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Preface 

Welcome to the proceedings of ISPA 2005 which was held in the city of Nanjing. 
Parallel computing has become a mainstream research area in computer science and 
the ISPA conference has become one of the premier forums for the presentation of new 
and exciting research on all aspects of parallel computing. We are pleased to present 
the proceedings for the 3rd International Symposium on Parallel and Distributed 
Processing and Applications (ISPA 2005), which comprises a collection of excellent 
technical papers, and keynote speeches. The papers accepted cover a wide range of 
exciting topics, including architectures, software, networking, and applications.  

The conference continues to grow and this year a record total of 968 manuscripts 
(including workshop submissions) were submitted for consideration by the Program 
Committee or workshops. From the 645 papers submitted to the main conference, the 
Program Committee selected only 90 long papers and 19 short papers in the program. 
Eight workshops complemented the outstanding paper sessions.  

The submission and review process worked as follows. Each submission was 
assigned to two Program Committee members for review. Each Program Committee 
member prepared a single review for each assigned paper or assigned a paper to an 
outside reviewer for review. In addition, the program chairs, vice program chairs, and 
general chairs read all papers when a conflicting review result occured. Given the 
large number of submissions, each Program Committee member was assigned 
roughly 15–20 papers. Based on the review scores, the program chairs along with the 
vice program chairs made the final decision.  

The excellent program required a lot of effort from many people. First, we would 
like to thank all the authors for their hard work in preparing submissions to the 
conference. We deeply appreciate the effort and contributions of the Program 
Committee members who worked very hard to select the very best submissions and to 
put together an exciting program. The effort of the external reviewers is also deeply 
appreciated. We are also very grateful to Prof. Sartaj Sahni, Prof. Pen-Chung Yew, and 
Prof. Susumu Horiguchi for accepting our invitation to present keynote speeches. 
Thanks go to the workshop chairs for organizing eight excellent workshops on several 
important topics related to parallel and distributed computing and applications.  

We deeply appreciate the tremendous efforts of the vice program chairs, Prof. Ivan 
Stojmenovic, Prof. Mohamed Ould-Khaoua, Prof. Mark Baker, Prof. Jingling Xue, 
and Prof. Zhi-Hua Zhou. We would like to thank the general co-chairs, Prof. Jack 
Dongarra, Prof. Jiannong Cao, and Prof. Jian Lu, for their advice and continued 
support. Finally, we would like to thank the Steering Committee chairs, Prof. Sartaj 
Sahni, Prof. Yaoxue Zhang, and Prof. Minyi Guo for the opportunity to serve as the 
program chairs as well as their guidance through the process. We hope that the 
attendees enjoyed this conference, found the technical program to be exciting, and 
had a wonderful time in Nanjing. 

Yi Pan and Daoxu Chen 
ISPA 2005 Program Co-chairs 
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Abstract. We review the data structures that have been proposed for the 
forwarding and classification of Internet packets. Data structures for both 
one-dimensional and multidimensional classification as well as for static and 
dynamic rule tables are reviewed. Sample structures include multi-bit one- and 
two-dimensional tries, quad trees, binary trees on binary trees, and list of hash 
tables. 
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Abstract. As multi-core technology is currently deployed in computer industry 
primarily for limiting power consumption and improving system throughput, 
continued performance improvement of a single application on such systems 
remains an important and challenging task. Using thread-level parallelism 
(TLP) to improve instruction-level parallelism (ILP), i.e. to improve the number 
of instructions executed per clock cycle, has shown to be effective for many 
general-purpose applications. However, because of the program characteristics 
of these applications, effective speculative schemes at both thread and 
instruction levels are crucial. In the past few years, we have seen significant 
progress being made in the architectures and the compiler techniques to support 
such thread-level speculative execution model. In this talk, we will discuss 
these architectural and compiler issues, in particular, the compiler techniques 
that could support speculative multithreading for general-purpose applications. 
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Abstract. With a tremendous growth in the Internet traffic, next generation 
network have been requiring a large increase in transmission capacity, switch-
ing-system high-throughput and high-performance optical networking. Wave-
length Division Multiplexing (WDM) technology has been increased to the 
number of wavelengths per fiber hundreds or more with each wavelength oper-
ating at the rates of 10Gbps or higher. Thus, the use of all-optical (photonic) 
networks based on the WDM technology is considered promising to provide 
peta-bit bandwidth for next generation Internet. To enable the future peta-bit 
photonic networks, deliberate studies are deserved for some key techniques, 
such as the ultra-high speed all-optical switching, high performance routing and 
wavelength assignment (RWA), efficient restoration and protection, etc. This 
paper provides you with the knowledge about dense WDM networks, high-
speed optical switching architectures, high performance routing and wavelength 
assignment, efficient restoration, as well as prospective vision of future 
photonic Internet. 

1   Introduction 

The Internet is experiencing an exponential growth in bandwidth demand from 
large numbers of users in multimedia applications and scientific computing, as well 
as in academic communities and military. Also, recent broadband service delivery 
such as; high capacity contents delivery services, video stream transport, large vol-
ume file transfer, and numerous broadband/wideband data services have been push-
ing carriers and internet service providers to provide an end-to-end optical network 
from a huge numbers of users home to enterprises. With the development of Wave-
length Division Multiplexing (WDM) technology, the number of wavelengths per 
fiber has been increased to hundreds or more with each wavelength operating at the 
rates of 10Gbps or higher. Thus, the use of photonic networks based on the WDM 
technology is considered promising to provide peta-bit bandwidth for next genera-
tion Internet [1].  

To enable the future peta-bit photonic networks, deliberate studies are deserved 
for some key techniques, such as the ultra-high speed photonic switching, high per-
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formance routing and wavelength assignment (RWA), efficient restoration and pro-
tection, etc. This paper provides you with the knowledge about dense WDM net-
works, high-speed optical switching architectures, high performance routing and 
wavelength assignment, efficient restoration, as well as prospective vision of future 
photonic Internet. 

2   Photonic Networks 

An optical network is a communications network in which information is transmitted 
entirely in the form of optical or infrared transmission signals. In a true photonic (all-
optical) network, every switch and every repeater works with infrared transmission or 
visible-light energy. Photonic networks have several advantages over electrical and 
optical transmission. A single optical fiber can carry hundreds or more of different 
wavelengths, each beam having its own set of modulating signals. This is known as 
Wave-Division Multiplexing (WDM).  

2.1   Wavelength Division Multiplexing (WDM) 

The very high carrier frequency of light also allows the use of multiple different fre-
quency carriers on the same light beam or in the same optical fiber. During the late 
1970s to the middle 1990s, fiber transmission roughly capacity doubled each year. In 
the late of 1990s, WDM technology achieved the significant enhancement in aggre-
gate transmission bit-rate to terabits-per-second. It also provides multiply network 
capacity, increases the capacity of the interconnection system, and reduces the amount 
of cabling required in the system. More recent WDM researches have been achieving 
practical high-speed WDM systems deployable over long distance and dense wave-
length division multiplexing (DWDM) [2]. In modern DWDM systems, each wave-
length is used as s separate client channel to establish path connectivity in an optical 
network [3]. 
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Fig. 1. (a) Two 3x3 switches used to connect two self-healing rings. (b) Working of add/drop 
ports. 
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With rapid advances in WDM technology such as DWDM add/drop multiplex-
ers(ADMs), wideband optical amplifiers, stable single frequency laser, novel optical 
cross-connects (OXCs), optical networking has been more focused. Khandker and  
Horiguchi [4] proposed WDM self-healing ring networks using  3x3 widesense non-
blocking optical switches. Figure 1 shows two 3x3 nonblocking optical switches of  
WDM add/drop. Thus, WDM networks with mesh topology have recently caught 
much more interest than ever due to the mesh-in-nature Internet backbones that are 
considered more capacity-efficient and survivable. In WDM mesh networks, all-optical 
photonic switch is a key network element equipped with a WDM switching node.  

2.2   Photonic Packet Switching 

One of the most widely adopted photonic switching technologies is based on circuit-
switching, in which a lightpath is set up between two nodes for relatively a long pe-
riod of time. In such a network also called a wavelength-routed (WR) network, the 
lightpaths provisioned along fibers are switched according to their wavelengths. In the 
past, the WR approach could be effective and acceptable in the Internet backbone. 
The network control architecture is overlaid by multiple existing protocols, such as IP 
over ATM over WDM or IP over ATM over SONET over WDM. The existence of 
the immediate layer(s) together has solved the discrepancy between the upper IP and 
the underlying WR based WDM layer. With the emergence of GMPLS protocols, 
people started to think about IP over WDM architecture in which IP packets are 
launched directly upon the WDM infrastructure such that it eliminates the overhead 
and redundancy caused by overlaying multiple protocols.  

In such a circumstance, Photonic Packet Switching (PPS) is the most straightfor-
ward way to the photonic Internet. It statistically multiplexes the incoming IP packets 
to a common wavelength channel in the optical domain. It also bears most of the 
advantages  inherent  from the conventional IP networks. Figure 2 illustrates photonic  

 

Fig. 2. Photonic network evolution from point-to-point WDM to photonic packet 
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network progress and evolution from per-to-per WDM to photonic packets. However, 
due to the fact that the current technology barrier in practically implementing PPS is 
still huge [5], Optical Burst Switching (OBS) [6][7] is a very promising alternative for 
the future optical network data plane to deal with the burst and dynamic Internet traf-
fic with high efficiency.  

Optical switching technologies are viable for the next generation Internet where 
high-performance packet transport is facilitated by switching in the optical layer. 

3   Optical Switches 

Optical switches are useful in designing optical cross-connect to reduce the cell loss 
probability. For applications that require a high data transmission rate, low error rate 
and low delay, rearrangement of the states of switching elements in the optical net-
work is not desirable, making nonblocking switching increasingly important for opti-
cal networks. Besides, if traffic arrives at input ports asynchronously then a switching 
network is required to be nonblocking to handle the traffic efficiently. In such cases 
signals at each input port can be instantly delivered to their destination ports if the 
destination ports are free and rearrangement of states of internal switching elements 
will thus be minimized. Thus, nonblocking switching provides a promising technol-
ogy for the development of photonic networks. 

3.1   Nonblocking Optical Switches Using Directional-Coupler (DC)  

The basic 2×2 switch element in optical switching systems is usually a directional-
coupler (DC) that is created by manufacturing two waveguides close to each other. 
There are two ways in which optical paths can interact in planar switching networks. 
First,  two optical channels on different waveguides cross each other in order to obtain 
a particular topology. We call this a channel crossover. Alternatively, two paths shar-
ing a switching element will experience some undesired coupling from one path to the 
other. This is called switch crossover [8]. Experimental results reported in [9] showed 
that it is possible to make crosstalk from passive intersections of optical waveguides 
negligible.  

Chikama et al.[10] pointed out that Crossbar networks suffer from huge signal loss 
and crosstalk, and therefore cannot be directly employed in optical networks [11][12]. 
A double crossbar has been proposed for a strictly nonblocking and zero crosstalk 
network with an increased loss (2N) and number of switching elements (2N2). 
Spanke's [13] network has zero crosstalk with reduced signal loss (2log2N) with huge 
hardware cost (2N2-2N). M. Vaeze et.al in [14][15] have proposed a multiplane ban-
yan switch architecture that has much less crosstalk, loss and switch complexity. But 
they have not mentioned how signals are routed to the right planes. Either the 
switches in the planes have to be able to decode the destination address or the signal 
should be sent to the right plane by other switching elements. In either case access 
circuitry will be quite complex, which introduce hardware overhead.  

Khandker et. al. [16] have proposed a recursive network architecture, RN(N,m) in 
which  an N×N strictly nonblocking switch network can be constructed with given 
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m×m size of strictly nonblocking switch. They have expanded RN(N,m) into 
GRN(N,M,n,m) with N×M switch size [17]. Figure 3 shows RN(N,2) network. They 
also proved that even with a 2×2 optical switch as the building block the RN(N,2)  has 
O(log2N) signal loss and constant crosstalk for switch crossover. 
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(a)  RN(N,2)                                   (b) 8x8 GRN with 2x2 building blocks 

Fig. 3. Nonblocking Recursive Optical Switching Networks 

3.2   Vertically Stacked Optical Banyan (VSOB) Networks 

A large-scale optical switch is usually composed of numerous basic switching ele-
ments (SEs) grouped in multiple stages along with the optical links arranged in a 
specified interconnection pattern. Figure 4 shows a novel optical switch structure is 
the vertical stacking of multiple copies (planes) of a banyan network [18]. The result-
ing networks, namely vertically stacked optical banyan (VSOB) networks, preserve 
all the good properties of the banyan networks, such as simple switch setting ability 
(self-routing) and small depth [19][20]. These properties are attractive for DC-based 
optical switching systems because loss and attenuation of an optical signal are propor-
tional to the number of couplers that the optical signal passes through. In this paper, 
we focus on the VSOB networks that are free of first-order crosstalk in SEs (we refer 
to this as crosstalk-free hereafter).   

Lot of results are available for VSOB networks, such as [21][22][23], and their 
main focus has been on determining the minimum number of planes required for 
nonblocking VSOB networks. Analytical models have also been developed to under-
stand the blocking behaviors of VSOB networks that do not meet the hardware re-
quirement for nonblocking. None of these models, however, have considered the 
probability of network components failing in their determination of blocking prob-
ability. With the gain in importance of fault-tolerant capability of optical switching 
networks, performance modeling of VSOB networks in presence of network failure 
becoming critical for the adoption of VSPB networks in practical applications.  
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Jiang et al. [24][25][26][27] have proposed an analytical model for the blocking 
probability of VSOB networks that incorporates link failure probability.  The new 
model can guide network designers to determine the effects of link failure and reduc-
tion in the number of planes on the blocking behaviors of VSOB networks. They also 
conducted simulation to validate the model. The analytical and simulation results 
indicate that our model is accurate and the blocking behavior of a VSOB network is 
very similar to that of a fault-free one for a reasonable small link failure probability. 
Chen et al. [28][29] have analyzed the blocking probability of horizontally expanded 
and vertically stacked optical banyan (HVOB) networks. 
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(a) 16x16 Banyan-type network                       (b) The vertical stacking scheme 

Fig. 4. Vertical stacked optical Banyan nonblocking network (VSOB) 

3.3   MEMs and SOA Optical Switches 

A number of current researches in photonic switching present challenges to product a 
large scale matrix switches in low-cost as well as high-speed optical switches in 
highly reliable system. NTT [30] developed 8x8 optical matrix switch employs 
Mach-Zehnder interferometer with thermo-optic phase shifter as switching unit. 
Thermo-Optic switch is featured by smaller package and lower power consumption 
than mechanical switches. The switching time is around 2 msec, which is acceptable 
for use in optical cross-connect (OXC) and optical add/drop multiplexing (OADM) 
nodes.  

Matxer et al. [31] proposed thermo-optical digital switch array integrated in  silica 
on silicon. The switch is composed of two interacting waveguide arm though which 
light propagates. Heating one of the arms changes its refractive index, and the light 
is transmitted down one path rather than the other. However, the scalability of this 
technology is limited by the relative high power consumption due to heating 
waveguides.   

Micro-electro-mechanical systems (MEMs) are use for telecommunication applica-
tions recently. Since MEMs creates so many mirrors on a single chip, the cost per 
switching element is relatively low, but MEMS is fairly slow to switching due to 



 Towards Peta-Bit Photonic Networks 9 

moving parts.  Lucent Technologies developed two-axis motion MEMs optical cross-
connect mirror and also developed large-scale 2D-MEMs switches with 256 x 256 
OXC switching array. The optical loss varies with the selected input and output ports 
in 2D-MES because of the difference in optical path length.  

Fujitsu [32] developed 3D-MEMs optical switch by a government-supported OBS 
R&D initiative in 2001-2005. A large-scale matrix switch of 128x128 with a msec-
order switching time was fabricated in one chip using the 3D-MEMs free-space 
transmission type switch. For the high-speed switching, they developed comb-driven 
MEMS mirror whose speed is over 10 times faster than that of conventional parallel 
plate mirror. 3D-MEMs optical switch is more suitable for use in fabricating a large-
scale 1000x1000 switching system than a digital optical switch and the optical loss in 
the 3D-MEMs is lower than in the 2D-MEMs.    

A semiconductor (laser) optical amplifier (SOA) is now emerging from laborato-
ries into commercial availability. SOA production for use in optical add/drop optical 
switching is rising rapidly. SOA optical switching is achieved by changing between 
two stages of SOA. The SOA response time is very fast with switching speed of nsec-
order. For implementation of SOA optical switch, many technical problems and fabri-
cation problems are still remained. SOA assemblies for wavelength conversion will 
be a key factor in future all-optical networks.  

4   High-Performance Routing and Wavelength Assignment 

Photonic networks using wavelength-division- multiplexing (WDM) technology are 
now considered very promising to meet the huge bandwidth demand of next genera-
tion Internet. In WDM wavelength-routed networks, data is switched and routed in 
all-optical domain via lightpaths. The Routing Wavelength and Assignment (RWA) 
problem concerns in determining a path and a wavelength to establish lightpaths for 
connection requests. RWA problem play an important role in improving the per-
formance of WDM networks [33][34]. Without wavelength converters, the same 
wavelength must be assigned on every link of a lightpath, this referred to as the 
wavelength-continuity constraint. RWA problem can be classified into the static 
RWA and dynamic RWA problems. In the static RWA problem, the connection 
requests are given in advance. In contrast, the dynamic RWA considers the case 
where the connection requests arrive randomly. The dynamic RWA is more chal-
lenging; therefore, heuristic algorithms are usually employed in resolving this prob-
lem. 

4.1   Dynamic RWA 

In this paper, we focus on the dynamic RWA problem under the wavelength-
continuity constraint. To solve this problem, there are static routing approaches such 
as shortest-path routing (SP) or alternate shortest-path routing (ASP) [35]. These 
approaches compute statically a set of shortest paths without acquiring the current 
network state. One advantage of alternate shortest-path routing is its simplicity, e.g. 
small setup time and low control overhead, while providing a significantly lower 
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blocking probability than shortest path routing [36]. Adaptive routing approaches 
such as adaptive-unconstraint routing using exhaustive search (AUR-E) [37] or least-
loaded routing (LLR) [38] are more efficient than static routing methods in terms of 
blocking probability. However, the main problems of these adaptive routing methods 
are longer setup delay and higher control overhead, including the requirement of 
global network’s state on each node. To solve this problem, Li et al. [39] proposed an 
alternate dynamic routing algorithm, called fixed-paths least congestion (FPLC). This 
algorithm routes a connection request on the least congested path out of a set of pre-
determined paths. It is shown that FPLC outperforms the fixed-alternate routing 
method. The authors also proposed furthermore the FPLC-N(k) method using 
neighborhood information from only  k links on each searched path. This method is 
employed as a trade-off between network performance versus setup delay and control 
overhead [40]. 

4.2   Hybrid Ant-Based Routing and RWA 

We proposed a hybrid ant-based routing algorithm (HABR) using mobile agent ap-
proach [41] [42] in combining with alternate method to solve the dynamic RWA 
problem. Inspired from the behaviors of natural ant system, a new class of ant-based 
algorithms for network routing is currently being developed. We developed an alter-
nate dynamic routing and wavelength assignment algorithm using ant-based mobile 
agent approach and to compare its performance with other alternate methods. Our 
motivation is that alternate routing methods such as ASP or FPLC are based on a set 
of fixed pre-computed paths, which can limit the network performance in terms of 
blocking  probability.  Thus,  we proposed to use a new routing table structure P-route  
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on each network node that contains a set of P feasible paths between a source-
destination pair. Based on the current information of network congestion, ant-based 
mobile agents will continuously update these routing tables so that the alternate routes 
are more likely the candidates for a connection request. Thus, this can reduce the 
blocking probability while still maintaining a small setup time like other alternate 
methods. 

Figure 5 shows the example networks. Figure 6 shows simulation results on the 
Network Simulator (NS-2). It is seen that with a suitable number of ants and small 
value of P, our algorithm can outperform alternate shortest-path (ASP) and the fixed-
paths least congestion (FPLC) routing algorithm in terms of blocking probability. 

5   Survivability in WDM 

WDM networks have the capability of provisioning huge bandwidth, and it is ex-
pected that the WDM will be a dominant technology for the next generation photonic 
Internet. As WDM networks carry more and more data, failure of any part in such 
networks and the resulting inability to move data around quickly may have tremen-
dous economic impacts. For this reason, survivability issues in high bandwidth WDM 
networks have become an important area of research in recent years.  

5.1   Active Restoration  

In the active restoration scheme [43], a Dijkstra algorithm- based two-step-approach 
[44] is used to compute for each connection request a primary lightpath and multi-
ple backup paths that start from the nodes along the primary path and end at the 
source node of the path, respectively. Here, a backup path starting from a node of 
the primary path is just the shortest path from that node to the source node that is 
link-disjoint with the primary path. If enough wavelength channels are available 
along the primary path, the connection request is accepted and the routing informa-
tion of all backup paths is then stored in the nodes of the primary path for possible 
restoration.   

On the other hand, if the primary path can not be established due to the lack of 
resource, the connection is blocked. In this scheme, we define a node along the 
primary path a supported node if there do exists a backup path from the node to the 
source node; an unsupported node, otherwise. The active scheme works as follows. 
Upon a link failure happens along the primary path, the immediate downstream 
node next to the failure checks successively the availability of the pre-defined 
downstream backup paths until it finds the first available backup path (in this case, 
the corresponding supported node is referred as the restoration node) or it fails to 
find a free backup path among all these downstream backup paths. In the former 
case, the immediate downstream node next to the failure will send a Failure Notifi-
cation Message (FNM) to the restoration node which then send a setup message to 
the source node through the backup path.  In the later case, the restoration of this 
lightpath fails. 
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We use the example in Figure 7 to illustrate the main idea of active restoration. Let 
node 0 be the source node and node 4 is the destination node, and the primary path is 
( 0- 1- 2- 3- 4). Suppose the link between 0 and 1 fails, the node 1 will detect a LOL 
(Loss of Light) failure. Since node 1 is an unsupported node, it will check succes-
sively which backup path can be employed for traffic restoration. If the first backup 
path (e.g. 2- 5- 0) is available for restoration, node 1 will send a FNM to the resto-
ration node 2. As soon as node 2 receives the FNM, it will immediately send a set up 
message to the source node through the backup path ( 2- 5- 0). Once the source node 

0 accepts the set up message, it reroutes all data to the backup path 0- 5- 2, then data 
will go through the rest of primary path to the destination node. If the backup path of 
the first supported node is not available for restoration, the backup paths of the fol-
lowing supported nodes will be investigated (e.g. 3- 7- 2- 5- 0 then, 4- 7- 2- 5- 0). If 
none of these backup paths is available due to the lack of network resources, the res-
toration of this lightpath fails. 
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Fig. 7. Active restoration 

5.2   Proactive and Reactive Restoration 

The approaches to ensuring survivability can be generally classified as proactive 
protection and reactive restoration. With the former, a backup lightpath is computed 
and wavelength channels are reserved for it at the time the primary lightpath is estab-
lished. If both primary and backup lightpaths are available for a demand, the demand 
is accepted. Extensive research has been done on proactive protection of WDM net-
works [45] [46]. While proactive protection yields a 100% restoration guarantee 
since a backup lightpath is always available to carry the disrupted traffic when a 
primary lightpath fails, it usually suffers a high blocking probability and resource 
redundancy. In the reactive restoration, a backup lightpath is searched after the pri-
mary lightpath is interrupted. Several lightpath restoration schemes for WDM net-
works have been reported recently [47] [48]. Although reactive restoration is more 
efficient in terms of capacity usage and blocking probability, it may lead to an unac-
ceptable long restoration time due to its global search for a backup lightpath. As the 
proactive protection experiences a very high blocking probability and huge network 
resource redundancy while the reactive restoration results in a very long restoration 
time, a novel active restoration scheme, in which a primary lightpath is guarded by 
multiple backup paths that are predefined but not reserved along the primary path, 
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was proposed recently [49] to compromise the proactive protection and reactive 
restoration schemes such that good performance can be achieved. Probabilistic mod-
eling is an efficient approach to analyzing network performance, and many analytical 
models have been proposed for calculating the blocking probability in WDM net-
works [50] [51].  

6   Conclusions 

The key for success of photonic networks is a high level of integration with low-cost, 
highly reliable and standardized optical components.  MEMs and array technologies 
have been manufacturing large-scale optical switches such as 3D-MEMs switches. 
Advanced technologies realize SOA switches, hybrid integration of active and passive 
optical components in Photonic Integrated Circuits (PICs) as well as and Planar 
Lightwave Circuits (PLCs). These advanced, highly functional, integrated, and low-
cost photonic components are making the evolution  of photonic networking tech-
nologies from mesh optical  transport network to photonic packet network in next-
generation  photonic Internet.  
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Games are universal and probably as old as humankind. Today the development of 
computer technology, especially the development of fast networks and the Internet, 
brings games a faster growth than ever before. Game design and development is now a 
fast-growing entertainment field, with a lot to offer professionally and creatively. In 
fact, from IT professional’s point of view, creating computer games provides us with all 
the usual technical challenges associated with software development, such as 
requirement analysis, architectural design, rapid prototyping, HCI, parallel and 
distributed processing, code reuse, programming, performance evaluation, testing and 
maintenance. It also provides challenges on other exciting aspects, such as 
storyboarding, screenplays, illustration, animation, sound effects, music, and social 
impact. By developing a computer game from start to finish, one would be able to 
acquire multi-disciplinary knowledge to become an IT professional for the modern era. 

The main aim of this tutorial is to survey the major theory and techniques behind 
the design and implementation of multiplayer and Internet games, and to understand 
the application of the knowledge to the development of working multiplayer and 
Internet games. Upon completion of this tutorial, people should have a basic 
understanding of the technologies used in multiplayer and Internet game 
development, along with the ability to expand on this knowledge to carry out further 
research and development of Internet and multiplayer computer games 

This tutorial has four parts. The first part discusses theoretical issues in developing 
Internet and multiplayer computer games. Topics in this part include: chronology of 
game programming, essentials for game design and development; design strategies for 
multiplayer computer games (MCGs); basic architectures of MCGs and MCG 
components; tools for MCG development, and challenges for developing MCGs. The 
second part focuses on the technological issues in developing Internet and multiplayer 
computer games. Topics in this part include: game servers, networking technologies, 
Internet database technologies, and security issues. The third part deals with a number 
of considerations in developing Internet games. Topics in this part include: design 
considerations for Internet games, development considerations for Internet games, and 
launching and managing an online game. The last part of the tutorial briefly discusses 
the rationales and the structure of a university course in games design and development. 

The audience of this tutorial includes researchers, practitioners, and technical 
officers from academic, business and government. No specific knowledge is required. 
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Anyone with a basic knowledge of computing and an interest in the Internet and 
multiplayer computer games will be able to understand the materials presented in the 
tutorial. The length of the tutorial will be three hours. 

Outline 

Part 1: Theoretical Issues in Developing Internet and Multiplayer Computer Games 
1. Chronology of game programming 
2. Essentials for game design and development 
3. Design strategies for multiplayer computer games (MCGs) 
4. Basic architectures of MCG and MCG components 
5. Tools for MCG development 
6. Challenges for developing MCG 

Part 2: Technological Issues in Developing Internet and Multiplayer Computer 
Games 

7. Game servers 
8. Networking technologies 
9. Internet database technologies 
10. Security issues 

Part 3: Considerations in Developing Internet Games 
11. Design considerations for Internet games 
12. Development considerations for Internet games 
13. Launching and managing an online game 

Part 4: A Course in Games Design and Development 
14. Rationales for university courses in games design and development 
15. An example course design: Bachelor of Information Technology (Games 

Design and Development)  
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As we know, the performance of networks systems is dependent on the end-to-end 
cost of communication mechanisms. Routing is a process of finding a path from the 
source node to the destination node in a given network system. The ability to route 
message efficiently becomes increasingly important. Routing in mesh-connected 
networks, such as 2-D meshes, has been commonly discussed due to the structural 
regularity for easy construction and the high potential legibility for variety of 
algorithms.  

This tutorial will provide a survey of the existing routings which can be applied in 
2-D meshes, including a variety of wireless network routings and sensor network 
routings. We will focus on the use of network topology information in the routing 
process. Our current research on information model for routing in 2-D meshes is also 
introduced. The main aim is to offer the audience another chance to understand the 
importance of information technology, as well as the opportunities in further research.  

The tutorial has three parts. In the first part, the 2-dimentional mesh networks, 
simply 2-D meshes, will be introduced. A 2-D mesh interconnection network is one of 
direct networks, which are also called router-based networks. Then, the wormhole 
routing and agent routing in such 2-D meshes will be discussed. After that, we present 
a cost-effective way using information models to ensure the existence of a minimal 
path and form a minimal path by routing decision at each intermediate node along the 
path. A minimal routing always routes the packet in an efficient way to the destination 
through the shortest path. Wireless networks is an emerging new technology. In the 
second part, we will focus on how to collect and distribute network topology 
information to facilitate the routing process and its development stages of reducing 
cost expense. Most existing literature discusses the wireless network routing in the 2-
D plane. By using the graphical data structure, the wireless networks can be described 
in 2-D meshes. Based on this topology description, we will introduce the existing 
proactive routings, reactive routings, hierarchical routings, and geographical routings. 
Recent advances in micro-electromechanical systems, digital electronics, and wireless 
communications have enabled the development of low-cost, low-power, and 
multifunction sensor devices. These devices can operate autonomously to gather, 
process, and communicate information about their environments. They constitute a 
wireless sensor network or simply sensor network. In the last part, we will introduce 
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the problem of saving energy consumption, fault tolerance, scalability, network 
dynamics, and connectivity, and complete coverage in sensor networks. These make 
the inherence of wireless network routing in sensor networks inefficient. We will 
introduce our connected dominating set solution and discuss the future work on 
information model for routing in sensor networks. 

Outline 

Part 1: The Introduction to 2-D Meshes and its information based routing 
1. 2-D mesh interconnection network 
2. Wormhole routing and agent routing 
3. Adaptive routing and fault tolerant routing 
4. Minimal routing, detour and backtracking  
5. Orthogonal fault block model, extended safety level model, and boundary 

model 
6. Minimal connected component model  

Part 2: Wireless network routing 
7. Introduction to wireless networks: (infrastructured and infrastructureless 

networks) 
8. Proactive routings (DBF, TBRPF, GSR, WRP, DSDV, CGSR, LANMAR, 

FSR, and OLSR)  
9. Reactive routings (AODV, DSR, FORP, LMR, TORA, ABR, and SSA) 
10. Hierarchical routings (ZRP, CEDAR, DDR, BRP, SHARP, CBRP, and 

HSR)   
11. Geographical routings (LAR, GLS, RDMAR, DREAM, and ZHLS) 

Part 3: Sensor network routing 
12. Introduction to sensor networks 
13. Energy saving, fault tolerance, scalability, network dynamics, and 

connectivity in sensor networks 
14. Future work on sensor network routing  
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Abstract. As storage systems scale from a few storage nodes to hundreds or 
thousands, data distribution and load balancing become increasingly important. 
We present a novel decentralized algorithm, RDIM (Replication Under 
Dynamic Interval Mapping), which maps replicated objects to a scalable 
collection of storage nodes. RDIM distributes objects to nodes evenly, 
redistributing as few objects as possible when new nodes are added or existing 
nodes are removed to preserve this balanced distribution. It supports weighted 
allocation and guarantees that replicas of a particular object are not placed on 
the same node. Its time complexity and storage requirements compare favorably 
with known methods. 

1   Introduction 

As the use of large distributed systems and large-scale clusters of commodity 
computers has increased, significant research has been devoted toward designing 
scalable distributed storage systems. Its applications now span numerous disciplines, 
such as: higher large-scale mail system, online numeric periodical, digital libraries, 
large online electric commerce system, energy research and simulation, high energy 
physics research, seismic data analysis, large scale signal and image processing 
applications, data grid application and peer-to-peer storage application, etc. Usually, it 
will no longer be possible to do overall upgrades of high performance storage 
systems. Instead, systems must grow gracefully over time, adding new capacity and 
replacing failed units seamlessly—an individual storage device may only last five 
years, but the system and the data on it must survive for decades. Since the capacities 
of storage nodes usually are non-uniform and storage nodes are dynamically changed 
in large-scale distributed storage systems, systems must distribute data objects among 
the storage nodes according to their capabilities and afford to immediately rebalance 
data objects distribution according to weight of storage nodes when storage nodes are 
changed. So we study the problem of designing flexible, adaptive strategies for the 
distribution of objects among a heterogeneous set of servers. Ideally, such a strategy 
should be able to adapt with a minimum amount of replacements of objects to 
changes in the capabilities of the servers so that objects are always distributed among 
                                                           
∗ Supported by the National Basic Research Program 973 of China (No.2003CB317008). 
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the servers according to their capabilities. Finally, Xin, et al.[1] reports that the mean 
time to failure (of a single disk) in a petabyte-scale (1015 bytes) storage system will be 
approximately one day. In order to prevent data loss, we must allow for data 
replication. Furthermore, the data replication scheme should guarantee that replicas of 
the same object get placed on different servers, or the effect of replication will be 
nullified. 

Previous techniques are able to handle these requirements only in part. For 
example, a typical method to map data object to storage nodes in an optimally 
balanced way is a simple Round-Robin (RR) assignment. The storage node number 
assigned to a given data object can be easily calculated using modular arithmetic: 
h(id)=id mod n, where id is object ID and n is the number of storage nodes in system. 
If storage nodes have the uniform capabilities, it can be used to distribute data objects 
evenly among n servers. However, they usually do not adapt well to a change in the 
capabilities. Moreover, If a new server is added, approximately the fraction n/(n+1) of 
the data objects must be moved from one storage node to another before the data can 
be accessed using the new mapping. For a large storage system, this leads to a long 
period of unavailability of data, which is not acceptable to many applications. In 
contrast, the minimum fraction that must be relocated to obtain a balanced mapping is 
approximately l / (n+1). A different approach is to maintain object-to-node mapping in 
a stored directory (SD). In this case, a directory of B entries is maintained in which 
the ith entry contains the node number assigned to object i, where B is the total 
number of objects and is usually a fairly large integer. Thus, each object can be 
individually assigned or reassigned to any storage node. When new storage nodes are 
added, individual objects are selected for relocation to the new nodes so that only the 
minimum amount of object is moved. However, this approach suffers from severe 
performance bottleneck problems and consumes a significant amount of memory. 
Litwin, et al. [2] has developed many variations on Linear Hashing (LH*), the LH* 
variants are limited in two ways: they must split buckets, and they have no provision 
for buckets with different weights. LH* splits buckets in half, so that on average, half 
of the objects on a split bucket will be moved to a new empty bucket, resulting in 
suboptimal bucket utilization and a “hot spot” of bucket and network activity between 
the splitting node and the recipient and the distribution is unbalanced after 
replacement. Moreover, the LH* variants do not support weighted allocation and data 
replication. Other data structures such as DDH [3] suffer from similar splitting issues. 
Choy, et al. [4] describes algorithms for perfect distribution of data to disks that move 
an optimally low number of objects when disks are added. However, these algorithms 
do not support weighting of disks, removal of disks and data replication. Brinkmann, 
et al. [5, 6] proposes a method for pseudo-random distribution of data to multiple 
disks using partitioning of the unit range. This method accommodates growth of the 
collection of disks by repartitioning the range and relocating data to rebalance the 
load. However, this method does not move an optimally number of objects of 
replacement, and does not allow for the placement of replicas. Honicky, et al. [7,8] 
presents algorithms for balanced distribution of data to disks that move an optimally 
low number of objects when disks are added, which supports weighting of disks and 
replication, but do not support removal of disks [7], however, the methods relies upon 
iterating for producing the same sequence of numbers regardless of the number 
actually required, and the large-scale iterations increase the lookup time. We present 
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an algorithm for balanced distribution of data to nodes that move probabilistically an 
optimally number of objects when nodes are added or removed, which supports 
weighting of nodes, but do not support replication [9]. 

In the algorithm, data objects are always distributed among the storage nodes 
according to their weights. When new nodes are added or existing nodes are removed, 
it distributes objects to nodes evenly, and redistributing as few objects as possible and 
preserves this balanced distribution. Moreover, our algorithm almost always moves a 
statistically optimal number of objects from every storage node in the system to each 
new storage node, rather than from one storage node to one storage node. It supports 
data replication and guarantees that replicas of a particular object are not placed on 
the same node. The algorithm is very fast, and scales with the number of storage 
nodes groups added to the system. Its time complexity and storage requirements 
compare favorably with known methods. The rest of the paper is organized as 
follows. Section 2 contains definitions, including descriptions of the measures of 
“goodness” of a mapping method that are of interest to us. Section 3 presents a self-
adaptive data objects placement algorithm supporting weighted allocation and 
replication. Section 4 gives performance analysis and simulation results. Section 5 
summarizes the paper.  

2   The Model and Definitions 

Given a positive integer B, the number of data objects, and a positive integer N, the 
number of storage nodes, and a positive integer R, the maximum degree of replication 
for an object, the problem is to construct a mapping f from the set of object id’s (0, 
1,2, . . . , B-1) and the replica number r (0 r<R) of the object in question to the set of 
node id’s (0, 1,2, . . . , N-1). Typically, B is much larger than N. When an expansion 
occurs, the number of storage nodes increases from N to some N’, we have to 
construct a new mapping f’ to reassign the node number in N’ for data access. We can 
view a mapping method as a function M (x, r, p) that takes a data object id x, the 
replica number r and a representation p of a particular mapping, and returns a storage 
node id. That is, f (x, r) = M (x, r, p) where p is the representation of f. For example 
(no replication), for the RR method mentioned in the Introduction, the representation 
p is simply n, and M (x, p) = x mod n; for the SD method, p is a list (y0, y1, . . . yB-1) 
of integers, and M (x, p) = yx. 

Let the size of storage node i under the mapping f is li, which is the number of data 
objects that f maps to i. Let the weight of storage node i is wi. Measures of the 
goodness of a solution include the following: 

(1)  Balance. A mapping f from B objects onto N nodes is said to be balanced if for 
every pair of nodes in the system i and j, the expected ratio between the size of i 

and j is equal to the ratio of the weights assigned to i and j (i.e. 
j

i

j

i

w

w

l

l
= ). 

(2)  Mapping Complexity. This is the number of operations needed to compute f 
(x), given an object id x. 

(3)  Mapping Storage. This is the amount of storage needed to store a representation 
of the mapping. In placing upper bounds on the mapping storage of a particular 
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mapping method M (x, p), we bound only the storage needed for the 
representation p (which can, in general, depend on N, B, and the number of 
expansions), and we ignore the (constant) storage needed to hold an algorithm 
for computing M. 

(4)  Object Relocation. When a mapping f is replaced with another mapping f ’ as 
the result of an expansion, the object relocation of the expansion is the number 
of objects that are assigned to different nodes by f and f’, i.e., the number of 
object id’s x such that f (x)  f’(x) and 0 x<B. 

3   Replication Under Dynamic Interval Mapping 

3.1   Representation of the Mapping 

We assume that system storage nodes are partitioned into sub-clusters; sub-clusters 
consist of identical storage nodes that are added, removed, and reweighed as a group. 
The entire storage system consists of multiple server sub-clusters, accreted over time. 
In most systems, sub-clusters of storage nodes have different properties—newer 
storage nodes are faster and have more capacity. We must therefore add weighting to 
the algorithm to allow some storage nodes to contain a higher proportion of objects 
than others. We assign weight factor wj to a single storage node in sub-cluster j. This 
factor will likely be a number that describes the power (such as capacity, throughput, 
or some combination of the two) of the storage node. Suppose that we are in a 
situation where m expansions have occurred. Part of the representation of the 
mapping is the sequence N0, Nl , N2, . . . , Nm, where N0>0 is the number of storage 
nodes initially, and Nj is the total number of storage nodes after the jth expansion. It is 
convenient to define N-1=0. Let dj=Nj-Nj-1 for 0 j m. Thus, at the jth expansion, dj 
storage nodes are added to the existing Nj-1 storage nodes to create a new total of Nj 
storage nodes. Note that dj>0 for 0 j m, since Nj-1<Nj. In what follows, we assume 
that the numbers dj is also stored, although an alternative is to recompute a particular 
dj whenever it is needed. Define the jth sub-cluster, for 0 j m, to be storage nodes 
with id’s in the interval [Nj-1, Nj). (For integers zl and z2 with z1<z2, the interval [zl, z2) 
contains all integers z with z1 z<z2.) Thus, dj is the number of storage node in the jth 
sub-cluster. 

Suppose that we have a random function H: {0, 1, . . . , M}  [0,1), the function H 
maps the data object’s id uniformly at random to real numbers in the interval [0,1). 
The basic idea of the mapping is to map the space [0, B) of data object id’s into 
intervals in [0,1) and divide the interval [0, 1) into different length intervals according 
to weight of sub-clusters; All objects mapped to the same interval are mapped to 
storage nodes that belong to the same sub-cluster. A storage node can contain objects 
from several different intervals. When sub-clusters are changed, current intervals are 
divided into more small intervals rather than the interval [0,1) is redefined and 
different intervals are reassigned into new sub-clusters, resulting in data objects 
replacement. 

In addition to m, the Nj’s, and the dj’s, the rest of the representation of the mapping 
consists of the following: 
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(1) An integer k 1, the number of intervals. 
(2) Real numbers ai for 0 i k where 
0=a0<a1<a2<…<ak=1 
The ith interval is [ai-1, ai), for 1 i k. We imagine that the intervals are ordered 

from left to right, and we say that the ith interval is to the left of the jth interval (and 
that the jth is to the right of the ith) if i < j. 

(3) Nonnegative integers bi, for 1 i k. For the ith interval [ai-1, ai), the number bi is 
the sub-cluster number associated with this interval. Thus, 0 bi<m. All data objects 
H(x) in [ai-1, ai) are mapped to storage nodes in sub-cluster bi, Define sub-cluster(x) = 
bi, for all H(x) in [ai-1, ai). 

In general, several intervals can be mapped to the same sub-cluster; that is, we can 
have bi= bj, for different i and j. 

(4) Nonnegative real numbers ci, for 1 i k. For each i, the number ci, is the total 
length of intervals of objects x’s H(x) in intervals to the left of the ith interval 
(i.e.,H(x) <ai-1) such that x is mapped to a sub-cluster bi, (i.e., sub-cluster(x) = bi). The 
ci’s are helpful in computing the mapping. Note that ci is the total length of intervals 
of objects x in intervals to the left of the ith such that x is mapped to sub-cluster bi. 
We call ci the offset adjustment of the ith interval. 

3.2   Computation of the Mapping 

The algorithm becomes slightly more complicated when we add replication because 
we must guarantee that no two replicas of an object are placed on the same server, 
while still allowing the optimal placement and migration of objects to new sub-
clusters. Given a data object id x and its replica number r, the way to compute the 
mapping is first to determine the number of replicas which belong in each sub-cluster 
according to its weight, and find the interval [ai-l, ai) to which x belongs, and then to 
compute the mapping using bi, Nj-1, and dj (j=bi). Once it has determined that a 
particular sub-cluster should contain u replicas of an object, it selects u storage nodes 
randomly from that sub-cluster. Pseudo-code for the mapping computation is given by 
Algorithm 1 in Figure 1, where 0=u0<u1<u2<…<um=1, the interval length of [uj-1, uj) 
is the weight rate of the jth sub-cluster. 

 

Fig. 1. Algorithm for mapping computation 

Algorithm 1: Mapping Computation 
Input: A object id x and its replica number r 
Find i such that H(x) is in [ai-1, ai) 
j = bi 

if (r = 0) 
 Return Nj-1 + x mod dj 
else 
 Find j such that H(r) is in [uj-1, uj)  

choose a random prime number p> dj  
Return Nj-1 + (x +r*p) mod dj  

end if 
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3.3   The Initial Representation 

Initially, when there are no expansions have occurred, the representation is given by 
m=0, k=1, a0=0, a1=1, b1=c1=0, and d0=N0, Thus, the mapping is exactly given by 
y=x+r*p mod N0.where p is a random prime number (p> N0) 

When the number of storage nodes is changed, the representation of the mapping 
must be modified Assume that we are in a situation where m expansions have 
occurred previously (for some m 0) and that we have a representation of the 
mapping, from B data objects to Nm storage nodes, as described above; call this 
mapping the old mapping. There are two cases. 

3.4   Adding Sub-cluster 

Suppose that the (m+1)th sub-cluster is added, which consists of storage nodes in [Nm, 
Nm+1). The basic idea is, for each sub-cluster j with 0 j m, to move the proper 
number of objects from sub-cluster j to the (m+1)th sub-cluster so as to produce a new 
balanced mapping from B objects to Nm+1 nodes. Among the objects in sub-cluster j, 
the ones with a larger random number H(x) are moved. This has the effect that if an 
object stays in the same sub-cluster, then it remains mapped to the same node. So for 
each sub-cluster j with 0 j m, there will be a splitting point sj such that, for each 
object x mapped to sub-cluster j in the old mapping, if H(x)<sj, then object x remains 
in  sub-cluster j in the new mapping, and if H(x) sj, then object x is moved to the new  

 

Fig. 2. Algorithm for computing adding cluster actions 

Algorithm 2: Computation of Adding Cluster Actions 
Input: A new number Nm+l of Nodes 

total = 
+

=

1

0

*
m

j
jj wd  

for j =0 to m 
tj = dj*wj/total 

end for 
w = 0 
for i = 1 to k 

j = bi 
if tj (ai-ai-1+ci) then 

Ai = Null 
else if tj ci then 

Ai = Move(w) 
w = w + ai-ai-l 

else 
s =ai-1 + tj - ci, 
Ai = Split(s,w) 
w = w +ai - s 

end for 
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(m+1)th sub-cluster in the new mapping. If ai-l<sj<ai, for some interval [ai-l, ai) with 
bi=j in the representation of the old mapping, then this interval will be split into two 
intervals, [ai-l, sj) that remains mapped to sub-cluster j, and [sj, ai) that is mapped to 
the (m+1)th sub-cluster. To make the following description of mapping expansion 
independent of implementation, the result is given as a set of actions to be performed. 
There is an action A associated with each interval [ai-l,ai) in the representation of the 
old mapping. There are three types of actions: 

1.  If Ai = Null, then objects in the interval [ai-l, ai) do not move. The sub-cluster 
number and the offset adjustment of the interval do not change. 

2. If Ai = Move(c), then all objects in the interval [ai-l, ai) are moved to the 
(m+1)th sub-cluster. The sub-cluster number of the interval is changed to m, 
and c becomes the new offset adjustment of the interval. 

3. If Ai = Split(s, c) , then the interval [ai-l, ai) is split into two intervals, [ai-l, s) and 
[s, ai). Objects with H(x) in [s, ai) are moved to the (m+1)th sub-cluster, and c is 
the offset adjustment of the interval [s, ai). Objects in [ai-1,s) do not move; the sub-
cluster number and offset adjustment of [ai-l,s) are identical to those of [ai-l, ai) in 
the old mapping. 

Pseudocode for computing the appropriate actions is given by Algorithm 2 in 
Figure 2. 

 

Fig. 3. Algorithm for computing removing cluster actions 

Algorithm 3: Computation of Removing Cluster Actions 
Input: A removed rth cluster 

total = 
≠=

m

rjj
jj wd

,0

*  

for j =0, j r to m 
tj = dj*wj/total 

end for 
j = 0 
for each interval [ai-1,ai) with bi=r 

if j r then 
t = total interval length of the cluster j 
if (tj – t)  (ai-ai-1) then 

Ai = Move (t) 
t = t + ai-ai-1 

else 
s = tj – t + ai-1 

Ai = Split(s, t) 
j = j + 1 

end if 
end for 
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3.5   Removing Sub-cluster 

Suppose that the rth sub-cluster is removed, which consists of storage nodes in [Nr-1, 
Nr). The basic idea is to move the proper number of objects from sub-cluster r to other 
sub-cluster j with 0 j m and j r, so as to produce a new balanced mapping from B 
objects to Nm–dr nodes. So for each interval [ai-l,ai) of the rth sub-cluster, either the all 
the interval [ai-l,ai) is moved to some sub-cluster j with 0 j m and j r, or there will be 
a splitting point s such that, [ai-l,s) is moved to some sub-cluster j, [s, ai) is remained 
to next movement To make the following description of mapping expansion 
independent of implementation, the result is given as a set of actions to be performed. 
There is an action A associated with each interval [ai-l,ai) of the rth sub-cluster. There 
are two types of actions: 

1. If Ai = Move(c), then all objects in the interval [ai-l, ai) are moved to sub-cluster 
j. The sub-cluster number of the interval is changed to j, and c becomes the new 
offset adjustment of the interval. 

2. If Ai = Split(s, c) , then the interval [ai-l, ai) is split into two intervals, [ai-l, s) and 
[s, ai). Objects with H(x) in [ai-l, s) are moved to sub-cluster j, and c is the offset 
adjustment of the interval [ai-l, s). Replace the interval [ai-l, ai) of the rth sub-
cluster with [s, ai] and continue. 

Pseudocode for computing the appropriate actions is given by Algorithm 3 in 
Figure 3. 

The RDIM method has the following property: 

• The number of objects placed in a sub-cluster is proportional to the total 
length of intervals mapped to the corresponding sub-cluster. 

• The number of objects placed in any sub-cluster is proportional to its weights. 
• When storage nodes are changed, the number of objects migrated is the 

minimum. 

Since objects are distributed evenly to storage node in any sub-cluster by the 
algorithm for mapping computation. So we draw the conclusion that the dynamic 
interval mapping is balanced algorithm and the number of objects relocated is the 
minimum. 

4   Performance and Simulation Results Analysis 

4.1   Performance 

Since both mapping complexity and mapping storage depend on the number k of 
intervals, it is useful to have an upper bound on k as a function of m. The following 
gives such a bound. 

THEOREM 1. If k intervals are produced as the result of m expansions to the 
number of storage nodes, then 

k
2

1
m*(m+1) + 1 
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Proof. The proof is by induction on m. Initially (when m=0) there is one interval. 
Assuming that the bound holds for m expansions, we prove it for m+1 expansion. Just 
before the (m+1)st expansion, there are m+1 sub-clusters, 0 through m. For each of 
these sub-clusters, there will be at most one interval that is mapped to the sub-cluster 
and that is split during the (m+1)st expansion. So the (m+1)st expansion causes at 
most m+1 intervals to be split, thus creating at most m+1 new intervals. Therefore, 
using the induction hypothesis, the total number of intervals after m+1 expansions is 

at most 
2

1
m*(m+1)+1+(m+1)=

2

1
(m+1)*(m+2)+1.  
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(a) Time per lookup per replica as the number of sub-clusters increases 
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(b)Time per lookup compared to linear and nlogn functions 

Fig. 4. Time for looking up an object versus the number of sub-clusters in the system 
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In the implementation, the numbers ai, bi, ci, dj, and Nj, are stored in random-access 
tables or tree, The Find operation in Algorithm 1 is done by binary search in the table 
or the tree. Obviously, mapping complexity is O(log k) and mapping storage is O(k). 
By Theorem 1, mapping complexity is O(log m ) and mapping storage is O(m2). 

In our algorithm, we need a random function H, which maps the objects uniformly 
at random to real numbers in the interval [0,1). We select the Mersenne Twister[10] 
as the random function H in the implementation of our algorithm. 

In order to quantify the real world performance of our algorithm, we tested the 
average time per lookup under many different configurations for a system with 1000000 
objects and 4 replicas per object. First, we ran a test starting with 10 storage nodes in a 
single sub-cluster and computed the average time for these 4000000 lookups, and then 
added sub-clusters, 10 storage nodes at a time, and timed the same 4000000 lookups 
over the new server organization. Figure 4(a) shows the per-object per-replica lookup 
time with slightly growth rates for the capacity of the most recently added sub-clusters, 
even with 100 sub-clusters in the system, the amortized lookup time is less than 3 μs on 
the 1.4GHz Pentium  on which we ran these experiments; In Figure 4(b), we can see 
that the line for lookups grows far slower than linear and NlogN. 

4.2   Data Distribution 

We evaluate the balanced distribution of data objects supporting weighted allocation 
and replication. The simulation system includes 3 sub-clusters; the first sub-cluster 
includes three storage nodes with weight 1, the second sub-cluster includes two 
storage nodes with weight 3, the third sub-cluster includes four storage nodes with 
weight 5, the maximum degree of replication for each object is 3. The 100000, 
200000, 400000, 800000 data objects from four clients are sent respectively to storage 
nodes. Figure 5 show that data objects sent from four clients and the total sums are 
always distributed among the storage nodes according to their weights. 
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Fig. 5. The distribution of data objects according to nodes weight 
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Fig. 6. The redistribution of data objects after adding two clusters 
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Fig. 7. The redistribution of data objects after removing one cluster 

Then, we evaluate the balanced redistribution of data objects supporting weighted 
allocation by adding two sub-clusters and removing one sub-cluster respectively. (1) 
Add two sub-clusters, the first sub-cluster includes two storage nodes with weight 7; 
the second sub-cluster includes two storage nodes with weight 9. (2) Remove the 
second sub-cluster, which includes two storage nodes with weight 3. Figure 6 and 
Figure 7 show that data objects sent from four clients and the total sums are always 
redistributed among the storage nodes according to their weights after adding or 
removing sub-cluster. 
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5   Conclusions 

In this paper, we propose a self-adaptive and balanced distribution algorithm for 
replicated data objects in scalable storage clusters, which distributes objects to nodes 
evenly, redistributing as few objects as possible when new nodes are added or 
existing nodes are removed to preserve this balanced distribution. It supports 
weighted allocation and guarantees that replicas of a particular object are not placed 
on the same node. Its time complexity and storage requirements compare favorably 
with known methods.  
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Abstract. We develop a concise but comprehensive analytical model
for the well-known Nested Loop Join algorithm on cost effective cluster
architectures. We concentrate on a limited number of characteristic pa-
rameters to keep the analytical model clear and focused. We believe that
a meaningful model can be built upon only three characteristic parame-
ter sets, describing main memory size, the I/O bandwidth and the disk
bandwidth. We justify our approach by a practical implementation and
a comparison of the theoretical and real performance values.

1 Introduction

The most important operation in a relational database system is the join due
to its inherent expressive power. It allows to combine information of different
relations according to a user specified condition, which makes it the most de-
manding operation of the relational algebra. Thus the join is the central point
of research for performance engineering in database systems.

In this paper we present an analysis and evaluation of the Nested Loop Join.
This work is part of a running project for a comprehensive analysis of parallel join
operations [1]. We did a similar research for all important parallel join operations
(e.g. Hybrid Hash Join [2]). A focus on analyzing hardware characteristics of the
underlying system is beyond the scope of this paper. So we are interested in the
specifics of the algorithms and not of the machines.

2 Nested Loop-Join

Basically the join operation ‘merges’ two relations R and S via two attributes
(or attribute sets) A or B (respective relations R and S) corresponding to a
certain join condition. The join attributes have to have the same domain. In the
following we focus on the equi-join (i.e. the join condition is equality).

Generally three different approaches for the realization of join algorithms are
distinguished: nested loop, sort merge, and hash based join.

The nested loop algorithm is the simplest approach to join two relations.
Basically each tuple of one relation is probed to each tuple of the other relation.
However its simple layout and thus low constant cost factors (overhead) makes

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 33–38, 2005.
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it quite attractive in database systems for specific situations (e.g. one relation is
very small).

Our parallel version of the nested loop approach is realized by a conventional
client-server scheme. The server stores both relations to join and distributes the
tuples among the available clients. The clients perform the specific join algorithm
on their sub relations and send the sub results back to the server. The server
collects the result tuples and stores the result relation.

Specifically a parallel nested loop join partitions first the, so called, inner
relation R among the clients. At the clients the tuples are stored in a temporary
file. Secondly the outer relation S is distributed among the disks using the same
hash function as in the first step. In the third phase both relations are joined.
Step by step the main memory is filled with tuples of relation R. With every
step the complete relation S is read and every tuple of S probes the content
(tuples of R) in the main-memory. In case of a match result tuples are built.

3 Analytical Model

A realistic assumption of our model is that the relations of the database system
are too large to fit into the main memory of the processing units. Consequently
all operations have to be done externally and the I/O costs are expected to be
the dominant factor for the system performance.

In the following (see Table 1) we specify several parameters and a few derived
terms, which describe the characteristics of the model environment and build the
basis for the cost functions to develop.

Table 1. Parameters of the cost model

m number of tuples of relation R (inner relation)
n number of tuples of relation S (outer relation)
p number of processors
n t m number of tuples per message
b bucket size (tuples per bucket)
s selectivity factor (percentage of the product of m and n

giving the result size
l f loop factor (number of loops necessary to build hash

buckets due to number of open file limitations)
read read one tuple from disk
write write one tuple to disk
receive receive one message
send send one message
find target find the right target client
hash store a tuple into a main memory hash table
probe probe a main memory hash table with a tuple
fill fill a tuple into main memory
compare compare the keys of two tuples in main memory and build

a result tuple if keys match.
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3.1 Server Cost Model

The server distributes the data among the clients. Thus it reads the two input
relations (1),

server read = (m + n) ∗ read (1)

calculates the respective target client using a distribution function (2)

server compute = (m + n) ∗ find target (2)

and sends the tuples (packed in messages) to the target client (3).

server send = (
m

n t m
+

n

n t m
) ∗ send (3)

After sending the messages the server is in an idle-state. It waits for the
results of the clients (4).

server receive =
m ∗ n ∗ s

n t m
∗ receive (4)

The received tuples are written to disk (5).

server write = m ∗ n ∗ s ∗ write (5)

Thus the total costs of the server are described by (7) and are the sum of (1)
to (5).

server cost = server read + server compute+ (6)
+ server send + server receive + server write

The costs of the server, I/O-costs (read,write), message-costs (send, receive)
and computational costs, are obviously independent of the number of proces-
sors used. Figure 1 shows this situation graphically by splitting the total server
execution costs into the shares on I/O costs (read and write operations), com-
munications costs (send and receive operations) and pure computational costs.

3.2 Client Cost Model

The costs for the clients start with receiving the tuples of the inner and outer
relation from the server. Every client gets only m

p tuples of the inner relation R
and n

p tuples of the outer relation S. The costs for receiving are described by (7).

client receive =
m
p

n t m
∗ receive +

n
p

n t m
∗ receive (7)

Afterwards the received tuples are written to the local disk, which is (8).

build temp files =
m

p
∗ write +

n

p
∗ write (8)
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The filling of the memory and the probing of the tuples is depicted by (9)
and (10) respectively.

build mem =
m

p
∗ (read + fill) (9)

probe mem = (
m
p

b
) ∗ (

n

p
∗ read +

n

p
∗ b ∗ compare) (10)

Finally the client has to write the result tuples back to the server (11).

send result = (
m

p
∗ n

p
) ∗ s

n t m
∗ send (11)

The cost of the client is the sum of (7),(8),(9),(10) and (11), which is (12).

client nested cost = client receive + build temp+ (12)
+ build mem + probe mem + send result

Fig. 1. Percentage of server-side cost types Fig. 2. Theoretical speed-up

Fig. 3. Theoretical cost per tuple Fig. 4. Real speedup
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Finally the total cost of the nested loop join is the sum of the cost of the
server and the clients and is defined by (13).

nested cost = server cost + client nested cost (13)

Figure 2 shows the performance of the nested loop join using different num-
bers of processors and different numbers of input tuples.

Next we want to know if the costs per tuple change when the number of
input tuples increase. We expect that the costs per tuple rise because the main
parts of nested loop join develop with O(m+n∗m) where |n| < |m|. The results
can be seen in Figure 3 for 1 to 4 clients.

Further we checked the percentage of I/O-costs, message costs and computa-
tional costs in relation to the total client costs. It shows a nearly even distribution
of the different parts of costs while changing the number of input tuples. At least
we want to know if there is a change in the percentage of I/O-costs, message
costs and computational costs in relation to the total client costs when chang-
ing the number of used processors. Again it shows an even distribution of the
different parts of costs. Most of the execution time is used for computing.

4 Model Justification

To justify the presented model we evaluate and compare it to a practical per-
formance analysis were we realized the algorithm according to the preceding
section.

We realized the client-server architecture so that one of the nodes imple-
mented the server, starting the operations, distributing the workload and col-
lecting the result, and 4 client nodes, processing the distributed workload. At the
beginning of each test run the relations R (inner relation) and S (outer relation)
reside on a server. In the tests we used an integer variable as join attribute.

Test-bed for our analysis was an off-the-shelf ”el-cheapo” PC cluster consist-
ing of 5 single processor nodes (computational units) running the Linux oper-
ating system. The algorithms were realized with the C language and PVM as
communication library. We used a test module to determine the values of the
basic parameters and the derived functions of our cost model. Figure 4 shows the
real execution times for the Nested Loop Join. All given values are the averages
of at least 20 runs.

The real values correspond to the theoretical values amazingly well. The
asymptotic runtime behavior for increasing workloads and processing nodes
(speed-up) of the model and the reality is about same. Not only the trend of the
data is the same, but also the real execution values match the ones calculated by
the model. The difference between the two values was about 10 percent, which
is due to the simplified model ignoring operating system specifics. Summing up
this result shows that the simplified approach described in the previous section
models the reality very well and justifies it as basis for the analysis on cluster
architectures.
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5 Conclusions

By the presented analysis of the proposed concise, but obviously comprehensive
model and the justification by the comparison to real implementation results, we
could prove the stated assumptions at the beginning of the paper: For building
up an analytical model for relational operations on cluster systems it is sufficient
to concentrate on the characteristics of main memory, IO bandwidth and disk
bandwidth.

As a side effect of our analysis we gave a case for the usage of cluster systems
as architecture for parallel database systems. With the development of faster and
cheaper network interfaces clusters can deliver an un-beatable price/performance
ratio for the administration and manipulation of very large data sets.
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Abstract. Random stealing is a well-known dynamic scheduling algo-
rithm. However, in a large-scale cluster, an idle node must randomly steal
many times to obtain a task from another node, especially, this problem
severely affects performance in systems where only a few nodes generate
most of the system workload. In this paper, we present an efficient dy-
namic scheduling algorithm, Transitive Random Stealing (TRS) based on
random stealing, which makes any idle node rapidly obtain a task from
another node for irregular load distributions in a large-scale cluster. Then
by the random baseline technique, we experimentally compare TRS with
Shis, one of load balance policies in the EARTH system, and random steal-
ing for different load distributions in the Tsinghua EastSun cluster and
show that TRS is a highly efficient scheduling algorithm for irregular load
distributions in a large-scale cluster. Finally, TRS is implemented in the
Jcluster environment, a high performance Java parallel environment, and
an experiment result is given in the HKU Gideon 300 cluster.

Keywords: Scheduling, irregular load distribution, large-scale cluster,
transitive random stealing.

1 Introduction

The availability of high speed networks and increasingly powerful commodity
microprocessors is making the usage of clusters of computers an appealing vehicle
for cost-effective parallel computing. The scale of the clusters is becoming more
and more large, which is up to hundreds of and thousands of nodes. In order to
achieve scalable performance, it is important to evenly schedule the workload
among the processing nodes. Two basic approaches [6] to dynamically scheduling
task loads can be found in current literature - random stealing and work sharing.

Random stealing attempts to steal a task from a randomly selected node when
a node finds its own task queue empty, repeating steal attempts until it succeeds.
Random stealing is provably efficient in terms of time, space, and communication

� This work is supported by Chinese NSF for DYS granted by No. 60425205 and
National Postdoctor Science Foundation of China.
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for the class of fully strict computations [4, 13]; and the natural work stealing al-
gorithm is stable [2]. Communication is only initiated when nodes are idle. When
the system load is high, no communication is needed, causing the system to be-
have well under high loads. Some systems that implement random stealing include
Cilk [3], Jaws [8], and Satin [9]. Cilk [3] provides an efficient C-based runtime sys-
tem for multithreaded parallel programming with a random stealing scheduler.
JAWS [8] efficiently schedule load over a dynamically varying computing infras-
tructure with random stealing algorithm, Satin [9] presents a system for running
divide-and-conquer programs on distributed memory systems with random steal-
ing. The EARTHruntime system [7] supported several dynamic loadbalancer poli-
cies, which goal is to design simple balancers that deliver good load distribution
with minimum overheads. But a virtual ring network topology is adopted in all the
balancers with nodes numbered clock-wise. The authors of the paper [5] evaluate
these load-balancing schedulers for a fine-grain multithreading environment.

In this paper, we study the dynamic scheduling algorithms for a large-scale
cluster. For random stealing in a large-scale cluster, an idle node must randomly
steal many times to obtain a task from another node. Especially, this problem
severely affects performance in systems where only a few nodes generate most of
the system workload [12]. For overcoming this problem, Shis, one of load balance
policies in the EARTH system [5], which slightly modifies random stealing was
to remember the originating node (history information) from which a task was
last received, and to send requests directly to that node. The authors of the
paper [11], present two relatively complicated adaptive location policies which
record more history information for global scheduling algorithms.

Here we present a scheduling algorithm, Transitive Random Stealing (TRS),
which further improves Shis not only remember the originating node from which
a task is stolen but also forward the information of the node to other remote
nodes which want to steal a task from it. With the transitive policy, TRS can
make any node obtain a task faster with less times to steal in a large-scale clus-
ter, reduce the idle time for all nodes and improve the overall performance of
the system. Then by the random baseline technique, we experimentally com-
pare the performance of TRS with Shis and random stealing for different load
distributions in the Tsinghua EastSun cluster, and show that TRS outperforms
Shis and random stealing in all test cases. Finally, TRS is implemented in the
Jcluster environment [1], a high performance Java parallel environment, and an
experiment result is given on HKU Gideon 300 cluster.

In the rest of this paper, we first give the transitive random stealing algorithm
in next section. Section 3 evaluates the performance of TRS, Shis and random
stealing by the random baseline technique. We show an experiment result on
HKU Gideon 300 cluster in Jcluster environment in Section 4. Finally, Section
5 concludes our works.

2 Design the Transitive Random Stealing Algorithm

Our design philosophy for scheduling algorithms is to reduce the idle time for all
nodes, rather than balancing work loads equally on all nodes. A node is said to



Scheduling Efficiently for Irregular Load Distributions 41

be in the idle state when it has no tasks to execute. Distributing the workload
during application execution is achieved by sending the tokens to the schedulers
on remote nodes. A token contains all the necessary information to create a new
task. A Task is a piece of code that is to executed, possibly in parallel with other
tasks. Tokens are stored in the task queue on each node.

In the following, we give the transitive random stealing algorithm in detail.
First, we show you a figure to illustrate an architecture of a task scheduler based
on TRS.

resourse m
anager

recomId

task
scheduler

task queue

seek rem
ote task

rem
ote seek

return recomId

seek local task

tasks dynamically
spawning  tasks

user
adding

task

user m
onitor info of node

Fig. 1. An architecture of a task scheduler based on TRS

Here resource manager is responsible for adding or deleting nodes and main-
tains an active list of nodes in the cluster. Task queue is a double-ended queue to
store tokens that have been spawned dynamically by tasks or have been added
by user, but not yet executed. New tokens spawned dynamically by tasks are
pushed into the queue from one end and tokens are also popped from the same
end for execution on the local node. On the other hand, new tokens added by
user are pushed into the queue from the other end, and a token is also popped
from the other end of the task queue when remote nodes asks for tasks. The
recomId is a variable which remembers the nodeId of other remote node.

The transitive policy is simple and TRS can be easily implemented. But with
this simple transitive policy, TRS can make any idle node obtain a task from
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The main-loop function for stealing tasks from another nodes:
void run(){
While(true){

if (idle of node){
if (local task queue has tokens){

get a token to execute;
}else{

if (recomId is blank){
randomly select a remote node from the list of nodes,
and ask for a token from it;

}else{
ask for a token from the remote node whose nodeId is recomId;

}
wait to receive an answer message;
update its recomId with the recomId in the answer message;
if (the answer message includes a token){
execute the token;

}
}

}else{
wait for some task running over;;

}
}

}
The function for answering the request of another nodes:
Message answer(){
if (local task queue has tokens){

return a message with its own nodeId as recomId and a token
from local task queue;

}else{
return a message with its recomId and no tokens;

}
}

Pseudo code of the transitive random stealing algorithm

another node with less times to steal in a large-scale cluster. As a result, this
will greatly reduce the idle time for all nodes and improve the scalability of
the system. At the same time, TRS inherits the advantages of simple random
stealing policy: communication is only initiated when nodes are idle. When the
system load is high, no communication is needed, causing the system behave
well under high loads.

As we can see, a few more bytes (recomId) is sent in the replying message
for TRS than Shis and RS. But the time and bandwidth of the communication
are very similar for those messages with little different sizes. In a sense, the
key factor which influences the network communication overhead is the times of
sending messages.
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Note. In some very special conditions, there may be a loop transition of the
recomId. In order to avoid this case, the implementation of the algorithm can
limit the times of transition of the recomId. In fact, in the later experiments,
we empirically limit the times of transition of recomId by max{[log2n − 3], 1},
where n is the number of the nodes in the cluster.

3 Performance Evaluation Based on Random Baseline
Technique

In this section, by the random baseline technique, we experimentally compare
TRS with Shis, one of load balance policies in the EARTH system, and random
stealing for different load distributions on the Tsinghua EastSun cluster which
has 32 nodes (4×Xeon III 700s, Fast Ethernet, Redhat 8.1). Here we implement
each of the three algorithm as an MPI application in which a process simulates a
node. The processes implement two threads except the process with rank 0, one
thread for dealing the main loop, the other for handling the request. The process
with rank 0, by the random baseline technique, implements a task generator
which distributes the same load distributions to the other processes for the three
algorithms respectively.

In order to stress to test the performance of algorithms on the different
load distributions, we make use of the task generator generating different load
distributions instead of scheduling some real parallel programs. The task gen-
erator generates three types of load distributions uniformly distributed on all
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nodes, half of all nodes and 1/8 of all nodes, two types of binomial distribu-
tions, Bi(n, 1/3) and Bi(n, 1/8), where n is the number of the nodes. From the
knowledge of Statistics, the binomial distribution Bi(n, p) approaches the Pois-
son distribution, when the number n is large, and the probability p is small. The
five types of load distributions all distribute 5n tasks to the nodes for 10 times,



Scheduling Efficiently for Irregular Load Distributions 45

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

No. of Nodes

T
ot

al
 ti

m
es

 o
f s

te
al

in
g

Distributed on Bi(n,1/3)

 RS
Shis
TRS

Fig. 5. Task load distributed on Bi(n, 1/3)
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where n is the number of the nodes. In addition, we assume that every task has
the same executing time and every node has the same power of computing.

For obtaining a good performance, the algorithm must make any idle node
obtain a task faster with less times to steal. Therefore, we compare the perfor-
mance of the three algorithms by counting the total number of stealing tasks
from remote nodes for each algorithm (the total number includes the times
of stealing nothing from remote nodes). The experiments are implemented in
the Jcluster environment, a high performance Java parallel environment which
provides MPI-like message passing interface on the Tsinghua EastSun cluster.
Figure 2,3,4,5,6 illustrate the results for the five type of load distribution.

For the task load distribution uniformly distributed on all nodes, the difference
of the performance for the three algorithms is small on the small-scale clusters, how-
ever, with the increase of the size of the nodes, TRS behaves with the good perfor-
mance. For the task load distributions uniformly distributed on half of all nodes
and on 1/8 of all nodes, binomial distributions, Bi(n, 1/3) and Bi(n, 1/8), TRS
exhibits a much better performance than Shis and random stealing, especially, for
the large-scale clusters.Therefore,we can conclude that TRS is a high performance
scheduling algorithm for irregular load distributions in a large-scale cluster.

4 An Experiment Result in the Jcluster Environment

Jcluster environment [1] that provides a high performance PVM-like and MPI-
like message passing interface implements the TRS algorithm to schedule the

1 16 32 48 64
1

8

16

24

32

40

48

56

64

16−Queen problem on Gideon 300 cluster

S
pe

ed
up

No. of nodes

     linear
16−Queen

Fig. 7. 16-Queen problem on HKU Gideon 300 cluster



Scheduling Efficiently for Irregular Load Distributions 47

tasks dynamically in a large-scale cluster. Here a divide-and-conquer program,
16-Queen problem, is used to stress to test the task scheduler based on TRS.
There are more than 2,200 subtasks which will be dynamically spawned on some
nodes to be scheduled. With the help of Prof. Francis C.M. Lau, Prof. C.L. Wang
and Weijian Fang, the test for 16-Queen problem has been held on HKU Gideon
300 cluster (Pentium IV 2.0 GHz, Fast Ethernet, redhat 8.0, Jdk 1.4.0) at the
University of Hong Kong. Figure 7 illustrates the results.

The efficiency of the speedup reaches up to 91.73% on 64 nodes, which ex-
hibits an efficient scheduling of TRS on the real platform.

5 Conclusion and Further Works

In this paper, we present the Transitive Random Stealing algorithm (TRS) which
provides an efficient scheduling policy making any idle node rapidly obtain a task
from other remote node for irregular load distributions in a large-scale cluster.
Then by the random baseline technique, we experimentally compare TRS with
Shis, one of load balance policies in the EARTH system, and random stealing for
different load distributions on the Tsinghua EastSun cluster and conclude that
TRS is a highly efficient scheduling algorithm for irregular load distributions in
a large-scale cluster. Finally, Jcluster environment implements a task scheduler
based on TRS to obtain a good experiment result for 16-Queen problem on
HKU Gideon 300 cluster. In the future, more real parallel applications will be
developed to evaluate the algorithm on some real platforms.
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Abstract. A metadata service is one of the important factors to affect the 
performance of cluster file systems. We propose a content-based load balancing 
algorithm that dynamically distributes client requests to appropriate metadata 
servers based on the types of metadata operations. By replicating metadata and 
logging update messages in each server rather than moving metadata across 
servers, we significantly reduce the response time and evenly distribute client 
requests among metadata servers. 

1   Introduction 

It is reported from SPEC that up to 60% of user requests in cluster files systems are 
metadata operations [1]. Due to the large amount of metadata operations, some cluster 
file systems use a separate metadata server or a cluster of metadata servers for 
scalability and availability [2][3][4][5]. 

A key question in the design of such systems is how to partition the metadata among 
metadata servers to maintain both high performance and scalability. The first approach, 
known as directory sub-tree partitioning, partitions the metadata along the directory 
sub-tree, which suffers from severe bottleneck due to the hot spots. As an alternative, a 
pure hashing approach [2] is introduced. This approach hashes the filename to 
distribute the namespace among the metadata servers evenly. This requires metadata 
servers to maintain the directory hierarchy, and further requires them to repartition the 
namespace among the servers whenever a metadata server is added or removed from 
the cluster. Another approach such as Lazy Hybrid (LH) [3] combines both approaches 
to address the problems above. However, all the approaches above are based on the 
static mechanism such that a metadata server is designated when a new metadata 
structure is created. This prevents client requests from being distributed fairly among 
the metadata servers based on current load conditions.  

This paper proposes a content-based load balancing algorithm for metadata servers 
that dynamically distributes client requests to appropriate metadata servers based on 
the types of metadata operations. In order to distribute client requests dynamically, a 
dispatcher is used. In addition to distributing client requests dynamically, the 
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dispatcher also shares Indirect Metadata Table (ITL) with all the metadata servers and 
adjusts assigned entries among metadata servers, reflecting current load conditions. 
Although the capacity of the dispatcher is critical to the overall cluster system 
performance, emerging hardware technologies for switching reduces the relaying 
overhead significantly, which ensures us to assume sufficient capacity of dispatcher.  

The rest of this paper is organized as follows. In chapter 2 we present an overview 
of metadata management schemes used in cluster file systems. Chapter 3 presents the 
detail mechanism of content-based load balancing algorithm. Its analysis and 
experimental result are presented in chapter 4. Chapter 5 summarizes our work and 
concludes this paper. 

2   Related Work 

The first approach to allocating metadata among metadata servers in cluster file 
systems is the hierarchical directory sub-tree partitioning. This approach partitions the 
file system namespace according to the structure of directory sub-tree and the 
metadata of each directory sub-tree is managed by individual metadata server. This 
technique suffers from severe bottleneck when a single file, directory, or directory 
hierarchy must be traversed to determine the permissions of each file that is accessed. 

The second approach, pure hashing, distributes the namespace among metadata 
servers by hashing the file identifier, file name, or other related values. This results in 
more balanced workloads than directory sub-tree partitioning. Vesta parallel file 
system [2] is a representative method of pure hashing. The hash function of Vesta file 
system uses the full pathname as an input key, and outputs the identifier of the 
metadata server and the location of the metadata inside the server. This pure hashing 
guarantees direct accesses to metadata without traversing all the metadata servers 
along the directory hierarchy, but it does not support the directory path-based file 
permission using access control list. Moreover, for some expensive operations such as 
changing directory name, removing directory, and adding or removing of metadata 
servers, a large number of metadata should be moved across metadata servers, which 
leads to long response time and clients should wait for a long period of time for their 
requests. 

Lazy Hybrid (LH) [3] addresses the above problems by combining the advantages 
of both approaches and adding capabilities such as global logging and delayed 
updates. The metadata location is determined by hashing the full pathname, which 
allows direct accesses to the metadata without traversing all of the metadata servers 
that stores directories along the path. However, hierarchical directories are maintained 
in order to provide standard directory semantics and operations such as ls. Lazy 
update policies allow for efficient metadata updates when the file/directory names or 
their permissions are changed or when metadata servers are added to or removed from 
the system. Moreover, a dual-entry access control list structure is maintained for any 
file permissions to be determined directly without traversing the entire path. When a 
large amount of metadata has to be moved at a time, the real location is globally 
logged in all the metadata servers, instead of moving metadata. Later, upon the first 
access after global logging, the metadata is actually moved. By using the delayed 
updates, the initial operation is very fast and only a little overhead is incurred at the 
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time when each of the modified metadata is accessed first. On the other hand, when 
the requests generated by the clients are bursty, this scheme leads to the concentration 
of the requests on a particular metadata server holding the real metadata, and suffers 
from the performance degradation due to the overhead incurred by forwarding client 
requests. 

To address these shortcomings due to the static determination of metadata servers 
on each client, we propose a dynamic load balancing algorithm based on a dispatcher.  
The dispatcher periodically collects load information from the metadata servers and 
forwards client requests to appropriate server based on the content of each request. 

3   Content-Based Load Balancing Algorithm 

In this section, we present the detailed schemes used in the content-based dynamic 
load balancing algorithm.  

3.1   Architecture 

Fig. 1 shows the structure of the metadata server cluster. This cluster consists of 
several metadata servers and a dispatcher that relays the request from clients to 
appropriate metadata servers. Given the information of the file included in a request, 
the dispatcher hashes the full pathname of the file to produce a hash value indicating 
the index into the Indirect Lookup Table (ILT). The index found in the entry of the 
ILT specifies which metadata server currently stores the metadata for that file. After 
determining appropriate metadata server, the dispatcher forwards the requests to the 
selected metadata server or broadcasts it to all the metadata servers depending on the 
content of the request. The detailed operations will be described in the next section. 

...
Local

storage

Metadata ServersNetwork Clients

Dispatcher

 

Fig. 1. Architecture for load balancing 

In this architecture, all the metadata servers and the dispatcher should share the 
same ITL as well as the same hash function. Using these, each metadata server 
determines independently whether it is responsible for the requested file or not, and 
then stores, retrieves, or modifies the metadata of the file. Moreover, each metadata 
server caches the inode information of all the files and directories, and stores the 
directory hierarchies in order to improve the performance of metadata operations.  
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In order to efficiently distribute the load among metadata servers, all metadata 
servers report their load conditions to the dispatcher periodically. Based on this 
information, the dispatcher adjusts the ILT and then redistributes it to all the metadata 
servers. 

3.2   Metadata Operations 

To ensure the consistency of metadata among metadata servers, our algorithm writes 
and logs metadata write operations on every metadata servers. Since our algorithm 
uses a full pathname as an input into the hash functions, some operations, such as 
changing directory name, adding or removing of metadata server, and ITL 
adjustment, result in a large amount of metadata movement across the metadata 
servers. To reduce the overhead incurred by moving metadata, we replicate metadata 
among all the metadata servers, and log all the metadata modification messages. 
While the requests such as simply looking up metadata for files or directories are 
handled by one designated metadata server, the requests for writing metadata or 
logging some operations are broadcast to all the metadata servers concurrently. As a 
result, all the metadata servers have the same metadata information. For some 
retrieval operations for directories or file attributes that require metadata modification 
(i.e., update “last access time” field), we divide the operations into two steps: looking 
up metadata and updating the “last access time” field. 

When a file or a directory needs to be retrieved, the dispatcher uses a hash function 
(using the full pathname) to locate the appropriate metadata server in constant time and 
ask the designated server to reply with the metadata information related to the file or the 
directory. The modification message for the “last access time” field is then broadcast 
and all the servers update and log the information. On the other hand, except for the 
operations related to the attribute manipulation, all the metadata operations related to 
changing directory structure require the modification of directory hierarchy in addition 
to updating inode information. For example, the directory removal operation requires 
the deletion of all the subdirectories. Changing directory name should rearrange all the 
metadata for the files, subdirectories, and the files under the subdirectories across the 
metadata servers since the hash values need to be changed. 

It should be noted that changing the directory hierarchy requires the movement of a 
large amount of metadata. In our approach, each metadata server is supposed to 
execute the operation at the same time and thereby eliminate the movement of 
metadata. Considering that the file system operations are mostly read operations (with 
the ratio of 9:1 in office environments), replication is much more reasonable than 
metadata movement in general cluster file system environment [8]. 

Unlike the directory write operations, the writing operations for files do not require 
any modification of the directory hierarchy. However, they are also carried out 
concurrently at each metadata server to ensure the metadata coherency.  

3.3   Adjustment of Indirect Lookup Table (ILT) 

Since each file system operation requires different amount of computational power and 
each file has different access frequencies, some metadata servers may be overloaded 
more than the others. This may cause longer response time and decrease overall system 
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performance. Moreover, since the entire metadata server may not have the same 
computing power, we should adjust the imbalance through reconstructing the ITL.  

The goal of our algorithm is that all the metadata servers have similar load 
conditions approaching to the average load and minimize the change of designated 
metadata server. In order to do this, our algorithm should first determine the metadata 
servers whose load exceeds the overall average, and calculate the amount of extra 
load for each metadata server, Extra(mdsi), by subtracting the average load from its 
own load. The metadata server with negative Extra(mdsi) value can handle more 
metadata by assigning more ILT entries taken from the metadata server with positive 
Extra(mdsi). In order to distribute the overloaded entries to other metadata servers, 
based on the load per entry Loade(mdsi), we determine the maximum number of ILT 
entries EEi for any overloaded metadata server i, satisfying that 

Extra (mdsi) - Loade (mdsi) x  EEi    0, 

where 0  EEi    the number of ILT entries handled currently by mdsi.  
Any metadata server j with negative Extra(mdsi) may take the entries from i as 

many as maximum EEj. That is, the following should be satisfied 

Extra (mdsj) + Loade (mdsj) x EEj  0, 

where EEj  0. In order to take the load more aggressively, we allow each metadata 
server with more available capacity than Loade (mdsj) / 2 to take one more entry. 
Therefore, the above formula can be changed like this. 

Extra (mdsj) - Loade (mdsj) / 2 + Loade (mdsj) x EEj  0, 

where EEj  0. Fig.2 shows an example of the adjustment of ITL so that all the 
metadata servers have quite evenly distributed load around the average load. 
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Fig. 2. Example of ILT Adjustment 

4   Performance Evaluations 

4.1   Experimental Environment  

We evaluate our algorithm using CSIM 9.0, a process-oriented discrete-event 
simulator [8]. The simulations are performed on Intel Pentium-III (800 MHz dual 
CPU) running Linux Kernel 2.6. The detailed parameters are presented in Table 1. 

In this evaluation, we measure the load of each metadata server to see how well the 
client requests are distributed. The average response time from the clients is also 
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measured. The ratio of read accesses and write accesses is 9:1. We evaluate our 
algorithm and compare it with those of Vesta and LH3. 

Table 1. Parameters for the simulation 

The number of MDS 8 
Metadata size 256 Bytes 
Average memory cache search time 0.155 msec for 10MB 
Memory cache hit ratio 90% 
Disk access time 1.561 msec for 1 metadata 
Network transfer time 0.209 msec for 1 metadata 

4.2   Results  

Figures 3 through 5 show the load condition of each metadata server for Vesta, LH3, 
and our approach, respectively. In order to obtain current load at each metadata 
server, we measure the number of requests waiting to be processed at each server for 
a period of 20,000 milliseconds. 

 

Fig. 3. Number of requests waiting for services in each metadata server (Vesta) 

 

Fig. 4. Number of requests waiting for services in each metadata server (LH3) 
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Fig. 5. Number of requests waiting for services in each metadata serer (proposed approach) 

As you can see from Fig. 3 and Fig. 4 (Vesta and LH3 cases), for some of metadata 
servers, the number of waiting requests is much larger than those of the others. This 
implies that the client requests are forwarded heavily onto some metadata servers and 
the load is not fairly distributed among all the metadata servers. On the other hand, 
Fig. 5 (our approach) shows that the requests are well distributed all over the metadata 
servers. Moreover, while the average load of our approach is a little bit higher than 
that of Vesta, the variance is remarkably smaller (see Table 2). This also indicates that 
replicating metadata is more efficient for distributing client requests than moving 
metadata throughout the network. 

Table 2 shows the average response time of all three approaches. As the table 
shows, our approach has minimum average response time although it doesn’t include 
the processing time at the dispatcher. Under the assumption that we can implement 
the dispatcher with quite good performance, the processing time at the dispatcher can 
be ignored. Table 3 also shows that our approach significantly outperforms other 
approaches. 

Table 2. Average numbers of requests waiting for services and the variances 

 Vesta LH3 Our approach 
Average # of requests waiting 2.11 4.35 3.13 
Variance 10.56 95.10 0.14 

Table 3. Average response time for each approach 

 Vesta LH3 Our approach 
Average response time (msec) 11.93 32.04 6.39 

In order to explain the relationship between the performance of dispatcher and the 
response time of client requests, we introduce a formula using queuing theory. For 
example, the response time at the dispatcher R can be written as  

λ−
=

C
R

1 , 

L 
O 
A 
D 
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where C is the service rate at the dispatcher and  is the arrival rate of client requests 
[10]. When  is unchanged, the only factor that affects the response time is C. If C is 
much larger than , a dispatcher can forward the client requests to appropriate metadata 
server immediately on receiving a request. If C is approximately equal to  but is not 
smaller than , the response time increases rapidly because of the processing delay at 
the dispatcher. If C is smaller than , the arrival rate of client requests exceeds the 
capacity of a dispatcher, and thereby the response time can’t be measured. 

Based on the fact described above, we measure the average response time 
including the processing time at the dispatcher. As you can see from Fig. 6, the 
response time increases exponentially as we increase 1/C values. The average 
response time of our approach is lower than those of Vesta and LH until 1/C is up to 
0.8. However, our approach suffers from long response time when 1/C goes close to 
, which implies that the performance of dispatcher becomes the bottleneck of overall 

cluster system. On the other hand, we can expect performance improvement when the 
arrival rate of client requests is below 93% of service rate of the dispatcher in this 
experiment. 

 

Fig. 6. Effect of the performance of dispatcher 

5   Conclusion 

In this paper, we have proposed a content-based load-balancing algorithm for 
metadata servers in cluster file system, where the client requests are handled 
differently according to their contents, and the loads of the metadata servers are 
redistributed by dynamically adjusting the indirect metadata table periodically. By 
replicating the metadata and logging update messages, all the metadata servers 
concurrently execute the update operations on metadata, which minimizes the 
metadata movements. 

Through our performance evaluation, we have showed that our dynamic load 
balancing algorithm outperformed existing metadata management schemes used in 
traditional cluster file systems. We are currently investigating further about the effect 
of the performance of dispatcher on the overall system performance in the metadata 
cluster. 
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Abstract. This article presents the C++ library vShark which reduces the intra-
node communication overhead of parallel programs on clusters of SMPs. The li-
brary is built on top of message-passing libraries like MPI to provide thread-safe
communication but most importantly, to improve the communication between
threads within one SMP node. vShark uses a modular but transparent design
which makes it independent of specific communication libraries. Thus, differ-
ent subsystems such as MPI, CORBA, or PVM could also be used for low-level
communication. We present an implementation of vShark based on MPI and the
POSIX thread library, and show that the efficient intra-node communication of
vShark improves the performance of parallel algorithms.

Keywords: clusters of SMPs, parallel programming models, message passing
between threads.

1 Introduction

Clusters of SMPs (Symmetric Multiprocessors) have become very popular in high per-
formance computing (HPC). Due to the huge number of different cluster systems, the
message passing libraries such as MPICH or LAM are usually not machine optimized.
One disadvantage of MPI (Message Passing Interface) libraries is their low performance
for intra-node communication. The communication on a single SMP node is either done
via shared memory (system calls like shmget) or socket-based. Intra-node communi-
cation via sockets or shared memory at operating system level is more expensive than
copying data directly between lightweight threads. vShark provides an effective real-
ization of the communication requirements of an application that can be adapted to the
memory and network system of the parallel or distributed platform without help from
the programmer. In particular, vShark reduces the overhead of intra-node communica-
tion in clusters of SMPs by introducing a thread-based architecture. Instead of starting
a number of processes on SMP nodes, the vShark system starts the same number of
threads. Since those threads live in the same address space of the same process, com-
munication between them is much faster than going through the communication stack of
the message-passing library. The communication between physically distributed threads
in vShark is performed by a separate communication thread. Each physical SMP node
has exactly one communicator thread which handles communication requests from lo-
cal worker-threads and polls for requests from remote communicator threads.
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The next section gives a short overview of the vShark framework. The rest of the
paper describes the C++ implementation of the vShark interface using the MPI standard
and the POSIX thread library. The article introduces a simple but effective communi-
cation protocol to ensure thread-safe communication between worker-threads. We also
evaluate the performance of vShark and present experimental results.

2 Programming Model of vShark

The vShark library is an improved message-passing framework for distributed memory
machines. Thus, the programming model is the same as for common message-passing
environments like MPI, i.e. explicit messages-passing between participating processes
is required.

The vShark library consists of different layers to provide maximum flexibility. Par-
allel programs based on vShark have a common interface to the top layer runtime in-
terface. The layer below is the transportation layer of the vShark runtime. The trans-
portation layer binds the vShark runtime to a particular communication device like MPI
or PVM. The programmer does not have access to the communication layer directly.
Instead, he must use abstract functions of the vShark runtime library to send or re-
ceive data.

In this article we can only give a coarse introduction of the system. vShark provides
a message-passing API which is similar to MPI. It contains methods for sending and
receiving messages like int send(Envelope *env), and it also contains entities
such as VSharkGroup which is the logical equivalent to an MPI communicator. The
code below is an example of how a processor would send its own rank to processor 1
in vShark.

Runtime& r e = g e t r u n t i m e ( ) ; / / g e t vShar k r u n t i m e hand le
VSharkGroup ∗group = r e . g e t g r o u p ( ) ; / / hand le t o world communicator
Message ∗msg = new In tM es s age (& rank , 1 , 0 ) ; / / i n t o f l e n g t h 1 and w i t h t a g 0
group−>s end ( group−>c r e a t e e n v e l o p e ( msg , rank , 1 ) ) ; / / b l o c k i n g s end

Fig. 1. Sending an integer message in vShark

3 vShark Implementation with MPI and POSIX Threads

vShark can be implemented on top of different communication libraries. In this section,
we describe a vShark implementation based on MPI and the POSIX thread library.

General Communication Scheme. The MPI standard does not guarantee thread-safety.
Therefore, the vShark driver for MPI has to ensure thread-safe communication between
worker threads. Thread-safe communication in this context is achieved when only one
thread per node is transferring data at a time. Several solutions were proposed in liter-
ature, e.g. protecting all MPI calls with locks to ensure mutual exclusion, see [4] for a
detailed analysis. Another solution for thread-safe communication is an auxiliary com-
municator thread that manages communication requests. This thread is the only one
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with access to the MPI layer. vShark uses such a communicator thread. A distinct com-
municator not only ensures thread-safe communication, but more importantly, it also
allows us to change the communication path (channel) at runtime (shared-memory or
socket-based). When a virtual processors (worker thread) wants to send or receive data,
it appends a request to the communicator’s request queue. We explicitely indicate that
vShark does not copy messages into a separate buffer. Instead, the virtual processor
passes a memory reference to the communicator. After the data transfer is completed,
the communicator signals the virtual processors that the requests have been fulfilled.

Message Transfer Protocol. There are two performance-critical decisions to make. The
first is, how and when communication between two communicators takes place, i.e.
how often does the communicator need to poll for inter-node requests. Secondly, does
the system support buffering of messages?

vShark does not buffer incoming messages to reduce the memory requirements and
to avoid deadlocks through insufficient free memory. Such a scenario may occur if
a communicator thread constantly polls for incoming messages and receives a large
amount of incoming data within a short time interval. However, the time at which the
data is actually requested is unknown, and so, the message has to be kept in the buffer.
Especially in numerical applications with messages of hundreds of megabytes the fast
growing buffer would quickly exceed the memory limit.

vShark uses a communication protocol to avoid deadlocks and extra memory re-
quirements. The transfer of messages is always initiated by the the sending commu-
nicator. The communicator sends a request message to the node where the receiver
resides. This message contains the id of the virtual processor of the sender and the
receiver. The communicator of the receiver checks its local queue if the correspond-
ing virtual processor has already requested this data. If so, the communicator sends
an acknowledgment-message (ACK) to the initiator and immediately starts receiving
data (MPI Irecv) into the message buffer of the virtual processor. If there is no such
request, the communicator enqueues the request in a waiting list. When a virtual pro-
cessor later dispatches the matching receive request, the ACK will immediately be sent
to the initiator. In order to find the corresponding request to each ACK and vice versa,
the ACK message also contains the identifiers of the sending and receiving virtual pro-
cessors. This protocol has two basic advantages: (1) No additional message buffering
is required. (2) The initiating communicator can select which message is sent first.
That makes it possible to reschedule and optimize the message transfer respecting the
message-passing constraints such as order and fairness (subsequent messages may not
overtake each other).

Realization of the Communicator Thread. As discussed before, the communicator con-
stantly polls for incoming requests. The central performance question is, when and for
how long the communicator thread will be suspended. This sleep time must be short
enough to guarantee quick message delivery, but also long enough that worker threads
can get the CPU and perform their tasks. In case of shared-memory, we could use a
consumer / producer model. The consumer would be suspended until produced items
are available for consumption and so, it would not consume CPU time. Unfortunately,
we cannot apply this model in a distributed memory environment. Thus, active wait-
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ing for incoming messages is necessary which may consume CPU time. Since we want
to minimize this wait overhead, we introduce a sleep time for the communicator. The
communicator sleeps for the given amount of time when all local queues are empty and
no remote request has yet been received. We will see that this timeout parameter is very
performance-critical. The timeout settings (minimum, maximum, default) of the MPI
driver can be changed in a configuration file called vshark mpi.conf.

Running vShark Programs over MPI. An MPI-based vShark program can be started
by calling mpirun on each participating node. The runtime system of vShark reads
the node configuration file vshark.conf. For compatibility reasons, this file has the
same syntax as the machine configuration files of MPICH (node:#processors).
According to the number of processors specified in the file, the vShark runtime starts
the virtual processors. After the runtime is loaded on each node, the actual vShark
program is passed to the virtual processors which then start to execute the program.

4 Experimental Results of the MPI Version of vShark

For a performance comparison of vShark with traditional MPI programs, we ran several
benchmarks from the ParkBench collection [9]. The original ParkBench code is writ-
ten in Fortran 77. We ported the benchmarks to C++ and replaced MPI calls with the
corresponding vShark function.

In the diagrams that follow, “parkbench” denotes the results of the original bench-
mark and vShark stands for the rewritten benchmark. The range (x−y) after the vShark
label denotes the chosen minimum and the maximum timeout of the communicator, e.g.
for 1 − 10 the communicator waits at least 1 ms and at most 10 ms when all queues
are empty.

COMMS1 Benchmark. The COMMS1 benchmark is a so called ping-pong benchmark
and measures the time a message is transferred between two nodes back and forth,
i.e. the master processor sends a message of variable length to a slave processor that
immediately returns the message after receiving it.

Fig. 2 (left) presents the throughput results for the intra-node communication of
vShark and ParkBench. It can be observed that the communication between two MPI
processes (original ParkBench) is fast for smaller messages. When the message size
increases, vShark’s thread-based copying significantly boosts the performance. For a
message size of about 20.000 bytes, the throughput of vShark becomes clearly superior
to MPI.

COMMS3 Benchmark. The website www.top500.org characterizes the benchmark
as follows: each processor of a p-processor system sends a message of length n to
the other (p − 1) processors. Each processor then waits to receive the (p − 1) mes-
sages directed at it. The timing of this generalized ping-pong ends when all messages
have been successfully received by all processors; although the process will be repeated
many times to obtain an accurate measurement, and the overall time will be divided by
the number of repeats. Figure 2 (right) compares the bandwidth which was measured for
the MPI version of COMMS3 and the vShark version. When utilizing four processors,
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Fig. 2. Left: Throughput measured with the COMMS1 benchmark (intra-node, SMP). Right:
Two virtual vShark processors on two SMP nodes compared to two MPI processes on two SMP
nodes. System: Dual Xeon cluster, SCI network, ScaMPI.

the bandwidth achieved by vShark is slightly lower than the MPI version. Yet, when the
message length is larger than 50.000 bytes vShark is as fast as the original ParkBench.
Due to the additional communication protocol, the bandwidth of vShark decreases for
a larger number of processors.

Testing with a Real Application. We examine the real-world application performance
on the basis of tpMM (task parallel matrix multiplication). The tpMM algorithm uses
a hierarchy of multiprocessor groups where it is assumed that matrix A is decomposed
into p blocks of rows and B into p blocks of columns, where p denotes the number of
processors. tpMM recursively updates matrix panels to compute the result matrix C =
A×B, see [6] for a more detailed description of tpMM and [7] for an overview of how
tpMM can be used as a building block in multi-level matrix multiplication algorithms.

The runtime results for tpMM on vShark and on MPICH are shown in Figure 3
(left). We can see that tpMM running on vShark outperforms the C/MPI version (note
the logarithmic scale). This algorithm benefits from the vShark runtime since most of
the communication required happens on an SMP node.

In order to evaluate the performance of vShark on larger SMP nodes, tpMM was
further tested on a four-way Xeon (2.0 GHz) running Linux and MPICH 1.2.5. Figure 3
(right) compares the MFLOPS per processor of the vShark-based and the MPICH-based
versions of tpMM. The MPICH results include statistics for the P4 device (shared mem-
ory enabled) as well as for the VMI device. On a multi-way SMP machine, vShark
clearly outperforms the MPICH versions, either using the VMI or the P4 driver.

5 Related Work

The combination of message passing in a multi-threaded environment and its advan-
tages has already been examined and published. For example, Sun Microsystems offers
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thread-safe MPI libraries for Solaris [13] where threads can concurrently call MPI func-
tions but may only refer to processes as senders or recipients. Multi-threaded approaches
to MPICH have been discussed in [11]. The article [4] describes how to use threads in
an MPI environment efficiently to improve the performance of irregular algorithms on
distributed systems. In general, there are two approaches for exploiting threads in dis-
tributed systems. One way is to create a virtual shared model of the parallel system.
Since the programmer sees only one big memory, the complexity of writing parallel
program decreases because explicit message passing is omitted. MuPC is an example
of such programming language [12]. Another approach is to extend the POSIX thread
model and to add message passing capabilities to each thread [3]. In [1] the authors
proposed a thread-only implementation of MPI and it aims at the development stage
of program where tests are performed on a single machine. The work in [10, 14] goes
one step further and rewrites parts of MPICH to shift the original process-only model
to a thread-only model. The disadvantage of these approaches is the dependency on the
operating system and the MPICH version. Another multi-threaded MPI implementation
is called AMPI and has been discussed in [5]. AMPI uses the same notation of virtual
processors as vShark. Each virtual processor is a lightweight user-thread and has its
own private memory. AMPI optimizes the mapping of virtual processors to real proces-
sors. The objective of AMPI is to reduce the complexity of writing parallel programs for
systems where the number of processors differs from the number of processors that the
algorithms require. [2] introduces TPVM as a multi-threaded version of PVM. Similar
to vShark, TPVM uses threads as units of parallelism and the communication between
threads is done via explicit message passing with a unique thread id. Since TPVM is
a modified version of PVM, it is restricted to the PVM library and the operating sys-
tems to which it has been ported. The Virtual Machine Interface (VMI) is also equipped
with the support for multiple communication interconnects including shared memory,
TCP/IP, Myrinet [8]. In contrast to vShark, VMI is a middleware layer between MPI
and the network device drivers.
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6 Conclusions

We have presented the C++ library vShark which is built upon message passing and
thread libraries. Despite having a distributed programming model, communication be-
tween virtual processors which are implemented as lightweight threads is done with-
out invoking external library functions or operating system routines. The experimen-
tal results have shown that parallel programs that use vShark as communication layer
can lead to significant performance gains when many intra-node communications are
performed. The main advantage of vShark is its flexibility through the object-oriented
design and the placement on top of message passing libraries. Thus, porting vShark
programs to different architectures is easy since it only requires a single vShark driver
for a new communication interface like MPI or PVM. Since there is already an MPI 1.1
binding available, vShark will work with any MPI compliant library.
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Abstract. Interoperability and adaptability are two major problems that 
embarrass network measurement practices today on how to finely integrate 
heterogeneous measurement systems and functionalities. This paper proposes a 
service-oriented approach based on Web Service for building integrated 
network measurement architecture that’s scalable and adaptable for change. 
Measurement functionalities are wrapped in Web Service that can be described 
in WSDL, discovered by UDDI and accessed through SOAP openly. Mobile 
Agent, as an autonomous entity, is employed to implement the global control of 
network measurement, which migrates from site to site calling these Web 
Services to perform the measurements and returns with the data collected from 
them. This approach de-couples network measurement control and supporting 
network measurement functionalities thus introduces flexibilities into the 
implementation of both sides. The architecture promised by this approach 
allows not only fast deployment of network measurement functionalities but 
also simple introduction of measurement control policies. 

Keywords: Network Measurement, Service-Oriented Architecture, Web 
Service, UDDI, SOAP and Mobile Agent. 

1   Introduction 

Network performance is always of network service provider’s concern when planning 
networks to provide differentiated services and deliver quality of services (QoS). In 
1998, IP Performance Metrics (IPPM) Working Group of IETF proposed a 
framework of Internet Protocol (IP) performance metrics in [1]. Under the framework, 
metrics such as one-way packet delay [2] and loss pattern [3], are put forward to 
satisfy the needs for observing Internet performance from different perspectives. As 
most of these metrics are generally associated with distinct measurement 
methodologies, adaptable network measurement architecture becomes of primary 
concern that’s required not only be able to integrate all these metrics seamlessly, but 
also allow introducing new ones flexibly on demand. 

NIMI [4] and Surveyor [5] are two examples that deploy similar network 
measurement architecture. They both have a group of probing sites (PS) geographically 
distributed across the networks. Each pair of PSs establishes a connection at a well 
known UDP port. End-to-end packet transfer delays, loss, and bulk throughputs are 
measured by One-Way Delay and Packet Loss (OWDP) [6] or Round-Trip Delay and 
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Packet Lost (RTDP) [7] test protocols, which probes network performance by 
sending/receiving small packets over these connections. Besides, a central server is 
designated to distribute measurement functionalities (MF) to PSs and coordinates their 
measurement exercises.  

Although it simplifies the management of PSs and measurement functionalities, the 
centralized control model weakens the architecture’s adaptability. Firstly a PS must 
meet specific software or hardware requirements in order to support designated MFs, 
which limits the possibility of recruiting a lot of PSs to widen the coverage of network 
clouds. Secondly, constraints on PS’s platform narrow the scope of metrics and MFs 
that can be introduced into the architecture. Actually Surveyor and NIMI are designed 
to support active measurements only. If to deploy passive measurement such as traffic 
monitoring on backbones, PSs must reinstall the network interceptor devices and 
measurement control software as well.  

In this paper, a service-oriented network measurement architecture, SONA is 
proposed to address these problems. It builds an extensible network measurement 
platform based on Web Service [8]. Now PS plays a positive role other than simply 
being reactive to central server’s control. MF can be deployed by PS independently but 
is provided as a Web Service for central server’s use. Web Service isn’t tied to any 
operating systems or programming languages thus offers an open facility to realize 
remote procedure call (RPC). They can be called through SOAP [9], which is a 
standard XML messaging protocol that simplifies the access to Web Service. To 
support such a platform, a UDDI (Universal Description Discovery and Integration) 
database server (UDS) is employed for PSs to publish their Web Services in WSDL. 
WSDL is a formal language to describe a web service from the perspectives of WHAT 
the service is, HOW to use the service and WHERE to locate the service. Based on all 
these, SONA is not only extensible as MF can now be deployed and called in a standard 
way; but also it’s adaptable since it separates the measurement control with MF 
deployment, which means the central server can only be responsible for organizing a 
measurement, while PS caring for providing the proper MF. 

The paper is organized as following. In Section 2, we will have an overview of 
SONA’s architecture. Then a brief survey of current network measurement approaches 
is presented in Section 3, also it introduces Mobile Agent as an effective way for their 
measurement control. In Section 4, Web Service implementation of network 
measurement functionality is illustrated by an example of round-trip packet delay test 
service. Section 5 describes Mobile Agent in detail and illustrates how it works in 
SONA. In Section 6, possible security issues in SONA are evaluated. Future work is 
presented briefly in the Conclusion section. 

2   Architecture Overview 

SONA is architected upon a few PSs that are geographically distributed on the 
networks. Each PS installs a HTTP server with SOAP support. In Figure 1, a typical 
topology of SONA is illustrated. Two PSs are deployed in the domain. Each one 
provides a Web Service for its supported measurement functionality and publishes the 
service to the UDS (WS1 and WS2). Generally PS is purposely placed near the network 
element that’s in observation, such as ATM switches, core/edge routers and  
DSL  access  multiplexers  for  collectively  measuring their performance. The Network  
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Fig. 1. SONA Architecture. SONA is architected on a few probe sites distributed across the 
networks. Each probe site provides their network measurement functionalities through a few 
standard web services and publishes them to a public UDDI database. Mobile Agent dispatched 
by NMC migrates in SONA to organize the network measurement practice over a wide scope. 

Measurement Center (NMC) is responsible for organizing the measurements that may 
involve a few PSs based on the service profiles they publish to the UDS.  

NMC can notify a PS to perform a measurement by directly calling its Web Service 
through a SOAP request. But it isn’t an effective way for most of the cases because 
SOAP is still a RPC like protocol, that is, NMC will be blocked by the call until it 
returns. For measurement that lasts for a short time, this approach is fine. For example, 
to get the IP datagram forwarding speed on a router, a Web Service can be called on the 
PS around to watch on the “ipForwDatagrams” variable in the router’s management 
information base (MIB) for 5 minutes and apply following formula (ipForwDatagrams 

y – ipForwDatagrams x) / (5 * 60s) to get the result, where x is the measurement end 
time and y is the start time. But for most measurements that need to run for a long time, 
such as to derive the average packet delay or lost rate along a network route within 2 
hours, this approach can’t be applied when there are many such measurements to be 
performed at the same time.  

To deal with this problem, Mobile Agent (MA) comes up as a rescue. As an 
autonomous entity, Mobile Agent can migrate with its code (or execution logic) and 
data and continue its execution at other hosts. In SONA, Mobile Agent is dispatched by 
NMC to the PS and calls PS’s web service locally on behalf of NMC. With Mobile 
Agent, NMC can gain a flexible control of the measurement. For each measurement, it 
can generate a PS list for MA to visit, and for each PS, it prepares a Web Service list for 
MA to call. These two lists together make up a mission list for MA. MA with the list 
then travels from PS to PS to accomplish the job one by one. In Fig.1, NMC designates 
a MA to visit PS2 and then PS1. MA will call WS2 at PS2 and WS1 at PS1, and then go 
home. After NMC sends out the MA, it doesn’t need to wait for result back 
continuously, while Mobile Agent can do the things for it. Besides this, Mobile Agent 
can do a lot of other important jobs such as network topology discovery, fault diagnose 
and resource trading. Such functions are open for MA developers to realize as 
value-added components to SONA. 
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3   Measurement Control Based on Mobile Agent 

Generally network measurement approaches can be divided into two groups. One is 
active measurement. Another is passive measurement. For active measurement, a PS 
normally establishes a test connection with another PS at a well-known TCP or UDP 
port and actively sends/receives test packets. All PSs must synchronize their time 
clocks through Network Time Protocol [10] or Global Positioning System. Each test 
packet is time stamped and indexed so that packet delay, lost percentage and 
throughput can be easily extracted and recorded. Ping, OWDP and IPMP [11] are 
examples for this approach. As it injects extra network traffics, this approach may 
disturb the network’s normal operations. So in order to achieve unbiased results, 
sampling and analysis methods must be carefully studied [12][13].  

Active measurement can also be realized in two ways. One is unicast-based, another 
is multicast-based. For unicast-based measurement [14][15], there is a test connection 
for each pair of PSs. Its complexity is O(N2), and when a new PS joins, N test 
connections must be created accordingly. OWDP is such a kind of unicast-based test 
protocol. But for multicast-based measurement [16], a multicast tree is established 
upon a group of PSs. Test packet ejected by a PS is multicasted down the tree to all 
related PSs in the group. This approach generate less traffic into the network than the 
Unicast because the test packet appears only once per link in the multicast tree. Thus its 
complexity is O(N). 

For passive measurement, through special network sniffer devices or SNMP [17] 
and RMON, PS simply keeps watch on the traffics flowing over the wire and/or on 
specific performance variables in network element’s MIB. For example, OCXmon and 
FDDI monitors are utilized in NLANR [18] passive measurement project. OCXmon 
have two measurement cards installed so that they can capture traffic in both directions 
of a full duplex connection. Based on the traffics traces captured, bidirectional 
transaction analysis and flow analysis can be done. In the case of SNMP, network 
performance information such as interface speed and IP packet error rate can be derived 
directly from network element’s MIB.  

 

Fig. 2. Measurement Organization by Mobile Agent. Mobile Agent can flexibly organize 
passive or active measurement by migration from host to host. 
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By Web Service technology and Mobile Agent, all these kinds of measurements can 
be easily realized and controlled. Figure 2 illustrates how to deploy the Web Service 
and Mobile Agent to organize the measurement practices.  

For passive measurement, a PS can provide a measurement web service that 
accesses network element’s MIB through SNMP, or accesses special hardware devices 
to retrieve the performance data. Mobile Agent can migrate to there, call its service, 
derive some statistics and return with the result.  

For unicast active measurement, taking OWDP for example, a measurement service 
can be deployed on the PS that sets up a test connection with other PSs and send test 
packets to them in given time. Other parameters can also be accepted such as time-out 
constraints and TCP/UDP port. Mobile Agent can return to NMC with the 
measurement of packet delay or packet loss.  

For multicast active measurement, three kinds of Web Services are to be deployed. 
One is multicast establishing (ME) service for all involved PS. Another is multicast 
testing (MT) service for the sender PS. The last one is measurement collection (MC) 
service for all receiver PSs. In (C) of, four PS are involved in the multicast 
measurement. NMC can delegate an MA that firstly visits all PSs in the multicast tree to 
call each one’s ME service thus establish the multicast membership, then returns to the 
sender PS’s location to call its MT service to start the measurement, and after the 
measurement is over, visits each receiver PS to call its MC service to get the result, and 
finally returns to NMC. 

4   Measurement Functionality as Web Service 

Implementing network measurement functionality as Web Service follows quite  
a different way other than before. Firstly, we must implement the functionality  
in a specific programming language such as Java and C++. Then we need to write  
a configuration file for the implementation and deploy it to a web server with  
SOAP support such as Tomcat with Axis, a SOAP request dispatch engine. If 
deployed successfully, a web service is created for the functionality and can be called 
through the server. We need also to create a WSDL file for the service and publish it 
to a UDDI database server, so that the caller can generate the stub code for the service 
and call it remotely. In this section, we will study a round-trip measurement 
functionality and go through the development cycle in Java for its implementation in 
Web Service.  

4.1   Functionality Implementation and Deployment 

The round-trip measurement functionality is supposed to measure the average packet 
delay along an end-to-end network path over a given time. It needs following input 
parameters: peer PS’s IP address, TCP port, test packet size, waiting timeout and 
measuring time. We can implement such functionality in a Java class, i.e. 
RoundTripTestService. For simplicity, we only give its pseudo codes. 
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public class RoundTripTestService { 
    public double roundTripDelayTest(String peerPSIpAddr, int udpTestPort, int packetSize,  

 int waitingTimeout, int measureTime) { 
 create a stream socket S; 
 bind S to <peerPSIpAddr, tcpTestPort>; 
 while(measureTime isn’t up) { 
 Packet P = new Packet(packetSize); 
 Set P’s Timestamp with current time; 
 Set P’s Sequence No. with current Sequence No.; 
 Send the P through S; 
 while(no packet is received on S && waitingTimeout isn’t up) { } 
 if(no packet is received) continue 
 else { 
 extract the packet’s timestamp; 
 compare the timestamp with current time and record the delay; 
 sleep for a random time; 
             } 
             increase current Sequence No.; 
       } 
      return (delay of each packets received) / number of packet received; 

    } 
} 

RoundTripTestService provided a measurement functionality named 
roundTripDelayTest, which is a public method in the class. Such a service class can be 
deployed to any web server that supports SOAP. Following is a sample deployment 
description file used by Apache Tomcat server to install the service.  

<?xml version="1.0"?> 
<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment" 
id="urn:RoundTripTestWebService"> 
  <isd:provider type="java" scope="Application" methods="roundTripDelayTest"> 
 <isd:java class="RoundTripTestService" static="false"/> </isd:provider> 
  <isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener> 
</isd:service> 

It tells the server that a RoundTripTestService class that provides the measurement 
functionality roundTripDelayTest is to be deployed as a Web Service. Its name is 
RoundTripTestWebService and given a universal resource identifier (URI) 
"urn:RoundTripTestWebService". As Java Virtual Machine (JVM) limits Java program 
from directly accessing local systems, so for specific measurement functionality that 
heavily depends on specialized devices, we can still write a few C/C++ libraries to 
handle their hardware interactions, and depend on Java Native Invocation (JNI) to wrap 
these in a seamless way. 

4.2   Network Measurement Service in WSDL 

WSDL is an important XML document that contains a set of definitions that describes a 
Web Service. Basically there are three parts in a WSDL file: the WHAT part, 
consisting of the types, message, and portType elements, defines the messages and data 
types exchanged between client and server; the HOW part, consisting of the binding 
elements, describes the technical implementation details of the Web Service; finally the 
WHERE part, consisting of the service element, pulls together the port type, the 
binding, and the actual location of the Web Service. Following is a sample WSDL for 
the RoundTripTestService. 



72 Z. Wang, B. Yu, and C. Gao 

<definitions name="RoundTripTestService" xmlns="http://schemas.xmlsoap.org/wsdl/"  
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"> 

<types><xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 
          <xsd:element name="peerPSIpAddr”      type="xsd:string"/> 
          <xsd:element name="tcpTestPort"        type="xsd:int"/> 
          <xsd:element name="packetSize"         type="xsd:int"/> 
          <xsd:element name="waitingTimeout"     type="xsd:int"/> 
          <xsd:element name="measureTime”      type="xsd:int"/> 
          <xsd:element name="double_Response"   type="xsd:double"/> 
 </xsd:schema></types> 
  <message name='RoundTripTestService_roundTripDelayTest_Response'> 
        <part name='response'  element='ns0:double_Response'/></message> 
  <message name='RoundTripTestService_roundTripDelayTest_Request'> 
        <part name='peerPSIpAddr'  element='peerPSIpAddr'/> 
        <part name='tcpTestPort'  element='tcpTestPort'/> 
        <part name='packetSize'   element='packetSize'/> 
        <part name='waitingTimeout'  element='waitingTimeout'/> 
        <part name='measureTime'  element='measureTime'/> 

</message> 
  <portType name='RoundTripTestService'> 
        <operation name='roundTripDelayTest' parameterOrder='peerPSIpAddr  
  tcpTestPort packetSize waitingTimeout measureTime'> 
            <input message='tns:RoundTripTestService_roundTripDelayTest_Request'/> 
            <output message='tns:RoundTripTestService_roundTripDelayTest_Response'/> 
        </operation></portType> 

<binding name='RoundTripTestService' type='tns:RoundTripTestService'> 
    <soap:binding transport='http://schemas.xmlsoap.org/soap/http' style='rpc'/> 
        <operation name='roundTripDelayTest'> 
 <soap:operation soapAction='' style='rpc'/> 
            <input> 
              <soap:body parts='peerProbeIp tcpTestPort packetSize waitingTimeout  
  measureTime' use="encoded" encodingStyle='…' /></input> 
            <output> 
              <soap:body parts='response' use='encoded' encodingStyle=’…’ /></output> 

 </operation></soap:binding> 
</binding> 
<service name='RoundTripTestService'> 
   <port name='RoundTripTestService' binding='tns:RoundTripTestService'> 

      <soap:address location='http://myprobe.org/soap/servlet/rpcrouter'/></port> 
</service> 

</definitions> 

A message is the basic communication element of SOAP. It consists of one or more 
parts, each part representing a typed parameter. All messages are grouped into 
operations in an entity called a portType. A portType represents the interface, a 
concrete set of operations supported by the Web Service. A Web Service can have 
multiple interfaces represented by different portType. Here there is only one portType 
with an operation roundTripDelayTest. The client sends a 
RoundTripTestService_roundTripDelayTest_Response message to call the method, 
which contains many parts that are the input parameters for roundTripDelayTest. 
RoundTripTestService_roundTripDelayTest_Response message as a reply contains one 
part (the return value) called response. In the SOAP binding element, RPC 
communication style is specified for the operations in portType. It supports automatic 
marshalling and demarshalling of messages, permitting developers to specify a request 
as a method call with a set of parameters that returns a response containing a return 
value. Based on this WSDL file, we have all the information needed to create a client 
application to access the Web Service  
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4.3   Publish Network Measurement Service to UDDI Registry 

Only with its WSDL file, NMC can know how to call a measurement web service. 
UDDI database server provides a mechanism for PS to advertise their Web Services in 
WSDL and for NMC to search the WSDL file for a Web Service. It contains 
categorized information about the businesses and services that a PS offers, and 
associates these with corresponding WSDL. Because most of measurement services are 
mission-critical, UDDI database server must impose extra security controls on 
unauthorized access to all the entries for published Web Services in the database. 

 

Fig. 3. A PS’s Entry in UDDI Database. Each PS has an entry in the UDDI database, which 
includes Business Entity, Business Service and Binding Template information for a combinative 
description of its services. 

Each PS has an entry in the UDDI database. Figure 3 illustrates the structure of a 
PS’s entry. The Business Entity normally contains description information for the PS, 
such as its identification, affiliated organization, and administrator’s contact address. 
The Business Service describes a family of services in the same category such as 
Passive Measurement, Unicast-based Active Measurement and Multicast-based Active 
Measurement. Associated with each business service entry is a list of Binding 
Templates that provide information on where to find the service and how to use the 
service. For example, a binding template may specify the access point for 
RoundTripTestService and provides a reference to a construct of tModel that describes 
the measurement Web Service in detail, such as its name and service category. A web 
service’s WSDL is generally attached to the tModel. That is, with the tModel, the 
WSDL file for the RoundTripTestService can be retrieved. 

4.4   Call a Network Measurement Service 

To make a call, we need to specify URI for given measurement web service, signature 
of desired measurement functionality and input parameters. Apache SOAP is a 
powerful toolkit that provides abundant client-side APIs for users to create SOAP 
request, transfer SOAP message and interpret SOAP response. Following code 
illustrates a call to the roundTripDelayTest measurement functionality in the 
RoundTripTestService web service. The measurement is desired to be done within 30 
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minutes by this PS with another PS (202.114.71.25) at TCP port 7000. Each test packet 
is 100 bytes long and deemed as lost when not received within 60s.  

/*packaging a SOAP request*/ 
Call call = new Call(); 
call.setTargetObjectURI("urn:RoundTripTestWebService"); 
call.setMethodName("roundTripDelayTest"); 
Vector params = new Vector(); 
params.addElement(new Parameter("peerPSIpAddr", String.class, “202.114.71.25”, null)); 
params.addElement(new Parameter("tcpTestPort", Integer.class, new Interger(7000), null)); 
params.addElement(new Parameter("packetSize", Integer.class, new Interger(100), null)); 
params.addElement(new Parameter("waitingTimeout", Integer.class, new Interger(60), null)); 
params.addElement(new Parameter("measureTime", Integer.class, new Interger(1800), null)); 
call.setParams(params); 
/*make a call and get the SOAP response*/ 
Response resp = call.invoke (“http://myprobe.org/soap/servlet/rpcrouter”, "" ); 
Parameter result = resp.getReturnValue (); 
double measureResult = ((Double) result.getValue()).doubleValue()); 

Mobile Agent can carry these codes to where the measurement service is hosted and 
execute them there locally. It can free NMC of synchronous waiting for the call return, 
and from performance point of view, it narrows the possibility of call failure and 
reduces network traffics. Currently many Mobile Agent systems, such as Aglet [19] 
and Mole [20], are formulated by two kinds of Agents, one is Mobile Agent that can 
move around, and another is Service Agent (SA) that is stationary to provide services to 
MA. MA speaks with SA through Java RMI. In SONA, things are simplified as MA 
directly speaks to a Web Service through SOAP other than interacts with SA. This new 
mechanism keeps the communication between MA with desired services in a standard 
way so that MA can easily interact with a lot of heterogeneous services without explicit 
needs for code changes and recompilation.  

5   Mobile Agent 

Having received all those parameters such as service URI, method name and parameter 
list from NMC, Mobile Agent can make a call upon the MF exposed by PS’s web 
service. In SONA, for each PS to be visited by Mobile Agent, NMC uses a so-called 
“Mission” to formulate all these information. The mission is made up of a few jobs for 
Mobile Agent to do, each of which addresses a measurement functionality on the 
destined PS. Fig.4 illustrates Mobile Agent, Mission and Job. 

Mobile Agent is uniquely identified by its agentID and an nmcAddr. All the 
missions assigned by NMC are kept in Mobile Agent’s missionList field. The Mission 
gives the address for the PS in its probeSiteAddr, which can guide Mobile Agent’s 
migration from host to host. A few jobs are maintained in the jobList of Mission, each 
of which corresponds to a call for a given MF exposed by the Web Service hosted on 
PS. The Job contains all the parameters to generate the call, such as SOAP Address, 
Service URN, Method Name and Input Parameter List.  

Upon arriving, Mobile Agent extracts the Mission from its mission list that’s 
corresponding to the PS it’s now running on. Then it executes the assigned jobs by 
calling designated MFs one by one and stores the measurements in each Job’s Result 
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field. Fig.5 illustrates how a Mobile Agent migrates from host to host to accomplish its 
missions. There are 3 hosts for Mobile Agent to visit according to its Mission List. For 
each host, there is a job list for the agent to do. On PS1, the agent will call MF1 and 
MF2 provided by the web service urn:WS1. Then the agent will migrate to PS2 to call 
MF1 of urn:WS1 and MF2 of urn:WS2. At the last stop of its itinerary, agent will call 
WF1, WF2 and WF3 provided by urn:WS1 of PS3. Finally the agent returns to NMC 
with all these results. 

Job

<<int>> jobID
<<String>> serviceURN
<<String>> soapAddr
<<String>> methodName
<<Vector>> paramList
<<ReturnType>> returnType
<<Object>> result

<<int>> execute()
<<void>> addParam()
<<void>> removeParam()

Mobile Agent

<<String>> agentID
<<String>> nmcAddr
<<Vector>> missionList

<<void>> migrate()
<<void>> addMission()
<<void>> removeMission()
<<void>> setNMCId()

Mission

<<int>> missionID
<<String>> probeSiteAddr
<<Vector>> jobList

<<void>> addJob()
<<void>> removeJob()
<<void>> setPSAddr()
<<String>> getPSAddr()

1..*1..* 1..*1..*

ReturnType:
An ID to identify each Java basic 
data types such as double, float, 
integer and byte. It's used for the 
program to perform dynamic class 
casting of the result.

 

Fig. 4. Mobile Agent, Mission and Job Class. Mobile Agent is assigned a list of missions by 
NMC, which are to be accomplished during its traveling. Every mission is endowed with a list 
of jobs, each of which contains all the information for calling a MF within PS’s web service. 

 

Fig. 5. Mobile Agent migrates to accomplish its missions. Based on its mission list, Mobile 
Agent migrates from host to host to accomplish missions one by one. It calls the measurement 
functionality based on the information provided by the job list in each mission, and finally 
returns to NMC with the result. 
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6   Security Considerations 

There are two security issues to be considered within SONA. Firstly, as SONA aims 
to achieve a wide participation of network measurement in a scalable way, new PS to 
SONA must be authorized and authenticated, or else, unauthorized PS that hosts 
malicious Web Service can initiate Denial of Service attacks or spy on the 
confidential information from NMC to PS. So before a new PS can join in, it’s 
reasonable that PS be required to present a X.509 certificate signed by the NMC. 
Another security leak is on the Mobile Agent. A lot of works have been done to deal 
with the problem of Mobile Agent’s security [21]. Most questions are focused on how 
to protect MA against malicious Agency and how to protect the Agency against 
malicious MA. In SONA, malicious MA is of primary concern because all 
measurement Web Services are mission-critical. A malicious MA can request a 
Unicast-based active measurement service to run for a long time with large test 
packet, or it illegally calls a passive measurement service to get confidential 
information from prohibited sources. Thus we not only need a secure Mobile Agent 
transport protocol here, but also have to find a way appending each Mobile Agent 
with a credential signed by its birth Agency. 

7   Conclusion 

We studied SONA, a Web Service based network performance measurement 
architecture in this paper to deal with the interoperability and adaptability issues of 
current network measurement projects. Wrapping traditional network measurement 
functions as a Web Service makes SONA a standardized service oriented architecture 
for quick deployment of network measurement functionality and standard invocations. 
Also Mobile Agent enriches SONA with flexible controls of the measurement 
activities. To play in SONA, a probe site is only required to install a HTTP server with 
SOAP support and a Mobile Agent agency for receiving the agent. Network 
measurement services can be developed independently by a third party and offered as a 
plug-and-play package. That is, SONA make it possible to scalable its capability and 
capacity of accommodating more probe sites and measurement functionalities on 
demand without architectural changes. 

As the future work, XML schemas for describing network performance 
measurement service and measurement result will be studied. With the schema, we 
can specify the service in a much standard way and have them open to other network 
management applications. Also we will work on the distributed authorization and 
authentication mechanism that can be applied in SONA to make it a reliable 
platform. 
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1 Introduction

Knowledge of available bandwidth on end-to-end paths and the location of tight
links can effectively enhance the performance of network applications. The tight
link along a network path is the link that has the minimal end-to-end available
bandwidth. Unfortunately, it is quite hard to identify the exact location of the
tight link unless we are able to keep link load information for every involved
link. However such information is hardly attainable due to the decentralized
property of the Internet which discourages link information sharing, it is im-
possible for end users to obtain the link information through traditional passive
measurement techniques. Therefore, so as to meet the needs of end-based net-
work applications, it is necessary to observe the internal dynamics of general
Internet paths from the end-to-end measurements.

Tight link location and accurate available bandwidth estimation techniques
extend existing measurement methodologies of available bandwidth and benefit
the design of resource-aware network applications and the strategies of network
management and diagnosis.

Pathtrait: A Tool for Tight Link Location and
End-to-End Available Bandwidth Measurement
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Abstract. Estimating the end-to-end available bandwidth along a net-
work path is of great significance in congestion control, streaming appli-
cations, QoS verification, server selection. Knowing the exact locations
of tight links, network operators can apply traffic engineering, routing
policy optimization and fault diagnosis. In this paper we present Path-
trait, a tool that allows end users to accurately locate the tight link along
a network path and efficiently estimate the end-to-end available band-
width through the information of tight link location. Pathtrait is based
on a novel probing technique that generates three different sorts of prob-
ing trains. We utilize a original probing structure to capture the input
rate and output rate of a single probing train at certain link among the
estimated network path, which can infer the tight link and estimate the
available bandwidth of the tight link.
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1.1 Main Contributions

In this paper, we present an original end-to-end available bandwidth estimation
and tight link location measurement methodology, called pathtrait. It utilizes a
novel probing structure to capture the input rate and output rate of a single
probing train at certain hop, which leads to the discovery of tight link and
accurate estimation of available bandwidth along a network path. We have
also evaluated pathtrait in a controlled and reproducible environment using NS
simulations. The results of the simulations show that pathtrait accurately locates
the first tight link when the path includes several tight links and attains the
available bandwidth with high accuracy.

1.2 Overview

This paper is organized as follows. Section 2 summarizes previous works on
available bandwidth estimation and tight link location. Section 3 explains the
pathtrait probing methodology. Section 4 presents the pathtrait implementation
and algorithms. Section 5 describes the NS simulations and analyzes the results
of the simulations. Section 6 summarizes and discusses future work.

2 Related Work

2.1 Available Bandwidth Measurement

Carter et al. presented a tool called cprobe [2] to estimate the available bandwidth
based on the dispersion of long packet trains at the receiver. Later, Dovrolis [3]
pointed that cprobe actually measured a metric called the asymptotic dispersion
rate (ADR) other than the available bandwidth.

Melander et al. proposed a measurement methodology called TOPP (Trains
of Packet Pairs) [4]. It estimates both the available bandwidth and the capacity
of the tight link by analyzing the relation between the input and output rates of
different packet pairs.

Another recent estimation technique is Self-Loading Periodic Streams(SLoPS)
[1] proposed by Jain et al. The basic idea of is that one-way delays of packets
show an increasing trend when the input rate of the probing stream is higher
than the available bandwidth of the path. Pathchirp [5] is proposed to improve
the measurement speed of pathload.

Hu et al. proposed a tool called IGI [6] that measures the cross-traffic intensity
other than directly calculating the available bandwidth.

2.2 Tight Link Location Techniques

A recent proposal [7] used a tool, BFind, to locate the tight link of a path.
It essentially induces network congestion through continuous transmission of
UDP traffic and determines the location of the tight link from traceroute round-
trip times. However, the traffic intrusiveness of BFind tool can not be neglected.
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Ribeiro et al. proposed a tool called STAB [8], which measures the sub-path
available bandwidth and the last thin link that has the least available bandwidth
on the entire path is the tight link.

D. Zhang et al. proposed a probing technique for tight link location called
dual rate periodic stream (DRPS) [10] probing. DRPS probing provides a peri-
odic stream with two rates. It can adjust the rate shift time to control the link
congestion.

Another interesting probing technique is recursive packet train (RPT) [11].
It relies on the fact that load packets interleave with cross traffic on the links
along the path and changing the length of the packet train.

3 Pathtrait Probing Methodology

In this section, we present the underlying idea of pathtrait probing. We first
discuss the preliminary knowledge of pathtrait probing and basic definition.
Next, we describe the pathtrait probing theory.

3.1 Basic Definition

Basic Assumption As enumerated below, there are four basic assumptions,
which are common to most recent related studies [1, 11]:

1. FIFO queuing at all routers along the path;
2. Cross traffic follows a fluid model;
3. Average rates of cross traffic change slowly and are constant for the duration

of a single measurement.
4. All routers along the path can generation ICMP packets, the ICMP packet

generation time is pretty small [13, 14].

Available Bandwidth We first define the available bandwidth of a network
link and then of an end-to-end path. Generally, we consider a store-and-forward
network link i with capacity Ci. Let λi(t) be the instantaneous utilization of the
link at t. When the link i is idle, λi(t) is equal to zero. When the link i is utilized,
λi(t) is equal to one.

Theoretically, the available bandwidth at link i during time interval (t, t+ τ)
is defined as its unutilized capacity in that duration,

Ai(t, t + τ) =
1
τ

Ci

∫ t+τ

t
[1 − λi(t)]dt (1)

Thus, consider now a network path with n links, the end-to-end available
bandwidth of the network path during the same time interval is defined as the
minimum available bandwidth of all traversed links,

A(t, t + τ) = min
i=1...n
{Ai(t, t + τ)} (2)

The tight link of a network path is the link with the end-to-end available band-
width along the path.
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Proportional Shared Bandwidth In practical, it is hard to directly obtain the
link utilization information along a network path through end-to-end measure
techniques due to the property of a general network path which discourages
sharing of link information. Therefore, we use a more practical available band-
width definition.

Proportional shared bandwidth of a network path is the rate that the link
provides to a new probing train in a proportional shared fashion, i.e.

RO =

{
RI RI < A
Ct

RI
RI+λ

b ≥ RI ≥ A (3)

where b is the second minimum surplus link bandwidth along the path, RI and
RO are the input rate and output rate of the probing train respectively, A is the
end-to-end available bandwidth of the path and Ct is the capacity of the tight
link.

3.2 Pathtrait Probing

Some Definitions We now describe underlying idea of our probing methodol-
ogy and probing construct. A probe [12] is a sequence of one or more packets
transmitted from a common origin. Let us consider 3 types of probing packets
closely related to the pathtrait probe. A packet that can successfully reach the
specific destination from a common origin TYPE I probe. We consider that a
packet is hop-limited if its TTL is manually set to a smaller value so as not to
reach the destination and be dropped at the specific hop along the probed path.
We refer to the hop-limited packets as TYPE II probe. A hop-limited packet that
can be used to trigger an ICMP response from a specific intermediate router is
referred to as TYPE III probe.

The size and the destination of each packet p with a probe are parameterized
as s(p) and D(p) respectively. If a packet p is hop-limited, the manually set value
is h(p). To denote a probe, we refer to each probe packet with a distinct lowercase
letter, and represent the sequential order in which they are transmitted from the
probing host by writing them from left to right. With [pq], we denote that two
packets p and q are transmitted back-to-back. {pq}δ shows that two packets p and
q are transmitted with inter-packet gap δ. A probe of form {[pq][pq]}δ denotes
that a pair of two-packet probes transmit with inter-probe gap δ, then the rate of
the probe is R = s(p)+s(q)

δ . Next, we discuss the main properties of pathtrait probe.

Packet Tailgating Property For each link, the technique sends a large TYPE II
packet followed by a very small TYPE I packet that will queue continuously
behind the large packet until the previous packet expires. It provides us a basic
idea of tracking the variation of output rates with different input rates with two
types of pathtrait probes.

Lemma 1 (Tailgating Property). Let us consider a path of n links L1, L2, . . . , Ln
with available bandwidth A1, A2, . . . , An, and a probing train with two TYPE I probes
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p and q. If a probe of the form [pq] is injected at L1, with D(p) = D(q) = Ln and if
∀k ≤ n, s(p)

s(q) ≥ Ak+1
AK

, then [pq] will remain back-to-back along the entire path.

Proof. The proof of Lemma 1 can be found in [12]. ��

Self-Loading Periodic Streams Property Self-Loading Periodic Streams
(SLoPS) [1] provides an effective methodology for estimating the end-to-end
available bandwidth.

Lemma 2 (SLoPS Property). Consider a path of n links L1, L2, . . . , Ln with available
bandwidth A1, A2, . . . , An and a probing train with a TYPE I probe p. If a probe of
the form {pp}δ1 (The form at hop i is {pp}δi .) is injected at L1 , with D(p) = Ln and if
δn > δ1, then the input rate of the probe R = s(p)

δ > mink=1...n Ak.

Proof. From the definition of proportional shared bandwidth and formula (3),
we have

R1

Rn
=

s(p)/δ1

s(p)/δn
=
δn

δ1
=

{
1 R1 < A
> 1 R1 � A

If δn
δ1
> 1, then R1(= s(p)/δ1) > min

k
Ak ��

Lemma 2 shows that we can analyze the available bandwidth of the path by
sending periodic probing train.

Dual Rate Property Dual Rate Periodic Streams (DRPS) [10] is designed for
locating tight links in a network path. A DRPS probe has both dual rate property
and SLoPS property. Dual rate property. It can mark the position of tight links
with different input rates injected. Initially, the dual rate probe goes through the
path with a higher rate. As arriving at the objective hop of the path, it shifts its
rate to a lower rate and keeps the rate until arriving at the receiver.

Given a path of n links L1, L2, . . . , Ln with available bandwidth A1, A2, . . . ,
An, and a probing train with a TYPE I probe q and a TYPE II probe p. We inject
the probing train with the form {pqpq}δ1 at L1 and assume that the probing train
enters Li with the form of {pqpq}δi . Given that h(p) = m < n,D(q) = Ln, s(p) = s(q).

For each link Lk, 1 ≤ k ≤ m, the rate at Lk satisfies Rk = Rp
k = Rq

k = s(p)/δk, and
for each link Lk,m < k ≤ n, the form of the probing train becomes {qq}2δk with
the rate satisfying Rk = Rp

k = s(q)/2δk.

Theorem 1 (Dual Rate Periodic Streams Property I). Consider a path of n links
L1, L2, . . . , Ln with available bandwidth A1, A2, . . . , An and a probing train with a
TYPE I probe q and a TYPE II probe p. We inject the probing train with the form
{pqpq}δ1 at L1 and assume the probing train enters Li with the form of {pqpq}δi . Given
that h(p) = m < n,D(q) = Ln, s(p) = s(q). In addition, let the location of the tight link
be hop j, and the input rate RI satisfies RI > mink=1...n{Ak}, RI < mink=1...n({Ak}−{A j}),
then

a If m > j, then 2δ1 < 2δn.
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b if m < j, then 2δ1 = 2δn.

Proof. The proof of Theorem 1 can be deduced from [10]. We denote 2δ1 < 2δn
instead of δ1 < δn to indicate the inter-packet gap changes from δ to 2δ. ��
Corollary 1 (Dual Rate Periodic Streams Property II). Consider the same path and
available bandwidth of all the links along the path as Theorem 1. We inject the probing
train that consists of TYPE I probe q and TYPE II probe q with the form {[pq][pq]}δ1 .
Given that h(p) < m = n,D(q) = Ln, s(q)� s(p). Let the location of tight link be hop j,
and the input rate RI satisfies RI > mink=1...n{Ak}, RI < mink=1...n({Ak} − {A j}), then

a If m > j, then δ1 < δn,RI =
s(p)
δ1
> s(p)
δn

b If m < j, then δ1 = δn,RI =
s(p)
δ1
=

s(p)
δn

Proof. From Lemma 1 and s(q)� s(p), the size of packet q can be neglected and
the initial inter-packet gap between two consecutive packet p is δ1. Then, from
Theorem 1, we get Corollary 1. ��

We now change the form of the injected probe form to {[pe][pe]}δ1, where e
denotes a TYPE III packet. The inter-packet gap between two TYPE III probes
can reflect the variation of the length of probing train and obtain the information
without requiring access to the destination. According to Corollary 1, we get
our dual rate property III.

Corollary 2 (Dual Rate Periodic Streams Property III). Consider the same path
and available bandwidth of all the links along the path as Theorem 1. We inject the
probing train that consists of TYPE I probe p and TYPE III probe e with the form
{[pe][pe]}δ1 . Given that h(e) = m < n,D(q) = Ln, s(e) � s(p). Let the gap between two
ICMP echo reply be σ, and the location of the tight link be hop j, and the input rate RI
satisfies RI > mink=1...n{Ak}, RI < mink=1...n({Ak} − {A j}), then

a If m < j, then δ1 < σ, RI =
s(p)
δ1 >

s(p)
σ .

b If m > j, then δ1 = σ, RI =
s(p)
δ1 =

s(p)
σ .

Proof. The gap between two ICMP echo reply σ denotes the output inter-packet
gap of link m-1, that is, the input inter-packet gap of link m. Therefore, we have
σ = δm. Then from Corollary 1, we get Corollary 2. ��

Input Rate Selection In practice, the key problem of applying Theorem 1,
Corollary 1,2 is how to select the appropriate input rate.

Theorem 2 (Rate Selection Property I). Consider the same path and available band-
width of all the links along the path as Theorem 1. We inject the probing train that
consists of TYPE I or TYPE II probe p and two TYPE III probes em−1, em with the
form {[pem−1em][pem−1em]}δ1 . Given that h(em−1) = m − 1, h(em) = m, 2 ≤ m ≤ n + 1,
D(q) = Ln, s(em−1) = s(em)� s(p). Let the gap between two ICMP echo reply triggered
by em−1 be σm−1, and the gap between two ICMP echo reply triggered by em be σm, then
If σm > σm−1, then Rm = s(p)/δm > Am. If σm = σm−1, then Rm = s(p)/δm � Am
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Proof. If σm > σm−1, then δm+1 > δm, Rm+1 < Rm. From formula 3, we have
Rm = s(p)/δm > Am. If σm = σm−1, then δm+1 = δm, Rm+1 = Rm. From formula 3,
we have Rm = s(p)/δm � Am ��

Theorem 2 provides a way to identify the relationship of the available band-
width between two continuous links along the path. At the sender, we first probe
the path with a higher input rate. After the ICMP echo replies returns, we adjust
the input rate with a lower input rate and probe the path again. Repeatedly, we
can find the tight link.

Theorem 3 (Rate Selection Property II). Consider the same path and available
bandwidth of all the links along the path as Theorem 1. We inject the probing train that
consists of TYPE I or TYPE II probe p and three TYPE III probes em−2, em−1, em with the
form {[pem−2em−1em][pem−2em−1em]}δ1 . Given that h(e1) = 1, h(e2) = 2, h(em−2) = m−2,
h(em−1) = m − 1, h(em) = m, 3 � m � n D(q) = Ln, s(em−1 = s(em) � s(p). Let the
gap between two ICMP echo reply triggered by em−2 be σm−2, the gap triggered by em−1
be σm−1, and the gap triggered by em be σm, then If σm−2 = σm−1 and σm−1 = σm, then
Am < Am−1.

Proof. From Theorem 2, if σm−2 = σm−1, then Rm−1 = Rm � Am, and if σm−1 < σm,
then Rm > Am, so we get Am < Am−1. ��

Theorem 3 provides a method to compare the available bandwidth between
consecutive two links.

4 Pathtrait Implementation and Algorithm

In this section, we describe the pathtrait implementation. The algorithm is ex-
plained throughly.

4.1 Pathtrait Train Structure

Pathtrait train consists of load packets, each of which is followed back to back by
one backward packet or one forward packet alternatively, as depicted in figure 1.
Let q denote measurement packets, and p denote load packets, s(q) � s(p). Let
s(q) = 40 Byte and s(p) = 1000 Byte. We refer packet size as IP-layer payload.
That is, load packets have large size 1000 Byte and measurement packets have
small size 40 Byte. Measurement packets are sent back to back after load packets.
Pathtrait sends 100 load packets with constant inter-packet time δ, the rate of
the load packets is s(p)/δ.

Pathtrait consists of 3 phases. In the first phase, pathtrait finds the hop count
of the current path, and determine the maximum probing rate. Pathtrait sends
a pathtrait train with a TTL 128, at the receiver the TTL in packets is examined,
and determines the hop count from the decrement of TTL. Let the bandwidth of
the outgoing interface as the maximum rate of load packets. In the second and
third phase, pathtrait locate the tight link and measure the available bandwidth
respectively. In the next two subsections, we describe the second phase and the
third phase thoroughly.
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… 

Pathtrait Train Construction 

Fig. 1. Pathtrait train structure: white rectangles represent load packets, gray rectangles
represent forward packets, black rectangles represent backward packets.

4.2 Locating the Tight Link

Let choke link be the link where congestion occurred during pathtrait probing,
choke count as the count of choke link during one pathtrait probing train and last
choke link as the choke link that is closest to the receiver in one pathtrait probing
train. Pathtrait employs the algorithm depicted in figure 2 to locate the tight
link. It works as follows, it probes each hop along the path, get the choke count,
if for hop i the input rate is greater than output rate by 5% (We let delta 5%).
If choke count is one, the choke link is reported as the tight link. Otherwise,
pathtrait proceeds to another locating with adjusted probing rate.

do 
    backward_rate[0] = rate 

for  (i = 0; i < hop_count; i++) 
        send_stream(i+1, rate, 
                    forward_rate, backward_rate) 

for  (i = 0; i < hop_count; i++) 
if  (backward_rate[i] - forward_rate[i] 

            > backward_rate[i] * delta) 
            choke++ 
            tight_link = i 
            min_rate = forward_rate[i] 
            max_rate = backward_rate[i] 

if  (choke == 0) 
        rate = (min_rate + max_rate) / 2 

else 
        rate = min_rate 
while  (choke != 1) 

Fig. 2. The pathtrait locating tight link algorithm

Pathtrait starts locating the tight link with maximum rate obtained in the
first phase. Then it gets the choke count of this train. If choke count equals one,
the tight link is at the unique choke link. Otherwise it needs another train. It
adjusts the rate of load packets by setting it to the input rate at the last choke
link. As a result, it gets a new choke count. If this new one equals 1, it terminates
its locating phase with the tight link at choke point or it sends another train of
pathtrait train with adjusted rate. This process is repeated until it finds the tight
link or exceeds a maximum times. Currently we set the maximum times to 15.
The last probing rate is used in the following phase.
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4.3

Pathtrait sends probing train toward the tight link periodically 15 times with
different rate. Their rate is calculated as:

Ri = (1 + (8 − i)ε)R (4)

where R is the last probing rate in locating the tight link, Ri is the rate of the ith
probing train.

Thus we get 15 samples of input rate and output rate of the tight link. By
equation 3, we get:

1
RO
=

{ 1
RI

RI < A
1
Ct
+ λ

Ct

1
RI

b ≥ RI ≥ A (5)

where RI is the input rate and RO is the output rate at the tight link, Ct is the
bandwidth of tight link and λ is the rate of cross traffic at tight link. There
is a linear relationship between 1/RO and 1/RI, if b ≥ RI ≥ A. Using a linear
regression on the 15 pairs of 1/R0 and 1/RI, we get Ct and λ, from which we
deduce the available bandwidth A as Ct − λ. Currently ε is set to 2%.

5 Simulation and Validation

Pathtrait is verified in ns2 simulation environment. First, we develop an ns ver-
sion of pathtrait as two agent along with an echo agent. Next, we do substantial
simulation with various topology and cross traffic conditions.

In the following, we simulate the topology of the 10-hop path, illustrated in
figure 3. The pathtrait packets enter the path at hop 1 and exit at hop 10. The
tight link is located at link 3 or link 7, link 3 is near, link 7 is far respectively. For
each link, let the capacity be 10Mbps and link delay be 10ms. The topology we
used in simulation is summarized in table 1. The experiment is grouped into
CBR, Pareto and Exponential group. Exp#1 – Exp#7 are CBR scenario, the cross
traffic are all CBR, the tight link is 3. Exp#8 – Exp#14 are CBR scenario, the tight
link is 3 and 7. Exp#15 – Exp#21 are Pareto scenario, the cross traffic are of type
Pareto, the tight link is 3. Exp#22 – Exp#28 are all Exponential scenario, the cross
traffic are of type Exponential, the tight link is 3. We used default parameters
for the traffic generators.

5.1 Constant Cross Traffic Environment

In table 1, exp#1 – exp#7 are grouped as suit#1. In this suit, all cross traffic are
constant bit rate (CBR) traffic sources. The tight link is the third link, that is the
near one. The results are summarized in table 2, with the tight link location at
link 3, which is correct according to topology.

We analyze the last experiment of suit#1. Figure 5.1(a) depicted the process
of locating tight link. Figure 5.1(b) depicted the process of regression to avail-
able bandwidth. The rates of the two probing trains are 10, and 3.073 Mbps
respectively.

Measuring Available Bandwidth
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Fig. 3. The topology used in simulation. All the links have 10Mbps bandwidth and 10ms
link delay. The traffic types are CBR, Exponential or Pareto.

Exp# Non Tight Link Tight Link
Rate (Mbps) Rate (Mbps)

1 | 8 | 15 | 22 3 5
2 | 9 | 16 | 23 3 7
3 | 10 | 17 | 24 1 3
4 | 11 | 18 | 25 1 2
5 | 12 | 19 | 26 3 9
6 | 13 | 20 | 27 5 9
7 | 14 | 21 | 28 7 9

Exp# Tight Link Reported Av-bw (Mbps) %Error
1| 8|15|22 3|3|3|3 5.073|5.107| 5.39|5.415 1.5| 2.0 | 7.8| 8.3
2| 9|16|23 3|3|3|3 2.97|3.073|3.242|2.733 -1.0| 2.5 | 8.1|-8.9
3|10|17|24 3|3|3|3 7.063|6.883|6.447|7.658 0.9|-1.7 |-7.9| 9.4
4|11|18|25 3|3|3|3 7.895|7.848|7.728|7.184 -1.3|-1.9 |-3.4|-10.2
5|12|19|26 3|3|3|3 1.017|1.019|1.109|1.077 1.7| 1.9 |10.9| 7.7
6|13|20|27 3|3|3|3 1.018|1.021|1.081|1.092 1.8| 2.1 | 8.1| 9.2
7|14|21|28 3|3|3|3 1.016|1.025|1.093|1.101 1.6| 2.5 | 9.3|10.1

The locating tight link phase of exp#7 consists of 2 trains. The first train is
sent at full rate, that is 10 Mbps. After this we find congestion occurred at 5 hops.
Next we adjust the load packets rate to 3.073 Mbps, and measure again. We find
choke count 1, which means we should terminate pathtrait locating phase. In
fact, the reported tight link location is correct.

Next we begin the analysis of suit#2. In suit#2, there are two tight link, link#3
and link#7, according to our theory, we should locate the first one as the tight
link. The measurement results is shown in table 2.

We analyze the last experiment exp#14. Figure 5.1 depicts the process of
locating tight link. The rates of the five probing trains are 10, 2.486, 1.918,

Table 1. The simulation topology. Exp#1 – Exp#7 is of suit#1, and has one tight link 3.
Exp#8 – Exp#14 is of suit#2, and has two tight links 3 and 7. Exp#15 – Exp#21 is of suit#3,
and has one tight link 3. Exp#22 – Exp#28 is of suit#4, and has one tight link 4.

Table 2. Suit#1-#4’s simulation results
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1.617, and 1.436 Mbps respectively. From table 2, the relative error of available
bandwidth measurement is within 3%, and the tight link location is all correct,
which validate the accuracy of pathtrait in suit#2.

The locating tight link process in multi tight link environment can be quite
long, but the result is accurate. It takes 5 probing trains for pathtrait to locate the
tight link. The regression to available bandwidth is quiet accurate.

5.2 Bursty Environment

In this subsection, we validate pathtrait in the bursty environment.
In table 2, we present the simulation results. The results in bursty environ-

ment is not as accurate as that in constant cross traffic environment. The relative
error of measuring available bandwidth in suit#3 and suit#4 is less than 11%,
which is still acceptable. The tight link location is all accurate.

6 Conclusion and Future Work

In this paper, we present a novel probing tool – pathtrait – that measures the
location of tight link and available bandwidth along end-to-end paths. We show
that pathtrait is able to locate the tight link with high accuracy and measures the
available bandwidth effectively. We have illustrated the power of combining
the two efforts together.

However the exploration is not complete in some aspects. The large scale
measurement of tight link and available bandwidth on Internet is required to
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be one of our future work. Furthermore, the configuration parameters such as
the load packet size, the number of load packets should be studied henceforth.
We are working to improve the accuracy of pathtrait by modifying the pathtrait
probing structure.
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Abstract. In this paper we evaluate our own weak consistency algo-
rithm, which is called the ”Fast Consistency Algorithm”, and whose
main aim is optimizing the propagation of changes introducing a pref-
erence for nodes and zones of the network which have greatest demand.
Weak consistency algorithms allow us to propagate changes in a large,
arbitrary changing storage network in a self-organizing way. These algo-
rithms generate very little traffic overhead; they have low latency and
are scalable, in addition to being fault tolerant. The algorithm has been
simulated over ns-2, and measured its performance for complex spatial
distributions of demand, including Internet like self-similar fractal dis-
tributions of demand. The impulse response of the algorithm has been
characterized. We conclude that considering application parameters such
as demand in the event or change propagation mechanism to: 1) prior-
itize probabilistic interactions with neighbors with higher demand, and
2) including little changes on the logical topology (leader interconnection
in hierarchical topology ), gives a surprising improvement in the speed of
change propagation perceived by most users. In other words, it satisfies
the greatest demand in the shortest amount of time.

1 Introduction

In this paper1 we evaluate ”Fast Consistency” (FC), a weak consistency algo-
rithm for the dissemination of changes considering application-level demand.
In this scenario, each network node provides service to a group of subscribers,
and nodes are only required to know a few neighbor nodes (autonomy and self-
organization). FC gives priority to sessions with neighbors with higher demand,
and introduces little changes in the logical topology.

We have found considerable improvement with the exchange of very little
additional signalling information: with a low number of anti-entropy sessions it
is possible to deliver consistent content to a greater number of clients (satisfying
most demand in less time).
1 Partially supported by the Mexican Ministry of Education under contract

P/PROMEP/103.5/03/2557 and the FAI-UASLP, México.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 90–101, 2005.
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A replica is a host which provides exactly the same services as the principal
host. In this paper we will use the terms server and replica in the same sense.
When changes in data are introduced, the distribution of changes or events to
all nodes is required to keep all the replicas consistent, with the same content.
Several issues have to be considered:

Consistency: There are strong consistency algorithms, and weak consistency
algorithms. Strong consistency algorithms (see [1], [6], [11] and [18]) are suit-
able for synchronous systems with a small number of replicas, where it must
be guaranteed that all the replicas are in a consistent state (i.e. all the nodes
possess exactly the same content) before any transaction can be carried out.
Therefore they are costly, non-scalable on unreliable networks, generating
considerable latency and a big amount of traffic. By contrast, weak consis-
tency algorithms (see [1], [15] and [12]) generate very little traffic, have low
latency, and are more scalable. They do not sacrifice either availability or
response time in order to guarantee strong consistency, but only need to
ensure that the nodes eventually converge to a consistent state in a finite,
but not bounded, period of time. They are very useful in systems where it
is not necessary for all the nodes to be totally consistent in order to carry
out transactions (systems that withstand a certain degree of asynchrony).

Distribution of Demand: We cannot assume that demand is the same in all
locations. Demand is dynamic: there may be hot spots of demand at some
locations, meanwhile somewhere else demand could be several orders of mag-
nitude smaller. If changes arrive first to hot spots, more demand will be
satisfied with fresh data.

In replication with weak consistency each node from time to time chooses a
neighbor to start an update session. In an update session two nodes mutually
update their contents. At the end of the session both nodes will have the same
content. These are called anti-entropy session because in each session between
nodes, the total entropy in the network is reduced. In this paper it will be referred
to simply as a ”session”. The usual metric principle to evaluate weak consistency
algorithms is the amount of sessions necessary for a change brought about in a
node to be propagated to all the others.

In simple regions with only one hot spot, giving priority to sessions with
neighbors with higher demand gives very good results [8], whereas in multiple
regions of high demand its performance advantage is reduced due to the forma-
tion of islands of locally consistent replicas. To tackle this problem successfully,
we proposed a mechanism to alter the logical topology [10] for converting multi-
ple zones of high demand into a single zone: interconnecting the leaders of every
zone of high demand(a self-organized hierarchical topology). The combined effect
gives the best possible performance for our fast consistency algorithm.

Given that the worst case demand has a combination of high and low de-
mand zones, the value of demand could be viewed as a landscape consisting
of mountains and valleys of demand(Fig. 1). For this purpose, we have devel-
oped a random demand generator with self-similar characteristics, in the form of
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mountains and valleys, using the diamond-square algorithm [2] from computer
graphics.

To evaluate the performance of the algorithm presented in this paper, a fast
and weak consistency algorithm simulator has been constructed, over Network
Simulator 2 [17].

To take into account the demand of clients at every node we use additional
metrics: the speed of demand satisfaction (the rate of demand satisfied with
consistent information), an utility function (based on economic theory). We con-
clude that FC improves the distribution of changes by prioritizing nodes with
greatest demand, rather independently of demand distribution and topology. In
other words, our algorithm satisfies the greatest demand in the shortest amount
of time, while sending the same amount of messages (better value at the same
cost).

The rest of the paper is organized as follows: Section 2 describes our system
model. In section 3 we describe the Fast Consistency algorithm(FC), In section 4
we explain the methodology of simulation of our algorithms in terms of network
topology, demand workload and performance metrics. In section 5 we discuss
the simulation results for several cases. The paper concludes in section 6.

2 System Model

The model of our distributed system consists of a number of N nodes (princi-
pals) that communicate via message passing. By simplicity we assume a fully
replicated system, i.e., all nodes must have exactly the same content.

Every node is a server that gives services to a number of local clients. Clients
make requests to a server, and every request is a ”read” operation, a ”write”
operation, or both. When a client invokes a ”write” operation in a server, this
operation (change) must be propagated to all servers (replicas) in order to guar-
antee the consistency of the replicas. An update is a message that carries a
”write” operation to the replica in other neighboring nodes.

In this model, the demand of a server is measured as the number of service
requests by their clients per time unit or simply the number of clients ”sub-
scribed to”.

3 The Fast Consistency Algorithm

The following section describes an extended Time-Stamped Anti-Entropy
(TSAE) [15] weak consistency algorithm with a ”fast update” step for faster
propagation of changes to nodes of higher demand.

3.1 The Basic FC Algorithm

In a network with an arbitrary large number of nodes N , every node n knows his lo-
cal demandand thedemandon tneighbors:n.demandordn, andn.neighbors[ni] =
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d0, d1, dn, dt,. Demand at node n : dn, in our model and simulations it has been
defined simply as the number of clients that node n provides service. The value
of t is typically in the range of 1..log(N). Every message m can be identified by a
MessageId and a Timestamp: m = m.id, m.tstmp, m.data Every node n has a
summary vector of the history of messages it has received: n.SV [].

