a cost-effective way using information models to ensure the existence of a minimal
path and form a minimal path by routing decision at each intermediate node along the
path. A minimal routing always routes the packet in an efficient way to the destination
through the shortest path. Wireless networks is an emerging new technology. In the
second part, we will focus on how to collect and distribute network topology
information to facilitate the routing process and its development stages of reducing
cost expense. Most existing literature discusses the wireless network routing in the 2-
D plane. By using the graphical data structure, the wireless networks can be described
in 2-D meshes. Based on this topology description, we will introduce the existing
proactive routings, reactive routings, hierarchical routings, and geographical routings.
Recent advances in micro-electromechanical systems, digital electronics, and wireless
communications have enabled the development of low-cost, low-power, and
multifunction sensor devices. These devices can operate autonomously to gather,
process, and communicate information about their environments. They constitute a
wireless sensor network or simply sensor network. In the last part, we will introduce

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 19-20, 2005.
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the problem of saving energy consumption, fault tolerance, scalability, network
dynamics, and connectivity, and complete coverage in sensor networks. These make
the inherence of wireless network routing in sensor networks inefficient. We will
introduce our connected dominating set solution and discuss the future work on
information model for routing in sensor networks.

Outline

Part 1: The Introduction to 2-D Meshes and its information based routing

1.

nA LD

6.

2-D mesh interconnection network

Wormbhole routing and agent routing

Adaptive routing and fault tolerant routing

Minimal routing, detour and backtracking

Orthogonal fault block model, extended safety level model, and boundary
model

Minimal connected component model

Part 2: Wireless network routing

7.

8.

9.
10.

11.

Introduction to wireless networks: (infrastructured and infrastructureless
networks)

Proactive routings (DBF, TBRPF, GSR, WRP, DSDV, CGSR, LANMAR,
FSR, and OLSR)

Reactive routings (AODV, DSR, FORP, LMR, TORA, ABR, and SSA)
Hierarchical routings (ZRP, CEDAR, DDR, BRP, SHARP, CBRP, and
HSR)

Geographical routings (LAR, GLS, RDMAR, DREAM, and ZHLYS)

Part 3: Sensor network routing

12.
13.

14.

Introduction to sensor networks

Energy saving, fault tolerance, scalability, network dynamics, and
connectivity in sensor networks

Future work on sensor network routing
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Abstract. As storage systems scale from a few storage nodes to hundreds or
thousands, data distribution and load balancing become increasingly important.
We present a novel decentralized algorithm, RDIM (Replication Under
Dynamic Interval Mapping), which maps replicated objects to a scalable
collection of storage nodes. RDIM distributes objects to nodes evenly,
redistributing as few objects as possible when new nodes are added or existing
nodes are removed to preserve this balanced distribution. It supports weighted
allocation and guarantees that replicas of a particular object are not placed on
the same node. Its time complexity and storage requirements compare favorably
with known methods.

1 Introduction

As the use of large distributed systems and large-scale clusters of commodity
computers has increased, significant research has been devoted toward designing
scalable distributed storage systems. Its applications now span numerous disciplines,
such as: higher large-scale mail system, online numeric periodical, digital libraries,
large online electric commerce system, energy research and simulation, high energy
physics research, seismic data analysis, large scale signal and image processing
applications, data grid application and peer-to-peer storage application, etc. Usually, it
will no longer be possible to do overall upgrades of high performance storage
systems. Instead, systems must grow gracefully over time, adding new capacity and
replacing failed units seamlessly—an individual storage device may only last five
years, but the system and the data on it must survive for decades. Since the capacities
of storage nodes usually are non-uniform and storage nodes are dynamically changed
in large-scale distributed storage systems, systems must distribute data objects among
the storage nodes according to their capabilities and afford to immediately rebalance
data objects distribution according to weight of storage nodes when storage nodes are
changed. So we study the problem of designing flexible, adaptive strategies for the
distribution of objects among a heterogeneous set of servers. Ideally, such a strategy
should be able to adapt with a minimum amount of replacements of objects to
changes in the capabilities of the servers so that objects are always distributed among

* Supported by the National Basic Research Program 973 of China (No.2003CB317008).
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the servers according to their capabilities. Finally, Xin, et al.[1] reports that the mean
time to failure (of a single disk) in a petabyte-scale (10'° bytes) storage system will be
approximately one day. In order to prevent data loss, we must allow for data
replication. Furthermore, the data replication scheme should guarantee that replicas of
the same object get placed on different servers, or the effect of replication will be
nullified.

Previous techniques are able to handle these requirements only in part. For
example, a typical method to map data object to storage nodes in an optimally
balanced way is a simple Round-Robin (RR) assignment. The storage node number
assigned to a given data object can be easily calculated using modular arithmetic:
h(id)=id mod n, where id is object ID and n is the number of storage nodes in system.
If storage nodes have the uniform capabilities, it can be used to distribute data objects
evenly among n servers. However, they usually do not adapt well to a change in the
capabilities. Moreover, If a new server is added, approximately the fraction n/(n+1) of
the data objects must be moved from one storage node to another before the data can
be accessed using the new mapping. For a large storage system, this leads to a long
period of unavailability of data, which is not acceptable to many applications. In
contrast, the minimum fraction that must be relocated to obtain a balanced mapping is
approximately 1/ (n+1). A different approach is to maintain object-to-node mapping in
a stored directory (SD). In this case, a directory of B entries is maintained in which
the ith entry contains the node number assigned to object i, where B is the total
number of objects and is usually a fairly large integer. Thus, each object can be
individually assigned or reassigned to any storage node. When new storage nodes are
added, individual objects are selected for relocation to the new nodes so that only the
minimum amount of object is moved. However, this approach suffers from severe
performance bottleneck problems and consumes a significant amount of memory.
Litwin, et al. [2] has developed many variations on Linear Hashing (LH*), the LH*
variants are limited in two ways: they must split buckets, and they have no provision
for buckets with different weights. LH* splits buckets in half, so that on average, half
of the objects on a split bucket will be moved to a new empty bucket, resulting in
suboptimal bucket utilization and a “hot spot” of bucket and network activity between
the splitting node and the recipient and the distribution is unbalanced after
replacement. Moreover, the LH* variants do not support weighted allocation and data
replication. Other data structures such as DDH [3] suffer from similar splitting issues.
Choy, et al. [4] describes algorithms for perfect distribution of data to disks that move
an optimally low number of objects when disks are added. However, these algorithms
do not support weighting of disks, removal of disks and data replication. Brinkmann,
et al. [5, 6] proposes a method for pseudo-random distribution of data to multiple
disks using partitioning of the unit range. This method accommodates growth of the
collection of disks by repartitioning the range and relocating data to rebalance the
load. However, this method does not move an optimally number of objects of
replacement, and does not allow for the placement of replicas. Honicky, et al. [7,8]
presents algorithms for balanced distribution of data to disks that move an optimally
low number of objects when disks are added, which supports weighting of disks and
replication, but do not support removal of disks [7], however, the methods relies upon
iterating for producing the same sequence of numbers regardless of the number
actually required, and the large-scale iterations increase the lookup time. We present
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an algorithm for balanced distribution of data to nodes that move probabilistically an
optimally number of objects when nodes are added or removed, which supports
weighting of nodes, but do not support replication [9].

In the algorithm, data objects are always distributed among the storage nodes
according to their weights. When new nodes are added or existing nodes are removed,
it distributes objects to nodes evenly, and redistributing as few objects as possible and
preserves this balanced distribution. Moreover, our algorithm almost always moves a
statistically optimal number of objects from every storage node in the system to each
new storage node, rather than from one storage node to one storage node. It supports
data replication and guarantees that replicas of a particular object are not placed on
the same node. The algorithm is very fast, and scales with the number of storage
nodes groups added to the system. Its time complexity and storage requirements
compare favorably with known methods. The rest of the paper is organized as
follows. Section 2 contains definitions, including descriptions of the measures of
“goodness” of a mapping method that are of interest to us. Section 3 presents a self-
adaptive data objects placement algorithm supporting weighted allocation and
replication. Section 4 gives performance analysis and simulation results. Section 5
summarizes the paper.

2 The Model and Definitions

Given a positive integer B, the number of data objects, and a positive integer N, the
number of storage nodes, and a positive integer R, the maximum degree of replication
for an object, the problem is to construct a mapping f from the set of object id’s (0,
1,2, ..., B-1) and the replica number r (0<r<R) of the object in question to the set of
node id’s (0, 1,2, . . ., N-1). Typically, B is much larger than N. When an expansion
occurs, the number of storage nodes increases from N to some N’, we have to
construct a new mapping f’ to reassign the node number in N’ for data access. We can
view a mapping method as a function M (x, r, p) that takes a data object id x, the
replica number r and a representation p of a particular mapping, and returns a storage
node id. That is, f (x, r) = M (X, 1, p) where p is the representation of f. For example
(no replication), for the RR method mentioned in the Introduction, the representation
p is simply n, and M (X, p) = x mod n; for the SD method, p is a list (yo, y1, - - - ¥B.1)
of integers, and M (x, p) = yx.

Let the size of storage node i under the mapping f is 1;, which is the number of data
objects that f maps to i. Let the weight of storage node i is w;. Measures of the
goodness of a solution include the following:

(1) Balance. A mapping f from B objects onto N nodes is said to be balanced if for
every pair of nodes in the system i and j, the expected ratio between the size of i

and j is equal to the ratio of the weights assigned to i and j (i.e. L=t ).
W,
J J
(2) Mapping Complexity. This is the number of operations needed to compute f
(x), given an object id x.
(3) Mapping Storage. This is the amount of storage needed to store a representation
of the mapping. In placing upper bounds on the mapping storage of a particular
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mapping method M (x, p), we bound only the storage needed for the
representation p (which can, in general, depend on N, B, and the number of
expansions), and we ignore the (constant) storage needed to hold an algorithm
for computing M.

(4) Object Relocation. When a mapping f is replaced with another mapping f ° as
the result of an expansion, the object relocation of the expansion is the number
of objects that are assigned to different nodes by f and f’, i.e., the number of
object id’s x such that f (x) # f’(x) and 0<x<B.

3 Replication Under Dynamic Interval Mapping

3.1 Representation of the Mapping

We assume that system storage nodes are partitioned into sub-clusters; sub-clusters
consist of identical storage nodes that are added, removed, and reweighed as a group.
The entire storage system consists of multiple server sub-clusters, accreted over time.
In most systems, sub-clusters of storage nodes have different properties—newer
storage nodes are faster and have more capacity. We must therefore add weighting to
the algorithm to allow some storage nodes to contain a higher proportion of objects
than others. We assign weight factor w; to a single storage node in sub-cluster j. This
factor will likely be a number that describes the power (such as capacity, throughput,
or some combination of the two) of the storage node. Suppose that we are in a
situation where m expansions have occurred. Part of the representation of the
mapping is the sequence Ny, N;, Ny, . . ., Np,, where Ny>0 is the number of storage
nodes initially, and N; is the total number of storage nodes after the jth expansion. It is
convenient to define N_;=0. Let dj=Nj-Nj; for 0<j<m. Thus, at the jth expansion, d;
storage nodes are added to the existing N;; storage nodes to create a new total of N;
storage nodes. Note that d>0 for 0<j<m, since N;j.;<N;. In what follows, we assume
that the numbers d; is also stored, although an alternative is to recompute a particular
d; whenever it is needed. Define the jth sub-cluster, for 0<j<m, to be storage nodes
with id’s in the interval [Nj., N;). (For integers z, and z, with z,<z,, the interval [z, z,)
contains all integers z with z,<z<z,.) Thus, d; is the number of storage node in the jth
sub-cluster.

Suppose that we have a random function H: {0, 1, ..., M} — [0,1), the function H
maps the data object’s id uniformly at random to real numbers in the interval [0,1).
The basic idea of the mapping is to map the space [0, B) of data object id’s into
intervals in [0,1) and divide the interval [0, 1) into different length intervals according
to weight of sub-clusters; All objects mapped to the same interval are mapped to
storage nodes that belong to the same sub-cluster. A storage node can contain objects
from several different intervals. When sub-clusters are changed, current intervals are
divided into more small intervals rather than the interval [0,1) is redefined and
different intervals are reassigned into new sub-clusters, resulting in data objects
replacement.

In addition to m, the Nj’s, and the d;’s, the rest of the representation of the mapping
consists of the following:
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(1) An integer k>1, the number of intervals.

(2) Real numbers a; for 0<i<k where

O:a0<al<a2<. . .<ak:1

The ith interval is [a;, a;), for 1<i<k. We imagine that the intervals are ordered
from left to right, and we say that the ith interval is to the left of the jth interval (and
that the jth is to the right of the ith) if i < j.

(3) Nonnegative integers b;, for 1<i<k. For the ith interval [a; , a;), the number b is
the sub-cluster number associated with this interval. Thus, 0<b;<m. All data objects
H(x) in [a;;, a;) are mapped to storage nodes in sub-cluster b;, Define sub-cluster(x) =
b;, for all H(X) in [a;.;, a;).

In general, several intervals can be mapped to the same sub-cluster; that is, we can
have b;=b;, for different i and j.

(4) Nonnegative real numbers c;, for 1<i<k. For each i, the number c;, is the total
length of intervals of objects x’s H(x) in intervals to the left of the ith interval
(i-e.,H(x) <a; 1) such that x is mapped to a sub-cluster b;, (i.e., sub-cluster(x) = b;). The
¢;’s are helpful in computing the mapping. Note that c; is the total length of intervals
of objects x in intervals to the left of the ith such that x is mapped to sub-cluster b;.
We call ¢; the offset adjustment of the ith interval.

3.2 Computation of the Mapping

The algorithm becomes slightly more complicated when we add replication because
we must guarantee that no two replicas of an object are placed on the same server,
while still allowing the optimal placement and migration of objects to new sub-
clusters. Given a data object id x and its replica number 1, the way to compute the
mapping is first to determine the number of replicas which belong in each sub-cluster
according to its weight, and find the interval [a;;, a;) to which x belongs, and then to
compute the mapping using b;, Nj.;, and d; (j=b;). Once it has determined that a
particular sub-cluster should contain u replicas of an object, it selects u storage nodes
randomly from that sub-cluster. Pseudo-code for the mapping computation is given by
Algorithm 1 in Figure 1, where O=uy<u;<u,<...<uy=1, the interval length of [u;.,, u;)
is the weight rate of the jth sub-cluster.

Algorithm 1: Mapping Computation

Input: A object id x and its replica number r

Find i such that H(x) is in [a;, &;)

j=bi

if r=0)
Return Ny ; + x mod d;

else
Find j such that H(r) is in [uj., uj)
choose a random prime number p> d;
Return Nj.; + (x +r*p) mod d;

end if

Fig. 1. Algorithm for mapping computation
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3.3 The Initial Representation

Initially, when there are no expansions have occurred, the representation is given by
m=0, k=1, ap=0, a;=1, b;=c,;=0, and dy=Ny, Thus, the mapping is exactly given by
y=x+1*p mod Njy.where p is a random prime number (p> Nj)

When the number of storage nodes is changed, the representation of the mapping
must be modified Assume that we are in a situation where m expansions have
occurred previously (for some m>0) and that we have a representation of the
mapping, from B data objects to N, storage nodes, as described above; call this
mapping the old mapping. There are two cases.

3.4 Adding Sub-cluster

Suppose that the (m+1)th sub-cluster is added, which consists of storage nodes in [N,
Ni41)- The basic idea is, for each sub-cluster j with 0<j<m, to move the proper
number of objects from sub-cluster j to the (m+1)th sub-cluster so as to produce a new
balanced mapping from B objects to N,,,; nodes. Among the objects in sub-cluster j,
the ones with a larger random number H(x) are moved. This has the effect that if an
object stays in the same sub-cluster, then it remains mapped to the same node. So for
each sub-cluster j with 0<j<m, there will be a splitting point s; such that, for each
object x mapped to sub-cluster j in the old mapping, if H(x)<s;, then object x remains
in sub-cluster j in the new mapping, and if H(x)=>s;, then object x is moved to the new

Algorithm 2: Computation of Adding Cluster Actions
Input: A new number N,,,,; of Nodes
m+1
total = Zdj w,
j=0
for j =0 tom
tj = dj*wj/total
end for
w=0
fori=1tok
j=bi
if th(ai-ai_1+ci) then
Ai = Null
else if t;<c; then
A; = Move(w)
W =W + 3;-aj
else
S =a; | + tj - Ci,
A; = Split(s,w)
W =W +a; - §
end for

Fig. 2. Algorithm for computing adding cluster actions
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(m+1)th sub-cluster in the new mapping. If a;<sj<a;, for some interval [a;,, a;) with
b;=j in the representation of the old mapping, then this interval will be split into two
intervals, [a;., s;) that remains mapped to sub-cluster j, and [s;, a;) that is mapped to
the (m+1)th sub-cluster. To make the following description of mapping expansion
independent of implementation, the result is given as a set of actions to be performed.
There is an action A associated with each interval [a;,a;) in the representation of the
old mapping. There are three types of actions:

1. If A; = Null, then objects in the interval [a;;, a;) do not move. The sub-cluster
number and the offset adjustment of the interval do not change.

2. If A; = Move(c), then all objects in the interval [a;;, a;) are moved to the
(m+1)th sub-cluster. The sub-cluster number of the interval is changed to m,
and c becomes the new offset adjustment of the interval.

3. If A; = Split(s, ¢) , then the interval [a;y, ;) is split into two intervals, [a;, s) and
[s, a;). Objects with H(x) in [s, a;) are moved to the (m+1)th sub-cluster, and c is
the offset adjustment of the interval [s, a;). Objects in [a;.;,s) do not move; the sub-
cluster number and offset adjustment of [a;;,s) are identical to those of [a;j, a;) in
the old mapping.

Pseudocode for computing the appropriate actions is given by Algorithm 2 in
Figure 2.

Algorithm 3: Computation of Removing Cluster Actions
Input: A removed rth cluster

total = Zdj * w;
Jj=0,j#r
for j =0, j#r tom
tj = dj*wj/total
end for
j=0
for each interval [a;_;,a;) with b;=r
if j#r then
t = total interval length of the cluster j
if (tj - t) > (ai-ai_l) then
A; = Move (t)
t=t+ a-a;
else
S = tj —t+a;
A; = Split(s, t)
=i+l
end if
end for

Fig. 3. Algorithm for computing removing cluster actions
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3.5 Removing Sub-cluster

Suppose that the rth sub-cluster is removed, which consists of storage nodes in [N,
N,). The basic idea is to move the proper number of objects from sub-cluster r to other
sub-cluster j with 0<j<m and j#r, so as to produce a new balanced mapping from B
objects to N,,—d, nodes. So for each interval [a;,a;) of the rth sub-cluster, either the all
the interval [a;,,a;) is moved to some sub-cluster j with 0<j<m and j#r, or there will be
a splitting point s such that, [a;,,s) is moved to some sub-cluster j, [s, a;) is remained
to next movement To make the following description of mapping expansion
independent of implementation, the result is given as a set of actions to be performed.
There is an action A associated with each interval [a;,a;) of the rth sub-cluster. There
are two types of actions:

1. If A; = Move(c), then all objects in the interval [a;,, a;) are moved to sub-cluster
j- The sub-cluster number of the interval is changed to j, and ¢ becomes the new
offset adjustment of the interval.

2. If A; = Split(s, ¢) , then the interval [a;, a;) is split into two intervals, [a;;, s) and
[s, a;). Objects with H(x) in [a;, s) are moved to sub-cluster j, and c is the offset
adjustment of the interval [a;, s). Replace the interval [a;), a;) of the rth sub-
cluster with [s, a;] and continue.

Pseudocode for computing the appropriate actions is given by Algorithm 3 in
Figure 3.
The RDIM method has the following property:

e The number of objects placed in a sub-cluster is proportional to the total
length of intervals mapped to the corresponding sub-cluster.

e The number of objects placed in any sub-cluster is proportional to its weights.

e When storage nodes are changed, the number of objects migrated is the
minimum.

Since objects are distributed evenly to storage node in any sub-cluster by the
algorithm for mapping computation. So we draw the conclusion that the dynamic
interval mapping is balanced algorithm and the number of objects relocated is the
minimum.

4 Performance and Simulation Results Analysis

4.1 Performance

Since both mapping complexity and mapping storage depend on the number k of
intervals, it is useful to have an upper bound on k as a function of m. The following
gives such a bound.

THEOREM 1. If k intervals are produced as the result of m expansions to the
number of storage nodes, then

1
k€ —m*(m+1) + 1
2m(m )
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Proof. The proof is by induction on m. Initially (when m=0) there is one interval.
Assuming that the bound holds for m expansions, we prove it for m+1 expansion. Just
before the (m+1)st expansion, there are m+1 sub-clusters, 0 through m. For each of
these sub-clusters, there will be at most one interval that is mapped to the sub-cluster
and that is split during the (m+1)st expansion. So the (m+1)st expansion causes at
most m+1 intervals to be split, thus creating at most m+1 new intervals. Therefore,
using the induction hypothesis, the total number of intervals after m+1 expansions is

at most % m*(m+1)+1+(m+1)= l (m+1)*(m+2)+1.
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In the implementation, the numbers a;, b;, ¢;, d;, and N;, are stored in random-access
tables or tree, The Find operation in Algorithm 1 is done by binary search in the table
or the tree. Obviously, mapping complexity is O(log k) and mapping storage is O(k).
By Theorem 1, mapping complexity is O(log m ) and mapping storage is O(m?2).

In our algorithm, we need a random function H, which maps the objects uniformly
at random to real numbers in the interval [0,1). We select the Mersenne Twister[10]
as the random function H in the implementation of our algorithm.

In order to quantify the real world performance of our algorithm, we tested the
average time per lookup under many different configurations for a system with 1000000
objects and 4 replicas per object. First, we ran a test starting with 10 storage nodes in a
single sub-cluster and computed the average time for these 4000000 lookups, and then
added sub-clusters, 10 storage nodes at a time, and timed the same 4000000 lookups
over the new server organization. Figure 4(a) shows the per-object per-replica lookup
time with slightly growth rates for the capacity of the most recently added sub-clusters,
even with 100 sub-clusters in the system, the amortized lookup time is less than 3 ps on
the 1.4GHz Pentium IV on which we ran these experiments; In Figure 4(b), we can see
that the line for lookups grows far slower than linear and NlogN.

4.2 Data Distribution

We evaluate the balanced distribution of data objects supporting weighted allocation
and replication. The simulation system includes 3 sub-clusters; the first sub-cluster
includes three storage nodes with weight 1, the second sub-cluster includes two
storage nodes with weight 3, the third sub-cluster includes four storage nodes with
weight 5, the maximum degree of replication for each object is 3. The 100000,
200000, 400000, 800000 data objects from four clients are sent respectively to storage
nodes. Figure 5 show that data objects sent from four clients and the total sums are
always distributed among the storage nodes according to their weights.

n

2 OcClient1
8 EClient2
“§ OClient3
3 OClient4
£ M Total

=2

8 9

1 2 3 4 5 6 7
Storage node ID

Fig. 5. The distribution of data objects according to nodes weight
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Fig. 7. The redistribution of data objects after removing one cluster

Then, we evaluate the balanced redistribution of data objects supporting weighted
allocation by adding two sub-clusters and removing one sub-cluster respectively. (1)
Add two sub-clusters, the first sub-cluster includes two storage nodes with weight 7;
the second sub-cluster includes two storage nodes with weight 9. (2) Remove the
second sub-cluster, which includes two storage nodes with weight 3. Figure 6 and
Figure 7 show that data objects sent from four clients and the total sums are always
redistributed among the storage nodes according to their weights after adding or
removing sub-cluster.
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5 Conclusions

In this paper, we propose a self-adaptive and balanced distribution algorithm for
replicated data objects in scalable storage clusters, which distributes objects to nodes
evenly, redistributing as few objects as possible when new nodes are added or
existing nodes are removed to preserve this balanced distribution. It supports
weighted allocation and guarantees that replicas of a particular object are not placed
on the same node. Its time complexity and storage requirements compare favorably
with known methods.
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Abstract. We develop a concise but comprehensive analytical model
for the well-known Nested Loop Join algorithm on cost effective cluster
architectures. We concentrate on a limited number of characteristic pa-
rameters to keep the analytical model clear and focused. We believe that
a meaningful model can be built upon only three characteristic parame-
ter sets, describing main memory size, the I/O bandwidth and the disk
bandwidth. We justify our approach by a practical implementation and
a comparison of the theoretical and real performance values.

1 Introduction

The most important operation in a relational database system is the join due
to its inherent expressive power. It allows to combine information of different
relations according to a user specified condition, which makes it the most de-
manding operation of the relational algebra. Thus the join is the central point
of research for performance engineering in database systems.

In this paper we present an analysis and evaluation of the Nested Loop Join.
This work is part of a running project for a comprehensive analysis of parallel join
operations [1]. We did a similar research for all important parallel join operations
(e.g. Hybrid Hash Join [2]). A focus on analyzing hardware characteristics of the
underlying system is beyond the scope of this paper. So we are interested in the
specifics of the algorithms and not of the machines.

2 Nested Loop-Join

Basically the join operation ‘merges’ two relations R and S via two attributes
(or attribute sets) A or B (respective relations R and S) corresponding to a
certain join condition. The join attributes have to have the same domain. In the
following we focus on the equi-join (i.e. the join condition is equality).

Generally three different approaches for the realization of join algorithms are
distinguished: nested loop, sort merge, and hash based join.

The nested loop algorithm is the simplest approach to join two relations.
Basically each tuple of one relation is probed to each tuple of the other relation.
However its simple layout and thus low constant cost factors (overhead) makes

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 33-38, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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it quite attractive in database systems for specific situations (e.g. one relation is
very small).

Our parallel version of the nested loop approach is realized by a conventional
client-server scheme. The server stores both relations to join and distributes the
tuples among the available clients. The clients perform the specific join algorithm
on their sub relations and send the sub results back to the server. The server
collects the result tuples and stores the result relation.

Specifically a parallel nested loop join partitions first the, so called, inner
relation R among the clients. At the clients the tuples are stored in a temporary
file. Secondly the outer relation S is distributed among the disks using the same
hash function as in the first step. In the third phase both relations are joined.
Step by step the main memory is filled with tuples of relation R. With every
step the complete relation S is read and every tuple of S probes the content
(tuples of R) in the main-memory. In case of a match result tuples are built.

3 Analytical Model

A realistic assumption of our model is that the relations of the database system
are too large to fit into the main memory of the processing units. Consequently
all operations have to be done externally and the I/O costs are expected to be
the dominant factor for the system performance.

In the following (see Table 1) we specify several parameters and a few derived
terms, which describe the characteristics of the model environment and build the
basis for the cost functions to develop.

Table 1. Parameters of the cost model

m number of tuples of relation R (inner relation)

n number of tuples of relation S (outer relation)

p number of processors

ntm number of tuples per message

b bucket size (tuples per bucket)

s selectivity factor (percentage of the product of m and n
giving the result size

1f loop factor (number of loops necessary to build hash
buckets due to number of open file limitations)

read read one tuple from disk

write write one tuple to disk

receive receive one message

send send one message

find target find the right target client

hash store a tuple into a main memory hash table

probe probe a main memory hash table with a tuple

fill fill a tuple into main memory

compare compare the keys of two tuples in main memory and build

a result tuple if keys match.
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3.1 Server Cost Model

The server distributes the data among the clients. Thus it reads the two input
relations (1),

server read = (m + n) * read (1)
calculates the respective target client using a distribution function (2)
server compute = (m + n) x find target (2)

and sends the tuples (packed in messages) to the target client (3).

m

server send = ( ) x send (3)

ntm ntm

After sending the messages the server is in an idle-state. It waits for the
results of the clients (4).

) m*n*s )
server receive = * receive (4)
ntm

The received tuples are written to disk (5).
server write = m % n * S * write (5)

Thus the total costs of the server are described by (7) and are the sum of (1)
to (5).
server cost = server read + server compute+ (6)

+ server send + server receive + server write

The costs of the server, I/O-costs (read,write), message-costs (send, receive)
and computational costs, are obviously independent of the number of proces-
sors used. Figure 1 shows this situation graphically by splitting the total server
execution costs into the shares on I/O costs (read and write operations), com-
munications costs (send and receive operations) and pure computational costs.

3.2 Client Cost Model

The costs for the clients start with receiving the tuples of the inner and outer
relation from the server. Every client gets only Tg tuples of the inner relation R
and ;L tuples of the outer relation S. The costs for receiving are described by (7).

m n

client receive = 7 xreceive+ T xreceive (7)
ntm ntm
Afterwards the received tuples are written to the local disk, which is (8).

build temp files = " write + 7 % write (8)
p b
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The filling of the memory and the probing of the tuples is depicted by (9)
and (10) respectively.

build mem = T; x (read + fill) (9)
s n n

probe mem = ( b )« ( xread+  xbxcompare) (10)
p p

Finally the client has to write the result tuples back to the server (11).

send result = (m * n) « °  xsend (11)
p D ntm

The cost of the client is the sum of (7),(8),(9),(10) and (11), which is (12).

client nested cost = client receive + build temp+ (12)

+ build mem + probe mem + send result
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Finally the total cost of the nested loop join is the sum of the cost of the
server and the clients and is defined by (13).

nested cost = server cost + client nested cost (13)

Figure 2 shows the performance of the nested loop join using different num-
bers of processors and different numbers of input tuples.

Next we want to know if the costs per tuple change when the number of
input tuples increase. We expect that the costs per tuple rise because the main
parts of nested loop join develop with O(m+n*m) where |n| < |m|. The results
can be seen in Figure 3 for 1 to 4 clients.

Further we checked the percentage of I/O-costs, message costs and computa-
tional costs in relation to the total client costs. It shows a nearly even distribution
of the different parts of costs while changing the number of input tuples. At least
we want to know if there is a change in the percentage of I/O-costs, message
costs and computational costs in relation to the total client costs when chang-
ing the number of used processors. Again it shows an even distribution of the
different parts of costs. Most of the execution time is used for computing.

4 Model Justification

To justify the presented model we evaluate and compare it to a practical per-
formance analysis were we realized the algorithm according to the preceding
section.

We realized the client-server architecture so that one of the nodes imple-
mented the server, starting the operations, distributing the workload and col-
lecting the result, and 4 client nodes, processing the distributed workload. At the
beginning of each test run the relations R (inner relation) and S (outer relation)
reside on a server. In the tests we used an integer variable as join attribute.

Test-bed for our analysis was an off-the-shelf ”el-cheapo” PC cluster consist-
ing of 5 single processor nodes (computational units) running the Linux oper-
ating system. The algorithms were realized with the C language and PVM as
communication library. We used a test module to determine the values of the
basic parameters and the derived functions of our cost model. Figure 4 shows the
real execution times for the Nested Loop Join. All given values are the averages
of at least 20 runs.

The real values correspond to the theoretical values amazingly well. The
asymptotic runtime behavior for increasing workloads and processing nodes
(speed-up) of the model and the reality is about same. Not only the trend of the
data is the same, but also the real execution values match the ones calculated by
the model. The difference between the two values was about 10 percent, which
is due to the simplified model ignoring operating system specifics. Summing up
this result shows that the simplified approach described in the previous section
models the reality very well and justifies it as basis for the analysis on cluster
architectures.
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5 Conclusions

By the presented analysis of the proposed concise, but obviously comprehensive
model and the justification by the comparison to real implementation results, we
could prove the stated assumptions at the beginning of the paper: For building
up an analytical model for relational operations on cluster systems it is sufficient
to concentrate on the characteristics of main memory, 10 bandwidth and disk
bandwidth.

As a side effect of our analysis we gave a case for the usage of cluster systems
as architecture for parallel database systems. With the development of faster and
cheaper network interfaces clusters can deliver an un-beatable price/performance
ratio for the administration and manipulation of very large data sets.
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Abstract. Random stealing is a well-known dynamic scheduling algo-
rithm. However, in a large-scale cluster, an idle node must randomly steal
many times to obtain a task from another node, especially, this problem
severely affects performance in systems where only a few nodes generate
most of the system workload. In this paper, we present an efficient dy-
namic scheduling algorithm, Transitive Random Stealing (TRS) based on
random stealing, which makes any idle node rapidly obtain a task from
another node for irregular load distributions in a large-scale cluster. Then
by the random baseline technique, we experimentally compare TRS with
Shis, one of load balance policies in the EARTH system, and random steal-
ing for different load distributions in the Tsinghua EastSun cluster and
show that TRS is a highly efficient scheduling algorithm for irregular load
distributions in a large-scale cluster. Finally, TRS is implemented in the
Jcluster environment, a high performance Java parallel environment, and
an experiment result is given in the HKU Gideon 300 cluster.

Keywords: Scheduling, irregular load distribution, large-scale cluster,
transitive random stealing.

1 Introduction

The availability of high speed networks and increasingly powerful commodity
microprocessors is making the usage of clusters of computers an appealing vehicle
for cost-effective parallel computing. The scale of the clusters is becoming more
and more large, which is up to hundreds of and thousands of nodes. In order to
achieve scalable performance, it is important to evenly schedule the workload
among the processing nodes. Two basic approaches [6] to dynamically scheduling
task loads can be found in current literature - random stealing and work sharing.

Random stealing attempts to steal a task from a randomly selected node when
a node finds its own task queue empty, repeating steal attempts until it succeeds.
Random stealing is provably efficient in terms of time, space, and communication

* This work is supported by Chinese NSF for DYS granted by No. 60425205 and
National Postdoctor Science Foundation of China.
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for the class of fully strict computations [4, 13]; and the natural work stealing al-
gorithm is stable [2]. Communication is only initiated when nodes are idle. When
the system load is high, no communication is needed, causing the system to be-
have well under high loads. Some systems that implement random stealing include
Cilk [3], Jaws [8], and Satin [9]. Cilk [3] provides an efficient C-based runtime sys-
tem for multithreaded parallel programming with a random stealing scheduler.
JAWS [8] efficiently schedule load over a dynamically varying computing infras-
tructure with random stealing algorithm, Satin [9] presents a system for running
divide-and-conquer programs on distributed memory systems with random steal-
ing. The EARTH runtime system [7] supported several dynamic load balancer poli-
cies, which goal is to design simple balancers that deliver good load distribution
with minimum overheads. But a virtual ring network topology is adopted in all the
balancers with nodes numbered clock-wise. The authors of the paper [5] evaluate
these load-balancing schedulers for a fine-grain multithreading environment.

In this paper, we study the dynamic scheduling algorithms for a large-scale
cluster. For random stealing in a large-scale cluster, an idle node must randomly
steal many times to obtain a task from another node. Especially, this problem
severely affects performance in systems where only a few nodes generate most of
the system workload [12]. For overcoming this problem, Shis, one of load balance
policies in the EARTH system [5], which slightly modifies random stealing was
to remember the originating node (history information) from which a task was
last received, and to send requests directly to that node. The authors of the
paper [11], present two relatively complicated adaptive location policies which
record more history information for global scheduling algorithms.

Here we present a scheduling algorithm, Transitive Random Stealing (TRS),
which further improves Shis not only remember the originating node from which
a task is stolen but also forward the information of the node to other remote
nodes which want to steal a task from it. With the transitive policy, TRS can
make any node obtain a task faster with less times to steal in a large-scale clus-
ter, reduce the idle time for all nodes and improve the overall performance of
the system. Then by the random baseline technique, we experimentally com-
pare the performance of TRS with Shis and random stealing for different load
distributions in the Tsinghua EastSun cluster, and show that TRS outperforms
Shis and random stealing in all test cases. Finally, TRS is implemented in the
Jcluster environment [1], a high performance Java parallel environment, and an
experiment result is given on HKU Gideon 300 cluster.

In the rest of this paper, we first give the transitive random stealing algorithm
in next section. Section 3 evaluates the performance of TRS, Shis and random
stealing by the random baseline technique. We show an experiment result on
HKU Gideon 300 cluster in Jcluster environment in Section 4. Finally, Section
5 concludes our works.

2 Design the Transitive Random Stealing Algorithm

Our design philosophy for scheduling algorithms is to reduce the idle time for all
nodes, rather than balancing work loads equally on all nodes. A node is said to
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be in the idle state when it has no tasks to execute. Distributing the workload
during application execution is achieved by sending the tokens to the schedulers
on remote nodes. A token contains all the necessary information to create a new
task. A Task is a piece of code that is to executed, possibly in parallel with other
tasks. Tokens are stored in the task queue on each node.

In the following, we give the transitive random stealing algorithm in detail.
First, we show you a figure to illustrate an architecture of a task scheduler based
on TRS.
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Fig. 1. An architecture of a task scheduler based on TRS

Here resource manager is responsible for adding or deleting nodes and main-
tains an active list of nodes in the cluster. Task queue is a double-ended queue to
store tokens that have been spawned dynamically by tasks or have been added
by user, but not yet executed. New tokens spawned dynamically by tasks are
pushed into the queue from one end and tokens are also popped from the same
end for execution on the local node. On the other hand, new tokens added by
user are pushed into the queue from the other end, and a token is also popped
from the other end of the task queue when remote nodes asks for tasks. The
recomld is a variable which remembers the nodeld of other remote node.

The transitive policy is simple and TRS can be easily implemented. But with
this simple transitive policy, TRS can make any idle node obtain a task from
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The main-loop function for stealing tasks from another nodes:
void run(){
While(true){
if (idle of node){
if (local task queue has tokens){
get a token to execute;
Yelse{
if (recomId is blank){
randomly select a remote node from the list of nodes,
and ask for a token from it;
}else{
ask for a token from the remote node whose nodeld is recomlId;
}
wait to receive an answer message;
update its recomId with the recomId in the answer message;
if (the answer message includes a token){
execute the token;
}
}
Yelse{
wait for some task running over;;
}
}
}
The function for answering the request of another nodes:
Message answer (){
if (local task queue has tokens){
return a message with its own nodeld as recomld and a token
from local task queue;
Yelse{
return a message with its recomId and no tokens;
}
}

Pseudo code of the transitive random stealing algorithm

another node with less times to steal in a large-scale cluster. As a result, this
will greatly reduce the idle time for all nodes and improve the scalability of
the system. At the same time, TRS inherits the advantages of simple random
stealing policy: communication is only initiated when nodes are idle. When the
system load is high, no communication is needed, causing the system behave

well under high loads.

As we can see, a few more bytes (recomld) is sent in the replying message
for TRS than Shis and RS. But the time and bandwidth of the communication
are very similar for those messages with little different sizes. In a sense, the
key factor which influences the network communication overhead is the times of

sending messages.
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Note. In some very special conditions, there may be a loop transition of the
recomld. In order to avoid this case, the implementation of the algorithm can
limit the times of transition of the recomld. In fact, in the later experiments,
we empirically limit the times of transition of recomld by max{[log,n — 3],1},
where n is the number of the nodes in the cluster.

3 Performance Evaluation Based on Random Baseline
Technique

In this section, by the random baseline technique, we experimentally compare
TRS with Shis, one of load balance policies in the EARTH system, and random
stealing for different load distributions on the Tsinghua EastSun cluster which
has 32 nodes (4xXeon III 700s, Fast Ethernet, Redhat 8.1). Here we implement
each of the three algorithm as an MPI application in which a process simulates a
node. The processes implement two threads except the process with rank 0, one
thread for dealing the main loop, the other for handling the request. The process
with rank 0, by the random baseline technique, implements a task generator
which distributes the same load distributions to the other processes for the three
algorithms respectively.

In order to stress to test the performance of algorithms on the different
load distributions, we make use of the task generator generating different load
distributions instead of scheduling some real parallel programs. The task gen-
erator generates three types of load distributions uniformly distributed on all

1ot Uniformly Distributed on all nodes
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Fig. 2. Task load uniformly distributed on all nodes
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nodes, half of all nodes and 1/8 of all nodes, two types of binomial distribu-
tions, Bi(n,1/3) and Bi(n, 1/8), where n is the number of the nodes. From the
knowledge of Statistics, the binomial distribution Bi(n, p) approaches the Pois-
son distribution, when the number n is large, and the probability p is small. The
five types of load distributions all distribute 5n tasks to the nodes for 10 times,
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where n is the number of the nodes. In addition, we assume that every task has
the same executing time and every node has the same power of computing.

For obtaining a good performance, the algorithm must make any idle node
obtain a task faster with less times to steal. Therefore, we compare the perfor-
mance of the three algorithms by counting the total number of stealing tasks
from remote nodes for each algorithm (the total number includes the times
of stealing nothing from remote nodes). The experiments are implemented in
the Jcluster environment, a high performance Java parallel environment which
provides MPI-like message passing interface on the Tsinghua EastSun cluster.
Figure 2,3,4,5,6 illustrate the results for the five type of load distribution.

For the task load distribution uniformly distributed on all nodes, the difference
of the performance for the three algorithms is small on the small-scale clusters, how-
ever, with the increase of the size of the nodes, TRS behaves with the good perfor-
mance. For the task load distributions uniformly distributed on half of all nodes
and on 1/8 of all nodes, binomial distributions, Bi(n,1/3) and Bi(n, 1/8), TRS
exhibits a much better performance than Shis and random stealing, especially, for
the large-scale clusters. Therefore, we can conclude that TRS is a high performance
scheduling algorithm for irregular load distributions in a large-scale cluster.

4 An Experiment Result in the Jcluster Environment

Jcluster environment [1] that provides a high performance PVM-like and MPI-
like message passing interface implements the TRS algorithm to schedule the

16—Queen problem on Gideon 300 cluster

‘
—a— linear
641 —— 16-Queen

Speedup

No. of nodes

Fig. 7. 16-Queen problem on HKU Gideon 300 cluster
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tasks dynamically in a large-scale cluster. Here a divide-and-conquer program,
16-Queen problem, is used to stress to test the task scheduler based on TRS.
There are more than 2,200 subtasks which will be dynamically spawned on some
nodes to be scheduled. With the help of Prof. Francis C.M. Lau, Prof. C.L.. Wang
and Weijian Fang, the test for 16-Queen problem has been held on HKU Gideon
300 cluster (Pentium IV 2.0 GHz, Fast Ethernet, redhat 8.0, Jdk 1.4.0) at the
University of Hong Kong. Figure 7 illustrates the results.

The efficiency of the speedup reaches up to 91.73% on 64 nodes, which ex-
hibits an efficient scheduling of TRS on the real platform.

5 Conclusion and Further Works

In this paper, we present the Transitive Random Stealing algorithm (TRS) which
provides an efficient scheduling policy making any idle node rapidly obtain a task
from other remote node for irregular load distributions in a large-scale cluster.
Then by the random baseline technique, we experimentally compare TRS with
Shis, one of load balance policies in the EARTH system, and random stealing for
different load distributions on the Tsinghua EastSun cluster and conclude that
TRS is a highly efficient scheduling algorithm for irregular load distributions in
a large-scale cluster. Finally, Jcluster environment implements a task scheduler
based on TRS to obtain a good experiment result for 16-Queen problem on
HKU Gideon 300 cluster. In the future, more real parallel applications will be
developed to evaluate the algorithm on some real platforms.
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Abstract. A metadata service is one of the important factors to affect the
performance of cluster file systems. We propose a content-based load balancing
algorithm that dynamically distributes client requests to appropriate metadata
servers based on the types of metadata operations. By replicating metadata and
logging update messages in each server rather than moving metadata across
servers, we significantly reduce the response time and evenly distribute client
requests among metadata servers.

1 Introduction

It is reported from SPEC that up to 60% of user requests in cluster files systems are
metadata operations [1]. Due to the large amount of metadata operations, some cluster
file systems use a separate metadata server or a cluster of metadata servers for
scalability and availability [2][3][4][5].

A key question in the design of such systems is how to partition the metadata among
metadata servers to maintain both high performance and scalability. The first approach,
known as directory sub-tree partitioning, partitions the metadata along the directory
sub-tree, which suffers from severe bottleneck due to the hot spots. As an alternative, a
pure hashing approach [2] is introduced. This approach hashes the filename to
distribute the namespace among the metadata servers evenly. This requires metadata
servers to maintain the directory hierarchy, and further requires them to repartition the
namespace among the servers whenever a metadata server is added or removed from
the cluster. Another approach such as Lazy Hybrid (LH) [3] combines both approaches
to address the problems above. However, all the approaches above are based on the
static mechanism such that a metadata server is designated when a new metadata
structure is created. This prevents client requests from being distributed fairly among
the metadata servers based on current load conditions.

This paper proposes a content-based load balancing algorithm for metadata servers
that dynamically distributes client requests to appropriate metadata servers based on
the types of metadata operations. In order to distribute client requests dynamically, a
dispatcher is used. In addition to distributing client requests dynamically, the
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Program of the Korea Science & Engineering Foundation.
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dispatcher also shares Indirect Metadata Table (ITL) with all the metadata servers and
adjusts assigned entries among metadata servers, reflecting current load conditions.
Although the capacity of the dispatcher is critical to the overall cluster system
performance, emerging hardware technologies for switching reduces the relaying
overhead significantly, which ensures us to assume sufficient capacity of dispatcher.

The rest of this paper is organized as follows. In chapter 2 we present an overview
of metadata management schemes used in cluster file systems. Chapter 3 presents the
detail mechanism of content-based load balancing algorithm. Its analysis and
experimental result are presented in chapter 4. Chapter 5 summarizes our work and
concludes this paper.

2 Related Work

The first approach to allocating metadata among metadata servers in cluster file
systems is the hierarchical directory sub-tree partitioning. This approach partitions the
file system namespace according to the structure of directory sub-tree and the
metadata of each directory sub-tree is managed by individual metadata server. This
technique suffers from severe bottleneck when a single file, directory, or directory
hierarchy must be traversed to determine the permissions of each file that is accessed.

The second approach, pure hashing, distributes the namespace among metadata
servers by hashing the file identifier, file name, or other related values. This results in
more balanced workloads than directory sub-tree partitioning. Vesta parallel file
system [2] is a representative method of pure hashing. The hash function of Vesta file
system uses the full pathname as an input key, and outputs the identifier of the
metadata server and the location of the metadata inside the server. This pure hashing
guarantees direct accesses to metadata without traversing all the metadata servers
along the directory hierarchy, but it does not support the directory path-based file
permission using access control list. Moreover, for some expensive operations such as
changing directory name, removing directory, and adding or removing of metadata
servers, a large number of metadata should be moved across metadata servers, which
leads to long response time and clients should wait for a long period of time for their
requests.

Lazy Hybrid (LH) [3] addresses the above problems by combining the advantages
of both approaches and adding capabilities such as global logging and delayed
updates. The metadata location is determined by hashing the full pathname, which
allows direct accesses to the metadata without traversing all of the metadata servers
that stores directories along the path. However, hierarchical directories are maintained
in order to provide standard directory semantics and operations such as /s. Lazy
update policies allow for efficient metadata updates when the file/directory names or
their permissions are changed or when metadata servers are added to or removed from
the system. Moreover, a dual-entry access control list structure is maintained for any
file permissions to be determined directly without traversing the entire path. When a
large amount of metadata has to be moved at a time, the real location is globally
logged in all the metadata servers, instead of moving metadata. Later, upon the first
access after global logging, the metadata is actually moved. By using the delayed
updates, the initial operation is very fast and only a little overhead is incurred at the
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time when each of the modified metadata is accessed first. On the other hand, when
the requests generated by the clients are bursty, this scheme leads to the concentration
of the requests on a particular metadata server holding the real metadata, and suffers
from the performance degradation due to the overhead incurred by forwarding client
requests.

To address these shortcomings due to the static determination of metadata servers
on each client, we propose a dynamic load balancing algorithm based on a dispatcher.
The dispatcher periodically collects load information from the metadata servers and
forwards client requests to appropriate server based on the content of each request.

3 Content-Based Load Balancing Algorithm

In this section, we present the detailed schemes used in the content-based dynamic
load balancing algorithm.

3.1 Architecture

Fig. 1 shows the structure of the metadata server cluster. This cluster consists of
several metadata servers and a dispatcher that relays the request from clients to
appropriate metadata servers. Given the information of the file included in a request,
the dispatcher hashes the full pathname of the file to produce a hash value indicating
the index into the Indirect Lookup Table (ILT). The index found in the entry of the
ILT specifies which metadata server currently stores the metadata for that file. After
determining appropriate metadata server, the dispatcher forwards the requests to the
selected metadata server or broadcasts it to all the metadata servers depending on the
content of the request. The detailed operations will be described in the next section.

Local

storage
Dispatcher g

clients yetwork Metadata Servers

=
=i
=

Fig. 1. Architecture for load balancing

In this architecture, all the metadata servers and the dispatcher should share the
same ITL as well as the same hash function. Using these, each metadata server
determines independently whether it is responsible for the requested file or not, and
then stores, retrieves, or modifies the metadata of the file. Moreover, each metadata
server caches the inode information of all the files and directories, and stores the
directory hierarchies in order to improve the performance of metadata operations.
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In order to efficiently distribute the load among metadata servers, all metadata
servers report their load conditions to the dispatcher periodically. Based on this
information, the dispatcher adjusts the ILT and then redistributes it to all the metadata
servers.

3.2 Metadata Operations

To ensure the consistency of metadata among metadata servers, our algorithm writes
and logs metadata write operations on every metadata servers. Since our algorithm
uses a full pathname as an input into the hash functions, some operations, such as
changing directory name, adding or removing of metadata server, and ITL
adjustment, result in a large amount of metadata movement across the metadata
servers. To reduce the overhead incurred by moving metadata, we replicate metadata
among all the metadata servers, and log all the metadata modification messages.
While the requests such as simply looking up metadata for files or directories are
handled by one designated metadata server, the requests for writing metadata or
logging some operations are broadcast to all the metadata servers concurrently. As a
result, all the metadata servers have the same metadata information. For some
retrieval operations for directories or file attributes that require metadata modification
(i.e., update “last access time” field), we divide the operations into two steps: looking
up metadata and updating the “last access time” field.

When a file or a directory needs to be retrieved, the dispatcher uses a hash function
(using the full pathname) to locate the appropriate metadata server in constant time and
ask the designated server to reply with the metadata information related to the file or the
directory. The modification message for the “last access time” field is then broadcast
and all the servers update and log the information. On the other hand, except for the
operations related to the attribute manipulation, all the metadata operations related to
changing directory structure require the modification of directory hierarchy in addition
to updating inode information. For example, the directory removal operation requires
the deletion of all the subdirectories. Changing directory name should rearrange all the
metadata for the files, subdirectories, and the files under the subdirectories across the
metadata servers since the hash values need to be changed.

It should be noted that changing the directory hierarchy requires the movement of a
large amount of metadata. In our approach, each metadata server is supposed to
execute the operation at the same time and thereby eliminate the movement of
metadata. Considering that the file system operations are mostly read operations (with
the ratio of 9:1 in office environments), replication is much more reasonable than
metadata movement in general cluster file system environment [8].

Unlike the directory write operations, the writing operations for files do not require
any modification of the directory hierarchy. However, they are also carried out
concurrently at each metadata server to ensure the metadata coherency.

3.3 Adjustment of Indirect Lookup Table (ILT)

Since each file system operation requires different amount of computational power and
each file has different access frequencies, some metadata servers may be overloaded
more than the others. This may cause longer response time and decrease overall system
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performance. Moreover, since the entire metadata server may not have the same
computing power, we should adjust the imbalance through reconstructing the ITL.

The goal of our algorithm is that all the metadata servers have similar load
conditions approaching to the average load and minimize the change of designated
metadata server. In order to do this, our algorithm should first determine the metadata
servers whose load exceeds the overall average, and calculate the amount of extra
load for each metadata server, Extra(mds;), by subtracting the average load from its
own load. The metadata server with negative Extra(mds;) value can handle more
metadata by assigning more ILT entries taken from the metadata server with positive
Extra(mds;). In order to distribute the overloaded entries to other metadata servers,
based on the load per entry Load, (mds;), we determine the maximum number of ILT
entries EE; for any overloaded metadata server i, satisfying that

Extra (mds;) - Load, (mds;) X EE; > 0,

where 0 < EE; < the number of ILT entries handled currently by mds;.
Any metadata server j with negative Extra(mds;) may take the entries from i as
many as maximum EE;. That is, the following should be satisfied

Extra (mds;) + Load, (mds;) X EE; <0,

where EE; > 0. In order to take the load more aggressively, we allow each metadata
server with more available capacity than Load, (mds;) / 2 to take one more entry.
Therefore, the above formula can be changed like this.

Extra (mds;) - Load, (mds;) / 2 + Load, (mds;) X EE; <0,

where EE; > 0. Fig.2 shows an example of the adjustment of ITL so that all the
metadata servers have quite evenly distributed load around the average load.
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Fig. 2. Example of ILT Adjustment

4 Performance Evaluations

4.1 Experimental Environment

We evaluate our algorithm using CSIM 9.0, a process-oriented discrete-event
simulator [8]. The simulations are performed on Intel Pentium-IIT (800 MHz dual
CPU) running Linux Kernel 2.6. The detailed parameters are presented in Table 1.

In this evaluation, we measure the load of each metadata server to see how well the
client requests are distributed. The average response time from the clients is also
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measured. The ratio of read accesses and write accesses is 9:1. We evaluate our
algorithm and compare it with those of Vesta and LH3.

Table 1. Parameters for the simulation

The number of MDS 8

Metadata size 256 Bytes

Average memory cache search time 0.155 msec for I0MB
Memory cache hit ratio 90%

Disk access time

1.561 msec for 1 metadata

Network transfer time

0.209 msec for 1 metadata

4.2 Results

Figures 3 through 5 show the load condition of each metadata server for Vesta, LH3,
and our approach, respectively. In order to obtain current load at each metadata
server, we measure the number of requests waiting to be processed at each server for
a period of 20,000 milliseconds.
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As you can see from Fig. 3 and Fig. 4 (Vesta and LH3 cases), for some of metadata
servers, the number of waiting requests is much larger than those of the others. This
implies that the client requests are forwarded heavily onto some metadata servers and
the load is not fairly distributed among all the metadata servers. On the other hand,
Fig. 5 (our approach) shows that the requests are well distributed all over the metadata
servers. Moreover, while the average load of our approach is a little bit higher than
that of Vesta, the variance is remarkably smaller (see Table 2). This also indicates that
replicating metadata is more efficient for distributing client requests than moving
metadata throughout the network.

Table 2 shows the average response time of all three approaches. As the table
shows, our approach has minimum average response time although it doesn’t include
the processing time at the dispatcher. Under the assumption that we can implement
the dispatcher with quite good performance, the processing time at the dispatcher can
be ignored. Table 3 also shows that our approach significantly outperforms other
approaches.

Table 2. Average numbers of requests waiting for services and the variances

Vesta LH3 Our approach
Average # of requests waiting 2.11 4.35 3.13
Variance 10.56 95.10 0.14
Table 3. Average response time for each approach
Vesta LH3 Our approach
Average response time (msec) 11.93 32.04 6.39

In order to explain the relationship between the performance of dispatcher and the
response time of client requests, we introduce a formula using queuing theory. For
example, the response time at the dispatcher R can be written as
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where C is the service rate at the dispatcher and A is the arrival rate of client requests
[10]. When A is unchanged, the only factor that affects the response time is C. If C is
much larger than A, a dispatcher can forward the client requests to appropriate metadata
server immediately on receiving a request. If C is approximately equal to A but is not
smaller than A, the response time increases rapidly because of the processing delay at
the dispatcher. If C is smaller than A, the arrival rate of client requests exceeds the
capacity of a dispatcher, and thereby the response time can’t be measured.

Based on the fact described above, we measure the average response time
including the processing time at the dispatcher. As you can see from Fig. 6, the
response time increases exponentially as we increase 1/C values. The average
response time of our approach is lower than those of Vesta and LH until 1/C is up to
0.8. However, our approach suffers from long response time when 1/C goes close to
A, which implies that the performance of dispatcher becomes the bottleneck of overall
cluster system. On the other hand, we can expect performance improvement when the
arrival rate of client requests is below 93% of service rate of the dispatcher in this
experiment.
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Fig. 6. Effect of the performance of dispatcher

5 Conclusion

In this paper, we have proposed a content-based load-balancing algorithm for
metadata servers in cluster file system, where the client requests are handled
differently according to their contents, and the loads of the metadata servers are
redistributed by dynamically adjusting the indirect metadata table periodically. By
replicating the metadata and logging update messages, all the metadata servers
concurrently execute the update operations on metadata, which minimizes the
metadata movements.

Through our performance evaluation, we have showed that our dynamic load
balancing algorithm outperformed existing metadata management schemes used in
traditional cluster file systems. We are currently investigating further about the effect
of the performance of dispatcher on the overall system performance in the metadata
cluster.
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Abstract. This article presents the C++ library vShark which reduces the intra-
node communication overhead of parallel programs on clusters of SMPs. The li-
brary is built on top of message-passing libraries like MPI to provide thread-safe
communication but most importantly, to improve the communication between
threads within one SMP node. vShark uses a modular but transparent design
which makes it independent of specific communication libraries. Thus, differ-
ent subsystems such as MPI, CORBA, or PVM could also be used for low-level
communication. We present an implementation of vShark based on MPI and the
POSIX thread library, and show that the efficient intra-node communication of
vShark improves the performance of parallel algorithms.

Keywords: clusters of SMPs, parallel programming models, message passing
between threads.

1 Introduction

Clusters of SMPs (Symmetric Multiprocessors) have become very popular in high per-
formance computing (HPC). Due to the huge number of different cluster systems, the
message passing libraries such as MPICH or LAM are usually not machine optimized.
One disadvantage of MPI (Message Passing Interface) libraries is their low performance
for intra-node communication. The communication on a single SMP node is either done
via shared memory (system calls like shmget) or socket-based. Intra-node communi-
cation via sockets or shared memory at operating system level is more expensive than
copying data directly between lightweight threads. vShark provides an effective real-
ization of the communication requirements of an application that can be adapted to the
memory and network system of the parallel or distributed platform without help from
the programmer. In particular, vShark reduces the overhead of intra-node communica-
tion in clusters of SMPs by introducing a thread-based architecture. Instead of starting
a number of processes on SMP nodes, the vShark system starts the same number of
threads. Since those threads live in the same address space of the same process, com-
munication between them is much faster than going through the communication stack of
the message-passing library. The communication between physically distributed threads
in vShark is performed by a separate communication thread. Each physical SMP node
has exactly one communicator thread which handles communication requests from lo-
cal worker-threads and polls for requests from remote communicator threads.
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The next section gives a short overview of the vShark framework. The rest of the
paper describes the C++ implementation of the vShark interface using the MPI standard
and the POSIX thread library. The article introduces a simple but effective communi-
cation protocol to ensure thread-safe communication between worker-threads. We also
evaluate the performance of vShark and present experimental results.

2 Programming Model of vShark

The vShark library is an improved message-passing framework for distributed memory
machines. Thus, the programming model is the same as for common message-passing
environments like MPI, i.e. explicit messages-passing between participating processes
is required.

The vShark library consists of different layers to provide maximum flexibility. Par-
allel programs based on vShark have a common interface to the top layer runtime in-
terface. The layer below is the transportation layer of the vShark runtime. The trans-
portation layer binds the vShark runtime to a particular communication device like MPI
or PVM. The programmer does not have access to the communication layer directly.
Instead, he must use abstract functions of the vShark runtime library to send or re-
ceive data.

In this article we can only give a coarse introduction of the system. vShark provides
a message-passing API which is similar to MPI. It contains methods for sending and
receiving messages like int send (Envelope =*env), and it also contains entities
such as VSharkGroup which is the logical equivalent to an MPI communicator. The
code below is an example of how a processor would send its own rank to processor 1
in vShark.

Runtime& re = get runtime (); // get vShark runtime handle
VSharkGroup *group = re.get group (); // handle to world communicator
Message *msg = new IntMessage(&rank, 1, 0); // int of length 1 and with tag 0

group—>send (group—>create envelope(msg, rank, 1)); // blocking send

Fig. 1. Sending an integer message in vShark

3 vShark Implementation with MPI and POSIX Threads

vShark can be implemented on top of different communication libraries. In this section,
we describe a vShark implementation based on MPI and the POSIX thread library.

General Communication Scheme. The MPI standard does not guarantee thread-safety.
Therefore, the vShark driver for MPI has to ensure thread-safe communication between
worker threads. Thread-safe communication in this context is achieved when only one
thread per node is transferring data at a time. Several solutions were proposed in liter-
ature, e.g. protecting all MPI calls with locks to ensure mutual exclusion, see [4] for a
detailed analysis. Another solution for thread-safe communication is an auxiliary com-
municator thread that manages communication requests. This thread is the only one
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with access to the MPI layer. vShark uses such a communicator thread. A distinct com-
municator not only ensures thread-safe communication, but more importantly, it also
allows us to change the communication path (channel) at runtime (shared-memory or
socket-based). When a virtual processors (worker thread) wants to send or receive data,
it appends a request to the communicator’s request queue. We explicitely indicate that
vShark does not copy messages into a separate buffer. Instead, the virtual processor
passes a memory reference to the communicator. After the data transfer is completed,
the communicator signals the virtual processors that the requests have been fulfilled.

Message Transfer Protocol. There are two performance-critical decisions to make. The
first is, how and when communication between two communicators takes place, i.e.
how often does the communicator need to poll for inter-node requests. Secondly, does
the system support buffering of messages?

vShark does not buffer incoming messages to reduce the memory requirements and
to avoid deadlocks through insufficient free memory. Such a scenario may occur if
a communicator thread constantly polls for incoming messages and receives a large
amount of incoming data within a short time interval. However, the time at which the
data is actually requested is unknown, and so, the message has to be kept in the buffer.
Especially in numerical applications with messages of hundreds of megabytes the fast
growing buffer would quickly exceed the memory limit.

vShark uses a communication protocol to avoid deadlocks and extra memory re-
quirements. The transfer of messages is always initiated by the the sending commu-
nicator. The communicator sends a request message to the node where the receiver
resides. This message contains the id of the virtual processor of the sender and the
receiver. The communicator of the receiver checks its local queue if the correspond-
ing virtual processor has already requested this data. If so, the communicator sends
an acknowledgment-message (ACK) to the initiator and immediately starts receiving
data (MPI Irecv) into the message buffer of the virtual processor. If there is no such
request, the communicator enqueues the request in a waiting list. When a virtual pro-
cessor later dispatches the matching receive request, the ACK will immediately be sent
to the initiator. In order to find the corresponding request to each ACK and vice versa,
the ACK message also contains the identifiers of the sending and receiving virtual pro-
cessors. This protocol has two basic advantages: (1) No additional message buffering
is required. (2) The initiating communicator can select which message is sent first.
That makes it possible to reschedule and optimize the message transfer respecting the
message-passing constraints such as order and fairness (subsequent messages may not
overtake each other).