Figure 1 describes the protocol with an example among three neighbor nodes,
where n has a new message m and n”.demand > n′.demand > n.demand, with
all values of demand observed at the nodes at the same time. n randomly initiates
a session of exchange of summary vectors with n′, and n′ immediately sends a
fast update with n” because it has greater demand.

n'.SV n.SV m

FU Answer

init_session

n

n'

n''

n'.SV n.SV m

FU Answer

init_session

n

n'

n''

m (If requested)

Fig. 1. An anti-entropy session followed by a fast-update notification to a node with
higher demand

3.2 High Demand Zones Interconnection

In order to improve performance when there are several regions of high demand
surrounded by regions of lower demand that act as barriers slowing down the
propagation of messages (See Fig. 2 ), the basic Fast Consistency algorithm
builds a logical topology to interconnect the high demand zones. In order to
reach this objective, the nodes in high demand zones choose a leader node by
means of a decentralized voting algorithm[10].

In this algorithm each node executes the same local algorithm, which con-
sists in first sending messages (announcing its demand) to its neighbors via the
corresponding (adjacent) links, awaiting the arrival of the messages (neighboring
demand) and processing them. The messages are transmitted in all directions
and arrive after an unpredictable but finite delay.

Each node at a random time will cast its vote for the neighboring node having
the greatest demand, and will send it a message notifying it that the vote has
been cast(See Fig. 2). Each vote is unique and unrepeated; it has the ID of the
node casting it, a time stamp, and a time to live necessary for avoiding loops or
for preventing the vote from circulating infinitely around the network.

Each node that receives a vote passes the vote on to whichever of its neigh-
bors has the largest demand, and so on successively, until after an unbounded
but finite period of time the majority of votes cast on a high demand zone have
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Fig. 2. A demand based election of leader nodes. Every node cast its vote for the
neighbor with more demand, i.e. the node I votes for its neighbor having most demand
(H) and sends it its vote. The node H receives the vote from node I and since node H
has a neighbor with greater demand, it sends I’s vote to this neighbor (G). The node G
only accumulate votes because don’t have neighbors whit more demand and eventually
it will be a node leader.

only one node, which will be the node selected (the leader). It is not possible
to ensure that all the votes of the nodes on a high demand zone reach the node
of greatest demand, since the number of nodes that make up a zone of high
demand is not known. Neither do we know how many votes are still travelling
without having arrived at the node of greatest demand. However, it is possible
to ensure that the votes in a high demand zone will not travel to other zones,
since only replicas of higher demand are propagated, and never toward the zones
of lower demand. In order for a node to take on the role of a leader node, it is
sufficient that, in a time = t, the number of accumulated votes be different from
zero.

However, not all the nodes possessing votes can be considered leaders, since
there will be nodes with more votes and others with very few votes. Thus, from
this subset of nodes, all those having fewer votes under a certain threshold will
be discarded.

In this way we obtain a new set of nodes which represent the greatest zones
of high demand, but as sometimes occurs in a democratic political election, the
nodes with the largest number of votes are not necessarily those with greatest
demand, although they may represent a high demand zone because they are the
nodes in this zone with greatest demand.

The node that knows it is the leader now has the task of finding other leader
nodes, if they exist. It must also announce itself so that other nodes become
aware of its existence.

The mechanism by which a leader node announces itself is by sending a
message as part of the weak consistency protocol. This protocol ensures that the
message arrives to all the nodes in a finite, but unbounded, period of time, and
therefore to the leader nodes as well, assuming these exist.

When a leader node receives a message from another leader node, it keeps
the Id of the node sending the message in a table. Each leader node has a table
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containing the data of the other leader nodes that know of its existence. This
table is replicated in each leader node and is reconstructed dynamically. The Id
of a leader node is included in the table on arrival of a message of announce-
ment. It is not necessary to remove a node from the table of leaders because
the table is dynamically reconstructed periodically, the period of time being at
least equal to the time (expressed in sessions) necessary for the message to cross
the entire network of replicas. These leader nodes establish connection among
themselves(logic topology) in order to speed up the exchange of messages among
all the zones of high demand. Therefore, the logical communication topology is
slightly transformed into the equivalent of one zone of high demand, that is the
most favorable situation for our algorithm.

4 Simulation Methodology

To evaluate the performance of the fast consistency algorithm compared to Gold-
ing’s algorithm[15], we simulate the behavior of the algorithms on a system net-
work with synthetic demand. In this section, we discuss the network topology
and demand workloads that we use in our simulations. We then describe the per-
formance metrics that we use as a basis for comparing the algorithms in terms
of how demand is satisfied per time unit.

4.1 Network Topology

In order for the data obtained from simulation approximates to reality, it is es-
sential that the number of nodes, and other topological properties of the network
used in the simulations, resemble those of the phenomenon under investigation.
However, we are limited by the computational power available. For this reason,
and because the array dimension for the fractal algorithm should be a power of
two plus one, the scenario consists of a square-sectioned mesh of (24+1)∗(24+1)
or 17*17 nodes, in which each node receives the total number of messages in dif-
ferent anti-entropy sessions. For example, the nodes in the center of the mesh
become consistent in far fewer sessions than those found towards the edges of
the mesh. We have observed a certain degree of independence of the network
organization: other experiments using different topologies and different number
of nodes (linear, ring, random networks generated with Brite [13]) have shown
similar results. In addition, our results are related to the network diameter.
Therefore, results for our network with diameter=17 could be applicable to a
network topology similar the Internet. Danesh et al. [4] claim that informed ran-
dom address probing with TTL up to 15 discovers most of the network hosts,
and the number of new hosts using probes with values of TTL between 15 and
30 does not grow significantly.

4.2 Demand Workload

In the works of Yook et al. [16], and in [3] Anukool et al. demonstrated a similar
fractal dimension (≈ 1.5) of routers, ASes, and population density. The coinci-
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Fig. 3. An example of 100 generated Landscapes. Z-axis corresponds to the demand
and the hills are high demand zones.

dence between the fractal dimension of the population and the Internet nodes
(router and AS) is not unexpected: high population density implies higher de-
mand for Internet services, resulting in higher router and domain density. The
demand is generated by the Internet users. If the geographic location of Internet
users have fractal properties, we can infer that the demand have the same frac-
tal properties. Other important characteristic is the existence of high demand
regions and large regions of low demand [7]. We use as scenarios for applying our
algorithm, 100 random demand surfaces(see fig. 1) on which the different levels,
representing the demands, are synthetically generated by the diamond-square
algorithm [2], which is a classic algorithm for generating fractal surfaces that re-
semble landscapes with scaling properties or self-similar. In this way, we achieve
a scenario sufficiently general to ensure that the results obtained in the simula-
tions do not depend on the particular or local conditions of a specific scenario.
To reduce the effects of randomness, and to prevent the results from depending
on the characteristics of a particular fractal surface, each experiment has been
run 1000 times for every (100) random demand surface.

4.3 Performance Metric

The purpose of the ”fast consistency” algorithm is to improve the performance
of the weak consistency algorithms, with particular emphasis on increasing the
speed with which these algorithms convey the changes to the zones of greatest
demand, so that a greater number of clients may have access to fresh content in
a shorter period of time. It is for that reason that our experiments are centered
on measuring these speeds.

The performance (speed) is measured in terms of the anti-entropy sessions
needed for all the zones to receive the messages with the changes generated in
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the rest of the nodes that make up the network. If the number of users in each
node of the network is used as a measure of demand, then a node with a high
number of users which reaches a consistent state will benefit the community
more than another node with a low number of users which reaches the same
state. The availability of up-to-date information on a data intensive distributed
system will be higher if high demand nodes have higher priority than low demand
ones.

Every simulation calculates the pair (di, ci) for all nodes, where di is the
demand at node i, and ci is the time when node i has received all changes.
This pair can be expressed by the c(ni, t) function (an impulse function of
value di):

c(ni, t) =
{

di : t = ci

0 C(t) =
N∑

i=0

c(ni, t) (1)

C(t) is the sum of demand for all nodes that have reached a consistent state at a
certain time t. In economic terms, we can define a utility function for each node
u(ni, t). It represents the value of demand satisfied with up-to-date information
at time t (a step function of value di).

u(ni, t) =
{

di : t ≥ ci

0 U(t) =
N∑

i=0

u(ni, t) (2)

U(t) is the sum of utility for all nodes that are consistent in time t. U(t) ex-
presses the satisfaction or benefit perceived by the community of users of our
system. U(t) roughly corresponds in economic terms with the Social Welfare
function (SWF) defined in terms of global values as Benefit - Cost, given that
the cost (total number of messages exchanged) does not change significantly. In
time t = 0, all the nodes are in a non-consistent state, and as time passes more
and more nodes will reach a consistent state and thus they will contribute to
the SWF with their local demand di.

5 Simulation Results

In this section, we evaluate the performance of the various parts of the algorithm
on a mesh topology using various demand workloads.

5.1 System with Fractal Demand

A fractal demand with fractal dimension similar to which has Internet is assigned
to each node. In other words, each node no longer possesses the same demand
as the rest of the nodes on the grid, with several random regions of high and
low demand. In this scenario, the basic ”fast consistency” (FC) shows a better
performance than the weak consistency algorithms (WC), but without being
optimal[9], owing mainly to the presence of multiple high and low demand zones
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which cause the messages carrying the changes to move quickly towards the
high demand zones, and at the speed of the WC algorithm towards the low
demand zones.

5.2 Leader Interconnection

In order to improve performance when there are several regions of higher demand
surrounded by regions of lower demand, the nodes in high demand zones choose
a leader node by means of a decentralized voting algorithm[10]: each node casts
a vote for its neighbor with greatest demand. At the end of the voting process
there exists a set of nodes that have accumulated votes. However, not all the
nodes possessing votes can be considered leaders, since there will be nodes with
more votes and others with very few votes. Thus, from this subset of nodes, all
those having fewer votes under a certain threshold will be discarded.

In this way we obtain a new set of nodes which represent the greatest zones
of high demand. These leader nodes establish connection among themselves in
order to speed up the exchange of messages among all the zones of high demand.
Therefore, the logical communication topology is slightly transformed into the
equivalent of one zone of high demand, that is the most favorable situation for
our algorithm.

Since we now have the leader nodes, experiments to determine the improve-
ment caused by the leader interconnection algorithm and the effects of the
topologies of leader nodes can now be carried out.

5.3 Leader-node Interconnection in Ring Topology

Leader nodes having a number of votes greater than or equal to the average are
selected and interconnected in a ring topology(top level of hierarchical struc-
ture), which joins together the zones of high demand. In this topology, each
leader node sees the same network diameter. However, there exists the disad-
vantage that the diameter is very large for the same number of nodes than other
topologies. Simulation results can be seen in Figure 4. We can see in terms of
C(t) or U(t) that FC has a better performance than WC. With the FC algorithm
C(t) begins to grow in less sessions than the weak consistency. U(t) have similar
results.

5.4 Leader-node Interconnection in Star Topology

The same experiments have been carried out when the leader nodes are intercon-
nected in star topology (Fig. 5). In this topology the diameter of the leader-node
network is very low, with a maximum of two. We initially though that the be-
havior would be better than that obtained by the leader nodes connected in a
ring topology. However, this is not the case. In the following experiments, the
leader node star topology is not included since it shows a performance inferior
to that of the leader nodes connected in a ring topology.
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Fig. 4. C(t) and U(t) to separate contributions of fast consistency versus weak consis-
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5.5 Effect of the Threshold on the Choice of Leader Nodes

For this experiment, the leader nodes receiving the number of votes greater than
or equal to twice the average are selected and connected together in the shape
of a ring. Results are contrasted with those of the previous experiment, in which
the leader nodes chosen were those corresponding to the average. With a greater
threshold, fewer leader nodes are elected; they are reduced almost by half. The
results can be seen in Fig. 6. They clearly show that better results are obtained
with the threshold fixed at the average of votes obtained.

5.6 Second Leader Hierarchy

In the leader-node network in our fractal demand distributions, zones of high
and low demand can also be distinguished. In large scale distributed systems,
it may be important to construct a second leader node hierarchy on the first,
in order to connect the high demand zones of the first leader-node network. In
this experiment, this second hierarchy is constructed. The results can be seen
in Fig. 7. A slight improvement can be observed. Although small, this slight
improvement can in fact be significant on a large scale system.

6 Conclusions

In this paper, we study the problem of propagating changes of replicated data
on a Decentralized System in a system of any scale, with only little knowledge
of a few neighbor nodes, using our ”Fast consistency algorithm” and whose
main aim is the propagation of changes with preference for nodes and zones of
the network which have greatest demand. We evaluate the performance of the
algorithm by simulation on a mesh topology using various demand workloads.
We have obtained the following results:

We see that fast consistency algorithm has a better performance than weak
consistency algorithm. We may observe significant improvements in the SWF
when fast consistency algorithm is used with the leader nodes connected in a
ring topology(a logical and hierarchical topology), although several alternative
leader interconnection topologies provide similar values of improvement as a
result of the effect of communicating several high demand zones into a virtually
one single high demand zone.

Employing, among other economic concepts, those such as utility and so-
cial welfare, we conclude that our ”fast consistency” algorithm, interconnecting
high demand zones by means of a logical topology, optimizes the dissemination
of changes by prioritizing the nodes with greatest demand, independently of
demand distribution.

In other words, in the FC algorithm, the network reach a consistent state in
a shorter period of time. This occurs without any increase in use of resources
for carrying out this task. Thus the utility function U(t) grows much faster with
Fast Consistency algorithm over a self-organized hierarchical topology which
interconnect the high demand zones in a large distributed system.
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Abstract. Message Passing Interface (MPI) Collective Communication Func-
tions (MCCF) are usually implemented in programming libraries utilizing in-
variable algorithms. Not always do such algorithms yield the best performance 
with all kinds of applications and over all execution environments. In this pa-
per, we present, simulate, analytically model, verify and analyze reconfigurable 
MCCF that present variable structures and behaviors, in order to provide opti-
mized configurations, flexibility and performance. In this paper we propose and 
present a set of optimized reconfigurable MCCF, which add flexibility and high 
performance to collective communications. We simulate, analytically model, 
verify and analyze the proposed functions, and compare them with invariable 
implementations. Our results show that reconfiguration at the algorithm level 
really yields flexibility and performance gains in MCCF. 

1   Introduction 

The performance of Message Passing Interface (MPI) collective communication func-
tions (MCCF) is a critical factor for most of the MPI based applications [1] [4]. There 
several related works addressing this issue [2] [3] [4] [5] [6] [7] [8] [9], many of 
them, by adding flexibility to the implementations of MCCF. However not always do 
such algorithms yield the best performance with all kinds of applications running on 
all execution environments. 

In this paper, we propose and present a set of optimized reconfigurable MCCF 
(RMCCF), which add greater flexibility (algorithmic level) and improve the perform-
ance of collective communications. We simulate, analytically model, verify and ana-
lyze the proposed functions, and compare them with invariable implementations. 

2   Reconfigurable MPI Colective Communication Functions 

The performance optimization of MPI collective communication functions (MCCF) 
has been intensely studied in the latest years. In literature, there are several works 
related to ours in different aspects [2] [3] [4] [5] [7] [8], which remarks the impor-
tance of optimizing MCCF. According to those works, the main strategies for  
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addressing this issue are: (1) proposing algorithms for specific architectures, networks 
and topologies [3] [7]; (2) selecting and changing communication algorithms within a 
limited set of options, based on input parameters [2] [3] [4] [5];  (3) message segmen-
tation [7]; (4) message combination, suitable for high latency networks [5] [7]; (5) 
network links redundancy [7] [8]; (6) heuristics for algorithm selection [5] [7]; (7) 
component specification of MCCF [6] [8]; and (8) small granularity components [5] 
[8]. However none of them combined all these strategies. In the literature we find 
countless works that use the terms “reconfigurable system/software/algorithm”, but 
none of them focus on the algorithmic level. 

In this work improve our initial proposal of Reconfigurable MPI Collective Com-
munication Functions (RMCCF) [9], by exploring further the flexibility and high 
performance in the algorithmic level of MCCF. An RMCCF is divided three in hier-
archical layers, namely: Basic, Reconfigurable and Configuration Control. 

The Basic Layer (BL) is composed of data storage structures and frames. A frame 
is a generic algorithmic structure (implemented as function, classes, etc) with an inter-
face having two possible finalities: (1) supporting the execution of algorithm parts 
which can be changed or replaced (action frame); or (2) controlling the functioning, 
by acting upon or managing data structures. Our proposal of RMCCF has three 
frames. Algorithm Assembly (action) is responsible for creating a logical topology 
between processes by selecting, combining and configuring communication patterns, 
addressing strategies 1 and 2 for adding flexibility. Message Combination & Seg-
mentation (control) is responsible for combining messages, in order to reduce the 
communication latency, or segmenting them, in order to favor packet switching, flow 
control, error control and message buffering (strategies 3 and 4). Maximum Degree 
of Primitives (action) configures the degree of the communication primitives in order 
to take advantage of the fact that the network may have a communication degree 
greater than one (strategy 5). 

The Reconfigurable Layer (RL) is a configuration or an instance of the BL, in 
which every frame is filled in with one or more compatible building blocks at a cer-
tain moment. A block is a possible implementation of a frame (i.e. a set communica-
tion pattern among which we can select an option). A block may have one or more 
options (it is configurable) and may also be static or dynamically replaced. The build-
ing blocks for the first frame are collective communication patterns, compatible with 
the behavior of each communication operation. 

The Configuration Control Layer (CCL) is responsible for selecting and swap-ping 
the building blocks that fill in the frames at a given moment. It is also responsible for 
configuring those blocks. Thus, the functioning of the RA and the configurations are 
decided within this layer. Its decisions are made upon input parameters, dynamic 
workload information, commands from the operating system or user etc. Our initial 
CCL proposal is implemented as a table that keeps up the best configuration accord-
ing to some static (e.g.: network topology) or dynamic system information and work-
load parameters (message size, number of processes). 

This proposal of RMCCF as a whole assesses the strategies (5), (6) and (7). Thus, 
our proposal is flexible enough to combine all highlighted strategies, which add flexi-
bility to MCCF aiming to improve their performance. 
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Fig. 1. Architecture of a reconfigurable MPI collective communication function 

3   Results 

In order to reduce the number of experiments and analyses, we simplified our simula-
tions and analytical models. The simulation response times were obtained with 
ClusterSim [9], which simulates parallel and distributed systems. Our simulation 
environment is a homogeneous 16 PIII (1GH) nodes workstation cluster with a Fast 
Ethernet network (bus and switch topologies). On the other hand, the analytical mod-
eling considered the same cluster using other network topologies: full-connected, star, 
2D-mesh and ring [10]. The metric was the number of hops. 

In the simulations the workload is composed of parallel jobs, containing different 
communication patterns (Algorithm Assembly frame). They were based on first-
degree point-to-point communication primitives and transmitted messages from 1 
byte to 256KB. No message segmentation or combination was used. These patterns 
implement MPI_Bcast (one-to-all), MPI_Reduce (all-to-one) and MPI_Allgather (all-
to-all), which represent all MPI cardinality classes. In the analytical modeling we also 
varied the degree of the communication primitives (Maximum Degree of Primitives 
frame). We used first- and optimal-degree primitives. We remark that analyzing the 
Combination & Segmentation frame is a future work. 

In the simulation of the clusters using bus and switch, RMReduce (Reconfigurable 
MPI_Reduce) was compared with four invariable implementations utilizing other  
 

 

(a) (b) (c) 

Fig. 2. Simulated response times for MPI (a) Reduce, (b) Allgather, (c) Bcast 
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communication patterns: Sequential, Binary, Binomial and Ring [3]. According to 
Fig.2a, RMBcast provided the best response time. That function assumed the Sequen-
tial and Binomial configurations, respectively running on the bus and the switch-
based clusters, because those functions yielded the best results. Binomial yielded the 
lowest response times on the switch because it explores the parallelism within the 
interconnection device. However on the bus, Binomial presented dependency between 
transmissions, and Sequential performed better. Ring yielded the worst results due to 
its sequential nature and to the dependency between its transmissions. 

Suppose an application with 50% of the calls to MPI_Reduce executed on the bus, 
and 50% on the switch. RMReduce would produce a speedup of 2.37 and of 1.0013 
regarding Sequential and Binomial respectively. We remark that even an optimized 
algorithm such as Rabenseifner’s [5] may perform worse than another one, depending 
on the features of the system where it is executed. 

In the simulation of the clusters using bus and switch, RMAllgather was compared 
with four invariable implementations utilizing the following communication patterns: 
FanIn-FanOut, Circular, Pairwise and Shuffle [3]. According to Fig.2b, the best re-
sults were provided by RMAllgather assuming a Pairwise configuration. Considering 
the simulated network, the transmitted message sizes and the communication patterns 
utilized, we noticed that the reconfigurable function performs at least as good as the 
best average algorithm for that situation. Among the invariable patterns, Pairwise 
yielded the best results because it transmits the smallest number of messages (hub) 
and because it explores the parallelism within the interconnection device (switch). In 
both cases, RMAllgather there would present no extra performance gains over the 
MPI_Allgather implemented with the invariable Pairwise pattern. 

In the simulation of the clusters using bus and switch, RMReduce (Reconfigurable 
MPI_Reduce) was compared with four invariable implementations utilizing the fol-
lowing communication patterns: Sequential, Binary, Binomial and Chain [5]. Accord-
ing to Fig.2c, the RMBcast provided the best results assuming a Binomial configura-
tion both in bus and switch. The reason is the fact that these patterns are very similar 
to those used in MPI_Reduce, but they work reversely. 

In the analytical modeling we considered the best and the worst cases of mapping 
between processes and the cluster’s nodes. Respectively, the messages would take the 
smaller and the longest path to get to their destinations. Analyzing Table 1, we notice 
that Binomial presented the best results in all cases. Thus we could wrongly suppose 
that choosing a single invariable algorithm to implement MPI_Bcast would always 
provide  the  best performance. That statement is false when we analyze the best case: 

Table 1. Worst and best mappings between processes and network topology (number of hops) 
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on a Ring topology, Chain performs better than Binomial. In this case, Chain would 
present a 1.04 speedup regarding Binomial, although the latter has a speedup of 4.11 
regarding the first in the worst case of mapping. 

Suppose a workload composed of a great amount of broadcast function calls. It is 
executed on several 16-node clusters, found at a data processing center. Considering 
that 80% of the clusters use a Ring topology and the other 20% use equally the other 
four network topologies that we modeled. If we simultaneously execute the workload 
in all clusters of the center considering the best case of mapping between processes 
and network nodes, RMBcast would present a speedup of 1.24 regarding Binomial 
and 1.20 regarding Chain. This fact means that RMBcast presented a better perform-
ance than both other algorithms, remarking that both were the best option in each 
 case. Thus it is clearer that the use of RMCCF yield greater performance gains than 
those possibly achieved with a single invariable algorithm.As suggested in [10], if the 
network’s topology varied, there might be further performance gains. Suppose a par-
allel application composed of 8 processes and utilizing 100 calls to the function 
MPI_Bcast. This workload is executed in a network with a topology that can vary 
along time between: Star, Ring, and 4x4 2D Mesh without wraparound. In this case, 
the speedup of RMBcast would vary from 1.38 to 2.9. The flexibility increases using 
the Primitive Degree frame of the RMCCF, so that the greatest speedups are obtained 
utilizing the optimal degree for each type of network topology. We notice that Bino-
mial presented the best performance in the computational simulations involving the 
broadcast operation. However in the analytical modeling, sometimes that communica-
tion pattern presents a worse performance than the worst average algorithms used in 
the computational simulations (i.e. Chain). 

4   Conclusions 

In this work we proposed, presented, simulated, analytically modeled, verified and 
analyzed a set of RMCCF. Their flexibility at the algorithmic level can be used to 
improve performance, since they can alter their behavior by changing their structure. 
RMCCF yielded better performance than invariable functions based on traditional 
algorithms, at all tested situations. In some cases, there was a considerable perform-
ance gain (3.7 average speedup and 7.8 peak speedup). 

Our results also show that an algorithm, which is commonly considered the best, 
may perform worse at some situations than other algorithms, which commonly yield 
the worst performance. Although the traditional algorithms we modeled are very 
simple, we conclude that even more complex algorithms behave similarly [5]. An 
important aspect of reconfigurable functions is the fact that any behavior can be 
changed or replaced, thus providing optimized results for each execution environ-
ment. RMCCF’s performs as good as the best algorithm, and can be much better. The 
concept of reconfigurability makes it possible to add previously inexistent configura-
tions to the algorithm, and is applicable to other architectural levels.  

The main disadvantage of RMCCF lies in the CCL, which may present a great 
computational and storage costs, thus demanding simplifications. Nevertheless, there 
are several heuristics assessing this drawback [5] [7]. 
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The main contributions of this work are: (1) the proposal, presentation, simula-
tion, analytical model, verification and analysis of RMCCF; (2) the comparative 
analysis of different MCCF based on reconfigurable and invariable algorithms; and 
(3) the successful use of the concept of reconfigurability on MCCF, which provided 
optimized performance, and some considerable performance gains. 

Our future works include: (1) adding reconfigurability into real implementations 
of the MPI standard; (2) exploiting dynamic reconfiguration; (3) comparing RMCCF 
with functions based on the state-of-the-art algorithms; (4) utilizing multi-criteria 
decision in the CCL; (5) evaluating and analyzing the reconfiguration overhead; (6) 
applying the discussed concepts in other contexts. 
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Abstract. Data replication can be used to reduce bandwidth consumption and 
access latency in the distributed system where users require remote access to 
large data objects. In this paper, according to the intrinsic characteristic of 
distributed storage system, the parallel replication algorithm NBPRA (Network-
Bandwidth-based Parallel Replication Algorithm) is proposed. In the NBPRA, 
according to the network state, several replicas of a data object are selected, 
which are of the least access cost; then the different parts of the data object are 
transferred from these replicas, and they are used to make a new replica. The 
results of performance evaluation show that the NBPRA can utilize the network 
bandwidth efficiently, provide high data replication efficiency and substantially 
better access efficiency, and the improvement of system performance is related 
to the number of different data objects accessed by jobs.  

1   Introduction 

There is a growing demand for the automatic, online archiving of data resources. For 
decades, industry and other users have relied on tape to back up their critical data, but 
this scheme requires a human administrator to maintain the tape drivers, file drivers, 
and the tapes themselves. As the amount of data resources in the world explodes, this 
maintenance will become too costly to be feasible. At present, how to aggregate the 
geographically distributed heterogeneous storage resources to form the virtual storage 
space and provide secure efficient data storage service is becoming a challenging 
research topic in the worldwide.  

The replication scheme of distributed storage system determines how many replicas 
of each data object are created, and to which nodes these replicas are allocated. This 
scheme critically affects the performance of distributed storage system, since reading a 
data object locally is less costly than reading it from a remote node, especially for large 
data objects. There are two major motivations for replication increasing availability 
and increasing system performance. Replication creates redundant information in the 
network, which allows the system to remain operational in spite of node and link 
failures and thus increase reliability. Also, if data is replicated near the node where it is 
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accessed, communication cost is greatly reduced. Due to the dynamic of network, 
sometimes the network bandwidth is relatively very low. That leads to a focus on 
reducing network transmission cost, on utilizing the redundant network bandwidth 
sufficiently, and hence on the performance issue. 

Peer-to-peer distributed storage systems are positioned to take advantage of gains 
in network bandwidth, storage capacity, and computational resources to provide 
longterm durable storage infrastructures. Systems such as Farsite([1]), 
Intermemory([2]), Freenet([3]), CFS([4]), PAST([5]), and OceanStore([6]) seek to 
capitalize on the rapid growth of resources to provide inexpensive, highly-available 
storage without centralized servers. The designers of these systems propose to achieve 
high availability and long-term durability, in the face of individual component 
failures, through replication techniques. 

Optimising the use of Grid resources is critical for users to effectively exploit a 
Data Grid. Data replication is considered a major technique for reducing data access 
cost to Grid jobs([7],[8],[9]). Replication involves the creation of identical copies of 
data files and their distribution over various Grid sites. This can reduce data access 
latency and increase the robustness of Grid applications.  

In the most research projects on peer-to-peer distributed storage system and Data 
Grid, the traditional replication technology is utilized to achieve the high availability 
and durability. In the traditional replication technology, if a new replica R’ of data 
object DO is to be made on node A, the best replica R of data object DO should be 
found, then make a copy of R and transfer it to node A, that is replica R’. If the 
network bandwidth is relatively low and the data object need to be replicated is very 
large, the efficiency of replication will be low, thus the availability and system 
performance will be reduced.  

In this paper, according to the intrinsic characteristic of distributed storage system, 
the parallel replication algorithm NBPRA is proposed. Section 2 describes the parallel 
replication algorithm NBPRA. Section 3 presents the results of performance 
evaluation. Section 4 provides a summary of our research work. 

2   Parallel Replication Algorithm NBPRA  

In the parallel replication algorithm NBPRA (Network-Bandwidth-based Parallel 
Replication Algorithm), firstly, according to the network state, NUM replicas of data 
object DO are selected, which are of the least access cost; secondly, different parts of 
data object DO are transferred from different replicas, then these parts are combined 
to make the new replica of data object DO. Compared with the traditional replication 
technology, NBPRA utilizes several network links to transfer a copy of data object, 
thus the availability of network bandwidth is improved, and the efficiency of data 
replication is improved, so the efficiency of data access is improved efficiently. 

NBPRA includes two strategies: the replica selection strategy and the data quantity 
assignment strategy. 

2.1   The Replica Selection Strategy 

The replica selection strategy decides which replicas are used to make the new 
replica. Firstly, the access cost of each replica should be evaluated; secondly, the 
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number of replicas to be selected should be decided; lastly, the replicas with the least 
access cost are selected. 

The access cost of replica lies on the network bandwidth and the distance between 
the two nodes. In figure 1, a new replica of data object DO will be made on node A, 
and there is a replica R of data object DO on node B, and the number of hops between 
node A and node B is k+1, the available bandwidth of each link between any two 
nodes is bw1, bw2, bw3, ……,bwk, bwk+1, thus the access cost of replica is 

( )+

=

1

1

k

i ibw
Rsize . 

A N1 N2 N3 N4 Nk-1 Nk BNk-2

R

… …
bw1 bw2 bw3 bw4 bwk-1 bwk bwk+1

 

Fig. 1. The access cost of replica 

In fact, it is not true that more replicas selected will get more profit. If more than one 
replica will be transferred through the same link, then the available bandwidth of each 
replica will be relatively low. On the other hand, if one replication occupies too many 
links, the other replications will be affected badly. In view of the system performance, 
the number of replicas selected will be decided according to the degree of node A.   

The basic idea of the replica selection strategy is as follows: 

1. Calculate the access cost of each replica R, which is ( )+

=

1

1

k

i ibw
Rsize . 

2. Select the replicas used to make the new replica of data object DO. The 
selection conditions include: 
a) The replicas selected are of the least access cost; 
b) The replicas selected do not share the same links; 
c) The number of replicas selected is not more than the degree of node A. 

2.2   The Data Quantity Assignment Strategy 

The efficiency of replication is decided by not only the replicas selected, but also the 
data quantity transferred from each replica. There are two fundamental principles of 
data quantity assignment: 1) the access cost of replica is less, the data quantity 
transferred from it is larger; 2) the data transfer of all replicas finish simultaneously.  

The basic idea of the data quantity assignment strategy is as follows: 

1. Calculate the transfer rate of each replica selected by the replica selection 

strategy. In figure 1, the access cost of replica R is ( )+

=
=

1

1

k

i i
R bw

RsizeCost , 

the transfer rate of replica R is 
R

R CostTR 1= . 
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2. Calculate the sum of transfer rate of selected replicas. Assume the number of 
selected replicas is NUM, the selected replicas are R1, R2, …, RNUM, and the 
transfer rate of them are TR1, TR2, …, TRNUM, so the sum of transfer rate of 

selected replicas is 
=

=
NUM

j
jTRTRSUM

1

_ . 

3. According to the transfer rate of each selected replica, assign the data quantity 
of each replica. The data quantity of replica Rk is assigned to 

( )
TRSUM

TR
DOsize k

_
, ( )DOsize  is the size of data object DO.  

In the traditional replication strategy, a replica of the least access cost is selected, 

so the time of replication is ( )
( )NUMTRTRTR

DOsize
,...,,max 21

. 

In NBPRA, the NUM replicas are selected, which are of the least access cost. The 
different parts of data object DO are transferred from the different replicas, so the 
time of replication is ( ) TRSUMDOsize _ . 

It is clear that NBPRA utilizes the network bandwidth more efficiently than the 
traditional replication strategy, and can improve the efficiency of replication 
evidently. 

2.3   Algorithm Description 

The description of NBPRA is as follows. 

BEGIN 
Step_1: Get the degree of node A on which a new replica of data object DO will be 

made, let DG denote the degree of node A. 
Step_2: Get the replica set of data object DO from metadata catalog, let Set_R 

denote the replica set of DO, let Num_Set_R denote the number of replicas in Set_R. 
Step_3: Evaluate the access cost of each replica in Set_R. Let CostR denote the 

access cost of replica R, ( )+

=
=

1

1

k

i i
R bw

RsizeCost . 

Step_4: Initialization:  i = 0, Set_Selection = ∅. 
Step_5: Num_Selection = min(Num_Set_R, DG). 
Step_6: DO  

{ 
Select the replica R_Selection from Set_R, the access cost of which 
is the least in Set_R, ( )RSetRCostCost RSelectionR _,min_ ∈= ; 

SelectionRSelectionSetSelectionSet ___ += ; 

i = i +1; 
SelectionRRSetRSet ___ −= ; 

FOR each R’∈ Set_R 
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{ 
   IF R_Selection and R’ share the same links 
   THEN '__ RRSetRSet −= ; 

} 
}WHILE (i< Num_Selection AND Set_R ≠ ∅)  

Step_7: Calculate the transfer rate of each selected replicas.  

R
R CostTR 1= , SelectionSetR _∈ , 

TRR denotes the transfer rate of replica R. 
Step_8: Calculate the sum of transfer rate of selected replicas.  

∈
=

SelectionSetR
RTRTRSUM

_

_ . 

Step_9: Assign the data quantity of each replica R in Set_Selection to 

( )
TRSUM

TR
DOsize R

_
. 

END 

2.4   The Case Study 

In figure 2, there are 6 replicas of data object DO in the network, and they are 
distributed on node D, F, H, I, J, K, denoted as RD, RF, RH, RI, RJ, RK. According to 
the access requirements, a new replica of DO will be made on node A. The relative 
available bandwidth of each link is marked in the figure, for example, the relative 
available bandwidth of link between node A and B is 3. There is a tuple (CostR, TRR) 
for each replica R, which denotes the access cost and transfer rate of each replica, for 
example, (1.33, 0.75) of replica on node F means that the access cost of the replica is 
1.33, and that the transfer rate of the replica is 0.75. 
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Fig. 2. The access cost and transfer rate of replicas 
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Fig. 3. The data quantity of the selected replicas 

According to the NBPRA, initially, Set_R={RD, RF, RH, RI, RJ, RK}, 
Set_Selection=∅. The degree of node A is 4, the number of replicas in Set_R is 6, so 
the number of selected replicas should be not more than 4. 

Firstly, the replica RH is selected, the access cost of which is 0.33, and it is of the 
least access cost among Set_R, so Set_Selection={RH}. Because the replica RH and RI 
share the same link, the Set_R changes to { RD, RF, RJ, RK }. 

Secondly, the replica RK is selected, the access cost of which is 0.67, and it is of 
the least access cost among Set_R, so Set_Selection={RH, RK}. Because the replica 
RK and RD share the same link, the Set_R changes to {RF, RJ}. 

Thirdly, the replica RF is selected, the access cost of which is 1.33, and it is of the 
least access cost among Set_R, so Set_Selection={RH, RK, RF}. Because the replica 
RF and RJ share the same link, the Set_R changes to ∅. Therefore, the selected 
replicas are RH, RK, RF. 

Lastly, the data quantity of each selected replica is assigned. Figure 3 shows the 

assignment, the data quantity of replica RH is ( )DOsize∗
7

4
, the data quantity of 

replica RK is ( )DOsize∗
7

2
, the data quantity of replica RF is ( )DOsize∗

7

1
. 

According to the traditional replication strategy, the replica RH is selected, and it is 
transferred to node A to make a new replica of data object DO, so the time of 

replication is ( )
3

DOsize . 
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According to the NBPRA, the replica RH, RK and RF are selected, and the different 
parts of DO are transferred to node A to make a new replica, so the time of replication 

is 
( ) ( ) ( )

75.0
7

1

5.1
7

2

3
7

4
DOsizeDOsizeDOsize ∗

=
∗

=
∗

. 

It is obviously that, 
( )

75.0
7

1
DOsize∗

< ( )
3

DOsize , the time of replication of NBPRA 

is less than the time of replication of the traditional replication strategy. 

3   Performance Evaluations  

OptorSim([10],[11],[12]) is a simulator used to evaluate the replication strategies. 
OptorSim simulates the system architecture shown in Figure 4 for studying various 
data replication approaches. The simulation is constructed assuming that the system 
consists of several nodes, each of which may provide computation and data-storage 
resources (called Computing and Storage Elements) for data intensive jobs. Jobs are 
submitted to the system over a period of time via the Resource Broker (RB). The RB 
schedules each job to the Computing Elements (CE) with the goal to improve the 
overall throughput of the system. A Replica Manager (RM) at each node manages the 
data flow between nodes and interfaces between the computing and storage resources. 
The Replica Manager (RM) is responsible for the selection and dynamic creation and 
deletion of replicas. 

In our simulation, the system topology (see Figure 5) comprises 11 nodes. Each SE 
of node has a capacity of 150 GB. Each data object has size of 1 GB and the total size 
of the data object set is 120 GB.  

We assume that initially each data object has only one physical instance referred to 
as master copy, and the number of replicas of each data object is a random number 
between 0 and 2. The initial data object distribution is that all master copies and 
replicas are randomly distributed among all nodes. If the access frequency of a data 
object from one node reaches the threshold, then a new replica of data object should 
be made on the node. 

Access pattern determines the order in which a job requests data objects. The 
following two access patterns are considered in our simulation:  

1. sequential access pattern: all data objects are requested in a predetermined 
order; 

2. Gaussian random walk access pattern: successive data objects are selected 
from a Gaussian distribution centred on the previous data objects. 

The economy-based replication strategy ([9],[13]) is proposed for Data Grid, it 
optimises both the selection of replicas for running jobs and the dynamic creation of 
replicas in the nodes. In this strategy, optimization agents are located on nodes and 
use an auction protocol for selecting the optimal replica of a data object and a 
prediction function to make informed decisions about local data replication. Data 
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Fig. 4. Simulated system architecture 
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Fig. 5. System topology for simulation 

objects are “purchased” by CEs for running jobs and by SEs to make an investment 
that will improve their expected future revenue. These data objects are sold by SEs to 
either CEs or other SEs. CEs try to minimize the data object purchase cost, while SEs 
attempt to maximise their profits. CEs and SEs interact with intelligent optimization 
agents which perform the reasoning required in the strategy.  

The performance comparison between the economy-based replication strategy and 
the NBPRA includes two aspects: 
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1. Relation between the access patterns and the system performance; 
2. Relation between the number of the different data objects accessed by jobs 

and the system performance. 

There are 6 job types in our simulation. The difference between job types is the 
data quantity accessed by jobs. The data quantity and probability distribution of each 
job type is shown in Table 1. Jobs were submitted at five seconds intervals. The 
estimated time taken to complete a job was calculated as the execution time on the 
node, not including the time waiting in the queue at the node. 

Table 1. Job types 

Job Type Data Quantity (GB) Probability 
1 1 17% 
2 5 17% 
3 10 16% 
4 25 17% 
5 30 16% 
6 50 17% 

3.1   Access Patterns 

The results comparing the two algorithms for each access pattern are shown in 
Figures 6 and 7. The total job time is averaged over 10 simulation runs. Figure 6 
shows results for sequential access pattern and Figure 7 shows results for Gaussian 
random walk access pattern.  

The results show that the NBPRA provides substantially better throughput for jobs 
that have a sequential access pattern or a Gaussian random walk access pattern, this 
also means that the NBPRA can provide higher data access efficiency. The main 
reason is that the replication is parallelized in the NBPRA, and that it can utilize the 
network bandwidth more efficiently. 

The results also show that both the economy-based replication strategy and the 
NBPRA are not sensitive to the access patterns. 

Number of Jobs

T
ot

al
 J

ob
 T

im
e

 

Fig. 6. Total job times for sequential access pattern 
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Fig. 7. Total job times for Gaussian random walk access pattern 

3.2   Number of Data Objects 

The results comparing the two algorithms for the number of the different data objects 
accessed by jobs are shown in Figure 8. 1000 jobs are executed. The access pattern of 
jobs is sequential access pattern. The number of the different data objects accessed by 
jobs is changed from 50 to 120. The total job time is averaged over 10 simulation runs.  

The results show that the difference between the NBPRA and the economy-based 
replication strategy is decreased as the number of the different data objects accessed 
by jobs increases. In the NBPRA, if there are more different data objects to be 
replicated, the interference between different replications will be more serious. So the 
improvement of replication efficiency is limited, and it will affect the improvement of 
system performance indirectly. 

0

10000

20000

30000

50 60 70 80 90 100 110 120
Number of different data objects

T
ot

al
 J

ob
 T

im
e

s

economy-based repl i cat i on st rategy NBPRA

 

Fig. 8. Relation between the number of different data objects and total job times 

4   Conclusions 

In the parallel replication algorithm NBPRA, in order to utilize the network 
bandwidth efficiently, the replication is parallelized, the different parts of a data 



118 Y. Wang and Y. Qin 

object are transferred from different replicas, which are used to make the new replica 
of the data object. Compared with the economy-based replication strategy, the 
NBPRA utilizes the network bandwidth more efficiently, provides higher data 
replication efficiency and substantially better access efficiency. However, the 
improvement of system performance is related to the number of different data objects 
accessed by jobs. 
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Abstract. This paper presents a quorum-based group k-mutual exclu-
sion algorithm for open distributed computing systems that can evolve
their behavior based on membership changes in the environment. The al-
gorithm consists of two main layers; the quorum-consensus and quorum-
reconfiguration. The quorum consensus layer is used to handle requests
from and to the application layer, and it directly adopts a proposed k-
coterie based algorithm of the group k-mutual exclusion in the static
environments without any change to its protocol. Thus, the message
complexity and quorum availability are the same as in the static environ-
ments. The quorum reconfiguration reconstructs information structure of
the k-coterie by simply implementing the properties of two quorum input
operations called coterie-join and coterie-cross. The reconfiguration layer
is simple to use and has a great ability to complete any operation during
reconfiguration powerfully thus system does not enter the halt state.

1 Introduction

The distributed mutual exclusion is one of the most fundamental issues in the
study of distributed control and management problems that arises when multiple
computing nodes compete for a shared resource in an uncoordinated way. The
problem is to design a safety synchronization such that at most one node is al-
lowed to use the resource at a time. The problem of k-mutual exclusion (k-mutex)
and group mutual exclusion (GME) are the two well studied natural generaliza-
tions of the mutual exclusion. The k-mutex guarantees at most k (≥ 1) nodes
can be allowed to use a single resource simultaneously, and the GME synchro-
nizes conflicting nodes in sharing m resources such that at most one resource
can be used by some concurrent nodes. Recently, Vidyasankar [1] introduced
group k-mutex as the generalization of the k-mutex and GME problems in a
shared-memory environment. The problem is to design a conflict resolution such
that at most k (out of m) resources can be used by some concurrent nodes.

As mentioned, let us consider a distributed system consisting of n nodes,
which share undetermined number of resources1. The system is said to be group
k-mutual exclusive if the following requirements hold:

1 The paper have further relaxed the assumption of the original problem that the
nodes have no knowledge about the entire set of the shared resources.
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– k-mutual exclusion: at most k resources are allowed to be used by some
concurrent nodes at a time.

– concurrent entering: nodes which request the allowable resources can use
them simultaneously at a time.

– liveness: a node requesting a resource will eventually succeed.

Quorum consensus approaches are the well-known solution to any conflict
resolution which is generalized from the mutual exclusion. The class of these
solutions gives a significant interest in fault-tolerant of node and communication
failures that may lead to network partitioning [2, 3]. Coterie based algorithm is a
typical quorum consensus for mutual exclusion: A node can use the resource only
if it obtains permissions from all nodes in any quorum of a coterie, and since each
quorum intersects with each other and each node only issues one permission, the
mutual exclusion can be guaranteed. In the GME, Joung [4] have proposed an m-
group quorum system for GME quorum consensus, however, construction of such
a good quorum system (i.e., a non-dominated m-group quorum system) arises
a more difficult problem. Moreover, the coterie based of the mutual exclusion
can directly be adopted to this problem; i.e., the conflicting nodes simply use a
coterie to manage their mutual exclusive accessions to the requested resources.
The k-coterie based algorithms are a particular quorum consensus on the k-
mutex problem. There at most k pairwise disjoint quorums in a k-coterie, thus
at most k nodes can use it so as to achieve the k-mutex safety requirement.
Furthermore, the k-coterie based algorithm can also be used for the group k-
mutex in the static environments. In this paper, we firstly present a k-coterie
based group k-mutex algorithm in the static environments and adopt it forward
to the open distributed environments.

Open distributed computing systems are built on the highly volatile networks
in the sense that the rate of membership changes (i.e., nodes joining and leaving
the system) is very high. The system consists of a set P of an undetermined
number of nodes which communicate in a message passing manner using a re-
liable FIFO bidirectional link and share a nonempty set R of an undetermined
number of resources. A node can be created and removed either by user or by
another node or even joining and leaving the system by itself. We assume that
each node has its own memory and it may fail according to fail-stop failure model
in [5]. If a node is created (or join), removed (or leave) or get fails then it can
be detected by some other nodes in the system. When a new node is created
or joining to the system, it should firstly verify the current configuration of the
system.

The existing distributed quorum consensus can run correctly on top of net-
work layer of the open distributed environments, since they are designed as a re-
silient solution against node and communication failures. However, the member-
ship changes by the leaving and joining nodes will adversely decrease availability
of the quorum system. The contention is the reliability that can be gained by
developing a core set of distributed algorithms that are aware of the underlying
volatility in the network. Lawi et al.[6] have proposed a wait-avoidance mecha-
nism in reconfiguring quorum system for mutual exclusion so as to prevent this
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drawback. Their algorithm mainly consists of two layers that separately works;
the quorum-consensus and -reconfiguration. The quorum consensus layer is used
to handle requests from and to the application layer, and it directly adopts the
coterie based algorithm for group mutual exclusion in the static environments.
The quorum reconfiguration layer reconstructs information structure of the co-
terie by implementing the two quorum input operations called coterie-join and
-cross operations. The coterie join operation is used when a set of nodes have
leaved from the system while some others are joining, and the coterie cross is
implemented to the algorithm when there is only a set of joining nodes enter
the system. In this paper, we extend the results in [6] by showing that; the k-
coterie based algorithm of the group k-mutex can also be used in their quorum
consensus layer, and the quorum reconfiguration layer can also be adopted in
reconfiguring k-coteries.

2 The Quorum Consensus Layer

2.1 k-Coteries

Definition 1. [7] A nonempty set of sets, C, is a k-coterie under a set of nodes
P iff C satisfies the following properties:

1. Non-intersection: For any h-set H = {Q1, . . . , Qh ∈ C | Qi ∩ Qj = ∅, i �=
j}, h < k, there exists Q ∈ C such that Q ∩ Qi = ∅, 1 ≤ i ≤ h.

2. Intersection: For any (k + 1)-set K = {Q1, . . . , Qk+1} ⊆ C, there exists a
pair Qi, Qj ∈ K such that Qi ∩ Qj �= ∅, 1 ≤ i, j ≤ k + 1, i �= j.

3. Minimality: Qi � Qj, ∀Qi, Qj ∈ C, i �= j. �

The quorum consensus layer has two sections that alternate accessed re-
peatedly: a possibly nonterminating noncritical section (NCS) and a terminat-
ing critical section (CS). The layer stays in the NCS when there is no request
to use a resource from the application layer and enters the CS whenever it
has an access right to a requested resource. The CS is a specified part of the
code in which node uses the resource. A node executes a trying protocol to en-
treat an access right so as to enter the CS, and executes an exit protocol after
leaved the CS and thus returns back to the NCS again. Therefore, the prob-
lem in this layer is to design a safety synchronization in the form of trying and
exit protocols to be executed, respectively, immediately before and after the
CS which satisfies the safety requirements of group k-mutex (as mentioned in
Section 1).

Let C be a k-coterie. Each node in P has local variables AGREE, DISAGREE,
PERM and QUEUE, respectively, keeps the set of nodes which have agreed (by
message ack), the set of nodes which have not yet agreed (by message wait),
the set of requests in which pi has give its permission but has not yet received a
message reclaim, and the ordered set of requests in which pi has replied wait
messages. For conciseness, we roughly give a curt description how the k-group
mutex algorithm works for this layer in Figure 1.
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Trying Section { // When node pi wishes to access a resource ri

1: Selects a quorum Q from C;
2: send req(ti, pi, ri) to ∀p ∈ Q; // ti is the pi’s current logical time
3: Inserts pj(∈ Q) answering ack into AGREE;
4: if (∃Q ∈ C, Q ⊆ AGREE) then state := Critical Section;
5: else-if { // If there exists pj(∈ Q) answers wait
6: Inserts pj answering wait into DISAGREE;
7: Selects another quorum Q′ ∈ C such that(

Q′ ∩ DISAGREE = ∅) and
(
Q′ = max{|Q ∩ AGREE|});

8: if (there is no quorum satisfy) then state := Wait;
9: Q := (Q′ − Q) and goto line 2; } }
Exit Section { // When node pi leaves resource ri

1: send exit to ∀pj ∈ (AGREE ∩ DISAGREE)}
When pi receives req(tj, pj , rj) message {
1: // Let 〈ty, py〉 is the highest priority in QUEUE;
2: if (PERM = ∅ or rj = ry) then
3: send ack to pj and inserts req(tj, pj , rj) to PERM;
4: else-if { // If there exists req(tx, px, rx) in PERM and rj = ry

5: Inserts req(tj , pj , rj) into QUEUE;
6: if 〈tj , pj〉 > min{〈tx, px〉, 〈ty, py〉} then send wait to pj ;
7: else-if // If 〈tj , pj〉 is the highest priority in QUEUE
8: send reclaim to py ; } }
When pi receives exit message from pj {
1: Removes req(tj, pj , rj) from PERM;
2: if ( PERM = ∅ and QUEUE = ∅) then {
3: // Let 〈ty, py〉 is the highest priority in QUEUE;
4: for each (req(tj , pj , rj) ∈ QUEUE and rj = ry) {
5: Moves req(tj , pj , rj) from QUEUE to PERM;
6: send ack to pj ; } } }
When pi receives reclaim message from pj {
1: if (pi not in CS and pj ∈ AGREE) then {
2: Moves pj from AGREE to DISAGREE;
3: send relinquish to pj ; } }
When pi receives relinquish message from pj : {
1: // Let 〈ty, py〉 is the highest priority in QUEUE;
2: send ack to py ;
3: Inserts req(ty, py, ry) into PERM }

Fig. 1. A distributed group k-mutex algorithm for static environments

2.2 Non-dominated k-Coteries

Definition 2. [3] C is a dominated k-coterie under P iff there exists a k-coterie
D (under P) such that
1. C �= D,
2. ∀Q ∈ C, ∃S ∈ D, S ⊆ Q.

If there is no such D, then C is non-dominated (or, an ND k-coterie). �
It is easy to observe that if a system using a dominated k-coterie is opera-

tional in the occurrence of failures then a system using an ND k-coterie is also
operational, but the opposite is not always true. Hence, reliability of an ND
k-coterie is better then the dominated one. Another advantage of ND k-coteries
is the lower cost of message complexity (since every quorums in an ND k-coterie
are subset of the quorums in the dominated k-coterie).

Neilsen [8] have proposed a helpful theorem to check whether a coterie is
dominated or not. The theorem can be relaxed to further the k-coteries as well.
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Theorem 1. C is a dominated k-coterie under a set of node P iff there exists a
set X ⊆ P such that the following conditions hold.

1. Non-intersection: There exists h-set H = {Q1, . . . , Qh ∈ C | Qi ∩ Qj =
∅, i �= j}, h < k − 1, such that X ∩ Qi = ∅.

2. Intersection: For any k-set K = {Q1, . . . , Qk} ⊆ C, there exist Qi ∈ K
such that Qi ∩ X �= ∅.

3. Minimality: ∀Q ∈ C, Q � X .

3 Quorum Reconfiguration

The quorum reconfiguration layer mainly based on the reconfiguration algorithm
posed by Lawi et al.[6] which uses two quorum input operations in reconfiguring
the quorum system of the mutual exclusion; i.e., coterie-join and -cross. We have
extended their results for k-coteries and directly adopt them in this layer.

For the following subsections, let C1 and C2 be k-coteries under P1 and P2,
respectively, and P1 ∩ P2 = ∅.

3.1 Coterie Join Operation

Definition 3. [8] Let x be a node in P1. A coterie join operation for inputs C1
and C2 produces a quorum set (C1 x C2) defined by

(C1 x C2) = {(Q1 − {x}) ∪ Q2 | Q1 ∈ C1, Q2 ∈ C2 and x ∈ Q1}
∪ {Q1 | Q1 ∈ C1 and x /∈ Q1}. �

Jiang and Huang [9] have proved the following results.

Theorem 2. Let C3 = (C1 x C2), then

1. C3 is a k-coterie under P3 ⊆ P1 ∪ P2.
2. C3 is an ND k-coterie only if C1 and C2 are both ND k-coteries.
3. C3 is dominated, if either C1 or C2 is dominated.

The following can easily be proved using mathematical induction.

Corollary 3. Let C1, C2, . . . , Cm be k-coteries under P1,P2, . . . ,Pm,
respectively. For any X = {x1, x2, . . . , xm−1 | xi ∈ Pi}, then C = (C1 x1

· · · xm−1 Cm) is a k-coterie under P ⊆ ∪m
i=1Pi.

3.2 Coterie Cross Operation

Definition 4. [6] A coterie cross operation for inputs C1 and C2 produces a
quorum set defined by, (C1 ⊗ C2) = {Q1 ∪ Q2 | Q1 ∈ C1 and Q2 ∈ C2}. �

Theorem 4. [6] Let C′ and C′′ be coteries under P ′ and P ′′, respectively, and
P ′ ∩ P ′′ = ∅. If C = (C′ ⊗ C′′), then
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1. C is a coterie under P ⊆ P ′ ∪ P ′′.
2. C is an ND-coterie only if C′ and C′′ are both ND-coteries.
3. C is dominated, if either C′ or C′′ is dominated.

We have extended results in Theorem 4 for k-coteries as follows.

Theorem 5. Let C4 = (C1 ⊗ C2). Then,

1. C4 is a k-coterie under P4 ⊆ P1 ∪ P2.
2. C4 is an ND k-coterie only if both C1 and C2 are ND k-coteries.
3. C4 is dominated only if either C1 or C2 is dominated k-coterie..

3.3 The Reconfiguration Algorithm

The quorum reconfiguration layer simply implements the two operations intro-
duced in the previous two subsections, but for the conciseness, we roughly outline
how it works as follows. Let C be the the current k-coterie of the system.

1. When there are sets joining nodes X and leaving nodes Y : The algorithm
firstly partitions the set X into m (≤ |Y |) disjoint sets and constructs m
independent k-coteries C1, . . . , Cm under X1, . . . , Xm, respectively, and cre-
ates a new coterie Ctemp = C. Each node yi ∈ Y is replaced by Ci iteratively
using coterie cross operation, Ctemp = Ctempyi Ci, i = 1 . . . , m. The iterated
result of Ctemp is stored to C as the new quorum configuration.

2. When there is only a set X of joining nodes: The algorithm simply creates a
k-coterie C′ under X and restores C with (C ⊗ C′) as the new configuration.

Note that the coterie cross operation can also be implemented in case 1, however,
the result k-coterie will be dominated. Let C′ be k-coterie under the set X of
joining nodes and P ∩ X = ∅. Let x ∈ P is the leaving node, then

(C ⊗ C′) = (C x C′) \ {Q | Q ∈ C and x /∈ Q}
Thus, there exists a set Z ∈ {Q | Q ∈ C and x /∈ Q} satisfies the Theorem 1.

4 Performance Analysis

The number of messages required per entry to the CS is the same as for the
mutual exclusion [10] and hence for the k-mutex algorithm [7] in the static
environments. The message complexity of the algorithm in the best case is 3ε and
can be bounded from above by 6ε in the worst case, where ε = max{|Q| | Q ∈ C}.

Let C1 and C2 be k-coteries under P1 and P2, respectively, and C = C1 x C2,
x ∈ P1, or C = C1 ⊗ C2.

Theorem 6. |Q| ≤ 2 max{|Q′| | Q′ ∈ C1 or Q′ ∈ C2}, ∀Q ∈ C.

Now, let ‖C‖ (resp., ‖C1‖ and ‖C2‖) defines rank of coterie C (resp., C1 and
C2); i.e., the number of quorums in coterie C (resp., C and C).



A Quorum Based Group k-Mutual Exclusion Algorithm 125

Theorem 7. If C1 and C2 are majority ND k-coteries, then

1. ‖C‖ = ‖C1‖ × ‖C2‖, when C = C1 ⊗ C2, and
2. ‖C‖ ≥ ‖C2‖ × (|P1|−1

q−1

)
, q = � |P1|+1

k+1 �, when C = C1 x C2.

5 Conclusions

We have proposed a quorum based group k-mutex algorithm for open distributed
environments in this paper. The algorithm consists of two main parts, i.e., the
quorum-consensus and quorum-reconfiguration, each of which placed in differ-
ent layers and work separately. The quorum consensus layer directly adopts a
k-coterie based algorithm for group k-mutex in the static environments which
is also proposed in this paper. Thus, its message complexity and quorum avail-
ability performances are the same as in the static environments.
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Abstract. Some trading strategies are becoming more and more com-
plicated and utilize a large amount of data, which makes the backtesting
of these strategies very time consuming. This paper presents an efficient
implementation of the backtesting of such a trading strategy using a
parallel genetic algorithm (PGA) which is fine tuned based on thorough
analysis of the trading strategy. The reuse of intermediate results is very
important for such backtesting problems. Our implementation can per-
form the backtesting within a reasonable time range so that the tested
trading strategy can be properly deployed in time.

1 Introduction

Backtesting also known as Systems Testing is the concept of taking a strategy
and going back in time to see what would have happened if the strategy had been
faithfully followed. The assumption is that if the strategy has worked previously,
it has a good but not certain chance of working again in the future and conversely
if the concept has not worked well in the past, it probably will not work well in
the future.

The backtesting of trading strategies is important for brokers and investors
to judge if the strategies are profitable under certain circumstances. It helps the
users learn how a trading strategy is likely to perform in the marketplace. It
also provides the users with the opportunity to improve a trading strategy. A
detailed discussion of the benefits of backtesting is given by [6].

Due to the many benefits of backtesting, it is widely used by brokers and
investors. And there are a lot of backtesting systems available in the market, for
example, MetaStock from Equis International (www.equis.com) and TradeSta-
tion from TradeStation Securities (www.tradestation.com), etc. These systems
help the users develop and back test their own trading systems.

Early trading strategies such as Moving Average Crosses were relatively sim-
ple and easy to implement and test. As more and more people join in the game
of searching for better trading systems, more complicated trading strategies are
investigated. Intraday data instead of interday data are utilized, which increases
the data to be processed by a factor of hundreds or even thousands. More com-
plicated indicators that are hard to calculate are exploited. Furthermore, people
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sometimes have to try a strategy against multiple stocks and even multiple mar-
kets. All these factors make the backtesting of these trading strategies much
more time-consuming, and the ready-for-use commercial products become inca-
pable of dealing with them. People need more efficient implementations in order
to perform the backtesting of such trading strategies within an acceptable time
range.

In the following sections, we will analyze a simplified trading strategy in detail
and present an efficient implementation of it using parallel genetic algorithm
(PGA) based on the analysis.

2 A Simplified Trading Strategy

Today’s trading strategies tend to exploit several indicators and filters in combi-
nation to make the final decision. To make the discussion easier, we will introduce
a simplified trading strategy in this section.

Our simplified trading strategy exploits a modified Bollinger band only.
Bollinger band is among the most popular technical analysis techniques. It in-
cludes 3 lines: the upper band, the lower band, and the center line. The center line
is simply the moving average, and the upper and lower bands are, respectively,
the center line plus/minus twice the standard deviation [5]. In our strategy, the
standard deviation is no longer timed by a fixed coefficient of 2. Instead, the
coefficient becomes a variable to be optimized, and its value can be different
for upper and lower bands. Given the price series Pn(n = 1, 2, 3, · · ·), the center
line Cn, upper band Un and lower band Ln of a p-period Bollinger band can be
calculated as follows:

Cn =
1
p

n∑
i=n−p+1

Pn , (1)

Un = Cn + Vu ×
√∑n

i=n−p+1(Pn − Cn)2

p − 1
, (2)

Ln = Cn − Vl ×
√∑n

i=n−p+1(Pn − Cn)2

p − 1
, (3)

where Vn and Vl are variables to be optimized, and we assume they vary between
1.0 and 2.0 with a step of 0.1. Besides, we assume that p can take any integer
value between 11 and 50.

The financial explanation for Bollinger band is as follows: the closer the prices
move to the upper band, the more overbought the market, and the closer the
prices move to the lower band, the more oversold the market. Based on this
understanding, we derive our simple trading rules as follows:

During the normal trading hours, at the end of each bar (a short time period,
e.g., 10 or 30 minutes), we evaluate the current price. If the price crosses over the
lower band, i.e., Pn−1 <= Ln−1 AND Pn > Ln, buy 100 shares at the beginning
of the next bar. If the price crosses under the upper band, i.e., Pn−1 >= Un−1
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AND Pn < Un, sell all shares in hand at the beginning of the next bar. To make
the discussion simple, we assume that our trading volume is small enough that
our buy/sell orders can be executed at the current price without delay. We also
ignore the brokerage fee here. Of course, the real trading strategies have to deal
with all these issues.

The purpose of the backtesting of this trading strategy is to answer the
following questions: 1) Can this strategy make profit when applied to certain
stocks for a time period such as one year (the training period)? 2) If it can make
profit for a certain stock, what values for the parameters p, Vu, Vl can give the
most profit? 3) Can these values also give a reasonable profit during the following
time period such as the next six months (the testing period)?

Question 3 is a simple yes-or-no question which can be easily answered by
running the trading strategy once with the values given by question 2. However,
because the trading strategy is very sensitive to the change of any parameter,
there is no simple relation between the profit and the parameters. Therefore,
question 1 and 2 can not be easily answered before trying all the possible triples
of (p, Vu, Vl).

3 A Direct Implementation of the Backtesting Problem

The simplest approach to the above optimization problem can simply loop
through all the possible triples of (p, Vu, Vl) and run the trading strategy with
each triple. The following pseudo-code illustrates this approach.

Algorithm 1
for(p = 11; p <= 50; p ++) {

Calculate Cn and standard deviation Dn;
for(Vu = 1.0; Vu <= 2.0; Vu += 0.1) {

Un = Cn + Vu * Dn;
for(Vl = 1.0; Vl <= 2.0; Vl += 0.1) {

Ln = Cn - Vl * Dn;
Run trading strategy with Cn, Un, and Ln;

}
}

}

Note that Cn and Dn only have to be calculated once for each value of p,
and that Un only has to be calculated once for each pair of (p, Vu). The idea is
to reuse the intermediate results as much as possible. Even in this simple case,
experiments show that the execution time is reduced by a factor of 10 with the
reuse of intermediate values of Cn, Dn and Un.

Alg. 1 is easy to implement and understand. However, the running time is
too long for really complicated trading strategies. While backtesting one trading
strategy provided by our industrial partner, our initial try with such an approach
took 8 hours to work thru only 1/40 of the whole search space on one single stock.
Obviously, The users can not wait that long for the backtesting result. We have
to reduce the computing time.
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4 Using PGA

A straightforward way to speed up Alg. 1 is to parallelize its execution. Once
a triple of (p, Vu, Vl) is given, a processing element (PE) can execute the whole
trading strategy by itself. If we have N PEs, we can easily partition the search
space into N equal subspaces and then start one process to deal with each
subspace. Because there are no communication or synchronization requirements,
the parallelization causes almost no overhead in this problem. However, this
approach is limited by the number of available PEs. Normal brokers or investors
can not expect to have more than 1 or 2 CPUs ready for use at any time. We
need better software solutions.

Genetic algorithms (GAs) have demonstrated to be particularly successful in
the optimization, classification and control of very-large-scale and varied data.
PGAs further provide the basis for tackling problems in a wider range of fields [4].
GAs and PGAs have been widely used in many disciplines from astronomy [2] to
molecular design [1]. [3] discusses many ways in which GAs can be parallelized,
including the master-slave model. Based on this model, a basic PGA for our
backtesting problem is developed as follows:

Algorithm 2 -- Master process
Generate random population of n triples;
While(true) {

Partition the population into N equal groups;
Send the triples in each group to one slave process;
Receive the fitness value for each triple from the slaves;
Exit if no better fitness value is found;
Select triples with better fitness from the population;
Generate new population by crossover and mutation;

}

Algorithm 2 -- Slave process
While(true) {

Receive a triple of (p, Vu, Vl) from the master process;
Calculate Cn and standard deviation Dn;
Un = Cn + Vu * Dn;
Ln = Cn - Vl * Dn;
Run trading strategy with Cn, Un, and Ln;
Send the profit (fitness) to the master process;

}

The crossover and mutation operations used here are very simple. Suppose we
have two triples (p1, Vu1, Vl1) and (p2, Vu2, Vl2), the crossover operation randomly
select p, Vu and Vl independent of each other from the first or second triple and
form a new triple. And the mutation operation just randomly change the value
of one variable in a given triple to create a new triple.

Note that because the triples are randomly generated in Alg. 2, we can no
longer reuse the intermediate values of Cn, Dn and Un in the way we did in
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Alg. 1. This decreases the efficiency of the algorithm. To alleviate this unwanted
effect, we have to refine the algorithms to take advantage of the intermediate
results as much as possible. The only change to the master process is that the
population should be sorted by p and Vu before it is partitioned into N equal
groups. The refined algorithm for the slave process is showed below:

Algorithm 3 -- Slave process, refined
p_old = Vu_old = Vl_old = newpFlag = 0;
While(true) {

Receive a triple of (p, Vu, Vl) from the master process;
if(p != p_old) {

Calculate Cn and standard deviation Dn;
p_old = p; newpFlag = 1;

}
if(newpFlag > 0 || Vu != Vu_old) {

Un = Cn + Vu * Dn;
Vu_old = Vu;

}
if(newpFlag > 0 || Vl != Vl_old) {

Ln = Cn - Vl * Dn;
Vl_old = Vl;

}
Run trading strategy with Cn, Un, and Ln;
Send the profit (fitness) to the master process;

}

5 Performance Evaluation

For the simplified trading strategy described in this paper, we have carried out a
set of experiments for all the algorithms described above to illustrate the effect
of each algorithm. We performed the backtesting of each algorithm over 1 year’s
period against one stock ANZ from the Australian stock market. 30-minutes bar
data (open price, close price, best bid, best ask) were used in the experiment.
The data were stored in a text file and read by the algorithms at startup. To
count the execution time more accurately, each algorithm was repeated 20 times.
The average execution time is shown in the upper half of Table 1.

The parallelization introduces some overhead. And for this simple trading
strategy, the overhead is quite noticeable. When running in parallel on 4 CPUs,
it took Alg. 1 much longer than a quarter of the time it needed when running
sequentially. And 8 CPUs make hardly any difference than 4 CPUs.

The crossover and mutation operations in the PGAs also result in some
overhead that is noticeable in the backtesting of this simple strategy. Alg. 2 is
much slower than Alg. 1 when both running in parallel on 8 CPUs. However,
Alg. 3 shows less running time that Alg. 1. It means that the PGA can reduce
the execution time. The difference between Alg. 2 and Alg. 3 emphasizes the
importance of reusing the intermediate results wherever possible.
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Table 1. Execution time for different algorithms

Trading strategy Algorithm Execution time
Alg. 1 (sequential) 87 s
Alg. 1 (parallel on 4 CPUs) 24 s

Simplified Alg. 1 (parallel on 8 CPUs) 22 s
Alg. 2 (parallel on 8 CPUs) 32 s
Alg. 3 (parallel on 8 CPUs) 18 s
Alg. 1 (sequential) ca. 300 h

Real Alg. 1 (parallel on 8 CPUs) 40 h
Alg. 3 (parallel on 8 CPUs) 1 ∼ 2 h

For the real trading strategy we tested for our industry partner, we have
got the following results as shown in the lower half of Table 1. In this case, the
speedup factor of multiple PEs is very apparent. When executed in parallel on
8 CPUs, the execution time of Alg. 1 is reduced to near 1/8. The PGA achieves
an speedup factor of at least 20 comparing with the parallel version of Alg. 1.
Finally we are able to back test the trading strategy against one stock within
1 ∼ 2 hours. This makes the backtesting of the complicated trading strategy
against multiple stocks and multiple markets feasible.

6 Conclusion

In this paper, we have demonstrated step by step the implementation of the
backtesting of a complicated trading strategy. We have shown that PGAs can
speedup the backtesting process greatly. Furthermore, the reuse of intermediate
results is very important for accelerating the backtesting of complicated trading
strategies. We believe that the same principles used in this paper can and should
be applied in the implementation of the backtesting of other complicated trading
strategies as well to make the backtesting feasible.
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Abstract. The consistency models are responsible for managing the state of 
shared data for the applications of a distributed shared memory (DSM) systems. 
The already proposed consistency models are inflexible and cannot adapt to the 
workload and environments characteristics. So, they cannot achieve the best 
performance for the workloads and environments in all the cases. In this work, 
we propose, present and analyze a reconfigurable consistency model (ROCoM 
–Reconfigurable Object Consistency Model) for object based DSMs. ROCoM 
behavior was represented using a reconfigurable algorithm (RA) and its 
analysis was made using a simulation tool. Our results show that ROCoM, on 
average, had 34% (upper bound) better performance than other ones. 

1   Introduction 

Distributed shared memory (DSM) is an abstraction that provides an illusion of a 
shared memory in a distributed system [1][2][3]. Some DSMs are implemented to 
manage objects. In these DSMs, the read and write operation semantics (consistency 
model) guarantee that objects will be consistent for the application [4]. 

A consistency model can be defined as a contract that has rules about how and 
when a process of an application can access the shared object [5][6][7]. Consistency 
models should have a low response time, in order to maximize the system’s 
performance for all workloads. The main problem is that workload and environment 
change continuously. In order to solve this problem, some flexible and adaptable 
consistency models were proposed [8][9][10]. A poorly explored solution is the use of 
reconfigurable algorithms to represent a consistency model [11][12][13] [14].  

Our proposal in this paper is to use a reconfigurable algorithm to represent the 
behavior of a reconfigurable object consistency model (ROCoM). ROCoM is a 
reconfigurable consistency model for asynchronous distributed systems that manage 
concurrent access in shared objects [7]. Ideally, this model may assume infinite 
configurations and it reconfigures itself according to entry parameters such as: 
performance metrics and workload characteristics.  

The main objectives of this paper are: to present the ROCoM, represent its 
behavior using a RA, analyze its performance using simulation and show the use of a 
RA is better than the use of a traditional algorithm. The main goals are: the 
implementation and performance analysis of ROCoM.  
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2   Reconfigurable Object Consistency Model 

ROCoM is a reconfigurable object consistency model for asynchronous architectures 
that execute an object-based software DSM [7]. This consistency model manages the 
state of a set of shared objects. ROCoM can have its behavior reconfigured 
considering the workload and environment characteristics. So, it can adapt to them 
improving flexibility and increasing performance. 

Any consistency model can be decomposed into parts or frames (coherence 
protocols, consistency constraints, events ordering policy, access policy, replication 
protocol) [7]. Each frame is responsible for one part of the consistency model. A 
constructive block implements a frame solution of our consistency model. ROCoM 
has five frames (event ordering policy, constraint policy, coherence protocol, 
replication protocol and access policy) and some constructive blocks that are 
combined to reconfigurable it.  

The reconfiguration in ROCoM is done during the workload execution, but it is 
important to say that this reconfiguration is done after an application execution ends. 
In our system, a workload is composed of n applications, and between these 
applications, ROCoM can be reconfigured to assume the best form or configuration to 
the next application. The actual version of ROCoM can be reconfigurable to assume 
some sequential consistency model variations. So, a consistency model is said to be 
reconfigurable if: i) it can assume different consistency models variations during the 
workload execution and ii) it cannot assume more than one consistency at a time. 

 

Fig. 1. The Basic Layer of the ROCoM and some possible constructive blocks 

A reconfigurable algorithm was used to represent ROCoM’s behavior. RA has the 
characteristics (frames, constructive blocks etc) that were necessary to represent the 
presented consistency model. In Figure 1, we can observe the RA that represents our 
consistency model. The configuration control layer (CCL) of our RA controls the 
constructive blocks that are active in a moment; it is implemented with a selection 
structure. The basic layer (BL) has the implementation of every consistency model’s 
parts, constructive blocks and structures (shared objects and wait queues). Finally, the 
reconfigurable layer (RL) is an instance of the BL. In this paper the Access Policy 
Frame can be filled out with single writer/multiple reader (SWMR) policies. The 
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Event Ordering Frame is filled out with the sequential ordering. The Constraint Frame 
can use the WW or OO approach. The Replication Protocol Frame can be filled out 
with total replication protocol. Finally, the Coherence Protocol Frame can be filled 
out with the update eager or invalidate eager (UE and IE). 

3   Related Works 

In this research, we found many works about consistency models [6][8][9][10] 
[15][16][17][18], few works about reconfigurable software and algorithms [8][15], 
and none about reconfigurable consistency models. In this work, we will discuss some 
papers that are more relevant and close to our work [8][6]. 

In [8], a flexible consistency algorithm is proposed and implemented. As well as 
our proposal, it uses a different algorithm depending on the user choice. The 
consistency algorithm implements three-consistency models (Sequential, Causal, 
Cache), but it uses just the traditional implementation of each one.  And, in [6], a 
sequential consistency algorithm with dynamic protocols switching is proposed and 
verified by means of formal proofs. 

4   Experimental Results 

In order to analyze a consistency model, we can use different metrics. The most 
common are: response time, communication time and number of messages [7] [14] 
[15] [16]. The mean job response time is the mean time interval between the 
submission and end of a job. The number of messages is the total number of messages 
exchanged between the nodes. The communication time is the number of transmitted 
bytes divided by the network bandwidth.  

The selected distributed architecture is a cluster composed of 8 nodes 
interconnected by a Fast Ethernet switch. It was modeled in ClusterSim, a simulation 
tool developed by our group [19] [20]. As the workload, we made combinations with 
some characteristics: object size (4 bytes and 4K), number of objects (1, 4 and 8) and 
percentage of write operations (20%, 40% and 60%), generating 9 workloads. 

Table 1. ROCoM  configurations 

Configurations Constraint 
Conf 1 WW, UE,SWMR, Total 
Conf 2 WW, IE,SWMR, Total 
Conf 3 OO, UE,SWMR, Total 
Conf 4 OO, IE,SWMR, Total 

In order to test and analyze the performance of the ROCoM, we created some 
configurations (Table 1). It is important to note that each ROCoM configuration is a 
traditional sequential consistency model. In these models, its parts are fixed and 
cannot be changed over time. For example, in Table 1, Conf01 has the WW 
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constraint, Write Update protocol, and it cannot changes over time. Through the rest 
of this paper, traditional algorithm and configuration will be treated as synonyms.  

Due to the limited number of pages, we present only the results for the response 
time (in seconds). In Figure 2, we present the response time for every workload with 
objects of 4 bytes. We can see that the Conf2 had the best results on average for 
almost all workloads. In some workloads (1 object-20% writes, 1object – 40%writes 
and 4 objects – 40%writes) the Conf4 had better or equal results of the configuration 
two. The Conf2 uses WW constraint of consistency and invalidation coherence 
protocol. The WW (Write->Write) constraint is a sub set of the OO (Write->Write, 
Read->Write and Write->Read) constraint.  

  

Fig. 2. Response Time x 4 Bytes Fig. 3. Response Time x 4K bytes 

So, the WW constraint serializes fewer operations than the OO constraint. With 
this constraint the Conf2 has a low probability of remote operations happen and the 
response time became smaller than in the other configurations. Furthermore, with the 
invalidation coherence protocol, the messages sent through the network are smaller 
than the messages sent by the update coherence protocol (Conf1 and Conf3) and with 
the WW constraint is not necessary to sent many objects in the configuration two.  

In the configurations that use invalidate coherence protocol and have a large 
number of remote operations, the read operations spent more time with the network 
than with the write ones. Because, in invalidation protocol, all replicas are invalidate 
in a write operation. So, in each remote read, the object has to be sent to the process 
that is executing the read operation. We can conclude that, in relation of response 
time for workloads with object size smaller than the network packet, number of writes 
and objects increases the response time. Because large number of writes means 
smaller number of consecutive reads.  

In Figure 3, we present the response time of workloads with object size of 4K 
bytes. We can observe that in the Conf1 and Conf3, the number of objects has no 
influence in the response time. This happen, because the number of write operations 
are equal for all workloads (20%, 40% and 60%). In this case, in each write operation, 
the object replicas are updated with the new object value. As the replicas of objects 
are never invalidated with this protocol, just local operations have to be executed. Just 
update messages are sent through the network. We can also observe that the Conf2 
and Conf4 got the best results for response time, as in the workload with objects of 4 
bytes. However, the Conf4 presented the smallest response time for the workload of 
one object and 20% of writes, because with this configuration and workload, the OO 
constraint did not have to restrict many conflicting operations.  
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It is important to observe that in the Conf2 and Conf4, the response time for the 
workloads with 8 objects and 40%/60% of writes did not present regularity as in the 
other workloads. These configurations present smaller response time for 40%/60% of 
writes than for 20% of writes. In this case, the number of objects and write operations 
are bigger and this decreases the number of conflicting and read operations. So, the 
number of messages of invalidation sent is bigger than the messages of objects.  

In order to analyze the performance of ROCoM, we need to compare it to each 
configuration and/or sequential consistency model individually. As we said in the 
proposal of ROCoM, the CCL evaluates the entry parameters, reconfiguring ROCoM 
to the best configuration.  

Table 2. Speedup, in percentage (%), of the ROCoM performance when compared to each 
configuration for the workload of 4 bytes objects 

Metrics 
Configurations 

Response 
Time 

Communication Time Number of Messages Mean 

Conf1 69,13 68,2 24,11 53,81 
Conf2 0,96 0,93 11,56 4,48 

Conf3 
69,13 

68,2 24,11 53,81 

Conf4 15,34 12,8 20,15 16,09 
Mean 38,64 37,53 19,98 32,05 

In Table 2, we observe that on average, considering all metrics and workloads with 
an object size of 4 bytes, ROCoM is 32,05% better than other 4 traditional 
consistency algorithms. Note that if we had chosen Conf2 (the best configuration on 
average), ROCoM would still be 4,48% better. Now, we analyze another example, in 
which the workload is composed of 4KB objects. According to Table 3, on average, 
the speedup of ROCoM increases to 36,31%. If we consider only the number of 
messages metric, the speedup of ROCoM over Conf2 increases from 3,63% to 9,94%. 

Table 3. Speedup, in percentage (%), of the ROCoM  performance when compared to each 
configuration for the workload of 4Kbytes objects 

Metrics 
Configurations 

Response 
Time 

Communication Time Number of Messages Mean 

Conf1 80,63 80,63 24,5 61,92 
Conf2 0,48 0,48 9,94 3,63 
Conf3 79,55 76,6 24,5 60,21 
Conf4 18,89 18,89 20,65 19,47 
Mean 44,88 44,15 19,89 36,31 

5   Conclusions 

In this paper, we proposed, presented, implemented (in a simulation tool) and 
analyzed the performance of ROCoM by simulation. As general conclusions about the 
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ROCoM frames, we can highlight: a) Considering the Constraint Frame, the OO 
blocks had better performance in the aplications with a bigger number of writes. b) In 
the Coherence Protocol Frame, the invalidate eager block presented the better results.  

On average, the performance of ROCoM was around 34% (upper bound) better 
than the other consistency models for all tested workloads. Using a reconfigurable 
algorithm, developers don’t need to create a monolithic algorithm and it is possible to 
propose new consistency models.  

The main contributions of this paper are: the presentation, implementation and 
performance analysis of ROCoM, comparing it with other consistency models for 
different workloads. As future works we can highlight: the inclusion of new frames 
and blocks in ROCoM; an adaptive CCL; compare ROCoM with other consistency 
models, simulation with different workloads and real tests. 
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Abstract. This paper proposes a novel scheme, called ER-TCP, which trans-
parently masks the failures on the server nodes in a cluster from clients at TCP 
connection level. Connections at the server side are actively and fully replicated 
to remain consistency. A log mechanism is designed to cooperate with the rep-
lication to achieve small sacrifice on the performance of communication and 
makes the scheme scale beyond a few nodes, even when they have different 
processing capacities. The scheme is justified by experiments conducted on 
prototype implementation. 

1   Introduction 

As a reliable point-to-point transport level protocol, TCP has been gaining more and 
more users in the Internet nowadays. Years of enhancement and fine-tuning have made 
it very efficient and robust. However, it is difficult to tolerate the faults of the TCP 
connections and totally mask them from the users, since there are no widely adopted 
standards or specifications for that purpose. 

Fault-tolerance of the TCP connections is turning increasingly important for many 
real applications. For example, many organizations and enterprises enhance their 
throughput by clusters, whose availability is usually guaranteed by using a front-end 
approach. The front-end approach employs software packages (e.g. LVS [7]) or industry 
solutions (e.g. Cisco LocalDirector [5]) as dispatchers to direct incoming TCP connec-
tions to the back-end real servers, and guarantees the service availability by avoiding 
new connections to the crashed nodes. However, it does not guarantee the connection 
availability, since the connections processed by the failed server will be simply lost. 
Therefore the front-end approach may expose clients to connection failures. 

In order to solve this problem, many research works [1][3][8][10][11][13][15] have 
been conducted in past a few years. FT-TCP [1] uses a logger to record the on-going 
connections and reincarnates the connections of the crashed server by replaying the log 
on a new server. In this way, the connection sustains and failure could be masked from 
the clients. However this solution introduces another single point of failure (the logger). 
Furthermore, this fault-tolerance approach is time-costly. 

To overcome the shortcomings of FT-TCP, ST-TCP [8], HARTS [10] and so forth 
adopt the primary-backup approach to fully replicate and synchronize the TCP con-
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nections in the communication among the replicas. The primary-backup approach 
masks the failures of server nodes by failing the connections over healthy servers. 
However, the ST-TCP approach only tolerates single failure and requires identical 
processing speed of the replicas. HARTS and other schemes of this class usually result 
in high penalty on the performance of communication. 

In this paper, we propose a novel scheme, named as ER-TCP, which combines pri-
mary-backup replication with logging mechanism to achieve fault-tolerance on the server 
side TCP connections. The scheme minimizes the performance penalty resulted by rep-
lication and makes itself scale beyond a few replicas so as to tolerate multiple failures. 
Moreover, ER-TCP works even when the replicas have different processing capacities. 

The paper goes as follows. Section 2 presents the architecture of our scheme. Section 
3 briefly surveys the related works. In Section 4, we explain how our scheme works 
during the failure free phase. Section 5 addresses the case of failures. Section 6 presents 
the results of experiments conducted on the prototype implementation. Section 7 con-
cludes this paper. 

2   Cluster Architecture for ER-TCP 

For the convenience of discussion, we take the share-nothing cluster architecture 
shown in Fig. 1 as the hardware configuration. In this configuration, we consider only 
the TCP connections initiated from the clients to the cluster. As shown in Fig. 1, each 
server node connects to all the other server nodes of the cluster and the outside world by 
a switch or router. The local area network (LAN) used by the cluster supports IP mul-
ticasting as well as point-to-point communication. 

Among the server nodes, there is a unique primary server, a unique logger server and 
multiple backup servers. Primary server possesses the portal IP address of the cluster. 
All the server nodes in the cluster have their own IP addresses (IP1, IP2, …., IPn), 
which belong to a private subnet. Incoming request is relayed to all the backup server 
nodes by the primary, and connections running on the server nodes are fully replicated. 
To guarantee the reliability, the primary and logger server work together to log the 
incoming packets. In case of two server nodes in the cluster, no backup server exists. 

In this paper, we assume the network is always available and consider only crash 
failures  (fail-stop).  If the primary server crashes on a fly, the logger server is promoted  

Primary Server Logger Server Backup Server1 Backup Server n

......

Clients

Portal IP
IP1 IP2 IP3 IPn

Switch/ Router

 

Fig. 1. Cluster Architecture for ER-TCP 
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as the new primary and one of the backup servers is chosen to be the new logger. The 
strategy of failure detection and failover will be discussed in Section 5. 

To simplify and facilitate the discussion in this paper, some assumptions are made. 
First, we assume the primary and the logger server will not crash simultaneously. This 
is reasonable as the possibility for this is very small. We assume that the execution of 
the application is deterministic and all copies of the application have identical re-
sponses when processing the same request. We assume the application protocol is in-
teractive. The client interacts with the server with sending requests and obtaining re-
sponses, and it must wait until obtaining the response of preceding request from the 
server before sending a new one. Most legacy applications and protocols, which follow 
the client/server model, adopt the interactive communication paradigm, e.g., the da-
tabase applications, HTTP, POP and SMTP. We further assume the time consumed by 
the server to process a request is evenly distributed. As our scheme can adopt any ex-
ternal failure detectors, we assume the failure detector used in the scheme is perfect, 
i.e., satisfies strong accuracy and strong completeness properties [4]. 

3   Related Works 

The objective of HydraNet-FT [11] is to provide fault tolerant services in a completely 
client-transparent fashion. To achieve this objective, HydraNet-FT proposed an infra-
structure of dynamically duplicating services over inter-network by replicating TCP 
communications. In HydraNet-FT, traditional one-to-one paradigm of TCP is changed 
to be one-to-many from the client to the servers and many-to-one from the servers to 
the client. At this point, the solution of HydraNet-FT is very similar to ours. But there 
are two drawbacks in HydraNet-FT compared with our proposals. First, this scheme 
requires modifications of the applications at server side. That means it is necessary for 
HydraNet-FT to obtain the source code of the server applications. But this is infeasible 
in some cases. Second, HydraNet-FT uses a proxy-like redirector between the client 
and the servers to replicate the TCP connections. By this means, the redirector itself 
becomes a single point of failure. 

ST-TCP [8] proposes an extension of TCP to tolerate TCP server failures. It uses an 
active backup server to keep track of the state of TCP connection and takes over the TCP 
connection whenever the primary fails. The migration of the TCP connection to the 
backup server is completely transparent to the client. The scheme proposed by ST-TCP 
is very close to ours. But it has to assume the backup server has the identical response to 
every incoming request as the primary, and the buffer of the primary needs further re-
liability guarantee. The scheme tolerates only single failure as it has only one backup. 

Over the last decade, many reliable multicast protocols have been designed and 
studied, including MTP [2], RMF [14], SRM [6], RTP [9], and so froth. Most of these 
protocols target very large scale multicast applications, and brings out lots of chal-
lenging research topics. Some of these protocols are designed for certain applications. 
For example, SRM has been designed for large-scale white-board applications, and 
RTP for real-time data, such as audio and video, transportation in the Internet. Despite 
such tremendous efforts, there is still not a consensus on the standard deployable pro-
tocol for the common multicast applications, especially the medium scale ones. 
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4   Failure-Free Phase 

In ER-TCP, there are multiple units keeping track of the status changing of the TCP 
connection at the server side during the failure-free phase. This requires our scheme to 
guarantee the reliability of message delivery among them. Fig.2 illustrates the com-
munication paradigm adopted in ER-TCP. 

Connection Management (CM) module of the primary server intercepts all incoming 
TCP packets from the client, and after legality check on connections, it relays them to 
all the backup servers. We use an IP multicast tunnel to improve the efficiency of re-
laying. The tunnel masks all the details about fragmentation and reassembling so that 
the backup servers feel like receiving packets from the clients directly. 

In order to synchronize the communication among all the server nodes, conservative 
method that requires the primary gather all responses from the backup servers, such as 
in HARTS [10], can be used. However, this method decides the speed of communica-
tion by the slowest node within the cluster and thus knocks down the performance of 
communication by increasing the latency. 

In ER-TCP, the primary server needs only to wait the corresponding responses from 
the logger server before it sends its responses back to the clients. The logger server 
needs to wait the responses from rest of the backup servers when the establishing and 
destroying a connection. For long connections, the logger server needs also to wait the 
responses from the backups at each predefined times of iteration (K times, and K = 100 
in our implementation). That is, the primary and logger server are strictly synchronized 
at the communication, and all server nodes are re-synchronized only at the startup and 
termination or at each K times iterations of every connections. If no backup server 
exists in the system (i.e., there are only two server nodes), the logger server need no 
longer wait for the responses from the backups. 

Compared with the conservative method, our scheme improves the speed of com-
munications by two means. First, the primary server does not need to gather all re-
sponses from the rest server nodes, which alleviates the overhead at the primary. If the 
primary and logger server are carefully chosen, the slowest node of the cluster will no 
longer decide the speed of communication. Second, the backup servers do not need to 
send out their responses at all the iterations of the connection, which saves lots of time. 
This advantage even permits the group to harbor slower backups. 
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Fig. 2. Communication Paradigm of ER-TCP 
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However, the scheme raises a new problem to be solved. If a backup server is slower 
than the primary and logger server, after some times of iteration, it may lag behind and 
lose some requests. In this case, retransmission of the lost request messages is required. 
The logger server in our scheme is designed to handle these retransmissions. Buffer 
Management module of the logger server (see Fig.2) is designed to log the requests 
unconfirmed by the backups. These logged requests are duplicated in the primary to 
tolerate faults. Since we have all backup servers synchronized with the primary and 
logger server at K times of iterations at each connection, this means the length of buffer 
to log incoming requests is K for all connections. However, for the applications serving 
large audience, thousands of connections may be established at the same time, and great 
quantity of memory will be consumed for logging at the primary and logger server. 

Actually, when the primary and logger server process the requests, the backup 
servers process the requests also. Therefore, logging all request messages is not nec-
essary. The most ideal solution is to log only the request messages that will be required 
for retransmission by the backups. But without accurate knowledge about the request 
processing progress on the backups during the fly, the size of the logging buffer has to 
be predicted. The predicted size should be smaller than K to alleviate the load for log-
ging and larger than the number of requests required for retransmission so as to make 
the scheme safe. In this paper, based on the evenly distributed request processing time 
assumption, we design a method to predict the logging size. 

In order to explain the method, a quantity analysis on the communication is needed. 
Let Tclient be the average time required for the client to process a response from the 
primary server, Tpriamry be the average time required for the primary to process a re-
quest, Tlogger be that of the logger server, and Tbackup be that of the slowest backup. Let 
Tpacket_send be the average time required for the kernel to send a TCP/UDP packet, 
Tpacket_receive be that for receiving, Ttunnel_send be that for the kernel to send an IP multi-
casting tunnel packet, Ttunnel_receive be that for receiving. For convenience, we ignore the 
time spent by a packet on the wire, as it is comparably small. 

As we have assumed that the pattern of communication is interactive, the interval for 
which two requests arrive at the cluster (IntervalArrive) should equal to the message 
Round Trip Time (RTT) between the client and the cluster. If we assume both the re-
quest and the response could be contained in single packet, the interval of request ar-
riving can be expressed in the Equation 1: 

IntervalArrive RRTclient-cluster Tclient + 2 (Tpacket_send + Tpacket_receive) + Ttunnel_send 
+ MAX(Tprimary ,Ttunnel_receive + Tlogger + Tpacket_send) 

(1) 

For the backup servers, they receive requests via the IP multicast tunnel from the 
primary server. This means the rate of request arriving should be 1/IntervalArrive at all 
backup servers. The server utilization rate of the slowest backup server can be ex-
pressed in Equation 2: 

utilization = Tbackup/IntervalArrive (2) 

Increasing the utilization rate of the slowest backup server means it becomes busy 
and this may results in losing request messages. In this case, some request messages 
should be logged at the logger server for retransmission, and this requires the logger 
server to retain the queue of unprocessed requests that should originally be kept by the 
slowest backup itself. According to the queuing theory, the length of logging buffer 
(defined as Lqueue) should be: 
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Lqueue = utilization
2/(1- utilization) (3) 

In order to guarantee the reliability, our scheme expands the logging buffer with a 
“margin of safety” M (M = 10 in our implementation). The length of logging buffer at the 
primary and logger server of our scheme, defined as Lbuffer, can be expressed in Equation 4: 

Lbuffer = Lqueue + M (4) 

The upper bound of the buffer length for logging is K, so if Lbuffer turns greater than 
K, it will be set to be K. According to the queuing theory, inequality 5 should be satis-
fied, if the system is called “stable”. However, in ER-TCP, the server nodes get to be 
re-synchronized after a certain number of iterations, so the inequality results in only 
increment at the length of buffer needed at the logger server and the latency on com-
munication. 

Tbackup < IntervalArrive (5) 

It is possible that the backup server undergoes a load surge during the fly, and loses 
more requests than that can be retransmitted from the primary or logger server. In this 
case, we have the backup server dropped from the group. The primary and the logger 
server get to know the process capabilities of all the nodes in the cluster via the 
heartbeat messages, which will be discussed in the next section. 

5   Handling Failures 

Our scheme adopts heartbeat as the failure detector. A thread built within the OS kernel 
of each server node periodically (interval = 1 second) multicasts a heartbeat message to 
the group. The heartbeat message also contains local information, i.e., node ID number 
and the processing speed, to differentiate each other and facilitate further deci-
sion-making (such as group management, predicting buffer size for logging and 
failover). If one of the server nodes cannot receive heartbeat message from another for 
a specific interval (failure detection interval), the latter is suspected to be dead by the 
former. The failure detection interval is set to be 4 seconds in our implementation. 

Although the heartbeat failure detection cannot be proven as a perfect failure de-
tector as we have assumed, it is practically feasible. Since we use kernel threads to 
multicast the heartbeat messages, this method can guarantee the emission of these 
heartbeat messages even the server node is busy. Furthermore, in LAN environment, 
the possibility of a message to be continuously dropped for 4 times is very small. As the 
processing capacities of server nodes are piggybacked in the heartbeat messages, at the 
startup of the system, the fastest two nodes of the group will be chosen as the primary 
and the logger server. The system administrator can also define the roles in advance. 

The failures we consider in this paper include those of the primary, the logger, and 
the backup servers. 

1. The Failure of Primary Server 
If the primary crashes, a round of adjustment will be started among the remaining 

healthy nodes. The logger server will be promoted to be the new primary, and at the 
same time, the fastest backup server will win the election to be the new logger server. 
Portal IP address will be bound at the NIC of the new primary server, and serials of 
gratuitous ARP packets will be broadcasted to facilitate the IP takeover. After that, the 
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entire logging buffer content will be copied from the new primary server to the new 
logger server. As we assume the primary and logger server will not crash simultane-
ously, the logged requests will not be lost. With the help of the retransmission mecha-
nism of TCP, current requests of the clients arrive again at the new primary. 

2. The Failure of Logger Server 
If the logger server crashes, the primary server will appoint the remaining fastest 

backup server to be the new logger server. The entire buffer content will be copied from 
the primary server to the new logger server. 

3. The Failure of Backup Server 
It is also possible that some of the backup servers crash during the fly. After getting 

to know that, all the remaining healthy servers will proceed to get rid of all the related 
information of that crashed backup server within all the connections. 

6   Performance Evaluation 

We implement ER-TCP in a four-node cluster for evaluation. Section 6.1 will present 
and analyze the penalty on communication. In section 6.2, we will analyze the overhead 
put on the CPU of both the primary and the logger backup during the communications. 
In section 6.3, we will discuss the length of the logging buffer in different cases. 

The server nodes of the cluster are PCs running Redhat Linux of kernel version 
2.4.7-10, with hardware configuration of Intel Pentium III 1GHz CPU, 516MB Mem-
ory and 100Mbps 3COM 3c59x NICs. Client is a PC running Windows 2000 profes-
sional (service pack 4), with hardware configuration of Intel Celeron CPU running at 
1.7 GHz, 516MB Memory and RTL8139A NIC. A 3COM 100Mbps switch is used to 
connect all these PCs. 

6.1   Communication Penalty 

In Fig. 3, we compare the performance of TCP connections by ER-TCP with that of 
standard TCP. The performance is evaluated by Netpipe-2.4 [12] with different number 
of replicas. The round trip time (RTT) between the client and the cluster is used to 
demonstrate the latency of communication. 
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From Fig.3, we can see that when there are two server nodes in the cluster, the la-
tency increases about 15% compared with that of standard TCP. The increment of la-
tency is incurred by the time paid at sending message via IP Multicast tunnel and 
waiting for the responses from the logger server as discussed in Section 4. 

When the number of server nodes increases, the latency turns higher than that when 
there are two servers. The increment is resulted for more time will be spent on 
re-synchronization all of the backup servers. But if we compare it with the latency 
when there are two servers, we can find that the increment is very small. This is because 
IP multicast tunnel is used to relay the incoming request message, and this greatly 
improves the efficiency of relaying. Moreover, the primary server of ER-TCP does not 
need to gather all responses from the backups to send the final version to the clients. 
This means that ER-TCP can scale beyond a few nodes without imposing very high 
penalty on communication. 

Table 1 compares the announced performance penalties between ER-TCP and other 
schemes. 

Table 1. A Comparision of the Announced Perforamnce Penalties between ER-TCP and Other 
TCP Fault-tolerance Schemes 

Scheme Design Choice Announced Penalty 
FT-TCP Logging 28%-76% 
HotSwap Active Replication 54.3% 

HydraNet-FT Active Replication 50%-90% 
HARTS Active Replication 30% 
ST-TCP Active Replication below 5% 
ER-TCP Active Replication + Logging 15% 

From Table 1, we can see that ER-TCP achieves a small penalty on communication 
performance. Although ST-TCP even has smaller penalty, it can tolerate only single 
failure and requires the primary and the backup server have same processing capacities, 
which is difficult to be satisfied in the real world. 

6.2   CPU Load 

In order to evaluate the overhead on the server nodes during communication, we record 
the CPU load status when the size of packet being exchanged between client and the 
server varies. In this paper, we concentrate our discussion on the overhead of the pri-
mary server and the logger server. 

The CPU load status of primary server under different cluster configurations is il-
lustrated in Fig. 4. In this figure, the CPU load is calculated by using the formula of 
1-IdleCPUTime/TotalCPUTime, and this method is also used in Fig.5. 

From Fig.4, we can observe that compared with that of single server node (standard 
TCP), heavier overhead is put on the primary server when the cluster has more than one 
server node during the communications. This is because the primary server of ER-TCP 
is in charge of relaying all incoming packets, and gathering the response packets from 
the logger server (synchronization), while the speed of communication is close to that 
of standard TCP (see Fig. 3).  However,  when  the number of server nodes in the cluster  
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Fig. 4. CPU Load of Primary Server under Different Cluster Configurations 

continues to increase, the overhead put on the primary server does not increase very 
much. This is because in ER-TCP, the primary server does not need to handle the re-
sponses from the backup servers. 

The CPU load status of logger server under different cluster configuration is shown 
in Fig.5. From Fig.5, we can observe that in a 2-nodes cluster (primary plus logger 
server configuration), the logger server has even lighter overhead than the standard 
TCP during the communications. This is because in such a cluster, the speed of com-
munication is slower than the standard TCP (see Fig.3), and thus consumes less CPU 
resources. However, when the number of backup server nodes in the cluster increases, 
the overhead on the logger server grows. This is because the logger server is in charge 
of gathering the response packets of these backup servers (synchronization) and han-
dling the requests of retransmission. Nevertheless, the size of growth is small, which 
can be told from Fig.5. 
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Considering Fig.4 and Fig.5, we can conclude that in ER-TCP, both primary and 
logger server will not be heavily loaded even the cluster scales beyond a few nodes. 

6.3   Buffer Size 

In order to evaluate the logging mechanism discussed in section 4, we set up a program, 
which works in a ping-pong model, for experiments. The client side program sends a 
request to the six-node cluster immediately after it received a response, and vice versa 
for the server nodes of the cluster. The sizes of both the requests and responses are 
1KB, and the iteration lasts for 10000 times. By doing this, we have: 

Tclient  Tprimary  Tlogger Tbackup  0 (6) 

We measure the arrival rate of requests, that is, the RTT between client and the 
cluster as in Equality 1. By repeating 5 times we have the average: 

IntervalArrive  RTTclient_cluster  1.1438 (ms) (7) 

After that, we increase the processing time required (Tbackup) of the server side pro-
gram at one of the backups by placing an artificial delay in each loop. In this way, the 
slowest backup server is imitated, and its server utilization rate could be calculated by 
using Tbackup/IntervalArrive. At different values of utilization rate, we compare the 
number of retransmitted requests in the experiments and the predicted value of Equa-
tion 4 in Table 2. 

From Table 2, we find that the number of retransmitted requests in the experiments 
is always smaller than that of predicted by Equation 4. This means the strategy we use 
to save the buffer at the primary and logger server is safe, although it wastes some 
memory. 

Table 2. Buffer Length under Different Backup Utilization Rate 

Tbackup Utilization Rate Retransmitted requests Predicted Buffer Length 
0.915 80% 2 3+10 
1.023 90% 7 8 + 10 

1.087 95% 12 18+10 
1.121 98% 31 48+10 
1.144 100% 39 100 

7   Conclusions 

In this paper, we propose a scheme, called ER-TCP, to tolerate failures happened 
at the TCP connections at the server nodes of cluster by having them fully replicated 
among the server nodes. The scheme can be implemented in the kernels of the server 
nodes so as to be transparent to legacy applications. To justify our design, we conduct 
experiments on the prototype implementation based on the ideas of the proposed 
scheme, and find that the scheme imposes small penalty on the performance of com-
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munication. Logging mechanism is designed in ER-TCP to synchronize slower server 
nodes and guarantee the reliability. The strategy plotted to save the buffer size for 
logging is proven to be safe by experiments. 
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Abstract. In this paper, we propose efficient routing algorithms for 2D
torus with possible large number of faulty nodes. There is no presump-
tion on the number and the distribution of faulty nodes. The proposed
algorithms find a fault-free path between any two nonfaulty nodes with
high probability in linear time by using only the local routing information
of the network. The results of our empirical analysis through simulations
show that the algorithms can find a fault-free path between any two non-
faulty nodes with high probability. For example, in a torus of size up to
128×128, where, the number of faulty nodes up to 15%, the heuristuc-
square routing algorithm finds a fault-free path with a probability of 90%
or higher. The experimental results are impressive for 2D torus with only
four links per node.

1 Introduction

The two dimensional mesh/torus has constant node degree, recursive structure,
simple communication algorithms, and good scalability. Due to these attrac-
tive properties, the mesh/torus has been the common interconnection network
for several commercially available parallel computers, such as MPP (Goodyear
Aerospace), Paragon (Intel), Victor (IBM), AP3000 (Fujitsu), and Toroidal Net
(IRECE), Alpha 21364 [9].

A 2D mesh can be laid out on a VLSI chip in an area that increases linearly
with the number of processors. Since the implementation of 2D mesh uses short,
local links only, it is possible to perform communication at very high speed. A
2D torus has wraparound links. However, the method of folding can be used to
lay out a 2D torus in such a way that it uses only short, local links too.

In this paper, we focus our designs on 2D torus. However, the ideas used in
the proposed algorithms should be applicable to higher dimensional torus. The
2D torus has been and will continuously be a popular interconnection network for
high-performance parallel computers due to its high bandwidth nearest neighbor
connectivity for efficient computation and fast communication in many scientific
applications.

Fault-tolerant routing is a dominant issue facing the design of interconnection
networks for large-scale parallel computers [10]. There are many fault models
used for designing fault-tolerant routing algorithms [1][2][3][6][7][8][11][12][13].

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 150–161, 2005.
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Some of these algorithms set conditions on the number of faulty nodes or the
shape of faulty components. Others use global fault information (off-line) or
partially global information. Chen et. al [4][5] introduced the concept of local-
subcube connectivity for hypercubes. In this paper, we develop fault-tolerant
routing algorithms on 2D torus using local information only (on-line), and allow
arbitrary number of faulty nodes with no restriction on the shape of the faulty
nodes (blocks). Our algorithms find a fault-free path between any two non-faulty
nodes with high probability in linear time.

The rest of this paper is organized as follows: In the next section, we give
necessary definitions used throughout the paper. We also show a theorem that
is a theoretical ground of the proposed routing algorithms. In Sections 3, 4,
and 5, respectively, three fault-tolerant routing algorithms are proposed on 2D
torus with possible large number of faulty nodes. In Section 6, simulations are
performed and the results are analyzed and discussed. Finally, in the last section,
we conclude this paper with some remarks.

2 Locally-Safe Torus

A kD n-torus T k
n has k dimensions, n nodes per dimension, and N = nk nodes.

Each node is uniquely indexed by a radix-n k-tuple. Each node is connected via
communication links to two other nodes in each dimension. The neighbors of
node s = (s0, . . . , sk−1) in dimension i are (s0, . . . , si−1, si ± 1, si+1, . . . , sk−1),
where addition and subtraction are performed modulo n. For simplicity, through-
out this paper, all arithmetics on the indices of nodes in a given torus should
be modulo n implicitly. The distance between two nodes s and t in T k

n is
d(s, t) =

∑k−1
i=0 min(|si − ti|, n − |si − ti|). In this paper, we work on 2D torus

only. For simplicity, we use term T , instead of T 2
n , to denote a 2D n-torus if no

confusion arises.
For a given node s = (s0, s1) in T , we denote its two neighbors in dimension

i by si+ and si−, respectively. For example, s0+ = (s0 + 1, s1) and s0− = (s0 −
1, s1). An m-square M2

m, or simply M , in a 2D torus T is a subgraph of T , and
M is a 2D mesh of width m (m nodes in each dimension). T is locally-m-safe if
the following conditions are satisfied:

1. for every m-square M in T , the subgraph formed by all nonfaulty nodes in
M is connected, and

2. every boundary line segment of an m-square in T contains at least one non-
faulty node.

If there exists an integer m, 2 ≤ m ≤ n, such that T is locally-m-safe then we
say that T is locally-safe. The following theorem shows that local-safety implies
connectedness of T .

Theorem 1. If a 2D torus T is locally-safe then T is a connected graph.

Proof. Let s = (s0, s1) and t = (t0, t1) are two nonfaulty nodes in T . Without
loss of generality, we assume that si < ti for i = 0, 1. We also assume that si+
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and si− be the neighbors of s on dimension i such that si+ is the neighbor of s
closer to t, that is, d(si+, t) = d(s, t) − 1. Since T is locally-safe there exists an
integer m, 2 ≤ m ≤ n, such that T is locally-m-safe. Let P = (s → t) be the
shortest path from s to t constructed by the dimension-order routing (routing
along dimension 0, and then dimension 1). We construct an L-shape chain of
width m that contains the path P as shown as in Figure 1.

0

1

t

s

Fig. 1. Routing in chains

Let P = P0 ∪ P1, where P0 and P1 are the line segments s → u and u → t
along 0 and 1 dimensions, respectively, where u = (u0, u1) = (t0, s1). The chain
contains ch0, and ch1 defined as follows:

1. ch0 = {v ∈ T |s0 ≤ v0 ≤ t0, and s1 − �m/2� ≤ v1 ≤ s1 + �m/2� − 1; and
2. ch1 = {v ∈ T |u1 −�m/2� ≤ v1 ≤ t1 and u0 −�m/2� ≤ v0 ≤ u0 + �m/2�− 1.

Consider ch0 as a sequence of m-squares Mi, 0 ≤ i ≤ p, where p = �(t0 −
s0)/(m − 1)�, such that

1. Li = Mi−1 ∩ Mi, 1 ≤ i ≤ p, are line segments of length m − 1 and ch0 ⊂
∪p

i=0Mi;
2. s ∈ M0 and u ∈ Mp.

Let Lu = {v ∈ ch0|v0 = u0}. Obviously, we have Lu ⊂ Mp. Since T is locally-
m-safe, there exist nonfaulty nodes vi ∈ Li, 1 ≤ i ≤ p, u′ ∈ Lu, and fault-free
paths: (s → v1) ⊂ M0, (v1 → v2) ⊂ M1, . . . , (vp−1 → vp) ⊂ Mp−1, (vp → u′) ⊂
Mp. Then, the path (s → v1 → v2 . . . → vp → u′) is the fault-free path from s
to u′. From the definition of ch1, we have u′ ∈ ch1. By the similar argument, we
can find a fault-free path in ch1 from u′ to t. Therefore, s and t can be connected
through the fault-free path s → u′ → t. We conclude that T is connected. �
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The proof of the theorem is a constructive one. It provides the necessary
background for our first fault-tolerant routing algorithm to be presented at next
section.

3 Chain Routing Algorithm

For practice, we do not presume that T is locally-safe. The number of faulty nodes
or its distribution is arbitrary. Our routing algorithms are local-information-based:
no global information about the situation of the network is needed. If T is locally-
m-safe then from theorem 1, the algorithm will generate a fault-free path. Other-
wise, it will either generate a fault-free path or report a failure.

The algorithm follows the constructive proof of theorem 1. A chain of meshes
with width m that contains the shortest path P is used for the fault-tolerant

Algorithm 1 (Channel Routing(Tn, m, s, t))
Input: 2D n-torus Tn, width of local mesh m, source node

s = (s0, s1), and destination node t = (t0, t1)
Output: a fault-free path P = (s → t) or report failure
begin

P = φ;
r = s;
dir0 = dir1 = 1; /* determine routing direction */
if (0 ≤ r0 − t0 ≤ n/2) OR (0 ≤ t0 − r0 > n/2) dir0 = −1;
if (0 ≤ r1 − t1 ≤ n/2) OR (0 ≤ t1 − r1 > n/2) dir1 = −1;
for i = 0, 1 do /* for each dimension i */

/* determine mesh boundaries of i and j dimensions */
j = (i + 1) mod 2; /* dimension j */
bj = (rj − dirj + n) mod n; /* [bj , Bj ] in dimension j */
Bj = (rj + (m − 2) × dirj + n) mod n;
while ri �= ti do

/* determine mesh boundaries of i dimension */
bi = ri; /* [bi, Bi] in dimension i */
Bi = (ri + (m − 1) × diri + n) mod n;
if t is in mesh

if there is a fault-free path P ′ = (r → t) in mesh
P = P ∪ P ′;
return P ; /* path constructed */

else return failure; /* failed */
else

if there is a fault-free path P ′ = (r → r′) in mesh
such that (r′

i = Bi) OR (r′
i = ti)

P = P ∪ P ′;
r = r′; /* continue */

else return failure; /* failed */
endwhile

endfor
end
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routing. While routing from source s to destination t, the path is allowed to
move inside the chain through a sequence of squares as specified in the proof
of theorem 1. However, for routing with higher successful routing rate, we con-
struct the ch0 such that, for any v ∈ ch0, d(v1, t1) ≤ d(s1, t1) + 1. The ch1 is
constructed similarly. The details are specified in Algorithm 1. We call this al-
gorithm Chain Routing (see Algorithm 1). The rate of successful routing of the
algorithm will be analyzed empirically and the simulation results will be used to
compare with that of the other routing algorithms proposed in this paper.

In Algorithm 1, we route source node s = (s0, s1) to destination node t =
(t0, t1) through an L-shape chain. The chain is divided into a sequence of m-
squares. A square is uniquely determined with two nodes: b and B, as shown as
in Figure 2.

r

b

B

tdir

r
b

B

t

d
ir

Fig. 2. Boundary of square (m = 5)

If routing in the first part of the chain succeeds, a node r = (t0, r1) will
be reached where r1 is in the line segment bounded by b0 and B0. The path
(s → r) may goes through many squares. To route in an m-square, we can use
any search algorithm, depth-first search (DFS) or breadth-first search (BFS)
algorithm for instance. If two parts of the chain are routed successfully, a fault-
free path (s → t) is found. Whenever the routing in a square fails, the algorithm
reports a failure and terminates. Assuming that the local routing inside a 2D
m-mesh takes constant time, the algorithm runs in O(n) time. We summarize
these results into the following theorem.

Theorem 2. The Chain Routing algorithm will terminate in O(n) time. When
the algorithm terminates, it either generates a fault-free path from s to t or
reports that the path cannot be found.

4 Adaptive-Square Routing Algorithm

In this section, we describe another local-information-based, fault-tolerant rout-
ing algorithm, called Adaptive Square Routing. The idea is as follows. Instead of
arranging the sequence of m-squares as an L-shape chain, a sequence of squares
is found recursively such that the routing direction of each square should be
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along the dimension i such that the distance d(ri, ti) is a maximum, where r is
the new source node after a local routing. Intuitively, the sequence of squares is
arranged to contain a ladder-shaped shortest path that might have many turns,
Each square will adapt itself such that the new source node r and the path
segment along dimension i are inside the square (not at the boundary of the
square).

0

1

t

s

Fig. 3. Routing with Squares

To describe the algorithm, we need a notation to show the position of an
m-mesh inside T . Referring to Figure 3, we associate each node r in T with a
unique m-square Mr to be used by the algorithm. The Mr is determined by two
nodes b and B, representing the lower-leftmost node b and an upper-rightmost
node B of the two boundary lines along the routing direction.

More precisely, let i be the current routing direction, and dirj be the unit
direction (+1 or −1) of the shortest path along dimensions j. Then, we have
bi = ri and bj = rj − dirj , Bi = ri − (m− 1)× diri and Bj = rj − (m− 2)× dirj

(all arithmetics are modulo n).
The proposed recursive algorithm is similar to that of the chain approach.

The difference is that the square is adaptable in all dimensions instead of just
in the dimension of the chain. Let r = s. The algorithm first determines the
routing dimension i and the local m-square Mr, and then performs local rout-
ing in Mr that routes node r to a nonfaulty node r′, a node located at the
opposite boundary line of Mr from r along the ith dimension. If the local
routing r → r′ successes then we consider r′ as a new source r and route
from r recursively. If the local routing fails, the algorithm terminates unsuc-
cessfully and reports a failure. The algorithm is formally specified as in Algo-
rithm 2.
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Algorithm 2 (Adaptive Square Routing(Tn, m, s, t))
Input: 2D n-torus Tn, width of local mesh m ≥ 3, source node

s = (s0, s1), and destination node t = (t0, t1)
Output: a fault-free path P = (s → t) or report failure
begin

P = φ;
r = s;
while r �= t do

dir0 = dir1 = 1; /* determine routing direction */
if (0 ≤ r0 − t0 ≤ n/2) OR (0 ≤ t0 − r0 > n/2) dir0 = −1;
if (0 ≤ r1 − t1 ≤ n/2) OR (0 ≤ t1 − r1 > n/2) dir1 = −1;
Find the dimension i so that the distance between ri and ti

d(ri, ti) = max(d(r0, t0), d(r1, t1));
/* determine mesh boundary [b, B], referring to Figure 3 */
j = (i + 1) mod 2; /* dimension j */
bi = ri; /* [bi, Bi] in dimension i */
bj = (rj − dirj + n) mod n; /* [bj , Bj ] in dimension j */
Bi = (ri + (m − 1) × diri + n) mod n;
Bj = (rj + (m − 2) × dirj + n) mod n;
if t is in mesh bounded by [b, B]

if there is a fault-free path P ′ = (r → t) in mesh
P = P ∪ P ′;
return P ; /* path constructed */

else return failure; /* failed */
else

if there is a fault-free path P ′ = (r → r′)
in mesh such that (r′

i = Bi) OR (r′
i = ti)

P = P ∪ P ′;
r = r′; /* continue */

else return failure; /* failed */
endwhile

end

Next, we show that the algorithm will terminate in O(n) time, and either
finds a fault-free path from s to t or reports a failure.

Theorem 3. Adaptive Square Routing algorithm terminates in O(n) time, and
either outputs a fault-free path from source s to destination t or reports a failure.

Proof. We first show that, for m ≥ 3, the local routing always makes progress
toward destination t. Since the box Mr for node r is constructed in the way that
the farthest upper node B is toward to t. That is, B = (ri+(m−1)×diri, rj+(m−
2)×dirj). The worst case is that r is routed to r′ = (ri +(m−1)×diri, rj −dirj).
Since d(r, t) − d(r′, t) = (m − 1) − 1 = m − 2 > 0 for m ≥ 3, the local routing
always makes progress toward t. Therefore, the algorithm will terminate after at
most O(n) local routings. For a fixed m, the running time of the local routing
is a constant. Therefore, the total running time of the algorithm is O(n). �
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5 Heuristic-Square Routing Algorithm

In this section, we make an effort to improve the performance of Adaptive Square
Routing algorithm by allowing the routing to continue when the local routing
along the dimension of the longest distance, say i, fails. In the new algorithm, the
routing continues by trying the local routings in the squares set along the other
dimension when the distance between r and t along that dimension is nonzero. If
the distance between r and t along the other dimension, say j, d(rj , tj) < m − 1
then the local routing will route r to r′, where d(rj , r

′
j) = d(rj , tj). Once the local

routing along the dimension j successes, the square constructed for the new source
should be arranged along dimension i again. The algorithm that adds this heuris-
tic strategy to the Adaptive Square Routing is called Heuristic Square routing. In
the next theorem, we show that Heuristic Box routing works.

Theorem 4. Heuristic Square Routing algorithm terminates in O(n) time, and
either outputs a fault-free path from s to t or reports a failure.

Proof. In the new algorithm, we continue to route along dimension j when the
local routing along dimension i fails. The local routing along dimension j might
not make progress when d(rj , tj) = 1 and d(r′, t) = d(r, t). However, the next
local routing will be along dimension i and make progress as shown in Theorem
3. Therefore, the number of local routing in the new algorithm is at most twice
of that of the adaptive-square routing algorithm. For fixed m, the running time
for the local routing is a constant. Therefore, the running time of the algorithm
is O(n). �

6 Simulation Results

We have performed a set of simulations on the performance of the proposed
algorithms. For the experiments concerning the sizes of the 2D torus and the
local squares used, we divide the values of the parameters n and m into two
groups. In the first group, we set n = 16, 32 and m = 3, 4, 5, while in the
second group, n = 64, 128 and m = 6, 7, 8. That is, the size of the m-square
used for local routing is larger in the second group than that in the first group.
In any case, the values of m is still small compared with the values of n. For the
performance of each routing algorithm, two figures (one per group) are used to
show the successful routing rate and/or improvement of the algorithm. For the
fault model, we use uniform distribution of node failures. The number of faulty
nodes generated range between 5% and 25% with a 5% increment. For each
case, we simulate 10, 000 times. The simulation results of the successful routing
rate, improvement, and the length of the routing path for the set of parameters
specified above are shown in the figures below.

Figure 4 and Figure 5 plot the successful routing rate of the simplest algo-
rithm, Chain Routing, where the two numbers in brackets in the figures are n
and m, respectively. We can see that for a given n, increasing m improves the
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Fig. 4. Chain Routing: Group #1
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Fig. 5. Chain Routing: Group #2
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Fig. 6. Square Routing: Group #1
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Fig. 7. Square Routing: Group #2

successful routing. On the other hand, for a given m, routing in a small torus
has higher successful routing rate than that in a large torus.

Figure 6 and Figure 7 show the successful routing rate of the Adaptive Square
Routing algorithm. Figure 8 and Figure 9 show the performance improvement of
the adaptive-square algorithm compared to that of the chain algorithm. From the
figures, we conclude that the adaptive-square approach is better than the chain
approach in most of the cases.

The improvement in Figure 8 and Figure 9 is defined as

Successful routing rate of adaptive-square algorithm
Successful routing rate of chain algorithm

When n is small and m is large, n = 16 and m = 4 for instance, the adaptive-
square algorithm is not much better than the chain algorithm. However, when
m is smaller, especially as n increases, the improvement of the adaptive-square
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Fig. 8. Square vs Chain: Group #1
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Fig. 9. Square vs Chain: Group #2
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Fig. 10. Square Routing: Group #1
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Fig. 11. Square Routing: Group #2

algorithm grows faster. As an example, when the number of faulty nodes is
25%, the improvement are about 1.2 and 1.3 for n = 32, m = 3 and n =
128, m = 6, respectively, in two groups. For fixed n, using a larger square will
have a better performance with a cost of increasing time complexity at a rate
proportional to m2.

Figure 10 and Figure 11 display the path plus of the adaptive-square algo-
rithm, which is calculated by

Path plus =
Path length of P = (s → t)
Distance between s and t

Figure 12 and Figure 13 plot the successful routing rate of the heuristic-
square routing algorithms. Figure 14 and Figure 15 depict the improvement of
successful routing rate gained by using the heuristic-square routing algorithms
to that of the adaptive-square algorithm. From the figures, we conclude that the
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Fig. 12. Heuristic Routing: Group #1
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Fig. 13. Heuristic Routing: Group #2
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Fig. 14. Heuristic vs Square: Group #1
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Fig. 15. Heuristic vs Square: Group #2

improvement of the heuristic-square routing over the adaptive-square is signif-
icant. For example, when the number of faulty nodes is 25%, the improvement
are about 1.7 and 1.85 for n = 32, m = 3 and n = 128, m = 6, respectively,
in two groups. It is worth to adopt the heuristic-square routing algorithm when
the probability of faulty nodes is high.

7 Conclusions

In this paper, we first presented a concept of local-safety for a kD n-torus.
Then, we proposed two different approaches for fault-tolerant routing in a 2D n-
torus with possible large and arbitrarily faulty nodes. The algorithms are online
(only local information is used) and efficient (O(n) time assuming that the local
routing is O(1)). The simulation results show that the rates of successful routing
of the algorithms are quite high considering that there are only four links per
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node in a 2D torus. The possible directions of the further research include 1)
Provide theoretical analysis on the performance of the proposed algorithms;
and 2) Investigate the practical issues (e.g., deadlock-free) while implement the
proposed routing algorithms on certain switching models.
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Abstract. Replication is a widely used technique for providing high-availability 
and fault-tolerance of critical services. Multithreaded implementation of ser-
vices presents a challenge to the replication technique, since managing the exe-
cution order of the threads on different replication sites for consistency purpose 
is not a trivial task. This paper presents a middleware that transparently support 
reliable web services built on active replication. The middleware is responsible 
for maintaining the consistency of the replicas’ states. It also handles issues re-
lating to multithreaded implementation of web services. 

1   Introduction 

Web services are self-contained, modular applications that can be located and invoked 
over the Internet [2]. As more and more applications are built on web services, pro-
viding reliable web services is becoming an important issue [4]. Replication is a 
widely used technique for providing high-availability and fault-tolerance of critical 
services. Multithreaded implementation of services presents a challenge to the replica-
tion technique. This is because the executions of threads are normally scheduled by 
the operating system or Java virtual machines. Thus, managing the execution order of 
the threads on different replication sites for consistency purpose without modifying 
the operating system or Java virtual machine is not a trivial task. This paper presents a 
middleware that transparently supports reliable web services built on active replica-
tion. The middleware is implemented in Java and does not require any change to op-
erating system kernel.  

The rest of the paper is organized as below. §2 presents the middleware. §3 shows 
the performance of the middleware. A conclusion is given in §4. 

2   The System 

Passive and active replication are commonly used replication techniques [1]. In active 
replication, services are replicated on several sites. A client sends its request to all 
replica sites, which all handle the request and send back the response to the client. 
Compared with passive replication, the advantage of active replication is its speedy 
recovery from failure. This is because, as long as the client receives one reply, the 
client can carry on with its task. The other advantage of active replication is that it 
provides the potential to balance the workload across the system. This is because 
some operations, e.g. retrieving a file, do not need to be carried out on all the replica 
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sites. Thus, for this kind of operations, the client only needs to send its requests to a 
subset of all the sites in the system as long as there is a high probability that the client 
will get at least one response from the sites in the subset. Due to these advantages of 
the active replication, it is used in our system.  

Sending a client’s request to all replicas is equivalent to multicast the request to all 
replicas. Multiple clients might send requests to replicas simultaneously. To ensure 
that the replicas’ states are consistent, a total order is needed when multicasting cli-
ents’ requests to the replicas. Total order means all requests are delivered to the repli-
cas in the same order even if the senders of the requests are different. The system in 
this paper uses the TOPBCAST multicast protocol [3]. The protocol ensures the total 
order of multicast messages. It also guarantees message delivery in the presence of 
message loss and site failure. 

2.1   An Overview of the System Model 

To provide reliable web services, the system uses the active replication technique. 
Services specified in a WSDL file are replicated at several sites. Each replica consists 
of two entities: a proxy web service site (PWSS) and a web service site (WSS). The 
WSS is a conventional web service provider. It hosts the code and data that provide 
the functionality of the web services. The PWSS is a middleware between clients and 
the WSS. It is responsible for ensuring the consistency and coping with failures of its 
corresponding WSS. Clients interact with the PWSSs. A client only needs to send its 
service requests to one PWSS. The PWSSs are responsible for multicasting clients’ 
requests to other replicas and returning results to the clients. To maintain the consis-
tency of the WSSs’ states, the PWSSs must ensure that all clients’ requests are exe-
cuted on the WSSs in the same order. The replicas form a group, called service group. 
Fig. 1 shows a conceptual diagram of the system. 

 

Fig. 1. A Middleware for Replicated Web Services 

The system provides a Java package, RWS, which includes classes for handling the 
interactions between a client and a PWSS. Programmers can use the package when 
writing client applications. With these classes, the client views a service group as a 
single web service site. When a client sends a service request, say m, m is sent to a 
PWSS. The PWSS multicasts m to all the other PWSSs using the TOPBCAST proto-
col. As a result, m can be executed on all replicas. Since the TOPBCAST protocol 
ensures total order of all clients’ requests, the PWSSs forward m to their corresponding 
WSSs in the order determined by the protocol. The WSSs return the responses to m to 
their corresponding PWSSs. If a PWSS receives m from a client directly, the PWSS 
sends the response to the client. If m does not come from a client directly (i.e. m is 
received from another PWSS in a multicast), the PWSS stores the response in its buffer 
in case the response needs to be sent to the client in the presence of a system failure. 
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2.2   Controlling Multithreaded Web Services 

A multithreaded web service implementation means, when a web operation is called, 
multiple threads are created to carry out the task implemented by the web operation. 
When multithreading is used to implement web services, in order to ensure the consis-
tency of the replicas’ states, the replicas need to agree on the execution order of some 
of the threads. For example, assume that a web service is replicated on two sites S1 
and S2. During the execution of a web operation, two threads, say T1 and T2, are cre-
ated on both S1 and S2. If T1 and T2 modify shared data items, S1 and S2 should ensure 
that T1 and T2 are executed in the same order on both sites. Otherwise, the states of S1 
and S2 might become inconsistent.  

Instead of modifying the OS kernel or Java virtual machine, a scheduler is devel-
oped to control the execution of the threads. The scheduler resides on each WSS. 
Before a thread starts its execution, it registers with the scheduler asking the scheduler 
schedule its execution. The schedulers on the WSSs use a timestamp-based algorithm 
to reach an agreement on the order in which the threads should be executed. Once an 
agreement is reached, the schedulers instruct the threads execute in the agreed order.  

 

Fig. 2. Thread Trees and Scheduling Groups 

2.2.1   Scheduling Threads 
A web operation might create several threads, which in turn might spawn other 
threads. Thus, the execution of a web operation might result in many threads being 
created. Fig. 2(a) shows a thread tree. Each node represents a thread. The child node 
in the tree represents a thread created by its parent node. The executions of a set of 
threads only need to be ordered if the threads share data. Thus, threads are divided 
into several scheduling groups. Threads in one scheduling group all share the same set 
of data items. One thread can only belong to one scheduling group. Threads in the 
same scheduling group must be executed in the same order on all sites. Threads from 
different scheduling groups can be executed in any order.  

When a thread registers with a scheduler, the scheduler needs to find out which 
scheduling group the thread belongs. To enable the scheduler to discover a thread’s 
scheduling group, programmers are required to (a) define Java interfaces representing 
scheduling groups (these interfaces are called scheduling interfaces), and, (b) make 
the thread in a scheduling group implement the corresponding scheduling interface. 
For example, in Fig. 2(a), assume that there are three scheduling groups SG1, SG2 and 
SG3. The three groups are represented by interfaces SG1, SG2 and SG3 respectively. 
T1 belongs to SG1. T2 and T4 are in SG2. SG3 consists of T3 and T5. The hierarchy of 
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the classes representing the five threads is shown in Fig. 2(b). When a thread registers 
with a scheduler, the scheduler uses Java reflection API to discover which scheduling 
group the thread belongs to and schedules the thread accordingly. To facilitate the 
scheduler to identify the scheduling interfaces, the names of the scheduling interfaces 
must have prefix SG. 

When a thread, say T, registers with a scheduler on a WSS, the scheduler assigns a 
local timestamp, which is greater than the timestamps of all the threads already 
known by the scheduler, to the thread. On the other WSSs, the threads that correspond 
to T are also given local timestamps by the schedulers on those WSSs. The schedulers 
exchange the local timestamps of T and T’s counterparts. The largest local timestamps 
are chosen as the global timestamp for the threads. Thus, the global timestamps of T 
and T’s counterparts are the same on all WSSs. Global timestamps are used to deter-
mine the execution order of the threads. That is, a thread with a smaller timestamp is 
executed before a thread with a larger timestamp. It can be seen that, if the WSSs 
execute the threads in their global timestamps order, the threads are executed in the 
same order on all WSSs.  

We provide a package MWS which includes classes for programmers to use when 
they write multithreaded web services. In order to distinguish the threads in the sys-
tem, each thread must be given a unique name. Class RTName in package MWS al-
lows the programmers specify the root’s name of a thread tree. Class RThread in 
package MWS includes code that assigns a name to a thread when the thread is cre-
ated. When programmers write thread applications, the classes defining threads 
should extend RThread. With RThread class, assigning names to threads are carried 
out mostly transparently to the programmers. Thus, the programmers do not need to 
track the forming of the thread trees. The following code snippet shows the main steps 
in writing a thread class, say T1 in Fig. 2(b), which interacts with the scheduler. 

1. interface SG1 {} 
2. class T1 extends RThread implements SG1 { 
3.    public void run() { 
4.       Scheduler.start(currentThread()); 
5.       // code implementing the thread’s logic 
6.       Scheduler.terminate(currentThread()); 
      } 
7.    // other code for T1 
   } 

Interface SG1 (line 1) is used to mark a scheduling group. Since it does not do any 
work itself, its body is empty. T1 is in scheduling group SG1. Thus, T1 needs to im-
plement SG1 (line 2). All threads should extend RThread for naming purpose (line 2). 
Scheduler is a static class in package MWS (line 4). When a thread is started, the pro-
grammer should register the thread with the scheduler by calling the start method of 
the Scheduler class (line 4). One scheduler runs on each MSS. The start method of 
Scheduler creates an instance of the scheduler on the WSS if no such instance exists. 
Otherwise, the method simply registers the thread with the scheduler. After calling the 
start method, the thread waits for the scheduler’s response. When the scheduler de-
cides that it is the thread’s turn to run, the scheduler returns the thread’s call to the 
start method. As a result, the thread can carry on executing the thread’s logic (line 5). 
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At the end of the execution, the thread notifies the scheduler by the terminate method 
of class Scheduler (line 6). As a result, the scheduler removes the thread from its 
queue. Calling the start and terminate methods are the only two statements that a 
programmer needs to add to the thread’s logic. Hence, very little extra efforts are 
required from the programmers when writing thread classes used in web operations. 

3   Performance 

Performance tests are carried out to measure the overheads of the PWSS and the 
thread scheduler when the service group is deployed over a LAN. The TOPBCAST 
implementation assumes that message lost rate is 5%, site failure rate is 1%, and, a 
site sends its gossiping messages to three other sites in each gossiping round. With 
these assumptions, using a Markov chain, it is calculated that, for a group consisting 
of up to 45 sites, once a message is sent, there is a high probability (over 99%) that 
the message is received by all its destinations after two rounds of gossiping about the 
message. Thus, in the experiment, a message’s delivery order is decided after two 
rounds of gossiping about the message when running the TOPBCAST protocol.  
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Fig. 3. Overheads of the Middleware 

Java SDK 1.4.2 is used in our implementation. The PWSS also uses JAXM 1.2 
while Java WSDP 1.3 is needed to implement the WSS. Tomcat 5.0 is used to host 
PWSSs and WSSs. In the experiment, it is configured that (a) each PWSS and its 
corresponding WSS reside on different machines, (b) all machines are connected by a 
100Mbps Ethernet, and, (c) each machine is a Compaq Evo W4000 with one 1.8GHz 
P4 CPU. Overhead is defined as 11)( tttn − where tn is the service response time 

when the service group has n replicas and t1 is the service response time when no 
replication is used. 

The experiment assumes that the web operation runs for 4000ms when (a) there is 
a single site in the service group and (b) a single thread carries out the operation. Two 
sets of tests are carried out. In the first set of tests, two threads are used to implement 
the web operation where each thread lasts 2000ms. In the second set of tests, six 
threads are used to implement the web operation where each thread runs for about 
666ms. In each set of tests, we vary the number of replicas in the service group from 1 
to 10. Since there is only one CPU on each WSS, increasing the number of threads for 



 Replicating Multithreaded Web Services 167 

executing a web operation will only increase the execution time of the operation due 
to thread scheduling cost. From Fig. 3, for both tests, the overhead appears to be 
“moderate” when there are up to five replicas in a service group. The overhead of the 
system can reach about 33% in the worst case when there are ten replica sites and the 
operation consists of six threads. The experiment appears to show that the middleware 
can be used efficiently in systems in which the number of replicas in a service group 
and the number of threads used to implement the web operations are kept at a reason-
able level. 

4   Conclusion  

The middleware discussed in this paper supports reliable web services based on active 
replication. The middleware ensures the consistency of the replicas. Unlike many 
existing work, the middleware also addresses issues relating to multithreaded web 
services. For multithreaded web services implementation, programmers are required 
to follow some programming conventions when coding web services. This allows the 
middleware determine which threads’ executions need to be ordered and ensure that 
these threads are executed in the same order on all replicas. Empirical data show that, 
for services that require relatively long running time, the overhead of the middleware 
is reasonably low.  

References 

1. Felber P., Schiper A., Optimistic active replication, Proc. Of 21st International Conference 
on Distributed Computing Systems, pp333 – 341, 2001 

2. Gardner T., An Introduction to Web Services, Ariadne Issue 29, 2001 
3. Hayden M.G., Birman K. P., Probabilistic Broadcast, Tech. Rep. TR96-1606. Dept of Com-

puter Science, Cornell University, 1996 
4. Tartanoglu F., Issarny V., Romanovsky A., and Levy N., Dependability in the Web Services 

Architecture, Proc. of Workshop on Architecting Dependable Systems, 2002 



Design Schemes and Performance Analysis of
Dynamic Rerouting Interconnection Networks

for Tolerating Faults and Preventing Collisions�

Ching-Wen Chen1,��, Chang-Jung Ku2, and Chih-Hung Chang2

1 Department of Information Engineering and Computer Science,
Feng Chia University, Taichung City, Taiwan 40724, ROC

Tel: +886-4-24517250 Ext. 3729 Fax: +886-4-24516101
chingwen@fcu.edu.tw

2 Department of Computer Science and Information Engineering,
Chaoyang University of Technology,

Wufong, Taichung County, Taiwan 413, ROC
{s9327608, s9227610}@csie.cyut.edu.tw

Abstract. In fault-tolerant multistage interconnection design, the
method of providing disjoint paths can tolerate faults, but it is compli-
cated and hard to choose a collision-free path in disjoint paths networks.
A disjoint paths network can concurrently send more identical packets
from the source node to increase the arrival ratio, but the method might
increase the collision ratio. In contrast, a dynamic rerouting method finds
an alternative path that tolerates faults or prevents collisions. In this pa-
per, we present methods of designing dynamic rerouting networks. This
paper presents 1) three kinds of dynamic rerouting networks designed to
tolerate faults and prevent collisions; 2) design schemes that enable a dy-
namic rerouting network to use destination tag routing to save hardware
cost in switches for computing rerouting tags; and 3) simulation results of
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connection networks (MINs) are considered cost-effective ways of providing high-
bandwidth communication in multiprocessor systems [1].

To enhance the reliability of MINs, many researchers have investigated fault
tolerance issues [2-8]. Previous works provided disjoint paths [3-5] and used
dynamic rerouting [6-8] enable MINs to have fault tolerance capability. The
method of providing multiple disjoint paths which used to tolerate faults are used
in two ways: 1) to know in advance the location of a faulty element before a packet
is sent; therefore, one fault-free path can be taken to deliver message packets;
and 2) to send multiple identical packets simultaneously from the source to the
destination to tolerate faulty elements. However, the first method, which chooses
one fault-free path, cannot know in advance whether a collision will occur during
routing and the second method, which sends multiple packets simultaneously,
causes a high collision ratio.

The dynamic rerouting method provides alternative paths to a destination
when a packet encounters a faulty or busy element. Thus, this method does not
need to know the locations of faulty elements before a packet is sent. In pre-
vious works, many 3x3 or more complicated switches are provided to construct
dynamic rerouting networks [6-8]. For example, the Gamma network [6] uses
3x3 crossbar switches at the middle stages to provide multiple paths, but they
can not reroute packets when the packets encounter a faulty or busy element
in a straight link; that is, they cannot not guarantee one fault tolerance and
cannot prevent collisions in the straight link. The B-network [7] uses a backward
link to the switch at the previous stage for rerouting, but the B-network cannot
guarantee one fault-tolerance, and it takes two rerouting hops at least. Although
the Enhanced IADM [8] can guarantee one fault tolerance, it uses 5x5 crossbar
switches at the middle stages to achieve zero rerouting hops. In addition, in the
Enhanced IADM, the method of computing the rerouting tag and rerouting con-
trol in the switches at the middle stages require more hardware cost. There are
some networks that add some extra stages to provide fault tolerance capability
or prevent collisions, but the packets traverse more links to the destination re-
gardless of whether the packets encounter a faulty or busy element. Thus, the
collision ratio increases in such a design.

In this paper, we address these important issues and propose methods of
designing dynamic rerouting networks. In particular, we propose three kinds of
dynamic rerouting networks designed to tolerate faults and prevent collisions. In
addition, we aslo propose the design schemes of destination tag routing networks
to save hardware cost in the switches for computing the rerouting tag. Simulation
results are presented of related dynamic rerouting networks to realize the factors
that influence the arrival ratio including the fault tolerant capability and the
number of rerouting hops.

The rest of this paper is organized as follows. In Section 2, we introduce
routing methods which use pre-computing tags in the ICube network that is
equivalent to the most important multistage networks and in other cube-like
networks. In Section 3, we present the schemes used to design dynamic rerout-
ing networks based on the researchable set concept and propose three kinds of
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dynamic rerouting networks. In addition, we also introduce how to design a desti-
nation tag routing function for easy rerouting. In Section 4, we simulate our three
proposed dynamic rerouting networks and other previous dynamic rerouting net-
works and compare their arrival ratio under one-fault and fault-free situations.
Section 5 concludes this work.

2 Preliminaries

In this section, we present the method of pre-computing routing tags in the indi-
rect binary n-cube network (ICube network) [9] and in other cube-like networks.
We also introduce the rerouting conditions that exist at a switch when a packet
encounters a faulty element or when a packet is involved in a collision. In Section
2.1, we present the topology and the routing method of the ICube network. In
Section 2.2, we show the distance tag routing method in other cube-like network.

2.1 Indirect Binary n-Cube Network (ICube Network)

An ICube network of size N=2n consists of n+1 stages labeled from 0 to n. Each
stage involves N switches [9]. Switches of sizes 1x2 and 2x1 are coupled with the
first and last stages, respectively. Moreover, each switch located at the interme-
diate stages is a 2x2 crossbar. Switch j = jn−1jn−2... j2j1j0, at stage i has two
output links connected with two switches at stage (i+1) based on the plus or mi-
nus 2i function; that is, the non-straight link of switch j at stage i connects the
switch [(j - 2i) mod N ] at stage i+1 if ji is 1. Otherwise, the output non-straight
link of switch j at stage i connects the switch [(j + 2i) mod N ] at stage i+1.

With regard to the routing behavior, if switch j (= jn−1jn−2... j2j1j0) at stage
i delivers a packet to the non-straight link and the (n-i)-th bit of switch j, ji, is
1/0, the (n-i)-th bit of the switch that the packet is delivered to at the next stage
is 0/1. Accordingly, we can pre-compute the routing tag, D=dn−1dn−2...d2d1d0,
by an XOR operation of the source and the destination tags. Thus, the routing
tag can be used to deliver packets from the source to the destination in such a
way that the straight/non-straight link at stage i is taken if di is 0/1. Example
1 show the routing situation when the source is 1 (=001), the destination is 6
(=110) and the routing tag is 111 (001 XOR 110).

Example 1. In an ICube network of size N =8, the source is 1, and the destina-
tion is 6. The routing tag is 111 generated by an XOR operation of the source
and the destination tags. The routing condition is shown in Figure 1(a) and is
described as follows: 0(stage 1)→1(stage 0)→2(stage 2)→6(stage3)

2.2 Distance Tag Routing in Cube-Like Networks

A cube-like network with distance tag routing of size N =2n consists of n+1
stages labeled from 0 to n. Each stage involves N switches. Switches of sizes
1x2 and 2x1 are coupled with the first stage and the last stage, respectively.
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Fig. 1. (a) An ICube network of size N=8 and the routing condition when the source
is 1 and the destination is 6. (b) A cube-like network of size N=8 and the routing
condition when the source is 5 and the destination is 7.

Moreover, each switch located at intermediate stages is a 2x2 crossbar. Switch
number j at stage i has two output links connected with switches at stage (i+1)
based on the plus-2i function; that is, switch j at stage i has two output links
to switches j and [(j+2i) mod N ] at the consecutive stage.

With regard to the distance tag routing in such a network, an n-digit tag
determines the path connecting the source S with the destination T where each
tag digit can be 1 or 0. An n-digit tag D= dn−1dn−2... d2d1d0 represents the
difference between T and S, i.e., D = T - S (if D is less than 0, then D is equal
to D plus N ). Digit di of the routing tag D is used at stage i in such a way
that the non-straight connection is taken if di is equal to 1, and the straight
connection is selected when di is 0. For example, when N is 8, the source node
S is 5, the destination node T is 7, and the routing tag D is 010, as shown in
Figure 1(b).

3 Dynamic Rerouting Networks and Destination Tag
Routing Designs

In this section, we present the dynamic rerouting network design scheme based on
the concept of the researchable set presented in Section 3.1. Section 3.2 describes
a method of designing a destination tag routing network.

3.1 Dynamic Rerouting Network Design Scheme

In Section 2, we introduced the routing methods that pre-compute a routing
tag in a cube-like network. In cube-like multistage interconnection networks,
the routing behavior at a switch at stage i eliminates the 2i vertical distance
to approach the destination if the routing bit di is 1; that is, once a packet is
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delivered from stage i to stage i+1, the last (i+1)-th bit of the switch index at
stage i+1 is the same as the last (i+1)-th bit of the destination. As a result,
after n (=log2N ) routing hops, a packet can arrive at a destination from any
source. In other words, in a cube-like network, if a packet is at switch j at stage
i from some source node, the last i bits of the switch index j are the same as
the last i bits of the destination tag.

According to the routing behavior, we can easily find the reachable switches
for some specific destination. In Definition 1, we define the reachable set to
include the switches that can deliver packets to a specific destination.

Definition 1. The switches at stage i whose last i bits of the index are the same
as the last i bits of the destination T (=tn−1tn−2... t2t1t0) are called reachable
switches at stage i for a destination T. A reachable set for a destination T
(=tn−1tn−2... t2t1t0), denoted ST , means all reachable switches at all stages.

In Figure 2, the reachable set S 6 for destination node 6 is shown. In Theorem
1, we prove that any switch in the reachable set ST can deliver a packet to the
destination T.

Theorem 1. The switch at stage i belonging to ST can deliver a packet to the
destination T.

Proof. We assume that a packet is delivered from some source and reaches
switch j at stage i. Switch j that belongs to the reachable set ST . By Definition
1, the last i bits of the switch index j are the same as the last i bits of the
destination T, because the switch at stage i can deliver a packet to the switch
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at stage i+1, whose last (i+1)-th bit is the same as the last (i+1)-th bit of the
destination T. Thus, after routing (n - i) hops from stage i, the packet can arrive
at the destination T.

From Theorem 1, all the switches in the reachable set ST can deliver packets
to the destination T if the packet does not encounter a faulty or busy element.
As a result, if a faulty element exists or a collision occurs, the switch can easily
reroute a packet to the switches belonging to the same searchable set for rerout-
ing; that is, we can add extra links in a switch to connect the switches belonging
to the same reachable set as alternative links for rerouting.

In the following, we use this concept to construct and propose dynamic
rerouting networks for tolerating faults and preventing collisions. We create three
kinds of dynamic rerouting networks by adding an extra link to the switch at
the previous stage, adding an extra link to the switch at the current stage, and
adding two extra links to two switches at the latter stage.

Adding an Extra Link to the Switch at the Previous Stage
The scheme of designing dynamic rerouting networks by adding extra links to
the switches at the previous stage is proposed in this section. First, we analyze
the result of Theorem 1 to propose the design scheme. In addition, we propose
related important issues for preventing collisions.

When switch j at stage i wants to reroute a packet to a switch at stage i-1,
N /2i−1 switches at stage i-1 can be considered because at stage i-1, there are
N /2i−1 switches whose last (i-1) bits are the same as the last (i-1) bits of switch
j ; that is, the N /2i−1 switches at stage i-1 and the switch j at stage i belong
to the same reachable set no matter which destination is desired. Hence, we can
add an extra link to switch j at stage i. The extra link connects to one of the
N /2i−1 switches at stage i-1 and is an alternative link for rerouting. We show
in Figure 3 this kind of dynamic rerouting networks that is created by adding
one backward link from stage i to stage i-1 at each switch, where i is from 1 to
n (=log2N ).

This kind of dynamic rerouting network sends a packet to the added link
when the packet encounters a faulty or busy element. However, some important
problems should be carefully solved when designing such a dynamic rerouting
network. 1) The switches at stage 0 cannot send a packet to the previous stage
for rerouting. To solve this problem, a switch at stage 0 can add extra links by
adding a link to a switch at the current stage or by adding two links to the
switches at the latter stage. 2) If a rerouting behavior occurs because a packet
encounters a faulty element in the middle stages, the situation of a packet re-
encountering a faulty element again after rerouting should be prevented to reduce
the number of rerouting hops to reduce the number of collisions. We discuss the
situations and propose solutions in Section 3.2.

Adding an Extra Link to the Switch at the Current Stage
In the following, we present the second kind of dynamic rerouting network, in
which an extra link is added in each switch to connect the switches at the same
stage.
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When a switch at stage i wants to reroute a packet to the switches at the
same stage, N /2i switches whose last i bits are the same as the last i bits of the
current switch can be considered as the rerouting targets. Moreover, these N /2i

switches, whose last i bits are the same as the current switch, belong to the same
reachable set regardless of the destination of a packet. Similarly, the situation of
a packet re-encountering a faulty element after rerouting should be prevented to
reduce the number of rerouting hops. We show in Figure 4 this kind of dynamic
rerouting network that is made by adding one link to each switch, a link which
connects two switches at the same stage by a 2n−1 vertical distance from stage
0 to stage n-1. The network takes at least one rerouting hop for the rerouting
behavior. In Figure 4, the routing and rerouting example is shown where the
source is 0, the destination is 1, and switch 1 at stage 1 is fully faulty.

Adding two Extra Links to the Switches at the Latter Stage
In the following, we present the third kind of dynamic rerouting network, in
which two extra links are added in each switch to connect two switches at the
next stage.

This kind of dynamic rerouting network is different from the previous two
kinds in which only one extra link is added for rerouting. If switch j (=jn−1jn−2...
j2j1j0) at stage i wants to reroute a packet to the next stage, two extra links
corresponding to routing bits 0 and 1 are needed. The connection rules for switch
j at stage i for the two extra links are described as follows: 1) choose N /2i

switches at stage i+1 whose last i-bits are the same as the last i-bits of the
current switch j, ji−1...j2j1j0; 2) split these switches into two sets according to
the value (0 or 1) of the last (i+1)-th bit of the switch index; 3) individually
choose a switch from these two sets; 4) connect these two switches from switch
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j at stage i and use them as the alternative links; and, finally, 5) mark the
alternative links 0 or 1 as follows: if the last (i+1)-th bit of the chosen switch at
stage i+1 is the same as the last (i+1)-th bit of the switch index j at stage i,
ji, mark the alternative link 0; otherwise, mark the alternative link 1. In Figure
5, we show a network that two extra links added at each stage to connect two
switches at the next stage. In Figure 6, we present the connection conditions in
detail from stage i to stage i+1 for Figure 5.
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Fig. 6. All output links in a switch at stage i for the case of two extra links to connect
the next stage’s switches

In general, when a switch at stage i wants to connect the switches at the
next stage, N /2i+1 likely switches can be considered for routing bits 0 and 1.
This kind of dynamic rerouting network does not take any extra rerouting hops,
but the switch architecture between stage 0 and stage n-1 uses 4x4 crossbar
hardware. When switch j at stage i wants to choose a switch as the alternative
switch from a set for routing bit 0 or 1, N /2i+1 switches can be considered,
but we avoid choosing the switch which has already been connected by switch
j. However, at stage n-1, there is only one switch in a set. Thus two duplicated
links are established to connect two switches between stage n-1 and stage n.

Rather than requiring two extra links in each switch for this kind of dynamic
rerouting network, in the first two kinds of dynamic rerouting networks, in which
an extra link is added to connect to the switch at the current stage and the
previous stage, there is a cost of one extra link for rerouting. However, the
penalty, the extra rerouting hops, for these two kinds of rerouting networks
affects the system performance. In Section 4, we simulate and analyze the arrival
ratio of these three kinds of dynamic rerouting networks with the factors which
include one fault tolerance, and rerouting hops.

In the next section, we present how to design the destination tag routing
method to save hardware cost associated with computing the rerouting tag in
the switch for rerouting behavior.

3.2 Destination Tag Routing Designing Schemes

In this section, we present a method on how to make pre-computing tag networks
use the destination tag routing method to save hardware cost at switches for the
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rerouting process. According to the pre-computing tag method in the ICube
network or the other cube-like networks, the routing behavior in the switch at
stage i delivers a packet to the switch at stage i+1 whose last (i+1)-th bit is the
same as the last (i+1)-th bit of the destination; that is, if a packet is delivered
from stage 0 to switch j (=jn−1jn−2...j0) at stage i, the last i bits, ji−1 ji−2Kj0,
are the same as the last i bits of the destination index. As a result, we can
know that a packet at switch j at stage i is sent to a non-straight link if the
last (i+1)-th bit of the switch index, ji, is different from the last (i+1)-th bit
of the destination index; that is, if ji is the same as the last (i+1)-th bit of
the destination index, a packet is sent to the straight output link. Accordingly,
a switch at stage i can deliver a packet to the next stage according to the
last (i+1)-th bit of the destination tag and the last (i+1)-th bit of the current
switch index. Thus, because the last (i+1)-th bit of the switch index at stage i
is permanent, we can easily mark the two output links 0 or 1 according to the
last (i+1)-th bit of the current switch, ji.

The marking rule is described as follows: 1) If the last (i+1)-th bit of a switch
index at stage i is 1, mark the non-straight link 0 and the straight link 1. 2) If
the last (i+1)-th bit of a switch index at stage i is 0, mark the non-straight link
1 and the straight link 0.

In the following, we apply this marking rule to the ICube network [9] and
the cube-like network to enable these two networks to use a destination tag
routing scheme. According to the marking rules, we mark the non-straight link
output link in a switch at stage i 0/1 and the straight link output link in a
switch at stage i 1/0 if the last (i+1)-th bit of the switch index at stage i is
1/0. Figure 7(a) and Figure 7(b) show the marked results and the destination
tag routing behavior from the source index 1 to the destination index 6.

Since the ICube network [9] is equivalent to many important multistage inter-
connection networks [11]; for example, the Omega network, the Shuffle Exchange,
and so on [11], the principle that is followed to enable the ICube network to use
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Fig. 7. (a) An ICube network of size N=8 (b) A cube-like network of size N=8, and
the destination routing behavior with source 1 and destination 6
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the destination tag routing method can also be applied and explained in these
equivalent networks.

We can easily apply the schemes mentioned above to enable our three pro-
posed dynamic rerouting networks mentioned in Section 3.1 to use the destina-
tion tag routing method to save the hardware cost during rerouting behavior.
Although the three kinds of dynamic rerouting networks have the capability to
tolerate faults and prevent collisions, the hardware cost in terms of the switches
and the number of rerouting hops are different. In the next section, we compare
and discuss the differences between the three kinds of networks and other pre-
vious works and present the comparisons of the arrival ratio according to our
simulations.

4 Simulation Results

In this section, we present our simulation, results and discussions. We compared
our three proposed dynamic rerouting networks, the Gamma network (GIN),
the B-network, and CGIN (providing two disjoint paths networks to tolerate a
fault) in a 6.25% to 100% traffic load condition, with a network size of N =16.
Our three proposed dynamic rerouting networks, GIN, and the B-network use
the dynamic rerouting method to tolerate a fault and prevent collisions, while
CGIN sends two copy packets at a time via two disjoint paths to enhance fault
tolerance capability and to prevent collisions.

For our simulation, the term ”traffic load” means the number of packets
that are to be sent simultaneously by the different sources. For example, if two
packets in two different sources are to be sent to two different destinations, the
traffic load is 12.5%, where the network size is 16. As a result, the maximum
traffic load means that each of the 16 source nodes has a packet to be sent to
16 different destination nodes. However, in the CGIN, each source sends two
identical packets to the destination via two disjoint paths.

In our simulation, we continuously and randomly generated the different
source-destination requests in each cycle and continuously ran 10,000 cycles to
compute the arrival rate, the collision rate, and the successful rerouting rate
under a fixed traffic load. When a faulty element exists in the network, we
assumed the faulty switch was fully faulty, and we performed simulations with
each switch at the middle stage being a fully faulty switch; that is, we ran 3*16
simulations and averaged these results to get the simulation results under a fixed
traffic load because there are three middle stages and 16 switches at every stage
with a network size of 16. In addition, we preformed simulations with various
traffic loads to get our final results.

We also showed the improvements in the arrival ratio in the case of a network
with a link added to the current stage when a fully faulty switch element exists
in the network. With regard to the disjoint paths network, if none of the two
packets arrives at the destination, the route failed. Figure 8 show the arrival rates
and the collision rates of these networks without and with a fault, respectively.
From the simulation results, the arrival rate of the two disjoint paths network,
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Fig. 8. Arrival ratio comparisons of our proposed networks and other previous networks
widh and without a faulty element when the network size is N=16

CGIN, is fine under low traffic loads because the case of two packets being sent
concurrently via two disjoint paths does not increase the collision rate. However,
because twice the number of packets is sent, the collision rate grows. In Figure 8 ,
the disjoint paths network (CGIN) exhibits a more rapid decrease in the arrival
ratio than other networks. Because of the reasons listed above, the dynamic
rerouting networks perform better than a disjoint paths network. However, the
title DR 1 refers to the first of our three proposed networks, DR 2 refers to the
second, and DR 3 refers to the third kind of our three proposed networks.

Figure 8 show the arrival ratio of dynamic rerouting networks, including the
Gamma network, the B-network, DR 1, DR 2, and DR 3 with and without a
faulty element. Although the B-network performs a good arrival ratio in fault-free
networks in light traffic, the lack of guaranteed fault tolerance and the penalty
in more rerouting hops degrade the arrival ratio quickly in the B-network. With
regard to DR 2, and DR 3, DR 2 performs with a little lower arrival ratio than
DR 3 when there is no faulty element in the network. When there is one faulty
switch in the network, DR 2 has an arrival ratio that is a little 5% less than that
of DR 3 because of 1 rerouting hops.

5 Conclusions

In this paper, we presented 1) three kinds of dynamic rerouting networks design
that have the capability of tolerating faults and preventing collisions; 2) design
schemes that enable a dynamic rerouting network to use destination tag routing
to save hardware functions of computing the rerouting tag in the switches; 3)
simulation results of related dynamic rerouting networks to realize the factors
which influence the arrival ratio including the fault tolerant capability and the
number of rerouting hops.

In the simulation results, we simulated these dynamic rerouting networks
and one disjoint paths network under various traffic loads with and without
faulty element considerations. From our experimental results, the third of our
three proposed networks perform best in terms of the arrival ratio, with or
without a faulty element, but it requires 4x4 crossbar switches in the middle
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stage. Although our second proposed second dynamic rerouting network show a
little lower arrival ratio than the third proposed network, it uses 3x3 crossbar
switches at the middle stages. In addition, if the traffic load is not very heavy,
it performs with almost the same arrival ratio as the third proposed network.

In addition, we also compared the dynamic rerouting networks with two
disjoint paths network that sends two identical packets from a source to a des-
tination to tolerate one fault and prevent collisions. From our results, the two
disjoint paths network has a good arrival ratio if the traffic load is light; however,
the arrival ratio decreases very quickly when the traffic load increases.

With regard to the dynamic rerouting networks, the B-network, and the
Gamma network, because of the lack of fault tolerance guarantee in the Gamma
network and the B-network, these two networks have a worse arrival ratio than
our proposed networks. Based on our proposed design schemes and according to
our analysis and simulation results, a designer can choose an applicable dynamic
rerouting network by using cost-efficient considerations.
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Abstract. Parallel file systems stripe the data from a single file across multiple 
cluster/grid nodes so that the systems can access file in parallel. In such a system, 
if an I/O node or the storage device of that node doesn’t work, all the subfiles on 
the node can’t be accessed. In this paper, we introduce a special fault tolerance 
model for parallel file systems called Round-robin Redundant Backup of Subfile 
(RRBS). This model ensures the accessibility of the parallel files even when an 
I/O node is failure. In order to test the usability of RRBS, we also developed a 
prototype of parallel file system called WPFS on a PC/Windows cluster. 

1   Introduction 

I/O bottlenecks have always been a major issue in computer science. As early as 
1967, [1] addressed the issue of storage and computation efficiency. Almost forty 
years later, this lack of performances is confirmed in [2] and this trend is likely to 
continue as I/O hardware performances increase slower than CPU and memory. Fur-
thermore, this gap is amplified by the increasing use of clusters of work-stations or 
PCs [13]. Therefore, it is necessary to improve I/O performance so that to balance it 
with CPU performance.  

One way of improving I/O performance is to carry out I/O operations in parallel, 
which is supported by parallel file systems. Parallel file systems logically aggregate 
multiple independent storage devices of a cluster/grid into a single high performance 
storage subsystem[3][14]. Striping the data from a single file across multiple devices 
allows the system to access files in parallel. 

Till recently, many parallel file systems have been developed. Most parallel file 
systems were built on clusters [6][7][12][8][9][10] or computing grids [14] [6] [15] . 
The cluster/grid architecture, as a distributed system environment, generates some 
constraints such as fault tolerance. For example, damage to the magnetic disk on 
which the parallel files are stored will produce unthinkable loss. Fault tolerance of a 
parallel file system ensures the accessibility of files even when an I/O node is failure.  

                                                           
*  This research work is supported by National Natural Science Foundation of China under 

Grant No.60473099 and by Outstanding Youth Science Foundation of Jilin Province under 
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In this work, we present a fault tolerance model called Round-robin Redundant 
Backup of Subfile (RRBS). In this model, every subfile in a parallel file system will 
have a backup copy on another I/O node. Thus all the subfiles can be rebuilt and ac-
cessible even when an I/O node is failure or the magnetic disk is damaged.  

In order to test the usability of RRBS, we also developed a prototype of a parallel 
file system called WPFS on a PC/Windows cluster. The experimental results show 
that RRBS works well. Moreover, RRBS is suitable to every parallel file system built 
on cluster/grid.  

The rest of the paper is organized as follows: section 2 shows the design and im-
plementation of the parallel file system prototype WPFS. Then section 3 describe the 
details of our fault tolerance model RRBS. Next, section 4 gives some experimental 
results and in section 5 some related works are discussed. Eventually, section 6 con-
cludes and describes future works. 

2   Design and Implementation of WPFS 

Before we describe the details of RRBS, we’ll show the prototype WPFS roughly so 
that some keywords will be clear. 

2.1   WPFS Structure 

Like most of the cluster parallel file systems, WPFS is implemented as client-server 
model. WPFS consists of three components: the service manager(SM), the I/O server 
(IOS), and the application library (wpfs_lib). 

Figure 1 shows the structure of WPFS. 
SM handles permission checking for file creation, open, close, and remove opera-

tions. The IOS handles all file I/O without intervention of the service manager. 
Through the wpfs_lib, the applications communicate with the WPFS system. 

The three components of WPFS communicate and cooperate with each other. All 
the communications rely on TCP to provide reliable end-to-end data stream service. 
WinSock2 has been used in all the communication programs of the system. 

 

Fig. 1. TPFS file system 
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WPFS runs on PC clusters. Every node in the cluster is an independent computer 
system, which has processors and local storage devices of its own. The nodes are 
connected with each other by high speed network. On each node can run the SM, the 
IOS or user applications. According to the software running on it, the node is called 
management node (MN), I/O node (ION) or compute node (CN). Of course, one node 
can play multiple roles at the same time. But this will impact on the performance. 

2.2   File Stripe and Data Storage 

In WPFS, the parallel files are implemented. One parallel file is a logically single file 
and physically consisting of multiple discontiguous subfiles striped across different 
IONs. The user applications can visit these subfiles in parallel. 

The number of subfiles is equal to the number of IONs that store the file. Each sub-
file is a physically contiguous byte stream. But logically it consists of a lot of discon-
tiguous units which are called striping-units. In other words, a parallel file is divided 
averagely into multiple striping-units, a subfile is the collection of striping-units be-
longing to a given file that reside on a single ION. The size of the striping-unit is 
specified (as a parameter by the user application or by default) at the time the file is 
built and will never change. Striping-units are allocated to IONs with a round robin 
scheme.  

Figure 2 shows an example of file striping in WPFS. 

 

Fig. 2. Example of file striping in WPFS 

2.3   User Defined File View 

Parallel file systems obtain high I/O performance by logically aggregating multiple 
independent storage devices into a single high performance storage subsystem [3]. 
But in fact, there are many factors affect the improvement of I/O performance. Stud-
ies showing that 80% of parallel file accesses utilize a "strided" access pattern [4]. So 
in WPFS, we provide a user-defined file view. 

This allows for noncontiguous file regions to be accessed with a single function 
call. The concept is similar to logical file partitioning in Vesta[9] and PVFS [7] and 
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file views in MPI-IO[5]. An application can partition a WPFS file, effectively limiting 
the view of the file to a subset of the complete byte sequence. 

Figure 3 shows a user-defined file view of a WPFS file: file.dat. According to the 
three parameters: ro,rs and sd provided by the user application. Then a user file view 
consisting of three records is got. 

 

Fig. 3. A User-defined file viev 

3   A Fault Tolerance Model: RRBS 

In a cluster/grid parallel file system, a single parallel file will spread across N (N>=1) 
IONs. If a storage device or a node or an IOS program or the network equipment 
connecting the ION is disabled, all the subfiles on that node will be unaccessible. If it 
is the damage of magnet media, the whole parallel file is broken only because one of 
its subfiles is spread across this node, despite that the other N-1 subfiles are right and 
accessible. 

The failure of one node causes so bad effect, but there is little probability of two 
nodes failure at the same time. In WPFS, to ensure the validity of the system, we 
implement a mechanism of fault tolerance called Round-robin Redundant Backup of 
Subfiles(RRBS). 

In this section, we’ll show RRBS model in detail. 

3.1   Design and Implementation of RRBS 

Each subfile of a parallel file has a copy. A subfile is called the source and it’s copy is 
called the copy. The source and the copy are stored separately on the No. m and the 
No. n ION. Suppose the numbering of the I/O nodes of WPFS is as: 1,2, ……,N. The 
relationship between m and n is as follows: 

When  m  <  N n  =  m + 1; and 
When  m  =  N n  =  1 
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When a parallel file is opened, every source and its copy will be opened together. 
Usually, WPFS will access the source, and the copy is accessed only when the source 
is unaccessible. Through cooperations between wpfs_lib and IOS, the access to the 
subfile and the update to the copy is completed.  

When the API wpfs_read/wpfs_write is called by the application, wpfs_lib is re-
sponsible for mapping the I/O request to the I/O requests to multiple subfiles. Follow-
ing are the processes of wpfs_read and wpfs_write.  

3.2   Process of Wpfs_Read 

At first, the wpfs_lib sends read request to each ION the file striped on. If all the re-
sponses returned from the IOS indicate success, wpfs_lib will return a success re-
spond to the application. Otherwise, if one of the responses suggests a failure, there 
must be something wrong with that ION. Then a request for the copy will be send to 
the next ION. During this process, the user won’t be aware of the failure. 

Figure 4 is an example of wpfs_read. In this example, the node n is power down. 
After sending requests to the three IOSs, wpfs_lib only get responses from IOSn-1 
and IOSn+1. So after the overtime, wpfs_lib will send another request to IOSn+1 for 
data from the copy of subf n. 

 

Fig. 4. Fault Tolerance model of wpfs_read 

3.3   Process of Wpfs_Write 

Comparing to wpfs_read, the process of wpfs_write is more complex. When a subfile 
is written, the copy will be update synchronously. And if there is a node failure, the 
source and the copy will be inconsistent. 

Synchronous Updating of Copy: Wpfs_lib sends write requests and the data that 
will be written to the subfiles. The IOSs are responsible for writing the data to the 
right location of the subfiles and send response messages. Then the IOS send update 
requests and the data to the next ION to update the copy. Thus, updating of copy is 
completed by the ION where the subfile is located and the application gets the 
response message in time. 

Figure 5 shows the process: 
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Fig. 5. Synchronous updating of copy 

Inconsistency of Source and Copy: If every IOS sends an affirmative response to 
the wpfs_lib, the wpfs_lib will return an affirmative response to the application 
indicating the write request has been performed successfully. Otherwise, if one of the 
responses suggests a failure, there must be something wrong with that ION. Then the 
wpfs_lib will send another request for the copy. Thus the source and the copy will be 
inconsistent. 

Delay Update of Subfile: Our method to ensure the consistence of the source and the 
copy is called delay update of subfile. Namely update when open next time. 

If either the source or the copy of a subfile is updated but the other one is not, a log 
file about the details of that update will be built. The following write operation to the 
same source or copy will also be logged to the log file.  

The parameters logged include the IP address of the I/O node needs to be updated, 
the service port of the IOS and the offset and length of every write operation. The 
offset is the offset from the beginning of the whole parallel file. 

Next is the content of a logfile: parafile3log.txt. 

202.198.67.150:7000 1020 100 

From the request of the wpfs_lib, the IOS gets the IP address and the service port 
number. Once an IOS opens a subfile, the corresponding log file is also opened. The 
inexistence of log file indicating there is no inconsistency between the source and the 
copy. If the log file exists, the IOS will read the IP address and the port number 
logged in the file, connect to the IOS on that host by SOCKET, and read the records 
in the log file one by one to update the source or the copy. When all the updates com-
pleted, the IOS will delete the log file. In this way, we do delay update of the subfile 
when it is opened, the consistent of the source and the copy is ensured.  

In addition, once the disk of an ION is damaged, the lost subfile can be rebuilt from 
its copy. Thus the damage of one subfile won’t do harm to the whole parallel file.  

4   Experimental Results 

In this section we present the results of two experiments designed to show the usabil-
ity of WPFS and RRBS. 

The system used for testing was a PC cluster, consisting of a number of PCs, each 
with 128MB of RAM and 20G of local disk. The network is fast Ethernet which pro-
vides full duplex links between PCs. The operating system running on the PCs is 
Windows NT. 

Experiment 1: In the first experiment, the throughput of WPFS with one, two and 
three IONs was tested. In any case, we tested different read request sizes. 
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Figure 6 shows a comparison of overall throughput for WPFS reads with various 
numbers of I/O nodes. A 128K stripe size was used in all tests. When the request size 
is small, the cost of network communication is considerable, increasing the number of 
the I/O nodes results in a drop of throughput. But when the request size is large 
enough, the cost of the network communication can almost be ignored, more I/O 
nodes provides better throughput. The result shows the ability of WPFS to improve 
I/O performance. 
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Fig. 6. Read Performance under Different Number of I/O Nodes 

Experiment 2: In this experiment, we tested RRBS over a cluster of three IONs. A 
parallel file was striped over the three IONs. A 128K stripe size was used in the test. 

We tried wpfs_read when one of the IONs didn’t work. The result showed that all 
the requests to the failed ION can complete by reading from the copy on the next ION. 

Then we tried wpfs_write when one of the IONs didn’t work. The copy was writ-
ten and a corresponding logfile was built.  

The results showed that RRBS works well. 

5   Related Works  

Fault tolerance of a parallel file system ensures the accessibility of files even when an 
I/O node is failure. Only a few parallel file systems have considered fault tolerance. 
PIOUS provides a dynamically-selectable fault tolerance level [8] [3], Vesta provides 
a file checkpoint facility that is efficient and simple to use[9], and GPFS[6] is de-
signed to be configured so that single points-of-failure can be avoided. A recent and 
advanced project of cluster file system is Lustre[10][11]: it aims at handling both 
distributed system constraints such as availability and fault tolerance and parallel I/O 
considerations. 

But all of the above methods are incapable to cope with the I/O node failure, and 
the damage of the magnetic disk will produce unthinkable loss. 
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6   Conclusions and Future Work 

In this paper, we introduce a special fault tolerance model RRBS of parallel file sys-
tems. 

The cluster/grid architecture is a distributed system environment. So the parallel 
file systems built on the cluster/grid have to face some constraints such as fault toler-
ance. The Round-robin Redundant Backup of subfile improves the validity of the 
parallel file systems. 

In a parallel file system, a single read or write operation can generate data accesses 
on multiple independent storage devices, so next we plan to design an effective con-
currency control mechanism in WPFS. 

References 

1. G. Amdahl. Validity of the single-processor approach to achieving large scale computing 
capabilities. pages 483–485, 1967 

2. J. L. Hennessy and D. A. Patterson. Computer architecture: A quantitative approach, 1996 
3. Steven A. Moyer and V. S. Sunderam. Characterizing concurrency control performance for 

the PIOUS parallel file system, Technical Report CSTR-950601,Emory University , June 
1995 

4. N. Nieuwejaar and D.  Kotz,Low-level Interfaces for High-level Parallel I/O,  Workshop 
for I/O in Parallel and Distributed Systems,  IPPS 1995,  pp  47-62, 1995 

5. R. B. Ross, Providing Parallel I/O on Linux Clusters, Second Annual Linux Storage Man-
agement Workshop, Miami, FL, October 2000 

6. Frank Schmuck, Roger Haskin, GPFS: A Shared-Disk File System for Large Computing 
Clusters, Proceedings of the Conference on File and Storage Technologies (FAST’02), 
Monterey, CA, pp. 231–244, January 2002 

7. Ligon, III, W.B., and Ross, R. B.,PVFS: Parallel Virtual File System, Beowulf Cluster Com-
puting with Linux, Thomas Sterling, editor, pages 391-430, MIT Press, November, 2001 

8. N. Nieuwejaar, D. Kotz.,PIOUS:  A Scalable Parallel I/O System for Distributed Comput-
ing Environments, Proceedings of the Scalable High-Performance Computing Conference, 
pages 71--78, 1994 

9. Peter F. Corbett, Sandra Johnson Baylor, Dror G. Feitelson, Overview of the Vesta Parallel 
File System, ACM SIGARCH Computer Architecture News, Pages: 7 - 14,1993 

10. P. Schwan. Lustre : Building a file system for 1,000-node clusters. In Proceedings of the 
Linux Symposium, Ottawa, July 2003 

11. F. Wang, Q. Xin, B. Hong, S. A. Brandt, E. L. Miller, D. D. E. Long, and T. T. McLarty. 
File system workload analysis for large scale scientific computing applications. In Pro-
ceedings of the 21st IEEE / 12th NASA Goddard Conference on Mass Storage Systems 
and Technologies, College Park, MD, Apr. 2004 

12. Avery Ching, Alok Choudhary, Wei-keng Liao, Robert Ross, and William Gropp, "Non-
contiguous I/O through PVFS," Proceedings of 2002 IEEE International Conference on 
Cluster Computing, September, 2002 

13. MARK BAKER AND RAJKUMAR BUYYA Cluster Computing: The Commodity Su-
percomputer, Software Practice and Experience, 29(6):551-557,1999 

14. Ron Oldfield, David Kotz  Armada: a parallel I/O framework for computational grids, 
Future Generation Computer Systems 18 (2002) 501–523,2002 

15. I.Foster, C. Kesselman (Eds.), The Grid: Blueprint for a New Computing Infrastructure, 
Morgan Kaufmann, Los Altos, CA,1998 



Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 188 – 195, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Fast Parallel FFT on CTaiJi: A Coarse-Grained 
Reconfigurable Computation Platform 

LiGuo Song1 and YuXian Jiang2 

Department of Automatic Control, 
Beijing University of aeronautics and astronautics, 

Beijing, 100083  
1 songlg123456@sohu.com, 2 jiangyx@263.com 

Abstract. Traditional microprocessors are today getting more and more 
inefficient for a growing range of applications that are mainly about processing 
data-stream. These applications have two character characteristics: one is that 
lots of intensive computation tasks need to be processed, another is that the 
running time of these tasks occupy more than 90% of total time. Coarse grained 
reconfigurable computation is very fitful for these tasks and can achieve very 
high performance. This paper presents implementation of the task of fast 
parallel complex FFT on CTaiJi, the 16bits Reconfigurable computation 
platform, which is targeting on streamed applications such as multi-media and 
DSP (digital signal processing). The proposed mapping comprises fast 
store-address transformation and configuring the function of PEA (processing 
element array) to fit for FFT. More-over, the performance is scalable according 
to FFT sizes. Since there is no functionality specifically tailored to FFT, the 
results demonstrate the capability of CTaiJi architecture to extract parallelism 
from streamed applications. Further ration- ales are given based on the 
concepts of scalar operand networks. 

1   Introduction 

Toward a coming billion-transistor era, today’s computation platforms design has 
already foreseen the end of the road for conventional micro-architectures [1], and 
numerous new approaches have arisen above the horizon, such as EPIC[2], RAW [3], 
Imagine [4], VIRAM [5] and XPP-64 [6], etc. ALL of them target on streamed 
applications, in which more than 90% of total processing-time is spent on loop and 
regular data processing. The biggest challenge of architecture design is the scalability, 
only with which can one follow up the step of Moore’s Law. The difficulty of 
scalability is imposed by slower decrease of wire transmission delay than that of 
transistor switching delay. This discrepancy requires a new philosophy on design of 
scalar operand network [7] and memory hierarchy. 

Reconfigurable Computing (RC) is emerging as an important new organization 
structure for implementing intensive computations. This area is consolidating itself as 
a real alternative to application specific integrated circuits (ASICs) and general 
purpose processors. The main advantage of RC devices comes from its unique 
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combination of broad applicability, provided by the reconfiguration capacity, and 
achievable performance, through the potential parallelism exploitation. The 
coarse-grain RC is not usually suitable for applications with many bit-level 
manipulations. One the contrary, it is usually a good choice for arithmetic operations 
at the byte level and can change the device configuration on the fly during system 
operation through dynamic reconfiguration. Therefore, some tasks which have regular 
structure and data can be implemented efficiently by coarse-grained RC. As we know, 
FFT is the most import ant algorithm in DSP (digital signal processing). In this paper 
we present a fast, efficient and scalable implementation of FFT algorithm on a 
coarse-grained RC platform called CTaiJi. It has a scalar operand network bandwidth 
even higher than RAW and the memory is organized as a loose-couple distribute 
address space (DAS). The plat form is described briefly in section 2 and the 
comparison between it and other fixed architectures is given. In order to demonstrate 
the capability of CTaiJi, a complex point Fast Fourier Transformation (FFT) algorithm 
with different sizes is mapped onto CTaiJi architecture in section 3. Section 4 
addresses related works and performance comparisons with other platforms. 
Conclusion is drawn in the last section. 

2   Coarse-Grained RC Platform----CTaiJi  

2.1   CTaiJi Architecture 

CTaiJi is a highly scalar and flexible 16bits coarse grained RC architecture, with the 
applications that are commonly addressed in multimedia applications (like image or 
video processing). CTaiJi architecture consists of two main subsystems: configuration 
system and data-processing system. Configuration system are composed of one 
central-reconfigurable controller (CRC) and four sub-reconfigurable controllers 
 

    

         Fig. 1. CTaiJi architecture                                        Fig. 2. PEA organization 
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Table 1. Comparison of CTaiJi with other architectures 

 VIRAM Imagine RAW MorphoSys XPP64 CTaiJi 

Parallelism 
model 

Vector SIMD MIMD SIMD SIMD SIMD 

Peak OPS 6.4G 23.7G 3.6G 28.8G 12.48G 59.2G 

Clock Speed 
MHz 

200 296  225  450  65 100  

Network 
nodes 

8 
(banks) 

8 16 64 64 16/8*2 

Total band- 
width(Gbps) 

51.2 75.8  922  922 399.4  1638.4  

1stlevel size 64KB 96KB 16.4KB 16.4KB 12KB ×
16 

128KB
×8 

2stlevel size 104MB 1MB 16MB 2MB  / 

*1 plan to use 0.18μm  

*2 16/8 indicate that there are eight PEAs in CTaiJi, and each PEA is composed of 16 PEs. 

(SRCs), with the responsibility of reading configurable data, distributing them into 
PEA and send the configuration-demand for reconfiguring the function of PEA. 
Data-processing system is composed of eight PEAs. They can connected end-to-end to 
form a ring, as illustrated in Figure 1.When the number of needed PEs exceed the 
capacity of one PEA, some adjacent PEAs will link together. The data that are being 
processed can be moved between PEAs. PEA is the least macro-module that can run 
lonely to finish a task, and its structure is made up of 4x4 processing elements (PEs), as 
illustrated in Figure 2. Thus, there are eight task can simultaneously run in the 
architecture. The structure of PEA is a mesh of PEs connected by double bidirectional 
data buses which can greatly improve the utility of PEs and the success of routing.  

Table-1 gives out the comparison of CTaiJi with several typical architectures, in 
aspects of parallelism model, capability, scalar operand network, and memory 
organization. 

From the table, CTaiJi shows more power than others architectures. The ma ximal 
OPS reach to 59.2G at 100MHz. Although this is the ideal performance that will not be 
realized in practice, high performance in processing data can be known. 

2.2   Processing Element Structure 

The CTaiJi architecture is formed by 128 processing element PEs. The data is 
processed in it. The functions of PE are the basic operator of CTaiJi and the functions 
that can be map onto the PE are listed in table 2. 
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Table 2. PE functions  

Add Subtract Multiply division 
Multi-bit Add And(logic) Or(logic) Not(logic) 
Bool operation Loop 

control 
If-else 
control 

Shifter bit 

3   Mapping FFT on CTaiJi 

FFT algorithm is the most important algorithm in DSP and is often used in practice. In 
order to utilize the maximum parallelism of CTaiJi for FFT, an efficient map ping 
approach is very important. In this section FFT algorithms is described briefly and the 
parallelism in the algorithm that fits for CTaiJi architecture is pointed out. 
Consequently an efficient mapping scheme is presented. 

3.1   FFT Algorithm 

Fast Fourier Transform (FFT) is a fast algorithm for computing DFT to reduce number 
of multiplications from N2 to NlgN. FFT is defined as: 

mk
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If radix-2 FFT length N  equal to m2 , m stages of permutation and storage is 
needed, and each level have (2m-1) butterfly operations. For general-purpose 
processor, it will need three nest loops to accomplish FFT: the outside loop deal with 
level from the first to the mst; In the p stage, there are 2p-1 twiddles and the processor 

take turns to calculate the pm−2 operations for each twiddle. As the size of FFT 
increases, the number of operations will improve greatly. Therefore, the FFT algorithm 
is often implemented by hardware in reconfigurable computing architecture. 

3.2   Effective Memory Addressing Scheme for FFT 

By far, There are two ways to realize FFT in configurable architecture: one is directly 
map FFT algorithm onto the architecture, utilizing the configurable PEs and data-path 
to realize the algorithm. The other is utilizing two special data store units called Frame 
Buffer (FB) and the function of the two FBs alternates when processing FFT. When 
FB1 stores last operation data and FB2 is empty, data of FB1 is transmitted to the PEs 
for processing and FB2 receive the output of PEs till FB1 sends over [7]. The function 
of FB1 and FB2 exchanges when FB1 sends data over, and FB2 begin to send data and 
FB1 receive the output. The first way is only suitable for small size of FFT. For 
example, if the length of FFT equal to 64 in XPP64A1, the processing is very fast and 
efficient. However, if the length of FFT is larger than 64, the performance will became 
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bad. The second way can handle with different length FFT. But because it has two FBs 
and need to read out twiddles and data from them, the special design and route wire will 
be very complex, and can not achieve the general-purpose.  

Figure 4 is the distortion of data flow graph (DFG) of FFT. From this figure, we can 
see that the structure in the dashed-line box is same. Therefore, The PEAs can be 
configured to the same function as figure 4. The complex numbers of FFT-point send to 
PEA in order. Only the store-address of data that the function structure outputted need 
to be adjusted before processing in the next stage. Therefore, the computing result of 
last PEA should be stored in an adjacent RAM, and the data in the RAM can not be read 
out and send to the next PEA till all the results of FFT points have been stored. Because 
each PEA can be configured to accomplish the function as shown in figure 5, PEA can 
deal with 2 stages of FFT. Therefore, if using all the eight PEAs, the maximal level is 
up to 16 and the size of FFT reach to 216. Owing to the capacity of RAM, the maximal 
length of FFT is limited to 213. 

 

 

Fig. 4. FFT data flow graph 

Two operation formulae are defined before the relation between output-order and 
store-address is founded.  

Definition 1. ),( iXLSH indicate that binary data X  shift i bits towards left.  

Let X = 201 )( xxxn L ,then ),( iXLSH = 210 )( +−− innin xxxx LL . 

Definition 2. )(XREVB   indicate that binary data X bit reversed.  

Let X= 201 )( xxxn L ,Y= 201 )( yyyn L ,  

if  Y= )(XREVB ,then 210201 )()( nn xxxyyyY LL == . 
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The relation between store-address and output-order after 2 q 2 q m< stages 

FFT butterfly operations is formulated as below: 
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3.3   Mapping Statistics 

After the adjustment of store-address, every 2 stages structure of FFT is the same. 
Therefore, utilizing the characteristic of CTaiJi architecture, the function of PEA can be 
configured as figure 5. A very good feature of the proposed FFT engine is its 
scalability. FFT with the size not exceeding 8K can be mapped to CTaiJi with the same 
mapping methodology by connecting together diverse PEAs. It not only can satisfy the 
64 points of IEEE 802.11a but also 4096 points of DVB-T. 

 
Fig. 5. The configurable function of PEA 

Table 3. Cycle numbers and processing time for FFT 

FFTsize cycle 
count 

processing 
time us  

PEA number 
needed 

64 207 2.07 3 
128 532 5.32 4 
256 1044 10.44 4 
512 2585 25.85 5 
1024 5145 51.45 5 
2048 12318 123.18 6 
4096 24606 246.06 6 
8192 57379 573.79 7 
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Table 3 shows different cycle numbers and processing time for different sizes of FFT 
on CTaiJi platform. When processing FFT of different size, the number of PEA that 
participated in is different. If the size of FFT is 64, only 3 PEAs is needed. While 7 PEAs 
is needed when the size of FFT is 8192. Since there are 8 PEAs in CTaiJi architecture, 
besides the PEAs that are in for the FFT, the others can accomplish other task. 

When processing FFT of different size, the number of PEA that participated in is 
different. If the size of FFT is 64, only 3 PEAs is needed. While 7 PEAs is needed when 
the size of FFT is 8192. Since there are 8 PEAs in CTaiJi architecture, besides the PEAs 
that are in for the FFT, the others can accomplish other task. 

4   Benchmark Comparisons 

Streamed multimedia applications are inherently computation intensive and favor from 
data level parallelism. Multimedia processors incorporate large number of processing 
units and huge memory bandwidth to achieve high performance. Very Long Instruction 
Word (VLIW), Vector Processing, SIMD Extensions, and Super-Scalar are main 
design themes for DSP processors; for instance Texas Instruments’ TMS320C62x™ is 
based on VelociTI™; an advanced 8-slot VLIW architecture[8]. m frame 1024-point 
FFT on different platforms are compared in table 4 for comparison. Owing to only 
concerning about the tiptop performance of the platforms, the clock for every platform 
is the highest working-frequency. 

Table 4. Processing time comparison for 1024-point FFT 

platform one frame 
Processing 
Time us

m frame total Processing 
Time us  

CTaiJi 51.45 51.45+20.48×(m-1) 
VIRAM 26.4*1 26.4 × m 
Imagine(Float) 7.4*1 7.4 × m 
TMS320C6201 104 104 × m 

*1 data quote from [7] 

From the table 4, owing to the clock frequency for CTaiJi architecture is only 
100MHz and the processing time of 1024 points FFT reaches up to 51.45us, and only 
better than TMS320c6201. But the total processing time will be evidently decreased as 
the number of FFT frames increase. When processing 10 frames, the total time needed 
is almost equal to the time needed for VIRAM. This is because the CTaiJi architecture 
is designed for data-stream and it begins to process data of next frame before last frame 
processing over. The number of clock that PEA need to wait for before processing next 
frame data equal to the FFT size(the RAM which store last frame computing-result 
sends data to next PEA in the time). The output sequence of FFT input and output data 
of m frame is shown in figure 6. Additionally, the total power of architecture will be 
lowest for its lowest clock frequency and spatial design. 
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Fig. 6. Output sequence of m frame FFT  

5   Conclusion 

Coarse-grained reconfigurable computing architecture achieves both the performance 
of ASICs and the flexibility of general purpose processors and has broad application in 
DSP. FFT is the classic algorithm in DSP, In practice, the size of FFT varied from 64 
point to 4096 point. The CTaiJi architecture is good at scalability and is fitful for the 
diversification of FFT size. As the number of FFT frame increase, the advantage of the 
RC architecture is displayed evidently. Since every PEA can lonely take charge of a 
task, when some PEAs answer for an special algorithm, others could be configured to 
finish another task.    
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Abstract Applications that both access and generate large data sets increasingly 
draw our attention in high energy physics, astronomy, genomics and other disci-
plines. The Data Grids, like Gfarm, seek to harness geographically distributed re-
sources for such large-scale data-intensive problems. However, scheduling is a 
challenging task in this context. In this paper, we discuss the integration of LSF 
with Gfarm. We will discuss how to enable LSF to support Gfarm applications 
requiring GSI authentication, the design and implementation of data aware sched-
uling and data management. The system is able to find data-affinity hosts for 
Gfarm jobs and to adjust the distribution of the data replicas dynamically accord-
ing to the job load. Before job running, the system will setup the proper credential 
for it. Using the LSF scheduler plugin mechanism, we do not need to write a new 
scheduler from scratch or make a lot of changes to an existing scheduler.  

Keywords: data grid, data aware scheduling, GSI, LSF, Gfarm. 

1   Introduction 

Grid is considered as the infrastructure for the next generation of Internet. Computing 
grid and data grid play key roles in grid technologies. Computing grid is designated to 
facilitate CPU-intensive jobs, whose core functionalities are job scheduling, resource 
management and job execution. The well known batch systems, such as Con-
dor[1] LSF[2], SGE[3], and PBS[4], etc, focus on local job scheduling and resource man-
agement, while Condor-G[5] and CSF[6] work at the grid level. 

With the fast developing computer commodity technology, CPU is no longer ex-
pensive. Emerging classes of data-intensive applications that both access and generate 
large data sets are drawing much more attention. High-performance data-intensive 
computing and networking technology has become a vital part of large-scale scientific 
research projects in areas such as high energy physics, astronomy, space exploration, 
and human genome projects. One example is the Large Hadron Collider (LHC) [7] 
project at CERN. The so-called Data Grids provide essential infrastructure for such 
applications. Grid Datafarm (Gfarm)[8], for example, is one of them. 

Gfarm architecture is designed for global petascale data-intensive computing. It 
provides a global parallel file system with online petascale storage, scalable I/O 
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bandwidth, and scalable parallel processing, and it can exploit local I/O in a grid of 
clusters with tens of thousands of nodes. Gfarm parallel I/O APIs and commands 
provide a single file system image and manipulate file system metadata consistently. 

If a huge amount of data I/O is involved, a network system’s performance will be 
degraded by network congestions without proper data management and job schedul-
ing. In Gfarm, gfrun and gfmpirun commands are able to allocate the file-affinity 
hosts for optimum execution of applications based on available metadata. However, 
the manual method is not scalable in a production environment with a large number of 
users running jobs concurrently. It is imperative to have an automated job scheduling 
and data management mechanism. 

Gfarm provides two security models, share key model and GSI model. GSI model 
is encouraged to be used in real production environment. In this model, proxy certifi-
cates are required for applications to access Gfarm file system. Since we do not want 
to duplicate a user’s proxy certificate on every computing node, a credential auto-
matic setup/clean mechanism is compulsory. 

In this paper, we describe the design and implementation of such credential auto-
matic setup/clean mechanism as well as data aware scheduling in Gfarm by using a 
LSF scheduler plugin mechanism. The system is able to reserve the best hosts for job 
execution, setup and clean up the credential, and performs data stage-in and stage-out. 
Moreover, it can adjust the distributions of the data replicas based on the actual re-
quirements of jobs, and balance the load for each data replica dynamically. With the 
plugin approach, the new scheduling policy is provided as a module to be dynami-
cally loaded, and it can cooperate with other scheduling policies in the system as well. 

In the rest of the paper, we discuss the credential automatic setup/clean mechanism 
first, after that the LSF’s scheduler plugin mechanism is briefly introduced, then we 
discuss the architecture of the data aware schedule module. In section 5, the design 
principles of the scheduling algorithm and its implementation are explained. Section 6 
is the experiment result. In section 7, some related works are discussed. Finally we 
present our plan in the near future. 

2   The Job Credential Automatic Setup/Clean Mechanism 

Whenever an application trying to access a Gfarm file, it need communicate with 
Gfarm daemon, gfsd. If Gfarm configured in GSI security model, gfsd requires the 
application to provide its credential, the user’s proxy certificate, for GSI authentication. 
Otherwise, gfsd will deny any request from the application. A real production cluster 
may consist of thousands of hosts, and a job can be dispatched to any host by sched-
uler. We need a solution to guarantee the jobs can access Gfarm on execution hosts. 

During the design stage, we considered four alternative solutions. (1) Configuring 
Gfarm in share key model. In this model, gfsd does not require a GSI authentication. 
It is quite simple in that we do not need worry about authentication at all. However, 
this model is not secure. (2) Implementing a mechanism to automatically duplicate a 
user’s certificate on every computing node in the cluster. Then the user’s job can run 
on any host. The disadvantage of the solution is that it introduces a lot of overhead to 
duplicate every user’s certificate and keep these certificates valid on each host. It is 
not secure either in that there are many copies of certificate in the cluster. (3) Generat-
ing a new user proxy certificate on execution host for a job before its running. It’s the 
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safest way. However, it is hard to implement as it requires the job to be able to get its 
owner’s password somehow. (4) Passing a user’s proxy certificate from the job sub-
mission host to job execution host. After the job being finished, delete the certificate 
from the execution host. 

The last solution is a compromise of solution 2 and 3. It is acceptable to require a 
user to set up its proxy certificate before submitting jobs. It is safer than solution 2 as 
a user’s certificate will reside in the execution host during the job running period 
only. It’s easier to implement than solution 3 in that it doesn’t require the job to know 
the user’s password for certificate. Therefore, we chose solution 4 in our prototype. In 
terms of implementation, LSF’s esub is used to get a user’s proxy certificate at job 
submission time, and LSF’s eexec is used to set up the credential for the job on the 
execution host. We take advantage of LSF’s post-exec mechanism to clean up the 
job’s credential after it is finished. With the above job credential automatically 
setup/clean mechanism, a Gfarm job can run everywhere in the cluster. The more 
implementation details of this part will be discussed in another paper. 

3.1   LSF Scheduler Plugin Mechanism 

In the real world, each user has different requirements. No matter how many schedul-
ing polices are provided, no resource management system can meet all users’ needs. 
Hence, in version 5.0, LSF designed the scheduler plugin feature to allow users to 
write their own scheduling policies. 
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Fig. 1. LSF scheduler plugin mechanism 

The LSF plugin mechanism consists of the scheduler framework and a number of 
scheduler plugin modules. See figure 1. The scheduler framework works as a mother-
board with slots to hold scheduler plugin modules. The framework maintains the 
elementary information, like pending jobs, available hosts etc, for all plugin modules. 
Plugin modules are able to access those data inside scheduler framework via a LSF 
scheduler API. The particular scheduling policies are implemented inside plugin mod-
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ules. FCFS module, for example, provides the first come first serve policy, which is 
the default policy of LSF. 

The plugin modules are loaded dynamically by the framework at run time. The 
user can indicate which modules to be loaded via configuration. Using this mecha-
nism, the users do not need to write a customized scheduler from scratch, but to pro-
vide just a plugin module with the desired policy. In this paper, we describe a plugin 
module to perform data aware scheduling and data management in Gfarm. 

4   Architecture of Data aware Scheduling Module  

The data aware scheduling module is implemented as a LSF plugin. It communicates 
with LSF via the LSF scheduler framework API. The module takes the pending jobs 
and the available hosts in the system as input from LSF and gets the data replica in-
formation from Gfarm. To Gfarm, the module is simply a normal Gfarm application. 
Any Gfarm API and command can be used. The output of the module is a series of 
schedule decisions, such as host reservation, replica creation, job execution and so on. 
These decisions are executed by LSF and Gfarm respectively. 
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Fig. 2. The data aware plugin module 

The data aware module consists of three components, the Plan Maker, the Work-
flow Container and the Instruction Generator. See figure 2. The Plan Maker is respon-
sible for making job scheduling and data management decisions. The decisions are 
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described as workflows and maintained by the Workflow Container. At the end of a 
scheduling session, the Instruction Generator issues the corresponding LSF or Gfarm 
commands to execute the workflows. 

The data aware module handles Gfarm applications only, and the other jobs are 
scheduled by other modules. Hence, the Plan Maker has to be able to recognize 
Gfarm jobs. In our work, a special tag is attached to each Gfarm job at submission 
time. A tag is a string with the format of “Gfarm Files=f1,..fn”, which indicates the 
files to be accessed by the job. This is done via LSF bsub –ext command. 

The Plan Maker is the brain. It decides when and where to start a Gfarm job, and 
whether to create a new replica for a data set. The Plan Maker follows the data aware 
scheduling policy and writes its decisions into the workflows maintained by the 
Workflow Container. A workflow is a job execution plan for a data replica. Besides 
the jobs to be launched, a typical workflow consists of host reservation, file transfer 
(stage-in), and file elimination (stage-out) operations as well. New jobs can be dy-
namically added into an existing workflow. 

The Instruction Generator is the decision executor, generating concrete jobs or data 
operations based on the workflows. Those instructions are issued to LSF/ Gfarm via 
appropriate APIs/commands at the end of each scheduling session. More details are 
provided in the following section. 

5   The Data-Aware Scheduling Algorithm 

In a production cluster, there could be up to thousands of hosts, and tens of thousands 
of jobs running on it. Our goal is to improve the throughput of the whole system in-
stead of a single job’s execution. For data-intensive jobs, the following scenarios will 
cause a degradation of system performance. First, there are many jobs accessing data 
files through network. This leads to network congestion and slow down of the execu-
tion of every job. Second, the loads of data replicas are imbalanced. Some data files 
with few replicas are being accessed heavily, while some other data files with more 
replicas are not frequently accessed. 

To alleviate the first problem, jobs should be dispatched to hosts with the required 
data locally or to those close to the data. This type of scheduling is called data aware 
or data affinity scheduling. For the same reason, Gfarm insists on users making good 
use of local disks, although network parallel I/O is also supported. To resolve the 
second problem, replica management should be able to dynamically balance the load 
of each data replica based on a job’s actual requirement. 

Our algorithm resolves these two problems above in the following ways: 1. Be-
sides satisfying a job’s resource requirements, like host/OS type, it always selects the 
data affinity hosts for job execution, 2. It supports data stage-in and stage-out, 3. It 
adjusts dynamically the number of data replicas and their locations according to the 
real load of the jobs in the system, 4. It avoids creating multiple data replicas concur-
rently to reduce the possibilities of the network access conflicts. 

Both job scheduling and data replica management strategies are embodied in the al-
gorithm. The algorithm is executed by the Plan Maker periodically. Each execution is 
called a scheduling session. In each session, more jobs will be inserted into existing 
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workflows, and some new workflows could be created. All the jobs belong to the same 
workflow have to be started in sequence, and normally they do not start within one 
schedule session. The jobs from different workflows can run concurrently. See Figure 3. 

5.1   Algorithm  

1. Select a Gfarm job from the pending job list. Other jobs are ignored by the al-
gorithm. The pending job list includes all the jobs waiting to run, and it is 
maintained by LSF scheduler framework. 

2. If the job state is scheduled, it must belong to an existing workflow. Check 
the workflow, if a reserved host is available, and there is no job in the work-
flow to be executed before it, change the job’s state to launching. The job will 
be started in this schedule session. 

3. If the job state is not scheduled, then try to insert it to an existing workflow. If 
successful, change the job state to scheduled. Otherwise, log the data files (also 
called data set) used by the job and do statistic using the following formula, 

�������	
	�		��		��		
i=1..n 

(Pi is the job’s priority, ds is the data sets used by the job,             (1) 
Ti is the job’s running time  

 
Note: There is a limit for the number of jobs that a workflow can have. If a 
workflow is full, no more jobs can be inserted into it unless some jobs are 
launched. Such a limit can avoid load imbalance among data replicas. 

4. If there are more pending jobs, go to 1. 
5. After going through all the pending jobs, the algorithm will decide whether to 

create new replicas in this session according to the statistic results in 3. If 
there is a data set whose Sum(ds) is larger than a pre-defined value, then the 
data set needs a new replica. However, in order to decrease the chance of net-
work congestion, only one new replica will be created in a schedule session. 
The following actions will be taken to perform the replica creation for the 
data set with the largest Sum(ds) value, 
a) Select the best location (hosts) for the new replica according to job’s re-

source requirement. If there is no host with spare disk space, the obso-
lete data replicas will be overwritten based on the LRU algorithm. 

b) Create a null workflow 
c) Insert host reservation operation to the workflow to reserve the selected 

hosts 
d) Insert the data transfer operation to the workflow to create the replica on 

the selected hosts 

At the end of a scheduler session, the Instruction Generator goes through all the 
workflows: notify LSF to start all the jobs with launching state; notify LSF to execute 
the host reservations for the new replicas; notify Gfarm to start copying data to re-
served hosts. Subsequently, the new workflow is used by the Plan Maker to schedule 
jobs during the next session. 
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Fig. 3. Data aware algorithm 

6   Experiment Result  

The system prototype is realized using C language in Linux Red Hat 9. The experi-
ment cluster consists of 6 Linux boxes running LSF6.0 and Gfarm1.0.3 connected by 
100M Ethernet. To simplify the test, we assume that all the jobs have the same prior-
ity value 1. The data aware plugin algorithm will generate a new data replica once its 
Sum(ds)>= 1500 which is configurable. 

The experiment results depend on the characteristics of the applications to be 
tested. In our test case, there are three kinds of jobs submitted to the system. Accord-
ingly, three input data files are located in different hosts’ disks. All the jobs are using 
the same algorithm to process its input data, and all the data files have the same size- 
900MB. Running on the host with the input file locally, a job is completed in 32 sec-
onds in average. In contrast, the job normally spends 132 seconds if to access input 
file remotely. In each test, we submit 300 jobs(100 for each type) to the system. After 
10x of such test, we got the following results, 
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With the data aware plugin, the system takes 1650s in average to finish 300 jobs. 
Compared with 2640s without data aware plugin, the system performance is improved 
by 37.5%. The result looks positive. However, many factors, like job patterns and 
network topology etc, have impact on the  performance of the algorithm. We are plan-
ning to run our prototype on PRAGMA test bed to collect more data. 

7   Related Works  

In [9], job scheduling and data management modules are separate components. In 
[10], a data aware scheduling mechanism is implemented in a peer-to-peer computing 
model: job scheduling and data management are implemented as two loose-coupled 
components. In our work, job scheduling and data management are integrated to-
gether. In our case, the scheduler knows both jobs and data well, therefore, is able to 
make a better plan to improve the system’s performance overall.  

Plan based scheduling is introduced in some recent works. The focus of [11] is on 
the scheduling for a single complex task with multiple components in the computing 
grid. AI plan is used to generate workflows to execute components of a task. Our 
work is an extension of [11]. Instead of focusing on a single job, workflows are used 
to plan the execution of a number of data-intensive jobs. Many works, like [12], in-
troduced methods to balance the load for a parallel job to overcome the performance 
heterogeneity betweens the nodes in a cluster. In this paper, we achieve dynamic load 
balancing for data replicas based on the needs of jobs in the system. Moreover, our 
use of a LSF scheduler plugin mechanism has the following advantages: no need to 
write a scheduler from scratch, because the data aware scheduling policy is imple-
mented as a plugin module; the new policy can co-operate with other policies, like 
FCFS, fair share, and preemption etc. 

8   Conclusion and Future Work  

This paper describes the integration of LSF6.0 and Gfarm1.0.3 on Linux RedHat9.0. 
A job credential automatically setup/clean mechanism is introduced to support Gfarm 
GSI authentication. The data aware scheduling and data replica management func-
tionalities are implemented using a LSF scheduler plugin mechanism. The following 
features are provided by the data aware plugin: 1. A queuing mechanism for Gfarm 
jobs is provided and to the ability to allocate data-affinity hosts for job execution. 2. 
The stage-in and stage-out functionality. 3. Dynamic adjustment of the distribution of 
data replicas according to actual job requirement. 4. Cooperation with other schedul-
ing policies and ease of extension with new scheduling features.  

Our team has finished the project to port CSF[6] from GT3-OGSI to GT4-WSRF. 
CSF is a grid level scheduling framework. In the near future, we are going to intro-
duce data aware scheduling policy into CSF. Our research will identify the different 
focuses between the grid level data aware scheduling and cluster level data aware 
scheduling, and how to make the two kind of policies work together efficiently. We 
will also add other job schedulers like SGE and Open PBS to our test bed. 
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Abstract. Many schemes had been used to reduce the performance (or speed) 
gap between processors and main memories; such as the cache memory is one 
of the most methods. In this paper, we issue the structure of shared cache, 
which is based on the multiprocessor architectures to reduce the memory 
latency time that is the one of major performance bottlenecks of modern 
processors. In this paper, we mix two schemes, sharing cache and 
multithreading, to implement this proposed multithreaded architecture with 
shared cache, to reduce the memory latency and, furthermore improve the 
processor performance. In this proposed multithreaded architecture, the shared 
cache is achieved in level-1 (L1) data cache. The L1 shared data cache is 
combination of cache clock in the single space address and a cache controller to 
solve the required data transmitting, data copies simultaneously, and reduce 
memory latency time. 

Keywords: Discrete processor architectures, cache coherency, multithreading, 
memory latency, shared cache, write-invalidate (WI), and cache block. 

1   Introduction 

The speed gap is growing up between the CPU and memory, which is the bottleneck 
of performance of processor. Thus, There are several methods issued for tolerating or 
hiding the memory latency between the processor and main memory to reduce the 
needed data access latency, Such as adding a small fast I- and D-cache (i.e. cache 
memory), or exploiting multithreading scheme continually execute the thread while 
context switch occurrence. Cache memory was a proved effective technique to reduce 
memory latency and had been implemented in all the known high-performance 
multiprocessor architectures [1, 2, 8, 9]. A shared cache is a fast RAM-type memory 
positioned between the relatively fast CPU and slower main memory (usually 
implement DRAM memory). The shared cache [4, 21] is a hardware solution that 
makes the cache invisible to the operating system and the application software.  

The structure of shared cache is combination of several processors, memory 
management units (MMU), bus arbiters, and a shared cache. In the shared cache, 
accesses of all bus arbiters are routed to main memory through the same 
shared-cache. The shared cache is exploited in a number of processors systems to 
solve the cache coherency and to reduce the memory latency.  
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In shared cache system, the processors share the cache memory as well as the main 
memory. The shared cache is partitioned several shared blocks in the same address 
area. It should have speed compatible to that of the processors. To make the shared 
cache competitive that should offers simultaneous read/write property to allow the 
processors and main memory (DRAM) to access the same cache block at the same 
time [5,20]. The shared cache is located between processor and main memory to 
reduce and hide the main memory latency while the needed data of processors is 
transmitted inter-processor of multiprocessor systems.  

To maintain the copied data are coherence in cache block of the shared cache. An 
effective cache coherency is enforced on the multiprocessor systems. A cache 
coherency protocol is a set of rules that ensure the cached data to be distributed 
among individual processor coherently. For the system performance of multiprocessor 
systems, which depend on the effectively the data-caching coherence scheme.  

The proposed architecture is innovated to the multiprocessor systems, then on 
multithreaded architectures with shared cache. We construct the execution unit to each 
processor, called threading processor unit (TPU), of multiprocessor systems, in which 
each TPU is combination of the program counter, general purpose registers, and stacks 
(shown in Figure 1). In this paper, we also issue a cache controller for this multithreaded 
processor with shared cache. The shared cache is construct of 4-way set-associative, 
write-invalidate (WI) protocol for cache coherency of cache blocks, and write through 
strategy read/write for cache and memory simultaneously [7,11,15,16,19].  
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Fig. 1. The shared cache based on multithreaded processors 
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The proposed multithreaded processors (MTP) with shared cache is constructed 
and simulated with trace-driven simulation tools, SES/workbench [18]. We compare 
the performance of this proposed MTP with shared cache to that of the MTP without 
shared cache. Both have the same specification and simulate with the same 
environment, parameters, and workbench. We find this proposed MTP with shared 
cache has higher performance than the MTP without shared cache.  

The main contribution of this paper, we use a bus arbiter to handle the 
request/grant signals, furthermore to access the needed data from cache blocks or 
other thread processing unit. The remained of this paper is organized as follows. We 
investigate the issued designs and papers of shared cache in Section 2. The structures 
of the shared cache of MTP, cache controller, and the cache coherency protocol are 
illustrated in Section 3. The simulation model and the results are analyzed in Section 
4. Finally, we remark the conclusions in Section 5. 

2   The Previous of Shared Cache Design 

A cache memory contributes in both hiding memory latency and reducing the traffic 
on the processor interconnection network of shared cache and shard memory on the 
multiple processors but it cause causes the coherence problems [6].  

The shared cache is the one approach of hardware-based techniques to solve the 
cache coherency. In shared cache, we split the single address space shared cache into 
several cache blocks, which are uniformly shared accessed by the thread processing 
unit (TPU) that is all processors have equal access time to the cache lines. 

The shared cache approach was exploited in multiprocessors, such as, in 1993s, 
Chaudhry and Han [3] exploited the concept of shared cache and private cache 
techniques and used the P-Bus and S-Bus via network to control the data access from 
/to private block cache and shared block cache, respectively.  

In 1994s, Sawchuk and Cheng [17] used the optoeletronic devices in parallel 
computers to increase the effective processing rate. In those shared cache systems, the 
processors shared the cache as well as the main memory through two levels of 
interconnection networks. In 1995s, Kang and Rim [10] had implemented the shared 
cache, shared system interface, dispatcher, and multiprocessor to built on-chip 
multiprocessor to improve the performance.  

In 1996s, Nuyfeh et al. [14] proposed a clustering shared cache. Though the access 
latency is reduced intro-cluster shared cache, a longer latency time is needed in the 
inter-cluster shared cache. The needed data is accessed both in the intro- and 
inter-cluster shared cache are thoroughly the networking techniques.   

As for the application of shared cache, fewer papers are issued. Referred to the 
previous works of shared cache, we find that both used a network to manage the 
shared cache blocks. Thus, the hit latency and needed data access latency are existed 
on inter-processor communication for the interconnection networking. In this paper, 
we discard the networking and replace by an arbitration controller with buffer 
techniques. In 1996s, Chen et al. [4] used a trace-driven simulation to study shared 
cache performance on multithreaded architectures. In that article, two conclusions are 
issued, more cache size and more set-associative in order to maintain comparable 
cache performance.  

In 1999s, Tasi et al. [21] constructed superthreaded processor architecture, in 
which includes several thread processing unit, and the shared I-and D-shared cache. 
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Each thread-processing unit is a logic pipeline processor to be added to a 
communication unit. In this paper, the thread is sequenced fork via and transfers the 
needed data between the private communication units of thread-processing unit. The 
data update not immediately between communication block and shared cache, thus 
the invalided data could be stored in the shared cache block and read by the other 
thread-processing unit. In 2004, Tu [22] issued the concept of the shared cache for 
multiprocessor systems. 

In our proposed shared cache based on multithreaded architectures, we exploit the 
write-invalided strategy for shared cache and a common thread communication unit to 
cohere the cache blocks and to reduce the communication delay inter-processors, 
respectively.      

3   The Structure of Shared Cache Controller 

The MIMD (multiple instructions and multiple data) is classed into processor-level 
architectures and thread-level architectures. The most of thread-level architectures 
have been built or proposed with shared memory, such as Denelor HEP [12] and MIT 
Hybrid Machine, and distributed shared memory systems, such as Tera, *T [13], 
P-RISC, and EM-4 [23]. There are fewer multithreaded machine with shared cache, 
example of superthreaded processor architecture.  

In this paper, we construct a shared cache based on multithreaded architectures, 
which is the revolutionary the structure of superthreaded processor architecture [21], 
in which is improved having a thread communication unit to handle the context 
switch and needed data communication inter-thread processing units. The structure of 
this proposed multithreaded architecture is shown in Figure 2. The detail schematic of 
the proposed multithreaded architecture, the proposed multithreaded architectures is 
combination of several thread-processing units, thread communication unit, and the 
shared cache. The thread-processing unit is a logic pipeline processor having 
instruction queue (IQ) and encoder, general-purpose register (GPR), program counter, 
ALU, result store buffer (RSB), and write back unit. Any thread is executed in 
thread-processing unit as a process in pipeline processor until the data dependency 
occurs. Thus, context switching happens among thread-processing unit to be 
controlled by the thread communication unit. 

The thread communication unit includes two elements, there are bus arbiter and 
data communication unit. The bus arbiter handles and records the context switching 
and the status of thread of thread-processing unit, respectively. The data 
communication unit is constructed as buffer to temperately store the address of 
needed data in where of the cache block during the requesting stilly stupendous. Until 
the requesting thread of the requesting thread-processing unit is to be awaken. 

The shared cache is split into I-cache and D-cache. All the threads are shared a L1 
cache. The results of any thread-processing unit are written into data result buffer 
(DSB) and the shared cache block, simultaneously. When the data is updated, an 
invalided signal is sent to the copied cache block to avoid this un-update data to read 
by the other thread-processing unit. The detail of control and data flow between 
thread processing unit (TPU) and thread communication unit (TCU) is shown in 
Figure 2. For the needed data is accesses from three paths, there are written back from 
the data store buffer (DSB), directly fetch from the shared cache block, and remote 
access from the DSB of other TPU. 
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Fig. 2. The control and data flows between TPU and TCU 

The shared data cache is split to several blocks associative to the number of TPUs.  
When the data dependency is occurred, an exception request is issued from ALU to 
the control unit, then to the bus arbiter. Furthermore this requesting thread is 
suspended and a context switching in its concurrent TPU. When the needed data have 
remotely accessed from other TPU, but the requesting thread do not awaken. 

The address of the needed data is store in the buffer of the communication unit. 
When the requesting thread awakens, the communication unit issues this address of 
needed data to its concurrent TPU to access the needed data from the valid cache 
block. The produce of thread control flow and its protocol are shown in Figure 5, in 
which the needed data request is issued when data dependency occurs in thread 
processing unit (TPU), the bus arbiter manages the handshaking among TPUs, and the 
communication unit transfers the address of needed data in shared cache. 

Figure 6 show the structure of communication unit, in which is combination of 
several tri-state control registers and data buffer. The address of needed data of cache  
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Fig. 5. The control flow of the proposed TPU 
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block is temporality store in the transition data buffer of communication unit. The L1 
data cache is split into several blocks. In order to maintain the coherence data in 
shared cache, we exploit the write invalidation strategy to void the old data to be read 
by TPU. For the cache controller, it is designed and shown in Figure 7.    
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Fig. 7. The structure of cache controller 

4   The Simulation Results 

The experiments have conducted on a detailed, cycle accurate, performance simulator 
that is derived from the SES/workbench tools set. The simulator takes binaries 
compiled with gcc for the hierarchical model. A statistical simulation uses 
populations, utilization, and throughput rate to characterize the simulated model 
parameters:  Populations are the number of transactions, called samples, present at the 
node, which in a SES/workbench model represents the manipulation of a physical or 
logical resource or some other processing step, in a model or sub-model. Utilization is 
the number of servers or resources in use on a model of a sub-model.  Throughput 
rate, abbreviation rate in the result of this paper, the total amount of transactions 
done in a give simulated time, is defined as the average number of transactions 
executed by the nodes, such as function unit of SES/workbench, per unit time step. 

The throughput rate multiplies to a number of the workload machine operating 
frequency, which I calculated by MHz, we could obtain the throughput in MIPS [11]. 
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We compare the utilization and throughput to each unit in the different kinds of 
configures of L1 shared cache and different instruction size in the assume parameters.  

4.1   Comparing the Utilization for Different Configure of Shared Cache  

In this section, we illustrate the utilization for the different kinds of cache configures, 
direct-mapped, fully associative, and set-associative, of the shared cache, which are 
embedded in the same multithreaded architecture. The results are listed in Table 1. 
Referring to Table 1, we find the 4-way set-associative has lower used rate of 
submodel and instruction access traffic time than others thread numbers. As we 
increase the scalar of set value over four, the utilization of submodel is increased, too. 
This reason tells me that more cache size more waiting time when occurs thread 
suspended and context switching among thread processing units.  

We also find that the bus arbiter has the highest utilization to other units in the all 
kinds of configure. The reason illustrates that the bus arbiter has higher operation 
frequency than other units. For all message of each thread slot is transferred to this 
bus arbiter. This information express two facts, the one is that the bus arbiter is the 
bottleneck of this proposed multithreaded architectures, and the other is that the 
performance-improved scheme exploits TLP technique superior to the ILP technique.  

Comparing the FPU unit to other units of the proposed multithreaded architecture, 
we find the FPU’s has lower utilizations than Load/Store unit and ALU. This result 
envied proves that the proposed multithreaded architecture with bus arbiter effects 
hide the needed data access latency time while occurs the context switching or 
asynchronous among thread processing units. Because the float point has complexly 
operation, we can exploit the multithreading scheme reduce the computing time, the 
access latency, and rapidly obtain the needed data address from cache block via the 
communication unit.  

Table 1. The transactions number are using in different configure shared cache 

Set-associative  Direct-mapped  Fully-associative

2-way 4-way 6-way 8-way 
Instr_queue 33 33 29 33 33 32 
Bus arbiter 215 215 214 236 233 234 
Reuse_store 15 15 21 17 17 16 

ALU 21 21 16 24 24 24 
L/S unit 20 20 21 18 18 18 
FPU 7 7 6 8 8 8 
Total 313 311 307 336 333 332 

4.2   Comparing MIPS with Different Configures of Shared Cache  

Secondly, we describe the speedup for different Configures of Shared Cache of the 
proposed multithreaded architecture; the results are shown in Table 2. For instance, 
the system throughput rate, defined the transactions per simulation time unit rates, 
multiply the number of the operating frequency in MHz. Thus, we can obtain the 
system throughput in MIPS. We find the best case is 4-way set-associative. 
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Table 2. The throughput rate in different configure shared cache 

Set-associative  Direct-mapped Fully-associative

2-way 4-way 6-way 8-way 
Instr_queue 0.00132 0.00132 0.0012 0.0013 0.00132 0.0013 
Bus arbiter  0.0043 0.0043 0.0043 0.0047 0.00475 0.0047 
Reuse_store 1.461 1.461 1.57 1.56 1.56 1.56 
ALU 0.3 0.3 0.3 0.3 0.3 0.3 
L/S Unit 0.2 0.2 0.2 0.2 0.2 0.2 
FPU 0.5 0.5 0.5 0.5 0.5 0.5 
Total Rate  2.46662 2.46662 2.5758 2.566 2.566 2.566 

4.3   Comparing the Utilization to Networking Scheme Multithreaded  
Architectures 

Finally, we compare the utilization of the multithread architecture with 4 thread slots 
and 8 instruction sizes to the networking multithreaded architectures (single thread 
processor). Besides, the thread slot and the instruction sizes are consisted in 
multithreaded architecture; both the multithreaded architecture and the networking 
multithreaded architecture have the same features. Figure 8 illustrates the utilization 
between the proposed multithreaded architecture and the networking multithreaded 
architecture.  

Observing the results, we obtain that the multithreaded architecture has higher 
utilization than the networking multithreaded architectures, especially the FPU and 
Load/Store node of multithreaded architecture. Referring to Figure 8, expect the 
I-queue and D-cache nodes, in the advantage; the utilization t of the multithreaded 
architecture is higher than the networking multithreaded architectures. This result 
expresses that the shared data cache improving the data latency and access traffic. 

This result also tells us that the multiple threads can achieve speedup to the 
computers; the times are decided to the thread slot numbers. In addition, the FPU unit 
specifically highlight, the reason is clearly described in Section 4.1.  
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Fig. 8. The utilizations between the proposed cache controller and the network of shared cache 
multithreaded architecture 
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Refer to Figure 9, we find the proposed multithreaded architecture has 4-TPU, in 
which has the fastest run-time, on average. Even if we increase the size of TPU 
number up to 16-TPU, the performance of the proposed multithreaded architecture 
does not evidently improvement. This result due to the handshaking between the 
shared data cache to be handed the bus arbiter, more the TPU number more loading to 
the bus traffic. Whereas, the address of the needed data of request TPU’s are directly 
pre-store in the buffer of communication unit. Furthermore, the information is 
delivered to the requesting TPU while the suspended thread is awakening.  

5   Conclusions 

The major purposes of shared data cache are used to reduce the cache-hit latency and 
remain the cache coherency among cache block to reduce the needed access latency. 
For the must previous multithreaded processor systems exploit distributed shared 
memory. Those multithreaded architectures have the same characters to the 
multiprocessor systems; using multithreading and networking techniques to 
implement the context switching and the dependent data access among each processor 
units, respectively. In this paper, we proposed an on-chip multithreaded architecture, 
in which each thread processing unit has private L1 instruction cache and the L1 data 
cache is based on the shared cache scheme. 

We simulate this proposed multithreaded architecture using a trace-driven 
simulation tools. We analyze the simulation result to find this proposed multithreaded 
architecture more effective than the private cache based on multithreaded 
architectures. The best configuration of the shared L1 data cache is constructed of 64 
KB, 4-way set-associative 64 bits line. 

There is much room for the shared cache based on multithreaded architectures, 
such as the control method of shared cache, the bus configuration of shared cache, 
and single bus or multiple buses?   
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Abstract. Simultaneous Multithreading (SMT) processors improve perform-
ance by allowing running instructions from several threads simultaneously at a 
single cycle. These threads executing simultaneously share the processor’s re-
sources, but at the same time compete for them. A thread missing in L2 cache 
may allocate a large number of resources which other threads could be using to 
make forward progress. And as a result, the overall performance of SMT proc-
essors is degraded. To prevent this situation, many instruction fetch policies are 
proposed. DWarn is among the most efficient fetch policies to handle L2 cache 
misses. In this paper, we present an enhanced version of the DWarn policy 
called DWarn+. Results show that our policy significantly improves the original 
one in throughput and fairness when not more than four threads run. When the 
number of threads running is higher than 4, our policy enhances the original one 
mainly for memory bounded workloads, and the average improvement for all 
types of workloads is very limited. 

Keywords: SMT, L2 cache miss, I-fetch Policy, Fetch Priority, Resource  
Allocation. 

1   Introduction 

Simultaneous Multithreading (SMT) processors [1,2,3] improve performance by al-
lowing running instructions from several threads simultaneously at a single cycle. Co-
scheduled threads share some resources, such as issue queues, physical registers, and 
functional units. The way of allocating shared resources among the threads will affect 
the overall performance of SMT processors. Currently, shared resources allocation is 
dynamically decided by the instruction fetch policy.  

In SMT processors, the number of shared resources is limited, so if a thread holds 
critical resources for a long time, other threads may run slower than they could or 
even stall because of lack of resources. A load missing in L2 cache usually causes this 
happen. An efficient fetch policy should be able to prevent this situation. DWarn [4] 
is among the most efficient fetch policy to handle L2 cache misses. DWarn uses L1 
data misses as indicators of L2 misses, giving higher priority to threads with no out-
standing L1 data cache misses. It can avoid harming a thread when L1 misses do not 
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lead to L2 misses. So DWarn policy is able to prevent the negative effects caused by 
loads missing in L2 cache as well as can reduce the resource under-use. However, 
using DWarn, a thread with L2 cache missing can still have some opportunity to fetch 
instructions into the processor, especially when the number of threads running is 
small. Although DWarn gates the threads with L2 cache missies when there are less 
than three threads running, it may be so late that shared resources have been clogged. 
Furthermore, there may exist idle cycles of the processor when all threads are experi-
encing L2 cache misses. 

In this paper, we propose an enhanced version of DWarn fetch policy called 
DWarn+. In our policy, when a load misses in L1 data cache, its thread is given lower 
fetch priority than threads with no outstanding data cache misses. If the load finally 
misses in L2 cache, its thread’s fetch priority is reduced further. Hence, as long as the 
number of co-scheduled threads is big enough, the threads with L2 cache misses al-
most have no chance to fetch instructions into the processor. When less than three 
threads run, our modification is restricting the resources allocated to threads with 
cache misses, and gating these threads only when they attempt to exceed their as-
signed resources. In this way, on one hand, the threads with L2 cache misses can be 
prevented from clogging the shared resources; on the other hand, idle cycles of the 
processor would not be produced even if all threads are experiencing L2 cache 
misses. 

This paper is organized as follows. Section 2 introduces the DWarn policy and ex-
plains its main drawback. In Section 3, we detail our DWarn+ policy. Sections 4 and 
5 present the methodology and the results. Finally, concluding remarks are given in 
Section 6. 

2   The DWarn Policy 

DWarn policy is based on the combination of two ideas, namely, classification of 
threads, and prioritization of threads. At first, at each cycle, available threads are 
classified into two groups: Dmiss group, containing the threads that have at least one 
in-flight L1 data cache miss (Of course, the thread with L2 cache misses belongs to 
this group.), and Normal group, to which the remaining threads belong. Once the 
classification is done, the fetch priority of the less-promising (Dmiss) threads is re-
duced. This is done by prioritizing the Normal threads, and fetching instructions from 
the Dmiss threads only when there are not enough available instructions from the 
Normal threads. Threads in the same group are sorted using ICOUNT [2]. 

Threads are never stalled, and as a result, even if a thread is in the Dmiss group, it 
has some opportunity to fetch instructions into the processor. In SMT processors 
using ICOUNT2.8 as the basic fetch policy, when 2-thread workloads run, DWarn 
may fail to prevent the Dmiss thread clogging the shared resources. To address this 
problem, DWarn uses a hybrid mechanism. If there are less than three threads run-
ning, the priority of the thread experiencing an L1 data cache miss is reduced. After 
that, if the L1 miss finally turns to an L2 miss, its thread is gated. If the number of 
execution threads is higher than 2, DWarn will only reduce the fetch priority of the 
Dmiss threads. 

There are two problems with DWarn fetch policy: 
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First, DWarn does not distinguish the threads experiencing L2 cache misses from 
those only experiencing L1 data cache misses. These two kinds of threads are all 
belong to Dmiss group, so these threads can only be sorted by ICOUNT. Maybe 
threads with L2 cache misses are chosen to fetch instructions prior to those only with 
L1 data cache misses. In fact, we hope to prioritize the latter because the latter is less 
likely to clog the shared resources than the former. 

Second, when less than three threads run, the threads having in-flight L2 cache 
misses are gated. So there may exist idle cycles of the processor when all threads are 
experiencing L2 cache misses. Furthermore, threads are not stalled until L2 miss is 
declared, which may be so late that these threads have clogged the shared resources 
before being gated. 

3   Enhancing the DWarn Policy 

3.1   Basic Idea 

To address the first problem of DWarn, we distinguish the threads experiencing L2 
cache misses from those only experiencing L1 data cache misses. That is to say, we 
classify Dmiss group in DWarn into two new groups: L2miss group, containing the 
threads having at least one in-flight L2 cache miss, and L1Dmiss group, containing 
the threads having at least one in-flight L1 data cache miss but having no L2 cache 
misses belong. Normal group keeps unchanged. The fetch priority of threads in Nor-
mal group is highest and the threads in L2miss group have the lowest fetch priority. 
The L2miss threads are chosen to fetch instructions only if there are not enough avail-
able instructions from both the Normal threads and the L1miss threads, so the threads 
with L2 cache misses almost have no chance to fetch instructions into the processor 
when the number of co-scheduled threads is big. 

Obviously, our method still fails to handle L2 cache misses when less than three 
threads run. So, we also use a hybrid mechanism like the one used by DWarn. The 
difference is that when less than three threads run, we restrict the resources allocated 
to threads with cache misses and gate these threads when they attempt to exceed their 
assigned resources. Because the resources allocated to threads with cache misses are 
limited, it is impossible that shared resources are monopolized by these threads. Fur-
thermore, as long as the thread with cache misses does not exceed its assigned re-
sources, it would still be able to fetch instructions, and as a result, idle cycles of the 
processor are reduced. 

Now we summarize our policy, DWarn+, as follows: if there are less than three 
threads running, the priority of the thread experiencing an L1 data cache miss is re-
duced, and at the same time the number of resources allocated to this thread is re-
stricted to a certain value. After that, if the L1 miss finally turns to an L2 miss, its 
thread’s fetch priority is reduced further, but the number of resources allocated to this 
thread keeps unchanged. The threads in Normal group are allowed to allocate as many 
resources as that are available. If the number of co-scheduled threads is higher than 2, 
DWarn+ will only reduce the priority of the threads in L2miss group and L1Dmiss 
group. 



 Enhancing DCache Warn Fetch Policy for SMT Processors 219 

3.2   Implementation 

To implement DWarn+, each thread requires an L1 data miss counter, which is also 
needed in DWarn. Beyond that, DWarn+ requires an L2 miss counter and 5 resources 
usage counters per thread. Each instruction occupies an active list entry and maybe a 
physical register before committing. It uses an entry in the issue queues if its operands 
are not ready, and also require a functional unit. But each thread can have its own 
active list and functional units are pipelined. Therefore we only need to restrict the 
usage of issues queues and physical registers by threads with cache misses. There are 
three kinds of issue queues: integer, fp and load/store, so each thread requires three 
issue queues usage counters. Two more resources usage counters are required to track 
physical registers (integer and fp) per thread. The additional complexity required to 
introduce these counters depends on the particular implementation, but we do not 
expect it to be more complex than other hardware counters already present in most 
processors [6]. L1 data miss counters are incremented every time a thread experiences 
an L1 data cache miss and decremented when the data cache fill occurs. L2 miss 
counters are incremented every time an L1 miss turns to an L2 miss and decremented 
when L2 cache fill occurs. If the L2 miss counter of a thread is nonzero, this thread 
belongs to L2miss group, otherwise if the L1data miss counter is nonzero, it belongs 
to L1Dmiss group. Only when the L1 data miss counter and the L2 miss counter are 
all zeros, does the thread belong to Normal group. Issue queues usage counters are 
incremented in the decode stage and are decremented when an instructions is issued 
for execution. Physical registers usage counters are incremented in the decode stage 
and are decremented in the commit stage.  

Now there is a question. How many resources can be allocated to the threads with 
cache misses when less than three threads run? In our policy, we use a static resources 
allocation policy. Supposed that the total number of some shared resource is T, and 
the number of co-scheduled threads is N (N=1, 2). The number of this resource allo-
cated to a thread with cache misses is equal to T divided by N. If a thread with cache 
misses is exceeding its assigned resources, stall fetching from this thread. It is better 
to allocate dynamically resources between threads based on cache behaviors of 
threads. But that will be more complex, and we leave it as the future work. 

4   Methodology 

Execution is simulated on an out-of-order superscalar processor model derived from 
SMTSIM [7]. The simulator models all typical sources of latency, including caches, 
branch mispredictions, TLB misses, etc. It also carefully models execution down the 
wrong path between branch misprediction and branch misprediction recovery. The 
baseline configuration of our simulator is shown in Table 1.  

Table 2 summarizes the benchmarks used in our simulations. All benchmarks are 
taken from the SPEC2000 suite [8] and use the reference data sets as inputs. It is time-
consuming to simulate the complete SPEC benchmark suit. So we follow the idea 
proposed in [9] to run the most representative 300 million instruction segment of each 
benchmark.  Benchmarks  are divided into two groups based on their cache behaviors:  
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Table 1.  Baseline configuration of the simulator 

Parameter Value 
Fetch Width 8 instructions per cycle 
Basic Fetch Policy ICOUNT2.8 
Instruction Queues 32 int, 32 fp, 32 load/store 
Functional Units 6 int, 3 fp, 4 load/store 
Physical Registers 384 int, 384 fp 
Active List Entries 256 per thread 
Branch Predictor 2K gshare 
Branch Target Buffer 256 entries, 4-way associative 
RAS 256 entries 
Min Branch Misprediction Penalty 6 cycles 
L1I cache, L1D cache 64KB, 2-way, 64-bytes lines, 1 cycle access 
L2 cache 512KB, 2-way, 64-bytes lines, 10 cycles latency 
Main Memory Latency 100 cycles 

Table 2. Benchmarks used 

Type Benchmark 
MEM mcf, twolf, vpr, parser, ammp, applu, art, swim 
ILP aspi, fma, eon, gcc, gzip, vortex, crafty, bzip2 

Table 3. Multithreaded Workloads used 

Num of 
threads 

Type Applications 

ILP {gzip, bzip2}, {gcc, aspi}, {vortex, fma}, {eon, crafty} 

MIX 
{gzip, vpr}, {gcc, ammp}, {art, vortex}, {fma, parser}, {aspi, twolf}, 
{crafty, art}, {bzip2, swim}, {eon, applu} 

2 

MEM {mcf, vpr}, {ammp, parser}, {twolf, art}, {mcf, swim} 
ILP {aspi, fma, eon, gcc}, {gzip, vortex, crafty, bzip2}, {fma, eon, gcc, 

crafty} 

MIX 
{fma, eon, parser, ammp}, {aspi, gzip, mcf, art}, {crafty, bzip2, vpr, 
parser}, {eon, gcc, twolf, art}, {vortex, aspi, mcf, ammp}, {gcc, fma, 
parser, applu} 

4 

MEM {vpr, parser, ammp, applu}, {mcf, art, vpr, twolf}, {twolf, vpr, art, 
swim} 

ILP {aspi, fma, eon, gcc, gzip, vortex},{fma, eon, gcc, gzip, vortex, crafty} 

MIX 
{fma, eon, gcc, vpr, parser, ammp}, {aspi, fma, eon, twolf, vpr, parser}, 
{eon, gcc, gzip, mcf, art, vpr}, {aspi, gcc, eon, vpr, swim, parser} 

 
6 

MEM 
{mcf, twolf, vpr, parser, ammp, applu}, {twolf, vpr, parser, ammp, 
applu, art} 

ILP {aspi, fma, eon, gcc, gzip, vortex, crafty, bzip2} 

MIX 
{eon, gcc, gzip, aspi, mcf, twolf, ammp, applu}, {vortex, crafty, bzip2, 
fma, vpr, parser, art, swim} 

8 

MEM {mcf, twolf, vpr, parser, ammp, applu, art, swim } 

those ex periencing between 0.02 and 0.12 L2 cache misses per instruction, on average, 
over the simulated portion of the code are considered memory-intensive applications, 
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and the rest have lower miss rates and higher inherent ILP. Table 3 lists the multi-
threaded workloads used in our simulations. All of the simulations in this paper either 
contain threads all from the first group (the MEM workloads in Table 3), or all from 
the second group (ILP), or an equal mix from each group (MIX). To avoid our results 
are biased towards a specific set of threads, each type of workloads may include multi-
ple sets. The final result of each type workload is shown as the average of these sets. 

We use two metrics to make a fair comparison: IPC and the Harmonic Mean 
(Hmean) [10]. Just as stated in [5], IPC may be a questionable metric if a fetch policy 
favors high IPC threads. The Hmean is the harmonic mean of the relative IPC of the 
threads in a workload and it attempts to avoid artificial improvements achieved by 
giving more resources to threads with high ILP. 

5   Results 

5.1   Throughput Results 

Figure 1(a) shows the throughput increment of DWarn+ over DWarn. The results 
indicate that DWarn+ outperforms DWarn for all types of workloads. 

As an enhanced version of DWarn, DWarn+ also attempts to handle L2 cache 
misses. For the ILP workloads, the threads all have low L2 cache misses rate. So, our 
policy has little effect on ILP workloads, and the average improvement is only by 
0.7%. For MEM workloads, the throughput increment of DWarn+ is greatest, by 5.5% 
on average. The main reason is that for MEM workloads, the pressure on shared re-
sources is very high; hence it is preferable to prevent threads with L2 cache misses 
competing for shared resources by reducing further the fetch priority of these threads. 
The special case is for 2-thread workloads, the improvement of MEM workloads is 
lower than that of MIX workloads. This is because restricting the resources used by 
threads with cache misses will favor the other threads with no outstanding misses, 
while the two threads in MEM workloads all have higher cache misses rate than the 
ILP thread in MIX workloads. 

Another conclusion is the improvement of DWarn+ decreases as the number of co-
scheduled threads increase. This is because the higher the number of threads running 
is,  the  less  likely  the  threads with cache misses are chosen to fetch instructions. And  

01
23
45
6
78
910

2 4 6 8
Avg

.

(a) Throughput

In
cr

em
en

t (
%

)

ILP

MIX

MEM

0
1
2
3
4
5
6
7

2 4 6 8

(b) Avg. throughput

In
cr

em
en

t (
%

) 

 

Fig. 1.  The improvement of DWarn+ over DWarn  
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our policy outperforms DWarn only when there are some opportunities to fetch from 
the threads with cache misses. However, there is a little specialness for MEM work-
loads. The increment of 4-thread MEM workloads is higher than that of 2-thread MEM 
workloads. The main cause is the mechanisms used to improve throughput are differ-
ent. For 2-thread MEM workloads, the improvement owns to resource allocation be-
tween threads and the increase of resource utilization, and for 4-thread ones, prevent-
ing threads with L2 cache misses competing for resources lightens the pressure on 
shared resources. Figure 1(b) shows the average increment of DWarn+ over DWarn as 
the number of co-scheduled threads changes. We can see that the average improvement 
of our policy in throughput is very limited when more than four threads run. 

5.2   Hmean Results 

Figure 2(a) depicts the Hmean increment of DWarn+ over the DWarn policy. The 
results imply that our policy would not sacrifice some thread severely when improv-
ing the performance of another thread. The Hmean increment of MEM workloads is 
still greatest, by 3.9% on average. 
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Fig. 2. The improvement of DWarn+ over DWarn  

Figure 2(b) shows the average Hmean increment of DWarn+ over DWarn as the 
number of co-scheduled threads changes. For 2-thread workloads, the Hmean incre-
ment is very significant, by 5.6% on average. This is because explicitly controlling 
shared resources allocation can achieve a better throughput-fairness balance, just as 
stated in [11]. Similarly, when the number of threads running is higher than 4, the 
average increment of DWarn+ in throughput-fairness balance is very limited. 

6   Conclusions 

In SMT processors, co-scheduled threads share some resources, such as issue queues, 
physical registers, and functional units, but also compete for them. A thread in such 
an architecture missing in L2 cache may hold a large number of resources which other 
threads could be using to make forward progress. Many instruction fetch policies are 
proposed to prevent this situation. DWarn is a very efficient fetch policy to handle L2 
cache misses. However, there are some problems with DWarn. The first problem is 
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the threads with L2 cache missed still have some opportunity to fetch instructions into 
the processor. The second one is there may exist idle cycles of the processor when 
less than three threads run. 

Our contribution is that we propose an enhanced version of DWarn, called 
DWarn+. By reducing further the fetch priority of the threads experiencing L2 cache 
misses, these threads almost have no opportunity to fetch instructions. If there are few 
threads running, we restrict the resources allocated to the threads with cache misses to 
avoid both the monopolization of shared resources and idle cycles of the processor. 

The results show that DWarn+ achieves a significant improvement over DWarn in 
both throughput and fairness, especially for MEM workloads, by 5.5% and3.9% on 
average, respectively. Another conclusion is the increment of our policy decrease as 
the number of co-scheduled threads increases. Not more than four threads run, the 
improvement is remarkable. When the number of threads running is higher than 4, our 
policy enhances the original one mainly for MEM workloads, and the average im-
provement for all types of workloads is very limited. 
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Abstract. Existing loop fusion algorithms fuse loop nests only when
the dependences in the loop nests are not violated. This paper presents
a new algorithm that is capable of fusing loop nests in the presence
of fusion-preventing anti-dependences. We eliminate all these violated
dependences by automatic array copying. In this work, such an aggressive
loop fusion strategy is applied to a Jacobi program. The performance of
such iterative methods is typically limited by the speed of the memory
system. Fusing the two loop nests in the Jacobi program into one reduces
data cache misses, and consequently, improves the performance results of
both sequential and parallel versions of the Jacobi program, as validated
by our experimental results on an HP AlphaServer SC45 supercomputer.

1 Introduction

Due to the increasing performance mismatch between processors and main mem-
ories, modern computer systems are equipped with increasingly more levels of
caches (e.g., three levels in the Intel IA-64 processors) to prevent performance
degradation. However, caches help speed up only those programs that exhibit
good data locality. For programs that do not reuse data, their execution times are
limited by the poor latency and bandwidth values of the main memory. There-
fore, cache-conscious programs are important for CPU-intensive applications,
where the most computations are carried out inside loop nests.

There has been a great deal of work on the exploitation of cache locality
for performance enhancement. For example, the design of LAPACK is influ-
enced by efficiency considerations in the presence of caches. The main motiva-
tion of LAPACK was to recast the algorithms in EISPACK and LINPACK into
blocked versions in terms of calls to BLAS [1]. In parallel with the development
of LAPACK, compiler researchers have successfully automated many of the loop
transformations, such as loop tiling or blocking [9, 11, 12] (for generating blocked
algorithms), loop fusion and loop distribution [10], used in LAPACK in a com-
piler.

However, one fundamental limitation of existing loop transformations is that
they are dependence-preserving and thus inapplicable when the data depen-
dences in the program are violated. In [13], we introduced a new loop fusion

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 224–238, 2005.
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compiler algorithm that allows arbitrary loop nests with affine loop bounds
and array subscript expressions to be fused. In the fused program, all fusion-
preventing flow (i.e., true) and output dependences are eliminated by loop tiling
and all fusion-preventing anti-dependences by automatic array copying. Such
an aggressive loop fusion strategy has two important benefits. First, by fusing
the two loop nests that cannot be fused conventionally, we are able to exploit
the data reuse across the two loop nests. Second, by creating perfect loop nests
that cannot be obtained conventionally, we are able to exploit the data reuse
within perfect loop nests by further applying loop tiling to these perfect nests.
In [13], we demonstrated that our aggressive loop fusion can improve program
performance significantly on uniprocessors with cache memories. In this paper,
we show that our aggressive loop fusion can also improve the performance of par-
allel applications running on multi-processor computer systems. Our example is
an MPI program that uses the Jacobi method to solve the Helmholtz equation.
Iterative solvers for partial differential equations (PDEs) such as Jacobi are typi-
cally implemented using global sweeps over the whole data set. As a result, their
performance is limited by the speed of the memory system. Improving the cache
performance of iterative solvers is absolutely essential to achieving good perfor-
mance for these solvers on modern computer systems. We report and analyse
the performance results of our Jacobi application before and after loop fusion is
applied. The fused program yields improved performance due to improved data
locality and also slightly reduced message communication cost.

Like Gauss-Seidel and SOR (Successive Over-Relaxation) methods, Jacobi
is a classic iterative solver for PDEs. These solvers ares still important to-
day because they are useful either as models for more complex methods or as
building blocks from which more advanced methods, such as multigrid, can be
constructed. This paper is not concerned with designing fast iterative solvers.
Instead, the thesis of this work is that an aggressive loop fusion strategy can im-
prove the performance of parallel applications for which the existing loop fusion
is inapplicable. One future work is to apply our technique to multigrid methods.

The rest of this paper is organised as follows. Section 2 introduces an al-
gorithm that fuses loop nests in the presence of violated anti-dependences. In
Section 3, we apply this algorithm to transform a Jacobi program consisting
of two loop nests into one perfect loop nest. Section 4 presents and analyses
our experimental results on uniprocessor and multi-processor systems. Section 5
compares with the related work. Section 6 concludes the paper.

2 An Aggressive Loop Fusion Algorithm

We consider array-dominated programs consisting of multiple loop nests whose
loop bounds and array subscript expressions are affine expressions of the sur-
rounding loop variables. The fusion of two perfect loop nests is legal iff all depen-
dences from the first (i.e., the lexically earlier) nest to the second nest are not
reversed in the fused program [10–p. 315]. The dependences that are reversed
are known as the fusion-preventing dependences. There are three kinds of fusion-
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preventing dependences: flow (i.e., write before read) dependences, output (i.e.,
write before write dependences) and anti- (i.e., read before write) dependences.

Suppose we are given two perfect loop nests that are to be fused by embedding
the iteration space of one nest inside that of another in a certain way. The two
nests may not have the same loop bounds in a common dimension or even
the same number of loops. We propose to eliminate all the fusion-preventing
dependences between the two nests in two steps. We eliminate all the fusion-
preventing flow and output dependences by applying loop tiling or loop shifting
to the first loop nest. In [13], loop tiling is used. This first step is omitted here.
We eliminate all the fusion-preventing anti-dependences by inserting array copy
operations inside the second loop nest. This second step is discussed below.

In the case of multiple loop nests, our fusion strategy is applied iteratively
bottom-up, starting from the last two nests. Let there be K perfect loop nests,
identified by L1, . . . ,LK , from the beginning to the end of the program:

L1: do I1 = L1,1, U1,1
...

do In1 = L1,n1 , U1,n1

BODY1(I1, . . . , In1)...
LK : do IK = LK,1, UK,1...

do InK = LK,nK , UK,nK

BODYK(I1, . . . , InK )

(1)

where the loop bounds of each loop nest are assumed to be affine. Two different
loop nests may not have the same loop bounds in a common dimension or even
the same number of loops. Let ISk be the nk-dimensional iteration space of the
k-th loop nest Lk. Let n = max{nk | 1 � k � K}. If the dependences in the
program (1) are ignored for the moment, it is always possible to fuse the K nests
into one perfect loop nest whose n-dimensional iteration space is:

IS = {(I1, . . . , In) | ∀ 1 � i � n : Li � Ii � Ui} (2)

This consists of finding an injective mapping from ISk to IS for every nest Lk:

Fk : ISk �→ IS (3)

The fused program becomes one single perfect loop nest as follows:

do I1 = L1, U1

...
do In = Ln, Un

if (I1, . . . , In) ∈ F1(ISk)
BODY1(F −1

1 (I1, . . . , In))
...

if (I1, . . . , In) ∈ FK(ISK)
BODYK(F −1

K (I1, . . . , In))

(4)
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1 ALGORITHM: ElimRW(P )
2 INPUT: A program P of the form given in (1)
3 OUTPUT: A fused program P ′ with same input/output behavior as P
4 Let P ′ be the fused program (4) obtained from P
5 for every array A in the program P
6 for k = K − 1, 1
7 for k′ = k + 1, K
8 Compute RWA(k, k′)
9 RW A(k) :=

⋃K
k′=k+1{(I ′, k′, s′) |(I, I ′, s′)∈RWA(k, k′)}

10 Compute min≺ RW A(k)
11 Introduce a new array for A, HA,k, of size | min≺ RW A(k)| in P ′

12 Insert the copy operations at the beginning of Lk+1’s loop body in P ′

if (I, k′, s′) ∈ min≺ RW A(k)
HA,k(fk′,s′(I)) = A(fk′,s′(I))

13 for read reference s ∈ ReadsA(k), i.e., A(fk,s
A (I)) in Lk

14 Ck,s
A := {I | I ∈ Sk,s

A ∧ k′ > k ∧ s′ ∈ WritesA(k′) ∧ I ′ ∈ Sk′,s′
A

∧ I ′ ≺ I ∧ fk,s
A (I) = fk′,s′

A (I ′)}
15 Replace A(fk,s

A (I)) by:

if I ∈ Ck,s
A

HA,k(fk,s
A (I))

else
A(fk,s

A (I))

Fig. 1. An algorithm for fixing all the fusion-preventing data dependences

where all original K loop nests “share” the same iteration vector I = (I1, . . . , In).
The loop fusion used for transforming the program (1) to the fused pro-

gram (4) are illegal when some dependences in the original program (1) are
violated. Figure 1 gives an algorithm for eliminating all the fusion-preventing
anti-dependences so that both programs have the same input/output behaviour.
As we discussed earlier, we assume that the violated flow and output depen-
dences have already been eliminated by some other means such as loop tiling
[13] and/or loop shifting.

Our algorithm makes use of the following notations. A denotes an arbitrary
but fixed array in the original program (1), which may be accessed in all its
K loop nests, L1, . . . ,LK . All pk read references of A in Lk are identified by
integers consecutively, starting from 1. Thus, a read reference identified by s
signifies that it is the s-th read reference accessed among all pk read references.
Let ReadsA(k) = {1, . . . , pk}. Similarly, WritesA(k) = {1, . . . , qk} denotes the
set of all qk write references in Lk. Sk,s

A denotes the set of iterations at which the
s-th read or write reference is accessed and fk,s

A (I) its array subscript expression,
where I = (I1, . . . , In) is the iteration vector of the fused program (4).

Consider two loop nests Lk and Lk′ , where k < k′. RWA(k, k′) is the set of
anti-dependences of A that prevent Lk and Lk′ from being fused:
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RWA(k, k′) = {(I, I ′, s′) | s ∈ ReadsA(k) ∧ I ∈ Sk,s
A

∧ s′ ∈ WritesA(k′) ∧ I ′ ∈ Sk′,s′
A

∧ I ′ ≺ I ∧ fk,s
A (I) = fk′,s′

A (I ′)}
(5)

where ≺ denotes the lexicographc “less than” order between iteration vectors.
To eliminate the violated anti-dependences from Lk to Lk′ , where k < k′,

we insert array copy operations to copy the values of A just before they are
incorrectly overwritten by a write reference in WritesA so that all read references
in ReadsA can be modified to access the original values of A correctly.

Let us explain the basic idea behind our algorithm ElimRW given in Figure 1.
Here RW stands for Read before Write dependences. Given the fused program
(4), we eliminate all the violated anti-dependences iteratively bottom-up across
the K loop nests starting from the last two loop nests LK−1 and LK . First, we
eliminate all the violated anti-dependences from LK−1 to LK . Next, we eliminate
all the violated anti-dependences from LK−2 to LK−1 and LK . This process is
repeated until L1 is processed, in which case, we eliminate all the violated anti-
dependences from L1 to the last n − 1 nests from L2 through LK .

ElimRW takes as input a program P of the form (1) and produces as output
a fused program P ′ that has the same input/output behavior as P . In line 4, we
obtain the fused program P ′ of the form (4) from P as discussed earlier. In line
5, we process all arrays in the program, one by one, in any order. In the for loop
starting at line 6, we eliminate iteratively all violated anti-dependences bottom-
up across all K loop nests. During the k-th iteration of this for loop, we aim at
eliminating all the fusion-preventing anti-dependences from Lk to Lk+1, . . . ,LK .
In lines 7 – 9, RWA(k) is calculated to be the set of all such violated anti-
dependences. To insert the required copy operations correctly, we must know the
earliest iteration at which a particular anti-dependence is violated. The set of
all these earliest points is given by min≺ RWA(k) in line 10, where the iteration
vector I is treated as a parameter and the iteration vector I ′ as a variable. If
all constraints involved in defining RWA(k) are affine expressions of I ′ and I,
min≺ RWA(k) can be computed parametrically (in terms of I) using the PIP [4]
or Omega Calculator [7] (both tools) are based on integer programming).

By definition, min≺ RWA(k) contains the earliest writes at which some anti-
dependences are violated in the program P . In lines 11 – 12, we insert the copy
statements to copy the old values of A at these iterations just before they are
overwritten. In lines 13 – 15, we make sure that the copied values are used
correctly only at the iterations defined by the predicate Ck,s

A in line 14.
Note that the correctness of ElimRW relies on the fact that all the fusion-

preventing flow and output dependences have been eliminated first.

Theorem 1. The input program P to and the output program P ′ from ElimRW
have the same input/output behaviour.

Proof. As a loop invariant at the beginning of the k-th iteration of the for loop in
line 6, all the violated anti-dependences in RWA(k+1), . . . , RWA(K) have been
eliminated. During the k-th iteration, the violated anti-dependences in RWA(k)
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are all eliminated by array copying. In addition, the copy array, HA,k, introduced
in line 10 will not affect the values in the copy arrays, HA,k+1, . . . , HA,K , that
may have been introduced in the earlier iterations of the for loop in line 6. �

The number of copying arrays introduced for an existing array depends only
on the number of fused loop nests. If array expansion [5] is used to eliminate out-
put and anti-dependences, the amount of extra space introduced often depends
on the problem size. For example, a 2-D array of size N × N is often expanded
into a 3-D array of size N × N × N . In our case, the worst-case scenario is
N × N × L, where L is the number of loop nests in the program.

3 A Jacobi Program

Figure 2 gives a Fortran90 program for solving the Helmholtz equation on a reg-
ular mesh, using an iterative Jacobi method with over-relaxation. The program
is taken from [2] except that the roles of u and unew are swapped. There are
two loop nests in the while, i.e., the time loop. The two-dimensional array u is
used to store the results of the previous iteration and the two-dimensional array
unew is used to store the results of the current iteration. In the first loop nest,
the sweep operation is executed, including the sum of the squared residuals used
for the error estimation and the termination condition of the surrounding while
loop. In the second loop nest, unew is copied to u.

The two loop nests in the while loop cannot be fused by the conventional
loop fusion transformation because the cross-nest anti-dependences from the
two read references u(i-1,j) and u(i,j-i) in the first loop nest to the write
reference u(i,j) will be violated. Therefore, the inter-nest data reuse for the
two arrays cannot be exploited for a reasonably large mesh.

We can apply ElimRW to fuse the two loop nests legally as follows. The
input program P consists of the two loop nests in the Jacobi program. In line
4, we obtain the fused loop nest, P ′, as depicted in Figure 3. There is only
one variable, u, whose anti-dependences may be violated. So the for loop in
line 5 has only one iteration. There are only two nests. So K = 2. The for
loop in line 6 also executes for only one iteration. Let the four read references
of u in the first nest be numbered as u(i-1,j)1, u(i+1,j)2, u(i,j-1)3 and
u(i,j+1)4. So Readsu = {1, 2, 3, 4}. There is only one write reference, u(i,j), in
the second loop nest. So Writesu = {1}. We note that all anti-dependences from
u(i+1,j)2 and u(i,j+1)4 to u(i,j) are respected. But all the anti-dependences
from u(i-1,j)1 and u(i,j-1)3 to u(i,j) are violated. In line 8, we obtain:

RWu(1, 2) = {((j′, i′), (j, i), 1) | 2 � j, j′ � m − 1 ∧ 2 � i, i′ � n − 1
∧ (j′, i′) ≺ (j, i) ∧ ((j′, i′) = (j − 1, i) ∨ (j′, i′) = (j, i − 1))}

= {((j′, i′), (j, i), 1) | 2 � j, j′ � m − 1 ∧ 2 � i, i′ � n − 1
∧ ((j′, i′) = (j − 1, i) ∨ (j′, i′) = (j, i − 1))}

(6)

In line 9, we have RW u(1) = RWu(1, 2). In the fused program given in Figure 3,
all elements of u except those in row n-1 and column m-1 are written too earlier
before their values have been actually consumed by u(i-1,j)1 and u(i,j-1)3.
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subroutine jacobi (n,m,dx,dy,alpha,omega,u,f,tol,maxit)

double precision dx,dy,f(n,m),u(n,m),alpha, tol,omega
double precision error,resid,ax,ay,b
double precision unew(n,m)

ax = 1.0/(dx*dx) ! X-direction coef
ay = 1.0/(dy*dy) ! Y-direction coef
b = -2.0/(dx*dx)-2.0/(dy*dy) - alpha ! Central coeff

error = 10.0 * tol
k = 1

do while (k.le.maxit .and. error.gt. tol)
error = 0.0
do j = 2,m-1

do i = 2,n-1
resid = (ax*(u(i-1,j) + u(i+1,j)) &

& + ay*(u(i,j-1) + u(i,j+1)) &
& + b * u(i,j) - f(i,j))/b

unew(i,j) = u(i,j) - omega * resid
error = error + resid*resid

end do
enddo

do j=2,m-1
do i=2,n-1

u(i,j) = unew(i,j)
enddo

enddo

k = k + 1
error = sqrt(error)/dble(n*m)

enddo ! End time loop

print *, ’Total Number of Iterations ’, k
print *, ’Residual ’, error

maxit = k - 1

return
end

Fig. 2. A Jacobi program for solving the Helmholtz equation

To fix these violated anti-dependences, we compute min≺ RW u(1) in line
10. In this case, we actually have min≺ RW u(1) = RW u(1). The subscript ex-
pression for u(i.j) is f2,1

u (i, j) = (i, j). According to lines 11 – 12, we in-
troduce a new array, H, and insert the following copy statement just before
u(i,j)=unew(i,j):

if (j .ne. m-1 .and. i .ne. n-1) then
H(i,j)=u(i,j)

end if
(7)
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...

do while (k.le.maxit .and. error.gt. tol)
error = 0.0
do j = 2,m-1

do i = 2,n-1
resid = (ax*(u(i-1,j) + u(i+1,j)) &

& + ay*(u(i,j-1) + u(i,j+1)) &
& + b * u(i,j) - f(i,j))/b

unew(i,j) = u(i,j) - omega * resid
error = error + resid*resid
u(i,j) = unew(i,j)

enddo
enddo

k = k + 1
error = sqrt(error)/dble(n*m)

enddo ! End time loop

...

Fig. 3. The code obtained by fusing the two loop nests given in Figure 2

where the if conditional is obtained from the specifying constraints of
min≺ RW u(1) simplified under the context 2 � j � m − 1 ∧ 2 � i � n − 1,
which defines the iteration space of the fused loop nest in Figure 3.

In lines 13 – 15, we need to examine all the four references u(i-1,j)1,
u(i+1,j)2, u(i,j-1)3 and u(i,j+1)4 to see how they should be modified to
read the copied values in H. We find that C1,2

u = C1,4
u = ∅, meaning that the anti-

dependences originating from the second and fouth read references are not vio-
lated. However, C1,1

u = C1,3
u �= ∅. Under the context 2 � j � m−1∧2 � i � n−1,

the specifying constraint for C1,1
u is simplified to i � 3 and that for C1,3

u to j � 3.
Therefore, in line 15, the read reference u(i-1,j)1 should be replaced by:

if (i .ge. 3) then
H(i-1,j)

else
u(i-1,j)

end if

(8)

Similarly, the read reference u(i,j-1)1 should be replaced by:

if (j .ge. 3) then
H(i,j-1)

else
u(i,j-1)

end if

(9)

In practice, if we choose to copy redundantly some boundaries elements of
an array, then the if conditionals like those in (7 – (9) can often be simplified



232 J. Xue

...

double precision H(n,m)

...

do j=2,m-1
H(1,j) = u(1,j)

enddo
do i=2,n-1

H(i,1) = u(i,1)
enddo

do while (k.le.maxit .and. error.gt. tol)
error = 0.0
do j = 2,m-1

do i = 2,n-1
resid = (ax*(H(i-1,j) + u(i+1,j)) &

& + ay*(H(i,j-1) + u(i,j+1)) &
& + b * u(i,j) - f(i,j))/b

H(i,j) = u(i,j)
tmp = u(i,j) - omega * resid
error = error + resid*resid
u(i,j) = tmp

enddo
enddo

k = k + 1
error = sqrt(error)/dble(n*m)

enddo ! End time loop

...

Fig. 4. Final code from ElimRW with all violated anti-dependences of u fixed

or even completely eliminated. Under such optimisations, which can be incor-
porated into ElimRW, we obtain the final fused version of our Jacobi program
shown in Figure 4. By choosing to copy row n-1 and column m-1 redundantly,
the if conditional in (7) is removed. Similarly, by copying row 1 and column 1 re-
dundantly just before the while loop, the if conditionals in (8) and (9) have been
removed. Note that the array unew is no longer needed. So the access unew(i,j)
has been replaced by a scalar, tmp. The copy array H has the same size as unew.
In this example, loop fusion has not caused any extra memory space increase.

In the final program, the two arrays u and H are accessed within a single loop
nest. Therefore, their data elements exhibit better data reuse in cache memories.

4 Experiments

We evaluate this work using the Jacobi example on a 126-node HP AlphaServer
SC45 supercomputer. Each node has four 1GHz ev68 (Alpha 21264C) CPUs
running OSF1 sc0 V5.1. Each CPU has a 64KB (on-chip) write back and write
allocate data cache with FIFO replacement policy. The L1 data cache is 2-way
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set-associative with a cache line size of 64B. Each CPU also has an (off-chip)
L2 unified cache, which is direct-mapped and has a capacity of 8MB. Each node
has between 4GB and 16GB of RAM and between 2 and 6 36GB SCSI disks.
Due to the use of the fat-tree interconnect of the Quadrics “Elan3” network, the
SC45 computer system achieves an MPI latency of less than 5 usecs and an MPI
bandwidth of 250 Mbytes/sec (bi-directional).

In all our experiments, maxit=1000 is fixed and the while loop has always
completed in exactly 1000 iterations. The regular mesh on which the Jacobi
method operates is defined by two problem size parameters, m and n. In all our
experiments, a square mesh is used: n=m. All arrays are of double precision. So
an array of size 90× 90 fills up roughly the 64KB L1 data cache and an array of
size 1024 × 1024 fills up exactly the 8MB L2 cache for the Alpha 21264 CPU.

In Section 4.1, we discuss our experimental results on a single CPU. In Sec-
tion 4.2, we discuss our experimental results on multi-processor platforms.

4.1 Uniprocessors

There are two sequential programs, Org and Fused, where Org is the original pro-
gram given in Figure 2 and Fused denotes the fused program shown in Figure 4.
We demonstrate the performance benefits of our aggressive loop fusion algorithm
using the Jacobi example on a single 21264 CPU. Both programs are compiled
by the HP Fortran90 compiler (V5.5A) at the optimisation level “-fast”.

Figure 5 compares the execution times of Org and Fused. The speedups of
fused program Fused over Org range from 19.62% to 29.27% with an average
of 24.38%. Figure 6 compares the L1 data cache misses of both programs. The
cache misses are estimated using the DineroIV cache simulator for the array
accesses only. In Org, the inter-nest data reuse for the two arrays u and unew
cannot be exploited. By fusing the two loop nests, the single loop nest in Fused
also contains two arrays of the same size. But better data reuse for the two
arrays can now be exploited. As a result, we observe some significant reductions
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Fig. 6. The simulated L1 data cache misses of Org and Fused

in the L1 cache misses across all the problem sizes used. In comparison with the
original program Org, Fused enjoys an average of 40% L1 cache miss reduction
for the problem sizes simulated. The decreases in cache misses have translated
into the performance improvements as shown in Figure 5.

4.2 Multiple Processors

The MPI versions of sequential programs Org and Fused are obtained using a
1D domain decomposition. This choice is made primarily to facilitate a simple
boundary condition implementation. Suppose that P processors are available.
The regular mesh n x m is divided into P vertical strips, with one being allo-
cated to one processor. In other words, the columns of each array are blocked
distributed among the P processors. As a result, the part of the global array
u(n,m) allocated to the p-th processor, where 0 � p < P, is u(n,mlo:mhi),
where mlo = p × (m − 2)/P + 1 and mhi = min(p + 1) × (m − 2)/P + 2, m). The
array unew(n,m) in the program Org and the array H(n,m) in the program Fused
are both distributed in the same manner.

The processor p is responsible for computing the values for the sub-mesh
n x (mlo+1:mhi-1). During each iteration of the while, i.e., the time loop, the
processor p first sends asynchronously column mlo+1 to its left neighbouring
processor p − 1 and column mhi-1 to its right neighbouring processor p + 1. In
addition, the processor receives synchronously column mlo from its left neigh-
bouring processor p − 1 and column mhi from its right neighbouring processor
p+1. Only after having received both columns, can the processor p start working
on its allocated columns. At the end of each while loop, MPI ALLREDUCE is called
to calculate the error for the current iteration.

The MPI versions of Org and Fused are referred to as Org-MPI and Fused-MPI,
respectively. Both programs are compiled by the HP Fortran90 compiler (V5.5A)
on the SC45 supercomputer at the optimisation level “-fast”. The SC45 uses a
version of MPI that is based on MPICH 1.2.4. In this particular supercomputer,
we are allowed to use a maximum of 60 CPUs. In all our experiments on MPI
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applications, a regular mesh of 5000×5000 is used. As before, we set maxit=1000
so that the while loop runs for exactly 1000 iterations in our experiments.

Figure 7 compares the execution times of Org-MPI and Fused-MPI. Figure 8
shows the performance improvements of Fused-MPI over Org-MPI. The perfor-
mance improvements range from 12.85% to 27.74% with an average of 19.35%.
Figure 9 illustrates quantitatively how the improvements in cache locality have
contributed to the overall speedups of our example application. For each pro-
cessor configuration, the bottom bar represents the parallel speedup of Org-MPI
over Org and the entire bar the parallel speedup of Fused-MPI over Org. There-
fore, the top bar represents the increase in the parallel speedup (in absolute
terms) due to the improved cache locality. These increases range from 0.21 to
7.66 with an average of 2.38 for the processor configurations used.

(a) Org-MPI (b) Fused-MPI

Fig. 10. Performance analysis of Org-MPI and Fused-MPI when P = 24

We have also compiled and linked Org-MPI and Fused-MPI with Vampir-
trace 4.0 and analysed the performance results of both programs using Vampir.
Figure 10 shows the summary charts for both programs in the 24-processor con-
figuration. By performing loop fusion aggressively, we have reduced not only
the computation time but also slightly the communication time for the Jacobi
program. Since Fused-MPI exhibits better data reuse than Org-MPI, each pro-
cessor completes its allocated computations earlier. This may reduce the idle
time that the processors spend on waiting for messages. Therefore, the over-
all communication time in Fused-MPI is slightly reduced compared to Org-MPI.
Note that Vampirtrace does incur some instrumentation overhead. So the ex-
ecution times shown in Figure 10 are not exactly the same as those shown in
Figure 7.
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5 Related Work

Loop fusion is a standard compiler optimisation employed in a number of re-
search and commercial compilers. Some earlier work on the topic can be found
in [3, 6, 10] and the references therein. However, loop fusion is applicable only
when the dependences in the program are not violated. In [13], we presented the
first algorithm that allows arbitrary affine loop nests to be fused in the presence
of the fusion-preventing flow, output and anti-dependences. The motivation of
our earlier work was to improve the cache performance of sequential programs
on uniprocessors. In this paper, we investigate the performance benefits of this
aggressive loop fusion algorithm for parallel applications.

Many scientific and engineering applications require the solution of partial
differential equations (PDEs). A common approach discretises the input domain,
thereby transforming a PDE problem into one of solving a linear system. For
large systems with several millions of unknowns, the methods of choice are all
iterative. Classic iterative solvers are Jacobi, Gauss-Seidel and SOR (Successive
Over-Relaxation) methods. These solvers remain important because they are
useful either as models for more complex methods or as building blocks from
which more advanced methods, such as multigrid, can be constructed.

However, iterative methods do not exhibit good data reuse since they are
typically implemented using global sweeps over the whole data set. Song and
Li [8] describe special-purpose techniques for tiling Jacobi-like codes to achieve
good performance improvements on uniprocessors. In this paper, we show that
fusing the loop nests in Jacobi-like codes can achieve good performance results
on both uniprocessor and multi-processor systems.

6 Conclusion

This paper presents a loop fusion algorithm that is capable of fusing loop nests
even when the conventional loop fusion optimisation fails. In the presence of
fusion-preventing anti-dependences, we eliminate all these violated dependences
by means of automatic array copying. We assume that all violated flow and out-
put dependences have been eliminated before our algorithm is applied. In [13],
we demonstrated that such an aggressive loop fusion strategy achieves good per-
formance improvements on uniprocessors with cache memories. Taking a Jacobi
program as an example, we show in this paper that such a strategy is also ef-
fective for improving the performance of MPI applications on multi-processor
systems. In general, the performance of stencil codes is limited by the speed
of the memory system. Our experimental results indicate that better perfor-
mance results for stencil codes can be obtained if the data reuse in these codes is
improved. One future work is to investigate the performance benefits of our tech-
nique for more advanced methods such as multigrid. How to effectively combine
loop fusion and loop tiling for multigrid methods is another interesting topic.
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Abstract. Directional coupler (DC)-based optical switching networks can 
switch signals at the rate of several terabits per second. Benes networks are 
widely employed for their small depth and self-routing capability. Crosstalk 
between two optical signals passing through the same DC is an intrinsic 
drawback in DC-based optical networks. Vertical stacking of multiple copies of 
an optical Benes network has been intensively studied by researchers to build 
non-blocking optical networks. The resulting network is called vertically 
stacked optical Benes network (VSOBN).  However, no rigorous analysis has 
been done to predict the behavior of VSOBN. In this paper, we study the 
deterministic conditions for strictly non-blocking VSOBN with and without 
worst case scenarios. We further analyze the blocking probabilities of VSOBN 
networks under a fixed load and develop their upper bound with respect to the 
number of planes in the networks. These performance measures can be used to 
predict the performance of VSOBN.  

Index Terms: Benes networks, blocking probability, multistage interconnection 
networks (MINs), directional coupler (DC), switching networks, vertical stacking. 

1   Introduction 

Multistage Interconnection Network (MIN) is very popular in switching and 
communication applications. This network consists of N inputs, N outputs, and n 
stages (n = log2N).  Each stage has N/2 Switching Elements (SEs), each SE has two 
inputs and two outputs connected in a certain pattern.  The most widely used MINs 
are the electronic MINs. There are three types of nonblocking networks: strictly 
nonblocking, wide-sense nonblocking and rearrangeable nonblocking. [4]. 

As optical technology advances, there is a considerable interest in using optical 
technology to implement interconnection networks and switches [1, 2, 3]. In 
electronic MINs electricity is used, where as in optical MINs light is used to transmit 
the messages. Optical switching network is an essential part in an optical network, 
which has the capability of switching huge data at an ultra-high speed. The 2x2 
switching element (SE) in optical switching networks is usually a directional coupler 
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(DC) that is created by manufacturing two waveguides close to each other [4]. The 
cross (bar) state of a DC can be implemented by applying a suitable voltage (no 
voltage) to it. Crosstalk in DC is a major shortcoming in DC-based optical networks, 
which occurs between two signals carried by the two waveguides of a DC [5], [9].  

Banyan-type networks have a single path between an input–output pair. A common 
design technique for creating alternate paths is to append x extra stages to the back of 
a regular Banyan-type network in which case the number of paths between an input–
output pair becomes 2x(see Fig. 1). The maximum number of stages that can be added 
to such network is (log N – 1), which corresponds to the Benes network. 

 

 

Fig. 1. A stacked Banyan networks and a Benes networks. By appending extra stages, 
alternative routes are available. 

A Benes network has a simple switch setting ability (self routing) and also a small 
number of SEs along a path between an input–output pair. These characteristics have 
made Benes networks attractive for constructing DC-based optical switching 
networks. In this paper, we will focus on the optical Benes networks that are free of 
first-order crosstalk in SEs (we refer to this as crosstalk-free hereafter). In Benes 
networks, there are many paths between an input-output pair. For a fixed routing 
strategy, when two connections intend to use the same link, one of them will be 
blocked. This is called link-blocking. There is, however, another type of blocking in 
optical Benes networks, namely crosstalk-blocking. Since the crosstalk-free constraint 
requires that only one signal is allowed to passes through a SE at a time, thus it has a 
larger contribution to the overall blocking probability than that of link-blocking. 
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Vertical stacking of multiple copies of an optical Benes network is a novel scheme 
for constructing nonblocking (crosstalk-free) optical switching networks with neither 
increasing the number of stages nor sacrificing the self-routing property of the Benes 
network [6]. We use VSOBN to denote vertically stacked optical Benes networks and 
VSOBN(N,m) to denote an VSOBN network that has m stacked copies (planes) of an 
NxN Benes network. Previous results [6],[7] focus on determining the minimum 
number of planes required for nonblocking VSOBN(N,m) networks. These results 
indicate that the vertical stacking scheme, although is attractive, requires a 
prohibitively high hardware cost for building a nonblocking VSOBN network. 

Analysis of blocking probability of a network that does not meet the hardware 
requirement for nonblocking is an effective approach to studying network 
performance. In [8], blocking probability of stacked banyan networks is analyzed. 

In this paper, we will analyze the blocking probability of stacked Benes networks.  
In section 2, we will describe the deterministic condition for strictly nonblocking 

VSOBN networks. In particular, we derive the blocking probabilities of VSOBN in 
the worst case, second worst case, and third worst case. In section 3, we will derive 
the upper bound of the blocking probability. Section 4 will summarize the paper.  

We follow the same assumptions held by [8]. We neglect the correlation among 
signals arriving at input (output) ports and consider that the statuses (busy or idle) of 
individual input (output) ports in the network are independent. This assumption is 
justified by the fact that the correlation among signals at inputs (outputs), though it 
exists for fixed communication patterns, becomes negligible for arbitrary 
communication patterns in large-size networks. 

2   Strictly Nonblocking Without Worst Case Scenarios 

In this section, we briefly describe the deterministic condition for the strictly 
nonblocking VSOBN network that is obtained based on worst-case and second worst 
case analysis. We also evaluate the probability that the worst-case scenario occurs to 
motivate the work of this paper. 

Due to their topological symmetry, all paths in a Benes network have the same 
property in terms of blocking. To study the blocking probability, we can arbitrarily 
select an input and an output in the network and set up a connection between them. 
Through out this paper, we will select the path between the first input and the first 
output and try to set up a connection between them. We call the path between this input-
output pair the tagged path. All the SEs on the tagged path are called tagged SEs. In 
Benes networks, all paths between the targeted pair are called the tagged paths. 

The flow of information through the network is assumed to be from left to right—
all the inputs being on the left-hand side and all the outputs on the right-hand side of 
the network. The stages of SE’s are numbered from left (stage 1) to right (stage 2logN 
-1). The stages of links are also numbered from left to right, but starting from 0 (input 
links) to 2logN -1 (destination links). For a tagged path, an input intersecting set (IIS) 
Ii associated with stage i (1<=i<=2logN-1) is defined as the set of all inputs that 
intersect a tagged SE at stage i. Likewise, an output intersecting set Oi (OIS) 
associated with stage i is the set of all outputs that intersect a tagged SE at stage 
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2LogN-i. Fig. 1 shows some examples. In the figure, a tagged path and a tagged SE 
are displayed in solid lines or dark. Input intersecting sets and output intersecting sets 
are also labeled. 

We are interested in an optical network that is nonblocking and crosstalk-free. This 
can be achieved at the cost of extra hardware. For a VSOBN network, the following 
theorem gives the deterministic condition for strictly nonblocking [6], we are going to 
discuss the noblocking requirement without the worst case scenarios. 

Theorem 1[6]: VSOBN is strictly nonblocking if the following condition is true:  

m>= 2x + (2N/2x)1/2-1 in which x = logN-1 

The above result was obtained based on worst-case analysis. That is, to find the 
maximum possible number of connections that will conflict the tagged path and let 
each of these connections block a distinct plane. 

 

Fig. 2. Different input (output) links have different blocking capabilities 

From figure 2, we know that different input (output) links have different blocking 
capabilities. Inputs (outputs) in I1 have the capabilities to block the whole plane; 
inputs (outputs) in I2 have the capabilities to block only ½ plane…; inputs (outputs) in 
Ik have the capabilities to block only 1/2k-1plane. When a connection is set up between 
an input from Ii and an output from Oj, the connection will block 1/2min{i,j}-1 plane. In 
the following, symbols “{” and “}” are used to define a set and symbols “(” and “)” 
are used to define a relation. Therefore, the problem of finding the worst-case traffic 
pattern can be formulated as follows: 

Given a set : {1, ½, ½, ¼, ¼, ¼, ¼, …, 1/ N/2 ,…, 1/ N/2}, find a relation  x , 
such that   max(  x ) is maximized.  

It is clear that in order to maximize the sum, the relation must be as unbalanced as 
possible. For example, for set {1, ½}, relations (1, ½) and (½, 1) would be a better 
choice than relations (1, 1) and (½, ½) since the former will block 2 plane, but the 
latter will only block 1½ planes.  

Therefore, in order to maximize the sum, we must pick up the relation pairs from 
the two ends of the set. And the relations are (1,1/N/2), (1/2, 1/N/2),( 1/2, 1/N/2),( 1/2, 
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1/N/2),( 1/2, 1/N/2),(1/4, 1/N/2),…, (1/N/4, 1/N/2) ,…, (1/N/4, 1/N/2), their 
respective inversions and  (1/N/2, 1/N/2). Add 1, 1, ½, ½, ½, ½, ½, ½, ½, ½, ¼, …, 
1/N/4 ,…,1/N/4 , and 1/N/2 together, we will get the result of theorem 1. 

From Theorem 1, it is clear that the hardware cost for a strictly nonblocking 
VSOBN network is high. Let us find out the probability that the worst-case scenario 
could occur. Let the probability that an input (output) port is busy be r (r is basically 
the traffic rate at the input line) and denote by Pworst the probability that the worst-case 
scenario occurs. Pworst is then given in the following lemma under the assumption that 
statuses of individual input (output) ports are independent. 

Lemma 1: In an NxN optical Benes network, we have 

Pworst =  
2

12/

12/

1
2/

−
−

− r

N

N

N
r n                           

When r=0.9 and N =64 and r=0.9 and N=128, P64 = 2.63 e – 34, and P128 = 3.97 e 
– 77. This indicates that the probability of worst case from happening is very small or 
even can be ignored in most cases. 

Table 1 and Figure 3 show the relationship between the number of inputs and the 
number of planes required. The blocking requirement is the value calculated from 
Theorem 1. This shows that a lot of planes are needed to make VSOBN absolutely 
non-blocking. We would like to investigate the blocking behavior without considering 
some rare cases. 

Table 1. Blocking requirement and actual number of planes needed 

No. of  inputs 16 32 64 128 256 
Blocking 
requirement 

6 1/8  8 1/16 10 1/32 12 1/64 14 1/128 

No. of planes 
required 

7 9 11 13 15 
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Fig. 3. Blocking requirement and actual number of planes needed 
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In this paper, we define the term second worst case scenario as follows: Second 
worst case is the case(cases) in which the second largest blocking capability occurs.  

It is also important to find out the probability that the second worst-case scenario 
could occur. The reason is explained as follows:  

Take when N = 16 as an example,  

I1: {1}                                                O1: {1} 
I2: {½, ½}                                          O2: {½, ½} 
I3: {¼, ¼, ¼, ¼}                                O3: {¼, ¼, ¼, ¼} 
I4: {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8}  O4: {1/8,1/8,1/8,1/8,1/8,1/8,1/8,1/8} 

The worst-case is when inputs (outputs) in I1, I2, and I3 are connected to outputs 
(inputs) in I4. There will be one pair in I4 and O4 left and this pair accounts for the 
1/8. In order to be strictly nonblocking, we need 7 planes.  

Now let’s consider the second worst-case. In the second worst-case, the blocked 
planes will be 6. The second worst case happens either when I1, I2, I3 going to O4 
and O1, O2, O3 going to I4 while the remaining one pair in I4 and O4 is not 
connected or one pair in I3 and O3 is connected while rest of the inputs(outputs) are 
connected to O4(I4). Therefore, in the former case, the blocking capability is reduced 
by 1/8 because the remaining pair in I4 and O4 is not connected; in the latter case, 
because one pair in I3 and O3 is connected, while in the worst case these two are both 
connected with one in I4 or O4, the capability of blocking is reduced by ¼. At the 
same time, the pair in the I4 and O4 must be connected together, which increased the 
blocking capability by 1/8. So, blocking difference between the worst-case and the 
second worst-case will be ¼-1/8 = 1/8. 

This proves Theorem 2. 

Theorem 2: A VSOBN network is strictly nonblocking with m = 2*(logN –1) when 
worst and second worst case do not occur. 

Now it is the time to find out the probability that second worst-case could happen.   

Lemma 2: In an NxN optical Benes network, we have 

Psecond-worst= 
2

12/ )1(

12/

1
2/ −

−
−

− r

N

N

N
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2

222/
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N
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When r = 0.9 and N = 64 and r = 0.9 and N = 128 respectively, we have the 
following results, P64 = 3.91 e -34, and P128 = 8.38 e -74. This shows that the probability 
that second worst case happens is still very small, which justifies Theorem 2. 

The result is significant, because we can save one whole plane if the worst case and 
second worst-case do not happen very often and could be ignored in our design. Table 
2 and Figure 4 show the actual number of planes needed without considering the 2nd 
worst case and the percentage saving compared to the number of planes required in an 
absolutely non-blocking environment. 
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Table 2. Savings (percentage) without 2nd worst case 

No. of  inputs 16 32 64 128 256 512 1024 
No. of planes 6  8  10  12  14  16 18 
Blocking requirement 6 1/8 8 

1/16 
10 
1/32 

12 
1/64 

14 
1/128 

16 
1/256 

18 1/512 

Saving(percentage) 
w/o 2nd worst case 

14.3
% 

11.1
% 

9.1% 7.7% 6.7% 5.9% 5.3% 
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Fig. 4. Savings (percentage) without 2nd worst case 

The table shows that even when N = 1024, which is a quite large network, we can 
still save 5.3%, if we neglect first and second order worst-cases. This motivates us to 
further investigate the possibility of saving of planes when we ignore other rare cases 
of blocking. 

Lemma 3: In an NxN optical Benes network, further neglecting third order worst-case 
does not save a plane. 

For example when N = 16, in the third worst-case, the blocked planes will be 
4.875. The reason is that 1/8 is the smallest residue in this system and in order to get 
the blocked planes in the third worst case, all needs to be done is to let two pair in I3 
and O3 to be connected; while in the second worst case only one pair is connected, 
the other pair is connected with one in I4 or O4. Therefore, the capability of blocking 
is reduced by ¼. And at the same time, the pair in the I4 and O4 must be connected 
together, which increases the blocking capability by 1/8. So, blocking difference 
between the second worst-case and the third worst-case will be ¼-1/8 = 1/8. 
Therefore, further neglecting third order worst-case is meaningless. 

From the above analysis, it is seen that spending a large amount of extra hardware 
in order to guarantee the strictly nonblocking property is not cost-effective in most 
cases. This motivates us to find out the blocking probability of a VSOBN network 
with respect to the number of planes (hardware cost), and to seek an approach to 
making tradeoff between hardware cost and blocking probability. 
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3   Upper Bound on Blocking Probability 

Since exact blocking probability is hard to obtain, in this section we will derive 
various formulas to get an upper bound on the blocking probability of a VSOBN in 
terms of the number of planes. This bound can be considered as the estimate for the 
worst case blocking probability. In the following discussion, we give a few definitions 
and notation which will be used in the analysis.  

For an N x N network, a matrix of logN x logN is proposed. An element in the 
matrix Cij stands for the connection from Ii to Oj.   

C11       C12        …      C1n 
C21       C22        …      C2n 
....... 
C(n-1)1   C(n-1)2   …       C(n-1)n 
Cn1       Cn2       …       Cnn. 

We use CIi to denote the sum of coefficients of Cij in row i where j>=i. For 
example:  

CI2 = C22 + C23 +… + C2n. 

We use COj to denote the sum of coefficients of Cij in column j where i>=j. For 
example:  

CO2 = C22 + C32 +… + Cn2. 

By this definition, CIi stands for the connections coming from input group i going 
to ouput groups j (j>=i). COj stands for the connections going to ouput group j coming 
from input groups i (i>=j). The total blocking capability BC is therefore  

CI1 + CO1 – C11 + ½*(CI2 + CO2 – C22)+ ¼* (CI3 + CO3 – C33) + … + 1/2logn-

1*(CIn + COn – Cnn).  

In the above formula, CI1 stands for the connections coming from input group to 
every output group, and CO1 stands for the connections coming from every input 
group to output group 1. And any connection in CI1 and CO1 will block a whole plane. 
But there are some overlaps in these two groups and the overlap is C11 (which are the 
connections coming from input group 1 to output group 1), since it has been counted 
twice in CI1 and CO1. 

CI2 stands for the connections coming from input group 2 to every output group 
other than group 1. Similarly, CO2 stands for the connections coming from every input 
group other than input group 1 to output group 2. And any connection in CI2 and CO2 

will block 1/2 of a whole plane. But there are some overlaps in these two groups and 
the overlap is C22 (which are the connections coming from input group 2 to output 
group 2), since it has been counted twice in CI2 and CO2. Similar consideration will 
apply to CI3, CO3, …, CIn, COn. 

Clearly there will be no blocking if CI1 + CO1 – C11 + ½*(CI2 + CO2 – C22)+ ¼* (CI3 
+ CO3 C33) + … + 1/2logn-1*(CIn + COn – Cnn)<m. (1) 
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Therefore we have 
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CO2, …, CIn, COn) * P(CI1 + CO1 – C11 + ½*(CI2 + CO2 – C22)+ ¼* (CI3 + CO3 – C33) + 
… + 1/2logn-1*(CIn + COn – Cnn)<= m-1|CI1, CO1, CI2, CO2, …, CIn, COn) (2) 

The lower bound of CI1 is 0 since it can not be negative. On the other hand, CI1 
must not be greater than 20, since there is only 20 input in I1; and CI1 must not be 
greater than m-1, since there are only m planes in the networks and if CI1 is greater 
than m-1, then the network will be blocked. Therefore, CI1 must not be greater than 
the minimum of 20 and m-1. 

The lower bound of CI2 is 0 since it can not be negative. On the other hand, CI2 
must not be greater than 21, since there is only 21 inputs in I2; and CI2 must not be 
greater than 2*(m-1), since there are only m planes in the networks and if CI2 is 
greater than 2*(m-1), then the network will be blocked. Therefore, CI1 must not be 
greater than the minimum of 21 and 2*(m-1). 

And the ranges of other connections can be derived accordingly. 
From (1) 

CI1 + CO1 – C11 + ½*(CI2 + CO2 – C22)+ ¼* (CI3 + CO3 – C33) + … + 1/2logn-1*(CIn + 
COn – Cnn)<= m-1, 

by simple algebraic manipulation, 
We have C11 + ½ C22 + ,…, + 1/2logn-1Cnn >= CI1 + CO1 + ½*(CI2 + CO2)+…+ 1/2logn-

1 (CIn + COn) – m + 1 (3) 

Therefore,  
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Where  
Lower = max[0, CI1 + CO1 + ½*(CI2 + CO2)+…+ 1/2logn-1 (CIn + COn) – m + 1] 
and 
Upper = min(CI1 , CO1)+ ½*min(CI2 ,CO2)+…+ 1/2logn-1*min(CIn , COn). 
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From (3) C11 + ½ C22 + ,…, + 1/2logn-1Cnn >= CI1 + CO1 + ½*(CI2 + CO2)+…+1/2logn-1 
(CIn + COn) – m + 1, we can see that the lower bound of (C11+ ½ C22+ ¼ C33 + 
…+1/2logn-1Cnn) is CI1 + CO1 + ½*(CI2 + CO2)+…+ 1/2logn-1 (CIn + COn) – m + 1.  

On the other hand, C11 must not be greater than CI1 or C01; 1/2 C22 must not be 
greater than 1/2CI2 or 1/2C02 … and so forth. Here so derives the upper bound of 
(C11+ ½ C22+ ¼ C33 + … +1/2logn-1Cnn). 

And, 

P(nonblocking) = P(CI1, CO1, CI2, CO2, …, CIn, COn) P(C11, C22,…, Cnn |CI1, CO1, CI2, 
CO2, …, CIn, COn) 

= P(C11, C22,…, Cnn, CI1, CO1, CI2, CO2, …, CIn, COn) 
= P(CI1 C11)P(C22,…, Cnn , CO1, CI2, CO2, …, CIn, COn| CI1 C11) 
= P(CI1 C11)P(C22,…, Cnn , CO1, CI2, CO2, …, CIn, COn| C11)    

We drop CI1 in the above formula under the assumption that the connections in CI1 
are independent with all others, which can be justified if the amount of traffic under 
consideration is huge.  Thus, we have 

P(nonblocking) = P(CI1 C11)P(C11 ,C22,…, Cnn , CO1, CI2, CO2, …, CIn, COn)/P(C11) 
= P(CI1 C11) P(CO1 C11)P(C22,…, Cnn ,  CI2, CO2, …, CIn, COn| CO1 C11)/P(C11) 
= P(CI1 C11) P(CO1 C11)P(C22,…, Cnn ,  CI2, CO2, …, CIn, COn| C11)/P(C11)  

Similarly, we drop CO1 under the assumption that the connections in CO1 are 
independent with all others, which can be justified if the amount of traffic under 
consideration is huge. Now, we have  

P(nonblocking) = P(CI1 C11) P(CO1 C11)P(C11, C22,…, Cnn ,  CI2, CO2, …, CIn, 
COn)/P

2(C11) 
= ... 
= P(CI1 C11) P(CO1 C11) P(CI2 C22 ) P(CO2 C22)… P(CIn Cnn) P(COn Cnn)P(C11, C22, 

,…,  Cnn)/ P
2(C11) P

2(C22)… P2(Cnn) 
Since C11, C22, ,…,  Cnn  are independent of each other, P(C11, C22, ,…,  Cnn) = 

P(C11)P(C22) ,…, P(Cnn). 
Therefore, P(nonblocking) = P(CI1 C11) P(CO1 C11) P(CI2 C22 ) P(CO2 C22)… P(CIn 

Cnn) P(COn Cnn)P(C11, C22, ,…,  Cnn)/ P
2(C11) P

2(C22)… P2(Cnn) 
= P(CI1 C11) P(CO1 C11) P(CI2 C22 ) P(CO2 C22)… P(CIn Cnn) P(COn Cnn) P(C11)P(C22) 

,…, P(Cnn)/ P
2(C11) P

2(C22)… P2(Cnn) 
= P(CI1 C11) P(CO1 C11) P(CI2 C22 ) P(CO2 C22)… P(CIn Cnn) P(COn Cnn) / P(C11) 

P(C22)… P(Cnn). 

In general, P(Ckk) stands for the probability of Ckk connection coming from input 

group k going to output group k. Therefore, P(Ckk) is P(Ckk) = 
−

kk
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C

12
kkC

kα (1-

kα ) kk
k C−−12 , where kα is the probability that a connection from input group k 

going to the out put groups k. So kα  is r * (2k-1)/(N-1) in this case. 
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In general, P(CIk Ckk) is the probability of CIk connections from input group K to 
output groups K and above while there are Ckk connections from input group K to 
output group K. It can be calculated as: 

P(CIk Ckk) =  
−
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where kα is the probability that a connection from input group k going to the out put 

group k. So kα  is r * 2k-1/N-1 in this case. kγ  is the probability that a connection 

from input group k going to the out put groups above k and kγ  is r * (N-2k / N-1). 

In general cases, P(COk Ckk) is the probability of COk connections from input group 
K to output groups K and above while there are Ckk connections from input group K 
to output group K. We have the general formula to calculate it: 
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where kα is the probability that a connection from input group k going to the out 

put group k. So kα  is r * 2k-1/N-1 in this case. kγ  is the probability that a 

connection going into output group k coming from the input groups above k and kγ  

is r * (N-2k / N-1).   

Based on the above formulas, we can calculate the blocking probability with 
various numbers of planes, as in Figure 5.  

 

Fig. 5. Illustration of paths for calculatingα  and γ     
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Fig. 6. Blocking Probability 

Now we show some analytical results based on the formulas obtained in this 
section. Figure 6 shows the blocking probability with different number of planes. 
From the figure, it can be seen that when n =16, the blocking probability is very close 
to 0 even the number of planes is 5. Hence, in most practical cases, we do not need a 
full number of planes to guarantee non-blocking, and our analysis will show what the 
probability of blocking if a smaller number of planes is used. This figure can be used 
as guidance when a designer makes a trade-off between performance and cost. 

4   Conclusion 

In this paper we discuss the blocking probability of stacked Benes network. We show 
that by neglecting worst case traffic pattern, we can save one whole plane. We further 
investigate the upper bound of the blocking probability and we show that our theory 
conforms to the non-blocking condition. Our model is suitable when traffic load is not 
very heavy and the network size is relatively large.  
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Abstract. Several parallel architectures exist in computer science liter-
ature. Motivated by the experimental overlapping connectivity network,
we propose a new theoretical network called a completely overlapping
network (CON). This network is an extension of the overlapping con-
nectivity network with multiple buses. In this paper we investigate some
properties of this network and demonstrate the use of CON and its use-
fulness by solving two toy problems: decimal number and one-digit binary
number sortings.

1 Introduction

The concept of parallel computation has been around for decades and parallel
computation itself has increasingly become even more important in the era of
information-dependent world. Thousands of parallel applications and architec-
tures are available for use. However, parallel architectures such as hypercube
and mesh are generally expensive [1] and hence their use is limited to only those
who can afford them. Some attempts have been made to find an alternative to
these expensive parallel machines.

One alternative is called a cluster of workstations and personal computers.
Research in parallel computation on a cluster of workstations abounds. Examples
can be found in [2–4]. A typical cluster of workstations is essentially a group
of numerous workstations and personal computers connected through a single
communication line. Each computer can send a message, bit by bit, when the
communication line is free. If the communication line is currently occupied, the
computer must wait before it is allowed to send its message.

One chief problem with this model of communication via a single communi-
cation line is the line can only serve one computer at any time. To lessen this
problem, during the recent decade or so, a group of computer scientists in the
United States, led by Wilkinson, has developed an experimental network called
an overlapping network [5–7]. They have worked on the concept of using multi-
ple bus lines in some certain configurations. Figure 1 shows one such example.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 252–262, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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i-4 i-3 i-2 i-1 i i+1 i+2 i+3 i+4 i+5 i-4

Fig. 1. Multiple bus network with overlapping connectivity

These configurations are in the general classification of overlapping connectivity
networks. Overlapping connectivity networks have the characteristic that regions
of connectivity are provided and the regions overlap so as to provide parallelism.
The overlapping connectivity scheme is suitable for processors having local mem-
ory and can be applied to both fine-grained and coarse-grained processors.

In this paper we extend the networkmodel of Wilkinson one step further to pro-
vide complete overlapping of communication and use a set of fine-grained proces-
sors connected through CON. Our theoretical network model is more general than
but similar to the experimental overlapping network in figure 1. Henceforth, we
will refer to this model as a completely overlapping network. From now on, we will
also use an abbreviation “CON” interchangeably with its full name “completely
overlapping network”. Because Wilkinson’s multiple bus network model yields a
good result [5], it is worth studying properties of CON and investigating its poten-
tial. We do this by using two toy problems; namely, decimal number and one-digit
binary number sortings. This will in fact be the central theme of our paper.

We now discuss a little bit about parallel sorting. Sorting is a fundamen-
tal problem with many important practical applications. Several parallel sorting
algorithms exist in computer science literature depending on the kinds of net-
work architectures they use. Most existing parallel algorithms are described in
the context of networks such as mesh [8–11], line [12, 13], hypercube [14–17],
torus [18], etc. The rest are mostly in the environment of cluster of workstations
with one communication bus, i.e., LANs [19–22]. As of today, we are not aware
of any sorting algorithm on an architecture similar to CON.

In the following sections the definition and rules of operations of our com-
pletely overlapping network are firstly given. Secondly, a decimal number paral-
lel sorting algorithm on our completely overlapping network is shown. We prove
that this algorithm is time-optimal on CON. Thirdly, we show another parallel
sorting algorithm on CON but this time it will sort only binary numbers. We
again prove that this binary number sorting algorithm is time-optimal on CON.
Fourthly, we compare the two parallel sorting algorithms. Finally, we conclude
our paper with a summary and some comment on practicality of our theoretical
network.
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2 Completely Overlapping Network

A completely overlapping network is composed of several overlapped communi-
cation lines that connect among several nodes (or processors) to provide par-
allelism. There are vertical communication lines and horizontal communication
lines as shown in figure 2 below.

Fig. 2. Four-node completely overlapping network

The number of vertical lines is equal to the number of nodes N and the
number of horizontal lines is equal to N(N−1)

2 . One straight line segment equates
one step horizontally and vertically. (Note that a line in CON comprises several
line segments.) For instance, figure 3 shows a communication of 9 steps between
the leftmost node and the rightmost node.

1 2
3 4

5 6 7
8
9

Fig. 3. Nine-step communication between nodes

Like any other networks, there are rules of operations. These rules are rea-
sonable and can certainly be implemented. The rules are as follows.

– Horizontal and vertical line segments cannot be shared. That is, any line
segment can be used only one at a time.

– Each line segment is bidirectional.
– Each node has a constant memory size.
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Fig. 4. Numbering scheme for a four-node CON

– A same message can be concurrently sent from one node to several destina-
tion nodes as long as there is no collision of messages.

– If there exists contention for a communication line segment, some kind of
priority can be applied.

In order to enable readers to understand our communication method, a num-
bering of both nodes and communication lines is necessary. Our numbering
scheme is illustrated in figure 4. This figure shows a four-node CON with node
and line identification numbers. It is easy to generalize this numbering scheme
for a N -node CON. Hereafter, we will regularly refer to this numbering scheme
when explaining our algorithms.

3 Decimal Number Parallel Sorting Algorithm on CON

Our Decimal Number Parallel Sorting Algorithm is specifically designed to suit
the completely overlapping network and thus is unique and interesting in its own
right. The definition of our Decimal Number Parallel Sorting Algorithm on CON
is given as follows. We borrow some of pseudocode conventions from [23].

Decimal Number Sorting Algorithm for Process Pi

1. for i = 0 to N − 1 and i �= myID
2. send(myNum, Pi, myID)
3. myCounter = 0
4. for i = 0 to N − 2
5. recv(num,PANY )
6. if myNum > num
7. myCounter = myCounter + 1
8. if myCounter �= myID
9. twoItems = pack(myNum, myCounter)
10. for i = 0 to N − 1 and i �= myID
11. send(twoItems,Pi,myID)
12. while recv(packedItems, PANY ) �= NULL
13. unpack(packedItems,num,counter)
14. if counter = myID
15. myNum = num
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It is assumed that each processor (or node) has a number stored in it initially
and there is a total of N > 2 processors in the CON where N is the number
of distinct items to be sorted. We also assume one process per one processor
and myID is its own process identification number. There are two communi-
cation subroutines in the algorithm: send(data, destination process, communi-
cation line number) and recv(data, source process). These subroutines require
identification numbers for both lines and nodes. These identification numbers
were described in the previous section. Also note that pack(item1, item2, . . . ,
itemN ) is a subroutine that packs all stated items together as one larger item
and the subroutine unpack(packedItems, item1, item2, . . . , itemN ) does just
the opposite.

One of the arguments in subroutine send() indicates the communication lines
to use. (There is no such argument in recv().) Figure 5 shows how the lines
are used in this sorting algorithm. Four different sources of communication are
denoted by four different arrow patterns. There is a total of 11 communication
steps. This communication scheme can be easily generalized for a N -node CON.

Like any communication scheme, it is vital that there be no collision of mes-
sages on any of these communication lines (or any line segment) at any point
in the algorithm. Lemma 1 shows that our communication scheme produces no
collision.

Lemma 1 (Collision-Free All-to-All). The communication scheme used in
the Decimal Number Parallel Sorting Algorithm produces no collision.

Proof. We use the proof by contradiction. Suppose there is a collision of messages
in the CON network. Since one time step equates one line segment, there must
exist at least two paths of equal length that the messages use to traverse from
different sources to the point of collision (i.e., the line segment that messages
collide). But the algorithm ensures that the path lenghts in the algorithm from
different sources differ at least one step before any common line segment is used
(lines 2 and 11). This is true because node i always uses line i to communicate.
Thus, this is a contradiction. We conclude that lemma 1 is true.

After designing an algorithm, a computer scientist needs to know whether his
algorithm is provably correct. That is, whether the remaining decimal numbers
in each node are in increasing order at the end of the algorithm. Theorem 1
shows that our algorithm works correctly.
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Theorem 1 (Algorithm’s Correctness). The Decimal Number Parallel Sort-
ing Algorithm is correct.

Proof. Let Pi be an arbitrary process i, 0 ≤ i ≤ N − 1, in the completely
overlapping network. In the algorithm each process Pi initially sends out its own
number myNum to the other processes Pj , j �= i (lines 1-2). Upon receiving
these numbers, each process Pi counts the numbers less than its own number
myNum and keeps this count in myCounter (lines 4-7). If myCounter is equal
to the positional number myID of the process Pi, it implies that there are
exactly myCounter numbers that are less than myNum and thus myNum is
in correct position. If myCounter is not equal to the positional number myID,
both myNum and myCounter are sent to the other processes Pj , j �= i (lines
8-11). Upon receiving these numbers, each process Pi checks if the just-received
variable counter is equal to myID. If it is, the process Pi replaces myNum
with the just-received variable num. If it is not, the process Pi waits for the
next number to arrive and checks. One of these numbers must have its variable
counter equal to myID (lines 12-15). With lemma 1, each process Pi eventually
keeps the number whose rank is i.

In addition to being correct, the algorithm should be efficient in order to be
applicable to real-life applications. The following theorem shows that this sorting
algorithm has a running time of O(N).

Theorem 2 (Running Time). The Decimal Number Sorting Algorithm on
CON has a running time of O(N) where N is the size of the items to be sorted.

Proof. In parallel algorithm running time is divided into communication time τ
and computation time δ. For simplicity, assume that one step in communication
is equal to one step in computation. There is a total of four phases in this
algorithm.

Phase 1 (Communication): Each process sends its own number to the other
processes (lines 1-2). Since this sending is done in parallel, the time of the longest
communication path dominates the whole communication.

τ1 = 3N − 1 (1)

Phase 2 (Computation): Each process counts the number of smaller numbers
than its own number myNum (lines 3-7).

δ1 = N − 1 (2)

Phase 3 (Communication): Each process sends its own number and its own
counter myNum and myCounter respectively to the other processes (lines 8-
11). For simplicity, assuming that time of sending one item and two items are
the same1, we therefore have

τ2 = 3N − 1 (3)
1 This assumption does not affect the time complexity since the time of sending two

items is constant.
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Phase 4 (Computation): Each process checks for a counter that is equal to
its ID (lines 12-15). There are in the worst case a total of N − 1 counters to
check. Therefore, we have

δ2 = N − 1 (4)

Hence, the total time complexity ξ is ξ = τ1 + δ1 + τ2 + δ2 = O(N).

Naturally the question that comes to the mind of computer scientists is
whether this parallel sorting algorithm is the best possible or time-optimal on
CON. Theorem 3 nicely answers this question.

Theorem 3 (Optimality). The Decimal Number Parallel Sorting Algorithm
is time-optimal on CON.

Proof. In order to solve any sorting problem on CON, the parallel sorting algo-
rithm must at least communicate between the two farthest nodes 0 and N − 1.
Let us call the shortest distance between the two farthest nodes a diameter. In
CON the diameter is N +1 steps. This establishes the lower bound Ω(N) for the
sorting problem on CON. Theorem 2 states that the Decimal Number Parallel
Sorting Algorithm has a time complexity of O(N). Hence, theorem 3 holds.

4 Binary Number Parallel Sorting Algorithm on CON

Given a set of 1’s and 0’s, can we, without any modification, use the Decimal
Number Parallel Sorting Algorithm in the previous section to sort it? The answer
is no. This is because there are repeated numbers of 1’s and 0’s and this violates
the assumption of having distinct numbers as the input to the algorithm. Hence,
we need to invent a new algorithm specifically for sorting binary numbers. At
the first glance one might suspect that sorting one-digit binary numbers may
be computationally easier than sorting decimal numbers because we have some
prior knowledge about our input. That is, only two kinds of numbers (i.e., 0’s
and 1’s) are possible. But our suspicion may not necessarily be true. We will
later illustrate this point in this section.

Several binary number sorting algorithms on different parallel architectures
exist in computer science literature [24]. However, most algorithms work with
d-digit binary numbers where d > 1. Few algorithms are designed to work specifi-
cally with only one-digit binary numbers. In [24] an algorithm for sorting N k-bit
binary numbers on a complete binary tree was described and it was shown that,
by counting, the hypothesized lower bound of Ω(Nk) bit steps can be beaten if
k is equal to 1. This case is similar to ours because our binary number sorting
algorithm deals also with one-digit binary numbers. The theoretically interesting
question is “Can we beat the lower bound Ω(N), too?”.

The definition of the Binary Number Sorting Algorithm on CON is given as
follows. Once again it is assumed that each processor has a single-digit binary
number stored in it initially and there is a total of N > 2 processors in the CON
where N is the cardinality of the set of one-digit binary numbers to be sorted.
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Binary Number Sorting Algorithm for Process Pi

1. myCounter = myNum
2. for i = 0 to N − 1 and i �= myID
3. send(myNum, Pi, myID)
4. for i = 0 to N − 2
5. recv(num, PANY )
6. if num = 1
7. myCounter = myCounter + 1
8. if myID < N − myCounter
9. myNum = 0
10.if myID ≥ N − myCounter
11. myNum = 1

As a computer scientist, we would like to know whether this algorithm is
provably correct. First, we note that lemma 1 also applies to this algorithm
because it uses the same send(. . . ) and recv(. . . ) subroutines. Theorem 4 will
show the rest.

Theorem 4 (Algorithm’s Correctness). The Binary Number Parallel Sort-
ing Algorithm is correct.

Proof. Let Pi be an arbitrary process i, 0 ≤ i ≤ N − 1, in the completely over-
lapping network. In the Binary Number Parallel Sorting Algorithm, each process
Pi counts the number of 1’s from its initial variable myNum and keeps this count
in myCounter (line 1). Each process Pi then sends out its own number myNum
to the other processes Pj , j �= i (lines 2-3). Upon receiving these binary numbers,
each Pi continues to count the number of 1’s and keeps this count in myCounter
(lines 4-7). At this point the total number of 1’s (i.e., myCounter) in the network
is known to each process Pi. Given its positional number myID and myCounter,
each process Pi can identify the number, either 1 or 0, to be kept in myNum.
If myID < N − myCounter, process Pi=myID falls into the range of 0’s and if
myID ≥ N −myCounter, process Pi=myID falls into the range of 1’s (lines 8-11).
Hence, with lemma 1, the Binary Number Parallel Sorting Algorithm is correct.

This algorithm indeed looks simpler than the decimal number sorting coun-
terpart. After all, this algorithm has only 11 lines, executes a pair of send(. . . )
and recv(. . . ) subroutines only once, and does not use pack(. . . ) and un-
pack(. . . ) subroutines. In addition, each process in our Binary Number Parallel
Sorting Algorithm only needs to count the number of 1’s and does not need
to send this count to the other processes because it can immediately determine
what number, either 0 or 1, should be in its position. But the important question
to computer scientists is “What about the time complexity? Are they asymptot-
ically equivalent?”. Theorem 5 shows the running time of our Binary Number
Parallel Sorting Algorithm.

Theorem 5 (Running Time). The Binary Number Parallel Sorting Algo-
rithm on CON has a running time of O(N) where N is the size of one-digit
numbers to be sorted.
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Proof. In the Binary Number Parallel Sorting Algorithm running time is divided
into communication time τ and computation time δ. We assume once again for
simplicity that one communication step is equal to one computation step. There
is a total of two main phases in this algorithm.

Phase 1 (Communication): Each process sends its own number to the other
processes (lines 2-3). Since this sending is done in parallel, the time of the longest
communication path dominates the whole communication.

τ = 3N − 1 (5)

Phase 2 (Computation): Each process counts the number of 1’s from the
just-received binary number (lines 4-7).

δ = N − 1 (6)

Therefore, the total time complexity ξ is ξ = τ + δ + ι = O(N) where ι is a
constant.

At this point we want to be able to claim that our algorithm is time-optimal
on CON. We would particularly like to know whether this claim is true because
it will confirm the best possible performance of our algorithm on theoretical
network CON and, as a consequence, we will be able to answer the question of
complexity between this algorithm and its decimal number counterpart. Theorem
6 proves this claim nicely.

Theorem 6 (Optimality). The Binary Number Parallel Sorting Algorithm is
time-optimal on CON.

Proof. In order to sort any instance of the binary number sorting problem on
CON, all nodes in CON must necessarily assemble together some collective in-
formation about states in the CON network (i.e., the locations of 1’s (or 0’s)
in the network or the total number of 1’s (or 0’s) in the network). To achieve
this in CON, there must at least be communication among all N nodes in the
network in some fashion. In other words, each node must at least send some
piece of information either directly or indirectly via some intermediate nodes to
all the other N − 1 nodes.

The number of steps required for a node to send a message to all the other
N − 1 nodes in CON is at least �N

2 � + 2 (i.e., a node in the middle of CON
sends a message to all the other N − 1 nodes where N is odd.). This implies at
least�N

2 �+2 steps of communication must occur. We know of one way to achieve
the assembling of this information, which is the way we described in figure 5.
This method takes 3N − 1 steps.

Let Smin be the minimum number of steps required to achieve the assembling
of this information. Therefore, �N

2 � + 2 < Smin ≤ 3N − 1. This establishes the
lower bound Smin = Ω(N) for any binary number sorting problem on CON.
Theorem 5 states that the Binary Number Parallel Sorting Algorithm has a
time complexity of O(N). Thus, theorem 6 holds.
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5 Comparison of the Two Parallel Algorithms

In section 4 we alluded a little bit to the question of time complexity of the two
parallel algorithms. It at first seems that the Binary Number Parallel Sorting Al-
gorithm is easier computationally than the decimal number counterpart. But, as
theorems 2, 3, 5, and 6 have shown, they are actually equivalent asymptotically
(i.e., when N → ∞). In addition, methods of optimality proofs also differ. It is
easy for one to fall into the trap of using the same proof of optimality for both
cases. After a few more thoughts, one will notice that we cannot use the same ar-
gument of the case of decimal numbers for the binary number case, even though
the lower bound is asymptotically the same. In the case of decimal numbers, there
must necessarily be an exchange of two numbers residing in nodes 0 and N −1 in
order to sort any instance of the decimal number sorting problem. On the other
hand, knowing that the input is only a set of 1’s and 0’s, the binary numbers re-
siding in nodes 0 and N−1 do not necessarily need to exchange the numbers phys-
ically via the network in order to sort any instance of the binary sorting problem.
Therefore, we cannot use the diameter to establish the lower bound in this case.

6 Conclusion
We were originally motivated by Wilkinson’s multiple bus networks with overlap-
ping connectivity to increase parallelism. A theoretical network CON is an ex-
tension of Wilkinson’s model. We illustrated the use of CON and its usefulness
by solving two toy problems: decimal number and binary number sortings. In the
decimal number parallel sorting we showed that our time-optimal algorithm has
a speedup of O(NlgN)

O(N) = O(lgN) over the fastest sequential sorting algorithm.
This speedup is considered fairly good. For example, suppose N = 1, 000, 000 and
logarithm base 10 is used, we have log N = 6. This is already 6 times as fast as
the fastest sequential algorithm. For the case of binary number parallel sorting
algorithm, there is no speedup over the fastest sequential sorting algorithm, but,
theory-wise, we can take satisfaction in knowing that there is no faster algorithm
for solving the one-digit binary number sorting problem on CON. Because both
sorting problems have a lower bound of Ω(N), it behooves us to ask whether or not
there is a problem that can be solved on CON with a lower time complexity than
Ω(N). This will be our future research question. On a final note, this paper is done
from a purely theoretical perspective. It would be nice if some engineers actually
implement this CON network. We would be very pleased to learn of any result!
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Abstract. This paper presents a lock-free parallel algorithm for garbage
collection in a realistic model using synchronization primitives offered
by machine architectures. Mutators and collectors can simultaneously
operate on the data structure. In particular no strict alternation between
usage and cleaning up is necessary, contrary to what is common in most
other garbage collection algorithms.

We first design and prove an algorithm with a coarse grain of atom-
icity and subsequently apply the reduction theorem developed in [11]
to implement the higher-level atomic steps by means of the low-level
primitives.

1 Introduction

A lock-free (also called non-blocking) implementation of a shared object guaran-
tees that within a finite number of steps always some process trying to perform an
operation on the object will complete its task, independently of the activity and
speed of other processes [12]. Since lock-free synchronizations are built without
locks, they do not suffer from performance bottlenecks, which are often caused
by locks and which can easily have a performance degrading effect of several
orders of magnitude. In addition, lock-free synchronizations can offer progress
guarantees. A number of researchers [1, 3, 12, 18] have proposed techniques for
designing lock-free implementations. Essential for such implementations are ad-
vanced machine instructions such as compare-and-swap (CAS), or load-linked
(LL)/store-conditional (SC).

In this paper we propose a lock-free implementation of mark&sweep garbage
collection (GC). Garbage collectors are employed to identify at run-time which
objects are no longer referenced by the mutators (i.e. user programs). The heap
space occupied by these objects is said to be garbage and must be re-cycled for
subsequent new objects. The garbage collectors reclaim all garbage by adding
them to a so called free-list, which keeps track of free memory.

There are several basic strategies for GC: reference counting, mark&sweep
and copying. Reference counting algorithms can do their job incrementally (re-
sulting in shorter collection pauses), but impose overhead on the mutators and
fail to reclaim circular garbage. Mark&sweep algorithms can reclaim circular
structures, and don’t place any burden on the mutators like reference counting
algorithms do, but tend to leave the heap fragmented. Copying algorithms can
reduce fragmentation, but add the cost of copying data from one space to another
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c© Springer-Verlag Berlin Heidelberg 2005



264 H. Gao, J.F. Groote, and W.H. Hesselink

and require twice as much memory as a mark&sweep collector. Moreover, copy-
ing also requires that the programming language restrict address manipulation
operations, which isn’t true for C or C++.

One often encounters GC algorithms (e.g. [7, 8]) that employ stop-the-world
mechanisms, which suspend all normal running threads and then perform GC.
Such an algorithm introduces a global synchronization point between all threads
and tends to become a scaling bottleneck that limits program performance and
processor utilization. It is unacceptable when the system must guarantee re-
sponse time of interactive applications. Therefore, to achieve parallel speed-ups
on shared-memory multiprocessors, lock-free algorithms are of interest [17, 21].

There are several lock-free GC algorithms in the literature. The first one is due
to Herlihy and Moss [13]. They present a lock-free copying GC algorithm, which
uses excessive copying for moving objects to avoid blocking synchronization. In
their algorithm, the failure of a participating thread can indefinitely prevent the
freeing of unbounded memory. In [15], Hesselink and Groote give a wait-free (wait-
freedom is stronger than lock-freedom) GC algorithm using reference counting.
However, this collector applies only to a restricted programming model, in which
objects are not allowed to be modified between creation and deletion, and is there-
fore generally limited. Detlefs et. al. [5] provide a lock-free GC algorithm using
reference counting. The approach relies on a strong hardware primitive, namely
double-compare-and-swap (DCAS) for atomic update of two distinct words in
memory. Michael [20] presents an efficient lock-free memory management algo-
rithm that does not require special operating system or hardware support. How-
ever, his algorithm only guarantees an upper bound on the number of removed
nodes not yet freed at any time. This is undesirable because a single garbage node
might use a large amount of resources and might never be reclaimed.

Mark&sweep algorithms do not move objects. They can thus coexist well
with C/C++ code, where one never dares to move an object because of possible
address computations, and are gaining popularity. Our lock-free mark&sweep
algorithm is non-intrusive and features high-performance and reliability. More-
over, unlike most previously published Mark&sweep algorithms [2, 6, 7], we make
no assumption on the maximum numbers of mutators and collectors that can
operate concurrently. As far as we could find, no similar algorithm exist.

The correctness properties of any concurrent implementation are seldom easy
to verify. This is in general even harder for lock-free algorithms. Our previous
work [9] shows that providing correctness proofs for such algorithms require huge
amounts of effort, time, and skill. In [11], we have developed a reduction theorem
that enables us to reason about a lock-free program to be designed on a higher
level than the synchronization primitives. Using the reduction theorem, fewer
invariants are required and some invariants are easier to discover and formulate
without considering the internal structure of the final implementation.

2 Specification

We assume a fixed set Node of nodes (cf. Fig. 1), each of which is identified with a
unique label between 1 and N for some N ∈ N. The nodes in the set free are the
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Fig. 1. A graph representation of the memory

free nodes. We model the heap as a finite directed graph of varying structure with
a set of non-free nodes. Each node in the graph points to zero or more children
(nodes), and the descendent relation may be circular. In the following context,
we regard the attributes of nodes as arrays indexed by 1 . . .N . The number of
children of a node x is indicated by its arity, which is denoted by arity[x]. We
let C be the upper bound of the arities of the nodes. The expression child[x, j]
stands for the pointer to the jth child of node x, where 1 ≤ j ≤ arity[x].

A node is called a root when some process has direct read access to it. Each
application process p maintains a private set rootsp that holds its root nodes.
The set Roots is the union of all rootsp for all processes p.

Access to nodes can be transferred between processes. We assume that there
is a two-dimensional array Mbox indexed with a pair of processes that serves as
mailboxes. If process p allows process q to access some node x, it writes x at
Mbox[p, q] using Send. Then, process q can claim the access by calling Receive.

We call a node a source node if the node is either in Roots or in some mailbox.
A node is called accessible iff it is reachable by following a chain of pointers from
a source node. Free nodes must not be accessible. Only nodes in the free set
are allowed to be allocated by the mutators. A node is said to be a garbage node
if it is neither accessible nor in the free set. Garbage collectors compute the set
of nodes reachable from a set of source nodes and reclaim all garbage nodes by
placing them into the free set. More formally, we define

R(p, x) ≡ (∃z ∈ rootsp: z
∗−→ x),

R(x) ≡ (∃z ∈ Roots: z
∗−→ x) ∨

(∃p, q ∈ Process: Mbox[p, q] ∗−→ x),

where the reachability relation ∗−→ is the reflexive transitive closure of relation
−→ on nodes defined by: z −→ x ≡ (∃k: 1 . . .arity[z]: child[z, k] = x). The
fact that a node x is a garbage node is formalized by: ¬R(x) ∧ x /∈ free.