Realization of the Communicator Thread. As discussed before, the communicator con-
stantly polls for incoming requests. The central performance question is, when and for
how long the communicator thread will be suspended. This sleep time must be short
enough to guarantee quick message delivery, but also long enough that worker threads
can get the CPU and perform their tasks. In case of shared-memory, we could use a
consumer/ producer model. The consumer would be suspended until produced items
are available for consumption and so, it would not consume CPU time. Unfortunately,
we cannot apply this model in a distributed memory environment. Thus, active wait-
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ing for incoming messages is necessary which may consume CPU time. Since we want
to minimize this wait overhead, we introduce a sleep time for the communicator. The
communicator sleeps for the given amount of time when all local queues are empty and
no remote request has yet been received. We will see that this timeout parameter is very
performance-critical. The timeout settings (minimum, maximum, default) of the MPI
driver can be changed in a configuration file called vshark mpi . conf.

Running vShark Programs over MPI. An MPI-based vShark program can be started
by calling mpirun on each participating node. The runtime system of vShark reads
the node configuration file vshark . conf. For compatibility reasons, this file has the
same syntax as the machine configuration files of MPICH (node: #processors).
According to the number of processors specified in the file, the vShark runtime starts
the virtual processors. After the runtime is loaded on each node, the actual vShark
program is passed to the virtual processors which then start to execute the program.

4 Experimental Results of the MPI Version of vShark

For a performance comparison of vShark with traditional MPI programs, we ran several
benchmarks from the ParkBench collection [9]. The original ParkBench code is writ-
ten in Fortran 77. We ported the benchmarks to C++ and replaced MPI calls with the
corresponding vShark function.

In the diagrams that follow, “parkbench” denotes the results of the original bench-
mark and vShark stands for the rewritten benchmark. The range (x —y) after the vShark
label denotes the chosen minimum and the maximum timeout of the communicator, e.g.
for 1 — 10 the communicator waits at least 1 ms and at most 10 ms when all queues
are empty.

COMMS]1 Benchmark. The COMMS]1 benchmark is a so called ping-pong benchmark
and measures the time a message is transferred between two nodes back and forth,
i.e. the master processor sends a message of variable length to a slave processor that
immediately returns the message after receiving it.

Fig. 2 (left) presents the throughput results for the intra-node communication of
vShark and ParkBench. It can be observed that the communication between two MPI
processes (original ParkBench) is fast for smaller messages. When the message size
increases, vShark’s thread-based copying significantly boosts the performance. For a
message size of about 20.000 bytes, the throughput of vShark becomes clearly superior
to MPIL.

COMMS3 Benchmark. The website www . top500 . org characterizes the benchmark
as follows: each processor of a p-processor system sends a message of length n to
the other (p — 1) processors. Each processor then waits to receive the (p — 1) mes-
sages directed at it. The timing of this generalized ping-pong ends when all messages
have been successfully received by all processors; although the process will be repeated
many times to obtain an accurate measurement, and the overall time will be divided by
the number of repeats. Figure 2 (right) compares the bandwidth which was measured for
the MPI version of COMMS3 and the vShark version. When utilizing four processors,
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Fig.2. Left: Throughput measured with the COMMS1 benchmark (intra-node, SMP). Right:
Two virtual vShark processors on two SMP nodes compared to two MPI processes on two SMP
nodes. System: Dual Xeon cluster, SCI network, ScaMPI.

the bandwidth achieved by vShark is slightly lower than the MPI version. Yet, when the
message length is larger than 50.000 bytes vShark is as fast as the original ParkBench.
Due to the additional communication protocol, the bandwidth of vShark decreases for
a larger number of processors.

Testing with a Real Application. We examine the real-world application performance
on the basis of tpMM (task parallel matrix multiplication). The tpMM algorithm uses
a hierarchy of multiprocessor groups where it is assumed that matrix A is decomposed
into p blocks of rows and B into p blocks of columns, where p denotes the number of
processors. tpMM recursively updates matrix panels to compute the result matrix C' =
A x B, see [6] for a more detailed description of tpMM and [7] for an overview of how
tpMM can be used as a building block in multi-level matrix multiplication algorithms.

The runtime results for tpMM on vShark and on MPICH are shown in Figure 3
(left). We can see that tpMM running on vShark outperforms the C/MPI version (note
the logarithmic scale). This algorithm benefits from the vShark runtime since most of
the communication required happens on an SMP node.

In order to evaluate the performance of vShark on larger SMP nodes, tpMM was
further tested on a four-way Xeon (2.0 GHz) running Linux and MPICH 1.2.5. Figure 3
(right) compares the MFLOPS per processor of the vShark-based and the MPICH-based
versions of tpMM. The MPICH results include statistics for the P4 device (shared mem-
ory enabled) as well as for the VMI device. On a multi-way SMP machine, vShark
clearly outperforms the MPICH versions, either using the VMI or the P4 driver.

5 Related Work

The combination of message passing in a multi-threaded environment and its advan-
tages has already been examined and published. For example, Sun Microsystems offers
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Fig.3. Left: Comparison of the performance of tpMM running on vShark and directly on
MPI (8 virtual processors, 2 thread per node), system: dual Xeon cluster, MPICH 1.2.5.2
(-with-comm= shared). Right: tpMM performance with MPICH-P4, MPICH-VMI, and
vShark, system: 4-way Xeon.

thread-safe MPI libraries for Solaris [13] where threads can concurrently call MPI func-
tions but may only refer to processes as senders or recipients. Multi-threaded approaches
to MPICH have been discussed in [11]. The article [4] describes how to use threads in
an MPI environment efficiently to improve the performance of irregular algorithms on
distributed systems. In general, there are two approaches for exploiting threads in dis-
tributed systems. One way is to create a virtual shared model of the parallel system.
Since the programmer sees only one big memory, the complexity of writing parallel
program decreases because explicit message passing is omitted. MuPC is an example
of such programming language [12]. Another approach is to extend the POSIX thread
model and to add message passing capabilities to each thread [3]. In [1] the authors
proposed a thread-only implementation of MPI and it aims at the development stage
of program where tests are performed on a single machine. The work in [10, 14] goes
one step further and rewrites parts of MPICH to shift the original process-only model
to a thread-only model. The disadvantage of these approaches is the dependency on the
operating system and the MPICH version. Another multi-threaded MPI implementation
is called AMPI and has been discussed in [5]. AMPI uses the same notation of virtual
processors as vShark. Each virtual processor is a lightweight user-thread and has its
own private memory. AMPI optimizes the mapping of virtual processors to real proces-
sors. The objective of AMPI is to reduce the complexity of writing parallel programs for
systems where the number of processors differs from the number of processors that the
algorithms require. [2] introduces TPVM as a multi-threaded version of PVM. Similar
to vShark, TPVM uses threads as units of parallelism and the communication between
threads is done via explicit message passing with a unique thread id. Since TPVM is
a modified version of PVM, it is restricted to the PVM library and the operating sys-
tems to which it has been ported. The Virtual Machine Interface (VMI) is also equipped
with the support for multiple communication interconnects including shared memory,
TCP/IP, Myrinet [8]. In contrast to vShark, VMI is a middleware layer between MPI
and the network device drivers.
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6 Conclusions

We have presented the C++ library vShark which is built upon message passing and
thread libraries. Despite having a distributed programming model, communication be-
tween virtual processors which are implemented as lightweight threads is done with-
out invoking external library functions or operating system routines. The experimen-
tal results have shown that parallel programs that use vShark as communication layer
can lead to significant performance gains when many intra-node communications are
performed. The main advantage of vShark is its flexibility through the object-oriented
design and the placement on top of message passing libraries. Thus, porting vShark
programs to different architectures is easy since it only requires a single vShark driver
for a new communication interface like MPI or PVM. Since there is already an MPI 1.1
binding available, vShark will work with any MPI compliant library.
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Abstract. Interoperability and adaptability are two major problems that
embarrass network measurement practices today on how to finely integrate
heterogeneous measurement systems and functionalities. This paper proposes a
service-oriented approach based on Web Service for building integrated
network measurement architecture that’s scalable and adaptable for change.
Measurement functionalities are wrapped in Web Service that can be described
in WSDL, discovered by UDDI and accessed through SOAP openly. Mobile
Agent, as an autonomous entity, is employed to implement the global control of
network measurement, which migrates from site to site calling these Web
Services to perform the measurements and returns with the data collected from
them. This approach de-couples network measurement control and supporting
network measurement functionalities thus introduces flexibilities into the
implementation of both sides. The architecture promised by this approach
allows not only fast deployment of network measurement functionalities but
also simple introduction of measurement control policies.

Keywords: Network Measurement, Service-Oriented Architecture, Web
Service, UDDI, SOAP and Mobile Agent.

1 Introduction

Network performance is always of network service provider’s concern when planning
networks to provide differentiated services and deliver quality of services (QoS). In
1998, IP Performance Metrics (IPPM) Working Group of IETF proposed a
framework of Internet Protocol (IP) performance metrics in [1]. Under the framework,
metrics such as one-way packet delay [2] and loss pattern [3], are put forward to
satisfy the needs for observing Internet performance from different perspectives. As
most of these metrics are generally associated with distinct measurement
methodologies, adaptable network measurement architecture becomes of primary
concern that’s required not only be able to integrate all these metrics seamlessly, but
also allow introducing new ones flexibly on demand.

NIMI [4] and Surveyor [5] are two examples that deploy similar network
measurement architecture. They both have a group of probing sites (PS) geographically
distributed across the networks. Each pair of PSs establishes a connection at a well
known UDP port. End-to-end packet transfer delays, loss, and bulk throughputs are
measured by One-Way Delay and Packet Loss (OWDP) [6] or Round-Trip Delay and
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Packet Lost (RTDP) [7] test protocols, which probes network performance by
sending/receiving small packets over these connections. Besides, a central server is
designated to distribute measurement functionalities (MF) to PSs and coordinates their
measurement exercises.

Although it simplifies the management of PSs and measurement functionalities, the
centralized control model weakens the architecture’s adaptability. Firstly a PS must
meet specific software or hardware requirements in order to support designated MFs,
which limits the possibility of recruiting a lot of PSs to widen the coverage of network
clouds. Secondly, constraints on PS’s platform narrow the scope of metrics and MFs
that can be introduced into the architecture. Actually Surveyor and NIMI are designed
to support active measurements only. If to deploy passive measurement such as traffic
monitoring on backbones, PSs must reinstall the network interceptor devices and
measurement control software as well.

In this paper, a service-oriented network measurement architecture, SONA is
proposed to address these problems. It builds an extensible network measurement
platform based on Web Service [8]. Now PS plays a positive role other than simply
being reactive to central server’s control. MF can be deployed by PS independently but
is provided as a Web Service for central server’s use. Web Service isn’t tied to any
operating systems or programming languages thus offers an open facility to realize
remote procedure call (RPC). They can be called through SOAP [9], which is a
standard XML messaging protocol that simplifies the access to Web Service. To
support such a platform, a UDDI (Universal Description Discovery and Integration)
database server (UDS) is employed for PSs to publish their Web Services in WSDL.
WSDL is a formal language to describe a web service from the perspectives of WHAT
the service is, HOW to use the service and WHERE to locate the service. Based on all
these, SONA is not only extensible as MF can now be deployed and called in a standard
way; but also it’s adaptable since it separates the measurement control with MF
deployment, which means the central server can only be responsible for organizing a
measurement, while PS caring for providing the proper MF.

The paper is organized as following. In Section 2, we will have an overview of
SONA’s architecture. Then a brief survey of current network measurement approaches
is presented in Section 3, also it introduces Mobile Agent as an effective way for their
measurement control. In Section 4, Web Service implementation of network
measurement functionality is illustrated by an example of round-trip packet delay test
service. Section 5 describes Mobile Agent in detail and illustrates how it works in
SONA. In Section 6, possible security issues in SONA are evaluated. Future work is
presented briefly in the Conclusion section.

2 Architecture Overview

SONA is architected upon a few PSs that are geographically distributed on the
networks. Each PS installs a HTTP server with SOAP support. In Figure 1, a typical
topology of SONA is illustrated. Two PSs are deployed in the domain. Each one
provides a Web Service for its supported measurement functionality and publishes the
service to the UDS (WS1 and WS2). Generally PS is purposely placed near the network
element that’s in observation, such as ATM switches, core/edge routers and
DSL access multiplexers for collectively measuring their performance. The Network
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Fig. 1. SONA Architecture. SONA is architected on a few probe sites distributed across the
networks. Each probe site provides their network measurement functionalities through a few
standard web services and publishes them to a public UDDI database. Mobile Agent dispatched
by NMC migrates in SONA to organize the network measurement practice over a wide scope.

Measurement Center (NMC) is responsible for organizing the measurements that may
involve a few PSs based on the service profiles they publish to the UDS.

NMC can notify a PS to perform a measurement by directly calling its Web Service
through a SOAP request. But it isn’t an effective way for most of the cases because
SOAP is still a RPC like protocol, that is, NMC will be blocked by the call until it
returns. For measurement that lasts for a short time, this approach is fine. For example,
to get the IP datagram forwarding speed on a router, a Web Service can be called on the
PS around to watch on the “ipForwDatagrams” variable in the router’s management
information base (MIB) for 5 minutes and apply following formula (ipForwDatagrams
, — ipForwDatagrams ) / (5 * 60s) to get the result, where x is the measurement end
time and y is the start time. But for most measurements that need to run for a long time,
such as to derive the average packet delay or lost rate along a network route within 2
hours, this approach can’t be applied when there are many such measurements to be
performed at the same time.

To deal with this problem, Mobile Agent (MA) comes up as a rescue. As an
autonomous entity, Mobile Agent can migrate with its code (or execution logic) and
data and continue its execution at other hosts. In SONA, Mobile Agent is dispatched by
NMC to the PS and calls PS’s web service locally on behalf of NMC. With Mobile
Agent, NMC can gain a flexible control of the measurement. For each measurement, it
can generate a PS list for MA to visit, and for each PS, it prepares a Web Service list for
MA to call. These two lists together make up a mission list for MA. MA with the list
then travels from PS to PS to accomplish the job one by one. In Fig.1, NMC designates
a MA to visit PS2 and then PS1. MA will call WS2 at PS2 and WS1 at PS1, and then go
home. After NMC sends out the MA, it doesn’t need to wait for result back
continuously, while Mobile Agent can do the things for it. Besides this, Mobile Agent
can do a lot of other important jobs such as network topology discovery, fault diagnose
and resource trading. Such functions are open for MA developers to realize as
value-added components to SONA.
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3 Measurement Control Based on Mobile Agent

Generally network measurement approaches can be divided into two groups. One is
active measurement. Another is passive measurement. For active measurement, a PS
normally establishes a test connection with another PS at a well-known TCP or UDP
port and actively sends/receives test packets. All PSs must synchronize their time
clocks through Network Time Protocol [10] or Global Positioning System. Each test
packet is time stamped and indexed so that packet delay, lost percentage and
throughput can be easily extracted and recorded. Ping, OWDP and IPMP [11] are
examples for this approach. As it injects extra network traffics, this approach may
disturb the network’s normal operations. So in order to achieve unbiased results,
sampling and analysis methods must be carefully studied [12][13].

Active measurement can also be realized in two ways. One is unicast-based, another
is multicast-based. For unicast-based measurement [14][15], there is a test connection
for each pair of PSs. Its complexity is O(N), and when a new PS joins, N test
connections must be created accordingly. OWDP is such a kind of unicast-based test
protocol. But for multicast-based measurement [16], a multicast tree is established
upon a group of PSs. Test packet ejected by a PS is multicasted down the tree to all
related PSs in the group. This approach generate less traffic into the network than the
Unicast because the test packet appears only once per link in the multicast tree. Thus its
complexity is O(N).

For passive measurement, through special network sniffer devices or SNMP [17]
and RMON, PS simply keeps watch on the traffics flowing over the wire and/or on
specific performance variables in network element’s MIB. For example, OCXmon and
FDDI monitors are utilized in NLANR [18] passive measurement project. OCXmon
have two measurement cards installed so that they can capture traffic in both directions
of a full duplex connection. Based on the traffics traces captured, bidirectional
transaction analysis and flow analysis can be done. In the case of SNMP, network
performance information such as interface speed and IP packet error rate can be derived
directly from network element’s MIB.

A. Passive Measurement B. Active Measurement { Unicast) C. Active Measurement {Multicast)

Fig. 2. Measurement Organization by Mobile Agent. Mobile Agent can flexibly organize
passive or active measurement by migration from host to host.
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By Web Service technology and Mobile Agent, all these kinds of measurements can
be easily realized and controlled. Figure 2 illustrates how to deploy the Web Service
and Mobile Agent to organize the measurement practices.

For passive measurement, a PS can provide a measurement web service that
accesses network element’s MIB through SNMP, or accesses special hardware devices
to retrieve the performance data. Mobile Agent can migrate to there, call its service,
derive some statistics and return with the result.

For unicast active measurement, taking OWDP for example, a measurement service
can be deployed on the PS that sets up a test connection with other PSs and send test
packets to them in given time. Other parameters can also be accepted such as time-out
constraints and TCP/UDP port. Mobile Agent can return to NMC with the
measurement of packet delay or packet loss.

For multicast active measurement, three kinds of Web Services are to be deployed.
One is multicast establishing (ME) service for all involved PS. Another is multicast
testing (MT) service for the sender PS. The last one is measurement collection (MC)
service for all receiver PSs. In (C) of, four PS are involved in the multicast
measurement. NMC can delegate an MA that firstly visits all PSs in the multicast tree to
call each one’s ME service thus establish the multicast membership, then returns to the
sender PS’s location to call its MT service to start the measurement, and after the
measurement is over, visits each receiver PS to call its MC service to get the result, and
finally returns to NMC.

4 Measurement Functionality as Web Service

Implementing network measurement functionality as Web Service follows quite
a different way other than before. Firstly, we must implement the functionality
in a specific programming language such as Java and C++. Then we need to write
a configuration file for the implementation and deploy it to a web server with
SOAP support such as Tomcat with Axis, a SOAP request dispatch engine. If
deployed successfully, a web service is created for the functionality and can be called
through the server. We need also to create a WSDL file for the service and publish it
to a UDDI database server, so that the caller can generate the stub code for the service
and call it remotely. In this section, we will study a round-trip measurement
functionality and go through the development cycle in Java for its implementation in
Web Service.

4.1 Functionality Implementation and Deployment

The round-trip measurement functionality is supposed to measure the average packet
delay along an end-to-end network path over a given time. It needs following input
parameters: peer PS’s IP address, TCP port, test packet size, waiting timeout and
measuring time. We can implement such functionality in a Java class, i.e.
RoundTripTestService. For simplicity, we only give its pseudo codes.
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public class RoundTripTestService {
public double roundTripDelayTest(String peerPSIpAddr, int udpTestPort, int packetSize,
int waitingTimeout, int measureTime) {
create a stream socket S;
bind S to <peerPSIpAddr, tcpTestPort>;
while(measureTime isn’t up) {
Packet P = new Packet(packetSize);
Set P’s Timestamp with current time;
Set P’s Sequence No. with current Sequence No.;
Send the P through S;
while(no packet is received on S & & waitingTimeout isn’t up) { }
if(no packet is received) continue
else {
extract the packet’s timestamp;
compare the timestamp with current time and record the delay;
sleep for a random time;

increase current Sequence No.;

return Y (delay of each packets received) / number of packet received;

RoundTripTestService  provided a  measurement functionality = named
roundTripDelayTest, which is a public method in the class. Such a service class can be
deployed to any web server that supports SOAP. Following is a sample deployment
description file used by Apache Tomcat server to install the service.

< ?xml version="1.0"?>
<isd:service xmins:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:RoundTripTestWebService">
<isd:provider type="java" scope="Application" methods="roundTripDelayTest">
<isd:java class="RoundTripTestService" static="false"/> </isd:provider>
<isd:faultListener>org.apache.soap.server.DOMF aultListener</isd:faultListener>
</isd:service>

It tells the server that a RoundTripTestService class that provides the measurement
functionality roundTripDelayTest is to be deployed as a Web Service. Its name is
RoundTripTestWebService and given a universal resource identifier (URI)
"urn:RoundTripTestWebService". As Java Virtual Machine (JVM) limits Java program
from directly accessing local systems, so for specific measurement functionality that
heavily depends on specialized devices, we can still write a few C/C++ libraries to
handle their hardware interactions, and depend on Java Native Invocation (JNI) to wrap
these in a seamless way.

4.2 Network Measurement Service in WSDL

WSDL is an important XML document that contains a set of definitions that describes a
Web Service. Basically there are three parts in a WSDL file: the WHAT part,
consisting of the types, message, and portType elements, defines the messages and data
types exchanged between client and server; the HOW part, consisting of the binding
elements, describes the technical implementation details of the Web Service; finally the
WHERE part, consisting of the service element, pulls together the port type, the
binding, and the actual location of the Web Service. Following is a sample WSDL for
the RoundTripTestService.
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<definitions name="RoundTripTestService" xmins="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/">
<types><xsd:schema xmlins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:element name="peerPSIpAddr”  type="xsd:string"/>

<xsd:element name="tcpTestPort" type="xsd:int"/>
<xsd:element name="packetSize" type="xsd:int"/>
<xsd:element name="waitingTimeout"  type="xsd:int"/>
<xsd:element name="measureTime”  type="xsd:int"/>

<xsd:element name="double_Response" type="xsd:double"/>
</xsd:schema></types>
<message name="RoundTripTestService_roundTripDelayTest_Response'>
<part name="response’ element="ns0:double_Response'/></message>
<message name="RoundTripTestService_roundTripDelayTest_Request™>
<part name="peerPSIpAddr' element="peerPSIpAddr'/>

<part name="tcpTestPort’' element="tcpTestPort’/>
<part name="packetSize’ element="packetSize'/>
<part name="waitingTimeout' element="waitingTimeout'/>
<part name="measureTime' element="measureTime'/>

</message>

<portType name='RoundTripTestService'>
<operation name="roundTripDelayTest' parameterOrder="peerPSIpAddr
tepTestPort packetSize waitingTimeout measureTime'>
<input message="tns:RoundTripTestService_roundTripDelayTest_Request’/>
<output message="tns:RoundTripTestService_roundTripDelayTest_Response'/>
</operation></portType>
<binding name="'RoundTripTestService' type="tns:RoundTripTestService'>
<soap:binding transport="http://schemas.xmlsoap.org/soap/http’ style="rpc'’/>
<operation name="roundTripDelayTest">
<soap:operation soapAction=""style="rpc'’/>

<input>
<soap:body parts='peerProbelp tcpTestPort packetSize waitingTimeout
measureTime' use="encoded" encodingStyle="..." /></input>
<output>
<soap:body parts='"response' use='encoded' encodingStyle="..." /></output>
</operation></soap:binding>
</binding>

<service name='RoundTripTestService">
<port name="RoundTripTestService' binding="tns:RoundTripTestService>
<soap:address location="http.://myprobe.org/soap/servlet/rpcrouter'’/></port>
</service>
</definitions>

A message is the basic communication element of SOAP. It consists of one or more
parts, each part representing a typed parameter. All messages are grouped into
operations in an entity called a portType. A portType represents the interface, a
concrete set of operations supported by the Web Service. A Web Service can have
multiple interfaces represented by different portType. Here there is only one portType
with an operation roundTripDelayTest. The client sends a
RoundTripTestService_roundTripDelayTest_Response message to call the method,
which contains many parts that are the input parameters for roundTripDelayTest.
RoundTripTestService_roundTripDelayTest_Response message as a reply contains one
part (the return value) called response. In the SOAP binding element, RPC
communication style is specified for the operations in portType. It supports automatic
marshalling and demarshalling of messages, permitting developers to specify a request
as a method call with a set of parameters that returns a response containing a return
value. Based on this WSDL file, we have all the information needed to create a client
application to access the Web Service
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4.3 Publish Network Measurement Service to UDDI Registry

Only with its WSDL file, NMC can know how to call a measurement web service.
UDDI database server provides a mechanism for PS to advertise their Web Services in
WSDL and for NMC to search the WSDL file for a Web Service. It contains
categorized information about the businesses and services that a PS offers, and
associates these with corresponding WSDL. Because most of measurement services are
mission-critical, UDDI database server must impose extra security controls on
unauthorized access to all the entries for published Web Services in the database.

the PS that publishes WSDL fora
service
0.n

{Business Entity: information abuut]

)

) tModel: Detailed Descriptions of
A the measurement Web Service.
!
/ /7 bindingTemplate data contains
1.0 / p /' references to tModels. These references
]/ / designate the interface specifications for
Binding Template: Technical 1 a service,

information about a particular
family of measurement services
0. n

Business Service: descriptive J

information for where to find the
service and how to use the service

Fig. 3. A PS’s Entry in UDDI Database. Each PS has an entry in the UDDI database, which
includes Business Entity, Business Service and Binding Template information for a combinative
description of its services.

Each PS has an entry in the UDDI database. Figure 3 illustrates the structure of a
PS’s entry. The Business Entity normally contains description information for the PS,
such as its identification, affiliated organization, and administrator’s contact address.
The Business Service describes a family of services in the same category such as
Passive Measurement, Unicast-based Active Measurement and Multicast-based Active
Measurement. Associated with each business service entry is a list of Binding
Templates that provide information on where to find the service and how to use the
service. For example, a binding template may specify the access point for
RoundTripTestService and provides a reference to a construct of tModel that describes
the measurement Web Service in detail, such as its name and service category. A web
service’s WSDL is generally attached to the tModel. That is, with the tModel, the
WSDL file for the RoundTripTestService can be retrieved.

4.4 Call a Network Measurement Service

To make a call, we need to specify URI for given measurement web service, signature
of desired measurement functionality and input parameters. Apache SOAP is a
powerful toolkit that provides abundant client-side APIs for users to create SOAP
request, transfer SOAP message and interpret SOAP response. Following code
illustrates a call to the roundTripDelayTest measurement functionality in the
RoundTripTestService web service. The measurement is desired to be done within 30
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minutes by this PS with another PS (202.114.71.25) at TCP port 7000. Each test packet
is 100 bytes long and deemed as lost when not received within 60s.

/*packaging a SOAP request*/

Call call = new Call();

call.setTargetObjectURI("urn:RoundTripTestWebService");
call.setMethodName("roundTripDelayTest");

Vector params = new Vector();

params.addElement(new Parameter("peerPSIpAddr", String.class, “202.114.71.25”, null));
params.addElement(new Parameter("tcpTestPort", Integer.class, new Interger(7000), null));
params.addElement(new Parameter("packetSize", Integer.class, new Interger(100), null));
params.addElement(new Parameter("waitingTimeout", Integer.class, new Interger(60), null));
params.addElement(new Parameter("measureTime", Integer.class, new Interger(1800), null));
call.setParams(params);

/*make a call and get the SOAP response™/

Response resp = call.invoke ( “http://myprobe.org/soap/serviet/rpcrouter”, "" );

Parameter result = resp.getReturnValue ();
double measureResult = ((Double) result.getValue()).doubleValue());

Mobile Agent can carry these codes to where the measurement service is hosted and
execute them there locally. It can free NMC of synchronous waiting for the call return,
and from performance point of view, it narrows the possibility of call failure and
reduces network traffics. Currently many Mobile Agent systems, such as Aglet [19]
and Mole [20], are formulated by two kinds of Agents, one is Mobile Agent that can
move around, and another is Service Agent (SA) that is stationary to provide services to
MA. MA speaks with SA through Java RMI. In SONA, things are simplified as MA
directly speaks to a Web Service through SOAP other than interacts with SA. This new
mechanism keeps the communication between MA with desired services in a standard
way so that MA can easily interact with a lot of heterogeneous services without explicit
needs for code changes and recompilation.

S Mobile Agent

Having received all those parameters such as service URI, method name and parameter
list from NMC, Mobile Agent can make a call upon the MF exposed by PS’s web
service. In SONA, for each PS to be visited by Mobile Agent, NMC uses a so-called
“Mission” to formulate all these information. The mission is made up of a few jobs for
Mobile Agent to do, each of which addresses a measurement functionality on the
destined PS. Fig.4 illustrates Mobile Agent, Mission and Job.

Mobile Agent is uniquely identified by its agentID and an nmcAddr. All the
missions assigned by NMC are kept in Mobile Agent’s missionList field. The Mission
gives the address for the PS in its probeSiteAddr, which can guide Mobile Agent’s
migration from host to host. A few jobs are maintained in the jobList of Mission, each
of which corresponds to a call for a given MF exposed by the Web Service hosted on
PS. The Job contains all the parameters to generate the call, such as SOAP Address,
Service URN, Method Name and Input Parameter List.

Upon arriving, Mobile Agent extracts the Mission from its mission list that’s
corresponding to the PS it’s now running on. Then it executes the assigned jobs by
calling designated MFs one by one and stores the measurements in each Job’s Result
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field. Fig.5 illustrates how a Mobile Agent migrates from host to host to accomplish its
missions. There are 3 hosts for Mobile Agent to visit according to its Mission List. For
each host, there is a job list for the agent to do. On PS1, the agent will call MF1 and
ME2 provided by the web service urn: WS1. Then the agent will migrate to PS2 to call
MFI1 of urn:WS1 and MF2 of urn:WS2. At the last stop of its itinerary, agent will call
WF1, WF2 and WEF3 provided by urn:WS1 of PS3. Finally the agent returns to NMC

with all these results.

Job
Mobile Agent Mission E<<i;“l,>> iobID iceURN

B3 <<String>> agentID B<<int>> missionID E;s‘ﬂgii :23'?:@,
=3<<String>>nmcAddr <String>> probeSiteAddr E<<String>> ;xetﬁodNane
B¥<<Vector>> missionList 1..#| << Vector>> jobList L% E«vec(é;r» paramList
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An ID to identify each Java basic
data types such as double, float,
integer and byte. It's used for the
programto perform dynamic class
casting of the result.

Fig. 4. Mobile Agent, Mission and Job Class. Mobile Agent is assigned a list of missions by
NMC, which are to be accomplished during its traveling. Every mission is endowed with a list
of jobs, each of which contains all the information for calling a MF within PS’s web service.
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Fig. 5. Mobile Agent migrates to accomplish its missions. Based on its mission list, Mobile
Agent migrates from host to host to accomplish missions one by one. It calls the measurement
functionality based on the information provided by the job list in each mission, and finally
returns to NMC with the result.
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6 Security Considerations

There are two security issues to be considered within SONA. Firstly, as SONA aims
to achieve a wide participation of network measurement in a scalable way, new PS to
SONA must be authorized and authenticated, or else, unauthorized PS that hosts
malicious Web Service can initiate Denial of Service attacks or spy on the
confidential information from NMC to PS. So before a new PS can join in, it’s
reasonable that PS be required to present a X.509 certificate signed by the NMC.
Another security leak is on the Mobile Agent. A lot of works have been done to deal
with the problem of Mobile Agent’s security [21]. Most questions are focused on how
to protect MA against malicious Agency and how to protect the Agency against
malicious MA. In SONA, malicious MA is of primary concern because all
measurement Web Services are mission-critical. A malicious MA can request a
Unicast-based active measurement service to run for a long time with large test
packet, or it illegally calls a passive measurement service to get confidential
information from prohibited sources. Thus we not only need a secure Mobile Agent
transport protocol here, but also have to find a way appending each Mobile Agent
with a credential signed by its birth Agency.

7 Conclusion

We studied SONA, a Web Service based network performance measurement
architecture in this paper to deal with the interoperability and adaptability issues of
current network measurement projects. Wrapping traditional network measurement
functions as a Web Service makes SONA a standardized service oriented architecture
for quick deployment of network measurement functionality and standard invocations.
Also Mobile Agent enriches SONA with flexible controls of the measurement
activities. To play in SONA, a probe site is only required to install a HTTP server with
SOAP support and a Mobile Agent agency for receiving the agent. Network
measurement services can be developed independently by a third party and offered as a
plug-and-play package. That is, SONA make it possible to scalable its capability and
capacity of accommodating more probe sites and measurement functionalities on
demand without architectural changes.

As the future work, XML schemas for describing network performance
measurement service and measurement result will be studied. With the schema, we
can specify the service in a much standard way and have them open to other network
management applications. Also we will work on the distributed authorization and
authentication mechanism that can be applied in SONA to make it a reliable
platform.
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Abstract. Estimating the end-to-end available bandwidth along a net-
work path is of great significance in congestion control, streaming appli-
cations, QoS verification, server selection. Knowing the exact locations
of tight links, network operators can apply traffic engineering, routing
policy optimization and fault diagnosis. In this paper we present Path-
trait, a tool that allows end users to accurately locate the tight link along
a network path and efficiently estimate the end-to-end available band-
width through the information of tight link location. Pathtrait is based
on a novel probing technique that generates three different sorts of prob-
ing trains. We utilize a original probing structure to capture the input
rate and output rate of a single probing train at certain link among the
estimated network path, which can infer the tight link and estimate the
available bandwidth of the tight link.

Keywords: Network measurements, available bandwidth, tight link,
pathtrait.

1 Introduction

Knowledge of available bandwidth on end-to-end paths and the location of tight
links can effectively enhance the performance of network applications. The tight
link along a network path is the link that has the minimal end-to-end available
bandwidth. Unfortunately, it is quite hard to identify the exact location of the
tight link unless we are able to keep link load information for every involved
link. However such information is hardly attainable due to the decentralized
property of the Internet which discourages link information sharing, it is im-
possible for end users to obtain the link information through traditional passive
measurement techniques. Therefore, so as to meet the needs of end-based net-
work applications, it is necessary to observe the internal dynamics of general
Internet paths from the end-to-end measurements.

Tight link location and accurate available bandwidth estimation techniques
extend existing measurement methodologies of available bandwidth and benefit
the design of resource-aware network applications and the strategies of network
management and diagnosis.
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1.1 Main Contributions

In this paper, we present an original end-to-end available bandwidth estimation
and tight link location measurement methodology, called pathtrait. It utilizes a
novel probing structure to capture the input rate and output rate of a single
probing train at certain hop, which leads to the discovery of tight link and
accurate estimation of available bandwidth along a network path. We have
also evaluated pathtrait in a controlled and reproducible environment using NS
simulations. The results of the simulations show that pathtrait accurately locates
the first tight link when the path includes several tight links and attains the
available bandwidth with high accuracy.

1.2 Overview

This paper is organized as follows. Section 2 summarizes previous works on
available bandwidth estimation and tight link location. Section 3 explains the
pathtrait probing methodology. Section 4 presents the pathtrait implementation
and algorithms. Section 5 describes the NS simulations and analyzes the results
of the simulations. Section 6 summarizes and discusses future work.

2 Related Work

2.1 Available Bandwidth Measurement

Carter et al. presented a tool called cprobe [2] to estimate the available bandwidth
based on the dispersion of long packet trains at the receiver. Later, Dovrolis [3]
pointed that cprobe actually measured a metric called the asymptotic dispersion
rate (ADR) other than the available bandwidth.

Melander et al. proposed a measurement methodology called TOPP (Trains
of Packet Pairs) [4]. It estimates both the available bandwidth and the capacity
of the tight link by analyzing the relation between the input and output rates of
different packet pairs.

Another recent estimation technique is Self-Loading Periodic Streams (SLoPS)
[1] proposed by Jain et al. The basic idea of is that one-way delays of packets
show an increasing trend when the input rate of the probing stream is higher
than the available bandwidth of the path. Pathchirp [5] is proposed to improve
the measurement speed of pathload.

Huet al. proposed a tool called IGI [6] that measures the cross-traffic intensity
other than directly calculating the available bandwidth.

2.2 Tight Link Location Techniques

A recent proposal [7] used a tool, BFind, to locate the tight link of a path.
It essentially induces network congestion through continuous transmission of
UDP traffic and determines the location of the tight link from traceroute round-
trip times. However, the traffic intrusiveness of BFind tool can not be neglected.
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Ribeiro et al. proposed a tool called STAB [8], which measures the sub-path
available bandwidth and the last thin link that has the least available bandwidth
on the entire path is the tight link.

D. Zhang et al. proposed a probing technique for tight link location called
dual rate periodic stream (DRPS) [10] probing. DRPS probing provides a peri-
odic stream with two rates. It can adjust the rate shift time to control the link
congestion.

Another interesting probing technique is recursive packet train (RPT) [11].
It relies on the fact that load packets interleave with cross traffic on the links
along the path and changing the length of the packet train.

3 Pathtrait Probing Methodology

In this section, we present the underlying idea of pathtrait probing. We first
discuss the preliminary knowledge of pathtrait probing and basic definition.
Next, we describe the pathtrait probing theory.

3.1 Basic Definition

Basic Assumption. As enumerated below, there are four basic assumptions,
which are common to most recent related studies [1,11]:

1. FIFO queuing at all routers along the path;

2. Cross traffic follows a fluid model;

3. Average rates of cross traffic change slowly and are constant for the duration
of a single measurement.

4. All routers along the path can generation ICMP packets, the ICMP packet
generation time is pretty small [13, 14].

Available Bandwidth. We first define the available bandwidth of a network
link and then of an end-to-end path. Generally, we consider a store-and-forward
network link i with capacity C;. Let A;(t) be the instantaneous utilization of the
link at t. When the link 7 is idle, A;(f) is equal to zero. When the link i is utilized,
Ai(t) is equal to one.

Theoretically, the available bandwidth at link i during time interval (f, ¢ + 7)
is defined as its unutilized capacity in that duration,

t+T
Ait,t+1) = iC,-f [1 = Ai(t)]dt 1)
t

Thus, consider now a network path with #n links, the end-to-end available
bandwidth of the network path during the same time interval is defined as the
minimum available bandwidth of all traversed links,

A(t,t+1) = .I:I}in {Ai(t, t + 1)} (2)

The tight link of a network path is the link with the end-to-end available band-
width along the path.
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Proportional Shared Bandwidth. In practical, it is hard to directly obtain the
link utilization information along a network path through end-to-end measure
techniques due to the property of a general network path which discourages
sharing of link information. Therefore, we use a more practical available band-
width definition.

Proportional shared bandwidth of a network path is the rate that the link
provides to a new probing train in a proportional shared fashion, i.e.

R = R; Ri<A 3
O \CR b2R2A ®)

where b is the second minimum surplus link bandwidth along the path, R; and
Ro are the input rate and output rate of the probing train respectively, A is the
end-to-end available bandwidth of the path and C; is the capacity of the tight
link.

3.2 Pathtrait Probing

Some Definitions. We now describe underlying idea of our probing methodol-
ogy and probing construct. A probe [12] is a sequence of one or more packets
transmitted from a common origin. Let us consider 3 types of probing packets
closely related to the pathtrait probe. A packet that can successfully reach the
specific destination from a common origin TYPE I probe. We consider that a
packet is hop-limited if its TTL is manually set to a smaller value so as not to
reach the destination and be dropped at the specific hop along the probed path.
We refer to the hop-limited packets as TYPE II probe. A hop-limited packet that
can be used to trigger an ICMP response from a specific intermediate router is
referred to as TYPE III probe.

The size and the destination of each packet p with a probe are parameterized
as s(p) and D(p) respectively. If a packet p is hop-limited, the manually set value
is h(p). To denote a probe, we refer to each probe packet with a distinct lowercase
letter, and represent the sequential order in which they are transmitted from the
probing host by writing them from left to right. With [pg], we denote that two
packets p and g are transmitted back-to-back. {pgq}s shows that two packets p and
q are transmitted with inter-packet gap 0. A probe of form {[pgl[pg]}s denotes
that a pair of two-packet probes transmit with inter-probe gap 6, then the rate of

¢ );S(q) . Next, we discuss the main properties of pathtrait probe.

the probeis R =
Packet Tailgating Property. For each link, the technique sends a large TYPE II
packet followed by a very small TYPE I packet that will queue continuously
behind the large packet until the previous packet expires. It provides us a basic
idea of tracking the variation of output rates with different input rates with two
types of pathtrait probes.

Lemma 1 (Tailgating Property). Let us consider a path of n links L1, Ly, ..., Ly,
with available bandwidth Ay, A, ..., Ay, and a probing train with two TYPE I probes
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p and q. If a probe of the form [pq] is injected at L1, with D(p) = D(q) = L, and if
Yk <n, ZEZ; > /X; ', then [pq] will remain back-to-back along the entire path.

Proof. The proof of Lemma 1 can be found in [12]. O

Self-Loading Periodic Streams Property. Self-Loading Periodic Streams
(SLoPS) [1] provides an effective methodology for estimating the end-to-end
available bandwidth.

Lemma 2 (SLoPS Property). Consider a path of n links L1, Ly, . . ., L, with available
bandwidth Ay, Ay, ..., A, and a probing train with a TYPE I probe p. If a probe of
the form {ppls, (The form at hop i is {pp}s,.) is injected at Ly , with D(p) = L, and if
On > 01, then the input rate of the probe R = s(i’;) > ming=1_, A.

Proof. From the definition of proportional shared bandwidth and formula (3),
we have

Ry _s(p)/or 6, [ 1 Ri<A

Ry B S(P)/én - gl | >1Ri=A

If ' > 1, then Ry(= s(p)/61) > min Ay O

Lemma 2 shows that we can analyze the available bandwidth of the path by
sending periodic probing train.

Dual Rate Property. Dual Rate Periodic Streams (DRPS) [10] is designed for
locating tight links in a network path. A DRPS probe has both dual rate property
and SLoPS property. Dual rate property. It can mark the position of tight links
with different input rates injected. Initially, the dual rate probe goes through the
path with a higher rate. As arriving at the objective hop of the path, it shifts its
rate to a lower rate and keeps the rate until arriving at the receiver.

Given a path of n links Ly, Ly, ..., L, with available bandwidth A;, A, ...,
Ay, and a probing train with a TYPE I probe g and a TYPE II probe p. We inject
the probing train with the form {pqpq}s, at L; and assume that the probing train
enters L; with the form of {pqpg}s,. Given that h(p) = m < n, D(q) = L, s(p) = s(q).

For eachlink L, 1 < k < m, the rate at L; satisfies Ry = Ri = RZ =5(p)/ 0, and
for each link Ly, m < k < n, the form of the probing train becomes {gq}2s, with
the rate satisfying Ry = RZ = s(q)/206%.

Theorem 1 (Dual Rate Periodic Streams Property I). Consider a path of n links
Ly, Ly, ..., L, with available bandwidth Ay, A, ..., A, and a probing train with a
TYPE I probe q and a TYPE II probe p. We inject the probing train with the form
{papqls, at L1 and assume the probing train enters L; with the form of {pqpq)s,. Given
that h(p) = m < n,D(q) = Ly, s(p) = s(q). In addition, let the location of the tight link
be hop j, and the input rate Ry satisfies R; > ming=1_,,{Ax}, R < ming=1._,({Ar}—{A}}),
then

a Ifm > j, then 261 < 26,.
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b if m < j, then 201 = 20,.

Proof. The proof of Theorem 1 can be deduced from [10]. We denote 26; < 20,
instead of 61 < 0, to indicate the inter-packet gap changes from 6 to 26. O

Corollary 1 (Dual Rate Periodic Streams Property II). Consider the same path and
available bandwidth of all the links along the path as Theorem 1. We inject the probing
train that consists of TYPE I probe q and TYPE II probe q with the form {[pqllpql}s,-
Given that h(p) < m = n,D(q) = Ly, s(q) < s(p). Let the location of tight link be hop |,
and the input rate Ry satisfies Ry > ming=1_,{A}, Ry < ming=y. ,({Ax} = {A}}), then

a Ifm> j, then 5, < 6,, Ry = Sé’]’) > 5P

b”
b Ifm < j, then 61 = 6,, Ry = sé’:) = Sé’:)

Proof. From Lemma 1 and s(q) < s(p), the size of packet g can be neglected and
the initial inter-packet gap between two consecutive packet p is 51. Then, from
Theorem 1, we get Corollary 1. O

We now change the form of the injected probe form to {[pe][pe]}s,, where e
denotes a TYPE III packet. The inter-packet gap between two TYPE III probes
can reflect the variation of the length of probing train and obtain the information
without requiring access to the destination. According to Corollary 1, we get
our dual rate property IIL

Corollary 2 (Dual Rate Periodic Streams Property III). Consider the same path
and available bandwidth of all the links along the path as Theorem 1. We inject the
probing train that consists of TYPE I probe p and TYPE III probe e with the form
{[pellpel}s,. Given that h(e) = m < n,D(q) = Ly, s(e) < s(p). Let the gap between two
ICMP echo reply be o, and the location of the tight link be hop j, and the input rate R;
satisfies Ry > ming—._,{Ax}, Ry < ming=y._,({Ax} — {A}}), then

a Ifm<j, then o1 <o, Ry = Sgl’) > S(f).

b Ifm>j thend; =0, Ry = sgl’) = s(f).

Proof. The gap between two ICMP echo reply o denotes the output inter-packet
gap of link m-1, that is, the input inter-packet gap of link m. Therefore, we have
0 = 0. Then from Corollary 1, we get Corollary 2. O

Input Rate Selection. In practice, the key problem of applying Theorem 1,
Corollary 1,2 is how to select the appropriate input rate.

Theorem 2 (Rate Selection Property I). Consider the same path and available band-
width of all the links along the path as Theorem 1. We inject the probing train that
consists of TYPE I or TYPE II probe p and two TYPE III probes ey—1, e, with the
form {[pem—1em][pem-1eml}s,. Given that h(ey,—1) = m —1,h(e,) =m,2 <m <n+1,
D(g) = Ly, 5(em-1) = s(em) < s(p). Let the gap between two ICMP echo reply triggered
by ey—1 be 0,41, and the gap between two ICMP echo reply triggered by ey, be 0,,, then
If o > 01, then Ry, = s(p)/Om > Am. If Om = Om—1, then Ry, = s(p)/0m < Am
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Proof. 1f 6, > Op-1, then 041 > Om, Rys1 < Ry. From formula 3, we have
R = s(p)/6m > Ap. If 01y = 0pp—1, then 841 = O, Ryys1 = Ry From formula 3,
we have R,;, = s5(p)/0m < Am ]

Theorem 2 provides a way to identify the relationship of the available band-
width between two continuous links along the path. At the sender, we first probe
the path with a higher input rate. After the ICMP echo replies returns, we adjust
the input rate with a lower input rate and probe the path again. Repeatedly, we
can find the tight link.

Theorem 3 (Rate Selection Property II). Consider the same path and available
bandwidth of all the links along the path as Theorem 1. We inject the probing train that
consists of TYPE 1 or TYPE Il probe p and three TYPE III probes ey,—2, em—1, ey with the
form {[pem—zem—1eml[pem-2em-18ml}s,. Given that h(e1) = 1, h(ez) = 2, h(em—2) = m—-2,
h(ep-1) =m—1, h(em) = m, 3 < m < n D(q) = Ly, s(em-1 = s(em) < s(p). Let the
gap between two ICMP echo reply triggered by e,,—> be 0,2, the gap triggered by e,,_1
be 6-1, and the gap triggered by ey, be oy, then If 6,y—2 = 0yy—1 and -1 = O, then
Ay < Ap-1.

Proof. From Theorem 2, if 0,2 = 0y—1, then Ry—1 = Ry < Ay, and if 0,1 < 0y,
then R, > A, so we get Ay < Ap—1. |

Theorem 3 provides a method to compare the available bandwidth between
consecutive two links.

4 Pathtrait Implementation and Algorithm

In this section, we describe the pathtrait implementation. The algorithm is ex-
plained throughly.

4.1 Pathtrait Train Structure

Pathtrait train consists of load packets, each of which is followed back to back by
one backward packet or one forward packet alternatively, as depicted in figure 1.
Let g denote measurement packets, and p denote load packets, s(7) < s(p). Let
s(q) = 40 Byte and s(p) = 1000 Byte. We refer packet size as IP-layer payload.
That is, load packets have large size 1000 Byte and measurement packets have
small size 40 Byte. Measurement packets are sent back to back after load packets.
Pathtrait sends 100 load packets with constant inter-packet time 0, the rate of
the load packets is s(p)/6.

Pathtrait consists of 3 phases. In the first phase, pathtrait finds the hop count
of the current path, and determine the maximum probing rate. Pathtrait sends
a pathtrait train with a TTL 128, at the receiver the TTL in packets is examined,
and determines the hop count from the decrement of TTL. Let the bandwidth of
the outgoing interface as the maximum rate of load packets. In the second and
third phase, pathtrait locate the tight link and measure the available bandwidth
respectively. In the next two subsections, we describe the second phase and the
third phase thoroughly.
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Pathtrait Train Construction

ool - aldelall ol

Fig.1. Pathtrait train structure: white rectangles represent load packets, gray rectangles
represent forward packets, black rectangles represent backward packets.

4.2 Locating the Tight Link

Let choke link be the link where congestion occurred during pathtrait probing,
choke count as the count of choke link during one pathtrait probing train and last
choke link as the choke link that is closest to the receiver in one pathtrait probing
train. Pathtrait employs the algorithm depicted in figure 2 to locate the tight
link. It works as follows, it probes each hop along the path, get the choke count,
if for hop i the input rate is greater than output rate by 5% (We let delta 5%).
If choke count is one, the choke link is reported as the tight link. Otherwise,
pathtrait proceeds to another locating with adjusted probing rate.

do
backward_rate[0] = rate
for (i = 0; i < hop_count; i++)
send_stream(i+l, rate,
forward_rate, backward_rate)
for (i = 0; i < hop_count; i++)
if (backward_rate[i] - forward_rate[i]
> backward_rate[i] * delta)
choke++
tight_link = i
min_rate = forward_rate[i]
max_rate = backward_rate[i]
if (choke == 0)
rate = (min_rate + max_rate) / 2
else
rate = min_rate
while (choke != 1)

Fig. 2. The pathtrait locating tight link algorithm

Pathtrait starts locating the tight link with maximum rate obtained in the
first phase. Then it gets the choke count of this train. If choke count equals one,
the tight link is at the unique choke link. Otherwise it needs another train. It
adjusts the rate of load packets by setting it to the input rate at the last choke
link. As a result, it gets a new choke count. If this new one equals 1, it terminates
its locating phase with the tight link at choke point or it sends another train of
pathtrait train with adjusted rate. This process is repeated until it finds the tight
link or exceeds a maximum times. Currently we set the maximum times to 15.
The last probing rate is used in the following phase.
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4.3 Measuring Available Bandwidth

Pathtrait sends probing train toward the tight link periodically 15 times with
different rate. Their rate is calculated as:

Ri=(1+(8-i)e)R @)

where R is the last probing rate in locating the tight link, R; is the rate of the ith
probing train.

Thus we get 15 samples of input rate and output rate of the tight link. By
equation 3, we get:

1 R, Ri<A
= 5
Ro {le-‘rélgleR[ZA ®)

where R; is the input rate and Ro is the output rate at the tight link, C; is the
bandwidth of tight link and A is the rate of cross traffic at tight link. There
is a linear relationship between 1/Rp and 1/R;, if b > R; > A. Using a linear
regression on the 15 pairs of 1/Rg and 1/R;, we get C; and A, from which we
deduce the available bandwidth A as C; — A. Currently € is set to 2%.

5 Simulation and Validation

Pathtrait is verified in ns2 simulation environment. First, we develop an ns ver-
sion of pathtrait as two agent along with an echo agent. Next, we do substantial
simulation with various topology and cross traffic conditions.

In the following, we simulate the topology of the 10-hop path, illustrated in
figure 3. The pathtrait packets enter the path at hop 1 and exit at hop 10. The
tight link is located at link 3 or link 7, link 3 is near, link 7 is far respectively. For
each link, let the capacity be 10Mbps and link delay be 10ms. The topology we
used in simulation is summarized in table 1. The experiment is grouped into
CBR, Pareto and Exponential group. Exp#1 — Exp#7 are CBR scenario, the cross
traffic are all CBR, the tight link is 3. Exp#8 — Exp#14 are CBR scenario, the tight
link is 3 and 7. Exp#15 — Exp#21 are Pareto scenario, the cross traffic are of type
Pareto, the tight link is 3. Exp#22 — Exp#28 are all Exponential scenario, the cross
traffic are of type Exponential, the tight link is 3. We used default parameters
for the traffic generators.

5.1 Constant Cross Traffic Environment

In table 1, exp#1 — exp#7 are grouped as suit#1. In this suit, all cross traffic are
constant bit rate (CBR) traffic sources. The tight link is the third link, that is the
near one. The results are summarized in table 2, with the tight link location at
link 3, which is correct according to topology.

We analyze the last experiment of suit#1. Figure 5.1(a) depicted the process
of locating tight link. Figure 5.1(b) depicted the process of regression to avail-
able bandwidth. The rates of the two probing trains are 10, and 3.073 Mbps
respectively.
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Fig. 3. The topology used in simulation. All the links have 10Mbps bandwidth and 10ms
link delay. The traffic types are CBR, Exponential or Pareto.

Table 1. The simulation topology. Exp#1 — Exp#7 is of suit#1, and has one tight link 3.
Exp#8 — Exp#14 is of suit#2, and has two tight links 3 and 7. Exp#15 — Exp#21 is of suit#3,
and has one tight link 3. Exp#22 — Exp#28 is of suit#4, and has one tight link 4.

Exp# Non Tight Link Tight Link
Rate (Mbps) Rate (Mbps)
118]15]22 3 5
219116123 3 7
3110117124 1 3
4111118125 1 2
5112119126 3 9
611312027 5 9
711412128 7 9

Table 2. Suit#1-#4’s simulation results

Exp# Tight Link Reported ~ Av-bw (Mbps) %Error

1] 8[15[22 3I31313 5.073|5.107| 5.39|5.415 1.5/2.0|7.8| 8.3
2| 9]16/23 3[3[313 2.97|3.073|3.2422.733 -1.0]2.5| 8.1]-8.9
3|10[17|24 3[31313 7.063|6.8836.447|7.658 0.9]-1.7 |-7.9] 9.4
4|11/18|25 3I31313 7.895|7.848|7.728|7.184 -1.3]-1.9 |-3.4/-10.2
5[12[19126 3[3I3[3 1.017/1.019(1.109[1.077 1.7|1.9[10.9] 7.7
6[13|20127 3[3I3[3 1.018/1.021/1.081|1.092 1.8]2.1[8.1/9.2
7114)21|28 3I31313 1.016]1.025[1.093|1.101 1.6]2.5]9.3]10.1

The locating tight link phase of exp#7 consists of 2 trains. The first train is
sent at full rate, that is 10 Mbps. After this we find congestion occurred at 5 hops.
Next we adjust the load packets rate to 3.073 Mbps, and measure again. We find
choke count 1, which means we should terminate pathtrait locating phase. In
fact, the reported tight link location is correct.

Next we begin the analysis of suit#2. In suit#2, there are two tight link, link#3
and link#7, according to our theory, we should locate the first one as the tight
link. The measurement results is shown in table 2.

We analyze the last experiment exp#14. Figure 5.1 depicts the process of
locating tight link. The rates of the five probing trains are 10, 2.486, 1.918,
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Locating the tight link Regression to available bandwidth
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(a) Tight link location of Exp#7 (b) Av-bw measurement of Exp#7

Locating the tight link Regression to available bandwidth
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1Ry

s 6
hop# 1R,y

(c) Tight link location of Exp#14 (d) Av-bw measurement of Exp#14

1.617, and 1.436 Mbps respectively. From table 2, the relative error of available
bandwidth measurement is within 3%, and the tight link location is all correct,
which validate the accuracy of pathtrait in suit#2.

The locating tight link process in multi tight link environment can be quite
long, but the result is accurate. It takes 5 probing trains for pathtrait to locate the
tight link. The regression to available bandwidth is quiet accurate.

5.2 Bursty Environment

In this subsection, we validate pathtrait in the bursty environment.

In table 2, we present the simulation results. The results in bursty environ-
ment is not as accurate as that in constant cross traffic environment. The relative
error of measuring available bandwidth in suit#3 and suit#4 is less than 11%,
which is still acceptable. The tight link location is all accurate.

6 Conclusion and Future Work

In this paper, we present a novel probing tool — pathtrait — that measures the
location of tight link and available bandwidth along end-to-end paths. We show
that pathtrait is able to locate the tight link with high accuracy and measures the
available bandwidth effectively. We have illustrated the power of combining
the two efforts together.

However the exploration is not complete in some aspects. The large scale
measurement of tight link and available bandwidth on Internet is required to
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be one of our future work. Furthermore, the configuration parameters such as
the load packet size, the number of load packets should be studied henceforth.
We are working to improve the accuracy of pathtrait by modifying the pathtrait
probing structure.
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Abstract. In this paper we evaluate our own weak consistency algo-
rithm, which is called the ”Fast Consistency Algorithm”, and whose
main aim is optimizing the propagation of changes introducing a pref-
erence for nodes and zones of the network which have greatest demand.
Weak consistency algorithms allow us to propagate changes in a large,
arbitrary changing storage network in a self-organizing way. These algo-
rithms generate very little traffic overhead; they have low latency and
are scalable, in addition to being fault tolerant. The algorithm has been
simulated over ns-2, and measured its performance for complex spatial
distributions of demand, including Internet like self-similar fractal dis-
tributions of demand. The impulse response of the algorithm has been
characterized. We conclude that considering application parameters such
as demand in the event or change propagation mechanism to: 1) prior-
itize probabilistic interactions with neighbors with higher demand, and
2) including little changes on the logical topology (leader interconnection
in hierarchical topology ), gives a surprising improvement in the speed of
change propagation perceived by most users. In other words, it satisfies
the greatest demand in the shortest amount of time.

1 Introduction

In this paper! we evaluate ”Fast Consistency” (FC), a weak consistency algo-
rithm for the dissemination of changes considering application-level demand.
In this scenario, each network node provides service to a group of subscribers,
and nodes are only required to know a few neighbor nodes (autonomy and self-
organization). FC gives priority to sessions with neighbors with higher demand,
and introduces little changes in the logical topology.

We have found considerable improvement with the exchange of very little
additional signalling information: with a low number of anti-entropy sessions it
is possible to deliver consistent content to a greater number of clients (satisfying
most demand in less time).

! Partially supported by the Mexican Ministry of Education under contract
P/PROMEP/103.5/03/2557 and the FAI-UASLP, México.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 90-101, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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A replica is a host which provides exactly the same services as the principal
host. In this paper we will use the terms server and replica in the same sense.
When changes in data are introduced, the distribution of changes or events to
all nodes is required to keep all the replicas consistent, with the same content.
Several issues have to be considered:

Consistency: There are strong consistency algorithms, and weak consistency
algorithms. Strong consistency algorithms (see [1], [6], [11] and [18]) are suit-
able for synchronous systems with a small number of replicas, where it must
be guaranteed that all the replicas are in a consistent state (i.e. all the nodes
possess exactly the same content) before any transaction can be carried out.
Therefore they are costly, non-scalable on unreliable networks, generating
considerable latency and a big amount of traffic. By contrast, weak consis-
tency algorithms (see [1], [15] and [12]) generate very little traffic, have low
latency, and are more scalable. They do not sacrifice either availability or
response time in order to guarantee strong consistency, but only need to
ensure that the nodes eventually converge to a consistent state in a finite,
but not bounded, period of time. They are very useful in systems where it
is not necessary for all the nodes to be totally consistent in order to carry
out transactions (systems that withstand a certain degree of asynchrony).

Distribution of Demand: We cannot assume that demand is the same in all
locations. Demand is dynamic: there may be hot spots of demand at some
locations, meanwhile somewhere else demand could be several orders of mag-
nitude smaller. If changes arrive first to hot spots, more demand will be
satisfied with fresh data.

In replication with weak consistency each node from time to time chooses a
neighbor to start an update session. In an update session two nodes mutually
update their contents. At the end of the session both nodes will have the same
content. These are called anti-entropy session because in each session between
nodes, the total entropy in the network is reduced. In this paper it will be referred
to simply as a ”session”. The usual metric principle to evaluate weak consistency
algorithms is the amount of sessions necessary for a change brought about in a
node to be propagated to all the others.

In simple regions with only one hot spot, giving priority to sessions with
neighbors with higher demand gives very good results [8], whereas in multiple
regions of high demand its performance advantage is reduced due to the forma-
tion of islands of locally consistent replicas. To tackle this problem successfully,
we proposed a mechanism to alter the logical topology [10] for converting multi-
ple zones of high demand into a single zone: interconnecting the leaders of every
zone of high demand(a self-organized hierarchical topology). The combined effect
gives the best possible performance for our fast consistency algorithm.

Given that the worst case demand has a combination of high and low de-
mand zones, the value of demand could be viewed as a landscape consisting
of mountains and valleys of demand(Fig. 1). For this purpose, we have devel-
oped a random demand generator with self-similar characteristics, in the form of
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mountains and valleys, using the diamond-square algorithm [2] from computer
graphics.

To evaluate the performance of the algorithm presented in this paper, a fast
and weak consistency algorithm simulator has been constructed, over Network
Simulator 2 [17].

To take into account the demand of clients at every node we use additional
metrics: the speed of demand satisfaction (the rate of demand satisfied with
consistent information), an utility function (based on economic theory). We con-
clude that FC improves the distribution of changes by prioritizing nodes with
greatest demand, rather independently of demand distribution and topology. In
other words, our algorithm satisfies the greatest demand in the shortest amount
of time, while sending the same amount of messages (better value at the same
cost).

The rest of the paper is organized as follows: Section 2 describes our system
model. In section 3 we describe the Fast Consistency algorithm(FC), In section 4
we explain the methodology of simulation of our algorithms in terms of network
topology, demand workload and performance metrics. In section 5 we discuss
the simulation results for several cases. The paper concludes in section 6.

2 System Model

The model of our distributed system consists of a number of N nodes (princi-
pals) that communicate via message passing. By simplicity we assume a fully
replicated system, i.e., all nodes must have exactly the same content.