The interface of the mutators consists of a shared data structure of nodes,
and a number of procedures that can be called in the application processes. We
assume there are in total P concurrently executing sequential processes. In the
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text of the procedures specified as follows, we use me to stand for the process that
invokes the procedure. We use angular brackets 〈 〉 to indicate that embraced
statements are (thought to be) executed atomically.

proc Create(): Node
local x : Node;
〈 when available extract x from free;
arity[x] := 0; rootsme := rootsme ∪ {x}; 〉

return x;
proc AddChild(x, y: Node): Bool
{ R(me, x) ∧ R(me, y) }

local suc : Bool;
〈 suc := (arity[x] < C);
if suc then arity[x]++; child[x, arity[x]] := y; fi 〉

return suc;
proc GetChild(x: Node, rth: N): Node ∪ {0}
{ R(me, x) }

local y : Node ∪ {0};
〈 if 1 ≤ rth ≤ arity[x] then y := child[x, rth]; else y := 0; fi 〉
return y;

proc Make(c: array [ ] of Node, n: 1 . . . C): Node
{ ∀j: 1 ≤ j ≤ n: R(me, c[j]) }

local x : Node; j : N;
〈 when available extract x from free;
for j := 1 to n do child[x, j] := c[j] od;
arity[x] := n; rootsme := rootsme ∪ {x}; 〉

return x;
proc Protect(x: Node)
{ R(me, x) ∧ x /∈ rootsme }

〈 rootsme := rootsme ∪ {x}; 〉
return;

proc UnProtect(z: Node)
{ z ∈ rootsme }

〈 rootsme := rootsme \ {z}; 〉
return;

proc Send(x: Node, r: Process)
{ R(me, x) ∧ Mbox[me, r] = 0 }

〈 Mbox[me, r] := x; 〉
return;

proc Receive(r: Process): Node
{ Mbox[r, me] �= 0 }

local x : Node;
〈 x := Mbox[r, me];
Mbox[r, me] := 0; rootsme := rootsme ∪ {x}; 〉

return x;

The application programmers are responsible for ensuring that an offered
procedure is called only when its precondition (enclosed by braces { } if there
is any) holds. The condition “available” in Create and Make is implementation
dependent. When an allocation request cannot be met from the free memory,
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the mutator either waits, or invokes a new round of GC to free more garbage.
The threshold value that determines whether or not to invoke a new round of
GC can be customized by the user.

Behind this abstract “user system” there is a collection of garbage collect-
ing processes. A garbage collector does not modify the memory graph but only
manipulate the free set. To specify that GC does happen and is eventually ex-
haustive, we give the liveness property, i.e. every garbage node will be eventually
put into the free set by a garbage collector.

3 A Higher-Level Implementation

The idea behind most GC algorithms in use is to first recursively trace all reach-
able nodes starting from root nodes, then nodes not reached are considered
garbage and can be collected. We present a lock-free implementation that comes
close to the classical mark&sweep algorithms.

We first extend the specification to a high-level implementation, where all
actions on shared variables are separated into distinct atomic accesses except
for some special commands enclosed by angular brackets 〈. . .〉. In order to be
able to finally transform the higher-level algorithm into the low-level algorithm
using our reduction theorem developed in [11], we require that every labeled
atomic group of statements in the higher-level algorithm refer to at most one
shared node.

3.1 Data Structure

The data structure we use in the higher-level implementation is shown in Fig. 2.
Besides fields arity and child, each node has one of three colors: white, black
and grey. All black nodes reachable from a source node are interpreted as ac-
cessible nodes, and all other black nodes are garbage. Grey is a transient color
that only occurs during GC. The free set is implemented as a virtual set that
contains all white nodes.

Since any accessible node must not be freed as garbage, the system needs
to keep track of source nodes that are created by a process and may still be
referred to by other processes. We introduce a field srcnt for each node to
count all references (processes and mailboxes) to the node as a source node.

To avoid possible interference between mutators and collectors, the updates
of the field srcnt of the node, upon deletion from the roots set, is postponed.
We use the field freecnt to count the postponed decrementings of srcnt. The
fields ari and father record the number of children a node has at the beginning
of GC and the parent node of a node in a tree traversed from a source node by
collectors, respectively.

We use a shared variable shRnd to hold the round number of the current
GC, together with an additional field round in the record of a node. The private
variable rnd is a private copy of the shared variable shRnd. The global private
variable toBeC is used to transfer information about checked nodes between
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Constant
P = number of processes; N = number of nodes;
C = upper bound of number of children;

Type
colorType: {white, black, grey};
nodeType: record =

arity, srcnt, freecnt, ari, round: N;
child: array [1 . . . C] of 1 . . . N ;
color: colorType; father: N ∪ {−1};

end
Shared variables

Mbox: array [1 . . . P, 1 . . . P ] of 0 . . . N ;
Node: array [1 . . . N ] of nodeType; shRnd: N;

Private variables
roots, toBeC : a subset of 1 . . . N ; rnd: N;

Initialization:
shRnd = 1 ∧ ∀x: 1 . . . N : round[x] = 1;

Fig. 2. Data Structure

internal calls. There is also a local private variable toBeD for representing the
set of source nodes to be tracked from.

3.2 Algorithm

In this section, we give a higher-level implementation for the collectors and the
mutators. Since the same sequential program can be executed by all processes,
we adopt the convention that every private variable name can be subscripted
by the process identifier. In particular, pcp is the program counter of process p.
We do not write Node[x].f but f [x]. We denote color[x] = white by white(x),
and similarly for the other two colors. Brackets � � and the actions between
parenthesis � � can be ignored in the implementation. They only serve in the
proof of correctness. We will explain this in section 4.

Collectors. Our garbage collectors are encoded in the procedure GCollect as
shown in Fig. 3. It consists of three phases: (1) initialization: paint all black
nodes grey, (2) marking: paint all grey nodes reachable from the source nodes
back to black after traversing the memory graph, and (3) sweeping: reclaim all
garbage by painting all remaining grey nodes white.

In the first phase, the processes only need to paint the black nodes grey since
the white nodes can not be garbage. Moreover, we let the field father of each
node with positive srcnt be 0, and that of other nodes be −1. As the algorithm
allows parallel use of mutators, being a source node is not stable. For simplicity,
we call a node x with father[x] = 0 an old source node.

In line 108, a delayed initialization on node x will be skipped since round[x] is
never decreased. As usual with version numbers, here we assume that sufficient
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proc GCollect() =
local x: 1 . . . N ; toBeD: a subset of 1 . . . N ;

100: rnd := shRnd; toBeC := {1, . . . , N};
101: while shRnd = rnd ∧ toBeC �= ∅ do

choose x ∈ toBeC ;
108: 〈 if round[x] = rnd then

round[x] := rnd + 1; ari[x] := arity[x];
if black(x) then color[x] := grey ; fi;
if srcnt[x] > 0 then father[x] := 0; else father[x] := −1; fi; fi; 〉

toBeC := toBeC \ {x}; od;
121: toBeC := {1, . . . , N}; toBeD := {1, . . . , N};
122: while shRnd = rnd ∧ toBeD �= ∅ do

choose x ∈ toBeD;
126: toBeD := toBeD \ {x};

〈 if father[x] = 0 then Mark stack(x); fi; 〉 od;
129: while shRnd = rnd ∧ toBeC �= ∅ do

choose x ∈ toBeC ;
134: 〈 if round[x] = rnd + 1 ∧ grey(x) then

color[x] := white;
� assert ¬R(x) ∧ x /∈ free; free := free ∪ x; � fi; 〉

toBeC := toBeC \ {x}; od;
135: 〈 if rnd = shRnd then shRnd := rnd + 1; fi; 〉
137: return
end GCollect.

Fig. 3. Procedure GCollect

bits are allocated for the version numbers to ensure that they cannot “wrap
around” during the interval of a process’s GC cycle.

In the second phase, lines 121-126, the processes build a forest in the set
of all reachable nodes starting from the old source nodes. Trees in the forest
are mutually disjoint. Each of them is rooted by a chosen old source node,
and is established via calling Mark stack (see Fig. 4) in a while loop. During
Mark stack, all the grey nodes on the tree are painted black in the order from
the leaf to the root.

The procedure Mark stack is mainly a form of graph search, and it was ini-
tially designed as a recursive procedure. Since we want to prove the correctness
of our algorithm with PVS, we eliminated the recursion in favor of an explicit
stack. The private variable toBeC serves to ensure that the search of a col-
lector traverses every node at most once. This is important since the memory
graph may have cycles and nodes may be reachable from different old source
nodes.

In Mark stack, lines 151-163, the tree is established by setting the father
pointers. Since the memory graph may have cycles, the processes must reach
consensus about the tree. The processes starting from the same old source node
cooperate with each other, and are in competition with others to expand the
tree to all nodes reached.
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proc Mark stack(x: 1 . . . N) =
local w, y: 1 . . . N ; suc: Bool; j, k: N;
stack: Stack; head: N; set: a subset of 1 . . . N ;
ch: [1 . . . C] of 1 . . . N ;

150: toBeC := toBeC \ {x}; set := {x}; head := 0;
151: while shRnd = rnd ∧ set �= ∅ do
157: choose w ∈ set; set := set \ {w};

〈 if grey(w) ∧ round[w] = rnd + 1 then
k := ari[w];
for j := 1 to k do ch[j] := child[w, j] od; 〉
head++; stack[head] := w; j := 1;

158: while shRnd = rnd ∧ j ≤ k do
y := ch[j];
if y /∈ toBeC then j++;
else

163: 〈 if father[y] ∈ {−1, w} ∧ grey(y)
∧round[y] = rnd + 1 then

father[y] := w; 〉 set := set ∪ {y};
toBeC := toBeC \ {y}; fi;

j++; fi; od; fi; od;
168: while shRnd = rnd ∧ head �= 0 do
175: y := stack[head]; head--;

〈 if grey(y) ∧ round[y] = rnd + 1 then
srcnt[x] := srcnt[x] − freecnt[x];
color[y] := black; freecnt[x] := 0; fi; 〉 od;

180: return
end Mark stack.

Fig. 4. Procedure Mark stack

The order for choosing an element from the local variable set is irrelevant for
correctness, but relevant for efficiency. The search is a depth first search if the
order is first in last out. The search is a breadth first search if the order is first
in first out. Starting from the chosen old source node, all nodes on the tree are
pushed onto the local stack after their children have been stored. The order of
the elements pushed onto the stack is essential for correctness.

After the tree has been established, the process paints all grey nodes black in
the order in which they are popped from the stack (lines 168-175). When a node
in the tree is painted black, its descendants (with respect to the father relation)
in the tree must have been painted black already. So the other processes need not
trace or paint the subtree starting from that node. At the end of Mark stack, the
process returns to the procedure GCollect to traverse another tree from another
old source node.

In the third phase, lines 129-134, processes try to re-cycle all remaining grey
nodes by coloring them white (i.e. adding them to the free set). The main proof
obligation for the algorithm is that all nodes being freed are not accessible. When
the fastest process executes line 135, the shared variable shRnd is incremented
to notify all other collectors that this round of GC is completed.
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Mutators. The higher-level implementations of the procedures for the mutators
are relatively easy. For reasons of space, in Fig. 5 we only provide the code for
procedure Make (see [10] for the remainning). In the code, “time to do GC”
indicates that some variable, like time or the amount of free memory, reaches a
threshold value.

proc Make(c: array [ ] of 1 . . . N, n: 1 . . . C): 1 . . . N =
{ ∀ j: 1 . . . n: R(me, c[j]) }

local x: 1 . . . N ; j: N;
while true do

300: choose x ∈ [1 . . . N ];
306: 〈 if white(x) then

color[x] := black; srcnt[x] := 1;
� assert x ∈ free; free := free \ x; �
� for j := 1 to n do child[x, j] := c[j]; od
arity[x] := n; roots := roots ∪ {x}; � 〉

break;
308: elseif time to do GC then GCollect(); fi; od;
310: � return x �
end Make.

Fig. 5. Procedure Make

4 Correctness

The main issue of the algorithm is how to ensure the correct execution of col-
lectors and mutators when they concurrently compete with each other for the
same data structure. The algorithm is correct if it behaves properly for all in-
terleavings. Here we only give a sketch of the correctness of the algorithm. For
the complete mechanical proof, we refer to [14].

We need to distinguish safety properties and liveness properties. The main
aspect of safety is functional correctness and atomicity, say in the sense of [19].
We prove partial correctness of the implementation by showing that each pro-
cedure of the implementation executes its specification command exactly once
and that the resulting value of the implementation equals the resulting value in
the specification. As shown in Fig. 3 to Fig. 5, we extend the implementations
with auxiliary variables and commands used in the specification. For simplicity,
we use brackets � � to enclose the specification commands that perform the same
actions as the implementation, and parenthesis � � to enclose the specification
commands that can be deleted in the implementation.

GC is an internal affair not relevant for the users of the routines. GCollect
cannot be invoked explicitly, but will only be invoked implicitly in, e.g. Make.
This means we only need to prove the match of the specifications and imple-
mentations for all user programs, but not for GCollect. Instead, the main safety
property we have proved for GCollect is that the system only collects garbage,
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i.e. that an accessible node is never freed. This is expressed in the invariant I1:
white(x) ⇒ ¬R(x).

Furthermore, we also need to prove that all preconditions of the interface
procedures are stable under the actions of the other processes. Process p can
ensure its rights to have access to node x by checking the predicate R(p, x),
independently.

A liveness property asserts that program execution eventually reaches some
desirable state. In our case, we want to ensure it is always the case that every
garbage node is eventually collected. That is, ¬R(x) � white(x), where � is
the “leads-to” relation defined by: (P � Q) ≡ �(P ⇒ �Q).

We actually prove something stronger, viz., that, every inaccessible node is
painted white within two rounds of GC.

Theorem 1. For any integer m,
shRnd = m ∧ ¬R(x) � shRnd ≤ m + 2 ∧ white(x).

5 The Low-Level Implementation

Synchronization primitives LL and SC , proposed by Jensen et. al. [16], have
found widespread acceptance in modern processor architectures (e.g. MIPS II,
PowerPC and Alpha architectures). These instructions are closely related to the
CAS, and together implement an atomic Read/Write cycle.

At the cost of copying an object’s data before an operation, Herlihy [12]
introduced a general methodology to transfer a sequential implementation of
any data structure into a lock-free synchronization by means of synchronization
primitives LL and SC .

In [11], we formalize Herlihy’s methodology [12] and develop a reduction the-
orem that enables us to reason about a general lock-free algorithm to be designed
on a higher level than the synchronization primitives. A reduction theorem is a
general rule for deriving an “equivalent” higher-level specification from a lower-
level one in some suitable sense [4]. The big advantage is that substantial pieces
of the concrete program can be dealt with as atomic statements on the higher
level and thus the correctness can be more easily verified.

In the higher-level implementation (from Fig. 3 to Fig. 5), instruction 135 is
simply a CAS instruction offered by machine architectures. Each of all other spe-
cial commands enclosed by angular brackets 〈. . .〉 only refer one shared node and
some private variables, and therefore can be transformed into low-level lock-free
implementations using our reduction theorem. The transformation is straight-
forward, and we refer the reader to [14].

6 Conclusions

We present a lock-free parallel algorithm for mark&sweep GC in a realistic
model by means of synchronization primitives compare-and-swap (CAS) and
load-linked (LL)/store-conditional (SC) offered by machine architectures. Our
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algorithm allows to collect a circular data structure and makes no assumption on
the maximum number of mutators and collectors that can operate concurrently
during GC. The efficiency of GC can be enhanced when more processors are
involved in it.

Formal verification is desirable because there could be subtle bugs as the
complexity of algorithms increases. To ensure our correctness proof presented in
the paper is not flawed, we use the higher-order interactive theorem prover PVS
for mechanical support. For the complete mechanical proof, we refer the reader
to [14].

In the interface we did not provide a procedure for deleting a child of a node.
However, this extension is rather straightforward after we have done the following
two steps. First, introduce an additional field of a boolean array in the record of
a node to record whether a child of a node is deleted. The boolean array should
restrict only the mutators not the collectors from accessing a “deleted”child
via the pointers of children. Secondly, similarly to what we did with unpro-
tecting a source node, we need to modify line 175 to let the deletions of some
“deleted”children be really operated. Since we don’t think deleting a child is a
main operation of GC, we didn’t incorporate it. However, the correctness of this
extension should not be difficult to verify.

The entrenched problem inherited from classical mark&sweep algorithms is
that our algorithm may also result in severe memory fragmentation, with lots of
small blocks. It is possible that there will be no block of memory on the free list
large enough to hold a large object, such as an array. Thus, it is important to
move free blocks that happen to be adjacent in memory. We plan in the future
to incorporate some appropriate copying technique in our algorithm.
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Abstract. In this paper an adaptive parallel ant colony optimization is devel-
oped. We propose two different strategies for information exchange between 
the processors: selection based on sorting and on distance, which make each 
processor choose a partner to communicate and update the pheromone accord-
ing to the partner’s pheromone. In order to increase the ability of search and 
avoid early convergence, we also propose a method of adjusting the time inter-
val of information exchange adaptively according to the convergence factor of 
each processor. Experimental results based on traveling salesman problem on 
the massive parallel processors (MPP) Dawn 2000 demonstrate the proposed 
APACO are superior to the classical ant colony optimization.  

1   Introduction 

Social insects(e.g. birds, fish, ants etc.) have high swarm intelligence [1]. Among the 
social insects’ many behaviors, the most widely recognized is the ants’ ability to find 
good solution to the shortest path problems between the nest and a food source. By 
simulating ant’s swarm intelligence, Dorigo, M. et al. were the first to apply the ant 
colony optimization algorithm (ACO)[2] to solve TSP problem [3,4]. In ACO, artifi-
cial ants are created to emulate the real ants in the process of seeking food and infor-
mation exchanging. The successful simulation has been applied in many applications 
such as job-shop scheduling [5], quadratic assignment problem [6], data mining [7], 
network routing [8], network load balancing [9] and robotics [10].  

Ant colony optimization is a good candidate for parallelization. The rapid  
development of the technology in the computer hardware and parallel processing has 
established the material foundation for parallel ant colony optimization. In order to 
parallelize the ACO into a parallel ant colony optimization ((PACO), it is more im-
portant to modify the structure of ACO to get better optimization effect rather than to 
transfer the sequential ACO into a parallelization schema. The modification of ant 
colony structure to fit the parallel computational model involves three aspects: (1) 
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Dividing the single ant colony of sequential ACO into several mutually independent 
sub colonies; (2) Controlling and managing the information exchange between the sub 
colonies; (3) Determine the time interval of information exchange between the sub ant 
colonies. Different methods of dividing colony and exchanging information generate 
different parallel ant colony algorithms. Our goal of parallelization is to obtain the 
high speedup and efficiency while the convergence and the ability of optimization are 
maintained or even improved.  

Some authors have studied parallel versions of ACO algorithm. Two paralleliza-
tion strategies of synchronous and asynchronous were proposed in the paper [11]. In 
the synchronous strategy, every processor exchanges information after every iteration, 
while in the asynchronous strategy every processor exchanges information after a 
certain time interval regularly. A fine grained parallelization with synchronous strat-
egy was presented to solve quadratic assignment problem [12]. Randall, M. [13] in-
troduced a synchronous parallel strategy, which assigned only one ant on each proces-
sor. D.A.L.Piriyakumar [14] introduced an asynchronous parallel Max-Min ant colony 
algorithm and tested it on the TSP benchmarks using the parallel computer Cray-T3E. 
Merkle, D. [15] first proposed a parallel ant colony algorithm on reconfigurable proc-
essor arrays. The running time of the algorithm is quasi-linear with the problem size n 
and the number of ants on a reconfigurable mesh with n2 processor. Dorigo, M. [16] 

advanced a parallel ant colony algorithm on the hyper-cube architecture, this new 
approach enhances the ability of the ant colony algorithm to deal with complicated 
objective functions theoretically and practically. 

To parallelize the ant colony algorithm, the most important factors to be considered 
are the pattern and the time interval of information exchange between the processors. 
These factors affect not only the speed of convergence of algorithm, but also the op-
timization ability of the algorithm. In the algorithms of [11-14], the global best solu-
tion is computed and broadcasted to all the processors in information exchange. Then 
every processor updates the pheromone matrix according to the global best solution. 
This method of information exchange could probably create some similar solutions in 
different processors, which cause large amount of pheromone on some trails. These 
trails could be considered to be the "optimum solution", and this will reduce the 
searching ability of the processors. Shu-Chuan Chu [17] and Middendorf, M.[18] 
proposed several different strategies of exchange information in order to enhance the 
performance of the algorithm. In addition, the processors exchange information is a 
constant time interval in the papers [11-14]. Although paper [11] acknowledged that 
this constant time interval of information exchange could affect the optimization 
speed, diversity and convergence of the algorithm, the detailed analysis of the effect 
and the method to reduce it have not been provided. Since this constant time interval 
information exchange do not take the distribution of the solutions into account, it may 
influence the diversity of the solutions and the convergence speed.    

In this paper, we present an efficient adaptive parallel ant colony algorithm 
(APACO). Two strategies for information exchange and one method for adjusting 
the time interval of information exchange are proposed for APACO. Experimental 
results based on the traveling salesman problem on the massive parallel processors 
(MPP) Dawn 2000 confirm the efficiency and effectiveness of the proposed 
APACO.     
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2   Massively Parallel Processors  

Our parallel ant colony algorithm is based on the computational model of massively 
parallel processors (MPP), which adopts the message passing method. MPP system 
has several features as follows [19]:  (1) Adopt the commercialized microprocessor in 
processing nodes, and there are one or more microprocessors in each node; (2) Use 
the physically distributed memory, namely, each node has its own local memory sys-
tem which could not be shared with other nodes; (3) The nodes are connected by a 
communication network with high bandwidth and short delay; (4) The system is ex-
tensible and can be expended to hundreds and thousands processors; (5) It is an asyn-
chronous MIMD where a procedure consists of several processes each of which has 
its own memory space. Communication between the processes is implemented by 
message passing. The data distribution is usually not transparent to the users.  

Due to these features of MPP system, it is very suitable for implementing the paral-
lel ant colony algorithms. The local memory on each node is used for storing the 
information of each sub colony, such as pheromone matrix and the best solution. MPP 
supports standard programming mode, such as PVM, MPI, which are suitable to carry 
out information exchange between the ant sub colonies by the message passing inter-
face. We use MPI with C bounding programming mode to implement our algorithm 
APACO on the MPP machine Dawn 2000. 

3   The Adaptive Parallel Ant Colony Optimization  

In our adaptive parallel ant colony optimization (APACO), the ant colony is divided 
into P colonies, and every processor holds a colony of ants.  First, the ants in each sub 
colony search for the best solution in its own processor independently. After several 
generations, the processors exchange information with its partner. Instead of ran-
domly choosing a processor to exchange information, each processor dynamically 
determines its partner by an adaptive method to make full use of the best gene from 
other processors. This enables each processor to select the partner according to the 
quality of its solution and to direct its further searching. In addition, the time interval 
of information exchange between processors is determined dynamically according to 
the convergence factor of each processor instead of a constant time interval. The 
strategy of information exchange and the time interval of information exchange are 
the critical factors influencing the convergence speed of algorithm, the quality of 
solution, the efficiency of computing and the speedup. 

3.1   The Framework of the Algorithm of APACO 

Including two stages, the framework of the proposed algorithm APACO is as follows:  

Algorithm:  Adaptive Parallel Ant Colony Optimization (APACO) 
Begin  
Stage1: 
Initialize the pheromone matrix, the initial value of 
the time interval of information exchange g0, and other 
parameters; 
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Set the cycle counter i=0,the counter of exchange in-
formation t=0; 

Stage2:  
While  (not termination) do      

For every processor do in parallel 
   For (each ant) 
      Construct the solution; 

Evaluate the solution; 
      End for 
      Local pheromone update; 
   If (i==gt) 
        { t=t+1; 
          Find a processor to exchange information; 
          Update the pheromone according to its part-

ner; 
       Adjust the time interval of information ex-

change gt; 
          i=0; 

} 
     i=i+1; 

End for 
End do 

End 

3.2   Adaptive Strategies of Information Exchange Between Processors 

After several generations of local optimization, the solutions of a group could become 
stagnate and probably no the better solutions could be generated, so it is necessary to 
exchange information between the processors. The purpose of information exchange 
is to propagate the information to other processors. When the algorithm of one proc-
essor falls into a convergence state, it can get rid of local optimum by the information 
absorbed from other processors, then evolve towards the best solution. Information 
exchange plays an important role in APACO, it may enhance the probability of get-
ting the optimum solution. Instead of choosing a neighboring [18] or a random proc-
essor to exchange information, two adaptive strategies for information exchange is 
proposed in this section, which offer a direction for each processor in further search-
ing towards the optimal solution.  

(1) Exchange Information Based on Fitness Sorting 

This strategy enables each processor choose its partner according to the average fit-
ness of the solutions obtained by the processors. The average fitness of solutions on 

processor i on current iteration is defined as
=

=
iN

ki
ave kif

N
if

1

),(
1

)( , where iN  is the 

number of ants on processor i, ),( kif  is the fitness of ant k. When information ex-

change is taken, the average fitness )(ifave of every processor is sorted in descent 

order. We denote the indices of the processors after sorting as 1rank , 2rank , … , 

Prank .The partner of information exchange for the processor irank  (i∈ [1, … ,P]) is 
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the processor iPrank −+1 . For instance, the processor rank1 which has the maximum 

average fitness would exchange information with processor rankP which has the 
minimum average fitness.   

Once the processor irank  (i∈ [1, … ,P]) finds the partner of information exchange, 

the elements (j,k) of its pheromone matrix is updated according to the pheromone 

),(* kjτ of processor  iPrank −+1 : 

]),(),([
2

1
),( 21 * δδ τττ kjkjkj += . (1) 

Here, ),(* kjτ  denotes the pheromone on edge ),( kj  of processor iPrank −+1 , 

P
irank

−= 11δ  and 
P

irank
=2δ . 1δ  and 2δ  are the pheromone weights to determine 

the relative influence of the trail strength ),( kjτ  and ),(* kjτ .The weight of phero-

mone on processor irank  is 
P

ranki−1 , while that of pheromone on processor 

iPrank −+1  is 
P

ranki .  If average fitness of processor irank is relatively low, then its 

pheromone weight 1δ  will be relative small, while its partner’s pheromone has a large 

influence 2δ . By information exchange, processor irank of low average fitness can 

improve the searching speed effectively and enhance the optimization ability by com-
bining with the information comes from the processor iPrank −+1  of high average 

fitness. Meanwhile, The processor with higher average fitness can extend the search-
ing space to avoid falling into the local optimum on the process of search. 

(2) Exchange Information Based on Distance 

This strategy enables each processor choose its exchange partner which has the most 
different best solution. To measure the difference of the best solutions, we use dis(i,j) 
to denote the distance between processor i and processor j. Let )(ibest be the best 

solution of processor i and aik  be the kth city of )(ibest . Then dis(i,j) is defined as:  

=
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From the equations above, we can see that the larger the distance between proces-
sors, the less similarity of these two processors. Processor i chooses the partner of 
information exchange according to (3).  

                   =
∉

≤≤ )(

),(
maxarg 1 kL

kidis
j

tabuk
Pk . (3) 

Here tabu is the set of processors that have not been chosen, L(k) is the length of the 
best tour that processor k gets. From Eq.(3), we can see that processor i inclines to 
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choose the processor j with higher quality solution and larger distance between other 
processors.  

After the processor i determines the partner to exchange information, updating 
pheromone matrix is taken on processor i: 

]),(),([
2

1
),( 43 * δδ τττ vuvuvu += . (4) 

where  
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Here, ),(* vuτ  denotes the pheromone on edge (u, v) of the partner of processor i, 

3δ  and 4δ  are also the pheromone weights to measure the relative influence of the 

trail strength ),( vuτ  and ),(* vuτ . 
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),(  are the sums of dis-

tance between processor i, j and other processors respectively. The more the differ-
ence is, the larger the pheromone weight is. This strategy of information exchange 
will strengthen the influence of the better solutions while the diversities of solutions 
in the processors are maintained.   

3.3   The Strategy of Adjusting the Time Interval of Information Exchange  

The time interval of the adjacent information exchanges is the other critical factor that 
influences the performance of parallel ant algorithm. With short time interval of in-
formation exchange, since the processors communicate with other processors fre-
quently, the information on one processor can be often sent to other processors, which 
can offer a guide for the processor to evolve and enhance the quality of the solutions. 
But on the other hand, due to the heavy overhead caused by the communications, the 
speed up of the algorithm could be reduced. In addition, the dominant influence of the 
best solutions will have a negative impact on the diversity of solutions. On the con-
trary, the long time interval of information exchange will reduce the overhead caused 
by the communications and increase the convergence speed in each processor. Since 
the processors get less global information of the information from the other proces-
sors, they will have a high probability getting trapped in a local optimum solution.  

To get a proper time interval of information exchange, an adaptive method of ad-
justing the interval of information exchange is presented in this section. In our 
method, the time interval is no longer a fixed constant, but is adjusted adaptively by a 
certain rule which is helpful to get balance between the diversity of solutions and the 
convergence of algorithm. 

To adjust the time interval of information exchange adaptively, we define a con-
vergence factor )(kcon to denote the degree of convergence on processor k. The con-

vergence factor is a function of the pheromone values, which is computed as follows: 
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k
maxτ  and k

minτ are the maximum and minimum pheromone on processor k respec-

tively. At the initial stage of the algorithm, the pheromone value on each edge of 
every processor is set to 0.5, then the convergence factor .0)( =kcon  When the algo-

rithm on processor k has converged, then .1)( =kcon The convergence factor reflects 

the distributing of pheromone on the edges. The more the )(kcon  is, the more con-

centrated the pheromone on processor k is, the more probability of processor k falling 
into the local optimum is. We adjust the time interval of information exchange ac-
cording to this convergence factor: 

≤≥⋅−+
=+ otherwiseg

conorconifkcong
g

t

aveaveavet
t

2.08.0}1,)5.0(max{ 1
1 . (9) 

Here k1 is positive constant, gt+1 is the new time interval for the next information ex-

change, .)(
1

1=

=
P

k
ave kcon

P
con  avecon  indicates the average degree of convergence 

of all the processors. When avecon  becomes larger, the tour that the ants choose are 

concentrated on some edges, and the pheromone of the majority processors is very 
concentrated. Since the solutions of the whole system lack of diversity, the time inter-
val of information exchange should be reduced in order to frequently interchange the 
information between the processors to get rid of local optimum solution by absorbing 
the information from other processors. If avecon  value increases, the pheromone of 

the majority processors is evenly scattered, and solutions of the processors become 
well diversified, the time interval should be increased so that the overhead of commu-
nication can be decreased and each processor can continue searching in its own envi-
ronment of evolution. 

4   Experimental Results and Analysis 

In this section, we show the test results on TSP benchmarks [20] to compare our 
method with that of ant colony algorithm. Our parallel algorithm is implemented on 
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the passive parallel processors Dawn 2000 using MPI (C bounding). The basic pa-
rameters are set as: 2,1,1.0 ====== βαλξγρ , k=16 k1=0.5, the number of 

ants is equal to the number of cities. If not stated otherwise, the number of processors 
is 6, and all given results are averaged over 50 trials each over 2000 iterations. In 
following tables and figures, S-APACO stands for APACO which adjust the time 
interval and exchange information based on fitness sorting, while D-APACO based 
on distance.  

It can easily be seen from Table 1 that the best value (the length of the shortest 
path) of the best solutions of S-APACO and D-APACO are much smaller than that of 
classical ACO. In most trials, our algorithms need less computation time to get the 
high quality solutions. It is indicated that our parallel algorithms have higher optimi-
zation ability because of the reasonable the parallel strategies. The parallel strategies 
and the adaptive strategies for information exchange that we presented can enhance 
the quality of solutions and accelerate the convergence speed. 

Table 1. The comparison result of ACO, S-APACO and D-APACO 

Problem Algorithm  Best value 
Average 
value 

The number of 
trials reaching 
the best solution 

Time
(s) 

ACO 556.28 561.74 44 84.78 
S-APACO 538.37 539.93 48 15.98 eil76 
D-APACO 538.37 539.12 49 16.54 
ACO 21679.75 21762.41 36 96.29 
S-APACO 21282.44 21285.27 46 16.95 kroA100 
D-APACO 21282.44 21284.56 48 17.87 
ACO 16819.59 16904.64 41 120.53
S-APACO 15780.03 15783.58 47 21.62 d198 
D-APACO 15780.03 15781.73 47 22.37 
ACO 43001.57 43098.54 37 203.81 
S-APACO 42029.14 42033.73 46 34.67 lin318 
D-APACO 42029.14 42031.82 48 35.68 
ACO 51324.67 51417.52 34 432.82 
S-APACO 50778.13 50782.15 45 73.51 pcb442 
D-APACO 50778.13 50780.36 46 74.93 

Table 2 shows the results of four TSP problems that obtained with different num-
ber of processors by using D-APACO. From Table 2 we can see that when the num-
ber of processors is increased, the computing time can be reduced due to the less ants 
assigned on each processor. But due to the overhead of communication which in-
creases the total time of algorithm, the speedup of our algorithm can not increase 
linearly with the increasing of processor exactly. This is in conformity with the Am-
dahl’s Law. In order to show how the number of processors influences the time of the 
algorithm, we use Fig.1 to describe the relationship between them. Fig.1 graphically 
show that problems with small size can not get high speedup because the communica-
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tion overhead is relatively larger than the computations. However, with the scale of 
the problem increased, the speedup is increased. For instance, the speedup of problem 
pcb442 is much greater than that of problem eil76. 

Table 2. The comparison result of different processors on each problem using D-APACO 

Problem Number of 

processors 
Best value 

Average 
value 

The number of  
trials reaching 
the best solution 

Time(s) 

3 538.37 547.49 42 29.51 
6 538.37 539.12 49 16.54 eil76 

10 538.37 549.54 41 9.43 
3 15780.03 15820.76 36 40.61 
6 15780.03 15781.73 47 22.37 d198 

10 15780.03 15804.39 42 13.75 
3 42029.14 42086.41 35 65.17 
6 42029.14 42031.82 48 35.68 lin318 

10 42029.14 42051.69 42 21.72 
3 50778.13 50842.61 35 147.68 
6 50778.13 50780.36 46 74.93 pcb442 

10 50778.13 50807.84 42 49.53 

 

Fig. 1. Speedup on different problem using D-APACO 

The influence of different time interval of information exchange is shown in Table 3. 
The Table shows that without adjusting the time interval, there is less communication 
overhead and hence the time cost can be reduced, but it can’t keep balance between the 
diversity of solutions and the convergence of algorithm since the information between 
the processors can’t be exchanged immediately, which would influence the search  
ability of the algorithm. Since S-APACO can make full use of the information come 
from other processors in a rational time interval according to the degree of convergence 
of the algorithm, its quality is better than others.  
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Table 3. The comparison result of different interval of information exchange 

The time Interval of information exchange 
Problem 

Evaluation 
standard 4 6 8 S-APACO 
Best Value 427.15 429.86 434.37 426.21 eil51 
Time(s) 9.91 9.87 9.73 10.02 
Best Value 21287.56 21294.18 21301.34 21282.44 kroA100 
Time(s) 15.84 15.76 15.61 16.95 
Best Value 42035.14 42043.14 42051.14 42029.14 lin318 
Time(s) 34.34 33.29 33.01 34.67 
Best Value 50796.81 50815.46 50829.35 50778.13 pcb442 
Time(s) 73.41 72.01 71.53 73.51 

5   Conclusion 

To parallelize the ant colony algorithm, the most important factors to be considered 
are the pattern and the time interval of information exchange between the processors. 
These factors affect not only the speed of convergence of algorithm, but also the op-
timization ability of the algorithm. In this paper, we propose two different strategies 
for information exchange between processors: selection based on sorting and on dis-
tance, which make each processor dynamically determines its partner by an adaptive 
method to make full use of the best gene from other processors. This enables each 
processor to select the partner according to the quality of its solution and to direct its 
further searching each processor. In addition, a good time interval not only makes the 
best solution on one processor to send to other processors in proper time, but also 
reduces the overhead of communication. An adaptive method to adjusting the time 
interval according to the degree of convergence of the algorithm is presented. We 
apply these techniques to the traveling salesman problem, on the massive parallel 
processors (MPP) Dawn 2000. Experimental results show that our algorithm has high 
convergence speed, high speedup and efficiency. 
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Abstract. HPJava is an environment for scientific and parallel program-
ming using Java. It is based on an extended version of the Java language.
One feature that HPJava adds to Java is a multi-dimensional array, or
multiarray, with properties similar to the arrays of Fortran. We are us-
ing Adlib as our high-level collective communication library. Adlib was
originally developed using C++ by the Parallel Compiler Runtime Con-
sortium (PCRC). Many functionalities of this high-level communication
library is following its predecessor. However, many design issues are re-
considered and re-implemented according to Java environment. Detailed
functionalities and implementation issues of this collective library will be
described.

1 Introduction

The basic features of HPJava [10] [11] [12] have been described in several ear-
lier publications. In this paper we will jump straight into a discussion of the
implementation of some collective communications in HPJava.

The main characteristic change from Java to HPJava is to add a concept of
multi-dimensional arrays, called ”multiarrays”. And to support parallel program-
ming, HPJava creates ”multiarrays” by extending multiarrays. These ”multiar-
rays” are very closely modeled on the arrays of High Performance Fortran (HPF).
The new distributed data structures are cleanly integrated into the syntax of the
language. In other word, new distributed data structure doesn’t interfere with
the existing syntax and semantics of Java-for example ordinary Java arrays are
left unaffected.

New syntaxes in the source HPJava program is translated to an intermediate
standard Java file and this Java file is compiled using ordinary Java compiler.
The preprocessor that performs this task is reasonably sophisticated. During the
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preprocessor phase, it performs a complete static semantic check of the source
program, following rules that include all the static rules of the Java Language
Specification [9]. So it should not normally happen that a program accepted by
the HPJava preprocessor would be rejected by the backend Java compiler. The
translation scheme depends on type information, so we were essentially forced to
do a complete type analysis for HPJava (which is a superset of standard Java).
Moreover we wanted to produce a practical tool, and we felt users would not
accept a simpler preprocessor that did not do full checking.

The current version of the preprocessor also works hard to preserve line-
numbering in the conversion from HPJava to Java. This means that the line
numbers in run-time exception messages accurately refer back to the HPJava
source. Clearly this is very important for easy debugging.

A translated and compiled HPJava program is a standard Java class file,
ready for execution on a distributed collection of JIT-enabled Java Virtual Ma-
chines. All externally visible attributes of an HPJava class can be transparently
reconstructed from Java signatures stored in the class file. This makes it possible
to build libraries operating on distributed arrays, while maintaining the usual
portability and compatibility features of Java. The libraries themselves can be
implemented in HPJava, or in standard Java, or as JNI interfaces to other lan-
guages. The HPJava language specification documents the mapping between
distributed arrays and the standard-Java components they translate to.

Java version of Adlib APIs
Other application−level

mpjdev

Pure Java

MPJ and

(e.g. IBM SP3, Sun HPC)
Parallel Hardware

Native MPI

Networks of PCs
SMPs or

Fig. 1. An HPJava communication stack

Currently HPJava is supplied with one library for parallel computing-a Java
version of the Adlib library of collective operations on distributed arrays [14]. A
version of the mpiJava [1] binding of MPI can also be called directly from HPJava
programs. Figure 1 summarizes an HPJava communication libraries stack. This
figure shows how high-level collective libraries and low-level device library are
working together.

2 Related Works

UC Berkeley is developing Titanium [3] to add a comprehensive set of parallel
extensions to the Java language. Support for a shared address space and compile-
time analysis of patterns of synchronization is supported.
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The Timber [2] project is developed from Delft University of Technology. It
extends Java with the Spar primitives for scientific programming, which include
multidimensional arrays and tuples. It also adds task parallel constructs like a
foreach construct.

Jade [8] from University of Illinois at Urbana-Champaign focuses on message-
driven parallelism extracted from interactions between a special kind of dis-
tributed object called a Chare. It introduces a kind of parallel array called a
ChareArray. Jade also supports code migration.

HPJava differs from these projects in emphasizing a lower-level (MPI-like)
approach to parallelism and communication, and by importing HPF-like distri-
bution formats for arrays. Another significant difference between HPJava and
the other systems mentioned above is that HPJava translates to Java byte codes,
relying on clusters of conventional JVMs for execution. The systems mentioned
above typically translate to C or C++. While HPJava may pay some price in
performance for this approach, it tends to be more fully compliant with the
standard Java platform.

3 High-Level Collective Communications

A C++ library Adlib [6] was completed in the Parallel Compiler Runtime Con-
sortium (PCRC) [7] project. It was a high-level runtime library designed to
support translation of data-parallel languages. It incorporated a built-in repre-
sentation of a distributed array, and a library of communication and arithmetic
operations acting on these arrays. The array model supported general HPF-like
distribution formats, and arbitrary regular sections.

The Adlib series of libraries support collective operations on distributed ar-
rays. All members of some active process group, which may or may not be the en-
tire set of processes executing the program, must invoke a call to a collective oper-
ation simultaneously. Communication patterns supported include HPF/Fortran
90 intrinsic such as cshift. More importantly they include the regular-section
copy operation, remap, which copies elements between shape-conforming array
sections regardless of source and destination mapping. Another function, write-
Halo, updates ghost areas of a distributed array. Various collective gather and
scatter operations allow irregular patterns of access. The library also provides
essentially all Fortran 90 arithmetic transformational functions on distributed
arrays and various additional HPF library functions.

Figure 2 shows how collective communication is used in HPJava. It creates a
general purpose matrix multiplication routine that works for arrays with any dis-
tributed format. This program takes arrays which may be distributed in both their
dimensions, and copies into the temporary arraywith a special distribution format
for better performance. A collective communication schedule remap() is used to
copy the elements of one distributed array to another. From the viewpoint of this
paper, the most important part of this code is communication method. One of
the most characteristic and important communication library methods, remap(),
takes two arrays as arguments and copies the elements of the source array to the
destination array, regardless of the distribution format of the two arrays.
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public class Comm {
public void matmul(float [[-,-]] c, float [[-,-]] a, float [[-,-]] b) {

Group2 p = c.grp();
Range x = c.rng(0);
Range y = c.rng(1);

int N = a.rng(1).size();

float [[-,*]] ta = new float [[x, N]] on p;
float [[*,-]] tb = new float [[N, y]] on p;

Adlib.remap(ta, a);
Adlib.remap(tb, b);

on(p)
overall(i = x for : )
overall(j = y for : ) {

float sum = 0;
for(int k = 0; k < N ; k++)
sum += ta [i, k] * tb [k, j];

c[i, j] = sum;
}

}

Fig. 2. A general Matrix multiplication in HPJava

3.1 Implementation of Collectives

By using a characteristic example of collective communication, we will discuss im-
plementation of the Java Adlib collectives. For illustration we concentrate on the
important remap operation. Although it is a powerful and general operation, it is
actually one of the more simple collectives to implement in the HPJava framework.

General algorithms for this primitive have been described by other authors.
For example it is essentially equivalent to the operation called
Regular Section Copy Sched in [4]. In this section we want to illustrate how
this kind of operation can be implemented in terms of the particular Range
and Group hierarchies of HPJava (complemented by a suitable set of messag-
ing primitives).

Constructor and public method of the remap schedule for distributed arrays
of float element can be described as follows:

class RemapFloat extends Remap {
public RemapFloat (float # dst, float # src) {...}

public void execute() {...}
. . .

}
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public abstract class BlockMessSchedule {

BlockMessSchedule(int rank, int elementLen,boolean isObject) { ... }

void sendReq(int offset, int[] strs, int[] exts, int dstId) { ... }
void recvReq(int offset, int[] strs, int[] exts, int srcId) { ... }

void build() { ... }
void gather() { ... }
void scatter() { ... }
...

}

Fig. 3. API of the class BlockMessSchedule

The remap schedule combines two functionalities: it reorganizes data in the
way indicated by the distribution formats of source and destination array. Also,
if the destination array has a replicated distribution format, it broadcasts data
to all copies of the destination. Here we will concentrate on the former aspect,
which is handled by an object of class RemapSkeleton contained in every
Remap object.

During construction of a RemapSkeleton schedule, all send messages, re-
ceive messages, and internal copy operations implied by execution of the schedule
are enumerated and stored in light-weight data structures. These messages have
to be sorted before sending, for possible message agglomeration, and to ensure
a deadlock-free communication schedule. These algorithms, and maintenance of
the associated data structures, are dealt with in a base class of RemapSkeleton
called BlockMessSchedule. The API for the super class is outlined in Figure 3.
To set-up such a low-level schedule, one makes a series of calls to sendReq and
recvReq to define the required messages. Messages are characterized by an off-
set in some local array segment, and a set of strides and extents parameterizing
a multi-dimensional patch of the flat Java array. Finally the build() operation
does any necessary processing of the message lists. The schedule is executed in
a ”forward” or ”backward” direction by invoking gather() or scatter().

The implementation details of BlockMessSchedule will not be discussed
in greater detail here because they are not particularly specific to our HPJava
system, and the principles are fairly well known (see for example [4]).

However we do wish to describe in a little more detail the implementation
of the higher-level RemapSkeleton schedule on top of BlockMessSchedule.
This provides some insight into the structure HPJava distributed arrays, and
the underlying role of the special Range and Group classes.

To produce an implementation of the RemapSkeleton class that works in-
dependently of the detailed distribution format of the arrays we rely on virtual
functions of the Range class to enumerate the blocks of index values held by
each process. These virtual functions, implemented differently for different dis-
tribution formats, encode all-important information about those formats. To a
large extent the communication code itself is distribution format independent.
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Fig. 4. The HPJava Range hierarchy

public abstract class Range {
public int size() {...}
public int format() {...}
...
public Block localBlock() {...}
public Block localBlock(int lo, int hi) {...}
public Block localBlock(int lo, int hi, int stp) {...}

public Triplet crds() {...}
public Block block(int crd) {...}

public Triplet crds(int lo, int hi) {...}
public Block block(int crd, int lo, int hi) {...}

public Triplet crds(int lo, int hi, int stp) {...}
public Block block(int crd, int lo, int hi, int stp) {...}
. . .

}

Fig. 5. Partial API of the class Range

The range hierarchy of HPJava is illustrated in Figure 4 and some of the
relevant virtual functions are displayed in the API of Figure 5. The most relevant
methods optionally take arguments that allow one to specify a contiguous or
striped subrange of interest. The Triplet and Block classes represent simple
struck–like objects holding a few int fields describing respectively a ”triplet”
interval, and the strided interval of ”global” and ”local” subscripts that the
distribution format maps to a particular process. In the examples here Triplet
is used only to describe a range of process coordinates that a range or subrange
is distributed over.
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private void sendLoop(int offset, Group remGrp, int r){

if(r == rank) {
sendReq(offset, steps, exts, world.leadId(remGrp));

} else {
Block loc = src.rng(r).localBlock();

int offsetElem = offset + src.str(r) * loc.sub_bas;
int step = src.str(r) * loc.sub_stp;

Range rng = dst.rng(r);
Triplet crds = rng.crds(loc.glb_lo, loc.glb_hi, loc.glb_stp);

for (int i = 0, crd = crds.lo; i < crds.count; i++, crd += crds.stp){
Block rem = rng.block3(crd, loc.glb_lo, loc.glb_hi, loc.glb_stp);

exts[r] = rem.count;
steps[r] = step * rem.glb_stp;

sendLoop(offsetElem + step * rem.glb_lo,
remGrp.restrict(rng.dim(), crd), r + 1) ;

}
}

}

Fig. 6. sendLoop method for Remap

Now the RemapSkeleton communication schedule is built by two subrou-
tines called sendLoop and recvLoop that enumerate messages to be sent and
received respectively. Figure 6 sketches the implementation of sendLoop. This
is a recursive function-it implements a multidimensional loop over the rank di-
mensions of the arrays. It is initially called with r = 0. There is little point going
into full detail of the algorithm here, but an important thing to note is how this
function uses the virtual methods on the range objects of the source and desti-
nation arrays to enumerate blocks-local and remote-of relevant subranges, and
enumerates the messages that must be sent. Figure 7 illustrates the significance
of some of the variables in the code. When the offset and all extents and strides
of a particular message have been accumulated, the sendReq() method of the
base class is invoked. The variables src and dst represent the distributed array
arguments. The inquiries rng() and grp() extract the range and group objects
of these arrays.

Of the collective communication schedules currently implemented in Adlib,
all except WriteHalo share with Remap this property that their implementa-
tion code does not explicitly depend on the distribution format of the arrays.
All rely heavily on the methods and inquiries of the Range and Group classes,
which abstract the distribution format of arrays.
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Fig. 7. Illustration of sendLoop operation for remap

3.2 Other Schedules in Adlib

We described main characteristic example of the regular communications,
remap(). This section we will overview functionalities of all collective opera-
tions in Adlib. The Adlib has three main families of collective operation: regular
communications, reduction operations, and irregular communications. We dis-
cuss usage and high-level API overview of Adlib methods.

The method shift() is a communication schedule for shifting the elements
of a distributed array along one of its dimensions, placing the result in another
array. In general we have the signature:

void shift(T # destination, T # source,
int shiftAmount, int dimension)

where the variable T runs over all primitive types and Object, and the nota-
tion T # means a multiarray of arbitrary rank, with elements of type T . The
shiftAmount argument, which may be negative, specifies the amount and direc-
tion of the shift. In the second form the dimension argument is in the range
0, . . . , R − 1 where R is the rank of the arrays: it selects the array dimension in
which the shift occurs. The source and destination arrays must have the same
shape, and they must also be identically aligned.

The function broadcast(), which is actually a simplified form of remap().
There are two signatures:

T broadcast(T [[]] source)

and
T broadcast(T source, Group root)

The first form takes rank-0 distributed array as argument and broadcasts the
element value to all processes of the active process group. Typically it is used
with a scalar section to broadcast an element of a general array to all members of
the active process group. The second form of broadcast() just takes an ordinary
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Java value as the source. This value should be defined on the process or group of
processes identified by root. It is broadcast to all members of the active process
group.

Adlib has some support for irregular communications in the form of collective
gather() and scatter() operations. The simplest form of the gather operation
for one-dimensional arrays has prototypes

void gather(T [[-]] destination, T [[-]] source, int [[-]] subscripts) ;

The subscripts array should have the same shape as, and be aligned with, the
destination array. In pseudocode, the gather operation is equivalent to

for all i in {0, . . . , N − 1} in parallel do
destination [i] = source [subscripts[i]] ;

where N is the size of the destination (and subscripts) array.
The basic scatter function has very similar prototypes, but the names

source and destination are switched. Currently the HPJava version of Adlib
does not support combining scatters, although these could be added in later
releases.

You can find complete list of Adlib schedules in [12]. Information, API, and
usage on the each schedule are described in this paper.

4 A Multigrid Application and Benchmark Results

The multigrid method [5] is a fast algorithm for solution of linear and nonlinear
problems. It uses a hierarchy or stack of grids of different granularity (typically
with a geometric progression of grid-spacings, increasing by a factor of two up
from finest to coarsest grid). Applied to a basic relaxation method, for example,
multigrid hugely accelerates elimination of the residual by restricting a smoothed
version of the error term to a coarser grid, computing a correction term on the
coarse grid, then interpolating this term back to the original fine grid. Because
computation of the correction term on the fine grid can itself be handled as a
relaxation problem, the strategy can be applied recursively all the way up the
stack of grids.

The experiments were performed on the SP3 installation at Florida State
University. The system environment for SP3 runs were as follows:

– System: IBM SP3 supercomputing system with AIX 4.3.3 operating system
and 42 nodes.

– CPU: A node has Four processors (Power3 375 MHz) and 2 gigabytes of
shared memory.

– Network MPI Settings: Shared “css0” adapter with User Space(US) commu-
nication mode.

– Java VM: IBM ’s JIT
– Java Compiler: IBM J2RE 1.3.1
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For best performance, all sequential and parallel Fortran and Java codes were
compiled using -O5 or -O3 with -qhot or -O (i.e. maximum optimization) flag.

First we present some results for the computational kernel of the multigrid
code, namely unaccelerated red-black relaxation algorithm. Figure 8 gives our
results for this kernel on a 512 by 512 matrix. The results are encouraging. The
HPJava version scales well, and eventually comes quite close to the HPF code
(absolute megaflop performances are modest, but this feature was observed for
all our codes, and seems to be a property of the hardware).

The flat lines at the bottom of the graph give the sequential Java and Fortran
performances, for orientation. We did not use any auto parallelization feature
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here. Corresponding results for the complete multigrid code are given in Figure 9.
The results here are not as good as for simple red-black relaxation-both HPJava
speed relative to HPF, and the parallel speedup of HPF and HPJava are less
satisfactory.

The poor performance of HPJava relative to Fortran in this case can be
attributed largely to the naive nature of the translation scheme used by the
current HPJava system. The overheads are especially significant when there are
many very tight overall constructs (with short bodies). Experiments done else-
where [11] leads us to believe these overheads can be reduced by straightforward
optimization strategies which, however, are not yet incorporated in our source-
to-source translator.

The modest parallel speedup of both HPJava and HPF is due to communi-
cation overheads. The fact that HPJava and HPF have similar scaling behavior,
while absolute performance of HPJava is lower, suggests the communication li-
brary of HPJava is slower than the communications of the native SP3 HPF
(otherwise the performance gap would close for larger numbers of processors).
This is not too surprising because Adlib is built on top of a portability layer
called mpjdev, which is in turn layered on MPI. We assume the SP3 HPF is
more carefully optimized for the hardware. Of course the lower layers of Adlib
could be ported to exploit low-level features of the hardware (we already did
some experiments in this direction, interfacing Java to LAPI [13]).

5 Conclusions and Future Work

We have explored enabling parallel, high-performance computation-in particular
development of scientific software in the network-aware programming language,
Java. Traditionally, this kind of computing was done in Fortran. Arguably, For-
tran is becoming a marginalized language, with limited economic incentive for
vendors to produce modern development environments, optimizing compilers for
new hardware, or other kinds of associated software expected by today’s pro-
grammers. Java looks like a promising alternative for the future.

We have discussed in detail the design and development of high-level library
for HPJava-this is essentially communication library. The Adlib API is pre-
sented as high-level communication library. This API is intended as an example
of an application level communication library suitable for data parallel program-
ming in Java. This library fully supports Java object types, as part of the basic
data types. We discussed implementation issues of collective communications in
depth. The API and usage of other types of collective communications were also
presented.
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Abstract. Packet filters are rules for classifying packets based on their header 
fields. A filter conflict occurs when two or more filters overlap, creating an 
ambiguity in packet classification. There has been prior works on conflict 
detection for multi-dimensional classifiers, but their efficiency and scalability 
are not good. A new algorithm is proposed, which uses hashing-based 
PATRICIA trie. The new algorithm can fast detect conflicts in classifiers and 
have high scalability. The technology of processing transport-level ports can 
bring more security than existed algorithms.  

1   Introduction 

CIDR, IntServ and DiffServ QoS, Firewalls and VPNs are all examples of 
technologies which have extended the internet forwarding table lookups, from fixed 
length lookups to sophisticated 5 tuple lookups with wildcarding [1]. Both packet 
classification problem and filter conflicts detection problem are under active study 
these days. The filter conflict is possible because a packet might match multiple 
filters, each with a different associated action. It is important to consider filter conflict 
resolution in any scheme involving filters, since filters, if not handled correctly, can 
cause packets to be subject to the wrong actions. For example, incorrectly matching 
packets to filters in firewalls can cause security problems. Adding resolve filters for 
each pair of conflicting filters is the most common solution. 

Conflict detection has become an important problem as router vendors offer larger 
classifier tables and the filters are used for potentially conflicting purposes such as 
QoS, security [1][2][3][4]. In many of these applications, some service may 
dynamically insert a new filter that can conflict with existing security or QoS policy. 
While the majority of added filters will not conflict [5][6], a mechanism to warn 
managers of potential conflicts seems necessary to avoid breaches of the security or 
QoS policies. Clearly, the time to add filters and detect conflicts is important [1].  

It could be argued that since resolving conflicts by adding new resolve filters 
would require policy input and possibly human input, there is no need for a fast 
conflict detection and resolution algorithm. However, for the next generation 
signaling protocols, the conflict detection is done at one site and the conflict 
resolution is done elsewhere. It is important for routers to be able to process signaling 
messages as fast as possible in order to leave enough processing power for other tasks 
like packet forwarding, scheduling, routing updates and other signaling requests [1]. 
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2   Filter Conflict Detection—Problem Statement 

Definition. Filter Fx is in conflict with Filter Fy if every field in Fx is a subset or a 
superset or equal to the corresponding field in Fy, and actions of Fx and Fy are 
different. Formally, Fx is conflict with Fy iff 

   i: Fx[i] �Fy[i], and actions of Fx and Fy are different 

Where � { , ,=}, i {protocol, src_ip, src_port, dst_ip, dst_port}. 
[4][7][8] defined all 5 relations that relate two or more packet filters, completely 

disjoint, exactly matched, inclusively matched, partially matched and correlated. Both 
relation of completely disjoint and relation of partially matched can never result in 
conflicts, and both relation of exactly matched and relation of inclusively matched 
cannot result in security problems. So, the main work of Detecting and Resolving 
Packet Filter Conflicts is to find filters which are in correlated relation.   

3   Previous Works  

BV [9], ABV [10], SBV [5] and IBV [5] are four algorithms for detecting conflicts. 
All of them are on the base of Bit Vector(BV) scheme. SBV use two separately tries 
for each dimension, which can improve BV’s performance which only uses a trie. 
ABV and IBV use aggregation scheme to eliminate redundant reads to words that 
have no bits set, which can both improve performance and reduces the size of the 
memory. But all above Bit Vector based algorithms use precomputation to speed up 
filter search, this makes filter updates slow.  

[1] develop a 2-dimensional recursive trie data structure to solve the filter conflict 
problem, which we call it GoT algorithm in this paper. A general solution is presented 
for the 5-tuple filter, and an optimized version is described for the more common 
2-tuple filters consisting of source and destination addresses [1]. It use two Grid of 
Tries(GoT) to organize src_ip and dst_ip, which has more scalability and better 
performance than BV based algorithms when the size of filters is very big. We will 
use the example database B shown in Table 1 and Fig.1 to illustrate GoT scheme. 
GoT algorithm needs two complementary data structures, one for each of the 
following two cases.  

1. G[1] is a prefix of F[1] and F[2] is a prefix of G[2], or 
2. F[1] is a prefix of G[1] and G[2] is a prefix of F[1] 

In particular, one data structure can efficiently isolate the filters whose source field 
is a prefix of F’s source field, and then organize these filters to quickly determine if 
any of them has the destination field with F[2] as a prefix. The second data structure 
reverses the roles of source and destination fields. Fig.1 shows the complete 
construction for case 1 of the set in Table 1. Nodes of destination tries are labeled 
with the filters associated with that destination address. GoT algorithm needs not 
much precomputation, it has good scalability than BV based algorithm.  
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Table 1. An example 2-tuple filter database 

Filter F[1] F[2] 

F1 100* 001100* 

F2 1001* 0010* 

F3 100001* 0011* 

F4 1001110* 0010000*

F5 1000111* 0011* 

F6 1000111* 001101* 

F7 1000111* 001100* 

 

Fig. 1. Recursive Trie 1 for the example database of Table 1 

4   A New Algorithm for Conflicts Detection 

4.1   PATRICIA Trie 

We develop a 2-dimensional recursive PATRICIA trie data structure to solve the filter 
conflict problem. PATRICIA trie is the shallowest trie [11], which is very often used 
for the information retrieval systems [12][13]. 

Recursive PATRICIA Trie 1 can efficiently isolate the filters whose source field is 
a prefix of F’s source field, and then organize these filters to quickly determine if any 
of them has the destination field with F[2] as a prefix. Recursive PATRICIA Trie 2 
reverses the roles of source and destination fields.  

The average depths of source trie and destination trie in Fig.1 are separately 5.9 
and 5.3. The average depths of source PATRICIA and destination PATRICIA trie in 
Fig.2 are separately 3.6 and 1.7. Above example use short strings, for 32 bits IP 
addresses, it can more efficiently reduce the trie’s depth.  
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Fig. 2. Recursive PATRICIA Trie 1 for the set in Table 1 

4.2   Hashing Technology and Data Structure 

To use hashing technology to improve the performance, we restrict the prefix lengths 
of IP addresses only be 32, 28, 24, 20, 16, 12, 8 and 4, other lengths’ prefix can be 
transformed to be these lengths. Table 2 shows an example of transforming prefix to 
restricted lengths. By restricting IP prefix’s length, we can use hashing to improve 
performance further. We only restrict src_ip’s prefix in the Recursive PATRICIA Trie 
1, and dst_ip’s prefix in the Recursive PATRICIA Trie 2.  

For the filter set in Table 1, we get Table 2 by restricting the length of src_ip 
prefix. By hashing, we can construct multiple PATRICIA tries, and each PATRICIA 
trie is very shallow. If using 3 bits length code and the lowest 4 bits of IP prefix as 
hashing index, we can get 128 PATRICIA tries. For example, the hashing index of 
F3,1 is 0010100, the high 3 bits “001” refers the length of prefix is 8 bits, and the low 4 
bits “0100” refers the low 4 bits of F3,1=10000100*. Because all prefix lengths are 
equal in a PATRICIA trie, the first-level PATRICIA trie is fixed-length PATRICIA 
trie, which have better performance than prefix PATRICIA trie. Fig.3 shows the new 
data structure, which the average depth of S(B) and D(B) are 1 and 1.9 respectively. 

Table 2. An example 2-tuple filter database 

Filter Source Destination 

F1,1, F1,2 1000*, 1001* 001100* 

F2 1001* 0010* 

F3,1, F3,2, F3,3, F3,4 10000100*,10000101*, 10000110*,10000111* 0011* 

F4,1, F4,2 10011100*, 10011101* 0010000* 

F5,1, F5,2 10001110*, 10001111* 0011* 

F6,1, F6,2 10001110*, 10001111* 001101* 

F7,1, F7,2 10001110*, 10001111* 001100* 
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Fig. 3. hashing based Recursive PATRICIA Trie 1 for the example database of Table 2 

4.3   Pseudocode of Conflict Detection Algorithm for 2-Tuple Filters 

program FastDetect(F, B) 
1.  Initialize C(F) = {F}; 
 /* Search Recursive PATRICIA Trie 1 */ 
2.  Transform F[1] for Recursive PATRICIA trie 1, get N1 
 filters from F; 
3.  for i=1 to N1 do 
4.   Hashing to get the index root of PATRICIA tries on the 
  term of Fi[1] and its length; 
5.   Matching Fi[1] in the PATRICIA trie of the root index; 
6.   if(no matched) goto (9); 
      else get the matched node u; 
7.   Determine all nodes in D(u) which F[2] is a prefix of 
  destination field of these nodes; 
8.   Add these nodes to C(F); 
9.   if(there are other PATRICIA trie whose length is  
  shorter than length(Fi[1])) 
          transform Fi[1] to the shorter length; 
          goto 4; 
 /*Search Recursive PATRICIA Trie 2 is omitted */ 
 . . . . . .  
10. If C(F) only contains F , then add F to B, and  
     return “No Conflict”; 
11. for each filter F’ C(F) do 
12.   Add ResolveFilter(F,F’) to B; 
13.  end. 
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As an example, suppose we want to add a filter F=(10011100*, 0010*) to the set in 
Table 1. When looking up in the Fig.3, there are following steps: 

(1) Hashing on the term of F[1] and its length and get root index = “0011100”. 
(2) Using the root index 0011100 to lookup corresponding 2-level PATRICIA trie, 

find that F4,1[1]= F[1]. Continue to access F4,1[2], because F[2] is a prefix of F4,2[2], F 
conflicts with F4,1. 

(3) Because existing shorter index 4, transform F to F=(1001*, 0001*), and get the 
new index is 0001001. 

(4) Use the root index 0001001 to lookup corresponding 2-level PATRICIA trie, 
get that F conflicts with F2. 
    The search in the second structure, Recursive PATRICIA Trie 2, is similar, except 
the roles of source and destination fields are reversed. 

4.4   Theoretical Analyses 

Now, we will analyze the performance of the new algorithm. For an original filter set 
B which has N filters, by compressing IP’s prefix length with parameter , we will 
get a new filter set C which has N filters. Without hashing, both the average depth of 
PATRICIA trie and the number of memory accesses when detecting conflicts in B 
will be log2N. If we hash the set C to M bits index, which we get 2M PATRICIA tries. 
For full 2-ary PATRICIA trie, the average depth of each PATRICIA trie will be 

Maverage

N
D

2
log 2

ρ=  

As described in algorithm FastDetect, for a new added filter F, it will be 
transformed to several new filters which have fixed length. Let  refers to the number 
of transformed filters of F. Furthermore, Step 9 of FastDetect may look up multiple 
PATRICIA trie when conflicts detecting. When detecting conflict amongst C, the 
number of memory accesses of FastDetect will be 

Maccess
N

logM
2

2
ρρθ=  

In order that FastDetect have better performance of conflicts detection, following 
relation should be existed. 

M

N
logNlog

2
22

ρρθ>  

So, to decrease  and  and , and to increase M can improve the performance of 
HBPP algorithm. But small  causes small  but big , and big M causes big memory 
space. In experiment of section 7 we use M =9 and =4.  

We know that there are =  at averagely for full random filters. As firewalls 
locate in edge networks, and its filters are not random but very characteristic. The 
value of  is only related with the length of IP prefixes and , and the value of  is 
only related with the number of different lengths of IP prefixes.  

Generally, all IP addresses in Intranet zone of filters have same length IP address 
prefix, and all IP addresses in DMZ of filters may have fixed 32 bits IP address. 
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Furthermore, for a filter which corresponding to a specified flow from an ingress to an 
egress of the firewall, IP prefix length in Internet have little variable. For example, a 
filter corresponding to a flow from Intranet to Internet, the IP prefix of Internet zone 
often are fixed server, which have 32 bits length. So if introducing the ingress and 
egress of flow corresponding to filters, the  and  can be very small.  

In order to decrease  we utilize both the ingress and egress of flow of filters. 
When configuring filters, besides the common 5-tuple information, both ingress and 
egress of flow which will match this new filter are considered. For example, there are 
3 interfaces in firewall of Fig.4. Each filter has a fixed ingress and a fixed egress. 

Then, the first-level PATRICIA trie is fixed-length PATRICIA trie. We proposed a 
new PATRICIA trie which has optimal insertion, search and deletion performance for 
2-ary trie based algorithms [14].  

5   Extending FastDect to 5 Tuples 

The protocol field is processed as [1]. We restrict the source and destination ports to 
be either >1023 or <1024, or fully specified. For multiple filters with same source and 
destination IP prefix and protocol and differing only in source and destination ports, 
we divide them into multi-sets and organize them in a single linked list, and use a 
pointer pointing to the head of list from the node in the PATRICIA trie corresponding 
to the source and destination prefixes of the filter in the sets.  

For example, consider a new filter F=(src_ip, dst_ip, TCP, >1023, 80), in which 
the source port is >1023 and the destination ports is well specified as 80. We begin 
by traversing the tries containing TCP filters. Assume we are traversing the 
PATRICIA trie with the source address on the first level. At a given step on the 
second level, assume SrcPrefixLen is set to longer and the DstPrefixLen is set to 
shorter. What that means is that the source address prefix of the filter is longer and 
the destination address prefix shorter than any filter stored at that node. In the 
2-tuple case, this would automatically cause a conflict. However, in the 5 tuple 
case, this can cause a conflict only if the source and destination ports and the 
protocol fields overlap too. The protocol field is already the same, because of the 
way the filters are partitioned. Thus we need to check if the source and destination 
ports overlap with the existing filter. As can be easily seen, they overlap when the 
stored filter has the source port “>1023”, or a specified port which >1023, and the 
destination port 80 or “<1024”. 

[1] restrict the source and destination ports to be either fully wildcarded or fully 
specified. Because most filters’ source port are “>1023”, and many filters’ destination 
port are “<1024”. Restricting port either fully wildcarded or fully specified will cause 
security problem. We improve filters’ security by restricting the source and 
destination ports to be either >1023 or <1024, or fully specified. 

We process ingress and egress of filters as same as protocol field. The key idea 
here is to partition the set of 5-tuple filters with ingress and egress information into 
disjoint sets of 5-tuple filters without ingress and egress information.  

Consider 5-tuple filters consisting of IP source and destination address prefixes, the 
protocol type and source and destination port, ingress and egress of filters need be 
given when configuring filters. For example, in Fig.4 we restrict the ingress and 
egress either internal interface or DMZ interface or Internet interface. Thus, we can 
partition the set of filters into 9 disjoint sets upon flow’s directions. Clearly, there is 
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no overlap or conflict between any two sets. Given a new 5-tuple filter with ingress 
and egress, we can see which set of filters to check for conflicts on the base of the 
ingress and egress information. 

6   Experimental Results 

We use common firewall case in Fig.4 as an example. Considering the generality of 
filters configured, we reference the characteristic of IP prefix in [15], and obey 
following rules.  

 

Fig. 4. Common firewall topology 

(1) Prefixes length of IP addresses in DMZ are fixed 32 bits, ports are also fixed. 
(2) All IP addresses in Intranet has same high 24 bits, their low 8 bits are randomly 

generated. Their prefix length are randomly generated too, and ports are “>1023”. 
(3) All IP addresses in Internet have fixed high 20 bits, their low 12 bits and their 

prefix lengths are randomly generated. For filters from Internet to DMZ, the Ports 
values of Internet are “>1023”, for filters from Intranet to Internet the ports values are 
fixed 80 port. Ingress, egress, protocol and action of filters are randomly generated. 

We compared the performances of GoT and the new algorithm. For the new 
algorithm, we test the performances of the case of only using PATRICIA trie(GoP), 
the case of using PATRICIA trie and hashing but without ingress and egress(GoPB), 
and the case of use PATRICIA trie and hashing with ingress and egress(GoPBI). 
Because memory accesses are most time-consuming, we measured their performances 
with the number of memory accesses. Fig.5 shows their performances. The number of 
memory accesses is an average value, for example, the first column of Fig.5 is the 
average value of memory accesses for the first 500 inserted rules.  

From Fig.5, we can know that the numbers of memory accesses of GoP and GoPBI 
are obviously smaller than GoT algorithm. Because firewall locates on the edge of 
network as Fig.4, prefixes of local network IP addresses are same. PATRICIA trie can 
efficiently reduce the depth of trie, so GoP have better performance than GoT. GoPB 
has worse performance than GoP and GoPBI, because without ingress and egress the 
value of  is very big. GoPBI use two technologies to improve performance, one is 
hashing, and the other is the optimal 2-ary PATRICIA trie [14]. We use 9 bits hashing 
index to generate 512 PATRICIA tries, which causes the depth of each PATRICIA is 
reduced obviously. Furthermore, an optimal 2-ary PATRICIA trie for fixed-length 
match is proposed and used to organize the first-level PATRICIA, which can improve 
performance further [14]. 
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Fig. 5. Conflict enumeration using Fast Detect 

Fig.6 shows memory space occupied of these algorithms. The memory spaces of 
above algorithms are different. The GoT has more nodes than GoP, but each node 
needs less memory. From Fig.6, we know that GoP need more memory than GoT, but 
their difference is not obvious. GoPB and GoPBI have more memory consuming than 
GoP, which is mainly caused by the extension of filters. 

 

Fig. 6. Conflict detection memory space 

Both the GoP and GoPBI algorithms can improve the time performance of 
conflicts detecting. GoP causes memory space improvement just a little, but has 
obvious performance improvement. GoPBI needs much memory space than GoT, but 
can improve performance further. 

7   Conclusions 

Confliction-free filters are the precondition of packet classification. The performance 
of detecting conflicts determines the performance of filters constructing and 
incremental updating. So, good algorithm should be able to fast detect conflicts in 
filters. PATRICIA trie based algorithm can efficiently reduce the depth of trie, so it 
can improve trie’s performance. Hashing based algorithm can further improve 
performance, but the cost is that it needs more memory space.  



 A Fast and Scalable Conflict Detection Algorithm for Packet Classifiers 307 

Both the new algorithms and GoT algorithm need little of precalculation than BV 
based algorithms. So, they have better scalability and can suit for huge filters. 
Furthermore, we implement a new method to process transport level ports, which 
have more security than existed algorithms. 
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Abstract. One weakness of the RED algorithm typical of routers is that at any 
given time, it imposes the same loss probability on all flows, regardless of their 
QoS. In this paper, we propose an improved packet discard algorithm based on 
RED for real-time multimedia service, which does its endeavor to avoid drop-
ping packets from the same flow continuously in terms of instantaneous loss 
rate and short-time average loss rate. It traces the concerned flow’s state when-
ever every packet’s arrival and then dynamically adjusts the packet drops to 
achieve a given loss rate. When network is congested, it drops all packets of 
certain invalid flows mandatorily to avoid a majority of applications being in-
validated simultaneously because of packet loss. Our evaluation results indicate 
that the proposed algorithm provides better QoS for real-time multimedia ser-
vice, whether network is congested or not. 

1   Introduction 

With the fast development of Internet and the wide deployment of Internet applica-
tions, network congestion is becoming more and more serious. One solution to it is to 
equip network routers with some active queue management mechanism. Active queue 
management refers to the practice of manipulating the queue at an outbound interface 
in a router to bias the performance of flows that transit the router. By dropping pack-
ets before buffers overflow, active queue management allows routers to control when 
and how many packets to drop, thus providing all connections with an efficient and 
effective service. 

As a recommended active queue management mechanism, random early detection 
(RED) [1, 2] makes it possible that data packets will be dropped out with certain 
probability when it detects that router packet queue will begin to congest, while the 
traditional tail-drop (TD) FIFO scheme simply drops out all the arriving data packets 
when router output queue is overflowed. Compared with TD, RED can avoid conges-
tion, global synchronization and total drop of sudden traffic flow. 

For most real-time multimedia applications, acknowledging and re-transmitting 
lost data are impractical while a certain dropping packets rate is generally tolerated. 
One of the important network management issues it to find how data can be dropped 
without unduly affecting the QoS. These applications will not be seriously affected if 
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the dropping packet rate is within a certain range, while when it is beyond the range, 
the normal applications will not be available. For example, when the dropping packets 
rate of IP telephony is below 10%, the speech quality is good; when ranging from 
10% to 20%, it still works; when beyond 20%, it fails to accept. Therefore dropping 
packets continuously will result in QoS of the application being degraded and applica-
tion’s terminating. 

However, RED algorithm cannot avoid continuous packet-drops of the same flow. 
When the Internet congests, by dropping all packets of the flow with the same prob-
ability, RED mechanism may lead to the decrease of QoS for most real-time services 
in a short time, and even their interruption, thus making enormous bandwidth waste. 
So the uniform dropping policy is inefficient for multimedia services. 

To solve the above problem, this paper presents an enhanced RED algorithm, pref-
erential packet discard (PPD), which is applicable to real-time multimedia services. 
We define three states and three stages for each flow or aggregated flow by monitor-
ing its corresponding instantaneous loss rate and short-time average loss rate. From 
the two rate values we can obtain each flow’s quality of service during a period of 
time due to past packet loss, and then to decide how to drop packets by using calcu-
lated probability according to each flow’s state and router’s queue occupancy. Under 
congestion, our proposed algorithm tries to drop all packets of poor QoS service’s 
flow to alleviate congestion and share more bandwidth for other better performance 
services. One contribute of this paper is that each flow’s QoS due to packet loss can 
be obtained cleverly and easily to circumvent packet dropping’s ignorance of QoS. 
The QoS objective is to guarantee a majority of flows’ packet loss percentage as low 
as possible at the sacrifice of a small number of invalid flows. 

The rest of the paper is organized as follows. In Section 2 we generally review re-
lated works. Section 3 details our proposed PPD algorithm for real-time multimedia 
service, including theoretic analysis and algorithm design. Next, in Section 4 we pre-
sent evaluation results done to verify our analysis and design recommendations. Fi-
nally, Section 5 summarizes our work and discusses possible future work. 

2   Related Works 

The traditional queue management algorithms, such as TD, have some important 
problems, for instance, bias against the burst traffic, global synchronization and full 
queue for long periods of time [3]. The RED algorithm was introduced to overcome 
these problems. It detects congestion by monitoring the average output queue size of 
the router and avoids congestion by dropping some data packets with certain probabil-
ity. Transient congestion is accommodated by a temporary increase in the queue. 
Longer-lived congestion is reflected by an increase in the computed average queue 
size, and results in randomized feedback to some of the connections to decrease their 
windows. 

The RED algorithm consists of two main parts: estimation of the average queue 
size and the decision of dropping probability function. The average queue size avg is 
estimated using an exponential weighted moving average which is equivalent to the 
low pass filter: 
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qwavgwavg qq ×+×−← )1(  (1) 

where qw  is a fixed (small) parameter and q is the instantaneous queue size. The 

dropping probability of data packets in the RED algorithm is a function of the average 
queue size. Comparing avg with the two thresholds (minimum threshold minth and 
maximum threshold maxth), one can work out the dropping probability of data pack-
ets, namely: 
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Here maxp is the packet dropping probability with the average queue size being the 
maximum threshold. minth specifies the average queue size below which no packets 
will be dropped, while maxth specifies the average queue size above which all packets 
will be dropped. The dropping probability increases as the estimated average queue 
size grows. As the average queue size varies from minth to maxth, packets will be 
dropped with a probability that varies linearly from 0 to maxp. 

When a packet arrives at the queue, if avg is less than minth, no drop action will be 
taken and the packet will simply be enqueued. If the average is greater than minth but 
less than maxth, the packet will be dropped at the dropping probability. If the average 
is greater than maxth, a forced drop operation will occur. The forced drop is also em-
ployed when the queue is full but avg is still less than maxth. 

The design of RED is such that during the drop phases of the algorithm, high 
bandwidth flows will have a higher number of packets dropped since their packets 
arrive at a higher rate than lower bandwidth flows (and thus are more likely to be 
dropped in an early drop action). However, all flows experience the same loss rate 
under RED. By using probabilistic drops, RED maintains a shorter average queue 
length, avoiding lockout and repeated penalization of the same flows when a burst of 
packets arrives. 

Many researches have analysis its performance by using different way. After vast 
simulation experiments, some argue that RED should be not deployed and need a 
thorough analytic research [4-6] due to inexact parameter tuning or no clear advan-
tage under some situations. A number of research efforts have focused on possible 
short-comings of the algorithms in RED and have proposed modifications and alterna-
tives. Numerous RED variants [7-13] have been proposed, perhaps motivated by the 
difficulty in understanding the dynamics of RED completely. For example, Adaptive 
RED [8] makes RED much more robust to the setting of the parameters. SRED 
mechanism [10] identified misbehaving flows for statistically estimating the number 
of active flows at a link. Weighted RED (WRED) [13] preferentially drops lower-
priority packets by setting different drop-probability functions for each priority level. 
It is so meaningful for multimedia service differentiation that we have integrated this 
idea into our scheme here. 
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Some variants of RED also use per-active-connection accounting to make different 
dropping decisions, such as FRED [7], Balanced-RED [12] and RED-PD [14], mainly 
to achieve different bandwidth allocation. However, RED-PD mechanism uses the 
packet drop history at the router to detect high-bandwidth flows in times of conges-
tion, and preferentially penalize these flows. REDBA [15] surveys packet-drop his-
tory to find non-TCP-friendly flows and drops arriving packets from these flows. We 
also exploit packet drop history to reject invalid flows to mitigate other flows’ packet 
loss. 

There are also several queue management algorithms been proposed to obtain a 
reasonable bandwidth fair share [16, 17]. We should note that our proposed PPD 
scheme is different from them, though they are all based on RED algorithms. PPD 
does improve QoS for individual connections in the presence of network congestion 
by monitoring their relative packet loss and rejecting those invalid flows, while others 
guarantee the fair share of bandwidth. Random rate-control RED [16] aims to limit 
those flows consuming more bandwidth to guarantee a fair share among all the pre-
sent flows by using per-active-flow accounting to enforce on each flow a loss rate 
than depend on the flow’s own rate. The objective of weighted fair discard scheme 
[17] is similar with ours. It can also estimate possible data losses in advance and con-
trol them in real time, but compared to our proposed scheme it is highly complicated 
as the authors have stated. 

3   Preferential Packet Discard Scheme 

We now present our PPD scheme in this section. First of all, we define the instantane-
ous loss rate and short-time loss rate for one flow to trace one of its QoS parameters, 
that is, recent packet loss during some periods of time. 

3.1   Instantaneous Loss Rate 

The dropping packets rate measures the average number of packets dropped during a 
period of time, which cannot reflect packet loss of one flow effectively during the 
latest small period of time when it fluctuates severely due to congestion. So we define 
instantaneous loss rate as the latest dropping packets rate: 

Definition 1. Whenever a packet arrives, the instantaneous loss rate of the concerned 
flow this packet belongs to is calculated according to the following formula: 
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Here Lt+1 is the latest instantaneous loss rate; Lt is the instantaneous loss rate when 
the previous packet arrived and L0=0; ω is computational weight constant with its 
value ranging from 0 to 1. Let ω  be 0.5, Formula 3 is simplified to be: 
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That is to say, whenever a new data packet arrives, the previous instantaneous loss 
rate decreases by 1/2. Therefore the instantaneous loss rate can be expressed with a 
binary decimal fraction L21.0 −− nnn XXX . Based on the properties of the binary 

decimal, we draw the following conclusions: 

Theorem 1. If the latest n packets of one flow are all dropped, the instantaneous loss 

rate Lt of this flow should satisfy the following inequation: 
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Theorem 2. If the latest n packets of one flow are not all dropped, the instantaneous 

loss rate Lt of this flow should satisfy the following inequation: 
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Proof: as we have pointed out above, the instantaneous loss rate can be expressed 
with a binary decimal fraction LL 121.0 +−−− nmmmm XXXX . If the latest n packets are 

not all dropped, there is least one zero among the series of bits 
LL ,,,,, 121 +−−− nmmmm XXXX . Suppose 0=kX , mknm ≤≤+− 1 , then 
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So we can get the number of latest drop continuously from instantaneous loss rate 
according to Theorem 1 and Theorem 2. We also can draw the following conclusions:  

Theorem 3. If none of the latest n packets of one flow is dropped, the instantaneous 

loss rate Lt of this flow should satisfy the following inequation: 
ntL

2

1< . 

Theorem 4. If one of the latest n packets of one flow is dropped, the instantaneous 

loss rate Lt of this flow should satisfy the following inequation: 
ntL

2

1≥ . 

We can estimate whether there are some packets dropped of the latest n packets ac-
cording to Theorem 3 and Theorem 4. From the two theorems above, we can easily 
draw the following theorem: 

Theorem 5. If the instantaneous loss rate of one flow is Lt, then the number of con-
secutively non-dropped packets x since the last dropped packet is: 

1)(log 21 −= tLx  (5) 
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Thus we see, when the value of ω  is 0.5, the packet drop measurement in the last 
period of time can be obtained easily according to instantaneous loss rate. The old rate 
value is shifted right one bit and the newly highest bit is set or unset according to this 
new packet’s drop. We show that our proposed algorithm can also be implemented 
efficiently, with only a small number of add and shift instructions for each packet 
arrival. Hence the value of constant ω  is 0.5 in this paper otherwise stated. 

3.2   Short-Time Average Loss Rate 

For real-time application, our algorithm remains two loss rate thresholds: Lmin and 
Lmax. When the loss rate is below Lmin, the real-time application works well; when the 
loss rate is beyond Lmax, the application becomes impossible; when it is between Lmin 
and Lmax, the system could work, and it is acceptable to the users. In this paper, the 
short-time average loss rate L

~  is considered as the average loss rate of one flow. The 
definition of the short-time average loss rate L

~  is as follows: 

Definition 2. The short-time average loss rate L
~  of the flow k is defined as this 

flow’s average loss rate since its last packet dropped. 
As the number of the latest continuous non-dropped packet can be obtained by us-

ing Theorem 5, we can calculate short-time average loss rate according to instantane-
ous loss rate. 

Theorem 6. If the instantaneous loss rate of flow k is Lt(k), its short-time average loss 
rate is: 
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After we have obtained its short-time loss rate for each real-time flow, we can dif-

ferentiate it into one QoS-aware state due to packet loss. For flow k, if min)(
~

LkL < , 

we define that the state of this flow is good; if maxmin )(
~

LkLL <≤ , it is critical; if 

max)(
~

LkL ≥ , it is invalid. As we will show later, our scheme should avoid dropping 

packets continuously of one flow to keep this flow from invalid state. 

3.3   PPD Algorithm 

Based on the aforementioned discussion, we now present our improved algorithm. For 
simplicity, we first classify all real-time service flows into three priorities: high, me-
dium and low priority. Each priority flow’s dropping packet probability is shown as 
Fig.1. As the general RED algorithm does, we also define three stages according to 
the calculated average queue length avg. 

(1) Loose dropping stage: thavg min<  

The queue length is comparatively short, which indicates no congestion will occur 
in the near future, so drop is conducted with a comparatively low probability: 
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Fig. 1. Packet dropping probability function of PPD algorithm. The parameters maxp[1] and 
minp[1] are corresponding to low priority, maxp[2] and minp[2] to medium priority, maxp[3] 
and minp[3] to high priority, respectively. 

(2) Strict dropping stage: thth avg maxmin <≤  

The queue length is increasing, which indicates that congestion may occur, so 
some packets need to be dropped to mitigate the latent tendency. As the queue length 
increases, the packet dropping probability increases linearly. The packet dropping 
probability is calculated by: 
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(3) Congestion stage: thavg max≥  

Once congestion occurs, packet dropping should be conducted at a large scale. We 
first conduct packet dropping from flows with high loss rate. If the congestion still 
occurs, we continue to drop the packets of those flows with medium loss rate until 
congestion is alleviated. In this way we can avoid simultaneous failure of a majority 
of applications. 

Here, minp denotes the packet dropping probability when the average queue length 
is less than minth, and maxp represents the packet dropping probability when the aver-
age queue length is equal to maxth. For different priority flows, these two values are 
different. The value of maxp is still set as recommended in the standard RED algo-
rithm [2], and minp is set to half of maxp. 

To avoid one application failure resulting from consecutive packet drops of its 
concerned flow during a short period of time, we should check this flow’s state before 
certain packets are dropped. If this flow is in the critical or invalid state, our algorithm 
should try to avoid dropping its subsequent packets. 

During the loose dropping stage, if the corresponding flow is in the critical or inva-
lid state, the packet which should be dropped in terms of estimation of dropping prob-
ability is enqueued. We just add one to the number of the packets which need to be 
dropped for this flow. 



 Loss Rate Aware Preferential Treamtment Scheme at the Congested Router 315 

During the strict dropping stage, if the flow is in the invalid state, just do the same 
as above. When the number of the packets that need to be dropped for concerned flow 
is over zero, if the coming packet is not to be dropped according to the computed 
probability, we choose to drop it and subtract one from the number of the packets 
which need to be dropped. The dropping process is same as the standard RED algo-
rithm. 

While during the congestion stage, if one flow is in the critical state, its arrival 
packet which needs to be dropped is dropped and then we mark this flow invalid. 
Once a flow is marked invalid, all packets belonging to that flow since then will be 
dropped during the congestion stage. That is to say, we choose to drop data packets of 
invalid flows as possible as we can. To avoid simultaneous failure of most applica-
tions, we mark those flows invalid with a certain probability, which increases linearly 
as the queue length increases. The probability to mark a flow invalid is computed by: 
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Here s is the maximum size of the output queue. The value of the function f(k) de-
pends on the state of flow k: if it is critical, f(k)=1/2, else if it is invalid, f(k)=1. 

4   Simulation and Analysis 

In this section we carried out the simulation using the ns network simulator [18] and 
then analyzed its results. 

4.1   Simulation Environment 

The simulation network is showed as Fig.2. Sources 1~4 simulate a multimedia ser-
vice terminal respectively and send data to sink 6. Source 5 is used to generate back-
ground traffic. The bandwidth of the gateway is restricted to 2 Mbps; its buffer of the 
output queue is 500 packets; the maximum and minimum thresholds are 200 and 100 
respectively. In the experiment, a multimedia service achieves good effect when its 
dropping packets rate is below 10%, just acceptable to the users when below 20%, 
and unacceptable when over 20%. 

In our experiment, the employed multimedia traffic flow capacity is 40 frames per 
second. The size of each data frame obeys to the exponential distribution with the 
average value 103 bytes. The average capacity of one flow is about 103×8×40=320 
kbps. The background traffic flow obeys to the exponential distribution with the aver-
age value 640 kbps. Source 1, 2, 3, 4 and 5 will start to transmit data packets from 
11s, 31s, 51s, 71s and 91s respectively and stop at 110s. Sources 1, 2 and 4 all take 
medium priority while source 3 takes low priority. The background traffic flow of 
source 5 takes medium or low priority randomly. 
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Fig. 2. Simulation network 

We calculate the average queue length according to Formula 1, and take the queue 
weight 0.002 as recommended by Floyd [2]. Throughout our experiments, the maxp 
and minp are set to 0.1 and 0.05 for low priority traffic, 0.08 and 0.04 for medium 
priority traffic, respectively. 

4.2   Results and Analysis 

From the results we obtain Table 1 and Table 2. We see from Table 1 that the drop-
ping packets rate rises as the flow increases when RED algorithm is employed. Dur-
ing 71~90s, while four sources send data simultaneously without background traffic, 
the dropping packets rate is about 8% and all applications works well. During 
91~110s, four sources send data simultaneously and source 5 also sends background 
traffic flow, the dropping packets rate of sources 1~4 rises up to 25% and 10 packets 
dropped, which is so intolerable that all services come to invalid state. The reason for 
the rate rising is that the total traffic of all flows is larger than the total bandwidth of 
the router, thus causing enormous packets dropped. 

Table 2 shows the standard variance of the number of the dropped packets for both 
algorithms. The standard variance where the PPD algorithm is employed is obviously 
smaller than that where RED is employed. This indicates that the dropping packets 
rate is relatively steady when using PPD. The reason is that the PPD algorithm tries to 
avoid discarding packets of the same data flow continuously. 

Fig.3 depicts the number of dropped packets per second during 0~110s for sources 
1~4 when RED and our enhanced algorithm PPD are exploited respectively. We see 
that  when  the  RED  algorithm  is  employed,  the packets dropping rate may be over  

Table 1. Average number of packet-drops per second 

Source 1 Source 2 Source 3 Source 4 time 
(s) RED PPD RED PPD RED PPD RED PPD

11-30 1.05 0.95 — — — — — — 

31-50 1.35 1.35 1.90 1.95 — — — — 

51-70 2.65 2.15 3.15 2.25 2.60 2.60 — — 

71-90 3.35 3.20 3.15 2.85 4.50 3.75 4.35 3.00

91-110 9.80 3.25 10.15 3.65 11.3 37.15 10.4 3.80
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Table 2. Average variance of packet-drops per second 

Source 1 Source 2 Source 3 Source 4 time 
(s) RED PPD RED PPD RED PPD RED PPD

11-30 0.94 0.83 — — — — — — 

31-50 1.42 0.93 1.52 0.89 — — — — 

51-70 2.96 1.79 2.28 1.41 2.76 1.54 — — 

71-90 3.27 1.40 3.20 1.63 2.52 1.89 2.92 1.84

91-110 — 1.89 — 2.18 — — — 2.04

 

(a) Source 1 (b) Source 2 

(c) Source 3 
 

(d) Source 4 

Fig. 3. Number of packet-drops of each source. The x-axis represents simulation time(s), and 
the y-axis represents the number of packets dropped of corresponding source. The square leg-
end represents RED scheme, and the triangle legend represents PPD scheme. 

10% or even 20% at some periods, thus causing the temporary break off of the real-
time multimedia service; while when PPD is employed, except that the packets drop-
ping rate of the flow 3 during 91~100s is beyond 20%, the packets dropping rate of all 
flows is never beyond 20% during other periods of time. Without background traffic, 
there is no obvious difference in the dropping packets rate between PPD and RED 
algorithm. During 91~110s, when source 5 transmits background traffic, the packets 
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from source 3 are all dropped, while without background traffic the dropping packets 
rate of source 1, 2 and 4 approximates to that during 71~90s. 

Hence, when network load is heavy, RED rejects the packets of all flows in an av-
erage way, which may cause the dropping packets rate of most flows to become too 
high to accept and make enormous application fail. On the contrary, our proposed 
PPD scheme can save bandwidth for well-worked flows by dropping selectively all 
packets of some invalid flows. Therefore, we conclude that the PPD algorithm pre-
sented in this paper could effectively avoid continuous data packet drops in a short 
period of time, thus improving quality of service. 

The experiment results also show that our PPD scheme is better in performance 
than RED, whether the network is congested or not. Before congestion occurs, PPD 
can avoid continuous drop of data packets of the same flow during a short period of 
time, thus improving the service quality of the real-time multimedia application. 
When congestion does occur, PPD can save bandwidth resource for other flows by 
dropping all packets of invalid flows. 

5   Conclusions 

In this paper, we have proposed a modified version of RED, Preferential Packet Dis-
card scheme, which uses per-active-flow accounting to measure each UDP flow’s 
latest drops. It measures the latest packet drops of each flow by means of instantane-
ous loss rate and short-time loss rate. Avoiding continuous packet dropout of one flow 
does guarantee the quality of the real-time multimedia service to some degree. Once 
the network is congested, this algorithm rejects all packets of invalid flows to save 
bandwidth for other applications and further avoids the simultaneous degradation of 
most services. Our simulation results show that PPD provides better protection to 
real-time service flows than RED and its variants, and, moreover, it is easier to im-
plement and lighter in complexity because this measurement of each flow’s pass loss 
is made with several shifts and additions instructions. However, as other proposals for 
per-flow management scheme, there is some small buffer occupancy to save flow 
state information. Another further consideration is to check flow’s status at a series of 
discrete times. We simplify the analysis in this paper by assume that PPD would en-
gage after transmissions of every data packet. Obviously, this is an extreme case.  
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Abstract. Application Layer Multicast (ALM) shifts multicast functionality 
from routers to end hosts and has the potential to address most problems associ-
ated with IP multicast. It has attracted wide attention in research community in 
recent years. However, as an end host based solution, the applicability of ALM 
to realtime applications such as streaming services is constrained by node 
bandwidth and transmission latency. How to guarantee QoS is still a challenge-
able problem. In this paper, we think overall latency is a more effective metric 
for evaluating the QoS perceived by most users and explore the optimization 
problem of Degree-Constrained Minimum Overall Latency Spanning Tree 
(DCMOLST). We divide the optimization process into initialization phase and 
dynamic adjustment phase. In the former stage, we propose a heuristic algo-
rithm through giving a more consideration to both transmission delay and node 
bandwidth, so as to avoid QoS degradation caused by single metrics. In the 
later, we present a set of distributed iterative optimizing operations for further 
optimization. Experimental results show that our proposal can improve overall 
performance efficiently and is able to cope with network dynamics. 

1   Introduction 

Multicast plays an important role in group communication applications, such as au-
dio/video conferencing, multi-party game, and content distribution. In the last decade, 
researchers have made great efforts on IP multicast techniques. However, due to some 
fundamental issues related to its scalability, reliability and deployment, IP multicast is 
not widely employed after its initial proposal. Recently, with the flurry of Peer-to-
Peer (P2P) computing research, the research community began to revisit the issue of 
whether IP layer is indeed the right layer to implement multicast functionality and 
advocated using overlay network architecture as an alternate solution to support mul-
ticast. This kind of techniques is always referred as Application Layer Multicast 
(ALM) which integrates all the multicast related functions into end hosts through 
software approach. Since all data flows are transmitted as unicast packets, ALM de-
ployment may be accelerated. However, although ALM has the potential to address 
most of the problems associated with IP multicast, it is not as efficient as IP multicast. 
It cannot completely prevent multiple logical edges from traversing the same physical 
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link in overlay network. Thus some redundant traffic on physical links is unavoidable. 
Furthermore, the target environment of overlay network is dynamic, heterogeneous 
and unpredictable, overlay topology management is another challenge. Meanwhile, 
typical streaming media applications such as video/audio services always have strin-
gent requirements on bandwidth, delay and other performance parameters. There is an 
urgent need to explore multicast routing algorithms capable of satisfying these QoS 
requirements.  

In this paper, we deem that the overall latency is a more effective metric for evalu-
ating the QoS of ALM and focus on the problem of Degree-Constrained Minimum 
Overall Latency Spanning Tree (DCMOLST). In fact, end hosts are always heteroge-
neous in their available bandwidth and the edge delay among nodes is non-uniform. It 
is essential to capture the relative importance of different nodes according to edge 
delay as well as node degree when constructing ALM tree. To achieve the optimizing 
objective, we provide a heuristic algorithm for multicast tree initialization by extend-
ing the Prim algorithm and present several distributed optimization operations for 
further improvement during the multicast session. 

The rest of this paper is organized as follows: in the next session, we discuss the 
related work. Section 3 gives the network model and problem definition. Section 4 
describes the details of the heuristic algorithm. Section 5 presents our simulation 
results. Finally we summarize the work of this paper in section 6. 

2   Related Work 

Most of existing ALM protocols (such as Narada [1], NICE [2], Yoid [3] and Scribe 
[4]) assume that all the end hosts participating in a multicast session are homogeneous 
in their capability. The objective of protocol design is to address network dynamics so 
as to reduce topology maintenance cost and improve resource utilization. However, as 
a streaming application oriented technique, it is essential to satisfy QoS constraints. In 
the past, a lot of work on QoS-aware IP multicast routing has been done. Bellman-
Ford algorithm and Dijkstra algorithm [5] are two well-known algorithms used to 
solve the Shortest Path Tree (SPT) problem. Prim algorithm [5] is a classical algo-
rithm for the Minimum Spanning Tree (MST) optimization problem. KMB heuristic 
[6] is a good candidate for generating a Steiner tree. Zhu et al. [7] proposed a 
bounded shortest multicast algorithm to solve the delay constrained tree optimization 
problem. Kompella et al. [8, 9] and Jia [10] also presented several algorithms to con-
struct a delay constrained Steiner tree.  

Since data duplicate and forward are performed by end hosts, end hosts’ network in-
terface bandwidth is the main constraint in ALM routing design. This makes previous 
QoS-aware IP multicast algorithms unsuitable. And how to construct a bandwidth con-
strained multicast tree along with other special requirements becomes one of the key 
issues of ALM research. This is usually termed as the degree-constrained multicast tree 
problem. EMS [11] is a QoS-driven ALM protocol which uses a variant of the shortest 
widest path algorithm presented in [12] to simultaneously consider both bandwidth and 
latency, but it prioritizes bandwidth over latency. The authors of [13] proposed central-
ized greedy heuristics to two degree-constrained multicast tree related problems: Mini-
mum Diameter Degree-Bounded Spanning Tree (MDDBST) and Bounded Diameter, 
Residual-Balanced Spanning Tree (BDRBST). The MDDBST problem is in essence the 
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same as the min max-latency problem. OMNI [14] proposed an iterative distributed 
solution to the min average-latency problem. However, this schema is for infrastructure 
based ALM, rather than for P2P computing based systems. 

3   Problem Description 

An overlay network is a logical network built on top of the existing IP network infra-
structure. For any pair of nodes, there must exist a unicast and the latency between 
them corresponds to the unicast transfer delay over the underlying physical network. 
An overlay network can be depicted as an undirected weighted graph G=(V, E), 
where V is a node set and E is a set made up of overlay links. |V| and |E| denote the 
number of nodes and overlay links in the network, respectively. Let delay(e) represent 

the end-to-end delay of e (e E) and b(v) denote the available bandwidth of v (v V). 
For simplicity, we first give some concepts related to our work.  

Definition 1: Node Degree is the maximum number of children that a node can sup-
port in a multicast session (or tree). Let d

n
(T) denote the node degree of node n in a 

multicast session T. d
n
(T) implies that node n can concurrently forward incoming 

packet at most to d
n
(T)-1 other nodes.  

Node degree is a non-negative integer determined by the bandwidth capability of a 
node. If r is the transmission rate of a multicast session T, then dn(T) can be calcu-

lated by formula (1): 

}0,/))((max{)( rnbTdn =                                          (1) 

Definition 2: Overlay Latency is the transfer delay between two nodes along an 
ALM tree. Let l

T
(i, j) represent the overlay latency between node i and j over T. l

T
(i, j) 

is always larger than their IP unicast delay. 

Definition 3: An ALM Tree is a subgraph of G=(V, E) that spans all the nodes in V 

and can be represented by T(s, M, E’), where s V is a source node, M=V-{s} is a set 

of the receiver nodes and EE' ⊂  is a set of edges forming the multicast tree. We 
define several property functions related to tree T as follows: 

 P
n
(T): the parent of node n in tree T. 

 G
n
(T): the grandfather of node n in tree T. 

 C
n
(T): the number of children of node n in tree T, i. e., C

n
(T)=|n’:P

n’
(T)=n|. 

For degree-constrained ALM tree, C
n
(T) must satisfy with C

n
(T)<= d

n
(T)-1. 

 L
n
(T): the overlay latency from source node s to node n in tree T. Here we 

have L
s
(T)=0, )n),T(P(delay)T(L(T)L n)T(Pn n

+= . 

 N
n
(T): the total number of nodes in the subtree rooted at node n. here 

=∀

=
n)T(P

in

i

)T(N(T)N . For conciseness, we denote the subtree of tree T which 

rooted at node n as S
n
(T). 
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Definition 4: Overall Transfer Latency is the sum of overlay latency from the-
source node to all other nodes in the ALM tree. Let D

s
(T) be the overall transfer la-

tency of ALM tree T that rooted at source node s, 
∈

=
Mn

ns )T(L(T)D . 

According to Definition 3, D
s (T) can also be computed as follows:  

=∀

+×+=
s)T(P

iins

i

)))T(S(D)i,s(l)1)T(((N(T)D

                      
 (2) 

Overlay latency provides a metrics for evaluating the overvall QoS performance 
perceived by most users and is one of the important optimizing objectives in ALM 
QoS routing. Definition 5 states the DCMOLST problem in a more formal manner. 

Definition 5: The optimization problem of Degree-Constrained Minimum Overall 
Latency Spanning Tree (DCMOLST) is to find an ALM tree T

min
(s, M, E’) which 

satisfies the following conditions: 

1) EE' ⊂ , V = M {s}; 
2) C

n
(T

min
)< d

n
(T

min
) for any node v M; 

3) D
s (Tmin

) D
s
 (T’) for any other trees T’ that satisfies with both 1) and 2). 

Obviously, this is a NP-complete problem which cannot be optimized by previous 
solutions, such as min max-latency algorithm. For example, figure 1(a) depicts an 
ALM tree constructed by the centralized greedy heuristic proposed in [15] for the 
MDDBST problem. The overall transfer latency of figure 1(a) is 
4×5+3×6+2+2+3=45. If we make a tradeoff between edge delays and node degrees 
when determining the relative position of end hosts, then it’s possible to get an ALM 
tree as figure 1(b). Obviously, this is a superior one whose overall transfer latency is 
4×6+6+2+2+3=37.  

  

a. MDDBST b. DCMOLST 

Fig. 1. An Example of DCMOLST Tree 

4   The Heuristic Routing Algorithm of DCMOLST 

4.1   Heuristics for ALM Tree Initialization 

Typically, a multicast data distribution is scheduled to start at a specific time. Suppose 
m nodes sent the data request to the source node s prior to this instant. Firstly we must 
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organize these nodes into an initial ALM tree with respect to the optimizing objective. 
We think the joining order of each node should be determined by the edge delay as 
well as the node degree. Concretely, the priority ought to be proportional to the node 
degree and in inverse proportion to the edge delay. We develop a heuristic initializa-
tion DCMOLST algorithm by extending the Prim algorithm. 

The heuristic DCMOLST algorithm maintains the following three node sets. M
avail

 

consists of all the nodes already attached to the tree and still have free node degree, 
M

off 
includes all the nodes to be attached, M

full is a node set where all nodes have been 

connected to the tree but cannot accept any additional children due to its degree con-
straints. Initially, M

avail
={s}, M

off
=M, M

full
= . During the initialization phase, M

avail
, 

M
off

, M
full 

are mutual exclusive sets satisfying with M
avail

M
off

M
full

={s} M. Before 

describing the heuristic DCMOLST algorithm in detail, we first give the concept of 
the minimum ALM distance from an off-tree node to the source node s.  

Definition 6: The minimum ALM distance from an off-tree node n
1 (n1

M
off

) to the 

source node s is the shortest overlay path from n
1
 to s through any nodes already in T 

with free degree. Let )T,n( 1δ  denote this distance, it can be expressed as follows: 

avail1'n1 M'n)),n,'n(l)T(Lmin()T,n( ∈∀+=δ                           (3) 

Here node n’ is termed as the access node of node n
1
. 

Similar to the Prim algorithm, the initializing process starts from the source node s. 
During the initialization phase, our heuristic algorithm performs the following proce-
dure repeatedly till M

off
= . 

1) Select a node n (n M
off

) with the highest priority and add it to the existing 

component T through its access node n’. Let d
n
(T) = d

n
(T)-1, d

n’
(T) = d

n’
(T)-1.  

2) Node n computes and saves the overlay latency from the source node s to itself 
in the current component T, i.e. L

n
(T). 

3) Let M
off

=M
off -{n}. If d

n
(T) 1, then M

avail
=M

avail
{n}; Otherwise 

M
full

=M
full

{n}. If d
n’

(T)=0, then M
full

=M
full

{n’} and M
avail

= M
avail

-{n’}. 

4) If node n joins M
avail

 or node n’ moves from M
avail

 to M
full

, then each node n
o
 in 

M
off 

recomputes its ),( Tnoδ  according to formula (3) and updates its access node. 

5) If M
off

, then each node n
o

M
off

 recalculates its priority as follows: 

offo
on

o
oT Mn

d

Td

Tn
np ∈∀×−+×= ,

)(
)1(

),(
)(

max

min α
δ

δα     (4) 

where α 10 ≤≤ α is a tunable parameter used to negotiate the weight ratio 
between edge delay and node degree, minδ  and maxd  are the minimum value of 

),( ' Tnoδ  and the maximum value of )(' Td
on

 for all node 
'
on ( offo Mn ∈' ), respec-

tively. 
Algorithm 1 gives the pseudo-code of the heuristic DCMOLST algorithm.  
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Algorithm 1. The heuristic DCMOLST algorithm 
for each n V 
if (dn<1) exit(); 
else DT=DT+dn; 

if (DT <2(v-1)) exit(); 

Mavail={s};Moff=M;Mfull= ; 

while(Moff ){ 

for each n Moff 
for each n1 Mavail 
if ( )T,n()n,n(l)T(L 1n1

δ<+ ) )n,n(l)T(L)T,n( 1n1
+=δ ; 

))T,n(min(min δδ = ; ))T(dmax(d nmax = ; 

for each n Moff 

max

nmin
T d

)T(d
)1(

)T,n(
)n(p ×−+×= α

δ
δ

α
;
 

let n Moff be the node with maximum pT(n)• 
n joins T via its access node n1; 
Moff=Moff -{n}; 
dn= dn-1; 
dn1= dn1-1; 

if (dn=0) Mfull=Mfull {n}; 

else Mavail= Mavail {n}; 

if (dn1=0) Mfull=Mfull { n1}; 
} 

4.2   Iterative Optimizing Operations 

Since our heuristic initialization algorithm is not a greedy one, there may still have 
available degree on some branch nodes near the root. Thus it’s possible to further 
optimize the overall latency by adjusting the position of local subtrees/nodes with 
these available degrees. Furthermore, nodes join and leave the multicast session dy-
namically, so it’s necessary to maintain the topology adaptively, so as to improve the 
reliability and performance of the system. We present four local iterative optimizing 
operations for this situation. Each node in the ALM tree attempts to perform these 
operations periodically. 

Parent-Child Position Swap. This operation needs available degree at the child 
node. Assume node g and node p are the grandparent and parent of node c, respec-
tively. Parent-Child swap operation is performed if and only if formula (5) is true: 

)p,c(l))T(N)T(N()T(N))c,g(l)T(L()T(L)T(N cppgpp ×−+×+>×        (5) 
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Figure 2 demonstrates a parent-child position swap operation. In figure 2(a), since 
node c has free degrees, it initiates a parent-child position swap test according to for-
mula 5, then sends a swap request to its parent node p. figure 2(b) shows the resulted 
tree after swapping. 

  

Fig. 2. Parent-child position swap Fig. 3. Grandchild node promotion 

Grandchild Node Promotion. This operation is a grandfather-driven operation. If 
node g has residual degrees, then one of its grandchildren is promoted as a direct child 
of g. Suppose C is a node set consisting of all the grandchildren of g, i.e., 
C={c|G

c
(T)=g}. In order to maximally reduce the overall latency, node g chooses a 

node from C with algorithm 2.  

Algorithm 2 Grandchild selection algorithm 
CanNode=null;   
totalCost=0; 
for each c C 
if (Lc(T)-Lg(T)>0)  
if((Lc(T)-Lg(T))×Nc(T)> totalCost) { 
totalCost=(Lc(T)-Lg(T))×Nc(T); 
CanNode=c; 

} 

Figure 3 shows an example of grandchild node promotion operation. Note that 
node c

2
 is moved from node a to node g.  

Nephew Node Movement. We call node n is a nephew of node u and u is the uncle of 
n if G

n
(T)=P

p
(T) and P

n
(T) u. Nephew node movement is an uncle-driven operation 

and moves one of its nephew nodes to be a direct child of itself if having available 
degree. Algorithm 3 gives the pseudo-code of this operation. Note that S is a set about 
all the nephew nodes of node u.  
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Algorithm 3 Nephew selection algorithm 
CanNode=null;  
totalCost=0; 
for each n S 
p=Pn(T); 
if (Lp(T)+l(p,n)- Lu(T)-l(u,n)>0)  
if((Lp(T)+l(p,n)- Lu(T)-l(u,n))×Nn(T)> totalCost) { 
totalCost=(Lp(T)+l(p,n)- Lu(T)-l(u,n))×Nn(T); 
CanNode=n; 

} 

Figure 4 gives an instance of this operation. 

 

Fig. 4. Nephew node movement 

All the above three operations must be initiated by the node with available degrees. 
In order to avoid collision and reduce optimizing cost, we define the priori of these 
operations as follows: parent-child position swap, grandchild node promotion and 
nephew node movement. Each eligible node performs these operations orderly. 

Cousin Nodes Swap. We call node c
1
, c

2
 as cousin nodes if they share the same 

grandfather but with different parents. Cousin nodes swap operation exchanges the 
position of cousin nodes. This operation is performed if and only if the following 
inequation is true: 

)()),()(()()),()((

)()()()(

12

2211

12 TNcclTLTNcalTL

TLTNTLTN

ccca

cccc

×++×+

>×+×

    
(6) 

Note that this operation may sacrifice some nodes’ overlay latency so as to im-
prove the overall benefits of the multicast tree. Figure 5 illustrates an example of this 
operation. Before swapping, P

c1
(T)=a, P

 c2
(T)=c; After executing this operation, 

P
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(T)=c and P
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(T)=a. 
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Fig. 5. Cousin nodes swap 

4.3   Group Membership Management 

One of the key differences between ALM tree and IP multicast tree is that the overlay 
multicast network is more dynamic due to the autonomy attribute of end hosts. This 
section presents a membership management mechanism to support new node to join 
the multicast tree and repair possible partitions caused by member leaving or failure. 

Member Joining. When a new host want to join the multicast session, it first contacts 
source node s and broadcasts a joining request message to the whole multicast tree 
through s. In response to the joining request, all members with residual degrees return 
their overlay latency in the multicast tree to the joining host. Then the joining host 
computes its minimum ALM distance to s (as definition 6) and attaches to the multi-
cast tree through its access node. 

Member Exiting. There are two different cases of member exit: friendly leaving and 
abrupt failure. In the former case, a member notifies its neighbors before leaving. 
Abrupt failure is an exception event caused by some unpredictable reasons and should 
be detected locally and propagated to the rest of the group. Many distributed failure 
detection algorithms have been proposed in recent years [1-3, 15]. We only concern 
with the case of friendly leaving and give our approach for partition repair here. 

A leaf node should only inform its parent node when leaving a multicast session. 
However, it’s not as simple for branch nodes. The leaving of a branch node splits the 
multicast into several parts. To remerge these partitions, we employ a local repair 
scheme where only the children of the leaving node participate in the reconstruction 
and all the subtrees rooted at these children still keep their current topologies and 
states. Suppose node g is the leaving node, node p is the parent of g and C is a set 
about g’s children. To repair the multicast tree, our algorithm first selects a node 
c

1
C with the minimum distance from p to replace the position of g, then updates the 

overlay latency of all the nodes in the subtree )(
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. Following that we try to connect 
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5   Performance Evaluation 

In this section, we evaluate the performance of our heuristic routing algorithm. We 
generate a transit-stub network with the GT-ITM topology generator [16] for our 
experiments. End hosts randomly select a router from stub domains and connect to it. 
Our simulation scenarios consist of 200 nodes. The IP unicast delay between two 
nodes varies from 10ms to 200ms. Node degree ranges from 1 to 20 and the averaged 
value is 5. 

Figure 6 shows the performance comparison over differentα . The mean latency 
corresponding to each α  is the averaged result over several trails. Each trail is con-
ducted with a different average node degree. We see that 4.0=α  is preferable to 
either 1=α  or 0=α . This result proves that we could produce a better tree by 
giving a more consideration to both transmission delay and node degree. When 

1=α , the heuristic DCMOLST algorithm is similar to the MDDBST algorithm [15] 
and gives priority to nodes with minimal latency from the source node. When 0=α , 
the heuristic gives priority to nodes with larger available degree and chooses the one 
with minimal latency preferentially when they have the same available degrees.  

 

Fig. 6. Performance comparison over different weight ratio 

Figure 7 depicts the effect of iterative optimizing operations for the overall perform-
ance. Note that we suppose no node joins/exits the multicast tree during this experi-
ment and members perform these optimizing operations periodically. From this figure, 
we can see that the overall latency is decreased and converged to a stable level over 
time. Since our heuristics is not a greedy algorithm, the available degrees near the root 
provide more opportunities for performing iterative optimizing operations after the 
ALM tree initialization. Thus, initially the overall latency drops rapidly over optimiz-
ing operations. At the same time, these operations exhaust the eligible free degrees 
gradually, so later the curve reaches to a converged state. This result indicates that the 
iterative optimizing operations can improve the overall performance effectively.  

Figure 8 compares the overall latency of different averaged node degree. We  
observe that the higher averaged node degree could result in a lower overall latency 
ALM  tree.  The  reason  is  twofold.  First, large averaged node degree provides more  
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Fig. 7. Effect of iterative optimizing operations Fig. 8. Effect of different averaged node 
degree 

feasibility to create a broad ALM tree through available degrees near the root. There-
fore the overlay latency from the source node to each node in the initial ALM tree is 
less than the case of small averaged node degree. Second, increasing node degree 
provides more possibility to further shrink the depth of multicast tree through residual 
degrees. And the execution of optimizing operations is more likely to be limited in an 
ALM tree with low averaged degree. Thus, the higher averaged degree tree still re-
tains lower overall latency after optimization.   

  

Fig. 9. Impact of node join Fig. 10. Impact of node leave 

We also examine our solution under dynamic environment. To simulate the node 
join scenario, we first generate a multicast tree consisting of 120 nodes with 
DCMOLST algorithm. Then we periodically inject new nodes into the tree, each time 
inserts 30 nodes. Figure 9 illustrates the impact of node join. We can see that the 
average latency curve fluctuates with the join operations and then gradually drops to a 
balanced state. Since most of the top nodes near the root are saturated under steady 
state and new nodes can only attach to the lower nodes. Thus the average latency 
increases at first. Later, the optimizing operations work and improve the performance. 
Figure 10 shows the impact of node exit. The initial multicast tree includes 200 nodes. 
A few nodes are randomly selected to friendly leave the session. Figure 10 indicates 
that node leaving has negative impact on the overall performance, but this situation 
could be improved partially by the optimizing operations.  
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6   Conclusions 

Different from previous work on QoS routing, we take a new angle of view for evalu-
ating the performance of degree-constrained application layer multicast routing, with 
the purpose to provide better QoS for most users. Especially, we study the optimizing 
problem of the degree-constrained minimum overall latency spanning tree. To achieve 
the optimizing objective, our solution divides the optimizing procedure into different 
stages and presents corresponding algorithms for them. Concretely, we provide a 
heuristic DCMOLST algorithm for multicast tree initialization and define a set of 
distributed iterative optimizing operations for further improvement. The philosophy 
of our heuristic DCMOLST algorithm is to avoid QoS degradation caused by single 
metrics by weighing both transmission delay and node bandwidth. And the idea of our 
iterative optimizing operations is that tries to improve the overall performance at the 
cost of sacrificing partial nodes’ benefits. This paper describes the details of our 
scheme. The simulation results demonstrate that our approach is reasonable and is a 
promising means for providing low delay, high performance application layer multi-
cast services. 
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Abstract. Traditional multicast routing algorithms require routers to
be specially designed such that they can forward the same copy of packet
onto different output links simultaneously. This idea conflicts severely
with the core-stateless principle in most QoS network architectures, such
as Diffserv. Meanwhile, overlay multicast emerges as an effective alterna-
tive to the traditional approaches. In this paper, we combine the overlay
multicast technique with the Diffserv architecture seamlessly and de-
sign an overlay multicast routing algorithm, which generates a multicast
tree at a pretty low cost incrementally. Owing to its distributed nature,
the computation of the tree can be executed efficiently. Through a large
amount of simulations, we have shown that our algorithm is quite com-
petitive in terms of network resource utilization and other metrics.

1 Introduction

In today’s Internet, a large amount of novel applications, such as multimedia
broadcast and teleconference, depend heavily on a multicast style network ser-
vice. However, the traditional multicast protocols assume that each router in
the network is able to send the same packet to multiple destinations at the
same time. This assumption requires the routers to have special routing entries
to forward the packet onto different links[6]. In terms of routing information,
these approaches infer that routers should keep some state information, such as
group membership, for each multicast session. This requirement also contradicts
sharply with the core-stateless principle adopted in most QoS architectures, such
as Diffserv[2]. In contrast with so many drawbacks of the traditional multicast
schemes, the advantages of the overlay multicast make it a promising alternative
to the old methods.

In brief, overlay multicast is to perform multicast upon overlay network. An
overlay network is composed of a selective collection of the underlying physical
nodes. All these nodes are connected by overlay links, each of which equals to
a unicast path in the underlying network. Because the overlay network only

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 333–344, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



334 X. Chen, H. Shao, and W. Wang

focuses on a specific part of the whole network, it is easier for us to carry out
multicast routing on it without changing the underlying infrastructure. Some
famous applications of this kind include peer-to-peer file sharing and end-host-
based multicast in the Internet[3],[5]. Unfortunately, the overlay network doesn’t
address all problems perfectly. According to QRON[7], a majority of the overlay
networks are based on end hosts[3],[5]. They are confronted with great difficulties
in enabling multicast in the current Internet environment for following reasons:

1. The scope of the overlay network is not defined clearly. It means the nodes
in an overlay network may belong to several different autonomous systems
(ASes). This situation often leads to a centralized routing algorithm, which
inevitably suffers from the scalability problem.

2. The topology of the overlay network changes frequently. Since the end host
is free to join or leave a session, the routing algorithm has to take great
trouble to keep a reasonable balance between the routing efficiency and the
membership flexibility.

3. The underlying QoS cannot be guaranteed. For most of the end host users,
they only have limited bandwidth resource available to the overlay network
applications. As the upper layer applications become more demanding, this
disadvantage could be a fatal one for developing valuable overlay multicast
applications.

4. The overlay network layer is built at a high level. In order to take advan-
tage of the flexibility offered by the overlay network, most of the proposed
schemes[1] have the overlay network layer built above the normal network
layer. However, the extra computational workload near the application layer
is inevitable when organizing an overlay network topology.

In this paper, we try to address these problems by constructing the overlay
network over the edge routers within a Diffserv domain as they join the multicast
session. On one hand, the Diffserv architecture has advantages with regard to
the scalability and QoS capability. On the other hand, the overlay network is also
a suitable complement to enable multicast within the Diffserv domain because
it complies with the core-stateless principle and asks for no change in the core
routers. Thus the objective of our effort is to design a routing algorithm, which
will generate an overlay multicast tree efficiently at a possibly low cost.

The rest of the paper is organized as follows: Section 2 reviews the related
works on this topic. Section 3 formulates the network model and specifies the
related difficulties to achieve our objective. In section 4, we describe our algo-
rithm through the basic idea as well as the pseudocode routine function. The
performance of our algorithm is evaluated through a large amount of simulations
in section 5. Finally we draw the conclusions in section 6.

2 Related Works

With regard to the overlay multicast, a lot of solutions have been proposed. One
group among them(e.g. Narada[3]) focuses on the application level end-hosts
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based implementations. While these solutions could be flexible in heterogeneous
network environment, they will incur the difficulties we have mentioned in section
1. On the other hand, several schemes have been designed, such as [8], [1] and
[4], to place some Multicast Service Nodes(MSNs) into the underlying physical
network and organize an overlay network through them to support the upper
layer multicast applications. These solutions are similar to ours in that they
employ some fixed nodes in the physical network to provide the overlay network
service. However, they are different in many other aspects.

In [1] and [4], the authors use centralized heuristics to minimize the maximal
diameter of the tree. However, they don’t deal with the issue of the dynamic
membership. In [8], this problem is resolved by an iterative distributed solution.
By means of five different local transformation operations and random swaps, [8]
adapts the routing tree for a minimal average latency among the clients in a dis-
tributed style. However, because different MSNs could apply for a transformation
simultaneously, it is difficult to coordinate such an operation without a mediator.
Furthermore, it’s even harder to collect the information of the partial topology as
the position of MSNs changes constantly. In contrast to this approach, we limit
the overlay network within the scope of a Diffserv domain and adapt the tree
each time a new join or departure request arrives. This method contributes to a
stable topology and reduces the control message overhead drastically. In [7], the
overlay service network(OSN) is proposed as a general framework for supporting
a variety of overlay applications. In this framework, each overlay broker (OB)
assumes several responsibilities during the QoS-aware routing process, such as
bandwidth measurement and resource allocation. In fact, all the QoS-related
functionalities have already been defined in the Diffserv architecture. Since we
can safely rely on the edge routers and the bandwidth broker (BB) to fulfill
these tasks, our algorithm imposes fewer requirements on the overlay nodes. An-
other work most similar to ours is described in IIA[9]. It generates the tree by
appending the new node to an in-tree node or inserting it into an overlay link,
whichever leads to a least cost gain. It is a centralized algorithm, which requires
a new node to compare all cost gains throughout the whole tree. In addition,
it doesn’t take care of the edge links in the Diffserv domain, which may reduce
the tree cost hugely. In contrast, our algorithm carries out the computation in a
distributed style and imposes no intensive burden for any single node.

3 Network Model and Problem Specification

3.1 Physical Network Model

Without loss of generality, we model the underlying network in question by an
undirected connected graph G (V, E) with the vertexes representing routers and
the edges standing for links. As it is defined in the Diffserv[2] architecture , each
node is either an edge node or a core node. Edge nodes are located on the border
of a domain. In Diffserv architecture, it is assumed that edge nodes only deal with
the traffic related to their adjacent domains. Thus they work in a comparatively
low speed network environment and we grant them the responsibility to keep the
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state information for each flow into their concerned domains. In contrast with
edge nodes, core nodes, which stand within a domain, are convergence points
for network traffic from all surrounding domains so that they are kept stateless.
We also define that a link that is built between two edge nodes is called an edge
link, while the other links are referred to as core links. All these concepts can be
illustrated in Fig. 1.
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Fig. 1. This figure shows the topology of a Diffserv domain

The cost of each link between node a and b is denoted by C(lab). The core path
between edge node a and b, denoted by CPath(a, b), is a unicast path between
them, which is composed of a collection of core links and has a least accumulated
cost. Because the edge links are built mainly to enhance the communication
capacity between edge nodes, we have the following assumption:

Assumption 1. The cost of any edge link is lower than that of any core path.
Formally we have the following inequality(a and b are edge nodes):

max {C(lab)|lab ∈ E} ≤ min
{
Σlab∈CPath(a,b)C(lab)

}
(1)

From Fig. 1 we can see that a Diffserv domain usually plays as an intermediate
domain and contains no end receivers or end senders. The multicast sessions we
deal with here all belong to source specific multicast(SSM). Thus the objective
of our effort is to multicast the data efficiently among all those edge nodes,
which serve as the designated receivers, from the designated source. Hereinafter
all nodes we will mention are within the same domain.

3.2 Overlay Network Model

Overlay multicasting is to send one copy of the data from the source node to
several receiver nodes and then retransmit it from those nodes to other receiver
nodes. Therefore, overlay multicast routing is to construct an overlay multicast
tree, which is rooted at the source node and covers all the receiver nodes. Note
that this tree only consists of the edge nodes, which are members of the multicast
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session. So we call such an overlay multicast tree a virtual tree, in contrast with
any other multicast tree, which may contain intermediate nodes.

Before we can go further, some definitions are necessary. First we denote the
overlay network by a virtual graph of V G( V ′, E′ ), which consists of all edge
nodes within a Diffserv domain. The cost of a virtual link between node a and
b in the virtual graph, denoted by V C(l′ab), can be expressed as:

V C(l′ab) =

⎧⎨
⎩
∑

l∈CPath(a,b) C(l) lab /∈ E

C(lab) lab ∈ E
(2)

3.3 Objectives of Our Routing Algorithm

The main focus of this paper is to construct a virtual tree at a low cost that covers
and only covers those participant edge nodes. In other words, we don’t bother
other edge nodes to serve as intermediate nodes for carrying packets unrelated
to them. In addition, such an algorithm should satisfies following requirements:

1. It is able to accept dynamic membership. This is a big obstacle for most
overlay routing algorithms because the arrival or departure of a new member
may cause the topology of the whole virtual tree change drastically.

2. It must be efficient in the computation of the virtual tree. Since the algo-
rithm computes the tree incrementally, it has to be executed in a short time.
Otherwise, the continuous join or leave requests may cause the algorithm
impractical.

4 Our Algorithm

4.1 Definitions in Our Algorithm

In this paper, relocation means the operation of breaking the connection between
a node and its current parent node and appending it to another one in the virtual
tree. This is a basic operation adopted in our algorithm to generate the virtual
tree for a low cost. We will give several definitions related to this notion as
follows:

Definition 1. Relocation cost gain for node s to c, denoted by RG(s, c), can be
formulated as: RG(s, c) = V C(lcs) − V C(lps). Here, p is the parent of node s.

Definition 2. Relocation scheme of node s, denoted by RS(s), is a binary tuple
of (CostGain, AppendToNew ). These two fields can be calculated as follows:

RS(s).CostGain = min(RG(s, i), RG(s, c))

RS(s).AppendToNew =

⎧⎨
⎩

true RG(s, i) ≤ RG(s, c)

false RG(s, i) > RG(s, c)
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Here, i stands for a new member requesting to join the session while c is the
candidate parent for node s. All these notions will be explained in detail in the
next section.

Definition 3. Graft scheme of node s, denoted by GS(s), is a quarternary tuple
of (CostGain, GraftPoint, RelocatedNode, AppendToNew).

CostGain represents the least cost gain we can obtain by grafting the node i
to the GraftPoint under the subtree rooted at node s and relocating the Relo-
catedNode. If RelocatedNode is null, then CostGain means the cost gain for ap-
pending the new node i directly to the GraftPoint without relocating any other
node. AppendToNew, which is similar to that of Relocation scheme, stands for
whether we should append the RelocatedNode to the new coming node of i. We
will show the computation of the graft scheme in our algorithm in detail.

4.2 Basic Idea

The basic idea behind our algorithm is as follows. In case that the parent node
fails for some reason or relocation occurs, each node except the source node
chooses one adjacent node in the virtual tree as its candidate parent. Note that
the candidate parent of a node cannot be its descendant node in the tree.

Whenever we want to append a new node i to a non-leaf node s in the virtual
tree, we have three choices. One is to append node i directly to node s without
relocating any other node. The second way is to insert the new node between
node s and one of its child nodes. The last choice is to append the new node to
s and relocate one of the child nodes to the child’s candidate parent. Suppose
node s has n child nodes appended to it in the virtual tree. Then we will have
2n+1 cost gains in 2n+1 different situations, which are described above. If we
refer to the minimal value among the 2n+1 cost gains as the least cost gain for
node s, we can easily calculate the least cost gain for the tree by comparing the
least cost gains for all nodes and selecting the minimal one. In order to build the
virtual tree at a cost as low as possible, we calculate the least cost gain for the
tree each time a new node wants to join and insert it into the tree accordingly.
We now illustrate this idea by an example in Fig. 2.

Suppose the topology of the underlying network we employ for illustration
is shown in Fig. 1. The designated source is node 0 and other edge nodes are

2

3

4

0

11
1

7
1

10 6

8

2

3

4

0

11
1

10

2

3

4

0

1

7
1

6

8

2

3

4

0

11
1

1

6

(a) (b) (d)(c)

Fig. 2. Tree building process
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numbered in the order they join the session. According to this topology, we
demonstrate the process of the virtual tree construction through (a) to (d). In
these figures the solid lines indicate the current virtual tree topology while the
dotted lines represent the virtual links in the virtual graph. The cost of all lines
are as marked in the figures. We can see in (b) that at first the virtual tree only
consists of three nodes. When node 3 comes in, we will obtain the least cost gain
of -3 by inserting it between node 0 and node 1. After node 3 is inserted, the
candidate parent of node 2 should be changed to node 3. Thus (c) outlines the
virtual tree after node 3 joins the session. We assume at this moment node 4
requests to join. Because the candidate parent of node 2 is closer to it than its
current parent, node 2 will turn to node 3 for connection as node 4 is connected
to node 0. The final virtual tree is shown in (d).

4.3 Complete Algorithm

Scenario 1. If an edge node, who wants to join a multicast session, is the first
subscriber, then its request might be sent to another edge node, which will later
become the designated source of the session in this domain. After source node
has established its connection to the multicast session, it will inform its only
subscriber for the intra-domain connection. At this time, the virtual tree is just
a unicast connection between two edge nodes.

Scenario 2. After the first connection is established, each time a new join request
arrives the source node will propagate the information about the new subscriber
throughout the current virtual tree in a top-down manner. When the leaf nodes
are informed of the new node, the algorithm in Fig. 3 will be executed in each leaf
node. Then the output will be submitted to their parents, which in turn execute
the same algorithm. After each node has carried out such a computation, the
relocation scheme for the whole tree with regard to the new node can be obtained
in a bottom-up way. At this step, source node will instruct the nodes involved in
the relocation scheme to behave accordingly. Once the new node settles down,
the source node, informed of this change, will spread the topology of the new
tree among the in-tree nodes. This action is needed for two reasons. One is that
some nodes may expect the new node to be their candidate parent. The other is
that each node should check if their candidate parent has become a descendant
of itself due to the relocation. If the latter occurs, the node should select another
node from the tree as its candidate parent.

Scenario 3. When a node is going to quit the tree, it must order all its child
nodes, if it has any, to be relocated. Intuitively, this process doesn’t demand
any further computation for each of the child nodes because they will turn to
their respective candidate parents for connection. Once all these child nodes have
settled down with their new parents respectively, the node, which is about to
quit, will inform the source node of its departure from the tree and completely
break its connection to its parent node. It is also necessary that all those relo-
cated nodes inform the source node of their new parents respectively. After the
source node has collected all information about the change of the tree, it will
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Program DIRA (Node i)
//i-the new coming node
Var
Node p,c,this;
//p-parent node;
//c-candidate parent;
//this-this node;

Begin
Initialization of node p and c;
GS(this).CostGain = VCost(this,i);
GS(this).GraftPoint = this;
GS(this).RelocatedNode = Null;
If this is not a leaf node Then

Inform all child nodes of node i;
For each child node m do

//GS(m) and RS(m) returned from every child node m
If GS(this).CostGain > VCost(this,i) + RS(m).CostGain Then

GS(this).CostGain = VCost(this,i) + RS(m).CostGain;
GS(this).RelocatedNode = m;
GS(this).AppendToNew = RS(m).AppendToNew;

End If
End For
For each child node m do

If GS(this).CostGain > GS(m).CostGain Then
GS(this).CostGain = GS(m).CostGain;
GS(this).GraftPoint = GS(m).GraftPoint;
GS(this).RelocatedNode = GS(m).RelocatedNode;
GS(this).AppendToNew = GS(m).AppendToNew;

End If
End For

End If
If p != Null Then

//this is not the root node
RS(this).CostGain = min(RG(this,i), RG(this,c));
If RG(this,i) <= RG(this,c) Then

RS(this).AppendToNew = True;
Else

RS(this).AppendToNew = False;
End If

Else
RS(this) = Null;

Return RS(this) and GS(this);
//to parent node if there is one

End.

Fig. 3. DIRA algorithm for each node
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once more propagate the new topology among the in-tree nodes. The reason for
it is similar to that we stated in scenario 2. Of course if the node to quit is the
last subscriber in the session, all actions above are not necessary. After the last
member breaks its intra-domain connection, the source node will also finish its
inter-domain connection to the multicast session.

4.4 Discussion

The first thing we want to talk about is the cost analysis of our algorithm. The
cost involved in our algorithm comprises message overhead and time overhead.
Owing to the message propagation throughout the virtual tree, the number of
messages necessary in one round of the algorithm execution is proportional to the
number of the nodes in the tree. If the current tree has m nodes, the magnitude
should be about O(m). On the other hand, because the computation can be
carried out in parallel among the nodes, the time overhead only depends on the
longest branch in the virtual tree. On average, the magnitude of the time cost
of our algorithm should be approximately O(log m).

Although the algorithm we have mentioned so far doesn’t take into account
some of the critical issues in the overlay network routing, such as fan-out degree
limitation and diverse QoS provisioning, it’s almost a trivial work to enhance the
simplest version to support these different functions. In order to limit the fan-out
degree of each overlay node, we can just forbid those nodes, who have already
run out of free fan-out degrees, to accept any node as their new child without
relocating any of their current child nodes. As far as QoS diversity is concerned,
we only need to block the message propagation at those nodes that are incapable
to provide sufficient QoS service to the new node. Fortunately, all these different
limitations imposed on our algorithm doesn’t change its overhead significantly.
According to the methods we have described above, it’s easy to infer that the
message cost and the time cost is kept at the same order of magnitude.

5 Evaluation

In this section, we evaluate the proposed DIRA algorithm using simlations. The
goal of our simulations is to evaluate the performance of our algorithm in terms
of the following metrics:

1. Cost of the whole tree
2. Average latency of each node

The algorithms we adopt for comparison include the IIA[9] and the PIM[10].
As we have mentioned in section 2, IIA has a common goal as ours. However
it only tries to insert the new node into the tree without adjusting the existing
topology. Therefore, we regard it as an upper bound benchmark for tree cost. On
the other hand, PIM is a popular multicast protocol for the multicast-enabled
network. Thus we consider it as a lower bound for our algorithm. One thing all
these algorithms have in common is that they follow an incremental approach
in the tree building process.
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5.1 Simulation Setup

In order to generate a network model for the Diffserv domain, we first cre-
ate a network that only consists of the core nodes according to the Waxman
approach[11]. Next we add the edge nodes into the graph in a similar way. Each
edge node is connected to the core network by no more than 2 fanout links. After
all edge nodes are connected to the core network, the edge links are built between
them. The number of the edge links is given as a parameter and their positions
are chosen randomly. While generating the topology in a random style, this ap-
proach avoids the situation, where some edge node stands in the way between
another pair of edge nodes.

The topology we use in this section has 100 nodes that include all edge
nodes and core nodes. In each simulation scenario, we obtain the final result
through the average value of 1000 sample tests. To evaluate the performance of
our algorithm in different network environments, we repeat our simulations in
the following two different network scenarios:

1. 30% of the nodes are edge nodes
2. 50% of the nodes are edge nodes

In each sample session, one edge node serves as the source while all other
edge nodes play as members. That means in scenario 1 the overlay tree consists
of 30 nodes while in scenario 2 the tree comprises 50 nodes.

5.2 Simulation Results and Discussions

In each of the above scenarios, we measure the three algorithms (DIRA, IIA,
PIM) along with their modified version (DIRA*, IIA*, PIM*) for comparison.
Here DIRA* and IIA* have taken into account the degree limitation such that
each physical link between an edge node and a core node can never carry more
than 3 overlay traffic flows in the same direction in one session. PIM* is a
modified version of PIM, where an edge link is not used for tree construction
unless it connects a new node to the tree directly. All these diverse versions of
algorithms allow us to have a better understanding of the performance of the
algorithms under different limitations.

According to assumption 1, one feature of our algorithm is to take advantage
of the edge links to generate the overlay tree at a cost as low as possible. There-
fore, our first simulation aims to find the relationship between the tree cost and
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the percentage of the edge links among all physical links. We show the simulation
results for all six algorithms in Fig. 4 for the two scenarios respectively.

From Fig. 4,we can infer that the performance of DIRA is better than that
of IIA in terms of tree cost and approaches that of PIM as the percentage of the
edge links increases. We also observe that as an increasing number of edge links
are built within the network, the degree limitation for edge nodes makes little
difference in tree cost. In addition, we notice that the curve of PIM* changes
slowly in comparison with other curves. It means that PIM* makes little use
of the edge links for cost reduction. Thus we should believe that PIM won’t
work well in a Diffserv domain, where the edge links are not open to public
usage.

Comparing these two figures, we find that the result in scenario 2 is not so
satisfying as that in scenario 1. This observation leads to another simulation,
which measures the tree cost based on the change of the ratio of the edge links
to the edge nodes. We show the results in Fig. 5.

Without regard to the extra overhead introduced by different topology set-
tings, the curves here in scenario 1 and scenario 2 have a similar trend in the
change of the tree cost. This similarity indicates that the ratio of the edge links
to the edge nodes is a dominant factor for the tree cost.

The average latency for the edge nodes in each of the simulations above is
presented in Fig. 6. It is interesting that all these figures also lead us to the same
conclusions we have obtained above.



344 X. Chen, H. Shao, and W. Wang

6 Conclusion

In this paper, we proposed the notion of using DIRA to construct an overlay
multicast tree within a Diffserv domain to support QoS-aware multicast appli-
cations. In our algorithm, we assume that some edge links are built between the
edge routers to reduce the traffic cost between the connected nodes. Through
these edge links, DIRA builds the tree efficiently while keeping the physical links
less burdened.

The focus of this paper is DIRA. DIRA is designed as an overlay multicast
routing algorithm, whose goal is to find an overlay tree spanning all member
nodes at a cost as low as possible. To achieve this objective, DIRA computes
the best access point for the new coming member in a distributed manner and
keeps a candidate parent in each member node. These mechanisms makes DIRA
not only efficient but also resilient.
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Abstract. To load balance in Internet, we need more valid routing paths to share 
load in the case of no long-term routing loops to be introduced. It is 
acknowledged to adopt near or relaxed best routing to extend the number of 
available paths in multi-path routing. However, it is difficult to determine the 
degree of approximation or relaxed. A new distributed algorithm (which is called 
similarity multi-paths routing, SMR) for the dynamic computation of multiple 
paths from source to destination in a computer network is presented in this paper. 
SMR uses similarity principle to computes similarity coefficient between the 
shortest path and other paths, and then makes use of similarity coefficient to 
estimate the degree of approximation. Simulations show us it is robust for SMR 
to select near or relaxed best paths. Based on SMR, we also propose a traffic 
balancing algorithm. Its average performance is analyzed by simulation and 
compared against Equal Cost Multi-path (ECMP). 

Keywords: Similarity, Multi-Paths Routing, Traffic split, Load Balancing. 

1   Introduction 

Most of the routing solutions to date are unsuitable for load balancing. The current 
Internet routing architecture is rather straightforward: within individual Internet 
domains, all links are assigned link costs, which are used as a basis for the calculation 
of network paths. Paths between any two nodes in the domain are determined by 
minimizing the sum of link costs over all path candidates. But, in most operational 
networks, the link cost values are usually kept static for several hours or days, however 
traffic always takes the same path from source to destination, even if other uncongested 
paths exist. This may lead to unbalanced utilize networks. 

In order to solve this problem, many approaches have been developed. One is the 
global optimization of link costs for a given traffic matrix [2]. This method enables 
performance gains in operational networks, but unfortunately the optimization problem 
is NP-hard and thus heuristic methods must be employed. 

In contrast to shortest/best routing, many papers show that multi-path or adopting 
backup route can balance the network’s loading and improve performance [1,2,3,4,5]. 
For example, the Equal Cost Multipath (ECMP) [3] offers a router multiple choices for 
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packet forwarding when those choices offer the minimum distance. However, when 
there is fine granularity in link costs metric, as in the case of optimal routing, there is 
less likelihood that multiple paths with equal distance exist between each 
source-destination pair, which means the full connectivity of the network is still not 
used for load-balancing. So Optimized Multi-path (OMP) [4, 5] and many papers [3,7] 
trend to adopt near or relaxed minimum distance to extend the number of available 
paths. But the problem is how to determine the degree of approximation or relaxed to 
the best path. If it is too small, it is just the shortest paths. Otherwise, long-term routing 
loops can occur, causing routing instability with the risk of oscillation. 

In this paper, we described a load-balancing routing framework to obtain 
“near-optimal” performance. A key component of the frame is SMR (Similarity 
Multi-Paths Routing). SMR extends the number of available paths using similarity 
principle to determine the degree of approximation or relaxed to the best path. It selects 
multiple successor choices for packet forwarding, and the routing graphs implied by the 
routing tables are DAGs (directed acyclic graphs) in SMR. By load-balancing traffic 
over these multiple next-hop choices, congestion is alleviated, and delay is significantly 
reduced. 

The remainder of the paper is structured as follows: Section 2 introduces the 
elements of the SMR algorithm. Section 3 presents a number of simulation results. 
Section 4 concludes the paper with summarizing remarks. 

2   Load Balancing Based on SMR 

2.1   Problem Formulation 

A network is modeled as a graph ),( LNG = , where N  is set of nodes (routers) and L  

is the set of edges (links). Let iN  be the set of neighbors of node i . The problem 
consists of finding the successor set at each router i  for each destination j . The 

successor set includes two sub-sets: primary successor set, denoted by ii
j NS ⊆ , which 

provides the shortest/best path for destination j . And the secondary successor set, 

denoted by ii
j NS ⊆' , which provides the near shortest/best paths for destination j . 

When router i  receives traffic load for destination j  , it can split traffic proportionally 

among the neighbor routers in the successor set i
j

i
j SS 'U . By repeating this operation at 

every router, the traffic is expected to reach the destination. If the routing graph i
jSG  

implied by i
jS  and i

jSG '  implied by i
jS ' , respectively, a directed acyclic sub-graph of 

G  is defined by the directed link set },,|),{( NmSnimnm m
jinit ∈∈= , where 

initm is the 

first node of DAG, a traffic load destined for j    follows multiple paths in i
j

i
j SS 'U . 

2.2   Algorithm of SMR 

1) SMR Overview: SMR use the method called diffusing computations suggested by 
Dijkstra’s [9] to spread routing messages. In a word, given a DAG, each node updates 
its routing table based on messages reported by the “downstream” nodes and reports its 
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routing information to “upstream” nodes. Nodes exchange routing messages with its 
neighbors periodically. 

When a node receives all routing messages about a destination from its neighbors, it 
computes the shortest path using these routing messages firstly. Then, according to 
loop-free invariant (LFI) conditions [11], it eliminates paths which loop with the 
shortest path. Lastly, it selects several paths among the paths left as secondary routing 
based on similarity principle. 

In order to judge whether a path is similar to the shortest path, SMR uses similarity 
coefficient to describe the similar degree. Simulations results show that it is relatively 
easy to determine the degree of approximation or relaxed to best path. 

2) Computing of the Shortest Path: Given that there are many potential paths for a 
given destination in a graph, a question arises as to which path must be used? The 
natural choice is the one defined by the shortest paths. SMR defines i

jD   as the shortest 

length of a DAG denoted by routing graph i
jSG , and is  measured (metrics) as the 

weighted average of the hops and the average costs of the links on the shortest path in 
i
jSG , and denoted by as following. 

i
j

i
ji

j
i
j

h

C
hD ⋅−+⋅= )1( ββ  (1) 

i
jh  is the hops of the shortest path for j  in i

jSG , and i
jC  is the sum of costs of the links 

on the shortest path in i
jSG . Here, SMR uses hops to avoid routing vibration. The value 

of β  is decided by experience at present, usually between 0.4 and 0.5. 

The cost of link is denoted by a link performance parameter—normalized queue 
length [8]. Let i

kjQ ,
 is the mean length of sub-queue from i  to j  passing by k  in a fixed 

statistic interval, and i
kjBW ,

 is the bandwidth from i  to j  passing k . normalized 

queue length i
kjq ,
 is defined as following:  

i
kj

i
kji

kj BW

Q
q

,

,
, =  (2) 

The sum costs of the shortest path from i   to j  passing k  ( denoted as i
kjC ,
 ) is that 

of neighbor k  to j  as reported by k  to i  add i
kjq ,
, defined as follows: 

i
kj

k
j

i
kj qCC ,, +=  (3) 

And then SMR can get the length of a DAG from i    to j  passing k  (denoted as i
kjD ,
) 

is formulated by: 

i
kj

i
kji

kj
i

kj
h

C
hD

,

,
,, )1( ⋅−+⋅= ββ  (4) 

i
kjh ,

 is the hops the shortest path from i  to j  passing k . So we can define 
ii

kj
i
j NkDD ∈= ),min( ,

, and get the successor set },|{ ,
ii

j
i

kj
i
j NkDDkS ∈≤= . 
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According to diffusing computations, to compute i
jD  in a DAG, each node 

computes its length using length reported by the “downstream” nodes and reports its 
length to “upstream” nodes. 

3) Loop-free Multi-paths: The shortest length routing graph i
jSG   implied by i

jS  is the 

primary multi-path. In order to balance traffic load, SMR need more valid multi-paths. 
SMR also defines the routing graph i

jSG '   implied by i
jS ' is called the secondary 

multi-paths. The paths included in i
jSG '  are approximate or relaxed to the shortest path 

in i
jSG . Furthermore, i

j
i
j SGSG 'U  must be a DAG. 

To ensure i
j

i
j SGSG 'U is a DAG, We generalize the work to date on loop-free routing 

over single paths or multiple paths by means of the following loop-free invariant (LFI) 
conditions, which are applicable to any type of routing algorithm. We modify the 
terminology and nomenclature first introduced for DUAL[11], and describe the LFI 
conditions as follows. 

Loop-free Invariant (LFI) Conditions: Any routing algorithm designed such that the 
following two equations are always satisfied, automatically provides loop-free paths at 
every instant, regardless of the type of routing algorithm being used:  

ik
ji

i
j NkDFD ∈≤ ,  (5) 

}|{' ii
j

k
j

i
j

i
j NkFDDkSS ∈∧<=U  (6) 

Where k
jD is the length reported to i  by its neighbor k ; and i

jFD  is called the feasible 

distance of routeri  for destination j  and is an estimate of i
jD , in the sense that i

jFD  

equals i
jD  in steady state but is allowed to differ from it temporarily during periods of 

network transitions. 

4) Computing of Similarity: assume there are many loop-free paths for a given 
destination reported by neighbors, which of them will be used as secondary routing? It 
is universally acknowledged that the paths with approximate cost to the shortest path 
should be adopted. But the problem is how to determine the degree of approximation. 
SMR tries to overcome this question by using similarity coefficient. 

To compute similarity coefficient, SMR needs several parameters to describe a path. 
Let i

kjP ,
denotes a path from i   to j  passing k . SMR uses a binary group ),( ,,

i
kj

i
kj Ch  to 

describe the path i
kjP ,

, where i
kjh ,
is the hop of this path and i

kjC ,
is the cost of the path 

from i  to j  passing k  as stated above. Then SMR makes ),( ,,
i

kj
i

kj Ch  normalized, that 

means to make ]1,0[, ,, ∈i
kj

i
kj Ch . And let i

kjh ,' denotes the normalized value of i
kjh ,

, 
i

kjC ,' denotes the normalized value of i
kjC ,

. 

i
kj

i
j

i
j

i
j

i
j

i
kj

i
kj hhSSkhhh ,max,max,,, ',' ≥∧∈= U  (7) 

i
kj

i
j

i
j

i
j

i
j

i
kj

i
kj CCSSkCCC ,max,max,,, ',' ≥∧∈= U  (8) 
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Fig. 1. Algorithm of SMR 

Now SMR can define i
kjr ,

 as the similarity coefficient between i
kjP ,

 and i
jP  as 

follows, here i
jP  denotes the shortest path from i  to j , i

j
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i
j SkPP ∈= ,,

. 

i
j

i
kj
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Where c  and α  are parameters, the values of them make ]1,0[, ∈i
kjr . ),( ,

i
kj

i
j PPd  is 

various distance. In general, SMR adopts Minkowski distance, denoted as follows: 

i
j

ppi
kj
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i
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1
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i
jh' , i

jC ' is the hop and cost of path i
jP  respectively. When 1=p , ),( ,

i
kj

i
j PPd  is 

Hamming Distance, and when 2=p , it is Euclidean Distance. Both of them is usually 

00.procedure ProcessEntry( i, m, j, h, C) 
01.{i: thisnode, m: neighbor who send the message, j: destination, 

h: hops, C: cost} 
02.begin 

03. ;)1(
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configure in our simulations. SMR sets a similarity threshold ( rth ). If rthr i
kj <,

, which 

means the path i
kjP ,

 is not similar to the shortest path i
jP , SMR would not select i

kjP ,
 as 

secondary routing and let }{'' kSS i
j

i
j −= . If rthr i

kj ≥,
, i

kjP ,
 is similar to i

jP . When there 

are no many paths to select, such as in low connectivity network, set 5.0=rth , other 
wise, in high connectivity network, set 75.0=rth . 

5) Algorithm of SMR: In SMR, every router usually uses primary multi-path routing. 
Only when the traffic load increases greatly, such as greater than a threshold Lth , node 
begins discovery secondary multi-paths to share load. In order to describe the degree of 
load, SMR introduces a parameter i

jρ  called load coefficient. It defined as: 

i
j

i
ji

kj

i
ji

j SSk
BW

V
',

,

U∈=ρ  
(11) 

Here, i
jV  specializes the mean import traffic load for destination j  through i  in a 

fixed statistic interval, and i
kjBW ,

 be the available bandwidth from i  to j  passing k . 

When Lthi
j >ρ , here, Lth  is a load threshold ( usually between 0.9 and 1.1 ), SMR 

begins discovery secondary multi-paths to share load. Nodes executing SMR exchange 
information using messages periodically. Every message can have one or more entries. 
An entry is of the form }{ j,h,C , where j  is destination, h is the hops and C is the sum 

costs of the shortest path form the node sending the message to destination. Nodes 
invoke the procedure ryProcessEnt  shown in Fig.1 to process entries. In this 

algorithm, the parameters of similarity coefficient formula (9) are specified as 
5.0,5.0 == αc , and ),( ,

i
kj

i
j PPd  is specified as Hamming Distance. 

2.3   The Algorithm of Load Balancing 

We improved the adaptive traffic distribution model in Ref. [10] as follows. 

1) Link Cost: In traffic split, we will use the cost of the link defined by formula (2). 
2) Path Cost: The cost of the path from i  to j  pass k (denote as i

kjC ,
) is that of 

neighbor k  to j  as reported by k to i  add i
kjq , , defined as formula (3). 

3) Traffic Split for Load Balancing: The ideal of distributing traffic proportionally 
among multi-paths is adopted. The goal of traffic split is to make performance of 
multi-paths improved as much as possible. The problem can be come down to find a 
group optimal proportion 

k
jα  to minimize the sum of distances of all multi-paths, 

which is described as follows: 
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Obviously, this problem belong to non-linear optimize. The procedure of computing 
the optimal proportion is generally quite complex to implement in practice. To 
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circumvent this problem, we consider one alternative strategy: Equalizing Path Cost. 
The objective of this strategy is to find a group of proportions, and make the cost of all 
multi-paths equal. 

SMR first computes the mean cost i
jC  over all multi-paths. 

i
j
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j

i
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i
jV
 
is the traffic load of node i  for j  in a fixed statistic interval. And then, SMR can 

obtain the proportion 
k
jα  in a interval: 
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3   Simulations and Analysis 

3.1   Simulation Environment 

Simulation includes two environments. One is shown in Fig.2(a), which has three 
sources (S1, S2, S3) and one destination (node 5). 

 

(a) The simple topology     (b)The complex topology 

Fig. 2. The topology of simulation 

The other environment is shown in Fig.2(b). The topology is more close to practical 
network. For simplicity, all the links are assumed to be bidirectional and of the same 
capacity. There are five source nodes (1, 5, 13, 14, 18), the destination node is chosen 
randomly from the other four source nodes. Using these two topologies, we will 
compare the performance of SMR and ECMP in load balancing. And evaluate the 
robust of SMR. 

The simulation is mainly to demonstrate algorithms, and drops a lot of details of the 
realization of the protocol. 
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3.2   Comparing SMR with ECMP 

First, we compare the ability of 
SMR and ECMP on load balancing. 

Simulation (1): using the topology 
in Fig.2(a), The link(3,4), link(6,5) 
and link(8,7) are focuses. The queue 
delay curves of them increase 
continually in ECMP, but become 
smooth comparatively in SMR. 
That is due to SMR can adopts 
secondary multi-paths sharing the 
load in time. For example, in SMR, 
node 3 adopts paths {(3,4),(4,5)} 
and {(3,6),(6,5)} simultaneity. But 
in ECMP, because there is less 
likelihood that multiple paths with 
equal distance exist between each 
source-destination pair, node 3 can 
only adopt path {(3,4),(4,5)} and 
{(3,6),(6,5)} alter- nately, which 
can be seen from the waving of 
curves as shown in Fig.3. The 
waving of queue delay of links is 
disadvantageous for ECMP to 
provide QoS. 

On the other hand, the trend  
of congestion is constrained in 
SMR. Usually, the traffic load 
hindered in network will increase 
greatly when congestion takes 
place. The traffic load hindered is 
the sum of mean traffic load which 
have not been forwarded and stay 
at export queue of nodes in a fixed 
statistic interval all over the 
network. The quantity of traffic 
load hindered in network of SMR 

and ECMP are shown in Fig.4. It can be seen that the quantity of traffic load hindered 
of SMR goes up slowly and begins to go down. But the traffic load hindered of ECMP 
rises continually with waving of curve, which tells us the trend of congestion in 
ECMP grows gradually. 

Through simulation (1), we can conclude rough that the SMR is more valid than 
ECMP on load balancing and resolving congestion. 

 

(a) Queue delay of link (3,4) 

 

(b) Queue delay of link (5,6) 

 

(c) Queue delay of link (8,7) 

Fig. 3. Queue delay of links in simulation (1) 
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3.3   Analysis on the Robust of SMR 

The analysis of the robust includes 
two sides: one is the adaptability of 
SMR to deal with the changing of 
environment; the other is the range 
of the value of similarity threshold. 

Adaptability Analysis: to evaluate 
the adaptability of SMR, the cost of 
the shortest path is set as traffic 
aware or unaware, and both simple 
and complex topologies are used. 

Simulation (2): still using the 
topology of Fig.2(a), set 0.1=β  in 
formula (1), which is similar to the 
case of the link cost values usually 
keeping static (traffic unaware) in 
some networks. In simulation (2), 
the computing of the shortest path 
is decided by hops both in SMR 
and ECMP. But the simulation 
results are very different, as shown 
in Fig.5. 

In ECMP, according to hops, 
node 3 adopts paths {(3,4),(4,5)} 
and {(3,6),(6,5)} for destination 
node 5. node 8 adopts paths 
{(8,7),(7,5),} and {(8,6),(6,5),} for 
node 5. ECMP splits traffic 
averagely between two paths at 
node 3 and 5 respectively, which 
results in a half of the traffic load 
of node 3 and 5 going through 
link(6,5). So the queue delay of 
link(6,5) rises quickly as shown in 
Fig.5(b). 

In addition, node 1 can only 
forward packets through node 3 
because the path passing node 2 

has more hops, which results in link(1,3) congesting gradually, see Fig.5(a). But in 
SMR, node 1 selects node 2 and 3 as successors simultaneity based on similarity 
coefficient, the curve of queue delay of link(1,3) decreases quickly after a peak 
(Fig.5(a)). And SMR splits traffic proportionally according to performance of paths at 
node 3 and 5. The curve of link(6,5) in Fig.5(b) becomes smooth compared to that of 
ECMP. 

 

Fig. 4. Comparing traffic hindered in simulation (1) 

 

(a) Queue delay of Link (1,3) 

 
(b) Queue delay of Link (6,5) 

Fig. 5. Queue delay of links in simulation (2) 
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Finally, we compare the traffic 
load hindered in SMR and ECMP. 
The results are similar to 
simulation (1), as shown in Fig.6. 
The curve of SMR goes up slowly 
and causes congest lightly. But the 
traffic load hindered in ECMP rises 
continually, which just illuminates 
congest having taken place. 

Simulation (3): in order to prove 
the adaptability of SMR further, 
the topology of Fig.2(b) is used. 
Still set 0.1=β  in formula (1), 

Compared to Fig.2(a), the 
topology of Fig.2(b) is closer to 
practical network, and more 
complex, in which multi-paths are 
easier to be found. In this 
environment, long-term routing 
loops may occur. To avoid 
long-term routing as soon as 
possible, we set similarity 
threshold 75.0=rth  not 5.0=rth  
such as in simulation (1) and (2). 

Simulation (3) shows us that the 
problem lies in link(9,13). As 
shown in Fig.7, the queue delay of 
link(9,13) in ECMP increase 
continually. The reason of 
congestion is similar to that of 
link(6,5) in simulation(2). Because 
the paths from node 1, 5 to node 13 
are {(1,2), (2,9), (9,13)} and 
{(5,7), (7,9), (9,13)}, both of them 
pass through link(9,13). And 
because the paths from node 14, 18 
to 13 all pass node 17, there are 

two paths to node 13 at node 17, they are {(17,15), (15,13)} and {(17,9), (9,13)}. 
ECMP divide traffic somewhat evenly at node 17, which results in a majority of traffic 
for node 13 goes through link(9,13). 

But in SMR, node 17 splits traffic reasonably according to paths performance. Thus, 
the congestion of link(9,13) is eliminated successfully, and its queue delay becomes 
smooth comparatively, as shown in Fig.7. 

Fig.8 shows us the comparing of traffic load hindered of SMR and ECMP in 
simulation (3). The advantage of SMR is obvious. The trend of congestion is resolved 
quickly. 

 

Fig. 6. Comparing traffic hindered in simulation (2) 

 

Fig. 7. Queue delay of link(9,13) in simulation (3) 

 

Fig. 8. Comparing traffic hindered in simulation (3) 
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Simulation (4): the only different 
between simulation (4) and (3) is 

5.0=β  in simulation (4), that 

means the selection of the shortest 
length path is traffic aware. ECMP 
works well considerably in 
simulation (4), there is no congest, 
and no problem link. SMR operates 
well also, the performance of some 
links are even better than that of 
ECMP, such as link(5,7), as shown 
in Fig.9. The queue delay of 
link(5,7) is the highest all over the 
network either in SMR or in ECMP. 
The performance of whole network 
is still compared by traffic hindered 
shown in Fig.10.  

Based on the results of four 
simulations above, it can be 
concluded: whether the shortest 
length of path is traffic aware or not, 
whether the topology is simple or 
complex, the adaptability of SMR is 
more powerful than that of ECMP. 

Analysis of Similarity Threshold: 
The range of the value of similarity 
threshold is decided mainly by the 
complexity of environment. 
However, it is difficult to 
distinguish the complexity of 
environment. Usually we consider 
the network with less than 10 nodes 
is simple environment, and with 
more than 10 nodes is complex. 

In sample environment, the 
similarity threshold can be set 
between 0.5 and 0.75. We often set 

5.0=rth  because there is little 
different when similarity threshold 
takes other values between 0.5 and 

0.75. And in complex environment, the similarity threshold can be set between 0.75 
and 0.9. We often set 75.0=rth  due to the same reason. 

Fig.11 and Fig.12 show the comparing of traffic hindered in environment of Fig.3. It 
can be seen that the performance of whole network is related to the range of value of 
similarity threshold. When Similarity threshold is between 0.75 and 0.9 as shown in 
Fig. 12,  the  performance of network is better than that of Fig.11. But if ]9.0,75.0(∈rth   

 

Fig. 9. Queue delay of link(5,7) in simulation (4) 

 

Fig. 10. Traffic hindered in simulation (4) 

Fig. 11. Traffic hindered with Similarity threshold
between 0.5 and 0.75 
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or ]75.0,5.0(∈rth , the value of rth  

effects the performance little. The 
curves in Fig.11 are similar, and 
the cures in Fig.12 are close also. 
On the other hand, whether the 
routing is traffic aware is not very 
important in SMR. As shown in 
Fig.11, the curves of 0.1=β  are 

near to that of 5.0=β  also. 

As what have been shown 
above, SMR has capacity to deal 
with the changing of environment, 
regardless of whether routing is 
traffic aware or not. And the value 
of similarity threshold does not 

require us to choice elaborately. So we think that SMR is robust compared to ECMP. 
Table 1 lists the main parameters of simulations. 

Table 1. The parameters of simulations (1)~(4) 

Simulation (1) (2) (3) (4) 
parameters ECMP SMR ECMP SMR ECMP SMR ECMP SMR 
topology Fig.2(a) Fig.2(a) Fig.2(a) Fig.2(a) Fig.2(b) Fig. 2(b) Fig. 2(b) Fig. 2(b) 

rth - 0.5 - 0.5 - 0.75 - 0.75 
 0.5 0.5 1.0 1.0 1.0 1.0 0.5 0.5 

Lth - 1.0 - 1.0 - 1.0 - 1.0 

4   Conclusions 

This paper concentrates on adopting Similarity Multi-path Routing (SMR) to realize 
load balancing. We apply SMR to load balancing, combine similar multi-paths routing 
to traffic split. This scheme adopts near or relaxed minimum distance to extend the 
number of available paths and split traffic load among them proportionally, so it can 
provide better performance than ECMP. Due to similarity principle are used, it is 
relatively easy and robust for SMR to determine the degree of approximation or relaxed 
to best path. In addition, the scheme adopts the distributed computing model, and has 
many properties such as: low costing, easily realization, highly efficiency and so on. In 
a word, it is a valid routing algorithm for load balancing. 
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Abstract. Mobile distributed real-time databases are needed in security-critical 
applications, e.g., e-commerce, stock trading system, and military applications. 
In these applications, mobile distributed real-time database systems have to 
simultaneously satisfy two requirements in guaranteeing data security and 
minimizing the deadline miss ratio for admitted transactions. Multilevel secure 
database system based on mandatory access control can prevent direct unlawful 
information flows between transactions belonging to different clearance levels. 
However, it cannot prevent the covert communications between transactions 
belonging to different clearance levels. This paper presents a secure hybrid 
optimistic real-time concurrency control protocol (SHORTCC). The protocol 
not only considers carefully the inherent characteristics of mobile environment 
and the timing constraints of time-critical applications, but also achieves data 
security without sacrificing real-time performance significantly. 

1   Introduction 

A mobile distributed real-time database system (MDRTDBS) is, in general, defined as a 
distributed real-time database system (DRTDBS) supported by a mobile environment 
[1], where an DRTDBS is defined as a distributed database system within which 
transactions and data have timing characteristics or explicit timing constraints and the 
system correctness depends not only on the logic results, but also on the time at which 
the logic results are produced. The timing constraints of transactions in an MDRTDBS 
are typically specified in the form of deadlines that require a transaction to be completed 
by a specified time. For soft real-time transactions, failure to meet a deadline can cause 
the results to lose their value, and for firm or hard real-time transactions, a result 
produced too late may be useless or harmful. In an MDRTDBS, transactions are given 
priorities which are used when scheduling transactions and resolving data conflicts. The 
priority assigned to a transaction is directly related to the deadline of the transaction. For 
instance, transactions are assigned priorities that are directly proportional to their 
deadlines in Earliest Deadline First (EDF) assigning policy. The transaction with the 
nearest deadline gets the highest priority. Owing to the inherent characteristics of 
mobile environment, such as mobility, frequent disconnection and high delay of 
wireless network etc., it will became more difficult for mobile real-time transactions to 
meet their timing constraints. 
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MDRTDBS is usually applied to the safety-critical applications, e.g., e-commerce, 
stock trading systems and military systems. In these applications, transactions and 
data items can be classified according to their clearance and sensitivity levels, and it is 
essential to prevent unlawful information flows between different security levels. 
Conventional mobile real-time database systems mainly focus on minimizing the ratio 
of mobile real-time transactions missing their deadlines, and don’t consider the secure 
requirements of the safety-critical applications. Most secure database systems have 
access control mechanisms based on the Bell-LaPadula model, which is specified in 
terms of subjects and objects [2]. An object is a data item, whereas a subject is an 
active process, i.e., a transaction in databases, which requests access to an object. 
Each object in the system has a classification level (e.g., Top Secret, Secret, 
Classified, Public, etc.) based security requirements. Similarly, each subject has a 
corresponding clearance level based on the degree to which it is trusted by the system. 
According to Bell-LaPadula model, a transaction can read an object only if the 
transaction’s clearance level is equal to or higher than the object’s classification level, 
and a transaction can write an object only if the transaction’s clearance level is equal 
to or lower than the object’s classification level. 

The Bell-LaPadula access restrictions can prevent direct unlawful information 
flows between transactions belonging to different clearance levels. However, it is not 
sufficient to prevent indirect unlawful information flows, called covert channels [3], 
in which transactions can conspire for an illegal inter-level information transfer. For 
example, if a low clearance level transaction T1 requests access to an exclusive 
resource (e.g., lock), which has already been held by a high clearance level 
transaction T2, T1 will be delay. The presence or absence of the delay can be used to 
encode information by T2 that is conspiring to pass on information to T1. 

Covert channels based on data and resource can be prevented by improving the 
non-secure concurrency control strategy. When inter-level data conflict which occurs 
between transactions belonging to different clearance levels happens, the system 
guarantees favoring low clearance level transaction in the conflict resolution. In this 
strategy, low clearance level transactions can’t know the presence of high clearance 
level transactions, i.e., no covert channel. However, this may violate the timing 
constraints, thereby resulting in increasing the deadline miss ratio. In the above 
example, suppose that T1 has a low priority, and T2 has high priority. When data 
conflict happens between T1 and T2, the high priority transaction T2 will be aborted 
for security purposes. Whereas, for real-time purposes, the low priority transaction T1 
should have been blocked in order to favor the high priority transactions. A secure 
mobile distributed real-time database system (SMDRTDBS) has to simultaneously 
satisfy the two goals of ensuring the timing constraints are satisfied and the security 
constraints are satisfied. However, these two goals can conflict with each other and to 
achieve one goal is to sacrifice the other, so the concurrency control strategy must 
make a tradeoff between these two goals according to the application requirements. 

In recent years, many real-time concurrency control protocols have been put 
forward to meet timing constraints of transaction, such as DHP2PL [4], Priority 
Ceiling [5], and real-time concurrency control method based on similarity [6] etc. 
These protocols all consider carefully timing constraints of transactions, but don’t 
take into account the security constraints and the characteristics of mobile 
environment. The research on secure real-time concurrency control protocols aimed at 



360 Y. Xiao et al. 

mobile environment is very infrequent. The current researches on secure real-time 
concurrency control protocols are mainly based upon centralized database systems or 
distributed environment [7][8][9][10], and don’t combine the characteristics of mobile 
environment. This paper presents a secure hybrid optimistic real-time concurrency 
protocol (SHORTCC) on the basis of the proposed mobile real-time transaction-
processing model. The SHORTCC combines optimistic concurrency control with 
high priority two-phase locking in mobile real-time transaction processing, and 
introduces the notion of similarity in order to minimize the number of missed 
transaction deadlines. In the validation-commitment phase, the security check is 
executed. If exists the possibility of violating the security constraints, the decision of 
blocking or aborting the validating transaction is made by comparing the total severity 
degrees of violating the security constraints, which are caused by blocking the 
validating transaction, with the total severity degrees of violating the timing 
constraints, which are caused by aborting the validating transaction. 

The rest of the paper is organized as follows. Section 2 describes secure control 
factors and real-time control factors. In section 3 we describe our mobile distribute 
real-time database system model. Section 4 presents our mobile real-time transaction-
processing model. Section 5 presents our secure hybrid optimistic real-time 
concurrency control protocol. Simulation results are given in Section 6. Section 7 
concludes the paper. 

2   Secure Control Factor and Real-Time control Factor 

In the following depiction, we use CL(T) to denote the clearance level of the 
transaction T, P(T) to denote the priority of T, ST to denote the set of transaction in 
the system. 

Definition 1. ∀  Ti, Tj ∈  ST, if exist a pair of conflict operations which belong to Ti 
and Tj respectively, we define Ti and Tj as a pair of conflict transactions, notated by Ti 
CF Tj. 

Definition 2. Suppose Ti ∈  ST, ST1 ⊆  ST. If the following condition is met: 

∀ Tj ∈  ST1 (Ti  CF  Tj ) 
ST1 is said to be the Conflict Set of Ti, notated by CS(Ti). 

Definition 3. Suppose Ti ∈  ST, ST2 ⊆  ST. If the following condition is met: 

( ∀  Tj ∈  ST2 (Ti  CF  Tj )) ∧ ( ∀  Tj ∈( ST− ST2) ( ¬  (Ti  CF  Tj ))) 
ST2 is defined as the Maximal Conflict Set of Ti , notated by MCS(Ti). 

Definition 4. We define | f (CL(Ti))− f (CL(Tj)) | as Clearance Difference Degree of 
between Ti and Tj, notated by CDD(Ti, Tj). Where f is a mapping from the set of 
different clearance levels to the set of natural number. 

Definition 5. We define |P(Ti) − P(Tj)| as Priority Difference Degree of between Ti 
and Tj, notated by PDD(Ti, Tj). 

Definition 6. Suppose Ti ∈  ST, MCS1(Ti) ⊆  MCS(Ti). If the following condition is 
met: 
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( ∀ Tj∈  MCS1(Ti) (CL(Tj) > CL(Ti))) ∧ ( ∀  Tj∈( MCS(Ti) − MCS1(Ti)) (CL(Tj) ≤  
CL(Ti))) 

MCS1(Ti) is defined as the High Clearance Maximal Conflict Set of Ti , notated by 
HCMCS(Ti). 

Definition 7. Suppose Ti ∈  ST, MCS2(Ti) ⊆  MCS(Ti). If the following condition is 
met: 
( ∀ Tj ∈  MCS2(Ti) (P(Tj) < P(Ti))) ∧ ( ∀  Tj ∈ ( MCS(Ti) − MCS2(Ti)) (P(Tj) ≥  
P(Ti))) 

MCS2(Ti) is defined as the Low Priority Maximal Conflict Set of Ti, notated by 
LPMCS(Ti). 

Definition 8. We define 
∈HCMCS(Ti) Tj

( | f (CL(Ti))− f (CL(Tj)) | ) as Clearance 

Difference Degree of between Ti and HCMCS(Ti), notated by CDD(Ti, HCMCS(Ti)). 
The value of CDD(Ti, HCMCS(Ti)) reflects the total severity degrees of violating 

the security constraints caused by blocking Ti in the conflict resolution. CDD(Ti, 
HCMCS(Ti)) is said to be secure control factor of Ti . 

Definition 9. We define 
∈LPMCS(Ti) Tj

( | P(Ti)− P(Tj) | ) as Priority Difference Degree 

of between Ti and LPMCS(Ti), notated by PDD(Ti, LPMCS(Ti)). 

The value of PDD(Ti, LPMCS(Ti)) reflects the total severity degrees of violating 
the timing constraints caused by aborting and restarting Ti in the conflict resolution. 
PDD(Ti, LPMCS(Ti)) is said to be real-time control factor of Ti . 

3   Mobile Distributed Real-Time Database System Model 

A typical MDRTDBS consists of the mobile hosts (MHs), the fixed hosts (FHs), the 
location server (LS), the mobile support base stations (MSSs), high speed fixed 
network and mobile network. The FHs, LS and MSSs are connected by high speed 
fixed network. Each FH and MSS has a database server that manages the relevant 
database. The LS is responsible for managing and tracking the status and current 
location of each MH. The mobile network is assumed to be a radio cellular network. 
Each MSS has a wireless communication interface and serves a cell site, which covers 
a definite geographical area in which MHs can communicate with the MSS. All 
database servers form a distributed database system together to support the mobile 
distributed real-time transaction processing. MHs have local database functionality 
and support local transactions processing. MHs can transparently accesses the 
distributed database located at the fixed network via the MSSs. In this paper, we call 
FH and MSS uniformly as FDS (fixed database server). 

As a component of a distributed database system, each MSS also act as a 
coordinator of the mobile transactions. It receives operations of mobile transactions 
from MHs, transmits the operations to the relevant FDS, and supervises the 
executions and commitments of the mobile transactions. At the same time, it feeds 
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back the results of executions to the MHs. Each MH can move freely within a cell site 
or between cell sites. Owing to the limit of the energy and the cost of communication, 
MHs often disconnects voluntarily. After the MHs renew to connect, they may retake 
the result transmitted by the MSS and continue to transmit the latter operations. The 
LS records the current location of each MH. The coordinator of the mobile 
transactions can obtain the current location of the MH through querying the LS. 
Thereby, the result of a transaction execution can be transmitted to the correct MH. 

In order to meet the deadlines of mobile real-time transactions, our MDRTDBS 
adopts a Main Memory Database (MMDB) as its ground support. In an MMDB, the 
“working copy” of the database is placed in the main memory and the “secondary 
copy” of the database on disks serves as backup. An MMDB can eliminate disk I/O 
during a transaction execution by certain data exchange policy. 

4   Mobile Real-Time Transaction Processing Model 

A mobile real-time transaction (MRTT) is a real-time transaction that is initiated by 
an MH, and a real-time transaction T is defined as a 3-tuple: T ::= (O, C, <), where 
O::= the operation set of T ; C::= the timing constraints of T; < ::= the temporal 
ordering of O. 

An MRTT initiated by an MH is firstly preprocessed by the MH to extract the 
deadline and information of data that will be accessed by the MRTT, to establish the 
operations requests of the MRTT based on the order of execution, and then orderly to 
transmit these operations requests to the corresponding MSSs. 

Due to the mobility of an MH, the processing of an MRTT may involve several 
MSS. An MRTT begins with the operation of BEGIN MTID where MTID represents 
the identification of the MRTT. We designate the MSS received an operation of 
BEGIN MTID as the coordinator of the relevant MRTT, and the other MSSs at which 
some operations of the MRTT will be executed as participators of the corresponding 
MRTT. Usually, an MSS is a coordinator of some MRTTs and also a participator of 
some other MRTTs. When a coordinator receives an operation of BEGIN MTID, it 
stores MTID in its transaction queue and broadcasts the message of (MTID, 
MADDR). Here, MADDR stands for the network address of the coordinator. Other 
MSSs received this message store the message in their Route Table (ROT). 

An MSS maintains two kinds of transaction operation queues: CTOQ (Coordinator 
Transaction Operation Queue) and ETOQ (Executor Transaction Operation Queue).  
When the coordinator of an MRTT receives a data operation, it inserts the operation 
into its CTOQ if possible for it to perform this operation, or dispatches the operation 
to some participator based on a scheduling strategy. When an MSS as a participator 
receives an MRTT’s operation, it stores the operation in its ETOQ and sends the 
message of (MTID, N, MADDR) to the coordinator by querying the ROT, where N is 
the order number of the operation. The coordinator inserts the message of (MTID, N, 
MADDR) into its CTOQ orderly. Therefore, a CTOQ covers two types of information 
of the MRTT operations: actual operations themselves, and the message (MTID, N, 
MADDR), which represents an operation with order number N to be performed at the 
participator with network address MADDR. 
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For an MRTT, each related FDS (coordinator or participator) creates an agent 
subtransaction for the MRTT. All the agents on an FDS form the local transactions set 
processed and controlled by the relevant database server. 

5   Secure Hybrid Optimistic Real-Time Concurrency Control 
Protocol 

5.1   Introduction of Similarity 

The traditional conflict serializability criterion is no longer suitable in a real-time 
database system. We relax the criterion in our secure hybrid optimistic real-time 
concurrency control protocol (SHORTCCP) by introducing the data similarity and 
operation similarity. 

Definition 10. For data object D, suppose V1(D) and V2(D) are two values of D. If the 
distance between V1(D) and V2(D), notated by DIS (V1(D), V2(D)), meets the 
condition: 

DIS (V1(D), V2(D)) ≤  σ  

V1 (D) and V2 (D) are said to be similar, notated by V1(D) V2(D). Whereσ  is the 
threshold that depends on the application semantics, and 

DIS (V1(D),V2(D)) = |g(V1(D)) – g(V2(D))| 

Where g is a mapping from the domain of D to the real number space. 

Definition 11. Suppose that OPi and OPj are two operations of concurrent transactions 
Ti and Tj on the same data object D, respectively. If VOPi(D)  VOPj(D), then 
operations OPi  and  OPj  are said to be similar, notated by OPi OPj. Where VOPi (D) 
and VOPj (D) are the values of D produced by the OPi  and  OPj, respectively. 

Definition 12. Assume that the operations OP1, OP2 ,…, OPn  of  concurrency 
transactions T1, T2 ,……,Tn act on the same data object D, and VOP1 (D), VOP2 (D), 
……, VOpn (D) are respectively the values of D that are produced by the operations 
OP1, OP2 ,……, OPn . If the following conditions is met: 

∀  VOpi (D), VOPj (D)∈{VOP1 (D), VOP2 (D), …, VOpn (D) }, DIS (VOPi (D), VOPj (D)) 
< σ  

we define that the operation set {OP1, OP2, …, OPn } is similar. 

Definition 13. Let SDi and SDj be two different states of the database DB, if the 
following condition is held: 

∀ D∈  DB ( ∃ Vi(D)∈SDi, Vj(D)∈SDj  (Vi(D) Vj(D)) 

then SDi and SDj are referred to as similar, notated by  SDi SDj. Where Vi(D) and 
Vj(D) are the values of D in SDi and SDj, respectively. 
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Definition 14. Let SCHa be any schedule for a transaction set ST = {T1, T2, …, Tn} 
and SDa be the states of the database produced by  SCHa. Iff 

∃  SCHb   (SDa SDb ) 

hold, SCHa is called a similar serializable schedule, where SCHb is any serial 
schedule for ST and SDb is the database state produced by SCHb. 

5.2   Concurrency Control Protocol 

An MRTT execution is divided into two phases: optimistic execution and validation-
commitment. During the optimistic execution phase, all the subtransactions of an 
MRTT are distributed and optimistically executed on its participator FDSs. Once 
entering the validation-commitment phase, each of these FDSs triggers a base 
transaction for validating consistency, security constraints and committing the data 
locally, replacing the subtransaction. With the support of an MMDB, these base 
transactions have no I/O in their executions. Thus the execution time of a base 
transaction is decreased greatly, and so is the time for a base transaction to hold locks.  

An optimistic subtransaction OPST is a 5- tuple: OPST::=(PID, TID, P, O, C), 
where PID stands for the ID of MRTT; TID denotes the ID of this subtransaction; P 
denotes the sequence of the operations of OPST; O denotes the data set to be 
accessed; C denotes the timing constraints of the MRTT. 

For a write operation, an OPST just write a new value into its Write Set (WS), 
instead of update the database. For a read operation, an OPST reads the data required 
first from its WS and then from the database if the data required has not been in the 
WS, and records the value of data object into Read Set (RS). 

During the execution of an OPST, the MH may disconnect to any MSS and thus 
the coordinator will fall into waiting without result. And further, the other OPSTs of 
this MRTT will also fall into waiting state. In order to avoid this situation to occur, 
when the coordinator is in waiting state, it sends a message of detecting network link 
state to the MH every other regular time interval. If the coordinator makes sure that 
the MH has been in disconnection or the MRTT has expired its deadline, it broadcasts 
a message to abort the MRTT and delete the MRTT’s information from 
corresponding data structures. After the corresponding participators receive the abort 
message, they abort the corresponding OPSTs immediately. 

Definition 15. Let OPSTi be an optimistic subtransaction, the corresponding base 
transaction be BTi and ROS be the Read Operation Set of OPSTi and BTi . Suppose 
RSo and RSb represent the RS of OPSTi and BTi , respectively. We say that there exists 
a Conflict of Read Set (CRS) if one of the following conditions is true: 

(1) ∃ r∈  ROS (RSo ≠ RSb) 

(2) ( ∃ r∈  ROS) ∧ ( ∃ D ∈( RSo I RSb) ¬(Vo(r(D))  Vb(r(D)))) 

Where Vo(r(D)) and Vb(r(D)) represent the values of the read operation r on D in 
OPSTi and BTi , respectively. 

Once all of OPSTi (1 ≤  i ≤ m) of an MRTT have finished, the MRTT enters 
validation-commitment stage and two-phase commit protocol is adopted. The 
coordinator firstly sends a message of PREPARE to all the participators, and after 
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receiving the message, every participator triggers the relevant base transaction BTi. 
The BTi inherits the priority of the corresponding MRRT. For the all BTi on the same 
FDS, the high priority two-phase lock protocol based on similarity combined with 
security check (HP2PL-SS) is adopted to control their concurrent executions, and 
detects CRS. Therefore, we design four kinds of locks: R lock (read lock), X lock 
(write lock), I lock (information lock) and S lock (similarity lock). The lock 
compatibility matrix is shown in Table 1. From table 1, we can know that I lock don’t 
influence other transactions to apply for any kind of locks. During MRTT’s optimistic 
execution stage, each OPSTi firstly applies for I lock to data object that will be 
accessed. The main function of I lock is that when a base transaction updates the data 
object D on which a OPSTi has had a I lock and Vo(D) Vb(D) isn’t true, the base 
transaction sends a conflict message to the coordinator of the OPSTi ; After receiving 
this message, the coordinator will terminate the MRTT at once. S lock includes SR 
(similarity read lock) and SW (similarity write lock). R locks, X locks and S locks are 
designated for base transactions in validation-commitment stage. When a base 
transaction executes read operation or write operation on certain data object D, it has 
to first apply for an R lock or X lock on D. If CCM (concurrency control manager) 
detects no operation conflict, it grants the transaction the corresponding lock; or else 
if the conflict operations are similar, CCM grants the transaction the corresponding 
SR lock or SX lock. 

Table 1. Compatibility Matrix of Lack 

Hold 
Request I R X S 

I Y Y N N 
R Y Y N N 
X Y N N N 

S Y Y Y Y 

Let BTS denote the set of base transactions at a FDS, Ti ∈  BTS and MCS(Ti) ={ 
Ti, 1 ,Ti, 2 , …, Ti, m}. Suppose that Ti is requesting a lock on data object D, and each Ti, 

k (k=1,2,…, m) has held the lock on data object D. OP(Ti) denotes the Ti’s operation 
of requesting the lock on D and OP(Ti, k) denotes the Ti, k’s operation locking D. We 
use PCS(Ti) to denote the operation set conflicting with OP(Ti), i.e. PCS(Ti) = { 
OP(Ti, 1),…, OP(Ti, m)}. The HP2PL-SS may be described as follows: 

IF (P(Ti) > max (P(Ti, k)))  // k=1, 2 ,..., m 

{ IF (∀ OP(Ti, k) ∈ PCS(Ti)( OP(Ti, k) OP(Ti))) 
    Ti obtains the S lock that Ti is requesting; 
  ELSE 
    Ti obtains the corresponding lock (R lock or X 
    lock), and Ti, k is terminated. If Ti, k is a base 
    transaction of MRTTk, the abort message is sent 
    to the coordinator of MRTTk and the coordinator 
    decides to terminate the MRTTk permanently or to 
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    restart the MRTTk according to its deadline;  
} 
ELSE 

{ IF (∀ OP(Ti, k) ∈ PCS(Ti)( OP(Ti, k) OP(Ti))) 
    Ti obtains the S lock that Ti is requesting;  
  ELSE 
  { IF (ω × CDD(Ti,HCMCS(Ti))>(1–ω )×  PDD(Ti,LPMCS(Ti)))  
      Abort Ti and send the abort message to the  
      coordinator of MRTTi ;  
    ELSE 
      Block Ti ;}} 

In the above description, ω and (1–ω ) denotes the weight of security constraints 
and timing constraints, respectively. The value of ω can be adjusted dynamically 
according to the requirements of applications. 

During a base transaction execution, for every read operation, the MRTM (mobile 
real-time transaction manager) validates if any CRS has been happened. If a CRS is 
detected, the MRTM aborts the base transaction and sends a message “Non-OK” to 
the coordinator. After receiving the message, the coordinator decides to abort the 
corresponding MRTT and broadcasts the decision to all the related participators of the 
MRTT, and then aborts itself and releases all the system resources. After aborting an 
MRTT, the MRTM may decide to restart it if possible, instead of permanently 
terminating it. If a base transaction passes the validation, the corresponding 
participator sends a message “OK” to the coordinator.  After receiving an “OK” from 
all the participators, it sends a message of Global Commit to all the participators. 
When a participator receives the message of Global Commit, it ends the 
corresponding base transaction and sends a message of ACK to the coordinator. 

Let SCH be a schedule of the set of transaction in the system. There exists the 
following theorem: 

Theorem 1. SCH is a similar serializable schedule, if SCH obeys SHORTCC 
protocol. 

Proof: (1) Suppose G = (V, E) is the precedence graph of SCH where V = {T1 , T2 ,…, 
Tn }, E = {(Ti → Tj ) | Ti, Tj ∈V, OPi and OPj which belong to Ti and Tj respectively 
are a pair of conflict operations and OPi is executed before OPj}. Let G1 = (V, E1) is the 
directed graph that is gotten by throwing away the directed edges of G that are caused 
by conflict operations of similarity. Obviously, G1 is acyclic according to 2PL. 

(2) Take out a directed edge e from (E - E1) and join e into G1. Obviously, e is 
caused by a pair of conflict operations of similarity. Suppose this pair of conflict 
operations are OPk from Tk and OPm from Tm, namely e = (Tk  → Tm ). If G1 becomes 
cyclic, owing to OPk OPm, the database state caused by exchanging the executing 
order of OPk and OPm is similar with the original database state. So the ring in G1 can 
be eliminated and thus the similarity of the database state is assured. 

(3) Repeat step (2), until (E - E1) becomes empty. 
(4) Through the above steps, we can assure that the final G1 is acyclic. Suppose the 

certain schedule corresponding to the final G1 is SCH1. Obviously, SCH1 is conflict 
serializablity. 
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(5) Because the database state produced by SCH is similar to the database state 
produced by SCH1, SCH is a similar serializable schedule. 

6   Performance Simulation Experiments and Result 

In our simulation system, each MH has a transaction generator, a transaction manager, 
a message server, a handoff handler and a disconnection handler. Each FDS has a 
mobile real-time transaction manager, a local transaction manager, a message server, 
a concurrency control manager, a data exchange manager implementing data 
exchange between MMDB and disk database, and a main memory database manager. 
MMDB at each FDS is modeled as a collection of data page in main memory. 

In our experiments, we mainly compare SHORTCC protocol with non-secure 
DHP2PL protocol, which cannot be free from covert channels. Main parameters are 
presented in Table 2. The main performance metrics used for the evaluations are the 
ratio of transactions missing their deadlines, denoted as TMDR, and total average 
number of low clearance level transactions blocked by high clearance level 
transaction per 5 seconds, notated as NLCB. TMDR is defined as follows: TMDR = 
(Number of transactions missing their deadlines) / (Total number of transactions in 
the system). TMDR reflects the real-time performance, and NLCB reflects the 
severity degree of violating the security constraints. We use HCTMDR to denote the 
TMDR of high clearance level transactions, and LCTMDR to denote the TMDR of 
low clearance level transactions. LCTMDR and HCTMDR are respectively defined as  

Table 2. Simulation Parameters 

Parameter Value Description 

NMH 10 Number of mobile hosts 
NFH 5 Number of fixed hosts 
NMSS 5 Number of mobile support bases 
NWCell 10 Number of wireless cell 
SDB 200 pages  Size of MMDB at each FDS 
PD 0.05 Probability of disconnect 
PH 0.02 Probability of handoff 
Rate [5, 40] Arrival rate of the transactions 
PU 0.4 Probability of update operation 

ThinkT 0 Time interval which MH waits for transmitting the 
next transaction after the former has committed 

Slack U (2.0, 6.0) Slack factor 
NCL 6 Number of different clearance levels (level 1~level 6) 
RDCL 1/6 Ratio of different clearance level transactions 
ω  0.5 The weight value of security constraints 

PS 0.4 Similarity probability between operations of different 
transactions 
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follows: LCTMDR = (number of low clearance level transactions missing their 
deadlines) / (Total number of transactions in the system); HCTMDR = (number of 
high clearance level transactions missing their deadlines) / (Total number of 
transactions in the system). High clearance level includes level 4, level 5 and level 6, 
and low clearance level includes level 1, level 2 and level 3. 

In the Table 2, U(i, j) denotes a uniformly distributed random variable in the range 
[i, j]. In our simulation experiments, priority-assigning policy adopts EDF policy and 
the deadline of mobile real-time transaction T is set using the following formula: D(T) 
= AT(T) + Slack ×  ET(T), where AT(T) is the arrival time of T; Slack is a uniformly 
distributed random variable; ET(T) denotes an estimated execution time of T. 
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Fig. 3. NCLB Comparison for HP2PL and SHORTCC 

The performance results are shown in Fig.1–Fig.3. Fig.1 illustrates the ratio of low 
clearance level transactions missing their deadlines (LCTMDR) for 2PLHP and 
SHORTCC. When transactions arrival rates is below 25, 2PLHP slightly gets an 
advantage over SHORTCC. The reason is that for SHORTCC, when a low clearance 
level transaction conflicts with a high clearance level transaction, the low clearance 
level transaction is usually aborted in order to be free from covert channels. However, 
after an arrival rate of 25, SHORTCC has an advantage over 2PLHP slightly. This can 
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be illustrated by that when transaction arrival rate increases, many conflict operations 
between low clearance level transactions and high clearance level transactions may be 
similar, thereby avoiding abort. As shown in Fig. 2, when arrival ratio of transaction 
enhances, HCTMDR of both 2PLHP and SHORTCC increase, but performance of 
SHORTCC obviously gets an advantage over DHP2PL. Fig.3 illustrates the total 
average number of low clearance level transactions blocked by high clearance level 
transaction per 5 seconds (NLCB) for 2PLHP and SHORTCC. Obviously, 
SHORTCC excels 2PLHP in NLCB. 

7   Conclusion 

An SMDRTDBS has to simultaneously satisfy the two goals of guaranteeing data 
security and minimizing the deadline miss ratio for admitted transactions. However, 
these two goals can conflict with each other and to achieve one goal is to sacrifice the 
other. This paper presents a secure hybrid optimistic real-time concurrency protocol 
(SHORTCC) on the basis of the proposed mobile real-time transaction-processing 
model. According to the SHORTCC, the execution of an MRTT is divided into 
optimistic execution stage and validation-commitment stage based on high priority 
two-phase locking, and introduces the notion of similarity in order to improve the 
concurrency of transactions. In the validation-commitment phase, data consistency 
and security constraints are ensured by high priority two-phase locking protocol 
integrated with the security check. If exists the possibility of violating the security 
constraints, the decision of blocking or aborting the validating transaction is made by 
comparing the total severity degrees of violating the security constraints, which are 
caused by blocking the validating transaction, with the total severity degrees of 
violating the timing constraints, which are caused by aborting the validating 
transaction. According to the application requirement, the SHORTCC can make a 
tradeoff between security constraints and timing constraints by adjusting the weight of 
security constraints. 

Simulation experiments show that the SHORTCC not only achieves data security, 
but also guarantees high real-time performance. 
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Abstract. Based on the multi-sensor data fusion technology, a new Intrusion 
Detection Data Fusion Model-IDSFP is presented. This model is characterized 
by correlating and merging alerts of different types of IDSs, generating the 
measures of the security situation, and thus constituting the evidence. Current 
security situation of network is estimated by applying the D-S Evidence 
Theory, and some IDSs in the network are dynamically adjusted to strengthen 
the detection of the data that relate to the attack attempt. Consequently, the false 
positive rate and the false negative rate are effectively reduced, and the 
detection efficiency of IDS is accordingly improved. 

Keywords: Network Security, Intrusion Detection, Alert Correlation, Data 
Fusion, D-S Evidence Theory, Situation Estimation. 

1   Introduction 

Intrusion Detection System (IDS) is a new generation of security assurance 
technology after the traditional security measures such as firewall, data encrypt etc. 
By analyzing data, which relate to the system security, IDS can detect the intrusion 
behaviors. The current IDS products can be divided into two major categories: 
Network-based IDS and Host-based IDS. But there are some problems in practical 
application, for example the false positive rate and the false negative rate are high [1].   

To improve the detection accuracy of IDS, some scholars try to apply data fusion 
technology to IDS in recent years. Tim Bass discusses the multi-sensor data fusion 
technology for next generation distributed intrusion detection systems [2][3]. The 
research project EMERALD [4] of SRI International merges alerts of different types 
of IDSs by using Bayesian Methods. But in practical application, it is very difficult to 
set meta alerts accurately. The MIRADOR Project [1] defines the similarity function 
which is used for calculating the similarity between two alerts by using Expert System 
Method, then merges them, but the performance of real time is low. Moreover, 
Burroughs, Wilson and Cybenko consider the intrusion behaviors from an attacker-
centered viewpoint, and present a new approach which track and identify the attacker 
by using Bayesian Method [5]. But the identification rate of the attack is over 89%. At 
the same time, the false rate reaches about 20%.  

The research of applying data fusion technology to IDS in our country is seldom 
concerned. How to apply data fusion technology to IDS are discussed from different 
aspects and some data fusion models are presented in the reference 6, 7 and 8, but the 
concrete fusion methods are rarely presented. 
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Based on the multi-sensor data fusion technology, a new fusion model-IDSFP (IDS 
Fusion and Precaution) is presented in this paper. This model can merge alerts of 
different types of IDSs, make intelligent inference and estimate the current security 
situation according to the fusion result. At the same time, it can strengthen the 
detection of the data which relate to the attack attempts. Consequently, the false 
positive rate and the false negative rate are effectively reduced, and the detection 
efficiency of IDS is improved. 

2   Fusion Model-IDSFP 

In order to judge the intrusion behaviors in the network accurately, we need to 
combine the information from Network-based IDS and Host-based IDS. Furthermore, 
the attacking methods have changed from single-host attack to distributed correlation 
attack. To protect the network security against the attack effectively, we also need to 
gather quantity of suspicious and intrusive information. Fig.1 shows a physical 
diagram that IDSFP is applied to intrusion detection. 

 

Fig. 1. The physical diagram that IDSFP is applied to the intrusion detection 

To process them in uniform format, we suppose that alerts which are processed by 
IDSFP accord with the alert instances which were defined in IDMEF [9]. The fusion 
model-IDSFP is analyzed as follows: alert correlation module, security situation 
estimation module and management & control module (see Fig.2). 

Define1: Alert track describes a set of alerts which relate to an attack event. 
By correlating and merging the alerts of the different types of IDSs or other 

security products in this model, the alert track database possibly has many alert tracks. 
On the base of it we can estimate the current security situation by applying the D-S 
Evidence Theory, and then identify the attack classifications or attack attempts. This 
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information is conveyed to the management & control module, and some IDSs in the 
network are adjusted automatically or semi-automatically (network administrators 
also can do this). As a result, the false positive rate and the false negative rate are 
effectively reduced, and the accurate rate of detection of IDSs is improved. 

 

Fig. 2. The logical diagram of IDSFP 

2.1   Alert Correlation Module 

When an attack is occurring in the network, a great deal of alerts may be triggered by 
the different types of IDSs or other security products. This module processes each 
alert corresponding to these attack events and there are exactly two possibilities with 
regard to the alerts produced: 

Rule1: The event also produced other alerts that already belong to an alert track. 
This means that the alert being processed is associated with that particular alert track. 

Rule2: None of the existing alert tracks is the result of the event that produced the 
alert. In other words, the alert is the result of the observation of a new event and forms 
its own alert track. 

These two possibilities are shown in Fig.3. In this figure, Host-based IDS and 
Network-based IDS1 detects attack event 1 and event 3. Network-based IDS2 detects 
event 1 and event 2. 

Define2: Alert(x,y) describes that the alert is triggered by an attack event y, which 
number is x. 
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So, alert(1,1), alert(2,1) and alert(3,1) are the result of attack event 1, which 
number is 1, 2 and 3. Hence they are correlation alerts. Alert(1,2) is the only alert 
produced by attack event 2. Alert(1,3) and alert(2,3) are the result of attack event 3, 
which number is 1 and 2. Hence they are correlation alerts. 

 

Fig. 3. The schematic diagram of the alert correlation 

How to correlate the alerts in IDSFP? We can make a judgment according to the 
dissimilarity between the two alerts. 

Define3: Dissimilarity describes the different degree between two alerts. 
The more similar alert i and alert j are, the more their dissimilarity is close to 0.The 

more different two alerts are, the higher their dissimilarity is. While a new alert 
coming, the alert correlation module searches the alert track database and calculates 
the dissimilarity between the new alert and each alert of database. Then, we obtain all 
the dissimilarities resulting from every two possible correlating alerts. The most likely 
correlation is the pair of alerts with the lowest dissimilarity. When the dissimilarity is 
low enough, the alert correlation module decides to assign the new alert to the alert 
track which the existing alerts belong to. Or we obtain a new alert track, when every 
dissimilarity which is calculated by the new alert and each alert of database, is higher 
than the maximum dissimilarity (according to the experience, we suppose an expert 
value in advance). This new alert is considered to be triggered by a new attack event, 
and there is not an alert track that relate to this attack event before this.  

We calculate the dissimilarity in IDSFP by using the Probability-based method. For 
the important attributes of two alerts (less important attributes do not attend the 
calculation), we define a dissimilarity function to calculate the dissimilarity, and the 
total dissimilarity is calculated by dissimilarity of those important attributes of two 
alerts. 

While calculating the dissimilarity between two alerts, these attributes that will 
attend the calculation can be described as p attributes such as Source IP address, 
Destination IP address, Protocol type, Alert identification and Create time etc. The 
alert has some different types of attributes such as numerical variable, boolean 
variable and enumerated variable. The method of calculating the dissimilarity of 

event 1 

event 2 

event 3 

Network- 
based IDS2

Network- 
based IDS1

Host-based 
IDS 

alert(1,1) 
alert(2,1) 
alert(3,1) 

alert track 1

alert(1,3) 
alert(2,3) 

alert track 3

alert(1,2) 

alert track 2
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different types of attributes is firstly introduced [10] and then the total calculating 
formula is given. 

2.1.1   The Method of Calculating the Dissimilarity of Different Types of Attributes 
(1) Numerical variable 
Numerical variable is a continuous variable. We can adopt Euclidean Distance to 
describe the different degree of two numerical variables. Here, we suppose two alert 
sets: (xi1,xi2,…,xip) and (xj1,xj2,...,xjp). These alerts are P-dimensional variable, and their 
calculating dissimilarity method is given as formula (1). 

22
222

2
111 ||...||||),( jpippjiji xxwxxwxxwjid −++−+−= . (1) 

Where iw  is the weight of attribute i of the alert, and a method how to determinate the 

weights of attributes is given in the next section. 

(2) Boolean variable 
Boolean variable has two values: “0” or “1”. We adopt the famous brief match 
coefficient method to calculate the dissimilarity, and the calculating method is given 
as formula (2). 

tsrq

sr
jid

+++
+=),( . (2) 

Where q is the number of the corresponding attribute values which the alert i and alert 
j are equal to “1”. t is the number of the corresponding attribute values which the alert 
i and alert j are equal to “0”. r is the number of the corresponding attribute values 
which the alert i is “1”and alert j is “0”. s is the number of the corresponding attribute 
values which the alert i is “0”and alert j is “1”. 

(3) Enumerated variable 
Enumerated variable is different from boolean variable, and it has many values. But 
we may also use the famous brief match coefficient method. The calculating method 
is given as formula (3). 

p

mp
jid

−=),( . (3) 

Where m is the matching number of alert attributes, and this means that m is the 
number of corresponding attributes which alert i and alert j have the same value. p is 
the number of all enumerated variables of alert i and alert j. 

2.1.2   The Method of the Total Calculating Dissimilarity 
We suppose that alert i and alert j include p different types of attributes. Then, the 
d(i,j) which describes the dissimilarity between alert i and alert j, is defined as 
formula (4). 
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Where p is all the attribute number of alert i and alert j (the number which attend to 

calculate dissimilarity between two alerts). f is one of the p attributes. )( fw  is the 

weight of attribute f. )( f
ijd  is the dissimilarity while calculating the dissimilarity of 

attribute f between alert i and alert j. 

2.1.3   The Method of Distributing the Weights for the Attributes of an Alert 
In the course of calculating the dissimilarity between two alerts, how to determinate 
the weights of alert attributes is an inverse problem of the synthetic decision model 
[11] in Fuzzy Mathematics. According to the experience of the expert in practice, the 
dissimilarity evaluation of each attribute of two alerts is given at first, and then the 
total dissimilarity evaluation of two alerts is also given. At this time, we can get the 
fuzzy equation according to the synthetic decision model and list the fuzzy relation 
equation. With the equation being worked out, we can get the weight of each attribute 
that is used for calculating the dissimilarity between two alerts.  

A simple example is given here. Suppose that the evaluation set U={Source IP 
address, Destination IP address, Alert identification}, the factor set V={strong 
dissimilar, dissimilar, weak dissimilar, not dissimilar}, and the weight set W={w1, 
w2, w3}. 

According to the experience of the experts and network administrators in practice, 
the dissimilarity evaluations of three attributes of two alerts are given as far as single 
factor: 

Take the Source IP address for example, the result of evaluation is given as 
follows: 20% of persons think two alerts strong dissimilar, 70% think them dissimilar, 
and 10% think them weak dissimilar. So we can get the set. 

                           Source IP address  |  (0.2  0.7  0.1  0) 
We receive the following sets in the same way. 

           Destination IP address  |  (0.2  0.7  0.1  0) 
                         Alert identification  |  (0.2  0.3  0.4  0.1) 
Combining all above evaluation of the single factor, we get a fuzzy matrix R 

0.2   0.7    0.1    0

0      0.4    0.5    0.1

0.2   0.3     0.4   0.1

R = . 

 

Then, for the overall alert, the total evaluation is given as follows: 17% of persons 
think two alerts strong dissimilar, 34% think them dissimilar, 40% think them weak 
dissimilar, and 9% think them not dissimilar. 

the total evaluation set  b=(0.17  0.34  0.40  0.09) 
At this time, we can list the following fuzzy equation 
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( ) ( )1 2 3

0.2 0.7 0.1 0

, , 0 0.4 0.5 0.1 0.17,0.34,0.40,0.09

0.2 0.3 0.4 0.1

x x x × = . 
 

The final weight set W can be derived from this equation 

W={0.2, 0.5, 0.3} 

We have got the weights of three attributes, which are used for calculating the 
dissimilarity between two alerts. The weight of source IP address is 0.2, the weight of 
Destination IP address is 0.5, and the weight of Alert identification is 0.3. The 
weights got in this way are more rational than those appointed at random. Moreover, 
they can accurately reflect the weights of attributes in calculating the dissimilarity 
between two alerts. 

2.1.4   The Algorithm of the Alert Correlation Module 
Step1: When a new alert coming, the initial dissimilarity d = +  
Step2: The dissimilarity d’ between the new alert and the alert which get from the 

alert track database is calculated. 
IF d’<d  THEN 

BEGIN    
modify d, d = d’ 

END 
Step3: IF the whole alert track database have not been searched THEN 

BEGIN  
j = j+1 (get the next alert from the alert track database)  

          GOTO Step2 
   END 

Step4: IF d > the maximum dissimilarity THEN 
BEGIN 

                          a new alert track is added to the alert track database 
                    END 

ELSE   BEGIN  
the alert track database is modified, and the new alert is 
added to alert track which has already existed 

END 
Step5: Stop 

2.2   Security Situation Estimation Module 

2.2.1   Alert Aggregation Module 
After the correlation module processing, an alert track possibly has many alerts which 
are triggered by the different types of IDSs. There are mainly two types of relations. 
In other words, two types of alert aggregations: 

1. Alerts that together make up an attack 
2. Alerts that together represent the behavior of a single attacker 
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These are different types of aggregations, because a single attacker can be involved 
in multiple attacks and multiple attackers can be involved in a single attack. 
Furthermore, not all attacker behavior is necessarily part of an attack. Why we did see 
this becomes clear when the relationships between attackers and attacks are analyzed. 
This shows which attackers are involved in which attack. 

2.2.2   D-S Evidence Theory Introduce [12] 
(1) Frame of Discernment 
The frame of discernment (FOD) Θ consists of all hypotheses for which the 
information sources can provide the evidence. This set is finite and consists of 
mutually exclusive propositions that span the hypotheses space.  

(2) Basic Probability Assignment 
A basic probability assignment (bpa) over a FOD Θ  is a function m: 2 Θ [0,1] such 
that 

( ) 0m φ =  

( ) 1
A

m A
⊆Θ

= . 

 

The elements of 2 Θ associated to non-zero values of m are called focal elements 
and their union core. 

(3) Belief Function and Plausibility Function 
The belief function given by the basic probability assignment is defined as: 

Bel(A) ( )
B A

m B
⊆

= .  

The value Bel(A) quantifies the strength of the belief that event A occurs. 
Let Bel: 2 Θ [0,1] be the belief function, the plausibility function is defined as 

Pl(A)=1-Bel( A ),  for all A ⊆ Θ . 

Pl(A) is called the plausibility of A, which quantifies the strength how we don not 
doubt A or A is reliable.  

(4) Dempster’s Rule of Combination 
Dempster’s rule of combination represents the conjunctive operation of the evidence. 
Given several belief functions on the same frame of discernment based on different 
evidences, if they are not entirely conflict, we can calculate a belief function using 
Dempster’s rule of combination. It is called the orthogonal sum of the several belief 
functions. 

The orthogonal sum Bel1 ⊕ Bel2 of two belief functions is a function whose focal 
elements are all the possible intersections between the combining focal elements and 
whose bpa is given by 
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The orthogonal sum can be easily extended to the general case of combining 
several belief functions. 

2.2.3   Inference Module Applying D-S Evidence Theory 
(1) Intrusion diction data fusion based D-S Evidence Theory 
In the IDS data fusion, the targets are propositions that are all the possible estimation 
of the current security situation (where and when the attacks happen). The alerts 
triggered by every IDS result in the measure of the security situation, which constitute 
the evidences. Fig.4 illustrates how to estimate the intrusion situation by applying D-S 
Evidence Theory. In the figure, ms1(Aj), ms2(Aj), …, msk(Aj), (s=1,2,…,n; 
j=1,2,…,m)is the bpa the sth IDS assigns to proposition Aj in the ith (i=1, 2, …, k) 
detection cycle, m1(Aj),m2(Aj),…,mk(Aj) is the conjunctive bpa calculated from the 
aggregation of the n bpas in each of the k detection cycles by using Dempster’s rule 
and m(Aj) is the conjunctive bpa calculated from the k bpas. 

 

Fig. 4. Data Fusion Model Based on D-S Evidence Theory 

(2) The course of fusion applying D-S Evidence Theory 
In IDSFP, the fusion process by applying D-S Evidence Theory like this: at first, we 
ought to determinate the FOD, consider all possible kinds of result and list all possible 
propositions. Then, the total conjunctive bpa will be calculated using the Dempster’s 
rule of combination, based on the bpa of each proposition obtained according to the 
evidence that the IDSs provide in the cycle. At last, we get the belief function and 
inference by a certain rule from these combined results, and estimate the current 
security situation.  
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2.3   Management and Control Module 

After processing of the security situation estimation module, we can judge the 
attempts and the threat levels of the attacks, and whether the new attack events 
happen. A report to the network administrator will be formed. This module adjusts 
some IDSs of the network dynamically to strengthen the detection of the data that 
relate to the attack, and adds the new attack rules to the IDS feature database. Then, 
the detection quality would be improved. On the other hand, according to the current 
security situation, it can dynamically adjust the weights of some alert attributes so that 
we pay more attention to some specific alerts. 

3   Experiments and Analysis 

We configure the LAN with Snort and E-Trust, and attack one of computers in the 
LAN.  Two  IDSs  produce  the 111 alerts, which are obtained as follows: 85 for Snort  

 

Fig. 5. Alerts that Snort produced in the LAN 

Table 1. Alert track database after correlation 

Alert track E-Trust Snort Description in detail 

1 11 31 Port-scan 
2 3 18 ICMP Flood 
3 4 8 Scan UPNP service discover attempt 
4 3 8 WEB-PHP content-disposition 
5 4 14 Udp-flood 
6 0 4 Web-Iss attack attempt 
7 1 2 RPC sadmind Udp ping 



 A New Data Fusion Model of Intrusion Detection-IDSFP 381 

(see Fig.5) and 26 for E-Trust. Here, we uniform the format of these different types of 
alerts and calculate the dissimilarity between these alerts, and get the alert track 
according to the calculating result. See Table 1. 

At this time, we get the intrusion situation which possibly has 7 attacks as follows: 
Port-scan, Udp-flood, Scan UPNP service discover attempt, WEB-PHP content-
disposition, ICMP Flood, Web-Iss attack attempt, and RPC sadmind Udp ping. The 
value m of bpa that the two IDSs assign to the proposition is shown as follow: 

Table 2. m of bpa is assigned by two IDSs 

Alert track 1 2 3 4 5 6 7 

m of bpa assigned by Snort 0.268 0.038 0.392 0.029 0.201 0.029 0.043 

m of bpa assigned by E-Trust 0.341 0.061 0.182 0.036 0.340 0.024 0.016 

The total conjunctive bpa is calculated by applying the D-S Evidence Theory. 

Table 3. The fusion result 

Propositions m of total conjunctive bpa 

Port-scan 0.354 
ICMP Flood 0.014 
Scan UPNP service discovers attempt 0.338 
WEB-PHP content-disposition 0.007 
Udp-flood 0.278 
Web-Iss attack attempt 0.003 
RPC sadmind Udp ping 0.006 

From the result we can find out the belief of the Port-scan, Scan UPNP service 
discover attempt and Udp-flood are much greater than that of ICMP Flood, WEB-
PHP content-disposition, Web-Iss attack attempt and RPC sadmind Udp ping. So we 
can confirm that attackers are attacking the network by Port-scan, Scan UPNP service 
discovers attempt and Udp-flood. If judging only the attacks by the number of alerts 
we may be wrong (as above). Therefore we must judge the intrusion behavior from 
many aspects. The above ICMP Flood is a false alert produced by the IDS, and a 
number of ICMP Echo data pockets are produced when the route can not be reached 
is the possible reason. 

4   Conclusions 

The current IDS products have existed some problems. For example, the false positive 
rate and the false negative rate are higher, and too many alerts are triggered in 
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practical application. The multi-sensor data fusion technology is an effective solution 
to these problems. A new fusion model-IDSFP is presented in this paper. It merges 
these alerts of different IDSs and makes intelligent inference according to the fusion 
results. Consequently, the number of raw alerts decreases effectively. The false 
positive rate and the false negative rate are reduced. The security situation is timely 
estimated, and the security of network is improved. But how to determinate the 
weights of the attributes of alert more properly, and identify the very similar alerts 
which have no logical relation (the similar alerts describe the different attack events) 
and dissimilar alerts which have logical relation (the different alerts describe the same 
attack event) will be studied in our further work.  
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Abstract. The open and anonymous nature of P2P services opens the door to 
malicious peers who cause the loss of trust by providing corrupted data or 
harmful services. The introduction of a trust management system is one of the 
possible ways to combat this problem. This paper presents some new ideas for 
the design of a P2P trust management system. Its main contributions include: a 
recommendation-aggregating model based on collaborative filtering (CF), a 
polling protocol for trust queries and responses, and the use of identity-based 
cryptosystem to secure recommendations. Simulations show that our CF-based 
trust model performs pretty well even when malicious peers make the majority. 

Keywords: P2P, Trust management, Reputation system, Collaborative filtering. 

1   Introduction 

Since the appearance of Napster in 1999, P2P (Peer-to-Peer) applications, especially 
file-sharing applications such as Gnutella, KaZaa, eDonkey and BitTorrent, have be-
come the largest traffic source on the Internet. According to a report by CacheLogic 
[1], in the first half of year 2004, P2P traffic volumes in Europe are at least double 
that of HTTP during peak evening periods and as much as tenfold at other times, and 
at the same time, P2P traffic is continuing to grow despite the disturbances from re-
cording industry (RIAA and others) every now and then. 

P2P is a great appeal mainly because it is more efficient than any other ways to dis-
tribute large volumes of data through Internet connections. Another reason for P2P’s 
popularity is that, P2P is less dependent on central servers, thus makes it easy for eve-
ryone to share information or to work together with others. The increasing availability 
of broadband Internet connections and low-cost PCs, together with improved multi-
media compression technologies, also stimulates the adoption of P2P file sharing and 
exchanging technologies. 

However, P2P services nowadays are still far from being satisfying, and there are 
yet many people and companies who are hesitating to use them. 

Problems with P2P mainly concern security, reliability, privacy or copyright. P2P 
communities are often established dynamically with peers who are unknown to each 
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other. These peers communicate directly with each other to exchange information, 
distribute tasks, or do businesses. Usually there is no authoritative supervision over 
the trading process and the involving two parties. For a peer who wants to transact 
with others, there is no guarantee that other peers will act properly as they have 
claimed. Therefore, P2P systems are extremely vulnerable to malicious users trying to 
poison the system with corrupted data or harmful services for personal or commercial 
gains, or just for monkeyshines. And it is up to the peers to protect themselves. 

When facing these problems, users of P2P applications must be wary of the quality 
and validity of the resources or services they wish to order. They need a mechanism 
to guide them in making decisions such as whether or where to download a file, and 
whether or with whom to do a business. In other words, they need a mechanism to 
evaluate the trustworthiness of an item (a peer, a file, a service, etc.) before they actu-
ally get to it. That is the main purpose of so called P2P trust management systems. 

The above-mentioned problem is quite similar to that of collaborative filtering 
(CF) in recommender systems. CF-based recommender systems try to predict which 
items a given user might like without using any information about the actual content 
of the items. But rather, they use a database of users’ preferences (implicit ratings or 
explicit ratings). Similarly, in a P2P community, a peer can gather from other peers 
the feedback ratings about trustworthiness of the items it is interested in before it ac-
tually gets to them, then it can operate over these feedback ratings using a CF-like 
technology, and pick out items that might be trustworthy from its point of view. 

Starting from this point, in this paper, we will borrow the ideas from the research 
field of collaborative filtering and put forward our P2P trust model. The rest of this 
paper is organized as follows: firstly we discuss some related work in section 2; then 
we present our CF-based model in section 3, followed by the distributed communica-
tion protocol in section 4; we discuss the security issues (identities and keys) in sec-
tion 5, where we propose the use of an identity-based public key system; finally, we 
give some experimental results in section 6 and conclude this paper in section 7. 

2   Related Work 

Along with the rapid development of P2P technologies, a large body of literature on 
P2P trust management has sprung up in the past three to four years. Similar to [2], we 
classify most of the existing P2P trust management systems into three categories: po-
lice-based systems, social network-based systems, and reputation-based systems. 

Some typical examples of policy-based trust management system are PolicyMaker 
[3] and KeyNote [4]. To our best knowledge, the notion of trust management was first 
introduced by M. Blaze et.al. in 1996[3]. In that paper, trust management problem is 
defined to be a collective of security policies, security credentials and trust relation-
ships. The authors also designed an architectural framework named PolicyMaker for 
distributed trust management. Later in [4], the same authors presented the successor 
of PolicyMaker which is called KeyNote. KeyNote has been accepted as a RFC stan-
dard. However, these frameworks focus more on access control than on resource/peer 
selection, so they are not suitable for the scenario we are discussing. 

Social network-based systems make use of social relationships to evaluate trust. 
They try to reconstruct a social network which represents the relationships within the 
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community, and then draw conclusions about peers’ trustworthiness based on differ-
ent aspects of this social network. Examples of such trust management systems in-
clude group-identifying systems [5] and expert-identifying systems [6], etc. 

There are two mainstreams of reputation-based trust management systems. One is 
based on so called “web of trust”. The other is based on reputation ratings. 

“Web of trust” is a phenomenon reflecting the fact that trust is conditionally transi-
tive. For example, if A trusts B and B trusts C, then A will probably trust C to some 
degree. A typical example of “web of trust” is the PGP community [7]. Some distrib-
uted trust management schemes, such as [8] and [9], are based on this model. The 
main point of these systems is to find out at least one path from the truster to the trus-
tee, and evaluate the degree of trust using some aggregating methods along the paths. 

The validity of “web of trust” is limited by the length of the paths because degree 
of trust declines rapidly when the number of intermediators increases. When this hap-
pens, it will be a better way to base a trust decision on reputation ratings. The main 
point is to gather a number of others’ ratings on the target, and aggregate these ratings 
to draw conclusions about the target’s trustworthiness. A brief overview of such sys-
tems is presented in [10]. The eBay’s feedback forum is a successful de facto example 
of server-based centralized online reputation system. A considerable fraction of P2P 
trust management schemes belong to this category. Typical examples include P-Grid 
[11], P2Prep [12], EigenTrust [13], PeerTrust [14] and RobustRep [15], etc. 

3   Model Description 

3.1   Rating Matrix 

Suppose there are n peers in a P2P community, and m items rated by them. Here the 
items could be peers or resources (for example, files), depending on the specific ap-
plication and requirements. 

Let R be the matrix of the peers’ ratings, where Rij is the rating given by peer i to 
item j (i {1,2,…,n}, j {1,2,…,m} ). We set Rij = 0 if peer i has not rated item j, and 
require the actual ratings to be non-zero. A row vector 

iR
v

 consists of peer i’s ratings 

for all the m items. Note that this vector represents peer i’s personal judgment from 
direct experiences. Typically R is a sparse matrix with many missing ratings, espe-
cially for a large-scale P2P community perhaps with millions of peers. 

When a peer a wants to evaluate the trustworthiness of an item x which it has not 
rated, it will have to ask for recommendations from others who have rated the item. 

Those recommendations, however, are probably not all honest and reliable. On the 
one hand, malicious peers may give misleading recommendations for personal or 
commercial gains. For example: a “badmouthing” peer may give bad ratings to all the 
others; a bunch of malicious peers may collude to give good ratings to each other and 
bad ratings to outside peers; etc. On the other hand, personal experiences may differ. 
For example: peers may feel differently about a file and make subjective judgments 
on its “trustworthiness” which could be different or even contradicting; some peers 
may act honestly to reputable peers but dishonestly to newcomers; etc. Therefore, 
peer a needs some algorithm to have these recommendations properly aggregated so 
that it can work out a best evaluation of the target x’s trustworthiness. 



386 M. Zuo, K. Wang, and J. Li 

Typical aggregating algorithms include threshold decision, majority voting and 
weighted summation. Threshold decision is a kind of heuristic algorithm. Some preset 
threshold values are required, and this usually makes the most difficult part in appli-
cation. We refer the readers to [11] for an example. Majority voting is an intuitive 
method to deal with large number of ratings or votes. It works pretty well if honest 
peers are the majority. But if the total number of malicious peers exceeds that of hon-
est ones, then a reputation system based on majority voting can be easily subverted. 
An improvement of majority voting is weighted summation, where recommendations 
form honest peers are honored while those from dishonest peers are punished before 
summing up. For example, EightTrust [13] weights peers’ opinions by the evaluator’s 
trust on them, and RobustRep [15] keeps a separate recommender trust vector and 
weights the recommendations using the values in this vector. 

Here we propose a weighted summation algorithm using the personal similarities 
between the evaluator and the recommenders – a CF-based aggregating algorithm. 

3.2   Collaborative Filtering Algorithms 

Collaborative filtering is widely adopted in recommendation applications for music, 
news, commodities etc. With collaborative filtering, users can get personalized pre-
dictions and suggestions to help them find what they want with a higher probability. 

Most of today’s collaborative filtering algorithms are based on ratings from most 
“similar” users. According to [16], these algorithms can be classified into two catego-
ries: memory-based algorithms and model-based algorithms. 

Model-based algorithms are based on an operation called dimensionality reduction. 
This kind of algorithm first builds a model of user preferences (low dimension) from 
the rating database (high dimension), then makes predictions using this established 
model. Bayesian networks [16] and SVD (Singular Value Decomposition) [17] are 
typical examples. Because the model is usually a low dimensional one, these algo-
rithms can be very instant in making online recommendations after the model is estab-
lished. But these algorithms all need a learning phase, which may take several hours, 
even several days long. Therefore, these algorithms can’t adapt easily to dynamic rat-
ing databases, so we won’t use them in our P2P trust management system. 

Memory-based algorithms, in contrast, build no prediction models but operate over 
the entire rating database to make each recommendation. In this case, the predicted 
rating of user a for item x is a weighted sum of other users’ ratings, as in formula (1). 
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Here 
aR  and 

iR  is the averaged rating of user a and user i respectively, ),( iaw  is 

the weight between user a and user i, and k is a normalizing factor. 
The weights ),( iaw  usually reflect distance, correlation or similarity between users’ 

personal experiences. Users with high weights to a given user can be seen as 
“neighbors” of that user. Therefore memory-based algorithms are also called neighbor 
methods. There are several different ways to define the weights ),( iaw , typical exam-

ples are Pearson correlation and Cosine similarity [16]. 
Memory-based algorithms may be slower in making online recommendations be-

cause the whole rating database must be checked to find neighbors of a given user. 
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However, they need no learning phases, so they can adapt more easily to the dynamic 
rating database of a P2P trust management system. Moreover, memory -based col-
laborative filtering algorithms are known to be more accurate than model-based algo-
rithms [16]. Therefore, we will choose some algorithm of this kind as our recommen-
dation-aggregating algorithm. As for the choice of the weighting function, it will 
depend on the features of the specific application, such as, the density of the rating 
matrix, the form of the ratings (binary, discrete or continuous), etc. 

4   Polling Protocol 

Today’s collaborative filtering systems are mostly server-based systems. User ratings 
are collected by a central server and stored at the server as a centralized database. The 
collaborative filtering algorithm is executed at the server in response to users’ queries. 
However, things are different on P2P networks. Usually there are no central database 
servers or computing servers in a P2P environment. So, users’ ratings are distributed 
in the community and computing tasks should also be fulfilled by the peers them-
selves or in a distributed fashion. This urges an appropriate mechanism for peers to 
communicate with each other and gather the data they need for trust decisions. 

Some researchers propose the use of DHT (Distributed Hash Table) to store the 
reputation ratings [11,13,14], but DHTs seem to be not suitable for unstructured P2P 
systems such as BitTorrent, KaZaa and eDonkey, which are the most popular P2P ap-
plications. First, maintaining a DHT is too costly when peers frequently join and leave 
the system. Second, some incentive mechanism is needed to ensure that peers would 
like to take their responsibility as part of the DHT, but this incentive problem appears 
to be even more troublesome than the problem of evaluating trust itself [18]. Third but 
not last, strong cryptological methods must be adopted to prevent peers in the DHT 
from modifying the data they stored, and this can be too complicated to implement. 

In contrast to DHTs, we argue that a broadcast or multicast polling protocol will fit 
better into an unstructured P2P system. And we’ve tried to develop a protocol which 
works in a Gnutella-like unstructured purely distributed fashion. It’s a derivation of 
Damiani et al’s polling protocol in [12]. This protocol runs as follows: 

Step1: A peer (noted as A) uses the searching mechanism provided by the P2P 
community to find the resources he wants. When this searching finishes, A gets a list 
of candidate resources and/or their owners’ IDs. 

Step2: Peer A picks out some limited number (for fear the query message might be 
too long) of target items in the list from step1, and broadcasts a request-for-
recommendation querying message containing the following information: 

 Request::=Issuer_ID | Target_SET | Desired_length 
 Target_SET::= SET OF {Target_ID} 

Issuer_ID is the ID of peer A. Target_ID is the ID of the target items (resources 
and/or their owners). Desired_length is the desired number of ratings in a recommen-
dation vector. This vector contains the recommender’s ratings for several other items 
as well as one or more of the target ones. It is used to compute the similarity. 

Step3: When another peer (noted as B) receives this query message and is willing 
to give a recommendation, he first checks his “blacklist” to make sure that the issuer 
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A is not in that list. Then he looks for the target IDs in his own transaction history log. 
If there are at least one hit, then he constructs a response message like the follow: 

 Response::=Responser_ID | Item_SET | Rating_vector 
 Item_SET::= SET OF {Item_ID} 
 Rating_vector::=VECTOR OF {Rating} 

Responser_ID is the ID of peer B. Item_SET contains the IDs of the target item(s) 
hit in B’s log, and some other randomly chosen items in order to reach the “De-
sired_length” in the query message. Rating_vector contains the ratings corresponding 
to the items in Item_SET.  

Peer B encrypts the Item_SET field with A’s public key and signs the whole mes-
sage with B’s private key, and then transmit the message to A. (The problem of iden-
tity and key management will be discussed in section 5.) 

Step4: Peer A waits for responses until timeout or enough recommendations have 
been gathered. It checks the signature for each received response. If the signature is 
invalid, the message will be discarded as a fake recommendation. Otherwise, the en-
crypted part will be decrypted using A’s private key. After that, it reconstructs a rat-
ing matrix from these recommendations and carries out a CF-based aggregating algo-
rithm to draw conclusions of the target items’ trustworthiness. 

Step5: If A is satisfied about some of the targets, it will begin to requests for them 
directly from the owners. Otherwise, another round of querying will be carried out for 
some other limited number of items in the list from step1. 

In this polling protocol, signatures on the response messages ensure the integrity 
and authenticity the recommendations. This not only prevents malicious peers from 
modifying other peers’ response messages during transmission, but also can be a dis-
incentive for them to give too many misleading recommendations, because that can 
put them into other peers’ blacklists. 

Encryption on Item_SET in the response message aims at protecting the recom-
mender’s privacy. Due to the encryption, only the peer issuing this query message can 
read the content and have some knowledge about the recommender’s personal trans-
action history. Together with the randomicity in the choice of items in his log, the re-
commender can feel safe that no one else can get his full transaction history. 

5   Identity and Key Management 

An identity and key management mechanism is necessary for the polling protocol de-
scribed in section 4. We do not recommend the use of PKI public key certificates, be-
cause certificate management is too costly and inefficient for a distributed P2P sys-
tem. To avoid using public key certificates, we propose a key management system 
based on so-called “identity-based” cryptography. 

Identity-based cryptography was first introduced by Shamir in 1984 [19]. His 
original motivation was to simplify certificate management in e-mail systems. In an 
identity-based cryptosystem, instead of generating a random pair of keys and publish-
ing the public one, a user chooses his name or other personal identification informa-
tion as his public key. Because the public key is the ID itself, there will be no need for 
a certificate to bind the public key to the user’s ID. A user can authenticate himself to 
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a KGC (Key Generation Center) and obtain his private key. The only purpose of a 
KGC is to fix the system parameters and give each user a personal “card” when he 
first joins the community. The KGC can be closed after all the users have got their 
“cards”, and the system can continue to function in a totally independent way. 

Here we suppose a certain number of register servers in a P2P community. They 
act as a distributed KGC of an identity-based cryptosystem. The master-key of the 
KGC is distributed among the servers using techniques of threshold cryptography so 
that no single location can get the whole master-key [20]. 

Every peer in this community should register on one of these servers in order to get 
a unique ID (it is also the public key) and a corresponding private key, if he wants to 
participate in the trust management system. There can also be unregistered peers, but 
these peers can’t use the function of the trust management system. 

Note that peers only need to contact a register server for once. They don’t have to 
do the logins and logouts each time they get online and offline, as in a centralized sys-
tem like eBay. As long as the peers finish the registering, they can authenticate each 
other using their IDs and private keys without the interference of a central authentica-
tion server. So the existence of a register server is not a contradiction with the phi-
losophy of P2P. Moreover, the existence of a register server can increase the cost of 
pseudonyms and so to some extent solve the problem of so-called “sybil attack”[21], 
which is a great threat to the functioning of a reputation system. 

6   Simulations and Experiments 

We evaluate our CF-based recommendation-aggregating algorithm by simulation ex-
periments. These simulations are done using MatLab 5.3 on a PC machine with a P4 
1.4G CPU and 256M RAM. Our concentration is on the algorithm’s effectiveness 
when facing various kinds of malicious users. We didn’t simulate the distributed poll-
ing protocol because it only influences the time efficiency and traffic overload but has 
little impact on the accuracy. 

6.1   Threat Models 

We consider three kinds of malicious peers (similar to those in [22]): 

1. badmouthing: these peers always act dishonestly and give bad ratings to every-
one else (good or bad). 

2. colluding: these peers cluster into one or more collusion groups. They act dis-
honestly to all the good or bad peers outside their group, deliberately give good rat-
ings to the malicious peers in their group, and give bad ratings to all the others. 

3. front peers: so called “front peers” usually belong to some collusion group. They 
act honestly during transactions to gain a good reputation, and then spread their mali-
cious ratings to subvert the functioning of the reputation system. 

We make the assumption that a malicious peer always acts maliciously according 
to some of the above patterns. That is to say, we didn’t consider the dynamic person-
ality of the users, or the misbehaviors caused by the users’ incidental carelessness. 
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6.2   Simulation Setup and Description 

Our simulated P2P community consists of 1,000 peers. (We also did the same ex-
periments with a community of 100 and 10,000 peers, and the results were largely the 
same.) The peers rate each other about their trustworthiness in transactions. The rating 
matrix R is a 1000*1000 square matrix. 

We randomly choose x% (x = 10 ~ 90) of the peers as malicious ones. We assume 
that good peers always act honestly in transactions and provide honest feedback af-
terwards, while malicious peers act according to the different threat models described 
in section 6.1. 

We use a binary feedback system similar to that of eBay. If a peer thinks another 
peer is trustworthy, 1 will be given as the rating; otherwise, -1 will be the rating value. 
If a peer has no experience with another peer, the corresponding value in the rating 
matrix will be 0 meaning ignorance. 

To accumulate enough ratings before implementing the aggregating algorithms, we 
perform 10,000 transactions between randomly chosen pairs. Because the chosen 
pairs may be the same in different transactions, the density of the resulting rating ma-
trixes should be less than 2% (each transaction results in 2 ratings in the matrix). They 
are quite sparse matrixes meaning most of the peers do not know each other. 

For each of the resulting rating matrixes, a good peer is randomly selected as the 
observer (or evaluator). Four algorithms are executed by the observer to evaluate the 
trustworthiness of all the other peers in the community: 

Algorithm 1: The observer only trusts his own direct experiences. No recommenda-
tion is accepted. 

Algorithm 2: For peers he has rated, the observer trusts his own ratings. And for 
each peer he has not rated, all the non-zero ratings in the corresponding column are 
summed up followed by an application of function sign(x), where 

sign(x) = 1(if x > 0) or –1(if x < 0) or 0(if x = 0) (2) 

This is equivalent to majority voting. 
Algorithm 3: For peers he has rated, the observer trusts his own ratings. And for 

each peer he has not rated, a weighted summation of all the non-zero ratings in the 
corresponding column are computed followed by an application of function sign(x). 
The weight of the rating in the ith row, written as w(i), is the dot product of row vec-
tor

observerR
v  and

iR
v : 

iobserver RRiw
vv

*)( =  (3) 

The dot product reflects the similarity between the two peers’ opinions. Thus, algo-
rithm 3 can be seen as an application of neighbor-based CF technology. 

Algorithm 4: For peers he has rated, the observer trusts his own ratings. And for 
each peer he has not rated, the function sign(x) is applied to the dot product of the 
corresponding column vector and the row vector 

observerR
v

. This operation stands for a 

weighted summation by the observer’s direct trust placed on the recommenders. 

After the evaluation, an aggregated trust vector is compared with the peers’ real 
reputations (1 for good peers, and –1 for malicious peers) to compute an error rate (er-
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ror ratings divided by total number of peers) and a coverage rate (non-zero ratings di-
vided by total number of peers). 

A brief overview of the simulation setup is presented in Table 1. 

Table 1. Simulation setup 

Decription value 
Number of peers in the community 1,000 
Percentage of malicious peers 10% ~ 90% 
Percentage of front peers in a collusion group (if any) 10% 
Number of transactions 10,000 
Number of aggregating algorithms compared 4 

6.3   Results and Discussion 

The results are presented in figure1 to figure 3 for the three different threat models 
described in section 6.1. All the results have been averaged over ten runs of the ex-
periments. 

First look at the left part of figure1 through figure 3. The least error rate is 
achieved by algorithm 1 under all the three threat models, and the error rate remains 
stable when the percentage of malicious peers increaces. The performance of algo-
rithm 3 and 4 is also not bad in the terms of error rate. On the contrary, the error rate 
of algorithm 2 increases rapidly when the percentage of malicious peers increases, 
and it is even worse off if malicious peers collude (figure2 and figure3). This implies 
that one’s own experiences are the most valuable and reliable foundation when mak-
ing trust decisions, especially in an untrustworthy environment where majority rating 
will lead to error results. 

Then look at the right part of these figures. Although algorithm 1 achieves the low-
est error rate, its coverage rate is the lowest, too. In contrast, the error rate of algo-
rithm 4 is similar to that of algorithm 1, but the coverage rate is considerably in-
creased. The best coverage rate is achieved by algorithm 2 and 3. We know that 
algorithm 1 means depending only on one’s own judgement, while the other algo-
rithms mean asking for advices from other peers if one can’t make a judgement by 
oneself. This tells us that personal experiences are always limited, so experience-
sharing is necessary for a successful trust management system. 

Coverage rate is a very important metric for a trust management system. Algorithm 
1 is the most conservative one, and algorithm 4 makes only one step further. They 
both suffer from a low coverage rate (less than 40%). That means they fail to give an 
evaluation result in most of the cases. Algorithm 2 and algorithm 3 outperform them 
as far as this is concerned. 

On the other hand, if we compare the performance of algorithm 2 and algorithm 3, 
we can see that: firstly, our CF-based algorithm (algorithm 3) achieves a comparable 
coverage rate with majority voting (algorithm 2) even when the rating matrix is very 
sparse (with a density less than 2%); secondly, it performs far better than majority 
voting in terms of error rate when malicious peers make the majority. The error rate 
of our CF-based algorithm increases very slowly (figure 1) or remains stable (figure 
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2,3) when the percentage of malicious peers increases. It achieves an error rate lower 
than 10% even when 90% of the peers are malicious. The advantage of our CF-based 
algorithm is even more remarkable when malicious peers collude (figure 2,3). 

Here we can reach the conclusion that our CF-based algorithm can reach a good 
balance between error and coverage, thus is the best one among the above 4 kinds of 
algorithms. 
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Fig. 1. Badmouthing malicious peers 
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Fig. 2. Colluding malicious peers 
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Fig. 3. Colluding malicious peers with 10% of the malicious peers as front peers 
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7   Conclusion 

In this paper, we present a trust management scheme for distributed P2P communi-
ties. This scheme includes three main parts: a CF-based recommendation-aggregating 
algorithm, a polling protocol for gathering recommendations, and an identity-based 
key management system to ensure the confidentiality, integrity and authenticity of 
trust recommendations.  

The application of identity-based cryptography can greatly simplify key manage-
ment in a distributed environment. We believe that it is a promising technology not 
only in e-mail systems, but also in trust management systems on P2P networks. 

Our polling protocol makes use of identity-based encryption and signatures. To-
gether with a randomization mechanism, users’ privacy can be protected while they 
make recommendations.  

We evaluate our CF-based recommendation-aggregating algorithm by simulation 
experiments. And the results show that it performs pretty well even when malicious 
peers make the majority. 

We haven’t test out scheme in a real P2P application. Neither have we simulated 
all the possible threat models (for example, whitewashing, dynamic personalities, 
etc.). The traffic overload induced by the polling also need further study. We will ex-
amine these problems in a future paper. 
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Abstract. Currently high-speed networks have been attacked by successive 
waves of Distributed Denial of Service (DDoS) attacks. There are two major 
challenges on DDoS defense in the high-speed networks. One is to sensitively 
and accurately detect attack traffic, and the other is to filter out the attack traffic 
quickly, which mainly depends on high-speed packet classification. 
Unfortunately most current defense approaches can not efficiently detect and 
quickly filter out attack traffic. Our approach is to find the network anomalies 
by using neural network, deploy the system at distributed routers, identify the 
attack packets, and then filter them quickly by a Bloom filter-based classifier. 
The evaluation results show that this approach can be used to defend against 
both intensive and subtle DDoS attacks, and can catch DDoS attacks’ 
characteristic of starting from multiple sources to a single victim. The simple 
complexity, high classification speed and low storage requirements make it 
especially suitable for DDoS defense in high-speed networks. 

1   Introduction 

Computer networks and the Internet have now evolved into a ubiquitous information 
infrastructure. High-speed backbones and local area networks (wired or wireless) 
provide the end-user with bandwidths that increase rapidly, linking millions of end-
users to many critical services. In the past a few years, companies, organizations and 
government agencies have been attacked by successive waves of Distributed Denial of 
Service (DDoS) attacks [7] [23]. A DDoS attack is characterized by an explicit attempt 
from an attacker to prevent legitimate users from using the desired resource [4].  

The rapid development of high-speed networks has spurred new applications and 
has in turn been driven by the popularity of those applications. However, it also 
provides DDoS attackers advantages to start an attack. Although many defense 
approaches have been proposed to fight against DDoS attacks, such as filtering [5] 
[25], traceback [1], congestion control [6] [8] and replication [33] [27]. It is still 
difficult to separate unambiguously the attack traffics from legitimate traffics, and 
then remove the attack traffic, especially when the traffic volume is high. There are 
two major challenges on DDoS defense in the high-speed networks. One is to 
sensitively and accurately detect attack traffic, and the other is to quickly filter out the 
attack traffic, which mainly depends on high-speed packet classification [11]. Here 
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packet classification means the process of categorizing packets into normal or attack 
flows in a router. Since packet classification has been one of the major bottlenecks in 
routers that provide security services, a fast packet classification algorithm is critical 
to a router-based DDoS defense system. 

We use neural network to differentiate normal and abnormal traffic. By the aid of 
the marks of a traceback scheme, Flexible Deterministic Packet Marking (FDPM), in 
the IP header [30], the system separates the attack packets from the legitimate 
packets. Our contributions are that we explore neural network methods on DDoS 
defense in high-speed networks and propose a Bloom filter-based packet 
classification scheme for the implementation of the filtering system. The experimental 
evaluations show that the system can sensitively and accurately detect DDoS packets, 
quickly filter out the packets in a high-speed network (eg. 7.6 Gb/s), accordingly 
greatly improve the legitimate traffic throughput and reduce attack traffic throughput.  

2   Related Work 

Many methods have been proposed to detect network anomalies caused by DDoS 
attacks. Statistical method requires a strong assumption that the network traffic 
variables obey a Normal Distribution [17] to detect anomalies. Nonparametric 
Cumulative Sum (CUSUM) method [26] is stateless, lightweight, and sensitive to 
persistent sudden changes caused by DDoS attacks instead of Internet flash crowd. 
However, this method can only consider one network feature, and can only deal with 
the change point problem (eg. sudden increase of a variable). If the network anomaly 
is not an intensive flood, this method may not discover the attack timely. Rather than 
analyzing the change of features such as traffic volume, multivariate correlation 
analysis [14] [34] that is proposed to detect subtle DDoS attacks considers the 
correlations among the features. However, there is no theoretical proof to decide 
which features are valid for the correlation models and how important each feature is. 
Additionally, those methods can only represent the changes of correlation, but not the 
causality between those changes and attacks. 

Many researches have been done on building the rules to filtering the DDoS 
packets, such as Ingress filtering [5], Distributed Packet Filtering (DPF) [25], Hop-
Count Filtering (HCF) [13], RED [6] and RED-related schemes [24] [18], Path 
Identifier (PI) [32] and Deterministic Bit Marking (DBM) [15]. However, these 
approaches are mostly affected by the distance in number of router hops, resulting in 
low detection rate if the attacks come from hosts that are far away from the victim. 
Additionally, they limit the attack bandwidth by the rate of attack-bearing path 
signatures, which is based on the assumption that the more attack traffic the more 
legitimate traffic can pass through. 

Fast packet classification is another important issue to deal with the DDoS attacks, 
which is inherently difficult.  The task of packet classification is to forward packets 
according to the set of rules quickly. Linear time search or parallelisms are used to 
search through all rules sequentially, such as multi-dimensional range matching [16] 
and Ternary-CAMs [19]. However, these solutions will be expensive when the DDoS 
filtering rule sets are large. Heuristic methods such as Recursive Flow Classification 
(RFC) [9], Hierarchical Intelligent Cuttings (HiCuts) [10], and Tuple Space Search 
[28] have lower complexity in worst-case time requirements than linear search 
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schemes. However, other limitations such as storage requirements and scalabilities 
make them unsatisfactory for fast packet filtering on DDoS problems. 

3   System Design 

3.1   Overview 

We are not going to discuss the Flexible Deterministic Packet Marking (FDPM) [30] 
in detail in this paper. The FDPM encoding modules are deployed at the edge routers 
that are close to the attack source end. When packets enter the network, they are 
dynamically marked by the encoding modules. The real source IP addresses of the 
entry points are stored in the marking fields. When the packets reach the victim end, 
the source IP addresses of entry points can be reconstructed. As it is shown in figure 
1, the system is deployed between the source end (one hop behind FDPM encoding 
module) and the victim end. Incoming packets are tapped into both Offline Training 
System (OTS) and Online Filtering System (OFS). OTS is a lightweight neural 
network [22] with back-propagation algorithm [12], which consists of three parts, data 
collecting part, training part and rules generating part. It is usually deployed close to 
the victim end, in order to obtain better training result. The trained neural networks 
are transferred back to OFS for testing. Once the packets are identified as the attack 
packets, they can be filtered out by the Bloom filter-based packet processing part. 

 

Fig. 1. System architecture 

There are two key ideas to solve the challenges we introduced in Section 1. One is 
the application of neural network to detect network anomalies. As it is shown before, 
in the marks that FDPM uses, the address digest bits in different IP packets are always 
the same for one entry point. If the attacker sends attack packets, in a large traffic 
volume (eg. 3GBps), or in a certain rate (eg. 300KBps), through one entry point, there 
will be a special pattern of marked packets with the same destination IP address and 
address digest bits. Therefore, in a global view, there will be a pattern with several 
groups of packets with corresponding address digest bits, and the same destination IP 
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address. The pattern reflexes clearly the character of DDoS traffics that come from 
multiple sources and aggregate at one destination.  

The other is the fast packet classification by using Bloom filter [3]. In DDoS 
packet filtering problems, packet classification becomes a two-category classification 
process. While Bloom filter provides good space and speed efficiencies with low false 
positives, it gives a fast decision making function to filter the attack packets. The OFS 
can be deployed at any point in the protected network. If it is deployed close to the 
attack source end, it can protect even better the rest of network from it to victim, 
because the attack traffic has been removed before it travels to the victim, without 
causing overall network congestion.  

3.2   Neural Network 

A 3-layer neural network is used in this DDoS defense system. Here we introduce the 
design of this neural network. More details such as parameter tuning can be found in 
[31]. There are input layer, hidden layer and output layer in this neural network. The 
number of the units in the input layer is dictated by the dimensionality of the input 
vectors (features of traffic). There is one unit in the output layer, representing a value 
between 0 and 1 (legitimate and attack traffic, respectively). Theoretically, more 
hidden units can deal with more complex nonlinear problem. However, the training 
error and test error should be small enough while moderate number of hidden units is 
chosen. After tuning in the experiments, we found the optimal value of number of 
hidden units is between 19 and 21. The input layer is a linear layer and the other two 
are sigmoid layer with transfer function 

       )1,0(),1/(1 ∈+= − yey x

      (1) 

In the training phase the desired output must be 0 or 1, and in the test phase the 
output is between 0 and 1. We use cross entropy as the error criterion function to 
control the iteration. The cross entropy for n patterns can be written as 
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where mt  and mz are the target and the actual value of output unit for pattern m, when 

there is 1 output unit; w is the weight. The optimal learning rate optη
that satisfies the 
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In terms of minimum Bayes error [2] the features of input with good discriminatory 
power can be chosen. However, selecting features by Bayes error is much less effective 
in non-linear classifiers than linear classifiers because in practice it is difficult to know 
the class probability densities. In [21] a Support Vector Machine (SVM) approach is 
used to rank the features. In this paper we use some extracted network traffic features 
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with high ranks in the previous reference and some features by experience, as the input 
of the neural network for training and test (as shown in table 1), and let the output as 
the likelihood of attack packets. We apply time window to collect the information of 
network traffic. Besides the common packet features, the mark (address digest bits) 
that the FDPM writes into the IP header, is also concerned. Let 

digestsofNumberPacketsofNumberxmark __/__=
                   (4) 

This feature means the concentration of the packets that have same digest bits. In 
practice, we adjust the scale of this special feature, to make the neural network adjust 
weights from it more than other features during training, because if the neural 
network prefers this feature over the others, it will be more sensitive to DDoS attacks, 
according to our experiments. We just simply let 

markmark xx β='

       (5) 

where '
markx  and markx  are the adjusted mark feature and the original mark feature 

respectively, and β
 
is the scaling ratio. 

Table 1. Features used in neural network 

Feature Description Protocol 
SrcIP Number of source IP address Any 
DestIP Number of destination IP address Any 
SrcPort Number of source port Any 
DestPort Number of destination port Any 
Length Total length of packets Any 
Chksum Number of wrong checksum Any 
SYN Number of  SYN flag TCP 
FIN Number of  FIN flag TCP 
ACK Number of  ACK flag TCP 
Mark Concentration of the packets with same digest bits Any 

3.3   Bloom Filter 

A Bloom filter is a simple space-efficient randomized data structure for representing a 
set in order to support membership queries [3]. The space efficiency is achieved at the 
cost of a small probability of false positives. Here we briefly first introduce the Bloom 
filter theory and then the application of it in packet classification. 

A Bloom filter has a set },,,{ 21 nxxxS K=  of n elements by an array of m bits, 

initially all set to 0. It uses k independent hash function 
khh K,1

with range },,1{ mK . 

Here we have an assumption that hash functions are perfectly random. For each 
element Sx ∈ , the bits )(xhi

are set to 1 for ki ≤≤1 . A location can be set to 1 

multiple times, but only the first change has an effect. For the membership query 
if Sy ∈ , we check if 1)(, =∀ yhi i

. If 1)( ≠∃ ihi
, then Sy ∉ . If 1)(, =∀ yhi i

is true, we 

can assume Sy ∈  with a false positive rate as 
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Because minimizing the f is equivalent to minimizing g with respect to k , we have 

when the above equation equals 0, )/(2ln nmk ⋅= . The optimized false positive 

is nm /)6185.0( . 

3.4   Online Filtering System (OFS) 

The Online Filtering System (OFS) is key sub-system that enables the filtering 
function. We test the incoming packets by the trained neural network that transferred 
from the Offline Training System. If the output indicates anomalies, we further 
investigate the composition of marked packets. If the number of packets that have the 

same address digest bits exceeds a threshold N drop  (this value is decided by 
experience), this flow of packets will be filtered. This two-step design can not only 
protect legitimate traffic that shares a large portion of bandwidth but also punish 
entirely the attack traffic. First, because the anomaly detection is performed by a 
nonlinear neural network classifier with the assistance of concentration of the packets 
of same digest bits, the legitimate traffic will be less likely decided as an anomaly 
than by other coarse granite classifier such as statistical model. Second, once the 
attack traffic flow is identified, this flow can be totally filtered by differentiating the 
identity – address digest bits that FDPM marks. 

 

Fig. 2. Bloom filter-based packet classification 

After the attack packets are identified, it turns into the packet classification phase. 
As it is shown figure 2, the filter begins as an array of all 0’s in step 0. The attack 
packets ],1[, niai ∈ are hashed k times, with each hash the corresponding bit turns into 

1 in step 1. Then in step 2, for each incoming packet ],1[, miti ∈ , if any hashed bit is 

not equal to the corresponding bit in the preset array, then it means the packet does 
not belong to attack packets. On the other side, if all hashed bits are within the bits of 
value 1, then the packet is either an attack packet or a false positive. 



 Intelligent DDoS Packet Filtering in High-Speed Networks 401 

4   Performance Evaluations 

4.1   Detection Performance 

To test the capability of the neural network to find anomalies, we conduct 
experiments by using public data sets. Two sources of data sets are used in the 
experiments. One is 1998 DARPA Intrusion Detection Evaluation Data Set at Lincoln 
laboratory, MIT [20]. The other is sanitized UCLA CSD traffic traces from D-WARD 
project [29]. We train the neural network by clean training data, and then apply the 
trained neural network to test the attack data. 

The MIT data sets are in tcpdump format, we extract the features of interest with 
time window of 10 seconds. The training data include one week data and a four-hour 
subset of training data. The features include all the features in table 1 except Mark. We 
will investigate effects of the mark feature in the later section. The UCLA data sets are 
in plain text format, each row represents a packet. The features extracted are SrcIP, 
DestIP, SrcPort, DestPort, and Length. The attack traffic is generated by TFN DDoS 
tool. We test different types of attacks (maximum attack rate is 300KBps) as in table 2. 

Table 2. Attack type in UCLA data sets 

Attack type Description 
Constant rate attack The maximum rate is achieved immediately and maintained until 

the attack is stopped 
Pulsing attack The attack rate oscillates between the maximum rate and zero. The 

duration of active and inactive period is the same - 100 seconds 
Increasing rate 
attack 

The maximum rate is achieved gradually over 300 seconds and is 
maintained until the attack is stopped 

By using different training data set and testing data set, we obtain the fitted ROC 
curves as follows. A ROC curve is a plot with the false positive rate on the X axis and 
the true positive rate on the Y axis. It can reflect the sensitivity of the neural network 
by measuring the area below the curve. The point (0, 1) is the perfect classifier: it 
classifies all positive cases and negative cases correctly. It is (0, 1) because the false 
positive rate is 0 (none), and the true positive rate is 1 (all). From the following 
figures we can see under each situation the area below the curve is nearly equal to 1, 
which proofs the neural network approach can detect anomalies sensitively and 
accurately.  

4.2   Filtering Performance 

\The ultimate goals are to find out the attack traffic as accurately as possible, and to 
filter out the attack traffic as much as possible and at the mean time let as much 
legitimate traffic pass through as possible (but not to detect anomalies). Therefore, the 
performance metrics are average value of legitimate traffic passed rate (LTPR) and 
attack traffic passed rate (ATPR) of distributed filtering systems. Let 

packetslegitimatetotalofNumber
passedpacketslegitimateofNumberLTPR ____

____=
         (8) 
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Fig. 3. MIT and UCLA ROC curves 

packetsattacktotalofNumber
passedpacketsattackofNumberATPR ____

____=
      (9) 

We deploy the mark-aided distributed filtering system at different distances from 
the victim and conduct experiments based on both TFN2K and Trinoo DDoS simulator 
tools. Random algorithms in SSFNet are used to generate legitimate traffic. After the 
neural network is trained, the DDoS tools are initiated to start the attack with 300KBps 
attack rate. Then the traffics on the deployment points are monitored. The following 
figures show the average values of LTPR and ATPR at routers that locate at different 
hops from the victim. From the figures we can see our scheme can filter out most of 
the attack traffic and let most of the legitimate traffic pass through. These two figures 
also show that both LTPR and ATPR decrease slightly if the defense systems are 
deployed close to the attack source end. This proofs our system can be deployed at any 
place in the protect network. Actually, if the filtering system is deployed close to the 
attack source end, it can protect the rest of the network from congestion. 

FDPM can change its marking rate dynamically at its encoding modules according 
to the load of participating routers. This ability can intelligently find the most possible 
attack packets to be marked. From figure 5 we can see that the performance of LTPR 
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Fig. 4. Average LTPR and ATPR at different distances 
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Fig. 5. Average LTPR and ATPR at marking rate at hop=1 

and ATPR change according to the marking rate. Moreover, if attacking packet rate 
increases, our scheme can let even more legitimate packets pass through, and filter 
more attacking packets. 

4.3   Packet Classification Performance 

There are many metrics for packet classification algorithms [11] such as search speed, 
low storage requirements, fast updates, scalability and flexibility. We summarize 
these metrics in table 3. Different classification applications have different 
requirements. For our application, search speed and low storage requirements are two 
major goals. For fast updates, a relative low update rate is sufficient because the there 
is no need to change the rules all the time, which require very frequent updates. We 
only need classify packets into two categories, attack packets and normal packets. We 
also consider the scalability and flexibility are not obligatory requirements because 
the classification problem here is not a general purpose application. 

For comparison, the Hierarchical Tries algorithm is implemented. This algorithm is 
an extension of the one dimensional radix trie data structure. Table 4 shows the search 
time of 3 different tests. On average, the Bloom-filter-based classifier is 354% faster 
than a traditional H-Trie classifier. The Bloom-filter-based classifier can achieve the 
average search time at about 33ns and the maximum search time at about 42ns. This 
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means the classifier can process at least 23.8 million packets per second. If we assume 
the minimum length of an IP packet is 40 bytes, this classifier is power enough to 
process packets at the 7.6 Gb/s speed, which meets the requirement of most current 
high-speed networks. 

Table 3. Metrics for packet classification 

Metric Description 
search speed  The speed to find the matched rules. Faster links require faster 

classification. 
low storage 
requirements  

Small storage requirements enable the use of fast memory technologies like 
static random access memory (SRAM). 

fast updates  The classifier changes from time to time, therefore fast and incrementally 
update of the data structure is essential to a good classification algorithm. 

scalability  The number of IP header fields used for classification. 
flexibility The capability to support general rules, including prefixes, operators and 

wild cards. 

Table 4. Search time of two packet classification schemes 

Test Test 1 Test 2 Test 3 
Search time (ns) Average Maximum Average Maximum Average Maximum 
Bloom filter-based 33.8 43.6 32.9 41.5 33.5 42.7 
H-Trie 150.4 167.4 152.4 164.6 151.9 168.1 
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Fig. 6. Comparison of memory consumption 

Although in our tests the memory consumption is not a remarkable issue, because 
there are usually less than 500 rules to be used in the classification for DDoS filtering 
in the experiments, the Bloom filter-based classifier still shows good storage 
efficiency compared with the H-Trie classifier. For example, for the 500-rule test in 
figure 6, our classifier consumes only 2.259% of what an H-Trie classifier needs. On 
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the scalability, even if tested by up to 10000 artificial generated rules (not by DDoS 
tests) the Bloom filter-based classifier only needs less than 3M memory. This proves 
it has potential to be applied for other more memory-consuming applications. 

5   Conclusions 

In this paper we present an intelligent DDoS filtering system by using neural network 
technology and Bloom filter. It solves two major challenges on DDoS defense in 
high-speed networks: It can sensitively and accurately detect the network anomalies 
and filter quickly the attack packets at a gigabit speed.  
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Abstract. In simultaneous multithreaded (SMT) processors, a larger
multi-ported rename register file is indispensable for holding more inter-
mediate results of in-flight instructions. However, larger rename register
file incurs longer access delay and more power consumption, which are
becoming a bottleneck in future SMT processors. To tackle these prob-
lems, we propose 2L-MuRR, the abbreviation of Multi-usable Rename
Register with 2-Level renaming and allocating, which focuses on more ef-
ficient utilization of a fewer number of rename registers. Based on the fact
that the effective bit-width of most operands is narrower than the full-bit
width of a register entry, 2L-MuRR partitions each rename register into
several fields of different widths. Either single field or field combination
can hold an operand, thus making each rename register multi-usable. The
simulations show that 2L-MuRR improves the efficiency of the rename
register file significantly, achieving higher performance with much fewer
rename registers.

1 Introduction

Modern dynamically scheduled superscalar processors examine a large window
of in-flight instructions to find and issue multiple ready instructions every cycle.
And in simultaneous multithreading architecture (SMT), the instruction win-
dow size and issue width should be much larger, because SMT executes instruc-
tions from multiple threads simultaneously and converts thread-level-parallelism
(TLP) into instruction-level-parallelism (ILP) dynamically [1]. However, sup-
porting a larger instruction window requires larger structures within the pro-
cessor, namely, larger reorder buffer (ROB), larger issue queue, more execution
units, and larger multi-ported rename register file (RRF).

RRF is used for holding the renamed register values, i.e., the intermediate
(uncommitted yet) results of in-flight instructions. The minimum size of RRF
should be greater than the product of the pipeline depth (between the rename
and commit stages) and issue width. For example, a processor with 7-stage
pipeline (5-stage from rename to commit) which supports 8-wide issue would
need at least O(5X8=40) rename registers. In practice, the size of RRF should
be much bigger because of the long-latency instructions, such as cache misses,
which hold rename registers for the entire duration of cache misses and delay the

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 407–418, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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release of them to subsequent instructions. E.g., in the 4-wide 7-stage pipeline
Alpha21264, beyond the 32 integer and 32 floating-point user-visible registers
(non-speculative), an additional 41 integer and 41 floating-point registers are
available to hold the renamed register values prior to instruction retirement [2].
Deeper pipelines due to higher frequency, wider issue for more ILP, and multiple
threads for TLP exacerbate the design of RRF [3][4]. Future SMT processors
with deeper pipeline and wider issue will probably need hundreds of rename reg-
isters. However, a larger multi-ported RRF incurs longer access delays and more
power consumption, both of which are critical to the overall performance. Being
significantly affected by the size and port number, the access time and power-
consumption of register file are very likely to become one of the bottlenecks of
future SMT processors.

Many techniques has been proposed to tackle these pressing problems, and we
classify them coarsely into 3 categories. The first is to reduce the port number
and accelerate the access time by decentralizing register file organization, for
instance, register caching [5], hierarchical solutions [4], and multi-banked register
files [6]. The second is to reduce the demand for bigger size and port number by
delayed allocating or earlier releasing of rename registers. Exploiting program
semantics to release registers early was studied in [7], while checkpoint schemes
that enable early releasing of registers and other resources was described in [8]. A
scheme called VPR (virtual-physical register) postpones the allocation of rename
register to a later stage when the renamed value is known [9]. The third is to
reduce the demand for bigger size through value-based optimizations. In a scheme
called physical-register-inling [10], if a register value can be expressed with fewer
bits than the bits the register map table would need to specify a physical register
number, the value is stored directly in the table, thus avoiding the indirection
and saving space in the RRF. In [11], the temporal locality of register values was
exploited by correlating several logical registers that contain a same value with
just one physical register.

This paper focuses on more efficient utilization of a fewer number of rename
registers, and our work relies on two facts. First, most operands can be repre-
sented with much fewer bits than the full-bit width (usually 32-bit or 64-bit)
of a register entry. Fig. 1 shows (for Alpha AXP ISA) the cumulative distribu-

Fig. 1. Register Operand Distribution. The cumulative distribution of the number of
bits needed to represent: (a) integer, (b) floating-point’s exponent, (c) floating-point’s
fraction respectively, for the SPEC2000 CINT average and CFP average.
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tion of the number of bits needed to represent integer operand, floating-point
operand’s exponent and fraction respectively, for the SPEC2000 CINT average
and CFP average separately. Second, rather than traditionally being allocated
during decode/rename stage, a rename register can be allocated at the end of
execute-stage when the destination value is known. A scheme called VPR exploits
this fact and reduces the average rename register occupancy time greatly [9]. In
this paper, we propose a compact RRF organization called 2L-MuRR, the abbre-
viation of Multi-usable Rename Register with 2-Level renaming and allocating.
In 2L-MuRR, each rename register is partitioned into several fields of differ-
ent widths, and either single field or field combination can hold an operand.
Therefore, each rename register in 2L-MuRR can hold multiple operands simul-
taneously. Depending on its value, the destination operand selects which fields
to use in the RRF at write-back stage, effectively eliminating its meaningless
register file occupancy.

2 Review of Register Renaming

Register renaming was first proposed in the IBM 360/91, and nowadays is con-
sidered to be a standard feature of superscalar processors [12]. By dynamically
renaming logical registers that specify control and data flow through a program
to physical registers implemented in the machine, register renaming eliminates
false name dependencies—Write-After-Read or Write-After-Write—that remark-
ably limit the amount of parallelism in a program.

2.1 Register Map Table

In traditional register renaming process, a rename (physical) register is allocated
for each logical destination register in an instruction at the decode stage, and
this mapping is recorded in a structure called register map table, so that logical
input registers in subsequent instructions will correctly reference the rename
register that holds the latest value.

As shown in Fig. 2, the two most common types of register map table are
RAM (random addressed memory) and CAM (content addressed memory) ta-
bles. In RAM table, the total number of entries is equal to the number of logical

Fig. 2. Traditional Register Renaming: (a) RAM Map Table, (b) CAM Map Table. The
shallow copy entries are needed for controlling speculation and precise exceptions.
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registers. A logical register number is decoded to select a single entry that points
to the physical register location holding the latest value for that logical register,
and a W -bit in each entry indicates whether the value is ready (written-back).
In CAM table, the total number of entries is the number of physical registers in
the machine. An associative lookup is required, and a valid-bit V is needed in
each entry to find latest allocation for the given logical register.

2.2 Layout of Rename Registers

As for the layout of RRF, there are commonly three types of implementa-
tions [12]. The first is the merged register file, in which ARF (architectural
register file) and RRF dynamically share a same physical register file. One ad-
vantage of this type is that no data transfer is required for updating the ARF
when instructions commit. Power1 and Alpha21264 are examples of this type.
The second type has stand-alone RRF and ARF, which is explicit, but need data
transfer for updating the ARF. This type was exploited by PowerPC603/620,
Power3 and Pentium4. The third type can be viewed as embedding RRF into
the ROB. Since each in-flight instruction has a ROB entry, it is natural to have
ROB entries extended for holding the renamed values, but this will increase the
ROB complexities and also need data transfer when instructions commit. K5,
K6, Pentium II and Pentium III chose this type.

3 Architecture of 2L-MuRR

In this section, we will discuss 2L-MuRR in detail. We adopt RAM table because
CAM does not scale well to larger number of rename registers. For simplicity, we
choose the stand-alone RRF and ARF, that is, there also exists a stand-alone
ARF for holding the committed register values.

3.1 Basic Structure of 2L-MuRR

Fig. 3 illustrates the basic structure of 2L-MuRR. Each entry in the RRF is
partitioned into N fields of different widths: field 1, field 2, . . . , field N . A
single field, or a combination of several fields in a entry, can hold an operand.
Thus, each rename register in 2L-MuRR is multi-usable, that is, it may hold
multiple operands simultaneously. Besides, each rename register has a N -bit
busy flag to indicate which fields are occupied, one bit per field. Comparing with
Fig. 2(a), we see that Fig. 3 has a table called V2P map (virtual-to-physical)
between the RAM map table and the RRF. The output of the RAM map table
is no longer pointer to the RRF entries, but pointer to entries in the V2P map.
We call the entries in the V2P map virtual registers, and each virtual register
has the following 4 fields:

– B bit: busy bit, indicates whether this entry has been allocated;
– rename reg#: identifier of the rename register that hold the corresponding

renamed value; meaningless when the W bit is 0;
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Fig. 3. Basic Structure of 2L-MuRR. A virtual register (entry in V2P Map) is allocated
to be alias of the logical destination of an instruction at decode stage. At write-back
stage, some fields in a rename register (entry in RRF) are allocated for holding the
destination value.

– field mask: indicates which fields in the rename register hold the renamed
value; meaningless when the W bit is 0;

– W bit: write-back bit, indicates whether the renamed value has been written-
back to a rename register.

For instance, 2# virtual register is related to 0# rename register, while both
1# and 5# virtual registers are related to 2# rename register, etc.

Like the VPR scheme [9], the V2P map acts as a bridge between the RAM
map and the RRF, through which the allocation of rename registers can be
postponed to a later stage in the pipeline. When an instruction is decoded, a
virtual register is allocated to be alias of its logical destination. However, in 2L-
MuRR, no rename register is related to this virtual register until the instruction
enters the write-back stage when its destination value is already known. At write-
back stage, the instruction tries to find a suitable rename register to hold its
destination value. If succeed, the rename reg#, field mask, W bit in the virtual
register, and the busy flag of the selected rename register, will be updated
to keep track of the states of the V2P map and RRF. At commit stage, the
completed instructions move their destination values from the RRF to the ARF,
releasing the entries in V2P map and the corresponding fields in RRF. Since
the RRF usually has fewer entries than the V2P map, there are possibilities
(although rarely) that an instruction can not find a suitable rename register
during write-back. In this case, the instruction is marked as ”uncompleted” and
re-enqueued, waiting to be re-executed later. Fig. 4 shows the pipeline stages for
2L-MuRR.

Fig. 4. Pipeline for 2L-MuRR. Upon unsuccess at write-back stage, the instruction will
be re-enqueued, waiting to be re-executed later.
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To guarantee high decode throughput, the number of virtual registers should
be large, and the upper limit is the instruction window size. However, just be-
having like a bridge and not holding any renamed value, the structure of V2P
map is simple and only has small impact on hardware cost.

3.2 Fields Allocation and Release

In contemporary computers, integer is represented in 2’s complement and
floating-point in IEEE-754 format. Since each field in 2L-MuRR is usually much
narrower than an operand’s normal representation, an operand must be com-
pressed before being stored into some fields of a rename register. Based on the
statistics shown in Fig. 1, we compress the operands just by truncating its leading
or trailing repeating bits. The detailed operand truncation and fields allocation
policies are shown below:

– For integer, its higher-order repeating bits (0s or 1s) can be viewed as its
sign and truncated before being stored into some fields in a rename register;

– For floating-point, because its exponent and fraction differ in distributing,
we deal with them separately. Taking the double-precision floating-point for
example, normally its value is (−1)S(1 + fraction)2(exponent−1023), where S
denotes the sign bit and 1023 is a bias and should be subtracted from the
exponent. Due to the fact that exponent is biased, we keep bit < 62 > as
the exponent’s sign bit (ES bit) and only compress bit < 61 : 52 > as an
integer. Then the truncated representation of bit < 61 : 52 > is fit into a
field, with the highest bit set to ES. The fraction is compressed by cutting
the trailing repeating 0s before being stored into some fields;

– All the fields related to an operand must be in an identical rename register;
– For simplicity of implementation, floating-point’s exponent and fraction oc-

cupy different fields, that is, a floating-point occupies at least two fields. Due
to the fact that in most cases 8-bit is enough to hold the exponent (worst
case, 11-bit), we predefine that the exponent can occupy only one field, and
it must be the leftmost one of all the fields occupied by the floating-point;

– An instruction tries to find the ”smallest” field combination to hold its des-
tination value, that is, to store the destination value with as few bits as
possible. This is carried out by examining the busy flags of all rename reg-
isters.

Fig. 5 shows a example of how a 64-bit integer and a double-precision floating-
point are truncated and stored into a same rename register.

When an instruction commits (update the ARF) or is discarded due to mis-
speculation, its V2P entry and the corresponding fields in the RRF are released
through the following logical operations:

RR.busy_flag := RR.busy_flag Xor VR.field_mask;
VR.Busy:= 0;

where RR and VR denote the corresponding RRF entry and V2P entry respec-
tively.
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Fig. 5. Operand Compression Example. A 64-bit integer (L1=9531810 ) and a double-
precision floating-point (D1=-169.4062510 ) are truncated and stored into a same re-
name register. L1 is stored into field 4. For D1, its exponent is stored into field 2, and
its fraction is stored into field 3 and field 5. Here, the bold bits are key bits and can
be used to preserve the value, while the italic bits are padding bits for filling up a field.
S denotes the sign bit, and ES is viewed as the exponent’s sign bit. The field-pattern
is 11-8-11-24-10 and the busy flag is 5-bit.

3.3 Field Partitioning

How rename register file is partitioned, i.e., how many fields in each rename
register and how many bits in each field, will certainly affect the overall per-
formance. To be comparable, we set the rename register in 2L-MuRR to have
the same sum-width as a traditional register (64-bit in Alpha AXP). There are
two opposite choices in partitioning the rename registers: more fields that are
narrower, or less fields that are wider. The first choice will certainly improve
the efficiency of all fields because of fewer padding bits on average. However,
too many fields will increase the complexities of both implementation and field
allocation due to: (1) more opportunities when big operands cannot find a wide
enough field and has to find a field combination; (2) more different field com-
binations to select from; (3) wider busy flag and field mask (see Fig. 3); etc.
Contrarily, the second choice has more bits wasted in each field, but increases the
opportunities when operands occupy just one field and decreases complexities.
A degenerate case of the second choice is to have only one field in each rename
register, which is similar to the VPR scheme. Therefore, a compromise between
field number and field width should be found.

We exploited the operand distribution features described in Section 1 to find
out rational field-patterns. Fig. 1 shows that there are some representative points
that can be used for field partitioning: 8-bit, 10-bit, 24-bit and 34-bit. Upon
these observations, we chose the field-pattern 11-8-11-24-10 in our simulations,
which is 64-bit in total: 11-bit for field 1, 8-bit for field 2, etc. Accordingly, the
field masks and busy flags are 5-bit wide.

3.4 Deadlock Avoidance

As shown in Fig. 4, in 2L-MuRR, an instruction that can’t write-back is marked
as ”uncompleted” and re-enqueued, waiting to be re-executed later. When this
instruction finishes execution again, it may probably succeed in writing-back
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because other committed instructions have released some fields during this pe-
riod of time. However, in dynamically scheduled processors, instructions execute
out-of-order, but commit in-order. Therefore, if the re-enqueued instructions are
the oldest ones, they will probably never get opportunities to write-back. The
reason is that the already written-back instructions are younger and cannot com-
mit and release their occupied rename registers. To avoid this deadlock, we use
the NRR (number of reserved register) proposed for VPR [9], which preserves
NRR rename registers particularly for the oldest instructions. Although simple,
it works well in our simulations.

4 Simulation Environment and Results

We modified the SimpleScalar/Alpha ver3.0d [13] to build three SMT simula-
tors using 2L-MuRR, TRAD (traditional register renaming) and VPR respec-
tively. Table 1 summarizes the key parameters of these three SMT machines, all
which are 12-issue and support 4-thread running simultaneously with ICOUNT
scheduling policy [14]. Alpha AXP was designed as a 64-bit RISC architecture—
all registers are 64-bit in length and all operations are performed between 64-bit
registers [2]. We compose 6 test-suites using 24 SPEC2000 benchmarks, and each
test-suite consists of 2 integer and 2 floating-point benchmarks. All simulations
use the SPEC2000’s ref sets. After fast-forward the first 1 billion instructions for
each thread, the simulations run until a thread commits 100M instructions. For
comparison, we define a baseline machine, which is TRAD with infinite rename

Table 1. Hardware parameters for TRAD, VPR, 2L-MuRR

TRAD
VPR(256-entry
V2P map)

2L-MuRR(256-
entry V2P map)

Deadlock Avoidance
—— 1-entry NRR per

thread
1-entry NRR per
thread

L1 Inst. Cache 128K bytes, 32-byte block, 4-way associative, 2-cycle
latency, LRU replace

L1 Data Cache 128K bytes, 64-byte block, 2-way associative, 2-cycle
latency, LRU replace

Unified L2 Cache 1M bytes, 64-byte block, 4-way associative, 12-cycle
latency, LRU replace

Branch predictor Gshare (2K-entry), 32-entry RAS, 4-way 512-set BTB

Main memory Infinite capacity, 36-cycle latency for first chunk, 2-cycle
inter-chunk latency

Fetch/Decode/Issue/
Commit width

12 inst/cycle, 4-thread contexts, ICOUNT scheduling

Out-of-order Execution
6 Int. ALU, 3 Int. Multiply/Divide, 6 FP ALU, 3 FP
Multiply/Divide, 4 Read-port, 2 Write-port, 256-entry
ROB, 128-entry LSQ
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Table 2. Test-suites and their Baseline IPC

1# 2# 3# 4# 5# 6#

Test-suite
gzip
vpr
wupwise
swim

gcc
mcf
mgrid
applu

crafty
parser
mesa
galgel

eon
perlbmk
art
equake

bzip2
twolf
lucas
fma3d

sixtrack
apsi
gap
vortex

Avg

Baseline
IPC 6.11 7.66 6.27 5.76 5.78 7.08 6.44

registers and can be viewed as owning peak performance. Table 2 shows the
test-suites and their baseline IPC (instruction per cycle).

4.1 Performance Comparison

Fig. 6(a) shows the IPC comparisons of TRAD, VPR and 2L-MuRR when RRF
size is 50. It’s evident that 2L-MuRR outperforms TRAD and VPR for all test-
suites. The average IPC are 4.28 (TRAD), 5.54 (VPR), 6.12 (2L-MuRR) respec-
tively. The superiority of 2L-MuRR over VPR is more noticeable for 1# and 6#
test-suites, because they have more ”narrow” values to enjoy the multi-usable
rename registers in 2L-MuRR.

Fig. 6. (a) IPC comparison of TRAD, VPR and 2L-MuRR when RRF size=50; (b)
Normalized Average IPC when RRF size ranges from 30 to 80, the data are average
IPCs normalized to the baseline average IPC (6.44)

Fig. 6(b) shows the average IPC of all test-suites when RRF size ranges
from 30 to 80; all data here are normalized to the baseline average IPC (6.44,
see Table 2). Compared with 2L-MuRR, the performances of TRAD and VPR
are more sensitive to the RRF size. 2L-MuRR with RRF size being 50 achieves
95.0% of the baseline’s performance, which is nearly equal to VPR with 80
and outperforms TRAD with 80 significantly. With RRF size being 60, 70 and
80, 2L-MuRR achieves 96.7%, 98.1% and 99.1% respectively of the baseline’s
performance. In summary, by using 2L-MuRR, SMT processors can achieve the
same high performance with much fewer rename registers.
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4.2 Efficiency of 2L-MuRR

Fig. 7(a) shows the occupancy rate of rename registers (RR busy rate) as a
function of the RRF size, for TRAD, VPR and 2L-MuRR respectively. The
RR busy Rate of 2L-MuRR is much lower than that of TRAD and VPR. E.g.,
when RRF size is 50, they are 99.2% (TRAD), 67.3% (VPR) and 53.1% (2L-
MuRR) respectively. Furthermore, the actual occupancy of RRF in 2L-MuRR
is even lower, because a rename register is viewed as ”busy” when its busy flag
is not 0, but it may still has some free fields.

Fig. 7. (a) RR busy rate comparison of TRAD, VPR and 2L-MuRR; (b) Efficency of
2L-MuRR

We define the quotient Inst Per RR/RR busy Rate as the efficiency of 2L-
MuRR, where Inst Per RR denotes average amount of operands in each rename
register per cycle. Fig. 7(b) shows the efficiency of 2L-MuRR retains around 1.5
when RRF size ranges from 30 to 80. This implies that each rename register in
2L-MuRR has about 1.5 times the ”capacity” of a traditional one.

4.3 Balance of Field Utilization in 2L-MuRR

The relative utilization frequency of each field (RRF size=50) is presented in
Fig. 8. This figure reveals that 11-8-11-24-10 is a rational field-pattern, which
have a balanced utilization of all fields. Field 5 (10-bit) is occupied less fre-
quently, because most operands will find a ”suitable” location in the front 4
fields during field allocating.

Fig. 8. Relative utilization frequency of each field
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4.4 Saving on Writing to RRF

Because each accessing to a rename register may read or write multiple values
in it, 2L-MuRR can reduce the accessing to the RRF, somewhat alleviating the
read/write ports pressure. For simplicity, we only give the statistic of the savings
on write-back to the RRF in our simulations. At write-back stage, if multiple
instructions choose identical rename register to store their destination values,
their destination values are combined together and write to the selected rename
register just once. The simulations present an average saving of 8% (best case
14%, worst case 4%) on writing to the RRF.

5 Conclusions

SMT requires a large register file to support multiple thread contexts. This
raises a difficult design tradeoff, because large register file will greatly impact
such aspects as cycle time, die size and power consumption.

This paper proposes a novel rename register file organization called 2L-
MuRR. Fundamental to 2L-MuRR is the sharing of each rename register among
multiple truncated operands. As revealed in its name, 2L-MuRR possesses two
features. The first is the delayed register allocation, through which each instruc-
tion undergoes 2 level of register renaming and allocating before write-back its
destination value. The second is the partitioned rename registers, in which any
field combination can hold an operand, thus making each rename register multi-
usable. Our results show these two features significantly improve the efficiency
of RRF, making each rename register has about 1.5 times ”capacity” of a tra-
ditional one. With the same RRF size, 2L-MuRR outperform TRAD scheme
and VPR scheme significantly, implying SMT processors using 2L-MuRR can
achieve the same high performance with much fewer rename registers. In addi-
tion, 2L-MuRR alleviates the pressure on the read/write ports.
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Abstract. Irregular data redistribution is used to enhance data locality and 
algorithm performance on heterogeneous processor systems. In this paper, we 
present an efficient scheduling algorithm based on convex bipartite 
communications for irregular GEN_BLOCK transformations. The proposed 
technique consists of two phases: degree reduction phase, schedules 
communications involved in processors with degree greater than two; and 
coloring phase, schedules remaining communications of all processors with 
degree-2 and degree-1. To evaluate the performance of our algorithm, we have 
implemented the proposed technique along with three scheduling methods. The 
simulation results show improvement of total communication costs by the 
proposed algorithm. 

1   Introduction 
In many parallel programs, dynamic data re-decomposition is needed when 
applications running from one sub-algorithm to another during run-time.  Many data 
parallel programming languages support run-time primitives for changing a program’s 
array decomposition.  Since data re-decomposition is performed at run-time, there is a 
performance trade-off between the efficiency of the new data decomposition for a 
subsequent phase of an algorithm and the cost of redistributing data among processors.  
Thus efficient methods for performing data re-decompositions are of great importance 
for the development of distributed memory compilers for those languages. High 
Performance Fortran version 2 (HPF2) provides GEN_BLOCK distribution format 
which facilitates generalized block distributions and redistributions. GEN_BLOCK 
allows unequal sized data segments of an array to be mapped onto processors.  This 
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makes it possible to let different processors dealing with appropriate data quantity 
according to their computation ability. 

Recently, there are some studies focuses on the problem of irregular data 
redistribution. These researches can be divided into two categories: communication set 
generation [1] and communication schedule. Guo et al. [2] presented a symbolic 
analysis method for reducing communication cost of irregular array redistribution. Lee 
et al. [3] presented a logical processor reordering algorithm on irregular array 
redistribution. Algorithms were compared in various redistribution environments for 
illustrating the reducing communication cost. Wang et al. [4, 5] proposed a method 
based on divide-and-conquer algorithm. This method separated data array into groups 
by Neighbor Message Set (NMS), then these groups will be merged for resulting the 
schedule. Yook et al. [6] presented a scheduling algorithm including list scheduling 
phase and relocation phase. The list scheduling phase sorts messages by size and then 
allocates them in decreasing order. Relocation phase finds appropriate positions for 
current messages while contentions happen. The above research reflected that the 
communication scheduling is one of the most important issues on developing runtime 
array redistribution techniques. In this paper, we present an efficient algorithm for 
scheduling communications of irregular data redistribution based on convex bipartite 
graph concept. Upon the device that communication patterns of GEN_BLOCK 
transformation were configured as convex bipartite graph, the proposed scheduling 
technique can minimize total message size of communication steps and avoid nodes 
contentions.  

2   Notations and Terminologies 

Definition: Given a bipartite graph G = (V, E) to represent the communication patterns 
of an irregular array redistribution on A[1:N] over P processors, vertices of G are used 
to represent the source and destination processors. Edge eij in G denotes the message 
sent from SPi to DPj, where eij ∈ E, 0≤ i, j ≤ P−1. |E| is given as the total number of 
communication messages through the redistribution. The maximal degree of G denoted 
by Degreemax is defined as Degreemax = max(degree(v)), for all v ∈ V.  

Definition: The length of a communication step i is the maximal size of messages that 
transmitted at step i. 

An example of communication patterns of irregular data redistribution on an array 
A[1:100] is shown in Figure 1. Figure 1(a) gives two distribution schemes of source 
and destination processors.  Figure 1(b) illustrates communications between processors 
upon the transformation of GEN_BLOCK given in (a). Figure 1(c) sketches a simple 
schedule result. To avoid node contention, while one source processor sends message 
to a destination processor, it can’t send other messages at the same time. It is the same 
to a destination processor; one can’t receive two messages at the same time. Those 
messages that can not be scheduled at the same time are called conflict tuple[5]. For 
example, {m4, m5, m6} and {m6, m7, m8} are conflict tuples since m4, m5 and m6 have the 
same source processor, m6, m7 and m8 have the same destination processor.  In general, 
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communication time consists of startup time and data transmission time. To minimize 
communication steps can be achieved by applying graph coloring mechanism.  The 
coloring mechanism is an efficient method to determine minimal communication steps. 
However, it ignored the total length of communication steps. Optimizing both total 
length and minimal steps is usually the objective in developing efficient 
communication techniques for irregular data redistribution. 

 
Distribution of Source Processor 

SP SP0 SP1 SP2 SP3 SP4 SP5 

Size 5 24 23 7 42 3 
 

Distribution of Source Processor 

DP DP0 DP1 DP2 DP3 DP4 DP5 

Size 18 20 8 21 18 19 
 

m11m10m9m8m7m6m5m4m3m2m1 

18      20      8       21     18     19 

SP0     SP1    SP2     SP3     SP4    SP5   

5      24      23     7       42      3 

DP0    DP1     DP2     DP3     DP4    DP5   

5   13   11  9  8  6   7   8   18  16  3 Schedule 

Step 1 m1, m3, m7, m10(16) 

Step 2 m2(13), m6 

Step 3 m4(9), m8, m11 

Step 4 m5, m9(18) 

(a)                                                 (b)                                       (c) 

Fig. 1. Example of irregular data redistribution. (a) Data distributions mapped onto source and 
destination processors (b) A directed bipartite representation used to denote all communications. 
(c) Simple schedule. The length of step 1, 2, 3 and 4 are 16, 13, 9 and 18. Total length of 
scheduling steps is 56. 

3   Communication Scheduling Algorithm 

The proposed algorithm is named Degree-Reduction (DR) algorithm that consists of 
two phases: degree reduction phase and coloring phase. The main idea of degree 
reduction is to reduce Degreemax in steps. DR schedules messages of processors with 
Degreemax when Degreemax is greater than two. The degree reduction is performed by 
the following processes. 

Process 1: Sort vertices that with Degreemax in a non-increasing order according to 
sum of its messages’ size.  Assume there are n nodes with Degreemax and the sorted list 
be S = {v1, v2, …,vn}, where S ⊆V. 

Process 2: Let d = Degreemax. For all vertices v ∈ S, select the minimum message mj 
= min{m1, m2, …, md} into step d. 

Process 3: Select other messages into step d. The selected messages in this process 
must satisfy two conditions: 1. smaller than the length of current scheduling step and 2. 
will not incur contention with those scheduled communications in previous Process. 
Schedule those messages into current step. 

Process 4: Repeat Processes 1-3 if Degreemax  2. 
Given a bipartite graph G = (V, E), let d be the maximum degree of vertices v, for all 

v ∈ V, a bipartite graph G’ that with maximum degree 2 can be obtained after 
performing d-2 times degree-reduction iterations.  This property denotes that the degree 
reduction technique reduces degree of nodes with Degreemax in each reduction iteration. 
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Given a bipartite graph G = (V, E) denotes the communication of irregular array 
redistribution.  If the maximum degree of v is 2, there are |V’| - 2 vertices with degree 2 
in each connected component G’ = (V’, E’), where V’ ⊆ V, E’ ⊆ E and |V’| denotes the 
number of vertices in G’. The coloring phase of DR employs an adjustable coloring 
mechanism which is used to schedule messages for the bipartite communications 
resulted from degree reduction phase. When Degreemax is two, the left bipartite graph 
may consist of several connected bipartite sub-graphs. The coloring mechanism colors 
edges using two colors for each connected bipartite sub-graph. In order to reduce total 
length of the two communication steps, an adjustable method to exchange the colors is 
employed during the merging process among all connected components.   

Let’s demonstrate the example shown in Fig. 1 again using DR. In this example, 
Degreemax = 3, DR schedules messages into scheduling step 3 in degree reduction 
phase. Fig. 2(a) shows SP4  SP2 and DP3 are candidate vertices that with Degreemax.  
According to Process 2, message m8 and m5 are scheduled into step 3 because of SP4

and SP2 have larger total message size than that of DP3 DP3 is then discarded because 
of the common link message with SP4, m8 has been scheduled and resulting 
degree(DP3) = 2. After removing m5 and m8, DR schedules m1 and m11 into step 3 
according to Process 3. Fig. 2(b) illustrates this mechanism. There are four messages 
m1, m5, m8 and m11 are scheduled in step 3. 

 

m11m10m9 m8 m7 m6 m5 m4m3m2 m1 

18      20      8       21     18     19 

SP0     SP1    SP2     SP3     SP4    SP5   

5      24      23-8   7       42-8    3 

DP0    DP1     DP2     DP3     DP4    DP5   

5   13   11  9  8  6   7   8   18  16  3 

 

m11 m10 m9 m7m6m4m3m2m1

18      20      8       21     18     19 

SP0     SP1    SP2     SP3     SP4    SP5    

5      24      23-8   7       42-8    3 

DP0    DP1     DP2     DP3     DP4    DP5   

5   13   11  9     6   7       18  16  3 

 
(a)         (b) 

Fig. 2. Degree reduction scheduling processes. (a) State in Processes 1 and 2, messages m8 and 
m5 are scheduled in step 3, Degreemax reduced to 2.  (b) State in Processes 3, messages m1 and m11 
are scheduled in step 3. 

There are two connected bipartite sub-graphs resulted after the completion of degree 
reduction phase as shown in Figure 3(a). The coloring phase is responsible to schedule 
the bipartite communications when maximum degree is not greater than 2. A simple 
coloring mechanism is to use two colors for the degree-2 coloring. Assume blue and red 
are colors for step-1 and step-2, respectively. Figure 3(a) shows this scenario. Messages 
m2, m4, m7 and m9 are colored blue and scheduled in step 1; messages m3, m6 and m10 are 
colored red and scheduled into step 2. The length of step 1 and 2 are 18 and 16, 
respectively. The scheduled result is shown in Figure 3(b) and the total length is 42. 
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m10m9m7 m6 m4m3m2 

18      20      8       21     18     19 

SP0     SP1    SP2     SP3     SP4    SP5   

5      24      23-8   7       42-8    3 

DP0    DP1     DP2     DP3     DP4    DP5   

   13   11  9     6   7       18  16    

Schedule 

Step 1 m2 m4 m7 m9(18) 

Step 2 m3 m6 m10(16) 

Step 3 m1 m5(8) m8(8) m11 
 

(a)         (b) 

Fig. 3. Coloring scheduling processes. (a) Edges are colored blue and red for step 1 and 2, 
respectively. (b) The complete schedule of DR. The length of step 1, 2 and 3 are 18, 16 and 8, 
respectively. The total length of scheduling steps is 42. 

4   Performance Evaluation  

Figure 4 shows the comparisons of these algorithms over 1000 random generated test 
samples. To simplify the presentation, DR, LIST, COLOR, DC1 and DC2 are denoted 
as the proposed algorithm, List scheduling algorithm [6], pure coloring scheduling 
mechanism and the two versions of Divide-and-Conquer scheduling algorithms [5], 
respectively. Algorithms are compared with each other and the results are compared by 
accumulating number of better, equal and worse cases. For example, there are 207 
samples DR performs better than LIST over 1000 cases on 8 processors. Figure 4(a) 
summarizes the accumulating results on 8 processors.  The term “Combined”, is used to 
express the ratio of better, equal and worse compared to the other 4 algorithms. We 
observe that DR outperforms about 67% to 81% cases as shown in Figures 4(a) and (b). 
Although LIST performs better when number of processors is 8, DR can outperform 
LIST when number of processors is greater than 8. The DR scheduling algorithm uses a 
size-oriented policy in the degree reduction phase. Two optimizations are made in both 
phase in DR algorithm. In degree reduction phase, the Process 3 balances 
communication between different steps. This enables more flexible messages 
allocation. Second, the adjustable coloring scheme also reduces the length of total 
steps. Overall speaking, the DR scheduling method can avoid contention; schedules 
optimal steps and minimize length of total steps.  

On the other hand, DC2 gives higher probability of reducing the length of total steps 
compare to DC1 because of that DC2 always schedules messages together if no 
contention.  Both of them can schedule messages in minimal steps, but the merging 
phase limits the possibility of minimal length of total scheduling steps. COLOR can 
also schedule messages in minimal steps, but does not consider message size. This 
leads large length of total scheduling steps and performs worse in most cases in the 
simulation. LIST can efficiently reduce length of total steps. The simulations show LIST 
has good performance. However, LIST scheduling may cause more communication 
steps. In other words, number of scheduling steps of LIST is not guaranteed optimal. 
This might cause additional startup overheads. 
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Processor 8 DR LIST DC1 DC2 Color Combined

DR better 
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6
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8.2%
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4
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8.75%
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665
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4
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89.7%
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2

0
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7.775%
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290
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4

7

921
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54

998

0

2

79.95%

10.2%

9.85%
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10

5

985

7

4

989
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11
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774

42

184

24.25%

1.55%

74.2%

DC2 better 

equal 
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11

58

931
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25

921

810

11

179

948

7

45

45.575%

2.525%

51.9%

Coloring better 
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0

2

998

2

0

998

184

42

774

45

7

948

 5.775%

1.275%

92.95%

(a)          (b) 

Fig. 4. Performance comparisons of five algorithms. Figures (a) and (b) are results for 8 and 16 
processors, respectively. 

5   Conclusions 

We have presented an irregular data redistribution scheduling technique, DR, in 
parallelizing compilers. DR is an efficient and practical algorithm.  The simulation 
results show our algorithm outperforms other methods in most cases.  The scheduling 
algorithm developed in this paper devoted to that the source and the destination 
processors are identical.  In high performance Fortran, the irregular data redistribution 
is actually supported with arbitrary processor sets.  We will improve DR for arbitrary 
processor sets.  Besides, the issues of scheduling irregular problems on grid system and 
considering network communication latency in heterogeneous environments are also 
interesting and will be investigated. 
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Abstract. In order to identify and schedule jobs that are suitable for determined 
resources, an execution time estimation model is required. In this paper, it is 
described a Chronological history-based execution time estimation model to 
predict current execution time, according to the previous execution results. We 
built a heterogeneous computational Grid environment using Globus Toolkit, 
and our research is focused in Grid computing environments and to execute 
parallel jobs on multiple resources by measuring its accuracy. The experimental 
results shown that our model can accurately predict the execution time of 
embarrassingly parallel applications. 

Keywords: Grid computing, time estimation model, embarrassingly paralleli- 
zation, performance evaluation. 

1   Introduction 

One of the design goals of Grid computing technology is to solve large scale scientific 
problems. In Grid environments, problem can be divided to pieces or chunks, which 
can be distributed to many resources and execute them at the same time, to minimize 
overall execution time. The importance of this procedure is to retain the flexibility of 
work on multiple smaller problems. Grid computing involves sharing heterogeneous 
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resources, which are based on different platforms, hardware, software, computer 
architecture, and computer languages, located in different places belonging to 
different administrative domains over a network using open standards [1, 2, 3]. 

It is easy to obtain static resource information of a Grid platform, such as CPU 
speed, memory capacity, network bandwidth, etc. But run-time resource information, 
such as CPU loading, free memory, and current network bandwidth, may change over 
time. In [5, 6], it is provided a general Grid scheduling algorithm that focuses the 
research in four aspects: static task scheduling, application-level scheduling, resource 
availability prediction, and economic methods in decentralized task scheduling 
system. These references served as base for the development of our estimation model. 
NASA Ames Research Center [4] provides performance models that parse the source 
code of parallel applications before its execution, in order to estimate the amount of 
CPU power and communication that are needed for execution. 

In this paper, we use history-based model to find previous execution time records 
for similar applications, based on a number of parameters. The average execution 
time of previous execution result is computed within a tolerable error rate, and these 
data are used to estimate the execution time of current parallel application. By using 
empirical data analysis, it is hard to understand the behavior of performance generated 
by these applications. Therefore, we only consider the embarrassingly parallel jobs, 
which do not communicate with each other during execution. Our goal is to estimate 
the Total Execution Time (TET) executed on different sets of resources with different 
job sizes. In order to identify jobs that are suitable for specific resources, an execution 
time estimation model is required. 

The main contribution of this paper is to describe a chronological history-based 
execution time estimation model, in order to predict the execution time of parallel 
application, according to previous execution results. This paper focuses on estimating 
execution time of embarrassingly parallel jobs. There are several factors, which might 
influence on overall performance of an application in the underlying heterogeneous 
Grid environment, such as processor power, network bandwidths or memory sizes. A 
set of applications were ran on a heterogeneous computational Grid environment we 
built using standard Grid middleware Globus Toolkit, and those experimental results 
show that our model can accurately predict the execution time of parallel applications. 

2   Execution Time Estimation Model 

Consider the problem of time estimation model. First, we have to know how many of 
variables will affect execution time when running a parallel job. Secondly, the amount 
of information we can obtain from historical data. In our model, there are three 
variables that might affect the estimated execution time, that are job size, quantity of 
processors and processor power. In our experimental computing environment, as the 
number of MPI jobs is divided by the number of processors, each processor will get 
coherent job sizes to execute. Load balancing can only be achieved by adding codes 
to MPI source code that cooperate with information service, since such cost is 
extremely high to users. We will leave this part of investigation for future research. 

To meet the concept of heterogeneous environment, we propose the estimation 
model that considers the different processor power to formulate TET. We first define 
some terminologies that could affect the TET. 
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• T_mpinop: MPI start up time and Globus overhead of total nop processors, 
• S_now: The total job size for current execution, 
• Np_now: Number of processor for current execution, 
• P_nowpn: Processor power for processor pn, pn = 1 ~ Np_now, 
• T_now: TET for current execution, 
• N_pr: Number of previous result used for estimation, 
• S_prepr: The total job size for previous pr times execution, pr from 1 to N_pr, 
• Np_prepr: Number of processor for previous pr times execution, pr from 1 to N_pr, 
• P_prepn, pr: Processor power of processor pn for previous pr times execution, pn 

from 1 to Np_prepr, pr from 1 to N_pr, 
• T_prepr: TET for previous pr times execution, pr from 1 to N_pr. 

The part of jobs that every processor works on is calculated by: 

Job_pre = 
pr

pr

preNp

preS

_

_  

The TET can be calculated by: 
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which can be simplified to 

T_pre = 
α×)_,...,_,_(

_

_21 preNpprePprePprePMin

preJob +T_mpinop 

This formula can be used to predict next execution time. This means that the 
slowest processor will slow down the progress of entire work. The TET is almost 
equivalent to the time that the slowest processor completing its job. Therefore, our 
estimation model is based on this particular idea. We must obtain the amount of work, 
so that it can be down per processor-power times TET (here we use the symbol  at 
previous result). 

 = 
−× )__()_,...,_,_(

_

,_,2,1 nopprprpreNpprpr

pr

mpiTpreTprePprePprePMin

preJob
Ave  

The function Ave() is to calculate the average value of . Finally, the estimated 
TET for current execution is: 

T_now = 
α×)_,...,_,_(

_

_21 nowNpnowPnowPnowPMin

nowJob +T_mpinop 

Our estimation model first gets rid of the influence of MPI and Globus overhead, 
in order to get actual processor execution time. Finally, we add this overhead 
according to how much processors is running. We will perform some experimental 
tests to obtain the table of overhead versus the number of processors. 
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3   Experimental Results 

We built a computational Grid environment by using the Globus Toolkit 3.0.2 and 
MPICH library 1.2.6. The computing nodes are located in four different sites 
interconnected in TIGER project [8]. The average network bandwidth is about 30 
Mbps over different sites. Table 1 shows the MPI and Globus overhead versus 
number of processors, that is, the real world value of T_mpinop. This variable is 
obtained by running hello world MPI program, which is almost the smallest program 
with no CPU power needed. 

Table 1. MPI and Globus overhead vs. number of processors 

N.O.P. 1 2 3 4 5 6 7 8 9 10 
Time 1.10 12.56 12.40 14.47 14.15 15.73 16.23 16.93 16.97 16.86 

N.O.P. 11 12 13 14 15 16 17 18 19 20 
Time 17.31 17.64 18.88 20.86 23.59 26.62 26.51 26.93 27.01 27.84 

During the test case, we chose three embarrassingly MPI parallel programs, which 
are CPI and prime number. These programs communicate at the start of execution, 
when master node communicates with slave nodes what parts of job which need to be 
handled and sent the results back to master node when execution is finish. We will 
describe the characteristics of each program and show the estimation result in 
following sections. 

3.1   CPI Example 

CPI is a program that calculates the  number accurately. It computes the value of  
by numerical integration. Table 2 shows the calculated  value and estimated time in 
our model. We randomly execute CPI program on various numbers of processors with 
different CPU power. Up-left is the first execution result with 3 processors (N.O.P.). 
The second estimation is based on the first result; the third estimation is based on first 
and second result, and so on. This process continues until we have more then 5 newest 
previous results. The size in Table 2 is irrelevant because we can not change any 
parameter of this program. The value 100000 is just a proper value that makes  more 
readable. Figure 1 shows our model that can precisely estimate future values of 
execution time. In our experiments, the average error rate is 2.12% and the maximize 
error rate is 5.14%. 

Table 2. Estimation results of CPI example 

 1.17683 1.18001 1.15143 1.16017 1.16946 1.16713 1.16509 
Estimate  12.932  15.067  57.099  76.283  114.379  229.138  

Time 30.174  12.897  15.420  57.555  76.130  114.423  229.248  
Size 100000 100000 100000 100000 100000 100000 100000 

N.O.P. 3 7 6 4 3 2 1 
 1.22250 1.21813 1.21436 1.16991 1.14709 1.14499 1.14963 

Estimate 14.086  18.555  27.561  45.607  18.579  22.362  28.320  
Time 13.397  17.926  26.973  46.680  19.404  23.327  29.041  
Size 100000 100000 100000 100000 100000 100000 100000 

N.O.P. 8 6 4 2 12 10 8 
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Fig. 1. Execution time vs. estimation time of CPI example 

3.2   Prime Number Example 

It is given a range of numbers where we want to find a list of prime numbers; for 
instance, between 1 and 20,000,000 (20 million). It proceeds to write code that 
initially runs on a master node and sends the task of testing 101-200 to node 1, and 
sends the task of testing 201-300 to node 2, and so on. Along with the testing task, 
there would also be an instruction to return prime numbers that a slave node 
discovered to the master node. When all nodes have completed their tasks, there will 
be a message to tell the amount of prime numbers is found and the biggest prime 
number. In this case, we still randomly execute prime number on various numbers of 
processors with various CPU power. Table 3 shows partial result of our estimation 
model. The size unit is million. Figure 2 shows our model that can still estimate the 
future execution time under an acceptable error. The average error rate is 28.82% and 
the maximize error rate is 57.84%. 

Table 3. Estimation result of Prime number. 

 0.022972 0.018626 0.019046 0.017385 0.014597 0.012958 
Estimate 26.184 47.537  39.309  59.605  107.777  176.815  

Time 48.445  95.600  68.793  94.205  168.299  252.777  
Size 50 80 80 100 150 200 
NOP 12 12 8 8 8 8 

 0.011755 0.020827 0.015487 0.013007 0.007871 0.005814 
Estimate 247.810  220.066  430.018  661.217  80.443  172.756  

Time 348.315  160.061  430.503  768.894  151.321  409.746  
Size 250 100 200 300 100 200 
NOP 8 3 3 3 11 11 

From the experiments, we can observe that, firstly, the estimation result of CPI is 
precise because there is no size variable, and the workload is equally distributed to 
each processor. Although the CPU power is different, our estimation model can 
handle it. Secondly, the prime number program owns almost the same characteristic 
with CPI, besides its size. The size here represents the total workload of program, 
which is linear increased. Although we cannot make sure that each processor will 
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have equal workload (total prime numbers is not the same on each interval), but the 
amount of mathematical operation is about the same. Our model can estimate the 
execution time within acceptable error rate. 

Execution Time v.s. Estimation Time of Prime Number
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Fig. 2. Execution time vs. estimation time of Prime number 

4   Conclusion 

As Grid Computing is becoming a reality, there is a need for managing and 
monitoring the available resources worldwide, and require the prediction model to 
give users a general TET of his jobs or scheduling will be in job queue. This paper 
describes a historical based time estimation model that can predict TET within 
acceptable error rate which can be used for future job scheduling or users. We 
developed some small programs to get the variable needed for our model that would 
not cause any loading on the users. The experimental results shown that our model 
can accurately predict the execution time of embarrassingly parallel applications. 
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Abstract. In spite of the advent of high performance parallel computers
and commodity clusters, complexity of parallel application development
remains one of the major obstacles towards the mainstream adoption
of parallel computing. Researchers are constantly investigating different
approaches to reduce parallel application development time and increase
productivity. As re-usable components, patterns have gained popularity
in the sequential programming domain. Subsequently, several pattern-
based parallel programming environments (PPEs) have been proposed
to facilitate parallel application development procedure. Unfortunately,
most of these PPEs lack the required flexibility in order to develop real-
life parallel applications. In this paper, we describe the features of the
EPAS (Extended Parallel Architectural Skeleton) PPE that enables de-
velopment of complex parallel applications. We investigate and design
the required patterns, and then use them to develop a parallel data cube
computing application. Finally, we present the performance of the devel-
oped applications and discuss the results.

1 Introduction

Computer hardware has been getting inexpensive and faster. At the same time,
scientists are investigating increasingly complex problems, requiring larger com-
puting power, efficient algorithms and sophisticated software. Research in High
Performance Computing (HPC) is exploring different aspects of available and
foreseeable technology to realize those complex problems.

Design and development of parallel applications is complex. In this paper,
we study a parallel programming environment (PPE) which is based on design
patterns. In the domain of parallel computing, (parallel) design patterns specify
recurring parallel computational problems with similar structural and behavioral
components, and their solution strategies. Several parallel programming systems
have been built with the intent to facilitate rapid development of parallel ap-
plications through the use of design patterns as reusable components. Some of
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these systems are Enterprise [1], Tracs [2], DPnDP [3], COPS [4], PAS [5], and
ASSIST [6]. Most of the researches have focused on the algorithmic or behavioral
aspects of patterns, popularly known as algorithmic skeletons. On the contrary,
Parallel Architectural Skeletons (PAS) [7, 5] focus on the architectural or struc-
tural aspects of message-passing parallel patterns. Each architectural skeleton
in PAS encapsulates various structural attributes of a pattern in a generic (i.e.,
pattern- and application-independent) fashion.

Similar to the previous works, PAS was criticized due to the lack of supports
to develop real-life parallel applications. EPAS [8], an extension of PAS, is a
model which provides a high level abstraction to design parallel skeletons in
a generic and platform independent way. We believe, this in turn expresses the
ability to develop any form of parallel applications. In this paper, we demonstrate
the use of EPAS to solve a real-life computational problem by developing a
parallel data cube computing application.

The decision support system (DSS) needs analytical data to have a compre-
hensive view about the performance of the enterprise. Often queries for such
analytical data are complex and require multi-dimensional view of the enter-
prise data. Codd et al. coined the term On-Line Analytical Processing (OLAP)
which creates, manipulates, animates and synthesizes information from Enter-
prise Data Models (EDM) [9]. Usually relational databases are used to store and
query about the enterprise data. Unfortunately, it is difficult to express those
complex queries, required by the DSS, in SQL. The CUBE operation [10] was
introduced to support multi-dimensional aggregates on OLAP databases. Later,
multi-dimensional database system was proposed to provide a natural way to
manage multi-dimensional aggregates.

An OLAP application usually analyzes a huge amount of data. On the con-
trary, a user would expect to have a real-time performance from the system. As
a result, speed is a primary goal in this class of applications [9]. To make in-
teractive analysis, OLAP databases usually pre-compute various aggregates on
various combinations of attributes, often in the form of data cubes. However,
speed is still a critical factor for this pre-computation as it affects how often the
aggregates are revised. Several techniques have been proposed to speed up the
data cube computational procedure [11,12]. Recent research efforts demonstrate
that parallel computation of the data cube is the most effective solution [13,14].

While describing the design and development steps for the above applica-
tion in EPAS, this paper illustrates different features and uses of this system.
Throughout the paper, we answer the following questions:

– What is the EPAS model and how to map a parallel problem into this model?
– How to recognizing different parallel patterns, required to develop an appli-

cation?
– How to design an EPAS parallel pattern which is not available in the repos-

itory?
– How to use the existing EPAS patterns (i.e., skeletons) to develop a parallel

application?
– What is the performance implication of the applications developed using EPAS?



Developing High-Performance Parallel Applications Using EPAS 433

For the sake of clarity, we divide our discussion into the following sections.
Section 2 section gives a brief introduction to the necessary preliminaries of
PAS. Then we demonstrate the data cube application development procedure
and explore different features of EPAS in section 3. Section 4 discusses the
performance results and a detailed analysis. Finally, section 5 concludes our
discussion and provides future research direction.

2 Preliminaries

Parallel Architectural Skeletons (PAS) [5, 7] generically encapsulate the struc-
tural/architectural attributes of message-passing parallel computing patterns.
Each PAS skeleton is parameterized where each parameter is associated with
some attributes. The value of a parameter is determined during the applica-
tion development phase. A PAS skeleton with unbound parameters is called an
abstract skeleton. An abstract skeleton becomes a concrete skeleton, when the
parameters of the skeleton are bounded to actual values. A concrete skeleton is
yet to be filled in with application-specific code. Filling a concrete skeleton with
application-specific code results in a code-complete parallel module or simply a
module. Various phases of an application development using PAS are roughly
illustrated in Figure 1(a). The figure shows that different parameter bindings to
the same abstract skeleton can result in different concrete skeletons.

Each abstract skeleton consists of the following set of attributes: (i) Repre-
sentative of a skeleton represents the module in its action and interactions with
other modules. The initial representative is empty and is subsequently filled with
application-specific code during application development. (ii) The back-end of
an abstract skeleton consists of a set of type-less abstract skeletons. The type

Concrete
skeleton

Code−complete
module

Abstract skeleton

ConcretizationConcretization

Application code Application code

(a) Abstract skeleton, concrete
skeleton and code complete module

External
primitives

Internal
primitives

Representative

Back End

Concrete skeleton

Abstract skeleton

Back−end
Abstract
Skeletons

(b) Different compo-
nents of a skeleton

Fig. 1. PAS skeletons and their components
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of each back-end skeleton is determined when the container abstract skeleton is
concretized. Note that collection of concrete skeletons inside another concrete
skeleton results in a (tree-structured) hierarchy. Consequently, each back-end
skeleton has a child-parent relationship with its container skeleton. The children
of a skeleton are peers of one another. In this paper, the children of a skeleton
are also referred as parallel entities of the skeleton (or the associated pattern).
(iii) Topology is the logical connectivity between the children as well as the con-
nectivity between the children and the representative. (iv) Internal primitives
are the pattern-specific communication, synchronization or structural primitives.
Interactions among the various modules are performed using these primitives.
The internal primitives are the inherent properties of a skeleton and capture the
parallel computing model and topology of the associated pattern. Fig. 1(b) dia-
grammatically illustrates the attributes of an abstract and a concrete 2-D Data
Parallel Mesh skeleton.

There are pattern-specific parameters associated with some of the previous
attributes. For instance, if the topology is a Mesh, then the number of dimensions
of the mesh is one parameter, and the nature of the connectivities among the
nodes at the edges (i.e., toroidal or non-toroidal) is another parameter. Binding
these parameters to actual values, based on the needs of an application, results
in a concrete skeleton. A concrete skeleton becomes a code-complete module
when: (i) the representative is filled in with application-specific code, and (ii)
each child is code-complete.

All attributes of an abstract skeleton are inherited by the corresponding
concrete skeleton and code-complete module. In addition, we define the term
external primitives of a concrete skeleton or a code-complete module as the set
of primitives using which the module (i.e. its representative) can interact with
its parent (i.e. representative of the parent) and peers (i.e. representatives of
the peers). Unlike internal primitives, which are inherent properties of a skele-
ton, external primitives are adaptable, i.e., a skeleton adapts to the context of
its parent by using the internal primitives of its parent as its external primi-
tives. Internal primitives of a skeleton are divided into two categories. Private
internal primitives are used by the representative of a skeleton only whereas
Public internal primitives are used by the back-end peers. As a result, public
primitives are the portion of internal primitives that are exported as external
primitives.

A parallel application developed using PAS is a hierarchical collection of
(code-complete) modules. Conceptually, each concrete module can be consid-
ered as a pattern-specific virtual machine with its own communication, syn-
chronization and structural primitives. A user fills in these virtual machines
with application-specific code, starting bottom-up in the hierarchy, to create the
complete parallel application. The root of the hierarchy, i.e., a code-complete
module with no parent, represents a complete parallel application. Each non-
root node of the hierarchy represents a partial parallel application. Each leaf
of the hierarchy is called a Singleton module (and correspondingly, a Singleton
skeleton for the abstract counterpart).
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3 Developing the Data Cube Application

In this section, we describe different steps to develop a parallel data cube applica-
tion using EPAS. We comprehend the discussion into the following sub-sections.

3.1 Problem Description

A data cube of raw data set R with d attributes (denoted as D1, D2, . . .Dd) is
composed of 2d different views. Figure 2(a) shows a lattice of a data cube with
attribute A, B, C and D. Both control parallel [15] and data parallel [13, 14]
paradigm can be used to compute a data cube. In this paper, we consider a data
parallel approach. Some hints about control parallel solution of the problem is
discussed in sub-section 3.4.

In data parallel method, R is partitioned among p parallel computing entities
(which are finally represented by p processes). Each entity computes all 2d views
considering only locally available data. A merge (reduction or gather) on the
locally computed data cubes results in data cube, DC on entire R [14]. Here,
we assume that |D1| ≥ |D2| ≥ . . . ≥ |Dd|, where |Di| is the cardinality of Di.
Denote Di-partition as the set of views starting with Di (refer to Fig. 2(b)). The
computation of data cube can be expressed as,

for i = 1 to d do
1. Partition the data on attribute Di using Sample Sort
2. Compute local Di-partition
3. Marge local Di-partitions to compute global Di-partition

ABC

AC BC

CA

AB

B

ALL

(a) Data cube lattice

ABC

AB AC

A

BC

B C

ALL

A−partition

B−partition

C−partition

(b) Data cube partitions

Fig. 2. Computing data cube

Chen et al. has proposed an Adaptive Sample Sort algorithm that partitions a
data set, keeping load balancing in mind [14]. The algorithm sorts the initial data
set X1, X2, . . . Xp, distributed over processes P1, P2, . . . Pp to X ′

1, X ′
2, . . . X ′

p

which is globally sorted over the dimensions Di, Di+1, . . . Dd for Di-partition.
The algorithm chooses pivot points (for partitioning) through a collaborative
regular (over) sampling procedure [16]. Computation of local Di-partition by a
process is a sequential operation without any collaboration. Finally, the merge
operation is assigned to a dedicated process (P0) so that other processes can go
on with remaining computations.
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3.2 Designing Phase

From the above discussion, developing a parallel data cube application should be
easier with the use of a Data Parallel pattern. Along with many other skeletons,
EPAS implements Data Parallel pattern as DataParallel skeleton (Fig. 3). How-
ever, for the sake of discussion, here, we consider that DataParallel skeleton does
not exist in the skeleton repository and is required to be designed from the scratch.

A Data Parallel pattern represents the data parallel paradigm of parallel
computing. It consists of a set of parallel entities where each parallel entity com-
putes partial solution based on a subset of the input. Often the input data is
partitioned into rows and/or columns (and/or at higher dimensions). A generic
Data Parallel pattern has two parameters: (1) rank of the logical structure (de-
noted as dim) and (2) length of each of the dimensions (denoted as length).
Fig. 3(b) shows an implementation of a Data Parallel pattern (i.e., DataParal-
lel skeleton) in EPAS. The pattern is equipped with several public and private
internal primitives. For example, an all-to-all communication is required by the
parallel entities of the pattern to share some of their local data set (i.e., Sample
Sort) and hence it is a private primitive. On the other hand, example of public
primitive is that the representative gathers partial solutions from all the parallel
entities (for the merge operation). After having those specifications, the design
of the skeleton is straight forward. Following is the code of the skeleton, written
using the Skeleton Description Language (SDL) of EPAS.

00 integer dim; // parameter: rank of the data parallel entities
01 integer length[dim]; // parameter: length of each dimension
02 pattern DataParallel(dim) { // Embedded into a dim dimensional VPG
03 LOCAL = {
04 void init(void) { // The initialization function
05 // Set the size of the VPG space
06 for (int i = 0; i < dim; i++)
07 SetDimensionLimit(i, length[i]);
08 }
09 }
10 INITIALIZE = init; // Set the name of the initialization function
11 PRIVATE = { ... }; // Private primitives
12 PUBLIC = { ... }; // Public primitives
13 }

...

...

...

... ...

...

...

...

... ...

...

...

...

... ...

...

...
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Fig. 3. Designing required skeleton
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An EPAS skeleton is designed on top of a set of virtual processor grids
(VPG). Parallel entities of a dim-dimensional DataParallel skeleton can be eas-
ily mapped onto a dim-dimensional VPG. The size of the VPG is specified
through the initialization function init (line 03 to 10). This function sets the
length of dimension i to length[i] (line 07). It may be worth mentioning that
EPAS supports specification of a function M : L → boolean which tells whether
a location L of the VPG is part of the final skeleton. The existence of the rep-
resentative and the support of M make the VPG model distinguished from the
solid recti-linear Cartesian process model of MPI.

EPAS SDL supports a rich set of peer-to-peer and collective communication
primitives as well as primitives to query about the structure of the underlying
VPG. A skeleton designer develops the skeleton specific high level primitives
on top of those built-in basic primitives. Some of the basic primitives can only
be used to design either high level private or public primitives. For example,
AllToAllPeer is a basic collective communication primitive to perform an all-to-
all communication among back-end parallel entities. Hence, this primitive can
be used to design public primitives only. However, GetDimension is a structural
primitive to query about the rank of the associated VPG and can be used to
design both public and private primitives. Following is a scratch of the primitives
of the DataParallel skeleton.

integer dim; // rank of the data parallel entities
integer length(dim); // length of each dimensions
pattern DataParallel(dim) { // Embedded into a dim dimensional VPG
...
PUBLIC = { // Public primitives

// primitive to do an all-to-all communication
void AllToAllMesh(MsgVector msgSend, MsgVector msgRecv) {
vector <Location> vl;
... // enumerates locations of all back-end entities in vl
AllToAllPeer(vl, msgSend, msgRecv); // built-in primitive

}
...

}
PRIVATE = { // Private primitives

// gather partial solutions from the back-end
void GatherFromMesh(MsgVector msgRecv) {
vector <Location> vl;
... // enumerates locations of all back-end entities in vl
GatherChild(vl, msgRecv); // built-in primitive

}
...

}
}

The above SDL code uses several built-in objects. Location object represents
a location in the VPG and MsgVector represents a vector of Msg object. Note
that when a skeleton is used to develop an application, a developer can access
only the high level primitives, designed into the skeleton. The basic primitives
are completely hidden from the developer. Use of high level primitives, while
developing an application, helps in reducing coding errors (provided that the
designer ensures correctness of those primitives). As a result, skeletons provide
a graceful way to develop parallel applications.
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3.3 Development Phase

While using EPAS, an application developer needs to decide about the required
skeletons. From sub-section 3.1, we know that the DataParallel skeleton is the
perfect choice for developing the data cube application. The next step is to con-
cretize the chosen skeleton. To concretize the DataParallel skeleton, the parame-
ters are needed to be bounded with proper values. Parallel data cube application
partitions data in columns, hence the parallel entities are of one dimension (i.e.
dim is 1). We also need to specify the number of parallel entities by specify-
ing proper value for length. Note that choice of this value is governed by the
architecture of the application and the underlying platform.

To concretize DataParallel skeleton, we need to assign proper types for the
back-end parallel entities. As each parallel entity of the application does a se-
quential computation, it is represented by a DCSeq skeleton, an instance of
Singleton. Finally, the SDL code for concrete skeleton becomes as follow:

integer dim = 1; // 1 dimensional parallel entities
integer length(dim) = {4}; // which consists of 4 entries
pattern DataParallel(dim) { ... } // Embedded into a dim dimensional VPG
label { // mention the type of 4 parallel entities statically
// in lexicographic order
DCSeq{ }, DCSeq{ }, DCSeq{ }, DCSeq{ }

}

In stead of specifying the types of back-end entities statically, a developer
can specify a function L : L → A which labels a back-end entity of address L
with an abstract skeleton A.

The developer can use the EPAS tools to generate C++ code for the designed
skeleton hierarchy. The tools generate one file for each of the skeletons (i.e. for
DataParallel and DCSeq). Finally, the developer needs to fill-up the skeletons
with application specific code. For example, the role of the representative of the
DataParallel skeleton is just to gather partial data cubes from all the DCSeq
using the high level GatherFromMesh primitive and merge them into the final
data cube.