Every node is a server that gives services to a number of local clients. Clients
make requests to a server, and every request is a "read” operation, a ”write”
operation, or both. When a client invokes a ”write” operation in a server, this
operation (change) must be propagated to all servers (replicas) in order to guar-
antee the consistency of the replicas. An update is a message that carries a
"write” operation to the replica in other neighboring nodes.

In this model, the demand of a server is measured as the number of service
requests by their clients per time unit or simply the number of clients ”sub-
scribed to”.

3 The Fast Consistency Algorithm

The following section describes an extended Time-Stamped Anti-Entropy
(TSAE) [15] weak consistency algorithm with a ”fast update” step for faster
propagation of changes to nodes of higher demand.

3.1 The Basic FC Algorithm

In anetwork with an arbitrary large number of nodes NV, every node n knows his lo-
cal demand and the demand on ¢ neighbors: n.demand or d,,, and n.neighbors[ni] =
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d0, d1, dn, dt,. Demand at node n : dn, in our model and simulations it has been
defined simply as the number of clients that node n provides service. The value
of ¢ is typically in the range of 1..log(N). Every message m can be identified by a
Messageld and a Timestamp: m = m.id, m.tstmp, m.data Every node n has a
summary vector of the history of messages it has received: n.SV].

Figure 1 describes the protocol with an example among three neighbor nodes,
where n has a new message m and n”.demand > n'.demand > n.demand, with
all values of demand observed at the nodes at the same time. n randomly initiates
a session of exchange of summary vectors with n/, and n’ immediately sends a
fast update with n” because it has greater demand.

FU Answer
m (If requested)

Fig. 1. An anti-entropy session followed by a fast-update notification to a node with
higher demand

3.2 High Demand Zones Interconnection

In order to improve performance when there are several regions of high demand
surrounded by regions of lower demand that act as barriers slowing down the
propagation of messages (See Fig. 2 ), the basic Fast Consistency algorithm
builds a logical topology to interconnect the high demand zones. In order to
reach this objective, the nodes in high demand zones choose a leader node by
means of a decentralized voting algorithm[10].

In this algorithm each node executes the same local algorithm, which con-
sists in first sending messages (announcing its demand) to its neighbors via the
corresponding (adjacent) links, awaiting the arrival of the messages (neighboring
demand) and processing them. The messages are transmitted in all directions
and arrive after an unpredictable but finite delay.

Each node at a random time will cast its vote for the neighboring node having
the greatest demand, and will send it a message notifying it that the vote has
been cast(See Fig. 2). Each vote is unique and unrepeated; it has the ID of the
node casting it, a time stamp, and a time to live necessary for avoiding loops or
for preventing the vote from circulating infinitely around the network.

Each node that receives a vote passes the vote on to whichever of its neigh-
bors has the largest demand, and so on successively, until after an unbounded
but finite period of time the majority of votes cast on a high demand zone have
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X

Fig.2. A demand based election of leader nodes. Every node cast its vote for the
neighbor with more demand, i.e. the node I votes for its neighbor having most demand
(H) and sends it its vote. The node H receives the vote from node I and since node H
has a neighbor with greater demand, it sends I’s vote to this neighbor (G). The node G
only accumulate votes because don’t have neighbors whit more demand and eventually
it will be a node leader.

only one node, which will be the node selected (the leader). It is not possible
to ensure that all the votes of the nodes on a high demand zone reach the node
of greatest demand, since the number of nodes that make up a zone of high
demand is not known. Neither do we know how many votes are still travelling
without having arrived at the node of greatest demand. However, it is possible
to ensure that the votes in a high demand zone will not travel to other zones,
since only replicas of higher demand are propagated, and never toward the zones
of lower demand. In order for a node to take on the role of a leader node, it is
sufficient that, in a time = t, the number of accumulated votes be different from
Zero.

However, not all the nodes possessing votes can be considered leaders, since
there will be nodes with more votes and others with very few votes. Thus, from
this subset of nodes, all those having fewer votes under a certain threshold will
be discarded.

In this way we obtain a new set of nodes which represent the greatest zones
of high demand, but as sometimes occurs in a democratic political election, the
nodes with the largest number of votes are not necessarily those with greatest
demand, although they may represent a high demand zone because they are the
nodes in this zone with greatest demand.

The node that knows it is the leader now has the task of finding other leader
nodes, if they exist. It must also announce itself so that other nodes become
aware of its existence.

The mechanism by which a leader node announces itself is by sending a
message as part of the weak consistency protocol. This protocol ensures that the
message arrives to all the nodes in a finite, but unbounded, period of time, and
therefore to the leader nodes as well, assuming these exist.

When a leader node receives a message from another leader node, it keeps
the Id of the node sending the message in a table. Each leader node has a table
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containing the data of the other leader nodes that know of its existence. This
table is replicated in each leader node and is reconstructed dynamically. The Id
of a leader node is included in the table on arrival of a message of announce-
ment. It is not necessary to remove a node from the table of leaders because
the table is dynamically reconstructed periodically, the period of time being at
least equal to the time (expressed in sessions) necessary for the message to cross
the entire network of replicas. These leader nodes establish connection among
themselves(logic topology) in order to speed up the exchange of messages among
all the zones of high demand. Therefore, the logical communication topology is
slightly transformed into the equivalent of one zone of high demand, that is the
most favorable situation for our algorithm.

4 Simulation Methodology

To evaluate the performance of the fast consistency algorithm compared to Gold-
ing’s algorithm[15], we simulate the behavior of the algorithms on a system net-
work with synthetic demand. In this section, we discuss the network topology
and demand workloads that we use in our simulations. We then describe the per-
formance metrics that we use as a basis for comparing the algorithms in terms
of how demand is satisfied per time unit.

4.1 Network Topology

In order for the data obtained from simulation approximates to reality, it is es-
sential that the number of nodes, and other topological properties of the network
used in the simulations, resemble those of the phenomenon under investigation.
However, we are limited by the computational power available. For this reason,
and because the array dimension for the fractal algorithm should be a power of
two plus one, the scenario consists of a square-sectioned mesh of (24+1)*(21+1)
or 17*17 nodes, in which each node receives the total number of messages in dif-
ferent anti-entropy sessions. For example, the nodes in the center of the mesh
become consistent in far fewer sessions than those found towards the edges of
the mesh. We have observed a certain degree of independence of the network
organization: other experiments using different topologies and different number
of nodes (linear, ring, random networks generated with Brite [13]) have shown
similar results. In addition, our results are related to the network diameter.
Therefore, results for our network with diameter=17 could be applicable to a
network topology similar the Internet. Danesh et al. [4] claim that informed ran-
dom address probing with TTL up to 15 discovers most of the network hosts,
and the number of new hosts using probes with values of TTL between 15 and
30 does not grow significantly.

4.2 Demand Workload

In the works of Yook et al. [16], and in [3] Anukool et al. demonstrated a similar
fractal dimension (= 1.5) of routers, ASes, and population density. The coinci-
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Demand

Fig. 3. An example of 100 generated Landscapes. Z-axis corresponds to the demand
and the hills are high demand zones.

dence between the fractal dimension of the population and the Internet nodes
(router and AS) is not unexpected: high population density implies higher de-
mand for Internet services, resulting in higher router and domain density. The
demand is generated by the Internet users. If the geographic location of Internet
users have fractal properties, we can infer that the demand have the same frac-
tal properties. Other important characteristic is the existence of high demand
regions and large regions of low demand [7]. We use as scenarios for applying our
algorithm, 100 random demand surfaces(see fig. 1) on which the different levels,
representing the demands, are synthetically generated by the diamond-square
algorithm [2], which is a classic algorithm for generating fractal surfaces that re-
semble landscapes with scaling properties or self-similar. In this way, we achieve
a scenario sufficiently general to ensure that the results obtained in the simula-
tions do not depend on the particular or local conditions of a specific scenario.
To reduce the effects of randomness, and to prevent the results from depending
on the characteristics of a particular fractal surface, each experiment has been
run 1000 times for every (100) random demand surface.

4.3 Performance Metric

The purpose of the ”fast consistency” algorithm is to improve the performance
of the weak consistency algorithms, with particular emphasis on increasing the
speed with which these algorithms convey the changes to the zones of greatest
demand, so that a greater number of clients may have access to fresh content in
a shorter period of time. It is for that reason that our experiments are centered
on measuring these speeds.

The performance (speed) is measured in terms of the anti-entropy sessions
needed for all the zones to receive the messages with the changes generated in
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the rest of the nodes that make up the network. If the number of users in each
node of the network is used as a measure of demand, then a node with a high
number of users which reaches a consistent state will benefit the community
more than another node with a low number of users which reaches the same
state. The availability of up-to-date information on a data intensive distributed
system will be higher if high demand nodes have higher priority than low demand
ones.

Every simulation calculates the pair (d;,c;) for all nodes, where d; is the
demand at node i, and ¢; is the time when node ¢ has received all changes.
This pair can be expressed by the ¢(n;,t) function (an impulse function of
value d;):

e(ni,t) = {g" HEG o =Y et (1)

=0

C'(t) is the sum of demand for all nodes that have reached a consistent state at a
certain time t. In economic terms, we can define a utility function for each node
u(n;, t). It represents the value of demand satisfied with up-to-date information
at time ¢ (a step function of value d;).

utnsct) = {6712 00 = Y utot) ®)

U(t) is the sum of utility for all nodes that are consistent in time ¢. U(t) ex-
presses the satisfaction or benefit perceived by the community of users of our
system. U(¢) roughly corresponds in economic terms with the Social Welfare
function (SWF) defined in terms of global values as Benefit - Cost, given that
the cost (total number of messages exchanged) does not change significantly. In
time ¢t = 0, all the nodes are in a non-consistent state, and as time passes more
and more nodes will reach a consistent state and thus they will contribute to
the SWF with their local demand d;.

5 Simulation Results

In this section, we evaluate the performance of the various parts of the algorithm
on a mesh topology using various demand workloads.

5.1 System with Fractal Demand

A fractal demand with fractal dimension similar to which has Internet is assigned
to each node. In other words, each node no longer possesses the same demand
as the rest of the nodes on the grid, with several random regions of high and
low demand. In this scenario, the basic ”fast consistency” (FC) shows a better
performance than the weak consistency algorithms (WC), but without being
optimal[9], owing mainly to the presence of multiple high and low demand zones
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which cause the messages carrying the changes to move quickly towards the
high demand zones, and at the speed of the WC algorithm towards the low
demand zones.

5.2 Leader Interconnection

In order to improve performance when there are several regions of higher demand
surrounded by regions of lower demand, the nodes in high demand zones choose
a leader node by means of a decentralized voting algorithm[10]: each node casts
a vote for its neighbor with greatest demand. At the end of the voting process
there exists a set of nodes that have accumulated votes. However, not all the
nodes possessing votes can be considered leaders, since there will be nodes with
more votes and others with very few votes. Thus, from this subset of nodes, all
those having fewer votes under a certain threshold will be discarded.

In this way we obtain a new set of nodes which represent the greatest zones
of high demand. These leader nodes establish connection among themselves in
order to speed up the exchange of messages among all the zones of high demand.
Therefore, the logical communication topology is slightly transformed into the
equivalent of one zone of high demand, that is the most favorable situation for
our algorithm.

Since we now have the leader nodes, experiments to determine the improve-
ment caused by the leader interconnection algorithm and the effects of the
topologies of leader nodes can now be carried out.

5.3 Leader-node Interconnection in Ring Topology

Leader nodes having a number of votes greater than or equal to the average are
selected and interconnected in a ring topology(top level of hierarchical struc-
ture), which joins together the zones of high demand. In this topology, each
leader node sees the same network diameter. However, there exists the disad-
vantage that the diameter is very large for the same number of nodes than other
topologies. Simulation results can be seen in Figure 4. We can see in terms of
C(t) or U(t) that FC has a better performance than WC. With the FC algorithm
C'(t) begins to grow in less sessions than the weak consistency. U (t) have similar
results.

5.4 Leader-node Interconnection in Star Topology

The same experiments have been carried out when the leader nodes are intercon-
nected in star topology (Fig. 5). In this topology the diameter of the leader-node
network is very low, with a maximum of two. We initially though that the be-
havior would be better than that obtained by the leader nodes connected in a
ring topology. However, this is not the case. In the following experiments, the
leader node star topology is not included since it shows a performance inferior
to that of the leader nodes connected in a ring topology.
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5.5 Effect of the Threshold on the Choice of Leader Nodes

For this experiment, the leader nodes receiving the number of votes greater than
or equal to twice the average are selected and connected together in the shape
of a ring. Results are contrasted with those of the previous experiment, in which
the leader nodes chosen were those corresponding to the average. With a greater
threshold, fewer leader nodes are elected; they are reduced almost by half. The
results can be seen in Fig. 6. They clearly show that better results are obtained
with the threshold fixed at the average of votes obtained.

5.6 Second Leader Hierarchy

In the leader-node network in our fractal demand distributions, zones of high
and low demand can also be distinguished. In large scale distributed systems,
it may be important to construct a second leader node hierarchy on the first,
in order to connect the high demand zones of the first leader-node network. In
this experiment, this second hierarchy is constructed. The results can be seen
in Fig. 7. A slight improvement can be observed. Although small, this slight
improvement can in fact be significant on a large scale system.

6 Conclusions

In this paper, we study the problem of propagating changes of replicated data
on a Decentralized System in a system of any scale, with only little knowledge
of a few neighbor nodes, using our ”"Fast consistency algorithm” and whose
main aim is the propagation of changes with preference for nodes and zones of
the network which have greatest demand. We evaluate the performance of the
algorithm by simulation on a mesh topology using various demand workloads.
We have obtained the following results:

We see that fast consistency algorithm has a better performance than weak
consistency algorithm. We may observe significant improvements in the SWF
when fast consistency algorithm is used with the leader nodes connected in a
ring topology(a logical and hierarchical topology), although several alternative
leader interconnection topologies provide similar values of improvement as a
result of the effect of communicating several high demand zones into a virtually
one single high demand zone.

Employing, among other economic concepts, those such as utility and so-
cial welfare, we conclude that our ”fast consistency” algorithm, interconnecting
high demand zones by means of a logical topology, optimizes the dissemination
of changes by prioritizing the nodes with greatest demand, independently of
demand distribution.

In other words, in the FC algorithm, the network reach a consistent state in
a shorter period of time. This occurs without any increase in use of resources
for carrying out this task. Thus the utility function U(t) grows much faster with
Fast Consistency algorithm over a self-organized hierarchical topology which
interconnect the high demand zones in a large distributed system.
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Abstract. Message Passing Interface (MPI) Collective Communication Func-
tions (MCCF) are usually implemented in programming libraries utilizing in-
variable algorithms. Not always do such algorithms yield the best performance
with all kinds of applications and over all execution environments. In this pa-
per, we present, simulate, analytically model, verify and analyze reconfigurable
MCCEF that present variable structures and behaviors, in order to provide opti-
mized configurations, flexibility and performance. In this paper we propose and
present a set of optimized reconfigurable MCCF, which add flexibility and high
performance to collective communications. We simulate, analytically model,
verify and analyze the proposed functions, and compare them with invariable
implementations. Our results show that reconfiguration at the algorithm level
really yields flexibility and performance gains in MCCF.

1 Introduction

The performance of Message Passing Interface (MPI) collective communication func-
tions (MCCEF) is a critical factor for most of the MPI based applications [1] [4]. There
several related works addressing this issue [2] [3] [4] [5] [6] [7] [8] [9], many of
them, by adding flexibility to the implementations of MCCF. However not always do
such algorithms yield the best performance with all kinds of applications running on
all execution environments.

In this paper, we propose and present a set of optimized reconfigurable MCCF
(RMCCEF), which add greater flexibility (algorithmic level) and improve the perform-
ance of collective communications. We simulate, analytically model, verify and ana-
lyze the proposed functions, and compare them with invariable implementations.

2 Reconfigurable MPI Colective Communication Functions

The performance optimization of MPI collective communication functions (MCCF)
has been intensely studied in the latest years. In literature, there are several works
related to ours in different aspects [2] [3] [4] [S] [7] [8], which remarks the impor-
tance of optimizing MCCF. According to those works, the main strategies for
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addressing this issue are: (1) proposing algorithms for specific architectures, networks
and topologies [3] [7]; (2) selecting and changing communication algorithms within a
limited set of options, based on input parameters [2] [3] [4] [5]; (3) message segmen-
tation [7]; (4) message combination, suitable for high latency networks [5] [7]; (5)
network links redundancy [7] [8]; (6) heuristics for algorithm selection [5] [7]; (7)
component specification of MCCF [6] [8]; and (8) small granularity components [5]
[8]. However none of them combined all these strategies. In the literature we find
countless works that use the terms “reconfigurable system/software/algorithm”, but
none of them focus on the algorithmic level.

In this work improve our initial proposal of Reconfigurable MPI Collective Com-
munication Functions (RMCCF) [9], by exploring further the flexibility and high
performance in the algorithmic level of MCCF. An RMCCEF is divided three in hier-
archical layers, namely: Basic, Reconfigurable and Configuration Control.

The Basic Layer (BL) is composed of data storage structures and frames. A frame
is a generic algorithmic structure (implemented as function, classes, etc) with an inter-
face having two possible finalities: (1) supporting the execution of algorithm parts
which can be changed or replaced (action frame); or (2) controlling the functioning,
by acting upon or managing data structures. Our proposal of RMCCF has three
frames. Algorithm Assembly (action) is responsible for creating a logical topology
between processes by selecting, combining and configuring communication patterns,
addressing strategies 1 and 2 for adding flexibility. Message Combination & Seg-
mentation (control) is responsible for combining messages, in order to reduce the
communication latency, or segmenting them, in order to favor packet switching, flow
control, error control and message buffering (strategies 3 and 4). Maximum Degree
of Primitives (action) configures the degree of the communication primitives in order
to take advantage of the fact that the network may have a communication degree
greater than one (strategy 5).

The Reconfigurable Layer (RL) is a configuration or an instance of the BL, in
which every frame is filled in with one or more compatible building blocks at a cer-
tain moment. A block is a possible implementation of a frame (i.e. a set communica-
tion pattern among which we can select an option). A block may have one or more
options (it is configurable) and may also be static or dynamically replaced. The build-
ing blocks for the first frame are collective communication patterns, compatible with
the behavior of each communication operation.

The Configuration Control Layer (CCL) is responsible for selecting and swap-ping
the building blocks that fill in the frames at a given moment. It is also responsible for
configuring those blocks. Thus, the functioning of the RA and the configurations are
decided within this layer. Its decisions are made upon input parameters, dynamic
workload information, commands from the operating system or user etc. Our initial
CCL proposal is implemented as a table that keeps up the best configuration accord-
ing to some static (e.g.: network topology) or dynamic system information and work-
load parameters (message size, number of processes).

This proposal of RMCCF as a whole assesses the strategies (5), (6) and (7). Thus,
our proposal is flexible enough to combine all highlighted strategies, which add flexi-
bility to MCCF aiming to improve their performance.
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Fig. 1. Architecture of a reconfigurable MPI collective communication function

3 Results

In order to reduce the number of experiments and analyses, we simplified our simula-
tions and analytical models. The simulation response times were obtained with
ClusterSim [9], which simulates parallel and distributed systems. Our simulation
environment is a homogeneous 16 PIII (1GH) nodes workstation cluster with a Fast
Ethernet network (bus and switch topologies). On the other hand, the analytical mod-
eling considered the same cluster using other network topologies: full-connected, star,
2D-mesh and ring [10]. The metric was the number of hops.

In the simulations the workload is composed of parallel jobs, containing different
communication patterns (Algorithm Assembly frame). They were based on first-
degree point-to-point communication primitives and transmitted messages from 1
byte to 256KB. No message segmentation or combination was used. These patterns
implement MPI_Bcast (one-to-all), MPI_Reduce (all-to-one) and MPI_Allgather (all-
to-all), which represent all MPI cardinality classes. In the analytical modeling we also
varied the degree of the communication primitives (Maximum Degree of Primitives
frame). We used first- and optimal-degree primitives. We remark that analyzing the
Combination & Segmentation frame is a future work.

In the simulation of the clusters using bus and switch, RMReduce (Reconfigurable
MPI_Reduce) was compared with four invariable implementations utilizing other
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Fig. 2. Simulated response times for MPI (a) Reduce, (b) Allgather, (c) Bcast
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communication patterns: Sequential, Binary, Binomial and Ring [3]. According to
Fig.2a, RMBcast provided the best response time. That function assumed the Sequen-
tial and Binomial configurations, respectively running on the bus and the switch-
based clusters, because those functions yielded the best results. Binomial yielded the
lowest response times on the switch because it explores the parallelism within the
interconnection device. However on the bus, Binomial presented dependency between
transmissions, and Sequential performed better. Ring yielded the worst results due to
its sequential nature and to the dependency between its transmissions.

Suppose an application with 50% of the calls to MPI_Reduce executed on the bus,
and 50% on the switch. RMReduce would produce a speedup of 2.37 and of 1.0013
regarding Sequential and Binomial respectively. We remark that even an optimized
algorithm such as Rabenseifner’s [5] may perform worse than another one, depending
on the features of the system where it is executed.

In the simulation of the clusters using bus and switch, RMAllgather was compared
with four invariable implementations utilizing the following communication patterns:
FanIn-FanOut, Circular, Pairwise and Shuffle [3]. According to Fig.2b, the best re-
sults were provided by RMAllgather assuming a Pairwise configuration. Considering
the simulated network, the transmitted message sizes and the communication patterns
utilized, we noticed that the reconfigurable function performs at least as good as the
best average algorithm for that situation. Among the invariable patterns, Pairwise
yielded the best results because it transmits the smallest number of messages (hub)
and because it explores the parallelism within the interconnection device (switch). In
both cases, RMAllgather there would present no extra performance gains over the
MPI_Allgather implemented with the invariable Pairwise pattern.

In the simulation of the clusters using bus and switch, RMReduce (Reconfigurable
MPI_Reduce) was compared with four invariable implementations utilizing the fol-
lowing communication patterns: Sequential, Binary, Binomial and Chain [5]. Accord-
ing to Fig.2c, the RMBcast provided the best results assuming a Binomial configura-
tion both in bus and switch. The reason is the fact that these patterns are very similar
to those used in MPI_Reduce, but they work reversely.

In the analytical modeling we considered the best and the worst cases of mapping
between processes and the cluster’s nodes. Respectively, the messages would take the
smaller and the longest path to get to their destinations. Analyzing Table 1, we notice
that Binomial presented the best results in all cases. Thus we could wrongly suppose
that choosing a single invariable algorithm to implement MPI_Bcast would always
provide the best performance. That statement is false when we analyze the best case:

Table 1. Worst and best mappings between processes and network topology (number of hops)

Mapping -Worst Case Mapping -Best Cage
Topology Seq Bma Bioe Chain  RMbeast | Seq Bmma Bino Cham  EMbeast
Full-Connected 15 6 4 15 4 15 6 4 15 4
Star 29 12 3 29 3 15 11 7 29 7
2D-Mesh 45 26 20 55 20 32 10 7 15 7
2D-Mesh + WA 32 21 13 49 13 32 8 4 15 4
Ring 120 70 53 255 53 120 20 19 15 15
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on a Ring topology, Chain performs better than Binomial. In this case, Chain would
present a 1.04 speedup regarding Binomial, although the latter has a speedup of 4.11
regarding the first in the worst case of mapping.

Suppose a workload composed of a great amount of broadcast function calls. It is
executed on several 16-node clusters, found at a data processing center. Considering
that 80% of the clusters use a Ring topology and the other 20% use equally the other
four network topologies that we modeled. If we simultaneously execute the workload
in all clusters of the center considering the best case of mapping between processes
and network nodes, RMBcast would present a speedup of 1.24 regarding Binomial
and 1.20 regarding Chain. This fact means that RMBcast presented a better perform-
ance than both other algorithms, remarking that both were the best option in each
case. Thus it is clearer that the use of RMCCEF yield greater performance gains than
those possibly achieved with a single invariable algorithm.As suggested in [10], if the
network’s topology varied, there might be further performance gains. Suppose a par-
allel application composed of 8 processes and utilizing 100 calls to the function
MPI_Bcast. This workload is executed in a network with a topology that can vary
along time between: Star, Ring, and 4x4 2D Mesh without wraparound. In this case,
the speedup of RMBcast would vary from 1.38 to 2.9. The flexibility increases using
the Primitive Degree frame of the RMCCEF, so that the greatest speedups are obtained
utilizing the optimal degree for each type of network topology. We notice that Bino-
mial presented the best performance in the computational simulations involving the
broadcast operation. However in the analytical modeling, sometimes that communica-
tion pattern presents a worse performance than the worst average algorithms used in
the computational simulations (i.e. Chain).

4 Conclusions

In this work we proposed, presented, simulated, analytically modeled, verified and
analyzed a set of RMCCEF. Their flexibility at the algorithmic level can be used to
improve performance, since they can alter their behavior by changing their structure.
RMCCEF yielded better performance than invariable functions based on traditional
algorithms, at all tested situations. In some cases, there was a considerable perform-
ance gain (3.7 average speedup and 7.8 peak speedup).

Our results also show that an algorithm, which is commonly considered the best,
may perform worse at some situations than other algorithms, which commonly yield
the worst performance. Although the traditional algorithms we modeled are very
simple, we conclude that even more complex algorithms behave similarly [5]. An
important aspect of reconfigurable functions is the fact that any behavior can be
changed or replaced, thus providing optimized results for each execution environ-
ment. RMCCF’s performs as good as the best algorithm, and can be much better. The
concept of reconfigurability makes it possible to add previously inexistent configura-
tions to the algorithm, and is applicable to other architectural levels.

The main disadvantage of RMCCEF lies in the CCL, which may present a great
computational and storage costs, thus demanding simplifications. Nevertheless, there
are several heuristics assessing this drawback [5] [7].
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The main contributions of this work are: (1) the proposal, presentation, simula-

tion, analytical model, verification and analysis of RMCCF; (2) the comparative
analysis of different MCCF based on reconfigurable and invariable algorithms; and
(3) the successful use of the concept of reconfigurability on MCCF, which provided
optimized performance, and some considerable performance gains.

Our future works include: (1) adding reconfigurability into real implementations

of the MPI standard; (2) exploiting dynamic reconfiguration; (3) comparing RMCCF
with functions based on the state-of-the-art algorithms; (4) utilizing multi-criteria
decision in the CCL; (5) evaluating and analyzing the reconfiguration overhead; (6)
applying the discussed concepts in other contexts.
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Abstract. Data replication can be used to reduce bandwidth consumption and
access latency in the distributed system where users require remote access to
large data objects. In this paper, according to the intrinsic characteristic of
distributed storage system, the parallel replication algorithm NBPRA (Network-
Bandwidth-based Parallel Replication Algorithm) is proposed. In the NBPRA,
according to the network state, several replicas of a data object are selected,
which are of the least access cost; then the different parts of the data object are
transferred from these replicas, and they are used to make a new replica. The
results of performance evaluation show that the NBPRA can utilize the network
bandwidth efficiently, provide high data replication efficiency and substantially
better access efficiency, and the improvement of system performance is related
to the number of different data objects accessed by jobs.

1 Introduction

There is a growing demand for the automatic, online archiving of data resources. For
decades, industry and other users have relied on tape to back up their critical data, but
this scheme requires a human administrator to maintain the tape drivers, file drivers,
and the tapes themselves. As the amount of data resources in the world explodes, this
maintenance will become too costly to be feasible. At present, how to aggregate the
geographically distributed heterogeneous storage resources to form the virtual storage
space and provide secure efficient data storage service is becoming a challenging
research topic in the worldwide.

The replication scheme of distributed storage system determines how many replicas
of each data object are created, and to which nodes these replicas are allocated. This
scheme critically affects the performance of distributed storage system, since reading a
data object locally is less costly than reading it from a remote node, especially for large
data objects. There are two major motivations for replication increasing availability
and increasing system performance. Replication creates redundant information in the
network, which allows the system to remain operational in spite of node and link
failures and thus increase reliability. Also, if data is replicated near the node where it is
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accessed, communication cost is greatly reduced. Due to the dynamic of network,
sometimes the network bandwidth is relatively very low. That leads to a focus on
reducing network transmission cost, on utilizing the redundant network bandwidth
sufficiently, and hence on the performance issue.

Peer-to-peer distributed storage systems are positioned to take advantage of gains
in network bandwidth, storage capacity, and computational resources to provide
longterm durable storage infrastructures. Systems such as Farsite([1]),
Intermemory([2]), Freenet([3]), CFS([4]), PAST([5]), and OceanStore([6]) seek to
capitalize on the rapid growth of resources to provide inexpensive, highly-available
storage without centralized servers. The designers of these systems propose to achieve
high availability and long-term durability, in the face of individual component
failures, through replication techniques.

Optimising the use of Grid resources is critical for users to effectively exploit a
Data Grid. Data replication is considered a major technique for reducing data access
cost to Grid jobs([7],[8],[9]). Replication involves the creation of identical copies of
data files and their distribution over various Grid sites. This can reduce data access
latency and increase the robustness of Grid applications.

In the most research projects on peer-to-peer distributed storage system and Data
Grid, the traditional replication technology is utilized to achieve the high availability
and durability. In the traditional replication technology, if a new replica R’ of data
object DO is to be made on node A, the best replica R of data object DO should be
found, then make a copy of R and transfer it to node A, that is replica R’. If the
network bandwidth is relatively low and the data object need to be replicated is very
large, the efficiency of replication will be low, thus the availability and system
performance will be reduced.

In this paper, according to the intrinsic characteristic of distributed storage system,
the parallel replication algorithm NBPRA is proposed. Section 2 describes the parallel
replication algorithm NBPRA. Section 3 presents the results of performance
evaluation. Section 4 provides a summary of our research work.

2 Parallel Replication Algorithm NBPRA

In the parallel replication algorithm NBPRA (Network-Bandwidth-based Parallel
Replication Algorithm), firstly, according to the network state, NUM replicas of data
object DO are selected, which are of the least access cost; secondly, different parts of
data object DO are transferred from different replicas, then these parts are combined
to make the new replica of data object DO. Compared with the traditional replication
technology, NBPRA utilizes several network links to transfer a copy of data object,
thus the availability of network bandwidth is improved, and the efficiency of data
replication is improved, so the efficiency of data access is improved efficiently.

NBPRA includes two strategies: the replica selection strategy and the data quantity
assignment strategy.

2.1 The Replica Selection Strategy

The replica selection strategy decides which replicas are used to make the new
replica. Firstly, the access cost of each replica should be evaluated; secondly, the
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number of replicas to be selected should be decided; lastly, the replicas with the least
access cost are selected.

The access cost of replica lies on the network bandwidth and the distance between
the two nodes. In figure 1, a new replica of data object DO will be made on node A,
and there is a replica R of data object DO on node B, and the number of hops between
node A and node B is k+1, the available bandwidth of each link between any two

nodes is bw;, bw,, bws, ...... ,bwy, bwy,y, thus the access cost of replica is
K+l
Z(W(R)/ )
bw; )

i=1

bwy bw, ~ bw, bw, bw., by bw, R
@ O O O o . o—0O O O
A N N, N, N, N> Neq N B

Fig. 1. The access cost of replica

In fact, it is not true that more replicas selected will get more profit. If more than one
replica will be transferred through the same link, then the available bandwidth of each
replica will be relatively low. On the other hand, if one replication occupies too many
links, the other replications will be affected badly. In view of the system performance,
the number of replicas selected will be decided according to the degree of node A.

The basic idea of the replica selection strategy is as follows:

K+l
1. Calculate the access cost of each replica R, which is Z (”"Ze(l%w j .
i=1 i

2. Select the replicas used to make the new replica of data object DO. The
selection conditions include:
a) The replicas selected are of the least access cost;
b) The replicas selected do not share the same links;
¢) The number of replicas selected is not more than the degree of node A.

2.2 The Data Quantity Assignment Strategy

The efficiency of replication is decided by not only the replicas selected, but also the

data quantity transferred from each replica. There are two fundamental principles of

data quantity assignment: 1) the access cost of replica is less, the data quantity

transferred from it is larger; 2) the data transfer of all replicas finish simultaneously.
The basic idea of the data quantity assignment strategy is as follows:

1. Calculate the transfer rate of each replica selected by the replica selection

Kt o
strategy. In figure 1, the access cost of replica R is Costy = Z (S zze(l%w j ,
i=1 i

the transfer rate of replica R is TRy = %,OS P
R
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2.  Calculate the sum of transfer rate of selected replicas. Assume the number of
selected replicas is NUM, the selected replicas are R;, Ry, ..., Ryym, and the

transfer rate of them are TR;, TR, ..., TRyum, so the sum of transfer rate of
NUM

selected replicas is SUM _TR = ZTR j-
j=1

3. According to the transfer rate of each selected replica, assign the data quantity
of each replica. The data quantity of replica Ry is assigned to
TR,

size(DO)
SUM _

R’ size(DO) is the size of data object DO.
In the traditional replication strategy, a replica of the least access cost is selected,

size(DO)

so the time of replication is max(TRl TRy .. TR vyt ) .

In NBPRA, the NUM replicas are selected, which are of the least access cost. The
different parts of data object DO are transferred from the different replicas, so the
time of replication is size (DO)/ SUM _TR .

It is clear that NBPRA utilizes the network bandwidth more efficiently than the
traditional replication strategy, and can improve the efficiency of replication
evidently.

2.3 Algorithm Description
The description of NBPRA is as follows.

BEGIN
Step_1: Get the degree of node A on which a new replica of data object DO will be
made, let DG denote the degree of node A.
Step_2: Get the replica set of data object DO from metadata catalog, let Set_R
denote the replica set of DO, let Num_Set_R denote the number of replicas in Set_R.
Step_3: Evaluate the access cost of each replica in Set_R. Let Costg denote the
k+l1

access cost of replica R, Costp = Z(size(l%w ) .
i=1 i

Step_4: Initialization: i =0, Set_Selection = .
Step_5: Num_Selection = min(Num_Set_R, DG).
Step_6: DO

{

Select the replica R_Selection from Set_R, the access cost of which
is the least in Set_R, Costg gyecrion = min(Costg, R Set _R);

Set _ Selection = Set _ Selection+ R _ Selection ;

i=i+l;

Set _R=Set _R—R _ Selection ;

FOR each R’e Set_R
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IF R_Selection and R’ share the same links
THEN Set _ R=Set _R—R';

}
}JWHILE (i< Num_Selection AND Set_R # &)
Step_7: Calculate the transfer rate of each selected replicas.

—1 i
TR, _/CostR , Re Set _ Selection ,

TRy denotes the transfer rate of replica R.
Step_8: Calculate the sum of transfer rate of selected replicas.

SUM _TR= Y TRy.
Re Set _ Selection
Step_9: Assign the data quantity of each replica R in Set_Selection to
TRy

size(DO)— .
SUM _TR

END

2.4 The Case Study

In figure 2, there are 6 replicas of data object DO in the network, and they are
distributed on node D, F, H, [, J, K, denoted as Rp, Rg, Ry, R}, Ry, Rx. According to
the access requirements, a new replica of DO will be made on node A. The relative
available bandwidth of each link is marked in the figure, for example, the relative
available bandwidth of link between node A and B is 3. There is a tuple (Costg, TRR)
for each replica R, which denotes the access cost and transfer rate of each replica, for
example, (1.33, 0.75) of replica on node F means that the access cost of the replica is
1.33, and that the transfer rate of the replica is 0.75.

F(1.33,0.75)

(0. 83, 1. 2)

J(1.67,0.6)
K(0.67,1.5) I(1.33,0.75)

Fig. 2. The access cost and transfer rate of replicas
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Fig. 3. The data quantity of the selected replicas

According to the NBPRA, initially, Set R={Rp, Rg, Ry, R, R;, Rg},
Set_Selection=. The degree of node A is 4, the number of replicas in Set_R is 6, so
the number of selected replicas should be not more than 4.

Firstly, the replica Ry is selected, the access cost of which is 0.33, and it is of the
least access cost among Set_R, so Set_Selection={Ry}. Because the replica Ry and R;
share the same link, the Set_R changes to { Rp, Rg, Ry, Rk }.

Secondly, the replica Ry is selected, the access cost of which is 0.67, and it is of
the least access cost among Set_R, so Set_Selection={Ry, Rx}. Because the replica
Rk and Rp, share the same link, the Set_R changes to {Rg, R;}.

Thirdly, the replica R is selected, the access cost of which is 1.33, and it is of the
least access cost among Set_R, so Set_Selection={Ry, R, Rg}. Because the replica
Rr and Ry share the same link, the Set_R changes to . Therefore, the selected
replicas are Ry, Rg, RE.

Lastly, the data quantity of each selected replica is assigned. Figure 3 shows the

assignment, the data quantity of replica Ry is ;*size(DO) , the data quantity of

. .2 . . |
replica Ry is F # size(DO) , the data quantity of replica Rg is F # size(DO) .

According to the traditional replication strategy, the replica Ry is selected, and it is
transferred to node A to make a new replica of data object DO, so the time of

replication is size(D 0% .
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According to the NBPRA, the replica Ry, R and Rg are selected, and the different
parts of DO are transferred to node A to make a new replica, so the time of replication

g * size(DO) % * size(DO) %x size(DO)

iS = =
3 1.5 0.75

1
—#5ize(DO)
< stze(DO)

0.75 37
is less than the time of replication of the traditional replication strategy.

It is obviously that, the time of replication of NBPRA

3 Performance Evaluations

OptorSim([10],[11],[12]) is a simulator used to evaluate the replication strategies.
OptorSim simulates the system architecture shown in Figure 4 for studying various
data replication approaches. The simulation is constructed assuming that the system
consists of several nodes, each of which may provide computation and data-storage
resources (called Computing and Storage Elements) for data intensive jobs. Jobs are
submitted to the system over a period of time via the Resource Broker (RB). The RB
schedules each job to the Computing Elements (CE) with the goal to improve the
overall throughput of the system. A Replica Manager (RM) at each node manages the
data flow between nodes and interfaces between the computing and storage resources.
The Replica Manager (RM) is responsible for the selection and dynamic creation and
deletion of replicas.

In our simulation, the system topology (see Figure 5) comprises 11 nodes. Each SE
of node has a capacity of 150 GB. Each data object has size of 1 GB and the total size
of the data object set is 120 GB.

We assume that initially each data object has only one physical instance referred to
as master copy, and the number of replicas of each data object is a random number
between 0 and 2. The initial data object distribution is that all master copies and
replicas are randomly distributed among all nodes. If the access frequency of a data
object from one node reaches the threshold, then a new replica of data object should
be made on the node.

Access pattern determines the order in which a job requests data objects. The
following two access patterns are considered in our simulation:

1. sequential access pattern: all data objects are requested in a predetermined
order;

2. Gaussian random walk access pattern: successive data objects are selected
from a Gaussian distribution centred on the previous data objects.

The economy-based replication strategy ([9],[13]) is proposed for Data Grid, it
optimises both the selection of replicas for running jobs and the dynamic creation of
replicas in the nodes. In this strategy, optimization agents are located on nodes and
use an auction protocol for selecting the optimal replica of a data object and a
prediction function to make informed decisions about local data replication. Data
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Fig. 4. Simulated system architecture

1G

Fig. 5. System topology for simulation

objects are “purchased” by CEs for running jobs and by SEs to make an investment
that will improve their expected future revenue. These data objects are sold by SEs to
either CEs or other SEs. CEs try to minimize the data object purchase cost, while SEs
attempt to maximise their profits. CEs and SEs interact with intelligent optimization
agents which perform the reasoning required in the strategy.

The performance comparison between the economy-based replication strategy and
the NBPRA includes two aspects:
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[

Relation between the access patterns and the system performance;
2. Relation between the number of the different data objects accessed by jobs
and the system performance.

There are 6 job types in our simulation. The difference between job types is the
data quantity accessed by jobs. The data quantity and probability distribution of each
job type is shown in Table 1. Jobs were submitted at five seconds intervals. The
estimated time taken to complete a job was calculated as the execution time on the
node, not including the time waiting in the queue at the node.

Table 1. Job types

Job Type Data Quantity (GB) Probability
1 1 17%
2 5 17%
3 10 16%
4 25 17%
5 30 16%
6 50 17%

3.1 Access Patterns

The results comparing the two algorithms for each access pattern are shown in
Figures 6 and 7. The total job time is averaged over 10 simulation runs. Figure 6
shows results for sequential access pattern and Figure 7 shows results for Gaussian
random walk access pattern.

The results show that the NBPRA provides substantially better throughput for jobs
that have a sequential access pattern or a Gaussian random walk access pattern, this
also means that the NBPRA can provide higher data access efficiency. The main
reason is that the replication is parallelized in the NBPRA, and that it can utilize the
network bandwidth more efficiently.

The results also show that both the economy-based replication strategy and the
NBPRA are not sensitive to the access patterns.

—&— cconomy based replication strategy —#—NBPRA
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© 60000

g

= 40000 /./.// _—

S 20000 —ﬁﬂf‘-'/k
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E 0 t t t t t

500 1000 1500 2000 2500 3000
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Fig. 6. Total job times for sequential access pattern
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Fig. 7. Total job times for Gaussian random walk access pattern
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The results comparing the two algorithms for the number of the different data objects
accessed by jobs are shown in Figure 8. 1000 jobs are executed. The access pattern of
jobs is sequential access pattern. The number of the different data objects accessed by
jobs is changed from 50 to 120. The total job time is averaged over 10 simulation runs.

The results show that the difference between the NBPRA and the economy-based
replication strategy is decreased as the number of the different data objects accessed
by jobs increases. In the NBPRA, if there are more different data objects to be
replicated, the interference between different replications will be more serious. So the
improvement of replication efficiency is limited, and it will affect the improvement of
system performance indirectly.

Total Job Time(s)

Fig. 8. Relation between the number of different data objects and total job times
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In the parallel replication algorithm NBPRA, in order to utilize the network
bandwidth efficiently, the replication is parallelized, the different parts of a data
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object are transferred from different replicas, which are used to make the new replica
of the data object. Compared with the economy-based replication strategy, the
NBPRA utilizes the network bandwidth more efficiently, provides higher data
replication efficiency and substantially better access efficiency. However, the
improvement of system performance is related to the number of different data objects
accessed by jobs.
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Abstract. This paper presents a quorum-based group k-mutual exclu-
sion algorithm for open distributed computing systems that can evolve
their behavior based on membership changes in the environment. The al-
gorithm consists of two main layers; the quorum-consensus and quorum-
reconfiguration. The quorum consensus layer is used to handle requests
from and to the application layer, and it directly adopts a proposed k-
coterie based algorithm of the group k-mutual exclusion in the static
environments without any change to its protocol. Thus, the message
complexity and quorum availability are the same as in the static environ-
ments. The quorum reconfiguration reconstructs information structure of
the k-coterie by simply implementing the properties of two quorum input
operations called coterie-join and coterie-cross. The reconfiguration layer
is simple to use and has a great ability to complete any operation during
reconfiguration powerfully thus system does not enter the halt state.

1 Introduction

The distributed mutual exclusion is one of the most fundamental issues in the
study of distributed control and management problems that arises when multiple
computing nodes compete for a shared resource in an uncoordinated way. The
problem is to design a safety synchronization such that at most one node is al-
lowed to use the resource at a time. The problem of k-mutual exclusion (k-mutex)
and group mutual exclusion (GME) are the two well studied natural generaliza-
tions of the mutual exclusion. The k-mutex guarantees at most k (> 1) nodes
can be allowed to use a single resource simultaneously, and the GME synchro-
nizes conflicting nodes in sharing m resources such that at most one resource
can be used by some concurrent nodes. Recently, Vidyasankar [1] introduced
group k-mutex as the generalization of the k-mutex and GME problems in a
shared-memory environment. The problem is to design a conflict resolution such
that at most k (out of m) resources can be used by some concurrent nodes.

As mentioned, let us consider a distributed system consisting of n nodes,
which share undetermined number of resources'. The system is said to be group
k-mutual exclusive if the following requirements hold:

! The paper have further relaxed the assumption of the original problem that the
nodes have no knowledge about the entire set of the shared resources.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 119-125, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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— k-mutual exclusion: at most k resources are allowed to be used by some
concurrent nodes at a time.

— concurrent entering: nodes which request the allowable resources can use
them simultaneously at a time.

— liveness: a node requesting a resource will eventually succeed.

Quorum consensus approaches are the well-known solution to any conflict
resolution which is generalized from the mutual exclusion. The class of these
solutions gives a significant interest in fault-tolerant of node and communication
failures that may lead to network partitioning [2, 3]. Coterie based algorithm is a
typical quorum consensus for mutual exclusion: A node can use the resource only
if it obtains permissions from all nodes in any quorum of a coterie, and since each
quorum intersects with each other and each node only issues one permission, the
mutual exclusion can be guaranteed. In the GME, Joung [4] have proposed an m-
group quorum system for GME quorum consensus, however, construction of such
a good quorum system (i.e., a non-dominated m-group quorum system) arises
a more difficult problem. Moreover, the coterie based of the mutual exclusion
can directly be adopted to this problem; i.e., the conflicting nodes simply use a
coterie to manage their mutual exclusive accessions to the requested resources.
The k-coterie based algorithms are a particular quorum consensus on the k-
mutex problem. There at most k& pairwise disjoint quorums in a k-coterie, thus
at most k£ nodes can use it so as to achieve the k-mutex safety requirement.
Furthermore, the k-coterie based algorithm can also be used for the group k-
mutex in the static environments. In this paper, we firstly present a k-coterie
based group k-mutex algorithm in the static environments and adopt it forward
to the open distributed environments.

Open distributed computing systems are built on the highly volatile networks
in the sense that the rate of membership changes (i.e., nodes joining and leaving
the system) is very high. The system consists of a set P of an undetermined
number of nodes which communicate in a message passing manner using a re-
liable FIFO bidirectional link and share a nonempty set R of an undetermined
number of resources. A node can be created and removed either by user or by
another node or even joining and leaving the system by itself. We assume that
each node has its own memory and it may fail according to fail-stop failure model
in [5]. If a node is created (or join), removed (or leave) or get fails then it can
be detected by some other nodes in the system. When a new node is created
or joining to the system, it should firstly verify the current configuration of the
system.

The existing distributed quorum consensus can run correctly on top of net-
work layer of the open distributed environments, since they are designed as a re-
silient solution against node and communication failures. However, the member-
ship changes by the leaving and joining nodes will adversely decrease availability
of the quorum system. The contention is the reliability that can be gained by
developing a core set of distributed algorithms that are aware of the underlying
volatility in the network. Lawi et al.[6] have proposed a wait-avoidance mecha-
nism in reconfiguring quorum system for mutual exclusion so as to prevent this
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drawback. Their algorithm mainly consists of two layers that separately works;
the quorum-consensus and -reconfiguration. The quorum consensus layer is used
to handle requests from and to the application layer, and it directly adopts the
coterie based algorithm for group mutual exclusion in the static environments.
The quorum reconfiguration layer reconstructs information structure of the co-
terie by implementing the two quorum input operations called coterie-join and
-cross operations. The coterie join operation is used when a set of nodes have
leaved from the system while some others are joining, and the coterie cross is
implemented to the algorithm when there is only a set of joining nodes enter
the system. In this paper, we extend the results in [6] by showing that; the k-
coterie based algorithm of the group k-mutex can also be used in their quorum
consensus layer, and the quorum reconfiguration layer can also be adopted in
reconfiguring k-coteries.

2 The Quorum Consensus Layer

2.1 k-Coteries

Definition 1. [7] A nonempty set of sets, C, is a k-coterie under a set of nodes
P iff C satisfies the following properties:

1. Non-intersection: For any h-set H = {Q1,..., QL €C | Q;NQ; =0,i #
J}, h <k, there exists Q € C such that QN Q; =0,1 < < h.

2. Intersection: For any (k + 1)-set K = {Q1,..., Qr+1} C C, there exists a
pair Q;, Q; € K such that Q; NQ; #0,1<1¢,j <k+1,i+#j.

3. Minimality: Q; € Q;, VQi,Q; €C, i # j. O

The quorum consensus layer has two sections that alternate accessed re-
peatedly: a possibly nonterminating noncritical section (NCS) and a terminat-
ing critical section (CS). The layer stays in the NCS when there is no request
to use a resource from the application layer and enters the CS whenever it
has an access right to a requested resource. The CS is a specified part of the
code in which node uses the resource. A node executes a trying protocol to en-
treat an access right so as to enter the CS, and executes an exit protocol after
leaved the CS and thus returns back to the NCS again. Therefore, the prob-
lem in this layer is to design a safety synchronization in the form of ¢rying and
exit protocols to be executed, respectively, immediately before and after the
CS which satisfies the safety requirements of group k-mutex (as mentioned in
Section 1).

Let C be a k-coterie. Each node in P has local variables AGREE, DISAGREE,
PERM and QUEUE, respectively, keeps the set of nodes which have agreed (by
message ack), the set of nodes which have not yet agreed (by message wait),
the set of requests in which p; has give its permission but has not yet received a
message reclaim, and the ordered set of requests in which p; has replied wait
messages. For conciseness, we roughly give a curt description how the k-group
mutex algorithm works for this layer in Figure 1.



122 A. Lawi, K. Oda, and T. Yoshida

Trying Section { // When node p; wishes to access a resource r;

1: Selects a quorum @ from C;
2: send req(t;,p;,ri) to Vp € Q; // t; is the p;’s current logical time
3: Inserts pj(€ Q) answering ack into AGREE;
4: if (3Q € C,Q C AGREE) then state := Critical Section;
5: else-if { // If there exists p; (€ Q) answers wait
6: Inserts p; answering wait into DISAGREE;
7: Selects another quorum Q’ € C such that
(Q' N DISAGREE = 0) and (Q' = max{|Q N AGREE|});
8: if (there is no quorum satisfy) then state := Wait;
9: Q= (Q' — Q) and goto line 2; } }

Exit Section { // When node p; leaves resource r;
1: send exit to Vp; € (AGREE N DISAGREE)}
When p; receives req(t;,p;, ;) message {
// Let (ty,py) is the highest priority in QUEUE;
if (PERM =0 or r; =r,) then
send ack to p; and inserts req(t;, pj, ;) to PERM;
else-if { // If there exists req(ts, Pz, o) tn PERM and r; # ry
Inserts req(t;, pj, r;) into QUEUE;
if (tj,p;) > min{(tz, pz), (ty,py)} then send wait to p;;
else-if // If (t;j,p;) is the highest priority in QUEUE
send reclaim to py;

PRASITH W

When p; receives exit message from p; {
Removes req(t;, p;, ;) from PERM;
if ( PERM = () and QUEUE # () then {
// Let (ty,py) is the highest priority in QUEUE;
for each (req(t;,p;j,r;) € QUEUE and r; = ry) {
Moves req(t;,p;,7;) from QUEUE to PERM;
send ack to p;; } } }

S A

hen p; receives reclaim message from p; {
if (p; not in CS and p; € AGREE) then {
Moves p; from AGREE to DISAGREE;
send relinquish to p;; } }

// Let (ty,py) is the highest priority in QUEUE;

send ack to py;

w
1:
2:
3:
When p; receives relinquish message from p;: {
1:
2:
3:  Inserts req(ty, py,ry) into PERM }

Fig. 1. A distributed group k-mutex algorithm for static environments

2.2 Non-dominated k-Coteries

Definition 2. [3] C is a dominated k-coterie under P iff there exists a k-coterie
D (under P) such that

1. C#D,
2.VQeC,35eD, S CQ.
If there is no such D, then C is non-dominated (or, an ND k-coterie). g

It is easy to observe that if a system using a dominated k-coterie is opera-
tional in the occurrence of failures then a system using an ND k-coterie is also
operational, but the opposite is not always true. Hence, reliability of an ND
k-coterie is better then the dominated one. Another advantage of ND k-coteries
is the lower cost of message complexity (since every quorums in an ND k-coterie
are subset of the quorums in the dominated k-coterie).

Neilsen [8] have proposed a helpful theorem to check whether a coterie is
dominated or not. The theorem can be relaxed to further the k-coteries as well.
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Theorem 1. C is a dominated k-coterie under a set of node P iff there exists a
set X C P such that the following conditions hold.

1. Non-intersection: There exists h-set H = {Q1,..., Qr € C | Q: N Q; =
0,i# j}, h <k —1, such that X N Q; = 0.

2. Intersection: For any k-set K = {Q1,..., Qr} C C, there exist Q; € K
such that Q; N X # 0.

3. Minimality: VQ € C, Q € X.

3 Quorum Reconfiguration

The quorum reconfiguration layer mainly based on the reconfiguration algorithm
posed by Lawi et al.[6] which uses two quorum input operations in reconfiguring
the quorum system of the mutual exclusion; i.e., coterie-join and -cross. We have
extended their results for k-coteries and directly adopt them in this layer.

For the following subsections, let C; and Cs be k-coteries under P; and P,
respectively, and P NPy = ().

3.1 Coterie Join Operation

Definition 3. [8] Let x be a node in P;i. A coterie join operation for inputs Cy
and Cy produces a quorum set (C; ®, Ca) defined by

(C10zCo) ={(Q1 —{z})UQ2 | Q1 €C1,Q2 €Coand = € Q1}
U{Ql‘Ql cCq andxgéQl}. O

Jiang and Huang [9] have proved the following results.
Theorem 2. Let C3 = (C1 ®, Ca), then

1. C3 is a k-coterie under P3 C P; U Ps.
2. Cgz is an ND k-coterie only if C; and Cy are both ND k-coteries.
3. C3 is dominated, if either C; or Cy is dominated.

The following can easily be proved using mathematical induction.

Corollary 3. Let C1,Co,...,C,,  be k-coteries under P1,Pa,...,Pm,
respectively. For any X = {x1,29, ..., &m-1 | ; € P;}, then C = (C1 O,
-+ ®Og,,_; Cm) is a k-coterie under P C U™, P;.

3.2 Coterie Cross Operation

Definition 4. [6] A coterie cross operation for inputs C; and Cs produces a
quorum set defined by, (C1 ® C2) = {Q1 U Q2 | Q1 € C1 and Q2 € Ca}. O

Theorem 4. [6] Let C’ and C” be coteries under P’ and P”, respectively, and
PNP'=0.IfC=(C'"®C"), then
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1. C is a coterie under P C P’ U P".
2. C is an ND-coterie only if C' and C” are both ND-coteries.
3. C is dominated, if either C’ or C” is dominated.

We have extended results in Theorem 4 for k-coteries as follows.
Theorem 5. Let C4 = (Cl X Cg) Then,

1. C4 is a k-coterie under Py, C P; U Ps.
2. C4 is an ND k-coterie only if both C; and Cs are ND k-coteries.
3. C4 is dominated only if either C; or Cy is dominated k-coterie..

3.3 The Reconfiguration Algorithm

The quorum reconfiguration layer simply implements the two operations intro-
duced in the previous two subsections, but for the conciseness, we roughly outline
how it works as follows. Let C be the the current k-coterie of the system.

1. When there are sets joining nodes X and leaving nodes Y: The algorithm
firstly partitions the set X into m (< |Y|) disjoint sets and constructs m
independent k-coteries Cy,...,C,, under X1,..., X,,, respectively, and cre-
ates a new coterie Ciemp = C. Each node y; € Y is replaced by C; iteratively
using coterie cross operation, Ciemp = Ctemp @y, Ci, @ = 1...,m. The iterated
result of Ciemp is stored to C as the new quorum configuration.

2. When there is only a set X of joining nodes: The algorithm simply creates a
k-coterie C’ under X and restores C with (C ® C’) as the new configuration.

Note that the coterie cross operation can also be implemented in case 1, however,
the result k-coterie will be dominated. Let C’ be k-coterie under the set X of
joining nodes and PN X = (. Let z € P is the leaving node, then

(CRC)=(Co,CN\{Q|QeCandx¢Q}
Thus, there exists a set Z € {Q | Q € C and z ¢ Q} satisfies the Theorem 1.

4 Performance Analysis

The number of messages required per entry to the CS is the same as for the
mutual exclusion [10] and hence for the k-mutex algorithm [7] in the static
environments. The message complexity of the algorithm in the best case is 3¢ and
can be bounded from above by 6¢ in the worst case, where ¢ = max{|Q| | @ € C}.

Let C; and Cy be k-coteries under Py and Ps, respectively, and C = C; © Ca,
x€Py,orC=C ®Co.

Theorem 6. |Q| <2max{|Q’'| | Q" € Ci or Q' € C2}, VQ € C.

Now, let ||C]| (resp., ||C1]] and ||C2]||) defines rank of coterie C (resp., C; and
C2); i.e., the number of quorums in coterie C (resp., C and C).
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Theorem 7. If C; and Cs are majority ND k-coteries, then

1.
2.

5

ICII = [IC1]| X |IC2]|, when C = C; ® Ca, and

e)l > liCall x (P71, q = [, when € = €1 @, Co.

Conclusions

We have proposed a quorum based group k-mutex algorithm for open distributed
environments in this paper. The algorithm consists of two main parts, i.e., the
quorum-consensus and quorum-reconfiguration, each of which placed in differ-
ent layers and work separately. The quorum consensus layer directly adopts a
k-coterie based algorithm for group k-mutex in the static environments which
is also proposed in this paper. Thus, its message complexity and quorum avail-
ability performances are the same as in the static environments.
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Abstract. Some trading strategies are becoming more and more com-
plicated and utilize a large amount of data, which makes the backtesting
of these strategies very time consuming. This paper presents an efficient
implementation of the backtesting of such a trading strategy using a
parallel genetic algorithm (PGA) which is fine tuned based on thorough
analysis of the trading strategy. The reuse of intermediate results is very
important for such backtesting problems. Our implementation can per-
form the backtesting within a reasonable time range so that the tested
trading strategy can be properly deployed in time.

1 Introduction

Backtesting also known as Systems Testing is the concept of taking a strategy
and going back in time to see what would have happened if the strategy had been
faithfully followed. The assumption is that if the strategy has worked previously,
it has a good but not certain chance of working again in the future and conversely
if the concept has not worked well in the past, it probably will not work well in
the future.

The backtesting of trading strategies is important for brokers and investors
to judge if the strategies are profitable under certain circumstances. It helps the
users learn how a trading strategy is likely to perform in the marketplace. It
also provides the users with the opportunity to improve a trading strategy. A
detailed discussion of the benefits of backtesting is given by [6].

Due to the many benefits of backtesting, it is widely used by brokers and
investors. And there are a lot of backtesting systems available in the market, for
example, MetaStock from Equis International (www.equis.com) and TradeSta-
tion from TradeStation Securities (www.tradestation.com), etc. These systems
help the users develop and back test their own trading systems.

Early trading strategies such as Moving Average Crosses were relatively sim-
ple and easy to implement and test. As more and more people join in the game
of searching for better trading systems, more complicated trading strategies are
investigated. Intraday data instead of interday data are utilized, which increases
the data to be processed by a factor of hundreds or even thousands. More com-
plicated indicators that are hard to calculate are exploited. Furthermore, people

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 126-131, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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sometimes have to try a strategy against multiple stocks and even multiple mar-
kets. All these factors make the backtesting of these trading strategies much
more time-consuming, and the ready-for-use commercial products become inca-
pable of dealing with them. People need more efficient implementations in order
to perform the backtesting of such trading strategies within an acceptable time
range.

In the following sections, we will analyze a simplified trading strategy in detail
and present an efficient implementation of it using parallel genetic algorithm
(PGA) based on the analysis.

2 A Simplified Trading Strategy

Today’s trading strategies tend to exploit several indicators and filters in combi-
nation to make the final decision. To make the discussion easier, we will introduce
a simplified trading strategy in this section.

Our simplified trading strategy exploits a modified Bollinger band only.
Bollinger band is among the most popular technical analysis techniques. It in-
cludes 3 lines: the upper band, the lower band, and the center line. The center line
is simply the moving average, and the upper and lower bands are, respectively,
the center line plus/minus twice the standard deviation [5]. In our strategy, the
standard deviation is no longer timed by a fixed coefficient of 2. Instead, the
coefficient becomes a variable to be optimized, and its value can be different
for upper and lower bands. Given the price series P,(n =1,2,3,--), the center
line C),, upper band U,, and lower band L,, of a p-period Bollinger band can be
calculated as follows:

S P (1)

2np+1

P - Cp
n_@+vX¢Z“W“ - @

L, = \/Zz n— P+1 P C ) , (3)

where V,, and V; are variables to be optimized, and we assume they vary between
1.0 and 2.0 with a step of 0.1. Besides, we assume that p can take any integer
value between 11 and 50.

The financial explanation for Bollinger band is as follows: the closer the prices
move to the upper band, the more overbought the market, and the closer the
prices move to the lower band, the more oversold the market. Based on this
understanding, we derive our simple trading rules as follows:

During the normal trading hours, at the end of each bar (a short time period,
e.g., 10 or 30 minutes), we evaluate the current price. If the price crosses over the
lower band, i.e., P,_1 <= L,_1 AND P, > L, buy 100 shares at the beginning
of the next bar. If the price crosses under the upper band, i.e., P,—1 >= U,_1
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AND P, < U,, sell all shares in hand at the beginning of the next bar. To make
the discussion simple, we assume that our trading volume is small enough that
our buy/sell orders can be executed at the current price without delay. We also
ignore the brokerage fee here. Of course, the real trading strategies have to deal
with all these issues.

The purpose of the backtesting of this trading strategy is to answer the
following questions: 1) Can this strategy make profit when applied to certain
stocks for a time period such as one year (the training period)? 2) If it can make
profit for a certain stock, what values for the parameters p, V,,, V; can give the
most profit? 3) Can these values also give a reasonable profit during the following
time period such as the next six months (the testing period)?

Question 3 is a simple yes-or-no question which can be easily answered by
running the trading strategy once with the values given by question 2. However,
because the trading strategy is very sensitive to the change of any parameter,
there is no simple relation between the profit and the parameters. Therefore,
question 1 and 2 can not be easily answered before trying all the possible triples
of (p, Vu, V1)

3 A Direct Implementation of the Backtesting Problem

The simplest approach to the above optimization problem can simply loop
through all the possible triples of (p, V., Vi) and run the trading strategy with
each triple. The following pseudo-code illustrates this approach.