3.4 Discussion

There are several ways to make the skeleton design and application develop-
ment procedure more interesting. To make the DataParallel skeleton robust, the
designer may introduce a third parameter to represent the choice of toroidal
structure. In this way, the designer also needs to modify some of the primitives.
The developer may want to combine control parallelism in this application by
labelling the parallel entries of the DataParallel skeleton with proper control
parallel skeleton(s), in stead of DCSeq.

4 Performance Related Issues

The usability studies of EPAS has been addressed in [8]. In this paper, we fo-
cus on the performance related issues. We developed our applications with the
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Fig. 4. Effects on performance

assumption that a parallel process can hold all its local data (consisting of 4
attributes) within the volatile memory. Chen et al. addressed the issue on per-
formance where this assumption is not valid [14]. To run the application, we use
a dedicated cluster with seven nodes. Each node is equipped with dual Pentium
II 1 GHz processors, 512 MB memory, local SCSI hard drive and a connection
to other nodes through a gigabits switch. We develop two sets of test cases: (1)
variable number of parallel entities, keeping the input size fixed and (2) variable
input size, keeping the number of parallel entities fixed. We develop the appli-
cation using both MPI and EPAS to have a better understanding. For all the
readings, we consider the average of five best runs out of fifteen.

Fig. 4(a) and Fig. 4(b) show the total execution time (TET) of the applica-
tions developed for both the test cases. It can be seen that EPAS applications
are doing slightly poorer than the MPI applications. As the EPAS run-time
system is developed on top of MPI-2 [17], this fact is very much expected. To
have a better understanding, we divide TET into two segments: (1) environment
setup time (EST) is the time to setup the parallel environment (for example,
creating the processes, etc) and (2) actual computing time (ACT) is the time to
compute the data cube. From Fig. 4(c) it can be seen that EST increments with
the increasing number of parallel modules (as well as architecture of the appli-
cation). This increment is faster in case of EPAS applications. Fig. 4(d) shows
that with constant architecture of the parallel application, EST remains fairly
constant (except, the effect of the non-determinism). Note that EST takes place
only once during the life-time of the application and hence, for an application
with very long life-time, EST has almost negligible effect.
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The ACT of an EPAS application also faces a slowdown. This is mainly due
to the generalized communication functions. Though EPAS tries to optimize the
performance on each Msg object by using some rules, it may not produce result
that is as optimal as an application, developed using MPI directly. Fig. 5 shows
the increment of ACT of EPAS applications with respect to MPI applications for
both the test cases. For this problem, both curves have very small slope and first
test case produces steeper curve than the second (still all readings are less than
0.05%). Note that, increment of ACT depends on the behavior of the application
as well as the way Msg objects are created.

5 Conclusion and Future Work

EPAS is an extensible parallel programming model and environment. It is im-
plemented through a skeleton description language (SDL) which can be used by
a skeleton designer to design new skeletons. The generic abstraction provided by
the model as well as the SDL facilitates faster development of parallel applica-
tions. In this paper, we demonstrated that EPAS is a very attractive environment
to develop real-life parallel applications without compromising performance.

We believe that EPAS now encompasses the core technical capabilities that
are required in a flexible and extensible pattern-based parallel programming sys-
tem whose repository of patterns would continue to evolve with time. Perhaps,
the usability of the EPAS system could be further enhanced by designing a suit-
able graphical user interface for the system. Moreover, the associated subsystems
for performance modeling and profiling need to be included into the system to
provide a complete PPE. Currently we are investigating these aspects. A syn-
chronization skeleton that extracts the communication-synchronization behav-
ioral slice of a given parallel application is of particular interest. We are also
working on the issues of static and dynamic optimizations and fault tolerance
aspects of applications developed using EPAS, and these issues will be reported
in our future works.
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Abstract. In this paper, we investigate the recent popular computing technique 
called Grid Computing, and use video conversion and 3D rendering 
applications to demonstrate this technology’s effectiveness and high 
performance. We also report on developing a resource broker called Phantom 
that runs on our grid computing testbed and whose main function is querying 
nodes in grid computing environments and showing their system information to 
aid in selecting the best nodes for job assignments to have the jobs executed in 
the least amount of time. 

Keywords: Grid computing, Resource broker, Job submission, Video 
conversion, 3D rendering. 

1   Introduction 

Advances in media technology have made possible to store the content of complete 
DVDs on a single CD-ROM without noticeable loss of quality, which implies that 
expensive DVD burners with limited recording capacities are obsolete. To copy a 
video of up to 9 GB from a DVD to a CD-ROM, it is required large amounts of 
computing power and time, since the data volume must be reduced to about 1/12th of 
its original size to accommodate the limited 700 MB CD-ROM storage capacity. Data 
compression of this magnitude for digital video is only possible with the new MPEG-
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4 video compression standard. Generally speaking, MPEG-4 is an extension of 
MPEG-2 technology, but MPEG-4 can be used more universally, with additional 
novel extensions [8, 9, 12, 13]. Converting a DVD title to MPEG-4 format on a single 
PC usually requires the steps shown in Figure 1. 

VOB Video Compression DivX

5 hours

6.8GB 700MB

1 hour

DVD

 

Fig. 1. Video conversion – single stream 

It is hard to reduce the transfer time from the DVD to a storage device without 
upgrading to a SCSI transfer bus or using a RAID storage system. The video 
conversion time is the key to reducing the total time. One sequential processing 
machine needs 5 hours of compression time. However, if the video file is divided and 
the sub-files submitted to different compression computing nodes, it is possible to 
reduce the total video conversion time. 

A grid computing resource broker can help users find available resources, to 
complete video conversion jobs. As each computing node completes its conversion 
job, it sends its results to the master node on the grid platform for combining. Thus, 
the process can save large amounts of time. The need for and a number of uses of this 
technology are explored in [1, 2, 3, 4, 5, 6, 7, 10, 11, 15, 16, 17]. Past studies on the 
video conversion testbed were based on local PCs, clusters, or supercomputers. 
However, there were problems with insufficient computing power and storage space. 
In this paper, the video conversion application was built to show a potentially 
practical use of the grid as well as to give a feel for the problems that may be 
encountered with data intensive applications. Video file conversions to be processed 
are simply submitted to the grid system, where the resource broker assigns them to the 
most suitable computing nodes in various sites. Use of our resource broker thus 
ensures that our goal of having submitted video conversion jobs concluded in the 
shortest possible time is achieved as shown in Figure 2. 
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Fig. 2. Video conversion using Grid computing platform 
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Rendering refers to generating graphic images from mathematical models of two- 
and three-dimensional objects and scenes. Ray tracing, a common rendering 
technique, is used in computer graphics to create realistic images by calculating the 
paths taken by light rays entering the observer’s eye at different angles. It is ideal for 
parallel processing since it involves many pixels with independent values that can be 
calculated in parallel [14]. 

In this paper, we investigate the recently popular computing technique called Grid 
Computing and evaluate its performance by executing video conversion and 
Persistence of Vision Ray Tracer (POV-Ray) applications. We also discuss the 
development of a resource broker called Phantom that runs on top of grid computing 
platforms. The Phantom resource broker’s main job is to query computing nodes in 
Grid environments about their system information, and find one or more computing 
sites that best fit job-computing requirements provided by users and assign jobs for 
execution in the shortest time. 

This paper is organized as follows. Background information on grid computing, the 
Globus Toolkit, video conversion and 3D rendering is given in Section 2. In Section 
3, a grid platform used for experiments is introduced and some experimental results 
are discussed. Concluding remarks are presented and discussed in Section 4. 

2   Background 

2.1   Grid Computing 

Grid computing enables the virtualization of distributed computing and data resources 
such as processing, network bandwidth, and storage capacity to create a single system 
image, granting users and applications seamless access to vast IT capabilities. Just as 
an Internet user views a unified instance of content via the Web, a grid user 
essentially sees a single, large virtual computer. At its core, grid computing is based 
on an open set of standards and protocols—Open Grid Services Architecture 
(OGSA)—that enable communication across heterogeneous, geographically dispersed 
environments. With Grid computing, organizations can optimize computing and data 
resources, pool them for large capacity workloads, share them across networks, and 
enable collaboration [1, 2, 3, 4, 5, 6, 7, 10, 11, 16]. 

2.2   Globus Toolkit 

The Globus Toolkit is an open-architecture, open-source software toolkit that 
facilitates the creation of computational grids. It provides software tools that enable 
coupling of people, computers, databases and instruments. The Globus Toolkit 
consists of a set of services and software libraries that support grids and grid 
applications. Included is software for security, information infrastructure, resource 
management, data management, communication, fault detection, and portability. The 
layered Globus architecture shown in Figure 3 includes fabric, connectivity, resource, 
collective and application layers [16]. The composition of the Globus Toolkit can be 
pictured as three pillars: Resource Management, Information Services, and Data 
Management. Each pillar represents a primary component of the Globus Toolkit and 
makes use of a common foundation of security. The Globus Resource Allocation 
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Manager (GRAM) implements a resource management protocol, the Metacomputing 
Directory Service (MDS) implements an information services protocol, and GridFTP 
implements a data transfer protocol. They all use the GSI security protocol at the 
connection layer. 

With Globus, jobs can be run on two or more high-performance parallel machines 
at the same time even though the machines might be located far apart and owned by 
different organizations. Globus software helps scientists deal with very large datasets 
and complex remote collaborations. Globus software is used for large distributed 
computational jobs, remote instrumentation, and remote data transfers. 

Languages/Frameworks

Fabric Layer

Applications

Local Access APIs and Protocols

Collective Service APIs and SDKs

Collective Services
Collective Service Protocols

Resource APIs and SDKs

Resource Services
Resource Service Protocols

Connectivity APIs

Connectivity Protocols

 

Fig. 3. The Globus Grid architecture, its protocols, services and APIs at each level 

2.3   Video Format 

Four choices are available for backing up DVD titles: VCD, MPEG4 (Divx), AVI, 
and video cassettes. Unfortunately, using AVI and video cassettes is impossible since 
raw AVI files are too large. Storing one minute of a raw AVI file requires about 207 
MB of storage space. A DVD title has 135 minutes of playing time, and thus, backing 
it up requires some 27 GB of storage space. Video cassettes also have drawbacks. 
First, backing up a 135-minute DVD title requires 135 minutes (1:1 transfer ratio). 
Thus, backing up DVD titles on video cassettes is time-consuming. Second, video 
cassettes are about 2cm thick, where DVDs are 0.1cm thick. Thus, backing up DVDs 
on video cassettes is space-consuming.  

The history of MPEG dates back to 1987. MPEG stands for Motion Pictures Expert 
Group, a worldwide organization that develops manufacturer- and platform-
independent standards for video compression. Its first effort was introduced as 
MPEG-1 in 1992, and was the basis for the less-successful European Video-CD. 
Because its resolution is limited to 352×288 pixels, MPEG-1 is considered suitable 
only for home use, and its achievable video quality in relation to its data rate is rather 
low by today’s standards. MPEG-2, based mainly on MPEG-1, was introduced in 
1995. Its higher resolution—maximum 720×576 pixels—was a major improvement 
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enabling significantly better video quality. MPEG-4 was released by the MPEG group 
in December 1999. 

MPEG-1 features small files, but also has low quality; MPEG-2 has excellent 
video quality, but also large files. MPEG-4 thus has an advantage with “very good 
quality and small file sizes” [12]. See Table 1 for a comparison of the MPEG-1, 
MPEG-2, and MPEG-4 standards. Table 2 shows that after conversion, a 130-minute 
DVD (MPEG-2) or VCD (MPEG-1) will total 1.2GB (Divx) and 500MB (Divx), 
respectively. 

Table 1. Comparison among MPEG-1, MPEG-2, and MPEG-4 standards 

 MPEG-1 MPEG-2 MPEG-4 
Available since 1992 1995 1999 
Max. video resolution 352×288 1920×1152 720×576 
Default video resolution (NTSC) 352×288 640×480 640×480 
Max. audio frequency range 48 KHz 96 KHz 96 KHz 
Max. number of audio channels 2 8 8 
Max. data rate 3 Mb/sec 80 Mb/sec 5 to 10 Mb/sec 

Regular data rate used 
1380 Kb/sec 
(352×288) 

6500 Kb/sec 
(720×576) 

880 Kb/sec 
(720×576) 

Frames per second (NTSC) 30 30 30 
Video quality Satisfactory Very good Good to very good 
Encoding hardware requirements Low High Very high 
Decoding hardware requirements Very low Medium High 

Table 2. DVD and VCD converted file sizes 

130 min. movie Source file size Destination file size 
DVD (MPEG-2) 4.3GB (VOB) 1.2GB (Divx) 
VCD (MPEG-1) 1.2GB (DAT) 500MB (Divx) 

2.4   3D Rendering 

Rendering refers to generating graphic images from mathematical models of two- and 
three-dimensional objects and scenes. Ray tracing, a common rendering technique, is 
used in computer graphics to create realistic images by calculating the paths taken by 
light rays entering the observer’s eye at different angles. It is ideal for parallel 
processing since it involves many pixels with independent values that can be 
calculated in parallel. 

The Persistence of Vision Ray Tracer (POV-Ray) is a 3-dimensional ray-tracing 
software package [14]. It takes input information and simulates the way light 
interacts with the objects defined to create 3D pictures and animations. Newer 
versions of POV-Ray can also use a variant of the process known as radiosity 
(sophisticated lighting) to add greater realism to scenes, particularly those with 
diffuse lighting, by simulating many atmospheric and volumetric effects, such as 
smoke and haze. 
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3   Experimental Results 

3.1   Experimental Environments 

We have built a grid computing testbed that includes four Linux PC clusters. Site 1 
has 4 PCs with single Intel Celeron 1700 MHz processors, 256MB DDRAM, and 
3Com 3c9051 interfaces. Site 2 has 4 PCs with Dual Intel Pentium3 866 MHz 
processors, 256MB SDRAM, and 3Com 3c9051 interfaces. Site 3 has 4 PCs with 
single Intel Pentium4 2.53GHz processors, 512MB DDRAM, and Intel PRO100 VE 
interfaces. Site 4 has 4 PCs with single Intel Pentium4 2.4GHz processors, 256MB 
DDRAM, and Accton EN-1216 interfaces. 

 

Fig. 4. Our grid computing testbed 

Sites 1, 2, and 3 are located in various departments and laboratories at Tunghai 
University, Taiwan, while Site 4 is located at Taiwan’s National Center for High-
Performance Computing (NCHC). A general application was run to benchmark 
network traffic among sites. The results showed that the average network latency for 
Sites 1, 2, and 3 was 3ms, and the maximum transfer speed was 7600KB/s. Between 
Sites 1, 2, and 3 and Site4 the average network latency was 5ms and the maximum 
transfer speed was 2000KB/s. 

3.2   Software for Video Compression 

This section discusses DVD-to-DivX video conversion compression using grid 
technology. As shown in Figure 5, the first step is to split VOB files into as many 
chunks as the video conversion grid system has nodes. The sizes of divided files are 
based on information available in the MDS, as shown in Figure 6. Clients can gather 
useful information from the MDS, such as computational capacity, CPU loading, 
number of nodes, etc., and clients can submit jobs, represented by RSL, to remote 
servers using Globus GRAM. At present, divided VOB files are transferred to each 
conversion server’s NFS via GridFTP. See Figures 6 and 7 for details. GRAM then 
submits the jobs to SGE for scheduling on clusters. As shown in Figure 7, SGE orders 
its nodes to compress the VOB file sections in its NFS, and as each node finishes 
compressing, it returns DivX files after conversion to the video server for merging. 
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Fig. 5. Split and Merge video files 

 

Fig. 6. System components 

 

Fig. 7. Conversion server components 

3.3   Phantom 

We designed and implemented a Grid-Enabled Video converter broker called 
Phantom. This resource broker’s implementation is based on Java CoG and Globus 
API, as shown in Figure 8. The use of Java technology means Phantom runs on 
various platforms and OSs, and can make use of Globus services, such as resource 
allocation information and data management services. Phantom gathers information 
on idle resources and storage space. 
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Fig. 8. Phantom resource broker main screen 

Phantom can predict video transfer times, video conversion times, and storage 
system space by obtaining system information using MDS. After determining the best 
locations for video conversion, Phantom submits jobs to the master system. Figure 9 
shows Phantom’s input and output file formats. 

    

Fig. 9. Phantom resource broker’s input and output files formats 

The Phantom resource broker consists of the following major components. 

1. Information Monitor: tracks system factors such as video transfer time, CPU 
type, storage system spaces; uses Globus MDS to gather needed information, 

2. Location Finder: via the Information Monitor, evaluates and predicts where to 
find available systems, 

3. Data Transfer: transfers files to destination nodes in specific system sites selected 
by the Location Finder; currently uses GridFTP for transfers, 

4. Executer: uses Globus GRAM service to execute jobs on remote sites after file 
transfers to destination nodes. 
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3.4   Performance Results of Video Conversion 

Figures 10 and 11 show performance results obtained using our Phantom broker, 
respectively. In Figure 10, conversion time is shown reduced from 2175.54s to 
361.83s by using a grid platform with 8 processors. Figure 11 shows respective 
conversion time reductions from 127.73s to 29.75s, and 152.11s to 33.69s, for MPEG 
to XviD and MPEG to DviX using the grid platform with 8 processors. 
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Fig. 10. Comparison of DVD and XviD conversion times using single PC and grid platform 
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Fig. 11. Comparison of MPEG to XviD and MPEG to DivX conversion times using single PC 
and grid platform 

3.5   Performance Results of 3D Rendering 

MPI-Povray is used to demonstrate the performance of 3D rendering. MPI-Povray has 
the ability to distribute a rendering across multiple heterogeneous systems. Using the 
MPI code, there is one master and many slave tasks. The master has the responsibility 
of dividing the image up into small blocks, which are assigned to the slaves. When the 
slaves have finished rendering the blocks, they are sent back to the master, which 
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combines them to form the final image. The code is designed to keep the available 
slaves busy, regardless of system loading and network bandwidth. 

MPI-Povray consists of a patch to the Povray 3.1g raytracer that distributes work 
amongst a number of processing elements. Communication between the elements 
 

 

Fig. 12. Images of three POV models 

 

Fig. 13. Chess2.pov model processing times 

 

Fig. 14. Skyvase.pov model processing times 
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Fig. 15. Pawns.pov model processing times 

achieved with MPI message passing [14]. MPI-Povray was executed on our grid 
platform to generate the ray-traced images shown in Figure 12. The POVray 
execution times for the Chess, Skyvase, and Pawns models using the grid platform are 
shown in Figures 13, 14, and 15, respectively. The greatest speedup was obtained for 
the 1600×1280 Chesss2 model using our grid platform with 8 processors. The 
rendering time for the 1600×1280 Chess2.pov model image using single-processor 
mode for processing was 4,652 seconds. Using the grid platform with 8 processors 
reduced the total execution time to 647 seconds. 

4   Conclusion 

This research is intended to integrate PCs, clusters, and SMP machines on campuses 
and the Internet into computing farms using grid-computing technology, as also to 
fully utilize available resources and idle cycles in these systems. We have developed 
the resource broker, called Phantom, to assist users in finding suitable resources for 
video conversion and 3D rendering in grid systems without wasting time. Our future 
work will include adding a fault-detection policy to enable the Phantom resource 
broker to detect failed computing nodes and re-assign their jobs to other available 
computing nodes listed by the MDS service. 

Our experimental results show that the greatest MPIPOV speedups were obtained 
when the total number of processors was eight, creating eight tasks on the grid platform. 
The findings obtained in this investigation will make theoretical and technical 
contributions to the design of grid computing system message-passing applications.  
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Abstract. For array references with induction variables, after induction variable 
substitution for those induction variables is performed, those array references 
substituted are transformed as nonlinear expressions. The goal of data 
alignment is to intelligently map computations and data onto a set of virtual 
processors organized as a Cartesian grid with multi-dimensions (or a template 
in HPF term), and to provide data locality in a program so that the data access 
communication costs can be minimized. Most data alignment methods are 
mainly devised to align the arrays referenced using linear subscripts or 
quadratic subscripts with n loop index variables [Chang, 2004]. In this paper, 
we propose a new communication-free data alignment technique to align the 
arrays referenced using exponential subscripts with n loop index variables or 
other complex nonlinear expressions. The experimental results from our 
techniques on SPEC95FP Benchmarks point out that the techniques can be 
applied to improve the execution time of the subroutines in those benchmarks. 

1   Introduction 

For scientific and engineering applications, parallel systems based on distributed 
memory multicomputers have been increasingly applied [Guo 2003a and 2003b, 
Chang et al. 2004, Alex et al. 2004]. The main shortcoming of distributed memory 
multicomputers is the difficulty in programming because of without shared memory 
space [Michael 1996]. In such systems, the programmers (or compilers) must be 
responsible for distributing the computations and data in a program over processors 
and managing communications among tasks. Thus, carefully arranging the 
computations and data locality in a program can improve their throughput. This matter 
relates to determine which computations need to be distributed onto which processors 
and what data should be stored locally for the corresponding computations to access 
with little or no communication cost [Ramanujam et al. 1991, Chang et al. 2004]. 



 Communication-Free Data Alignment for Arrays with Exponential References 455 

Induction variable is one scalar integer variable, which is used in a loop to simulate 
do-variables: it is incremented or decremented by a constant amount through each 
iteration. Every induction variable can be replaced by a linear function or a nonlinear 
function in the form of do-variables. The transformation is called induction variable 
substitution. Consider do-loop shown in Figure 1(a). If induction variable substitution 
is performed for the induction variable K, the result after transformation can be shown 
in Figure 1(b). In Figure 1(b), each array reference contains 2 raised to the power of 
the outer loop index I. No existed data alignment method can be applied to solve the 
problem of communication-free data alignment for the case in Figure (1b). Therefore, 
an efficient and precise method for solving the problem of communication-free data 
alignment for arrays with exponential references is very important. 

 

Fig. 1(a). A do loop Fig. 1(b). After an induction variable induction variable 
substitution for the induction variable K 

Fig. 1. A do-loop in a Fortran program 

In this paper, we offer the alignment techniques to properly map the loop iteration 
space that implies the computation instances, and the array elements which are 
respectively referred using exponential subscripts with multiple loop index variables, 
onto the virtual processors so that no communication cost for data accesses is yielded. 
Based on operations of elementary linear algebra, our alignment methods reduce the 
mapping problem of the computations and array elements into the problem of 
determining a null space basis for a matrix. From solving the null space basis, the 
presented methods can readily figure out the desired mapping functions.  

2   Background 

The primary communication-free data alignment notion is described in subsection 2.1. 
Simultaneously, existed famous methods for solving the problem of communication-
free data alignment are also shortly introduced in subsection 2.2. 

2.1   Preliminary Data Alignment Notion 

In general, the complete communication-free data alignment framework actually 
consists of three primary phases in terms of elementary linear algebra [Bau et al.]. 
The first phase is to figure out the constraints on the data mapping and computation. 

K=2 K=2 
DO I = 1, N, 1 DO I = 1, N, 1 
DO J =1, 2**I, 1 DO J =1, 2**I, 1 

K = K + 1 K= 2 ** I + J 
S:  X(K) = Y(K) * Z(K) S:  X(2 ** I + J) = Y(2 ** I + J) * Z(2 ** I + J) 

ENDDO ENDDO 
ENDDO ENDDO 
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In this phase, the data accesses in a program are inspected and formulated as a system 
of equations in which the unknowns can be utilized to compute the virtual processors 
for the computations and data to be mapped onto. Each equation in the system is 
actually equal to a constraint on the data mapping and computation. Any solution to 
the system figures out a so-called communication-free data alignment.   

An alignment technique was offered from [Bau et al. 1994] and was applied to 
align arrays referenced using linear subscripts with one loop index variable in a 
communication-free manner. New communication-free alignment methods were 
proposed from [Chu et al. 1998, Chang et al. 2001] and were used to align the arrays 
referenced using linear subscripts with three loop index variables. For array 
references with quadratic subscripts or linear subscripts in a general n do loops, two 
new data alignment technologies were proposed from [Chang et al. 2004]. Our 
proposed techniques use to properly map the loop iteration space onto the virtual 
processors so that no communication cost for data accesses. 

3   The Proposed Alignment Techniques 

For referenced arrays, linear expressions with constant coefficients are the most 
common subscript patterns. [Peterson et al. 1996] pointed out that there are 5242 
linear cases with symbolic coefficients, 6503 nonlinear cases and 4304 cases with 
references containing arrays in the analyzed Perfect Benchmarks, which were 
obtained in counting the number of feasible directions of the potential dependences. 
For data alignment, with our counting criteria for the number of exponential cases, 
which is the number of the nested loops including arrays with exponential references, 
it was found from [Reilly 1995] that several important loops in the TFFT2 programs 
in the SPEC95FP Benchmarks consist of arrays with exponential references after 
induction variable substitution and/or scalar expansion transformations and/or inlining 
substitutions. Those results mean that the number of the arrays with exponential 
subscripts might attain to certain extent. 

3.1   Arrays with Exponential References 

Assume that there exist q statements containing t arrays, each with one or more (say 
m) dimensions, referenced using exponential subscripts enclosed with a general n 
nested do loop. In order to align data elements for multi-dimensional arrays, a general 
approach is to use one dimension among others for each array as the alignment basis. 
The data alignment for multi-dimensional arrays is considered as the data alignment 
simply for the adopted dimension of the arrays in the following discussions. Assume 
that a reference function for the adopted dimension of an array Ae for 1≤ e ≤ t in this 

common loop is RAe
= nI

ne
I

e aa 2     2  ,1 ,
1 ++L  + be,1I1 + L + be, nIn + fe, where 

I1, I2,L, In are index variables of the general loop and ae,1, L, ae,n, be,1, L, be,n 

are coefficients, which in general are integers or fractions in the exponential cases, 
and fe is an integer constant. For treating the exponential references, we can extend an 

iteration vector i as i = ,2 , ,2[ 1 nii L  i1, L, in]T, iv is an index value of Iv for 1 ≤ v 
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≤ n and T is the transposition operation) in the iteration space of this general n nested 
do loop, the alignment constraints require the processor performing iteration i, which 
stands for a computation instance, to own Ae(RAe

). From our proposed methods, if 

there exist two or more distinct references (either read or write) to an array, each of 
the distinct references will be selected as the alignment constraints respectively for 
this array without considering their data dependences. Consider an example in Figure 
1, where a statement containing three different one-dimensional arrays (i.e., t = 3 and 

m = 1) . For an iteration vector i (i =  ,2 ,2[ ji i, j]T), the alignment constraint 

demands that the processor performing iteration i must own A(RA), B(RB) and D(RD), 

where RA = 2I + J, RB = 2I + J and RD = 2I + J. 

DO I = 1, N, 1 

DO J =1, 2 ** I, 1 
S1: A(2 ** I + J) = B(2 ** I + J) * D(2 ** I + J) 

ENDDO 

ENDDO 

Fig. 2. The Fortran do-loop extracted from TFFT2 programs in the SPEC95FP  Benchmarks  

Assume that C is the computation mapping function to map the loop iteration space 
onto virtual processors and DAe is the data mapping function to map the array 

elements of Ae onto virtual processors. The alignment problem can be formulated as: 

Find C and DAe such that ∀ i ∈ iteration space of this loop, (Eq3-1): C(i)=DAe(RAe
). 

In order to map the computations and array elements in a communication-free 
manner, our alignment methods consider the array subscript patterns that are 
generalized exponential subscripts here. Therefore, C and DAe will be formulated 

using our technique as follows: (Eq3-2), 

[ ] 10
' i cC = [ ]

10
 

'

0
' eA
A

fR
dD e

e 1
i . Let C = 0

'[ cC ], DAe=[ 0
' dD

eA ], 

FAe =
10

'
eA fR

e  and 'i = 1
i , (Eq3-2) can be transformed into the following 

equation, (Eq3-3): C 'i = DAeFAe
'i . From (Eq3-3), to determine C and DAe is to 

solve the equation C=DAeFAe (or C-DAeFAe= 0) after 'i is eliminated , where 0 is a 

zero matrix. Such an equation can be represented, without loss of generality, in block 

matrix form [Bau et al. 1994] as follows, (Eq3-4): [ ] −
ee AA FDC

I
  = 0. Here, I is 

an identity matrix, and 0 (zero matrix), C, DAe and FAe are square matrices with the 
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same size as I. By expressing (Eq3-4) in the form of UV = 0 and determining a null 

space basis for VT, the alignment problem is thus reduced to the standard linear 
algebra problem of determining a null space basis for a matrix. Using our technique, 
the above equations are reduced to the following equation: 

1
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ddd
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eee

 

Therefore, the alignment problem can be restated as: Find C and DAe such that ∀ i ∈ 

iteration space of this loop: C 'i = DAeFAe
'i . Here, 'i =[i, 1]T, as mentioned. The 

above equation can be reduced to (Eq3-4) to determine C and DAe, as described. This 

requires the column vector 'i  on both sides of the equation to be eliminated to make 

(C-DAeFAe) equal to 0 for any 'i . To do this, we need the following lemma. 

Lemma 3-1: Let Pi be a p × 1 matrix for 1 ≤ i ≤ 2n, w a p-elements column vector, 0 

a p-elements zero vector and yi a scalar variable for 1 ≤ i ≤ 2n. Then,  
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From Lemma 3−1, (Eq3-7) can actually be rewritten as: C = DAeFAe.    (Eq3-9) 

For 1≤ e ≤ t, the equation system of (Eq3-9) can be converted into the following 
matrix equation (Eq3-10): 
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Here, I is a (2n+1)×(2n+1) identity matrix, 0 is a (2n+1)×(2n+1) zero matrix and 

[ ]00 L  is a (2n+1)×((2n+1)×t) zero matrix. 

To solve the matrix equation [U]s×m[V]m×n=[0]s×n in which [U]s×m is unknown 

and [V]m×n is known, we can first transform V into a 'rank-revealing' form by 

performing the required rank-preserving operations ⎯ elementary row and column 
operations. The notion behind this is to get a matrix into a form in which its rank can 
be determined by inspection [Edmonds 1967, Bau et al. 1994]. One way to achieve 
this is to perform integer preserving Gaussian elimination [Edmonds 1967, 
Luenberger 1984], whereby matrix rows or columns are systematically manipulated 
by elementary row or column operations to yield a matrix in echelon form, to enable 

us to obtain the following factorization (suppose that V∈Zm×n and rank(V) = r):  

[ ] [ ] [ ]
nm

nnnmmm
RR

PVH
×

××× =
00

2 ,11 ,1 . 

Here, H is an m×m invertible matrix representing the row operations, P is an n×n 
unimodular matrix representing the column operations and R1,1 is an r×r upper 

triangular invertible matrix. It is a property of this factorization that the transposition 

of the last m-r rows of H spans the null space of VT. Thus, we can then obtain the 
solution for [U]s×m as follows: U=H(r+1:m, 1:m). This means that only H, the 

composition of row operations, needs to be determined during the elimination. 
We consider that in the example in Figure 2 the alignment constraint for the 

iteration space of this loop can be formally expressed as: 
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The alignment constraints for arrays A, B and D can be respectively represented as: 
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According to the above lemma, a solution matrix is: 

C = 

11111

11111

11111

10000

01001

, DA = ,

10000

01000

00100

00010

00001

  

DB = 

10000

01000

00100

00010

00001

 and DD = .

10000

01000

00100

00010

00001

 

Therefore, using our alignment, iteration (I, J) is mapped onto virtual processor (2I 
+ J) and the corresponding A, B and D array elements are mapped onto the same 
virtual processor. The Align statements adopted to describe the alignment relation for 
the array elements of among A, B and D are represented as follows: 

),2( with )2(Align JTJA II ++ )2( with )2(Align JTJB II ++  and 

).2( with )2(Align JTJD II ++  Here, the virtual processors are supposed  

to be organized as a one-dimensional template T. Because that no loop-carried  
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output-dependences exist for array A and that the required data elements (the written 
data element of array A and the corresponding read data element of arrays B and D) 
for a computation are mapped onto the same template element, this nested loop can be 
executed in parallel without inter-processor communication.  

3.2   Array Subscripts with ae, 1 * J * 12 −L + ae, 2 * 22 −L + ae, 3 * K + ae, 4 

Assume that there exist q statements containing t arrays of m-dimensions referenced 

using subscripts with the patterns ae, 1 * J * 12 −L  + ae, 2 * 22 −L  + ae, 3 * K + ae, 4, 

where L, J ad K are loop index variables. Suppose that a reference function for the 
adopted dimension of an array Ae for 1≤ e ≤ t in a general loop is RAe 

= ae, 1 * J * 

12 −L  + ae, 2 * 22 −L  + ae, 3 * K + ae, 4, where L, J ad K are index variables of the 

general loop and ae, 1, ae, 2 and ae, 3 are coefficients, which in general are integers 

or fractions in the case and ae, 4 is an integer constant. 

DO I = 0, 2**(M − 1) 
DO L = 1, (1 + M) / 2 

DO J = 0, 2**((1 + M − L) − 1) 
DO K = 1, 2**(L − 2) 

… 
A(K + J * 2 ** (L − 1) + 2 ** (L − 2)) = & 

B(K + J * 2 ** (L − 1) + 2 ** (L − 2))… 
… 

     ENDDO 
   ENDDO 
  ENDDO 
ENDDO 

Fig. 3. The Fortran do-loop extracted from TFFT2 programs in the SPEC95FP Benchmarks  

The alignment constraint for the iteration space of this general loop can be formally 
expressed as follows, using our alignment technique: 

C 'i  = 
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The alignment constraint for an array Ae, 1≤ e ≤ t, in the general loop can be 

represented as: 
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Similar to the discussion in the previous subsection, the column vector 'i  on both 

sides of equation, C 'i = DAeFAe
'i , is required to be eliminated for any 'i . For this 

kind of loops, we need the following lemma. 

Lemma 3-2: Let Pi be a 4 × 1 matrix for 1 ≤ i ≤ 3, w be a four-elements column 

vector, 0 be a four-elements zero vector and yz be a scalar variable for 1 ≤ z ≤ 4. Then 
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In the example in Figure 3, the alignment constraint for the iteration space of this 
loop can be formally expressed as: 

C 'i =
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The alignment constraints for arrays A and B can be respectively represented as: 
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The alignment problem can be expressed as follows: 
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[ ] =BA DDC
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This gives us: 
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We can obtain the mappings of computations and data as follows: 
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Hence, using our alignment, iteration (I, L, J, K) is mapped onto virtual processor 
(J * 2 ** (L − 1) + 2 ** (L − 2) + K) and the corresponding A and B array elements are 
mapped onto the same virtual processor. The Align statements adopted to describe the 
alignment relation for the array elements of both A and B are represented as follows: 
Align A(J * 2 ** (L − 1) + 2 ** (L − 2) + K) with T(J * 2 ** (L − 1) + 2 ** (L − 2) + 
K) and Align B(J * 2 ** (L − 1) + 2 ** (L − 2) + K) with T(J * 2 ** (L − 1) + 2 ** (L 
− 2) + K). Here, the virtual processors are supposed to be organized as a one-
dimensional template T. 

4   Experimental Results 

We have experimented with the proposed alignment techniques on some codes 
extracted from TFFT2 programs in the SPEC95FP Benchmarks in our PC-cluster 
environment. Our PC-cluster includes a master, a PC with one P4 (Pentium 4) 1.8 
GHz CPU and 256 MB main memory, and 10 slaves, each a PC with one P4 1.5 
GHz CPU and 128 MB main memory. The operation environment was the RedHat 
Linux 7.1 with the installed parallel software package− MPI-1.2.2.2. We hand-
coded these extracted code segments in MPI (Message Passing Interface) with C 
language and executed them sequentially and in parallel in our MPI environment, 
respectively.   

Table 1. The extracted code segment and the data alignments with our technique in 3.1  

DO P = 1, N, 1 
… 
DO I = 1, M, 1 

DO J =1, 2I, 1 
… 

S1: A(2 ** I + J) = r1 * s1 − r2 * 
 s2 + COS(ti) 

S2: B(2 ** I + J) = r2 * s1 + r1 *  
s2 + SIN(ti) 

… 
ENDDO 

ENDDO 
… 

ENDDO 

Align A(2 ** I + J) with  
T(2 ** I + J). 
Align B(2 ** I + J) with  
T(2 ** I + J). 

The code segments extracted from TFFT2 programs in the SPEC95FP 
Benchmarks contain arrays referenced using exponential subscripts and other 
complex nonlinear subscripts, as shown respectively in Table 1 and Table 2. The 
code segment in Table 1 contains three do-loops. The first do-loop in Table 1 is only 
used to evaluate performance of every machine tested, so it is not considered to find 
alignment functions for those arrays in statements S1 and S2. Those arrays in 
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statements S1 and S2 for the second do-loop and the third do-loop have no data 
dependence such that they can intrinsically be executed in parallel. Our proposed 
method in subsection 3.1 can align the arrays of this code segment in a 
communication-free manner that does not cause inter-processor communication. 

The corresponding sequential and parallel run times for those code segments in 
Table 1 and Table 2 are shown, respectively, in Figures 4, 5, and 6. Figures 4 to 6 
show that the difference between sequential and parallel run time is significant. This 
is because those code  

3844
7678
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19181
23007

1020 1378 1718 2075 2417 2778

5000 10000 15000 20000 25000 30000

Upper bound of index variable P

sequential t ime parallel t ime

 

Fig. 4. The overall sequential and parallel run times for the extracted code segment in Table 1 

5   Conclusions 

For the referenced arrays, linear expressions appear the most frequency and most data 
alignment methods were used mainly to align the array references with linear 
subscripts. he number of the arrays with exponential subscripts or other complex 
non-linear subscripts might attain to certain extent. However, the data alignments for 
the arrays with exponential subscripts or other complex non-linear subscripts were 
scarcely discussed before. In this paper, we propose two alignment techniques to 
properly map, in a communication-free manner, computations and array references 
with exponential subscripts or complex other non-linear subscripts onto the virtual 
processors. Our alignment techniques, based on elementary linear algebra, reduce the 
alignment problem to the problem of determining a null space basis for a matrix. By 
simplifying solving the null space basis, the proposed techniques can easily determine 
the desired mapping functions. Obviously, many different mapping functions can be 
obtained by different linear combinations of the null space basis. Additionally, 
because dependent iterations with the properties described in Theorem 3−1 will be 
mapped onto the same template element, the proposed techniques are not one-to-one 
mappings.  
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Parallel Unstructured Quadrilateral Mesh Generation 
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Abstract. In this paper we present our efforts to parallelize an unstructured 
quadrilateral mesh generator. Its serial version is based on the divider-and-
conquer idea, and mainly includes two stages, i.e. geometry decomposition and 
mesh generation. Both stages are parallelized separately. A couple of parallel 
models are introduced and compared to parallelize the stage of geometry de-
composition. A fine-grain level parallel algorithm proves preferable to that 
based on the task-dependency tree, with which the load imbalance brought by 
the improper utilization of the symmetry of the vertex pair matrix is removed 
nicely. Since the number of elements in sub-domains could be pre-computed 
before meshing, a simple static load balancing scheme is investigated, and the 
effect of granularity is also discussed briefly. Finally, experiments are designed 
to evaluate the performance of the parallel mesh generator in detail. 

Keywords: mesh generation, parallel algorithm, quadrilateral elements, geome-
try decomposition. 

1   Introduction 

Mesh generation is one of important processes in applying the numerical methods for 
simulations. Many efficient serial mesh generation methods and corresponding re-
search or commercial software have been developed in the past decades. However, 
when the ever larger problems arise in such areas as Computational Fluid Dynamics 
(CFD), Computational Electro Magnetics (CEM), a parallel simulation environment is 
required urgently, where the serial mesh generation process becomes a bottleneck  in 
terms of both time and memory requirement. Close attention has been paid to parallel-
ize it since the early 1990s [1-3].  

Among the previous work in this field, much more attempts were made at parallel-
izing the problem rather than the algorithm for code-reusing and simplicity. The par-
allelization of the problem is usually geometry-based, where the complete domain is 
divided into a set of smaller sub-domains first, and then they are mapped to proces-
sors available with goals of load balancing and minimizing inter-processor communi-
cations. Two geometrical approaches are often adopted. One is to partition a coarse 
background mesh and subsequently to refine each partition independently [1, 4]. The 
other is to directly decompose the complete geometry described by CAD data in terms 
of vertices, edges, curves and surfaces [5]. It is noted that the second geometry ap-
                                                           
* Corresponding author. 
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proach is also employed by many serial mesh algorithms. Therefore, for their parallel 
counterparts, the geometry approach is inherent to be considered as a tool for data 
decomposition. 

Unstructured quadrilateral mesh generation approaches could be classified as direct 
and indirect ones. For indirect approaches, triangular elements are generated first, 
which are combined or split to form a quadrilateral or triangular/quadrilateral mixed 
mesh. The advancing front technique is successfully extended for direct quadrilateral 
mesh generation. However, it bears considerably heavy coding efforts. The quadtree 
method could also be applied in the quadrilateral mesh generation. The difficulties with 
it are the treatment with the complicated regional boundaries and the selection of the 
initial directions. Other than above approaches, Talbert et al [6] developed a so-called 
looping algorithm for meshing arbitrary planar domains with quadrilateral elements. In 
the algorithm, the problem domain is recursively bi-decomposed into sub-domains, 
where eleven six-node operators are employed to generate full quadrilateral elements, 
and finally, meshes of sub-domains are merged. Nowottny [7] and Chae et al [8] en-
hanced it by constructing much stronger operators. Sarrate et al [9] improved it with 
the adaptive capability and better density control with the help of the background 
mesh. However, the algorithm still has two drawbacks, i.e. the sub-domain definition 
being too stringent and the generation rule being too complex. We [10, 11] overcame 
both drawbacks by integrating the Pattern Module’s Method (PMM) [12] into the stage 
of sub-domain mesh generation, and developed a fast, automatic and valid unstructured 
quadrilateral mesh generator for arbitrary planar domains. 

In this paper, we focus on parallelizing the serial version of our enhanced unstruc-
tured quadrilateral mesh generator. Experimental data will be presented and analyzed 
to evaluate the performance of the algorithm. 

2   Serial Quadrilateral Mesh Generation 

In our algorithm, the geometry is represented by a piecewise linear curve. The multi-
connected geometry is not discussed here as it could be easily converted into a single-
connected one. Except coordinate values, each vertex has an attribute value to control 
element spacing at the location, obtained from a density function or a background 
mesh. The initial loop is recursively bi-decomposed, according to a weight function 
until all sub-domains meet some shape requirements. Each sub-domain will be recog-
nized as “triangular type” or “quadrilateral type”. A triangular sub-domain could be 
transformed into the combination of quadrilateral ones. Consequently, after geometry 
decomposition, the initial geometry could be considered as a combination of quadri-
lateral sub-domains, where the robust PMM [10] is applied to generate fully quadri-
lateral meshes. Meshes for sub-domains are eventually merged. Fig. 1 depicts the 
flowchart of our serial mesh generator. 

A binary tree is designed to represent the algorithm. An example is given in Fig. 2, 
where three kinds of named entities, i.e. branches, leaves and splitting lines, are in-
cluded. Their rules of nomenclature are as follows. 

(1) Branches, leaves and splitting lines have an initial string ‘B’, ‘L’, and ‘SL’, re-
spectively, after which two numbers i  and j  are connected by a separator ‘-’. 
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(2) For a branch or leave, i  represents the level of the node in the tree, and j  is de-

termined by the recursive rule 

=
−=

=

noderighttheforjparentj

nodelefttheforjparentj

noderoottheforj

_*2

1_*2

1

. 

(3) For a splitting line, SL i - j  indicates that it bi-decomposes branch node B i - j . 

 

Fig. 1. The flowchart of the serial mesh generator 

Fig. 2. An example to illustrate geometrical decomposition using the binary tree 

3   Parallel Quadrilateral Mesh Generation 

It is apparent that the serial mesh generator consists of two independent stages, i.e. 
geometry decomposition and mesh generation (including sub-domain mesh genera-
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tion and merging of sub-meshes). Both stages are time-consuming. Moreover, the 
stage of mesh generation is intensively memory-consuming. If the initial loop of the 
geometry contains m  vertices, and the number of elements of the final mesh is n , 
experiments show that the time complexities of geometry decomposition and mesh 

generation are )( 2mO  and )(nO , respectively. Time consumed by geometry decom-

position is comparable with that consumed by mesh generation. It is observed that the 
former is even 3 times as much as the latter when only hundred thousands of elements 
are generated by the serial algorithm. Of course, when millions of elements are re-
quired, the latter increases much faster than the former due to the frequent and slow 
swap between the memory and disk. Therefore, the parallelization of geometry de-
composition and that of mesh generation are considered to be equally important. 

3.1   Parallelization of Geometry Decomposition 

3.1.1   Parallelization Based on the Task-Dependency Tree 
If the decomposition of each branch node is considered as a task, the binary tree could 
be transformed into the task-dependency graph of geometry decomposition by erasing 
all leaves (Fig. 3). It is obvious that the graph is also a binary tree. It should be men-
tioned that the binary tree is dynamically created, hence a dynamical load balancing 
scheme is feasible for the parallelization of geometry decomposition based on the 
task-dependency tree. A manager/worker model is designed in our tests, where the 
manager is responsible for dealing with decomposition results and sending tasks to 
hungry workers, and the workers bi-decompose the branch nodes and send back re-
sults. No communications exist between workers. 

 

Fig. 3. Geometry decomposition tree and its task-dependency graph 

Here, we present the pseudo-codes executed by the manager and workers, respec-
tively. A list for backup tasks is maintained by each worker, which stores tasks cre-
ated by the worker. All the requests for pending tasks are scheduled by the manager. 
A message MSG_IF_BACKUP_TASK_COULD_BE_DONE is sent from a hungry 
worker before the worker tries to do a backup task. It could synchronize the possible 
concurrent operations on the task by the manager and the worker. 
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  Manager: 
decomposeRootAndGenInitTasks(); 
while (!allWorkersAreHungryAndNoPendingTasks()) { 
MSG* msg = waitMessageFromWorkers(); 
switch (msg->tag){ 
case MSG_I_AM_HUNGRY: 
sendTaskToHungryWorker(msg); break; 

case MSG_TASK_FINISHED: 
receiveFinishedTask(msg); break; 

case MSG_IF_BACKUP_TASK_CAN_BE_DONE: 
tellWorkerIfBackupTaskCanBeDone(msg); break; 

} 
} 
sendExitMessages(); 
 

Worker: 
bool bExit = false; 
while (!bExit) { 
Task* pTask = NULL; 
while (!backupTasksIsEmpty()) { 
pTask = selectAndDetachBackupTask(); 
if (pTask && askManagerCanIDoTask(pTask-

>unTaskId)) 
break; 

pTask = NULL; 
} 
if (NULL == pTask) pTask = receiveTaskFromManager(); 
if (pTask != NULL){ 
doIt(pTask, &data); 
sendSubtasksAndBackupIt(pTask, &data); 

} 
bExit = pTask == NULL; 

} 

3.1.2   Fine-Grain Level Parallelization 
It costs almost all the time of geometry decomposition to find the optimal vertex pair, 
which are just the ending points of the splitting line bi-decomposing a domain. As-
suming the decomposed domain is sΩ , the vertex set included by the initial loop of 
the domain is V , Vqp ∈, pq=:ε  is a line joining p  and q , and };{: sE Ω∈= εε  is 
the set of all such lines inside the domain, then a weight function ERf >−:  could be 
defined. The line with minimal value f  is called the optimal splitting line, and ac-
cordingly, the ending points of the line are called the optimal vertex pair. 

For a loop with m  vertices, )3(* −mm  candidate vertex pairs are required to be 
tested to find the optimal one. These pairs could be organized as a matrix with 

)3(* −mm  elements (Fig. 4). Each of its elements represents a vertex pair ),( ji , 
where i  and j  are indices of both vertices of the pair, and i  is equal to the index of 
the row the element belongs to. The traverse for the matrix could be implemented as a 
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nest with two cycles, where all the matrix elements are accessed in the row-major 
order, and the time complexity for such an algorithm is at least )( 2mO . 

Both vertices for a candidate optimal vertex pair are demanded to be visible with 
each other for a concave domain. As it costs )(mO  time to check if a couple of speci-
fied vertices are visible with each other, the time to find the optimal vertex pair will 
grow up to unpleasant )( 3mO  if the visibility check is delayed into the inner cycle. 
Therefore, an advance computation of visibility relations between vertex pairs is pref-
erable. Its result is stored and accessed as necessary. It is not advisable to compute 
and store the visibility matrix for its terrible )( 2mO  memory requirement. It could be 
reduced to the much lower )(mO  by computing visibility relations of vertex pairs row 
by row. However, the computation could not cost more than )(mO  time to keep the 
integrated optimal )( 2mO  time complexity. Fortunately, a simple and eligible algo-
rithm to attain this goal is recommended in literature [6]. 

)5,7()4,7()3,7()2,7()1,7(

)4,6()3,6()2,6()1,6()0,6(

)3,5()2,5()1,5()0,5()7,5(

)2,4()1,4()0,4()7,4()6,4(

)1,3()0,3()7,3()6,3()5,3(

)0,2()7,2()6,2()5,2()4,2(

)7,1()6,1()5,1()4,1()3,1(

)6,0()5,0()4,0()3,0()2,0(

    

Fig. 4. A 8 * 5 vertex pairs matrix while 8=m  

Obviously, ),( ji  and ),( ij  point to the same vertex pair. Taking into account this 
symmetry, only a half of the matrix elements are required to be accessed. However, 
there are many ways to get the half matrix. A direct way is 

         }3,,1,0,2|),({ −=+≥= mrrccrelemH L ,                    (1) 

where r  and c  are the row and column indices, respectively, and ),( crelem  is the 
corresponding element. Fig. 5(a) gives an example of H  constructed in this way for 
the matrix shown in Fig. 4. 

Consequently, the parallelization of geometry decomposition is reduced to the de-
composition of H . Given 2=N  processors, for H  shown in Fig. 5(a), its 20 ele-
ments could be decomposed into two parts, and each part has 10 elements (Fig. 6(a)). 
It is undesirable that the numbers of rows, which are also the iteration numbers of the 
outer cycle, are imbalanced for two processors. These are 2 and 4 for Processors 0 and 
1 in this example, respectively.  

As mentioned above, a visibility computation is placed between both cycles, the 
imbalance of the numbers of rows will bring the load imbalance among processors, 
which will become very huge while m  increases up to more than thousands. There-
fore, another rule is required to get the half matrix, which ought to well keep the bal-
ance of the numbers of rows among processors. A suggested one is 
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           }1,,1,0],2,2[|),({ −=+++∈= mrlrrccrelemH L ,                (2) 

where l  is defined as 
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      (a) half matrix constructed in Scheme 1         (b) half matrix constructed in Scheme 2 

Fig. 5. Half matrices constructed in two different schemes 
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(a) decomposition result of the half matrix constructed in Scheme 1 
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(b) decomposition result of the half matrix constructed in Scheme 2 

Fig. 6. Decomposition results of half matrices constructed in two different schemes ( 2=N ) 
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where m  is an even number to ensure fully quadrilateral elements to be generated. 
Fig. 5(b) gives an example of H  constructed in this way for the matrix shown in Fig. 
4. Accordingly, given 2 processors, its decomposition result is shown in Fig. 6(b), 
where the above imbalance is nicely removed.  

After all processors decompose a branch, an MPI_Allgather function is called to 
collect all locally minimal weight values for their locally optimal vertex pairs, and 
then the pair with the globally minimal weight value are found and broadcasted. 

3.2   Parallelization of Mesh Generation 

The domain is a combination of quadrilateral sub-domains after geometry decomposi-
tion. If a node denotes a sub-domain, and an edge exits between two sub-domains 
with shared interfaces, the domain could be identified as an undirected graph. Graph 
nodes and edges are both assigned weights which equal the numbers of elements and 
shared mesh edges between neighboring sub-domains, respectively. Given N  proces-
sors, the problem of parallelizing the stage of mesh generation is equivalent to parti-
tion the graph into N  parts with equal node weights and to minimize the inter-part 
edge weights as well. This famous graph partitioning problem was intensively inves-
tigated and will not be discussed here. A simple static load balancing scheme will be 
adopted in the present study. It will not consider how to minimize the inter-processor 
communications, which are deferred to future works.  

3.2.1   Static Load Balancing 
An advantage of the PMM is that the number of elements for a sub-domain could be 
pre-computed before meshing. So a simple static load balancing scheme could be 
nicely used to partition the domain. Given N  processors, suppose the total number of 
elements in the domain is totE , the average elements aveE  for each processor is 

                  
N

E
E tot

ave = .                                                        (3) 

A traverse for the list of sub-domains is implemented to map sub-domains to proces-
sors. For Processor i , given a start sub-domain S (it is just the head of the list while 

0=i ), and then the sub-domains after S  is accessed one by one. The number of 
elements to be generated for the accessed node is added to a float value accE (its ini-

tial value is zero). Let accE  equals befE  and aftE  before and after accessing a sub-

domain L , respectively. If  

aftavebef EEE <<  

holds, the access operation stops. Then check if 

aveaftbefave EEEE −>−  

holds. If true, all the sub-domains from S  to L  are mapped to Processor i ; other-
wise L  is excluded. 

In practice, far less or more elements are allocated to the last processor than that to 
the others, which could be alleviated by dynamically changing aveE  as below. 
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alloc

alloctot
ave NN

EE
E

−
−

= ,                                                (4) 

where allocE  and allocN  denote the numbers of allocated elements and processors 

before mapping sub-domains to the current processor, respectively.  

3.2.2   Granularity 
Whatever is selected for the load balancing schemes, the granularity of each sub-
domain is an important factor. If many “large” sub-domains exist, the load imbalance 
will grow inevitably. Here the granularity of a sub-domain is measured by the number 
of elements inside. A maximal granularity is set by the user in our algorithm. If the 
granularity of a sub-domain exceeds the maximum, it’s forced to be bi-decomposed 
continuously in despite it perhaps meets the shape requirements of the PMM.  

The smaller is the maximal granularity, the more sub-domains are generated, which 
might slow the stage of geometry decomposition and degrade the mesh quality.  

4   Experiments 

All the experiments to be presented are performed on a Dawning PC Cluster at the 
Center for Engineering and Scientific Computation (CESC), ZheJiang University 
(ZJU), which consists of 24 dual-cpu nodes (2.4GHz, 1GB RAM). 

The experimental geometry and its corresponding mesh are shown in Fig. 7. The 
number of vertices of the initial loop and that of elements inside are 88 and 358, re-
spectively. All the following large examples are constructed from this geometry by 
refining the discretization of the initial loop. 

    

Fig. 7. The experimental geometry and its mesh 

The geometry with 6,960 initial loop vertices is adopted to evaluate the paralleliza-
tion of geometry decomposition based on the task-dependency tree (Section 3.1.1). 
The result shows that the wall-clock time changes slightly while the number of proc-
essors is greater than 5. An in-depth analysis tells that the low efficiencies mainly 
source from the inner restrictions of the parallel model based on the task-dependency 
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tree. At the top of the tree, the tasks are heavy but their concurrencies are low. While 
searching down the tree, the concurrencies grow with task granularities diminishing 
even faster. For this example, the decomposition of the root node costs 88.08 seconds 
(more than 1/4 of the total time), while the concurrency is 1 (Table 1). After the de-
compositions of two children of the root performed on two processors separately, the 
totally elapsed time grows up to 137.72 seconds while the concurrency only grows to 
2. It means that the maximal speedup for this example could not exceed 
2.525(347.75/137.72).  

Table 1. Experimental data for the parallelization of geometry decomposition based on the 
task-dependency tree 

N  1 3 4 5 6 16 
Time (s) 347.75 216.61 194.55 187.35 182.99 183.86 
Speedup 1.0 1.61 1.79 1.86 1.90 1.89 

Fig. 8 compares the efficiencies of the fine-grain level parallel geometry decompo-
sition utilizing two different schemes to decompose H  (Section 3.1.2). Schemes 1 
and 2 represent schemes given in Equations 1 and 2, respectively. Figs. 8(a) and 8(b) 
provide data of the decomposition of the root and tree, respectively, and Scheme 2 is 
obviously preferable to Scheme 1. After balancing the numbers of rows among proc-
essors, the performance is enhanced largely. The remaining largest synchronization 
overhead for Scheme 2 is due to the imbalance of the numbers of visible vertex pairs 
among processors. However, it is shown that very high efficiencies (about 0.7) are 
still achieved for Scheme 2 with this kind of geometry-dependant overheads. 
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                   (a) Decomposition of the root                         (b) Decomposition of the tree 

Fig. 8. Comparison of efficiencies for two different schemes to decompose H  

The simple static load balancing scheme is evaluated by an experiment with total 
6,102,700 elements generated on 16 processors (Fig. 9). The maximal granularity 
value is 5,000, which means at most 5,000 elements are allowed to be generated in an 
individual sub-domain. It is seen that the number of elements on the last processor is 
clearly less than those on other processors while applying Equation 3. It produces a 
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maximal 6.74% relative load imbalance between Processors 6 and 15. The value is 
reduced to 3.79% by applying Equation 4, which is between Processors 14 and 15. 

The scalability of the parallel mesh generator in terms of problem size and the 
number of processors is very important. To show how the algorithm performs with 
increased problem size, seven meshes of various sizes (926,839~11,138,817 ele-
ments) are generated using 16 processors. Fig. 10(a) illustrates its timing performance 
against the mesh size. To determine performance figures as a function of the number 
of processors, a mesh with 1,598,213 elements is generated against different numbers 
of processors. Fig. 10(b) shows its timing performance. Of course, the preferable fine-
grain level parallel scheme decomposing H  using Equation 2 is employed to paral-
lelize the stage of geometry decomposition. 
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Fig. 9. Performance of the static load balancing scheme 
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Fig. 10. Scalability of the parallel mesh generator 

5   Conclusions and Future Works 

The serial version of mesh generator consists of the stages of geometry decomposition 
and mesh generation. The stage of geometry decomposition is utilized for the data 
decomposition in the parallel mesh generator. As the load in sub-domains, measured 



478 J. Chen and Y. Zheng 

by the number of elements inside, could be pre-computed accurately before meshing, 
a static load balancing scheme could be well performed to parallelize the stage of 
mesh generation. Furthermore, two parallel geometry decomposition algorithms are 
compared. The fine-grain level parallel strategy proves preferable to that based on the 
task-dependency tree, with which the load imbalance brought by the improper utiliza-
tion of the symmetry of the vertex pair matrix is removed nicely. Experiments show 
that good scalability could be achieved for our parallel unstructured quadrilateral 
mesh generator. 

The simple static load balancing scheme makes no attempt to minimize the num-
bers of share edges between neighboring processors. A graph partitioning algorithm 
might be employed to overcome the problem, and it is currently under investigation. 
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Abstract. In this paper, we propose an algorithm that solves the con-
tainer problem in n-burnt pancake graphs in polynomial order time of
n. Its correctness is proved and estimates of time complexity and sum of
paths lengths are given. We also report the results of computer experi-
ment conducted to measure the average performance of our algorithm.

burnt pancake graphs, container problem, internally disjoint
paths, polynomial time algorithm

1 Introduction

Because a drastic improvement in sequential computation performance cannot
be expected in future, research in parallel and distributed computation has be-
come more significant. Extensive studies on so-called massively parallel machines
have been also conducted recently, and many complex topologies of interconnec-
tion networks have been proposed[1, 6] and studied[2–5, 8, 9, 16] to replace simple
networks such as a ring, a mesh, a torus and a hypercube[18]. A burnt pancake
graph[10] provides one such new topology. It can provide interconnection net-
works that consist of different number of nodes from others such as a star graph,
a pancake graph, a rotator graph, and so on.

Among the unsolved problems in burnt pancake graphs is the container prob-
lem, which is sometimes called the node-to-node disjoint paths problem or the
internally-disjoint paths problem: Given a source node s and a destination node
d(�= s) in a k-connected graph G = (V, E), find k paths between s and d that are
node-disjoint except for s and d. It is an important issue in parallel/distributed
computation[7, 12, 15, 19], as is the node-to-set disjoint paths problem[11, 13, 14].
If these k paths are identified, the graph acquires some dependability[12, 17]; that
is, at least one path can survive with k − 1 faulty components.

In general, internally disjoint paths can be obtained in polynomial order
time of |V | by making use of the maximum flow algorithm. However, in an n-
burnt pancake graph, the number of nodes is equal to n!×2n, so in this case the
complexity of that algorithm is too large. In this paper, we propose an algorithm
called N2N (node-to-node) which is of polynomial order of n instead of n!× 2n.
The algorithm divides into three cases depending on the relative position between
the source node and the destination node. The algorithm obtains n internally-
disjoint paths between any pair of nodes where n is equal to the connectivity of

,

.
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an n-burnt pancake graph. We also present the results of an average performance
evaluation.

The rest of this paper is organized as follows. Section 2 introduces burnt
pancake graphs as well as other requisite definitions. Section 3 explains our al-
gorithm in detail. Section 4 describes a proof of correctness and the theoretical
complexities of our algorithm. Average performance results are reported in Sec-
tion 5. Section 6 presents conclusions and ideas for future work.

2 Preliminaries

In this section, we introduce definitions of the signed permutation, the prefix
reversal operation, burnt pancake graphs, and a simple routing algorithm in a
burnt pancake graph.

Definition 1. (signed permutation) u = (u1, u2, · · · , un) is called a signed per-
mutation of n integers 1, 2, · · · , n if {|u1|, |u2|, · · · , |un|} = {1, 2, · · · , n}.

Definition 2. (prefix reversal operation) Let u = (u1, u2, · · · , un) be a signed
permutation of n integers 1, 2, · · · , n. Then the operation u(i) (1 ≤ i ≤ n) is
defined below:

u(i) =(−ui,−ui−1, · · · ,−u1, ui+1, · · · , un).

This operation is called the prefix reversal operation.

The successive applications of the prefix reversal operations (u(i1,i2,···,ik−1))(ik)

are denoted by u(i1,i2,···,ik−1,ik). In the rest of this paper, we put the negative
sign above expressions, u1, to save space.

Definition 3. (n-burnt pancake graph or BPn) A burnt pancake graph with de-
gree n, or an n-burnt pancake graph, BPn, is an undirected graph, which has
n! × 2n nodes. Each node has a unique label u = (u1, u2, · · · , un) which is a
signed permutation of n integers 1, 2, · · · , n. For two nodes u and v, there exists
an edge between them if and only if there exist i (1 ≤ i ≤ n) such that u(i) = v.

Figure 1 shows an example of BP3. An n-burnt pancake graph BPn includes
2n disjoint subgraphs BPn−1. The nodes in each subgraph share a common
integer, which we designate as k, for the final elements of their labels. Hence,
each subgraph can be identified as BPn−1k. Note that any edge (u, v) between
two different subgraphs is given by the operation v = u(n) only.

Table 1 shows a comparison of characteristics of an n-burnt pancake graph
BPn with a pancake graph Pn, an n-rotator graph Rn, an n-star graph Sn, an
n-cube Qn, an (n, k)-de Bruijn graph Bn,k, and an (n, k)-Kautz graph Kn,k. If
we define a performance metrics of interconnection networks by

(Number of Nodes)/{(Degree) × (Diameter)},

BPn is superior to Pn, Rn, Sn, Tn,k, Mn,k and Qn. Though Bn,k and Kn,k are su-
perior to BPn in the metrics, they do not have symmetry nor recursive structure,
which are suitable for executing some parallel and distributed applications.
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Fig. 1. An example of burnt pancake
graph BP3

procedure simple(s, d)
{Assume c = (c1, · · · , cn) and
d = (d1, · · · , dn).}

begin
c := s; P := [c];
for k := n to 1 step -1 do

if ck <> dk then begin
find h such that |ch| = |dk|;
if h <> 1 then begin

c := c(h);
P := P ++ [c] end;

if k <> 1 and c1 = dk then
begin
c := c(1);
P := P ++ [c] end;

c := c(k); P := P ++ [c] end
end;

Fig. 2. A simple routing algorithm
simple

Table 1. Comparison of a burnt pancake graph with other topologies

number of nodes degree connectivity diameter
BPn n! × 2n n n ≤ 2n + 3
Pn n! n − 1 n − 1 †
Rn n! n − 1 n − 1 n − 1
Sn n! n − 1 n − 1 � 3(n−1)

2 �
Qn 2n n n n

Bn,k nk n n k

Kn,k nk + nk−1 n n k

†: ≤ �5(n + 1)/3� from [10].

For given source node s and destination node d in an BPn, we use the
routing algorithm simple shown in Figure 2 to obtain a path between s and
d. We assume that the label of a node is represented by using a linear array
and each element of the array consists of a word that can store the value n.
Additionally, we assume that the labels represented by the arrays are all stored
in memory to specify a path. Then this algorithm simple requires O(n2) time
complexity and generates a path whose length is at most 3n − 2.

For simple routing algorithm, the following lemma holds.

Lemma 1. For an arbitrary node a, define N0(a) and N1(a) by N0(a)={a(i)|i∈
{1, 2, · · · , n}} and N1(a) = {a(i,1)|i ∈ {2, · · · , n}}, respectively. Then for arbi-
trary two nodes s and d, the path p generated by simple(s, d) includes at most
one node in each of N0(s), N1(s), N0(d), and N1(d).
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|sk| = |dh|. Then any node u = (u1, u2, · · · , un) on the path p except for s
satisfies one of the following conditions:

– |u1| = |sk|, or
– uh = dh, uh+1 = dh+1, · · ·, un = dn.

On the other hand, any nodes s(i) = (si, si−1, · · · , s1, si+1, · · · , sn) (i �= k) and
s(i,1) = (si, si−1, · · · , s1, si+1, · · · , sn) (i ≥ 2, i �= k) do not satisfy both of the
above conditions. Then the path p has at most one node s(k) in N0(s), and
at most one node s(k,1) in N1(s). The latter part is trivial because if a node
u(∈ N1(d)) first appears on p, then the next node must be u(1)(∈ N0(d)) and
if a node v(∈ N0(d)) first appears on p, then the next node must be d itself.
Hence p has at most one node in each of N0(d), and N1(d). �

3 Algorithm N2N

Let the source node s = (s1, s2, · · · , sn) and the destination node d = (d1, d2, · · · ,
dn). If n ≤ 2, the internally-disjoint paths problem is trivial. Hence, we assume
that n ≥ 3 in the rest of this paper. Then, our algorithm N2N to solve the
container problem in burnt pancake graphs is described by the following three
cases.

Case 1 sn = dn;
Case 2 sn = dn; and
Case 3 |sn| �= |dn|.

In the following sections, we represent an edge by → and a path generated
by simple by �.

3.1 Case 1

This subsection presents Procedure 1 for the case that sn = dn, that is, s and d
are both in BPn−1sn.

Step 1 In BPn−1sn, apply Algorithm N2N recursively and obtain n − 1 inter-
nally disjoint paths from s to d.

Step 2 If s1 �= d1, construct a path s → s(n) � d(n) → d. See Figure 3.
Otherwise, construct a path s → s(n) → s(n,1) � d(n) → d. Note that the
path does not include the nodes inside BPn−1sn except for s and d. See
Figure 4.

3.2 Case 2

This subsection presents Procedure 2 for the case that sn = dn.

Step 1 From s, construct n paths p1, p2, · · · , pn as follows:
pi’s (1 ≤ i ≤ n − 1): Construct a path s → s(i) → s(i,n).

(Proof) Assume that sh �= dh, sh+1 = dh+1, sh+2 = dh+2, · · ·, sn = dn and

.

.

.
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− −

−

Fig. 3. Case 1, Step 2 (s1 �= d1)

− −

−

−

Fig. 4. Case 1, Step 2 (s1 = d1)

Fig. 5. Case 2, Step 1 Fig. 6. Case 2, Step 2 (|s1| �= |d1|, d1 ∈
{s2, s3, · · · , sn−1})

pn: Construct a path s → s(n).

Note that each of n subgraphs BPn−1s1, BPn−1s1, BPn−1s2, · · ·, BPn−1sn−1
has exactly one terminal node of pi’s. See Figure 5.

Step 2 From d, construct n paths q1, q2, · · · , qn as follows:

q1: Construct a path d → d(1) → d(1,n).
qj’s (2 ≤ j ≤ n − 1): We assume that |dj | = |si|. If dj = si, construct a path

d → d(j) → d(j,n). Otherwise, construct a path d → d(j) → d(j,1) →
d(j,1,n).

qn: Construct a path d → d(n).

Note that each of n subgraphs BPn−1d1, BPn−1s1, BPn−1s2, · · ·, BPn−1d1,
· · ·, BPn−1sn−1 has exactly one terminal node of qi’s. The terminal nodes of
pi’s and qj ’s other than s and d are called anchor nodes. See Figure 6.

Step 3 In each subgraph, if it contains two anchor nodes of paths pi and qj ,
construct a path between these two nodes by simple. See Figure 7.

−

−

−

− − − − −

−

−

− − − − − −

−

.

.
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−

−

− − − − −

−

Fig. 7. Case 2, Step 3 (|s1| �= |d1|, d1 ∈
{s2, s3, · · · , sn−1}).

−

−

−

− − − − −

−

Fig. 8. Case 2, Step 4 (|s1| �= |d1|, d1 ∈
{s2, s3, · · · , sn−1}).

Step 4 If there exist two subgraphs each of which contains only one anchor
node, construct a path between these two terminal nodes by simple. See
Figure 8. Note that in case |s1| = |d1|, there is no need to execute this step.

3.3 Case 3

This subsection presents Procedure 3 for the case that |sn| �= |dn|.

Step 1 By simple construct two paths p and q from s to d and from d to s,
respectively. Let s(k) and d(h) be the neighbor nodes of s and d on q and p,
respectively. See Figure 9 (a). If s(k) ∈ p then let T = {q}. See Figure 9 (b).
Or, if d(h) ∈ q then let T = {p}. Otherwise, let T = {p, q}. See Figure 9 (c).

Step 2 From s, construct paths pi’s as follows:
p1: If s(1) is not included in any path in T , construct a path s → s(1) →

s(1,n).
pi’s (2 ≤ i ≤ n − 1, i �= k): If s(i) is not included in any path in T , construct

a path s → s(i) → s(i,n).
pn: If s(n) is not included in any path in T , construct a path s → s(n).
Note that inclusion of s(i) in any path in T can be checked by comparing it
with the neighbor node of s on the path. See Figure 10.

Step 3 From d, construct paths qj ’s as follows:
q1: If d(1) is not included in any path in T , construct a path d → d(1) →

d(1,n).
qj’s (2 ≤ j ≤ n − 1, j �= h): In case that d(j) is included in any path in T ,

do not construct a path. Otherwise, we assume that |dj | = |si|. If dj =
si, construct a path d → d(j) → d(j,n). If dj = si, construct a path
d → d(j) → d(j,1) → d(j,1,n).

qn: If d1 �= sn, construct a path d → d(n).

.

.

.

.
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Fig. 9. Case 3, Step 1

−

−
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Fig. 10. Case 3, Step 2

−

−

−

− −−−−

−

Fig. 11. Case 3, Step 3

−

−

−

− −−

−

−−

Fig. 12. Case 3, Step 4

The terminal nodes of pi’s and qj ’s other than s and d are called anchor
nodes. See Figure 11.

Step 4 In each subgraph, if it contains two anchor nodes of paths pi and qj ,
construct a path between these two nodes by simple. See Figure 12.

Step 5 If there exist four subgraphs BPn−1l1, BPn−1l2, BPn−1l3, and BPn−1l4
such that BPn−1l1 and BPn−1l2 contain exactly one anchor node of pi’s and
BPn−1l3 and BPn−1l4 contain exactly one anchor node of qi’s, then we can
make two pairs of subgraphs so that for each pair BPn−1li and BPn−1lj ,
i ∈ {1, 2} and j ∈ {3, 4} and li �= lj . For each pair of them, apply simple to
connect the anchor nodes and terminate. See Figure 13.

Step 6 If there exist two subgraphs BPn−1l and BPn−1l
′ each of which contains

only one anchor node and |l| �= |l′|, construct a path between these two
terminal nodes by simple. Otherwise, if there exist two subgraphs BPn−1l

and BPn−1l
′ each of which contains only one anchor node and l = l

′
, there

.

.

.
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Fig. 13. Case 3, Step 5

−

−

−

−

− −−

− −

Fig. 14. Case 3, Step 6

must exist at least one subgraph BPn−1m that does not include any node of a
path that is already constructed. Assuming the anchor nodes x and y belong
to BPn−1l and BPn−1l

′, respectively, construct a path x → x(r) → x(r,n) �
y if xr = m, and construct a path x → x(r) → x(r,1) → x(r,1,n) � y if
xr = m. See Figure 14.

4 Proof of Correctness and Estimation of Complexities

In this section, we give a proof of correctness of our algorithm and estimates
of time complexity T (n) and the maximum path length L(n) for an n-burnt
pancake graph. Proof is based on induction on n.

Lemma 2. The paths generated by Procedure 1 are internally disjoint. The time
complexity of Procedure 1 is T (n − 1) + O(n2) and the maximum length of the
paths obtained is max{L(n − 1), 3n − 2}.

(Proof) Paths obtained in Step 1 are known to be internally disjoint by induction.
The path obtained in Step 1 is outside of BPn−1sn except for s and d. Hence, it
is internally disjoint to the paths obtained in Step 1. Step 1 takes T (n− 1) time
to generate paths, the maximum length of the paths is L(n − 1). Steps 2 takes
O(n2) time and generate a path whose length is at most 3n−2. Hence, the time
complexity is T (n − 1) + O(n2) and the maximum path length is max{L(n −
1), 3n − 2}. �

Lemma 3. The paths generated by Procedure 2 are internally disjoint. The time
complexity Procedure 2 is O(n3) and the maximum length of the paths obtained
is 3n + 3.

(Proof) Paths selected in Steps 1 and 2 are trivially disjoint other than s and
d. The paths generated in Step 3 are included in separate subgraphs. Hence
they are disjoint each other and they are also disjoint with the paths pi’s and
qj ’s other than the anchor nodes. The path generated in Step 4 is included in
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two subgraphs each of which has exactly one anchor node. Hence, the path is
disjoint with other paths generated in Steps 1 to 3 except for the anchor nodes.
Therefore all the paths generated in Procedure 2 are internally disjoint. Step 1
requires O(n2) time and generates paths whose maximum length is 2. Step 2
takes O(n2) time and generates paths whose maximum length is 3. Step 3 takes
O(n3) time and the length of each path generated in this step is at most 3n− 5.
Step 4 requires O(n2) time and the maximum length of the path is 3n−2. Hence,
the time complexity is O(n3) and the maximum path length is 3n + 3. �
Lemma 4. The paths generated by Procedure 3 are internally disjoint. The time
complexity of Procedure 3 is O(n3) and the sum of lengths of paths obtained is
3n + 4.

(Proof) The at most two paths selected in Step 1 are internally disjoint from
Lemma 1. It can be proved in the similar manner to the proof of Lemma 3 that
the paths generated in Steps 2 to 4 are internally disjoint. These paths are also
disjoint with the paths selected in Step 1. The two paths established in Step 5,
if any, are disjoint because their nodes other than s and d are included in their
own subgraphs. It is also possible to prove in the similar manner to the proof
of Lemma 3 that these two paths are disjoint with other paths generated in
Steps 1 to 4. The path established in Step 6, if any, is disjoint with other paths
because the subpath between the anchor nodes are established by using two
subgraphs in which the anchor nodes are included as well as the subgraph that
does not included another path’s node at all. Therefore all the paths generated
in Procedure 3 are internally disjoint. The paths generated in Steps 3 and 4 are
internally disjoint to other paths because the paths that share some nodes are
discarded in these steps. Step 1 takes O(n2) time and generates paths whose
maximum length is 3n− 2. Step 2 requires O(n2) time to generate paths whose
maximum length is 2. Step 3 takes O(n2) time and generate a path whose length
is at most 3. Step 4 takes O(n3) times and the length of the path generated in
this step is at most 3n − 5. Step 5 takes O(n2) times and the maximum length
of the paths generated in this step is 3n − 2. Step 6 requires O(n2) time and
the maximum length of the path is 3n because the first element of the label of
x(r,n) and the final element of that of y are identical. Consequently, the time
complexity is O(n3) and the maximum path length is 3n + 4. �
Theorem 1. Paths generated by N2N are internally disjoint. For an n-burnt
pancake graph, the time complexity T (n) of N2N is O(n3) and the maximum
length of paths L(n) generated by N2N is 3n + 4.

(Proof) From Lemmas 2 to 4 above, paths generated by N2N are proved to
be internally disjoint and it also holds that T (n) = max{T (n − 1), O(n3)} and
L(n) = 3n + 4. Hence T (n) = O(n3). �

5 Performance Evaluation

To evaluate the average performance of algorithm N2N, we conducted a computer
experiment by sampling the source node randomly as follows:
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1. Select the destination node randomly.
2. Select the source node s randomly other than d.
3. For s and d, apply algorithm N2N and measure the execution time and the

maximum path length.

The algorithm was implemented using the functional programming language
Haskell. The program was compiled with the Glasgow Haskell compiler ghc
with -O and -fglasgow-exts options. The target machine is equipped with a
Pentium III 700MHz CPU, 256MB main memory. The average execution time
and the maximum path length obtained by this experiment are shown in Figures
15 and 16, respectively. From Figure 15, we can see that the average execution
time is O(n3.0). Also, from Figure 16, we can see that the maximum of path
lengths is 3n + 4.

Fig. 15. Average execution time

6 Conclusions

In this paper, we proposed a polynomial algorithm for the container problem in
n-burnt pancake graphs. Its time complexity is O(n3) and the maximum path

For each n = 3, 4, · · · , 80, repeat the following steps 10,000 times.
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Fig. 16. Maximum length of paths.

length is 3n + 4. We also conducted computer experimentation and showed that
the average execution time and the practical maximum path length is O(n3.0)
and 3n + 4, respectively. Future work will include an improvement of the algo-
rithm to generate shorter paths in shorter execution time as well as application
of our approach to other topologies of interconnection networks.
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5. P. Berthomé, A. Ferreira, and S. Perennes: Optimal information dissemination in
star and pancake networks, IEEE Trans. Parallel and Distributed Systems, 7(12),
1292–1300, 1996.

6. P. F. Corbett: Rotator graphs: An efficient topology for point-to-point multipro-
cessor networks, IEEE Trans. Parallel and Distributed Systems, 3(5), 622–626,
1992.

7. M. Dietzfelbinger, S. Madhavapeddy and I. H. Sudborough: Three disjoint path
paradigms in star networks, Proc. IEEE SPDP, 400–406, 1991.

8. L. Garfgano, U. Vaccaro, and A. Vozella: Fault tolerant routing in the star and
pancake interconnection networks, IPL, 45(6), 315–320, 1993.

9. L. Gardner, Z. Miller, D. Pritikin, and I. H. Sudborough: Embedding hypercubes
into pancake, cycle prefix and substring reversal networks, Proc. 28th Annual
Hawaii Int’l Conf. System Sciences, 537–545, 1995.

10. W. H. Gates and H. Papadimitriou: Bounds for sorting by prefix reversal, Discrete
Mathematics, 27, 47–57, 1979.

11. Q.-P. Gu and S. Peng, Node-to-set disjoint paths problem in star graphs, IPL,
62(4), 201–207, 1997.

12. Y. Hamada, F. Bao, A. Mei, and Y. Igarashi: Nonadaptive fault-tolerant file trans-
mission in rotator graphs, IEICE Trans. Fundamentals, E79-A(4), 477–782, 1996.

13. K. Kaneko and Y. Suzuki: An algorithm for node-to-set disjoint paths problem
in rotator graphs, IEICE Trans. Information and Systems, E84-D(9), 1155–1163,
2001.

14. K. Kaneko: An algorithm for node-to-set disjoint paths problem in burnt pancake
graphs, IEICE Trans. Information and Systems, E86-D(12), 2588-2594, 2003.

15. S. Madhavapeddy and I. H. Sudborough: A topological property of hypercubes —
node disjoint paths, Proc. IEEE SPDP, 532–539, 1990.

16. K. Qiu, H. Meijer, and S. G. Akl: Parallel routing and sorting on the pancake
network, Proc. Int’l Conf. Computing and Information, 360–371, 1991.

17. M. O. Rabin: Efficient dispersal of information for security, load balancing, and
fault tolerance, JACM, 36(2), 335–348, 1989.

18. C. L. Seitz: The cosmic cube, CACM, 28(7), 22–33, 1985.
19. Y. Suzuki and K. Kaneko: An algorithm for node-disjoint paths in pancake graphs,

IEICE Trans. Information and Systems, E86-D(3), 610–615, 2003.

490 N. Sawada, Y. Suzuki, and K. Kaneko



Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 491 – 502, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

A Cost Optimal Parallel Quicksorting and Its 
Implementation on a Shared Memory Parallel Computer 

Jie Liu, Clinton Knowles, and Adam Brian Davis 

Department Of Computer Sciences, 
Western Oregon University, 

Monmouth, OR 97361 
{liuj, cknwle, addavis}@wou.edu 

Abstract. This paper discusses a parallel quicksort algorithm that is cost opti-
mal, in average, using O(n/log(n)) processors. The cost optimality is mainly due 
to a cost optimal partitioning algorithm that utilizes all the processors when par-
titioning the array. A temporary array of the same size as the original array is 
needed during the partitioning process. The prefix sums are used to determine 
where a processor can copy its data.  

We will prove that the algorithm has an average case complexity O(log2n), 
where n is the size of the data array. We will also discuss the implementation of 
our algorithm on a shared memory parallel computer and demonstrate that it 
outperforms other O(log2n) parallel sorting algorithms. In addition, it outper-
forms the sequential quicksort algorithm starting with two processors. 

1   Introduction 

One of the common tasks performed by computers is sorting.  Quicksort is a popular 
sequential sorting algorithm due to its average case efficiency and easy of implemen-
tation. Formally, given (1) a list of n elements a0, a1, ..., an-1, and (2) a predefined 
linear order such that for any two elements ai and aj, one and only one of the following 
can be true: ai < aj, ai = aj, or ai > aj, sorting is a problem of finding a permutation (p0, 
p1, ..., pn-1) so that 

110
...

−
≤≤

nppp aaa .  

In the rest of discussions, we assume that n elements are stored in a zero based ar-
ray a[]. In addition, without losing generality, we assume these n elements are unique. 
If two elements a[i] = a[j] and i < j, we define the linear order to be a[i] < a[j]. Under 
these settings and for the clarity of later discussions, a sequential quicksort algorithm 
in its most basic form is presented in List 1. Most computations occur at step 2, which 
is the focus of this paper.  

Developing parallel sorting algorithms are the research focus of many researchers. 
There are two major approaches: designing new algorithms, such as bitonic merge 
sort [4], or modifying existing sequential algorithms, such as parallel merge [13].  

Both bitonic sort and parallel merge have a complexity of Θ(log2n) using Θ(n) 
processors. Therefore, the cost of the algorithms is Θ(n log2n), which is not optimal.  
In addition, since all processors are busy in the entire execution of the algorithms, 
reducing the number of processors results in increasing in complexity. Therefore, 



492 J. Liu, C. Knowles, and A.B. Davis 

neither algorithm cannot be cost optimal even using fewer processors, which is a 
common way of achieving cost optimality for many parallel algorithms [10].   

Step 1: Finding a pivot: find a pivot pv such that 
)......,max()......,min( 110110 −− ≤≤ nn aaapvaaa   

Step 2: Partition: divide the array into two subarrays: 
s1 and s2 such that s1 contains all elements less than 
or equal to pv, and s2 contains all elements greater 
than pv. 
Step 3: Recursion: repeat step 1 and 2 on s1 and s2, 
respectively, unless a subarray contains only one ele-
ment. 

List 1. Outline of the quicksort algorithm 

Muller and Preparata proposed an algorithm to sort n elements in a constant time 
on a nonstandard CRCW PRAM using n2 already activated processors [2]. The algo-
rithm is not cost optimal because it performs O(n2) comparisons. Several O(log n) 
parallel sorting algorithms were proposed by various researchers [5-7]. However, as 
pointed out by Leighton, the constant of proportionality of the algorithms is immense 
and, unless n is unrealistically large, these algorithms would be slower in practice 
than other parallel sorting algorithms [7].  

Quicksort is a divide-and-conquer algorithm. The results of each “dividing” are 
two disjoint sub-problems with no further communication between them. Therefore, 
these two sub-problems can be resolved concurrently and recursively. A direct ap-
proach utilizing this characteristic is to start with a single partition running on a single 
processor. The result is assigned to two processors, then to four processors, and so on.  
The problem is that at the beginning, when the problem sizes are relatively large, only 
few processors participate in the partitioning phase of the sorting process. That greatly 
affects the utilization of processors and results in a maximum speedup of about 6 [8]. 

In situations where the number of processors is much smaller than the problem 
size, Francis and Pannan proposed a parallel partitioning approach, where the array 
was divided into several segment and partitioned in parallel [8]. This parallel step 
results in an almost partitioned array. The two ends of the array are partitioned. The 
middle section is not. The size of this unpartitioned middle section depends on data 
distributions in the original array and the section of the pivot. A sequential pass has to 
be introduced to partition the unpartitioned middle section. Since the size of this mid-
dle section cannot be determined, the performance of the approach is unpredictable. 

Heideberger, Norton, and Robinson introduced a parallel quicksort algorithm that 
sorts n elements in Θ(log n) time using n processors [9]. The algorithm assumes a 
CRCW PRAM with the capability of performing Fetch&Add as an atomic operation. 
The core of the algorithm is a parallelized partitioning as given in List 2. The 
do_parallel loop indicates that the iterations of the loop are carried out simulta-
neously. Array a[] holds the original data; array b[] holds the results of partitioning 
with the left side holding the elements smaller than the pivot pv, and the right side 
holding the rest. 
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do_parallel i = 1 to n 
   t = a[i] 
   if (t < pv)   
       then b[F&A(L, 1)] = t; 
       else b[F&A(R, -1)] = t; 
end do_parallel 

List 2. A parallel partitioning of array a[] using an atomic Fetch&Add given in [9] 

Given that the iterations are carried out concurrently, the do_parallel loop has a 
time complexity of Θ(1). In addition, in an average case, the array can be partitioned 
to size of 1 in O(log n) time, the average time complexity of the algorithm is Θ (log n) 
with the worst time complexity of Θ(n). Since simulating such a nonstandard CRCW 
PRAM processor using an EREW or CREW PRAM processor requires Θ(n) time, it 
is safe to state that, until we can build such a powerful CRCW parallel computer as 
proposed, this quicksort algorithm can still be improved on a weaker parallel compu-
tation model such as CREW PRAM. In addition, implementing such an algorithm on 
a real parallel computer and expecting good performance will not likely be feasible in 
the near future due to the special requirements on the processors.  

Liu and He presented an approach of solving the partitioning problem using paral-
lel prefix sums in two steps [14]. We will discuss Liu and He’s approach in detail in 
the next section because our algorithm is based on Liu and He’s approach. 

2   The Liu and He’s Parallel Quicksort 

The basic approach of Liu and He’s algorithm is to copy the elements smaller or equal 
to the pivot, i.e. s1, to the front of a temporary array concurrently, and then copy ele-
ments great than the pivot, i.e. s2, to the back of the temporary array concurrently. Let 
us consider the steps forming s1 first. 

It first marks all elements that should be in s1 concurrently, and then uses parallel 
prefix sum algorithm to calculate, for each marked element ai, the number of marked 
elements with an index value smaller than i.  The result is the index of ai in the tempo-
rary array.  The formation of s2 is similar. The outline of Liu and He’s approach is 
given in List 3.  

In the steps listed in List 3, step 1 matches the step 1 of List 1, and step 9 matches 
the step 3 of List 1. Steps 2 to 8 partition the original array into two segments: s1 – a 
segment contains all elements that are greater than the pivot (steps 2 to 4), and s2 –
another segment contains the rest (steps 6 to 8).  That is, steps 2 to 8 accomplish the 
partitioning process and are carried out in parallel (except step 5). 

List 4 is the prefix sum algorithm used in [14] based on the discussions in [10]. 
The loop structure ForAll indicates that all the processors specified perform the 
loop body concurrently. Other statements carry the same meanings as in most pro-
gramming languages. 

Figure 1 shows an example of running the algorithm given in List 4 for an array of 
eight elements. Initially, the array has a set of 0’s and 1’s. Let us assume that in Fig-
ure 1, a “1” in the initial stage indicates an element being greater than the pivot. The 
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result of the prefix sum is that each array element indicates the number of elements 
with a smaller index that are also greater than the pivot. For example, a[6] has a 
final value of 4, indicating that there are three elements that have an index value 
less than 6 and are also greater than the pivot. This information is valuable because 
when we partition the array by extracting the elements greater than the pivot, we 
can just copy data element corresponding to a[6] into a temporary array’s forth 
element. Know so for each element, all elements can be extracted in one step with 
enough processors. 

Do_Sort(b, e) 
1.  Determine the pivot pv 
2.  If a[i] <= pv and b <= i < e, mark it by setting 
aux[i] to 1; otherwise, set aux[i] to 0.  
3.  Perform the prefix sum on array aux. If array 
element a[i] is marked, the result of aux[i] after 
the prefix sum is an integer indicating the number of 
elements with an index smaller and equal to i that 
are also marked.  
4.  Copy a[i] to temp[b + aux[i] -1] if a[i] <= pv.  
5.  Store aux[e -1] + b in variable m  
6.  If a[i] > pv and b <= i < e, mark it by setting 
aux[i] = 1; otherwise, set aux[i] to 0.  
7.  Perform the prefix sum on array aux. If array 
element a[i] is marked, the result of aux[i] after 
the prefix sum is an integer indicating the number of 
elements with an index smaller and equal to i that 
are also marked.  
8.  Copy a[i] to temp[m+ aux[i] -1].  
9.  Call Do_Sort(b, m) and Do_sort(m, e) 

List 3. Outline of Liu and Hu’s parallel quicksort 

Parallel_prefixes(a[], b, e) 
Local variable j 
ForAll pi where b<= i <= e - 1 do 
 for j from 0 to  -1  
  if (i – 2j) >= 0 then  
   a[i] = a[i – 2j] + a[i] 

List 4. The paralle prefix sum algorithm 

The complexity analysis of the sequential quicksort is a classical case of average 
time complexity of O(n log n) and worst time case of O(n2) [11].  Since all the steps 
in List 3 have a complexity of O(log n) or less, the function Do_Sort(b, e) has a com-
plexity of O(log n), where n = e – b + 1. In average case, the function is called O(log 
n) times. Therefore, the algorithm has an average time complexity of O(log n * log n). 
We will show later that, contrary to the claim in [14], the algorithm as presented is not 
cost optimal because the prefix sum algorithm is not cost optimal. 
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Fig. 1. An example of carrying out the parallel prefix sum 

3   Improving Partitioning of the Array 

When performing on a real parallel computer, the number of processors p is much 
smaller than the problem size n. In such case, the partitioning takes at least Θ(n/p) 
time. As a result, it is not necessary to know the exact destination index for every 
element because not all element will be extracted at the same time, as presented in 
line 4 and line 8 of List 3. With that understanding, we propose the following ap-
proach of partitioning the array.  

We divide the array into p chunks. To partition an array of size n, we first count, 
for each chunk, the total number of elements less than and equal to the pivot and the 
total number of elements greater than the pivot within the chunk. We then calculate 
the prefix sums using these values separately. The results of the prefix sum calcula-
tions provide, for each processor, the starting index for copying elements back to the 
data array during the partitioning process. By doing this, we only need one temporary 
array of size n and two other temporary arrays of size p. We will explain the partition-
ing process using an array of 12 elements, a[] = {5, 17, 42, 3, 32, 22, 51, 26, 15, 9, 19, 
99}, on four processors. First, we select a pivot. Let a[5], which is has a value of 22, 
be the pivot. The next step is to divide the array into four, the number of processors, 
chunks as shown in Figure 2. 

5, 17, 42,    3, 9, 22,  51, 26, 15,    32, 19, 99 

Fig. 2. Dividing the array into four chunks 

Next, we count, for each chunk, the number of elements smaller than or equal to 
the pivot, and then the number of elements larger than the pivot, and transfer elements 
to a temporary array while counting. List 5 shows this process. Note that this same 
code segment is carried out by each processor. Therefore, each processor has a differ-
ent values for variables start, end, and id. The start and end indicate the 
starting and ending point of the chuck a processor needs to work. The variable id is 
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unique for each processor. Line 13 calculates the number of elements less than or 
equal to the pivot and places the value in an array nSmallerEqual[]. Line 14 calculates 
the number of elements greater than the pivot and place the value into temporary 
arrays nGreaterThan[].  In our example, the values in nSmallerEqual[] and nGreater-
Than[] are {2, 3, 1, 1} and {1, 0, 2, 2} respectively.   

1. lesser = start; //start is the 1st element’s index  
2. greater = end;  //end is the 1st element’s index 
3. for(i=start;i<=end;i++) 
4. { if(a[i] <= pivot) 
5.   { temp[lesser] = a[i]; 
6.    lesser++; 
7.   } 
8.  else 
9.   { temp[greater] = a[i]; 
10.   greater--; 
11.   } 
12. } 
13. nSmallerEqual[id] = lesser - start;  
14. nGreaterThan[id] = end - greater;  

List 5. Count the elements <= pv, and elements > pv and copy them into a temporary array 

The next step is to transfer the elements in temp[] back to the primary array a[] 
in their final partitioned form. To do this, we need to calculate where a processor can 
start placing the partitioned elements. This step can be accomplished by calculating 
the prefix sums of nSmallerEqual[] and nGreaterThan[], respectively, using the algo-
rithm in List 4 (notice the array sizes of nSmallerEqual[] and nGreaterThan[] is p), 
which would have the same effect as the code segment given in List 6.  

1. count = 0; 
2. countb = 0; 
3. for(i=0;i<id;i++) 
4. {count += nSmallerEqual[i];    
5.  countb += nGreaterThan[i];    
6. } 

List 6. Calculating the prefix sums over nSmallerEqual[] and nGreaterThan[] 

During partitioning, elements are copied back to the original array.  If an element is 
less than or equal to the pivot, we place it toward the front of the array; otherwise, we 
place it toward the end of the array. Since each processor knows exactly how many 
elements the processors before it will copy back, it starts copying into the section 
assigned to it as indicated by variables count, and countb.  The variable count 
starts from the front of the array, and the variable countb starts from the end of the 
array. This way, the copying process can be accomplished concurrently.  

Figure 3 shows the values of count, and countb for each processor. It also 
shows the process of copying the elements back to the primary array. At this point, 
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the partition is completed. Elements from a[0] to a[6] are smaller than or equal to the 
pivot, and element from a[7] to the last element a[11] are greater than the pivot. We 
can then recursively sort these two subarrays. 

 

Fig. 3. The values of variables count, and countb, as well as the copying of elements 
from the temporary array back to the primary array 

4   The Improved Algorithm Is Cost Optimal 

In this section, we first outline the improved algorithm just discussed. We assume a 
shared memory parallel computer and the number of processors is much smaller than 
the problems size. We then prove that the algorithm sorts n elements in O(log2 n) time 
using O(n/log n) processors, which means it is cost optimal.  

List 7 shows the partitioning of an array with n elements over the pivot value pv. 
To save space, we omitted variable declarations. Each processor has its own value for 
the variable id.  Lines 2 to 5 calculate the array section a processor is responsible. 
Variable l tracks the number of elements <= pv; Variable g tracks the number of 
elements > pv. The “for” loop from lines 8 to 14 moves the elements <= pv to the 
beginning of the array and moves the elements > pv to the end of the array. In addi-
tion, it counts the number of elements that are <= pv and > pv, respectively. Lines 15 
and 16 copy the results of counting form the for loop to the corresponding arrays to 
prepare for the prefix sum calculation. Lines 17 to 20 calculate the prefix sums.  Lines 
21 to 26 determine the starting points for each processor to copy both the elements <= 
pv and the elements > pv, respectively. Lines 27 to 33 copy the element back to array 
a[]. What is returned at line 34 is the total number of elements <= pv. 

Theorem 1: The complexity of partitioning n elements with p processors using the 
algorithm given in List 7 is O(max{n/p, log(p)}). 

Proof: Let C be the cost of all statements not in any loop body, t1 be the time of the 
“for” loop at line 8, t2 be the time of the “for” loop at line 17, and t3 be the time of the 
“for” loop at line 27. The total time of the function Partition T = C + t1 + t2+ t3. By 
studying the code we have t1 = t2 = O(n/p), and t3 = O(log(p)). As a result, the com-
plexity of function Partition T = O(n/p + log(p)) = O(max{n/p, log(p)}). 

Corollary 1:  Using n/(log n) processors, the time complexity of using the algorithm 
given in List 7 is O(log n). 
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Proof:  By replacing p in Theorem 1 with n/(log n)  we have  
T= O(max{n/p, log(p)}) = O(max{n/(n/log (n)), log(n/log (n))}) = O(log n).  

function partition(a[], n, pv) 
1. ForAll pid  where 0<= id < p do 
2.  ws =  n/p  
3.  b  = ws * id   
4.  e = ws * (id+ 1) 
5.  if e > n then e = n 
6.  l = b 
7.  g = e -1 
8.  for i from b to e 
9.    if a[i] <= pv then 
10.      temp[l] = a[i] 
11.      l = l +1 
12.    else 
13.      temp[g] = a[i] 
14.      g = g – 1 
15.  nSmEql[id] = l – b  
16.  nGtTn[id] = e – g  
17.  for j from 0 to plog   -1  
18.    if (id – 2j) >= 0 then  
19.      nSmEql [id] = nSmEql[id – 2j] + nSmEql[id] 
20.      nGtTn [id] = nGtTn [id – 2j] + nGtTn [id] 
21.  if id <> 0 then  
22.    count = nSmEql [id -1] 
23.    countb = nGtTn [id -1] 
24.  else 
25.    count = 0 
26.    countb = 0 
27.  for i from b to e 
28.    if temp[i] <= pv then 
29.      a[count] = temp[i] 
30.      count = count + 1 
31.    else 
32.      a[e - countb] = temp[i] 
33.      countb = countb – 1 
34.  return nSmEql[p -1] 

List 7. Partitioning array a[] of size n using p processors over pivot pv 

Based on Corollary 1, since, in average, the number of steps of dividing in a quick-
sort is O(log n), a parallel quicksort algorithm using the algorithm given in List 7 to 
partition the array should have an average case complexity of O(log2(n)). The cost of 
the algorithm is then O(n *log(n)), which is cost optimal. We will use Brent’s Theo-
rem to prove the algorithm is this, starting with calculating the amount of operations 
performed by the prefix sum using p processors. 

Lemma 1: The prefix sum algorithm given in List 4 takes O(p log(p)) operations 
using p processors. 
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Proof: The algorithm takes p – 20 operations the first iteration, p – 21 operations the 
second iteration, and p – 2j operations the jth iteration. With total of plog  -1 itera-

tions, the total number of operations w is 
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Theorem 2: The number of operations performed by the algorithm given in List 7 is  
O(n + p*log(p)) for an array of n elements using p processors.  

Proof: The algorithm consists of two “for” loops each incurs O(n/p*p) = O(n) opera-
tions. It also contains a “for” loop to perform the prefix sum, which should incurs O(p 
log(p)) operation based on Lemma 1. Combining all the operations, it has O(n + 
p*log(p))  operations.   

List 8 is a simple parallel quicksort algorithm that utilizes partitioning algorithm 
presented early to sort a[] from b to e using p processors. Notice that we added the 
allocation of processors because we assume that the p << n. What omitted is the as-
signment of processors to subarrays because we believe that doing so only compli-
cates the discussion of the algorithm without adding any value to our goal – to prove 
that the use of the algorithm given in List 7 to performing parallel quicksort using 
O(n/log n) processors is cost optimal. For now, we assume a simple method of allo-
cating processors to tasks exists that each time the Do_Sort is called, at least one 
processor, or proportional to the number of elements, is allocated.  In the event the 
number of subarrays is greater than the number of processors, we proposed to use the 
existing processors to simulate the processors needed. In actuality, we would likely to 
introduce some kinds of threshold to reduce the number of recursive calls incurred in 
quicksort. 
      
Do_Sort(a[], b, e, p)  
1. if e> b then 
2. pv = a[(b + e)/2] 
3. m = Partition(a[b], e – b, pv) // of List 7 
4. pc = p*(m – b)/(e – b)    
5.  call Do_Sort(a[], b, m, pc)  
6. call Do_sort(a[], m, e, p - pc) 

List 8. A quicksort algorithm using the cost optimal partitioning algorithm 

One way of viewing this algorithm is that it forms a binary tree. Each internal node 
of the binary tree is a subarray containing unsorted elements. At stage i, we may have 
2i or less subarrays. We use ki to represent the number of subarrays at stage i. The root 
is the original data array. Let sij be the jth subarray from the left at the ith stage. We 
assume that subarray sij has nij elements starting at bij and ending at eij. 

Theorem 3: With the algorithm outlined in List 8, O(n/log(n)) processors can parti-
tion the subarrays at a stage to form the subarrays of the next stage in O(log(n)) time.  
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Proof: Let us consider stage i. Based on Corollary 1, if we have infinite number of 
processors, this step can be accomplished in t∞= O(max{log(ij):1<=j<= ki}). If we use 
nim to represent the largest subarray of stage i, then ( ) ))(log()log( nOnt im <Ο=∞ . 

Based on Theorem 2, the total number of operations mij performed to partition a 
given subarray sij with )log( ijij nn processors, is  

O(nij + pij * log (pij))  = O(nij + nij/log(nij) * log ( nij/log(nij)))  
 = O(nij + nij(1 –log(log(nij))/log(nij))) = O(nij) 

Accordingly, the total number of operations m performed to partition all subarrays 
at stage i is O(n). 

According to Brent’s Theorem, the execution time Ti of partitioning the subarrays 
at stage i is )))log(()(( nntmtOTi ∞∞ −+= . Because m = O(n) and t∞< O(log (n)), we 
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Based on Theorem 3, we can easily drive that the average execution time of the al-
gorithm given in List 8 with O(n/log(n)) processors is O(log2(n)) because, in average, 
the height of the binary tree (i.e., the number of stages) is O(log(n)).  Clearly, the 
algorithm is cost optimal because the cost is O(n / log(n) * log2(n)) =  O(n log(n)), 
which is the same as the comparison based best sequential sorting algorithms. 

5   Implementing the Algorithm on a Shared Memory Parallel 
Computer 

We have access of a Sequent Symmetry with 12 processors. The two problems we 
faced during implementation are (1) the detecting of termination conditions, and (2) 
the inefficiency caused by sorting large number of small array segments. To resolve 
these two problems we introduce two stacks: Partitions and Chunks. The stack Parti-
tions is intended to store the boundaries of array segments that need to be partitioned. 
Initially, it has one element, segment 0 to n -1, i.e., the entire data array.   

The entire sorting process has two stages: partitioning and sorting. During the par-
titioning stage, one processor pops an unpartitioned array segment and all processors 
working together to partition it using the algorithm given in List 7. At the end of each 
partitioning, a partitioned segment is pushed into the stack Partitions if its size is 
greater than a pre-defined threshold k. If a partitioned segment’s size is smaller than 
k, it is pushed into the stack Chunks. This process repeats until the stack Partitions is 
empty and no processors is working on partitioning, which are our termination condi-
tions for partitioning. During the second stage, the unsorted chunks in stack Chunks 
are assigned to processors and individually sorted sequentially using insertion sort. 
Once the stack Chunks is empty, the array is sorted.  

Figure 4 shows the execution times of four different sorting algorithms: the  
sequential quicksort running on one processor, the bitonic sort, the parallel merge sort 
as described in [10], and the sorting algorithm described in this paper marked as  
JieSort. All the parallel sorting algorithms, except bitonic sort, are switched to  
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sequential quicksort at the threshold of 100. An array section that is less than or equal 
to 15 is sorted using insertion sort in all the algorithms except bitonic sort.  

From Figure 4 we can see that the parallel quicksort algorithm introduced in this 
paper incurs some overhead comparing to the sequential quicksort. However, the 
overhead is far less than that of other parallel sorting algorithms of the same complex-
ity. In addition, the newly introduced parallel quicksort starts outperforming the se-
quential quicksort with two processors, indicating that we have proposed a viable 
parallel sorting algorithm for real parallel computers. 

 

Fig. 4. Sorting an array of 220 elements on a Sequent Symmetry with 12 processors 

6   Conclusions and Future Works 

We introduced some major improvements over the algorithm given in [14] and 
proved that the improved algorithm is cost optimal when executed using O(n/log(n)) 
processors. We also presented the strategies we used to implement the algorithm on a 
shared memory parallel computer and showed that the modified algorithm is a viable 
parallel sorting algorithm, at least for shared memory parallel computers. It outper-
formed other well known O(log2n) parallel sorting algorithms. It also starts outper-
forming the sequential quicksort with two or more processors. 

We plan to further study our implementation and to identify ways to improve the 
parallel quicksort algorithm proposed in this paper on a shared memory parallel com-
puter. We are also working on porting the idea over to a Beowulf cluster with eight 
dual-processor nodes. We would also like to identify a shared memory parallel com-
puter with more processors to test our algorithm. 
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Abstract. In order to investigate the routing aspects of small-world
networks, Kleinberg [13] proposes a network model based on a
d-dimensional lattice with long-range links chosen at random according
to the d-harmonic distribution. Kleinberg shows that the greedy routing
algorithm by using only local information performs in O(lg2 n) expected
number of hops, where n denotes the number of nodes in the network.
Martel and Nguyen [17] have found that the expected diameter of Klein-
berg’s small-world networks is Θ(lg n). Thus a question arises naturally:
Can we improve the routing algorithms to match the diameter of the
networks while keeping the amount of information stored on each node
as small as possible?

Existing approaches for improving the routing performance in the
small-world networks include: (1) Increasing the number of long-range
links [2, 15]; (2) Exploring more nodes before making routing decisions
[14]; (3) Increasing the local awareness for each node [10, 17]. However, all
these approaches can only achieve O

(
(lg n)1+ε

)
expected number of hops,

where ε > 0 denotes a constant. We extend Kleinberg’s model and add
two augmented local links for each node, which are connected to nodes
chosen randomly and uniformly within lg2 n Mahattan distance. Our
investigation shows that these augmented local connections can make
small-world networks more navigable.

We show that if each node is aware of O(lg n) number of neighbors
via the augmented local links, there exist both non-oblivious and obliv-
ious algorithms that can route messages between any pair of nodes in
O(lg n lg lg n) expected number of hops, which is a near optimal rout-
ing complexity and outperforms the other related results for routing
in Kleinberg’s small-world networks. Our schemes keep only O(lg2 n)
bits of routing information on each node, thus they are scalable with
the network size. Our results imply that the awareness of O(lg n) nodes
through augmented links is more efficient for routing than via the local
links [10, 17].

Besides adding new light to the studies of social networks, our results
may also find applications in the design of large-scale distributed net-
works, such as peer-to-peer systems, in the same spirit of Symphony [15].

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 503–513, 2005.
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1 Introduction

A well-known study by Milgram in 1967 [18] shows the small-world phenomenon
[9], also called “six degree of separation”, that any two people in the world can be
connected by a chain of six (on the average) acquaintances, and people can deliver
messages efficiently to an unknown target via their acquaintances. This study is
repeated by Dodds, Muhamad, and Watts [8] recently, and the results show that it
is still true for today’s social network. The small-world phenomenon has also been
shown to be pervasive in networks from nature and engineering systems, such as
the World Wide Web [21, 1], peer-to-peer systems [2, 16, 15, 22], etc.

Recently, a number of network models have been proposed to study the small-
world properties [19, 21, 13]. Watts and Strogatz [21] propose a random rewiring
model whose diameter is a poly-logarithmic function of the size of the network.
The model is constructed by adding a small number of random edges to nodes
uniformly distributed on a ring, where nodes are connected densely with their
near neighbors. A similar approach can also be found in Ballabás and Chung’s
earlier work [6], where the poly-logarithmic diameter of the random graph is
achieved by adding a random matching to the nodes of a cycle. However, these
models fail to capture the algorithmic aspects of a small-world network [13]. As
commented by Kleinberg in [13], the poly-logarithmic diameter of some graphs
does not imply the existence of efficient routing algorithms. For example, the
random graph in [6] yields a logarithmic diameter, yet any routing using only
local information requires at least

√
n expected number of hops (where n is the

size of the network) [13].
In order to incorporate routing or navigating properties into random graph

models, Kleinberg [13] develops a new model based on a d-dimensional torus lat-
tice with long-range links chosen randomly from the d-harmonic distribution, i.e.,
a long-range link between nodes u and v exists with probability proportional to
Dist(u, v)−d, where Dist(u, v) denotes the Mahattan distance between nodes u
and v. Based on this model, Kleinberg then shows that routing messages between
any two nodes can be achieved in O(lg2 n) expected number of hops by applying
a simple greedy routing algorithm using only local information. This bound is
tightened to Θ(lg2 n) later by Barrière et al. [3] and Martel et al. [17]. Further re-
search [16, 14, 17, 10] shows that in fact the O(lg2 n) bound of the original greedy
routing algorithm can be improved by putting some extra information in each
message holder. Manku, Naor, and Wieder [16] show that if each message holder
at a routing step takes its own neighbors’ neighbors into account for making
routing decisions, the bound of routing complexity can be improved to O( lg2 n

q lg q ),
where q denotes the number of long-range contacts for each node. Lebhar and
Schabanel [14] propose a routing algorithm for 1-dimensional Kleinberg’s model,
which visits O( lg2 n

lg2(1+q) ) nodes on expectation before routing the message, and

they show that a routing path with expected length of O( lg n(lg lg n)2

lg2(1+q) ) can be
found. Two research groups, Fraigniaud et al. [10], and Martel and Nguyen [17],
independently report that if each node is aware of its O(lg n) closest local neigh-
bors, the routing complexity in d-dimensional Kleinberg’s small-world networks
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can be improved to O(lg n lg1+1/d n) expected number of hops. The difference is
that [17] requires keeping additional state information, while [10] uses an oblivi-
ous greedy routing algorithm. Fraigniaud et al. [10] also show that Θ(lg2 n) bits
of topological awareness per node is optimal for their oblivious routing scheme.
In [17], Martel and Nguyen show that the expected diameter of a d-dimensional
Kleinberg network is Θ(lg n). As such, there is still some room for reducing the
routing complexity, which motivates our work.

1.1 Our Contributions

We extend Kleinberg’s structures of small-world models with slight change. Be-
sides having long-range and local links on the grid lattice, each node is augmented
with two extra links connected to nodes chosen randomly and uniformly within
lg2 n Mahattan distance. Based on this extended model, we present near opti-
mal algorithms for decentralized routing with O(lg n) augmented awareness. We
show that if each node is aware of O(lg n) number of nodes via the augmented
neighborhood, there exist both non-oblivious and oblivious routing algorithms
that perform in O(lg n lg lg n) expected number of hops (see Theorem 1 and
Theorem 2). Our investigation constructively show that the augmented local
connections can make small-world networks more navigable.

A comparison of our algorithm with the other existing schemes is shown
in Table 1. Our decentralized routing algorithms assume that each node can
compute a shortest path among a poly-logarithmic number of known nodes. Such
an assumption is reasonable since each node in a computer network is normally
a processor and can carry out such a simple computation. Our schemes keep
O(lg2 n) bits of routing information stored on each node, thus they are scalable
with the increase of network size. Our investigation shows that the awareness of
O(lg n) nodes through the augmented links is more efficient for routing than via
the local links [10, 17].

Table 1. Comparisons of our decentralized routing algorithms with the other existing
schemes. In the first three schemes (in [13, 2, 15, 16, 14]), we suppose that each node
has q long-range contacts, while in the next three schemes (in [17, 10] and this paper),
we suppose that each node has one long-range contact. A routing protocol is oblivious
if the message holder makes routing decisions only by its local information and the
target node, and independently of the previous routing history, otherwise, it is said to
be non-oblivious.

Scheme #bits of awareness #steps expected Oblivious
or Non-oblivious?

Kleinberg’s greedy [13, 2, 15] O(q lg n) O(lg2 n/q) Oblivious
NoN-greedy [16] O(q2 lg n) O(lg2 n/(q lg q)) Non-oblivious

Decentralized algorithm in [14] O
(
lg2 n/ lg(1 + q)

)
O
(
(lg n)2/ lg2(1 + q)

)
Non-oblivious

Decentralized algorithm [17] O(lg2 n) O
(
(lg n)1+1/d

)
Non-oblivious

Indirect-greedy algorithm [10] O(lg2 n) O
(
(lg n)1+1/d

)
Oblivious

Our algorithms for the O(lg2 n) O(lg n lg lg n) Both are provided
model with augmented awareness
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We note that besides adding new light to the studies of social networks such as
Milgram’s experiment [18], our results may also find applications in the design
of large-scale distributed networks, such as peer-to-peer systems, in the same
spirit of Symphony [15]. Since the links in our extended model are randomly
constructed according to the probabilistic distribution, the network may be less
vulnerable to adversarial attacks, and thus provide good fault tolerance.

1.2 Organization

The rest of the paper is organized as follows. Section 2 gives notations for Klein-
berg’s small-world model and its extended version with augmented local con-
nections. Section 3 gives some preliminary notations for decentralized routing.
In Section 4, we propose both non-oblivious and oblivious routing algorithms
with near optimal routing complexity in our extended model. Section 5 briefly
concludes the paper.

2 Definitions of Small-World Models

In this section, we will give the definition of Kleinberg’s small-world model and
its extended version in which each node has extra links. For simplicity, we only
consider the one-dimensional model with one long-range contact for each node.
In addition, we assume that all links are directed, which is consistent with the
real-world observation, for example, person x knows person y, but y may not
know x.

Definition 1. (Kleinberg’s Small-World Network (KSWN) [13]) A
Kleinberg’s Small-World Network, denoted as K, is based on a one-dimensional
torus (or ring) [n] = [0, 1, · · ·, n]. Each node u has a directed local link to its next
neighbor (u + 1) mod n on the ring. We refer to this local link as Ring-link
(or R-link for short), and refer to node (u + 1) mod n as the R-neighbor of
node u. In addition, each node has one long-range link to another node chosen
randomly according to the 1-harmonic distribution, that is, the probability that
node u sends a long-range link to node v is Pr[u → v] = 1

Zu·Dist(u,v) , where
Dist(u, v) denotes the ring distance 1 from u to v, and Zu =

∑
z =u

1
Dist(u,z) .

We refer to this long-range link as the Kleinberg-link (or K-link for short),
and refer to node v as a K-neighbor of node u if a K-link exists from u to v.

Our extended structure introduces several extra links for each node. Its def-
inition is given below.

Definition 2. (KSWN with Augmented Local Connections (KSWN*))
A Kleinberg’s Small-World Network with Augmented Local Connections, denoted
as K∗, has the same structure of KSWN, except that each node u in K∗ has two

1 Or Mahattan distance for multi-dimensional models.
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extra links to nodes chosen randomly and uniformly from the interval (u, u +
lg2 n]. We refer to these two links as the augmented local links (or AL-links
for short), and refer to node v as a AL-neighbor of node u if an AL-link exists
from u to v.

There are in total four links for each node in a KSWN*: one R-link, one
K-link, two AL-links. We refer to all nodes linked directly by node u as the
immediate neighbors of u. Our extended structure retains the same O(1)
order of node degree as that of Kleinberg’s original model.

3 Decentralized Routing Algorithms

Based on the original model, Kleinberg presents a class of decentralized routing
algorithms, in which each node makes routing decisions by using local informa-
tion and in a greedy fashion. In other words, the message holder forward the
message to its immediate neighboring node, including its K-neighbor, which is
closest to the destination in terms of the Mahattan distance. Kleinberg shows
that such a simple greedy algorithm performs in O(lg2 n) expected number of
hops. The other existing decentralized routing algorithms [2, 15, 14, 10, 17, 16]
mainly rely on three approaches to improve routing performance: (1) Increasing
the number of long-range links [2, 15]; (2) Exploring more nodes before making
routing decisions [14]; (3) Increasing the local awareness for each node [10, 17].
However, so far using these approaches can only achieve O

(
(lg n)1+ε

)
expected

number of hops in routing, where ε > 0. Although the scheme in [16], where
each node makes routing decision by looking ahead its neighbors’s neighbors,
can achieve an optimal O(lg n/ lg lg n) bound, their result depends on the fact
that each node has at least Ω(lg n) number of K-links.

There are normally two approaches for decentralized routing: oblivious and
non-oblivious schemes [10]. A routing protocol is oblivious if the message holder
makes routing decisions only by its local information and the target node, and
independently of the previous routing history. On the other hand, if the mes-
sage holder needs to consider certain information of the previous routing his-
tory to make routing decisions, the protocol is referred to as non-oblivious. The
non-oblivious protocol is often implemented by adding a header segment to the
message packet so that the downstream nodes can learn the routing decisions of
upstream nodes by reading the message header information. The scheme in [10]
is oblivious, while the schemes in [14] and [17] are non-oblivious.

We refer to the message holder as the current node. For the current node x,
we define a sequence of node sets T0, T1, · · ·, Ti, · · ·, where T0 = {x}, T1 = { u’s
AL-neighbors, ∀u ∈ T0}, T2 = {u’s AL-neighbors, ∀u ∈ T1}, and so on. We refer
to Ti as the set of nodes in the ith level of AL neighborhood, and let Hi =

⋃
j≤i Tj

denote the set of all nodes in the first i levels of AL neighborhood. At a certain
level i of AL neighborhood, we may also refer to Hi−1 as the set of previously
known nodes. Let Li = Ti −Hi−1 denote the set of new nodes discovered during
the ith level of AL neighborhood. Let Ax(k) = Hk denote the augmented local
awareness (or AL awareness for short) of a given node in a KSWN*, where each
node is aware of the first k levels of its AL neighborhood.
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In Section 4, we will show that there exists a sufficiently large constant σ
such that |Ax(lg lg n)| ≥ lg n/σ, based on which we propose both non-oblivious
and oblivious routing algorithms running in O(lg n lg lg n) expected number of
hops and requiring O(lg2 n) bits of information on each node.

Our near optimal O(lg n lg lg n) bound on the routing complexity outperforms
the other related results for Kleinberg’s small-world networks. To our knowledge,
our algorithms achieve the best expected routing complexity while requiring at
most O(lg2 n) bits of information stored on each node.

4 Near Optimal Routing with O(lg n) Awareness

4.1 Augmented Local Awareness of O(lg n)

In this subsection, we will show that |Ax(lg lg n)|, the number of distinct nodes
that node x is aware of via the first lg lg n levels of AL neighborhood, is not less
than lg n/σ for a constant σ, which, as will be shown in Lemma 3, is sufficiently
large to guarantee that Ax(lg lg n) contains a K-link that jumps over half distance
(Suppose that the destination node is at a certain large distance from the current
node). These results are useful for the subsequent analysis of our oblivious and
non-oblivious routing schemes.

Lemma 1. Let Ax(lg lg n) denote the AL awareness of node x in a KSWN* K∗,
where each node is aware of lg lg n levels of AL-neighbors. Then

Pr[ |Ax(lg lg n)| ≥ lg n

σ
] > ψ,

where σ denotes a sufficiently large constant and ψ denotes a positive constant.

Proof: Throughout the proof, we assume that |Hi| < lg n
σ for all 1 ≤ i ≤ lg lg n,

otherwise, the lemma already holds, since |Ax(lg lg n)| = |Hlg lg n| > lg n/σ. We
will show that at each level of AL neighborhood, the probability that each AL-
link points to previously known nodes is small so that a large number of distinct
nodes will be found via the first lg lg n levels of AL neighborhood.

Consider the construction of an AL-link for the current node x. By definition
of KSWN*, each AL-link of x is connected to a node randomly and uniformly
chosen from the interval (x, x+lg2 n], that is, each AL-link of x points to a node in
the interval (x, x + lg2 n] with probability (lg n)−2. By assumption, there could
be no more than lg n/σ previously known nodes in the interval (x, x + lg2 n].
Thus, the probability for an AL-link of a given node to point to a previously
known node is at most (lg n/σ) · (lg n)−2 = (σ lg n)−1. Thus, the probability for
an AL-link of x to point to a new node is at least 1 − (σ lg n)−1. There are in
total at most 2 · |Hlg lg n| ≤ 2 lg n/σ number of AL-links, so the probability for
all AL-links to point to new nodes is at least (1 − (σ lg n)−1)2 lg n/σ ≥ 1 − 2

σ2

for sufficiently large n. Here we use the fact (1 + x)a ≥ 1 + ax for x > −1 and
a ≥ 1. When σ is a sufficiently large constant, we have Pr[ |Ax| ≥ lg n

σ ] > ψ for
a positive constant ψ = 1− 2

σ2 > 0. Thus, the proof of Lemma 1 is completed.



Near Optimal Routing in a Small-World Network 509

4.2 Non-oblivious Decentralized Routing

Our non-oblivious routing algorithm is given as follows: Initially the source node
s finds in its AL awareness As(lg lg n) an intermediate node z that is closest to
the destination, and then computes a shortest path π from s to z in As(lg lg n).
Before routing the message, s adds the information about shortest path π to the
message header. Once the message passes a node on the shortest path π, the
next stop is read off the header stack. When the message reaches node z, node
z can tell that it is an intermediate target by reading the message header and
then route the message to its K-neighbor. Such processes are repeated until the
message reaches a certain node close enough to the destination node. After that,
Kleinberg’s plain greedy algorithm can be used to route the message effectively
to the target node. Given a message M , a source node s and a target node t in
a KSWN* K∗, the pseudocodes of our non-oblivious algorithm running on the
current node x are given in Algorithm 1.

Algorithm 1.
Input: the source s, the target t and the message M .
Initialization:

Current node ← s.
Set the header stack of the message M to be empty.

while Distance between the current node and the destination ≥ (lg n)2 lg lg n do
if the header stack of the message M is empty then

Route the message M to x’s K-neighbor y.
Find an intermediate node z in Ay(lg lg n) whose K-neighbor is closest to t (ties are broken
arbitrarily).
Compute a shortest path π : x0 = y, x1, · · ·, xt = z from y to z, and push the shortest path
information π : x1, · · ·, xt = z into the header stack of the message M .

else
Pop up the first node xi from the header stack and route the message M to node xi.

end if
end while
Final phase (Kleinberg’s greedy algorithm):

Route the message M to an immediate neighbor of x that is closest to the target t, until it reaches
t.

Next we will analyze the performance of the Algorithm 1. We first give a basic
lemma, which provide a lower bound and an upper bound on the probability of
the existence of a K-link in Kleinberg’s small-world networks. Its proof can be
found in [23].

Lemma 2. Let Pr[u K−→v] denote the probability that node u sends a K-link
to node v in a KSWN* K∗. Suppose that a ≤ Dist(u, v) ≤ b, then c1

b lg n ≤
Pr[u K−→v] ≤ c2

a lg n , where c1 and c2 are constants independent of n.

In Lemma 1, we have shown that Pr[ |Ax(lg lg n)| ≥ lg n/σ ] is at least a pos-
itive constant for a sufficiently large constant σ. Based on this result, Lemma 3
shows that the probability for Ax(lg lg n) to contain a K-link jumping over half
distance is at least a positive constant.
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Lemma 3. Suppose that the distance between the current node x and the target
node t in a KSWN* K∗ is Dist(x, t) ≥ lg2 n lg lg n. Then with probability at least
a positive constant, node x’s AL awareness Ax(lg lg n) contains a K-neighbor
within Dist(x, t)/2 distance to the target node t .

Proof: Let A denote the event that |Ax(lg lg n)| ≥ lg n
σ . By Lemma 1, we have

Pr[A] > ψ for a constant ψ > 0.
Let Bl(t) denote the set of all nodes within l ring distance to t. Let Pr[x K−→Bl

(t)] denote the probability that x’s K-neighbor is inside the ball Bl(t).
Let m = Dist(x, t). By Lemma 2, the probability for a K-link to point to a

given node inside the ball Bm
2
(t) is at least c1

m lg n , so we have

Pr[x K−→Bm
2
(t)] ≥ |Bm

2
(t)| · c1

m lg n
=

m

2
· c1

m lg n
≥ c3

lg n
,

where c3 is a constant.
Since Dist(x, t) ≥ lg2 n lg lg n and each AL-link spans a distance no more

than lg2 n, the nodes in AL awareness Ax(lg lg n) are all between the current
node x and the target node t. Let Pr[Ax(lg lg n) K−→Bm

2
(t)] denote the probability

that at least one node in Ax(lg lg n) has a K-neighbor in Bm
2
(t). Then we have

Pr[Ax(lg lg n) K−→Bm
2
(t)] ≥ Pr[Ax(lg lg n) K−→Bm

2
(t) | A] · Pr[A]

≥
(
1 − (1 − c3

lg n
)

lg n
σ

)
· ψ

≥ ψ(1 − e−
c3
σ ),

which is larger than a positive constant. At the last step, we obtain (1− c3
lg n )

lg n
σ ≤

e−
c3
σ by using the fact that (1 + b

x )x ≤ eb for b ∈ R and x > 0.

Lemma 4. Suppose that the distance between the current node x and the tar-
get node t in a KSWN* K∗ is Dist(x, t) ≥ lg2 n lg lg n. Then after at most
O(lg n lg lg n) expected number of hops, Algorithm 1 will reduce the distance to
within lg2 n lg lg n.

Proof: Since Dist(x, t) ≥ lg2 n lg lg n, all known nodes in x’s AL awareness
Ax(lg lg n) are between the current node x and the target node t. We can apply
the result in Lemma 3 to analyze Algorithm 1.

We refer to the routing steps from a given node x to any node within
Ax(lg lg n) as an indirect phase. The routings in different indirect phases are
independent from each other. By Lemma 3, the probability that node x’s AL
awareness Ax(lg lg n) contains a K-neighbor within Dist(x, t)/2 distance to the
target node t is at least a positive constant, so after at most O(1) expected num-
ber of indirect phases, Algorithm 1 will find an intermediate node whose K-link
jumps over half distance. Since each indirect phase takes at most lg lg n hops
and the maximum distance is n, after at most O(lg n lg lg n) expected number
of hops, the message will reach a node within lg2 n lg lg n distance to the target
node t.
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Lemma 5. Suppose that the distance between the current node x and the target
node t in a *KSWN ∗K is Dist(x, t) ≤ lg2 n lg lg n. Then using the final phase
of Algorithm 1 (i.e. using Kleinberg’s greedy algorithm) can route the message
to the target node t in O(lg n) expected number of hops.

Proof: When the distance Dist(x, t) ≤ lg2 n lg lg n, the final phase in Algo-
rithm 1 is executed. By Kleinberg’s results in [13], after at most O

(
lg2(lg2 n

lg lg n)
)

= O(log n) expected number of steps, the message will be routed to the
destination node.

Combining the above lemmas, it is not difficult for us to obtain the routing
complexity of Algorithm 1.

Theorem 1. In a KSWN* K∗, Algorithm 1 performs in O(lg n lg lg n) expected
number of hops.

4.3 Oblivious Decentralized Routing

In our oblivious scheme, when the distance is large, the current node x first
finds in Ax(lg lg n) whether there is an intermediate node z, which contains a
K-neighbor within Dist(x, t)/2 distance to the target node, and is closest to
node x in terms of AL-links (any possible tie is broken arbitrarily). Next, node
x computes a shortest path π from x to z among the AL awareness Ax(lg lg n),
and then routes the message to its next AL-neighbor on the shortest path π.
When the distance is small, Kleinberg’s plain greedy algorithm is applied.

Given a message M , a source s and a target t in a KSWN* K∗, the pseu-
docodes of our oblivious algorithm running on the current node x are given in
Algorithm 2.

Algorithm 2.
Input: the source s, the target t and the message M .
Initialization:

Current node ← s.
while Distance between the current node and the destination ≥ c(lg n)2 lg lg n do (c is a suffi-

ciently large constant and will be given later)
z ← a node in Ax(lg lg n) that contains a K-neighbor within Dist(x, t)/2 distance to t, and is
closest to node x in terms of AL-links (ties are broken arbitrarily).
if node z does not exist then

Route the message M to an immediate neighbor closest to node t.
else

Compute a shortest path π from x to z among Ax(lg lg n).
if π consists of only node x itself then

Route the message M to the K-neighbor.
else

Route the message M to the next AL-neighbor on the shortest path π.
end if

end if
end while
Final phase (Kleinberg’s greedy algorithm):

Route the message M to an immediate neighbor of x that is closest to the target t, until it reaches
t.
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Based on Algorithm 2, we have the following theorem. Due to page limitation,
its proof is not shown in this conference paper. The reader is referred to [23] for
more details.

Theorem 2. In a KSWN* K∗, Algorithm 2 performs in O(lg n lg lg n) expected
number of hops.

5 Conclusion

We extend Kleinberg’s small-world network with augmented local links, and
show that if each node participating in routing is aware of O(lg n) neighbors
via augmented links, there exist both non-oblivious and oblivious decentralized
algorithms that can finish routing in O(lg n lg lg n) expected number of hops,
which is a near optimal routing complexity. Our investigation shows that the
awareness of O(lg n) nodes through the augmented links will be more efficient
for routing than via the local links [10, 17].

Our extended model may provide an important supplement for the modelling
of small-world phenomenon, and may better approximate the real-world obser-
vation. For example, each person in a human society is very likely to increase
his/her activities randomly within some certain communities, and thus is aware
of certain levels of “augmented” acquaintances. This augmented awareness would
surely help delivery the message to an unknown target in the society.

Our results may also find applications in the design of large-scale distributed
networks, such as distributed storage systems. Unlike most existing deterministic
frameworks for distributed systems, our extended small-world networks may
provide good fault tolerance, since the links in the networks are constructed
probabilistically and less vulnerable to adversarial attacks.
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Abstract. In this paper we present an all-optical network architecture
and a systolic routing protocol for it. An r-dimensional optical fat tree
network (OFT ) consists of 2r − 1 routing nodes and n = 2r process-
ing nodes deployed at the leaf nodes of the network. In our construction
packets injected into the OFT carry no routing information. Routing is
based on the use of a cyclic control bit sequence and scheduling. The
systolic routing protocol ensures that no electro-optical conversion is
needed in the intermediate routing nodes and all the packets injected
into the routing machinery will reach their target without collisions. A
work-optimal routing of an h-relation is achieved with a reasonable size
of h.

Keywords: Optical fat tree, systolic routing, work-optimal routing.

1 Introduction

Optics offers a possibility to increase the bandwidth of intercommunication net-
works. Optical communication offers several advantages in comparison with its
electronic counterpart, for example, a possibility to use broader bandwidth and
insensitivity to external interferences. These advantages have been covered, e.g.,
by Saleh and Teich in their book [12].

Our work is motivated by another kind of communication problem, namely
the emulation of shared memory with distributed memory modules [5]. If a
parallel algorithm has enough parallel slackness, the implementation of shared
memory can be reduced to efficient routing of an h-relation [13]. An h-relation
is a routing problem where each processing node has at most h packets to send
and it is the target of at most h packets [1]. An implementation of an h-relation
is said to be work-optimal at cost c, if all the packets arrive at their targets
in time ch. A precondition for work-optimality is that h is greater than the
diameter Ω(φ) of the network and the network can move Ω(nφ) packets in each
step, where n is the number of processors. Otherwise slackness cannot be used
to ”hide” latency influenced by the diameter [5]. For an r-dimensional optical
fat tree OFT having n = 2r processing nodes, the diameter φ = r fulfills this
condition when h ∈ Ω(n log n).

Using the fat tree topology as an intercommunication network is a cost-
effective way to connect a large number of processors. Congestion problems are

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 514–523, 2005.
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avoided by providing more bandwidth in the higher levels of the tree. A number
of intercommunication networks has been implemented by using fat tree topol-
ogy. For example, the basic architecture of the Thinking Machine CM-5 data net-
work is a fat tree [8]. High performance clusters typically use fat tree networks as
well. For instance the InfiniBand architecture utilizes fat tree [9]. Recent imple-
mentations use packet switching as the routing strategy. A drawback of packet
switching is that routing decisions must be done in an electronic form. For now
we do not know any all-optical implementation of fat tree network architecture.

In this work we present an all-optical fat tree network architecture and a
systolic routing protocol for it. The r-dimensional optical fat tree consists of
2r − 1 routing nodes and n = 2r processing nodes deployed at the leaf nodes
of the network. Routing nodes are connected to each other by optical links. In
this paper we present a novel packet routing protocol, called the systolic routing
protocol.

Additionally, when a packet is injected into the routing machinery, neither
electro-optic conversions are needed during its path from its source to the target
processing node nor any collisions happen between two distinct packets. An r-
dimensional OFT can route an h-relation in Θ(h) time, if h ∈ Ω(n log n). Section
2 presents the structure of routing nodes and the structure of an OFT network.
In Section 3 we introduce the systolic routing protocol. Section 4 presents the
analysis of our construction. Section 5 sketches conclusions and future work.

2 Optical Fat Tree with Systolic Routers

We study the r-dimensional structure of an OFT of diameter φ = r and having
n = 2r processing nodes. Section 2.1 represents the structure of routing nodes.
In section 2.2 we introduce the construction of an OFT . Section 2.3 discusses
the feasibility of our construction.

2.1 Systolic Routers for OFT
Routing nodes of an OFT at the level r′ have l

2 = 2r′−1 outgoing links both to
its left and right subtrees and l = 2r′

incoming links from its parent node. The in-
degree of a routing node equals to the out-degree. Let I = {i0, i1, . . . , il−1} denote
the set of incoming links of a router at level r′, and O = {o0, o1, . . . , o l

2−1, o l
2
,

. . . , ol−1} denote the set of outgoing links of the router. A routing node can be
in two states. When a routing node routes signals from inputs to outputs using
mapping is → os for all 0 ≤ s < l it is said to be in drop state. Respectively,
when a routing node routes signals from inputs to outputs using mapping is →
o(s+ l

2 ) mod l for all 0 ≤ s < l it is called to be in turn state. An example of a routing
node at level 2 in its two possible states is presented in Figure 1.

The basic component of routing nodes is the electrically controlled all-optical
2×2 switch. Switches can be implemented by LiNbO3 technology [12]. We can
construct a routing node of any level with edge-disjoint paths, e.g., by using
the Beneš network structure [7]. The construction ensures that whatever state
is applied, signals never collide.
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Fig. 1. A routing node at level 2: (a) in the drop state, and (b) in the turn state

2.2 Construction of an Optical Fat Tree

Construction of an OFT is recursive. A 1-dimensional OFT consists of 21 =
2 processing nodes and a routing node of level 1 (R11). Processing nodes are
connected to the router as its left and right leaves by one outgoing link. Outputs
of processing nodes are connected to inputs of the router. A 2-dimensional OFT
can be constructed out of two 1-dimensional OFT ’s and a routing node of level 2
(R22). Each processing node is relabelled by a unique r-bit binary string w. Two
1-dimensional OFT ’s are connected as left and right subtrees of the routing node
R22 by using mapping ow → Pw for all 0 ≤ w < 2r. Outputs of processing nodes
are connected to inputs of the routing node R22 by using mapping Pw → iw for
all 0 ≤ w < 2r. An example of constructing of 2-dimensional OFT is presented in
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Fig. 2. Construction of 2-dimensional OFT out of two 1-dimensional OFT ’s and one
routing node of level 2 with relabelling of processing nodes
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Figure 2. In Figure 2, a rounded square indicates a routing node, a circle indicates
a processing node, and an arrows between objects indicate unidirectional links.

Respectively, an r-dimensional OFT can be constructed by two (r − 1)-
dimensional OFT ’s and a routing node of level r. The bandwidth of the sys-
tems is divided in time slots, whose length tp equals to the bypass time of a
packet via a link between two consecutive routing nodes. We call the length of
time slot tp the packet cycle. A packet consists of data bits so that the overall
length of the time slot measured in time units is tp. Each processing node Pi

is uniquely labelled by a bit sequence x0x1 . . . xr−1, and it has n = 2r sending
buffers (b(i,0), b(i,1), . . . , b(i,n−1)) that have an important role in routing.

The number of routing nodes at each level s′ is 2(r−s′), where r is the dimen-
sion of OFT . Respectively, the number of links can be calculated by (r + 1)2r.
Because the number of processing nodes of an OFT is 2r and the diameter r,
we can conclude that the precondition for work-optimality is satisfied.

2.3 Feasibility of OFT with Systolic Routers

The switching time of LiNbO3 switches lies in the range of 10–15 ps [12]. The
length of packet (lp) can be evaluated by equation lp = Np×vc

B×r , where Np is the
size of the packet in bits, vc = 0.3 m/ns is the speed of light in vacuum, r = 1.5
is the refraction index of fiber [12], and B is the link bandwidth. Assuming the
bandwidth to be B=100 Gb/s, the length of a bit in a fiber is vc

B×r = 2 mm.
In order to estimate the feasibility of a 6-dimensional OFT (having 64 pro-

cessing nodes) let us assume the link bandwidth to be B = 100 Gb/s, and the
size of packets to be Np = 128 b. The corresponding length of a packet in a fiber
is lp 	 256 mm and the length of time slot is tp 	 1.3 ns. Assuming the length of
clock cycle of processing nodes to be tcc = 1 ns (corresponding the frequency of
1 GHz), it will take 1.3 clock cycles for a packet to travel between two adjacent
routing nodes. The overall amount of fibers is Lf 	 115 m, and the routing time
of packets is tr 	 8 clock cycles for each packets. We consider the requested
parameters to be reasonable and the architecture to be feasible to construct in
the near future. A drawback of our construction is that the complexity of routers
increases with respect to the dimension of OFT .

3 Routing in Optical Fat Tree

We develop a routing algorithm for OFT . The algorithm can be divided in two
phases. During the initialization phase we first construct a control bit sequence
that controls the system. Then the routing table is determined. The initializa-
tion phase must be executed only once when the system is set up. During the
utilization of the OFT packets are injected into the network so that they are
routed level by level to the destination. In section 3.1 we present properties of
routing and transitions between subtrees. Section 3.2 introduces the initializa-
tion phase of the system. Section 3.3 introduces the routing algorithm for the
optical fat tree.
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3.1 Properties of Routing

According to our construction an r-dimensional OFT consists of 2r processing
nodes and r levels of routing nodes. Each routing node has an equal number
of incoming and outgoing links. Let us consider a routing node at level s′. It
has 2r−s′

incoming links from its parent node, 2r−s′−1 links leading to its left
subtree, and 2r−s′−1 links leading to its right subtree. The incoming links can
be divided in two groups. Let us denote gl to be the group of 2r−s′−1 leftmost
incoming links and gr to be the group of 2r−s′−1 rightmost incoming links of the
routing node. Clearly we can see that any packet reaching the routing node uses
a link belonging to one of the incoming link groups and prefers a link leading to
left or right subtree.

Let a0a1 . . . ar−1 (ai ∈ {0, 1}) be a bit sequence indicating the states of
routing nodes used by a packet on its path from the source to the target in an r-
dimensional OFT . The value 1 in a bit position . . . as′ . . . indicates that at level
r−s′ the packet using incoming link group gl or gr should be routed to the right
or left subtree respectively. Correspondingly, the value 0 in a bit position as′

indicates that the packet using incoming link group gl or gr should be routed to
the left or right subtree respectively. It is obvious that we can construct an r-ary
routing bit sequence for any source/destination pair so that it leads the packet
correctly through the OFT . To notice this, let us assume that in a bit sequence
a0a1 . . . ak . . . ar−1, the k’th bit stands for the state leading to the wrong subtree.
We just substitute the initial bit sequence by a0a1 . . . āk . . .ar−1, where āk is the
complement of ak.

The routing information for packets can be evaluated by the bitwise XOR-
operation ⊕. For example, if processor P011 (belonging to the leftmost group
gl of the root routing node of a 3-dimensional OFT ) has a packet destined to

Rightmost group
Leftmost group

Level 3

Level 2

Level 1

101100011 111110010001000

101100011 111110010001000

Fig. 3. Example of routing of a packet in an OFT
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Table 1. Correspondence between routing bit information, transitions between link
groups and subtrees, and the required state of router

Routing information Transition Required state
0 gl → Left Drop
0 gr → Right Drop
1 gl → Right Turn
1 gr → Left Turn

processor P111, the routing information can be expressed as 011 ⊕ 111 = 100.
The meaning of this is that the packet from P011 to P111 must be routed from
the leftmost incoming link group to the right subtree at the level 3 routing node,
from the rightmost incoming link group to the right subtree at the level 2 routing
node, and from the rightmost link to the right subtree at the level 1 routing node.
Example of the routing is presented in Figure 3.

Routers can be considered to be an interface between incoming link groups
and subtrees. Let us assume that a packet has the the bit . . . 1 . . . in its ith bit
position. The router responsible to route this packet (at the level r − i) receives
the packet from the leftmost link group gl or from the rightmost link group
gr. Regardless of the link group used the router node should be set in turn
state. Correspondence between routing bit information, transitions between link
groups and subtrees, and required states is presented in Table 1.

3.2 Initialization Phase

In our construction injected packets carry no routing information. When a packet
reaches a routing node it is routed into the left or right subtree according to the
state of the router. Anyway we are able to arrange a control system so that every
packet injected into the OFT reaches its target. We will use a cyclic control bit
sequence and timing of injections of packets.

Determining the Control Bit Sequence. An r-dimensional OFT has r
levels of routing nodes. Packet routing in an r-dimensional OFT can be imple-
mented by constructing a long control bit sequence s0s1s2 . . ., applying at time
step t the state corresponding to the value of bit position st to all the routing
nodes of the OFT , and synchronizing injections of packets so that they reach
every routing node in the correct state. Precondition of all-to-all routing is that
the bit sequence includes (cyclically) all bit sequences of r bits. A naive solution
would be to construct the control bit sequence of all r-ary bit combinations. The
length of control cycle would be r2r. The control sequence can be reduced to
T = 2r by using de Bruijn sequences [3].

A de Bruijn sequence (in alphabet A = {0, 1}) of length 2r is a sequence of 2r

bits in which every subsequence of r bits appears once, including wraparound [7].
For r = 4, for example, ξ = 0000111101100101 is a de Bruijn sequence applicable
for our purpose. All sixteen 4-bit sequences occur exactly once as subsequence of ξ.

Fredricksen has presented an algorithm to construct a de Bruijn sequence [2].
The algorithm is Prefer one and it can be presented as follows:
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Algorithm Prefer one
1: Write l = r zeros;
2: for the kth bit of the sequence, k > l, write a one;

if the newly formed l-tuple has not previously appeared in
the sequence then k := k + 1

else
3: for the kth bit of the sequence, write a zero;

if the newly formed l-tuple has not previously appeared in
the sequence then k := k + 1 and go to step 2

else stop;

Bit positions of ξ present states of routers of OFT . That is, let ξm denote
the value the mth bit of de Bruijn sequence ξ. At each time step t all the routing
nodes are set in turn state if ξt mod ‖ξ‖ = 1, where ‖ξ‖ is the length of ξ, and
in drop state otherwise. Determining of the control sequence is necessary to do
only once at the initialization phase of the OFT .

Determining the Routing Table. The optical fat tree has a number of prop-
erties. Firstly, the structure of routing nodes and connections at each router level
are uniform. Secondly, it is possible to determine a unique routing bit sequence
for any packet from a source Ps to the destination Pd for any pair (s, d). Thirdly,
determination of unique transitions between link groups and subtrees is possible
as well because of uniformness of the construction of the OFT and uniqueness
of the routing bit sequences. Forthly, the OFT is controlled by the static control
bit sequence ξ. For these reasons we are able to determine a routing table for
every connection at the initialization phase.

Let us consider an r-dimensionalOFT having p = 2r processors. For this
construction the length of routing bit sequence is ‖w‖ = r and the length of
control sequence is ‖ξ‖ = 2r. A packet is routed correctly if it is injected into the
network so that during the next r time steps holds τ t = ξt mod ‖ξ‖, t = 0 . . . r−1.

At the initialization phase every processor Pi determines a routing table R
having ‖ξ‖ = 2r rows. Let Ri denote the value of i’th row of the routing table.
The algorithm determining routing table is Routing table and it can be presented
as follows:

Algorithm Routing table
{Assuming s and d are the source and the destination processors,
and ξ is the control sequence};
1: i = 0;
2: repeat

In the i’th row of routing table R write the index
value of destination processor for which
τ t = ξi+t+1 mod ‖ξ‖, t = 0 . . . r − 1; i := i + 1;

3: until i = 2r;

Algorithm Routing table is necessary to do only once at the initialization
phase of the OBF .
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3.3 Routing Algorithm for the Optical Fat Tree

At the initialization phase each processor determines the control sequence ξ and
the routing table. This must be done when the system is set up. At the beginning
of routing each processor of the OFT has a number of packets to send. In the
preprocessing phase each processor Ps inserts packets destined to processor Pd

into sending buffer b(s,d).
At each time step t each processor s picks up a packet from sending buffer

b(s,d′), where d′ = Rt mod ‖ξ‖ is the value of (t mod ‖ξ‖)’th row in the routing
table and inject it into the outgoing link. The r-tuple of bits starting at ξt then
indicates successive drop and turn states that correctly route the packet to the
target processor d.

4 Analysis of Systolic Routing

In the preprocessing phase, each of the h packets of a processing node Ps was
inserted into sending buffer b(s,d), where Pd is the target of the packet. Clearly,
all of the packets have been routed after time O(Tn), where T is the maximum
size of all buffers and n = 2r is the number of processing nodes. The result is
poor if the packets have an odd distribution over targets. In this presentation
we assume that packets have an even distribution over targets.

According to Mitzenmacher et al. [10], supposing that we throw n balls into n
bins with each ball choosing a bin independently and uniformly at random, then
the maximum load is approximately log n/ log log n with high probability (whp)1.
Maximum load means the largest number of balls in any bin. Correspondingly,
if we have n packets to send and n sending buffers during a simulation step,
then the maximum load of sending buffers is approximately log n/ log log n whp.
The overall routing time of those packets is n log n/ log log n + Θ(1) that is not
work-optimal according to the definition of work-optimality.

If the size of h-relation is enlarged to h ≥ n log n, the maximum load is
Θ(h/n) [11]. Assuming that h = n logn the maximum load is Θ(log n), the
corresponding routing time is Θ(n log n). A work-optimal result is achieved ac-
cording to the definition of work-optimality. Routing h packets in time Θ(h)
implies work-optimality. Intuitively it is clear that the cost approaches to 1,
when h/n grows.

We ran some experiments to get an idea about the cost. We ran 5 simulation
rounds for each occurrence using a visualizator programmed with Java [6]. Pack-
ets were randomly created and put into output buffers and the average value of
the routing time over all the 5 simulation rounds were evaluated. The results are
only speculative because of a small number of evaluation rounds executed. The
average cost was evaluated using equation cave = tr

h , where tr is the average
routing time. Figure 4 gives support to the idea that h does not need to be
extremely high to get a reasonable routing cost.
1 We use whp, with high probability to mean with probability at least 1 − O(1/nα) for

some constant α.
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5 Conclusions and Future Work

We have presented the systolic routing protocol for optical fat tree. No electro-
optical conversion is needed during the transfer and all the packets injected into
the routing machinery are guaranteed to reach their destination. The simple
structure presented and the systolic routing protocol are useful and realistic and
offer work-optimal routing of h-relation if h ∈ Ω(n log n).

An advantage of our construction is that the overall number of links is
Θ(n log n). We presented the systolic routing protocol for sparse optical torus
(SOT ) in paper [4]. For SOT , the number of links is Θ(n2).

However, a couple of drawbacks arise, when the systems are scaled up. Firstly,
the degree of root node the OFT increases with respect to the size of network.
Secondly, putting M elements in the physical space requires at least a volume of
size Ω( 3

√
M) [14, 15]. The length of wires between routing nodes increases with

respect to the physical space required.
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Abstract. Optical communication offers huge bandwidth and makes it
possible to build communication networks of very high bandwidth and
connectivity. We study routing of the h-relations in optical communica-
tion pararallel computer under so called OCPC or 1-collision assump-
tion. In an h-relation each processor is the origin and the destination of
at most h-messages.

In this paper we study the case where h is much larger than the
number of the processors. Our algorithm uses total-exchange primitive to
route packets. Our algorithm routes random h-relations in a p-processor
network using h

p
(1+o(1))+O(

√
h
p

log p) total-exchange rounds with high
probability. The algorithm attempts to balance the number of packets
between origin-destination pairs. The experiments show that when h
is large compared to the number of processors, the algorithm achieves
simulation cost which is very close to 1. I.e. the h-relation is routed in
the ch, where c is only little more than 1.

1 Introduction

We assume the OCPC (Optical Communication Parallel Computer) model (
also known as Local Memory PRAM, S*PRAM, and Optical Crossbar Parallel
Computer). The OCPC model was first introduced by Anderson and Miller [1],
and has been studied in [4], [5], [6], [7], [9], [10], [11], [12], [13], [14], [16] and [17].

The memory of OCPC is divided into modules, one module per processor.
Communication network is a complete network, thus distance between any pair
on nodes is one and the degree of nodes is p − 1. Processors communicate with
each other by transmitting messages. A processor can transmit a message directly
to any other processor and the transmission takes one time unit. At any time unit
a processor can send at most one message. The message will succeed in reaching
the processor, if it is the only message with that processor as its destination at
that time step. If two or more processors attempt to send a message to the same
processor, no transmission is successful and a retransmission must occur. This
is called the OCPC or 1-collision assumption.

In this paper we consider balanced communication patterns, called h-relations.
Let p be the number of processors in a parallel computer. Let K = (kij) be a
p × p matrix, where kij gives the number of messages originating at processor i
and destined for processor j. If we let h be the maximum sum of any row or column
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of this matrix; then the matrix specifies an h-relation. The problem of solving this
communication task is termed the h-relation problem.

The problem is motivated by implementation of the shared memory abstrac-
tion, for example the PRAM model [2] and the BSP model [17], and also by
direct implementation of specific parallel algorithms. The value of h affects the
latency parameter of the BSP model, and the effiency of the implementation of
the h-relation affects the bandwidth parameter of the BSP model.

2 Routing Protocol

We have developed an algorithm to route messages in a complete optical network.
The algorithm is collision-free, no special acknowledgement step is required. The
algorithm is based on total-exchange [3] and it is indirect, thus some packets are
sent to final destination via an intermediate destination(s).

In order to be efficient, total-exchange based algorithms require a large h/p-
ratio. The problems in a simple total-exchange scheme are that the number of
the messages between origin-destination pairs in not balanced, and routing two
messages from processor Pi to processor Pj takes at least p routing steps.

Algorithm 1. Simple Total-exchange algorithm
1: proc Simple total-exhange(p, h)
2: for all processor Pi par do
3: t = (Pi + 1) mod p
4: while packets remain do
5: if processor has a packet to send to processor t then
6: Send that packet to processor t
7: t = (t + 1) mod p
8: if t = Pi then
9: t = (t + 1) mod p

The expected number of packets over any any origin-destination pair is h/p.
However the number packets over all origin-destination pairs is not uniform.
Some pairs have “excess” of packets and some pairs have “deficiency” of packets
with respect to the average value. The standard deviation of the number of
packets over all origin-destination pairs is Θ(

√
h/p), thus to route all packets

to their final destinations would require at least h/p + Ω(
√

p/h) total-exchange
rounds using the Algorithm 1 [3]. Especially the routing of the last packets takes
many routing steps. The maximum number of messages between any origin-
destination pair determines the number of routing steps required to route all
messages to their final destinations.

We have developed an algorithm that balances the load so that the number
of messages over all origin-destination is approximately equal. Routing is done
using the total-exchange protocol. If the processor has no packet to send to the
current target processor, then it checks to which processor it has most packets
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to send. Let m be the maximum number of messages to any other processors.
Let x1, . . . , xn be a set of processors to which the current processors have m
packets to send. If m is greater than one, then one of packets destined to one
of processors x1, . . . , xn is chosen uniformly at random. If m is one, then the
last packets to some destination are not sent because a packet may travel from
intermediate destination to intermediate long before the packet arrives at its
final destination.

Algorithm 2. Balance algorithm
1: proc Balance (p, h)
2: for all processors Pi par do
3: t = (Pi + 1) mod p
4: while packets left do
5: if processor has a packet to send to processor t then
6: Send that packet to processor t
7: else
8: Let m be the maximum number of packets left that the current
9: processor has to send to any other processor

10: if m > 1 then
11: Let x1, . . . , xn be the set of processors for which
12: the current processor has m packets to send
13: Select uniformly at random one of packets targetted
14: to some of processors x1, . . . , xn.
15: Send the selected packet to processor t
16: t = (t + 1) mod p
17: if t = Pi then
18: t = (t + 1) mod p

In order to analyse the algorithms we must estimate how many messages are
sent between processors. In the Simple Total-Exchange (See Algorithm 1) the
number of required routing steps depends on the maximum number of packets
over all origin-destination pairs. We can estimate that number using the following
theorem (Theorem 1) by Raab and Steger [15].

Theorem 1. Let M be the random variable that counts the maximum number
of balls in any bin, if we throw m balls independently and uniformly at random
into n bins. Then P r[M > kα] = o(1) if α > 1 and P r[M > kα] = 1 − o(1), if
0 < α < 1, where

kα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log n

log n log n
m

(
1 + α

log log n log n
m

log n log n
m

)
, if n

polylog(n) ≤ m � n log n

(dc − 1 + α) log n, if m = c ∗ n logn for some constant c,
m
n + α

√
2m

n log n, if n logn � m ≤ n∗ polylog( n )
m
n +

√
2m log n

n (1 − 1
α

log log n
2 log n ), if m � n(log n)3.

Here dc is a suitable constant depending only on c.
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Next we prove that the Balance algorithm is only a little worse than the
Simple Total-Exchange algorithm in the worst case. In the Experimental results
section we will show that the Balance algorithm is much better in practise.

We present following theorem

Theorem 2. TheBalancealgorithmrequires atmost twiceasmany total-exchange
rounds than the Simple Total-Exchange algorithm when routing the same packets to
their final destinations.

Proof. We construct a scenario where the Balance algorithm is as slow as
possible in comparison with the Simple Total-Exchange algorithm. Assume that
the machine has p processors. Then make following assumptions:

1. Each processor has m packets to send to every other processor, with the
following exceptions

2. No processor has packets to send to processor Px.
3. The number of packets that each processor has to send to processor Py is

m + n, 1 ≤ n ≤ m.
4. Processor Px has m + n packets to send to every processor.
5. The number of packets that processor Py has to processor Pz is also m + n.
6. Processor Px, Py and Pz are different processors

In this scenario the Simple Total-Exchange algorithm requires m + n total
exchange rounds. In the Balance algorithm, processor Px has (m + n) ∗ (p − 1)
packets in the beginning of the routing. During the first m total-exchange rounds
processor Px can send one packet at every time step. Processor Px also receives a
packet almost every step during the first m total-exchange rounds. Processor Px

is not the final destination for any of the packets it receives. It receives packets
destined to processors Py and Pz . The worst case is when processor P precedes
processor Py by one position. In this case processor Px has received m∗(p−1)−1
new packets. Depending on their order either Py has still one packet left to send
to Pz or Pz has one packet to send to Py.

To send all packets that processor Px had in the beginning of the routing,
n more total-exchange rounds are required. After m + n total exchange rounds
processor Px still has m ∗ (p − 1) − 1 packets to send. Sending those packets
to intermediate destination requires m total-exchange rounds. Sending packets
to final destinations may require one additional total-exchange round. The total
number of routing steps is 2 ∗ m + n + 1 ≤ 2 ∗ (m + n). We can conlude that
in the worst case the Balance algorithm requires twice as many total-exchange
rounds as the Simple Total-Exchange algorithm.

Assume that h >> p log p, then routing random h-relation then routing a
random h-relation takes h

p (1 + o(1)) + O(
√

h
p log p) total-exchange rounds. Ar-

bitrary h-relations can be routed about in twice that time, by routing messages
first to random intermediate destinations and then to their final destinations as
proposed by Valiant [17].
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3 Experimental Results

We have compared four algorithms. The results of the experiments can be seen in
the Table 1. In the leftmost column are the results of the Simple Total-Exchange
algorithm. See the Algorithm 1. In next column are the results of Rao & al.’s
algorithm [16]. In third column are results of Kautonen’s Halving algorithm [9].
The last column contain the results of the Balance algorithm, Algorithm 2.

Table 1. Simulation results

p h direct Rao & al. Halving Balance
64 p 5.65 n/a 2.14 2.12

2p 4.07 n/a 1.77 1.63
4p 3.06 2.00 1.54 1.37
8p 2.41 1.54 1.37 1.22
16p 1.96 1.31 1.25 1.14
32p 1.67 1.19 1.18 1.09

256 p 7.14 n/a 1.88 2.07
2p 5.02 n/a 1.62 1.62
4p 3.65 2.00 1.41 1.36
8p 2.77 1.61 1.29 1.22
16p 2.19 1.32 1.20 1.15
32p 1.82 1.19 1.14 1.09

1024 p 8.45 n/a 1.73 2.03
2p 5.80 n/a 1.52 1.61
4p 4.15 2.00 1.40 1.35
8p 3.08 1.63 1.29 1.21
16p 2.41 1.31 1.25 1.15
32p 1.93 1.21 n/a 1.09

The results show that the Balance algorithm is much better than the Simple
Total-Exchange and it is better than the Halving algorithm when h > 8p. In the
Balance algorithm the simulation cost seems to depend on only on h/p-ratio and
it is independent on h and p when h > p.

When comparing these results with the results of Rao & al. [16], we notice
that our results were better in the all cases. However in their simulations they
assumed that each processor had at most h packets to send, but it was not
limited how many packets one processor receives. We routed true h-relations. If
the number of packets that one processor receives is not limited to h, then the
Balance algorithm gives results which are 1-2% worse than those mentioned in
Table 1.
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Abstract. This paper presents a MFLWQ Algorithm for Scavenger Service, 
which is a non-elevated QoS technique proposed by the Internet2 project. The 
algorithm balances the bandwidth distribution among Scavenger Service flows 
by a modified Flow Random Early Detection (FRED) algorithm; estimates 
active Scavenger Service flow number by the variable nactive in FRED and 
accordingly tunes the bandwidth allocation between SS flows and BE flows in a 
logarithmical way to reach better performance and robustness. Simulations 
show that the algorithm provides more appropriate bottom bandwidth guarantee 
for Scavenger Service flows when protecting Best-Effort flows well and 
extends the applicability of Scavenger service to no-adaptive traffic like UDP. 