Algorithm 1
for(p = 11; p <= 50; p ++) {
Calculate Cn and standard deviation Dn;
for(Vu = 1.0; Vu <= 2.0; Vu += 0.1) {
Un = Cn + Vu * Dn;
for(V1 = 1.0; V1 <= 2.0; V1 += 0.1) {
ILn = Cn - V1 * Dn;
Run trading strategy with Cn, Un, and Ln;

Note that C),, and D,, only have to be calculated once for each value of p,
and that U, only has to be calculated once for each pair of (p, V,,). The idea is
to reuse the intermediate results as much as possible. Even in this simple case,
experiments show that the execution time is reduced by a factor of 10 with the
reuse of intermediate values of C,,, D,, and U,,.

Alg. 1 is easy to implement and understand. However, the running time is
too long for really complicated trading strategies. While backtesting one trading
strategy provided by our industrial partner, our initial try with such an approach
took 8 hours to work thru only 1/40 of the whole search space on one single stock.
Obviously, The users can not wait that long for the backtesting result. We have
to reduce the computing time.
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4 Using PGA

A straightforward way to speed up Alg. 1 is to parallelize its execution. Once
a triple of (p, Vi, Vi) is given, a processing element (PE) can execute the whole
trading strategy by itself. If we have N PEs, we can easily partition the search
space into N equal subspaces and then start one process to deal with each
subspace. Because there are no communication or synchronization requirements,
the parallelization causes almost no overhead in this problem. However, this
approach is limited by the number of available PEs. Normal brokers or investors
can not expect to have more than 1 or 2 CPUs ready for use at any time. We
need better software solutions.

Genetic algorithms (GAs) have demonstrated to be particularly successful in
the optimization, classification and control of very-large-scale and varied data.
PGAs further provide the basis for tackling problems in a wider range of fields [4].
GAs and PGAs have been widely used in many disciplines from astronomy [2] to
molecular design [1]. [3] discusses many ways in which GAs can be parallelized,
including the master-slave model. Based on this model, a basic PGA for our
backtesting problem is developed as follows:

Algorithm 2 -- Master process

Generate random population of n triples;

While(true) {
Partition the population into N equal groups;
Send the triples in each group to one slave process;
Receive the fitness value for each triple from the slaves;
Exit if no better fitness value is found;
Select triples with better fitness from the population;
Generate new population by crossover and mutation;

Algorithm 2 -- Slave process
While(true) {
Receive a triple of (p, Vu, V1) from the master process;
Calculate Cn and standard deviation Dn;
Un = Cn + Vu * Dn;
Ln = Cn - V1 * Dn;
Run trading strategy with Cn, Un, and Ln;
Send the profit (fitness) to the master process;

The crossover and mutation operations used here are very simple. Suppose we
have two triples (p1, Vi1, Vi1) and (p2, Vaz, Viz), the crossover operation randomly
select p, V,, and V; independent of each other from the first or second triple and
form a new triple. And the mutation operation just randomly change the value
of one variable in a given triple to create a new triple.

Note that because the triples are randomly generated in Alg. 2, we can no
longer reuse the intermediate values of C,, D, and U, in the way we did in
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Alg. 1. This decreases the efficiency of the algorithm. To alleviate this unwanted
effect, we have to refine the algorithms to take advantage of the intermediate
results as much as possible. The only change to the master process is that the
population should be sorted by p and V,, before it is partitioned into N equal
groups. The refined algorithm for the slave process is showed below:

Algorithm 3 -- Slave process, refined
p-old = Vu_old = V1_old = newpFlag = O;
While(true) {
Receive a triple of (p, Vu, V1) from the master process;
if(p !'= p_old) {
Calculate Cn and standard deviation Dn;
p_old = p; newpFlag = 1;
}
if (newpFlag > 0 || Vu != Vu_old) {
Un = Cn + Vu * Dn;
Vu_old = Vu;
3
if (newpFlag > 0 || V1 != V1_old) {
Ln = Cn - V1 * Dn;
Vl_old = V1;
¥
Run trading strategy with Cn, Un, and Ln;
Send the profit (fitness) to the master process;

5 Performance Evaluation

For the simplified trading strategy described in this paper, we have carried out a
set of experiments for all the algorithms described above to illustrate the effect
of each algorithm. We performed the backtesting of each algorithm over 1 year’s
period against one stock ANZ from the Australian stock market. 30-minutes bar
data (open price, close price, best bid, best ask) were used in the experiment.
The data were stored in a text file and read by the algorithms at startup. To
count the execution time more accurately, each algorithm was repeated 20 times.
The average execution time is shown in the upper half of Table 1.

The parallelization introduces some overhead. And for this simple trading
strategy, the overhead is quite noticeable. When running in parallel on 4 CPUs,
it took Alg. 1 much longer than a quarter of the time it needed when running
sequentially. And 8 CPUs make hardly any difference than 4 CPUs.

The crossover and mutation operations in the PGAs also result in some
overhead that is noticeable in the backtesting of this simple strategy. Alg. 2 is
much slower than Alg. 1 when both running in parallel on 8 CPUs. However,
Alg. 3 shows less running time that Alg. 1. It means that the PGA can reduce
the execution time. The difference between Alg. 2 and Alg. 3 emphasizes the
importance of reusing the intermediate results wherever possible.
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Table 1. Execution time for different algorithms

Trading strategy Algorithm Execution time
Alg. 1 (sequential) 87 s
Alg. 1 (parallel on 4 CPUs) 24s
Simplified Alg. 1 (parallel on 8 CPUs) 22's
Alg. 2 (parallel on 8 CPUs) 32s
Alg. 3 (parallel on 8 CPUs) 18 s
Alg. 1 (sequential) ca. 300 h
Real Alg. 1 (parallel on 8 CPUs) 40 h
Alg. 3 (parallel on 8 CPUs) 1~2h

For the real trading strategy we tested for our industry partner, we have
got the following results as shown in the lower half of Table 1. In this case, the
speedup factor of multiple PEs is very apparent. When executed in parallel on
8 CPUs, the execution time of Alg. 1 is reduced to near 1/8. The PGA achieves
an speedup factor of at least 20 comparing with the parallel version of Alg. 1.
Finally we are able to back test the trading strategy against one stock within
1 ~ 2 hours. This makes the backtesting of the complicated trading strategy
against multiple stocks and multiple markets feasible.

6 Conclusion

In this paper, we have demonstrated step by step the implementation of the
backtesting of a complicated trading strategy. We have shown that PGAs can
speedup the backtesting process greatly. Furthermore, the reuse of intermediate
results is very important for accelerating the backtesting of complicated trading
strategies. We believe that the same principles used in this paper can and should
be applied in the implementation of the backtesting of other complicated trading
strategies as well to make the backtesting feasible.
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Abstract. The consistency models are responsible for managing the state of
shared data for the applications of a distributed shared memory (DSM) systems.
The already proposed consistency models are inflexible and cannot adapt to the
workload and environments characteristics. So, they cannot achieve the best
performance for the workloads and environments in all the cases. In this work,
we propose, present and analyze a reconfigurable consistency model (ROCoM
—Reconfigurable Object Consistency Model) for object based DSMs. ROCoM
behavior was represented using a reconfigurable algorithm (RA) and its
analysis was made using a simulation tool. Our results show that ROCoM, on
average, had 34% (upper bound) better performance than other ones.

1 Introduction

Distributed shared memory (DSM) is an abstraction that provides an illusion of a
shared memory in a distributed system [1][2][3]. Some DSMs are implemented to
manage objects. In these DSMs, the read and write operation semantics (consistency
model) guarantee that objects will be consistent for the application [4].

A consistency model can be defined as a contract that has rules about how and
when a process of an application can access the shared object [5][6][7]. Consistency
models should have a low response time, in order to maximize the system’s
performance for all workloads. The main problem is that workload and environment
change continuously. In order to solve this problem, some flexible and adaptable
consistency models were proposed [8][9][10]. A poorly explored solution is the use of
reconfigurable algorithms to represent a consistency model [11][12][13] [14].

Our proposal in this paper is to use a reconfigurable algorithm to represent the
behavior of a reconfigurable object consistency model (ROCoM). ROCoM is a
reconfigurable consistency model for asynchronous distributed systems that manage
concurrent access in shared objects [7]. Ideally, this model may assume infinite
configurations and it reconfigures itself according to entry parameters such as:
performance metrics and workload characteristics.

The main objectives of this paper are: to present the ROCoM, represent its
behavior using a RA, analyze its performance using simulation and show the use of a
RA is better than the use of a traditional algorithm. The main goals are: the
implementation and performance analysis of ROCoM.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 132138, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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2 Reconfigurable Object Consistency Model

ROCoM is a reconfigurable object consistency model for asynchronous architectures
that execute an object-based software DSM [7]. This consistency model manages the
state of a set of shared objects. ROCoM can have its behavior reconfigured
considering the workload and environment characteristics. So, it can adapt to them
improving flexibility and increasing performance.

Any consistency model can be decomposed into parts or frames (coherence
protocols, consistency constraints, events ordering policy, access policy, replication
protocol) [7]. Each frame is responsible for one part of the consistency model. A
constructive block implements a frame solution of our consistency model. ROCoM
has five frames (event ordering policy, constraint policy, coherence protocol,
replication protocol and access policy) and some constructive blocks that are
combined to reconfigurable it.

The reconfiguration in ROCoM is done during the workload execution, but it is
important to say that this reconfiguration is done after an application execution ends.
In our system, a workload is composed of m applications, and between these
applications, ROCoM can be reconfigured to assume the best form or configuration to
the next application. The actual version of ROCoM can be reconfigurable to assume
some sequential consistency model variations. So, a consistency model is said to be
reconfigurable if: i) it can assume different consistency models variations during the
workload execution and ii) it cannot assume more than one consistency at a time.
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Fig. 1. The Basic Layer of the ROCoM and some possible constructive blocks

A reconfigurable algorithm was used to represent ROCoM’s behavior. RA has the
characteristics (frames, constructive blocks etc) that were necessary to represent the
presented consistency model. In Figure 1, we can observe the RA that represents our
consistency model. The configuration control layer (CCL) of our RA controls the
constructive blocks that are active in a moment; it is implemented with a selection
structure. The basic layer (BL) has the implementation of every consistency model’s
parts, constructive blocks and structures (shared objects and wait queues). Finally, the
reconfigurable layer (RL) is an instance of the BL. In this paper the Access Policy
Frame can be filled out with single writer/multiple reader (SWMR) policies. The
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Event Ordering Frame is filled out with the sequential ordering. The Constraint Frame
can use the WW or OO approach. The Replication Protocol Frame can be filled out
with total replication protocol. Finally, the Coherence Protocol Frame can be filled
out with the update eager or invalidate eager (UE and IE).

3 Related Works

In this research, we found many works about consistency models [6][8][9][10]
[15][16][17][18], few works about reconfigurable software and algorithms [8][15],
and none about reconfigurable consistency models. In this work, we will discuss some
papers that are more relevant and close to our work [8][6].

In [8], a flexible consistency algorithm is proposed and implemented. As well as
our proposal, it uses a different algorithm depending on the user choice. The
consistency algorithm implements three-consistency models (Sequential, Causal,
Cache), but it uses just the traditional implementation of each one. And, in [6], a
sequential consistency algorithm with dynamic protocols switching is proposed and
verified by means of formal proofs.

4 Experimental Results

In order to analyze a consistency model, we can use different metrics. The most
common are: response time, communication time and number of messages [7] [14]
[15] [16]. The mean job response time is the mean time interval between the
submission and end of a job. The number of messages is the total number of messages
exchanged between the nodes. The communication time is the number of transmitted
bytes divided by the network bandwidth.

The selected distributed architecture is a cluster composed of 8 nodes
interconnected by a Fast Ethernet switch. It was modeled in ClusterSim, a simulation
tool developed by our group [19] [20]. As the workload, we made combinations with
some characteristics: object size (4 bytes and 4K), number of objects (1, 4 and 8) and
percentage of write operations (20%, 40% and 60%), generating 9 workloads.

Table 1. ROCoM configurations

Configurations Constraint
Conf 1 WW, UE,SWMR, Total
Conf2 WW, IE,SWMR, Total
Conf 3 00, UE,SWMR, Total
Conf 4 00, IE,SWMR, Total

In order to test and analyze the performance of the ROCoM, we created some
configurations (Table 1). It is important to note that each ROCoM configuration is a
traditional sequential consistency model. In these models, its parts are fixed and
cannot be changed over time. For example, in Table 1, ConfOl has the WW



Reconfigurable Object Consistency Model for Distributed Shared Memory 135

constraint, Write Update protocol, and it cannot changes over time. Through the rest
of this paper, traditional algorithm and configuration will be treated as synonyms.

Due to the limited number of pages, we present only the results for the response
time (in seconds). In Figure 2, we present the response time for every workload with
objects of 4 bytes. We can see that the Conf2 had the best results on average for
almost all workloads. In some workloads (1 object-20% writes, 1object — 40%writes
and 4 objects — 40%writes) the Conf4 had better or equal results of the configuration
two. The Conf2 uses WW constraint of consistency and invalidation coherence
protocol. The WW (Write->Write) constraint is a sub set of the OO (Write->Write,
Read->Write and Write->Read) constraint.
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Fig. 2. Response Time x 4 Bytes Fig. 3. Response Time x 4K bytes

So, the WW constraint serializes fewer operations than the OO constraint. With
this constraint the Conf2 has a low probability of remote operations happen and the
response time became smaller than in the other configurations. Furthermore, with the
invalidation coherence protocol, the messages sent through the network are smaller
than the messages sent by the update coherence protocol (Confl and Conf3) and with
the WW constraint is not necessary to sent many objects in the configuration two.

In the configurations that use invalidate coherence protocol and have a large
number of remote operations, the read operations spent more time with the network
than with the write ones. Because, in invalidation protocol, all replicas are invalidate
in a write operation. So, in each remote read, the object has to be sent to the process
that is executing the read operation. We can conclude that, in relation of response
time for workloads with object size smaller than the network packet, number of writes
and objects increases the response time. Because large number of writes means
smaller number of consecutive reads.

In Figure 3, we present the response time of workloads with object size of 4K
bytes. We can observe that in the Confl and Conf3, the number of objects has no
influence in the response time. This happen, because the number of write operations
are equal for all workloads (20%, 40% and 60%). In this case, in each write operation,
the object replicas are updated with the new object value. As the replicas of objects
are never invalidated with this protocol, just local operations have to be executed. Just
update messages are sent through the network. We can also observe that the Conf2
and Conf4 got the best results for response time, as in the workload with objects of 4
bytes. However, the Conf4 presented the smallest response time for the workload of
one object and 20% of writes, because with this configuration and workload, the OO
constraint did not have to restrict many conflicting operations.
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It is important to observe that in the Conf2 and Conf4, the response time for the
workloads with 8 objects and 40%/60% of writes did not present regularity as in the
other workloads. These configurations present smaller response time for 40%/60% of
writes than for 20% of writes. In this case, the number of objects and write operations
are bigger and this decreases the number of conflicting and read operations. So, the
number of messages of invalidation sent is bigger than the messages of objects.

In order to analyze the performance of ROCoM, we need to compare it to each
configuration and/or sequential consistency model individually. As we said in the
proposal of ROCoM, the CCL evaluates the entry parameters, reconfiguring ROCoM
to the best configuration.

Table 2. Speedup, in percentage (%), of the ROCoM performance when compared to each
configuration for the workload of 4 bytes objects

.M etrlFS Response Communication Time Number of Messages Mean
Configurations Time
Confl 69,13 68,2 24,11 53,81
Conf2 0,96 0,93 11,56 4,48
Conf3 69,13 68,2 24,11 53,81
Conf4 15,34 12,8 20,15 16,09
Mean 38,64 37,53 19,98 32,05

In Table 2, we observe that on average, considering all metrics and workloads with
an object size of 4 bytes, ROCoM is 32,05% better than other 4 traditional
consistency algorithms. Note that if we had chosen Conf2 (the best configuration on
average), ROCoM would still be 4,48% better. Now, we analyze another example, in
which the workload is composed of 4KB objects. According to Table 3, on average,
the speedup of ROCoM increases to 36,31%. If we consider only the number of
messages metric, the speedup of ROCoM over Conf2 increases from 3,63% to 9,94%.

Table 3. Speedup, in percentage (%), of the ROCoM performance when compared to each
configuration for the workload of 4Kbytes objects

.M etrlf:s Response Communication Time Number of Messages Mean

Configurations Time
Confl 80,63 80,63 24.5 61,92
Conf2 0,48 0,48 9,94 3,63
Conf3 79,55 76,6 24.5 60,21
Conf4 18,89 18,89 20,65 19,47
Mean 44,88 44,15 19,89 36,31

5 Conclusions

In this paper, we proposed, presented, implemented (in a simulation tool) and
analyzed the performance of ROCoM by simulation. As general conclusions about the
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ROCoM frames, we can highlight: a) Considering the Constraint Frame, the OO
blocks had better performance in the aplications with a bigger number of writes. b) In
the Coherence Protocol Frame, the invalidate eager block presented the better results.

On average, the performance of ROCoM was around 34% (upper bound) better
than the other consistency models for all tested workloads. Using a reconfigurable
algorithm, developers don’t need to create a monolithic algorithm and it is possible to
propose new consistency models.

The main contributions of this paper are: the presentation, implementation and
performance analysis of ROCoM, comparing it with other consistency models for
different workloads. As future works we can highlight: the inclusion of new frames
and blocks in ROCoM; an adaptive CCL; compare ROCoM with other consistency
models, simulation with different workloads and real tests.
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Abstract. This paper proposes a novel scheme, called ER-TCP, which trans-
parently masks the failures on the server nodes in a cluster from clients at TCP
connection level. Connections at the server side are actively and fully replicated
to remain consistency. A log mechanism is designed to cooperate with the rep-
lication to achieve small sacrifice on the performance of communication and
makes the scheme scale beyond a few nodes, even when they have different
processing capacities. The scheme is justified by experiments conducted on
prototype implementation.

1 Introduction

As a reliable point-to-point transport level protocol, TCP has been gaining more and
more users in the Internet nowadays. Years of enhancement and fine-tuning have made
it very efficient and robust. However, it is difficult to tolerate the faults of the TCP
connections and totally mask them from the users, since there are no widely adopted
standards or specifications for that purpose.

Fault-tolerance of the TCP connections is turning increasingly important for many
real applications. For example, many organizations and enterprises enhance their
throughput by clusters, whose availability is usually guaranteed by using a front-end
approach. The front-end approach employs software packages (e.g. LVS [7]) or industry
solutions (e.g. Cisco LocalDirector [5]) as dispatchers to direct incoming TCP connec-
tions to the back-end real servers, and guarantees the service availability by avoiding
new connections to the crashed nodes. However, it does not guarantee the connection
availability, since the connections processed by the failed server will be simply lost.
Therefore the front-end approach may expose clients to connection failures.

In order to solve this problem, many research works [1][3][8][10][11][13][15] have
been conducted in past a few years. FT-TCP [1] uses a logger to record the on-going
connections and reincarnates the connections of the crashed server by replaying the log
on a new server. In this way, the connection sustains and failure could be masked from
the clients. However this solution introduces another single point of failure (the logger).
Furthermore, this fault-tolerance approach is time-costly.

To overcome the shortcomings of FT-TCP, ST-TCP [8], HARTS [10] and so forth
adopt the primary-backup approach to fully replicate and synchronize the TCP con-

* This paper is supported by National 863 Hi-Tech R&D Project under grant No.2002AA1Z2102.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 139 —149, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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nections in the communication among the replicas. The primary-backup approach
masks the failures of server nodes by failing the connections over healthy servers.
However, the ST-TCP approach only tolerates single failure and requires identical
processing speed of the replicas. HARTS and other schemes of this class usually result
in high penalty on the performance of communication.

In this paper, we propose a novel scheme, named as ER-TCP, which combines pri-
mary-backup replication with logging mechanism to achieve fault-tolerance on the server
side TCP connections. The scheme minimizes the performance penalty resulted by rep-
lication and makes itself scale beyond a few replicas so as to tolerate multiple failures.
Moreover, ER-TCP works even when the replicas have different processing capacities.

The paper goes as follows. Section 2 presents the architecture of our scheme. Section
3 briefly surveys the related works. In Section 4, we explain how our scheme works
during the failure free phase. Section 5 addresses the case of failures. Section 6 presents
the results of experiments conducted on the prototype implementation. Section 7 con-
cludes this paper.

2 Cluster Architecture for ER-TCP

For the convenience of discussion, we take the share-nothing cluster architecture
shown in Fig. 1 as the hardware configuration. In this configuration, we consider only
the TCP connections initiated from the clients to the cluster. As shown in Fig. 1, each
server node connects to all the other server nodes of the cluster and the outside world by
a switch or router. The local area network (LAN) used by the cluster supports IP mul-
ticasting as well as point-to-point communication.

Among the server nodes, there is a unique primary server, a unique logger server and
multiple backup servers. Primary server possesses the portal IP address of the cluster.
All the server nodes in the cluster have their own IP addresses (IP1, IP2, ...., IPn),
which belong to a private subnet. Incoming request is relayed to all the backup server
nodes by the primary, and connections running on the server nodes are fully replicated.
To guarantee the reliability, the primary and logger server work together to log the
incoming packets. In case of two server nodes in the cluster, no backup server exists.

In this paper, we assume the network is always available and consider only crash
failures (fail-stop). If the primary server crashes on a fly, the logger server is promoted

Clients

] [oo] Switch/ Router

Portal IP
1P1

Primary Server Logger Server Backup Server1 Backup Server n

Fig. 1. Cluster Architecture for ER-TCP
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as the new primary and one of the backup servers is chosen to be the new logger. The
strategy of failure detection and failover will be discussed in Section 5.

To simplify and facilitate the discussion in this paper, some assumptions are made.
First, we assume the primary and the logger server will not crash simultaneously. This
is reasonable as the possibility for this is very small. We assume that the execution of
the application is deterministic and all copies of the application have identical re-
sponses when processing the same request. We assume the application protocol is in-
teractive. The client interacts with the server with sending requests and obtaining re-
sponses, and it must wait until obtaining the response of preceding request from the
server before sending a new one. Most legacy applications and protocols, which follow
the client/server model, adopt the interactive communication paradigm, e.g., the da-
tabase applications, HTTP, POP and SMTP. We further assume the time consumed by
the server to process a request is evenly distributed. As our scheme can adopt any ex-
ternal failure detectors, we assume the failure detector used in the scheme is perfect,
i.e., satisfies strong accuracy and strong completeness properties [4].

3 Related Works

The objective of HydraNet-FT [11] is to provide fault tolerant services in a completely
client-transparent fashion. To achieve this objective, HydraNet-FT proposed an infra-
structure of dynamically duplicating services over inter-network by replicating TCP
communications. In HydraNet-FT, traditional one-to-one paradigm of TCP is changed
to be one-to-many from the client to the servers and many-to-one from the servers to
the client. At this point, the solution of HydraNet-FT is very similar to ours. But there
are two drawbacks in HydraNet-FT compared with our proposals. First, this scheme
requires modifications of the applications at server side. That means it is necessary for
HydraNet-FT to obtain the source code of the server applications. But this is infeasible
in some cases. Second, HydraNet-FT uses a proxy-like redirector between the client
and the servers to replicate the TCP connections. By this means, the redirector itself
becomes a single point of failure.

ST-TCP [8] proposes an extension of TCP to tolerate TCP server failures. It uses an
active backup server to keep track of the state of TCP connection and takes over the TCP
connection whenever the primary fails. The migration of the TCP connection to the
backup server is completely transparent to the client. The scheme proposed by ST-TCP
is very close to ours. But it has to assume the backup server has the identical response to
every incoming request as the primary, and the buffer of the primary needs further re-
liability guarantee. The scheme tolerates only single failure as it has only one backup.

Over the last decade, many reliable multicast protocols have been designed and
studied, including MTP [2], RMF [14], SRM [6], RTP [9], and so froth. Most of these
protocols target very large scale multicast applications, and brings out lots of chal-
lenging research topics. Some of these protocols are designed for certain applications.
For example, SRM has been designed for large-scale white-board applications, and
RTP for real-time data, such as audio and video, transportation in the Internet. Despite
such tremendous efforts, there is still not a consensus on the standard deployable pro-
tocol for the common multicast applications, especially the medium scale ones.
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4 Failure-Free Phase

In ER-TCP, there are multiple units keeping track of the status changing of the TCP
connection at the server side during the failure-free phase. This requires our scheme to
guarantee the reliability of message delivery among them. Fig.2 illustrates the com-
munication paradigm adopted in ER-TCP.

Connection Management (CM) module of the primary server intercepts all incoming
TCP packets from the client, and after legality check on connections, it relays them to
all the backup servers. We use an IP multicast tunnel to improve the efficiency of re-
laying. The tunnel masks all the details about fragmentation and reassembling so that
the backup servers feel like receiving packets from the clients directly.

In order to synchronize the communication among all the server nodes, conservative
method that requires the primary gather all responses from the backup servers, such as
in HARTS [10], can be used. However, this method decides the speed of communica-
tion by the slowest node within the cluster and thus knocks down the performance of
communication by increasing the latency.

In ER-TCP, the primary server needs only to wait the corresponding responses from
the logger server before it sends its responses back to the clients. The logger server
needs to wait the responses from rest of the backup servers when the establishing and
destroying a connection. For long connections, the logger server needs also to wait the
responses from the backups at each predefined times of iteration (K times, and K = 100
in our implementation). That is, the primary and logger server are strictly synchronized
at the communication, and all server nodes are re-synchronized only at the startup and
termination or at each K times iterations of every connections. If no backup server
exists in the system (i.e., there are only two server nodes), the logger server need no
longer wait for the responses from the backups.

Compared with the conservative method, our scheme improves the speed of com-
munications by two means. First, the primary server does not need to gather all re-
sponses from the rest server nodes, which alleviates the overhead at the primary. If the
primary and logger server are carefully chosen, the slowest node of the cluster will no
longer decide the speed of communication. Second, the backup servers do not need to
send out their responses at all the iterations of the connection, which saves lots of time.
This advantage even permits the group to harbor slower backups.
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However, the scheme raises a new problem to be solved. If a backup server is slower
than the primary and logger server, after some times of iteration, it may lag behind and
lose some requests. In this case, retransmission of the lost request messages is required.
The logger server in our scheme is designed to handle these retransmissions. Buffer
Management module of the logger server (see Fig.2) is designed to log the requests
unconfirmed by the backups. These logged requests are duplicated in the primary to
tolerate faults. Since we have all backup servers synchronized with the primary and
logger server at K times of iterations at each connection, this means the length of buffer
to log incoming requests is K for all connections. However, for the applications serving
large audience, thousands of connections may be established at the same time, and great
quantity of memory will be consumed for logging at the primary and logger server.

Actually, when the primary and logger server process the requests, the backup
servers process the requests also. Therefore, logging all request messages is not nec-
essary. The most ideal solution is to log only the request messages that will be required
for retransmission by the backups. But without accurate knowledge about the request
processing progress on the backups during the fly, the size of the logging buffer has to
be predicted. The predicted size should be smaller than K to alleviate the load for log-
ging and larger than the number of requests required for retransmission so as to make
the scheme safe. In this paper, based on the evenly distributed request processing time
assumption, we design a method to predict the logging size.

In order to explain the method, a quantity analysis on the communication is needed.
Let T, be the average time required for the client to process a response from the
primary server, T,qn be the average time required for the primary to process a re-
quest, Ty, be that of the logger server, and Ty, be that of the slowest backup. Let
Thacker_sena De the average time required for the kernel to send a TCP/UDP packet,
Thacker_receive D€ that for receiving, Tiyumer_sens b€ that for the kernel to send an IP multi-
casting tunnel packet, Ty e receive D€ that for receiving. For convenience, we ignore the
time spent by a packet on the wire, as it is comparably small.

As we have assumed that the pattern of communication is interactive, the interval for
which two requests arrive at the cluster (Intervals,,;.) should equal to the message
Round Trip Time (RTT) between the client and the cluster. If we assume both the re-
quest and the response could be contained in single packet, the interval of request ar-
riving can be expressed in the Equation 1:

IntervalArriveQRRTcliem-clmterw client + 2 X (Tpackerfsend + T‘packetjereive) + Ttunnelﬁxend (1)
+ MAX(Tprimw}' ,Ttunrwl_re(feive + Tlu,gger + Tpa(fket_send)

For the backup servers, they receive requests via the IP multicast tunnel from the
primary server. This means the rate of request arriving should be I/Intervaly, ;. at all
backup servers. The server utilization rate of the slowest backup server can be ex-
pressed in Equation 2:

Putilization = Tharkup/lntervalArrive (2)

Increasing the utilization rate of the slowest backup server means it becomes busy
and this may results in losing request messages. In this case, some request messages
should be logged at the logger server for retransmission, and this requires the logger
server to retain the queue of unprocessed requests that should originally be kept by the
slowest backup itself. According to the queuing theory, the length of logging buffer
(defined as L,.,.) should be:
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Lqueue = putilizati(m2/(]'putilizati(m) (3)

In order to guarantee the reliability, our scheme expands the logging buffer with a
“margin of safety” M (M = 10 in our implementation). The length of logging buffer at the
primary and logger server of our scheme, defined as Ly, can be expressed in Equation 4:

Lhu]f'fer = Lqueue +M (4)

The upper bound of the buffer length for logging is K, so if L, turns greater than
K, it will be set to be K. According to the queuing theory, inequality 5 should be satis-
fied, if the system is called “stable”. However, in ER-TCP, the server nodes get to be
re-synchronized after a certain number of iterations, so the inequality results in only
increment at the length of buffer needed at the logger server and the latency on com-
munication.

Tharkup < IntervalArrive (5)

It is possible that the backup server undergoes a load surge during the fly, and loses
more requests than that can be retransmitted from the primary or logger server. In this
case, we have the backup server dropped from the group. The primary and the logger
server get to know the process capabilities of all the nodes in the cluster via the
heartbeat messages, which will be discussed in the next section.

5 Handling Failures

Our scheme adopts heartbeat as the failure detector. A thread built within the OS kernel
of each server node periodically (interval = 1 second) multicasts a heartbeat message to
the group. The heartbeat message also contains local information, i.e., node ID number
and the processing speed, to differentiate each other and facilitate further deci-
sion-making (such as group management, predicting buffer size for logging and
failover). If one of the server nodes cannot receive heartbeat message from another for
a specific interval (failure detection interval), the latter is suspected to be dead by the
former. The failure detection interval is set to be 4 seconds in our implementation.

Although the heartbeat failure detection cannot be proven as a perfect failure de-
tector as we have assumed, it is practically feasible. Since we use kernel threads to
multicast the heartbeat messages, this method can guarantee the emission of these
heartbeat messages even the server node is busy. Furthermore, in LAN environment,
the possibility of a message to be continuously dropped for 4 times is very small. As the
processing capacities of server nodes are piggybacked in the heartbeat messages, at the
startup of the system, the fastest two nodes of the group will be chosen as the primary
and the logger server. The system administrator can also define the roles in advance.

The failures we consider in this paper include those of the primary, the logger, and
the backup servers.

1. The Failure of Primary Server

If the primary crashes, a round of adjustment will be started among the remaining
healthy nodes. The logger server will be promoted to be the new primary, and at the
same time, the fastest backup server will win the election to be the new logger server.
Portal IP address will be bound at the NIC of the new primary server, and serials of
gratuitous ARP packets will be broadcasted to facilitate the IP takeover. After that, the
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entire logging buffer content will be copied from the new primary server to the new
logger server. As we assume the primary and logger server will not crash simultane-
ously, the logged requests will not be lost. With the help of the retransmission mecha-
nism of TCP, current requests of the clients arrive again at the new primary.

2. The Failure of Logger Server

If the logger server crashes, the primary server will appoint the remaining fastest
backup server to be the new logger server. The entire buffer content will be copied from
the primary server to the new logger server.

3. The Failure of Backup Server

It is also possible that some of the backup servers crash during the fly. After getting
to know that, all the remaining healthy servers will proceed to get rid of all the related
information of that crashed backup server within all the connections.

6 Performance Evaluation

We implement ER-TCP in a four-node cluster for evaluation. Section 6.1 will present
and analyze the penalty on communication. In section 6.2, we will analyze the overhead
put on the CPU of both the primary and the logger backup during the communications.
In section 6.3, we will discuss the length of the logging buffer in different cases.

The server nodes of the cluster are PCs running Redhat Linux of kernel version
2.4.7-10, with hardware configuration of Intel Pentium IIT 1GHz CPU, 516MB Mem-
ory and 100Mbps 3COM 3c59x NICs. Client is a PC running Windows 2000 profes-
sional (service pack 4), with hardware configuration of Intel Celeron CPU running at
1.7 GHz, 516MB Memory and RTL8139A NIC. A 3COM 100Mbps switch is used to
connect all these PCs.

6.1 Communication Penalty

In Fig. 3, we compare the performance of TCP connections by ER-TCP with that of
standard TCP. The performance is evaluated by Netpipe-2.4 [12] with different number
of replicas. The round trip time (RTT) between the client and the cluster is used to
demonstrate the latency of communication.
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g 2 1
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Fig. 3. Communication Performance
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From Fig.3, we can see that when there are two server nodes in the cluster, the la-
tency increases about 15% compared with that of standard TCP. The increment of la-
tency is incurred by the time paid at sending message via IP Multicast tunnel and
waiting for the responses from the logger server as discussed in Section 4.

When the number of server nodes increases, the latency turns higher than that when
there are two servers. The increment is resulted for more time will be spent on
re-synchronization all of the backup servers. But if we compare it with the latency
when there are two servers, we can find that the increment is very small. This is because
IP multicast tunnel is used to relay the incoming request message, and this greatly
improves the efficiency of relaying. Moreover, the primary server of ER-TCP does not
need to gather all responses from the backups to send the final version to the clients.
This means that ER-TCP can scale beyond a few nodes without imposing very high
penalty on communication.

Table 1 compares the announced performance penalties between ER-TCP and other
schemes.

Table 1. A Comparision of the Announced Perforamnce Penalties between ER-TCP and Other
TCP Fault-tolerance Schemes

Scheme Design Choice Announced Penalty
FT-TCP Logging 28%-76%
HotSwap Active Replication 54.3%

HydraNet-FT Active Replication 50%-90%

HARTS Active Replication 30%
ST-TCP Active Replication below 5%
ER-TCP Active Replication + Logging 15%

From Table 1, we can see that ER-TCP achieves a small penalty on communication
performance. Although ST-TCP even has smaller penalty, it can tolerate only single
failure and requires the primary and the backup server have same processing capacities,
which is difficult to be satisfied in the real world.

6.2 CPU Load

In order to evaluate the overhead on the server nodes during communication, we record
the CPU load status when the size of packet being exchanged between client and the
server varies. In this paper, we concentrate our discussion on the overhead of the pri-
mary server and the logger server.

The CPU load status of primary server under different cluster configurations is il-
lustrated in Fig. 4. In this figure, the CPU load is calculated by using the formula of
1-1dleCPUTime/Total CPUTime, and this method is also used in Fig.5.

From Fig.4, we can observe that compared with that of single server node (standard
TCP), heavier overhead is put on the primary server when the cluster has more than one
server node during the communications. This is because the primary server of ER-TCP
is in charge of relaying all incoming packets, and gathering the response packets from
the logger server (synchronization), while the speed of communication is close to that
of standard TCP (see Fig. 3). However, when the number of server nodes in the cluster
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continues to increase, the overhead put on the primary server does not increase very
much. This is because in ER-TCP, the primary server does not need to handle the re-
sponses from the backup servers.

The CPU load status of logger server under different cluster configuration is shown
in Fig.5. From Fig.5, we can observe that in a 2-nodes cluster (primary plus logger
server configuration), the logger server has even lighter overhead than the standard
TCP during the communications. This is because in such a cluster, the speed of com-
munication is slower than the standard TCP (see Fig.3), and thus consumes less CPU
resources. However, when the number of backup server nodes in the cluster increases,
the overhead on the logger server grows. This is because the logger server is in charge
of gathering the response packets of these backup servers (synchronization) and han-
dling the requests of retransmission. Nevertheless, the size of growth is small, which
can be told from Fig.5.
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Considering Fig.4 and Fig.5, we can conclude that in ER-TCP, both primary and
logger server will not be heavily loaded even the cluster scales beyond a few nodes.

6.3 Buffer Size

In order to evaluate the logging mechanism discussed in section 4, we set up a program,
which works in a ping-pong model, for experiments. The client side program sends a
request to the six-node cluster immediately after it received a response, and vice versa
for the server nodes of the cluster. The sizes of both the requests and responses are
1KB, and the iteration lasts for 10000 times. By doing this, we have:

Tcliem ~ Tprimary ~ Tlogger :Tbackup ~ O (6)

We measure the arrival rate of requests, that is, the RTT between client and the
cluster as in Equality 1. By repeating 5 times we have the average:

Inter‘}alArrive ~ Rﬁ(rlient_cluster = 1.1438 (ms) (7)

After that, we increase the processing time required (7,qp) Of the server side pro-
gram at one of the backups by placing an artificial delay in each loop. In this way, the
slowest backup server is imitated, and its server utilization rate could be calculated by
using Tpgenp/Intervaly,.,.. At different values of utilization rate, we compare the
number of retransmitted requests in the experiments and the predicted value of Equa-
tion 4 in Table 2.

From Table 2, we find that the number of retransmitted requests in the experiments
is always smaller than that of predicted by Equation 4. This means the strategy we use
to save the buffer at the primary and logger server is safe, although it wastes some
memory.

Table 2. Buffer Length under Different Backup Utilization Rate

T, Utilization Rate | Retransmitted requests | Predicted Buffer Length

backup
0.915 80% 2 3+10
1.023 90% 7 8+ 10
1.087 95% 12 18+10
1.121 98% 31 48+10
1.144 100% 39 100

7 Conclusions

In this paper, we propose a scheme, called ER-TCP, to tolerate failures happened
at the TCP connections at the server nodes of cluster by having them fully replicated
among the server nodes. The scheme can be implemented in the kernels of the server
nodes so as to be transparent to legacy applications. To justify our design, we conduct
experiments on the prototype implementation based on the ideas of the proposed
scheme, and find that the scheme imposes small penalty on the performance of com-
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munication. Logging mechanism is designed in ER-TCP to synchronize slower server
nodes and guarantee the reliability. The strategy plotted to save the buffer size for
logging is proven to be safe by experiments.
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Abstract. In this paper, we propose efficient routing algorithms for 2D
torus with possible large number of faulty nodes. There is no presump-
tion on the number and the distribution of faulty nodes. The proposed
algorithms find a fault-free path between any two nonfaulty nodes with
high probability in linear time by using only the local routing information
of the network. The results of our empirical analysis through simulations
show that the algorithms can find a fault-free path between any two non-
faulty nodes with high probability. For example, in a torus of size up to
128 %128, where, the number of faulty nodes up to 15%, the heuristuc-
square routing algorithm finds a fault-free path with a probability of 90%
or higher. The experimental results are impressive for 2D torus with only
four links per node.

1 Introduction

The two dimensional mesh/torus has constant node degree, recursive structure,
simple communication algorithms, and good scalability. Due to these attrac-
tive properties, the mesh/torus has been the common interconnection network
for several commercially available parallel computers, such as MPP (Goodyear
Aerospace), Paragon (Intel), Victor (IBM), AP3000 (Fujitsu), and Toroidal Net
(IRECE), Alpha 21364 [9].

A 2D mesh can be laid out on a VLSI chip in an area that increases linearly
with the number of processors. Since the implementation of 2D mesh uses short,
local links only, it is possible to perform communication at very high speed. A
2D torus has wraparound links. However, the method of folding can be used to
lay out a 2D torus in such a way that it uses only short, local links too.

In this paper, we focus our designs on 2D torus. However, the ideas used in
the proposed algorithms should be applicable to higher dimensional torus. The
2D torus has been and will continuously be a popular interconnection network for
high-performance parallel computers due to its high bandwidth nearest neighbor
connectivity for efficient computation and fast communication in many scientific
applications.

Fault-tolerant routing is a dominant issue facing the design of interconnection
networks for large-scale parallel computers [10]. There are many fault models
used for designing fault-tolerant routing algorithms [1][2][3][6][7][8][11][12][13].

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 150-161, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Some of these algorithms set conditions on the number of faulty nodes or the
shape of faulty components. Others use global fault information (off-line) or
partially global information. Chen et. al [4][5] introduced the concept of local-
subcube connectivity for hypercubes. In this paper, we develop fault-tolerant
routing algorithms on 2D torus using local information only (on-line), and allow
arbitrary number of faulty nodes with no restriction on the shape of the faulty
nodes (blocks). Our algorithms find a fault-free path between any two non-faulty
nodes with high probability in linear time.

The rest of this paper is organized as follows: In the next section, we give
necessary definitions used throughout the paper. We also show a theorem that
is a theoretical ground of the proposed routing algorithms. In Sections 3, 4,
and 5, respectively, three fault-tolerant routing algorithms are proposed on 2D
torus with possible large number of faulty nodes. In Section 6, simulations are
performed and the results are analyzed and discussed. Finally, in the last section,
we conclude this paper with some remarks.

2 Locally-Safe Torus

A kD n-torus T¥ has k dimensions, n nodes per dimension, and N = n* nodes.
Each node is uniquely indexed by a radix-n k-tuple. Each node is connected via
communication links to two other nodes in each dimension. The neighbors of
node s = (sg,...,8k—1) in dimension i are (Sg,...,8i—1,8; £ 1, 8i41,...,8k—1),
where addition and subtraction are performed modulo n. For simplicity, through-
out this paper, all arithmetics on the indices of nodes in a given torus should
be modulo n implicitly. The distance between two nodes s and t in T is
d(s,t) = Zi:ol min(|s; — t;|,n — |s; — t;]). In this paper, we work on 2D torus
only. For simplicity, we use term T, instead of T2, to denote a 2D n-torus if no
confusion arises.

For a given node s = (sg, s1) in T, we denote its two neighbors in dimension
i by st and s'~, respectively. For example, s%* = (5o + 1, s1) and s~ = (59 —
1,51). An m-square M2, or simply M, in a 2D torus 7 is a subgraph of T, and
M is a 2D mesh of width m (m nodes in each dimension). T is locally-m-safe if
the following conditions are satisfied:

1. for every m-square M in T', the subgraph formed by all nonfaulty nodes in
M is connected, and

2. every boundary line segment of an m-square in 1" contains at least one non-
faulty node.

If there exists an integer m, 2 < m < n, such that T is locally-m-safe then we
say that T' is locally-safe. The following theorem shows that local-safety implies
connectedness of T'.

Theorem 1. If a 2D torus T is locally-safe then T is a connected graph.

Proof. Let s = (sg,s1) and t = (t9, 1) are two nonfaulty nodes in T'. Without
loss of generality, we assume that s; < t; for i = 0, 1. We also assume that s
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and s°~ be the neighbors of s on dimension 7 such that st is the neighbor of s
closer to t, that is, d(s*,t) = d(s,t) — 1. Since T is locally-safe there exists an
integer m, 2 < m < n, such that T is locally-m-safe. Let P = (s — t) be the
shortest path from s to ¢ constructed by the dimension-order routing (routing
along dimension 0, and then dimension 1). We construct an L-shape chain of
width m that contains the path P as shown as in Figure 1.
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OO0 0000O0D 0|0
O000000Dp0U®
omomenenenolle
‘Oogogo

odo O

O00000000O0
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Fig. 1. Routing in chains

Let P = Py U Py, where Py and P; are the line segments s — uw and u — ¢
along 0 and 1 dimensions, respectively, where u = (ug, u1) = (o, $1). The chain
contains chg, and chy defined as follows:

1. chg ={v €T |sp < wg < tp, and s; — |[m/2] <wv; <514 [m/2] —1; and
2. chy ={veT|u—|m/2| <v <ty and ug— [Mm/2] < vy <ug+[m/2] —1.

Consider chg as a sequence of m-squares M;,0 < i < p, where p = [(tg —
s0)/(m —1)], such that

1. Ly = M;_1 N M;, 1 <1i < p, are line segments of length m — 1 and chg C
Ui o M;;
2. s € My and u € M,,.

Let L, = {v € cholvg = uo}. Obviously, we have L,, C M,,. Since T is locally-
m-safe, there exist nonfaulty nodes v* € L;, 1 <1i < p, v’ € L, and fault-free
paths: (s — v') C My, (v! — v?) C My,..., (P~ — vP) C My_q, (vP — u') C
M,,. Then, the path (s — v! — v%... — vP — o) is the fault-free path from s
to u’. From the definition of chy, we have u’ € ch;. By the similar argument, we
can find a fault-free path in ch; from u’ to t. Therefore, s and ¢ can be connected
through the fault-free path s — u’ — t. We conclude that T is connected. o
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The proof of the theorem is a constructive one. It provides the necessary
background for our first fault-tolerant routing algorithm to be presented at next
section.

3 Chain Routing Algorithm

For practice, we do not presume that 7' is locally-safe. The number of faulty nodes
or its distribution is arbitrary. Our routing algorithms are local-information-based:
no global information about the situation of the network is needed. If T is locally-
m-safe then from theorem 1, the algorithm will generate a fault-free path. Other-
wise, it will either generate a fault-free path or report a failure.

The algorithm follows the constructive proof of theorem 1. A chain of meshes
with width m that contains the shortest path P is used for the fault-tolerant

Algorithm 1 (Channel Routing(Th,m, s,t))

Input: 2D n-torus Ty, width of local mesh m, source node
s = (80, 81), and destination node ¢t = (to,t1)

Output: a fault-free path P = (s — t) or report failure

begin
P=9¢;
T =8;
dirg = diry = 1; /* determine routing direction */

if (O <rg—to < ’I’L/Q) OR (0 <top—1ro0 > n/2) dirg = —1;
if(0<ri—t1 <n/2) OR (0<t; —r1 >n/2) diry = —1;

for i =0,1 do /* for each dimension i */
/* determine mesh boundaries of ¢ and j dimensions */
j=(i+1) mod 2; /* dimension j */
bj = (rj — dir; + n) mod n; /* [bj, B;] in dimension j */

Bj = (r; + (m —2) x dir; + n) mod n;
while r; # t; do
/* determine mesh boundaries of ¢ dimension */
bi = 14 /* [bi, B;] in dimension i */
B; = (ri + (m — 1) X dir; + n) mod n;
if ¢ is in mesh
if there is a fault-free path P’ = (r — t) in mesh

P=PUP,
return P; /* path constructed */
else return failure; /* failed */

else
if there is a fault-free path P’ = (r — r’) in mesh
such that (rj = B;) OR (r; = t;)

P=PUP;
r=r'; /* continue */
else return failure; /* failed */
endwhile
endfor

end
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routing. While routing from source s to destination ¢, the path is allowed to
move inside the chain through a sequence of squares as specified in the proof
of theorem 1. However, for routing with higher successful routing rate, we con-
struct the chg such that, for any v € chg, d(vi,t1) < d(s1,t1) + 1. The chy is
constructed similarly. The details are specified in Algorithm 1. We call this al-
gorithm Chain Routing (see Algorithm 1). The rate of successful routing of the
algorithm will be analyzed empirically and the simulation results will be used to
compare with that of the other routing algorithms proposed in this paper.

In Algorithm 1, we route source node s = (sg, $1) to destination node ¢t =
(to,t1) through an L-shape chain. The chain is divided into a sequence of m-
squares. A square is uniquely determined with two nodes: b and B, as shown as
in Figure 2.

dir t. t.

B ———_—

B B

Fig. 2. Boundary of square (m = 5)

If routing in the first part of the chain succeeds, a node r = (tg,r1) will
be reached where r; is in the line segment bounded by by and By. The path
(s — r) may goes through many squares. To route in an m-square, we can use
any search algorithm, depth-first search (DFS) or breadth-first search (BFS)
algorithm for instance. If two parts of the chain are routed successfully, a fault-
free path (s — t) is found. Whenever the routing in a square fails, the algorithm
reports a failure and terminates. Assuming that the local routing inside a 2D
m-mesh takes constant time, the algorithm runs in O(n) time. We summarize
these results into the following theorem.

Theorem 2. The Chain Routing algorithm will terminate in O(n) time. When
the algorithm terminates, it either generates a fault-free path from s to t or
reports that the path cannot be found.

4 Adaptive-Square Routing Algorithm

In this section, we describe another local-information-based, fault-tolerant rout-
ing algorithm, called Adaptive Square Routing. The idea is as follows. Instead of
arranging the sequence of m-squares as an L-shape chain, a sequence of squares
is found recursively such that the routing direction of each square should be
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along the dimension ¢ such that the distance d(r;,¢;) is a maximum, where r is
the new source node after a local routing. Intuitively, the sequence of squares is
arranged to contain a ladder-shaped shortest path that might have many turns,
Each square will adapt itself such that the new source node r and the path
segment along dimension i are inside the square (not at the boundary of the
square).

CNONONONONGC)

CHONONONONCORONONONG

O OO0O0
O OO0O0
O OO0O0
CHONORONG

Fig. 3. Routing with Squares

To describe the algorithm, we need a notation to show the position of an
m-mesh inside T'. Referring to Figure 3, we associate each node r in T' with a
unique m-square M, to be used by the algorithm. The M, is determined by two
nodes b and B, representing the lower-leftmost node b and an upper-rightmost
node B of the two boundary lines along the routing direction.

More precisely, let i be the current routing direction, and dir; be the unit
direction (4+1 or —1) of the shortest path along dimensions j. Then, we have
b =r; and b; = r; —dir;, B; =1; — (m—1) x dir; and B; = rj — (m —2) x dir;
(all arithmetics are modulo n).

The proposed recursive algorithm is similar to that of the chain approach.
The difference is that the square is adaptable in all dimensions instead of just
in the dimension of the chain. Let » = s. The algorithm first determines the
routing dimension ¢ and the local m-square M,., and then performs local rout-
ing in M, that routes node r to a nonfaulty node r’, a node located at the
opposite boundary line of M, from r along the ith dimension. If the local
routing r — 7’ successes then we consider r’ as a new source r and route
from r recursively. If the local routing fails, the algorithm terminates unsuc-
cessfully and reports a failure. The algorithm is formally specified as in Algo-
rithm 2.
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Algorithm 2 (Adaptive Square Routing(T,,m, s,t))

Input: 2D n-torus T, width of local mesh m > 3, source node
s = (80, 81), and destination node ¢t = (to,t1)

Output: a fault-free path P = (s — t) or report failure

begin
P =¢;
r=s;
while r # t do
dirg = diry = 1; /* determine routing direction */
if (0<ro—to<n/2) OR (0 <to—rg>n/2) diro=—1;
if (0<ri—t <n/2) OR (0 <ty —r1 >n/2) diry = —1;
Find the dimension 4 so that the distance between r; and ¢;
d(ﬁ, ti) = max(d(ro, to), d(?"1, t1));
/* determine mesh boundary [b, B], referring to Figure 3 */
j=(i+1) mod 2; /* dimension j */
bi =13 /* [bs, B;] in dimension i */
b; = (rj — dir; + n) mod n; /* [bj, B;] in dimension j */
B; = (ri + (m — 1) x dir; + n) mod n;
B; = (rj + (m —2) X dir; +n) mod n;
if ¢ is in mesh bounded by [b, B]
if there is a fault-free path P’ = (r — t) in mesh
P=PUP,
return P; /* path constructed */
else return failure; /* failed */
else
if there is a fault-free path P’ = (r — r’)
in mesh such that (r; = B;) OR (r] = t;)
P=PUP,
r=r'; /* continue */
else return failure; /* failed */
endwhile
end

Next, we show that the algorithm will terminate in O(n) time, and either
finds a fault-free path from s to t or reports a failure.

Theorem 3. Adaptive Square Routing algorithm terminates in O(n) time, and
either outputs a fault-free path from source s to destination t or reports a failure.

Proof. We first show that, for m > 3, the local routing always makes progress
toward destination t. Since the box M, for node r is constructed in the way that
the farthest upper node B is toward to ¢. That is, B = (r;+(m—1) xdir;, 7+ (m—
2) x dir;). The worst case is that r is routed to v’ = (r;+(m—1) x dir;, r; — dir;).
Since d(r,t) —d(r',t) = (m —1) =1 =m —2 > 0 for m > 3, the local routing
always makes progress toward t. Therefore, the algorithm will terminate after at
most O(n) local routings. For a fixed m, the running time of the local routing
is a constant. Therefore, the total running time of the algorithm is O(n). o
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5 Heuristic-Square Routing Algorithm

In this section, we make an effort to improve the performance of Adaptive Square
Routing algorithm by allowing the routing to continue when the local routing
along the dimension of the longest distance, say i, fails. In the new algorithm, the
routing continues by trying the local routings in the squares set along the other
dimension when the distance between r and ¢ along that dimension is nonzero. If
the distance between r and ¢ along the other dimension, say j, d(rj,t;) < m —1
then the local routing will route r to 7/, where d(r;, ;) = d(r;, ;). Once the local
routing along the dimension j successes, the square constructed for the new source
should be arranged along dimension ¢ again. The algorithm that adds this heuris-
tic strategy to the Adaptive Square Routing is called Heuristic Square routing. In
the next theorem, we show that Heuristic Box routing works.

Theorem 4. Heuristic Square Routing algorithm terminates in O(n) time, and
either outputs a fault-free path from s to t or reports a failure.

Proof. In the new algorithm, we continue to route along dimension j when the
local routing along dimension 4 fails. The local routing along dimension j might
not make progress when d(r;,¢;) = 1 and d(r’,t) = d(r,t). However, the next
local routing will be along dimension ¢ and make progress as shown in Theorem
3. Therefore, the number of local routing in the new algorithm is at most twice
of that of the adaptive-square routing algorithm. For fixed m, the running time
for the local routing is a constant. Therefore, the running time of the algorithm
is O(n). o

6 Simulation Results

We have performed a set of simulations on the performance of the proposed
algorithms. For the experiments concerning the sizes of the 2D torus and the
local squares used, we divide the values of the parameters n and m into two
groups. In the first group, we set n = 16, 32 and m = 3, 4, 5, while in the
second group, n = 64, 128 and m = 6, 7, 8. That is, the size of the m-square
used for local routing is larger in the second group than that in the first group.
In any case, the values of m is still small compared with the values of n. For the
performance of each routing algorithm, two figures (one per group) are used to
show the successful routing rate and/or improvement of the algorithm. For the
fault model, we use uniform distribution of node failures. The number of faulty
nodes generated range between 5% and 25% with a 5% increment. For each
case, we simulate 10, 000 times. The simulation results of the successful routing
rate, improvement, and the length of the routing path for the set of parameters
specified above are shown in the figures below.

Figure 4 and Figure 5 plot the successful routing rate of the simplest algo-
rithm, Chain Routing, where the two numbers in brackets in the figures are n
and m, respectively. We can see that for a given n, increasing m improves the
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successful routing. On the other hand, for a given m, routing in a small torus
has higher successful routing rate than that in a large torus.

Figure 6 and Figure 7 show the successful routing rate of the Adaptive Square
Routing algorithm. Figure 8 and Figure 9 show the performance improvement of
the adaptive-square algorithm compared to that of the chain algorithm. From the
figures, we conclude that the adaptive-square approach is better than the chain
approach in most of the cases.

The improvement in Figure 8 and Figure 9 is defined as

Successful routing rate of adaptive-square algorithm
Successful routing rate of chain algorithm

When n is small and m is large, n = 16 and m = 4 for instance, the adaptive-
square algorithm is not much better than the chain algorithm. However, when
m is smaller, especially as n increases, the improvement of the adaptive-square
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algorithm grows faster. As an example, when the number of faulty nodes is
25%, the improvement are about 1.2 and 1.3 for n = 32, m = 3 and n =
128, m = 6, respectively, in two groups. For fixed n, using a larger square will
have a better performance with a cost of increasing time complexity at a rate
proportional to m?.

Figure 10 and Figure 11 display the path plus of the adaptive-square algo-

rithm, which is calculated by

Path length of P = (s — t)

Path plus =
P Distance between s and ¢

Figure 12 and Figure 13 plot the successful routing rate of the heuristic-
square routing algorithms. Figure 14 and Figure 15 depict the improvement of
successful routing rate gained by using the heuristic-square routing algorithms
to that of the adaptive-square algorithm. From the figures, we conclude that the
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improvement of the heuristic-square routing over the adaptive-square is signif-
icant. For example, when the number of faulty nodes is 25%, the improvement
are about 1.7 and 1.85 for n = 32, m = 3 and n = 128, m = 6, respectively,
in two groups. It is worth to adopt the heuristic-square routing algorithm when
the probability of faulty nodes is high.

7 Conclusions

In this paper, we first presented a concept of local-safety for a kD n-torus.
Then, we proposed two different approaches for fault-tolerant routing in a 2D n-
torus with possible large and arbitrarily faulty nodes. The algorithms are online
(only local information is used) and efficient (O(n) time assuming that the local
routing is O(1)). The simulation results show that the rates of successful routing
of the algorithms are quite high considering that there are only four links per
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node in a 2D torus. The possible directions of the further research include 1)
Provide theoretical analysis on the performance of the proposed algorithms;
and 2) Investigate the practical issues (e.g., deadlock-free) while implement the
proposed routing algorithms on certain switching models.
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Abstract. Replication is a widely used technique for providing high-availability
and fault-tolerance of critical services. Multithreaded implementation of ser-
vices presents a challenge to the replication technique, since managing the exe-
cution order of the threads on different replication sites for consistency purpose
is not a trivial task. This paper presents a middleware that transparently support
reliable web services built on active replication. The middleware is responsible
for maintaining the consistency of the replicas’ states. It also handles issues re-
lating to multithreaded implementation of web services.

1 Introduction

Web services are self-contained, modular applications that can be located and invoked
over the Internet [2]. As more and more applications are built on web services, pro-
viding reliable web services is becoming an important issue [4]. Replication is a
widely used technique for providing high-availability and fault-tolerance of critical
services. Multithreaded implementation of services presents a challenge to the replica-
tion technique. This is because the executions of threads are normally scheduled by
the operating system or Java virtual machines. Thus, managing the execution order of
the threads on different replication sites for consistency purpose without modifying
the operating system or Java virtual machine is not a trivial task. This paper presents a
middleware that transparently supports reliable web services built on active replica-
tion. The middleware is implemented in Java and does not require any change to op-
erating system kernel.

The rest of the paper is organized as below. §2 presents the middleware. §3 shows
the performance of the middleware. A conclusion is given in §4.

2 The System

Passive and active replication are commonly used replication techniques [1]. In active
replication, services are replicated on several sites. A client sends its request to all
replica sites, which all handle the request and send back the response to the client.
Compared with passive replication, the advantage of active replication is its speedy
recovery from failure. This is because, as long as the client receives one reply, the
client can carry on with its task. The other advantage of active replication is that it
provides the potential to balance the workload across the system. This is because
some operations, e.g. retrieving a file, do not need to be carried out on all the replica
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sites. Thus, for this kind of operations, the client only needs to send its requests to a
subset of all the sites in the system as long as there is a high probability that the client
will get at least one response from the sites in the subset. Due to these advantages of
the active replication, it is used in our system.

Sending a client’s request to all replicas is equivalent to multicast the request to all
replicas. Multiple clients might send requests to replicas simultaneously. To ensure
that the replicas’ states are consistent, a fotal order is needed when multicasting cli-
ents’ requests to the replicas. Total order means all requests are delivered to the repli-
cas in the same order even if the senders of the requests are different. The system in
this paper uses the TOPBCAST multicast protocol [3]. The protocol ensures the total
order of multicast messages. It also guarantees message delivery in the presence of
message loss and site failure.

2.1 An Overview of the System Model

To provide reliable web services, the system uses the active replication technique.
Services specified in a WSDL file are replicated at several sites. Each replica consists
of two entities: a proxy web service site (PWSS) and a web service site (WSS). The
WSS is a conventional web service provider. It hosts the code and data that provide
the functionality of the web services. The PWSS is a middleware between clients and
the WSS. It is responsible for ensuring the consistency and coping with failures of its
corresponding WSS. Clients interact with the PWSSs. A client only needs to send its
service requests to one PWSS. The PWSSs are responsible for multicasting clients’
requests to other replicas and returning results to the clients. To maintain the consis-
tency of the WSSs’ states, the PWSSs must ensure that all clients’ requests are exe-
cuted on the WSSs in the same order. The replicas form a group, called service group.
Fig. 1 shows a conceptual diagram of the system.

client

client

Fig. 1. A Middleware for Replicated Web Services

The system provides a Java package, RWS, which includes classes for handling the
interactions between a client and a PWSS. Programmers can use the package when
writing client applications. With these classes, the client views a service group as a
single web service site. When a client sends a service request, say m, m is sent to a
PWSS. The PWSS multicasts m to all the other PWSSs using the TOPBCAST proto-
col. As a result, m can be executed on all replicas. Since the TOPBCAST protocol
ensures total order of all clients’ requests, the PWSSs forward m to their corresponding
WSSs in the order determined by the protocol. The WSSs return the responses to m to
their corresponding PWSSs. If a PWSS receives m from a client directly, the PWSS
sends the response to the client. If m does not come from a client directly (i.e. m is
received from another PWSS in a multicast), the PWSS stores the response in its buffer
in case the response needs to be sent to the client in the presence of a system failure.
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2.2 Controlling Multithreaded Web Services

A multithreaded web service implementation means, when a web operation is called,
multiple threads are created to carry out the task implemented by the web operation.
When multithreading is used to implement web services, in order to ensure the consis-
tency of the replicas’ states, the replicas need to agree on the execution order of some
of the threads. For example, assume that a web service is replicated on two sites S
and S,. During the execution of a web operation, two threads, say T, and T, are cre-
ated on both S; and S,. If T} and T, modify shared data items, S, and S, should ensure
that T, and T, are executed in the same order on both sites. Otherwise, the states of S;
and S, might become inconsistent.

Instead of modifying the OS kernel or Java virtual machine, a scheduler is devel-
oped to control the execution of the threads. The scheduler resides on each WSS.
Before a thread starts its execution, it registers with the scheduler asking the scheduler
schedule its execution. The schedulers on the WSSs use a timestamp-based algorithm
to reach an agreement on the order in which the threads should be executed. Once an
agreement is reached, the schedulers instruct the threads execute in the agreed order.