1   Introduction 

The reason why Internet can expand to such an enormous scale today mostly 
contributes to the Best-Effort design principle in TCP/IP protocol stack. But as the 
fast expanding of Internet and the emerging of various new network services, the 
shortcoming that original network lacks QoS warranty becomes increasingly critical. 

Traditional IP network QoS researches focus on the ways to improve the service of 
the ‘important flows’ and to guarantee that the packets of these flows get priority 
service over the packets of Best-Effort flows (called BE flows below) alone the path. 
Many framework standards (such as IntServ [1] and DiffServ [2] from IETF) and 
protocols (such as RSVP [3] and MPLS [4]) have been raised to achieve QoS, but 
these standards and protocols are never widely employed. This is because that the 
Internet today is enormous and to achieve QoS on the Internet and to give the 
‘important packets’ better service, all the route devices along the flow path must 
recognize these different standards and protocols. Even one device at the bottleneck 
fails to do this will make QoS unfeasible. On the basis of the IETF drafts [5,6], the 
Internet2 project [7] proposed a reverse-thinking QoS technology: QBone Scavenger 
Service [8]. In brief, it is a network mechanism that users (or their applications) 
voluntarily mark packets of some ‘unimportant flows’ with a specific DSCP 
(Differentiated Service Code Point) value (001000B). The routers implemented with 
Scavenger Service forward packets of BE flows with priority. And if there is some 
unused network capacity available, they forward packets of Scavenger Service flows 
(we call them SS flows below). As we give the SS flows a downgrade service, the 
performance of BE flows is upgraded. But the routers implemented with Scavenger 
Service don’t strictly forward packets by priority. They still guarantee SS flows a 
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minimal departure rate to avoid connection time out and intolerable response delay of 
applications. All the unused network capacity can be used by SS flows if the whole 
capacity is more than BE flows require, so the resource won’t be wasted. An 
outstanding advantage of Scavenger Service is that it doesn’t need all routers’ support 
along the flow path. Even some routers give same service to BE flows and SS flows, 
the other routers implemented with Scavenger Service function as throttle valves and 
the goal of Scavenger Service still can be realized. So, Scavenger Service is a special 
deployable technology in the current Internet environment. The Internet2 project 
deployed Scavenger Service on QBone, the QoS test bed of Internet2, and Abilene 
network. They also recommended several packets queuing mechanisms such as WRR, 
WFQ, MDDR [8]. References [9, 10] presented some router configuration examples 
and [10, 11, 12] did some tests on Scavenger Service and gave the results. IETF has 
defined those Lower-Effort QoS technology like Scavenger Service as a new DiffServ 
PDB (Per-Domain Behavior) and published the relevant RFC document [13].  

2   Design Principles and Realization�

2.1   Unsolved Problem 

In IP network, the fairness of bandwidth distribution among flows is not guaranteed. 
Those no-adaptive flows and robust flows are likely to seize more network capacity 
than other flows. In Scavenger Service, because SS traffic is given a very small portion 
of whole network capacity when network is busy, i.e. extremely congested, the unfair 
distribution of bandwidth between individual flows inside SS traffic is much more 
critical. And more, by analyzing the available queue management algorithms such as 
WRR, WFQ, MDRR [14] dealing with Scavenger Service, it can be found that they are 
only able to allocate the minimum departure rate for Scavenger Service in a static way 
when BE flows are over subscribing network bandwidth. As the total network capacity 
allocated for SS traffic is very low and the capacity for each SS flow is in inverse 
proportion to the number of SS flows, the SS flows may likely experience starvation if 
there are too many SS flows. However, allocating more capacity for Scavenger Service 
leads to resource misusing when there are few SS flows.  

2.2   Design Principle and Components of the Algorithm 

The design principle of MFLWQ queuing management algorithm aims at the 
peculiarity of Scavenger Service. It forwards BE packets with priority and allocates 
the spare capacity for SS flows. When BE traffic is heavy, it gives SS traffic a small 
guaranteed share of whole capacity. Furthermore, the algorithm balances the 
bandwidth allocation inside SS aggregate flow by a modified FRED algorithm and 
estimates active SS flow number by the variable nactive in FRED to tune the 
bandwidth allocation between SS flows and BE flows accordingly.  

MFLWQ has two queues: queue_BE and queue_SS. The algorithm classifies 
arrived packets by the DSCP tag and enqueues them to the relevant queue. The 
management algorithms of the two queues can be individual. When forwarding 
packets, MFLWQ chooses one queue by weighted round robin and send the head 
packet. So, MFLWQ is composed of three components: BE queue management, SS 
queue management and scheduling algorithm between the two queues. For that most 
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applied Best-Effort networks are satisfying with common queue management 
algorithm and the relevant topics are widely discussed, this paper doesn’t contain the 
algorithm used in BE queue. And more, whatever algorithm being used in BE queue 
doesn’t affect the discussions in this paper. In the simulations in paper, a simple 
Drop-Tail algorithm is used for BE queue.  

2.3   Queue Management Algorithm in SS Queue 

RED (Random Early Detection)[15] is a widely used active queue management 
algorithm. It detects congestion by monitoring the average queue size avg, which is 
calculated through a low-pass filter. Average queue size is compared with two 
thresholds, maxth and minth, which usually equal to half buffer size and quarter buffer 
size respectively. When avg is less than minth, all arriving packets are accepted. And 
when avg is greater than maxth, all arriving packets are dropped. When the value of 
avg is between the two thresholds, each arriving packet is dropped by a probability p, 
which is positive proportional with the value avg exceeding minth and the number of 
packets accepted after last drop. FRED (Flow Random Early Detection)[16,17]is a 
modification to RED intending for fairness. The key idea of FRED is that balancing 
buffered packet number of each flow leads to balanced bandwidth allocation, for that 
every packet is forwarded from the head of the queue. FRED introduces the parameters 
minq and maxq, which are the minimum and maximum number of packets each flow 
should be allowed to buffer. FRED maintains nactive, the number of flows having 
packets buffered, and the average per-flow buffered packets number avgcq. For each 
buffered flow I, FRED maintains the buffered packet number qlen[I] and a counter 
strike[I], which indicates the times the flow has met the condition to be non-adaptive. 
The expression qlen[I] >= maxq ||(avg >= maxth && qlen[I] > 2*avgcq) ||(qlen[I] 
>= avgcq && strike[I] > 1) is used to identify and punish non-adaptive flows. FRED 
adds strike[I] with 1 and drops current packet when the judge condition is meet. When 
flow I is identified non-adaptive with strike[I]>1, the random drop won’t function any 
more. Regardless of average queue length avg, if buffered packet number qlen[I] 
reaches  average per-flow buffered packets number avgcq, current packet is dropped 
immediately. And more, the strike[I] won’t decrease in FRED algorithm until the state 
table item for flow I is deleted when it has no packet buffered in the queue. The 
detailed FRED pseudo code is presented in [16]. Restricted by volume, only the part 
relevant to identifying and managing non-adaptive flows is given below: 

maxq = minth; 
if (avg >= maxth) 
  maxq = 2; 
identify and manage non-adaptive flows: 
if (qlen[I]>=maxq ||(avg>=maxth && qlen[I]>2*avgcq) 
||(qlen[I] >= avgcq && strike[I] > 1)) { 
  strike[I]++;  
  drop packet P; 
  return; 
}  

By experiments, we found that the way FRED identifies non-adaptive flows 
doesn’t work well for SS traffic when BE traffic is busy. Because of the extreme 
congestion and the randomness of packet dropping, an adaptive TCP flow may be 
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identified no-adaptive by mistake. The wrongly identified flow will then experience 
wrong punishment, until it has no packet in the queue. And more, because of the 
sudden change of dropping judgment condition before and after misidentify, a number 
of following packets of this flow may be dropped back to back. This likely leads to 
TCP timeout and forces the TCP flow into the slow-start phase, congestion window 
rising from 1 again. Upon that, we modified FRED algorithm and design a mistake 
correcting mechanism as follows. When the identify condition is meet, strike is added 
with a number N instead of 1. When strike[I] reaches M, the flow I is identified non-
adaptive and is punished. When forwarding a packet of flow I, strike[I] is decreased 
by 1 if it isn’t zero. So, when the judge expression is true with an adaptive TCP flow, 
the flow will experience a packet dropping but won’t be punished immediately. The 
adaptive flow will respond to packet dropping and adjust the departure rate. After 
several packets of this flow are forwarded, strike value of this flow will return to 0. 
So, the mistake is corrected. As for a non-adaptive flow, such as UDP flow, because it 
doesn’t respond to packet dropping, the speed strike value increasing by N when the 
judge expression is true is greater than decreasing by 1 when it’s packets are 
forwarded, it still will be identified non-adaptive. By experiment, we found that when 
N=5 and M=20, the mechanism works well. We call the modified algorithm MFRED 
here. The modification to the code is shown as follows:   

Maxq = minth; 
if (avg>= maxth) 
  maxq = 2; 
identify and manage non-adaptive flows: 
if (qlen[I]>=maxq || avg>=maxth && qlen[I]>2*avgcq) 
||(qlen[I]>=avgcq && strike[I]>20)) { 
  strike[I]+=5; 
  drop packet P; 
  return; 
} 
Add the following code to the packet departing part: 
if (strike[I]>0) 
  strike[I]--; 

2.4   Tuning Guaranteed Bottom Bandwidth for SS Traffic 

To adjust the minimum guaranteed capacity for SS flows, the algorithm should first get 
the number of active SS flows. Generally, a queuing management algorithm that 
counts active flow number should maintain a flow state table to record the flow id and 
the arriving time of each packet and calculates the number of flows that have packets 
arrived recently. This usually makes it impractical by reason of the enormous cost 
brought by the huge state table when there are many flows. MFRED has maintained a 
parameter nactive, the number of flows having packets buffered, which indicates the 
number of SS flows without any additional computing. It is obvious that not all active 
flows have packets buffered at a given time and nactive has a theoretical upper limit, 
which is the size of buffer size. When flow number approaches or exceeds the buffer 
size, there will be a considerable error between nactive and actual SS flow number. But 
because of the characteristic of logarithmic functions used by MFLWQ, value rising 
very slowly when the independent variable goes up to a fairish value, the algorithm is 
insensitive with the error. And for the aim of MFLWQ, a little error of flow number is 
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tolerated. Further more, to avoid impact on BE traffic, it is a reasonable choice that the 
bandwidth allocation for Scavenger Service not be increased any more when the active 
SS flow number rises excessively. 

Having got the indicator of active flow number, the algorithm would adjust the 
guaranteed minimum aggregate capacity for SS flows. MFLWQ algorithm keeps the 
number of slices allocated for SS queue as 1 and reduces the number of whole round 
robin slices. The proportion between SS flows number growth and SS bandwidth 
increment is the key of the queuing management algorithm. Increasing excessively 
will affect BE flows and that increasing too little may plunge the SS flows in risk of 
starvation. MFLWQ uses logarithmic function f(x)=loga(x) to fix on the proportion. 
Its going up curve is appropriate to the peculiarity of Scavenger Service. Natural 
logarithm based on e, Euler’s constant, is used to calculate in this paper.  

Supposing Ctot_slicesunt)ln(flow_co =× , total round robin slices number is  

unt)ln(flow_co

C
slicestot =_  (1) 

In the equation, C is a chosen constant(it can also be translated into the base a, then 
the numerator is 1). Then, the share of BE flows and SS flows is  
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It is distinctly impractical that the routers do complicated logarithmic computing 
when running. We should calculate the reciprocal of natural logarithms in advance 
and multiply them by the chosen C to set up a table when algorithm starts. The routers 
access the table to get tot_slices after calculating nactive when running. A part of the 
table is shown as table 1.  

The constant C determines the actual proportion of link capacity for Scavenger 
Service  with a given SS flow number and may be chosen according to the application  

Table 1. nactive and corresponding total slices in a cycle 

flow_count tot_slices
SS aggregate 

bandwidth (%) 
SS average per-flow 

bandwidth (%) 
1 100 1.00 1.00 
2 66 1.52 0.76 
3 42 2.38 0.79 
4 33 3.03 0.76 
5 28 3.57 0.71 
6 26 3.85 0.64 
7 24 4.17 0.60 
8 22 4.55 0.57 
9 21 4.76 0.53 

10 20 5.00 0.50 
…… …… …… …… 
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circumstance. In this paper, we take C=45.5 here to make tot_slices=66, i.e. SS 
aggregate flow given about 1.5% of whole link capacity when there are two active SS 
flows. Because ln(1)=0, we should deal with the case designedly. Here we make 
tot_slices=100 when flow_count=1.  

MFLWQ uses a slice turn counter deq_turn in dequeuing algorithm. When 
deq_turn=0, queue_SS is chosen. It can be seen that MFLWQ allocates network 
capacity to BE and SS traffic by number of packets instead of actual bandwidth. The 
actual bandwidth SS traffic attained is relevant to the size of packets and not so fixed. 
But as for the objective of Scavenger Service, it is more appropriate to give SS flows 
a bottom packet rate than a bit rate. The dequeuing algorithm is as follows: 

Upon interface free and queue not empty: 
if (deq_turn_>0) { 
  if (queue_BE not empty){ 
    dequeue queue_BE; 
    deq_turn++; 
    if (deq_turn>=tot_slices){ 
      deq_turn_ = 0; 
      tot_slices=lookup_table(nactive); 
    } 
  } 
  else { 
    dequeue queue_SS; 
    deq_turn=1; 
  } 
} 
else { 
  deq_turn=1; 
  if (queue_SS not empty) 
    dequeue queue_SS; 
  else 
    dequeue queue_BE; 
} 

3   Simulations and Analysis�

3.1   Tools and Environment

NS Version 2.26[18] was used to do all the simulations below and we realized 
MFLWQ algorithm by c++. The topology of simulated network is shown as Fig. 1. 
R1 and R2 are routers connected by a bi-directional link of 10Mbps bandwidth and 
6ms latency. The MFLWQ algorithm is implemented in the interfaces of R1 and R2 
connecting each other. The buffer for BE and SS flows is 256 packet-size each. 
Except this link, all other links are 4Mpbs capacity and 3ms latency with common 
Drop-Tail queue. S1 to Sn are Scavenger Service data sources communicating 
respectively with DS1 to DSn. B1 to Bm are Best-Effort data sources communicating 
respectively with DB1 to DBm. In each simulation, the appropriate values of n and m 
are variously chosen. All communications take FTP as data source and use TCP/Reno 
protocol with TCP window size of 20 and packet size of 1000bytes. 
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Fig. 1. Network topology 

3.2   Realization of Scavenger Service

To validate the realization of Scavenger Service, we take 5 BE sources and 10 SS 
sources to run the simulation. BE source B1 starts at the beginning. At time of 2.0s, all 
10 SS sources start one by one with 2s interval. At 22.0s, the left 3 BE sources start one 
by one with 4s interval. The simulation ends at 35.0s. In this simulation, we observed 
the aggregate bandwidth of two kinds of traffic. Simulation result is shown in Fig. 2.   

The simulation result shows that SS flows fully utilize the spare network capacity 
when BE traffic load is light. The increment of SS flows number doesn’t prevent the 
BE flow from reaching its utmost bandwidth. After B2 starts, SS flows begin to give 
up network capacity voluntarily till they only hold a tiny guaranteed capacity. The 
start of left BE sources doesn’t prevent SS aggregate flow from getting its guaranteed 
bottom bandwidth. Scavenger Service is realized well. 

 

Fig. 2. Realization of Scavenger Service 

3.3   Improvement of MFRED Contrasting to FRED  

For better observation, the buffer for SS flows is reduced to 128 packet-size here and 
adaptation of SS bottom bandwidth is canceled. The guaranteed capacity allocated for 
SS aggregate flow is set to 5% of whole link capacity, i.e. 500 kbps. The simulation 
uses 5 BE source and 10 SS sources and runs the following scenario: all BE sources 
start at the beginning; at 1.0s all SS sources start one by one with 1s interval; 
simulation ends at 30.0s. Strike value of all SS flows is recorded each 10 ms. The 
result of MFRED and FRED is shown in fig. 3 and fig. 4. 
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Fig. 3. Strike in FRED 

Fig. 4. Strike in MFRED 

The number of misidentifications (strike>1) in fig. 3 adds up to 20 and the duration 
that each adaptive TCP flow is misidentified non-adaptive adds up to 13.7 seconds. 
All the right edges of the curves are smooth, meaning that the misidentifications are 
ended only when the flow has no packet buffered after being wrongly punished. Fig. 4 
shows that there are only 2 misidentifications (strike>20) when flow number is 
increasing in the anterior segment of simulation and the duration adds up to only 1.3 
seconds.  Most right edges of the curves go down point by point, meaning that the 
possible misidentifications are corrected. 

3.4   Balancing SS Flow Bandwidth  

Here we take 5 BE sources and 10 SS sources to run the simulation. As an exception, 
the SS source S10 is a CBR type source with 400kbps rate using UDP protocol. For 
better observation, the guaranteed minimum bandwidth is also fixed to 5% of whole 
capacity. In the simulation, all 5 BE sources start at the beginning and all 10 SS 
sources start in a random order within the first second. To lessen the effect brought by 
randomness in packet dropping of the algorithms, the simulation is executed 5 times 
and the result is averaged. We focus on the average bandwidth each SS flow gets in 
the 100 seconds duration from 1.0s  to 101.0s.  

Fig. 5 shows the result of RED. The non-adaptive flow 10 seizes most  
capacity  while  the  other adaptive flows are starved. This means that the bandwidth a  
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Fig. 5. Bandwidth distribution of RED              Fig. 6. Bandwidth distribution of MFRED 

non-adaptive SS flow get doesn’t decrease corresponding to the reduction of SS 
aggregate bandwidth when BE traffic is busy. So, Scavenger Service is not 
compatible with non-adaptive flows when using a queue management algorithm 
without bandwidth allocation balancing such as RED. 

Fig. 6 shows the result of MFRED. The bandwidth every flow get is approximately 
equivalent. And more, by monitoring, we found that the value of strike of the non-
adaptive SS flow 10 kept rising and reached to about 20 thousands in the end in all the 5 
executions. MFRED identifies non-adaptive flow and balances the bandwidth allocation 
effectively. This extends the applicability of Scavenger service to no-adaptive flows. 

3.5   Relationship Between Active SS Flow Number and Nactive

In this simulation, we focus on the relationship between factual active SS flow 
number and nactive value. We used 10 BE sources and 150 SS sources to run this 
simulation. The following simulation steps were executed: All 10 BE sources start at 
the beginning of simulation so as to make SS flows only able to attain the guaranteed 
bottom bandwidth. After 1s, all the SS sources start one by one with 1s interval. The 
simulation ends at 155.0s. Result is shown in Fig. 7. 

It can be seen that when there are few SS flows, the error between SS flow number 
and nactive is little. Nactive indicates the actual flow number well. And the error rises 
while SS flow number increases. When the value of nactive approaches half of 
average queue size, it goes up very slowly. 

 
Fig. 7. Nactive value and active SS flow number 
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3.6   Reaction to SS Flows Number when BE Traffic is over Subscribing 

Here 10 BE source and 100 SS source are chosen and the scenario is set as follows. All 
10 BE sources start at the beginning of simulation. At time of 1.0s, all 100 SS sources 
start one by one with 1s interval. Simulation runs for 5s more after last SS source S100 
starts at 100.0s. We focus on aggregate bandwidth of SS flows in this simulation. 

To compare, we first choose a queue management algorithm that configures the SS 
traffic minimum departure rate in a static way to run the simulation. Fig. 8 is the 
result of WRR, which is one of the queuing disciplines recommended by Internet2 for 
Scavenger Service. SS traffic minimum departure rate is set to 5% of link capacity, 
i.e. 500Kpbs. For easy observation, the y-axis of the SS flow bandwidth curve is 
blown-up. It can be seen that as the active SS flows number rises from 1 to 100, the 
SS aggregate bandwidth remains constant. 

The result of MFLWQ in Fig. 9 shows that the aggregate bandwidth attained by SS 
traffic went up approximately as a logarithmic curve. This meets the design aim. 
Compared with WRR in Fig. 8, MFLWQ adapts the aggregate minimum bandwidth 
of SS traffic to the number of active SS flows. When there are few SS flows, it 
allocates less guaranteed bandwidth to SS traffic in order to give the capacity to BE 
traffic at best. This will make BE flows perform better. When the number of active SS 
flows increases, it allocates more bandwidth to SS traffic in order to turn SS flows 
away from starvation. This gives SS flows more robustness. 

 

Fig. 8. Reaction of WRR 

 

Fig. 9. Reaction of MFLWQ 
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4   Conclusions�

This paper presents a MFLWQ Algorithm for Scavenger Service. The algorithm 
balances the bandwidth distribution among Scavenger Service flows by modified 
FRED. It estimates active Scavenger Service flow number by the variable nactive in 
FRED and accordingly tunes the bandwidth allocation between SS flows and BE 
flows in a logarithmical way to reach better performance and robustness. Simulations 
show that it provides more appropriate bottom bandwidth guarantee for Scavenger 
Service flows when protecting Best-Effort flows well and it extends the applicability 
of Scavenger service to no-adaptive traffic like UDP. 
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Abstract. This paper presents a novel trust model in which we model trust based 
on an exotic uncertainty theory, namely cloud model. We regard trust between en-
tities as a cloud that is called as trust cloud. Based on such a quantification model 
of trust, we further propose the algorithms to compute propagated trust relation-
ships and aggregated trust relationships, which are needed for trust reasoning in 
pervasive computing environments. Finally, we compare the proposed trust model 
with other three typical models in simulation experiments, and the results shows 
the cloud-based trust model performs better in a total sense. 

1   Introduction 

Trust has been researched for more than teen years since Marsh’s work [1]. Because 
trust mechanism is more flexible and extensible than traditional security approaches 
such as PKI[20], trust has been introduced into many other cyber fields, i.e. pervasive 
computing, peer-to-peer networks, etc. In such contexts, trust is always regarded as 
subjective, therefore, how to measure trust become very important. Till now many 
approaches have been proposed to quantify trust [1,2,3], which either use discrete 
numbers such as -1, 0, 1, etc. to indicate different trust levels, or use a real number 
interval, for instance [0, 1]. However, since trust is subjective, it is not enough to 
describe trust with deterministic values.  

As we know, in human society, when we say we trust a person very much, actually 
we are not so sure about to what an accurate degree to trust him or her. On the other 
hand, we can trust two persons both very much, but we may trust one a little more 
than the other. The same can be applied to pervasive computing environments. Hence 
we declare that uncertainty is an important nature of trust, which means trust relation-
ships between entities are fuzzy and stochastic. For example, for two completely 
unacquainted entities, they may trust each other to a little degree, so that they can 
begin to cooperate in a task. Meanwhile, two familiar entities can also trust one an-
other to a little degree, which may result from their bad interaction history. From 
these two cases, we can see that, regarding the same trust description, say trust a little, 
the former is absolutely uncertain but the latter is quite assure. Therefore, we must 
incorporate uncertainty when modeling trust.  

In this paper, we propose such an trust model, namely the cloud based trust model 
or CBTM. We will present an overview of the cloud model in section 2. And in sec-
tion 3 we will delineate the cloud based trust model in detail. Then simulation ex-
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periments will be presented in section 4. Related work will be listed in section 5. 
Finally, we will summarize our work and point out our future work in section 6.  

2   Cloud Theory Overview 

The cloud model was firstly proposed as a model of the uncertainty transition between 
a linguistic term of a qualitative concept and its numerical representation [9]. Till 
now, the cloud model has been applied in many fields successfully, such as automatic 
control [11], knowledge discovery and data mining [10,12], etc  

Formally, a cloud can be defined as follows [22]. 

DEFINITION 1: Let U be the set as the universe of discourse, f is a random function 
with a stable tendency : U [0,1]f → , and g is also a random function with a stable 

tendency : U Ug → , He is an uncertain factor and 0  He, and  

1) ' ( , ), Uu g u He u= ∈ . 

2)  = ( , )y f u' He . 

Then (U, g,  f, He) is a cloud, and (u’, y) is a cloud drop. 
In DEFINITION 1, the mapping f from U to the interval [0,1] is a one-point to multi-

point transition, so the degree of membership of u is a probability distribution rather 
than a fixed value, which is the very place where the cloud theory is different from the 
fuzzy logic. For example, a one-dimension normal cloud can be formalized as follows. 

2

2

( ' )

2 randn( , )

 = ( , , , )
randn( , randn( , )) 

'= ( , )
x Ex

d He

nc g f He
g Ex d He
x g x He

f e
−−

×

=

=

R

.                                 (1) 

where d,x R (R is the set of real numbers) and randn(a, b) is a normally distributed 
random number generation function with a as the mean and b as the standard deviation. 

For the purpose of simpliness, normal clouds defined by Formula (1) can be de-
noted by three digital characteristics [9], namely Expected Value (Ex), Entropy (En) 
and Hyper-Entropy (He). With these digital characteristics, the fuzziness and ran-
domness of uncertain concepts can be integrated in a unified way. The expected value 
Ex points out the center of gravity of a normal cloud. The entropy En is a measure of 
the fuzziness of the concept over the universe of discourse. It shows the span of cloud 
drops distribution. The hyper entropy He is a measure of the uncertainty of the en-
tropy En. And the greater He is, the more dispersedly the membership degrees are 
distributed. In the extreme case, both entropy En and hyper entropy He is equal to 
zero, namely (Ex, 0, 0), which presents the concept of a deterministic datum.  

It is easy to see that the He in Formula (1) is the same as the He in DEFINITION 1. 
Furthermore, based on the normal cloud definition, and given three digital characteris-
tics, say Ex, En, He, we can build a normal cloud with the so-called normal cloud 
generator, which is described by the following algorithm [9]. 
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ALGORITHM 1: Given a normal cloud (Ex, En, He) and the number of the cloud 
drops N, a normal cloud can be computed following steps as follows. 

1) Produce a normally distributed random number En’ with the mean En and the 
standard deviation He; 

2) Produce a normally distributed random number x with the mean Ex and the stan-
dard deviation En’; 

3) Calculate 

2

2
( )
2( ')
x Ex

Eny e
−−

= ; 

4) Point (x, y) is a cloud drop in the universe of discourse;  
5) Repeat steps 1-4 until N cloud drops are generated.  

Fig. 1 illustrates the normal cloud description of the term “10 miles around”. 
 

3En

Ex

He

 

Fig. 1. Cloud shape and three digital characteristics of the linguistic term “10 miles around” 

3   Cloud-Based Trust Model 

Based on the cloud model, we research on uncertainty of trust and propose a novel 
cloud based trust model or CBTM, which will be described in this section in detail. 

3.1   Trust Cloud 

The trust cloud is the core concept of CBTM, which is defined as follows.  

DEFINITION 2: A trust cloud is a normal cloud to quantify a trust relationship be-
tween two entities, indicating how much and how surely one is trusted by the other. 
Formally, the trust cloud held by an entity, i.e. A, about the other entity, i.e. B, can be 
denoted as:  

= ( )
0 1
0 1
0 1

ABtc nc Ex,En,He
Ex
En
He

≤ ≤
≤ ≤
≤ ≤

.                                               (2) 
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where nc(Ex, En, He) is a normal cloud defined by Formula (1), and Ex is the trust 
expected value here, which indicates the basic trust degree of B for A. En reflects the 
uncertainty of the trust relationship. It also describes the scope of cloud drops which 
can be accepted by A, namely the fuzziness degree. And En shows the stochastic 
density of the cloud drops in the trust space, namely the randomness of the trust rela-
tionship. He is the trust hyper entropy here, which indicates the uncertainty of fuzzi-
ness degree of the trust relationship. 

It should be pointed out that, when En  0 and He = 0 the trust relationship of en-
tity A to entity B is fuzzy, but the fuzziness degree is deterministic;  and when En = 0 
and He = 0 the trust relationship of entity A to entity B is deterministic and there is 
no uncertainty in the trust. For example, the entities belonging to an internal system or 
the same administrative domain could have deterministic trust relationships.  

Fig. 2 illustrates some typical trust clouds. 

  
(a)                                                    (b) 

  
(c)                                                  (d) 

Fig. 2. Typical trust clouds. (a) tc (0.5, 0.1, 0.6). (b) tc (0.5,0.1,0.2). (c) tc (0.7,0.1,0). (d) 
tc(0.9,0.01,0). 

From Fig.2 we can deduce that: (1) The greater Ex is, the closer a trust cloud ap-
proaches to the max trust value, namely 1; (2) The greater En is, the wider the span of 
a trust cloud is; (3) The greater He is the more dispersive the cloud drops of a trust 
cloud are.  

3.2   Distrust and No trust 

In trust modeling, distrust and no trust have different meanings. If entity A distrusts 
entity B, it means A knows B can not be trusted. On the contrary, if entity A has no 
trust about entity B, it means A does not know whether or how much B should be 
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trusted. Traditionally, different values are used to distinguish distrust and no trust. For 
example, -1 indicates no trust, and 0 indicates distrust [13]. However, we declare that 
distrust and no trust are two different concepts describing trust from different view-
points, namely trustworthiness viewpoint and uncertainty viewpoint. Therefore, more 
should be done rather than just assigning different values to them.   

From the standpoint of the cloud model, distrust is used to describe trust relation-
ships from the aspect of trustworthiness degree, and we can denote distrust with Ex = 
0. And no trust is a concept describing trust relationships from the aspect of uncer-
tainty of trust, and it can be indicated by setting En = 1 and He = 1. Therefore, we can 
see that distrust and no trust are two intercrossed concepts and in some cases both of 
them can even co-exist in one trust relationship. For example, entity A meets a 
stranger entity B, and then the trust relationship A established to B should be no trust. 
At the same time, A may also label the trust degree as distrust, because A is very cau-
tious. On the contrary, if A is adventurous, A may set an average trust degree to the no 
trust relationship. In a word, distrust and no trust are not exclusive. This distinguishes 
CBTM from all other trust models. 

Fig. 3 shows some examples of distrust clouds and no trust clouds. 

   
(a)                                                    (b) 

   
(c)                                                     (d) 

Fig. 3. Distrust and unknown trust clouds. (a) distrust cloud tc(0,0.1,0.01). (b) distrust cloud 
tc(0,0.1,0.1). (c) no trust and distrust cloud tc(0,1,1). (d) no trust cloud tc(0.5,1,1). 

3.3   Trust Reasoning 

In pervasive computing environments, unknown entities are always met. Before these 
strangers cooperate with each other, their trustworthiness should be determined. How-
ever, as strangers, their trust degrees can not be known by one another at present. 
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Therefore, it is necessary for any entity to derive a trust relationship to the stranger 
based on exiting trust relationships. Therefore algorithms of computing trust clouds 
are needed for trust reasoning. 

In CBTM, trust cloud computation consists of two parts, namely computing a new 
trust cloud through trust propagation and combining many trust clouds into one 
unique trust cloud. 

Propagating Trust Clouds  
In pervasive computing environments, e.g. ad-hoc networks, entities always can not 
get trust recommendation of a stranger from their trusted neighbors directly, so trust 
cloud propagation is needed.   

Supposing there are m entities, say A1, A2, A3, …, Am, and the trust cloud from Ai to 
Ai+1  (1  i  m-1) is  tci (Exi,Eni,Hei), then the trust cloud of A1 about Am, denoted as   
tc(Ex, En, He), can be computed as follows. 
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Where  is called cloud logic multiplicative operator. 
For instance, suppose A trusts B as tcAB(0.8, 0.1, 0.01), and B trusts C as tcBC(0.5, 

0.05, 0.02), then the trust cloud held by A to C, denoted as tcAC(Ex, En, He), can be 
computed according to Formula (3) as follows. 

2 2

0.8 0.5 0.4

min( 0.1 0.05 ,1) 0.112

min( ,1) 0.030.01 0.02

Ex

En

He

= × =

= + ≈

= =+

. 

   
(a)                                              (b)                                            (c) 

Fig. 4. Propagating trust cloud. (a) tcAB(0.8, 0.1, 0.01). (b) tcBC(0.5, 0.05, 0.02).(c) tcAC (0.4, 
0.112, 0.03). 



 CBTM: A Trust Model with Uncertainty Quantification and Reasoning 547 

We illustrate these three trust clouds in Fig. 4, from which it is easy to see that af-
ter propagation, the trust cloud becomes more dispersive and closer to 0. This means 
the trust degree is decreased and the uncertainty is increased.  This accords with hu-
man experience. 

Aggregating Trust Clouds  
In many cases, more than one trust clouds of a stranger entity can be computed, there-
fore, it is necessary for an entity to combine these trust clouds into a unique one. 

Supposing there are m trust clouds, say tc1, tc2, tc3, …, tcm, then these trust clouds 
can be combined into one trust cloud, say tc(Ex, En, He),  as follows.  
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Where  is the cloud logic additive operator.  
For example, entity A gets two propagated trust clouds, i.e. tc1(0.4, 0.112, 0.03) 

and tc2(0.72, 0.2, 0.05), then the aggregated trust cloud tc(Ex, En, He) can be com-
puted according to Formula (4) like this. 

(0.4 0.72) / 2 0.56

min((0.112 0.2) / 2,1) 0.156

min(( 2,1) 0.040.03 0.05)/

Ex

En

He

= + =

= + =

= =+

 

These three trust clouds are illustrated in Fig.5, from which we can see the com-
bined trust cloud is between the two operand trust clouds from both aspect of trust 
level and uncertainty. This also accords with our intuition.  

   
(a)                                            (b)                                      (c) 

Fig. 5. Aggregated trust clouds. (a)tc1(0.4,0.112,0.03) (b)tc2(0.72,0.2,0.05) (c)tc (0.56,0.156, 
0.04). 
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4   Simulation Experiment 

Since using cloud to model trust is absolutely exotic, it is necessary for us to prove the 
validation of CBTM in experiments. Therefore, we carried out a simulation experi-
ment.  

Our experiment is based upon a simulation platform RePast[19],which is popular 
in simulating agent-based systems. Over RePast, we developed CBTM. As compari-
son, we also implemented other three trust models, which are based on Depster-
Shafer theory, probability theory, and Fuzzy logic respectively. These trust models 
are: 

 Yu Trust Model  (abbreviated as Y Model) [18] 
 Beth Trust Model (abbreviated as B Model) [2] 
 Tang Trust Model (abbreviated as T Model) [21] 

In the experiment, our proposed trust model is abbreviated as C Model. 

4.1   Metrics 

To compare selected trust models quantitatively, we define some metrics first. 

DEFINITION 3: Suppose { |1 }iA i N= ≤ ≤E  are the set of entities in a pervasive 

environment, and {( , , ) | , , 0 1}i j ij i j ijA A tval A A tval= ∈ ≤ ≤Tr E  is the set of trust 

relationships between these entities, then we define average trust density (ATD) as  

2
ATD

P ( 1)
ij ij

ij ij
tval tval

N

tval tval

N N

∈ ∈= =
× −

Tr Tr
.                        (5) 

This metric represents the overall trust level of a network. If the ATD of a network 
is too low, it means the society formed by the network is fragile and it is easy to col-
lapse.  At the same time, the faster the ATD curve become horizontal, the better a 
trust model’s convergence is.   

DEFINITION 4: Suppose the total interaction (from service request to its being 
permitted or denied) number between entities in the network is Nt, and total successful 
cooperation (service request is permitted) number is Ns, then we define successful 
cooperation probability (SCP) as  

SCP 100%s

t

N

N
= × .                                         (6) 

This metric shows the cooperation level of a network. The greater this metric is, 
the more cooperative the society and a trust model are.  

DEFINITION 5: Suppose the time an entity receives a request is t, and the time a 
trust model finishes evaluating the requester entity’s trust is t’, and the total number of 
interaction in the network is N, then we define average response delay (ARD) as  
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This metric shows the complexity of a trust model. Since our simulation does not 
consider physical network delay, the delay time is due to trust model computation. So 
the bigger ARD is the more complex a trust model is. And the less complex a trust 
model is, the better it is. 

4.2   Simulation Parameter Setting 

In the experiment, we created a network with specific number of entities and the enti-
ties in it are reachable for one another. During initialization, each entity was assigned 
randomly the specific number of acquaintances, and the trust relationships between 
them were initialized randomly.  

During the experiment, entities interacted with each other for specific times. In 
each interaction, the simulation system chose two entities randomly, and the first was 
requester and the other was server. The server computed the requester’s trustworthi-
ness using a trust model, and decided whether the request would be accepted not by 
comparing the evaluation result with the predefined cooperation threshold value.  In 
each interaction, every trust model was used and concerned data were recorded.  

The simulation system parameter setting is described in Table 1. 

Table 1. Simulation system parameter setting 

Parameter Value 
Initial Acquaintance. 5 
Entity  Number 100 
Interaction Number 25 2500 
Threshold Value 0.5 

4.3   Experiment Results 

The experiment results are illustrated in Fig. 9. 
From Fig.9 (a), we can see that the proposed C model and Y model’s NTD are very 

close and much higher than both B model and T model. But C model becomes con-
vergent faster than Y model. 

From Fig.9 (b), we can observe that our proposed C model has a much far better 
performance than all the other models in terms of successful cooperation probability. 
This indicates CBTM will provide entities more chances to cooperate with each other.  

From Fig.9 (c), we can see that the ARD of C model is much lower than the other 
models, which indicates CBTM is much easier and will consume less CPU time.  

Based on all the experiment results, we can tell that CBTM performs quite well in 
terms of convergence, cooperation, and complexity.  
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Fig. 9. Experiment results. (a) NTD (b) SCP (c) ARD. 

5   Related Work 

In the computer science literature, Marsh is among the first to study trust. In [1], he 
provided a clarification of trust and presented an implementable formalism for trust, 
and he applied his trust model in the distributed artificial intelligence (DAI) commu-
nity to enable the agent to make trust-based decisions. Since his model attempted to 
integrate all the aspects of trust taken from sociology and psychology, it is rather 
complex.  

At almost the same time, Beth et al. [2] also proposed a trust model for distributed 
networks. They considered trust in different classes, which are Per Se different func-
tionalities in authentication protocols. Furthermore, they distinguished recommenda-
tion trust from direct trust and gave their formal representations, as well as rules to 
derive trust relationships and algorithms to compute trust values.  

Another important trust model is proposed by Abdul-Rahman et al. [13]. They tried 
to give a model of generalized trust to be suited to trust relationships that are less 
formal, temporary or short-term. For this purpose, they classified trust relationships 
into two types, namely direct trust relationship and recommender trust relationship, 
which is quite different from recommendation trust in the model of Beth described 
above. Besides, they proposed a recommendation distribution protocol, as well as an 
algorithm to compute trust value of target for a single recommendation path.  
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Following these basic work, a lot of trust models [4, 5, 16, 6, 15, 14,17] were pro-
posed to various systems, including multi-agent systems, peer-to-peer networks, as 
well as pervasive computing. Unfortunately, these models do not consider uncertainty 
of trust at all. C. Castelfranchi et al [7], H. Zhuang et al [8], and Tang [22] did con-
sider uncertainty, more accurately, fuzziness, and they used fuzzy logic to deal with 
trust related problems. It is their work to inspire us to research the uncertainty of trust 
deeply. 

6   Conclusion and Future Work 

In this paper, we propose a novel trust model, namely the cloud based trust model or 
CBTM. Distinguished from previous trust models, CBTM takes uncertain of trust into 
account and describes the trust degree and trust uncertainty in a uniform form, namely 
cloud. In CBTM, we give the cloud description of trust as well as algorithms to com-
pute propagated trust values and aggregated trust values. And our simulation experi-
ment demonstrates the better performance of CBTM preliminarily. 

As for our future work, we will continue to perfect CBTM. We will incorporate 
other factors into current model, such as risk, reputation, etc. In other words, we will 
work on a more complex model, which will be more practical to deal with trust issues 
in pervasive computing. Besides, we will consider cheating or vicious behaviors in 
pervasive computing environments and methods will be researched to detect such 
behaviors, and further reduce or even prevent them. 
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Abstract. Authentication protocols are essential for security in many
systems. However, authentication protocols are error-prone and difficult
to design. In pervasive computing, the inherent characteristics such as
mobility and restricted resources make it even harder to design suitable
authentication protocols. In this paper we propose an authentication
protocol to solve an open problem in pervasive computing, that is secure
use of public information utilities without accessing a trusted third party
(TTP). Our solution not only provides authentication, but also estab-
lishes a secure communication channel between the user and the service
provider without the participation of TTP. The authentication protocol
can be built with any secure symmetric and asymmetric cryptographic
algorithm. We show the protocol can resist passive and active attacks. We
also discuss how the protocol can be extended to an applicable scheme
with payment support.

Keywords: Authentication, Pervasive Computing Security, Public Key
Infrastructure, E-Commerce.

1 Introduction

Authentication protocols are essential for security in many systems. However,
authentication protocols are error-prone and difficult to design in many settings.
There are a lot of published protocols with flaws that have later been found in
literatures [1, 2, 4].

In pervasive computing environments, devices and applications are as mo-
bile as the users. Thus, the pervasive computing devices would often work in an
unknown and untrusted environment which makes authentication more impor-
tant and necessary. However, in the pervasive world devices and applications are
constrained by many factors such as limited computation and communication
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capability as well as resource restrictions. These limitations make it even harder
to design suitable protocols [7, 16].

With the development and deployment of pervasive services, payment be-
comes an important component. But payment protocols are overlooked in many
pervasive applications. In literatures, there are a number of proposed payment
protocols for electronic commerce such as Millicent [13], CyberCash [9], First
Virtual [11], DigiCash [10], and NetBill [8]. But due to lack of supporting infras-
tructure, those payment protocols are not deployed in reality.

1.1 Background and Motivation

In pervasive computing environment, communication and computation devices
pervade all our surroundings, and the facilities provided by pervasive computing
technology can be accessed and used easily and efficiently. But the convenience
also brings security risks.

Fig. 1. A scenario of use of public printers

Let us consider an example introduced by Creese et al. [7] for using public
information utilities as illustrated in Fig. 1. A user at an airport wants to print
out confidential data in his PDA. There are a number of printers for him to
use. The security requirement here is the data on the PDA should go to the
specific printer chosen by the user and be printed out without leaking any confi-
dential information to others. To satisfy the security requirement, the following
constraints should be considered:

(1) No pre-existent shared secret: The user and the printer are definitely strangers
to each other. There is no shared key between them.

(2) Resource restraints: The user may have no access to the Internet, so a trusted
third party is not accessible in this scenario. Further, updating certificate
revocation list (CRL) of a traditional public key infrastructure (PKI) is not
applicable. Furthermore, the PDA probably has limited resource to store the
certificate revocation list.
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In [6], Balfanz et al. proposed a solution to the above problem. Their pro-
posal for securing the PDA-to-printer wireless link uses a location-limited chan-
nel introduced by Stajano and Anderson [18]. In their solution, the location-
limited channel requires the user to touch the objective printer with the PDA
for pre-authentication. The secure wireless link is then created via the pre-
authentication. The solution does not use any pre-existent authentication mech-
anisms. However, there is no entity authentication for the establishment of the
secure channel. But we argue that security is limited without entity authentica-
tion. What if the printer is a fraudulent one?

The traditional PKI and certificate-based scheme may be a good solution for
entity authentication. But it is not suitable to solve the above problem because
the pervasive computing device is resource constrained - it may have no access
to a TTP like a certification authority (CA). Without accessing the CA, it is
difficult to check the status and validity of a certificate. Whereas in [6], Creese
et al. suggested that verifying the location of the printer using GPS can be a
characteristic for authentication. But the assumption of a secure GPS is too
strong and is not easy to implement and access.

To the best of our knowledge, the secure use of public information utilities
is still an open problem in the security of pervasive computing till now.

1.2 Our Contributions

The main contribution of the paper is to provide a suitable authentication pro-
tocol to solve the open problem of using public information facilities in pervasive
computing. Our solution not only provides authentication, but also establishes a
secure communication channel between the parties without accessing any TTP.
By introducing a new PKI and a new signature scheme, we do not have to rely
on the assumption of a secure GPS service. The authentication protocol can be
built with any secure symmetric and asymmetric cryptographic algorithms and
it can resist passive and active attacks provided the symmetric and asymmet-
ric cryptographic algorithms are secure. Finally, we extend our authentication
protocol to a more applicable scheme with payment support.

The remainder of the paper is organized as follows. The design goals and
preliminaries for authentication protocol are described in Section 2. In Section
3, a concrete authentication protocol is proposed, and its security is analyzed
informally. A payment protocol based on Millicent is also introduced in Section
3. Finally, conclusions are given in Section 4.

2 Design Goals and Preliminaries

2.1 Design Goals

For use of public utilities in pervasive computing environment, a good authenti-
cation protocol should provide the following necessary properties:

(1) Entity Authentication: The user should ensure which utility is exactly the one
s/he interacts with, even without accessing an on-line TTP. In this scenario,
we only consider the authentication of the printer to the user.
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(2) Data Confidentiality: The user should make sure that the document s/he
wants to print is encrypted in transmission. Neither passive attackers nor
active attackers can reveal the contents.

In the considered scenario, we assume the authenticated service provider is
trusted not to leave a copy of the document. This assumption is not very strong
because the service provider will be responsible for the service it provides.

2.2 Notations

The following notations are used in the rest of this paper:

S: Name of the public information utility
service provider (e.g., name of an air-
port printer)

U : Name of the user
PKS: The public key of S
SKS: The private key of S corresponding to

PKS

Cert(S): The certificate of S
K: The symmetric session key between S

and U
RS , RU : Random numbers generated by S and

U , respectively
{M}K : The symmetric encryption of M with

session key K
{M}PKS : The asymmetric encryption of M with

public key PKS

Hi(r): Recursive hash operation of the input
r, i.e., Hi(r) = H(Hi−1(r))

D: Starting valid date of a certificate
T : Maximum lifetime of a certificate
L: Time period for refreshing validity of a

certificate
SIGNCA(M): CA’s signature on M
Dv: Date for validating a certificate
j: An integer, j = T/L

2.3 A New PKI

As mentioned above, the traditional PKI services relying on the access to an
on-line CA would not work in this application. However we noticed in [19], Zhou
proposed an efficient signature validation scheme without the CA’s involvement
for releasing the certificate revocation information based on a new PKI [20].

The new PKI is a CRL-free public key framework. In the new PKI, the
lifetime of a certificate is divided into short periods and the certificate owner
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could control the expire of the certificate. The CA need not to release CRL [14]
or provide OSCP service [17]. Thus the status of a public key certificate can be
validated without the CA’s participation.

Certificate Generation
To apply for a certificate, a user S takes the following steps:

(S-1) Generate a pair of keys PKS and SKS;
(S-2) Define parameters D, T , and L;
(S-3) Generate a random number r and calculate a one way hash chain Hi(r) =

H(Hi−1(r)) (i = 1, 2, ..., j);
(S-4) Send (PKS , D, Hj(r), j, L) to CA.

The CA issues a certificate to S as follows:

(CA-1) Authenticate S’s request;
(CA-2) Generate a certificate Cert(S) = SIGNCA(S, PKS, D, Hj(r), j, L);
(CA-3) Issue Cert(S) to user S.

When S gets a certificate, it can use it to authenticate itself to others. It
can also control the validation status of its certificate by releasing a proper hash
value at a proper date (illustrated in Fig. 2).

Certificate update Date:

Hash value Release:

D

Hj(r)

D1 ... ...Di-1 Dj

Hj-1(r) Hj-i+1(r) Hj-i(r) H0(r)

Di

Fig. 2. Certificate validation status controlled by hash value releasing

As in Fig. 2, S must release a valid hash value Hj−i(r) to ensure Cert(S)
is still valid at date Di. If S wants to revoke Cert(S) after date Di, it can stop
releasing Hj−i(r) and any further hash value.

Certificate Validation
Based on the new PKI, a certificate can be validated without the CA’s partici-
pation. Suppose the current date is Dv and the current hash value released by
S is Hj−i(r). The following steps can check the certificate status efficiently:

(1) Verify CA’s signature on Cert(S). This check can ensure the correctness of
public key PKS, date D, refreshing time period L, and hash chain Hj(r);

(2) Check if Hi(Hj−i(r)) = Hj(r) for 0 ≤ i < j. This check can make sure that
the hash value provided by S is valid;

(3) Check if Dv ≤ D + i ∗ L. This check can make sure the certificate is valid
now.
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If the above checks pass, the verifier can be sure Cert(S) is currently a valid
certificate.

With the above new PKI solution, the public information utility service
provider can then authenticate itself to the user, even if the user has no ac-
cess to the CA.

3 The Proposed Authentication Protocol

In this section we propose an authentication protocol for secure use of public
information utility in pervasive computing. The protocol consists of 5 steps, as
illustrated in Fig. 3.

U S

1: Service Request

2:   S, RS, PKS,Cert(S)

3:   {U, S, K, RS, RU}PKS

4:  {U, S, RS, RU}SKS, Hi(r)

5:   {U,S,Rs,M}K

Fig. 3. The proposed authentication protocol

3.1 Protocol Description

At Step 1, when the user U wants to use service provided by the service provider
S, U first submits its service request to S.

After receiving the service request, S generates a random number RS , and
sends {S, RS , PKS, Cert(S)} to U at Step 2.

Upon receiving the message{S, RS, PKS, Cert(S)}, U parses the message
into S, RS , PKS, and Cert(S). Then U verifies Cert(S) according to Section
2.3 1 and checks the coherence of the name and public key with Cert(S). If all

1 We assume user U knows the CA’s public key in advance.
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the checks pass, U generates another random number RU and a random session
key K. Then U sends {U, S, K, RS, RU} encrypted with PKS to S at Step 3 2.

Once obtaining the ciphertext from U , S decrypts {U, S, K, RS, RU} with its
private key, and uses RS to check the freshness of this message. Then S sends
its signature on {U, S, RS, RU} along with the hash value Hi(r) of the current
time period to U at Step 4 3.

When U receives message 4, U first uses Hi(r) to check that Cert(S) has
not been revoked, and is still valid in the current time period. Then U verifies
the signature of S with its public key PKS , If both verifications are passed, U
believes he is actually talking with S. By further checking that RU is included
in the signature of S, U also believes that S has received the session key K.
Then U sends his document encrypted with the session key K for printing to S
at Step 5.

3.2 Security Analysis

Before analyzing the protocol, we stress it is important for S to authenticate
itself to U in this scenario. So the protocol is then designed to be secure in this
sense.

Basically, attackers are divided into two categories: passive adversaries and
active adversaries. The passive adversaries can only eavesdrop, whereas active
adversaries have the power to control the communication channel to modify, add
or drop messages. A secure authentication protocol should resist these attacks.

In order to design proper protocols and avoid the above attacks, various for-
malisms have been proposed for analyzing protocols. Bellare and Rogaway pro-
posed a formal proof for a two party protocol [5]. Bellare, Canetti and Krawczyk
proposed a modular approach for provable security [3]. This approach uses layers
to treat authentication and key exchange.

Informally, Abadi et al. [1] analyzed several protocols and pointed out why
they had such kind of weakness. They also set out 11 heuristic principles to guide
designers to develop good protocols. Boyd et al. [4] investigated several well
known protocols for mobile communication and discovered their weaknesses in
some cases. Gollmann [12] pointed out successful proof indicates a new model to
find further attacks. Based on these analysis and the known attacks, we examine
our authentication protocol.

For the passive attacks, since the passive adversary can only see the encrypted
message and then s/he will not get any information about the confidential data.
Thus, the proposed authentication protocol is secure against passive attack pro-
vided the underlying symmetric and asymmetric algorithms are secure.

For the active adversaries, we should take more careful consideration. We
briefly give the following analysis:

2 The keys for signature/verification and encryption/decryption are usually different,
so there may exist different certificates for S.

3 If S suspects its private key has compromised, S can invalidate Cert(S) by stopping
release of Hi(r).
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– Impersonation attack. In Steps 3 to 5 of the protocol, identities of U and S
are explicitly included. So it ensures to the user that the printer is exactly
the one s/he chooses and avoids the impersonation attack.

– Message reply attack. In Steps 3 to 5 of the protocol, random numbers RU

and RS are explicitly included. So it guarantees the freshness of the messages
and avoids the message reply attack.

– Parallel session attack & interleaving attack. These attacks are a kind of
man-in-the-middle attack and are not uncommon in mobile communication
[4]. To avoid these attacks, the explicit identity binding and freshness of
random number RS and RU are essential. Our protocol has considered these
issues so it is immune to these attacks.

From the above analysis, we can conclude that our authentication protocol
can resist the passive attack as well as known active attacks.

3.3 Extension with Payment Support

For the scenario of use of public information utilities, payment is another neces-
sary requirement. Here we extend our authentication protocol with the payment
support.

There are a number of payment protocols proposed for electronic commerce.
Generally, the payment protocols can be divided into three categories [15]:

– Traditional money transaction protocol such as SET, PCT and iKP ect.
These protocols use public key cryptology to encrypt a customer’s credit card
number. It is mainly used to deal with relatively high value transactions.

– Credit-debit payment protocols such as Millicent, Netcheque and UEPS. In
these protocols, the customer maintains a positive balance that is debited
when a debit transaction is processed.

– Digital currency methods such as DigiCash, NetCash and CAFE. In these
methods, digital money is encoded and carried in a smart card or a com-
puter disk. Users can make a payment to others by placing cards in a “digital
wallet” that moves coins from one card to another without the TTP’s par-
ticipation.

Millicent [13] introduced the idea of script-based accounts. A piece of scrip
represents an account the user has established with a vendor. At any given time,
a vendor has outstanding scrip with the recently active users. The balance of the
account is kept as the value of the scrip. When the customer makes a purchase
with the scrip, the cost of the purchase is deducted from the scrip’s value and
a new scrip is returned as change. When the user has completed a series of
transactions, s/he can “cash in” the remaining value of the scrip.

Brokers serve as accounting intermediaries between users and vendors. Cus-
tomers enter into long-term relationships with brokers, in much the same way
as they would enter into an agreement with a bank, a credit card company, or
a service provider. Brokers buy and sell vendor scrip as a service to users and
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U S

1: Authentication Phase

2:   Request for Bill

3:  Bill

4:  Payment Using Scrip

5:  Return result and change

6: {M}K

Fig. 4. A payment protocol

vendors. Broker scrip serves as a common currency for customers to use when
buying vendor scrip, and for vendors to refund the unspent scrip.

Based on the Millicent protocol, we can extend our authentication protocol
to support payment for a commercial application. Before a customer initiates
transactions with a service provider, s/he should have got the broker scrip which
can be used to buy the service provider’s scrip directly.

Fig. 4 illustrates the payment protocol. For Step 2 through Step 5, all the
messages are encrypted with the session key K established as in the previous
authentication protocol. The protocol is described as follows:

(1) User and Service Provider complete authentication process and negotiate a
session key K.

(2) User requests a bill from the Service Provider.
(3) Service Provider returns the bill it generated.
(4) User pays the bill using the scrip s/he has.
(5) Service Provider returns the result and change.
(6) User sends the encrypted data to Service Provider for printing.

The payment protocol is built on the authentication protocol. Its security
then is ensured by the underlining symmetric and asymmetric cryptographic
algorithms. We have proved the security of the authentication protocol in the
previous section. Then the payment protocol provides a security model that is
well suitable for profit-based public services in pervasive computing.
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4 Conclusions

Authentication protocol is a basic building block for security in many systems.
However authentication protocol is difficult to design and error-prone. In perva-
sive computing, resource constrains such as in computation capability, commu-
nication capability and power supply make it harder to design suitable authen-
tication protocols. The use of public utilities is a common scenario in pervasive
computing, and it has raised a lot of interests and discussion in literatures.

In this paper we proposed an authentication protocol to solve the above prob-
lem. Our solution not only provides authentication, but also establishes a secure
channel for communication without the TTP’s participation. The authentica-
tion protocol can be built on any secure symmetric and asymmetric algorithms.
We also extend our authentication protocol to support payment based on the
Millicent protocol to make it more applicable in the pervasive environment.
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Abstract. Intrusion Detection is an essential and critical component of network 
security systems. The key ideas are to discover useful patterns or features that 
describe user behavior on a system, and use the set of relevant features to build 
classifiers that can recognize anomalies and known intrusions, hopefully in real 
time. In this paper, a hybrid neural network technique is proposed, which 
consists of the self-organizing map (SOM) and the radial basis function (RBF) 
network, aiming at optimizing the performance of the recognition and 
classification of novel attacks for intrusion detection. The optimal network 
architecture of the RBF network is determined automatically by the improved 
SOM algorithm. The intrusion feature vectors are extracted from a benchmark 
dataset (the KDD-99) designed by DARPA. The experimental results 
demonstrate that the proposed approach performance especially in terms of both 
efficient and accuracy. 

1   Introduction 

With the increasing number of computers being connected to the Internet, the security 
of communication networks becomes more and more important. Particularly where 
sensitive and confidential information is stored or transmitted, there is a vital 
importance of security. Among various other techniques, intrusion detection systems 
(IDS) are needed to protect against attacks.  

Currently, intrusion detection techniques can be categorized into misuse detection 
and anomaly detection. Misuse detection techniques usually recognize the signature 
of intrusion patterns that have been recognized and reported by experts. Anomaly 
detection techniques establish normal usage patterns. They can detect the unseen 
intrusions by investigating their deviation from the normal patterns. The current 
intrusion detection systems suffer a number of drawbacks that limited their efficacy in 
protecting against novel attacks. The crucial problems of intrusion detection systems 
are detection accuracy (false positive alarms and false negatives), real-time 
performance, new attack recognition, and scalability. The artificial neural networks 
provide a number of advantages in the detection of network intrusions [1, 3]. 

In this paper, we present an improved SOM-based RBF network approach for 
intrusion detection. The number of hidden neurons of the RBF networks is self-
adjustable. The best possible network architecture is determined according to the 
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input data by the proposed training algorithm. An improved SOM algorithm is used 
to automatically determine the centers and the number of hidden neurons. It does 
not require the many trial tests to determine the appropriate network architecture. 
This feature is user friendly for intrusion detection with large number of attack 
records. After completion of the training, the learned network is able to detect 
different types of attacks dramatically. Our obtained results indicate that the 
proposed neural network approach has significant advantages, such as the shorter 
training time, the easier choice of hidden neurons, the higher detection rate and the 
wider stable range. 

The rest of the paper is organized as follows. In section 2, we give a brief overview 
of the relevant works and background of the application of artificial neural networks 
to intrusion detection. In Section 3, we briefly introduce the RBF network approach 
and discuss the improved SOM algorithm. In Session 4, the proposed neural network 
approach is implemented in intrusion detection process, and the experiments reveal 
the performance of the proposed approach. Finally, the summary and conclusions of 
our study are drawn in Section 5. 

2   Related Works 

An increasing amount of research has been conducted on the application of neural 
networks for detecting network novel attacks. The multilayer perceptron (MLP) was 
used in [4] for anomaly detection and in [5] for misuse detection based on attack-
specific keywords. A cerebellar model articulation controller (CMAC) neural 
network [7] was applied in the detection of DoS attacks. A hybrid model of BP 
network and C4.5 was proposed in [6] for misuse detection. In that work, the model 
achieved a detection rate of 85% when it was tested on the KDD-99 dataset. The 
SOM was applied to perform the clustering of network traffic and to detect attacks 
in [16, 18]. The RBF network was also proposed in [8] for intrusion detection on 
sequences of system calls. 

When neural-network-based AI approaches are used for practical applications, 
there are always problems in determining the appropriate network architecture. In our 
work, we propose an improved SOM-based RBF network model. As a result, we are 
able to establish the optimal network architecture without going through the laborious 
trial-and-error process. This will be proved to be extremely useful for intrusion 
detection. 

3   Methodology 

3.1   Structure of RBF Network 

Radial Basis Function (RBF) networks consist of only one hidden layer with locally 
tuned neurons and are fully interconnected to the output layer. The structure of the 
RBF networks is illustrated in Fig. 1. 
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We assume data pairs ( , )n m
i ix R y R∈ ∈ of input and desired output. In intrusion 

detection, the attack features are the input vectors, and the attack types are the output 
vectors. The output of each RBF unit is as follows: 

1

( ) ( ),
hn

i ji j
j

y x w x cϕ
=

= −      1 oi n≤ ≤  (1) 

where in , hn , and on  are the numbers of neurons of the input, hidden, and output 
layers, respectively, jc  is the center of the neural network in the j th hidden 
neuron, ijw  is the weight between j th hidden neuron and i th output neuron. The 
nonlinear kernel function ( )ϕ has a radially symmetric shape. The Gaussian function 
is the most popular function by the following equation: 

2 2( / 2 )( ) ,rr e σϕ −=        ( 0, )r Rσ > ∈  (2) 

where σ  is the width of the radial basis function. 
Usually, the RBF network is trained by first finding centers of the network, which 

are parameters of hidden neurons, and then finding the weights between the hidden 
and output layer by a linear optimization strategy. The usual procedure for training 
such a network consists of two consecutive phases: 

 

Fig. 1. Structure of RBF networks 

(1) Unsupervised learning: The nearest center from the input vector is moved in its 
direction, such as k-mean clustering algorithm: 

 (3) 

(2) Supervised learning: The output layer weights are updated with the LMS 
algorithm. 
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3.2   The SOM-Based RBF Network 

Although the described networks as before are reported to be computationally rather 
efficient, they have some important drawbacks. Estimating an appropriate number of 
units is very dilemmatic. And the k-means clustering algorithm might be not at all 
optimal in some case. Consider a classification problem with two classes in anomaly 
detection, where most of the data vectors lie in two well-separated clusters, but the 
remaining vectors of both classes are scattered in several small clusters which are 
pretty close to each other. 

According to these, we employ a hybrid network architecture [9] which is 
composed of two kinds of networks such as a basic network and a cluster network. A 
RBF network and a Kohonen SOM [11] network are adopted as the basic network and 
cluster network, respectively, shown in Fig. 2. The input of the basic network is the 
same as the ones in SOM. 

 

Fig. 2. The SOM-Based RBF network 

SOM network performs unsupervised learning. It generates ordered mappings of 
the input data onto some low-dimensional topological structure. The relationship 
between the output nodes in SOM and the hidden nodes in the RBF network is one to 
one correspondence. 

(5) 

The RBF network performs supervised training using delta rule [12]. The weight 
vector belonging to the output in SOM are transmitted to the hidden node in the RBF 
network as its center of RBF activation function. 

3.3   Improved SOM 

In practical applications, the main drawback of the conventional SOM is that one 
must predefine the map structure and the map size before commencement of the 

arg(min ( ) ( ) )

( 1) ( ) ( ) ( ) 1,...,
k k
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training process. Usually, one must rely on numerous trial tests in order to identify the 
appropriate network architecture. In intrusion detection, we need a convenient 
approach to recognizing and classifying novel attacks. Hence, we derive a new 
approach from an improved SOM algorithm named CSG [13]. 

During the processing in the CSG algorithm, the network itself determines the 
growth of new neurons according to the activation level. The weight adaptation in the 
CSG algorithm is adapted slightly within the winner neuron and its direct neighboring 
neurons. The learning rate is small and does not decrease to zero. 

Fig. 3. A is the winner neuron, and B, C, D, E, F, and G are its direct neighboring neurons 

Fig. 4. Output map with connections of neighboring neurons 

The CSG algorithm enables a 2-D representation on the output map confined in a 
square region and the neurons are distributed on the 2-D map according to the density 
distribution of the input data. The neurons representing the dense region of the input 
data are densely distributed on the 2-D map, whereas those lying in the sparse region 
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of the input data are located on the sparse region of the 2-D output space. As a result, 
the nonuniform distribution of neurons on the output map is able to preserve the data 
distribution in the input space. The CSG output map is constrained in a square of unit 
length. All neurons are generated within the square. Each neuron corresponds to a 
square region with different size and neighboring neurons are connected to form 
neighboring relationships. A typical output map at a certain learning stage is shown in 
Fig. 3, 4, 5. 

Fig. 5. Input space with connections 

The algorithm of the whole process of the improved SOM-Based RBF network is 
outline as follows. 

Input: },...,,{ 21 nxxxX = ; /* the input dataset */ 

Output: },...,,{ 21 mwwwW = ; /the weight vectors */ 

Begin
Initialize the improved SOM’s structure;
Create a weighted connection 

kw  from each RBF cell C to 

the output unit i, }),...,1{( mi ∈  in the RBF network; 
Associate every cell in the RBF network with a Gaussian 

function: )2/( 22

)( σϕ rer −= .
while (classification error not low enough) do 
begin
repeat
Choose I/O-pair from training data;
Determine best-match unit S;
Increase matching for S and its first neighbors in 

improved SOM;
Compute activation for every cell;
Compute the vector of all output unit activations;
Perform one delta-rule learning step for the weights;
Add counter variable;

until  times 
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   Determine cell q with maximum resource value;
   Insert a new cell r between q and the direct 
neighbor f with maximum distance in input vector space;
   Give the new cell I an initial weight connecting to 
the output in the RBF network;
end
End

4   Intrusion Detection Process and Results

In this section, we experiment with the k-means-Based RBF and the SOM-based RBF 
and the improved SOM-based RBF by using the KDD-99 data [14] respectively, and 
compare the results of these three methods. 

In our study, the construction of a neural network intrusion detection system 
consists of three phases: preprocessing, training and testing. In preprocessing phase, 
we transform the randomly selected raw TCP/IP dump data into machine-readable 
form. In training phase, neural network is trained on different types of attacks and 
normal data. The input has 41 features and the output assumes different attack types. 
In testing phase, neural network is performed on the testing set. 

4.1   Data Preprocess 

The KDD-99 dataset was used for the Third International Knowledge Discovery and 
Data Mining Tools Competition. This dataset was acquired from the 1998 DARPA 
intrusion detection evaluation program. From the KDD-99 dataset, 132108 records  

Fig. 6. The preprocess of dataset 
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Table 1. Distribution of Attacks 

were chosen as our experimental data. The selected connections were further split into 
the training set and the test set, containing 52770 and 79338 connections respectively. 
We select 7 types of attacks in the training set and the testing set that are smurf attack, 
ipsweep attack, namp attack, rootkit attack, perl attack, buffer_overflow attack and 
guess_passwd attack in addition to normal dataset. The same data sets were 
respectively used in the experiments to evaluate the performance of the k-means-
based RBF and the SOM-based RBF and the improved SOM-based RBF in the same 
environment. The preprocess of dataset is shown in Fig. 6. 

4.2   Using the Neural Network  

The Performance of the classification of novel attacks for intrusion detection is 
evaluated in terms of the false positive and detection rates, estimated as follows: 

False Positive Rate = The number of False Positives

Total number of Normal Connections
(6)

Detection Rate =1- The number of False Negatives

Total number of Attack Connections (7)

Where False Positive (Negative) Rate is the number of Normal (Attack) 
connections labeled as Attack (Normal). 

In the training phase, we use initial training set of 52770 normalized I/O-pairs 
consisting of attack patterns, and normal user patterns. The training of the neural 
networks was conducted using the k-means-based RBF, the SOM-based RBF, and the 
improved SOM-based RBF network model respectively. Each network was set  
to train until the desired mean square error of 0.001 was met. Fig. 6 shows the training  



572 W. Pan and W. Li 

Fig. 7. The k-means-based RBF training on KDD-99 dataset 

Fig. 8. The SOM-based RBF training on KDD-99 dataset 

Fig. 9. The improved SOM-based RBF training on KDD-99 dataset 
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process. During the training process using the improved SOM-based RBF, the goal 
was met at 289 epochs with a performance of 0.00099784 by 43 hidden neurons in 
Fig. 9. In contrast, two other methods we tried took longer. The k-means-based RBF 
network converges in 983 epochs by 88 hidden neurons and the SOM-based RBF 
converges in 463 epochs by 51 hidden neurons, shown in Fig. 7, 8. As can be seen the 
number of epochs required by the improve SOM-based RBF is smaller than two other 
methods. 

Table 2. Confusion Matrix obtained  by the k-mean-based RBF 

Table 3. Confusion Matrix obtained  by the SOM-based RBF 

In the test phase, the testing set consists of 79338 connection records with 41 
features. As before, we test each network (the k-means-based RBF, the SOM-based 
RBF, and the improved SOM-based RBF).The classified results, the false and detect 
rate are obtained in confusion matrix shown in the following Table 2,3,4. 

Our obtained results indicate that the proposed neural network approach has 
significant advantages, such as the shorter training time, the easier choice of hidden 
neurons, the higher detection rate and the wider stable range. According to the tables, 
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we can see the improved SOM-based the average detect rate of 95.80%, the false 
positive rate is 0.63%. In contrast with other methods, the proposed approach model 
performs remarkably in intrusion identification.   

Table 4. Confusion Matrix obtained by the improved SOM-based RBF 

5   Conclusion 

In this paper, a new-style improved SOM-based RBF network is employed for the 
classification of novel attacks for intrusion detection. Our intensive experimental 
results on the KDD-99 dataset demonstrate that the proposed approach is able to 
deliver very high detection accuracy. The future work will address the remaining 
issues in the development of a complete intrusion detection system using the 
improved SOM-based RBF network. 
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Abstract. Distributed Denial-of-Service (DDoS) attacks misuse net-
work resource and bring serious threats to the internet. Detecting DDoS
at the source-end has many advantages over defense at the victim-end
and intermediate-network. However, one of the main problems for source-
end methods is the performance degradation brought by these methods
and no direct benefit for Internet Service Provider(ISP), which discour-
ages ISPs to deploy the defense system. We propose an efficient detection
approach, which only requires limited fixed-length memory and low com-
putation overhead but provides satisfying detection results. Our method
is also beneficial because the method can not only detect direct DDoS
attack for other ISPs, but also protect the ISP itself from reflector DDoS
attack. The efficient and beneficial defense is practical and expected to
attract more ISPs to join the cooperation. The experiments results show
our approach is efficient and feasible for defense at the source-end.

1 Introduction

Distributed Denial-of-Service (DDoS) attacks misuse network resource and bring
serious threats to the internet. There still is a lack of efficient defense mecha-
nisms. Current TCP based DDoS attacks include direct DDoS attack and re-
flector DDoS attack [1], which exploit TCP three-way handshake [2]. The direct
DDoS attack is launched by sending numerous SYN request packets towards
victim server. The server reserves lots of half-open connection which will quickly
deplete system resource, thus preventing the victim server from accepting legit-
imate user requests. The attackers perform TCP based reflector DDoS attack
by utilizing the automatic message generating ability of reflectors. The reflector
DDoS attacker sends SYN packets with the same spoofed source IP to some
public servers, which are called reflectors. These reflectors will automatically
send back reply traffic to victim host. The victim’s recourse or bandwidth will
be exhausted by congestion of replying packets.

According to the deployment location of defense systems, the current DDoS
detection and prevention methods can be classified into three categories: defense
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at the source-end, at victim-end or at intermediate-network. Compared to de-
fense at the victim-end and intermediate methods, defense at the source-end has
the following advantages:

– Low overhead for monitoring traffic. Detections at the victim-end or
at intermediate-network have to monitor numerous traffic. Detection at the
source brings low overhead to network infrastructure due to less traffic at
the source-end

– Little vulnerability to DDoS attack. The burden of monitoring numer-
ous attacking packets congesting at the victim side make the defense system
itself vulnerable to DDoS attack. Defense at source-end will avoid this prob-
lem due to limited attack streams near source end. This enable the defense
system itself has little risk of becoming potential target of DDoS attacks.

– Efficient response. As soon as attack is detected at the source, efficient
response can be adopted to filter malicious traffic. Compared to response at
the victim side, the overhead of performing response at the source is rather
low. More complicate and sophistical methods can be applied at the source-
end.

Unfortunately, one of the biggest problems for the source-end detections is a
lack of motivation to deploy them. Source-end detection requires widely deploy-
ment among different Internet Service Providers(ISPs), for example, RFC2827 [3]
requires to be implemented at all the ingress router. However, the ISPs can
not get a direct benefit from the deployments. Furthermore, the deployment of
source-end method will degrade the performance of network devices. The ISPs
are poorly motivated to join cooperation.

On the one hand, we should design more space and computation efficient
method, which does not evidently bring degradation. On the other hand, ben-
efits should be provided to ISPs to attract more ISPs to participate the widely
deployed source-end detection method. An efficient and beneficial method is
presented in this paper.

To save memory storage and computation cost, the Bloom filter[4] method is
modified and employed. The Bloom filter based method makes a tradeoff between
state-method and stateless-method. Stateless-method, which does not need to
record the states of each packet, can save storage and computation resource.
But these efficiency is obtained at the sacrifice of accuracy. State-method, which
monitors each packet behavior, is more accurate than the stateless-method. But
monitoring each packet is expensive and infeasible on the high speed link net-
work. The tradeoff method offers accurate detection results with little memory
and low computation overhead requirement.

Based on the space-efficient and computation-efficient method, we propose
a beneficial method, which can not only provide support for other ISPs against
direct DDoS attack, but also enhance the security of its own domain against
reflector DDoS attack. Thus it is expected to be adopted by more ISPs and
provide more accurate and prompt detection results.

In order to defense against direct DDoS attacks and reflector DDoS attack
at the source-end, we summarize the novel contributions made in this paper:
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– A data structure with limited storage cost is proposed on the basis of Bloom
filter. The fixed size memory is required, which avoids the potential DDoS
attack threat for most dynamic memory allocation methods. The data struc-
ture is space-efficient, which can be acceptable by more ISPs to join widely-
deployed source-end defense.

– A detection scheme with little computation overhead is presented to moni-
toring malicious packets. With proposed data structure, only addition and
subtraction operations are required, which brings litter overhead to current
computers.

– The proposed method provides direct benefits to the ISP who is willing to
join the cooperation. Both direct attack against other ISPs and reflector
attack against the ISP itself can be efficiently detected with our method.

The remainder of this paper is organized as follows. Section 2 introduces
the related work in the area of DDoS attacks research. In Section 3, the space-
efficient data structure is presented first. Then the detection schemes against
both direct DDoS attack and reflector DDoS attack are proposed. Experimental
results show that our approach can accurately detect a spoofed IP DDoS attack
with little overhead, which will be presented in Section 4. Section 5 offers our
conclusion.

2 The Related Work

According to the location of the detector, most of current spoofed IP DDoS at-
tack detection and prevention schemes can be classified into three categories :
the source-end, victim-end or intermediate-network. Detecting spoofed IP DDoS
at the victim server side encourages researchers because the deployment of IDSs
at the victim servers seems more practical. In [5] Wang detects the SYN flood-
ing attacks near the server side and the detector is installed at leaf routers that
connect end hosts to the Internet. Their method performs detection by monitor-
ing abnormal SYN-FIN pairs behavior and a non-parameter CUSUM method
is utilized to analyze these pairs. In Cheng’s work [6], their approach utilizes
the TTL in the IP header to estimate the Hop-Count of the each packets and
detect attacks by the spoofed packets’ Hop-Count deviation from normal ones.
Syn cache and cookies method is evaluated in Lemon [7] work, the basic idea is
to use cache or cookies to evaluate security of connection before establishing the
real connection with protected server.

The detection at the source end has more advantages but has deployment
difficulties. It is not easy to attract more ISPs to deploy source-end defense
in their domains. For example the RFC2827 [3] is to filter spoofed packets at
each ingress router. Before the router forwards one packet to destination, it will
check the packet whether belongs to its routing domain. If not, it is probably
a spoofed packet with malicious attempt and the router will drop it. However,
it may degrade routing performance, which discourages the ISPs to participate
defense. Mirkovic introduces D-WARD [8], a DDoS defense system at source-
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end. Attacks are detected by the constant monitoring of two-way traffic flows
and periodic comparison with normal flow models.

Defense at intermediate-network mainly includes filtering [9, 10, 11], trace-
back [12, 13, 14, 15, 16], and pushback [17]. Attack source traceback attempts to
identify the real location of the attacker. Most of the traceback schemes are to
mark some packets along its routing path or send some special packets. In [14]
the authors describe a series of marking algorithms starting from the simplest to
the more sophistical ones including node append, node sample and edge sample.
With the identification of real path of the spoofed packets, pushback technique
can be applied to inform upstream ISP to perform specified filtering [17].

3 The Efficient and Beneficial Approach

To make defense at source-end more attractive, we propose an efficient and
beneficial method. The proposed method has two main advantages: First, it can
give satisfying results with little storage consumption and computation overhead.
Second, it can provide protection for other ISPs as well as the ISP itself, who is
willing to deploy the method.

In this section, the TCP handshakes for different scenarios are analyzed first.
Then a space-efficient data structure, which is based on Bloom filter, is discussed.
With this data structure, the detection schemes against direct DDoS attack and
reflector DDoS attack are presented.

3.1 Analysis of TCP Handshakes

We first analyze the difference between normal traffic and attack traffic, including
both direct DDoS attack and reflector DDoS attack. The different three-way
handshake scenarios of normal TCP connection, direct SYN flooding attack and
reflector TCP attack are compared.

The normal three-way handshake is shown in Figure 1(a). First the client C
sends a SY N request to the server S. After receiving such request, server S replies
with a packet, which contains both the acknowledgement ACK and the synchro-
nization request SY N(denoted as ACK/SY N hereinafter). Then client C sends
an ACK back to finish the building up of the connection. All the three-way hand-
shake control packets will be observed at router Rc near the source-end.

In a direct DDoS attack, the three-way handshake will be modified. Fig-
ure 1(b) shows the difference. Direct attack usually uses the unreachable spoofed
source IP in the attacking packets to improve attack efficiency [18]. These pack-
ets will not trigger the third round of handshake. The detector at the source-end
will only observe the first round handshake, SY N , but never find the second
and the third round handshake.

The reflector attack uses the victim IP as the source IP in the attacking
packets and send these malicious packets to reflectors(Figure 1(c)). The reflector
is an innocent third-party and sends the reply traffic to the victim according to
spoofed IP address. Since the reflector does not need to be compromised before
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Fig. 1. Three-way handshake in a complete TCP connection and half-open connections
caused by direct DDoS attack and reflector DDoS attack

attack, the attacker can use many public servers in the Internet as the available
reflectors. If a host get an unknown ACK second round handshake packet, it
will send back a RST packet back to reset the TCP connection.

Table 1 gives a comparison of different scenarios of TCP three-way hand-
shakes.

Based on these difference, we deploy a detector near the side of attacking
source to monitor the status of handshake. For each connection, each round of
three-way handshake is monitored. If all the TCP control packets for a complete
connection are observed, this connection is regarded as legal. Otherwise, the
three-way handshake will be checked to find whether it matches some kind of
DDoS attack.

Keeping handshakes records for each connection is infeasible due to numerous
traffic on high link speed network. However, stateless method, which does not
keep records for each connections, may have high potential false negatives. To
make a tradeoff, a space-efficient data structure is proposed in the following
subsection.
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Table 1. TCP handshakes packets observed at the source-end for different scenarios

Scenario SY N ACK/SY N ACK RST

Normal Y Y Y N�

Direct DDoS Y N∗ N Seldom
Reflector DDoS N Y N Y

� Assume that there is no other network errors or congestion.
∗ Assume that the spoofed source IP does not belong to the same domain.

3.2 Space-Efficient Monitoring Table

Compared to stateless method, the state method exceeds in its accuracy. But
it requires significant memory and computational resource. To save the storage
cost and computation overhead, Bloom filter, a kind of space-efficient hash data
structure, is applied in our method.

Bloom Filter. Bloom filter is first described by Burton Bloom [4] and originally
used to reduce the disk access to differential files and other applications, e.g. spell
checkers. Now it has been extended to defend against DDoS attack [15, 19, 20].
The idea of Bloom filter is to allocate a vector v of m bits, initially all set to 0,
and then choose k independent hash functions, h1, h2, . . . , hk, each with range
{1, . . . , m}. For each element a ∈ A, the bits at positions h1(a), h2(a), . . . , hk(a)
in v are set to 1(Figure 2(a)). Note that a particular bit might be set to 1 multiple
times which may cause potential false result. Given a query for b we check the
bits at positions h1(b), h2(b), . . . , hk(b). If any of them is 0, then certainly b is
not in the set A. Otherwise we conjecture that b is in the set. However there is
a certain probability that Bloom filter give false result, which is called a “false
positive”. The parameters k and m should be chosen such that the probability
of a false positive is acceptable.
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Fig. 2. Bloom filter uses independent hash functions to map input into corresponding
bits
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Modified Monitoring Table. Considering numerous IP addresses in network
traffic, using limited m bit array to record IP address is not sufficient and may
bring high false positive. We make two main modifications to original Bloom
filter as Figure 2(b) shown: First, we use an array of counts table to substitute
m bit array. Second we split the IP address into several segments and hash them
separately into hash table.

After using counts table to replace m bit array, all the counts are initially 0.
When a key is inserted or deleted, the counts are incremented or decremented
by 1 accordingly. When a count changes from 0 to 1, the corresponding bit is
turned on. When a count changes from 1 to 0 the corresponding bit is turned
off. The number in the count indicates the current statistic results of traffic.

The IP address is split into k segments and in our paper k is set to 4. Then
each segment is an octet in IP address, which is convenient for process. Since
the value range for each octet is from 0 to 255, the m is set to 256, i.e. each
table contains 256 counts. If the IP address is directly hashed into monitoring
table as [20] did, there will occur serious hash collision. The reason is the counts
is rather limited compared to numerous values of IP addresses in the internet.
When the IP address is separated into several segments, the value range for each
segment is rather small for each segment.

In our defense method, both the source IP and destination IP are recorded
in hash table. In the Bloom filter, k tables by m bins with k independent hash
functions are used to record IP address of recent three-way handshakes. Although
it is possible that some segments of two IP addresses are mapped into the same
count in one table, the probability is rather little that all the segments of two
different IP addresses are mapped to the same counts in all k tables.

When recording a segment of the IP address, the segment is mapped into a
count according to the its value. For example, the IP address ‘202.114.64.2’ is
split into ‘202’,‘114’,‘64’ and ‘2’. The segment ‘202’ is recorded into the 202th
count of the table, ‘114’ into 114th count and so on. Our hash function does not
require any cryptographic one-way properties, which is impossible to reconstruct
the list of keys in a filter without doing an exhaustive search of the key space.
A simply function can be straightforward to compute at high link speeds.

The advantage of using Bloom filter is to save storage cost from using memory
of the complete 232 for possible IP address to k ∗ m address space. Although
reducing memory space may bring hash collision and further bring false alarms,
the errors are allowable considering large volume of memory is saved.

3.3 Detection Scheme

To detect both direct DDoS and reflector DDoS attack, the source IP and des-
tination IP are recorded in the different hash tables. Two sets of hash tables are
used for recording the source IP and destination IP. To illustrate the method
clearly, one set of hash tables is called destination IP table and denoted as Hd.
The other is called source IP tables and denoted as Hs. When a SY N packet is
captured from the outgoing traffic, the source IP and destination IP are hashed
into the hash table Hd and Hs respectively. If the corresponding count is 0, the
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Fig. 3. The DDoS attack alarm will be announced when there is at least one count in
each table beyond the threshold

corresponding count is turned on . If the count is already turned on, the count
is incremented accordingly. When corresponding ACK/SY N packet for the sec-
ond round of handshake is soon captured in the incoming traffic. Both the source
IP and destination IP are hashed into the hash table again. The corresponding
count is decremented by 1. When a count changes from 1 to 0 the corresponding
bit is turned off. The count will keep unchanged if the first two rounds of three-
way handshake are completely captured at the ingress and egress router at the
source side. These counts are reset for every period t. The setting of parameter
t will be discussed in Section 4.

When a direct DDoS attack happens, there is no any second round handshake
packet ACK/SY N sent back to response previous SY N . Therefore, the count
has no chance to be decremented by 1 for this handshake. It cannot recover to
original value because it has been increased by 1. When a DDoS attack happens,
an exceptional heavy volume of packets are sent toward to the victim. The value
of the count is expected to increase dramatically. If the value of a count exceeds
the predefined threshold during period t, this value is regarded as suspicious. In
Figure 3, the suspicious value is filled with gray color. If there is at least one
count in each table containing suspicious value, the DDoS attack alarm will be
launched. In Figure 3, there is a suspicious value in each table. The counts IDs are
143, 40, 89, 128 and IP 143.40.89.128 is reconstructed. This reconstructed IP is
called suspicious IP and it means there is suspicious traffic toward 143.40.89.128.

Detection scheme against reflector attack has the same philosophy as detec-
tion against direct one but uses different hash tables set. Hs is used for direct
attack detection and Hd for reflector one. If there exists suspicious IP in Hs,
direct DDoS attack alarm is announced and sent to the host with this IP. On
the other hand, if there exists suspicious IP in Hd, It means there is suspicious
reflector DDoS attack toward the this IP.

4 Experiments Results

Experiments are designed to evaluate the performance of our detection method.
First we discuss how set the parameter of reset period t. Then the network



584 Y. He et al.

simulator NS2 [21] is used to simulate DDoS attack scenarios. In NS2 simulation
the detection schemes against direct DDoS and reflector DDoS will be evaluated.

4.1 Parameter t Setting

The parameter t defines the reset period of each count in the monitoring table.
After each period t, the value in the count will be reset to 0. An appropriate value
for t will improve the detection results. When there is no attack traffic, the value
of count will keep constant because of the symmetric SY N and ACK/SY N
packets in handshake. To get a suitable t value, we first only play normal traffic
in simulation and observe the mean and the standard deviation of count values
according to different t. The experiment results are listed in Table 2:

Table 2. The mean and standard deviation of count values for different parameters t

t(sec) mean standard deviation
0.3 -0.25 3.277
0.5 2.6075 2.1299
1 4.6418 1.6921
5 21.2667 4.5586
10 43.0 5.5976
15 63.4 5.8566

When the t is set a larger value, the mean grows larger because there are
more unfinished handshakes during a larger t period. The unfinished handshake
will increase the value of the count. The larger t may effect the accuracy of
detection because it brings difficulty to decide whether the large value is caused
by malicious traffic.

The smaller value for t ensures early detection against a DDoS attack and
the mean value is approaching zero. The little value of count can distinguish
the normal traffic from the attacking traffic. But the smallest value for t is not
always the best choice. From the standard deviation column, we find the smaller
value for t may cause larger deviation value, which means the value fluctuates
more frequently for small t. It is because during the less t period for sampling
handshakes will indicate the more deviation.

We should make a tradeoff between the less mean and less deviation to ensure
the accuracy and stability of detection results. In the following experiments, the
t is set to 1 second.

4.2 Detection Results

To evaluate the detection method against direct DDoS, three scenarios are de-
signed: there is no attacking traffic, the total traffic contains 1% attacking traffic
and the total traffic contains 5% attacking traffic. The network delay from the
source to the victim server is set to 100ms and the bottleneck bandwidth for
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Fig. 4. The value of a count increases when a direct DDoS attack begins and it de-
creases when a reflector DDoS attack happens

victim server is 10M. The attacking traffic begins the 20 second and the whole
simulation last for 80 seconds. The detection results are shown in the Figure 4.

As the figure shown, when the attack begins, the score will increase and
distinguish itself from normal score. When there is more attacking traffic, the
score will be increased more dramatically. Figure 4(c) shows the 5% attacking
traffic triggers a much larger score than 1% attacking traffic in Figure 4(b). Our
method can accurately find the abnormal score caused by direct DDoS attack
with fixed-length monitoring table.

Then the performance of reflector DDoS attack detection is evaluated. In
reflector attack experiment, the parameter setting in NS2 is almost same as
the direct one except that the spoofed source IP is filled with the victim’s IP.
Therefore, malicious traffic will be reflected to the victim by innocent reflectors.
From Figure 4(d), we can see the value of count decreases evidently when a
reflector DDoS attack is launched. The decrease is explained by the existence of
numerous reflected ACK/SY N packets. These packets will decrement the value
in the count while there are no previous corresponding SY N packets to increase
the value. Thus the value will be reduced sharply.
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5 Conclusion

In order to attract more ISPs to attend the source-end defense, we propose an
efficient and beneficial method in this paper. On the one hand, the method is
efficient. Based on Bloom filter, a space-efficient data structure is discussed and
fixed-length table is used to monitor traffic at the source. A simple but efficient
detection scheme is presented, which brings little computation overhead. On the
other hand, the method is beneficial. the method can not only provide direct
DDoS alarm to other ISPs, but also protect the ISP itself from reflector DDoS
attack. From the experiments results our method gives accurate detection results.

The low resource requirement brings limited performance degradation to ISPs.
It also provides benefits to ISP, which will motivate more ISPs to join the widely
deployment of source-end defense. Our method is a more practical method than
most of current source-end methods. In future work, the detection scheme will be
applied to real internet to evaluate the feasibility and effectiveness.
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Abstract. Scientific collaboration has emerged as an important tool for getting 
forefront research results by interoperating geographically distributed scientific 
equipment to solve complicated scientific problems. Grid technologies offer 
effective strategies to achieve this ambitious goal. However, more capabilities 
are required in the context of Equipment Grid due to the complexity of 
collaboration between equipment resources. In this paper an interesting 
equipment interoperation chain model is proposed. Equipment resources are 
organized into equipment pools, based on which the interoperation chain of 
equipment is built. The performance is discussed by means of several theoretical 
tools like Petri Net and -Calculus from the different viewpoint of users. The 
structure of interoperation chain is proven highly efficient and feasible. Finally 
we analyze the prospective direction and challenges in this field. 

1   Introduction 

With the development of scientific research and continuous emergency of cross-
discipline studies, it becomes highly desirable to share related knowledge and 
equipment, especially those expensive or rare ones. However, due to different 
communication protocols and data formats, information cannot be easily integrated and 
understood by each other, making it difficult to achieve this ambitious goal and thus 
affecting the research severely [1]. Besides that, many scheduling and management 
problems remain unresolved in this context for large scale scientific applications. 

Fortunately, grid technologies provide revolutionary ways to couple geographically 
distributed equipment resources and solve above problems in wide area networks 
[2][3][4][5][6]. The ultimate goal of grid is to build an information processing 
infrastrucrure by intergrating high-speed Internet, supercomputers, sensors, 
instruments, databases and people in the world together and make them be an organic 
macrocosm, providing nontrivial quality of services [3]. Meanwhile, there is no need 
to know the location of such services. Thus we can enjoy unprecedented super 
computing power just as if we are using electric power. This provides an advanced 
means for the remote sharing and cooperation of equipment and instruments. 
                                                           
*  This paper is supported by China “211 project” “15” construct project: National Universities 

Equipment and Resource Sharing System and China Postdoctoral Science Foundation (No. 
2003034155). 
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Equipment Grid provides an abstraction of equipments, then presents and publishes 
their functionalities in the form of grid service to some granularity. Each service 
clearly shows its processing flow and value. Users can conveniently utilize published 
services despite their intrinsic specific technologies. Any service conforming to the 
certain standards may become an element in a workflow, and any change from one 
participant will not affect its cooperative counterpart. In such way, the uniform 
operation and cooperative sharing of equipment can be achieved [7][8][9][10]. 

However, more capabilities are required in the context of Equipment Grid due to 
the complexity of collaboration between equipment resources. To accomplish a 
complicated task, equipment grid application often integrates with a large number of 
equipment to cooperate, which involves not only selecting appropriate equipment 
service, but also ensuring the optimization of service flow.  

In this paper, a promising equipment interoperation chain model is proposed from 
the perspective of the grid users in the context of Equipment Grid. Interoperability 
means multiple equipment or equipment systems can provide and accept services 
between each other, so as to endow their ability of unified and effective operability. 
Such ability should satisfy corresponding criteria when exchanging control and/or 
data information. Interoperability involves several aspects of two levels: technical 
interoperability that equipments send information and utilize information among each 
other, and semantic interoperability that equipments have the same understanding of 
the same information with each other. 

The rest of the paper is organized as follows. In Section 2, we examine some 
related work on equipment grid and equipment interoperation. In Section 3, we show 
the equipment resource organization model called equipment pool. It is precondition 
of equipment interoperation chain modeling. And Section 5 presents the equipment 
interoperation chain model and its performance analysis. In Section 5, we present the 
design of an equipment interoperation chain system based on the proposed model and 
show how the equipment interoperation chain works in equipment grid. Finally, 
Section 6 concludes this paper. 

2   Related Work 

E-Science is about global collaboration in key areas of science and the next 
generation of infrastructure that will enable it. It is important to share precious 
equipment such as satellites, Hubble Telescopes, etc [11][12]. NEESgrid is 
implemented as a national network-enabled collaboration for earthquake engineering 
research. Members of the earthquake engineering community will be able to interact 
with one another, access unique, next generation instruments and equipment, share 
data and computational resources, and retrieve information from digital libraries 
without regard to geographical location [13]. DataGrid is a project funded by 
European Union [5][6]. The objective is to build the next generation computing 
infrastructure providing intensive computation and analysis of shared large-scale 
databases, from hundreds of TeraBytes to PetaBytes, across widely distributed 
scientific communities. Our goal is to exploit a combination of advanced networking, 
middleware services, and remote instrumentation technologies to achieve interactive 
"better - than - being - there" capabilities for remote experiment planning, instrument 
operation, data acquisition, reduction and analysis. These capabilities are being 
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deployed and evaluated at several X-ray crystallography facilities including the 
Advanced Light Source and the Indiana University Molecular Structure Center. China 
Education and Scientific Research Grid Project (ChinaGrid) is another grid program, 
aiming at constructing public service systems for education and research in China 
[14]. An education resources sharing grid (CersGrid) based on network was 
investigated and developed by Tsinghua University and it is expected to improve 
education equipment collaboration. However, to realize equipment interoperation in 
grid still has a long way to go. 

Equipment interoperation chain is the "system of systems" coupled by grid 
technologies, which can realize interlink, interconnection and interoperation of all the 
equipment nodes, and improve the automation of information acquisition, processing, 
publishing and utilizing. By means of OGSA (Open Grid Service Architecture) 
[16][17], unified information presentation and consistent using manner can be set up 
for different systems, therefore correct understanding is formed, correct interoperating 
behavior is produced, and in this way interoperation is upgraded to cognitive domain. 
With unified platform, interfacing standard and interfacing flow, any information 
resource, equipment and so on. As long as they conform to the specification, they can 
provide or acquire information to and from the grid, automatically realize the 
interoperation with other equipments. With the technology of XML, information form 
can be normalized, differences in data management, storing form and searching 
manner of various information systems can be shielded. As a result, the problem that 
"some obtained data can not be used or can not be conveniently used" is resolved, and 
in unified semantics information interoperability, high-degree integration and sharing 
are achieved. 

3   Equipment Resource Organization Model: Equipment Pool  

Based on the current schemes of equipment management, equipment will be classified 
by a new criterion. A concept of “meta-equipment” is introduced and then a global 
uniform hierarchical equipment grid model called an equipment pool is build. The 
equipment pool consists of same kind of equipments and different kinds of equipment 
pools constitute an equipment pool alliance. Equipments of same kind will then 
logically be organized and managed in a dynamical equipment pool. Equipments 
distributed geographically will be connected with high-speed networks and 
agglutinated with technically designed middleware software. Through the Web 
interface, it receives the requests from scientific researchers here and there for 
experiments and dispatches them to a proper node. The equipment pool supports 
equipment joining and leaving dynamically. It extracts equipment resource 
parameters from the heterogeneous to from the basis of the uniform equipment 
resource presentation and avoids blindness for equipment resource choosing 
effectively. This will greatly improve the service quality and utilization rate and avoid 
the low efficiency and complexity caused by the distributed applications to meet the 
demand of practicability under present conditions. In this way, the whole system acts 
as a dynamical aggregate of different equipments, namely a dynamical equipment 
pool alliance. As Fig. 1 shown, different equipment and different equipment pools 
interconnect to form the interoperation chain of different equipments to provide high-
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level service to the users. In a word, integrally, the system presents a three-layer 
framework structure of “equipment- equipment pool- equipment pool alliance” to 
achieve layered management and then reduce the costs. The equipment pool is the 
equipment resource organization model and it provides precondition to the equipment 
interoperation chain. 

 

 

Fig. 1. Equipment pool 

4   Equipment Interoperation Chain Modeling and Analysis 

4.1   Equipment Grid and Its Interoperation Chain Model 

Based on the equipment pool as shown in Section 3, an equipment grid can be 
regarded as a 4-tuple: },,,{ ∏= MPRUDIG .  

U : Set of grid users, including the resource provider and the resource consumer 
and tagged oSU Pr  and ConSU  respectively. ConSoS UUU UPr= . For there might be some 

cases that a consumer is also a resource provider, we can see Φ≠∩ ConSoS UU Pr . 
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R Resources in the system, including equipment resource set D  and other 
assistant resource set A  (such as network, etc.). The reason we divide the resources in 
the system as two parts is that we will emphasize the main entity in the system: the 
sharing mechanism of equipment resource research. )},(;{ Pr oSUuTtOpTD ∈∈= , T  is 

type set of the equipment resources, u  is subset of the resource provider, Op  denotes 
the operation set offered by the t  types of equipment resources provided by u . 
Following the trend of SOA (Service-Oriented Architecture) service architecture, 
each sharing operation of each resource will publish a service in the equipment grid 
system. Therefore, the equipment resource set D  equals the set of operation, that’s to 
say )}({ Pr oSUuOpD ∈= . 

P : The sharing rule set of the resource set by the resource provider. It can be 
described as the following mathematical expression: 

}/,,{Pr ANnoyesOPUU ConSoS →∗∗ The value will certain be AN /  if a user who do not 

have the possession right ANUtopUU /))1,1(,2,1( = , if 1UUI ≠ , as said above, it shows 
that 1U  do not have the possession right of the equipment resource belonging to UI . 

∏M The set of the equipment interoperation chain is based on workflow. It 

expresses the operation combination mode between the equipments. The operation 
interoperation model can be a combination of different functional operations of the 
same type of equipment or of different ones. So we can get )},(,{ utOPopopM ∈= +

∏ . It 

aims to record at large the equipment interoperation chain through the construct of 
equipment operations in the system using a flexible description to provide high-level 
service. 

4.2   Analysis  

Based on the definition of the 4-tuple equipment grid model discussed above, we will 
study the behaviors and features based on Petri Net and -Calculus theory separately. 

For the service providers, they mainly concern the utilization of the sharing local 
equipment resource, the local load caused by the grid actions, i.e. the effect on the 
local resource caused by running of the grid system and behaviors of the consumers. 
Petri Net is a systemic description method mainly droved by status, and is proper for 
static description of the component and service internal behaviors. Furthermore, the 
visual description of Petri Net makes the system description more intuitionistic. 
Because the scale of the local service system on one site is small, it is easy to rage the 
behavior situations. It is therefore feasible to model the running situation using the 
Petri Net method. 

For service consumers, they care how to use the service in the grid system fast and 
better. They accentuate the pace and service quality, and this is mainly about the 
optimization of the service combination in the dynamical service composing, so it can 
be merge into the research work of a system layer. The exclusive work of this part is 
the deadlock and the verification of the reachability. Because the resource owners can 
set the access right of their shared equipment resources, each service selection at the 
dynamical service combination period must accord to the access right of the 
consumers on the resource when they visit the grid interoperation chain system. 

For the system, the running situation of the overall grid environment, such as the 
feasibility and efficiency of the combination of different services, system wasting 



 Study on Equipment Interoperation Chain Model in Grid Environment 593 

overall, etc., should be emphasized. The running of the whole grid system does not care 
the internal situation of each service. Service can be regard as an independent running 
entity. So we can give much concern about the interaction between behaviors visible 
outside and dynamical change between services. Moreover, the whole grid system is 
more complex than the partial local environment. What’s more, the actions and 
behaviors of the system trend are incertitude and pluralistic. So -Calculus is suitable 
for system action and behavior describing is mobile, it is easier and more suitable than 
Petri Net when describing the dynamic change between services. Concretely, on the 
premises };;{ PRU  is already defined, elements in )},(,{ utOPopopM ∈= +

∏  will be 

validated about the deadlocking and reachability using -Calculus and similar elements 
will be analyzed and compared using a equivalent comparison method to give the 
evidence for selecting and optimizing in dynamical service combination. 

5   The Equipment Interoperation Chain System 

Based on the equipment interoperation chain model proposed in Section 4, we 
designed an equipment interoperation chain system based on SOA service 
architecture, as Fig. 2 shown. The logical model “Information center” records all kinds 
of information. Information about the equipment and nodes in the system submits at 
the component of “equipment/node information warehouse” in the information center, 
and the content to submit includes portal information, deployment information, the 
equipment category and parameter attributes, the access and control information of 
the equipments, etc. The definition of the flow of the equipment resource 
interoperating workflow is recorded at the “workflow warehouse”. In Fig. 2, a 
workflow definition example of “call the service 3 firstly, and then service 4” is 
shown, and this flow is named “workflow 1”. 

Certain nodes have their own local operating environment for equipment, and the 
basic functional interface of the equipment resource is published in services. The 
combination flow of multiple equipment resources in a node can be defined and saved 
beforehand, then released as a service to provide high-level function. In Fig. 2, the 
flow database of node A describes that the flow of service 4 calls service 1 first, and 
then service 2. 

The data representation mode in the local operating environment of equipments 
may be specific. The high-level data in the object system should be mapped to the 
relevant local data, and this will be done by “object transform interface module”. The 
model of “concrete implement environment” will take charge of a certain implement 
process of the equipment. 

The logical module “job manager” or “resource agent” will accept the job request 
from users. When receiving a request, the job manager would query the flow 
definition of the work flow from the “workflow warehouse” in the information center; 
then for each operation, query “equipment/node information warehouse”, select the 
resource according to users’ demand for access right and matching conditions or 
scheduling rule made previously, transmit the operating request to the objective node, 
and continue the resource choosing and scheduling for the next operation. Fig. 2 
shows a user’s job flow for workflow 1: there are two operations in workflow1. The 
first  one  is  service  3, and its result of dynamical choosing and scheduling is node B.  
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Fig. 2. The Equipment Interoperation Chain Architecture 

The job manager sends the request to node B. when service 3 is finished it is the turn 
for the second operation of service 4 in workflow 1. Node A is selected this time. So 
the request and result from service 3 is transmitted to service 4 of Node A; service 4 is 
high-level service made up of service 1 and service 2. According to the flow setting in 
the flow database, service 1 and service 2 are called successively. Each non-combined 
service, such as service 1, service 2, service 3, corresponds to a basic operation 
provided by the concrete equipment respectively. 

6   Conclusions and Future Work 

Based on grid technologies and SOA service architecture, the equipment 
interoperation chain provides effective strategies to handle interoperation issues in the 
context of equipment grid. Equipment resources are organized into equipment tools 
according to some certain criterions. Accordingly, virtual equipments integrating 
equipment resources distributed across a machine room, institution, or the globe are 
created, which is used to perform interoperation and share services. The performance 
and characteristic of the equipment interoperation chain are also discussed by means 
of Petri Net and -Calculus theories. The abstract model of target equipment grid is 
also brought forward. 

Needless to say, achieving this vision requires us to overcome many challenges. 
We must learn how to research the problems that we want to solve the equipment 
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resource services which are available to use and we need to discover the way to knit 
those equipment resources and interoperation chains into grid environments. What’s 
more, how to validate and optimize interoperation chain models is the key to the 
equipment grid and it is an emergency to find an efficient solution. Anyway, with this 
challenge comes the opportunity, and as this rich, distributed environment enables us 
to tackle problems that would simply not be possible with today’s technologies. 
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Abstract. Grid computing virtualizes heterogeneous geographically disperse 
resources. Because of the characteristics of the grid environment, the concept of 
‘user’ is different from that of traditional local computing environment. That 
mean, new resolution that providing the end-to-end user identity from grid user 
to local account is needed. In this paper, we design and implement an account-
ing information gathering and service (AIService) system. To resolve this prob-
lem, we designed a grid access control system, called PGAM. Usage Record of 
UR-WG in GGF is used as a common usage record. And we designed and im-
plemented a grid service which provides the gathered accounting information. 

1   Introduction 

Grid computing represents the fundamental computing shift from a localized resource 
computing model to a fully-distributed virtual organization with shared resources 
[1][2][3][4]. Fueling the emergence of Grid computing is the ever-increasing cost of 
local information technology resources. With the Grid, companies achieve a cost 
efficient and effective mechanism for building and deploying applications across a 
wide spectrum of devices. 

There are several commercial obstacles, most notably security and accounting, that 
have impeded the widespread adoption of the Grid. Several projects around security 
and authentication have begun both within and outside the Grid community, enabling 
companies to confidently use Grid services. Accounting for these services has until 
recently, been a sparsely-addressed problem, particularly in practice. The Grid com-
munity has yet to produce either framework or, better still, an implementation of Grid 
accounting [5][6]. 

We design and implement the accounting information gathering and service sys-
tem. The gathering process is an implementation of monitoring block of GSAX (Grid 
Service Accounting Extension) framework [5] of RUS-WG (Resource Usage Service) 
in GGF. Grid accounting information service is named as “AIService” and is based on 
OGSA (Open Grid Service Architecture). It is included as a part of KMI [7] which is 
an integrated Grid middleware package. 

To provide end-to-end user identity of accounting information on each resource, 
we use a Grid access control system, called PGAM [9]. This system works on hetero-
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geneous resources and can be applied to the additional service development and its 
service. PGAM uses globus toolkit as its default middleware which is the most widely 
adopted Grid middleware in the world. PGAM tries to support site autonomy, a factor 
which encourages a site to get into the Grid environment, and provides template ac-
count mechanism. 

And the schema of gathered and serviced accounting information is followed Us-
age Record - XML Format [10] of UR-WG (Usage Record) in GGF. The system 
comprises of several modules which work independently from each other. In  
addition, a portlet (AIService) to view the gathered accounting information has 
developed. 

2   Related Works 

The area of Grid accounting has also been investigated by others [5][10][11][12]. 
Some of these have provided guidance in outlining the accounting information gather-
ing system architecture. 

2.1   GSAX 

GSAX [5] is an extensible OGSA accounting and logging framework. It is designed 
to provide a functionally modular accounting framework which can be expanded by 
adding or changing components, to allow use of accounting at many levels of applica-
tion and user understanding, to provide information at different levels of granularity 
(from real-time information to data on a per-job basis), to integrate QoS and service-
level agreements into the accounting framework, and at different levels, to be inde-
pendent of any economic model, and to allow dynamic pricing stages. This frame-
work is not tied to Grid or OGSA and can easily be adapted to scale with the growth 
in accountable web services. 

The implementation of accounting information gathering process is an implemen-
tation of monitoring block of this framework. That means, this design gathers raw 
accounting information from each local site and produces grid-aware accounting 
information and may provide interfaces to communicate with metering block of this 
framework. 

2.2   DGAS 

DGAS (DataGrid Accounting System) model, developed by DataGrid Project [11], 
envisions a whole new economic Grid market, where supply and demand of Grid 
resources work in unison to strive towards equilibrium where all resources are fully 
utilized to the lowest possible price. The Home Location Register (HLR) acts as a 
local bank branch managing the fund status of a subset of Grid users and resources 
(one-bank-per-VO). 

But, DataGrid employs a centralized resource broker intercepting all jobs within 
the Grid. Such centralized solutions are not in agreement with the decentralized nature 
of the Grid. 
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2.3   Usage Record (UR) and Resource Usage Service (RUS) 

UR-WG in GGF provides information to the Grid community in the area of usage 
records and accounting.  A UR defines a common format for exchanging basic ac-
counting and usage data over the Grid. URs contain usage information which could 
potentially be collected at Grid sites, such as CPU-time, memory and network usage. 
A UR is an XML document whose structure is specified in a schema defined in terms 
of the XML schema Definition (XSD) [13] language. URs can be stored in a Resource 
Usage Service (RUS) [14], which is a Grid service for publishing and retrieving in-
formation about resource usage. 

3   Design of Accounting Information Gathering System 

Designed and implemented system uses the globus toolkit as its default middleware 
which is the most widely adopted grid middleware. But, the globus toolkit is lack of 
end-to-end user identity. 

3.1   Identity in Globus Toolkit 

Globus toolkit is one of the most widely adopted grid middleware in the world. 
Globus toolkit comprises a set of components that implement basic services for re-
source management, information service, data management, grid security, etc. GRAM 
(Grid Resource Allocation Manager) is responsible for access to remote resources, co-
allocation of distributed resources, and processing of heterogeneity of resource man-
agement.  The gatekeeper is an extremely simple component that responds to a re-
quest by doing three things: performing mutual authentication of user and resource, 
determining a local user name for the remote user, and starting a job manager which 
executes as that local user and actually handles the request. Normally, when a request 
for access is received, the gatekeeper attempts to find the corresponding local user-
name in the “grid-mapfile.” This file lists pairs of certificate subjects (e.g., 
 

 

Fig. 1. Major components of the GRAM 
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“/O=Grid/O=Globus/OU=chonbuk.ac.kr/CN=hdg” gw1 
“/O=Grid/O=Globus/OU=chonbuk.ac.kr/CN=dgs” gw2 
“/O=Grid/O=Globus/OU=chonbuk.ac.kr/CN=kyun” gw2 
“/O=Grid/O=Globus/OU=chonbuk.ac.kr/CN=duan” gw3 

Fig. 2. An example of "grid-mapfile" 

“/O=Grid/O=Globus/OU=chonbuk.ac.kr/CN=hdg”) and usernames (e.g., gw1). If no 
line is found for the current subject, access request is denied. 

In the original syntax of this file, several certificate subjects can be mapped to one 
local username. But, this mechanism cannot guarantee end-to-end user identity: who 
is the owner of local process or job, if there are several certificate subjects mapped to 
one local username. If the site administrator wants to trace the usage of local resource, 
he must deploy other monitoring or tracing tool which is implemented by kernel pro-
gramming. For example, if there are process which is invoked by local account ‘gw2’ 
in fig. 2, who is responsible for these processes? Also, sharing of the same right to 
local files, directories and mails by multiple grid users can cause security problem, 
digging into privacy. 
 

 

Fig. 3. Function of PGAM 

3.2   PGAM 

To guarantee end-to-end user identity, we adopted PGAM. It uses only 1-to-1 map-
ping of certificate subject and local username. But 1-to-1 mapping can cause a heavy 
load on the site administrator and local system. So, PGAM implements template ac-
count mechanism [15] to reduce the burden of administrator and local system. 

When a grid user requests a right for access to local resource with his credential 
and personal information and job specification, PGAM creates new thread to process 
it. Each thread processes interaction from client, logs all the record during operation, 
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enforce local resource management policies (e.g., pool of available local usernames, 
client host policy, stage policy, personal information policy, local resource’s status 
policy). By using this system, we can get end-to-end user identity. In figure 4., PGAM 
provides mapped information to convert local accounting information to grid-aware 
accounting information. 

 

Fig. 4. Conversion of local accounting information to grid-aware accounting information by 
help of mapped information 
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Fig. 5. System architecture with PGAM 
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3.3   System Architecture 

Figure 5 shows a schematic view of this system.  This system is divided into two 
major parts: accounting information gathering and accounting information service. 
Local accounting information, which has different format and meaning at each site, is 
transformed into a uniform grid accounting information with PGAM.  And this sys-
tem serves the requested information as an OGSI-compliant service if user or other 
authority requests accounting information. 

3.4   Schema of Usage Record 

Accounting in the grid environment is very different from that in the traditional com-
puting environment, because the concept of the user is different from the traditional 
local user and the format of accounting data of each system is different from each 
other. Accounting information in the grid environment is not produced by the local 
user but by the grid user. The format and meaning of accounting information pro-
duced by OpenPBS is different from that produced by LoadLeveler. To build an ac-
counting information service, which incorporates heterogeneous systems, each gath-
ered accounting information must be transformed into a standard format. 

In this paper, we choose Usage Record, suggested by UR-WG in GGF, as a stan-
dard format of the gathered accounting information.  Usage Record is represented in 
an XML format and intended to be a common exchange format. 

3.5   Gathering Accounting Information 

We design the accounting information service system to be independent from any 
other services or resources and to follow the GSAX framework. Each resource gathers 
its raw accounting data and converts into the standard format and sends to accounting 
information tracking server. 

Because of characteristics of the grid environment, most of grid programmers try 
to keep the autonomy of each site with minimum intrusion. Thus, the use of the output 
of the local accounting system is preferred to the use of intrusion into local system 
kernel.  So, we decided to use the accounting log of each local scheduler.  If local 
system uses fork as local scheduler on Linux, we will use the package ‘psacct’ which 
contains several utilities for monitoring process activities. If local system uses 
OpenPBS as local scheduler, we will use the accounting log produced by OpenPBS. If 
local system uses LoadLeveler, we will use the output of LoadLeveler. 

Most of Unix operating systems provide utilities for monitoring process activities 
on each system. For the Linux, psacct package contains several utilities for monitor-
ing process activities. The result of the process monitoring is saved into the file 
“pacct”. The location of this file is different from each operating system and site. We 
use this file to extract process accounting information. This file contains information 
sufficient for Minimum Set of Usage Record. The extracted process accounting in-
formation from this file is sent to accounting information database in the Accounting 
Information Service. We tested it for IBM AIX 4.3.2, IBM AIX 5.1L, Linux 7.3, 
Linux 9.0. 

Figure 6 shows the architecture for gathering process accounting information. If a 
machine is structured as a cluster, AITC is located in the front node only and creates 
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NodeController for each slave node. For each slave node, NodePacct collects process 
accounting information from the file “pact” and interacts with NodeController. AITC 
gathers process accounting information and converts into standard grid-aware ac-
counting information with the information from PGAM and sends to accounting in-
formation tracking server. 
 

 

Fig. 6. Architecture for gathering process accounting information 

 
Environments variables for this system is contained in “NodePacct.config” and check 
points for reading the file “pact” is contained in “NodePacct.log.” PGAM provides 
the end-to-end user identity from grid user DN to local account. So, AITC collects 
only processes which are invoked by local accounts which is indicated by PGAM. 

Figure 7 shows the architecture of gathering job accounting information produced by 
LoadLeveler.  AITC gathers local job accounting information from LoadLeveler, con-
verts into standard grid-aware accounting information with help of PGAM, and sends to 
accounting information tracking server. AITC in figure 7 is the almost same module in 
figure 6. AITC converts accounting information which is identified by local account 
into grid-aware accounting information which identified by grid user DN. Client for 
OpenPBS has similar architecture and operations to that for LoadLeveler.  

In most cases, job scheduler has its own home directory and this directory is shared 
by each node.  So, accounting information tracking client will be usually installed in 
the master or the front node of cluster. In Figure 7, ‘LLUsageTracker.conf’ is a con-
figuration file that stores the LoadLeveler’s home directory, the name of the file 
which contains LoadLeveler’s slave nodes (LLNodes in Figure 7), and other related 
information. 

Because the architecture of this tracking system is layered, extension to other job 
manager or other kind of platform is very easy. If new platform is planned to be in-
cluded into the domain, all the need work is the development of the client for new 
platform and the registration on database server. 
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Fig. 7. Architecture of accounting information tracking client for LoadLeveler 

3.6   Accounting Information Service 

The gathered grid accounting information is served as an OGSI-compliant service. 
We named it as “AIService.” To be an OGSI-compliant service, globus toolkit 3 must 
be installed in database server. Because multiple users can request his accounting 
information to one accounting information service simultaneously, this service must 
consider this relationship. We use GridSphere as our portal framework to build a 
client of this service.  GridSphere provides a complete portal framework based upon 
the portlet API and a minimal set of core portlets. 
 

 

Fig. 8. Accounting information service using GridSphere

4   Implementation 

We implemented this system in the following environments. For the portability of this 
system, Java is selected. We use MySQL for DBMS. But, for the service following 
OGSA, we would like to recommend the native XML database [16]. 
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In the test the software conditions are given as follows: 

Language : Java 1.4.2 
DBMS : MySQL 
OS : Redhat 8.0, 9.0 / AIX 5.1L 
Job Manager : OpenPBS on Redhat 8.0, 9.0 / LoadLeveler on AIX 5.1L 
Portal Framework & Middleware : GridSphere 2.0.2, Tomcat 5.0.28, GT 3.0.2 
 

 

Fig. 9. An example of gathered process accounting information 

 

Fig. 10. A sample gathered grid accounting information 
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Figure 9 shows an example of gathered process accounting information. We can 
see all the required information without the grid user identity. To find the grid user 
who is responsible for these processes, utilities for access control in the grid environ-
ment is needed[9]. 

Figure 10 shows an example of gathered grid accounting information. This ac-
counting information is expressed and stored as XML format [10]. By the operation 
of PGAM, the entity ‘<urwg:GlobalUserDN>’ is included. Without this entity, we 
cannot identify which grid user is the real owner of this accounting information. With 
this information, we can identify the real grid user and we can create new service 
based on this accounting information. 

 

Fig. 11. AIService : a portlet for grid accounting information service 

Figure 11 shows a view of the portlet for grid accounting information service. We 
developed this portlet to show the original grid accounting information in XML for-
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mat and to show as table and to show a chart. Figure 12 shows table view of this grid 
accounting information. Other value added service can be easily developed based on 
this service. 

 

Fig. 12. AIService’s table view 

5   Conclusion and Future Works 

In this paper, we designed and implemented the grid accounting information gather-
ing system and its service. This system follows the GSAX framework and the  
accounting information is formatted so that it follows Usage Record suggested by 
UR-WG in GGF. And we developed its service as an OGSI-compliant service. This 
system and service is very easy to maintain. Because the architecture of the gathering 
system is layered, extension to other job manager or other kind of platform is very 
easy. 

But, for the future application, the native XML database would be used as DBMS. 
And more various kind of Job Manager would be considered. 
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Abstract. With the dramatic development of grid technologies, performance 
analysis and prediction of grid systems is increasingly significant to develop a 
variety of new grid technologies. The VEGA grid, a new grid infrastructure de-
veloped by Institute of Computing Technology, CAS, views a grid as a distrib-
uted computer system. In this paper, we propose some new metrics to evaluate 
the performance of it. Moreover, we apply queueing system models to model 
the VEGA grid and predict the performance of it in terms of the mean queue 
length and mean service time, especially, in the equilibrium state. Hence, a real 
application, the Air booking service, is deployed on the VEGA grid as a 
benchmark to measure the performance via latency and throughput. Finally, we 
point out this method can be used on other homogeneous grid systems. 

1   Introduction 

As a novel computer technology, the grid has made a rapid progress in recent years. 
Meanwhile, the grid has evolved in the view of its architecture. From the initial lay-
ered architecture to the famous OGSA which is being exemplified in the OGSI[1-4], 
more recently, WSRF is employed as a new architecture to deeply support Web Ser-
vices [5,6]. The grid assembles a set of geographically distributed, heterogeneous 
resources via the underlying networks to provide much more easier resource sharing 
and more efficient collaboration to users, which can be considered as a distributed 
system augmented with special grid features[1]. The grid possesses some attractive 
traits such as large-scale, wide-area resource sharing and powerful dynamic extensi-
bility that become prominent as parallel and distributed computing, power-sharing 
mechanism and collaboration enhance continuously. In order to understand the traits 
of the grid more exactly and optimize its architecture design, the performance evalua-
tion becomes a critical problem in the grid research field. The more its architecture 
and applications make progress, the more people pay attention on the performance 
evaluation of it. It is helpful to exactly distinguish between the advantages and disad-
vantages of the grid architecture designs for the advancing grid technologies. Not only 
in academy but also in industry, the performance analysis and evaluation of the grid 
are going to become increasingly important in the field[5-9]. 

The EUROGRID project employed the UNICORE system to establish the Euro-
pean grid, which highlighted the benefits of the grid technologies[10]. At the same 
time, UK e-Science grid program began in 2001. They built e-Science grid to solve 
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some challenging scientific computing problems and integrate computing, data and 
visualization resources on a global scale. They promised to share the computing and 
information resources at many universities and research institutes. Furthermore, they 
have developed some applications with workflows on the e-Science. These applica-
tions have been applied by some famous pharmaceutical companies. Meanwhile, G. 
Fox and D. Walker pointed out some gaps of e-Science in their technical paper. In 
that paper, they analyzed e-Science and gave some advices to improve its architec-
ture[11]. Zsolt et al. studied the performance evaluation of grid and pointed out that 
computing grid and conventional distributed computing system were different in 
performance evaluation. Parameters of performance evaluation and experiment envi-
ronment must reflect the characteristics of the grid systems[12]. 

On the other side of the Atlantic, there are some grid middleware that have been 
developed to establish grids. As a grid middleware, Condor-G was born at the Univer-
sity of Wisconsin, which provided high throughput computing on distributed comput-
ing resources[13]. The GrADS was a grid middleware also. It supported different 
format earth science data to be accessed, manipulated, and visualized[14,15]. X. Liu 
et al. designed a grid simulator called MicroGrid at UCSD, which can be used to 
simulate a virtual grid environment[16]. Though some grid components have been 
used to monitor the grid performances, the above mentioned grids all neglected 
mathematical models to analyze and predict their performances. When monitoring 
any grid resources, one must want to foresee the grid performance at next time and 
want to know the maximum system workload. So, it is important to predict the grid 
performance in equilibrium.  

In this paper, we will use queueing system to model and analyze the performance 
of the VEGA grid. The results can be used to predict the performances of it in equilib-
rium. To our best knowledge, this method is the first endeavor to model and analyze 
the grid performance by queueing system. These models and results can also be ap-
plied on other grids, for instance, e-Science and Condor-G.  

The remainder of this paper is organized as follows. In section 2, we address the 
architecture of the VEGA grid. We employ the air booking service as a typical appli-
cation and give some measuring metrics of performance analysis in section3. Then, 
queueing system models are taken as tools to analyze it in section 4. Section 5 pre-
sents some experiment results and their analysis. Section 6 summarizes this paper and 
gives some open issues. 

2   The VEGA Grid  

The goal of the VEGA grid is to develop and implement grid technologies. The 
VEGA grid can be considered as a service grid, which shows the fundamental archi-
tecture of distributed systems[17]. In the VEGA grid, all resources are encapsulated 
as services. The resources include computing abilities, storage mediums, programs 
and information resources called physical resources. If a physical resource can be 
used by end-users, it must be mapped into a virtual resource firstly. The end-users can 
only find and employ the virtual resources. Grid resource router is a key factor which 
takes charge of finding the appropriate resources for the end-users and supporting the 
links to the physical resources. The VEGA grid architecture is illustrated as Fig.1. 
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Each physical resource owns unique physical address. The end-user can not find 
and use any physical resources in the system. By a mapping policy, it maps physical 
resources to virtual resources. Every physical resource has a unique physical address. 
At the same time, each virtual resource owns a virtual address. But a virtual address is 
not unique. The shared virtual address takes advantages of the end-users. For exam-
ple, a service provider has changed his physical address but not changed the service 
content. If virtual resources being applied, the end-user can complete his job without 
rewriting his program. Otherwise, he must replace the old physical address by a new 
one in his program. Moreover, the method can optimize the applications, because the 
same services with different physical addresses share the same virtual address. 

Node 1 Node 2 Node n

Grid Router 1 Grid Router 2 Grid Router n

jobs jobs jobs

User 1 User 2 User n…

                 

Server

Server 1

Server m

Server 2

(a) Single server 

(b) Multiple servers

 

Fig. 1. The architecture of the VEGA grid        Fig. 2.  The architecture of the VEGA grid 

The VEGA grid is considered as a system platform being compliant with current 
computing technologies and providing diversified services.  The platform supports 
services composition, services shared and services cooperation. A general grid will 
provide following three basic grid operations:(1) File transfer, (2) Remote deployment 
& execution of programs, and (3) Query & interaction of information. 

3   The Application and Metrics of Performance Analysis 

In this section, the air booking service is taken as a usage scenario of Web services on 
the VEGA grid. And then, some measures of performance evaluation are employed to 
depict it. These measures make performance evaluation of VEGA grid more exactly. 

3.1   The Application of Performance Analysis  

The air booking service is a typical application which reflects query & interaction of 
information in a grid. We assume that a grid is already running, and the air booking 
service exists as a physical service either. The administrator of air booking service 
applies a virtual address through a mapping policy providing by VEGA grid. Address 
translation allows a special device, the grid router, to act an agent between the virtual 
address and the physical address. For an end-user, it connects with the physical re-
source by the grid router. Then, the end-user transmits an air booking request to the 
service system. So, the air booking service and VEGA grid construct an object of 
performance evaluation in this paper. 



 Performance Analysis and Prediction on VEGA Grid 611 

3.2   The Metrics of Performance Analysis 

The measure is an important component of the system performance evaluation, be-
cause different measure metrics determine the results of performance analysis. The 
experiment results can not be compared with each other on the condition that grid 
systems and their applications run on different hardware platforms. Even though grid 
is deployed on the same hardware platforms, different efficiency of hardware will 
affect the experiment results. So, we must clarify grid efficiency firstly. Efficiency of 
resource utilization comprises efficiency of CPU utilization, efficiency of memory 
utilization and efficiency of I/O utilization. 

For above scenario in VEGA grid, the performances of end-users have little effect 
on the grid system. So, the servers are only considered in the system. We give some 
performance metrics as follows. Where, '

i
X  denotes latency which sample from 

iX with %90  probability, n denotes the statistic times of latency. 

Definition 1. %90th Mean Latency 
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4   Queueing System Models 

In this section, we model the VEGA grid with two queueing models. Fig.2 describes 
the models with different service modes. One is single-server mode, another is multi-
ple-servers mode. We assume that the input of the VEGA grid is a bulk input which 
forms a Poisson process. The bulk input is a random variable denoted as ξ , which can 
take on any positive integral value but less than +∞ . The expectation of variable ξ is 
denoted as )(ξEk = , the deviation of ξ is 2

ξσ . )(tF is the probability distribution 

ofξ . )(tf is probability density function ofξ . 

4.1   Bulk Input and Single Service  

In this subsection, we abstract the VEGA grid as a 1// GM ξ  queueing system which 
is illustrated as Fig.2(a). We have no information about the VEGA grid before ex-
periments. By assumption, the service-time distribution of the VEGA grid is arbitrary 
in this model. The arbitrary service-time distribution is denoted as G , the expected 
value of service-time is μ and its variance is denoted as 2σ . Some queueing system 
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results will be given to depict the VEGA grid, such as mean queue length, and waiting 
time. In virtue of the experiment results in section 5, we will give the distribution of 
VEGA grid in next section. 

For a Poisson bulk input Process and service-time distribution being arbitrary, we 
obtain the following proposition from the result of 1// GM model[20-22]. For 
model 1// GM ξ , 

nQ is the number of tasks in the system when the nth task has been 

completed. 
nT denotes the time that the nth task has spent in the system. 

nR is the num-

ber of arrival tasks in nT . Hence, we obtain formulae (4) and (5) in equilibrium for 

different situation in the system.  

11 −+= − nnn RQQ               where      11 ≥−nQ , 2≥n                             (4) 

1−+= ξnn RQ                   where     01 =−nQ , 2≥n                             (5) 

A unification formula is given on the basic of formulae (4) and (5). 
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Proposition 1. ,...}2,1  , { =nQn
 is a time-homogeneous Markov chain. 

Proof: We first prove that ,...}2,1  , { =nQn
is a Markov chain. According to the defini-

tion of Markov chain, following formulae are derived. 
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So, we have proved that ,...}2,1  , { =nQn
is a Markov chain. Then to prove 

nQ is 

time-homogeneous. We calculate one-step transition probability firstly. 
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When 0=i , (7) can be written as, )1()1,(
1,
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When 1=i , (7) can be written as, )()1,(
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Formulae (8), (9), (10) and (11) show that
ij

P is independence with n , so 

,...}2,1  , { =nQn
is a time-homogeneous Markov chain.  # 

The necessary and sufficient condition for ergodicity is μλ <⋅k in the time-
homogeneous Markov chain  nQ [20].  On this condition,  nQ can converge to an equi-

librium solution. And then, mean queue length and waiting time will be given. 
We first square equation(6), and calculate expected value, then take limit as 

∞→n , such that obtain equation(12). 
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In order to obtain )(QE , we must calculate )( 2RE firstly. 
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We define the −z transform for random variable R . 
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Applying the Laplace transform on above equation, the result as follow: 
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We take expectation of both sides of equation(6), then obtain equation(16),(17). 
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Applying (15), (16) and (17) to (12), we get the mean queue length. 
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Using Little theorem, we obtain equation(19). Where, waiting time is denoted 
as )(WE . 

λkQEWE /)()( =                                                             (19) 
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If we have known some statistical value of VEGA grid by experiments, like expec-
tation and deviation, then, we may obtain mean queue length by the formula(18) and 
service waiting time by formula(19). These values are keys of grid performance. 

4.2   Bulk Input and Multiple Services 

In order to make the model mGM //ξ  having an analytic solution, we give the follow-
ing assumption.  

Assumption 1. In the VEGA grid, the distribution of service time can be considered 
as exponential distribution. 

In this subsection, we abstract the VEGA grid as a mGM //ξ  queueing model 
which is illustrated as Fig.2(b). Considering of assumption1, it can be rewritten as 

mMM //ξ . The service-time distribution is denoted as M , the expected value of ser-
vice-time is μ . The model provides for a maximum of m  services. Mean queue 
length and waiting time will be given to depict the VEGA grid. Some marks are given 
as following. 
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For bulk input being a Poisson Process and service-time distribution being a Pois-
son Process also, we obtain the following results[21]. 

The probability distribution of queue length iP  can be depicted as follows: 
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Thus, we obtain mean queue length )(QE . 
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Using Little theorem, we can write down equation(23). Where, waiting time is de-
noted as )(WE .                                λkQEWE /)()( =                                                (23) 

When +∞→m , model mMM //ξ  can be rewritten as ∞// MM ξ . 
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Using Little theorem, we get equation (25). Where, waiting time is denoted as )(WE . 

μ
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For above two models, we have obtained the expressions of mean queue length and 
waiting time. But, we can not calculate the results before we obtain the parameters 
μ and 2σ . So, the following experiments will be used to get μ and 2σ . 

5   Experiment Design and Results 

In this section, experiment environment will be briefly shown. Then, the VEGA grid 
will be tested through a typical transaction oriented application, the air booking ser-
vice. At the same time, we will obtain some statistic value to predict its performance. 

5.1   Experiment Environment  

Air booking service is taken as a typical application to test the VEGA grid. In this 
experiment, client’s browser and portal container share the subnet. Grid router1 and 
grid router2 lie on different subnet. In this paper, the grid router, grid service router, is 
different from network router. The grid operating system(GOS) is the kernel of the 
VEGA grid which runs on the grid node. Besides of tomcat, the GOS is deployed on 
the portal container. JSP pages get address of service by GOS when it connects local 
gird router without the register information in it. Air booking service is deployed on 
grid service container. The main performance parameters of machines and running 
environment are shown as below table. 

Table 1. Experiment environment  

 CPU(GHz) Memory(M) OS 
Client Celeron™ 1.3 512 Win 2000 

GOS Router 4 Xeon™ 2.4 1024 Linux Redhat7.3 
Grid Server 4 Xeon™ 2.4 1024 Linux Redhat7.3 

 
In this experiment, we employ MYSQL as database. The data of database are prac-

tical data obtained from Air China Corporation. Although these data are not full-scale, 
they can reflect the characteristics of the application. In this experiment, the monitor 
is placed on the Browser end. We will record the four time points and calculate four 
time segments in the experiment. In the first time segment, the application invokes the 
VEGA API and establishes a service instance. In the second time segment, the appli-
cation invokes the VEGA API to destroy the service instance. The application invokes 
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a service interface of the VEGA API in the third time segment. The fourth time seg-
ment records the application running time. 

Throughput and workload are two important measure values. In this paper, we 
measure them on VEGA server end. 

5.2   Experiment Results and Analysis  

A browser submits concurrent transactions to a portal container, firstly. Then, the 
portal delivers them to the air booking service through the VEGA grid. Finally, the air 
booking service sends the results to the browser. We employ threads to simulate con-
current transactions and change the number of concurrent transactions on client. The 
arrivals of concurrent transactions are Poisson distributions. In the below figures, we 
use data1 to note ξ*10  concurrence, data2 to note ξ*20  concurrence, data3 to note 

ξ*30  concurrence. 

Fig.3 shows that the maximum GOS running time increase along with the increase 
of concurrent transactions. Specially, the increase is rapid form data2 to data3. This 
phenomenon implicates that the respond time of GOS increases very evidently. This 
is a critical message of system performance. Fig.4 illustrates the mean GOS running 
time at three different input conditions. These curves become smoother than Fig.3. 
But the changes among the three curves are consistent with Fig.3. We use deviation of 
GOS running time to depict stability of the VEGA grid by Fig.5. From this figure, we 
can learn that the data3 has a worst stability than the two others. This result is relation 
 

        

Fig. 3. The maximum VEGA running time         Fig. 4. The mean VEGA running time 

               

Fig. 5. The deviation of VEGA running time          Fig. 6. The maximum %90th   running time 
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Fig.7. The mean of VEGA %90th  running      Fig. 8. The deviation of VEGA %90th  running 
time                                                                     time 

with the results of Fig.3. That is to say, the tested system is not stability enough under 
the current workload. This is an inevitable result when the system goes to equilibrium.  

For air booking service, we propose %90th sample method to get rid of the influ-
ence of occasional factors. We present Fig.6, Fig.7 and Fig.8 as follows. 

Comparing Fig.6, Fig.7, and Fig.8 with Fig.3, Fig.4, and Fig.5, we can learn that 
the new curves are smoother than the old ones. But, the new figures clarify the rela-
tion among data1, data2 and data3 more clearly, which is useful to deeply analyze the 
VEGA grid. These data can be used to predict the performance of the grid in equilib-
rium. On the other hand, we monitor the throughput of GOS server and efficiency of 
CPUs. These measure values can affect the VEGA grid directly. When the server has 
low throughput and high efficiency of CPU, the experiment results will be incredible. 
The monitoring results as below. 

Fig.9 depicts the throughput curve of GOS server under three different conditions. 
We find the throughputs do not decrease when the data change from data1 to data2, 
and data3. This result shows that GOS only consumes a few resources. On the other 
hand, we learn that GOS only occupies a few CPU time through Fig.10. The mean 
CPU time is lower than %7 . Monitoring results tell us the GOS occupies a few server 
resources. The resources utilization of GOS hardly increases when the transactions 
have a rapid increase. This is a good character for the VEGA grid because it needs a 
very strong extensibility to large-scale. The above results illuminate that GOS server 
satisfies the needs of this experiment and the experiment results are credible. 

       

Fig. 9.Throughput of VEGA server                   Fig. 10.Efficiency of CPU 
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The latency can be predicted by above results. For example, we can give some 
prediction results in equilibrium about model Fig.2(a) by formulae (18) and (19). 
This prediction method can be used on other grid system, like as e-Science and 
UNICORE. 

 

Fig. 11. Performance Prediction of VEG A 

6   Discussion and Conclusion 

Performance analysis is a fundamental challenge in the VEGA grid. To model this 
system exactly, choosing an appropriate mathematical tool is an important question. 
In this paper, we apply queueing system to model his system. Because, queueing 
system has been employed to analyze and evaluate computer system widely. There 
are many classical queueing models have been used in this field. But not all of them 
are suitable for the VEGA grid. We consider the distribution of arrival satisfies a 
Poisson distribution with bulk. The bulk Poisson process can exactly reflect the 
concurrent requires which can be found in Internet everywhere. And this form will 
become the main form in grid system. So, we give a simple model 1// GM ξ  firstly. 
For a general model mGM //ξ , we can not obtain its analytic solution. Accounting 
for the characteristic of service respond, we give the assumption1 in section 4. So 
we predigest the general model mGM //ξ  to model mMM //ξ . And then, its analytic 
solution can be written as equations (22) and (23). For a service provider using the 
VEGA grid, he can use our results to adjust his setting. For example, he can choose 
an appropriate number of servers to satisfy the end-users and decrease its costs. 
Moreover, he also can use these results to predict the behaviors of the VEGA grid. 
The critical point can be obtained immediately. In model 1// GM ξ , if 1/ ≥μλk , the 
system will never reach its equilibrium state and go to dump. Similarly, in 
model mMM //ξ , if 1/ ≥μλ mk , the system will never reach its equilibrium state and 
go to dump also.  

In this paper, we assume that the distribution of service time is an exponential 
distribution. We will prove it by more experiments under different application envi-
ronment. Statistics knowledge and regression analysis will become tools to solve 
this problem. In future work, we will study other typical application on the VEGA 
grid, such as Blast. Modeling and analyzing the system deeply is our next focused 
work. 
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Abstract. The ShanghaiGrid, as a Grid Computing Environment, is
an information Grid to serve the public in the city, and all resources
are regarded as Grid Services in the Open Grid Services Architecture
(OGSA). The primary goal of the ShanghaiGrid is to build a generally
shared information grid platform. Charging and accounting are an im-
portant part of the grid computing system in the ShanghaiGrid. This
paper discusses an accounting services model and accounting life cycle
that will be used in the ShanghaiGrid. We will analyze the charging and
accounting process in detail based on this model and cycle.

1 Introduction

Grid computing that is able to harness distributed resources to solve large-scale
computationally intensive problems, has been widely accepted as a promising
paradigm for large-scale distributed systems in recent years [1][2][3]. The main
goal is to share large-scale resources and to accomplish collaborative tasks [2]
in science, engineering, and commerce. In the past few years, the main applica-
tion of grid computing was mostly academic or exploratory in nature. However,
with the emergence of Web Services technologies and the Open Grid Services
Architecture (OGSA) [4][5], Grid infrastructures have made significant inroads
into a multi-institutional production scale and need infrastructure to support
various services: security, uniform access, resource management, scheduling, ap-
plication composition, computational economy, and accounting. Therefore infor-
mation Grid has become increasingly important.

A charging and accounting service to be functional in a grid environment will
have to manage the cost of usage and support the economic activities according
to computational economy. It must be decentralized, scalable and flexible. A
reliable accounting system must also be able to carry out the following functions:
metering, data collection, pricing, charging and payment.

The problem of accounting for a computational resource can face many dif-
ferent problems. Different grids may have different accounting structure and
� This work is supported by a 973 project (No.2002CB312002) of China, a grand

project (No.03dz15027) and a key project (No.025115033) of the Science and Tech-
nology Commission of Shanghai Municipality.
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technologies to adapt to their own Grid Computing Environment. Charging and
accounting for grid has been taken into account for some grid projects. DGAS
[6] presented an accounting system for the European DataGrid project, which
described a scheme based on the concept of Home Location Register (HLR).
In this model, users pay in order to execute their job on the resources and re-
sources earn credits by executing the user’s jobs. GridBank[7] was introduced as
a grid accounting services architecture for computational grids, which presents
requirements of Grid accounting and different economic models within which it
can operate and proposes a Grid Accounting Services Architecture to meet them.
GGF proposes a Grid Economic Services Architecture (GESA) [8], which define
the Chargeable Grid Service (CGS) and the Grid Banking Service (GBS) that
may be integrated into OGSA. IBM’s ’Extreme Blue’ grid accounting project
proposed a grid accounting framework GSAX [9] with dynamic pricing strate-
gies independent of economic models. Although above charging and accounting
approaches offered a range of valuable solutions, they lack extensibility, flexibility
and a uniform accounting standard.

To make good use of local accounting systems at various organizations and to
eliminate their performance bottleneck. In [10], We propose a hierarchical grid
accounting services framework(HiGAF), which is based on a two-level architec-
ture, and list its advantages over its previous counterpart. In the ShanghaiGrid,
multiple virtual organizations (VO) will be integrated into a grid system. There-
fore, this accounting structure of HiGAF is most suitable to the requirements of
ShanghaiGrid project. In this paper, we focus on a practical accounting model
specifically designed for the ShanghaiGrid. Not only will we have to consider the
upper layer organization, but will also have to accommodate the lower layers in
each VO in ShanghaiGrid. Furthermore, we will introduce accounting life cycle
of the ShanghaiGrid and based on such cycles, the entire process of accounting
is analysed.

The paper is organized as follows. In Section 2, we introduce background and
overview of the ShanghaiGrid. Then, in Section 3, we propose a detailed archi-
tecture of ShanghaiGrid accounting model, and analyze the accounting processes
in Section 4. In Section 5, we briefly describe the accounting and charging mech-
anism in the ShanghaiGrid. Finally, we present the conclusion of this paper.

2 An Overview of ShanghaiGrid

The ShanghaiGrid is an ongoing Grid Computing Environment based on the Grid
Service standards and the Open Grid Services Architecture, which is funded by
the Shanghai Science and Technology Development Foundation. ShanghaiGrid
project is one of five top grand Grid projects in China. As a City Grid, the Shang-
haiGrid is to provide a general shared information Grid platform for various Grids.

The primary aim of the ShanghaiGrid is to develop a set of system soft-
wares for the information grid and to establish an infrastructure for grid-based
applications [11]. By means of flexible, secure, open standards sharing and co-
ordinating of computational resources, data information and dedicated services
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among virtual organizations, this project will build an information grid tailored
for the characteristics of Shanghai and support the typical application of grid
based traffic congestion control and guidance. The subjects to be researched
in the project covers a wide range, including infrastructures, standard proto-
cols, softwares, and collaboration platforms [12]. In [12],[13], the architecture of
the ShanghaiGrid and potential services provided by ShanghaiGrid is shown.
Although several initiatives are engaged in the development of ShanghaiGrid
technologies, Grid accounting issues are yet to be addressed.

3 Accounting Model

Accounting model that we designed for ShanghaiGrid is based on Architecture
of the ShanghaiGrid, which is able to support local accounting of resource and
service usage in various organizations, and is generic enough to be used for
resource trading.

3.1 Architecture

Fig. 1 shows accounting services architecture of ShanghaiGrid, which breaks
down the centralized accounting system into two hierarchies: Global Accounting
Manager (GAM) and Local Accounting Manager (LAM)[10]. GAS is located in
central server in Grid, and coordinates accounting systems among various LASs;
LAS exists in specific administrative organization, and manages local accounting
services.
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Fig. 1. ShanghaiGrid Accounting Services Architecture
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Local Resource Broker (LRB) is a local mediator between the user and
grid resources by using middleware services in specific administrative organiza-
tion. It is responsible for discovers local resources, negotiates for service prices,
performs local resource selection and so on.

Grid Payment Service (GPS) provides a service to a payment infras-
tructure. It can trade between Grid Resource Consumers and Grid Resource
Providers, and include systems based around electronic cash, credit cards, pre-
paid account, service tokens, etc.

Grid Charging Service (GCS) provides a basic infrastructure that has
been enabled to support economic interaction.

RUS [14] [15]provides a basic infrastructure to support the auditing and
monitoring capability for the resources consumed by OGSA services.

Pricing Algorithms (PA) define the prices that resource provider would
like to charge users. In order to maximize profit, resource provider may follow
various policies to user, and the pricing can also be driven by demand and supply.

Information Service provides a complete list of resources.
Job Manage Service deals with job submission to grid resource provider.
Local Accounting System (LAS) provides a local service to manage and

maintains accounts and resource usage records in virtual organization.
Gatekeeper is the common interface provided by LAM to GAM. All the

interactions between GAM and LAM are via this component.
Global Accounting Coordinator (GAC) coordinates various accounting

systems in LAMs, and performs transfer in the same user distributed among
various LAMs.

Global Resource Broker (GRB) is a Global mediator between various
LAMs and GAM. It is responsible for discovers and select resources among var-
ious virtual organizations, and finally gathers results and hands them to the
user.

Global Account Server (GAS) provides a global service to manage and
maintains user accounts information, fund and the credit rating of the user in
grid.

3.2 Global Account Server

Global Account Server was designed to store and manage user accounting infor-
mation. When a job is done, accounting information of resources usage is sent to
Global Account Server from Local Accounting System via gatekeeper, and store
user total fund from various LAM accounts. Fig. 2 shows Global Account Server
architecture.

– API provides a Global Account Server interface to other services.
– Security Protocol performs authentication and authorization of users.
– Administration provides basic account operation and management such

as open account, update account, close account, deposit, transfer, etc.
– DB is a database that user accounting information.
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Fig. 2. Grid Account Server Architecture

An authorized manager creates user accounts, called initial account, at the
Global Account Server. Total fund of various LAMs accounts and a credit value
are stored to Global Account Server according to the credit rating of the user.
When a user starts a request for an application, the server checks and charges
the user’s account for its application in order to determine whether the user can
afford the job to be computed or not. In order to execute a submitted job, the
user needs to have an account at Global Account Server with a positive amount
of money.

Communication between user and Global Account Server must relate to se-
curity and access protection. User isn’t able to change his identification, and isn’t
trusted to manipulate server’s central storage. An authentication server should
be implemented, which handles login and logout procedures. Once clients are
authenticated, the client is authorized to establish a connection between client
and server. Clients cannot send any requests if a connection is refused. Clients
will be checked for their identification every time when they request an account-
ing service and communicate with server. Clients will be able to access only their
own data, unless they have special administration privileges.

3.3 Accounting Protocols

Accounting protocols can be distinctive the following two types: Security Proto-
col and data Transfer Protocol.

Security Protocol: It is developed an architecture for authentication and au-
thorization of clients. The architecture is client-server architecture. Authentica-
tion is based on Public Key Infrastructure (PKI) using X509v3 certificate [16],
and certificates can be issued by certificate authority (CAs). The clients send au-
thentication request to server, and server decides whether the user is authorized
to use grid resources.

Data Transfer Protocol: TCP-based transfer protocols such as SMTP, FTP,
or HTTP can be used to transfer information of payment and charge between
user account and provider account. These protocols is reliable, efficient, and
security.
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Fig. 3. Accounting Life Cycle

4 Accounting Process

4.1 Accounting Life Cycle

Fig. 3 shows an accounting life cycle, which is divided into the following phases:
submission, preparation, negotiation, test, implementation, operation and dein-
stallation.

The accounting life cycle starts with the submission of application. User
submits a job with specification of the needed functionality and possible QoS
parameters. Then, in the preparation phase, suitable resources can be selected.

Afterwards, the provider and user start the negotiation phase. This phase
deals with the process of service negotiation between provider and user, which
contains detail about functionality, QoS, and pricing mechanism. The negotiation
phase ends with signing an agreement.

The test phase estimates the application cost, and estimates if user have
enough fund to pay.

During the implementation phase, the provider provides resources to user,
and then the user job is executed, as well as meters the resources consumed.

The operation phase combines changing service functionality, which calcu-
lates total cost based on the resource usage and the resource price, and then
user pays charge the user resource usage.

Finally, the accounting life cycle ends with the deinstallation. In this phase,
the implementation’s resources are released.

4.2 Analysis of Accounting Process

The accounting processes as a whole can be separated into several phases that
already mentioned above. In order to realize an overall integrated accounting
service system, we need to take processes of the accounting life cycle phases
into account. In the following, we will give a description the relevant accounting
processes along the accounting life cycle that are shown Fig. 4 (activity diagram
of the accounting processes) and Fig. 5 (sequence interaction diagram of the
accounting processes).

The submission phase: a detailed analysis of user requirement is done in
this phase. The user submits their applications with some parameters including
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Fig. 4. Activity Diagram of the Accounting Processes

budget and deadline to GRB so that GRB may correctly choose resources, and
estimation the application cost.

The preparation phase: GRB analyse user resources requirement, and then
send this requirement to LRB in one LAM that belongs to a VO including user, in
order to select local resources. The local Information Service provides a complete
list of resources to LRB, and then LRB selects suitable resources according to
different scheduling criteria. If local resources don’t meet user requirement, local
LRB notify GRB via gatekeeper to select other necessary resources from LAM
of other VOs. In whole Grid environment, if user resources requirement can not
be satisfied, the process terminates immediately.

The negotiation phase: LRB interacts with PA to consult acceptable price of
services for both grid resource provider and user in every LAM that participate
in resources supply. If they come to an acceptable price, PA informs GCS about
accepted price. The LRB, having received the job description and select suitable
resources for the given job. If resource provider and user can’t come to an prices
agreement, the process terminates.

The test phase: the overall cost of the job should be estimated , and verified
whether user has enough Grid Credit to run his application. It will firstly try
to get the user’s deposit information from the LAM(i). If user holds enough
credit in LAM(i), accounting processes enter into implementation phase. Or else
LAM(i) have to perform transfer in some user account from other LAMs via
GAC.If the sum of user’s deposits is less than the estimated job cost, the pro-
cess terminates.

The implementation phase: GRB submits user job to grid resource provider
via LRB and Job Manage Service. Grid resource provider provides the service
by executing the user job and RUS meters the resources consumed while pro-
cessing the user job. After the job finished, RUS will obtain the usage statistics
of the grid resources, and then generates a standard Resource Usage Record
(RUR) [15].
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Fig. 5. Sequence Interaction Diagram of the Accounting Processes

The operation phase: GCS receives the price from PA, which negotiates with
resource users, and the data from RUR. Then It calculates total cost based on
the resource usage and pricing algorithms that the mutually agreed. GCS con-
tacts GPS with a request to charge the user account. User will pay resource
usage charge by using payment strategies of GPS. Afterward, GCS sent the
total service cost and the resources usage statistics to LAS to implement lo-
cal accounting. Finally, GAM collect local accounting information from LAMs
that participate in resources supply, and then send it to GAS to record and
store.

The deinstallation phase: GRB returns the results to the user, and resources
are released.

we present typical accounting process of our accounting model, in order to
explain the mechanisms of economic transaction. Our major aim is to develop
an accounting architecture which is capable of managing the accounting process
and local accounting system in ShanghaiGrid.

5 Accounting Mechanisms

The accounting mechanism describes the accounting policies, and determines the
resources exchange rates during the performance of accounting, which maximize
benefits of grid resource provider and consumer. The accounting mechanism
should be simple enough to be understood by all resource providers and users.

Accounting Items: It is necessary to decide for which resource elements one
should pay. Any services invocation will consume a wide range of resources.
However, a services provider may only be interested in a relatively small subset
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of these resources for the purposes of deciding a price to use a service. The
consumption of the following resources may be accounted and charged [14]: CPU,
Memory, Disc, Wall Clock Time, Node Count, Network, Processors, Software and
Libraries accessed.

Book and Estimate: After the job description was received and select suitable
resources for the given job, user need book a portion of resources to execute job.
Then, resource consumption should be estimated, which has two constituents:
rate of consumption, and estimated maximum durations. The overall estimated
resource consumption would then be (rate of consumption) × (expected dura-
tion).

Resource Pricing: Pricing schemes should base on the supply and demand for
resources and the QoS requirements. GBR and LRB was requested to mediate
resources price by grid resource producers and users. LBR sets firstly a price
for a resource and then queries both producers and consumers whether or not
accept that price. With time elapsing, LRB increases or decreases the price by
a small amount after each negotiation, namely Pt = p ± εΔt, until producers
and users come to an acceptable price.

Accounting Checking: The overall cost of the job is estimated by multiply-
ing resource price with estimated resource consumption. The user’s account is
checked whether there is a positive amount of ”money” to pay. If the estimated
overall cost of the job exceeds the user’s funds, the resource provider may provide
a loan for user according to the credit rating of the user.

Accounting Policies: Account policies concern is how to charge for resource
usage in some particular situations. We propose the following system policies: 1.
If user job is cancelled during execution because of user action, resource provider
will charge for resources already used; 2. If user job is suspended because of
resource provider action, resource provider don’t charge to the user; 3. If the
resource usage expectations is underrated, resource provider provide a loan to
user so as to complete whole job; 4. If the expected resource usage is overrated,
the job is executed.

6 Conclusions and Further Work

ShanghaiGrid is an ongoing project aimed at constructing a metropolitan-area
information service infrastructure. The development of services and applications
includes a set of middlewares, high-level services, design tools, package tools, etc.
Charging and accounting is an important part of ShanghaiGrid. In this paper,
we presented an accounting services model for ShanghaiGrid, which is flexible,
scalable and extensible. We also analysed grid resources accounting process along
accounting life cycles and accounting mechanism in ShanghaiGrid. A prototype
of the described architecture in this paper has been applied to the ShanghaiGrid
project. We are planning to install an accounting management test bed based
on the concepts presented in this paper in the near future.
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Abstract. The conventional computing grid has developed a service
oriented computing architecture with a super-local, two commit schedul-
ing strategy. This architecture is limited in modeling open systems with
highly dynamic and autonomous computing resources due to its server-
based computing model. The use of super-local scheduling strategy also
limits the utilization of the computing resources. In this paper, we pro-
pose a multi-agent based grid computing infrastructure to tackle the
above issues, while provide reasonable compatibility and interoperability
with the conventional grid systems and clients. Compared with the ex-
isting grids, the new infrastructure is leveraged by the intelligent agents,
and therefore is more efficient and flexible for open systems.

1 Introduction

Today, the shear numbers of desktop systems make the potential advantages
of interoperability between desktops and servers into a single grid system quite
compelling. However, these commodity systems have significantly different prop-
erties than the conventional server-based grid systems. They are usually highly
autonomous and heterogeneous systems. And their availability varies from time
to time. In other words, they are open systems in terms of autonomy, hetero-
geneity, and availability.

The conventional computing grid has developed a service oriented computing
architecture with a super-local, two commit scheduling strategy. In this archi-
tecture, the functionalities of the grid are implemented as a variety of Web
Services. These services are deployed to the service containers, which normally
run on high-end workstations and servers.

The embrace of Web Services is important, as Web Services provide stan-
dard means for communications and object invocations between the clients and
the service providers. The super-local scheduling strategy is also a success in
high-end computational environments, because of the wide acceptance of the
local schedulers such as Condor [1], PBS, and LSF, and the flexibility of the
strategy when dealing with various local schedulers. But the circumstances are
different when considering a grid made up of open systems. The service ori-
ented architecture preserves the client/server computing model, and therefore is
limited in modeling open systems with highly dynamic and autonomous com-
puting resources. In addition, the use of super-local scheduling strategy limits
the utilization of the computing resources.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 630–644, 2005.
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This paper attempts to tackle the above issues by proposing a new job/service
model and applying multi-agent technologies to the grid architecture. The rest
of this paper is organized as follows. Section 2 reviews the architecture of Globus
Tookit 4 [2] (the official implementation of most current grid standards), and
discusses its defects in more detail. Section 3 proposes the S.M.A.R.T. (Service-
oriented, Microkernel, Agent-based, Rational, and Transparent) grid infrastruc-
ture, demonstrates its new job/service model and core components. Section 4 de-
tails the scheduling strategy of S.M.A.R.T. using Colored Petri Nets [3] (CPNs).
Section 5 probes into the compatibility and interoperability issues with the ex-
isting grid systems and clients. Section 6 concludes this paper.

2 Review of the Conventional Grid Architecture

To contrast our differences to the current grid architecture, it is necessary to
revisit the service oriented architecture and the two commit scheduling strategy
in Globus Toolkit 4 (GT4).

2.1 Service Oriented Architecture

GT4 fully adopts Web Services standards [4]. More specifically, it is a set of soft-
ware components that implement Web Services mechanisms [2]. Nine predefined
services are implemented to provide functionalities such as job management,
monitoring and discovery, etc. In addition, a stateful resource framework for
Web Services [5] was proposed to preserve the states between service invoca-
tions.

As discussed in Section 1, the embrace of service oriented architecture and
Web Services standards increases the interoperability of the grid, and provides
a message passing standard. However, the defects are fourfold:

1. The predefined services are essential to the proper functioning of the grid,
and therefore require reliable service nodes with high availability. However,
such nodes can not be guaranteed in open systems.

2. Services are not suitable to describe all applications. Some applications are
more “job-like”, and not suitable to be modeled as services.

3. Web Services are usually stateless. Although Web Services Resource Frame-
work [5] (WSRF) was introduced to make Web Services “stateful”, it is not
efficient and effective enough, as the stateful information must be stored
apart (as WS-Resources), and some states may be unable to be described
with WSRF or even they could be yet too complicated.

4. The current service oriented architecture has poor adaptability in terms
of performance, availability, and scalability, as services must be manually
deployed to the service containers. The current grid has no facility that
allows automatic deployment of services according to the clients’ requests
and the load of the grid.
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2.2 Scheduling Strategy

In the Globus Toolkit, the scheduling functionality is provided by two services -
Monitoring and Discovery Service (MDS) [6], and Grid Resource Allocation and
Management (GRAM) [7].

Fig. 1. The Two Commit Scheduling
Strategy in GT4

MDS is responsible for gathering
static and dynamic information from dis-
tributed information providers. GRAM
on the other hand manages the submis-
sion and execution of the jobs. Globus
uses a two commit scheduling strategy:
the super scheduler schedules a job to
a suitable local scheduler based on the
job’s requirements and the status of the
resources in the grid; the local scheduler
then schedules a job to a specific comput-
ing node. Figure 1 [2] depicts the schedul-
ing strategy used in GT4. The dashed area indicates services hosts. The compute
element consists of a local scheduler and computing nodes.

Although the two commit scheduling strategy is very flexible in the face of
different local schedulers, the disadvantages are threefold:

1. The super-local scheduling architecture limits the overall performance and
the scalability of the grid.

2. It is infeasible to introduce local schedulers in open systems, as local sched-
ulers require a relatively static and non-autonomous environment.

3. The dependency on local schedulers increases the complexity of application
programming in the grid environment, as it is impossible to provide a uniform
programming model that supports task decomposition, state persistence, and
inter-task communications for various local schedulers.

3 Job/Service Model and Core Grid Components of
S.M.A.R.T.

In this section, we propose S.M.A.R.T, a multi-agent [8] based grid infrastruc-
ture, and discuss its job/service model and core components.

3.1 Job/Service Model

S.M.A.R.T. has a services-oriented architecture regarding its clients, and con-
forms to the Web Services (WS) standards [4]. The adoption of Web Services
gives S.M.A.R.T. good interoperability with the WS-compatible clients and
other WS-compatible grids. However, due to the defects discussed in Section
2, S.M.A.R.T. uses Task/Service (TS) to describe jobs and services in the grid
environment.
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TS Description

Executables

Data

Serialization
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Fig. 2. The S.M.A.R.T. Task/Service

A TS comprises of the TS description,
the executables, and the data. When be-
ing rescheduled (i.e. when a running task
is suspended), the TS is serialized and sus-
pended. Figure 2 shows the composition of
a TS. TSs without serialization and check-
points are called Raw TSs (RTSs).

The TS Description (TSD) is de-
scribed by the Task/Service Description

Language (TSDL), which is a superset of the Web Service Description Language
(WSDL) [9] and the WS-Resource [5]. In fact, a TS description has two sections,
namely, the task section and the service section.