T 0 <<interface>> RThread <<interface>> <<interface>>
VRN SG1 . SG2 SG3
Ty Ty A A

~ | ] - _— T L
T, T, T | ‘ ‘ ‘
3 4 03 TI ™ T4 T3 T5
(a)
(b)

Fig. 2. Thread Trees and Scheduling Groups

2.2.1 Scheduling Threads

A web operation might create several threads, which in turn might spawn other
threads. Thus, the execution of a web operation might result in many threads being
created. Fig. 2(a) shows a thread tree. Each node represents a thread. The child node
in the tree represents a thread created by its parent node. The executions of a set of
threads only need to be ordered if the threads share data. Thus, threads are divided
into several scheduling groups. Threads in one scheduling group all share the same set
of data items. One thread can only belong to one scheduling group. Threads in the
same scheduling group must be executed in the same order on all sites. Threads from
different scheduling groups can be executed in any order.

When a thread registers with a scheduler, the scheduler needs to find out which
scheduling group the thread belongs. To enable the scheduler to discover a thread’s
scheduling group, programmers are required to (a) define Java interfaces representing
scheduling groups (these interfaces are called scheduling interfaces), and, (b) make
the thread in a scheduling group implement the corresponding scheduling interface.
For example, in Fig. 2(a), assume that there are three scheduling groups SG;, SG, and
SG;. The three groups are represented by interfaces SGI, SG2 and SG3 respectively.
T, belongs to SG,. T, and T, are in SG,. SG; consists of T; and Ts. The hierarchy of
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the classes representing the five threads is shown in Fig. 2(b). When a thread registers
with a scheduler, the scheduler uses Java reflection API to discover which scheduling
group the thread belongs to and schedules the thread accordingly. To facilitate the
scheduler to identify the scheduling interfaces, the names of the scheduling interfaces
must have prefix SG.

When a thread, say 7, registers with a scheduler on a WSS, the scheduler assigns a
local timestamp, which is greater than the timestamps of all the threads already
known by the scheduler, to the thread. On the other WSSs, the threads that correspond
to T are also given local timestamps by the schedulers on those WSSs. The schedulers
exchange the local timestamps of 7" and 7”s counterparts. The largest local timestamps
are chosen as the global timestamp for the threads. Thus, the global timestamps of T’
and T”s counterparts are the same on all WSSs. Global timestamps are used to deter-
mine the execution order of the threads. That is, a thread with a smaller timestamp is
executed before a thread with a larger timestamp. It can be seen that, if the WSSs
execute the threads in their global timestamps order, the threads are executed in the
same order on all WSSs.

We provide a package MWS which includes classes for programmers to use when
they write multithreaded web services. In order to distinguish the threads in the sys-
tem, each thread must be given a unique name. Class RTName in package MWS al-
lows the programmers specify the root’s name of a thread tree. Class RThread in
package MWS includes code that assigns a name to a thread when the thread is cre-
ated. When programmers write thread applications, the classes defining threads
should extend RThread. With RThread class, assigning names to threads are carried
out mostly transparently to the programmers. Thus, the programmers do not need to
track the forming of the thread trees. The following code snippet shows the main steps
in writing a thread class, say T1 in Fig. 2(b), which interacts with the scheduler.

1. interface SG1 {}

2. class Tl extends RThread implements SG1 ({

3 public void run() {

4. Scheduler.start (currentThread()) ;

5 // code implementing the thread’s logic
6 Scheduler.terminate (currentThread() ) ;

}

// other code for T1

~J

3

Interface SGI (line 1) is used to mark a scheduling group. Since it does not do any
work itself, its body is empty. 71 is in scheduling group SGI. Thus, T/ needs to im-
plement SGI (line 2). All threads should extend RThread for naming purpose (line 2).
Scheduler is a static class in package MWS (line 4). When a thread is started, the pro-
grammer should register the thread with the scheduler by calling the sfart method of
the Scheduler class (line 4). One scheduler runs on each MSS. The start method of
Scheduler creates an instance of the scheduler on the WSS if no such instance exists.
Otherwise, the method simply registers the thread with the scheduler. After calling the
start method, the thread waits for the scheduler’s response. When the scheduler de-
cides that it is the thread’s turn to run, the scheduler returns the thread’s call to the
start method. As a result, the thread can carry on executing the thread’s logic (line 5).
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At the end of the execution, the thread notifies the scheduler by the terminate method
of class Scheduler (line 6). As a result, the scheduler removes the thread from its
queue. Calling the start and terminate methods are the only two statements that a
programmer needs to add to the thread’s logic. Hence, very little extra efforts are
required from the programmers when writing thread classes used in web operations.

3 Performance

Performance tests are carried out to measure the overheads of the PWSS and the
thread scheduler when the service group is deployed over a LAN. The TOPBCAST
implementation assumes that message lost rate is 5%, site failure rate is 1%, and, a
site sends its gossiping messages to three other sites in each gossiping round. With
these assumptions, using a Markov chain, it is calculated that, for a group consisting
of up to 45 sites, once a message is sent, there is a high probability (over 99%) that
the message is received by all its destinations after two rounds of gossiping about the
message. Thus, in the experiment, a message’s delivery order is decided after two
rounds of gossiping about the message when running the TOPBCAST protocol.

35
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Fig. 3. Overheads of the Middleware

Java SDK 1.4.2 is used in our implementation. The PWSS also uses JAXM 1.2
while Java WSDP 1.3 is needed to implement the WSS. Tomcat 5.0 is used to host
PWSSs and WSSs. In the experiment, it is configured that (a) each PWSS and its
corresponding WSS reside on different machines, (b) all machines are connected by a
100Mbps Ethernet, and, (c) each machine is a Compaq Evo W4000 with one 1.8GHz

P4 CPU. Overhead is defined as (l’n—l’l)/l’l where t, is the service response time

when the service group has n replicas and ¢, is the service response time when no
replication is used.

The experiment assumes that the web operation runs for 4000ms when (a) there is
a single site in the service group and (b) a single thread carries out the operation. Two
sets of tests are carried out. In the first set of tests, two threads are used to implement
the web operation where each thread lasts 2000ms. In the second set of tests, six
threads are used to implement the web operation where each thread runs for about
666ms. In each set of tests, we vary the number of replicas in the service group from 1
to 10. Since there is only one CPU on each WSS, increasing the number of threads for
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executing a web operation will only increase the execution time of the operation due
to thread scheduling cost. From Fig. 3, for both tests, the overhead appears to be
“moderate” when there are up to five replicas in a service group. The overhead of the
system can reach about 33% in the worst case when there are ten replica sites and the
operation consists of six threads. The experiment appears to show that the middleware
can be used efficiently in systems in which the number of replicas in a service group
and the number of threads used to implement the web operations are kept at a reason-
able level.

4 Conclusion

The middleware discussed in this paper supports reliable web services based on active
replication. The middleware ensures the consistency of the replicas. Unlike many
existing work, the middleware also addresses issues relating to multithreaded web
services. For multithreaded web services implementation, programmers are required
to follow some programming conventions when coding web services. This allows the
middleware determine which threads’ executions need to be ordered and ensure that
these threads are executed in the same order on all replicas. Empirical data show that,
for services that require relatively long running time, the overhead of the middleware
is reasonably low.
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Abstract. In fault-tolerant multistage interconnection design, the
method of providing disjoint paths can tolerate faults, but it is compli-
cated and hard to choose a collision-free path in disjoint paths networks.
A disjoint paths network can concurrently send more identical packets
from the source node to increase the arrival ratio, but the method might
increase the collision ratio. In contrast, a dynamic rerouting method finds
an alternative path that tolerates faults or prevents collisions. In this pa-
per, we present methods of designing dynamic rerouting networks. This
paper presents 1) three kinds of dynamic rerouting networks designed to
tolerate faults and prevent collisions; 2) design schemes that enable a dy-
namic rerouting network to use destination tag routing to save hardware
cost in switches for computing rerouting tags; and 3) simulation results of
related dynamic rerouting networks to realize the factors which influence
the arrival ratio including the fault tolerant capability and the number of
rerouting hops. According to our proposed design schemes and according
to our analysis and simulation results, a designer can choose an applica-
ble dynamic rerouting network by using cost-efficient considerations.
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1 Introduction

Interconnection networks are critical to parallel systems because their perfor-
mance has great impact on system latency and throughput. Multistage inter-
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connection networks (MINs) are considered cost-effective ways of providing high-
bandwidth communication in multiprocessor systems [1].

To enhance the reliability of MINs, many researchers have investigated fault
tolerance issues [2-8]. Previous works provided disjoint paths [3-5] and used
dynamic rerouting [6-8] enable MINs to have fault tolerance capability. The
method of providing multiple disjoint paths which used to tolerate faults are used
in two ways: 1) to know in advance the location of a faulty element before a packet
is sent; therefore, one fault-free path can be taken to deliver message packets;
and 2) to send multiple identical packets simultaneously from the source to the
destination to tolerate faulty elements. However, the first method, which chooses
one fault-free path, cannot know in advance whether a collision will occur during
routing and the second method, which sends multiple packets simultaneously,
causes a high collision ratio.

The dynamic rerouting method provides alternative paths to a destination
when a packet encounters a faulty or busy element. Thus, this method does not
need to know the locations of faulty elements before a packet is sent. In pre-
vious works, many 3x3 or more complicated switches are provided to construct
dynamic rerouting networks [6-8]. For example, the Gamma network [6] uses
3x3 crossbar switches at the middle stages to provide multiple paths, but they
can not reroute packets when the packets encounter a faulty or busy element
in a straight link; that is, they cannot not guarantee one fault tolerance and
cannot prevent collisions in the straight link. The B-network [7] uses a backward
link to the switch at the previous stage for rerouting, but the B-network cannot
guarantee one fault-tolerance, and it takes two rerouting hops at least. Although
the Enhanced IADM [8] can guarantee one fault tolerance, it uses 5x5 crossbar
switches at the middle stages to achieve zero rerouting hops. In addition, in the
Enhanced IADM, the method of computing the rerouting tag and rerouting con-
trol in the switches at the middle stages require more hardware cost. There are
some networks that add some extra stages to provide fault tolerance capability
or prevent collisions, but the packets traverse more links to the destination re-
gardless of whether the packets encounter a faulty or busy element. Thus, the
collision ratio increases in such a design.

In this paper, we address these important issues and propose methods of
designing dynamic rerouting networks. In particular, we propose three kinds of
dynamic rerouting networks designed to tolerate faults and prevent collisions. In
addition, we aslo propose the design schemes of destination tag routing networks
to save hardware cost in the switches for computing the rerouting tag. Simulation
results are presented of related dynamic rerouting networks to realize the factors
that influence the arrival ratio including the fault tolerant capability and the
number of rerouting hops.

The rest of this paper is organized as follows. In Section 2, we introduce
routing methods which use pre-computing tags in the ICube network that is
equivalent to the most important multistage networks and in other cube-like
networks. In Section 3, we present the schemes used to design dynamic rerout-
ing networks based on the researchable set concept and propose three kinds of



170 C.-W. Chen, C.-J. Ku, and C.-H. Chang

dynamic rerouting networks. In addition, we also introduce how to design a desti-
nation tag routing function for easy rerouting. In Section 4, we simulate our three
proposed dynamic rerouting networks and other previous dynamic rerouting net-
works and compare their arrival ratio under one-fault and fault-free situations.
Section 5 concludes this work.

2 Preliminaries

In this section, we present the method of pre-computing routing tags in the indi-
rect binary n-cube network (ICube network) [9] and in other cube-like networks.
We also introduce the rerouting conditions that exist at a switch when a packet
encounters a faulty element or when a packet is involved in a collision. In Section
2.1, we present the topology and the routing method of the ICube network. In
Section 2.2, we show the distance tag routing method in other cube-like network.

2.1 Indirect Binary n-Cube Network (ICube Network)

An ICube network of size N=2" consists of n+1 stages labeled from 0 to n. Each
stage involves N switches [9]. Switches of sizes 1x2 and 2x1 are coupled with the
first and last stages, respectively. Moreover, each switch located at the interme-
diate stages is a 2x2 crossbar. Switch j = j,_1jn—2... j2j1j0, at stage i has two
output links connected with two switches at stage (i41) based on the plus or mi-
nus 2° function; that is, the non-straight link of switch j at stage i connects the
switch [(j - 2%) mod N| at stage i+1 if j; is 1. Otherwise, the output non-straight
link of switch j at stage i connects the switch [(j + 2°) mod N] at stage i+1.

With regard to the routing behavior, if switch j (= jn—1jn—2..- Joj1jo) at stage
i delivers a packet to the non-straight link and the (n-4)-th bit of switch j, j;, is
1/0, the (n-i)-th bit of the switch that the packet is delivered to at the next stage
is 0/1. Accordingly, we can pre-compute the routing tag, D=d,,_1d,—s...d2d; dy,
by an XOR operation of the source and the destination tags. Thus, the routing
tag can be used to deliver packets from the source to the destination in such a
way that the straight/non-straight link at stage ¢ is taken if d; is 0/1. Example
1 show the routing situation when the source is 1 (=001), the destination is 6
(=110) and the routing tag is 111 (001 XOR 110).

Example 1. In an ICube network of size N=8, the source is 1, and the destina-
tion is 6. The routing tag is 111 generated by an XOR operation of the source
and the destination tags. The routing condition is shown in Figure 1(a) and is
described as follows: O(stage 1)—1(stage 0)— 2(stage 2)— 6(stage3)

2.2 Distance Tag Routing in Cube-Like Networks

A cube-like network with distance tag routing of size N=2" consists of n+1
stages labeled from 0 to n. Each stage involves N switches. Switches of sizes
1x2 and 2x1 are coupled with the first stage and the last stage, respectively.
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Stage 0 1 2 3

Fig. 1. (a) An ICube network of size N=8 and the routing condition when the source
is 1 and the destination is 6. (b) A cube-like network of size N=8 and the routing
condition when the source is 5 and the destination is 7.

Moreover, each switch located at intermediate stages is a 2x2 crossbar. Switch
number j at stage ¢ has two output links connected with switches at stage (i+1)
based on the plus-2° function; that is, switch j at stage  has two output links
to switches j and [(j+2%) mod N] at the consecutive stage.

With regard to the distance tag routing in such a network, an n-digit tag
determines the path connecting the source S with the destination T where each
tag digit can be 1 or 0. An n-digit tag D= d,_1dp—2... dadidy represents the
difference between T and S, i.e., D = T - S (if D is less than 0, then D is equal
to D plus N). Digit d; of the routing tag D is used at stage ¢ in such a way
that the non-straight connection is taken if d; is equal to 1, and the straight
connection is selected when d; is 0. For example, when N is 8, the source node
S is b, the destination node T is 7, and the routing tag D is 010, as shown in
Figure 1(b).

3 Dynamic Rerouting Networks and Destination Tag
Routing Designs

In this section, we present the dynamic rerouting network design scheme based on
the concept of the researchable set presented in Section 3.1. Section 3.2 describes
a method of designing a destination tag routing network.

3.1 Dynamic Rerouting Network Design Scheme

In Section 2, we introduced the routing methods that pre-compute a routing
tag in a cube-like network. In cube-like multistage interconnection networks,
the routing behavior at a switch at stage i eliminates the 2* vertical distance
to approach the destination if the routing bit d; is 1; that is, once a packet is
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delivered from stage i to stage i+1, the last (i+1)-th bit of the switch index at
stage i+1 is the same as the last (i+1)-th bit of the destination. As a result,
after n (=logaN) routing hops, a packet can arrive at a destination from any
source. In other words, in a cube-like network, if a packet is at switch j at stage
1 from some source node, the last ¢ bits of the switch index j are the same as
the last ¢ bits of the destination tag.

According to the routing behavior, we can easily find the reachable switches
for some specific destination. In Definition 1, we define the reachable set to
include the switches that can deliver packets to a specific destination.

Definition 1. The switches at stage ¢ whose last ¢ bits of the index are the same
as the last ¢ bits of the destination T (=t,_1t,—2... lal1lo) are called reachable
switches at stage ¢ for a destination 7. A reachable set for a destination T
(=tn—1tn—2... tat1ty), denoted St, means all reachable switches at all stages.

In Figure 2, the reachable set S¢ for destination node 6 is shown. In Theorem
1, we prove that any switch in the reachable set Sp can deliver a packet to the
destination 7.

Theorem 1. The switch at stage ¢ belonging to St can deliver a packet to the
destination 7.

Proof. We assume that a packet is delivered from some source and reaches
switch j at stage i. Switch 7 that belongs to the reachable set Sp. By Definition
1, the last 7 bits of the switch index j are the same as the last ¢ bits of the
destination T, because the switch at stage ¢ can deliver a packet to the switch
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at stage i+1, whose last (i+1)-th bit is the same as the last (i+1)-th bit of the
destination T. Thus, after routing (n - ) hops from stage i, the packet can arrive
at the destination 7.

From Theorem 1, all the switches in the reachable set Sp can deliver packets
to the destination T if the packet does not encounter a faulty or busy element.
As a result, if a faulty element exists or a collision occurs, the switch can easily
reroute a packet to the switches belonging to the same searchable set for rerout-
ing; that is, we can add extra links in a switch to connect the switches belonging
to the same reachable set as alternative links for rerouting.

In the following, we use this concept to construct and propose dynamic
rerouting networks for tolerating faults and preventing collisions. We create three
kinds of dynamic rerouting networks by adding an extra link to the switch at
the previous stage, adding an extra link to the switch at the current stage, and
adding two extra links to two switches at the latter stage.

Adding an Extra Link to the Switch at the Previous Stage

The scheme of designing dynamic rerouting networks by adding extra links to
the switches at the previous stage is proposed in this section. First, we analyze
the result of Theorem 1 to propose the design scheme. In addition, we propose
related important issues for preventing collisions.

When switch j at stage ¢ wants to reroute a packet to a switch at stage i-1,
N /21 switches at stage i-1 can be considered because at stage i-1, there are
N /21 switches whose last (i-1) bits are the same as the last (i-1) bits of switch
j; that is, the N /2! switches at stage i-1 and the switch j at stage i belong
to the same reachable set no matter which destination is desired. Hence, we can
add an extra link to switch j at stage 4. The extra link connects to one of the
N /21 switches at stage i-1 and is an alternative link for rerouting. We show
in Figure 3 this kind of dynamic rerouting networks that is created by adding
one backward link from stage i to stage i-1 at each switch, where ¢ is from 1 to
n (=logaN).

This kind of dynamic rerouting network sends a packet to the added link
when the packet encounters a faulty or busy element. However, some important
problems should be carefully solved when designing such a dynamic rerouting
network. 1) The switches at stage 0 cannot send a packet to the previous stage
for rerouting. To solve this problem, a switch at stage 0 can add extra links by
adding a link to a switch at the current stage or by adding two links to the
switches at the latter stage. 2) If a rerouting behavior occurs because a packet
encounters a faulty element in the middle stages, the situation of a packet re-
encountering a faulty element again after rerouting should be prevented to reduce
the number of rerouting hops to reduce the number of collisions. We discuss the
situations and propose solutions in Section 3.2.

Adding an Extra Link to the Switch at the Current Stage

In the following, we present the second kind of dynamic rerouting network, in
which an extra link is added in each switch to connect the switches at the same
stage.



174 C.-W. Chen, C.-J. Ku, and C.-H. Chang

oo |,

O
,.'.'.4
e T % ,.,H_{o.
N “.‘A X”‘Z"A

N T = m'

Fig. 4. The topology of the second kind Fig.5. The topology of the network
of dynamic rerouting network, with size 8 with switches connecting the latter stage’s
and the routing situation when the source switches with size N=8

is 0, the destination is 1, and switch 1 at

stage 1 is fully faulty

When a switch at stage ¢ wants to reroute a packet to the switches at the
same stage, N /2" switches whose last i bits are the same as the last i bits of the
current switch can be considered as the rerouting targets. Moreover, these N /2°
switches, whose last ¢ bits are the same as the current switch, belong to the same
reachable set regardless of the destination of a packet. Similarly, the situation of
a packet re-encountering a faulty element after rerouting should be prevented to
reduce the number of rerouting hops. We show in Figure 4 this kind of dynamic
rerouting network that is made by adding one link to each switch, a link which
connects two switches at the same stage by a 2"~ ! vertical distance from stage
0 to stage n-1. The network takes at least one rerouting hop for the rerouting
behavior. In Figure 4, the routing and rerouting example is shown where the
source is 0, the destination is 1, and switch 1 at stage 1 is fully faulty.

Adding two Extra Links to the Switches at the Latter Stage

In the following, we present the third kind of dynamic rerouting network, in
which two extra links are added in each switch to connect two switches at the
next stage.

This kind of dynamic rerouting network is different from the previous two
kinds in which only one extra link is added for rerouting. If switch j (=jn—1jn—2...
Jojijo) at stage i wants to reroute a packet to the next stage, two extra links
corresponding to routing bits 0 and 1 are needed. The connection rules for switch
j at stage i for the two extra links are described as follows: 1) choose N /2°
switches at stage i+1 whose last i-bits are the same as the last i-bits of the
current switch j, ji—1...j27170; 2) split these switches into two sets according to
the value (0 or 1) of the last (i+1)-th bit of the switch index; 3) individually
choose a switch from these two sets; 4) connect these two switches from switch
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j at stage ¢ and use them as the alternative links; and, finally, 5) mark the
alternative links 0 or 1 as follows: if the last (i+1)-th bit of the chosen switch at
stage i+1 is the same as the last (i+1)-th bit of the switch index j at stage 4,
Ji, mark the alternative link 0; otherwise, mark the alternative link 1. In Figure
5, we show a network that two extra links added at each stage to connect two
switches at the next stage. In Figure 6, we present the connection conditions in
detail from stage ¢ to stage i+1 for Figure 5.

Fig. 6. All output links in a switch at stage i for the case of two extra links to connect
the next stage’s switches

In general, when a switch at stage i wants to connect the switches at the
next stage, N/2"! likely switches can be considered for routing bits 0 and 1.
This kind of dynamic rerouting network does not take any extra rerouting hops,
but the switch architecture between stage 0 and stage n-1 uses 4x4 crossbar
hardware. When switch j at stage ¢ wants to choose a switch as the alternative
switch from a set for routing bit 0 or 1, N /2" switches can be considered,
but we avoid choosing the switch which has already been connected by switch
j. However, at stage n-1, there is only one switch in a set. Thus two duplicated
links are established to connect two switches between stage n-1 and stage n.

Rather than requiring two extra links in each switch for this kind of dynamic
rerouting network, in the first two kinds of dynamic rerouting networks, in which
an extra link is added to connect to the switch at the current stage and the
previous stage, there is a cost of one extra link for rerouting. However, the
penalty, the extra rerouting hops, for these two kinds of rerouting networks
affects the system performance. In Section 4, we simulate and analyze the arrival
ratio of these three kinds of dynamic rerouting networks with the factors which
include one fault tolerance, and rerouting hops.

In the next section, we present how to design the destination tag routing
method to save hardware cost associated with computing the rerouting tag in
the switch for rerouting behavior.

3.2 Destination Tag Routing Designing Schemes

In this section, we present a method on how to make pre-computing tag networks
use the destination tag routing method to save hardware cost at switches for the
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rerouting process. According to the pre-computing tag method in the ICube
network or the other cube-like networks, the routing behavior in the switch at
stage i delivers a packet to the switch at stage i+1 whose last (i41)-th bit is the
same as the last (i41)-th bit of the destination; that is, if a packet is delivered
from stage 0 to switch j (=jn—1jn—2..-Jo) at stage i, the last 4 bits, j;—1 ji—2 Ko,
are the same as the last 7 bits of the destination index. As a result, we can
know that a packet at switch j at stage ¢ is sent to a non-straight link if the
last (i41)-th bit of the switch index, j;, is different from the last (i+1)-th bit
of the destination index; that is, if j; is the same as the last (i+1)-th bit of
the destination index, a packet is sent to the straight output link. Accordingly,
a switch at stage ¢ can deliver a packet to the next stage according to the
last (i+1)-th bit of the destination tag and the last (i+1)-th bit of the current
switch index. Thus, because the last (i+1)-th bit of the switch index at stage i
is permanent, we can easily mark the two output links 0 or 1 according to the
last (i41)-th bit of the current switch, j;.

The marking rule is described as follows: 1) If the last (i+1)-th bit of a switch
index at stage 4 is 1, mark the non-straight link 0 and the straight link 1. 2) If
the last (i+1)-th bit of a switch index at stage ¢ is 0, mark the non-straight link
1 and the straight link 0.

In the following, we apply this marking rule to the ICube network [9] and
the cube-like network to enable these two networks to use a destination tag
routing scheme. According to the marking rules, we mark the non-straight link
output link in a switch at stage ¢ 0/1 and the straight link output link in a
switch at stage ¢ 1/0 if the last (i+1)-th bit of the switch index at stage i is
1/0. Figure 7(a) and Figure 7(b) show the marked results and the destination
tag routing behavior from the source index 1 to the destination index 6.

Since the ICube network [9] is equivalent to many important multistage inter-
connection networks [11]; for example, the Omega network, the Shuffle Exchange,
and so on [11], the principle that is followed to enable the ICube network to use

Fig.7. (a) An ICube network of size N=8 (b) A cube-like network of size N=8, and
the destination routing behavior with source 1 and destination 6
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the destination tag routing method can also be applied and explained in these
equivalent networks.

We can easily apply the schemes mentioned above to enable our three pro-
posed dynamic rerouting networks mentioned in Section 3.1 to use the destina-
tion tag routing method to save the hardware cost during rerouting behavior.
Although the three kinds of dynamic rerouting networks have the capability to
tolerate faults and prevent collisions, the hardware cost in terms of the switches
and the number of rerouting hops are different. In the next section, we compare
and discuss the differences between the three kinds of networks and other pre-
vious works and present the comparisons of the arrival ratio according to our
simulations.

4 Simulation Results

In this section, we present our simulation, results and discussions. We compared
our three proposed dynamic rerouting networks, the Gamma network (GIN),
the B-network, and CGIN (providing two disjoint paths networks to tolerate a
fault) in a 6.25% to 100% traffic load condition, with a network size of N=16.
Our three proposed dynamic rerouting networks, GIN, and the B-network use
the dynamic rerouting method to tolerate a fault and prevent collisions, while
CGIN sends two copy packets at a time via two disjoint paths to enhance fault
tolerance capability and to prevent collisions.

For our simulation, the term "traffic load” means the number of packets
that are to be sent simultaneously by the different sources. For example, if two
packets in two different sources are to be sent to two different destinations, the
traffic load is 12.5%, where the network size is 16. As a result, the maximum
traffic load means that each of the 16 source nodes has a packet to be sent to
16 different destination nodes. However, in the CGIN, each source sends two
identical packets to the destination via two disjoint paths.

In our simulation, we continuously and randomly generated the different
source-destination requests in each cycle and continuously ran 10,000 cycles to
compute the arrival rate, the collision rate, and the successful rerouting rate
under a fixed traffic load. When a faulty element exists in the network, we
assumed the faulty switch was fully faulty, and we performed simulations with
each switch at the middle stage being a fully faulty switch; that is, we ran 3*16
simulations and averaged these results to get the simulation results under a fixed
traffic load because there are three middle stages and 16 switches at every stage
with a network size of 16. In addition, we preformed simulations with various
traffic loads to get our final results.

We also showed the improvements in the arrival ratio in the case of a network
with a link added to the current stage when a fully faulty switch element exists
in the network. With regard to the disjoint paths network, if none of the two
packets arrives at the destination, the route failed. Figure 8 show the arrival rates
and the collision rates of these networks without and with a fault, respectively.
From the simulation results, the arrival rate of the two disjoint paths network,
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Fig. 8. Arrival ratio comparisons of our proposed networks and other previous networks
widh and without a faulty element when the network size is N=16

CGIN, is fine under low traffic loads because the case of two packets being sent
concurrently via two disjoint paths does not increase the collision rate. However,
because twice the number of packets is sent, the collision rate grows. In Figure 8 ,
the disjoint paths network (CGIN) exhibits a more rapid decrease in the arrival
ratio than other networks. Because of the reasons listed above, the dynamic
rerouting networks perform better than a disjoint paths network. However, the
title DR 1 refers to the first of our three proposed networks, DR 2 refers to the
second, and DR 3 refers to the third kind of our three proposed networks.

Figure 8 show the arrival ratio of dynamic rerouting networks, including the
Gamma network, the B-network, DR 1, DR 2, and DR 3 with and without a
faulty element. Although the B-network performs a good arrival ratio in fault-free
networks in light traffic, the lack of guaranteed fault tolerance and the penalty
in more rerouting hops degrade the arrival ratio quickly in the B-network. With
regard to DR 2, and DR 3, DR 2 performs with a little lower arrival ratio than
DR 3 when there is no faulty element in the network. When there is one faulty
switch in the network, DR 2 has an arrival ratio that is a little 5% less than that
of DR 3 because of 1 rerouting hops.

5 Conclusions

In this paper, we presented 1) three kinds of dynamic rerouting networks design
that have the capability of tolerating faults and preventing collisions; 2) design
schemes that enable a dynamic rerouting network to use destination tag routing
to save hardware functions of computing the rerouting tag in the switches; 3)
simulation results of related dynamic rerouting networks to realize the factors
which influence the arrival ratio including the fault tolerant capability and the
number of rerouting hops.

In the simulation results, we simulated these dynamic rerouting networks
and one disjoint paths network under various traffic loads with and without
faulty element considerations. From our experimental results, the third of our
three proposed networks perform best in terms of the arrival ratio, with or
without a faulty element, but it requires 4x4 crossbar switches in the middle
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stage. Although our second proposed second dynamic rerouting network show a
little lower arrival ratio than the third proposed network, it uses 3x3 crossbar
switches at the middle stages. In addition, if the traffic load is not very heavy,
it performs with almost the same arrival ratio as the third proposed network.

In addition, we also compared the dynamic rerouting networks with two
disjoint paths network that sends two identical packets from a source to a des-
tination to tolerate one fault and prevent collisions. From our results, the two
disjoint paths network has a good arrival ratio if the traffic load is light; however,
the arrival ratio decreases very quickly when the traffic load increases.

With regard to the dynamic rerouting networks, the B-network, and the
Gamma network, because of the lack of fault tolerance guarantee in the Gamma
network and the B-network, these two networks have a worse arrival ratio than
our proposed networks. Based on our proposed design schemes and according to
our analysis and simulation results, a designer can choose an applicable dynamic
rerouting network by using cost-efficient considerations.
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Abstract. Parallel file systems stripe the data from a single file across multiple
cluster/grid nodes so that the systems can access file in parallel. In such a system,
if an I/O node or the storage device of that node doesn’t work, all the subfiles on
the node can’t be accessed. In this paper, we introduce a special fault tolerance
model for parallel file systems called Round-robin Redundant Backup of Subfile
(RRBS). This model ensures the accessibility of the parallel files even when an
I/0 node is failure. In order to test the usability of RRBS, we also developed a
prototype of parallel file system called WPFES on a PC/Windows cluster.

1 Introduction

I/O bottlenecks have always been a major issue in computer science. As early as
1967, [1] addressed the issue of storage and computation efficiency. Almost forty
years later, this lack of performances is confirmed in [2] and this trend is likely to
continue as I/O hardware performances increase slower than CPU and memory. Fur-
thermore, this gap is amplified by the increasing use of clusters of work-stations or
PCs [13]. Therefore, it is necessary to improve I/O performance so that to balance it
with CPU performance.

One way of improving I/O performance is to carry out I/O operations in parallel,
which is supported by parallel file systems. Parallel file systems logically aggregate
multiple independent storage devices of a cluster/grid into a single high performance
storage subsystem[3][14]. Striping the data from a single file across multiple devices
allows the system to access files in parallel.

Till recently, many parallel file systems have been developed. Most parallel file
systems were built on clusters [6][7][12][8][9][10] or computing grids [14] [6] [15] .
The cluster/grid architecture, as a distributed system environment, generates some
constraints such as fault tolerance. For example, damage to the magnetic disk on
which the parallel files are stored will produce unthinkable loss. Fault tolerance of a
parallel file system ensures the accessibility of files even when an I/O node is failure.

* This research work is supported by National Natural Science Foundation of China under
Grant No.60473099 and by Outstanding Youth Science Foundation of Jilin Province under
Grant No.20040119.
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In this work, we present a fault tolerance model called Round-robin Redundant
Backup of Subfile (RRBS). In this model, every subfile in a parallel file system will
have a backup copy on another I/O node. Thus all the subfiles can be rebuilt and ac-
cessible even when an I/O node is failure or the magnetic disk is damaged.

In order to test the usability of RRBS, we also developed a prototype of a parallel
file system called WPES on a PC/Windows cluster. The experimental results show
that RRBS works well. Moreover, RRBS is suitable to every parallel file system built
on cluster/grid.

The rest of the paper is organized as follows: section 2 shows the design and im-
plementation of the parallel file system prototype WPFS. Then section 3 describe the
details of our fault tolerance model RRBS. Next, section 4 gives some experimental
results and in section 5 some related works are discussed. Eventually, section 6 con-
cludes and describes future works.

2 Design and Implementation of WPFS

Before we describe the details of RRBS, we’ll show the prototype WPFS roughly so
that some keywords will be clear.

2.1 WPEFS Structure

Like most of the cluster parallel file systems, WPFS is implemented as client-server
model. WPFES consists of three components: the service manager(SM), the I/O server
(I0S), and the application library (wpfs_lib).

Figure 1 shows the structure of WPFS.

SM handles permission checking for file creation, open, close, and remove opera-
tions. The IOS handles all file I/O without intervention of the service manager.
Through the wpfs_lib, the applications communicate with the WPES system.

The three components of WPFS communicate and cooperate with each other. All
the communications rely on TCP to provide reliable end-to-end data stream service.
WinSock?2 has been used in all the communication programs of the system.
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Fig. 1. TPES file system
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WPES runs on PC clusters. Every node in the cluster is an independent computer
system, which has processors and local storage devices of its own. The nodes are
connected with each other by high speed network. On each node can run the SM, the
IOS or user applications. According to the software running on it, the node is called
management node (MN), I/O node (ION) or compute node (CN). Of course, one node
can play multiple roles at the same time. But this will impact on the performance.

2.2 File Stripe and Data Storage

In WPFS, the parallel files are implemented. One parallel file is a logically single file
and physically consisting of multiple discontiguous subfiles striped across different
IONSs. The user applications can visit these subfiles in parallel.

The number of subfiles is equal to the number of IONs that store the file. Each sub-
file is a physically contiguous byte stream. But logically it consists of a lot of discon-
tiguous units which are called striping-units. In other words, a parallel file is divided
averagely into multiple striping-units, a subfile is the collection of striping-units be-
longing to a given file that reside on a single ION. The size of the striping-unit is
specified (as a parameter by the user application or by default) at the time the file is
built and will never change. Striping-units are allocated to IONs with a round robin
scheme.

Figure 2 shows an example of file striping in WPFS.
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Fig. 2. Example of file striping in WPFS
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2.3 User Defined File View

Parallel file systems obtain high I/O performance by logically aggregating multiple
independent storage devices into a single high performance storage subsystem [3].
But in fact, there are many factors affect the improvement of I/O performance. Stud-
ies showing that 80% of parallel file accesses utilize a "strided" access pattern [4]. So
in WPES, we provide a user-defined file view.

This allows for noncontiguous file regions to be accessed with a single function
call. The concept is similar to logical file partitioning in Vesta[9] and PVFS [7] and
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file views in MPI-IO[5]. An application can partition a WPFS file, effectively limiting
the view of the file to a subset of the complete byte sequence.

Figure 3 shows a user-defined file view of a WPFS file: file.dat. According to the
three parameters: ro,rs and sd provided by the user application. Then a user file view
consisting of three records is got.

file .dat

Fig. 3. A User-defined file viev

3 A Fault Tolerance Model: RRBS

In a cluster/grid parallel file system, a single parallel file will spread across N (N>=1)
IONs. If a storage device or a node or an I0OS program or the network equipment
connecting the ION is disabled, all the subfiles on that node will be unaccessible. If it
is the damage of magnet media, the whole parallel file is broken only because one of
its subfiles is spread across this node, despite that the other N-1 subfiles are right and
accessible.

The failure of one node causes so bad effect, but there is little probability of two
nodes failure at the same time. In WPFS, to ensure the validity of the system, we
implement a mechanism of fault tolerance called Round-robin Redundant Backup of
Subfiles(RRBS).

In this section, we’ll show RRBS model in detail.

3.1 Design and Implementation of RRBS

Each subfile of a parallel file has a copy. A subfile is called the source and it’s copy is
called the copy. The source and the copy are stored separately on the No. m and the
No. n ION. Suppose the numbering of the I/O nodes of WPES is as: 1,2, ...... ,N. The
relationship between m and n is as follows:

When m < N:n = m+1;and
When m = N:n =1
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When a parallel file is opened, every source and its copy will be opened together.
Usually, WPFS will access the source, and the copy is accessed only when the source
is unaccessible. Through cooperations between wpfs_lib and 10S, the access to the
subfile and the update to the copy is completed.

When the API wpfs_read/wpfs_write is called by the application, wpfs_lib is re-
sponsible for mapping the I/O request to the I/O requests to multiple subfiles. Follow-
ing are the processes of wpfs_read and wpfs_write.

3.2 Process of Wpfs_Read

At first, the wpfs_lib sends read request to each ION the file striped on. If all the re-
sponses returned from the IOS indicate success, wpfs_lib will return a success re-
spond to the application. Otherwise, if one of the responses suggests a failure, there
must be something wrong with that ION. Then a request for the copy will be send to
the next ION. During this process, the user won’t be aware of the failure.

Figure 4 is an example of wpfs_read. In this example, the node n is power down.
After sending requests to the three I0Ss, wpfs_lib only get responses from I0Sn-1
and IOSn+1. So after the overtime, wpfs_lib will send another request to IOSn+1 for
data from the copy of subf n.

IO n-1
Subf y-0

P

Wpfs_lib (1) SR

A —@
"\-H._\__\___'_\-\______

_______ -

Fig. 4. Fault Tolerance model of wpfs_read

3.3 Process of Wpfs_Write

Comparing to wpfs_read, the process of wpfs_write is more complex. When a subfile
is written, the copy will be update synchronously. And if there is a node failure, the
source and the copy will be inconsistent.

Synchronous Updating of Copy: Wpfs_lib sends write requests and the data that
will be written to the subfiles. The IOSs are responsible for writing the data to the
right location of the subfiles and send response messages. Then the IOS send update
requests and the data to the next ION to update the copy. Thus, updating of copy is
completed by the ION where the subfile is located and the application gets the
response message in time.

Figure 5 shows the process:
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Fig. 5. Synchronous updating of copy

Inconsistency of Source and Copy: If every IOS sends an affirmative response to
the wpfs_lib, the wpfs_lib will return an affirmative response to the application
indicating the write request has been performed successfully. Otherwise, if one of the
responses suggests a failure, there must be something wrong with that ION. Then the
wpfs_lib will send another request for the copy. Thus the source and the copy will be
inconsistent.

Delay Update of Subfile: Our method to ensure the consistence of the source and the
copy is called delay update of subfile. Namely update when open next time.

If either the source or the copy of a subfile is updated but the other one is not, a log
file about the details of that update will be built. The following write operation to the
same source or copy will also be logged to the log file.

The parameters logged include the IP address of the I/O node needs to be updated,
the service port of the IOS and the offset and length of every write operation. The
offset is the offset from the beginning of the whole parallel file.

Next is the content of a logfile: parafile3log.txt.

202.198.67.150:7000 1020 100

From the request of the wpfs_lib, the IOS gets the IP address and the service port
number. Once an IOS opens a subfile, the corresponding log file is also opened. The
inexistence of log file indicating there is no inconsistency between the source and the
copy. If the log file exists, the IOS will read the IP address and the port number
logged in the file, connect to the IOS on that host by SOCKET, and read the records
in the log file one by one to update the source or the copy. When all the updates com-
pleted, the IOS will delete the log file. In this way, we do delay update of the subfile
when it is opened, the consistent of the source and the copy is ensured.

In addition, once the disk of an ION is damaged, the lost subfile can be rebuilt from
its copy. Thus the damage of one subfile won’t do harm to the whole parallel file.

4 Experimental Results

In this section we present the results of two experiments designed to show the usabil-
ity of WPFS and RRBS.

The system used for testing was a PC cluster, consisting of a number of PCs, each
with 128MB of RAM and 20G of local disk. The network is fast Ethernet which pro-
vides full duplex links between PCs. The operating system running on the PCs is
Windows NT.

Experiment 1: In the first experiment, the throughput of WPFS with one, two and
three IONs was tested. In any case, we tested different read request sizes.
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Figure 6 shows a comparison of overall throughput for WPFS reads with various
numbers of I/O nodes. A 128K stripe size was used in all tests. When the request size
is small, the cost of network communication is considerable, increasing the number of
the I/O nodes results in a drop of throughput. But when the request size is large
enough, the cost of the network communication can almost be ignored, more 1/O
nodes provides better throughput. The result shows the ability of WPFES to improve
I/O performance.
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Fig. 6. Read Performance under Different Number of I/O Nodes

Experiment 2: In this experiment, we tested RRBS over a cluster of three IONs. A
parallel file was striped over the three [ONs. A 128K stripe size was used in the test.
We tried wpfs_read when one of the IONs didn’t work. The result showed that all
the requests to the failed ION can complete by reading from the copy on the next ION.
Then we tried wpfs_write when one of the IONs didn’t work. The copy was writ-
ten and a corresponding logfile was built.
The results showed that RRBS works well.

5 Related Works

Fault tolerance of a parallel file system ensures the accessibility of files even when an
I/0 node is failure. Only a few parallel file systems have considered fault tolerance.
PIOUS provides a dynamically-selectable fault tolerance level [8] [3], Vesta provides
a file checkpoint facility that is efficient and simple to use[9], and GPFS[6] is de-
signed to be configured so that single points-of-failure can be avoided. A recent and
advanced project of cluster file system is Lustre[10][11]: it aims at handling both
distributed system constraints such as availability and fault tolerance and parallel I/O
considerations.

But all of the above methods are incapable to cope with the I/O node failure, and
the damage of the magnetic disk will produce unthinkable loss.
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6 Conclusions and Future Work

In this paper, we introduce a special fault tolerance model RRBS of parallel file sys-
tems.

The cluster/grid architecture is a distributed system environment. So the parallel

file systems built on the cluster/grid have to face some constraints such as fault toler-
ance. The Round-robin Redundant Backup of subfile improves the validity of the
parallel file systems.

In a parallel file system, a single read or write operation can generate data accesses

on multiple independent storage devices, so next we plan to design an effective con-
currency control mechanism in WPES.
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Abstract. Traditional microprocessors are today getting more and more
inefficient for a growing range of applications that are mainly about processing
data-stream. These applications have two character characteristics: one is that
lots of intensive computation tasks need to be processed, another is that the
running time of these tasks occupy more than 90% of total time. Coarse grained
reconfigurable computation is very fitful for these tasks and can achieve very
high performance. This paper presents implementation of the task of fast
parallel complex FFT on CTaili, the 16bits Reconfigurable computation
platform, which is targeting on streamed applications such as multi-media and
DSP (digital signal processing). The proposed mapping comprises fast
store-address transformation and configuring the function of PEA (processing
element array) to fit for FFT. More-over, the performance is scalable according
to FFT sizes. Since there is no functionality specifically tailored to FFT, the
results demonstrate the capability of CTaili architecture to extract parallelism
from streamed applications. Further ration- ales are given based on the
concepts of scalar operand networks.

1 Introduction

Toward a coming billion-transistor era, today’s computation platforms design has
already foreseen the end of the road for conventional micro-architectures [1], and
numerous new approaches have arisen above the horizon, such as EPIC[2], RAW [3],
Imagine [4], VIRAM [5] and XPP-64 [6], etc. ALL of them target on streamed
applications, in which more than 90% of total processing-time is spent on loop and
regular data processing. The biggest challenge of architecture design is the scalability,
only with which can one follow up the step of Moore’s Law. The difficulty of
scalability is imposed by slower decrease of wire transmission delay than that of
transistor switching delay. This discrepancy requires a new philosophy on design of
scalar operand network [7] and memory hierarchy.

Reconfigurable Computing (RC) is emerging as an important new organization
structure for implementing intensive computations. This area is consolidating itself as
a real alternative to application specific integrated circuits (ASICs) and general
purpose processors. The main advantage of RC devices comes from its unique

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 188 —195, 2005.
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combination of broad applicability, provided by the reconfiguration capacity, and
achievable performance, through the potential parallelism exploitation. The
coarse-grain RC is not usually suitable for applications with many bit-level
manipulations. One the contrary, it is usually a good choice for arithmetic operations
at the byte level and can change the device configuration on the fly during system
operation through dynamic reconfiguration. Therefore, some tasks which have regular
structure and data can be implemented efficiently by coarse-grained RC. As we know,
FFT is the most import ant algorithm in DSP (digital signal processing). In this paper
we present a fast, efficient and scalable implementation of FFT algorithm on a
coarse-grained RC platform called CTaili. It has a scalar operand network bandwidth
even higher than RAW and the memory is organized as a loose-couple distribute
address space (DAS). The plat form is described briefly in section 2 and the
comparison between it and other fixed architectures is given. In order to demonstrate
the capability of CTailJi, a complex point Fast Fourier Transformation (FFT) algorithm
with different sizes is mapped onto CTaili architecture in section 3. Section 4
addresses related works and performance comparisons with other platforms.
Conclusion is drawn in the last section.

2 Coarse-Grained RC Platform----CTaiJi

2.1 CTaili Architecture

CTaili is a highly scalar and flexible 16bits coarse grained RC architecture, with the
applications that are commonly addressed in multimedia applications (like image or
video processing). CTaili architecture consists of two main subsystems: configuration
system and data-processing system. Configuration system are composed of one
central-reconfigurable controller (CRC) and four sub-reconfigurable controllers

merzelde mux

PE =2|FE [=FE [=JFE
0 oW o m
PE [&=|PE [=PE &=3PE
T W T m
PE [i=|FE [=JFE [=3{FPE
I O m
FE |a=%|PE [&=FF =JFE

Fig. 1. CTaili architecture Fig. 2. PEA organization
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Table 1. Comparison of CTaiJi with other architectures

VIRAM | Imagine | RAW MorphoSys | XPP64 CTaili
Parallelism | Vector SIMD MIMD SIMD SIMD SIMD
model
Peak OPS 6.4G 23.7G 3.6G 28.8G 12.48G 59.2G
Clock Speed | 200 296 225 450 65 100
MHz
Network 8 8 16 64 64 16/8%
nodes (banks)
Total band- | 51.2 75.8 922 922 399.4 1638.4
width(Gbps)
1"level size | 64KB 96KB 16.4KB 16.4KB 12KB X | 128KB

16 X8

2%level size | 104MB | IMB 16MB 2MB /

*1 : plan to use 0.18um ;
*2 : 16/8 indicate that there are eight PEAs in CTaili, and each PEA is composed of 16 PEs.

(SRCs), with the responsibility of reading configurable data, distributing them into
PEA and send the configuration-demand for reconfiguring the function of PEA.
Data-processing system is composed of eight PEAs. They can connected end-to-end to
form a ring, as illustrated in Figure 1.When the number of needed PEs exceed the
capacity of one PEA, some adjacent PEAs will link together. The data that are being
processed can be moved between PEAs. PEA is the least macro-module that can run
lonely to finish a task, and its structure is made up of 4x4 processing elements (PEs), as
illustrated in Figure 2. Thus, there are eight task can simultaneously run in the
architecture. The structure of PEA is a mesh of PEs connected by double bidirectional
data buses which can greatly improve the utility of PEs and the success of routing.

Table-1 gives out the comparison of CTailJi with several typical architectures, in
aspects of parallelism model, capability, scalar operand network, and memory
organization.

From the table, CTaiJi shows more power than others architectures. The ma ximal
OPS reach to 59.2G at 100MHz. Although this is the ideal performance that will not be
realized in practice, high performance in processing data can be known.

2.2 Processing Element Structure

The CTaili architecture is formed by 128 processing element PEs. The data is
processed in it. The functions of PE are the basic operator of CTailJi and the functions
that can be map onto the PE are listed in table 2.
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Table 2. PE functions

Add Subtract Multiply division

Multi-bit Add And(logic) | Or(logic) | Not(logic)

Bool operation | Loop If-else Shifter bit
control control
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3 Mapping FFT on CTaiJi

FFT algorithm is the most important algorithm in DSP and is often used in practice. In
order to utilize the maximum parallelism of CTaili for FFT, an efficient map ping
approach is very important. In this section FFT algorithms is described briefly and the
parallelism in the algorithm that fits for CTaiJi architecture is pointed out.
Consequently an efficient mapping scheme is presented.

3.1 FFT Algorithm

Fast Fourier Transform (FFT) is a fast algorithm for computing DFT to reduce number
of multiplications from N? to NIgN. FFT is defined as:

_ R mk
X, = ZomeN (1)

2mmk
—-J

k
Wy =e N

k=0,1,---N-1 (2)

If radix-2 FFT length N equal to 2", m stages of permutation and storage is
needed, and each level have (2m-1) butterfly operations. For general-purpose
processor, it will need three nest loops to accomplish FFT: the outside loop deal with
level from the first to the m™; In the p stage, there are 27" twiddles and the processor

take turns to calculate the 2" 7 operations for each twiddle. As the size of FFT
increases, the number of operations will improve greatly. Therefore, the FFT algorithm
is often implemented by hardware in reconfigurable computing architecture.

3.2 Effective Memory Addressing Scheme for FFT

By far, There are two ways to realize FFT in configurable architecture: one is directly
map FFT algorithm onto the architecture, utilizing the configurable PEs and data-path
to realize the algorithm. The other is utilizing two special data store units called Frame
Buffer (FB) and the function of the two FBs alternates when processing FFT. When
FB1 stores last operation data and FB2 is empty, data of FB1 is transmitted to the PEs
for processing and FB2 receive the output of PEs till FB1 sends over [7]. The function
of FB1 and FB2 exchanges when FB1 sends data over, and FB2 begin to send data and
FB1 receive the output. The first way is only suitable for small size of FFT. For
example, if the length of FFT equal to 64 in XPP64 A1, the processing is very fast and
efficient. However, if the length of FFT is larger than 64, the performance will became
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bad. The second way can handle with different length FFT. But because it has two FBs
and need to read out twiddles and data from them, the special design and route wire will
be very complex, and can not achieve the general-purpose.

Figure 4 is the distortion of data flow graph (DFG) of FFT. From this figure, we can
see that the structure in the dashed-line box is same. Therefore, The PEAs can be
configured to the same function as figure 4. The complex numbers of FFT-point send to
PEA in order. Only the store-address of data that the function structure outputted need
to be adjusted before processing in the next stage. Therefore, the computing result of
last PEA should be stored in an adjacent RAM, and the data in the RAM can not be read
out and send to the next PEA till all the results of FFT points have been stored. Because
each PEA can be configured to accomplish the function as shown in figure 5, PEA can
deal with 2 stages of FFT. Therefore, if using all the eight PEAs, the maximal level is
up to 16 and the size of FFT reach to 2'°. Owing to the capacity of RAM, the maximal
length of FFT is limited to 2"°.

-—n—
i ——
4
0 it
'R
7 ]
N
i
T

Fig. 4. FFT data flow graph

Two operation formulae are defined before the relation between output-order and
store-address is founded.

Definition 1. LSH (X ,i) indicate that binary data X shift i bits towards left.
Let X=(x, - Xx,X,),.then LSH(X,i)=(x, ;- X,X, "X, ;11),-

Definition 2. REVB(X) indicate that binary data X bit reversed.

Let X=(x, -+ XX ). Y=(Y, - ¥1¥o) -
if Y=REVB(X),then Y =(y, - y,¥0), = (XX, X, ), .
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The relation between store-address and output-order after 2qg (2 <m) stages
FFT butterfly operations is formulated as below:

m is even 2q<m;
um...u(2q+2)0...0+

OR .
LSH (5, 1)Uy, Uy, 2) mis odd 2q<m-1I;
j 3)
Addr = REVB(u,, -1, ) m is odd
2g=m—1;
m is odd

REVB(LSH (u,,---uu,,m—1)) ,
p=m;p is stage number

3.3 Mapping Statistics

After the adjustment of store-address, every 2 stages structure of FFT is the same.
Therefore, utilizing the characteristic of CTaili architecture, the function of PEA can be
configured as figure 5. A very good feature of the proposed FFT engine is its
scalability. FFT with the size not exceeding 8K can be mapped to CTaili with the same
mapping methodology by connecting together diverse PEAs. It not only can satisfy the
64 points of IEEE 802.11a but also 4096 points of DVB-T.

X -
o> >0 o>
Fig. 5. The configurable function of PEA

Table 3. Cycle numbers and processing time for FFT

FFTsize cycle processing | PEA number
count time (us) needed
64 207 2.07 3
128 532 5.32 4
256 1044 10.44 4
512 2585 25.85 5
1024 5145 51.45 5
2048 12318 123.18 6
4096 24606 246.06 6
8192 57379 573.79 7
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Table 3 shows different cycle numbers and processing time for different sizes of FFT
on CTaili platform. When processing FFT of different size, the number of PEA that
participated in is different. If the size of FFT is 64, only 3 PEAs is needed. While 7 PEAs
is needed when the size of FFT is 8192. Since there are 8 PEAs in CTaili architecture,
besides the PEAs that are in for the FFT, the others can accomplish other task.

When processing FFT of different size, the number of PEA that participated in is
different. If the size of FFT is 64, only 3 PEAs is needed. While 7 PEAs is needed when
the size of FFT is 8192. Since there are 8 PEAs in CTaili architecture, besides the PEAs
that are in for the FFT, the others can accomplish other task.

4 Benchmark Comparisons

Streamed multimedia applications are inherently computation intensive and favor from
data level parallelism. Multimedia processors incorporate large number of processing
units and huge memory bandwidth to achieve high performance. Very Long Instruction
Word (VLIW), Vector Processing, SIMD Extensions, and Super-Scalar are main
design themes for DSP processors; for instance Texas Instruments’ TMS320C62x™ is
based on VelociTI™; an advanced 8-slot VLIW architecture[8]. m frame 1024-point
FFT on different platforms are compared in table 4 for comparison. Owing to only
concerning about the tiptop performance of the platforms, the clock for every platform
is the highest working-frequency.

Table 4. Processing time comparison for 1024-point FFT

platform one frame | m frame total Processing
Processing | Time (us)
Time (us)
CTaili 51.45 51.45+20.48 X(m-1)
VIRAM 264 | 264X m
Imagine(Float) | 7.4*' 74X m
TMS320C6201 | 104 104X m

*1 : data quote from [7]

From the table 4, owing to the clock frequency for CTaili architecture is only
100MHz and the processing time of 1024 points FFT reaches up to 51.45us, and only
better than TMS320c6201. But the total processing time will be evidently decreased as
the number of FFT frames increase. When processing 10 frames, the total time needed
is almost equal to the time needed for VIRAM. This is because the CTaili architecture
is designed for data-stream and it begins to process data of next frame before last frame
processing over. The number of clock that PEA need to wait for before processing next
frame data equal to the FFT size(the RAM which store last frame computing-result
sends data to next PEA in the time). The output sequence of FFT input and output data
of m frame is shown in figure 6. Additionally, the total power of architecture will be
lowest for its lowest clock frequency and spatial design.
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framel frame? frame m
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Fig. 6. Output sequence of m frame FFT

5 Conclusion

Coarse-grained reconfigurable computing architecture achieves both the performance
of ASICs and the flexibility of general purpose processors and has broad application in
DSP. FFT is the classic algorithm in DSP, In practice, the size of FFT varied from 64
point to 4096 point. The CTaili architecture is good at scalability and is fitful for the
diversification of FFT size. As the number of FFT frame increase, the advantage of the
RC architecture is displayed evidently. Since every PEA can lonely take charge of a
task, when some PEAs answer for an special algorithm, others could be configured to
finish another task.
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Abstract Applications that both access and generate large data sets increasingly
draw our attention in high energy physics, astronomy, genomics and other disci-
plines. The Data Grids, like Gfarm, seek to harness geographically distributed re-
sources for such large-scale data-intensive problems. However, scheduling is a
challenging task in this context. In this paper, we discuss the integration of LSF
with Gfarm. We will discuss how to enable LSF to support Gfarm applications
requiring GSI authentication, the design and implementation of data aware sched-
uling and data management. The system is able to find data-affinity hosts for
Gfarm jobs and to adjust the distribution of the data replicas dynamically accord-
ing to the job load. Before job running, the system will setup the proper credential
for it. Using the LSF scheduler plugin mechanism, we do not need to write a new
scheduler from scratch or make a lot of changes to an existing scheduler.

Keywords: data grid, data aware scheduling, GSI, LSF, Gfarm.

1 Introduction

Grid is considered as the infrastructure for the next generation of Internet. Computing
grid and data grid play key roles in grid technologies. Computing grid is designated to
facilitate CPU-intensive jobs, whose core functionalities are job scheduling, resource
management and job execution. The well known batch systems, such as Con-
dor'", LSFm, SGEBJ, and PBSHJ, etc, focus on local job scheduling and resource man-
agement, while Condor-G"' and CSF'® work at the grid level.

With the fast developing computer commodity technology, CPU is no longer ex-
pensive. Emerging classes of data-intensive applications that both access and generate
large data sets are drawing much more attention. High-performance data-intensive
computing and networking technology has become a vital part of large-scale scientific
research projects in areas such as high energy physics, astronomy, space exploration,
and human genome projects. One example is the Large Hadron Collider (LHC) "
project at CERN. The so-called Data Grids provide essential infrastructure for such
applications. Grid Datafarm (Gfarm)™, for example, is one of them.

Gfarm architecture is designed for global petascale data-intensive computing. It
provides a global parallel file system with online petascale storage, scalable 1/O

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 196 —204, 2005.
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bandwidth, and scalable parallel processing, and it can exploit local I/O in a grid of
clusters with tens of thousands of nodes. Gfarm parallel /O APIs and commands
provide a single file system image and manipulate file system metadata consistently.

If a huge amount of data I/O is involved, a network system’s performance will be
degraded by network congestions without proper data management and job schedul-
ing. In Gfarm, gfrun and gfimpirun commands are able to allocate the file-affinity
hosts for optimum execution of applications based on available metadata. However,
the manual method is not scalable in a production environment with a large number of
users running jobs concurrently. It is imperative to have an automated job scheduling
and data management mechanism.

Gfarm provides two security models, share key model and GSI model. GSI model
is encouraged to be used in real production environment. In this model, proxy certifi-
cates are required for applications to access Gfarm file system. Since we do not want
to duplicate a user’s proxy certificate on every computing node, a credential auto-
matic setup/clean mechanism is compulsory.

In this paper, we describe the design and implementation of such credential auto-
matic setup/clean mechanism as well as data aware scheduling in Gfarm by using a
LSF scheduler plugin mechanism. The system is able to reserve the best hosts for job
execution, setup and clean up the credential, and performs data stage-in and stage-out.
Moreover, it can adjust the distributions of the data replicas based on the actual re-
quirements of jobs, and balance the load for each data replica dynamically. With the
plugin approach, the new scheduling policy is provided as a module to be dynami-
cally loaded, and it can cooperate with other scheduling policies in the system as well.

In the rest of the paper, we discuss the credential automatic setup/clean mechanism
first, after that the LSF’s scheduler plugin mechanism is briefly introduced, then we
discuss the architecture of the data aware schedule module. In section 5, the design
principles of the scheduling algorithm and its implementation are explained. Section 6
is the experiment result. In section 7, some related works are discussed. Finally we
present our plan in the near future.

2 The Job Credential Automatic Setup/Clean Mechanism

Whenever an application trying to access a Gfarm file, it need communicate with
Gfarm daemon, gfsd. If Gfarm configured in GSI security model, gfsd requires the
application to provide its credential, the user’s proxy certificate, for GSI authentication.
Otherwise, gfsd will deny any request from the application. A real production cluster
may consist of thousands of hosts, and a job can be dispatched to any host by sched-
uler. We need a solution to guarantee the jobs can access Gfarm on execution hosts.
During the design stage, we considered four alternative solutions. (1) Configuring
Gfarm in share key model. In this model, gfsd does not require a GSI authentication.
It is quite simple in that we do not need worry about authentication at all. However,
this model is not secure. (2) Implementing a mechanism to automatically duplicate a
user’s certificate on every computing node in the cluster. Then the user’s job can run
on any host. The disadvantage of the solution is that it introduces a lot of overhead to
duplicate every user’s certificate and keep these certificates valid on each host. It is
not secure either in that there are many copies of certificate in the cluster. (3) Generat-
ing a new user proxy certificate on execution host for a job before its running. It’s the
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safest way. However, it is hard to implement as it requires the job to be able to get its
owner’s password somehow. (4) Passing a user’s proxy certificate from the job sub-
mission host to job execution host. After the job being finished, delete the certificate
from the execution host.

The last solution is a compromise of solution 2 and 3. It is acceptable to require a
user to set up its proxy certificate before submitting jobs. It is safer than solution 2 as
a user’s certificate will reside in the execution host during the job running period
only. It’s easier to implement than solution 3 in that it doesn’t require the job to know
the user’s password for certificate. Therefore, we chose solution 4 in our prototype. In
terms of implementation, LSF’s esub is used to get a user’s proxy certificate at job
submission time, and LSF’s eexec is used to set up the credential for the job on the
execution host. We take advantage of LSF’s post-exec mechanism to clean up the
job’s credential after it is finished. With the above job credential automatically
setup/clean mechanism, a Gfarm job can run everywhere in the cluster. The more
implementation details of this part will be discussed in another paper.

3.1 LSF Scheduler Plugin Mechanism

In the real world, each user has different requirements. No matter how many schedul-
ing polices are provided, no resource management system can meet all users’ needs.
Hence, in version 5.0, LSF designed the scheduler plugin feature to allow users to
write their own scheduling policies.

Scheduler Framework

1| Il

§ FCFS = —> o—yDbaa =

Module | | | 7777 Aware
Module

LSF Scheduler

Fig. 1. LSF scheduler plugin mechanism

The LSF plugin mechanism consists of the scheduler framework and a number of
scheduler plugin modules. See figure 1. The scheduler framework works as a mother-
board with slots to hold scheduler plugin modules. The framework maintains the
elementary information, like pending jobs, available hosts etc, for all plugin modules.
Plugin modules are able to access those data inside scheduler framework via a LSF
scheduler API. The particular scheduling policies are implemented inside plugin mod-



Integrating Local Job Scheduler — LSF™ with Gfarm™ 199

ules. FCFS module, for example, provides the first come first serve policy, which is
the default policy of LSF.

The plugin modules are loaded dynamically by the framework at run time. The
user can indicate which modules to be loaded via configuration. Using this mecha-
nism, the users do not need to write a customized scheduler from scratch, but to pro-
vide just a plugin module with the desired policy. In this paper, we describe a plugin
module to perform data aware scheduling and data management in Gfarm.

4 Architecture of Data aware Scheduling Module

The data aware scheduling module is implemented as a LSF plugin. It communicates
with LSF via the LSF scheduler framework API. The module takes the pending jobs
and the available hosts in the system as input from LSF and gets the data replica in-
formation from Gfarm. To Gfarm, the module is simply a normal Gfarm application.
Any Gfarm API and command can be used. The output of the module is a series of
schedule decisions, such as host reservation, replica creation, job execution and so on.
These decisions are executed by LSF and Gfarm respectively.

| Scheduler Framework API |

Regular Job

Job list RO ~ )
coeo...a._ [ N
T Plan 3’8\5 Job dispatch instructions |>_ o ... O
|:| I:l |:| _____ D.___, Maker | =Y .»° " CE" ! >
coo N 0

Available Host List E 4 Q O} Replica  management i

E ," i instructions E Available ~ Host

i '," - i List for regular

Vo 1 jobs

[ " :

@ Instruction Generator

Non-Gfarm Job

Gfarm Job
Host Preferred by Gfarm job
Information

Schedule Tnstructions
Hosts Reservation

Data transfer
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Fig. 2. The data aware plugin module

The data aware module consists of three components, the Plan Maker, the Work-
flow Container and the Instruction Generator. See figure 2. The Plan Maker is respon-
sible for making job scheduling and data management decisions. The decisions are
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described as workflows and maintained by the Workflow Container. At the end of a
scheduling session, the Instruction Generator issues the corresponding LSF or Gfarm
commands to execute the workflows.

The data aware module handles Gfarm applications only, and the other jobs are
scheduled by other modules. Hence, the Plan Maker has to be able to recognize
Gfarm jobs. In our work, a special tag is attached to each Gfarm job at submission
time. A tag is a string with the format of “Gfarm Files=fI,..fn”, which indicates the
files to be accessed by the job. This is done via LSF bsub —ext command.

The Plan Maker is the brain. It decides when and where to start a Gfarm job, and
whether to create a new replica for a data set. The Plan Maker follows the data aware
scheduling policy and writes its decisions into the workflows maintained by the
Workflow Container. A workflow is a job execution plan for a data replica. Besides
the jobs to be launched, a typical workflow consists of host reservation, file transfer
(stage-in), and file elimination (stage-out) operations as well. New jobs can be dy-
namically added into an existing workflow.

The Instruction Generator is the decision executor, generating concrete jobs or data
operations based on the workflows. Those instructions are issued to LSF/ Gfarm via
appropriate APIs/commands at the end of each scheduling session. More details are
provided in the following section.

5 The Data-Aware Scheduling Algorithm

In a production cluster, there could be up to thousands of hosts, and tens of thousands
of jobs running on it. Our goal is to improve the throughput of the whole system in-
stead of a single job’s execution. For data-intensive jobs, the following scenarios will
cause a degradation of system performance. First, there are many jobs accessing data
files through network. This leads to network congestion and slow down of the execu-
tion of every job. Second, the loads of data replicas are imbalanced. Some data files
with few replicas are being accessed heavily, while some other data files with more
replicas are not frequently accessed.

To alleviate the first problem, jobs should be dispatched to hosts with the required
data locally or to those close to the data. This type of scheduling is called data aware
or data affinity scheduling. For the same reason, Gfarm insists on users making good
use of local disks, although network parallel I/O is also supported. To resolve the
second problem, replica management should be able to dynamically balance the load
of each data replica based on a job’s actual requirement.

Our algorithm resolves these two problems above in the following ways: 1. Be-
sides satisfying a job’s resource requirements, like host/OS type, it always selects the
data affinity hosts for job execution, 2. It supports data stage-in and stage-out, 3. It
adjusts dynamically the number of data replicas and their locations according to the
real load of the jobs in the system, 4. It avoids creating multiple data replicas concur-
rently to reduce the possibilities of the network access conflicts.

Both job scheduling and data replica management strategies are embodied in the al-
gorithm. The algorithm is executed by the Plan Maker periodically. Each execution is
called a scheduling session. In each session, more jobs will be inserted into existing
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workflows, and some new workflows could be created. All the jobs belong to the same
workflow have to be started in sequence, and normally they do not start within one
schedule session. The jobs from different workflows can run concurrently. See Figure 3.

5.1 Algorithm

1. Select a Gfarm job from the pending job list. Other jobs are ignored by the al-
gorithm. The pending job list includes all the jobs waiting to run, and it is
maintained by LSF scheduler framework.

2. If the job state is scheduled, it must belong to an existing workflow. Check
the workflow, if a reserved host is available, and there is no job in the work-
flow to be executed before it, change the job’s state to launching. The job will
be started in this schedule session.

3. If the job state is not scheduled, then try to insert it to an existing workflow. If
successful, change the job state to scheduled. Otherwise, log the data files (also
called data set) used by the job and do statistic using the following formula,

Sum(ds) = X Pi * Ti
i=l..n
(Pi is the job’s priority, ds is the data sets used by the job, (1)
Ti is the job’s running time)

Note: There is a limit for the number of jobs that a workflow can have. If a
workflow is full, no more jobs can be inserted into it unless some jobs are
launched. Such a limit can avoid load imbalance among data replicas.

4.  If there are more pending jobs, go to 1.

5. After going through all the pending jobs, the algorithm will decide whether to
create new replicas in this session according to the statistic results in 3. If
there is a data set whose Sum(ds) is larger than a pre-defined value, then the
data set needs a new replica. However, in order to decrease the chance of net-
work congestion, only one new replica will be created in a schedule session.
The following actions will be taken to perform the replica creation for the
data set with the largest Sum(ds) value,

a)  Select the best location (hosts) for the new replica according to job’s re-
source requirement. If there is no host with spare disk space, the obso-
lete data replicas will be overwritten based on the LRU algorithm.

b) Create a null workflow

c) Insert host reservation operation to the workflow to reserve the selected
hosts

d) Insert the data transfer operation to the workflow to create the replica on
the selected hosts

At the end of a scheduler session, the Instruction Generator goes through all the
workflows: notify LSF to start all the jobs with launching state; notify LSF to execute
the host reservations for the new replicas; notify Gfarm to start copying data to re-
served hosts. Subsequently, the new workflow is used by the Plan Maker to schedule
jobs during the next session.
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6 Experiment Result

The system prototype is realized using C language in Linux Red Hat 9. The experi-
ment cluster consists of 6 Linux boxes running LSF6.0 and Gfarm1.0.3 connected by
100M Ethernet. To simplify the test, we assume that all the jobs have the same prior-
ity value 1. The data aware plugin algorithm will generate a new data replica once its
Sum(ds)>= 1500 which is configurable.

The experiment results depend on the characteristics of the applications to be
tested. In our test case, there are three kinds of jobs submitted to the system. Accord-
ingly, three input data files are located in different hosts’ disks. All the jobs are using
the same algorithm to process its input data, and all the data files have the same size-
900MB. Running on the host with the input file locally, a job is completed in 32 sec-
onds in average. In contrast, the job normally spends 132 seconds if to access input
file remotely. In each test, we submit 300 jobs(100 for each type) to the system. After
10x of such test, we got the following results,
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With the data aware plugin, the system takes 1650s in average to finish 300 jobs.
Compared with 2640s without data aware plugin, the system performance is improved
by 37.5%. The result looks positive. However, many factors, like job patterns and
network topology etc, have impact on the performance of the algorithm. We are plan-
ning to run our prototype on PRAGMA test bed to collect more data.

7 Related Works

In [9], job scheduling and data management modules are separate components. In
[10], a data aware scheduling mechanism is implemented in a peer-to-peer computing
model: job scheduling and data management are implemented as two loose-coupled
components. In our work, job scheduling and data management are integrated to-
gether. In our case, the scheduler knows both jobs and data well, therefore, is able to
make a better plan to improve the system’s performance overall.

Plan based scheduling is introduced in some recent works. The focus of [11] is on
the scheduling for a single complex task with multiple components in the computing
grid. Al plan is used to generate workflows to execute components of a task. Our
work is an extension of [11]. Instead of focusing on a single job, workflows are used
to plan the execution of a number of data-intensive jobs. Many works, like [12], in-
troduced methods to balance the load for a parallel job to overcome the performance
heterogeneity betweens the nodes in a cluster. In this paper, we achieve dynamic load
balancing for data replicas based on the needs of jobs in the system. Moreover, our
use of a LSF scheduler plugin mechanism has the following advantages: no need to
write a scheduler from scratch, because the data aware scheduling policy is imple-
mented as a plugin module; the new policy can co-operate with other policies, like
FCFS, fair share, and preemption etc.

8 Conclusion and Future Work

This paper describes the integration of LSF6.0 and Gfarm1.0.3 on Linux RedHat9.0.
A job credential automatically setup/clean mechanism is introduced to support Gfarm
GSI authentication. The data aware scheduling and data replica management func-
tionalities are implemented using a LSF scheduler plugin mechanism. The following
features are provided by the data aware plugin: 1. A queuing mechanism for Gfarm
jobs is provided and to the ability to allocate data-affinity hosts for job execution. 2.
The stage-in and stage-out functionality. 3. Dynamic adjustment of the distribution of
data replicas according to actual job requirement. 4. Cooperation with other schedul-
ing policies and ease of extension with new scheduling features.

Our team has finished the project to port CSF'® from GT3-OGSI to GT4-WSRF.
CSF is a grid level scheduling framework. In the near future, we are going to intro-
duce data aware scheduling policy into CSF. Our research will identify the different
focuses between the grid level data aware scheduling and cluster level data aware
scheduling, and how to make the two kind of policies work together efficiently. We
will also add other job schedulers like SGE and Open PBS to our test bed.
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Abstract. Many schemes had been used to reduce the performance (or speed)
gap between processors and main memories; such as the cache memory is one
of the most methods. In this paper, we issue the structure of shared cache,
which is based on the multiprocessor architectures to reduce the memory
latency time that is the one of major performance bottlenecks of modern
processors. In this paper, we mix two schemes, sharing cache and
multithreading, to implement this proposed multithreaded architecture with
shared cache, to reduce the memory latency and, furthermore improve the
processor performance. In this proposed multithreaded architecture, the shared
cache is achieved in level-1 (L1) data cache. The L1 shared data cache is
combination of cache clock in the single space address and a cache controller to
solve the required data transmitting, data copies simultaneously, and reduce
memory latency time.

Keywords: Discrete processor architectures, cache coherency, multithreading,
memory latency, shared cache, write-invalidate (WI), and cache block.

1 Introduction

The speed gap is growing up between the CPU and memory, which is the bottleneck
of performance of processor. Thus, There are several methods issued for tolerating or
hiding the memory latency between the processor and main memory to reduce the
needed data access latency, Such as adding a small fast I- and D-cache (i.e. cache
memory), or exploiting multithreading scheme continually execute the thread while
context switch occurrence. Cache memory was a proved effective technique to reduce
memory latency and had been implemented in all the known high-performance
multiprocessor architectures [1, 2, 8, 9]. A shared cache is a fast RAM-type memory
positioned between the relatively fast CPU and slower main memory (usually
implement DRAM memory). The shared cache [4, 21] is a hardware solution that
makes the cache invisible to the operating system and the application software.

The structure of shared cache is combination of several processors, memory
management units (MMU), bus arbiters, and a shared cache. In the shared cache,
accesses of all bus arbiters are routed to main memory through the same
shared-cache. The shared cache is exploited in a number of processors systems to
solve the cache coherency and to reduce the memory latency.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 205 -215, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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In shared cache system, the processors share the cache memory as well as the main
memory. The shared cache is partitioned several shared blocks in the same address
area. It should have speed compatible to that of the processors. To make the shared
cache competitive that should offers simultaneous read/write property to allow the
processors and main memory (DRAM) to access the same cache block at the same
time [5,20]. The shared cache is located between processor and main memory to
reduce and hide the main memory latency while the needed data of processors is
transmitted inter-processor of multiprocessor systems.

To maintain the copied data are coherence in cache block of the shared cache. An
effective cache coherency is enforced on the multiprocessor systems. A cache
coherency protocol is a set of rules that ensure the cached data to be distributed
among individual processor coherently. For the system performance of multiprocessor
systems, which depend on the effectively the data-caching coherence scheme.

The proposed architecture is innovated to the multiprocessor systems, then on
multithreaded architectures with shared cache. We construct the execution unit to each
processor, called threading processor unit (TPU), of multiprocessor systems, in which
each TPU is combination of the program counter, general purpose registers, and stacks
(shown in Figure 1). In this paper, we also issue a cache controller for this multithreaded
processor with shared cache. The shared cache is construct of 4-way set-associative,
write-invalidate (WI) protocol for cache coherency of cache blocks, and write through
strategy read/write for cache and memory simultaneously [7,11,15,16,19].

4>{ Instruction Cache
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instruction

insél:‘tc&;on E insé‘:{:f&ico“ PC Queue
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Shared Data Cache

Fig. 1. The shared cache based on multithreaded processors
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The proposed multithreaded processors (MTP) with shared cache is constructed
and simulated with trace-driven simulation tools, SES/workbench [18]. We compare
the performance of this proposed MTP with shared cache to that of the MTP without
shared cache. Both have the same specification and simulate with the same
environment, parameters, and workbench. We find this proposed MTP with shared
cache has higher performance than the MTP without shared cache.

The main contribution of this paper, we use a bus arbiter to handle the
request/grant signals, furthermore to access the needed data from cache blocks or
other thread processing unit. The remained of this paper is organized as follows. We
investigate the issued designs and papers of shared cache in Section 2. The structures
of the shared cache of MTP, cache controller, and the cache coherency protocol are
illustrated in Section 3. The simulation model and the results are analyzed in Section
4. Finally, we remark the conclusions in Section 5.

2 The Previous of Shared Cache Design

A cache memory contributes in both hiding memory latency and reducing the traffic
on the processor interconnection network of shared cache and shard memory on the
multiple processors but it cause causes the coherence problems [6].

The shared cache is the one approach of hardware-based techniques to solve the
cache coherency. In shared cache, we split the single address space shared cache into
several cache blocks, which are uniformly shared accessed by the thread processing
unit (TPU) that is all processors have equal access time to the cache lines.

The shared cache approach was exploited in multiprocessors, such as, in 1993s,
Chaudhry and Han [3] exploited the concept of shared cache and private cache
techniques and used the P-Bus and S-Bus via network to control the data access from
/to private block cache and shared block cache, respectively.

In 1994s, Sawchuk and Cheng [17] used the optoeletronic devices in parallel
computers to increase the effective processing rate. In those shared cache systems, the
processors shared the cache as well as the main memory through two levels of
interconnection networks. In 1995s, Kang and Rim [10] had implemented the shared
cache, shared system interface, dispatcher, and multiprocessor to built on-chip
multiprocessor to improve the performance.

In 19965, Nuyfeh et al. [14] proposed a clustering shared cache. Though the access
latency is reduced intro-cluster shared cache, a longer latency time is needed in the
inter-cluster shared cache. The needed data is accessed both in the intro- and
inter-cluster shared cache are thoroughly the networking techniques.

As for the application of shared cache, fewer papers are issued. Referred to the
previous works of shared cache, we find that both used a network to manage the
shared cache blocks. Thus, the hit latency and needed data access latency are existed
on inter-processor communication for the interconnection networking. In this paper,
we discard the networking and replace by an arbitration controller with buffer
techniques. In 1996s, Chen et al. [4] used a trace-driven simulation to study shared
cache performance on multithreaded architectures. In that article, two conclusions are
issued, more cache size and more set-associative in order to maintain comparable
cache performance.

In 1999s, Tasi et al. [21] constructed superthreaded processor architecture, in
which includes several thread processing unit, and the shared I-and D-shared cache.
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Each thread-processing unit is a logic pipeline processor to be added to a
communication unit. In this paper, the thread is sequenced fork via and transfers the
needed data between the private communication units of thread-processing unit. The
data update not immediately between communication block and shared cache, thus
the invalided data could be stored in the shared cache block and read by the other
thread-processing unit. In 2004, Tu [22] issued the concept of the shared cache for
multiprocessor systems.

In our proposed shared cache based on multithreaded architectures, we exploit the
write-invalided strategy for shared cache and a common thread communication unit to
cohere the cache blocks and to reduce the communication delay inter-processors,
respectively.

3 The Structure of Shared Cache Controller

The MIMD (multiple instructions and multiple data) is classed into processor-level
architectures and thread-level architectures. The most of thread-level architectures
have been built or proposed with shared memory, such as Denelor HEP [12] and MIT
Hybrid Machine, and distributed shared memory systems, such as Tera, *T [13],
P-RISC, and EM-4 [23]. There are fewer multithreaded machine with shared cache,
example of superthreaded processor architecture.

In this paper, we construct a shared cache based on multithreaded architectures,
which is the revolutionary the structure of superthreaded processor architecture [21],
in which is improved having a thread communication unit to handle the context
switch and needed data communication inter-thread processing units. The structure of
this proposed multithreaded architecture is shown in Figure 2. The detail schematic of
the proposed multithreaded architecture, the proposed multithreaded architectures is
combination of several thread-processing units, thread communication unit, and the
shared cache. The thread-processing unit is a logic pipeline processor having
instruction queue (IQ) and encoder, general-purpose register (GPR), program counter,
ALU, result store buffer (RSB), and write back unit. Any thread is executed in
thread-processing unit as a process in pipeline processor until the data dependency
occurs. Thus, context switching happens among thread-processing unit to be
controlled by the thread communication unit.

The thread communication unit includes two elements, there are bus arbiter and
data communication unit. The bus arbiter handles and records the context switching
and the status of thread of thread-processing unit, respectively. The data
communication unit is constructed as buffer to temperately store the address of
needed data in where of the cache block during the requesting stilly stupendous. Until
the requesting thread of the requesting thread-processing unit is to be awaken.

The shared cache is split into I-cache and D-cache. All the threads are shared a L1
cache. The results of any thread-processing unit are written into data result buffer
(DSB) and the shared cache block, simultaneously. When the data is updated, an
invalided signal is sent to the copied cache block to avoid this un-update data to read
by the other thread-processing unit. The detail of control and data flow between
thread processing unit (TPU) and thread communication unit (TCU) is shown in
Figure 2. For the needed data is accesses from three paths, there are written back from
the data store buffer (DSB), directly fetch from the shared cache block, and remote
access from the DSB of other TPU.
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The shared data cache is split to several blocks associative to the number of TPUs.
When the data dependency is occurred, an exception request is issued from ALU to
the control unit, then to the bus arbiter. Furthermore this requesting thread is
suspended and a context switching in its concurrent TPU. When the needed data have
remotely accessed from other TPU, but the requesting thread do not awaken.

The address of the needed data is store in the buffer of the communication unit.
When the requesting thread awakens, the communication unit issues this address of
needed data to its concurrent TPU to access the needed data from the valid cache
block. The produce of thread control flow and its protocol are shown in Figure 5, in
which the needed data request is issued when data dependency occurs in thread
processing unit (TPU), the bus arbiter manages the handshaking among TPUs, and the
communication unit transfers the address of needed data in shared cache.

Figure 6 show the structure of communication unit, in which is combination of
several tri-state control registers and data buffer. The address of needed data of cache
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block is temporality store in the transition data buffer of communication unit. The L1
data cache is split into several blocks. In order to maintain the coherence data in
shared cache, we exploit the write invalidation strategy to void the old data to be read
by TPU. For the cache controller, it is designed and shown in Figure 7.
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Fig. 7. The structure of cache controller

4 The Simulation Results

The experiments have conducted on a detailed, cycle accurate, performance simulator
that is derived from the SES/workbench tools set. The simulator takes binaries
compiled with gcc for the hierarchical model. A statistical simulation uses
populations, utilization, and throughput rate to characterize the simulated model
parameters: Populations are the number of transactions, called samples, present at the
node, which in a SES/workbench model represents the manipulation of a physical or
logical resource or some other processing step, in a model or sub-model. Utilization is
the number of servers or resources in use on a model of a sub-model. Throughput
rate, abbreviation rate in the result of this paper, the fotal amount of transactions
done in a give simulated time, is defined as the average number of transactions
executed by the nodes, such as function unit of SES/workbench, per unit time step.
The throughput rate multiplies to a number of the workload machine operating
frequency, which I calculated by MHz, we could obtain the throughput in MIPS [11].
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We compare the utilization and throughput to each unit in the different kinds of
configures of L1 shared cache and different instruction size in the assume parameters.

4.1 Comparing the Utilization for Different Configure of Shared Cache

In this section, we illustrate the utilization for the different kinds of cache configures,
direct-mapped, fully associative, and set-associative, of the shared cache, which are
embedded in the same multithreaded architecture. The results are listed in Table 1.
Referring to Table 1, we find the 4-way set-associative has lower used rate of
submodel and instruction access traffic time than others thread numbers. As we
increase the scalar of set value over four, the utilization of submodel is increased, too.
This reason tells me that more cache size more waiting time when occurs thread
suspended and context switching among thread processing units.

We also find that the bus arbiter has the highest utilization to other units in the all
kinds of configure. The reason illustrates that the bus arbiter has higher operation
frequency than other units. For all message of each thread slot is transferred to this
bus arbiter. This information express two facts, the one is that the bus arbiter is the
bottleneck of this proposed multithreaded architectures, and the other is that the
performance-improved scheme exploits TLP technique superior to the ILP technique.

Comparing the FPU unit to other units of the proposed multithreaded architecture,
we find the FPU’s has lower utilizations than Load/Store unit and ALU. This result
envied proves that the proposed multithreaded architecture with bus arbiter effects
hide the needed data access latency time while occurs the context switching or
asynchronous among thread processing units. Because the float point has complexly
operation, we can exploit the multithreading scheme reduce the computing time, the
access latency, and rapidly obtain the needed data address from cache block via the
communication unit.

Table 1. The transactions number are using in different configure shared cache

Direct-mapped [Fully-associative Set-associative

2-way | 4-way | 6-way | 8-way

Instr_queue 33 33 29 33 33 32
Bus arbiter 215 215 214 236 233 234
Reuse_store 15 15 21 17 17 16
ALU 21 21 16 24 24 24
L/S unit 20 20 21 18 18 18

FPU 7 7 6 8 8 8
Total 313 311 307 336 333 332

4.2 Comparing MIPS with Different Configures of Shared Cache

Secondly, we describe the speedup for different Configures of Shared Cache of the
proposed multithreaded architecture; the results are shown in Table 2. For instance,
the system throughput rate, defined the transactions per simulation time unit rates,
multiply the number of the operating frequency in MHz. Thus, we can obtain the
system throughput in MIPS. We find the best case is 4-way set-associative.



Cache Management for Discrete Processor Architectures 213

Table 2. The throughput rate in different configure shared cache

Direct-mapped|Fully-associative Set-associative

2-way | 4-way | 6-way | 8-way
Instr_queue 0.00132 0.00132 0.0012 | 0.0013 |0.00132| 0.0013
Bus arbiter 0.0043 0.0043 0.0043 | 0.0047 |0.00475] 0.0047
Reuse_store 1.461 1.461 1.57 1.56 1.56 1.56
ALU 0.3 0.3 0.3 0.3 0.3 0.3
L/S Unit 0.2 0.2 0.2 0.2 0.2 0.2
FPU 0.5 0.5 0.5 0.5 0.5 0.5
Total Rate 2.46662 2.46662 2.5758 | 2.566 | 2.566 | 2.566

4.3 Comparing the Utilization to Networking Scheme Multithreaded
Architectures

Finally, we compare the utilization of the multithread architecture with 4 thread slots
and 8 instruction sizes to the networking multithreaded architectures (single thread
processor). Besides, the thread slot and the instruction sizes are consisted in
multithreaded architecture; both the multithreaded architecture and the networking
multithreaded architecture have the same features. Figure 8 illustrates the utilization
between the proposed multithreaded architecture and the networking multithreaded
architecture.

Observing the results, we obtain that the multithreaded architecture has higher
utilization than the networking multithreaded architectures, especially the FPU and
Load/Store node of multithreaded architecture. Referring to Figure 8, expect the
I-queue and D-cache nodes, in the advantage; the utilization t of the multithreaded
architecture is higher than the networking multithreaded architectures. This result
expresses that the shared data cache improving the data latency and access traffic.

This result also tells us that the multiple threads can achieve speedup to the
computers; the times are decided to the thread slot numbers. In addition, the FPU unit
specifically highlight, the reason is clearly described in Section 4.1.
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Refer to Figure 9, we find the proposed multithreaded architecture has 4-TPU, in
which has the fastest run-time, on average. Even if we increase the size of TPU
number up to 16-TPU, the performance of the proposed multithreaded architecture
does not evidently improvement. This result due to the handshaking between the
shared data cache to be handed the bus arbiter, more the TPU number more loading to
the bus traffic. Whereas, the address of the needed data of request TPU’s are directly
pre-store in the buffer of communication unit. Furthermore, the information is
delivered to the requesting TPU while the suspended thread is awakening.

5 Conclusions

The major purposes of shared data cache are used to reduce the cache-hit latency and
remain the cache coherency among cache block to reduce the needed access latency.
For the must previous multithreaded processor systems exploit distributed shared
memory. Those multithreaded architectures have the same characters to the
multiprocessor systems; using multithreading and networking techniques to
implement the context switching and the dependent data access among each processor
units, respectively. In this paper, we proposed an on-chip multithreaded architecture,
in which each thread processing unit has private L1 instruction cache and the L1 data
cache is based on the shared cache scheme.

We simulate this proposed multithreaded architecture using a trace-driven
simulation tools. We analyze the simulation result to find this proposed multithreaded
architecture more effective than the private cache based on multithreaded
architectures. The best configuration of the shared L1 data cache is constructed of 64
KB, 4-way set-associative 64 bits line.

There is much room for the shared cache based on multithreaded architectures,
such as the control method of shared cache, the bus configuration of shared cache,
and single bus or multiple buses?
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Abstract. Simultaneous Multithreading (SMT) processors improve perform-
ance by allowing running instructions from several threads simultaneously at a
single cycle. These threads executing simultaneously share the processor’s re-
sources, but at the same time compete for them. A thread missing in L2 cache
may allocate a large number of resources which other threads could be using to
make forward progress. And as a result, the overall performance of SMT proc-
essors is degraded. To prevent this situation, many instruction fetch policies are
proposed. DWarn is among the most efficient fetch policies to handle L2 cache
misses. In this paper, we present an enhanced version of the DWarn policy
called DWarn+. Results show that our policy significantly improves the original
one in throughput and fairness when not more than four threads run. When the
number of threads running is higher than 4, our policy enhances the original one
mainly for memory bounded workloads, and the average improvement for all
types of workloads is very limited.

Keywords: SMT, L2 cache miss, I-fetch Policy, Fetch Priority, Resource
Allocation.

1 Introduction

Simultaneous Multithreading (SMT) processors [1,2,3] improve performance by al-
lowing running instructions from several threads simultaneously at a single cycle. Co-
scheduled threads share some resources, such as issue queues, physical registers, and
functional units. The way of allocating shared resources among the threads will affect
the overall performance of SMT processors. Currently, shared resources allocation is
dynamically decided by the instruction fetch policy.

In SMT processors, the number of shared resources is limited, so if a thread holds
critical resources for a long time, other threads may run slower than they could or
even stall because of lack of resources. A load missing in L2 cache usually causes this
happen. An efficient fetch policy should be able to prevent this situation. DWarn [4]
is among the most efficient fetch policy to handle L2 cache misses. DWarn uses L1
data misses as indicators of L2 misses, giving higher priority to threads with no out-
standing L1 data cache misses. It can avoid harming a thread when L1 misses do not

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 216 —-223, 2005.
© Springer-Verlag Berlin Heidelberg 2005



Enhancing DCache Warn Fetch Policy for SMT Processors 217

lead to L2 misses. So DWarn policy is able to prevent the negative effects caused by
loads missing in L2 cache as well as can reduce the resource under-use. However,
using DWarn, a thread with L2 cache missing can still have some opportunity to fetch
instructions into the processor, especially when the number of threads running is
small. Although DWarn gates the threads with L2 cache missies when there are less
than three threads running, it may be so late that shared resources have been clogged.
Furthermore, there may exist idle cycles of the processor when all threads are experi-
encing L2 cache misses.

In this paper, we propose an enhanced version of DWarn fetch policy called
DWarn+. In our policy, when a load misses in L1 data cache, its thread is given lower
fetch priority than threads with no outstanding data cache misses. If the load finally
misses in L2 cache, its thread’s fetch priority is reduced further. Hence, as long as the
number of co-scheduled threads is big enough, the threads with L2 cache misses al-
most have no chance to fetch instructions into the processor. When less than three
threads run, our modification is restricting the resources allocated to threads with
cache misses, and gating these threads only when they attempt to exceed their as-
signed resources. In this way, on one hand, the threads with L2 cache misses can be
prevented from clogging the shared resources; on the other hand, idle cycles of the
processor would not be produced even if all threads are experiencing L2 cache
misses.

This paper is organized as follows. Section 2 introduces the DWarn policy and ex-
plains its main drawback. In Section 3, we detail our DWarn+ policy. Sections 4 and
5 present the methodology and the results. Finally, concluding remarks are given in
Section 6.

2 The DWarn Policy

DWarn policy is based on the combination of two ideas, namely, classification of
threads, and prioritization of threads. At first, at each cycle, available threads are
classified into two groups: Dmiss group, containing the threads that have at least one
in-flight L1 data cache miss (Of course, the thread with L2 cache misses belongs to
this group.), and Normal group, to which the remaining threads belong. Once the
classification is done, the fetch priority of the less-promising (Dmiss) threads is re-
duced. This is done by prioritizing the Normal threads, and fetching instructions from
the Dmiss threads only when there are not enough available instructions from the
Normal threads. Threads in the same group are sorted using ICOUNT [2].

Threads are never stalled, and as a result, even if a thread is in the Dmiss group, it
has some opportunity to fetch instructions into the processor. In SMT processors
using ICOUNT?2.8 as the basic fetch policy, when 2-thread workloads run, DWarn
may fail to prevent the Dmiss thread clogging the shared resources. To address this
problem, DWarn uses a hybrid mechanism. If there are less than three threads run-
ning, the priority of the thread experiencing an L1 data cache miss is reduced. After
that, if the L1 miss finally turns to an L2 miss, its thread is gated. If the number of
execution threads is higher than 2, DWarn will only reduce the fetch priority of the
Dmiss threads.

There are two problems with DWarn fetch policy:
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First, DWarn does not distinguish the threads experiencing L2 cache misses from
those only experiencing L1 data cache misses. These two kinds of threads are all
belong to Dmiss group, so these threads can only be sorted by ICOUNT. Maybe
threads with L2 cache misses are chosen to fetch instructions prior to those only with
L1 data cache misses. In fact, we hope to prioritize the latter because the latter is less
likely to clog the shared resources than the former.

Second, when less than three threads run, the threads having in-flight L2 cache
misses are gated. So there may exist idle cycles of the processor when all threads are
experiencing L2 cache misses. Furthermore, threads are not stalled until L2 miss is
declared, which may be so late that these threads have clogged the shared resources
before being gated.

3 Enhancing the DWarn Policy

3.1 Basic Idea

To address the first problem of DWarn, we distinguish the threads experiencing L2
cache misses from those only experiencing L1 data cache misses. That is to say, we
classify Dmiss group in DWarn into two new groups: L2miss group, containing the
threads having at least one in-flight L2 cache miss, and L1Dmiss group, containing
the threads having at least one in-flight L1 data cache miss but having no L2 cache
misses belong. Normal group keeps unchanged. The fetch priority of threads in Nor-
mal group is highest and the threads in L2miss group have the lowest fetch priority.
The L2miss threads are chosen to fetch instructions only if there are not enough avail-
able instructions from both the Normal threads and the L1miss threads, so the threads
with L2 cache misses almost have no chance to fetch instructions into the processor
when the number of co-scheduled threads is big.

Obviously, our method still fails to handle L2 cache misses when less than three
threads run. So, we also use a hybrid mechanism like the one used by DWarn. The
difference is that when less than three threads run, we restrict the resources allocated
to threads with cache misses and gate these threads when they attempt to exceed their
assigned resources. Because the resources allocated to threads with cache misses are
limited, it is impossible that shared resources are monopolized by these threads. Fur-
thermore, as long as the thread with cache misses does not exceed its assigned re-
sources, it would still be able to fetch instructions, and as a result, idle cycles of the
processor are reduced.

Now we summarize our policy, DWarn+, as follows: if there are less than three
threads running, the priority of the thread experiencing an L1 data cache miss is re-
duced, and at the same time the number of resources allocated to this thread is re-
stricted to a certain value. After that, if the L1 miss finally turns to an L2 miss, its
thread’s fetch priority is reduced further, but the number of resources allocated to this
thread keeps unchanged. The threads in Normal group are allowed to allocate as many
resources as that are available. If the number of co-scheduled threads is higher than 2,
DWarn+ will only reduce the priority of the threads in L2miss group and L1Dmiss

group.
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3.2 Implementation

To implement DWarn+, each thread requires an L1 data miss counter, which is also
needed in DWarn. Beyond that, DWarn+ requires an L2 miss counter and 5 resources
usage counters per thread. Each instruction occupies an active list entry and maybe a
physical register before committing. It uses an entry in the issue queues if its operands
are not ready, and also require a functional unit. But each thread can have its own
active list and functional units are pipelined. Therefore we only need to restrict the
usage of issues queues and physical registers by threads with cache misses. There are
three kinds of issue queues: integer, fp and load/store, so each thread requires three
issue queues usage counters. Two more resources usage counters are required to track
physical registers (integer and fp) per thread. The additional complexity required to
introduce these counters depends on the particular implementation, but we do not
expect it to be more complex than other hardware counters already present in most
processors [6]. L1 data miss counters are incremented every time a thread experiences
an L1 data cache miss and decremented when the data cache fill occurs. L2 miss
counters are incremented every time an L1 miss turns to an L2 miss and decremented
when L2 cache fill occurs. If the L2 miss counter of a thread is nonzero, this thread
belongs to L2miss group, otherwise if the L1data miss counter is nonzero, it belongs
to L1Dmiss group. Only when the L1 data miss counter and the L2 miss counter are
all zeros, does the thread belong to Normal group. Issue queues usage counters are
incremented in the decode stage and are decremented when an instructions is issued
for execution. Physical registers usage counters are incremented in the decode stage
and are decremented in the commit stage.

Now there is a question. How many resources can be allocated to the threads with
cache misses when less than three threads run? In our policy, we use a static resources
allocation policy. Supposed that the total number of some shared resource is T, and
the number of co-scheduled threads is N (N=1, 2). The number of this resource allo-
cated to a thread with cache misses is equal to T divided by N. If a thread with cache
misses is exceeding its assigned resources, stall fetching from this thread. It is better
to allocate dynamically resources between threads based on cache behaviors of
threads. But that will be more complex, and we leave it as the future work.

4 Methodology

Execution is simulated on an out-of-order superscalar processor model derived from
SMTSIM [7]. The simulator models all typical sources of latency, including caches,
branch mispredictions, TLB misses, etc. It also carefully models execution down the
wrong path between branch misprediction and branch misprediction recovery. The
baseline configuration of our simulator is shown in Table 1.

Table 2 summarizes the benchmarks used in our simulations. All benchmarks are
taken from the SPEC2000 suite [8] and use the reference data sets as inputs. It is time-
consuming to simulate the complete SPEC benchmark suit. So we follow the idea
proposed in [9] to run the most representative 300 million instruction segment of each
benchmark. Benchmarks are divided into two groups based on their cache behaviors:
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Table 1. Baseline configuration of the simulator

Parameter Value
Fetch Width 8 instructions per cycle
Basic Fetch Policy ICOUNT2.8
Instruction Queues 32 int, 32 fp, 32 load/store
Functional Units 6 int, 3 fp, 4 load/store
Physical Registers 384 int, 384 fp
Active List Entries 256 per thread
Branch Predictor 2K gshare
Branch Target Buffer 256 entries, 4-way associative
RAS 256 entries
Min Branch Misprediction Penalty | 6 cycles
L11I cache, L1D cache 64KB, 2-way, 64-bytes lines, 1 cycle access
L2 cache 512KB, 2-way, 64-bytes lines, 10 cycles latency
Main Memory Latency 100 cycles
Table 2. Benchmarks used

Type Benchmark

MEM mcf, twolf, vpr, parser, ammp, applu, art, swim

ILP aspi, fma, eon, gcc, gzip, vortex, crafty, bzip2

Table 3. Multithreaded Workloads used

Num of | Type | Applications
threads
ILP {gzip, bzip2}, {gcc, aspi}, {vortex, fma}, {eon, crafty}
5 MIX {gzip, vpr}, {gcc, ammp}, {art, vortex}, {fma, parser}, {aspi, twolf},
{crafty, art}, {bzip2, swim}, {eon, applu}
MEM | {mcf, vpr}, {ammp, parser}, {twolf, art}, {mcf, swim}
ILP {aspi, fma, eon, gcc}, {gzip, vortex, crafty, bzip2}, {fma, eon, gcc,
crafty}
{fma, eon, parser, ammp}, {aspi, gzip, mcf, art}, {crafty, bzip2, vpr,
4 MIX parser}, {eon, gcc, twolf, art}, {vortex, aspi, mcf, ammp}, {gcc, fma,
parser, applu}
MEM | {vpr, parser, ammp, applu}, {mcf, art, vpr, twolf}, {twolf, vpr, art,
swim}
ILP {aspi, fma, eon, gcc, gzip, vortex },{fma, eon, gcc, gzip, vortex, crafty}
6 MIX {fma, eon, gcc, vpr, parser, ammp}, {aspi, fma, eon, twolf, vpr, parser},
{eon, gce, gzip, mcf, art, vpr}, {aspi, gcc, eon, vpr, swim, parser}
{mcf, twolf, vpr, parser, ammp, applu}, {twolf, vpr, parser, ammp,
MEM
applu, art}
ILP {aspi, fma, eon, gcc, gzip, vortex, crafty, bzip2}
8 MIX {eon, gecc, gzip, aspi, mef, twolf, ammp, applu}, {vortex, crafty, bzip2,
fma, vpr, parser, art, swim}
MEM | {mcf, twolf, vpr, parser, ammp, applu, art, swim }

those ex periencing between 0.02 and 0.12 L2 cache misses per instruction, on average,
over the simulated portion of the code are considered memory-intensive applications,
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and the rest have lower miss rates and higher inherent ILP. Table 3 lists the multi-
threaded workloads used in our simulations. All of the simulations in this paper either
contain threads all from the first group (the MEM workloads in Table 3), or all from
the second group (ILP), or an equal mix from each group (MIX). To avoid our results
are biased towards a specific set of threads, each type of workloads may include multi-
ple sets. The final result of each type workload is shown as the average of these sets.

We use two metrics to make a fair comparison: IPC and the Harmonic Mean
(Hmean) [10]. Just as stated in [5], IPC may be a questionable metric if a fetch policy
favors high IPC threads. The Hmean is the harmonic mean of the relative IPC of the
threads in a workload and it attempts to avoid artificial improvements achieved by
giving more resources to threads with high ILP.

5 Results

5.1 Throughput Results

Figure 1(a) shows the throughput increment of DWarn+ over DWarn. The results
indicate that DWarn+ outperforms DWarn for all types of workloads.

As an enhanced version of DWarn, DWarn+ also attempts to handle L2 cache
misses. For the ILP workloads, the threads all have low L2 cache misses rate. So, our
policy has little effect on ILP workloads, and the average improvement is only by
0.7%. For MEM workloads, the throughput increment of DWarn+ is greatest, by 5.5%
on average. The main reason is that for MEM workloads, the pressure on shared re-
sources is very high; hence it is preferable to prevent threads with L2 cache misses
competing for shared resources by reducing further the fetch priority of these threads.
The special case is for 2-thread workloads, the improvement of MEM workloads is
lower than that of MIX workloads. This is because restricting the resources used by
threads with cache misses will favor the other threads with no outstanding misses,
while the two threads in MEM workloads all have higher cache misses rate than the
ILP thread in MIX workloads.

Another conclusion is the improvement of DWarn+ decreases as the number of co-
scheduled threads increase. This is because the higher the number of threads running
is, the less likely the threads with cache misses are chosen to fetch instructions. And
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Fig. 1. The improvement of DWarn+ over DWarn



222 M. Zhang and C. Sun

our policy outperforms DWarn only when there are some opportunities to fetch from
the threads with cache misses. However, there is a little specialness for MEM work-
loads. The increment of 4-thread MEM workloads is higher than that of 2-thread MEM
workloads. The main cause is the mechanisms used to improve throughput are differ-
ent. For 2-thread MEM workloads, the improvement owns to resource allocation be-
tween threads and the increase of resource utilization, and for 4-thread ones, prevent-
ing threads with L2 cache misses competing for resources lightens the pressure on
shared resources. Figure 1(b) shows the average increment of DWarn+ over DWarn as
the number of co-scheduled threads changes. We can see that the average improvement
of our policy in throughput is very limited when more than four threads run.

5.2 Hmean Results

Figure 2(a) depicts the Hmean increment of DWarn+ over the DWarn policy. The
results imply that our policy would not sacrifice some thread severely when improv-
ing the performance of another thread. The Hmean increment of MEM workloads is
still greatest, by 3.9% on average.
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Fig. 2. The improvement of DWarn+ over DWarn

Figure 2(b) shows the average Hmean increment of DWarn+ over DWarn as the
number of co-scheduled threads changes. For 2-thread workloads, the Hmean incre-
ment is very significant, by 5.6% on average. This is because explicitly controlling
shared resources allocation can achieve a better throughput-fairness balance, just as
stated in [11]. Similarly, when the number of threads running is higher than 4, the
average increment of DWarn+ in throughput-fairness balance is very limited.

6 Conclusions

In SMT processors, co-scheduled threads share some resources, such as issue queues,
physical registers, and functional units, but also compete for them. A thread in such
an architecture missing in L2 cache may hold a large number of resources which other
threads could be using to make forward progress. Many instruction fetch policies are
proposed to prevent this situation. DWarn is a very efficient fetch policy to handle L2
cache misses. However, there are some problems with DWarn. The first problem is
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the threads with L2 cache missed still have some opportunity to fetch instructions into
the processor. The second one is there may exist idle cycles of the processor when
less than three threads run.

Our contribution is that we propose an enhanced version of DWarn, called
DWarn+. By reducing further the fetch priority of the threads experiencing L2 cache
misses, these threads almost have no opportunity to fetch instructions. If there are few
threads running, we restrict the resources allocated to the threads with cache misses to
avoid both the monopolization of shared resources and idle cycles of the processor.

The results show that DWarn+ achieves a significant improvement over DWarn in
both throughput and fairness, especially for MEM workloads, by 5.5% and3.9% on
average, respectively. Another conclusion is the increment of our policy decrease as
the number of co-scheduled threads increases. Not more than four threads run, the
improvement is remarkable. When the number of threads running is higher than 4, our
policy enhances the original one mainly for MEM workloads, and the average im-
provement for all types of workloads is very limited.
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Abstract. Existing loop fusion algorithms fuse loop nests only when
the dependences in the loop nests are not violated. This paper presents
a new algorithm that is capable of fusing loop nests in the presence
of fusion-preventing anti-dependences. We eliminate all these violated
dependences by automatic array copying. In this work, such an aggressive
loop fusion strategy is applied to a Jacobi program. The performance of
such iterative methods is typically limited by the speed of the memory
system. Fusing the two loop nests in the Jacobi program into one reduces
data cache misses, and consequently, improves the performance results of
both sequential and parallel versions of the Jacobi program, as validated
by our experimental results on an HP AlphaServer SC45 supercomputer.

1 Introduction

Due to the increasing performance mismatch between processors and main mem-
ories, modern computer systems are equipped with increasingly more levels of
caches (e.g., three levels in the Intel IA-64 processors) to prevent performance
degradation. However, caches help speed up only those programs that exhibit
good data locality. For programs that do not reuse data, their execution times are
limited by the poor latency and bandwidth values of the main memory. There-
fore, cache-conscious programs are important for CPU-intensive applications,
where the most computations are carried out inside loop nests.

There has been a great deal of work on the exploitation of cache locality
for performance enhancement. For example, the design of LAPACK is influ-
enced by efficiency considerations in the presence of caches. The main motiva-
tion of LAPACK was to recast the algorithms in EISPACK and LINPACK into
blocked versions in terms of calls to BLAS [1]. In parallel with the development
of LAPACK, compiler researchers have successfully automated many of the loop
transformations, such as loop tiling or blocking [9, 11, 12] (for generating blocked
algorithms), loop fusion and loop distribution [10], used in LAPACK in a com-
piler.

However, one fundamental limitation of existing loop transformations is that
they are dependence-preserving and thus inapplicable when the data depen-
dences in the program are violated. In [13], we introduced a new loop fusion
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compiler algorithm that allows arbitrary loop nests with affine loop bounds
and array subscript expressions to be fused. In the fused program, all fusion-
preventing flow (i.e., true) and output dependences are eliminated by loop tiling
and all fusion-preventing anti-dependences by automatic array copying. Such
an aggressive loop fusion strategy has two important benefits. First, by fusing
the two loop nests that cannot be fused conventionally, we are able to exploit
the data reuse across the two loop nests. Second, by creating perfect loop nests
that cannot be obtained conventionally, we are able to exploit the data reuse
within perfect loop nests by further applying loop tiling to these perfect nests.
In [13], we demonstrated that our aggressive loop fusion can improve program
performance significantly on uniprocessors with cache memories. In this paper,
we show that our aggressive loop fusion can also improve the performance of par-
allel applications running on multi-processor computer systems. Our example is
an MPI program that uses the Jacobi method to solve the Helmholtz equation.
Iterative solvers for partial differential equations (PDEs) such as Jacobi are typi-
cally implemented using global sweeps over the whole data set. As a result, their
performance is limited by the speed of the memory system. Improving the cache
performance of iterative solvers is absolutely essential to achieving good perfor-
mance for these solvers on modern computer systems. We report and analyse
the performance results of our Jacobi application before and after loop fusion is
applied. The fused program yields improved performance due to improved data
locality and also slightly reduced message communication cost.

Like Gauss-Seidel and SOR (Successive Over-Relaxation) methods, Jacobi
is a classic iterative solver for PDEs. These solvers ares still important to-
day because they are useful either as models for more complex methods or as
building blocks from which more advanced methods, such as multigrid, can be
constructed. This paper is not concerned with designing fast iterative solvers.
Instead, the thesis of this work is that an aggressive loop fusion strategy can im-
prove the performance of parallel applications for which the existing loop fusion
is inapplicable. One future work is to apply our technique to multigrid methods.

The rest of this paper is organised as follows. Section 2 introduces an al-
gorithm that fuses loop nests in the presence of violated anti-dependences. In
Section 3, we apply this algorithm to transform a Jacobi program consisting
of two loop nests into one perfect loop nest. Section 4 presents and analyses
our experimental results on uniprocessor and multi-processor systems. Section 5
compares with the related work. Section 6 concludes the paper.

2 An Aggressive Loop Fusion Algorithm

We consider array-dominated programs consisting of multiple loop nests whose
loop bounds and array subscript expressions are affine expressions of the sur-
rounding loop variables. The fusion of two perfect loop nests is legal iff all depen-
dences from the first (i.e., the lexically earlier) nest to the second nest are not
reversed in the fused program [10-p. 315]. The dependences that are reversed
are known as the fusion-preventing dependences. There are three kinds of fusion-
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preventing dependences: flow (i.e., write before read) dependences, output (i.e.,
write before write dependences) and anti- (i.e., read before write) dependences.
Suppose we are given two perfect loop nests that are to be fused by embedding
the iteration space of one nest inside that of another in a certain way. The two
nests may not have the same loop bounds in a common dimension or even
the same number of loops. We propose to eliminate all the fusion-preventing
dependences between the two nests in two steps. We eliminate all the fusion-
preventing flow and output dependences by applying loop tiling or loop shifting
to the first loop nest. In [13], loop tiling is used. This first step is omitted here.
We eliminate all the fusion-preventing anti-dependences by inserting array copy
operations inside the second loop nest. This second step is discussed below.

In the case of multiple loop nests, our fusion strategy is applied iteratively
bottom-up, starting from the last two nests. Let there be K perfect loop nests,
identified by L1, ..., Lk, from the beginning to the end of the program:

£1Z do 11 = L171, U1,1
do In, = Lin,, Ui,
BODY:(Ih,...,I.,)

Lr:do Ix = Lk, Uk
do InK = LK,nK7 UK,nK
BODYk(I1,...,Ing)

where the loop bounds of each loop nest are assumed to be affine. Two different
loop nests may not have the same loop bounds in a common dimension or even
the same number of loops. Let ISi be the ng-dimensional iteration space of the
k-th loop nest Ly. Let n = max{ny | 1 < k < K}. If the dependences in the
program (1) are ignored for the moment, it is always possible to fuse the K nests
into one perfect loop nest whose n-dimensional iteration space is:

IS={(I1,...., L) |V1<i<n:L;<L; < U} (2)
This consists of finding an injective mapping from ISy to IS for every nest Ly:
Fy IS, — IS (3)
The fused program becomes one single perfect loop nest as follows:

doly = L1, Uh

dO In = Ln, Un
if (I, ..., I) € F1(ISk) (4)
BODY:(Fy M (I4,...,1.))

if (I,...,I,) € Fx(ISk)
BODYx (Fig' (I, ..., 1n))
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ALGORITHM: ElimRW(P)
INPUT: A program P of the form given in (1)
OUTPUT: A fused program P’ with same input/output behavior as P
Let P’ be the fused program (4) obtained from P
for every array A in the program P
for k=K -1,1
for k' =k+1,K
Compute RWa(k, k')

RWa(k):=Up_p AU K, ) [(1,1',8) € RWa(k,K')}
10 Compute min RW (k)
11 Introduce a new array for A, Ha , of size | mingx RW (k)| in P’
12 Insert the copy operations at the beginning of Lx1’s loop body in P’

if (I,k',s") € ming RW 4 (k)
Hak(fir,s (1) = A(fir s (1))
13 for read reference s € Readsa(k), i.e., A(f5°(I)) in Ly
14 Chs = {I|Te€ S5 A K >kAs € Writesa(k) AT’ € S5
AT <IA L) = £50 (1))
15 Replace A(f5*(I)) by:
if 1 € Ch*

Hak(f5°(1))
else

A(fR* (D)

© 00 O Ut Wi

Fig. 1. An algorithm for fixing all the fusion-preventing data dependences

where all original K loop nests “share” the same iteration vector I = (Iy,...,I,).

The loop fusion used for transforming the program (1) to the fused pro-
gram (4) are illegal when some dependences in the original program (1) are
violated. Figure 1 gives an algorithm for eliminating all the fusion-preventing
anti-dependences so that both programs have the same input/output behaviour.
As we discussed earlier, we assume that the violated flow and output depen-
dences have already been eliminated by some other means such as loop tiling
[13] and/or loop shifting.

Our algorithm makes use of the following notations. A denotes an arbitrary
but fixed array in the original program (1), which may be accessed in all its
K loop nests, Lq,...,Lk. All p; read references of A in L; are identified by
integers consecutively, starting from 1. Thus, a read reference identified by s
signifies that it is the s-th read reference accessed among all pj read references.
Let Readsa(k) = {1,...,px}. Similarly, Writesa(k) = {1,...,qx} denotes the
set of all g write references in L. SZ’S denotes the set of iterations at which the
s-th read or write reference is accessed and ffl’s(l ) its array subscript expression,
where I = (I,...,1,) is the iteration vector of the fused program (4).

Consider two loop nests Ly and Ly, where k < k'. RWa(k, k") is the set of
anti-dependences of A that prevent £y and L from being fused:
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RWa(k, k') = {(I,I',s') | s € Readsa(k) A T € S%*
A s' € Writesa(K') A" € % * (5)
AT <TIAfR*(I) = f57° (1)}

where < denotes the lexicographc “less than” order between iteration vectors.

To eliminate the violated anti-dependences from Ly to Ly, where k < K/,
we insert array copy operations to copy the values of A just before they are
incorrectly overwritten by a write reference in Writes4 so that all read references
in Readss can be modified to access the original values of A correctly.

Let us explain the basic idea behind our algorithm ElimRW given in Figure 1.
Here RW stands for Read before Write dependences. Given the fused program
(4), we eliminate all the violated anti-dependences iteratively bottom-up across
the K loop nests starting from the last two loop nests Lx 1 and Lg. First, we
eliminate all the violated anti-dependences from Lx _1 to Lx. Next, we eliminate
all the violated anti-dependences from Lx_o to Lx_1 and Lg. This process is
repeated until £, is processed, in which case, we eliminate all the violated anti-
dependences from £; to the last n — 1 nests from Lo through L.

ElimRW takes as input a program P of the form (1) and produces as output
a fused program P’ that has the same input/output behavior as P. In line 4, we
obtain the fused program P’ of the form (4) from P as discussed earlier. In line
5, we process all arrays in the program, one by one, in any order. In the for loop
starting at line 6, we eliminate iteratively all violated anti-dependences bottom-
up across all K loop nests. During the k-th iteration of this for loop, we aim at
eliminating all the fusion-preventing anti-dependences from Ly to Lx41,..., LK.
In lines 7 — 9, RW 4 (k) is calculated to be the set of all such violated anti-
dependences. To insert the required copy operations correctly, we must know the
earliest iteration at which a particular anti-dependence is violated. The set of
all these earliest points is given by mins RW 4 (k) in line 10, where the iteration
vector I is treated as a parameter and the iteration vector I’ as a variable. If
all constraints involved in defining RW 4(k) are affine expressions of I’ and T,
min RW 4(k) can be computed parametrically (in terms of I) using the PIP [4]
or Omega Calculator [7] (both tools) are based on integer programming).

By definition, min RW 4(k) contains the earliest writes at which some anti-
dependences are violated in the program P. In lines 11 — 12, we insert the copy
statements to copy the old values of A at these iterations just before they are
overwritten. In lines 13 — 15, we make sure that the copied values are used
correctly only at the iterations defined by the predicate C’ffl’s in line 14.

Note that the correctness of ElimRW relies on the fact that all the fusion-
preventing flow and output dependences have been eliminated first.

Theorem 1. The input program P to and the output program P’ from ElimRW
have the same input/output behaviour.

Proof. As aloop invariant at the beginning of the k-th iteration of the for loop in
line 6, all the violated anti-dependences in RW 4(k+1),..., RW 4(K) have been
eliminated. During the k-th iteration, the violated anti-dependences in RW 4 (k)
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are all eliminated by array copying. In addition, the copy array, H 4 1, introduced
in line 10 will not affect the values in the copy arrays, Ha g+1,...,Ha Kk, that
may have been introduced in the earlier iterations of the for loop in line 6. [

The number of copying arrays introduced for an existing array depends only
on the number of fused loop nests. If array expansion [5] is used to eliminate out-
put and anti-dependences, the amount of extra space introduced often depends
on the problem size. For example, a 2-D array of size N x NN is often expanded
into a 3-D array of size N x N x N. In our case, the worst-case scenario is
N x N x L, where L is the number of loop nests in the program.

3 A Jacobi Program

Figure 2 gives a Fortran90 program for solving the Helmholtz equation on a reg-
ular mesh, using an iterative Jacobi method with over-relaxation. The program
is taken from [2] except that the roles of u and unew are swapped. There are
two loop nests in the while, i.e., the time loop. The two-dimensional array u is
used to store the results of the previous iteration and the two-dimensional array
unew is used to store the results of the current iteration. In the first loop nest,
the sweep operation is executed, including the sum of the squared residuals used
for the error estimation and the termination condition of the surrounding while
loop. In the second loop nest, unew is copied to u.

The two loop nests in the while loop cannot be fused by the conventional
loop fusion transformation because the cross-nest anti-dependences from the
two read references u(i-1,j) and u(i,j-1i) in the first loop nest to the write
reference u(i,j) will be violated. Therefore, the inter-nest data reuse for the
two arrays cannot be exploited for a reasonably large mesh.

We can apply ElimRW to fuse the two loop nests legally as follows. The
input program P consists of the two loop nests in the Jacobi program. In line
4, we obtain the fused loop nest, P’, as depicted in Figure 3. There is only
one variable, u, whose anti-dependences may be violated. So the for loop in
line 5 has only one iteration. There are only two nests. So K = 2. The for
loop in line 6 also executes for only one iteration. Let the four read references
of u in the first nest be numbered as u(i—l,j)17 u(i+1,j)27 u(i,j—l)3 and
u(i, j+1)% So Reads, = {1,2,3,4}. There is only one write reference, u(i, j), in
the second loop nest. So Writes, = {1}. We note that all anti-dependences from
u(i+1,j)2andu(i,j+1)*tou(i,j) are respected. But all the anti-dependences
from u(i-1,3j)! and u(i, j-1)3 to u(i,j) are violated. In line 8, we obtain:

RW(l?)f{((]z)( ) )|2 mfl/\2<i,i’<nfl
= {((J, z)( ) )|2<]j m—1A2<i,i<n—-1

/\((.7/ ) (.7_177’) (]72):(j7i_1))}

In line 9, we have RW (1) = RW,(1,2). In the fused program given in Figure 3,
all elements of u except those in row n-1 and column m-1 are written too earlier
before their values have been actually consumed by u(i-1,3j)! and u(i, j-1)3.
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subroutine jacobi (n,m,dx,dy,alpha,omega,u, f,tol, maxit)

double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega
double precision error,resid,ax,ay,b
double precision unew(n,m)

ax = 1.0/ (dx*dx) ! X-direction coef
ay = 1.0/ (dy*dy) ! Y-direction coef
b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff
error = 10.0 * tol
k =1
do while (k.le.maxit .and. error.gt. tol)

error = 0.0

do j = 2,m-1

do i = 2,n-1
resid = (ax*(u(i-1,3) + u(i+l,3)) &

& + ay*(u(i,j-1) + u(i,j+1)) &

& +b *u(i,j) - £(i,3))/b
unew(i,j) = u(i,j) - omega * resid
error = error + resid*resid

end do
enddo
do j=2,m-1

do i=2,n-1

u(i,j) = unew(i,Jj)

enddo
enddo
k=%k+1
error = sqgrt(error)/dble(n*m)

enddo ! End time loop

print *, ’‘Total Number of Iterations ’, k
print *, ’‘Residual ‘', error

maxit = k - 1

return
end

Fig.2. A Jacobi program for solving the Helmholtz equation

To fix these violated anti-dependences, we compute miny RW,(1) in line
10. In this case, we actually have min, RWy(1) = RW,(1). The subscript ex-
pression for u(i.j) is f>!(i,j) = (i,J). According to lines 11 — 12, we in-
troduce a new array, H, and insert the following copy statement just before
u(i, j)=unew(i,j):

if (j .ne. m-1 .and. i .ne. n-1) then
H(i,j)=u(i,3) (7)
end if
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do while (k.le.maxit .and. error.gt. tol)
error = 0.0
do j = 2,m-1
do i = 2,n-1
resid = (ax*(u(i-1,3) + u(i+l,3)) &

& + ay*(u(i,j-1) + u(i,j+1)) &

& + b *u(i,j) - £(i,3))/b
unew(i,j) = u(i,j) - omega * resid
error = error + resid*resid
u(i,j) = unew(i,Jj)

enddo
enddo
k=k+1
error = sqgrt(error)/dble(n*m)
enddo ! End time loop

Fig. 3. The code obtained by fusing the two loop nests given in Figure 2

where the if conditional is obtained from the specifying constraints of
mins RW,(1) simplified under the context 2 < j < m—1A2 < i < n—1,
which defines the iteration space of the fused loop nest in Figure 3.

In lines 13 — 15, we need to examine all the four references u(i-1,j)?,
u(i+1,3)2% u(i,j-1)2 and u(i,j+1)* to see how they should be modified to
read the copied values in H. We find that C}:?2 = C}* = (), meaning that the anti-
dependences originating from the second and fouth read references are not vio-
lated. However, C}'1 = C13 £ (). Under the context 2 < j < m—1A2 <i < n—1,
the specifying constraint for C1'! is simplified to i > 3 and that for C}3 to j > 3.
Therefore, in line 15, the read reference u(i-1,j)! should be replaced by:

if (i .ge. 3) then
H(i-1,3)

else (8)
u(i-1,3)

end if

Similarly, the read reference u(i,j-1)! should be replaced by:

if (j .ge. 3) then
H(i,j-1)

else 9)
u(i,j-1)

end if

In practice, if we choose to copy redundantly some boundaries elements of
an array, then the if conditionals like those in (7 — (9) can often be simplified
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double precision H(n,m)

do j=2,m-1
H(1,3) = u(l,3)
enddo
do 1=2,n-1
H(i,1) = u(i,1)
enddo
do while (k.le.maxit .and. error.gt. tol)
error = 0.0
do j = 2,m-1
do i = 2,n-1
resid = (ax* (H(i-1,3) + u(i+1l,3)) &
& + ay*(H(i,j-1) + u(i,j+1)) &
& + b *u(i,j) - £(i,3))/b
H(i,j) = u(i,3)
tmp = u(i,j) - omega * resid
error = error + resid*resid
u(i,j) = tmp
enddo
enddo
k=k+1

error = sqgrt(error)/dble(n*m)
enddo ! End time loop

Fig. 4. Final code from ElimRW with all violated anti-dependences of u fixed

or even completely eliminated. Under such optimisations, which can be incor-
porated into ElimRW, we obtain the final fused version of our Jacobi program
shown in Figure 4. By choosing to copy row n-1 and column m-1 redundantly,
the if conditional in (7) is removed. Similarly, by copying row 1 and column 1 re-
dundantly just before the while loop, the if conditionals in (8) and (9) have been
removed. Note that the array unew is no longer needed. So the access unew (i, j)
has been replaced by a scalar, tmp. The copy array H has the same size as unew.
In this example, loop fusion has not caused any extra memory space increase.
In the final program, the two arrays u and H are accessed within a single loop
nest. Therefore, their data elements exhibit better data reuse in cache memories.

4 Experiments

We evaluate this work using the Jacobi example on a 126-node HP AlphaServer
SC45 supercomputer. Each node has four 1GHz ev68 (Alpha 21264C) CPUs
running OSF1 sc0 V5.1. Each CPU has a 64KB (on-chip) write back and write
allocate data cache with FIFO replacement policy. The L1 data cache is 2-way
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set-associative with a cache line size of 64B. Each CPU also has an (off-chip)
L2 unified cache, which is direct-mapped and has a capacity of 8MB. Each node
has between 4GB and 16GB of RAM and between 2 and 6 36GB SCSI disks.
Due to the use of the fat-tree interconnect of the Quadrics “Elan3” network, the
SC45 computer system achieves an MPI latency of less than 5 usecs and an MPI
bandwidth of 250 Mbytes/sec (bi-directional).

In all our experiments, maxit=1000 is fixed and the while loop has always
completed in exactly 1000 iterations. The regular mesh on which the Jacobi
method operates is defined by two problem size parameters, m and n. In all our
experiments, a square mesh is used: n=m. All arrays are of double precision. So
an array of size 90 x 90 fills up roughly the 64KB L1 data cache and an array of
size 1024 x 1024 fills up exactly the 8MB L2 cache for the Alpha 21264 CPU.

In Section 4.1, we discuss our experimental results on a single CPU. In Sec-
tion 4.2, we discuss our experimental results on multi-processor platforms.

4.1 TUniprocessors

There are two sequential programs, Org and Fused, where Org is the original pro-
gram given in Figure 2 and Fused denotes the fused program shown in Figure 4.
We demonstrate the performance benefits of our aggressive loop fusion algorithm
using the Jacobi example on a single 21264 CPU. Both programs are compiled
by the HP Fortran90 compiler (V5.5A) at the optimisation level “-fast”.
Figure 5 compares the execution times of Org and Fused. The speedups of
fused program Fused over Org range from 19.62% to 29.27% with an average
of 24.38%. Figure 6 compares the L1 data cache misses of both programs. The
cache misses are estimated using the DinerolV cache simulator for the array
accesses only. In Org, the inter-nest data reuse for the two arrays u and unew
cannot be exploited. By fusing the two loop nests, the single loop nest in Fused
also contains two arrays of the same size. But better data reuse for the two
arrays can now be exploited. As a result, we observe some significant reductions
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Fig. 5. The execution times of Org and Fused
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Fig. 6. The simulated L1 data cache misses of Org and Fused

in the L1 cache misses across all the problem sizes used. In comparison with the
original program Org, Fused enjoys an average of 40% L1 cache miss reduction
for the problem sizes simulated. The decreases in cache misses have translated
into the performance improvements as shown in Figure 5.

4.2 Multiple Processors

The MPI versions of sequential programs Org and Fused are obtained using a
1D domain decomposition. This choice is made primarily to facilitate a simple
boundary condition implementation. Suppose that P processors are available.
The regular mesh n x m is divided into P vertical strips, with one being allo-
cated to one processor. In other words, the columns of each array are blocked
distributed among the P processors. As a result, the part of the global array
u(n,m) allocated to the p-th processor, where 0 < p < P, is u(n,mlo:mhi),
where mlo = p x (m —2)/P + 1 and mhi = min(p+ 1) X (m — 2)/P + 2,m). The
array unew (n,m) in the program Org and the array H(n,m) in the program Fused
are both distributed in the same manner.

The processor p is responsible for computing the values for the sub-mesh
n x (mlo+1:mhi-1). During each iteration of the while, i.e., the time loop, the
processor p first sends asynchronously column mlo+1 to its left neighbouring
processor p — 1 and column mhi-1 to its right neighbouring processor p + 1. In
addition, the processor receives synchronously column mlo from its left neigh-
bouring processor p — 1 and column mhi from its right neighbouring processor
p+1. Only after having received both columns, can the processor p start working
on its allocated columns. At the end of each while loop, MPI ALLREDUCE is called
to calculate the error for the current iteration.

The MPI versions of Org and Fused are referred to as Org-MPI and Fused-MPI,
respectively. Both programs are compiled by the HP Fortran90 compiler (V5.54A)
on the SC45 supercomputer at the optimisation level “-fast”. The SC45 uses a
version of MPI that is based on MPICH 1.2.4. In this particular supercomputer,
we are allowed to use a maximum of 60 CPUs. In all our experiments on MPI
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applications, a regular mesh of 5000 x 5000 is used. As before, we set maxit=1000
so that the while loop runs for exactly 1000 iterations in our experiments.

Figure 7 compares the execution times of Org-MPI| and Fused-MPI. Figure 8
shows the performance improvements of Fused-MPI over Org-MPI. The perfor-
mance improvements range from 12.85% to 27.74% with an average of 19.35%.
Figure 9 illustrates quantitatively how the improvements in cache locality have
contributed to the overall speedups of our example application. For each pro-
cessor configuration, the bottom bar represents the parallel speedup of Org-MPI
over Org and the entire bar the parallel speedup of Fused-MPI over Org. There-
fore, the top bar represents the increase in the parallel speedup (in absolute
terms) due to the improved cache locality. These increases range from 0.21 to
7.66 with an average of 2.38 for the processor configurations used.

B - Vampir 4.0 - Summary Chart [=][o][x]

=) (Per Pr

Fpplication 47,732 = Application 40,BE5 =

P1 5,057 = P1 4,493 =

(a) Org-MPI (b) Fused-MPI

Fig. 10. Performance analysis of Org-MPI and Fused-MP| when P = 24

We have also compiled and linked Org-MPI and Fused-MPI with Vampir-
trace 4.0 and analysed the performance results of both programs using Vampir.
Figure 10 shows the summary charts for both programs in the 24-processor con-
figuration. By performing loop fusion aggressively, we have reduced not only
the computation time but also slightly the communication time for the Jacobi
program. Since Fused-MPI exhibits better data reuse than Org-MPI, each pro-
cessor completes its allocated computations earlier. This may reduce the idle
time that the processors spend on waiting for messages. Therefore, the over-
all communication time in Fused-MPI is slightly reduced compared to Org-MPI.
Note that Vampirtrace does incur some instrumentation overhead. So the ex-
ecution times shown in Figure 10 are not exactly the same as those shown in
Figure 7.
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5 Related Work

Loop fusion is a standard compiler optimisation employed in a number of re-
search and commercial compilers. Some earlier work on the topic can be found
in [3,6,10] and the references therein. However, loop fusion is applicable only
when the dependences in the program are not violated. In [13], we presented the
first algorithm that allows arbitrary affine loop nests to be fused in the presence
of the fusion-preventing flow, output and anti-dependences. The motivation of
our earlier work was to improve the cache performance of sequential programs
on uniprocessors. In this paper, we investigate the performance benefits of this
aggressive loop fusion algorithm for parallel applications.

Many scientific and engineering applications require the solution of partial
differential equations (PDEs). A common approach discretises the input domain,
thereby transforming a PDE problem into one of solving a linear system. For
large systems with several millions of unknowns, the methods of choice are all
iterative. Classic iterative solvers are Jacobi, Gauss-Seidel and SOR (Successive
Over-Relaxation) methods. These solvers remain important because they are
useful either as models for more complex methods or as building blocks from
which more advanced methods, such as multigrid, can be constructed.

However, iterative methods do not exhibit good data reuse since they are
typically implemented using global sweeps over the whole data set. Song and
Li [8] describe special-purpose techniques for tiling Jacobi-like codes to achieve
good performance improvements on uniprocessors. In this paper, we show that
fusing the loop nests in Jacobi-like codes can achieve good performance results
on both uniprocessor and multi-processor systems.

6 Conclusion

This paper presents a loop fusion algorithm that is capable of fusing loop nests
even when the conventional loop fusion optimisation fails. In the presence of
fusion-preventing anti-dependences, we eliminate all these violated dependences
by means of automatic array copying. We assume that all violated flow and out-
put dependences have been eliminated before our algorithm is applied. In [13],
we demonstrated that such an aggressive loop fusion strategy achieves good per-
formance improvements on uniprocessors with cache memories. Taking a Jacobi
program as an example, we show in this paper that such a strategy is also ef-
fective for improving the performance of MPI applications on multi-processor
systems. In general, the performance of stencil codes is limited by the speed
of the memory system. Our experimental results indicate that better perfor-
mance results for stencil codes can be obtained if the data reuse in these codes is
improved. One future work is to investigate the performance benefits of our tech-
nique for more advanced methods such as multigrid. How to effectively combine
loop fusion and loop tiling for multigrid methods is another interesting topic.
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Abstract. Directional coupler (DC)-based optical switching networks can
switch signals at the rate of several terabits per second. Benes networks are
widely employed for their small depth and self-routing capability. Crosstalk
between two optical signals passing through the same DC is an intrinsic
drawback in DC-based optical networks. Vertical stacking of multiple copies of
an optical Benes network has been intensively studied by researchers to build
non-blocking optical networks. The resulting network is called vertically
stacked optical Benes network (VSOBN). However, no rigorous analysis has
been done to predict the behavior of VSOBN. In this paper, we study the
deterministic conditions for strictly non-blocking VSOBN with and without
worst case scenarios. We further analyze the blocking probabilities of VSOBN
networks under a fixed load and develop their upper bound with respect to the
number of planes in the networks. These performance measures can be used to
predict the performance of VSOBN.

Index Terms: Benes networks, blocking probability, multistage interconnection
networks (MINGs), directional coupler (DC), switching networks, vertical stacking.

1 Introduction

Multistage Interconnection Network (MIN) is very popular in switching and
communication applications. This network consists of N inputs, N outputs, and n
stages (n = log,N). Each stage has N/2 Switching Elements (SEs), each SE has two
inputs and two outputs connected in a certain pattern. The most widely used MINs
are the electronic MINs. There are three types of nonblocking networks: strictly
nonblocking, wide-sense nonblocking and rearrangeable nonblocking. [4].

As optical technology advances, there is a considerable interest in using optical
technology to implement interconnection networks and switches [1, 2, 3]. In
electronic MINs electricity is used, where as in optical MINs light is used to transmit
the messages. Optical switching network is an essential part in an optical network,
which has the capability of switching huge data at an ultra-high speed. The 2x2
switching element (SE) in optical switching networks is usually a directional coupler

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 239-251, 2005.
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(DC) that is created by manufacturing two waveguides close to each other [4]. The
cross (bar) state of a DC can be implemented by applying a suitable voltage (no
voltage) to it. Crosstalk in DC is a major shortcoming in DC-based optical networks,
which occurs between two signals carried by the two waveguides of a DC [5], [9].

Banyan-type networks have a single path between an input—output pair. A common
design technique for creating alternate paths is to append x extra stages to the back of
a regular Banyan-type network in which case the number of paths between an input—
output pair becomes 2*(see Fig. 1). The maximum number of stages that can be added
to such network is (log N — 1), which corresponds to the Benes network.

-
5
0 T
-

Ny -*"-
-Z‘E’Z-A-n\.{'

Fig. 1. A stacked Banyan networks and a Benes networks. By appending extra stages,
alternative routes are available.

A Benes network has a simple switch setting ability (self routing) and also a small
number of SEs along a path between an input—output pair. These characteristics have
made Benes networks attractive for constructing DC-based optical switching
networks. In this paper, we will focus on the optical Benes networks that are free of
first-order crosstalk in SEs (we refer to this as crosstalk-free hereafter). In Benes
networks, there are many paths between an input-output pair. For a fixed routing
strategy, when two connections intend to use the same link, one of them will be
blocked. This is called link-blocking. There is, however, another type of blocking in
optical Benes networks, namely crosstalk-blocking. Since the crosstalk-free constraint
requires that only one signal is allowed to passes through a SE at a time, thus it has a
larger contribution to the overall blocking probability than that of link-blocking.
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Vertical stacking of multiple copies of an optical Benes network is a novel scheme
for constructing nonblocking (crosstalk-free) optical switching networks with neither
increasing the number of stages nor sacrificing the self-routing property of the Benes
network [6]. We use VSOBN to denote vertically stacked optical Benes networks and
VSOBN(N,m) to denote an VSOBN network that has m stacked copies (planes) of an
NxN Benes network. Previous results [6],[7] focus on determining the minimum
number of planes required for nonblocking VSOBN(N,m) networks. These results
indicate that the vertical stacking scheme, although is attractive, requires a
prohibitively high hardware cost for building a nonblocking VSOBN network.

Analysis of blocking probability of a network that does not meet the hardware
requirement for nonblocking is an effective approach to studying network
performance. In [8], blocking probability of stacked banyan networks is analyzed.

In this paper, we will analyze the blocking probability of stacked Benes networks.

In section 2, we will describe the deterministic condition for strictly nonblocking
VSOBN networks. In particular, we derive the blocking probabilities of VSOBN in
the worst case, second worst case, and third worst case. In section 3, we will derive
the upper bound of the blocking probability. Section 4 will summarize the paper.

We follow the same assumptions held by [8]. We neglect the correlation among
signals arriving at input (output) ports and consider that the statuses (busy or idle) of
individual input (output) ports in the network are independent. This assumption is
justified by the fact that the correlation among signals at inputs (outputs), though it
exists for fixed communication patterns, becomes negligible for arbitrary
communication patterns in large-size networks.

2 Strictly Nonblocking Without Worst Case Scenarios

In this section, we briefly describe the deterministic condition for the strictly
nonblocking VSOBN network that is obtained based on worst-case and second worst
case analysis. We also evaluate the probability that the worst-case scenario occurs to
motivate the work of this paper.

Due to their topological symmetry, all paths in a Benes network have the same
property in terms of blocking. To study the blocking probability, we can arbitrarily
select an input and an output in the network and set up a connection between them.
Through out this paper, we will select the path between the first input and the first
output and try to set up a connection between them. We call the path between this input-
output pair the fagged path. All the SEs on the tagged path are called tagged SEs. In
Benes networks, all paths between the targeted pair are called the tagged paths.

The flow of information through the network is assumed to be from left to right—
all the inputs being on the left-hand side and all the outputs on the right-hand side of
the network. The stages of SE’s are numbered from left (stage 1) to right (stage 2logN
-1). The stages of links are also numbered from left to right, but starting from O (input
links) to 2logN -1 (destination links). For a tagged path, an input intersecting set (IIS)
I; associated with stage i (1<=i<=2logN-1) is defined as the set of all inputs that
intersect a tagged SE at stage i. Likewise, an output intersecting set O; (OIS)
associated with stage i is the set of all outputs that intersect a tagged SE at stage
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2LogN-i. Fig. 1 shows some examples. In the figure, a tagged path and a tagged SE
are displayed in solid lines or dark. Input intersecting sets and output intersecting sets
are also labeled.

We are interested in an optical network that is nonblocking and crosstalk-free. This
can be achieved at the cost of extra hardware. For a VSOBN network, the following
theorem gives the deterministic condition for strictly nonblocking [6], we are going to
discuss the noblocking requirement without the worst case scenarios.

Theorem 1[6]: VSOBN is strictly nonblocking if the following condition is true:
m>= 2x + (2N/2%)"21 in which x = logN-1

The above result was obtained based on worst-case analysis. That is, to find the
maximum possible number of connections that will conflict the tagged path and let
each of these connections block a distinct plane.

i W —o

Fig. 2. Different input (output) links have different blocking capabilities

From figure 2, we know that different input (output) links have different blocking
capabilities. Inputs (outputs) in I; have the capabilities to block the whole plane;
inputs (outputs) in I, have the capabilities to block only Y2 plane...; inputs (outputs) in
I, have the capabilities to block only 1/2*"'plane. When a connection is set up between
an input from I; and an output from O;, the connection will block 1/2™5 plane. In
the following, symbols “{” and “}” are used to define a set and symbols “(” and *)”
are used to define a relation. Therefore, the problem of finding the worst-case traffic
pattern can be formulated as follows:

Given aset I': {1, V2, V2, Y4, V4, Ya, Y4, ..., 1/ N/2 ,..., 1/ N/2}, find a relation I" x T,
such that X max(I" x I') is maximized.

It is clear that in order to maximize the sum, the relation must be as unbalanced as
possible. For example, for set {1, Y2}, relations (1, 2) and (Y2, 1) would be a better
choice than relations (1, 1) and (Y2, ¥2) since the former will block 2 plane, but the
latter will only block 1Yz planes.

Therefore, in order to maximize the sum, we must pick up the relation pairs from
the two ends of the set. And the relations are (1,1/N/2), (1/2, 1/N/2),( 1/2, 1/N/2),( 1/2,



An Upper Bound on Blocking Probability of Vertical Stacked Optical Benes Networks 243

1/N/2),( 1/2, 1/N/2),(1/4, 1/N/2),..., (1/N/4, 1/N/2) ,..., (1/N/4, 1/N/2), their
respective inversions and (1/N/2, 1/N/2). Add 1, 1, Y2, Y2, Y2, V2, Y2, V2, V2, Y2, Y, ...,
I/N/4 ,...,1/N/4 , and 1/N/2 together, we will get the result of theorem 1.

From Theorem 1, it is clear that the hardware cost for a strictly nonblocking
VSOBN network is high. Let us find out the probability that the worst-case scenario
could occur. Let the probability that an input (output) port is busy be r ( is basically
the traffic rate at the input line) and denote by Py the probability that the worst-case
scenario occurs. Py is then given in the following lemma under the assumption that
statuses of individual input (output) ports are independent.

Lemma 1: In an NxN optical Benes network, we have

N/2

2
Pworst = rn/2—l —_— X7

N/2-1

When r=0.9 and N =64 and r=0.9 and N=128, P64 =2.63 e — 34, and P128 =3.97 ¢
— 77. This indicates that the probability of worst case from happening is very small or
even can be ignored in most cases.

Table 1 and Figure 3 show the relationship between the number of inputs and the
number of planes required. The blocking requirement is the value calculated from
Theorem 1. This shows that a lot of planes are needed to make VSOBN absolutely
non-blocking. We would like to investigate the blocking behavior without considering
some rare cases.

Table 1. Blocking requirement and actual number of planes needed

No. of inputs 16 32 64 128 256
Blocking 61/8 8 1/16 10 1/32 12 1/64 14 1/128
requirement
No. of planes 7 9 11 13 15
required

18

b %512
14

g ZO00
5 121 /Ts/
o
« 10 64
<]
E ot
=]
=z
] —e— Number of Planes
0 —=— Blocking Capability

Number of Inputs

Fig. 3. Blocking requirement and actual number of planes needed
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In this paper, we define the term second worst case scenario as follows: Second
worst case is the case(cases) in which the second largest blocking capability occurs.

It is also important to find out the probability that the second worst-case scenario
could occur. The reason is explained as follows:

Take when N = 16 as an example,

I1: {1} O1: {1}
12: {2, 12} 02: {2, 12}
13: {Y4, Y4, Y4, Y4} 03: {%, Ya, Y4, Va}

14: {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8} 0O4: {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8}

The worst-case is when inputs (outputs) in I1, 12, and I3 are connected to outputs
(inputs) in 14. There will be one pair in 14 and O4 left and this pair accounts for the
1/8. In order to be strictly nonblocking, we need 7 planes.

Now let’s consider the second worst-case. In the second worst-case, the blocked
planes will be 6. The second worst case happens either when 11, 12, I3 going to O4
and Ol, O2, O3 going to 14 while the remaining one pair in 14 and O4 is not
connected or one pair in I3 and O3 is connected while rest of the inputs(outputs) are
connected to O4(I4). Therefore, in the former case, the blocking capability is reduced
by 1/8 because the remaining pair in 14 and O4 is not connected; in the latter case,
because one pair in I3 and O3 is connected, while in the worst case these two are both
connected with one in 14 or O4, the capability of blocking is reduced by V4. At the
same time, the pair in the 14 and O4 must be connected together, which increased the
blocking capability by 1/8. So, blocking difference between the worst-case and the
second worst-case will be ¥4-1/8 = 1/8.

This proves Theorem 2.

Theorem 2: A VSOBN network is strictly nonblocking with m = 2*(logN —1) when
worst and second worst case do not occur.
Now it is the time to find out the probability that second worst-case could happen.

(N/Z j

2 2

Psecond-worst= rn/Z—l Ni/z (1 _ r) + r”/2_2 M r2
[N -1 j (N ~1 J

N/2-1 N/2-2

Lemma 2: In an NxN optical Benes network, we have

When r = 0.9 and N = 64 and r = 0.9 and N = 128 respectively, we have the
following results, Pgs = 3.91 e -34, and P55 = 8.38 e -74. This shows that the probability
that second worst case happens is still very small, which justifies Theorem 2.

The result is significant, because we can save one whole plane if the worst case and
second worst-case do not happen very often and could be ignored in our design. Table
2 and Figure 4 show the actual number of planes needed without considering the 2™
worst case and the percentage saving compared to the number of planes required in an
absolutely non-blocking environment.
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Table 2. Savings (percentage) without 2™ worst case

No. of inputs 16 32 64 128 256 512 1024
No. of planes 6 8 10 12 14 16 18
Blocking requirement 61/8 | 8 10 12 14 16 18 1/512

1/16 | 1/32 1/64 1/128 | 1/256
Saving(percentage) | 14.3 11.1 9.1% 7.7% 6.7% | 59% | 5.3%
w/o 2™ worst case % %

—e— Number of Planes
—=— Saving-percentage
( No. of P w/o worst case
8 7{ '@ Blocking requirement

1024

Fig. 4. Savings (percentage) without 2nd worst case

The table shows that even when N = 1024, which is a quite large network, we can
still save 5.3%, if we neglect first and second order worst-cases. This motivates us to
further investigate the possibility of saving of planes when we ignore other rare cases
of blocking.

Lemma 3: In an NxN optical Benes network, further neglecting third order worst-case
does not save a plane.

For example when N = 16, in the third worst-case, the blocked planes will be
4.875. The reason is that 1/8 is the smallest residue in this system and in order to get
the blocked planes in the third worst case, all needs to be done is to let two pair in 13
and O3 to be connected; while in the second worst case only one pair is connected,
the other pair is connected with one in 14 or O4. Therefore, the capability of blocking
is reduced by Y4. And at the same time, the pair in the 14 and O4 must be connected
together, which increases the blocking capability by 1/8. So, blocking difference
between the second worst-case and the third worst-case will be %-1/8 = 1/8.
Therefore, further neglecting third order worst-case is meaningless.

From the above analysis, it is seen that spending a large amount of extra hardware
in order to guarantee the strictly nonblocking property is not cost-effective in most
cases. This motivates us to find out the blocking probability of a VSOBN network
with respect to the number of planes (hardware cost), and to seek an approach to
making tradeoff between hardware cost and blocking probability.
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3 Upper Bound on Blocking Probability

Since exact blocking probability is hard to obtain, in this section we will derive
various formulas to get an upper bound on the blocking probability of a VSOBN in
terms of the number of planes. This bound can be considered as the estimate for the
worst case blocking probability. In the following discussion, we give a few definitions
and notation which will be used in the analysis.

For an N x N network, a matrix of logN x logN is proposed. An element in the
matrix C;; stands for the connection from Ii to Oj.

Cll C12 cee Cln
C21 sz cee C2n
C(n—l)l C(n-l)2 C(n-l)n
Cnl Cn2 (R Cnn.

We use Cj; to denote the sum of coefficients of Cj in row i where j>=i. For
example:

C12 = C22 + C23 +... + C2n.

We use Cg; to denote the sum of coefficients of C;; in column j where i>=j. For
example:

Coz = sz + C32 +...+ an'

By this definition, Cy; stands for the connections coming from input group i going
to ouput groups j (j>=i). Co; stands for the connections going to ouput group j coming
from input groups i (i>=j). The total blocking capability BC is therefore

CH + COl - Cll + 1/2*(C12 + Coz_ C22)+ %* (CI3 + CO3 - C33) + oo + 1/210gn-
"%(Cjy + Con— Con).-

In the above formula, Cj; stands for the connections coming from input group to
every output group, and Cg; stands for the connections coming from every input
group to output group 1. And any connection in Cy; and Cg; will block a whole plane.
But there are some overlaps in these two groups and the overlap is C;; (which are the
connections coming from input group 1 to output group 1), since it has been counted
twice in Cy; and Cop;.

Cp, stands for the connections coming from input group 2 to every output group
other than group 1. Similarly, Cq, stands for the connections coming from every input
group other than input group 1 to output group 2. And any connection in Cp and Cp,
will block 1/2 of a whole plane. But there are some overlaps in these two groups and
the overlap is C,, (which are the connections coming from input group 2 to output
group 2), since it has been counted twice in Cp and Cgp,. Similar consideration will
apply to CI3, Co3, Ceey CIns C0n~

Clearly there will be no blocking if Cy; + Co;— Cyy + ¥2#(Cpp + Cop — Cpo)+ %* (Cy3
+Co3Cx3) + ... + 1/2°°8%(Cy, + Cop— Cpp)<m. (1)
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Therefore we have
min(2°,m-1) min(2',(m-1)*2)

P(nonblocking) =
C;=0 C;,=0
min(n/2,(m=1)*2"¢""1) min(2°,m-1) min(2",(m-1)*2) min(n/2,(m—1)*2'°¢""1)
P(Clls COI’ CIZ’
Cp=0 Co1=0 Co2=0 Con=0
Coz, -.-s Cin, Con) * P(Cyy + Co1 — Cyy + 12#(Cpp + Cop — Cop)+ 14 (Cpz + Coz — Ca3) +
..+ 128 55(Cy, + Cop— Cyp)<= m-1ICyy, Coy, Cos Cop, - -» Cias Con) )

The lower bound of Cj; is 0 since it can not be negative. On the other hand, Cy
must not be greater than 2°, since there is only 2° input in I;; and C;; must not be
greater than m-1, since there are only m planes in the networks and if C;; is greater
than m-1, then the network will be blocked. Therefore, C;; must not be greater than
the minimum of 2° and m-1.

The lower bound of Cj, is 0 since it can not be negative. On the other hand, Cy,
must not be greater than 2', since there is only 2' inputs in I,; and Cj, must not be
greater than 2*(m-1), since there are only m planes in the networks and if Cp, is
greater than 2*(m-1), then the network will be blocked. Therefore, C;; must not be
greater than the minimum of 2! and 2*(m-1).

And the ranges of other connections can be derived accordingly.

From (1)

Cii + Coi — Cyy + ¥2*(Cpp + Cop— Cop)+ ¥a* (Cpz + Coz— Cx3) + ... + 172" %(Cy, +
Con— Cin)<=m-1,

by simple algebraic manipulation,

We have Cy+ % Car+ ..., + 1/2°°°'C, >= Cpy + Cop + V2*(Cpp + Con)+...+ 1/2'°8
' (Cp+ Cop) —m+ 1 3)

Therefore,

min(2°,m-1) min(2",(m-1)*2)
P(nonblocking) =
Cn=0 Cr=0
min(n/2,(m=1)*2"¢""1) min(2°,m-1) min(2",(m-1)*2) min(n/2,(m—1)*2'%¢""1)

P(Clls COls CIQs COZs

Cp,=0 Cp=0 Cp,=0 Cp,=0
Upper
es Ciny Cop) * > P(Ci1, Coas veers Con ICit, Con, Cr

Cy +1/2Cp+1/4Cy3+..41/ 28" C, =Lower
Coz, ---» Cin, Con)
Where
Lower = max[O, CH + COl + 1/2*((:12 + C02)+. .t 1/210gn-1 (CIn + COn) —m+ 1]
and
Upper = min(Cy; , Cop+ V2*min(Cp ,Cop)+...+ 1/2°° #min(Cy, , Cop).
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From (3) Cj1+ % Cos+ ..., + 1/2"°8!C,, >= Cyy + Coy + ¥2#(Cpp + Cop)+....+1/2'8"!
(Cn + Coy) — m + 1, we can see that the lower bound of (Cij+ V2 Cop+ ¥ Ci3 +
et 172°21C ) is Cpp + Cop + ¥2¥(Cra + Cop)+...+ 1/2°F1 (Cpy + Cop) —m + 1.

On the other hand, C;; must not be greater than Cy; or Cy; 1/2 C,; must not be
greater than 1/2Cp, or 1/2Cy, ... and so forth. Here so derives the upper bound of
(Ci1+ V2 Coot V4 Caz+ ... +1/2°2'C,0).

And,

P(nonblocking) = P(CH, COI? C127 Coz, veny Clm COn) P(Cll, C22,. .oy Cnn |C11, COI’ Cl27
C027 EREE) Clnv COn)

=P(Cyy, Caa..., G Ct, Cot, Cpa, Cops -, Gy Con)

=P(Cyy C)P(Caa...., Cin, Cor, Cpa, Cops -5 Cins Conl Cry Cip)

=P(Cyy C)P(Cap....., G, Cor, Cpa, Cops -5 Crny Conl Ci1)

We drop Cy; in the above formula under the assumption that the connections in Cy
are independent with all others, which can be justified if the amount of traffic under
consideration is huge. Thus, we have

P(nonblocking) = P(C;; C,)P(C;;,Coy,..., Con, Coi, Cp, Cop, ..., Crny Con)/P(Cy1)
=P(Cy; Ciy) P(Co1 Ci1)P(Coa, ..., Con, Cra, Coas -+, Cry Conl Cor C11)/P(Ciy)
=P(Cy; Ciy) P(Co;1 Ci11)P(Coa, ..., Con, Cro, Coa, -+, Cry Conl C11)/P(Cyy)

Similarly, we drop Co; under the assumption that the connections in Cq; are
independent with all others, which can be justified if the amount of traffic under
consideration is huge. Now, we have

P(n(z)nblocking) = P(Cy Cy1) P(Co, C11)P(C11, Cups..s Crm, Cn, Coz ---s Cpy,
Con)/P*(C1y)

=P(Cy; Cyy) P(Co; C11) P(Cpy Cp) P(Coa Cs2)... P(Ciy Can) P(Con Con)P(Cyy, Cos,
seees Con) P(C1y) PX(Co).... PA(Cpp)

Since Cyj, Cyp, ,..., C,, are independent of each other, P(C;;, Cp, ,..., Cyy) =
P(C1))P(Cyy) ..., P(Cyp).

Therefore, P(nonblocking) = P(Cy; Cyy) P(Co; Ciy) P(Cp, Cay ) P(Coy Cy)... P(Cyy
Can) P(Con Can)P(Ci1, Ca, ..., Con) PP(Cy)) PA(Cya).... PX(Cyp)

=P(Cyy Cy)) P(Co; C1)) P(Cp Cp) P(Co Cao)... P(Cryy Con) P(Cop Can) P(C11)P(Cao)
seees P(Cop)/ P(C1) PP(Cyy)... PX(C)

= P(Cy; Cy)) P(Co; C11) P(Cpy Cpy ) P(Coy Co)... P(Cry Can) P(Cop Cun) / P(Cy))
P(Cy)... P(C,p).

In general, P(Cyy) stands for the probability of Cy, connection coming from input

k-1
group k going to output group k. Therefore, P(Cy) is P(Cy) = ( ] akc“' (1-
Kk

11¢,

o, ) , where (¢, is the probability that a connection from input group k

going to the out put groups k. So ¢, isr* (2"")/(N-1) in this case.
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In general, P(Cy Cyy) is the probability of Cy, connections from input group K to
output groups K and above while there are Cy, connections from input group K to
output group K. It can be calculated as:

Zli c (21(—1 _ CkkJ o e e
P(Cy Cu) = o, " R ( E A 7
[Ckk CIk - Ckk

where &, is the probability that a connection from input group k going to the out put

group k. So &, isr* 2“'/N-1 in this case. 7, is the probability that a connection
from input group k going to the out put groups above k and ¥, ist* (N-2"/N-1).

In general cases, P(Coy Cyy) is the probability of Cqy connections from input group
K to output groups K and above while there are Cy, connections from input group K
to output group K. We have the general formula to calculate it:

2k1] c [2k—1 _Ckk) o e e
P(Cox Ci) = a, "t 7 (A 70
(Ckk COk - Ckk

where ¢, is the probability that a connection from input group k going to the out
put group k. So &, isr * 2“'/N-1 in this case. 7, is the probability that a

connection going into output group k coming from the input groups above k and %,
isT* (N-2°/N-1). o

Based on the above formulas, we can calculate the blocking probability with
various numbers of planes, as in Figure 5.

i 7 By Sy B
e SEro e,

e N
“0“-" - so’: e

RN

Fig. 5. Illustration of paths for calculating & and ¥
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N= 16
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Fig. 6. Blocking Probability

Now we show some analytical results based on the formulas obtained in this
section. Figure 6 shows the blocking probability with different number of planes.
From the figure, it can be seen that when n =16, the blocking probability is very close
to 0 even the number of planes is 5. Hence, in most practical cases, we do not need a
full number of planes to guarantee non-blocking, and our analysis will show what the
probability of blocking if a smaller number of planes is used. This figure can be used
as guidance when a designer makes a trade-off between performance and cost.

4 Conclusion

In this paper we discuss the blocking probability of stacked Benes network. We show
that by neglecting worst case traffic pattern, we can save one whole plane. We further
investigate the upper bound of the blocking probability and we show that our theory
conforms to the non-blocking condition. Our model is suitable when traffic load is not
very heavy and the network size is relatively large.
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Abstract. Several parallel architectures exist in computer science liter-
ature. Motivated by the experimental overlapping connectivity network,
we propose a new theoretical network called a completely overlapping
network (CON). This network is an extension of the overlapping con-
nectivity network with multiple buses. In this paper we investigate some
properties of this network and demonstrate the use of CON and its use-
fulness by solving two toy problems: decimal number and one-digit binary
number sortings.

1 Introduction

The concept of parallel computation has been around for decades and parallel
computation itself has increasingly become even more important in the era of
information-dependent world. Thousands of parallel applications and architec-
tures are available for use. However, parallel architectures such as hypercube
and mesh are generally expensive [1] and hence their use is limited to only those
who can afford them. Some attempts have been made to find an alternative to
these expensive parallel machines.

One alternative is called a cluster of workstations and personal computers.
Research in parallel computation on a cluster of workstations abounds. Examples
can be found in [2-4]. A typical cluster of workstations is essentially a group
of numerous workstations and personal computers connected through a single
communication line. Each computer can send a message, bit by bit, when the
communication line is free. If the communication line is currently occupied, the
computer must wait before it is allowed to send its message.

One chief problem with this model of communication via a single communi-
cation line is the line can only serve one computer at any time. To lessen this
problem, during the recent decade or so, a group of computer scientists in the
United States, led by Wilkinson, has developed an experimental network called
an overlapping network [5-7]. They have worked on the concept of using multi-
ple bus lines in some certain configurations. Figure 1 shows one such example.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 252-262, 2005.
© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Multiple bus network with overlapping connectivity

These configurations are in the general classification of overlapping connectivity
networks. Overlapping connectivity networks have the characteristic that regions
of connectivity are provided and the regions overlap so as to provide parallelism.
The overlapping connectivity scheme is suitable for processors having local mem-
ory and can be applied to both fine-grained and coarse-grained processors.

In this paper we extend the network model of Wilkinson one step further to pro-
vide complete overlapping of communication and use a set of fine-grained proces-
sors connected through CON. Our theoretical network model is more general than
but similar to the experimental overlapping network in figure 1. Henceforth, we
will refer to this model as a completely overlapping network. From now on, we will
also use an abbreviation “CON” interchangeably with its full name “completely
overlapping network”. Because Wilkinson’s multiple bus network model yields a
good result [5], it is worth studying properties of CON and investigating its poten-
tial. We do this by using two toy problems; namely, decimal number and one-digit
binary number sortings. This will in fact be the central theme of our paper.

We now discuss a little bit about parallel sorting. Sorting is a fundamen-
tal problem with many important practical applications. Several parallel sorting
algorithms exist in computer science literature depending on the kinds of net-
work architectures they use. Most existing parallel algorithms are described in
the context of networks such as mesh [8-11], line [12,13], hypercube [14-17],
torus [18], etc. The rest are mostly in the environment of cluster of workstations
with one communication bus, i.e., LANs [19-22]. As of today, we are not aware
of any sorting algorithm on an architecture similar to CON.

In the following sections the definition and rules of operations of our com-
pletely overlapping network are firstly given. Secondly, a decimal number paral-
lel sorting algorithm on our completely overlapping network is shown. We prove
that this algorithm is time-optimal on CON. Thirdly, we show another parallel
sorting algorithm on CON but this time it will sort only binary numbers. We
again prove that this binary number sorting algorithm is time-optimal on CON.
Fourthly, we compare the two parallel sorting algorithms. Finally, we conclude
our paper with a summary and some comment on practicality of our theoretical
network.
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2 Completely Overlapping Network

A completely overlapping network is composed of several overlapped communi-
cation lines that connect among several nodes (or processors) to provide par-
allelism. There are vertical communication lines and horizontal communication
lines as shown in figure 2 below.

Fig. 2. Four-node completely overlapping network

The number of vertical lines is equal to the number of nodes N and the
number of horizontal lines is equal to N(Igfl). One straight line segment equates
one step horizontally and vertically. (Note that a line in CON comprises several
line segments.) For instance, figure 3 shows a communication of 9 steps between

the leftmost node and the rightmost node.

Fig. 3. Nine-step communication between nodes

Like any other networks, there are rules of operations. These rules are rea-
sonable and can certainly be implemented. The rules are as follows.

— Horizontal and vertical line segments cannot be shared. That is, any line
segment can be used only one at a time.

— Each line segment is bidirectional.

— Each node has a constant memory size.
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Processor ID

0 1 2 3

Line ID

N BRWR = o

Fig. 4. Numbering scheme for a four-node CON

— A same message can be concurrently sent from one node to several destina-
tion nodes as long as there is no collision of messages.

— If there exists contention for a communication line segment, some kind of
priority can be applied.

In order to enable readers to understand our communication method, a num-
bering of both nodes and communication lines is necessary. Our numbering
scheme is illustrated in figure 4. This figure shows a four-node CON with node
and line identification numbers. It is easy to generalize this numbering scheme
for a N-node CON. Hereafter, we will regularly refer to this numbering scheme
when explaining our algorithms.

3 Decimal Number Parallel Sorting Algorithm on CON

Our Decimal Number Parallel Sorting Algorithm is specifically designed to suit
the completely overlapping network and thus is unique and interesting in its own
right. The definition of our Decimal Number Parallel Sorting Algorithm on CON
is given as follows. We borrow some of pseudocode conventions from [23].

Decimal Number Sorting Algorithm for Process P;
l.fori=0to N —1and i # mylD

2. send(myNum, P;, myID)

3. myCounter =0

4. fori=0to N —2

5. recv(num,Pany)

6. if myNum > num

7. myCounter = myCounter + 1

8. if myCounter # mylD

9. twoltems = pack(myNum, myCounter)
10. fori=0to N —1andi# mylD

11. send(twoltems,P;,;myl D)

12. while recv(packedItems, Pany) # NULL
13.  unpack(packedItems,num,counter)

14. if counter = mylID

15. myNum = num
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Fig. 5. Overall steps

It is assumed that each processor (or node) has a number stored in it initially
and there is a total of N > 2 processors in the CON where N is the number
of distinct items to be sorted. We also assume one process per one processor
and mylD is its own process identification number. There are two communi-
cation subroutines in the algorithm: send(data, destination process, communi-
cation line number) and recv(data, source process). These subroutines require
identification numbers for both lines and nodes. These identification numbers
were described in the previous section. Also note that pack(item1, item2, ...,
itemN) is a subroutine that packs all stated items together as one larger item
and the subroutine unpack(packedltems, iteml, item2, ..., itemN) does just
the opposite.

One of the arguments in subroutine send() indicates the communication lines
to use. (There is no such argument in recv().) Figure 5 shows how the lines
are used in this sorting algorithm. Four different sources of communication are
denoted by four different arrow patterns. There is a total of 11 communication
steps. This communication scheme can be easily generalized for a N-node CON.

Like any communication scheme, it is vital that there be no collision of mes-
sages on any of these communication lines (or any line segment) at any point
in the algorithm. Lemma 1 shows that our communication scheme produces no
collision.

Lemma 1 (Collision-Free All-to-All). The communication scheme used in
the Decimal Number Parallel Sorting Algorithm produces no collision.

Proof. We use the proof by contradiction. Suppose there is a collision of messages
in the CON network. Since one time step equates one line segment, there must
exist at least two paths of equal length that the messages use to traverse from
different sources to the point of collision (i.e., the line segment that messages
collide). But the algorithm ensures that the path lenghts in the algorithm from
different sources differ at least one step before any common line segment is used
(lines 2 and 11). This is true because node i always uses line 7 to communicate.
Thus, this is a contradiction. We conclude that lemma 1 is true.

After designing an algorithm, a computer scientist needs to know whether his
algorithm is provably correct. That is, whether the remaining decimal numbers
in each node are in increasing order at the end of the algorithm. Theorem 1
shows that our algorithm works correctly.
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Theorem 1 (Algorithm’s Correctness). The Decimal Number Parallel Sort-
ing Algorithm is correct.

Proof. Let P; be an arbitrary process i, 0 < ¢ < N — 1, in the completely
overlapping network. In the algorithm each process P; initially sends out its own
number myNum to the other processes P;j, j # i (lines 1-2). Upon receiving
these numbers, each process P; counts the numbers less than its own number
myNum and keeps this count in myCounter (lines 4-7). If myCounter is equal
to the positional number myID of the process P;, it implies that there are
exactly myCounter numbers that are less than myNwum and thus myNum is
in correct position. If myCounter is not equal to the positional number myl D,
both myNum and myCounter are sent to the other processes Pj, j # ¢ (lines
8-11). Upon receiving these numbers, each process P; checks if the just-received
variable counter is equal to mylID. If it is, the process P; replaces myNum
with the just-received variable num. If it is not, the process P; waits for the
next number to arrive and checks. One of these numbers must have its variable
counter equal to myID (lines 12-15). With lemma 1, each process P; eventually
keeps the number whose rank is i.

In addition to being correct, the algorithm should be efficient in order to be
applicable to real-life applications. The following theorem shows that this sorting
algorithm has a running time of O(N).

Theorem 2 (Running Time). The Decimal Number Sorting Algorithm on
CON has a running time of O(N) where N is the size of the items to be sorted.

Proof. In parallel algorithm running time is divided into communication time 7
and computation time 8. For simplicity, assume that one step in communication
is equal to one step in computation. There is a total of four phases in this
algorithm.

Phase 1 (Communication): Each process sends its own number to the other
processes (lines 1-2). Since this sending is done in parallel, the time of the longest
communication path dominates the whole communication.

7'1:3N—1 (1)

Phase 2 (Computation): Each process counts the number of smaller numbers
than its own number myNum (lines 3-7).

§=N—1 (2)

Phase 3 (Communication): Each process sends its own number and its own
counter myNum and myCounter respectively to the other processes (lines 8-
11). For simplicity, assuming that time of sending one item and two items are
the same!, we therefore have

9 =3N -1 (3)

! This assumption does not affect the time complexity since the time of sending two
items is constant.
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Phase 4 (Computation): Each process checks for a counter that is equal to
its ID (lines 12-15). There are in the worst case a total of N — 1 counters to
check. Therefore, we have

bo=N -1 (4)

Hence, the total time complexity £ is £ = 71 + 81 + 72 + 82 = O(N).

Naturally the question that comes to the mind of computer scientists is
whether this parallel sorting algorithm is the best possible or time-optimal on
CON. Theorem 3 nicely answers this question.

Theorem 3 (Optimality). The Decimal Number Parallel Sorting Algorithm
is time-optimal on CON.

Proof. In order to solve any sorting problem on CON, the parallel sorting algo-
rithm must at least communicate between the two farthest nodes 0 and N — 1.
Let us call the shortest distance between the two farthest nodes a diameter. In
CON the diameter is N +1 steps. This establishes the lower bound 2(N) for the
sorting problem on CON. Theorem 2 states that the Decimal Number Parallel
Sorting Algorithm has a time complexity of O(N). Hence, theorem 3 holds.

4 Binary Number Parallel Sorting Algorithm on CON

Given a set of 1’s and 0’s, can we, without any modification, use the Decimal
Number Parallel Sorting Algorithm in the previous section to sort it? The answer
is no. This is because there are repeated numbers of 1’s and 0’s and this violates
the assumption of having distinct numbers as the input to the algorithm. Hence,
we need to invent a new algorithm specifically for sorting binary numbers. At
the first glance one might suspect that sorting one-digit binary numbers may
be computationally easier than sorting decimal numbers because we have some
prior knowledge about our input. That is, only two kinds of numbers (i.e., 0’s
and 1’s) are possible. But our suspicion may not necessarily be true. We will
later illustrate this point in this section.

Several binary number sorting algorithms on different parallel architectures
exist in computer science literature [24]. However, most algorithms work with
d-digit binary numbers where d > 1. Few algorithms are designed to work specifi-
cally with only one-digit binary numbers. In [24] an algorithm for sorting N k-bit
binary numbers on a complete binary tree was described and it was shown that,
by counting, the hypothesized lower bound of 2(Nk) bit steps can be beaten if
k is equal to 1. This case is similar to ours because our binary number sorting
algorithm deals also with one-digit binary numbers. The theoretically interesting
question is “Can we beat the lower bound 2(N), too?”.

The definition of the Binary Number Sorting Algorithm on CON is given as
follows. Once again it is assumed that each processor has a single-digit binary
number stored in it initially and there is a total of NV > 2 processors in the CON
where N is the cardinality of the set of one-digit binary numbers to be sorted.
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Binary Number Sorting Algorithm for Process P;
1. myCounter = myNum

2. for i =0to N —1 and i # mylID

3. send(myNum, P;, myID)

4. fori=0to N —2

5. recv(num, Pany)

6. if num=1

7. myCounter = myCounter + 1
8. if myID < N — myCounter

9. myNum =0

10.if myID > N — myCounter

11. myNum =1

As a computer scientist, we would like to know whether this algorithm is
provably correct. First, we note that lemma 1 also applies to this algorithm
because it uses the same send(...) and recv(...) subroutines. Theorem 4 will
show the rest.

Theorem 4 (Algorithm’s Correctness). The Binary Number Parallel Sort-
ing Algorithm is correct.

Proof. Let P; be an arbitrary process i, 0 < i < N — 1, in the completely over-
lapping network. In the Binary Number Parallel Sorting Algorithm, each process
P; counts the number of 1’s from its initial variable myNum and keeps this count
in myCounter (line 1). Each process P; then sends out its own number myNum
to the other processes P;, j # i (lines 2-3). Upon receiving these binary numbers,
each P; continues to count the number of 1’s and keeps this count in myCounter
(lines 4-7). At this point the total number of 1’s (i.e., myCounter) in the network
is known to each process P;. Given its positional number mylI D and myCounter,
each process P; can identify the number, either 1 or 0, to be kept in myNwum.
If myID < N — myCounter, process Pi—pyrp falls into the range of 0’s and if
mylID > N —myCounter, process P;—,,,rp falls into the range of 1’s (lines 8-11).
Hence, with lemma 1, the Binary Number Parallel Sorting Algorithm is correct.

This algorithm indeed looks simpler than the decimal number sorting coun-
terpart. After all, this algorithm has only 11 lines, executes a pair of send(...)
and recv(...) subroutines only once, and does not use pack(...) and un-
pack(...) subroutines. In addition, each process in our Binary Number Parallel
Sorting Algorithm only needs to count the number of 1’s and does not need
to send this count to the other processes because it can immediately determine
what number, either 0 or 1, should be in its position. But the important question
to computer scientists is “ What about the time complexity? Are they asymptot-
ically equivalent?”. Theorem 5 shows the running time of our Binary Number
Parallel Sorting Algorithm.

Theorem 5 (Running Time). The Binary Number Parallel Sorting Algo-
rithm on CON has a running time of O(N) where N is the size of one-digit
numbers to be sorted.
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Proof. In the Binary Number Parallel Sorting Algorithm running time is divided
into communication time 7 and computation time §. We assume once again for
simplicity that one communication step is equal to one computation step. There
is a total of two main phases in this algorithm.

Phase 1 (Communication): Each process sends its own number to the other
processes (lines 2-3). Since this sending is done in parallel, the time of the longest
communication path dominates the whole communication.

T=3N-1 (5)

Phase 2 (Computation): Each process counts the number of 1’s from the
just-received binary number (lines 4-7).

§=N—1 (6)

Therefore, the total time complexity £ is € =74 6 + ¢ = O(N) where ¢ is a
constant.

At this point we want to be able to claim that our algorithm is time-optimal
on CON. We would particularly like to know whether this claim is true because
it will confirm the best possible performance of our algorithm on theoretical
network CON and, as a consequence, we will be able to answer the question of
complexity between this algorithm and its decimal number counterpart. Theorem
6 proves this claim nicely.

Theorem 6 (Optimality). The Binary Number Parallel Sorting Algorithm is
time-optimal on CON.

Proof. In order to sort any instance of the binary number sorting problem on
CON, all nodes in CON must necessarily assemble together some collective in-
formation about states in the CON network (i.e., the locations of 1’s (or 0’s)
in the network or the total number of 1’s (or 0’s) in the network). To achieve
this in CON, there must at least be communication among all N nodes in the
network in some fashion. In other words, each node must at least send some
piece of information either directly or indirectly via some intermediate nodes to
all the other N — 1 nodes.

The number of steps required for a node to send a message to all the other
N — 1 nodes in CON is at least || + 2 (i.e., a node in the middle of CON
sends a message to all the other N — 1 nodes where N is odd.). This implies at
least LJ;/ |42 steps of communication must occur. We know of one way to achieve
the assembling of this information, which is the way we described in figure 5.
This method takes 3N — 1 steps.

Let Spuin be the minimum number of steps required to achieve the assembling
of this information. Therefore, L];[J + 2 < Spin < 3N — 1. This establishes the
lower bound Sy,i, = 2(N) for any binary number sorting problem on CON.
Theorem 5 states that the Binary Number Parallel Sorting Algorithm has a
time complexity of O(N). Thus, theorem 6 holds.
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5 Comparison of the Two Parallel Algorithms

In section 4 we alluded a little bit to the question of time complexity of the two
parallel algorithms. It at first seems that the Binary Number Parallel Sorting Al-
gorithm is easier computationally than the decimal number counterpart. But, as
theorems 2, 3, 5, and 6 have shown, they are actually equivalent asymptotically
(i.e., when N — 00). In addition, methods of optimality proofs also differ. It is
easy for one to fall into the trap of using the same proof of optimality for both
cases. After a few more thoughts, one will notice that we cannot use the same ar-
gument of the case of decimal numbers for the binary number case, even though
the lower bound is asymptotically the same. In the case of decimal numbers, there
must necessarily be an exchange of two numbers residing in nodes 0 and N —1 in
order to sort any instance of the decimal number sorting problem. On the other
hand, knowing that the input is only a set of 1’s and 0’s, the binary numbers re-
siding in nodes 0 and N —1 do not necessarily need to exchange the numbers phys-
ically via the network in order to sort any instance of the binary sorting problem.
Therefore, we cannot use the diameter to establish the lower bound in this case.

6 Conclusion

We were originally motivated by Wilkinson’s multiple bus networks with overlap-
ping connectivity to increase parallelism. A theoretical network CON is an ex-
tension of Wilkinson’s model. We illustrated the use of CON and its usefulness
by solving two toy problems: decimal number and binary number sortings. In the
decimal number parallel sorting we showed that our time-optimal algorithm has
a speedup of O(OAZ\%V) = O(lgN) over the fastest sequential sorting algorithm.
This speedup is considered fairly good. For example, suppose N = 1,000, 000 and
logarithm base 10 is used, we have log N = 6. This is already 6 times as fast as
the fastest sequential algorithm. For the case of binary number parallel sorting
algorithm, there is no speedup over the fastest sequential sorting algorithm, but,
theory-wise, we can take satisfaction in knowing that there is no faster algorithm
for solving the one-digit binary number sorting problem on CON. Because both
sorting problems have a lower bound of 2(N), it behooves us to ask whether or not
there is a problem that can be solved on CON with a lower time complexity than
2(N). This will be our future research question. On a final note, this paper is done
from a purely theoretical perspective. It would be nice if some engineers actually
implement this CON network. We would be very pleased to learn of any result!
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Abstract. This paper presents a lock-free parallel algorithm for garbage
collection in a realistic model using synchronization primitives offered
by machine architectures. Mutators and collectors can simultaneously
operate on the data structure. In particular no strict alternation between
usage and cleaning up is necessary, contrary to what is common in most
other garbage collection algorithms.

We first design and prove an algorithm with a coarse grain of atom-
icity and subsequently apply the reduction theorem developed in [11]
to implement the higher-level atomic steps by means of the low-level
primitives.

1 Introduction

A lock-free (also called non-blocking) implementation of a shared object guaran-
tees that within a finite number of steps always some process trying to perform an
operation on the object will complete its task, independently of the activity and
speed of other processes [12]. Since lock-free synchronizations are built without
locks, they do not suffer from performance bottlenecks, which are often caused
by locks and which can easily have a performance degrading effect of several
orders of magnitude. In addition, lock-free synchronizations can offer progress
guarantees. A number of researchers [1, 3,12, 18] have proposed techniques for
designing lock-free implementations. Essential for such implementations are ad-
vanced machine instructions such as compare-and-swap (CAS), or load-linked
(LL)/store-conditional (SC).

In this paper we propose a lock-free implementation of mark&sweep garbage
collection (GC). Garbage collectors are employed to identify at run-time which
objects are no longer referenced by the mutators (i.e. user programs). The heap
space occupied by these objects is said to be garbage and must be re-cycled for
subsequent new objects. The garbage collectors reclaim all garbage by adding
them to a so called free-list, which keeps track of free memory.

There are several basic strategies for GC: reference counting, mark&sweep
and copying. Reference counting algorithms can do their job incrementally (re-
sulting in shorter collection pauses), but impose overhead on the mutators and
fail to reclaim circular garbage. Mark&sweep algorithms can reclaim circular
structures, and don’t place any burden on the mutators like reference counting
algorithms do, but tend to leave the heap fragmented. Copying algorithms can
reduce fragmentation, but add the cost of copying data from one space to another
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© Springer-Verlag Berlin Heidelberg 2005
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and require twice as much memory as a marké&sweep collector. Moreover, copy-
ing also requires that the programming language restrict address manipulation
operations, which isn’t true for C or C++.

One often encounters GC algorithms (e.g. [7,8]) that employ stop-the-world
mechanisms, which suspend all normal running threads and then perform GC.
Such an algorithm introduces a global synchronization point between all threads
and tends to become a scaling bottleneck that limits program performance and
processor utilization. It is unacceptable when the system must guarantee re-
sponse time of interactive applications. Therefore, to achieve parallel speed-ups
on shared-memory multiprocessors, lock-free algorithms are of interest [17, 21].

There are several lock-free GC algorithms in the literature. The first one is due
to Herlihy and Moss [13]. They present a lock-free copying GC algorithm, which
uses excessive copying for moving objects to avoid blocking synchronization. In
their algorithm, the failure of a participating thread can indefinitely prevent the
freeing of unbounded memory. In [15], Hesselink and Groote give a wait-free (wait-
freedom is stronger than lock-freedom) GC algorithm using reference counting.
However, this collector applies only to a restricted programming model, in which
objects are not allowed to be modified between creation and deletion, and is there-
fore generally limited. Detlefs et. al. [5] provide a lock-free GC algorithm using
reference counting. The approach relies on a strong hardware primitive, namely
double-compare-and-swap (DCAS) for atomic update of two distinct words in
memory. Michael [20] presents an efficient lock-free memory management algo-
rithm that does not require special operating system or hardware support. How-
ever, his algorithm only guarantees an upper bound on the number of removed
nodes not yet freed at any time. This is undesirable because a single garbage node
might use a large amount of resources and might never be reclaimed.

Mark&sweep algorithms do not move objects. They can thus coexist well
with C/C++ code, where one never dares to move an object because of possible
address computations, and are gaining popularity. Our lock-free mark&sweep
algorithm is non-intrusive and features high-performance and reliability. More-
over, unlike most previously published Mark&sweep algorithms [2, 6, 7], we make
no assumption on the maximum numbers of mutators and collectors that can
operate concurrently. As far as we could find, no similar algorithm exist.

The correctness properties of any concurrent implementation are seldom easy
to verify. This is in general even harder for lock-free algorithms. Our previous
work [9] shows that providing correctness proofs for such algorithms require huge
amounts of effort, time, and skill. In [11], we have developed a reduction theorem
that enables us to reason about a lock-free program to be designed on a higher
level than the synchronization primitives. Using the reduction theorem, fewer
invariants are required and some invariants are easier to discover and formulate
without considering the internal structure of the final implementation.

2 Specification

We assume a fixed set Node of nodes (cf. Fig. 1), each of which is identified with a
unique label between 1 and N for some N € N. The nodes in the set free are the
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Fig. 1. A graph representation of the memory

free nodes. We model the heap as a finite directed graph of varying structure with
a set of non-free nodes. Each node in the graph points to zero or more children
(nodes), and the descendent relation may be circular. In the following context,
we regard the attributes of nodes as arrays indexed by 1...N. The number of
children of a node « is indicated by its arity, which is denoted by arity[z]. We
let C be the upper bound of the arities of the nodes. The expression child[z, j]
stands for the pointer to the jth child of node x, where 1 < j < arity[z].

A node is called a root when some process has direct read access to it. Each
application process p maintains a private set roots, that holds its root nodes.
The set Roots is the union of all roots, for all processes p.

Access to nodes can be transferred between processes. We assume that there
is a two-dimensional array Mbox indexed with a pair of processes that serves as
mailboxes. If process p allows process ¢ to access some node z, it writes = at
Mbox[p, ¢] using Send. Then, process ¢ can claim the access by calling Receive.

We call a node a source node if the node is either in Roots or in some mailbox.
A node is called accessible iff it is reachable by following a chain of pointers from
a source node. Free nodes must not be accessible. Only nodes in the free set
are allowed to be allocated by the mutators. A node is said to be a garbage node
if it is neither accessible nor in the free set. Garbage collectors compute the set
of nodes reachable from a set of source nodes and reclaim all garbage nodes by
placing them into the free set. More formally, we define

R(p, ©) = (32 € roots,: z = z),
R(z) = (32 € Roots: z 5 x) V
(3p, q € Process: Mbox[p, q] = ),

where the reachability relation — is the reflexive transitive closure of relation
— on nodes defined by: z —» « = (Jk: 1...arity[z]: child[z, k] = x). The
fact that a node x is a garbage node is formalized by: =R(z) A = ¢ free.

The interface of the mutators consists of a shared data structure of nodes,
and a number of procedures that can be called in the application processes. We
assume there are in total P concurrently executing sequential processes. In the
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text of the procedures specified as follows, we use me to stand for the process that
invokes the procedure. We use angular brackets ( ) to indicate that embraced
statements are (thought to be) executed atomically.

proc Create(): Node

local x : Node;

( when available extract = from free;
arity[z] := 0; rootsme := rootsme U{z}; )

return z;

proc AddChild(x, y: Node): Bool
{ R(me, z) A R(me, y) }

local suc : Bool;

( suc := (arity[z] < C);
if suc then arity[z]++; child[z, arity[z]]:= y; fi)

return suc;

proc GetChild(x: Node, rth: N): Node U {0}
{ R(me, z) }

local y : Node U {0};

(if 1 < rth < arity[z] then y := child[z, rth]; else y := 0; fi )

return y;

proc Make(c: array [ ] of Node, n: 1...C'): Node
{Vj:1<j<mn: R(me, clj]) }

local x : Node; j: N;

( when available extract = from free;
for j:= 1to ndo child[z, j] := c[j] od;
arity[z] := n; rootsme := rootsme U{z}; )

return z;

proc Protect(z: Node)
{ R(me, z) Az ¢ rootsme }

( rootsme := rootsme U {z}; )

return;
proc UnProtect(z: Node)
{ z € rootsme }

( rootsme := rootsme \ {z}; )

return;
proc Send(z: Node, r: Process)
{ R(me, z) A Mbox[me, r] =0 }

( Mbox[me, 7]:= z; )

return;
proc Receive(r: Process): Node
{ Mbox[r, me] #0 }

local x : Node;

( x :== Mbox[r, me];
Mbox[r, me]:= 0; rootsme := rootsme U {z}; )
return z;

The application programmers are responsible for ensuring that an offered
procedure is called only when its precondition (enclosed by braces { } if there
is any) holds. The condition “available” in Create and Make is implementation
dependent. When an allocation request cannot be met from the free memory,
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the mutator either waits, or invokes a new round of GC to free more garbage.
The threshold value that determines whether or not to invoke a new round of
GC can be customized by the user.

Behind this abstract “user system” there is a collection of garbage collect-
ing processes. A garbage collector does not modify the memory graph but only
manipulate the free set. To specify that GC does happen and is eventually ex-
haustive, we give the liveness property, i.e. every garbage node will be eventually
put into the free set by a garbage collector.

3 A Higher-Level Implementation

The idea behind most GC algorithms in use is to first recursively trace all reach-
able nodes starting from root nodes, then nodes not reached are considered
garbage and can be collected. We present a lock-free implementation that comes
close to the classical mark&sweep algorithms.

We first extend the specification to a high-level implementation, where all
actions on shared variables are separated into distinct atomic accesses except
for some special commands enclosed by angular brackets (...). In order to be
able to finally transform the higher-level algorithm into the low-level algorithm
using our reduction theorem developed in [11], we require that every labeled
atomic group of statements in the higher-level algorithm refer to at most one
shared node.

3.1 Data Structure

The data structure we use in the higher-level implementation is shown in Fig. 2.
Besides fields arity and child, each node has one of three colors: white, black
and grey. All black nodes reachable from a source node are interpreted as ac-
cessible nodes, and all other black nodes are garbage. Grey is a transient color
that only occurs during GC. The free set is implemented as a virtual set that
contains all white nodes.

Since any accessible node must not be freed as garbage, the system needs
to keep track of source nodes that are created by a process and may still be
referred to by other processes. We introduce a field srcnt for each node to
count all references (processes and mailboxes) to the node as a source node.

To avoid possible interference between mutators and collectors, the updates
of the field srcnt of the node, upon deletion from the roots set, is postponed.
We use the field freecnt to count the postponed decrementings of srcnt. The
fields ari and father record the number of children a node has at the beginning
of GC and the parent node of a node in a tree traversed from a source node by
collectors, respectively.

We use a shared variable shRnd to hold the round number of the current
GC, together with an additional field round in the record of a node. The private
variable rnd is a private copy of the shared variable shRnd. The global private
variable toBeC is used to transfer information about checked nodes between
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Constant
P = number of processes; N = number of nodes;
C = upper bound of number of children;
Type
colorType: {white, black, grey};
nodeType: record =
arity, srcnt, freecnt,ari, round: N;
child: array [1...C] of 1...N;
color: colorType; father: NU{—1};
end
Shared variables
Mbox: array [1...P, 1...P]of 0...N;
Node: array [1...N] of nodeType; shRnd: N;
Private variables
roots, toBeC: a subset of 1...N; rnd: N;
Initialization:
shRnd =1 AVz: 1...N: round[z] = 1;

Fig. 2. Data Structure

internal calls. There is also a local private variable toBeD for representing the
set of source nodes to be tracked from.

3.2 Algorithm

In this section, we give a higher-level implementation for the collectors and the
mutators. Since the same sequential program can be executed by all processes,
we adopt the convention that every private variable name can be subscripted
by the process identifier. In particular, pc,, is the program counter of process p.
We do not write Node[z].f but f[x]. We denote color[z] = white by white(z),
and similarly for the other two colors. Brackets [ | and the actions between
parenthesis ( ) can be ignored in the implementation. They only serve in the
proof of correctness. We will explain this in section 4.

Collectors. Our garbage collectors are encoded in the procedure GCollect as
shown in Fig. 3. It consists of three phases: (1) initialization: paint all black
nodes grey, (2) marking: paint all grey nodes reachable from the source nodes
back to black after traversing the memory graph, and (3) sweeping: reclaim all
garbage by painting all remaining grey nodes white.

In the first phase, the processes only need to paint the black nodes grey since
the white nodes can not be garbage. Moreover, we let the field father of each
node with positive srcnt be 0, and that of other nodes be —1. As the algorithm
allows parallel use of mutators, being a source node is not stable. For simplicity,
we call a node = with father[z] = 0 an old source node.

In line 108, a delayed initialization on node x will be skipped since round[z] is
never decreased. As usual with version numbers, here we assume that sufficient
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proc GCollect() =
local z: 1... N; toBeD: a subset of 1...N;
100: rnd := shRnd; toBeC := {1,...,N};
101: while shRnd = rnd A toBeC # () do
choose x € toBeC;

108: ( if round[z] = rnd then
round[x] := rnd + 1; ari[z] := arity[z];
if black(z) then color[z] := grey; fi;
if srentfz] > 0 then father[z] := 0; else father[z] := —1; fi; fi; )

toBeC := toBeC \ {z}; od;
121: toBeC := {1,...,N}; toBeD := {1,...,N};
122: while shRnd = rnd A toBeD # () do
choose z € toBeD;
126: toBeD := toBeD \ {z};
( if father[z] = 0 then Mark stack(z); fi; ) od;
129: while shRnd = rnd A toBeC # () do
choose x € toBeC;
134: ( if round[z] = rnd + 1 A grey(x) then
color[z] := white;
( assert “R(z) Az ¢ free; free := freeUu; ) fi; )
toBeC := toBeC \ {z}; od;
135:  ( if rnd = shRnd then shRnd := rnd + 1; fi; )
137: return
end GCollect.

Fig. 3. Procedure GCollect

bits are allocated for the version numbers to ensure that they cannot “wrap
around” during the interval of a process’s GC cycle.

In the second phase, lines 121-126, the processes build a forest in the set
of all reachable nodes starting from the old source nodes. Trees in the forest
are mutually disjoint. Each of them is rooted by a chosen old source node,
and is established via calling Mark stack (see Fig. 4) in a while loop. During
Mark stack, all the grey nodes on the tree are painted black in the order from
the leaf to the root.

The procedure Mark stack is mainly a form of graph search, and it was ini-
tially designed as a recursive procedure. Since we want to prove the correctness
of our algorithm with PVS, we eliminated the recursion in favor of an explicit
stack. The private variable toBeC serves to ensure that the search of a col-
lector traverses every node at most once. This is important since the memory
graph may have cycles and nodes may be reachable from different old source
nodes.

In Mark stack, lines 151-163, the tree is established by setting the father
pointers. Since the memory graph may have cycles, the processes must reach
consensus about the tree. The processes starting from the same old source node
cooperate with each other, and are in competition with others to expand the
tree to all nodes reached.
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proc Mark stack(z:1...N) =
local w, y: 1...N; suc: Bool; j, k: N;
stack: Stack; head: N; set: a subset of 1...N;
ch:[1...CJof 1...N;
150: toBeC := toBeC\ {z}; set := {z}; head := 0;
151: while shRnd = rnd A set # () do

157: choose w € set; set := set \ {w};
( if grey(w) A round[w] = rnd 4+ 1 then
k:= arifw];

for j:= 1 to k do ch[j] := child[w, j] od; )
head++; stack[head] := w; j:= 1;

158: while shRnd = rnd A j < k do
y = chlj];
if y ¢ toBeC then j++;
else
163: (if father[y] € {—1, w} A grey(y)

Around[y] = rnd + 1 then
father[y] := w; ) set := set U {y};
toBeC := toBeC \ {y}; fi;
j++; fi; od; fi; od;
168: while shRnd = rnd A head # 0 do

175: y := stack[head]; head--;
( if grey(y) A round[y] = rnd + 1 then
srent(z] := srent[z] — freecnt|x];

colorly] := black; freecnt[z] := 0; fi; ) od;
180: return
end Mark stack.

Fig. 4. Procedure Mark stack

The order for choosing an element from the local variable set is irrelevant for
correctness, but relevant for efficiency. The search is a depth first search if the
order is first in last out. The search is a breadth first search if the order is first
in first out. Starting from the chosen old source node, all nodes on the tree are
pushed onto the local stack after their children have been stored. The order of
the elements pushed onto the stack is essential for correctness.

After the tree has been established, the process paints all grey nodes black in
the order in which they are popped from the stack (lines 168-175). When a node
in the tree is painted black, its descendants (with respect to the father relation)
in the tree must have been painted black already. So the other processes need not
trace or paint the subtree starting from that node. At the end of Mark stack, the
process returns to the procedure GCollect to traverse another tree from another
old source node.

In the third phase, lines 129-134, processes try to re-cycle all remaining grey
nodes by coloring them white (i.e. adding them to the free set). The main proof
obligation for the algorithm is that all nodes being freed are not accessible. When
the fastest process executes line 135, the shared variable shRnd is incremented
to notify all other collectors that this round of GC is completed.
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Mutators. The higher-level implementations of the procedures for the mutators
are relatively easy. For reasons of space, in Fig. 5 we only provide the code for
procedure Make (see [10] for the remainning). In the code, “time to do GC”
indicates that some variable, like time or the amount of free memory, reaches a
threshold value.

proc Make(c: array [Jof 1...N, m:1...C):1...N =
{Vj:1...n: R(me, c[j]) }

local : 1...N; j: N;

while true do

300: choose z € [1...N];
306: ( if white(x) then
color[z] := black; srentlz] := 1;
( assert x € free; free := free\z; )
[ for j:= 1to ndo child[z, j] := c[j]; od
arity[z]| := n; roots := rootsU{z}; | )
break;
308: elseif time to do GC then GCollect(); fi; od;
310: [ return z |
end Make.

Fig. 5. Procedure Make

4 Correctness

The main issue of the algorithm is how to ensure the correct execution of col-
lectors and mutators when they concurrently compete with each other for the
same data structure. The algorithm is correct if it behaves properly for all in-
terleavings. Here we only give a sketch of the correctness of the algorithm. For
the complete mechanical proof, we refer to [14].

We need to distinguish safety properties and liveness properties. The main
aspect of safety is functional correctness and atomicity, say in the sense of [19].
We prove partial correctness of the implementation by showing that each pro-
cedure of the implementation executes its specification command exactly once
and that the resulting value of the implementation equals the resulting value in
the specification. As shown in Fig. 3 to Fig. 5, we extend the implementations
with auxiliary variables and commands used in the specification. For simplicity,
we use brackets [ ] to enclose the specification commands that perform the same
actions as the implementation, and parenthesis ( ) to enclose the specification
commands that can be deleted in the implementation.

GC is an internal affair not relevant for the users of the routines. GCollect
cannot be invoked explicitly, but will only be invoked implicitly in, e.g. Make.
This means we only need to prove the match of the specifications and imple-
mentations for all user programs, but not for GCollect. Instead, the main safety
property we have proved for GCollect is that the system only collects garbage,
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i.e. that an accessible node is never freed. This is expressed in the invariant I1:
white(x) = —R(z).

Furthermore, we also need to prove that all preconditions of the interface
procedures are stable under the actions of the other processes. Process p can
ensure its rights to have access to node = by checking the predicate R(p,x),
independently.

A liveness property asserts that program execution eventually reaches some
desirable state. In our case, we want to ensure it is always the case that every
garbage node is eventually collected. That is, ~R(x) ~» white(x), where ~» is
the “leads-to” relation defined by: (P~ Q) = O(P = <Q).

We actually prove something stronger, viz., that, every inaccessible node is
painted white within two rounds of GC.

Theorem 1. For any integer m,
shRnd=m A ~R(xz) ~» shRnd < m + 2 A white(x).

5 The Low-Level Implementation

Synchronization primitives LL and SC, proposed by Jensen et. al. [16], have
found widespread acceptance in modern processor architectures (e.g. MIPS II,
PowerPC and Alpha architectures). These instructions are closely related to the
CAS, and together implement an atomic Read/Write cycle.

At the cost of copying an object’s data before an operation, Herlihy [12]
introduced a general methodology to transfer a sequential implementation of
any data structure into a lock-free synchronization by means of synchronization
primitives LL and SC.

In [11], we formalize Herlihy’s methodology [12] and develop a reduction the-
orem that enables us to reason about a general lock-free algorithm to be designed
on a higher level than the synchronization primitives. A reduction theorem is a
general rule for deriving an “equivalent” higher-level specification from a lower-
level one in some suitable sense [4]. The big advantage is that substantial pieces
of the concrete program can be dealt with as atomic statements on the higher
level and thus the correctness can be more easily verified.

In the higher-level implementation (from Fig. 3 to Fig. 5), instruction 135 is
simply a CAS instruction offered by machine architectures. Each of all other spe-
cial commands enclosed by angular brackets (. ..) only refer one shared node and
some private variables, and therefore can be transformed into low-level lock-free
implementations using our reduction theorem. The transformation is straight-
forward, and we refer the reader to [14].

6 Conclusions

We present a lock-free parallel algorithm for mark&sweep GC in a realistic
model by means of synchronization primitives compare-and-swap (CAS) and
load-linked (LL)/store-conditional (SC) offered by machine architectures. Our
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algorithm allows to collect a circular data structure and makes no assumption on
the maximum number of mutators and collectors that can operate concurrently
during GC. The efficiency of GC can be enhanced when more processors are
involved in it.

Formal verification is desirable because there could be subtle bugs as the
complexity of algorithms increases. To ensure our correctness proof presented in
the paper is not flawed, we use the higher-order interactive theorem prover PVS
for mechanical support. For the complete mechanical proof, we refer the reader
to [14].

In the interface we did not provide a procedure for deleting a child of a node.
However, this extension is rather straightforward after we have done the following
two steps. First, introduce an additional field of a boolean array in the record of
a node to record whether a child of a node is deleted. The boolean array should
restrict only the mutators not the collectors from accessing a “deleted”child
via the pointers of children. Secondly, similarly to what we did with unpro-
tecting a source node, we need to modify line 175 to let the deletions of some
“deleted” children be really operated. Since we don’t think deleting a child is a
main operation of GC, we didn’t incorporate it. However, the correctness of this
extension should not be difficult to verify.

The entrenched problem inherited from classical mark&sweep algorithms is
that our algorithm may also result in severe memory fragmentation, with lots of
small blocks. It is possible that there will be no block of memory on the free list
large enough to hold a large object, such as an array. Thus, it is important to
move free blocks that happen to be adjacent in memory. We plan in the future
to incorporate some appropriate copying technique in our algorithm.
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Abstract. In this paper an adaptive parallel ant colony optimization is devel-
oped. We propose two different strategies for information exchange between
the processors: selection based on sorting and on distance, which make each
processor choose a partner to communicate and update the pheromone accord-
ing to the partner’s pheromone. In order to increase the ability of search and
avoid early convergence, we also propose a method of adjusting the time inter-
val of information exchange adaptively according to the convergence factor of
each processor. Experimental results based on traveling salesman problem on
the massive parallel processors (MPP) Dawn 2000 demonstrate the proposed
APACO are superior to the classical ant colony optimization.

1 Introduction

Social insects(e.g. birds, fish, ants etc.) have high swarm intelligence [1]. Among the
social insects’ many behaviors, the most widely recognized is the ants’ ability to find
good solution to the shortest path problems between the nest and a food source. By
simulating ant’s swarm intelligence, Dorigo, M. et al. were the first to apply the ant
colony optimization algorithm (ACO)[2] to solve TSP problem [3,4]. In ACO, artifi-
cial ants are created to emulate the real ants in the process of seeking food and infor-
mation exchanging. The successful simulation has been applied in many applications
such as job-shop scheduling [5], quadratic assignment problem [6], data mining [7],
network routing [8], network load balancing [9] and robotics [10].

Ant colony optimization is a good candidate for parallelization. The rapid
development of the technology in the computer hardware and parallel processing has
established the material foundation for parallel ant colony optimization. In order to
parallelize the ACO into a parallel ant colony optimization ((PACO), it is more im-
portant to modify the structure of ACO to get better optimization effect rather than to
transfer the sequential ACO into a parallelization schema. The modification of ant
colony structure to fit the parallel computational model involves three aspects: (1)

* This paper is supported in part by the Chinese National Natural Science Foundation under
grant No. 60473012, Chinese National Foundation for Science and Technology Development
under contract 2003BA614A-14, and Natural Science Foundation of Jiangsu Province under
contract BK2005047.
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Dividing the single ant colony of sequential ACO into several mutually independent
sub colonies; (2) Controlling and managing the information exchange between the sub
colonies; (3) Determine the time interval of information exchange between the sub ant
colonies. Different methods of dividing colony and exchanging information generate
different parallel ant colony algorithms. Our goal of parallelization is to obtain the
high speedup and efficiency while the convergence and the ability of optimization are
maintained or even improved.

Some authors have studied parallel versions of ACO algorithm. Two paralleliza-
tion strategies of synchronous and asynchronous were proposed in the paper [11]. In
the synchronous strategy, every processor exchanges information after every iteration,
while in the asynchronous strategy every processor exchanges information after a
certain time interval regularly. A fine grained parallelization with synchronous strat-
egy was presented to solve quadratic assignment problem [12]. Randall, M. [13] in-
troduced a synchronous parallel strategy, which assigned only one ant on each proces-
sor. D.A.L.Piriyakumar [14] introduced an asynchronous parallel Max-Min ant colony
algorithm and tested it on the TSP benchmarks using the parallel computer Cray-T3E.
Merkle, D. [15] first proposed a parallel ant colony algorithm on reconfigurable proc-
essor arrays. The running time of the algorithm is quasi-linear with the problem size n
and the number of ants on a reconfigurable mesh with n* processor. Dorigo, M. [16]
advanced a parallel ant colony algorithm on the hyper-cube architecture, this new
approach enhances the ability of the ant colony algorithm to deal with complicated
objective functions theoretically and practically.

To parallelize the ant colony algorithm, the most important factors to be considered
are the pattern and the time interval of information exchange between the processors.
These factors affect not only the speed of convergence of algorithm, but also the op-
timization ability of the algorithm. In the algorithms of [11-14], the global best solu-
tion is computed and broadcasted to all the processors in information exchange. Then
every processor updates the pheromone matrix according to the global best solution.
This method of information exchange could probably create some similar solutions in
different processors, which cause large amount of pheromone on some trails. These
trails could be considered to be the "optimum solution", and this will reduce the
searching ability of the processors. Shu-Chuan Chu [17] and Middendorf, M.[18]
proposed several different strategies of exchange information in order to enhance the
performance of the algorithm. In addition, the processors exchange information is a
constant time interval in the papers [11-14]. Although paper [11] acknowledged that
this constant time interval of information exchange could affect the optimization
speed, diversity and convergence of the algorithm, the detailed analysis of the effect
and the method to reduce it have not been provided. Since this constant time interval
information exchange do not take the distribution of the solutions into account, it may
influence the diversity of the solutions and the convergence speed.

In this paper, we present an efficient adaptive parallel ant colony algorithm
(APACO). Two strategies for information exchange and one method for adjusting
the time interval of information exchange are proposed for APACO. Experimental
results based on the traveling salesman problem on the massive parallel processors
(MPP) Dawn 2000 confirm the efficiency and effectiveness of the proposed
APACO.
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2 Massively Parallel Processors

Our parallel ant colony algorithm is based on the computational model of massively
parallel processors (MPP), which adopts the message passing method. MPP system
has several features as follows [19]: (1) Adopt the commercialized microprocessor in
processing nodes, and there are one or more microprocessors in each node; (2) Use
the physically distributed memory, namely, each node has its own local memory sys-
tem which could not be shared with other nodes; (3) The nodes are connected by a
communication network with high bandwidth and short delay; (4) The system is ex-
tensible and can be expended to hundreds and thousands processors; (5) It is an asyn-
chronous MIMD where a procedure consists of several processes each of which has
its own memory space. Communication between the processes is implemented by
message passing. The data distribution is usually not transparent to the users.

Due to these features of MPP system, it is very suitable for implementing the paral-
lel ant colony algorithms. The local memory on each node is used for storing the
information of each sub colony, such as pheromone matrix and the best solution. MPP
supports standard programming mode, such as PVM, MPI, which are suitable to carry
out information exchange between the ant sub colonies by the message passing inter-
face. We use MPI with C bounding programming mode to implement our algorithm
APACO on the MPP machine Dawn 2000.

3 The Adaptive Parallel Ant Colony Optimization

In our adaptive parallel ant colony optimization (APACO), the ant colony is divided
into P colonies, and every processor holds a colony of ants. First, the ants in each sub
colony search for the best solution in its own processor independently. After several
generations, the processors exchange information with its partner. Instead of ran-
domly choosing a processor to exchange information, each processor dynamically
determines its partner by an adaptive method to make full use of the best gene from
other processors. This enables each processor to select the partner according to the
quality of its solution and to direct its further searching. In addition, the time interval
of information exchange between processors is determined dynamically according to
the convergence factor of each processor instead of a constant time interval. The
strategy of information exchange and the time interval of information exchange are
the critical factors influencing the convergence speed of algorithm, the quality of
solution, the efficiency of computing and the speedup.

3.1 The Framework of the Algorithm of APACO

Including two stages, the framework of the proposed algorithm APACO is as follows:

Algorithm: Adaptive Parallel Ant Colony Optimization (APACO)
Begin
Stagel:
Initialize the pheromone matrix, the initial wvalue of
the time interval of information exchange g, and other
parameters;
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Set the cycle counter 1i=0,the counter of exchange in-
formation t=0;
Stage2:
While (not termination) do
For every processor do in parallel
For (each ant)
Construct the solution;
Evaluate the solution;
End for
Local pheromone update;
If (i==g,)
{ t=t+1;
Find a processor to exchange information;
Update the pheromone according to its part-

ner;
Adjust the time interval of information ex-
change g,;
1=0;
}
i=1i+1;
End for
End do
End

3.2 Adaptive Strategies of Information Exchange Between Processors

After several generations of local optimization, the solutions of a group could become
stagnate and probably no the better solutions could be generated, so it is necessary to
exchange information between the processors. The purpose of information exchange
is to propagate the information to other processors. When the algorithm of one proc-
essor falls into a convergence state, it can get rid of local optimum by the information
absorbed from other processors, then evolve towards the best solution. Information
exchange plays an important role in APACO, it may enhance the probability of get-
ting the optimum solution. Instead of choosing a neighboring [18] or a random proc-
essor to exchange information, two adaptive strategies for information exchange is
proposed in this section, which offer a direction for each processor in further search-
ing towards the optimal solution.

(1) Exchange Information Based on Fitness Sorting

This strategy enables each processor choose its partner according to the average fit-
ness of the solutions obtained by the processors. The average fitness of solutions on

processor i on current iteration is defined as f,,,,

N,
1 Y
()= —z f(i,k), where N, is the
Ni k=1
number of ants on processor i, f(i,k) is the fitness of ant k. When information ex-

change is taken, the average fitness f, (i) of every processor is sorted in descent

ave
order. We denote the indices of the processors after sorting as rank |, rank 5, ...,

rank p .The partner of information exchange for the processor rank; (i€ [1, ... ,P]) is
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the processor rank p,,_;. For instance, the processor rank, which has the maximum

average fitness would exchange information with processor rankp which has the
minimum average fitness.
Once the processor rank; (i€ [1, ... ,P]) finds the partner of information exchange,

the elements ©(j,k) of its pheromone matrix is updated according to the pheromone
7" (j, k) of processor rank Pali’

7 k) =270, ATt (k) % (1)

Here, 7 ( J,k) denotes the pheromone on edge (j,k) of processor rank p,,_;,
rank . rank .

o, =1- P L and g, = I L. 6, and g, are the pheromone weights to determine

the relative influence of the trail strength 7(j, k) and 7" (j,k).The weight of phero-

rank;

mone on processor rank; is 1— , while that of pheromone on processor

rank;

rank p,,_; is ——— . If average fitness of processor rank;is relatively low, then its

pheromone weight &, will be relative small, while its partner’s pheromone has a large
influence §,. By information exchange, processor rank;of low average fitness can

improve the searching speed effectively and enhance the optimization ability by com-
bining with the information comes from the processor rank p,,_; of high average

fitness. Meanwhile, The processor with higher average fitness can extend the search-
ing space to avoid falling into the local optimum on the process of search.

(2) Exchange Information Based on Distance

This strategy enables each processor choose its exchange partner which has the most
different best solution. To measure the difference of the best solutions, we use dis(i,j)
to denote the distance between processor i and processor j. Let best(i) be the best

solution of processor i and a;, be the kth city of best(i) . Then dis(ij) is defined as:

ul 0 ifa, =a;
disf (i, j) = ) _x(i, j,k) , where x(i, j.k)= f i =
— 1 otherwise

@3

From the equations above, we can see that the larger the distance between proces-
sors, the less similarity of these two processors. Processor i chooses the partner of
information exchange according to (3).

J =arg max { M} 3)
e | LK) |

Here tabu is the set of processors that have not been chosen, L(k) is the length of the
best tour that processor k gets. From Eq.(3), we can see that processor i inclines to
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choose the processor j with higher quality solution and larger distance between other
processors.

After the processor i determines the partner to exchange information, updating
pheromone matrix is taken on processor i:

T(u,v) = %[T(u,v) % 47" (u,v) . 4)
where
> >
dis(i, k) dis(j, k)
P — o, ==L . ®
3 n-pP 4 n-P

Here, T*(u, v) denotes the pheromone on edge (u, v) of the partner of processor i,
J, and §, are also the pheromone weights to measure the relative influence of the

P P

trail strength 7(u,v) and T*(u,v). Zdis(i,k) and Zdis(j,k) are the sums of dis-
k=1 k=1

tance between processor i, j and other processors respectively. The more the differ-

ence is, the larger the pheromone weight is. This strategy of information exchange

will strengthen the influence of the better solutions while the diversities of solutions

in the processors are maintained.

3.3 The Strategy of Adjusting the Time Interval of Information Exchange

The time interval of the adjacent information exchanges is the other critical factor that
influences the performance of parallel ant algorithm. With short time interval of in-
formation exchange, since the processors communicate with other processors fre-
quently, the information on one processor can be often sent to other processors, which
can offer a guide for the processor to evolve and enhance the quality of the solutions.
But on the other hand, due to the heavy overhead caused by the communications, the
speed up of the algorithm could be reduced. In addition, the dominant influence of the
best solutions will have a negative impact on the diversity of solutions. On the con-
trary, the long time interval of information exchange will reduce the overhead caused
by the communications and increase the convergence speed in each processor. Since
the processors get less global information of the information from the other proces-
sors, they will have a high probability getting trapped in a local optimum solution.

To get a proper time interval of information exchange, an adaptive method of ad-
justing the interval of information exchange is presented in this section. In our
method, the time interval is no longer a fixed constant, but is adjusted adaptively by a
certain rule which is helpful to get balance between the diversity of solutions and the
convergence of algorithm.

To adjust the time interval of information exchange adaptively, we define a con-
vergence factor con(k) to denote the degree of convergence on processor k. The con-

vergence factor is a function of the pheromone values, which is computed as follows:
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N N
k k ok _ _k
ZZ“max{TmaX — T T —Trin }

i=l j=1

con(k) =2 -0.51. (6)
NXNX(TII;&X _Trliljn)
where
Ty =Max{zf [1Si<N1<j<N}. (7)
Ty =min{z 11Si<NI<j<N}. (8)

k

tively. At the initial stage of the algorithm, the pheromone value on each edge of
every processor is set to 0.5, then the convergence factor con(k) =0. When the algo-

T and z'r';m are the maximum and minimum pheromone on processor k respec-

rithm on processor k has converged, then con(k) =1.The convergence factor reflects
the distributing of pheromone on the edges. The more the con(k) is, the more con-
centrated the pheromone on processor £ is, the more probability of processor k falling

into the local optimum is. We adjust the time interval of information exchange ac-
cording to this convergence factor:

ave —

max{g, +(0.5-con,,) k;, 1} if con,, 20.8 or con,,, <0.2
81 = : 9

g, otherwise
Here k, is positive constant, g, is the new time interval for the next information ex-

P
1 .
change, con,, =—200n(k). con,, indicates the average degree of convergence
k=1
of all the processors. When con,,, becomes larger, the tour that the ants choose are

concentrated on some edges, and the pheromone of the majority processors is very
concentrated. Since the solutions of the whole system lack of diversity, the time inter-
val of information exchange should be reduced in order to frequently interchange the
information between the processors to get rid of local optimum solution by absorbing
the information from other processors. If con,, value increases, the pheromone of
the majority processors is evenly scattered, and solutions of the processors become
well diversified, the time interval should be increased so that the overhead of commu-
nication can be decreased and each processor can continue searching in its own envi-
ronment of evolution.

4 Experimental Results and Analysis

In this section, we show the test results on TSP benchmarks [20] to compare our
method with that of ant colony algorithm. Our parallel algorithm is implemented on
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the passive parallel processors Dawn 2000 using MPI (C bounding). The basic pa-
rameters are set as: p=y==1=0.1, ¢ =1, f=2, k=16, k=0.5, the number of
ants is equal to the number of cities. If not stated otherwise, the number of processors
is 6, and all given results are averaged over 50 trials each over 2000 iterations. In
following tables and figures, S-APACO stands for APACO which adjust the time
interval and exchange information based on fitness sorting, while D-APACO based
on distance.

It can easily be seen from Table 1 that the best value (the length of the shortest
path) of the best solutions of S-APACO and D-APACO are much smaller than that of
classical ACO. In most trials, our algorithms need less computation time to get the
high quality solutions. It is indicated that our parallel algorithms have higher optimi-
zation ability because of the reasonable the parallel strategies. The parallel strategies
and the adaptive strategies for information exchange that we presented can enhance
the quality of solutions and accelerate the convergence speed.

Table 1. The comparison result of ACO, S-APACO and D-APACO

The number of

Problem  Algorithm Best value Average trials  reaching Time
value . (s)
the best solution
ACO 556.28 561.74 44 84.78
eil76 S-APACO 538.37 539.93 48 15.98
D-APACO  538.37 539.12 49 16.54
ACO 21679.75 21762.41 36 96.29
kroA100  S-APACO 21282.44 21285.27 46 16.95
D-APACO  21282.44 21284.56 48 17.87
ACO 16819.59 16904.64 41 120.53
d198 S-APACO 15780.03 15783.58 47 21.62
D-APACO 15780.03 15781.73 47 22.37
ACO 43001.57 43098.54 37 203.81
lin318 S-APACO 42029.14 42033.73 46 34.67
D-APACO  42029.14 42031.82 48 35.68
ACO 51324.67 51417.52 34 432.82
pcb442 S-APACO 50778.13 50782.15 45 73.51
D-APACO  50778.13 50780.36 46 74.93

Table 2 shows the results of four TSP problems that obtained with different num-
ber of processors by using D-APACO. From Table 2 we can see that when the num-
ber of processors is increased, the computing time can be reduced due to the less ants
assigned on each processor. But due to the overhead of communication which in-
creases the total time of algorithm, the speedup of our algorithm can not increase
linearly with the increasing of processor exactly. This is in conformity with the Am-
dahl’s Law. In order to show how the number of processors influences the time of the
algorithm, we use Fig.1 to describe the relationship between them. Fig.1 graphically
show that problems with small size can not get high speedup because the communica-
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tion overhead is relatively larger than the computations. However, with the scale of
the problem increased, the speedup is increased. For instance, the speedup of problem
pcb442 is much greater than that of problem eil76.

Table 2. The comparison result of different processors on each problem using D-APACO

The number of

Problem  Numberof Bestvalue VS  irals reaching Time(s)
value .
processors the best solution
3 538.37 547.49 42 29.51
eil76 6 538.37 539.12 49 16.54
10 538.37 549.54 41 9.43
3 15780.03 15820.76 36 40.61
d198 6 15780.03 15781.73 47 22.37
10 15780.03 15804.39 42 13.75
3 42029.14 42086.41 35 65.17
lin318 6 42029.14 42031.82 48 35.68
10 42029.14 42051.69 42 21.72
3 50778.13 50842.61 35 147.68
pcb442 6 50778.13 50780.36 46 74.93
10 50778.13 50807.84 42 49.53
Speedup
5
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Fig. 1. Speedup on different problem using D-APACO

The influence of different time interval of information exchange is shown in Table 3.
The Table shows that without adjusting the time interval, there is less communication
overhead and hence the time cost can be reduced, but it can’t keep balance between the
diversity of solutions and the convergence of algorithm since the information between
the processors can’t be exchanged immediately, which would influence the search
ability of the algorithm. Since S-APACO can make full use of the information come
from other processors in a rational time interval according to the degree of convergence
of the algorithm, its quality is better than others.
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Table 3. The comparison result of different interval of information exchange

Evaluation The time Interval of information exchange
Problem

standard 4 6 8 S-APACO
cil51 Best Value 427.15 429.86 434.37 426.21

Time(s) 991 9.87 9.73 10.02

kroA100 Best Value  21287.56 21294.18 21301.34 21282.44

Time(s) 15.84 15.76 15.61 16.95

3g  BestValle 4203504 4204314 4205114 42029.14
Time(s) 34.34 33.29 33.01 34.67

a4y BestValie 5079681 5081546 5082935  50778.13
p Time(s) 73.41 72.01 71.53 73.51

5 Conclusion

To parallelize the ant colony algorithm, the most important factors to be considered
are the pattern and the time interval of information exchange between the processors.
These factors affect not only the speed of convergence of algorithm, but also the op-
timization ability of the algorithm. In this paper, we propose two different strategies
for information exchange between processors: selection based on sorting and on dis-
tance, which make each processor dynamically determines its partner by an adaptive
method to make full use of the best gene from other processors. This enables each
processor to select the partner according to the quality of its solution and to direct its
further searching each processor. In addition, a good time interval not only makes the
best solution on one processor to send to other processors in proper time, but also
reduces the overhead of communication. An adaptive method to adjusting the time
interval according to the degree of convergence of the algorithm is presented. We
apply these techniques to the traveling salesman problem, on the massive parallel
processors (MPP) Dawn 2000. Experimental results show that our algorithm has high
convergence speed, high speedup and efficiency.
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Abstract. HPJava is an environment for scientific and parallel program-
ming using Java. It is based on an extended version of the Java language.
One feature that HPJava adds to Java is a multi-dimensional array, or
multiarray, with properties similar to the arrays of Fortran. We are us-
ing Adlib as our high-level collective communication library. Adlib was
originally developed using C++ by the Parallel Compiler Runtime Con-
sortium (PCRC). Many functionalities of this high-level communication
library is following its predecessor. However, many design issues are re-
considered and re-implemented according to Java environment. Detailed
functionalities and implementation issues of this collective library will be
described.

1 Introduction

The basic features of HPJava [10] [11] [12] have been described in several ear-
lier publications. In this paper we will jump straight into a discussion of the
implementation of some collective communications in HP Java.

The main characteristic change from Java to HPJava is to add a concept of
multi-dimensional arrays, called ” multiarrays”. And to support parallel program-
ming, HPJava creates "multiarrays” by extending multiarrays. These ”multiar-
rays” are very closely modeled on the arrays of High Performance Fortran (HPF).
The new distributed data structures are cleanly integrated into the syntax of the
language. In other word, new distributed data structure doesn’t interfere with
the existing syntax and semantics of Java-for example ordinary Java arrays are
left unaffected.

New syntaxes in the source HPJava program is translated to an intermediate
standard Java file and this Java file is compiled using ordinary Java compiler.
The preprocessor that performs this task is reasonably sophisticated. During the

* Corresponding author.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 286-297, 2005.
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preprocessor phase, it performs a complete static semantic check of the source
program, following rules that include all the static rules of the Java Language
Specification [9]. So it should not normally happen that a program accepted by
the HPJava preprocessor would be rejected by the backend Java compiler. The
translation scheme depends on type information, so we were essentially forced to
do a complete type analysis for HPJava (which is a superset of standard Java).
Moreover we wanted to produce a practical tool, and we felt users would not
accept a simpler preprocessor that did not do full checking.

The current version of the preprocessor also works hard to preserve line-
numbering in the conversion from HPJava to Java. This means that the line
numbers in run-time exception messages accurately refer back to the HPJava
source. Clearly this is very important for easy debugging.

A translated and compiled HPJava program is a standard Java class file,
ready for execution on a distributed collection of JIT-enabled Java Virtual Ma-
chines. All externally visible attributes of an HPJava class can be transparently
reconstructed from Java signatures stored in the class file. This makes it possible
to build libraries operating on distributed arrays, while maintaining the usual
portability and compatibility features of Java. The libraries themselves can be
implemented in HPJava, or in standard Java, or as JNI interfaces to other lan-
guages. The HPJava language specification documents the mapping between
distributed arrays and the standard-Java components they translate to.

[Java version of Adlib ] [MPJ and gg}gr application—leveﬂ

[ mpjdev ]

[ Pure Java } [ Native MPI }

[ SMPs or } [ Parallel Hardware }
Networks of PCs (e.g. IBM SP3, Sun HPC)

Fig. 1. An HPJava communication stack

Currently HPJava is supplied with one library for parallel computing-a Java
version of the Adlib library of collective operations on distributed arrays [14]. A
version of the mpiJava [1] binding of MPI can also be called directly from HP Java
programs. Figure 1 summarizes an HPJava communication libraries stack. This
figure shows how high-level collective libraries and low-level device library are
working together.

2 Related Works

UC Berkeley is developing Titanium [3] to add a comprehensive set of parallel
extensions to the Java language. Support for a shared address space and compile-
time analysis of patterns of synchronization is supported.



288 S.B. Lim et al.

The Timber [2] project is developed from Delft University of Technology. It
extends Java with the Spar primitives for scientific programming, which include
multidimensional arrays and tuples. It also adds task parallel constructs like a
foreach construct.

Jade [8] from University of Illinois at Urbana-Champaign focuses on message-
driven parallelism extracted from interactions between a special kind of dis-
tributed object called a Chare. It introduces a kind of parallel array called a
ChareArray. Jade also supports code migration.

HPJava differs from these projects in emphasizing a lower-level (MPI-like)
approach to parallelism and communication, and by importing HPF-like distri-
bution formats for arrays. Another significant difference between HPJava and
the other systems mentioned above is that HP Java translates to Java byte codes,
relying on clusters of conventional JVMs for execution. The systems mentioned
above typically translate to C or C+4. While HPJava may pay some price in
performance for this approach, it tends to be more fully compliant with the
standard Java platform.

3 High-Level Collective Communications

A C++ library Adlib [6] was completed in the Parallel Compiler Runtime Con-
sortium (PCRC) [7] project. It was a high-level runtime library designed to
support translation of data-parallel languages. It incorporated a built-in repre-
sentation of a distributed array, and a library of communication and arithmetic
operations acting on these arrays. The array model supported general HPF-like
distribution formats, and arbitrary regular sections.

The Adlib series of libraries support collective operations on distributed ar-
rays. All members of some active process group, which may or may not be the en-
tire set of processes executing the program, must invoke a call to a collective oper-
ation simultaneously. Communication patterns supported include HPF /Fortran
90 intrinsic such as cshift. More importantly they include the regular-section
copy operation, remap, which copies elements between shape-conforming array
sections regardless of source and destination mapping. Another function, write-
Halo, updates ghost areas of a distributed array. Various collective gather and
scatter operations allow irregular patterns of access. The library also provides
essentially all Fortran 90 arithmetic transformational functions on distributed
arrays and various additional HPF library functions.

Figure 2 shows how collective communication is used in HPJava. It creates a
general purpose matrix multiplication routine that works for arrays with any dis-
tributed format. This program takes arrays which may be distributed in both their
dimensions, and copies into the temporary array with a special distribution format
for better performance. A collective communication schedule remap() is used to
copy the elements of one distributed array to another. From the viewpoint of this
paper, the most important part of this code is communication method. One of
the most characteristic and important communication library methods, remap(),
takes two arrays as arguments and copies the elements of the source array to the
destination array, regardless of the distribution format of the two arrays.
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public class Comm {
public void matmul (float [[-,-]] c, float [[-,-]1] a, float [[-,-1] b) {

Group2 p = c.grpQ);
Range x = c.rng(0);
Range y = c.rng(1);

int N = a.rng(1).size();

float [[-,*]] ta = new float [[x, N]] on p;
float [[*,-]] tb = new float [[N, yl] on p;

Adlib.remap(ta, a);
Adlib.remap(tb, b);

on(p)
overall(i = x for : )
overall(j = y for : ) {

float sum 0;
for(int k = 0; k < N ; k++)
sum += ta [i, k] * tb [k, jI;

cli, j] = sum;

Fig. 2. A general Matrix multiplication in HPJava

3.1 Implementation of Collectives

By using a characteristic example of collective communication, we will discuss im-
plementation of the Java Adlib collectives. For illustration we concentrate on the
important remap operation. Although it is a powerful and general operation, it is
actually one of the more simple collectives to implement in the HP Java framework.

General algorithms for this primitive have been described by other authors.
For example it is essentially equivalent to the operation called
Regular Section Copy Sched in [4]. In this section we want to illustrate how
this kind of operation can be implemented in terms of the particular Range
and Group hierarchies of HPJava (complemented by a suitable set of messag-
ing primitives).

Constructor and public method of the remap schedule for distributed arrays
of float element can be described as follows:

class RemapFloat extends Remap {
public RemapFloat (float # dst, float # src) {...}

public void execute() {...}
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public abstract class BlockMessSchedule {

BlockMessSchedule(int rank, int elementLen,boolean isObject) { ... }
void sendReq(int offset, int[] strs, int[] exts, int dstId) { ... }
void recvReq(int offset, int[] strs, int[] exts, int srcId) { ... }
void build() { ... }
void gather() { ... %}
void scatter() { ... }

Fig. 3. API of the class BlockMessSchedule

The remap schedule combines two functionalities: it reorganizes data in the
way indicated by the distribution formats of source and destination array. Also,
if the destination array has a replicated distribution format, it broadcasts data
to all copies of the destination. Here we will concentrate on the former aspect,
which is handled by an object of class RemapSkeleton contained in every
Remap object.

During construction of a RemapSkeleton schedule, all send messages, re-
ceive messages, and internal copy operations implied by execution of the schedule
are enumerated and stored in light-weight data structures. These messages have
to be sorted before sending, for possible message agglomeration, and to ensure
a deadlock-free communication schedule. These algorithms, and maintenance of
the associated data structures, are dealt with in a base class of RemapSkeleton
called BlockMessSchedule. The API for the super class is outlined in Figure 3.
To set-up such a low-level schedule, one makes a series of calls to sendReq and
recvReq to define the required messages. Messages are characterized by an off-
set in some local array segment, and a set of strides and extents parameterizing
a multi-dimensional patch of the flat Java array. Finally the build() operation
does any necessary processing of the message lists. The schedule is executed in
a ”forward” or ”backward” direction by invoking gather() or scatter().

The implementation details of BlockMessSchedule will not be discussed
in greater detail here because they are not particularly specific to our HPJava
system, and the principles are fairly well known (see for example [4]).

However we do wish to describe in a little more detail the implementation
of the higher-level RemapSkeleton schedule on top of BlockMessSchedule.
This provides some insight into the structure HPJava distributed arrays, and
the underlying role of the special Range and Group classes.

To produce an implementation of the RemapSkeleton class that works in-
dependently of the detailed distribution format of the arrays we rely on virtual
functions of the Range class to enumerate the blocks of index values held by
each process. These virtual functions, implemented differently for different dis-
tribution formats, encode all-important information about those formats. To a
large extent the communication code itself is distribution format independent.
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—  BlockRange

—— CyclicRange

— ExtBlockRange

Range —

— IrregRange

+—— CollapsedRange

L Dimension

Fig. 4. The HPJava Range hierarchy

public abstract class Range {
public int size() {...}
public int format() {...}

public Block localBlock() {...}
public Block localBlock(int lo, int hi) {...}
public Block localBlock(int lo, int hi, int stp) {...}

public Triplet crds() {...}
public Block block(int crd) {...}

public Triplet crds(int lo, int hi) {...}
public Block block(int crd, int lo, int hi) {...}

public Triplet crds(int lo, int hi, int stp) {...}
public Block block(int crd, int lo, int hi, int stp) {...}

Fig. 5. Partial API of the class Range

The range hierarchy of HPJava is illustrated in Figure 4 and some of the
relevant virtual functions are displayed in the APT of Figure 5. The most relevant
methods optionally take arguments that allow one to specify a contiguous or
striped subrange of interest. The Triplet and Block classes represent simple
struck—like objects holding a few int fields describing respectively a ”triplet”
interval, and the strided interval of ”global” and "local” subscripts that the
distribution format maps to a particular process. In the examples here Triplet
is used only to describe a range of process coordinates that a range or subrange
is distributed over.
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private void sendLoop(int offset, Group remGrp, int r){

if(r == rank) {

sendReq(offset, steps, exts, world.leadId(remGrp));
} else {

Block loc = src.rng(r).localBlock();

int offsetElem
int step

offset + src.str(r) * loc.sub_bas;
src.str(r) * loc.sub_stp;

Range rng = dst.rng(r);
Triplet crds = rng.crds(loc.glb_lo, loc.glb_hi, loc.glb_stp);

for (int i = 0, crd = crds.lo; i < crds.count; i++, crd += crds.stp){
Block rem = rng.block3(crd, loc.glb_lo, loc.glb_hi, loc.glb_stp);

exts[r] = rem.count;
steps[r] step * rem.glb_stp;

sendLoop (offsetElem + step * rem.glb_lo,
remGrp.restrict(rng.dim(), crd), r + 1) ;

Fig. 6. sendLoop method for Remap

Now the RemapSkeleton communication schedule is built by two subrou-
tines called sendLoop and recvLoop that enumerate messages to be sent and
received respectively. Figure 6 sketches the implementation of sendLoop. This
is a recursive function-it implements a multidimensional loop over the rank di-
mensions of the arrays. It is initially called with r = 0. There is little point going
into full detail of the algorithm here, but an important thing to note is how this
function uses the virtual methods on the range objects of the source and desti-
nation arrays to enumerate blocks-local and remote-of relevant subranges, and
enumerates the messages that must be sent. Figure 7 illustrates the significance
of some of the variables in the code. When the offset and all extents and strides
of a particular message have been accumulated, the sendReq() method of the
base class is invoked. The variables src and dst represent the distributed array
arguments. The inquiries rng() and grp() extract the range and group objects
of these arrays.

Of the collective communication schedules currently implemented in Adlib,
all except WriteHalo share with Remap this property that their implementa-
tion code does not explicitly depend on the distribution format of the arrays.
All rely heavily on the methods and inquiries of the Range and Group classes,
which abstract the distribution format of arrays.
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Fig. 7. Illustration of sendLoop operation for remap

3.2 Other Schedules in Adlib

We described main characteristic example of the regular communications,
remap(). This section we will overview functionalities of all collective opera-
tions in Adlib. The Adlib has three main families of collective operation: regular
communications, reduction operations, and irregular communications. We dis-
cuss usage and high-level API overview of Adlib methods.

The method shift() is a communication schedule for shifting the elements
of a distributed array along one of its dimensions, placing the result in another
array. In general we have the signature:

void shift(7T # destination, 7T # source,
int shiftAmount, int dimension)

where the variable T runs over all primitive types and Object, and the nota-
tion T # means a multiarray of arbitrary rank, with elements of type T . The
shiftAmount argument, which may be negative, specifies the amount and direc-
tion of the shift. In the second form the dimension argument is in the range
0,...,R—1 where R is the rank of the arrays: it selects the array dimension in
which the shift occurs. The source and destination arrays must have the same
shape, and they must also be identically aligned.

The function broadcast (), which is actually a simplified form of remap().
There are two signatures:

T broadcast(T [[]] source)

and
T broadcast(T source, Group root)

The first form takes rank-0 distributed array as argument and broadcasts the
element value to all processes of the active process group. Typically it is used
with a scalar section to broadcast an element of a general array to all members of
the active process group. The second form of broadcast () just takes an ordinary
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Java value as the source. This value should be defined on the process or group of
processes identified by root. It is broadcast to all members of the active process
group.

Adlib has some support for irregular communications in the form of collective
gather () and scatter () operations. The simplest form of the gather operation
for one-dimensional arrays has prototypes

void gather (7" [[-]] destination, 7" [[-]] source, int [[-]] subscripts) ;

The subscripts array should have the same shape as, and be aligned with, the
destination array. In pseudocode, the gather operation is equivalent to

for all ¢ in {0,...,N — 1} in parallel do
destination [:] = source [subscripts[il] ;

where N is the size of the destination (and subscripts) array.

The basic scatter function has very similar prototypes, but the names
source and destination are switched. Currently the HPJava version of Adlib
does not support combining scatters, although these could be added in later
releases.

You can find complete list of Adlib schedules in [12]. Information, API, and
usage on the each schedule are described in this paper.

4 A Multigrid Application and Benchmark Results

The multigrid method [5] is a fast algorithm for solution of linear and nonlinear
problems. It uses a hierarchy or stack of grids of different granularity (typically
with a geometric progression of grid-spacings, increasing by a factor of two up
from finest to coarsest grid). Applied to a basic relaxation method, for example,
multigrid hugely accelerates elimination of the residual by restricting a smoothed
version of the error term to a coarser grid, computing a correction term on the
coarse grid, then interpolating this term back to the original fine grid. Because
computation of the correction term on the fine grid can itself be handled as a
relaxation problem, the strategy can be applied recursively all the way up the
stack of grids.

The experiments were performed on the SP3 installation at Florida State
University. The system environment for SP3 runs were as follows:

— System: IBM SP3 supercomputing system with AIX 4.3.3 operating system
and 42 nodes.

— CPU: A node has Four processors (Power3 375 MHz) and 2 gigabytes of
shared memory.

— Network MPI Settings: Shared “css0” adapter with User Space(US) commu-
nication mode.

— Java VM: IBM ’s JIT

— Java Compiler: IBM J2RE 1.3.1



Collective Communications for Scalable Programming 295
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Fig. 8. Laplace Equation with Size of 5122

For best performance, all sequential and parallel Fortran and Java codes were
compiled using -O5 or -O3 with -ghot or -O (i.e. maximum optimization) flag.

First we present some results for the computational kernel of the multigrid
code, namely unaccelerated red-black relaxation algorithm. Figure 8 gives our
results for this kernel on a 512 by 512 matrix. The results are encouraging. The
HPJava version scales well, and eventually comes quite close to the HPF code
(absolute megaflop performances are modest, but this feature was observed for
all our codes, and seems to be a property of the hardware).

The flat lines at the bottom of the graph give the sequential Java and Fortran
performances, for orientation. We did not use any auto parallelization feature
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Fig. 9. Multigrid solver with size of 5127



296 S.B. Lim et al.

here. Corresponding results for the complete multigrid code are given in Figure 9.
The results here are not as good as for simple red-black relaxation-both HPJava
speed relative to HPF, and the parallel speedup of HPF and HPJava are less
satisfactory.

The poor performance of HPJava relative to Fortran in this case can be
attributed largely to the naive nature of the translation scheme used by the
current HPJava system. The overheads are especially significant when there are
many very tight overall constructs (with short bodies). Experiments done else-
where [11] leads us to believe these overheads can be reduced by straightforward
optimization strategies which, however, are not yet incorporated in our source-
to-source translator.

The modest parallel speedup of both HPJava and HPF is due to communi-
cation overheads. The fact that HPJava and HPF have similar scaling behavior,
while absolute performance of HPJava is lower, suggests the communication li-
brary of HPJava is slower than the communications of the native SP3 HPF
(otherwise the performance gap would close for larger numbers of processors).
This is not too surprising because Adlib is built on top of a portability layer
called mpjdev, which is in turn layered on MPI. We assume the SP3 HPF is
more carefully optimized for the hardware. Of course the lower layers of Adlib
could be ported to exploit low-level features of the hardware (we already did
some experiments in this direction, interfacing Java to LAPI [13]).

5 Conclusions and Future Work

We have explored enabling parallel, high-performance computation-in particular
development of scientific software in the network-aware programming language,
Java. Traditionally, this kind of computing was done in Fortran. Arguably, For-
tran is becoming a marginalized language, with limited economic incentive for
vendors to produce modern development environments, optimizing compilers for
new hardware, or other kinds of associated software expected by today’s pro-
grammers. Java looks like a promising alternative for the future.

We have discussed in detail the design and development of high-level library
for HPJava-this is essentially communication library. The Adlib API is pre-
sented as high-level communication library. This API is intended as an example
of an application level communication library suitable for data parallel program-
ming in Java. This library fully supports Java object types, as part of the basic
data types. We discussed implementation issues of collective communications in
depth. The API and usage of other types of collective communications were also
presented.
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Abstract. Packet filters are rules for classifying packets based on their header
fields. A filter conflict occurs when two or more filters overlap, creating an
ambiguity in packet classification. There has been prior works on conflict
detection for multi-dimensional classifiers, but their efficiency and scalability
are not good. A new algorithm is proposed, which uses hashing-based
PATRICIA trie. The new algorithm can fast detect conflicts in classifiers and
have high scalability. The technology of processing transport-level ports can
bring more security than existed algorithms.

1 Introduction

CIDR, IntServ and DiffServ QoS, Firewalls and VPNs are all examples of
technologies which have extended the internet forwarding table lookups, from fixed
length lookups to sophisticated 5 tuple lookups with wildcarding [1]. Both packet
classification problem and filter conflicts detection problem are under active study
these days. The filter conflict is possible because a packet might match multiple
filters, each with a different associated action. It is important to consider filter conflict
resolution in any scheme involving filters, since filters, if not handled correctly, can
cause packets to be subject to the wrong actions. For example, incorrectly matching
packets to filters in firewalls can cause security problems. Adding resolve filters for
each pair of conflicting filters is the most common solution.

Conflict detection has become an important problem as router vendors offer larger
classifier tables and the filters are used for potentially conflicting purposes such as
QoS, security [1][2][3][4]. In many of these applications, some service may
dynamically insert a new filter that can conflict with existing security or QoS policy.
While the majority of added filters will not conflict [5][6], a mechanism to warn
managers of potential conflicts seems necessary to avoid breaches of the security or
QoS policies. Clearly, the time to add filters and detect conflicts is important [1].

It could be argued that since resolving conflicts by adding new resolve filters
would require policy input and possibly human input, there is no need for a fast
conflict detection and resolution algorithm. However, for the next generation
signaling protocols, the conflict detection is done at one site and the conflict
resolution is done elsewhere. It is important for routers to be able to process signaling
messages as fast as possible in order to leave enough processing power for other tasks
like packet forwarding, scheduling, routing updates and other signaling requests [1].
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2 Filter Conflict Detection—Problem Statement

Definition. Filter F, is in conflict with Filter F, if every field in F, is a subset or a
superset or equal to the corresponding field in F,, and actions of F, and F| are
different. Formally, F, is conflict with F iff

Vi: F [i] IFF [i], and actions of F, and F,are different

Where F&{ C,D =}, i€ {protocol, src_ip, src_port, dst_ip, dst_port}.

[4]1[7]1[8] defined all 5 relations that relate two or more packet filters, completely
disjoint, exactly matched, inclusively matched, partially matched and correlated. Both
relation of completely disjoint and relation of partially matched can never result in
conflicts, and both relation of exactly matched and relation of inclusively matched
cannot result in security problems. So, the main work of Detecting and Resolving
Packet Filter Conflicts is to find filters which are in correlated relation.

3 Previous Works

BV [9], ABV [10], SBV [5] and IBV [5] are four algorithms for detecting conflicts.
All of them are on the base of Bit Vector(BV) scheme. SBV use two separately tries
for each dimension, which can improve BV’s performance which only uses a trie.
ABYV and IBV use aggregation scheme to eliminate redundant reads to words that
have no bits set, which can both improve performance and reduces the size of the
memory. But all above Bit Vector based algorithms use precomputation to speed up
filter search, this makes filter updates slow.

[1] develop a 2-dimensional recursive trie data structure to solve the filter conflict
problem, which we call it GoT algorithm in this paper. A general solution is presented
for the 5-tuple filter, and an optimized version is described for the more common
2-tuple filters consisting of source and destination addresses [1]. It use two Grid of
Tries(GoT) to organize src_ip and dst_ip, which has more scalability and better
performance than BV based algorithms when the size of filters is very big. We will
use the example database B shown in Table 1 and Fig.1 to illustrate GoT scheme.
GoT algorithm needs two complementary data structures, one for each of the
following two cases.

1. G[1] is a prefix of F[1] and F[2] is a prefix of G[2], or
2. F[1] is a prefix of G[1] and G[2] is a prefix of F[1]

In particular, one data structure can efficiently isolate the filters whose source field
is a prefix of F’s source field, and then organize these filters to quickly determine if
any of them has the destination field with F[2] as a prefix. The second data structure
reverses the roles of source and destination fields. Fig.1 shows the complete
construction for case 1 of the set in Table 1. Nodes of destination tries are labeled
with the filters associated with that destination address. GoT algorithm needs not
much precomputation, it has good scalability than BV based algorithm.
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Table 1. An example 2-tuple filter database

Filter F[1] F[2]
F, 100% 001100*
F, 1001* 0010%

F, 100001%  0011%
F 1001110¥  0010000%

=

1000111*  0011*
1000111*  001101*
1000111*  001100*

w

=N

| | ™

First-level trie

F[1]
0

I [2] Fz [2] % L :2]

Fig. 1. Recursive Trie 1 for the example database of Table 1

4 A New Algorithm for Conflicts Detection

4.1 PATRICIA Trie

We develop a 2-dimensional recursive PATRICIA trie data structure to solve the filter
conflict problem. PATRICIA trie is the shallowest trie [11], which is very often used

for the information retrieval systems [12][13].

Recursive PATRICIA Trie I can efficiently isolate the filters whose source field is
a prefix of F’s source field, and then organize these filters to quickly determine if any
of them has the destination field with F[2] as a prefix. Recursive PATRICIA Trie 2

reverses the roles of source and destination fields.

The average depths of source trie and destination trie in Fig.1 are separately 5.9
and 5.3. The average depths of source PATRICIA and destination PATRICIA trie in
Fig.2 are separately 3.6 and 1.7. Above example use short strings, for 32 bits IP

addresses, it can more efficiently reduce the trie’s depth.
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Fig. 2. Recursive PATRICIA Trie 1 for the set in Table 1

4.2 Hashing Technology and Data Structure

To use hashing technology to improve the performance, we restrict the prefix lengths
of IP addresses only be 32, 28, 24, 20, 16, 12, 8 and 4, other lengths’ prefix can be
transformed to be these lengths. Table 2 shows an example of transforming prefix to
restricted lengths. By restricting IP prefix’s length, we can use hashing to improve
performance further. We only restrict src_ip’s prefix in the Recursive PATRICIA Trie
1, and dst_ip’s prefix in the Recursive PATRICIA Trie 2.

For the filter set in Table 1, we get Table 2 by restricting the length of src_ip
prefix. By hashing, we can construct multiple PATRICIA tries, and each PATRICIA
trie is very shallow. If using 3 bits length code and the lowest 4 bits of IP prefix as
hashing index, we can get 128 PATRICIA tries. For example, the hashing index of
F,,1s 0010100, the high 3 bits “001” refers the length of prefix is 8 bits, and the low 4
bits “0100” refers the low 4 bits of F, =10000100*. Because all prefix lengths are
equal in a PATRICIA trie, the first-level PATRICIA trie is fixed-length PATRICIA
trie, which have better performance than prefix PATRICIA trie. Fig.3 shows the new
data structure, which the average depth of S(B) and D(B) are 1 and 1.9 respectively.

Table 2. An example 2-tuple filter database

Filter Source Destination
F,,F, 1000%*, 1001* 001100*
F, 1001* 0010*

F,.F,,F,,F,, 10000100*%,10000101*, 10000110*,10000111* 0011*

F,,F, 10011100%, 10011101* 0010000%*

F;,F,, 10001110%, 10001111* 0011*

F,,F,, 10001110%, 10001111* 001101*

F,.F,, 10001110%, 10001111* 001100*
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index

011111 |[LCBA]
0011110 |[LCBA
0011101 |LCBA|
0011100 [T.CTEA

0010111 [LCHY
0010110 [LCEY
0010101 [LCBAJ
QOLOL00 (LCBA]J

0001001 |LCBA]
0001000 |LCBAJ

oot

Fig. 3. hashing based Recursive PATRICIA Trie 1 for the example database of Table 2

4.3 Pseudocode of Conflict Detection Algorithm for 2-Tuple Filters

program FastDetect (F, B)

1. 1Initialize C(F) = {F};
/* Search Recursive PATRICIA Trie 1 */

2. Transform F[1l] for Recursive PATRICIA trie 1, get N;
filters from F;

3. for i=1 to N; do

4. Hashing to get the index root of PATRICIA tries on the
term of F;[1] and its length;

5. Matching F;[1] in the PATRICIA trie of the root index;

6. if(no matched) goto (9);

else get the matched node u;

7. Determine all nodes in D(u) which F[2] is a prefix of
destination field of these nodes;

8. Add these nodes to C(F);

9. if(there are other PATRICIA trie whose length is

shorter than length(F;[1]1))
transform F;[1] to the shorter length;
goto 4;
/*Search Recursive PATRICIA Trie 2 is omitted */

10. If C(F) only contains F , then add F to B, and
return “No Conflict”;

11. for each filter F’EC(F) do

12. Add ResolveFilter(F,F’) to B;

13. end.
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As an example, suppose we want to add a filter F=(10011100%*, 0010*) to the set in
Table 1. When looking up in the Fig.3, there are following steps:

(1) Hashing on the term of F[1] and its length and get root index = “0011100”.

(2) Using the root index 0011100 to lookup corresponding 2-level PATRICIA trie,
find that F, [1]= F[1]. Continue to access F, [2], because F[2] is a prefix of F,,[2], F
conflicts with F, .

(3) Because existing shorter index 4, transform F to F=(1001*, 0001*), and get the
new index is 0001001.

(4) Use the root index 0001001 to lookup corresponding 2-level PATRICIA trie,
get that F' conflicts with F,.

The search in the second structure, Recursive PATRICIA Trie 2, is similar, except
the roles of source and destination fields are reversed.

4.4 Theoretical Analyses

Now, we will analyze the performance of the new algorithm. For an original filter set
B which has N filters, by compressing IP’s prefix length with parameter w, we will
get a new filter set C which has pN filters. Without hashing, both the average depth of
PATRICIA trie and the number of memory accesses when detecting conflicts in B
will be log,N. If we hash the set C to M bits index, which we get 2" PATRICIA tries.
For full 2-ary PATRICIA trie, the average depth of each PATRICIA trie will be

PN
Davemge = logZ 2_M
As described in algorithm FastDetect, for a new added filter F, it will be
transformed to several new filters which have fixed length. Let refers to the number
of transformed filters of F. Furthermore, Step 9 of FastDetect may look up multiple
PATRICIA trie when conflicts detecting. When detecting conflict amongst C, the
number of memory accesses of FastDetect will be

PN
Muccess = pg 1082 2_M

In order that FastDetect have better performance of conflicts detection, following
relation should be existed.

log, N > pBlog, 5_1‘1’\1’

So, to decrease p and § and w, and to increase M can improve the performance of
HBPP algorithm. But small w causes small 8 but big p, and big M causes big memory
space. In experiment of section 7 we use M =9 and w=4.

We know that there are p=w at averagely for full random filters. As firewalls
locate in edge networks, and its filters are not random but very characteristic. The
value of p is only related with the length of IP prefixes and w, and the value of @ is
only related with the number of different lengths of IP prefixes.

Generally, all IP addresses in Intranet zone of filters have same length IP address
prefix, and all IP addresses in DMZ of filters may have fixed 32 bits IP address.
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Furthermore, for a filter which corresponding to a specified flow from an ingress to an
egress of the firewall, IP prefix length in Internet have little variable. For example, a
filter corresponding to a flow from Intranet to Internet, the IP prefix of Internet zone
often are fixed server, which have 32 bits length. So if introducing the ingress and
egress of flow corresponding to filters, the p and 6 can be very small.

In order to decrease p we utilize both the ingress and egress of flow of filters.
When configuring filters, besides the common 5-tuple information, b