The task section of TSD includes three subsections. The dependencies sub-
section defines the dependencies of the runtime components (called bundles),
and the dependencies of other services. The scheduling policies subsection de-
fines the instance policies (the minimum number of active instances, the maxi-
mum number of active instances, the minimum number of standby instances, the
maximum number of standby instances) (discussed in Section 4), the minimum
hardware requirements (on machine type, processor type, the amount of cycles
contributed, the amount of memory contributed, and the amount of storage con-
tributed), the estimated amount of computation, the expected completion time,
the priority level and the chaining policies (discussed in Section 4). The infor-
mation subsection defines the information of the executables, the data, and the
checkpoints. Figure 3 depicts the task/service description in S.M.A.R.T.

{Dependencies
   {Bundle dependencies
    Service dependencies}
 Scheduling policies
   {Instance policies
    Minimal hardware requirements
    Estimated computation amount
    Expecting completion time
    Priority level
    Chaining policies }
 Information
   {Executables information
    Data information
    Checkpoints information}}

Fig. 3. The Task Section of
the Task/Service Description

The service section of TSD uses the WSDL and
WS-Resource specifications to define the service in-
terfaces and the related stateful information.

The data of a TS is optional, and may come
from multiple sources that are defined in the data
information section of the TSD. The serialization is
equivalent to the class serialization [10] of Java. It
stores the runtime dynamics of any suspended TS.
S.M.A.R.T. also supports checkpoints. As not all
runtime states can be preserved through the serial-
ization process, the checkpoint mechanism is pro-
vided to give the TS a chance to save its additional
runtime states as checkpoints when the TS is sus-
pended. When rescheduled, the TS is deserialized,
and then resumed so that the TS is able to restore
its states from previous checkpoints. Checkpoints are also useful if a TS wants
to rollback to its previous states.

3.2 Core Components

There are three kinds of entities in S.M.A.R.T: the clients, the trackers, and the
computing nodes. Figure 4 depicts them.
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Fig. 4. The Entities in S.M.A.R.T.

A client is defined as a generic
computing device that seeks ser-
vices from the grid. It uses the Web
Services standards to interact with
the Grid. A computing node is the
place where tasks are executed and
computing occurs. A tracker is a
computer which performs schedul-
ing in its managed LAN. It is al-
lowed for a client or a tracker to act
as a computing node as well.

Each tracker has information about the computing resources available (called
profile) on each managed node within the LAN, all tasks submitted to it (includ-
ing the running tasks, and the tasks in the waiting queue), the overall load of its
managed LAN, and the contacts of a limited number of other trackers. Multiple
trackers may exist in a LAN for performance or fault-tolerance consideration.

<Client> <LAN Tracker><Default/Portal Tracker> <Node>

Any LAN 
tracker?

Request for 
best tracker

No

Client or 
node?

Suitable for a 
temporary 
tracker?

Dedicated 
tracker?

Yes

Register to the 
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Yes

Any LAN 
tracker?

Request for 
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LAN tracker

Require 
upgrade

Yes

Upgrade to 
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Lookup best 
tracker

Request for 
upgrade

No

Upgrade 
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Node
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temporary 
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No

Yes

Revoke?
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Register new 
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Fig. 5. The Self-organizing Process in
S.M.A.R.T.

Any computing device can be
manually configured as a tracker
(called top-level tracker), or can be-
come a tracker by registering itself to
an existing tracker (called the por-
tal of the registering tracker). Any
tracker therefore has at least one por-
tal except the top level trackers. All
top level trackers are dedicated track-
ers, which means that they are ded-
icated to the grid, and are not dy-
namic compared with the temporary
trackers. A computing device can
register itself to an existing dedicated
tracker as a new dedicated tracker.

A temporary tracker comes into
being through a selection process.
The computing nodes and the clients
only communicate with the trackers
within the same LAN. If there is no
tracker available in the LAN, a com-
puting node or a client queries a de-
fault tracker for the best tracker, and
communicates with the resulting tracker. Further more, if a computing node is
suitable to become a temporary tracker in its LAN, it upgrades to a temporary
tracker until another more suitable computing node takes its place. This process
is called self-organizing. Figure 5 demonstrates the process.

In S.M.A.R.T, each computing node and tracker runs a microkernel grid
container, which serves as the runtime and managerial environment for jobs
and services. The container consists of four components: the Runtime Environ-
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ment (RT), the Management Agent (MA), the Profiling Agent (PA), and the
Scheduling Agent (SA). Figure 6 depicts the architecture of the S.M.A.R.T.
Grid Container.

Runtime Environment

Tasks/Services

Management 
Agent

Profiling 
Agent

Scheduling 
Agent

Fig. 6. The S.M.A.R.T. Grid
Container

The Runtime Environment provides runtime
libraries and software components for both the
agents and the tasks/services. For example, the
XML parsing libraries, and the implementations
of some Web Services standards such as SOAP
are included in the Runtime Environment. The
Management Agent provides the service and
managerial interface within the Grid and to the
client. Policies and configurations are managed
by the MA as well. The Profiling Agent gathers

the status of the network, the trackers, the computing nodes, and the running
tasks, and provides dynamic and optimized configurations for the scheduling
agent. The Scheduling Agent is responsible for scheduling and management of
tasks. It manages the lifecycle of tasks/services, and provides scheduling, fault-
tolerance, and load balance services to the grid. Figure 7 depicts the agent in-
teractions within a grid container.

The runtime environment and the agents are partially exposed to the TSs so
that the TSs can utilize the underlying scheduling and management facilities.

4 Scheduling Strategy of S.M.A.R.T.

The scheduling process in S.M.A.R.T. is mainly involved in coordinating the
agents’ actions within and between the grid containers, and constructing a self-
organized evolving computing network. More specifically, there are two separate
processes, i.e. to schedule the TSs to the suitable computing nodes, and to bal-
ance the requests and schedule the corresponding TSs to the computing nodes
to serve these requests.

Fig. 7. The Agents Interactions in
the S.M.A.R.T. Grid Container

It is consensus that CPN is one of the
best ways to model agent interaction proto-
cols [11, 12]. In the CPN model of an agent
interaction protocol, the protocol structure
and the interaction policies are a net of com-
ponents. The states of an agent interaction
are represented by CPN places. Each place
has an associated type determining what
kind of data the place may contain. Data ex-
changed between agents are represented by
tokens, whose colors indicate the value of the
representing data. The interaction policies of a protocol are carried by CPN tran-
sitions and their associated arcs. A transition is enabled if all of its input places
have tokens, and the colors of these tokens can satisfy the constraints that are
specified on the arcs. A transition can be fired, which means the actions of this
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transition can occur when this transition is enabled. When a transition occurs, it
consumes the input tokens as the parameters, conducts the conversation policy
and adds the new tokens into all of its output places. After a transition occurs,
the state of a protocol is changed. A protocol is in its terminated state when
there is no enabled or fired transition. The detailed principles of CPNs will be
discussed together with its use in Subsection 4.2.

In the S.M.A.R.T’s scheduling strategy, the TSs, the requests, and the profiles
of the trackers and the computing nodes are represented as three kinds of tokens.
The transition rules of these tokens are different when the tokens are placed at
different places. The agents in S.M.A.R.T. are responsible for allocating the
tokens and modifying them after the transitions are fired.

In the rest of this section, we discuss the lifecycle of the TS first, and then
explain the TS-related and the request-related scheduling processes mentioned
at the beginning of this section respectively. We use CPNs to describe the agent
interaction protocols. We also describe the detailed algorithms used in these
processes.

4.1 The Lifecycle of the TS

Figure 8 depicts the states of a TS in its lifecycle. When a Raw TS is submitted by
a client via a tracker’s MA, the MA checks the TS’s validity. If the TS is valid, it
enters the SUBMITTED state. A set of pre-schedule operations are then applied
to the TS by the MA and the SA of the tracker. These operations include making
a backup of the submitted TS, allocating and initializing the internal resources
for scheduling purpose of that TS, etc. If all operations succeed, the TS enters
the READY state.

SUBMITTED

submit

COMPLETED

cancel

READY

pre-schedule

cancel

CHECKED-IN

schedule

CHECKED-OUT

RUNNING

suspend

chaining

Explicit transition

Implicit transition

Fig. 8. The States of a S.M.A.R.T.
Task/Service

The READY state means that the TS is
ready to be scheduled. In this state, the SA
of the tracker uses a “best-match” algorithm
to determine whether the managed comput-
ing nodes of the tracker are suitable for the
TS. If a suitable computing node is found,
a schedule operation is applied. Otherwise,
the SA (called chaining source) extracts the
TSD from the TS, and passes it to the SAs
of other known trackers. Every time the TSD
passes by a tracker, the TTL (Time-to-Live)
specified in the chaining policies of the TSD
decreases by 1. If one of the trackers hap-
pens to be able to consume the TS accord-
ing to the best-match algorithm, it contacts
the source SA to transfer the TS to it. If the
tracker is not able to consume the TS, it keeps passing on the TSD until the TTL
equals 0. The above process is called chaining. After chaining, the TS remains
in the READY state. Chaining is the core mechanism in S.M.A.R.T. to balance
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the loads and requests globally. The detailed chaining and related protocols are
discussed later.
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Fig. 9. The scheduling process within a
Tracker

The TS enters the CHECKED-
IN state after the schedule oper-
ation, which means that the TS
is scheduled to a computing node,
the executables are resolved by the
runtime environment of the com-
puting node, and the runtime dy-
namics and the checkpoint have
been restored for a suspended TS.
The TS then automatically enters
the RUNNING state until the sus-
pend operation is applied, where
the TS is serialized and suspended,
and enters the CHECKED-OUT
state. Following this, the TS is
automatically transferred to the
tracker where the computing node registers for rescheduling. One special sit-
uation is that if the TS exits, it fires the suspend operation itself and stores the
computing result when being suspended.

4.2 TS-Related Scheduling

The TS-related scheduling process in S.M.A.R.T. can be described as three sub
processes: scheduling within a tracker, scheduling between the tracker and the
computing nodes, and scheduling among the trackers.

Scheduling Within a Tracker. Figure 9 depicts the scheduling process with a
tracker modeled by a CPN. There are four kinds of places defined in the CPN: the
TS-related places, the operation places, the profile/load place, and the simulated
synapse place. All of them are described as follows:

1. The Raw TS place holds the Raw TS token, which is received from the client.
2. The Rejected TS place holds the Raw TS tokens, which are rejected by the

Check transition.
3. The Legal TS place holds the Raw TS token, which is asserted as legal by the

Check transition. The legal Raw TS token may also come from the tracker
itself due to a reschedule operation.

4. The TS Repository place holds the backup TS tokens. A backup TS token
is removed when the corresponding TS exits or moves to another tracker
through the chaining process. A backup TS token is updated when the cor-
responding TS is rescheduled.

5. The TS place holds the TS token which is produced by the Copy/Update
transition.
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6. The Scheduling Policies place holds the scheduling policies token, which is
extracted from its corresponding TS token. The scheduling policies token
may also come from another tracker through the chaining process.

{Capability
   {Machine type
    Processor type
    Contributed cycles amount
    Contributed memory amount
    Contributed storage amount}
 Load
   {TSD#1
    TSD#2
    ...}} Profile

{TSD_A
 TSD_B               

       .
       .
       .

   } Load

Fig. 10. The Profile and the Load

7. The Profiles and Load place holds the
profile tokens and load token. Each
profile token contains the informa-
tion and status (called profile) of its
corresponding computing node. The
load token contains the status of the
overall load of its corresponding com-
puting nodes. Figure 10 shows the
scheme represented by the profile to-
ken and the load token.

8. The Chaining Operation place holds the unmatched scheduling policies to-
ken, which is consumed by the chaining process.
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<Tracker PA> <Node PA><Tracker SA>

Sched-
uling 

policies

Profile 
up-to-
date?

Create 
empty 

winner list

Has 
Another 
profile?

Iterate 
profiles

Yes

No

Get profile

Return 
profile

Return 
winners' 
profiles

Calculate 
load & 

compare 
with profile

Suitable?

Add 
winner's 
profile

Yes

No

Empty?

Yes

Chaining

Yes

PAES

No

Fig. 11. The Best-match algorithm

9. The Tagged Scheduling Policies
place holds the Tagged Schedul-
ing Policies token, which is pro-
duced by the best-match tran-
sition. The tagged token has
“winner” tags, which contain
the identifiers of the best suit-
able nodes (the winners).

10. The Synapse place holds the
syn-apse token, which represents
the link between the destination
and the source of a chaining pro-
cess.

11. The Source TS Repository
places holds the corresponding
TS token of the scheduling
policies token which is passed
through the chaining process.

12. The Tagged TS place holds the
Tagged TS token, which is com-
posed from the TS token and the
Tagged Scheduling Policies to-
ken.

13. The Push Operation place holds
the Tagged TS token, which will be “pushed” to its corresponding computing
node.

14. The TS Queue place holds the Tagged TS tokens, which will be “pulled” by
any of the winner nodes.

There are eight transitions, which represent eight operations. They are de-
scribed as follows:
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1. The Check transition checks the syntax of the TSD of the Raw TS token. It
also checks whether the dependent bundles and services exist, and whether
the services defined by the Raw TS conflict with the existing services (e.g.
conflict due to the same service name). In addition, the Check transition
converts the Raw TS token into the TS token.

2. The Copy/Update transition either duplicates the TS token, or updates the
TS token in the TS repository place.

3. The Extract Scheduling Policies transition extracts the scheduling policies
from the TSD.

4. The Best-match transition performs the best-match algorithm. Figure 11 de-
picts the algorithm. PAES stands for Profile-Aware Eager Scheduling, which
will be discussed later.

5. The Update Load transition converts the scheduling policies into the com-
puting load, and adds the load to the overall load of the tracker.

6. The Link transition connects the two endpoints of a chaining process.
Scheduling from one node to another node within the same LAN is a special
case, as a tracker is always linked with itself.

7. The Compose transition transfers the TS token from the source TS repos-
itory, updates the local TS repository, and composes the Tagged TS token
from the TS token and the tagged scheduling policies token.

8. The Priority Check transition compares the priority of the tagged TS token
with the current loads of the winners to determine whether the token is
“pushed” to its corresponding computing node, or stored in a queue for the
“pull” operation.

Scheduling Between a Tracker and Its Nodes. S.M.A.R.T. uses a schedul-
ing algorithm called Profile-Aware Eager Scheduling (PAES), which is derived
from eager scheduling, to schedule the TSs from the trackers to their managed
computing nodes.

Schedule 
Operation

Push 
Operation Push

TS Queue

Pull 
Operation

matched

Pull

Fig. 12. The Push and
Pull operations

The eager scheduling algorithm was firstly intro-
duced in Charlotte [13]. Its basic idea is that faster
computing nodes will be allocated tasks more often,
and if any task is left uncompleted by a slow node
(failed node is infinitely slow), that task will be reas-
signed to a fast node. In other words, it uses a “keep
the faster nodes busy” strategy. It also guarantees
fault-tolerance by using a redundant task cache with
a time out mechanism. The PAES algorithm takes
the profiles of the computing nodes provided by the
profile agent and the scheduling policies provided by
the TSs into consideration when perform scheduling.
In contrast to eager scheduling, it allows bidirectional scheduling operations, i.e.
pull and push. Figure 12 depicts the two operations.

The Schedule Operation place holds the TS token which is scheduled to
the corresponding computing node. The push operation is straightforward. The
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Push transition represents the push operation, i.e. to assign the TS to one of
the winners. The Pull Operation place holds the requests from the computing
nodes. Whenever the scheduling agent of a node determines that it is able to run
a new task, it sends a request to the tracker. The pull transition represents the
pull operation, i.e. the scheduling agent matches the computing node requesting
the TSs with the tagged TS tokens. If the node is the winner of the TS, the TS
is assigned to the node.

Scheduling Among the Trackers. Trackers are linked by the chaining pro-
cess, which is much of the scheduling process among the trackers.

Scheduling 
Policies

TTL>0

Discard

Chaining 
Operation Check/Send

TTL = 0

Fig. 13. The Basic Chain-
ing Mechanism

Figure 13 depicts the basic chaining mechanism.
The two places are defined exactly the same as those
in Figure 9. However, in this case, they represent
places in different trackers. The Check/Send transi-
tion checks the TTL in the scheduling policies token
first. If it is greater than 0, the TTL decreases by
1, and the scheduling policies with the new TTL is
sent to all known trackers. If the TTL equals 0, the
scheduling policies token is discarded.

Recalling Figure 9, there is a link transition,
which makes two chained trackers (i.e. if tracker A
successfully schedules the chained TS of tracker B,
A and B are chained) learn, and preserve each other’s information for future
chaining processes. However, if the links exist permanently, the performance of
the chaining process will gradually decrease as time goes by because of the ex-
plosive numbers of links. A link must therefore be able to be strengthened and
weakened. Such a link is called a simulated synapse. Figure 14 depicts it.

T2

T1 T2

T2

T1 T2

Fig. 14. The Simulated Synapse

The underlying algorithm used to
strengthen and weaken the link can be
defined in the chaining policies. One
of the simplest algorithms is the aging
algorithm. In the aging algorithm, ev-
ery simulated synapse has an associated
weight. A weight is a numerical value
between 0 and 1, which is used to eval-
uate the strength of its associated chain (1 representing the most strong link, and
0 representing no link). Weight is calculated based on the frequency of commu-
nication occurring on its associated chain. When a simulated synapse is created,
an initial weight is specified. Then for each interval I, the weight squares. If the
resulting weight is less than the threshold θ, the simulated synapse is removed.
On the other hand, each time the Link transition is fired, the square root of the
weight is calculated.

To take the advantage of the simulated synapse, the chaining process must
take the strength of the simulated synapse into consideration. Figure 15 depicts
an example of the advanced chaining mechanism.
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4.3 Request-Related Scheduling

As the TSs are allowed to register services in S.M.A.R.T. One of the functions of
scheduling is to balance the requests and schedule the corresponding TSs to the
computing nodes to serve these requests. In fact, the only difference between TS-
related scheduling and request-related scheduling is the objects that are actually
scheduled. In the former case, the object is the TS or the scheduling policies
extracted from the TS. In the later case, the object is the service request. As
the requests have no common characteristic in terms of the potential load that
they may bring in, it is hard for the scheduling components to make rational
decisions. However, S.M.A.R.T. still provides two ways to help services achieve
high throughputs.

Valid 
Scheduling 

Policies

TTL>0

Discard

Chaining 
Operation Check

TT
L =

 0

Scheduling 
PoliciesSend

Simulate Synapse

w<0.5

Fig. 15. An Example of the Ad-
vanced Chaining Mechanism

Recalling the TSD, there is a subsection
called instance policies, which defines the
Minimum number of Active Instances (MI-
NAI), the Maximum number of Active In-
stances (MAXAI), the Minimum number of
Standby Instances (MINSI), and the Maxi-
mum number of Standby Instances (MAXSI).
When a service TS (a TS that defines ser-
vices) is scheduled, the instance policies are
used to guide the scheduling components to
keep a proper number of service instances.
Then when a client attempts to invoke these services, it uses the Web Ser-
vices standards to discover the service instances. It is at that time that the
clients’ requests are distributed to the pre-allocated services instances so that
these requests are balanced.

Another way to balance service requests is to let the service provider itself
manage the requests, as only they know about the internals of the requests and
the best way to handle the requests. The multi-agent architecture of S.M.A.R.T.
allows the service TSs to use the underlying APIs to provide their own scheduling
strategies, and schedule the requests themselves.

5 Discussion

In this section, we discuss the compatibility and interoperability issues with the
existing grid systems and clients, and how the new infrastructure can operate
with the existing local schedulers.

Recalling the Task/Service model (see Section 3), it is easy to find that
the TS model enables the modeling of both the conversional stateless services
and stateful tasks. As it is undefined in the Web Services standards whether
a service is stateless or not, both the stateful TSs and the stateless TSs can
use TSDL, which is compatible with WSDL, to register its own interface to
the clients. Therefore any WS-compatible client is capable of accessing these
interfaces through S.M.A.R.T.



642 J. Tang and M. Zhang

There are two means to maintain stateful information for a conversional
service in S.M.A.R.T. The client and the service can use agreed methods, e.g.
WS-Resource, to exchange the stateful information. S.M.A.R.T. supports the
WS-Resource standards, hence a WS-Resource based client needs no modifica-
tion to work with S.M.A.R.T. as long as the service interface is not changed.
Another way to preserve the states throughout different service transactions is
to dynamically create transaction-specific service tasks. In S.M.A.R.T., a TS can
be transaction-specific (which is specified by the instance policies in the TSD).
Whenever a request for such a TS is received, a TS instance will be created
to serve that request. One variation of this method is that there is a main TS
serving as a proxy. Whenever a request is received by that TS, it delegates the
request to a service task, which is created by the main TS.

As S.M.A.R.T. conforms to the Web Services and WS-Resource standards,
any TS in S.M.A.R.T. is able to operate on the services in other WS-compatible
grids using these standards. However, being different in the architecture and the
programming model, S.M.A.R.T. has neither the binary compatibility nor the
source code compatibility for the programs running in the existing grids.

With its multi-agent architecture, S.M.A.R.T. has promising interoperabil-
ity with the existing local schedulers. There are two approaches. A local sched-
uler specific agent can be deployed to the local scheduler. It keeps the same
interface with S.M.A.R.T. and adapts itself to the scheduling and job man-
agement interface provided by the local scheduler. In the scheduling and job
management process, it works as an intermedium or an adapter to interpret the
scheduling and job management operations and data between S.M.A.R.T. and
the local scheduler. This approach is straightforward, but different local sched-
ulers need different adapter agents. In the second approach, a more generic
design of the S.M.A.R.T’s agents is required. Instead of hard coding a full
version of the scheduling and management operations and protocols into the
S.MA.R.T’s agents, a set of predefined preliminary operations and protocols,
which allow the construction of more complex and complete operations and
protocols using a uniform scheme, are carefully selected and implemented into
these agents. Hence, the scheduling and management operations and protocols
of S.M.A.R.T. itself and the local schedulers can be represented by the schemes.
These schemes are understandable and checkable for the S.M.A.R.T’s agents.
Once the agents are deployed, they read the schemes in, check them before any
scheduling and management operation occurs, and then use them in the opera-
tions. A promising way to represent the scheme is to use CPN and the Matrix
Equation Method [14], which allows the agents to check whether a scheme is
understandable.

6 Conclusion

In this paper, we firstly analyzed the service-oriented architecture of the
existing grid systems. By introducing a task/service model, we covered
the deficiencies of the current grid standards. Secondly, we abandoned the
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conventional two commit scheduling strategy, and proposed a multi-agent
based scheduling strategy. The intelligent agents in the system are able to
make rational decisions and exhibit the flexibility in face of uncertain and
changing factors. These advantages make the new architecture more effi-
cient and flexible when dealing with open systems. Thirdly, we extended
the eager scheduling algorithm to the profile-aware eager scheduling algo-
rithm, and introduced the best-match algorithm and the chaining mecha-
nism, which achieve local optima and global optima respectively in terms
of load balance for both the TSs and the requests. The policy free best-
match algorithm abstracts itself from decision making by extracting the
scheduling policies from the user configurations (i.e. the TSD). This en-
ables sophisticated scheduling and resource utilization. Finally, we clarified
how S.M.A.R.T. preserves the compatibility with the WS-compatible clients,
and discussed its promising interoperability with the existing grids and local
schedulers.

Future work of this research includes proposing detailed algorithms and
schemes that allow S.M.A.R.T. to collaborate with the existing grids and lo-
cal schedulers, and testing and evaluating S.M.A.R.T. in real applications.

References

1. Epema, D.H.J., Livny, M., vanDantzig, R., Evers, X., Pruyne, J.: A worldwide
flock of condors: Load sharing among workstation clusters. Future Generation
Computer Systems 12 (1996) 53–65

2. Foster, I.: A Globus Toolkit Primer (An Early and Incomplete Draft). http://www-
unix.globus.org/toolkit/docs/4.0/key/GT4 Primer 0.6.pdf (2005)

3. Jensen, K.: Colored Petri Nets - Basic Concepts, Analysis Methods and Practical
Use. Volume 1. Springer-Verlag, Berlin (1992)

4. W3C: Web Services. http://www.w3.org/2002/ws/ (2002)
5. Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Graham, S., Maguire, T., Snelling,

D., Tuecke, S.: Modeling and managing state in distributed systems: the role of
ogsi and wsrf. Proceedings of the IEEE 93 (2005) 604–612

6. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid information services
for distributed resource sharing. In: the 10th IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), San Francisco, California,
the United States, IEEE Press (2001) 181–194

7. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S., Smith, W.,
Tuecke., S.: A resource management architecture for metacomputing systems. In:
IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for Parallel Processing.
(1998) 62–82

8. Lesser, V.: Cooperative multiagent systems: A personal view of the state of the
art. IEEE Transactions on Knowledge and Data Engineering 11 (1999) 133–142

9. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1. http://www.w3.org/TR/wsdl (2001)

10. Greanier, T.: Discover the secrets of the java serialization api.
http://java.sun.com/developer/technicalArticles/Programming/serialization/
(2000)



644 J. Tang and M. Zhang

11. Cost, R.S.: Modeling agent conversations with coloured petri nets. In: the Work-
shop on Specifying and Implementing Conversation Policies, Seattle, Washington,
the United States (1999) 59–66

12. Cranefield, S., Purvis, M., Nowostawski, M., Hwang, P.: Ontology for interaction
protocols. In: the 2nd International Workshop on Ontologies in Agent Systems
(AAMAS’02), Bologna, Italy (2002)

13. Baratloo, A., Karaul, M., Kedem, Z., Wyckoff, P.: Charlotte: Metacomputing on
the web. In: the 9th Conference of Parallel and Distributed Computing Systems,
Dijon, France (1996)

14. Peterson, J.: Petri Net Theory and the Modeling of Systems. Prentice-Hall, Inc.,
N.J. (1981)



Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 645 – 654, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Dynamically Mining Frequent Patterns over Online Data 
Streams 

Xuejun Liu1,2, Hongbing Xu1, Yisheng Dong1, Yongli Wang1, and Jiangbo Qian1 

1 Department of Computer Science and Technology, Southeast University, 
Nanjing 210096, China 

2 College of Information Science and Engineering, Nanjing University of Technology, 
Nanjing 210009,China  

lxj-gd@vip.sina.com 

Abstract. Data streams are massive unbounded sequence of data elements 
continuously generated at a rapid rate. Consequently, it is challenge to find 
frequent items over data streams in a dynamic environment. In this paper, a new 
novel algorithm was proposed, which can capture frequent items with any length 
online continuously. Furthermore, several optimization techniques are devised to 
minimize processing time as well as main memory usage. Compared with related 
algorithm, it is more suitable for the mining of long frequent items. Finally, the 
proposed method is analyzed by a series of experiments and the results show that 
this algorithm owns significantly better performance than before. 

1   Introduction 

In recent years, with the development of the Internet and sensor networks, Data streams 
process has become a new research issue[1,2]. To find the frequent items over data 
streams is one of the fundamental problems in this field. In many applications, such as 
network traffic measurements, data mining, web-server logs analysis, telecom call 
records analysis, and sensor network, we all hope to find the data items whose 
frequency exceed certain threshold. 

According to the features of data streams, the FP-stream structure was proposed to 
solve the problem of mining the frequent itemsets over data streams [4]. When the 
average length of the transaction and frequent pattern are both very short, this algorithm 
is effective. On the contrary, the space cost and execution time increase dramatically 
and the efficiency of this algorithm declines quickly. The Lossy Counting [5] is a 
algorithm based on a well-known Apriori algorithm to mining all frequent itemsets 
over the entire history of the data streams and it is a representative method. Karp [6] 
and Charikar [7] study how to find a single frequent pattern. The work by Chang [8] 
emphasizes on finding the latest frequent pattern. The mining problem of sequential 
pattern is studied in [9]. Graham [10] and Tatsuya [11] study Hierarchical frequent 
pattern over data streams and the discovery of frequent pattern of semi-structural data 
streams respectively. Ruoming Jin and Gagan Agrawal[12] extends the work by Karp 
[6], which can cut down the number of itemsets needed to store. The approach in 
[13,14] is more applicable to the problem of single pattern or the pattern is fixed in 
advance and will not change. 
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This paper presents an effective frequent pattern-mining algorithm----FP-DS 
algorithm over data streams. The user can obtain current frequent itemsets online 
continuously without pattern-delay. Compared with the existing related algorithms, the 
FP-DS algorithm is especially suitable for the mining of long frequent items. It is 
unnecessary to enumerate every subset on transactions, nor produce a lot of frequent 
candidate items. In FP-DS algorithm, we propose a data structure, named FP-DS tree, 
to store the potential frequent itemsets. It does not need to store all subsets of itemsets 
independently. It reduces the storage capacity of itemsets and moreover, the itemsets 
are put in the order of the descending sequence of support of global 1-itemset. The more 
frequently the items appear, the closer to the root of the tree. Such a compression tree 
has a higher compression ratio, and by using FP-DS tree we can obtain all frequent 
itemsets efficiently. 

This paper consists of five sections. Section 2 describes the fundamental problems 
and the FP-DS algorithm is presented in section 3. Section 4 is about performance 
analysis of the algorithm, and the last section concludes this paper. 

2   Definitions and Description of the Problem 

Definition 1. Suppose DS represents data streams, the number of transactions which 
include itemset X is called the support counts of itemset X and is marked as ƒDS(X). The 
support of itemset X is marked as X.sup, X.sup= ƒDS(X)/|DS|, of which |DS| is the 
number of transactions in DS. 

Definition 2. Suppose a given support S and a permitted error , |N| denotes the number 
of transactions in data streams up to now. For itemset X, if there is ƒDS(X) (S- )|N|(ie. 
X.sup S- ), we call X a frequent itemset; if ƒDS(X)> |N|, we call X a subfrequent 
itemset; if ƒDS(X) |N|, we call X an infrequent itemset. If X is made up of k items, we 
call X a k-itemset. 

Definition 3( FP-DS Tree). 
a) It consists of one root labeled as ‘null’, a set of prefix subtrees as the children of 

the root, and a header table. 
b) Every node in the prefix subtree is made up of seven fields: data, f, reval, pnode, 

par, leftchild and rightchild, where data is the item-name of this node, f denotes the 
count of the itemset which starts from the root node excluding root node to the 
current node, reval is a count to avoid the repetition of itemset insertion when 
re-constructing FP-DS tree, pnode is the pointer pointing to a node that has the same 
item-name or null when there is no such nodes, par is the pointer points to its parent 
node, leftchild is the point pointing to the first child node, and rightchild, the one 
pointing to its brother node. 

c) Every tuple in the header table consists of two fields: item-name and head of 
pnode which points to the first node in the FP-DS tree bearing the same item-name. 
Any tree that satisfies all the above conditions is called a FP-DS tree. A FP-DS tree is 
shown in figure 1 (the nodes of tree are only labeled with data, f and reval).  

A FP-DS tree is similar to a FP-tree[3]. Compared with a FP-tree, its every node has 
one more reval field.  
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Fig. 1. FP-DS tree structure 

Theorem 1. Divide DS into segments N1, N2,…, Nm,…, let N=N1�N2�…�Nk, any 
itemset X, for given support S and error , if ƒNi(X) |Ni|, ƒN(X) S|N|, 1 i k, of which 
|Ni| denotes the number of transactions of Segment i, then ƒNk(X) (S- )|N|.  

The proposition is easily proved. According to theorem 1, we can draw a conclusion 
that if delete current infrequent itemsets, even they become frequent itemsets in the 
futrue, its support error will not exceed at most, and this deletion will not affect the 
proper output of frequent itemsets. Thus, we only need to preserve all subfrequent 
itemsets. 

3   FP-DS Algorithm 

3.1   The Production and Reconstruction of Global Subfrequent 1-Itemset 

Data streams are divided into segments Ni(i=1 2 …), and the length of every 
segment is |Ni|= ε1/ or k* ε1/ (k=1,2,…). To make the description of this 
algorithm more clear, we suppose |Ni|= ε1/ . The f_list is made up of many 1-itemsets 
and every 1-itemset in the f_list is a structure with three fields: data, f and del, of which, 
data is the item-name of 1-itemset, f is counts of the 1-itemset, and del is the 
conditional-variable to indicate when to delete the 1-itemset. Following is the 
description of the algorithm. 

Algorithm 1. Scands _ DB algorithm.  
Input data of Segment Ni; the f_list of Segment Ni-1. (In 

Segment N1, the original f_list is empty) 
Output the f_list of Segment Ni. 
(1) for every new arrived data stream element ei ,              

if ei f_list then 
(2)    ei.f= ei.f+1, ei.del= ei.del+1; 
(3) else insert ei, let ei.f= 1, let ei.del= 1; 
(4) sort f_list in the descending order of support; 
(5) for each ei f_list { 
(6)    ei.del= ei.del-1; 
(7)    if ei.del=0 then delete ei.} 
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Theorem 2. According to above approach, the 1-itemsets deleted from f_list must be 
infrequent itemset, and f_list is a data set made up of subfrequent 1-itemsets. 

Proof. For any 1-itemset a�f_list, because a.del=a.del-1 in every segment, suppose 
until Segment Ni, negative is k, then k i, while a.f a.del+k, so a.f a.del+i. The 
condition of deleting a in Segment Ni is a.del=0, and now, a.f i, and another reason is 
|N|= *i*|Ni|= *i* ε1/ i, so a.f |N|, ie. a is an infrequent itemset, so f_list is a data 

set of subfrequent 1-itemsets. 
If 1-itemset is an infrequent itemset, then its supersets must be infrequent itemsets 

too. Due to Theorem 2, in FP-DS algorithm, deleting 1-itemset from f_list will not lead 
to the loss of frequent items. 

Theorem 3. The maximum storage space is O(L/ ) in f_list. And L is the average length 
of the transaction. 

In order to prove theorem 3, we give out theorem 4. 

Theorem 4. Suppose a is a 1-itemset, I(DS, )={ƒDS(a)> |DS|}, then | I(DS, )|  
L* ε1/ . 

Proof. We use counter-proof. Because the supports of data items in I(DS, )are all 
greater than |DS|, then | I(DS, )|* |DS| L*| DS|, if | I(DS, )|>L* ε1/  is true, then | 
I(DS, )|* |DS| > L* ε1/ * |DS| L*1/ * |DS|=L*|DS|, that is to say, 
|I(DS, )|* |DS|>L*|DS|, this is in contradiction with the conclusion we have got 
|I(DS, )|* |DS| L*| DS|, the proposition is proved. 

According to theorem 4, the number of items needed to be stored in f_list will not 
exceed L* ε1/ , that is to say, when error is , we need space O(L/ ) at most to store 
all the 1-itemsets with the above approach. So theorem 3 is proved. Theorem 3 gives us 
the maximum space cost of f_list. The maximum storage space of f_list has nothing to 
do with the number of the transactions and the number of items. It is only related to 
and the average length of transaction. Therefore, even  is very small, it does not need 

a huge storage space to store f_list. 

3.2   The Production and Reconstruction of FP-DS Tree 

Definition 4. All nodes in the path from the node e to the root in FP-DS tree constitute 
the itemset whose name is the pattern e. The set made up of all patterns e is called the 
pattern set of e. 

FP-DS tree is used to compress and store global subfrequent itemsets. Every 
segment produces a new FP-DS tree and that of the last segment is removed at the 
same time. The production of FP-DS tree is similar to that of FP-tree. Firstly, establish 
the root and header table of the tree. Then insert a subfrequent itemset into the tree, and 
the first branch is formed. Only those items in f_list will be selected. The itemset is 
inserted in order of f_list. Next we add the second subfrequent itemset to the existing 
FP-DS. If there exists same prefix with the existing branch, the f of the nodes of the 
same prefix are added the count of second subfrequent itemset respectively. 
Otherwise, the exiting FP-DS is spread into a new branch. The above procedure 
iterates until all subfrequent itemsets are inserted. To speed up searching in the tree, 
we maintain a header table. 
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When producing FP-DS tree of Segment i, subfrequent itemsets include not only the 
subfrequent itemsets produced from FP-growth algorithm in this segment, but also the 
subfrequent itemsets stored in FP-DS tree of Segment Ni-1. 

Algorithm 2. Reconstruction algorithm (To produce the FP-DS 
tree of Segment Ni). 

Input data of Segment Ni; the FP-DS tree of Segment Ni-1(when 
i>1);error . 

Output the FP-DS tree of Segment Ni. 
(1)To produce the original FP-DS tree of Segment Ni 

including a header table and a root node. The header 
table is produced from the f_list of Segment Ni, and the 
root node is marked with ‘null’. 

(2)If (i>1) { 
(3)  call insertconstruct function;  /*insert the 

subfrequent itemsets stored in the FP-DS tree of 
Segment Ni-1 into the FP-DS tree of Segment Ni */ 

(4)  delete the FP-DS tree of Segment Ni-1; } 
(5)With  as the support, call FP-growth algorithm to 

produce subfrequent itemsets of this segment, sort every 
itemset in the order of that of f_list, delete those 
items don’t exist in f_list, then insert the rest into 
the FP-DS tree of Segment Ni; 

(6) release the storage space FP-growth algorithm occupies; 

The description of Insertconstruct function is listed as follows: 

(1) Take item ei according to the inverted sequence of the 
header table in FP-DS tree of Segment Ni-1 ; 

(2) for each ei { 
(3)  we obtain the pattern set of ei  in FP-DS tree. The 

patterns are pattern ei1, pattern ei2, pattern ei3, 
…respectively 

(4)  for each eij if (eij.reval 0) then { 
(5)    if (ei f_list of Segment Ni ) 
(6)    { reorder all the  items of pattern eij  in the order 

of that of f_list in Segment Ni, and delete those 
items not included in f_list, then insert the rest 
into the FP-DS tree of Segment Ni ;} 

(7)    every reval of all nodes in pattern eij minus eij.reval; 
} } 

3.3   The Production and pruning of Frequent Itemsets 

The production algorithm of frequent itemset is similar to insertconstruct function. The 
former handles the f of items and the latter handles the reval of items. Following are 
detailed description. 



650 X. Liu et al. 

Algorithm 3. Ds_growth algorithm. 
Input FP-DS tree in Segment Ni; support S(suppose 

corresponding count as SF). 
Output frequent itemsets. 
(1) Take item ei in the order of converse sequence of header 

table of FP-DS tree in Segment Ni; 
(2) for each ei  { 
(3)   take the pattern set of ei of FP-DS tree, whose patterns 

are pattern ei1, pattern ei2, pattern ei3, respectively… 
(4)  for each eij { 
(5)    if (eij.f>SF) 
(6)       put out pattern eij and its count; 
(7)    if (eij.f 0) then 
(8)  the f of every node minus eij.f in pattern eij; } } 

The pruning of FP-DS tree aims to delete the nodes as many as possible permitted by 
error , to reduce the storage space of data. Pruning should go from leaves to the root. 
For each leaf node, the cumulative counts of deleted leaf nodes bearing the same item 
name cannot exceed the difference between this item’s f and del in f_list. 

3.4   The FP-DS Algorithm 

Following are the full description of FP-DS algorithm  

Algorithm 4. FP-DS algorithm. 
Input: data streams DS; the minimum support threshold S; 

permitted error . 
Output: the complete set of frequent itemsets. 
Divide data streams into segments Ni(i=1•2•…), the length …), the length 
of every segment is |Ni|= ε1/ . 
(1) for(i=1;i<=the number of segments; i++)  { 
(2) call Scands_DB, produce f_list of Segment Ni; 
(3) call Reconstruction, produce FP-DS tree of Segment Ni; 
(4) every several segments, call pruning algorithm, to 

reduce the storage capacity of data; 
(5) call Ds_growth, put frequent itemsets out;   } 

When the length of segments is the integer times of ε1/ (suppose n times), then 
after scanning segment Ni once, every 1-itemset in f_list is ej.del= ej.del-n. when 
ej.del=0, ej is deleted. Other parts are the same as described above. 

4   Performance Analysis and Experimental Research 

Data streams adopted by this paper are the customer shopping data sets produced by 
IBM synthetic data generator. The experiments adopt three sets of data: 
T15I10D1000K, T15I6D1000K and T7I4D3000K Divide the incoming data streams 
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into segments, and every segment contains 50000 transactions. Suppose support as S, 
let permissible error =0.1S. The experiment mainly studies time efficiency and space 
efficiency of the algorithm, and compares the experiments with other algorithms. 

4.1   Performance Analysis of the Algorithm 

Experiments environment are: Intel Celeron CPU 1GHz, Memory128MB, Redhat 9.0 
operating system. Take data sets T15I10D1000K, of which 1K different items, support 
is 0.007 0.005 and 0.004 respectively. The main aim is to observe time efficiency and 
space efficiency of the algorithm.  

  
 

 

 

 

 

 

 

 

Fig. 2. Maximal memory usage in each segment 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Execution time in each segment 

The maximum memory usage in the Figure 2 refers to the maximum memory space 
algorithm needs when dealing with every data segment (including aided memory and 
temporary memory too). Execution time in the Figure 3 refers to the execution time of 
every data segment. From Figure 2 and Figure 3 we can see that, with the decrease of 
support, the maximum memory space and execution time of every segment increase 
gradually. However, when the support is given, the maximum memory space and 
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execution time of every segment tend to be steady. That is to say, it has nothing to do 
with the size of data sets. Consequently, we can apply this algorithm to data streams. 
When the support S is smaller, the effect of support change on execution time is 
obvious. The main reason is: the greatest time cost of the algorithm in every data 
segment is calling FP-growth algorithm to produce subfrequent itemsets. When using 
FP-growth algorithm to mine frequent pattern, it needs to produce conditional FP-tree 
gradually, and must produce one conditional FP- tree when producing one frequent 
pattern. When the support S is smaller, error  is even smaller than it(let =0.1S here), 
FP-growth algorithm produces subfrequent itemsets with a very small  as support, and 
will produce a great number of frequent patterns. It will cost a lot of time to produce and 
release these condition FP-trees dynamically. 

4.2   Experimental Comparison Analysis 

The algorithm in [5] is a typical approach of mining frequent patterns over data 
streams. We test the algorithm with the same experimental environment and datasets as 
that of [5]. Then we compare and analyze the result with that of [5]. Experiments data 
set is T15I6D1000K, of which 10K different items. When the support ranges from 
0.004 to 0.01, the maximum memory usage of FP-DS algorithm varies from 21.7 M to 
17.8 M (including aided and temporary memory). Execution time of the algorithm in 
[5] will decrease with the growth of memory usage. We compare the execution time 
with a memory cost of 28M with that of our algorithm. The result is shown in figure 4. 
Algorithm  and Algorithm II represents FP-DS algorithm and the algorithm proposed 
in [5] respectively.  

 

 

 

 

 

 

 

 

 

Fig. 4. Comparison of execution time 

We can see that, even under the condition of space cost is smaller, the time efficiency 
of FP-DS algorithm is also much higher than that of algorithm proposed in [5]. The 
main time and space cost of FP-DS algorithm are the time cost and temporary space 
cost of calling FP-growth algorithm in every segment. We can improve the time and 
space efficiency of FP-DS algorithm further if we adopt an improved FP-growth 
algorithm. 
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FP-DS algorithm and the algorithm proposed in [4] are both based on FP-growth 
algorithm. So we compare and analyze the algorithm adopting the similar experimental 
environment. Take T7I4D3000K as test set, of which 1K different items. The data is 
divided into segments and the support is 0.05. The approach in [4] is more suitable for 
short itemsets. If the above test set is adopted, it can only handle about 180 transactions 
per second. Obviously, in the environment of high-speed data streams, this speed is not 
fast enough. In contrast, our approach can treat 30000 transactions per second. We also 
compare the maximum storage space of FP-stream tree and that of FP-DS tree in every 
segment. The maximum storage space of the FP-stream tree is about 2.5M, and that of 
FP-DS tree is about 0.9M. The reason is that FP-stream tree needs to store every 
subfrequent itemsets and all its subsets while FP-DS tree need not. When the average 
length of the frequent itemsets is larger, FP-DS tree saves more storage space than 
FP-stream does. According to above analysis, we can conclude that FP-DS algorithm 
has better time and space efficiency compared with approach in [4]. 

5   Conclusion 

This paper proposes a new approach, which aims at the mining of frequent pattern s 
over data streams-----FP-DS algorithm. It solves the problem of mining frequent 
patterns with any length. Current frequent itemsets can be obtained online 
continuously, and the system need not store the whole data set. Compared with other 
existing related algorithms, there is no pattern delay, and the efficiency does not 
decrease dramatically with the growth in length of frequent patterns. Consequently, it is 
especially suitable for mining long frequent itemsets over data streams. Experiment 
results indicate that FP-DS algorithm has a good time and space efficiency.  
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Abstract. Clustering is a widely used technique in data mining, now
there exists many clustering algorithms, but most existing clustering
algorithms either are limited to handle the single attribute or can handle
both data types but are not efficient when clustering large data sets.
Few algorithms can do both well. In this paper, we propose a clustering
algorithm CFIKP that can handle large datasets with mixed type of
attributes. We first use CF ∗-tree to pre-cluster datasets. After the dense
regions are stored in leaf nodes, then we look every dense region as
a single point and use an improved k-prototype to cluster such dense
regions. Experiments show that the CFIKP algorithm is very efficient in
clustering large datasets with mixed type of attributes.

1 Introduction

Clustering is widely used in data mining, statistic, biology, machine learning and
so on. It is a popular approach to implementing the partitioning operation. It
partitions a set of objects into clusters such that objects in the same cluster are
more similar to each other than objects in different clusters according to some
defined criteria.

The most distinct characteristic of data mining is that it deals with very
large and complex data sets. The data sets to be mined often contain millions
of objects described by tens, hundreds or even thousands of various types of
attributes or variables (interval, ratio, binary, ordinal, nominal, etc.). This re-
quires the data mining operations and algorithms to be scalable and capable of
dealing with different types of attributes. However, most algorithms currently
used in data mining do not scale well when applied to very large data sets be-
cause they were initially developed for other applications than data mining that
involve small data sets. In terms of clustering, we are interested in algorithms
that can efficiently cluster large data sets containing both continuous and cate-
gorical values because such data sets are frequently encountered in data mining
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applications. Most existing clustering algorithms either can handle both data
types but are not efficient when clustering large data sets or can handle large
data sets efficiently but are limited to continuous attributes. Few algorithms can
do both well.

K-means [1] clustering method put forward by MacQueen is the earliest and
the most simply algorithm. However, it only works on numeric data and can not
cluster categorical attributes and mixed attributes.

K-modes and k-prototype [2] is the extending of k-means. They can cluster
categorical attributes and mixed attributes respectively. But it has such short-
comings as instability, randomicity and so on. And when clustering big data sets
it has bad efficiency.

The data mining community has recently put a lot of efforts on developing
fast algorithms for clustering very large data sets. Some popular ones include
CLARANS [3], DBSCAN [4] and BIRCH [5]. These algorithms are often revisions
of some existing clustering methods. By using some carefully designed search
methods (e.g., randomised search in CLARANS), organising structures (e.g.,
CF-Tree in BIRCH) and indices (e.g., R-tree in DBSCAN), these algorithms
have shown some significant performance improvements in clustering very large
data sets. Again, these algorithms still target on numeric data and cannot be
used to solve massive categorical data clustering problems.

In this paper we present a new algorithm CFIKP that can handle the large
data sets with mixed type of attributes. We first use CF ∗-tree [6] to pre-cluster
datasets. After that the dense regions are stored in leaf nodes, then we look every
dense region as a single point and use the improved k-prototype [7] to cluster
such dense regions. Because the dense region is less than the all data sets, our
clustering algorithm is very efficient.

2 An Improved k-Prototype Algorithm

2.1 Problems of k-Prototype Algorithm

k-prototype is the mutation of k-means, it has the advantage of k-means. But it
is easy to get in local result and this result completely rely on the selection of
preliminary clusters.

For example clustering the data sets of table 1.
If we initialize this data sets into C1{1,4,5}, C2{2,3,6,7,8} two clusters, then

the prototype is z1{2,B,Y}; z2{3,B,Y}. Continue iterating we will find that
record 1 is close to cluster 1 and record 2, 3 is close to cluster 2, then the
prototype is invariability and iteration is over.

But the fact is the worth function of cluster C1{1,2,3},C2{4,5,6,7,8} is less
than the worth function of cluster C1{1,4,5},C2{2,3,6,7,8}. So the clustering
result above is not good enough.

The cause of this condition is that the amount of attributes value ”A” and
”X” in C-attribute is less. If we can’t initialize well, it is easy to lose the attributes
value. Whereas we put forward an improved algorithm making clustering result
steady and reasonable and not be influenced by initialization and input order.
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Table 1

ID N-attribute C-attribute1 C-attribute2
1 2 A X
2 3 A X
3 3 A X
4 2 B Y
5 2 B Y
6 3 B Y
7 3 B Y
8 3 B Y

Regard the categorical attributes with n different value as attributes with
n-dimension, for example, look C-attribute1 has ”A” and ”B” two dimensions,
C-attribute2 has ”X” and ”Y” two dimensions. When compute the prototype in
iteration we should also do like this.

Come back to the above example again, if we initialize the data sets into
C1{1,4,5},C2{2,3,6,7,8}, the prototype in the first iteration is:

z1{2, {1/3(A), 2/3(B)}, {1/3(X), 2/3(Y )}};

z2{3, {2/5(A), 3/5(B)}, {2/5(X), 3/5(Y )}}.
Continue iterating and we can get the reasonable result:

C1{1, 2, 3}, C2{4, 5, 6, 7, 8}.

We call the method above categorical attribute decomposed method. It can be
applied in datasets with categorical and mixed attributes and has more stability
and reliability than k-prototype.

2.2 An Improved k-Prototype Algorithm

Apply the above categorical attribute decomposed method into the original k-
prototype and get the new k-prototype. The detailed algorithm is described
below:

1. Decompose the categorical attributes in data set X with categorical attribute
decomposed method

2. Initialize X, appoint the amount of the cluster k first, then select k records
randomly as the centers of clusters, turn to (3), or group into k clusters
arbitrarily

3. Allot each record in X to the closest cluster, update the center of cluster
4. Checkout the similarity between each record and the center of current cluster.

If find the closest center to one record is not the current cluster center, allot
this record to the closest cluster and update the center of all clusters

5. Repeat item.4. until no records changed.
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3 Clustering Algorithm CFIKP

CFIKP algorithm is divided into two steps. In the first step, we use the CF ∗-tree
to pre-cluster datasets. After that the dense regions are stored in leaf nodes; in
the second step, we look every dense region as a single point and use the improved
k-prototype to cluster such dense regions. Because the dense region is less than
the all data sets, our clustering algorithm will be very efficient.

3.1 Pre-clustering

We use the cluster feature CF ∗ which is resemble to cluster feature CF in BIRCH
to pre-cluster the original data sets. Cluster feature is the statistic summary of
child cluster, it summarizes the information of child cluster instead of storing all
object.

The cluster feature CF ∗ of Cluster Cj is:

CF ∗
j = (Nj, LScj, SScj , Ncj)

where Nj is the number of data records in Cj , LScj is the sum of continuous
attributes of the Nj data records, SScj is the sum of squared continuous at-
tributes of the Nj data records, and Ndj = (Ndj1, Ndj2, . . . , Ndjpd

), given by
Ndjk = (Njk1, Njk2, . . . , Njkl), in which Njkl is the number of data records in
Cj whose k-th categorical attribute takes the l-th category.

When two clusters Ci and Cj are said to merge, it simply means that two
corresponding sets of data points are gathered together to form a union. In this
case, the CF ∗ < i, j >for the merged cluster C < i, j > can be calculated by
simply adding the corresponding entries in CFi and CFj ,that is:

CF ∗ < i, j >= {Ni + Nj , Sci + Scj, SSci + SScj , Ndi + Ndj}

In the pre-clustering step, we will construct a modified CF-tree: CF ∗-tree.
With the insertion of records, CF ∗-tree is built dynamically. When a data
record is passing through a non-leaf node, it finds the closest entry in the
node and travels to the next child node. This process continues recursively
and data record descends along the CF ∗-tree and until reaches a leaf-node.
Upon reaching a leaf node, the data record finds the closest entry. The record
is absorbed to its closest entry if distance of record and the closest entry is
within a threshold value; otherwise it starts as a new leaf entry in the leaf
node. If the CF ∗-tree grows beyond the maximum size allowed, it is rebuilt by
a larger threshold criterion. The new CF ∗-tree is smaller and hence has more
room for incoming records. The process continues until a complete data pass is
finished.

3.2 Clustering

In this step, we will use the improved k-prototype algorithm to cluster the leaf-
node of CF ∗-tree. After the CF ∗-tree is built in step one, a collection of dense
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region is identified and is stored in the leaf nodes of the tree. Since the number
of dense region is usually far less than the number of data records in the dataset
and summery statistics stored in the cluster feature are sufficient for calculating
the distance and related criterion, so use CFIKP to cluster the big dataset will
very efficient.

4 Experimental Results

In this section, we present the experiment evaluation of CFIKP algorithm and
compare its performance with k-prototype algorithm.

4.1 Experimental Data

In this experiment, we have generated a serial of synthesize data. Continuous
attributes in a cluster are generated from multivariate normal distribution. The
means and covariance matrices of different clusters are used to control the sepa-
ration of continuous attributes of the clusters; to generate categorical attributes
in a cluster, we first choose a cluster center and then sample all attribute cat-
egory combinations such that the center occurs most frequently. For any pair
of clusters, the number of mismatched attributes of the two centers is used to
control the separation of categorical attribute part of the clusters.

4.2 Scalability

Scalability of algorithm is very important for large dataset. We test the scal-
ability of CFIKP algorithm by increasing the number of data records and the
number of attributes. All experiments are run on a PC with a 733 Mhz Pentinum
processor and 256MB RAM.

The left panel of Figure1 shows the relation between run time and number of
records, while other factors fixed. For datasets with mixed attributes, there are 5
continuous attributes and 5 categorical attributes with 2, 3, 5, 8 and 12 categories

Fig. 1. Relation between run time and number of record and numberof attributes
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respectively; other datasets have 5 continuous attributes only. The right panel
of figure 1 shows the relation between run time and number of attributes, other
factors fixed. All datasets have 8k records. All categorical attributes have 10
categories. From figure 1 we can see that CFIKP algorithm is highly scalable.

4.3 Comparisons with k-Prototype

We simulated 7 datasets, all of which have 5 continuous attributes and 5 cat-
egories with 5 categories respectively. The number of data records goes from
100K to 2500K. Table 2 gives Comparison between CFIKP and k-prototype in
speed.

Table 2. Comparison between CFIKP and k-prototype in speed

Data Records CFIKP(s) K-prototype(s)
100k 26 27
200k 50 55
400k 97 100
500k 120 135
1000k 242 220
2000k 487 460
2500k 610 655

5 Conclusions

In this paper, we introduce a new clustering algorithm CFIKP that can handle
large dataset with mixed attributes. It overcomes the shortcoming of traditional
algorithms that can’t deal with the mixed attributes in large datasets. CFIKP
uses CF ∗-tree to pre-cluster datasets and makes the dense regions be stored in
leaf nodes, which improves the run efficiency of algorithm. Experiment shows
CFIKP algorithm has strong scalability and can cluster the large datasets with
mixed attributes quickly and efficiently.
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Abstract. Mining association rules from multi-stream data has received
a lot of attention to the data mining community. It is quite effective
and useful to discover such rules. However, it is a very time consuming
and expensive task to mine the rules from these kinds of time ordered
real valued continuous data sets with high dimensionality when they are
enormous in size. This strongly motivates the need of efficient paral-
lel processing techniques and algorithms. In this paper, we use parallel
processing to discover dependency from the large amount of time se-
ries multi-stream data. We apply two parallel programming techniques
(OpenMP and MPI) to implement this. The experimental results con-
ducted in multiprocessor systems show the effectiveness of MPI over
OpenMp.

1 Introduction

Discovery of dependencies in multi-stream time series data is an important prob-
lem with great significance. The stock price is a good example for such dependen-
cies. Rise and fall of price on some stocks obviously cause price of other stocks to
rise and fall. If we analyze the multi-stream of time series for some stock prices
and can discover dependencies between all streams, these dependencies can help
us to decide better time to buy stocks. These dependencies can also be expressed
as association rules.

The task of finding all association rules can require a lot of computational
and memory resources, especially when the data is enormous and high dimen-
sional. It is crucial to leverage the aggregate computational power of multiple
processors for fast response and scalability to find the association rules from the
huge number of motion data. In this paper, we focus on human motion data
deemed as high dimensional multi-stream time series data due to its features
[8]. The correlations that are discovered from multi-stream of human motions
data characterize a specific motion data. For example, association rule discovered
from motion data about ‘walking ’ can be expressed as “when right hand is up
towards front then the left hand and left knee are down towards back”. Further-
more, these correlations become basic elements that can be used to construct
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motion with combinations of themselves, just as phonemes of human voice do.
These basic elements are called primitive motions. As a result, we can use these
primitive motions as indices to retrieve and recognize motion, for example, for
creating SFX movies, computer graphics and animations [8].

A good number of serial and parallel algorithms have been developed for
mining association rules [1]-[5], [7], [9], [10]. The algorithms are basically pro-
posed for mining so called basket (supermarket transactions) data and have been
implemented on both shared memory [5], [9] and shared-nothing multiprocessor
[1], [7] environments. Several researchers have applied data mining concepts on
time series data to find patterns and rules from it [3], [4], [6], [10]. However, all
the above-mentioned algorithms are sequential and data streams used for the
purpose are one dimensional in nature. In this paper, we consider a real multi-
stream data set e.g. human motion data which is three dimensional in nature.
Further, we convert the large amount of three dimensional motion data in sym-
bols of multi-stream to make the data in lower dimension viz. one dimension.
Finally, we provide two pseudo-codes of the algorithm for discovering the associ-
ation rules using OpenMP API and MPI programming paradigms from symbol
streams onto Distributed Shared Memory (DSM) Multiprocessor platform and
evaluate its performance.

2 Discovery of Association Rules from the Symbols of
Multi-stream Data

The human motion data captured by a motion capturing system consists of var-
ious types of information of the body parts. The motion data captured by the
system can be represented by the three dimensional time series stream consid-
ering various positions of different body joints (see Fig .1(a)). Moreover, body
parts can be represented as tree structure as shown in Figure 1(a)[8].

In order to find motion association rules with an analysis of various occur-
rences and reduce the cost of the task, we convert the high dimension multi-
stream motion data into sequence of symbols of one dimension. Each symbol
represents a basic feature of motion data and such symbols can be expressed as
a set of primitive motions. Finally, motion data is converted into symbol streams
based on its content by using symbols that we call the sequence of symbols of
multi-stream. The details of this process can be found in [8].

The dependency on data of various operations in motion data depends on
operations performed in the past (we call it active operations) has a relation
to affect on generating operations (passive operations) in the future. Such a
dependency is called an association rule. In order to find active operations and
passive operations, we set two windows Wa (active) and Wp (passive) with the
fixed interval Int. The Int is the interval between the windows in order to
discover the group of active operations and passive operations that appears in
the fixed amount of time (see Fig. 1(b)).

We define the strength of association rules in motion data by using the prob-
ability of occurrence for two operations. The probability is calculated by the
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Fig. 1. (a) Body parts used for the experiments, (b) Discovery of association rules
using Wa and Wp

following function where δ calculates the probability of occurrence for a pattern
B which occurs after a pattern A in certain blocks of the interval. Pa and Pp are
the occurrences of the active and passive operations respectively. t(Pa ∧Pp) rep-
resents the number of simultaneous occurrences of Pa and Pp. The significance
of the association rules depends on the value of δ.

δ = t(Pa ∧ Pp)/t(Pa) (1)

3 Parallel Data Mining

In our case, the symbols of multi-stream data consist of the combinations of 17
body parts (17C17) and therefore, they are very large. Consequently, a lot of
time is required to find out the associations among the body parts represented
as symbols employing the technique described in Section 2. This motivates us to
introduce parallel association mining algorithm based on rule mining algorithm
apriori [1] for our time series multi-stream data.

3.1 The Algorithm for Mining Rules

The proposed algorithm consists of two parts. First, it generates a candidate set
of symbols in parallel and further it determines the large set of symbols above
a pre-determined minimum support value and finally generate the association
rules from the symbols of multi-stream. For candidate generation purpose we
consider a set of symbols of multi-stream of body parts Gk consisting of the 17
parts of the body as shown in the Fig. 1, where k represents the number of body
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G1 ={Total Body parts lists }

for (k=2; Gk-1 0; k++) in parallel do begin

// Each processor Pi generates the Ck, another 
    list of body parts using the complete list of 
    body parts of Gk-1 considering parts id.
Ck = get_learning_stream ( );
//Compare each two parts of the body from 
   the Ck and try to find the dependency between 
   them as association rule. And if found join it
   as an item set and compare with another part 
   from the parts list Ck to search whether there 
   exits any dependency.
Ck = find_rules( );
//Find the rules from the parts list Ck according

to the given confidence and minimum support. 
Initially found rules are kept in the list l. In 
this function, the technique of finding 
association rules by using the Wa and Wp are
performed according to the description of sec. 2.

forall the rules l ml in parallel do begin

Cl = integrate_rules(Ck, l);
// Copy rules from Cl into ml and check whether 
   it exists in the ml. ml is the superset of the all 
   the rules found during the operation. First copy 
   the rules exists in l into the ml. Then check 
   whether the rules are already exists or not in 

ml. If the rules are already exists in ml then
   increase the counter for the same rule. And if 
   not in ml then register it as separate rule.
forall rules num_cpl Cl do

num _cpl.count++;
end

Gk = {num_cpl Ck | num_cpl minimum _support}
end

Answer = kGk

(a)

G = {Total body parts}
// a processor is treated as parent 
 whose ID = 0

// other processors are treated as 
  children in the system
if = 0, then
 Ck = get_learning_stream();
// Parent evenly distributes Ck

to the children so that 
     each processor gets same number of data Cl

forall (n = 0; n < num_cpl; n++) in parallel do
  Cl = find_rules();

    // Each processor finds rules respectively 
       and discard the same rules.
      Send the discovered rules Rl to the parent.

    barrier
end
    rulesl = integrate_rules();
  // Check for the same  rules in the parent 
    and take the unique rules.

if ID = 0, then

forall rulesi num_cpl Cl do
num_cpl.count++;

end

Gk {num_cpl Ck | num_cpl

minimum_support};

  Answer = lGk

(b)

Fig. 2. Pseudo-code of the Algorithm (17Ck) using: (a) OpenMp, (b) MPI

parts i.e. 1, 2, ..., 17. As a naive way we start with considering 2 body parts from
the 17 parts of the body with 17C2 combinations, i.e. finding the association rules
between 2 parts of the body at a time. So, we compare all sets of two parts of the
body from the list Gk considered as candidates of the parts list using parts ID.
If a dependency is found then we apply the candidate generation step to check
the dependency with the other parts upto a k number with the earlier found
dependency between two body parts. In Fig. 2(a), we present a pseudo-code of
the algorithm which is based on OpenMp for our case.

3.2 Experimental Results Using OpenMP API

All of the experiments were performed on a 64-node SGI Origin 3000 DSM sys-
tem. Each node consists of 2 MIPS R10000 processors running at 500 MHz with
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a total of 8 processors in a node board. The database is stored on an attached 6
GB local disk. For the test data set, we consider 50 different kinds of performed
motions such as walking, running, dancing, and pitching. The motions were per-
formed 23 times in 6 different types, each of which lasts for about 6-12 seconds. In
order to decrease the influence of the variation, we set the size of windows Wa and
Wp to |Pa| and |Pp|, and the interval of Wa and Wp to ‘Int’. The values of Pa, Pp

and Int can be determined flexibly according to suitability for the experiments.
For our experiment, we set Wa = 5, Wp = 5 and Int = 0. The size of Wa = 5 (Wp

= 5) is about 0.5 seconds long and can extract motion association rules in the
scope of (0.5 + 0.5 + 0) = 1.0 second which we found appropriate to find different
kinds of motion association rules using the parallel algorithm. As an example of
such rule is LeftAnkle(P ) ⇒ LeftShoulder(I), LeftAnkel(Q); LeftAnkle(P ),
LeftHip(K)⇒ RightElbow(Y ) from the dance data set. It means that while per-
forming dancing, Left Ankle represented by symbol P has associations with Left
Shoulder and Left Ankle represented by symbols I and Q respectively.

3.3 MPI (Message Passing Interface) Based Mining Approach

From the results in Figure 3(a), it is evident that the parallelism using OpenMP
API is not efficient for our algorithm in terms of scalability. To confirm these
results, we conducted an experiment using the same OpenMP based algorithm
in a SUN Fire 12K with 16 UltraSPARC-III processors, each running at 1050
MHz (total 8 node boards with 2 processors in each) with the same data set. We
have obtained the similar results as reported in Fig. 3(a). Therefore, we made an
attempt to use Message Passing Interface which is suitable for distributed shared
memory processors. For this purpose, we modified the algorithm (see Fig. 2(b)).
The algorithm basically uses a parent-child approach, i.e. processor treated as
parent is responsible for reading all of the data evenly from the database and
then it distributes the data to other processors treated as children. After that
each processor including parent starts to find the rules from their part of data.
When they finish finding rules, they send those rules to the parent. The results
are given in Fig. 3(b) which show good scalability.

 (a)         (b)
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In this case, the rules may appear in the corresponding part of the data
in each processor. If the duplications are appeared, the procedure find-rules()
compares them and count only the unique rules. Other rules are thus discarded.
After employing these phases, each processor sends the part of discovered rules
to the parent using barrier synchronization. Then, again duplications among the
rules are counted from all the rules sent to the parent and finally the distinct
rules are counted.

4 Conclusion

In this paper, we have considered the problem of mining association rules for
multi-stream time series data on distributed shared memory multiprocessors
systems. We have presented two parallel processing techniques for this purpose
using OpenMP and MPI parallel programming paradigms. The experimental
results show that the MPI based technique for our algorithm is superior for
the problem of human motion data considered in this paper. In future, we plan
to apply these techniques to other time series data applications and carry out
performance analysis of implementation in cluster environments.
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Abstract. Mining frequent closed itemsets provides complete and non-redundant 
result for the analysis of frequent pattern. Most of the previous studies adopted 
the FP-tree based conditional FP-tree generation and candidate itemsets genera-
tion-and-test approaches. However, those techniques are still costly, especially 
when there exists prolific and/or long itemsets. This paper redesigns FP-tree 
structure and proposes a novel algorithm based on it. This algorithm not only 
avoids building conditional FP-tree but also can get frequent closed itemsets 
directly without candidate itemsets generation. The experimental results show 
the advantage and improvement of these strategies. 

Keywords: data mining; association rule; frequent closed itemsets; stack. 

1   Introduction 

Association rule is a very important topic at data mining area. A fundamental problem 
for mining association rule is how to mine frequent itemsets efficiently. In a transac-
tion database (TDB), if the support of every frequent itemset is found, the complete 
associational rule can be obtained straight from it. However, with dense database and 
low support threshold, the CPU and I/O bound limit the performance of mining, be-
cause too large itemsets should be generated and the burden is too high to reach. As 
an example, if there is one frequent itemset of length l, that implies the presence of 2l - 
2 additional frequent itemsets as well. When l is too large, it is practically unfeasible 
to mine the set of all frequent itemsets.  

There are two current solutions for the long frequent itemsets mining: maximal 
frequent itemsets and frequent closed itemsets. The first one, which generates minimal 
itemsets, can maximal help understanding the long itemsets in dense domain. But, 
unfortunately, it only presents that all its subsets are frequent and the support of each 
one is not less than the minimum support threshold. But the exact value of support is 
unknown. The second one is an interesting alternative, proposed by Pasquier [2]. The 
frequent closed itemsets is not only typically orders of magnitude fewer than frequent 
itemsets, but also contains all information about it. 

FP-tree [4] has been shown to be one of the most efficient data structures to store 
compressed, crucial information about frequent itemsets in TDB. However, the former 
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frequent closed itemsets mining algorithms based on FP-tree (such as CLOSET [5], 
CLOSET+ [6]) spend a lot of time to recursively build conditional FP-tree and memory 
space to keep it. Especially, although many techniques are used trying to mine FP-tree 
efficiently, the candidate itemsets generation-and-test step is still necessary. So, if the 
step of recursive building conditional FP-tree and candidate itemsets genera-
tion-and-test can be avoided, the performance of FP-tree based algorithms should be 
better. This paper presents a stack-based algorithm mining FP-tree, denoted as 
S-growth. S-growth algorithm successfully avoids the defects of former FP-tree based 
algorithms discussed above. For reaching this aim, this algorithm only keeps one global 
FP-tree in memory and uses stack structure to mine the FP-tree from bottom to up. The 
process of pushing stack is used to grow the length of suffix itemset. If current suffix 
itemset is frequent closed itemset, the process of popping stack is used to search next 
available suffix itemset orderly. For carrying out this thought, the variation of FP-tree 
data structure, denoted as FP-tree*, in combination with stack technique, has been 
adopted. The experimental results demonstrate the fact that S-growth is a robust and 
time-saving algorithm for mining frequent closed itemsets. 

The remaining of this paper is organized as follow. Section 2 briefly revisits the 
framework of concepts and related works. Section 3 first introduces FP-tree* structure 
and then releases S-growth algorithm. A through performance study of S-growth is 
presented in Section 4. Section 5 summarizes the study. 

2    Framework and Related Works 

2.1   Framework for Concepts 

A transaction database TDB is a set of transactions, where each transaction, denoted 
as a tuple < tid, X >, contains a set of items (i.e., X) and attaches with a unique 
transaction identity tid. Let ],1[,;,|},...,,{ 21 nkjkjiiiiiI kjn ∈≠≠=  be a set of com-

plete items appearing in TDB. And an itemset IssssS in ∈= |},...,,{ 21  called 

n-itemset. A transaction < tid, X > is said to contain itemset Y , if XY ⊆ . The sup-
port of an itemset S, denoted as sup(S), is the complete number of transactions con-
taining S in TDB. S is frequent itemset, if sup(S) is no less than the given minimum 
support threshold ξ .  

Definition 1. Let 1s and 2s ( 21 ss ⊂ ) be two itemsets, if every transaction containing 

1s  also contains 2s  (i.e. sup( 1s ) = sup( 2s ) ), then represents as 21 ss ∠ . 

Definition 2. Let s be an itemset. s is closed itemset, if and only if there is not 
sss ′∠′, hold.  

Roughly speaking, itemset s is frequent closed itemset if and only if it is frequent 
and there exists no superset of it with the same support at the TDB. 

Lemma 1. Let s be a non-closed frequent itemset, then there must exit a frequent 
closed itemset s′ , while ss ′∠ . 
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2.2   FP-Tree Data Structure 

The FP-tree method had been proved a power method to store compressed, complete 
information of frequent itemsets of TDB. To construct the FP-tree need scan TDB two 
times. First finds all frequent items by an initial scan of the TDB, and then inserts 
these items into the header table in decreasing order of their support, denoted as 
m_list. In the next (the last) scan, the set of frequent items in every transaction is 
sorted according to m_list and inserted into the FP-tree as a branch. If an itemset 
shares a prefix with the itemsets already in the tree, the new itemset should share the 
prefix of the branch representing that itemset. In addition, the count of every node 
along the common prefix is increased by 1. Fig. 1 (a) shows an example of a TDB and 
Fig. 1 (b) the FP-tree for that TDB. The FP-tree contains all frequent information of 
the TDB. Thus mining TDB can become mining the corresponding FP-tree. Compres-
sion is achieved by building the tree in such a way that overlapping itemsets share the 
prefix of corresponding branch. To facilitate tree travel, a header table is built, so that 
the head of node-link of each item points to its occurrence in the tree via a chain of 
node-link. 

 

Fig. 1. An Example FP-tree ( 2=ξ ) 

Definition 3. Let mi and ni be two frequent item of TDB, if mi  is located before ni in 

m_list, then presents as mn ii < . 

Definition 4. If itemα at the prefix subpath of suffix s is frequent, thenα is a 
conditional frequent item of s. 

Property 1. In every branch of FP-tree, the count of a node is no more than the count 
of nodes within higher layer. 

Property 2. Each branch of FP-tree represents at lest one transaction information of 
TDB.  

1) The support of an itemset equals the sum of the count of the last frequent item in 
it, restricted to those branches that contain the itemset.  

2) The count of an item at the prefix subpath of a suffix is the count of the last item of 
the suffix. 

Property 3. (Prefix path property)[4] To calculate the frequent itemsets for a 
node iα in a path p, only the prefix subpath of node iα in p need to be accumulated and 

TID Set of Items Ordered Frequent Items 
100 a,c,f,m,p f,c,a,m,p 
200 a,c,d,f,m,p f,c,a,m,p 
300 a,b,c,f,g,m f,c,a,b,m 
400 b,f,i f,b 
500 b,c,n,p c,b,p 

(a)A transaction database as run example 

null 
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b:1 c:3 
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m:2 

p:2 

c:1 

b:1 

p:1 

b:1 

m:1 

f:4 
c:4 
a:3
b:3 
m:3 
p:3 

Item 
Head of 
node-link 

Header Table 

(b)FP-tree 
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the frequency count of every node in prefix path should carry the same count as 
node iα . 

2.3   CLOSET+ Algorithm 

CLOSET+ is evolution of FP-growth algorithm [4] for frequent closed itemsets min-
ing. The main difference between mining frequent closed itemsets and frequent item-
sets among the two algorithms is that according to lemma 1, it is not necessary to 
build conditional FP-tree for every suffix. In despite of adopting many optimization 
approaches to eliminate generation of unnecessary suffix, CLOSET+ also need to 1) 
construct conditional FP-tree with suffix and keep it in memory until all frequent 
closed candidate itemsets with this suffix have been mined; 2) search frequent items 
carrying same support and item-name at the header table of different layer’s condi-
tional FP-tree for shrinking the search area of suffix; 3) generate and test candidate 
itemsets. Such the cost of time and space is nontrivial. So, how to avoid building con-
ditional FP-tree and generating candidate itemsets is the key point to speed up the ef-
ficiency of FP-tree based algorithms for mining frequent closed itemsets. 

3   Efficient Mining Frequent Closed Itemsets 

According to property 3, a totally new data structure, denoted as Stack-table, has been 
designed instead of header table of original FP-tree, which can denote the count of 
every conditional frequent items and the relation in the condition of a certain suffix 
itemset. For carrying out the Stack-table, the structure of FP-tree should be reorgan-
ized. The variation of FP-tree is denoted as FP-tree*. S-growth algorithm mines fre-
quent closed itemsets based on FP-tree* and using Stack-table structure, which avoids 
the defects of former FP-tree based algorithms. 

3.1   FP-Tree* 

If want to calculate the support of every item at the condition of certain suffix, ac-
cording to property 3, we only interest in the prefix subpaths of the suffix. Based on 
this thought, the initial FP-tree is enough to identify the relation between the suffix 
and its conditional frequent items. But the count and the tree-node link should change 
under different suffix. The main contribution of Stack-table structure is that it sepa-
rates count and tree-node link from relation among tree-nodes of FP-tree, which 
makes avoiding recursively building conditional FP-tree possible and only need one 
FP-tree in the memory during mining process without conditional FP-tree generation. 

Comparing Fig. 2 (a) with Fig. 1 (b), FP-tree* is only a mild reorganization of 
original FP-tree. Stack-table replaces header table and, at the same time, the count and 
node-link of each tree-node are moved into it. Stack-table is a table of stack, in which 
each frequent item sorted in m_list and has a stack on his own. And the stack of every 
item has a slight difference with common stack structure, in which the value of the top 
element can be changed. The elementα of Stack-table consists of three fields: layer, 
support and node-array, denoted as layer.α , sup.α  and parray.α  respective. The 

layer has relation with the process of pushing and popping stack and it directly reflects 
the length of suffix s when the element of the stack has been pushed. The support 
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registers the support of the item at the condition of s. Each element of node-array 
consists of two fields: tree-node pointer and count, where each tree-node pointer points 
to a tree-node carrying the same item-name with the item at the condition of s and the 
count represents the count of this tree-node. The node-array of every element in 
Stack-table can access all tree-nodes carrying same item-name without duplication at 
the condition of corresponding s. 

The initialization process of FP-tree* also initializes every stack of frequent items of 
Stack-table ( }{φ=s ), as shown in Fig. 2 (a). The stack element (x: y) denotes that the 

support of this item at layer x is y. For convenience of revelation, the node-array of 0 
layer element of Stack-table in Fig. 2 (b) has been cut down.  

 

Fig. 2. FP-tree* 

3.2   S-growth Algorithm 

S-growth algorithm uses Stack-table structure to store conditional frequent items in-
formation of current suffix itemset apart from building conditional FP-tree to collect 
it. The process of pushing stack is used to grow the length of suffix itemset. If current 
suffix itemset contents the condition of frequent closed itemset, the process of pop-
ping stack is adopted to search next available suffix itemset orderly. And then the 
process of growing next suffix itemset begins. These processes run recursively until 
Stack-table is null. In the following, first we present theories and then give the pseudo 
code of the S-growth algorithm, which adopts these theories step by step. 

FP-tree is a compressed representation of TDB. According to property 2, every 
branch of FP-tree represents at least one transaction. S-growth algorithm generates 
suffix itemsets in the reversed order of m_list and mines FP-tree from bottom to up. So, 
it is a way to check whether current suffix itemset is available for mining frequent 
closed itemsets that checking whether current suffix itemset is the subset of the mined 
suffix itemset with the same support. 

Lemma 2. (Suffix check) Let ji,ss| ),..,,( ji21 <>= mssss  be current suffix, if there 

exists an item )( mnn sss < that the counts of ms and ns  are equal in each branch 
restricted to these branches that contain s, then s is not the available suffix for mining 
frequent closed itemsets. 
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Proof: Because of mining itemsets at the reverse order of m_list, there exits a suf-
fix ,...},,...,,{ 121 +mm ssss , which is mined before suffix },...,,{ 21 msss . If all branch 

contained s have an item )( mnn sss <  in which the counts of ns  and ms  are same in 

each branch, there must exist a mined itemset s′ ss ′∠ hold. So s must be not the 
available suffix for mining frequent closed itemsets. 

Corollary 2.1. If the sum of count of ns , restricted to those branches that contain 
itemset s, is equal to the support of itemset s, then s is not the available suffix for 
mining frequent closed itemsets. 

Proof: According to property 1, the count of ns  no more than ms ’s. This corollary can 

be proved easy. 

Corollary 2.2. If s is not the available suffix for mining frequent closed itemsets, then 
all supersets of s also are not. 

Proof: Let },..,,,...,{ 11 mm sssss ′′=′ be an itemset of suffix s. The every branch contained 

s′  also contain s. So the every branch contained s′  has an item )( mnn sss <  in which 

the counts of ns  and ms  are same in each branch. So, according to lemma 6, we can 

draw the conclusion. 

Lemma 3. (Suffix growth) Let s be current suffix, which has conditional frequent 
items. If at least one item’s support among these is less than s.sup and other’s equal to 
s.sup, then the next suffix is s α∪ , in where α  is the bottom item of Stack-table 
among the maximal layer (i.e. the conditional frequent item of s). 

Proof: If the support of a (not all) conditional frequent item of s equal to s.sup, there 
must exit s′ , ss ′∠ hold. So, according to the definition of frequent closed itemsets, s is 
trivial suffix for frequent closed itemsets. 

Lemma 4. Let s be current suffix, if all supports of conditional frequent items of it are 
less than s.sup, then s is frequent closed itemsets. 

Proof: It is easy proved according to the definition of frequent closed itemsets. 

Corollary 4.1. Let s be current suffix, if all conditional frequent items of it have same 
support with s, then s ∪ these items is frequent closed itemset. 

Proof: If s has the same support with its all conditional frequent items, then s and those 
items share common transaction of TDB and no other items share with them. So, 
s ∪ these items is frequent closed itemset. 

Lemma 5. (Layer absorb) Letα be a common frequent items in the condition of 
suffix s and s′ , ss ′⊂ hold. If there exists )}sup({)}sup({ ss ′∪=∪ αα , then 

Stack-table only need to save the information ofα at the layer of s′ . 

Proof: Since ss ′⊂  and )}sup({)}sup({ ss ′∪=∪ αα , s and s′ share the common 

transactions of TDB. Soα can be saved at s′ safely. 

which shrink the search area of suffix for mining frequent closed itemsets. 
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Procedure: S-growth (Stack-table, s , ) 
Input: Stack-stable, suffix itemset s, minimal support threshold  
Note that for initialization of s, the last item  of initial Stack-table 
should be popped and let s = { }, s.sup = .sup, s.parray = .parray, s.layer = 1. 
Output: frequent closed itemset 
{ 

if  not ( isClose(Stack-table, s) ) then 
 nextSuffix (Stack-table, s) 
else 

max_sup = InsertStack(Stack-table, s, ) 
if s.sup = max_sup then 

if the count of all conditional frequent items of s = s.sup then  
pop these items, s = s ∪ these items is closed 

else  // s.sup > max_sup 
 s is closed
nextSuffix (Stack-Array, s) 

S-growth (Stack-Array, s, ); 
} 
Procedure: InsertStack (Stack-table, s, ) 
Input: Stack-stable, suffix itemset s, minimal support threshold  
Output: pushing the conditional frequent items of s and return the maximal 
support among them 
{ 

Search every conditional frequent item i from bottom to up at FP-tree 
{  
 If i.sup = support of top element  of the stack of i then 

.layer = i.layer 
else create new element  

Let .sup = i.sup, .parray = i.parray, .layer = i.layer  
Push  into the stack of i 

} 
if there exit no conditional frequent items of s then  

return 0 
else  return max( i.sup) 

} 
Procedure: isClose(Stack-table, s) 
Input: Stack-table, suffix itemset s 
Output: Whether s is the available suffix for mining frequent closed itemset
{

if no count among child items of s = s.sup then 
 return TRUE 

else return FALSE 
} 
Procedure: nextSuffix (Stack-table, s) 
Input: Stack-table, suffix itemset s 
Output: next suffix itemset 
 

if Stack-table is null then  
mining process finish 

else 
pop bottom element of maximal layer in Stack-table
keep first .layer element of s 
s = s ∪ , s.sup = .sup 
s.layer = .layer+1, s.parray = .parray 

}

Fig. 3. S-growth Algorithm 
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Lemma 6. (Suffix rollback) Let s be current suffix, which has not any conditional 
frequent item, α be the bottom stack of Stack-table with the maximal layer, the next 
suffix is ∪}{α {the first α .layer items of s}. 

Proof: At the track of generation of },...,,{ 21 nssss = , the 0_layer elements of 

Stack-table are pushed at the condition of }{φ , and the 1_layer elements at the condition 

of }{ 1s ,…. The maximal layer k of Stack-table denotes that there exists conditional 

frequent items at condition of nkssss k <=′ |},...,,{ 21 . So, the bottom elementα of 

maximal layer of Stack-table is popped and the next suffix after s is s′∪}{α . 

Algorithm Specification: S-growth algorithm mines FP-tree* at the reverse order of 
m_list. First, the algorithm gets an available suffix s for closed itemsets mining with 
suffix growth and check techniques (Lemma 2, 3 and their corollaries). And then, it 
pushes conditional frequent items of s into Stack-table with new layer in company with 
suffix absorb technique (Lemma 5). Whether s is frequent closed itemset can be judged 
by the supports of items with new layer (Lemma 4 and its corollary). And then search 
the next suffix (Lemma 6). Because the layer keeps the growth track information of 
current suffix, if there are no frequent items at the condition of s, s should rollback 
according to the maximal layer of FP-tree* and then start the next circle growth. If 
Stack-table is null, then the process of mining FP-tree* is over and obtains all frequent 
closed itemsets. 

4   Experimental Evaluation and Performance Study 

In this section, we present a performance comparison of S-growth with the classic 
mining frequent closed itemsets algorithm CLOSET+, which had been proved that its 
effect is more outstanding than other classic algorithms, such as CHARM[7], in syn-
thetic performance. 

All the experiments are performed on Intel(c) 1.7GHz PC with 256 megabytes main 
memory, running on Microsoft Windows XP. All the programs are written in Visual 
C++. The experimental datasets are two classic test datasets mushroom and connect 
which are used by lots of algorithms, such as [5], [6], [7], [8]. The characters of the two 
classic datasets are described in table 1. We first test the speed property of the two 
algorithms on the real datasets by changing the minimum support threshold. The results 
of the experiments are show in figure 4 and 5. S-growth is faster than CLOSET+ in the 
two datasets, especially in mushroom, because of avoiding the calculation time about 
generation of conditional FP-tree and candidate itemsets in mining process. Then we 
test the memory occupation property of the two algorithms by changing the minimum 
support threshold. Because the lower minimum support threshold is, the more frequent 
closed itemsets should be generated, which brings on more memory occupation. The 
curve of S-growth is smoother than CLOSET+ since this algorithm need not generate 
conditional FP-tree for frequent closed itemsets mining. From the above performance 
study, we can see that S-growth algorithm has good performance both in speed and 
memory occupation property. 
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Table 1. Datasets parameters 

Dataset  Number of transac-
tion 

Total items Maximal length of 
transaction 

Mushroom 8124 120 23 
Connect 67557 150 43 

 

The good performance of S-growth algorithm comes from the following reasons. 
Firstly, S-growth adopts Stack-table structure to mine global FP-tree, pushing and 
popping stack processes on Stack-table instead of generation of conditional FP-tree. 
Then several optimization strategies have been adopted to shrink the search area and 
reduce the working of pushing and popping stack, which also reduce the process of 
traveling FP-tree. Finally, suffix checking technique has been used to detect the suffix 
whether it is available for closed itemsets mining without candidate generation. So, 
S-growth algorithm can save more CPU occupation about runtime and memory. 

5   Conclusion 

FP-tree is a power structure to compress the complete information of frequent item-
sets of TDB. But most former FP-tree based mining frequent closed itemsets algo-
rithms need to build conditional FP-tree recursively and keep it in the memory until 
traveling over above it, but they still cannot generate frequent closed itemsets directly. 
So, much time and memory space are wasted. How to avoid building conditional 

Fig. 6. Memory occupation (mushroom) Fig. 7. Memory occupation (connect) 

Fig. 5. Runtime (connect) Fig. 4. Runtime (mushroom) 
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FP-tree and generating closed itemsets directly become the key point to enhance the 
efficiency of FP-tree based mining frequent closed itemsets algorithms. This paper 
first proposes a new stack-based algorithm to solve these problems. The experiment 
evaluation and performance study on synthetic datasets show that the new algorithm 
has good performance both in runtime and memory occupation property.  
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Abstract. In this paper we approach the solution of large instances of
the distribution design problem. The traditional approaches do not con-
sider that the size of the instances can significantly reduce the efficiency
of the solution process, which only involves a model of the problem and
a solution algorithm. We propose a new approach that incorporates mul-
tiple models and algorithms and mechanisms for instance compression,
for increasing the scalability of the solution process. In order to validate
the approach we tested it on a new model of the replicated version of
the distribution design problem which incorporates generalized database
objects, and a method for instance compression that uses clustering tech-
niques. The experimental results, utilizing typical Internet usage loads,
show that our approach permits to reduce at least 65% the computa-
tional resources needed for solving large instances, without significantly
reducing the quality of its solution.

1 Introduction

The increasing popularity of the Internet and e-business has generated a great
demand of applications of distributed databases (DDB’s). These applications
are developed using Distributed Database Management Systems (DDBMS’s).
Despite the advanced technology of DDBMS’s, the design methodologies and
tools have many limitations. Consequently, database administrators carry out
the distribution design using empirical and informal approaches due to the pro-
blem complexity. In this paper a formal and systematic methodology is proposed
aimed at overcoming the limitations.

The distribution design problem consists of determining data allocation so
that the communication costs are minimized. Like many other real problems,
it is a combinatorial NP-hard problem. The solution of large scale instances is
usually carried out solving a simplified version of the problem or using approx-
imate methods [1, 2]. General purpose nondeterministic heuristic methods are
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at present the best tools for the approximate solution of this class of problems
[3, 4]. In the balance these methods will be referred to as heuristic methods.

For several years we have worked on the distribution design problem and its
solution with heuristic methods. In [5] we proposed an on-line method to set the
control parameters of the Threshold Accepting algorithm. In [6] a mechanism for
automatically obtaining some control parameter values for genetic algorithms is
presented.

2 Related Work

The distribution design problem has been dealt with by many investigators
[5, 7, 8, 9, 10, 11, 12]. The approach proposed in [5] has been the most success-
ful in solving large scale instances of the problem. The main limitation of these
approaches is that they do not consider that the size of the instances can signi-
ficantly reduce the efficiency of the solution process, which only involves a model
of the problem and a solution algorithm. Conversely, in [13] the relevance of
instance compression is recognized, but the effect of compression on the solu-
tion quality is not considered; consequently, the compression methods proposed
are inefficient and do not guarantee the scalability of the tools for automatic
database design.

In order to overcome these limitations, we propose an approach that consists
of instance compression and selection of algorithms and models. We tested it on
a new model of the replicated version of the distribution design problem that
incorporates generalized database objects, and a method for efficient instance
compression that uses clustering techniques [14, 15].

3 Distribution Design Problem

This section describes the distribution design problem and the mathematical
model used for validating the proposed approach.

3.1 Problem Description

The DDB distribution design problem consists of allocating DB-objects, such
that the total cost of data transmission for processing all the applications is
minimized. A DB-object (or simply object) is an entity of a database that re-
quires to be allocated, which can be an attribute, a tuples set, a relation or a
file. DB-objects are independent units that must be allocated at the sites of a
network. A formal definition of the problem is the following:

Let us consider a set of DB-objects O = {o1, o2, . . . , ono}, a computer com-
munication network that consists of a set of sites S = {s1, s2, . . . , sns}, where a
set of operations Q = {q1, q2, . . . , qnq} are executed, the DB-objects required by
each operation, an initial DB-object allocation schema, and the access frequen-
cies of each operation from each site in a time period. The problem consists of
obtaining a new allocation schema that adapts to a new database usage pattern
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Fig. 1. Distribution design problem

and minimizes transmission costs. Fig. 1 depicts an instance of the problem with
4 DB-objects, 3 sites and 4 operations, as well as the emission frequency of the
operations from each site and the usage matrix of DB-objects by operations.

3.2 Mathematical Model

Traditionally it has been considered that the DDB distribution design consists
of two sequential phases. Contrary to this widespread belief, it has been shown
that it is simpler to solve the problem using our approach which combines both
phases. A key element of this approach is the formulation of a mathematical
model that integrates both phases.

The mathematical model objective function 2 includes four terms: the first
models the cost of processing read-only operations, the second models the cost
of read-write operations, the third models the migration cost of the DB-objects,
and the last one models the storage cost of DB-objects in the sites.
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The problem is modeled using binary integer linear programming. In Table 1
the elements used in the formulation are described. A solution to the model must
satisfy a set of constraints that specify: the possible replication of DB-objects,
their location, the access policy applied to the read and write operations, the
conditions for DB-object migration, and the storage capacity of the sites. More
details about the model can be found in [16, 17].
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Table 1. Model elements

Element Meaning
no Number of DB-objects to be distributed.
ns Number of sites in the network.
nq Number of user operations.
bm Byte size of object m.
skm Selectivity of DB-object m from operation k.
PA Byte size of the communication package.
Pk Byte size of the write instruction from operation k.
Fmi Usage frequency of DB-object m at site i.

fki

Frequency matrix of integer values that describes the emission
frequency of read-only operation k from site i, in a given time
interval.

qkm

Usage matrix. It indicates which DB-objects are used by the
different read only-operations; qkm = 1 if read-only operation k
uses DB-object m; qkm = 0 otherwise.

lkm
Communication packages required to send on the DB-object m
needed by the read-only operation k. lkm = (bm × skm)/PA

f ′
ki

Frequency matrix of integer values that describes the emission
frequency of read-write operation k from site i, in a given time
interval.

q′km

Usage matrix. It indicates which DB-objects are used by the
different read-write operations; q′km = 1 if read-write operation
k uses DB-object m; q′km = 0 otherwise.

l′k
Communication packages required to broadcast a write instruc-
tion. l′k = Pk/PA .

dmi
Communication packets required to create a DB-object m replica
in site i.

CAi Byte storage cost per byte in site i.
CSi Byte storage capacity in bytes of site i.
cij Communication cost between sites i and j.

Ami Initial allocation scheme.

xmi
Binary variable. It indicates whether the DB-object m is allocated
in site i (xmi = 1) or not xmi = 0.

wjmi

Binary variable. It indicates whether the DB-object m, allocated
in site i is required by a read-only operation issued at site j,
(wjmi = 1) or not (wjmi = 0).

w′
jmi

Binary variable. It indicates whether the DB-object m, actually
allocated at site j must be reallocated to site i, (w′

jmi = 1, with
j �= i) or not (w′

jmi = 0).
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4 Proposed Solution Approach

4.1 General Description

This section describes the methodology proposed for the solution of large scale
instances of the distribution design problem. Three strategies that can be used
for the approximate solution of a large scale instance are: transforming the ins-
tance into another instance whose solution requires fewer resources, choosing the
algorithm that has had the best performance on instances of the same type, or
using a model that requires less computing cost. For solving a large scale ins-
tance, the main strategy of the methodology consists of applying approximation
techniques of this type. The following definition formally describes this strategy.

Definition 1. Solution strategy

Given π : distribution design problem,
I : instance set of π,
R : finite set of transformations of instances of π,
M : finite set of models of π,
A : finite set of solution algorithms for the models,

if s ∈ R × A × M , then s is a solution strategy of a given instance of π
(Fig. 2).

Fig. 2. Aspects (dimensions) of solution strategies

For a given instance i ∈ I, the purpose of the methodology is finding a
strategy s = (ri, aj, mk) that permits solving the reduced instance of i resulting
from transformation ri, using algorithm aj and model mk.

A major difference from other approaches is the following: when a model and
an algorithm are chosen they lie at a point on the dark plane of Fig. 2. In [18]
a method to select algorithms is described. In our approach, the addition of a
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preprocessing dimension extends the possibilities beyond the dark plane. The
transformation mechanisms must be devised in such a way that they permit
solving larger instances with a given set of computing resources. The following
section describes an instance transformation method that attains this design
objective and shows the feasibility of this approach.

5 Instance Transformation Using Clustering

5.1 Description of the Transformation Method

Regarding the DDB distribution design problem, when an instance has repetitive
operations it is possible to transform it into an instance with fewer operations,
since repetitive operations are represented by similar rows in the access matrix.
Therefore, such operations can be considered as a single operation that is issued
with larger frequency. The reduction level that such transformation can yield is
directly proportional to the proportion of repetitive operations. The instances
reported in [13], characterized as typical on the Internet, are an example of ins-
tances that show this property. Such transformation is a relation on the problem
instances set, which associates a given instance to a smaller instance. Fig. 3
depicts a transformation r of this type, where I is the instance set of the DDB
distribution design problem, and i is an instance, and I ′ is a subset of I.

The binary vector that indicates from which sites a operation is issued is
called access pattern. The access pattern matrix Pki is constructed in such a
way that, for every k and i, Pki = 1 if and only if fki �= 0. Fig. 4 shows the

Fig. 3. Instance transformation

Sites Sites
1 2 3 1 2 3

1 2 3 0 1 1 1 0

Operations 2 0 0 6 Operations 2 0 0 1

3 3 4 0 3 1 1 0

4 0 0 3© 4 0 0 1©
fki Pki

Fig. 4. Access pattern matrix Pki
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access frequency matrix fki of the operations involved in the example of Fig. 1
and the corresponding access pattern matrix Pmi. The marked cells show the
way the process is carried out when the access frequency is zero (squares) and
larger that zero (circles).

All the operations that have the same access pattern are considered as a
single operation of the transformed instance. All the DB-objects needed by the
grouped operations constitute a single DB-object of the transformed instance.

5.2 Adjustment of the Transformed Instance Formulation

Once the operation and DB-object groups are created, it is necessary to adjust
the access frequencies to the groups, the operation selectivity to each group and
the group sizes of the transformed instance. The adjustment process is carried
out as follows.

Given the original instance i, matrix fk, operation selectivities skm and DB-
object sizes bm, then the access frequency of each grouped operation c at site i
is given by:

f�
ci =

∑
k∈OpCluster(c) fki ∀ c, i, k (2)

the size of DB-object group c is given by:

b�
c =

∑
m∈DB ObjCluster(c) bm ∀ c, m (3)

and the selectivity of operation k to DB-object group c is given by:

s�
kc =

∑
m∈DB ObjCluster(c) skm × bm∑

m∈DB ObjCluster(c) bm
(4)

Fig. 5 describes the transformation process and the formulation adjustment,
and shows the operation access fki, the access pattern Pki and the grouped
operation access f�

ci matrices.

Sites Sites Sites
1 2 3 1 2 3 1 2 3

1 2© 3 0 1 1 1 0 1 5© 7 0

operations 2 0 0 6 Operations 2 0 0 0 Operations 2 0 0 9

3 3© 4 0 3 1 1 0

4 0 0 3 4 0 0 1

fki Pki f�
ci

Fig. 5. Transformation Process

Since operations # 1 and # 3 have the same access pattern (dark rows
in matrices fki and Pki), they are integrated into operation # 1 (dark row in



Distribution Design in Distributed Databases 685

matrix f�
ci) of the transformed instance. Similarly operations # 2 and # 4 of the

original instance are integrated into operation # 2 of the transformed instance.
The sum of the two encircled frequencies, corresponding to operations # 1 and
# 3, becomes the frequency of operation # 1 of the transformed instance, which
is shown encircled. The rest of the frequencies of the transformed instance are
calculated similarly.

5.3 Clustering Algorithm

The input to the algorithm is matrix fki and its output is matrix f�
ci. In the

process each pattern is assigned a decimal code, which is used to identify the
group to which the operation belongs.

For Each operation k of fki

Code ←− 0
For Each site i of fki

If fki > 0 then
Code ←− Code + 2i

End If
End For
Groupk ←− Code
CardCode ←− CardCode + 1

End For

Fig. 6. Clustering algorithm

The algorithm complexity is nq ×ns. Table 2 describes the main elements used.

Table 2. Algorithm elements

Element Dimensions Objective
fki nq × ns Emission frequency of operation k from site i.

Groupk nq Group to which operation k belongs.
Cardl no Cardinality of group l.
Code 2ns Decimal codification of the operation access pattern.

6 Experimental Results

In order to validate our approach, a set of experiments were conducted using ins-
tances of different sizes and characteristics, and configured for simulating typical
access patterns on the Internet. For each experiment a test case was created with
100 randomly generated instances keeping unchanged the configuration of DB-
objects, sites and operations. To simulate several access patterns of the users to
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Table 3. Test cases used in the experiments

Characteristics
Test
case

DB-Objects
(O)

Sites
(S)

Operations
(Q)

Size in
Bytes

Q/S

C 1 100 3 100 86,060 33
C 2 200 5 200 338,560 40
C 3 500 7 500 2,062,252 71
C 4 1,200 15 1,200 11,823,420 80
C 5 1,000 10 1,000 8,172,480 100

the sites, test cases with 10, 20, 30 and 40% access probability of the operations
to the sites were generated. For each instance of a particular experiment, the
clustering method was applied to compress it. Once the compression was per-
formed, the original instance i and the compressed instance i′ were solved using
an exact method, and compared the costs of both solutions.

Table 3 shows the characteristics of a representative sample of test cases used
in the experiments. The table includes a test case identifier (Ci), the numbers
of DB-objects (O), sites (S), and operations (Q) of the included instances in
the test case, the size in bytes (Size) of the test case, and the operations to
sites ratio (Q/S). For each test case the instance sizes and the optimal solution
values were accumulated, and the global reduction and the error generated by
the compression were calculated. All the instances generated for a particular
experiment have the same size, since the instances have the same number of
objects, sites and operations; a similar situation occurs with all the compressed
instances of a particular experiment.

Figure 7 shows the reduction levels observed in the experiments. Notice that,
for instances with access probability of 10% and 20%, the compression yields a
reduction of at least 65% in the amount of resources needed for solving the
instances. The minimal and maximal reduction levels are 65% and 99%, which
constitute a considerable reduction of resources.

Fig. 7. Reduction level
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Fig. 8. Impact of compression on solution quality

Figure 8 shows the impact of the compression process on the solution quality.
The error percentage varies in the range from 0.10% to 3.20%, which shows that
the degradation is relatively small. Therefore,under the established conditions and
assumptions, this shows the feasibilityof reducing the resources required for solving
large scale instances at the expense of a reasonable reduction in solution quality.

7 Conclusions and Future Work

This paper shows the feasibility of the proposed approach to solve large scale in-
stances of the distribution design problem. The general strategy includes, unlike
other approaches, an additional dimension for compressing the instance to be
solved. The compression method consists of the application of a transformation
of the original instance into a new instance that requires fewer resources to solve
it than the original. The goal of the transformation is to obtain a reduction in the
amount of resources needed to solve the original instance, without significantly
reducing the quality of its solution. In order to preserve the solution quality,
the transformation summarizes the access pattern of the original instance, using
clustering techniques.

A set of experiments, using instances generated with typical access patterns
found on the Internet, were conducted for evaluating quantitatively the size
reduction that can be achieved and its effect on the solution quality. The trans-
formation yields at least a 65% reduction in the amount of resources needed,
without significantly reducing the quality of its solution. This shows that, given
a set of computing resources, it is now possible to solve instances larger than
those previously solvable.

Given the encouraging results, at the moment we are working on the design
and implementation of efficient compression methods using other data mining
techniques.
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de Ciencia y Tecnoloǵıa (CONACYT), Consejo Tamaulipeco de Ciencia y Tec-



688 J. Perez Ortega et al.
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Abstract. This paper discuses a new approach that models the single node of 
general real-time wormhole networks, and analyzes this new model with queu-
ing theory. Since the wormhole network’s node is too complicated to analyze 
generally, a multi-vision solution is applied to analyzing the wormhole net-
work’s node. The wormhole network single-node model is decomposed into 
three sub-models, and each of them can be analyzed with queuing theory sepa-
rately. Lastly, a simulation model is made with this solution, and several simu-
lation results are presented to illustrate the performance of real-time wormhole 
scheduling in single-node. 

1   Introduction 

Nowadays, most Massively Parallel Processors (MPP) adopt wormhole networks as 
their communication subsystems, on which a wormhole routing strategy runs. As 
presented in [1], a message is divided into flits (flow information units), which are the 
smallest units of information that a queue or a channel can handle. When the header 
flits of a message are received by a node, the node decides the next node the message 
should be routed based on the destination information contained in the message 
header. As the header flits are forwarded to the next node, the subsequent flits follow 
flit-by-flit in a cut-through fashion. If the header flits of a message are blocked at one 
node as the outgoing channel required is occupied, the message is buffered in the on-
line flit buffers at each node along the path up to the current node, and then blocks 
other messages until it is able to make forward progress. 

Accordingly, Dally [2] proposed Virtual Channel (VC), which is multiplexed over 
physical channels on demand, to reduce wormhole network contention and to improve 
physical link utilization. The virtual channels of a physical link require extra flit buff-
ers and an arbitration scheme to share the link bandwidth among buffers. Therefore, 
the blocked flits will not always occupy the physical link, and the network latency is 
mostly insensitive to the distance between the source node and the destination node 
[3]. The benefits of wormhole networks with virtual channels, which include small 
buffer sizes, low network latency and low network contention, make them attractive 
for running real-time applications on large-scale parallel systems.  

The two sections of a real-time flow control scheme in wormhole networks that 
manage two types of resources—virtual channels and the bandwidth of physical 
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links—are the virtual channel assignment strategy and the arbitration function of 
physical link respectively. 

Based on the two parts presented above, this paper firstly introduces six basic as-
sumptions and issues for modeling real-time wormhole networks in the single-node 
case with queuing theory. Then, a single-node queuing model is proposed with a 
multi-vision solution. Furthermore, some simulation experiments are performed ac-
cording to this solution. The last section presents some conclusions and future work.  

2   Basic Assumptions and Issues 

A single-node queuing model of wormhole networks running many typical wormhole 
routing schemes can be illustrated abstractly in Fig.1. A single-node queuing model in 
multi-vision is constructed based on this framework. For modeling, we make the 
following assumptions and issues. 

A1:  The number of servers and the relationship to the queues. There are three kinds 
of basic queuing models in general: single server, multi-server and multiple sin-
gle-server. All of them are depicted in Fig.2, Fig.3 and Fig.4 respectively. The 
number of servers is denoted by N. 

A2:  Population size (K). When the number of customers’ sources is at least 5 to 10 
times the capacity of the system, infinite source assumption is reasonable [4]. 
For  an infinite source model, there is assumed to be a Poisson arrival (M) with a  

 

Fig. 1. Virtual Channel Framework in Single-node of Wormhole Networks 

 

Fig. 2. Single Server System 
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Fig. 3. Multi-server System 

 

Fig. 4. Multiple Single-server System 

fixed mean arrival rate ( ). Otherwise, for the finite source case, the arrival rate 
will depend on the number of sources already engaged [4]. Generally, infinite 
population should be supposed to facilitate the matters. 

A3:  It’s assumed that all servers are identical and, if more than one server is avail-
able, it makes no difference which server is chosen for the customer. A queue 
does not form until servers are all busy. The mean service time for each customer 
is denoted by Ts and the mean service rate by μ, thus Ts 1/μ. Ts denotes the 
standard deviation of Ts. If Ts /Ts is equal to zero, the service time distribution 
is deterministic, namely constant service time (D). If Ts / Ts 1, the service time 
distribution is exponential (M), namely the service times are essentially random. 

A4:  Let w denote mean number of customers waiting to be served. If the length of 
the queue is infinite, the departure rate equals to the arrival rate. This assumption 
is helpful to analyzing in queuing networks. In practical terms, the length of the 
queue is limited by the size of buffers in one virtual channel (C). So, w is less 
than or equal to C. Accordingly, Tw denotes the mean waiting time. 

A5:  Flow control scheme. There are many typical real-time virtual channel flow 
control schemes for wormhole networks routing, such as Source-Link, Source-
VC, PPCS-RT and Throttle-and-preempt, etc. All of them are based on real-time 
scheduling algorithms executed on a uniprocessor such as First-Come-First-
Served, Earliest-Deadline-First, Least-Laxity- First and Rate-Monotonic-
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Scheduling, etc. Applying queuing theory to schemes modeling directly is diffi-
cult. We have to abstract their essential characteristics, as shown in Fig.1. Most 
real-time flow control schemes differ in their virtual channel assignment strate-
gies that decide which arrival flits can use the virtual channels and, arbitration 
functions that choose the next flits to be sent on the physical link. There are two 
typical arbitration functions, one is round-robin fashion and the other is priority-
based fashion. However, the VC assignment strategies are determined by the 
concrete scheduling algorithms. 

A6:  If priority-based fashion is applied to the arbitrator of a physical link, there are 
two basic classes of priority policies: preemptive-resume policy and non-
preemptive priority policy. Under a non- preemptive priority policy, the differ-
ence with preemptive-resume policy is that class 1 customers are not allowed to 
interrupt the service of class 2 customers who have lower priority until the ser-
vice ends. As far as data transmission system are concerned, non-preemptive pri-
ority policy is more desirable. 

According to six assumptions presented above, a single-node queuing model of 
wormhole networks can be easily constructed with multi-vision solution. And what is 
multi-vision? That means if a paradigm is too complex to analyze or model, multiple 
views should be made to decompose it into several logical components. Each compo-
nent can be modeled easily with queuing theory. 

3   Basic Sub-models 

This virtual channel framework illustrated in Fig.1 can be split into 3 close coupled 
components, each of them can be specified by the elementary queuing models pre-
sented in A1, and shown in Fig.2, Fig.3 and Fig.4 respectively. To make further dis-
cussion easier, a shorthand notation called Kendall Notation in the form 
A/S/m/B/K/SD should be introduced, where A is the inter-arrival time distribution, S 
is the service time distribution, N is the number of servers, B is the number of buffers, 
namely the maximum length of the queue, K is the population size, SD is the service 
discipline. In addition, we denote several shorthand symbols. FCFS means First Come 
First Served, RR means Round-Robin, PR means Preemptive-Resume and, NP means 
Non- Preemptive. 

Besides, we make the following assumptions. Each flit can be considered as fixed 
size unit, and each buffer unit can only store one flit. Similarly, each arbitration buffer 
can only store one flit. The three Sub-models are specified as follows. 

3.1   Model One 

We regard the arbitration buffers as a queue, arbitrator of a physical link as a server, 
those make up model 1. 

A1:  The number of servers N=1. Single server systems. 
A2:  It is convenient to guarantee that the number of VC buffers is much larger than 

the number of arbitration buffers (5 to 10 times), that is, the population size (Flits 
of messages) is unlimited (K ). Therefore, in heavy traffic conditions, inter-
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arrival times can be easily supposed to be exponentially distributed (Poisson 
Stream). Each arbitration buffer has its respective source from corresponding 
VC, that is, they have respective arrival rates i. As viewed from the structure, 
flits do not join the queue in a FIFO fashion, but in a “jump the queue” fashion. 
Actually, the queue has no structural head, but logical one that is determined by 
the arbitration discipline. This model approximates to the polling systems (Fig.5) 
in a way, where all N queues can accommodate only one customer (flit, C=1). 

 

Fig. 5. Schematic of a Polling System 

A3:  Since the arbitration time and transmission time of flits are deterministic (pro-
vided that the next node is available), the service time (Ts) and the service rate 
(μ) are constant. 

A4:  Since there are only N arbitration buffers, the mean length of the queue w is not 
larger than N. 

A5: The most commonly used service disciplines, namely arbitration functions here, 
are RR, PR and NP. As discussed in A2, if the arbitrator of a physical link polls 
its arbitration buffers in a round-robin fashion, then the buffers queue is always 
saturated in heavy traffic conditions. Under these circumstances, RR fashion ap-
proximates to FCFS fashion for a sufficiently long period of time. 

A6:  In polling systems [5], there are two service types appropriate for our model: one 
is Single Service, where only a single customer is served per queue before the 
server proceeds to the next queue; the other is Exhaustive Service, where a queue 
is serviced until it is empty. Thus, as viewed from this sub-model only, Single 
Service is adopted and, PR discipline is similar to NP discipline due to the slight 
sizes of flits. However, in view of the whole system, all flits in one message have 
the same priority, and they must be sent continuously flit by flit. Because all 
routing information is contained in the message header—if a message is split 
into two parts due to preemption, the first part will have lost its tail and the sec-
ond part will not have a header to guide it to its destination. 

Therefore, PR discipline differs from NP discipline. Generally, we choose NP. 
Finally, a primitive sub-model 1 can be derived from the 6 assumptions addressed 

above. As presented in A2 and A5, heavy traffic conditions and RR discipline can 
guarantee that the sub-model is in a FCFS fashion in a steady state. Thus 
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1
λλ  and it has multiple sources. In this paper, model 1 can be reduced to 

M/D/1/N /RR or M/D/1/N NP. 

3.2   Model Two 

Each VC is referred to as a queue, while each arbitration buffer as a server. That is 
model 2 as illustrated in Fig.4. 

A1:  In this multiple single-server system, there are N servers and N corresponding 
queues. In general, the header flit in each VC buffer can only enter respective arbi-
tration buffer (VC Bi). However, it has no constraint on special routing design. 

A2:  Population size K  , and Poisson distribution. Assume that each source has its 
arrival rate i, then the whole rate i. Under certain priority disciplines [3], a 
message can request to be allocated any VC number that is lower than its priority. 
Thus, the higher the priority of a message, the larger number of VCs from which a 
message can request an allocation. That is, the probability of meeting tight dead-
lines for messages is increased. In this situation, i is not more than N. 

A3:  Obviously, each server (arbitration buffer) is independent and identically distrib-
uted, provided that RR discipline is adopted in model 1. But if priority discipline 
is adopted in model 1, servers in model 2 are not independent. Further more, the 
service times of servers vary with priorities they own. Service discipline in 
model 1 will have effect on the mean service time 1/μ of each server in model 2. 
That is, if RR discipline is applied to model 1, and the mean service time is 1/μ, 
then the mean service time N/μ will be provided by each server in model 2 under 
heavy traffic conditions; If priority discipline is applied to model 1, the mean 
service time in model 2 become complex. As addressed in A2, each VC and its 
arbitration buffer have respective priority. Besides, suppose that Exhaustive Ser-
vice is running in model 1 as presented in A6 of model 1. So, under NP disci-
pline, all the flits except header flit in a message with highest priority have the 
same service time 1/μ. And the header flit may have a longer service time L/μ, 
where L denotes the length of another message with lower priority. Similarly, all 
the flits except header flits in any messages with other lower priorities have the 
same service time 1/μ, because of the NP discipline. But the service time of 
header flits differ in their priorities. The header flits with second highest priority 
may have the service time L/μ or 2L/μ (provided that there are no continuous 
messages with same priorities), the third one may have L/μ or 2L/μ or 3L/μ, etc. 

A4:  Obviously, the mean lengths of queues (Wi) in VCs are not larger than the ca-
pacity (Ci) of respective VCs. For analysis as a whole, we can derive the mean 
length of queues from calculating the formula Nwiw

N=  

A5:  As presented in A1 and A2, if VCs are specified by their priorities, the service 
discipline is only FCFS. Otherwise, if the VCs are identical with flits of different 
priorities in each of them, and the priorities of arbitration buffers are distinguish-
able (e.g. B B2 BN), then there is a multiple-to-multiple mapping from 
VCs to arbitration buffers (NVC NB), and the service discipline is in priority 
fashion. This is distinguished from the pattern presented in A3.  
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A6:  In this model, NP discipline may be the most commonly used fashion. After 
deliberating on this model, services are not simultaneous, because the servers 
(arbitration buffers) have common exit--the physical link. However, as viewed 
from the VCs, entering the arbitration buffers means the service starts, though 
the flits have to take a slight period of time to wait for sending. In other words, 
the servers have different service time from one another. Hence, servers are not 
independent. It’s difficult to use pure queuing theory directly for this model. For 
simplification, a heavy traffic condition [6] can be introduced to this model. 
Thus, we can denote this sub-model by M/D/N/N*C , where C stands for the 
capacity of each VC. If each VC has distinguishable priority with the same arri-
val rate, this sub-model can even be split into N single server systems for further 
study, each of which can be denoted by M D C FCFS. 

3.3   Model Three 

Each VC is considered as a server, while no queue is formed when the servers are all 
busy. That means there is no waiting queue in Fig.3. The service provided by VCs is 
the available space for buffering the flits waiting for forwarding. That is, the servers 
are busy if all the buffers of VCs are saturated, and the flits blocked are waiting in 
previous node for repeatedly and continuously attempts to gain service1. In contrast, 
the servers are idle if there are available buffers in VCs. 

A1:  The number of servers is equivalent to the number of VCs. This sub-model is a 
type of multi-server systems. 

A2:  Population size K , and Poisson distribution. i, where ‘i’ denotes the 
number of customer sources. 

A3:  Assume that the VCs are equivalent. In heavy traffic conditions, the mean ser-
vice time is equivalent to the mean service time 1/μ in model 1, no matter which 
arbitration discipline is running, because the flit arriving can be received as soon 
as one buffer is available in VCs. If there is more than one buffer available in 
VCs at any given time, contrary to heavy traffic conditions, the mean service 
time is determined by the sum of executing time of VC assignment strategy and 
the placing time of flits. Similarly, if VCs are distinguished by their priorities, 
the mean service time of the whole system is also 1/μ in heavy traffic conditions. 
Nevertheless, the mean service times are different as viewed from various 
sources with different priorities. 

A4:  There is no queuing room for blocking flits. Thus, w=0. 
A5:  This sub-model is applying VC assignment strategy to its service discipline, so 

that the service discipline varies from strategy to strategy. A polling manner can 
be used, similar to RR discipline. We can assign flits to the VC who has the 
shortest queuing length in it, or the shortest emptying time. Also, we can con-
strain the flits to use given VCs according to their timing properties. 

A6:  There is no preemption issue for the special discipline. 
                                                           
1  When all the servers are busy, the customer arriving is blocked. There’re 3 manners to handle 

these blocked customers [4], where Lost Calls Delayed—customer blocked can be placed in a 
queue awaiting a free server—is the most commonly used manner, and Lost Calls Held—
repeatedly and continuously attempts to gain service—is used in this paper. 
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By the analysis above, model 3 can be denoted as M/D/N/N, which is called Loss 
Queuing System in some theses. In order to work out the probability of blocking state, 
that is, all the VCs are busy, Erlang’s loss formula [7] can be proposed. Parameters  
and μ are defined as arrival rate and service rate of each server, respectively. (i) is 
defined as the d.f. of the number of customers in the system in steady-state. We con-
sider a heavy traffic condition, so that each VC has only two states, saturated or one 
buffer available. In this case, (i) can also be denoted as the number of busy servers. 
Hence, this sub-system can be modeled as a birth and death process with birth rate 
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4   Simulation Results 

With multi-vision solution introduced, a simulator can be implemented easily to study 
the performance of real-time wormhole systems in single-node based on a primitive 
queuing model [8]. Because of the dynamic nature of discrete-event simulation mod-
els, a next-event time mechanism is introduced to construct our model. First of all, a 
simulation clock should be made to advance simulated time from one event time to 
another nearest event time. Second, there are two events, arrival and departure. Both 
of them can be implemented by independent event routines. Lastly, according to 
multi-vision solution, VC assignment strategy and physical link arbitration can be 
implemented in corresponding functions, and the whole simulated system can be 
assembled with these two components easily. Besides, priority mapping function 
should be made to generate priority of messages which reflect the timing properties. 

After the simulator running, several typical results are extracted from huge data to 
illustrate some problems. In order to assess the performance of the model, several 
evaluation parameters should be included, average delays, deadline missed rate, loss 
rate and server utilization. 

As showed in Fig.6, flits’ loss rate exponentially increases as the service time in-
creases. Under the same conditions, deadline missed rate is not like the loss rate does 
(Fig.7). With the population size getting larger and larger, the curves become steady. 
Hence,  most  study is based on heavy traffic conditions. As presented above, Erlang’s  

                                                           
2  Equilibrium equation—the probability flow out of a state = the probability flow in that state. 
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Fig. 6. Flits loss rate 

 

Fig. 7. Deadline missed rate 

 

Fig. 8. Loss rate with the number of VCs 
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loss formula most likely conforms to the curve showed in Fig.8. Therefore, the incre-
ment of VCs will reduce the network contention. 

Not only can the performance results be made, but also any algorithms or strategies 
on real-time wormhole networks can be involved in this simulator with multi-vision 
solution. This method facilitates the simulation experiments with many alterable factors. 

5   Conclusion 

Since real-time wormhole networks with VC technology are complicated systems, a 
multi-vision solution is proposed to decompose the queuing model of single-node, so 
that the sub-models can be studied easily.  

Although the queuing models studied in this paper ignore important aspects of real 
systems, the work is a first step in the development of analytic methods for real-time 
wormhole networks. However, the attraction of the solution proposed in this paper is 
that it maybe opens up a new research topic that can be pursued by us or other re-
searchers.  

Finally, our future work possibly includes (1) incorporating typical real-time 
wormhole routing strategies in our models and making performance evaluation, (2) 
quantitative analysis with queuing theory or queuing network theory, (3) more popu-
lar and stronger simulator to our models. 
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Abstract. Simulation has been proved to be a practical approach for
performance evaluation of mobile agents. However, the lack of a standard
for the execution of mobile agents makes the semantics ambiguous. Thus,
the simulation of mobile agents is not feasible or reasonable without an
explicitly defined execution model of agents. In this paper, we propose an
execution model of mobile agents called SMA. Based on the SMA model,
the discrete event models describing the SMA agents and hosts, called
SMA-DEVS, are presented using the modelling approach of DEVS and
DSDE. We implement a simulation environment based on SMA-DEVS
and test the environment with certain mobile agent-based algorithms.

1 Introduction

As a novel network computing technology, mobile agent has been widely adopted
in solving various parallel and distributed problems, ranging from information
searching and retrieval to distributed coordination and synchronization. A lot of
mobile agent algorithms have been proposed to find new solutions for those prob-
lems to improve performance in circumstances where the systems exhibit heavy
network traffic, large amount of transferring data, and unbalanced workload
among nodes. Naturally, performance evaluation of those algorithms becomes
essential to discover the performance and scalability bottlenecks and optimize
the application design.

However, performance evaluation of mobile agent algorithms remains a com-
plex task. The solutions for performance evaluation of conventional distributed
algorithms, such as theoretical analysis and live deployment, seldom fit for mobile
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agent algorithm due to its features of mobility and reactivity [8]. Alternatively,
simulation has been proposed as a valuable method for analyzing the complex
nature of the dynamic aspects of parallel and distributed systems. In [8], we
have proposed a direct execution simulation approach to efficiently evaluating
the performance of some mobile agent algorithm. The prototype built following
the approach worked well for simple algorithms under simple circumstances. But
the simulation results deviate from anticipation once the number of agents or
the complexity of the algorithms increases.

With a deep exploration to the algorithm and the prototype, we found that
different mechanisms of agents to handle message and migrate are adopted by
the designer and the system respectively. This difference thus results in the di-
vergence of agent semantics, which made our previous simulation model not fit
for concrete agent systems. Further, different mobile agent systems deploy differ-
ent implementation mechanisms, so we have to resort to a platform independent
semantical description of mobile agent behaviors to simulate mobile agent, which
makes its performance unambiguous. Based on such a consistent description, a
discrete event system model of mobile agents should be built as the fundamental
work of simulation.

Through the work of implementing mobile agent algorithms and understand-
ing the architecture of concrete systems, we propose a common execution model
for describing mobile agent semantics. The model, called SMA standing for Sim-
ple Mobile Agent, adopts common concepts of mobile agent behaviors and its
semantics get the idea originating form concrete mobile agent systems such has
IBM Aglets[1]. Based on the SMA model, we utilize the discrete event system
modelling approach to build a theoretical model called SMA-DEVS for mobile
agent simulation. The model has been deployed in practical simulation environ-
ment and proved to be generic and effective for mobile agent algorithms. In this
paper, we would introduce the ideas and features of the two models.

The rest of the paper is organized as follows. In Section 2, we describe related
works on mobile agent systems, discrete event systems and simulation of mobile
agents. In Section 3, we introduce the SMA model with the explanation of SMA
agent semantics. In Section 4, the discrete event system model SMA-DEVS for
simulating the execution of mobile agents is presented in detail. A direct execu-
tion simulation prototype adopting the SMA-DEVS model is briefly introduced in
Section 5. Finally, Section 6 concludes the paper and discusses our future works.

2 Related Works

Kinds of mobile agent systems have been designed and implemented. Among
them were Agent TCL by Dartmouth College, Concordia by Mitsubishi Electric
Information Technology Center, Mole by University of Stuttgart, Voyager by Ob-
jectSpace Company and Aglets by IBM Research [1]. Early mobile agent systems
were often developed in certain script languages such as TCL. Later, when Java
was developed and became popular, most mobile agent systems adopted it as
implementation language because it is pure object-oriented and supports object
serialization. Though these systems differ in their goals, motivations and imple-
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mentations, they all provide common functionalities that support the migration
of agents, the communication between agents, various programming languages
and various forms of security. However, the difference among the implementa-
tions of the functionalities, mainly on migration and communication, results in
different simulation model for agents. For instance, most mobile agent systems
adopt the weak migration scheme where only the values of agent variables are
maintained during migration, whereas some early systems support the strong
one where the execution states would also be maintained. As to agent commu-
nication, in some systems agent handles the messages one by one, whereas in
other systems messages are handled concurrently. In some deliberately designed
agent systems such as Aglets, options are provided for the agent to handle the
messages sequentially or concurrently, which makes the agent algorithm more
difficult to be designed and understood.

Discrete event system (DEVS) is a formal model introduced by Zeigler [13]
to describe the actions and state transitions of a system caused by input or
time elapse. The DEVS model introduce some elements representing time, event
and input/output functions into conventional state machine, enabling the model
efficiently describing the state transitions of an actual system. DEVS model
has been adopted as a standard modelling approach in simulation, and many
extensions to DEVS model have been proposed to describe various complicated
systems behaviors. These extensions include: the Coupled DEVS model proposed
by Zeigler to describe the coupled system in a hierarchy schema [14]; the Par-
allel DEVS model proposed in [4] to describe parallel and distributed systems;
and Dynamic Structure DEVS model proposed by Barros in [2] to describe the
systems with dynamic structures, which fits modelling mobile agent system.

Some studies have been done to model and simulate mobile agent. Works can
be found in literatures on modelling mobile agents with the canonical stochastic
analytic approach [7] or simulating mobile agent applications [10][12], but these
efforts are usually devoted to evaluating different, application-specific mobile
agent programs under different system assumptions. Few works have been taken
to establish the practical generic simulation model for mobile agents. J.Kim [6]
once built a model to describe the mobility of agents with a Coupled-DEVS
with dynamic structures, but the model ignores the internal execution model of
the agents and thus not strong enough to simulate concrete agents. The solid
simulation model must be built on the explicitly described model of mobile agent
execution, so we introduce the SMA model to standardize agent execution.

3 SMA: An Execution Model for Mobile Agents

SMA is a model designed for specifying mobile agent execution. It adopts com-
mon concepts of mobile agent such as creation, communication, migration etc.
We also propose a script language called SMAL to specify SMA agent programs.
The details on syntax and semantics of SMAL can refer to [9].
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In SMA a mobile agent is a program consisting of a Declaration section
declaring agent state variables and three statement block sections, Initializa-
tion, MigrationRecovery and Messages, containing pseudo codes and primitives
specifying agent behaviors. The primitives are deeply related with agent threads’
execution and interaction. Variables can also be declared in the BlockDeclara-
tion subsection in each statement block, but only the state variables in Declara-
tion would be retained during migration because of the weak migration scheme
adopted by SMA.

SMA drives a set of threads to execute the statement blocks. That is, Ini-
tialization, MigrationRecovery, and each Message statement block would be ex-
ecuted by a separate thread. SMA adopts the message-driven model. Generally,
a manager thread and a set of message threads are involved in message han-
dling. Manager thread runs in background and schedules message threads. Each
message block defines how to handle a certain kind of messages and is executed
by a message thread under the control of the manager thread once a message
is received. SMA assumes that the messages are sent in an asynchronous way.
Incoming messages are transferred by the agent platform and forwarded to man-
ager threads. Manager thread manages two message queues, a processing queue
and a waiting queue, to accommodate the messages being handled or not cur-
rently. Designers can manage the threads with four primitives, blockmessage,
unblockmessage, regainmessage and removemessage, in the statement blocks.
Blockmessage and unblockmessage are used to signify whether to process the
message, regainmessage moves the messages in the waiting queue to the process-
ing queue, and removemessage removes the current message from the waiting
queue. The messages can be handled as the designer prefers to by properly using
the four message primitives.

In the statement blocks, some primitives are provided for common agent
behaviors. They are sendmessage, createagent, migrateto, and dispose. The se-
mantics of the primitives are apparent. Another two primitives, lock and unlock,
are associated with special lock variables being declared in Declaration and only
serving as signs of critical sections. Once a lock statement, e.g., lock(r), is exe-
cuted by one thread, representing it would require the control of a lock variable
r, the other threads would be suspended if they encounter a lock(r) until the
statement unlock(r) is executed by the thread who have acquired the control
of r. Providing the lock and unlock primitives, SMA model gives designers full
control over thread’s execution whereas leaves them the problem of concurrently
accessing the agent’s shared area.

A simple example of SMA agent is described with a SMAL program as below:

Agent sample Body Declaration
a: Int;
r: Lock;

Initialization
BlockBegin

a = 0;
unblockmessage();
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BlockEnd
MigrationRecovery

BlockBegin
a = 0;
regainmessage();
unblockmessage();

BlockEnd
On Message m1 With b: Int Do

BlockBegin
lock(r);
a = b;
sendmessage("sample2", m2, 3);
removemessage();
unlock(r);

BlockEnd
On Message m2 With c: Int Do

BlockBegin
lock(r);
createagent("sample3", sample, "host2");
migrateto(host2);
unlock(r);

BlockEnd
BodyEnd

In the example, a statement createagent(”sample1”, sample, ”host1”) would
create an agent instance sample1 of agent type sample at a host named host1,
the name sample1 and host1 are passed to the predefined variables AgentName
and HostName. During the agent’s lifetime, the name sample1 would be used as
the unique identification of this agent, but the HostName variable would change
its value when the agent migrates to another host. When the agent is created,
it would handle two kinds of messages: the message m1 would incur sending a
message to another agent named sample2, and the message m2 would cause the
agent to create a new agent named sample3 in host2 and then migrate to there.
However, only one of the worker threads can do its job at a time because each
worker thread would encounter a lock(r) statement once it begins to handle the
message.

SMA presents a simple scheme to specify mobile agent algorithm based on
asynchronous message passing. It explicitly describes the internal behaviors of
the agent and lays a foundation for building a simulation model for mobile agents.
In the next section, we will introduce the DEVS model for simulating mobile
agents based on SMA.

4 SMA-DEVS: Discrete Event System for SMA

SMA enables us to build a DEVS model that can explore state transition during
agent execution. As to the mobile agent systems based on the SMA model, the
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whole environment can be set into four layers: system, hosts, agents, and threads,
which form a 4-layer simulation architecture as shown in the left part of Fig.1.
In SMA an agent is regarded as some shared data manipulated with a set of
threads including a manager thread and some message threads (here we can treat
the initialization thread and recovery thread as special message threads). Our
simulation system is supposed to be built with the direct execution simulation
approach in which the thread is the basic running element to be scheduled.
Naturally we would regard the thread as the atomic system representing both
logic process and physical process. Further, the host and the agents in it can be
combined to be one system in simulation because the agent is always treated
as a subset of the threads contained in the host. Therefore, we can define the
SMA-DEVS model with a 3-layer architecture: SMA-System, SMA-Host, and
SMA-Thread, as the right part of Fig.1 shows.

Fig. 1. Simulation architecture for mobile agent system

SMA-Thread mainly behaves as the event source involving the interactions
both between the threads and between the hosts. In process simulations, the
discrete code segments involving no interaction and thus executing sequentially
are often called local code blocks. During its lifetime a thread is usually in one of
two kinds of states: executing a local code block and taking an interactive action.
Those actions, tightly associated with agents’ behaviors, are usually determined
by the thread’s execution model. Based on the primitives indicating the behaviors
(interactive actions) of the SMA threads, it is easy to define a concrete SMA
thread’s DEVS model.

Definition 1. A SMA-Thread is a standard basic DEVS defined as follows:

SMA-Thread = < X, Y, S, δint, δext, λ, ta > where

– X and Y are the input and the output value set. X is defined by an enumer-
ated set XT = {notify, stop}. Y is the output value set defined by a set YT =
{(create agent, h, an, agent), (migrate agent, h, an, agent), (send message,
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an, msg), (block message, an), (unblock message, an), (regain message, an),
(remove message, an), (pick, an, msg), (lock, an, r, t), (unlock, an, r, t),
(dispose, an) | h∈HN, msg∈MSG, r∈Lock}, where HN represents the set of
host names, MSG represents the set of messages, Lock represents the set of
lock variables in the owner agent the thread belongs to, agent represents the
instance of the agent program, an represents the name of the owner agent,
and t represents the thread itself.

– S is the state set with the form of {(si, st) | si∈SI, st∈{running, waiting,
stopped}} where SI represents the set of the thread’s execution states.

– δint, δext, λ, ta are common DEVS functions. The rule to define them would
be introduced later.

SMA-Thread simplifies the execution of a thread as a set of states with certain
transition rules and input and output values. The input values in XT show that
the thread could be notified to resume the execution and be stopped to abort
the execution. The output value set is composed of the interactive actions that
are specified as primitives in SMA and (pick, an, msg). The latter one is sent
out by an agent’s message manager thread when a message named msg in the
waiting queue is picked up to handle. For facility, we treat all these interactive
actions as primitives.

SMA-Thread only presents a rough sketch of the DEVS model for the threads.
Those transition functions are not described accurately because they are related
to the semantics of the concrete thread. However, our purpose is not to simulate
a concrete agent program but to build a generic simulation environment based
on direct execution simulation. Therefore, instead of using the common basic
DEVS models to describe agent threads, we define a template for generating
various concrete SMA-Thread models from agent execution. To facilitate the
representation, we can use something of a thread’s state transition sequence as
the input of the template.

Definition 2. A Thread-ST is a tuple defined as follows:

Thread-ST = < SI, Act, Tr > where

– SI represents the states set of the program’s execution. The elements of SI
adopt a 2-tuple form as (st, sc) where st stands for the states of the thread
variables and sc stands for the states of the common variables shared by the
threads in an agent.

– Act = Instruction ∪τ∪ Primitive is the set of actions executed by the thread.
Instructions consists of actions executed thread’s local code block; τ is a
special notation indicating an external action that would affect the agent’s
shared variables.

– Tr ⊂ U* is the set of the thread’s state transition sequences. Here U =
SI×Act×SI is the domain of state transition indicating the semantics of the
program. For a state sequence δ ∈Tr, δ = (u1, u2, . . . , un) where ∀1 ≤ i < n,
ui = (si, ai, si+1) .
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Thread-ST presents a simple way to describe threads’ state transitions during
the execution. It is practical from Thread-ST to build the template for threads’
simulation with the direct execution simulation approach. Usually a Thread-ST
model corresponds to a thread. We denote the set of the Thread-ST models as
ST and denote the set of the SMA-Thread models as Thread.

Definition 3. A SMA-Temp: ST→Thread is a function: for a st = (SI, Act,
Tr)∈ST, SMA-Temp(st) = (X, Y, S, δint, δext, λ, ta), where

– X, Y, and S are defined as Def.1 shows;
– δint: S → S is the internal state transition function. For a (s1, a, s2) ∈ Tr:

δint((s1, running)) = (s2, running), if a ∈ Instruction ∪ {τ} ∪ (Primitive-
{Lock}); δint((s1, running)) = (s2, waiting), if a = Lock; δint((s1, waiting))
= (s2, waiting), if a = τ .

– δext: S × X → S is the external state transition function. For a (s1, running)
∈ S, δext((s1, running), stop) = (s1, stopped); for a (s1, waiting) in S,
δext((s1, waiting), notify) = ((s1, running), δext((s1, waiting), stop) =(s1,
stopped).

– λ: S → Y is the output value function. For a (s1, a, s2) ∈ Tr, a ∈ Primi-
tive: λ(s1) = output(a) where output is a wrapper function to transform the
primitive actions into the output value defined in YT .

– ta: S → R is the time advance function.

In Def.3, ta is the sole function whose definition depends on the SMA-Temp.
That is, each SMA-Temp would define a template for generating a concrete ta
function for a Thread-ST model.

Direct execution simulation approach has been successfully used in many
simulation systems, especially the distributed computing systems. However, lit-
eratures mainly focus on the implementation detail and seldom dwell on its
formal model and its relation with DEVS model. Here we use SMA-Temp to
associate thread’s state transitions with its simulation model, formally illustrat-
ing the essence of the direct execution simulation as a function generating a
simulation of the thread with its concrete execution.

It is hard to describe host’s dynamic structure with the conventional DEVS
models, because the agents would migrate or die and the threads handling the
messages would be stopped or finish its work. Fortunately, Barros has proposed
a dynamic structure discrete event model called DSDE [2] that exactly fits the
case here. Adopting the features of the dynamic structure models, we use the
model of the executive in DSDE to describe the agent hosts as follows.

Definition 4. A SMA-Host is an 8-tuple:

SMA-Host = < Xh, Yh, Sh, γ, Σ*, δint, δext, h, tah > where

– Xh and Yh are input and output value sets. Xh = Xint ∪ Xext, Yh =
Yint ∪ Yext, where Xext = Yext = {(create agent, h’, agent, agentname),
(migrate agent, h’, an, agent), (send message, an, msg) | h’∈ HN}, Xint
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= {(block message, an), (unblock message, an), (regain message, an), (re-
move message, an), (pick, an, msg), (lock, an, r, t), (unlock, an, r, t), (dis-
pose, an) | msg MSG, r Lock, t ∈ Th}, Yint = {(notify, t), (stop, t) | t ∈
Th}. Here HN is the host name set, MSG is the message set, Lock is the
lock variable set, Th is the thread set.

– Sh is host’s state set. Sh = {(Th, Ch, TV)}, where Th is the thread set,
Ch is common state set, TV represents temporary values for output. The
element of Th is denoted as a triple: (an, type, seqno), indicating the owner
agent name, the thread type, e.g. initializing thread with init type, migrate
recovery thread with migrate type, message manager thread with manager
type, and message handler thread with the message name as the type, and
the sequence number of the thread once it is an message handler thread. The
element of Ch is denoted as a tuple: (an, MQw, MQp, b, {(r, ts) | r∈Lan, ts∈
Th*}), indicating the agent’s message waiting queue and processing queue,
the message block flag, and the lock variables with the queue of the threads
waiting for the control of the lock.

– γ: Sh → Σ* is the structure function and Σ* is the set of the structures
of the threads in the host. For a sj,h = (Tj,h, Cj,h)∈Sh, a structure Σj =
γ(sj,h) ∈ Σ* is defined as Σj = (Tj,h, {Mi,j}, {Ii,j}, {Zi,j}), where Mi,j

is the SMA-Thread model of the thread i for all i ∈ Tj,h, Ii,j is the set of
component influencers of i for all i ∈ Tj,h∪ {h}, Zi,j is the input function
of component i for all i∈ Tj,h∪{h}. For all i∈Tj,h, Ii,j = {h}, and for i=h,
Ii,j = Tj,h. The function Zi,j : Yk,j →Xi,j (k∈Ii,j) is defined as follows:

• ∀ i ∈ Tj,h, ∀ y ∈ Yh, and k=h holds: if y=(notify,i), then Zi,j(y) =
notify; if y=(stop,i), then Zi,j(y)= stop; otherwise, Zi,j(y) is undefined.

• if i=h, then ∀ y∈Yk,j , Zi,j(y)=y.

– δint: Sh → Sh is the internal transition function; λh: Sh → Yb
h is the output

function; ta: Sh → R+
0 is the time advance function. For a state sh = (Th,

Ch, tv): if tv ∈ Yb
h and tv �= φ, then δint(sh) = (Th, Ch, φ), λh(sh) = tv,

tah(sh)=0; otherwise, their values are not defined.
– δext: Sh × R × Xb

h → Sh is the external transition function. δext is defined
in a recursive way with a function sort whose purpose is to transform the
input value set as an ordered value list:
δext(sh,e,x)=δext1(sh,e,sort(x))=δext1(δext2(sh,e,fst(sort(x)),e,snd(sort(x))))
The auxiliary function δext2 defines actual state transition to each input
value. Here list part of its definition with certain input values:

• δext2((Th, Ch, tv), e, (create agent, h, an, agent)) = ((Th∪{(an,manager,-
), (an,init)}, Ch {(an,ε, ε, true, {(r, ε) | r∈ agent.Lock})}, tv)

• δext2((Th, Ch, tv), e, (migrate agent, h’, an, agent)) = ((Th -{(an,*)},
Ch-{(an, *)}, tv∪{(stop, (an, *))}∪{(migrate agent, h’, an, agent)})

• δext2((Th, Ch, tv), e, (send message, an, msg)) = ((Th, Ch[(an, -, (MQw,
msg), -)/(an, -, MQw, -)], tv), if (an, manager,-)∈Th

• δext2((Th, Ch, tv), e, (pick, an, msg)) = (Th∪{(an, msg, seqno)}, Ch[(an,
(MQp, msg), MQw-{msg}, -)/(an, MQp, MQw,-)], tv)
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• δext2((Th, Ch, tv), e, (lock, an, r, t)) = (Th, Ch[(an, -, {(r, (t)),-})/(an,
- , {(r, ),-})], tv {(notify, t)})

SMA-System is composed of the hosts with the function specifying the de-
lay time to transfer the information between them; the definition can be easily
presented as:

Definition 5. A SMA-System is a tuple:

SMA-System = < H, MH , Ti,j > where

– H is the set of hosts;
– MH is the SMA-Host models for those hosts in H;
– Ti,j : R →R, i,j ∈ H. The time function to calculate the time for transferring

information between two hosts.

SMA-DEVS models behaviors of the mobile agents and their hosts based
on the execution model defined by SMA. Under the guideline of establishing
the abstract simulators with the DEVS and DSDE model, we can build the
simulation model and, further, the simulation environment of mobile agents for
its performance evaluation.

5 SimulAgent: A Simulation Environment Prototype

Based on the SMA-DEVS model presented above, we have built a generic simu-
lation environment prototype with the direct execution approach. The prototype
called SimulAgent is implemented with JDK 1.4 and the concrete mobile agent
system is IBM Aglets 2.0. Although IBM Aglets has a similar execution model as
SMA, they are different in some facets. For example, the common Aglet handles
the message one by one. Therefore, we modify the Aglets accordingly to make
the runtime layer capable of supporting the standard Aglets meanwhile adopting
the SMA model during agent’s execution. The basic interface is shown in Fig.2.

To verify the function of SimulAgent, we implemented some mobile agent
algorithms and tested their performance in SimulAgent. Here we present the ex-
periment of a classical distributed problem-distributed mutual exclusion problem
solved by mobile agent. The details of the algorithm can be referred to [5]. The
algorithm involves a number of migrations and message exchange, making it a
good case to testify our prototype.

We implement the algorithm with SimulAgent’s API, and simulate its exe-
cution in SimulAgent. The experiment environment is set up with 5 PCs in a
fast LAN, the hardware configuration of machine is PIII 900M / 256M / 20GB,
the operating system is Windows 2000, and the version of Java VM is JDK1.4.
We simulate the execution of the system composed of the nodes whose number
ranges from 4 to 40, and make the performance evaluation based on the simu-
lation results. Figure 3 show the diagram of the performance metrics including
average time for a node to enter the critical region and average traffic cost for a
node.
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Fig. 2. User interface of SimulAgent

Fig. 3. Simulation results of MA-DME algorithm from SimulAgent

Figure 3 depicts the performance of the algorithm under full load, middle
load, and light load respectively. From the analysis of the algorithm in [5] and
the following works, we know that the average cost such as the traffic and waiting
time in heavy load would be smaller than it is in middle load, which is the
major advantage of the algorithm. The simulation results got from SimulAgent
explicitly confirmed the proposition.

From the results we got from the experiments, we found that the SimulAgent
can correctly simulate the mobile agent algorithms in complicated environment,
which proves the validity of the SMA-DEVS model.

6 Conclusion

The lack of a standard execution model for mobile agents make its modelling and
simulation ambiguous and thus hinder its performance evaluation. In this paper,
we establish a model called SMA to specify mobile agent execution, and then
establish a discrete event system model SMA-DEVS for simulating mobile agents
based on SMA. A direct execution simulation environment prototype based on
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SMA-DEVS is implemented in Java based on IBM Aglets, and the experiment
results shows that the models and the simulation environment are valid.

Currently, we are engaged in the work of looking for better approaches to
improve the simulation environment. The major aspects to improve lies in: to
build efficient simulation model and architecture for the simulation environment
based on SMA-DEVS; to design prompt parallel simulation algorithms for the
simulator; to improve the structure of the SimulAgent, making it more extensible
and able to accommodate different simulation algorithm.
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Abstract. In this paper, a holistic approach to realize survivability of distributed 
information network systems for critical applications(DISCA) based on three 
basic states, processed, stored, and transmitted, of information (called a PST-
based system model), is proposed and its evaluation method and some experi-
ment results are given as an example of its application. A PST-based system 
model brings all three parts together and coordinates them through the services 
supported by them, in which whole system’s survivability is embodied by sys-
tem services and their interdependency relations. With this model, a multi-layer 
survivability framework based on the information states is formed and the com-
plexity of a DISCA system in implementation and evaluation can be conquered 
in the most prevalent approach—“divide and conquer” approach.  

Keywords: DISCA, Survivability, Evaluation, PST-based model. 

1   Introduction 

Modern society increasingly depends on distributed network systems to conduct busi-
ness, government, and defense. Yet Distributed Information System for Critical Ap-
plications (DISCA) is the most important one of them because it is widely used in the 
national defense, military information system and other key departments of the state. 
Survivability of these systems is very crucial and is receiving increasing attention as a 
key property of thus critical systems. Survivability is the capability of a system to 
fulfill its mission in the presence of attacks, failures, or accidents, and recover full 
service in a timely manner.  

Survivability is the sum of the parts of a system, not some of the parts [3], but cap-
turing the survivability of an entire system as a whole unit is a very complex issue in 
itself [4]. The complexity and size of today distributed systems, with increasing com-
plicated environment, makes developing and demonstrating the system’s survivability 
remain an important and unattained research goal [5]. In this sense, the most prevalent 
approach—“divide and conquer” approach should be used to conquer a DISCA sys-
tem complexity. From the information system security model [1] [2], within any sys-
tem and for any given moment, information is found in one or more of the three 
states: processed, stored, or transmitted. In a DISCA setting, the processing state is 
corresponding to system services (functions in the point of users’ view) and their 
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support components and configurations; the storage state is corresponding to the data 
storage being processed and transited by the system, which can be viewed as one of 
the supports of system services; the transmission state is corresponding to the system 
communication infrastructure which is in turn viewed as another support of system 
services. So the whole system’s survivability depends on those of all three parts and 
their interdependencies. Should the solutions to the survivability of each of them be 
reached and should interdependencies between them be figured out, it is easy for us to 
approach to a holistic solution to that of the whole system. 

The reminder of the paper is organized as follows: Section 2 presents an informa-
tion state-based system model and each of three parts is described. Section 3 intro-
duces a method of survivability performance evaluations for such system model. 
Section 4 gives experiments and analyzing results and Section 5 discusses related 
works. We close with conclusions in Section 6. 

2   Architecture Descriptions 

2.1   A PST-Based Survivable System Model 

An overview of a PST-based system model is shown in Fig. 1 and a PST abstract 
model in Fig.2. As we have known that within any system and at any given mo-
ment, information is found in one or more of the three states: processed, stored, and 
transmitted. In this context, any computer-based system including DISCA can be 
considered as composing of triple-components: processing, storage and transmis-
sion, each of whom supports a set of services, called P-Services, S-Services and T-
Services respectively. A PST-based system model brings them together and coordi-
nates the three components through the services supported by them, in which the 
whole system’s survivability is embodied by P-Services that in turn depend on the 
survivability of S-services and T-Services. With this model, a multi-layer surviv-
ability framework based on information states is formed and a DISCA system com-
plexity can be conquered in the most prevalent approach—“divide and conquer” 
approach.  The design and evaluation of the whole system’s survivability are de-
composed into three subsystems or three sets of services and the smaller problems 
can be solved independently. Once the smaller ones are solved, the subsystem solu-
tions can then be integrated into a global one. In our system, the end users can only 
perceive the P-services, whose survivability is as our final goal over other two sets 
of services.  

 

Fig. 1. A PST-based survivable system model 

 

Fig. 2. A PST abstract model 
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We discuss each of their constructs briefly, including ABRAR [6] for P-Services, 
FDRD [7] for S-Services and FTLAN [8]] for T-Services and motivate them in the 
following subsections. It is important to recognize that a PST-based system model is 
designed in a modular fashion, so each of these components can be adopted or dis-
carded according to the survivability requirements of the services being offered. Fur-
thermore, we can integrate other similar modules as they become available. 

2.2   P-Services Survivability  

It’s extremely important for a mission-critical distributed system to ensure the reliable 
and continuous running through all time, especially in a crisis state. The reasons why 
a system is failed to run stem probably from two aspects. One is the blow of external 
strength, such as war destruction, malicious intrusion. The other is the natural damage 
of some part of functions in the system, such as the hardware malfunction. The former 
belongs to the survivability of the system, while the later belongs to the reliability of 
the system. The two problems can come down to the survivability and availability of 
the system services. And they can be settled by the ABRAR [6] methods offering 
automatic backup, reconfiguration and recovery of the services. 

The design and implementation of a system functional backup, reconfiguration and 
recovery are mainly related to the associated technical keys: design requirements, 
backup strategies, detecting mechanism and graded implementation, etc. The design 
requirements include the reconfiguration and recovery time, the maintenance of es-
sential functions after function backup, the performance and quality assurance and the 
mastering of recovery opportunity. 

There are two basic backup modes known as hardware backup and software backup 
for backup strategies. The widely adopted mode now is the union of hardware and 
software backup, that is, using a little proportion of hardware cooperated with appro-
priate software constructs a system with higher reliability and usability. Furthermore, 
in generally the probability of simultaneous damage of the key parts in a system is 
little (if any). So, when there are faults, we can use software to adjust and recombine 
the hardware and implement dynamically the mutual backup between the key parts or 
between the non-key parts and the key parts, which is called software-hardware hy-
brid mode. Here, we name it system function backup. 

Understandably, each running step of a system with function backup is showed in 
Fig.3. Obviously, the key here is having a detecting mechanism with low system 
overhead and accurate site failure and recovery. Associated with the characters  
of network communication protocols, we advance four detecting algorithms according  

 

Fig. 3. Each step of the system running 
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to different communication modes between sites. The former two, Piggyback detec-
tion and Timed detection, are used for failure detection and the latter two, Call-
ing/Interception detection and Active report, for recovery detection.  

The graded implementation is mainly treated differently according to the service 
types and key degrees offered by system.  

2.3   S-Services Survivability 

The survivable S-Services are supported by FDRD [7] system based on concepts of 
DRD [9].  A survivable storage system would securely store critical information, en-
suring that it persists, is continuously accessible, cannot be destroyed, and is kept con-
fidential over time despite of malicious compromises and of storage node subsets [10]. 

A DRD system is a collection of several disks subsystems that have independent 
functions and are attached to network servers.  It seems as a single server disk subsys-
tem of network servers to NOS. 

A DRD system is obviously a multi-server network system. These servers work 
cooperatively and realize a DRD system together. As a result, the key here is how to 
clearly tell the two concepts⎯individual physical servers and the disk accessing ser-
vices provided by them apart. What the network users and user programs need is to 
read/write data on a high capacity, survivable and rapid server disk subsystem, and 
they do not mind the specific styles, number and architectures of servers. Of course, 
the responses to data r/w (read /write) requests would still be put on a group of physi-
cal servers which work cooperatively, and the tasks are performed by all of them 
together. To an end user, what he can see is only a single network server. We call it a 
logical server or a virtual server, which is called server transparency: the invisibility 
or irrelevancy of the server topology, styles and number involved in a given service. 

A FDRD (Full DRD) means that each of its station can be used as both a client 
and a server, and their functions are fully distributed among them. A FDRD system 
has two technical features: (1) Server and transmission transparency; (2) Distribution 
transparency. 

2.4   T-Services Survivability 

The main goal of survivable T-Services is to provide high reliability and connection 
performance transmission with redundant channels. In our system, P_FTLAN [8] 
thesis is assumed. A P_FTLAN can be constructed by introducing double off-shelf 
transmission media and connection components along with carefully designed and 
dedicated network layer protocols and software. Under normal state of the system, 
data are transmitted in parallel on the two subnets. When one of two subnets gets 
failed, the system can be reconstructed automatically by itself and the failed one is 
isolated and meanwhile the system can continue to run without stopping. So the 
scheme assumed here not only provides an effective approach to high reliable LANs, 
but also can improve their performance greatly. 

A P_FTLAN has three function modes and functions as following: 

Basic mode Parallel mode Failure-switching mode  Basic mode…… 

P_FTLAN has yet two technical characters: (1) Protocol transparency; (2) Topol-
ogy and medium independency. 
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The three function modes and two technical characters given above are all provided 
by P_FTLAN's network layer, called Parallel and Fault-Tolerant Network Layer or 
PFTNL, which is our major work to do and is particularly added to P_FTLAN.  

3   Service Survivability Evaluations 

To analyze and demonstrate the survivability of the whole system based on services 
and their interdependency relations, Meadow’s theorem on dataset aggregates and 
service-configuration-component model are adopted [11]. First, some definitions are 
given. Then, the expressions of survivability with and without redundancy are de-
scribed. Finally, the evaluation results suggest that the survivability of service with 
redundancy configurations is higher than that of service without redundancy configu-
rations. 

3.1   Definitions 

Definition 1 (Service): The functions that can be seen by users. We use SP, SS and ST 
to express P-Services, S-Services and T-Services. 

Definition 2 (Configuration): Sets of components supporting service. We use CP, CS 
and CT to express Configuration supporting P, Configuration supporting S and Con-
figuration supporting T. 

Definition 3 (Component): The combination of hardware and software that can im-
plement some functions in the configurations. We use NS, NT to express component S 
and T. 

Definition 4 (Dependency): If some configurations (or components) support some 
services (or configurations), then the latter depends on the former. The relationship 
can be expressed by “ ”. 

Definition 5 (Redundancy): The system G is considered as an undirected graph. So 
G is a connected undirected graph without loop, i.e. a tree, of which the components 
are leaf nodes whose degree is 1. 

 

Fig. 4. Service-configuration-component model 
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3.2   The Expressions of Survivability 

The expressions of survivability can be divided into two classes: 

1. Non-redundancy configuration 
Suppose the configurations and services depended on S respectively are C1, C2 ......Ch 
and S1, S2......Sn. So, their survivabilities are: (C1) (C2) ,......,  (Ch) and  (S1),  
(S2)...  (Sn).Then the survivability of S is: 

 (S) = f( (C1), (C2)  ...... (Ch) (S1) (S2)...... (Sn) ) 

= (C1) (C2) ...... (Ch) (S1) (S2) ...... (Sn) 
(1) 

2. Redundancy configurations 
Suppose the configurations and services depended on S respectively have h redun-
dancy configurations Ck(k [1,h]) and n services Sj(j [1,n]),in which each service Sj 
has m redundancy configurations: Sjci j [1,n], i [1,m]). Their survivabilities are 
(Ck) (k [1,h]) (Sj) (j [1,n]) and (Sjci) j [1,n] i [1,m]). 

So the survivability of S is: 

(S)= f( (C1), (C2)  ......, (Ch) (S1) (S2)...... (Sn)) 

        
h n m

k jci
k 1 j 1 i 1

(  C ) ( S )
= = =

= ∧ ∧ ∧ ∨  
(2) 

From the example in the figure we can simplify (1) (2) to a general formula. 
Because SP depends on CP, SS and ST, there are some function relations between  

(SP) and  (CP), (SS), (ST),that is: 

            (SP)=f( (CP), (SS), (ST) )= (CP) (SS) (ST) 

Survivability  are mapped to probability space, and the values are arbitrary real 
numbers between [0, 1]. 

When s =0,the survival probability of s is 0; 
When s =1,the survival probability of s is 1. 
With a view to facilitate the research, we discuss the problem in two conditions: 

1. If     (SS)= (ST)=1  
Then  (SP) = f ( (CP), (SS), (ST))= f (  (CP), 1, 1)=  (CP) 

This indicates that the survivability of SP only lies on the survivability of configura-
tion CP when  (SS) =  (ST) =1 

2. If (CP)=1  
Then  (SP) = f (  (CP),  (SS),  (ST)) = f (1,  (SS),  (ST)) =  (SS)  (ST) 

When there is redundancy, we suppose that SS has m redundancy configurations CSi 

(i [1,m]), ST has n redundancy configurations CTj(j [1,n]) and SP has l redundancy 
configurations CPk(k [1, l]) 

(SS)= 
i

m

S
i=1

(C )Vσ (ST)= 
j

n

T
j=1

(C )Vσ (CP)= 
k

l

P
k=1

(C )Vσ  

Then  (SP)=f( (CP), (SS), (ST)) )= 
k ji

l n

P T
k=1 j=1

m

S
i=1

(C ) (C )V (C ) VVσ σσ∧ ∧  
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With a view to facilitate the research, we also discuss the problem in two conditions: 

1. When (SS)= (ST)=1, (SP)= (CP)= 
k

l

P
k=1

(C )Vσ  

2. When (CP)=1, (SP)= (SS) (ST)=
i

m

S
i = 1

[ ( C ) ]V σ  
j

n

T
j = 1

[ ( C ) ]V σ  

3.3   The Survivability Evaluation of Service with Redundancy Configurations 

In a unit of time we suppose that service S has n redundancy configurations, and the 
failure rate of service of each configuration is pi i [1 n] ,pi [0 1]  and 
p1>p2>p3>...>pn, in which the minimal one is: 

       
1 nP = p  and   Q   pi <1    ∴ 

n

n i
i=1

P = p∏ < n 1p =P  

   Q  Low failure rate indicates high survivability  
∴  The survivability of the service with redundancy configurations is 

higher than that of the service without redundancy configurations. 

1.  When S(S )σ = T(S )σ =1, 

Without redundancy: P(S )σ = P(C )σ  

With redundancy: 
k

l
'

P P
k=1

(S ) (C )Vσ σ=  

From the proof above, we know: P(S )σ < '
P(S )σ  

2.  When P(C )σ =1, 

    Without redundancy: 
iP S(S ) (C )σ σ=

jT(C )σ  

With redundancy: 
i

m
'

P S
i=1

(S ) [ (C )]Vσ σ=
j

n

T
j=1

[ (C )]Vσ  

From the proof above, we know: 
iS(C )σ <

i

m

S
i=1

[ (C )]Vσ  

And 
jT(C )σ <

j

n

T
j=1

[ (C )]Vσ , then P(S )σ < '
P(S )σ  

3.  From 1, 2 we know P(S )σ < '
P(S )σ , that is:  

The survivability of the service with redundancy configurations is higher than that 
of the service without redundancy configurations. 

4   Experiments and Numeral Analyzing Results 

4.1   Service Survivability 

High survivability and availability can be used to characterize a distributed system. 
To attain this goal, however, many efforts need to be made and many techniques need 
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to be solved. In conjunction with the design and implementation of a distributed C2 
system on warships, we have constructed a simulating system environment. Some 
concrete technical problems are solved and engineering methods are examined.   It is 
experimentally testified that with the approach presented in this paper, the P-Services 
of the system can still fully function well even if it loses its devices up to 50 per cent 
and run without stopping when up to 70 per cent, and meanwhile the degraded system 
can be automatically recovered in any failed grade, which, therefore, illustrates that 
our approach presented here is correct, feasible and effective. 

4.2   System Availability and Bit Error Rate 

1. System availability 
The main measures of S-services’ survivability are availability and BER, which are 

analyzed the availability of the system from the point of view on the assumption that 

the transmission be not failed, that is, T(S )σ =1. 

Suppose n-servers consist of the multi-severs system, and the k of them are used to 
store data information, the r of them are used to storage redundancy information 
(n=k+r), this system allows the less or equal of r servers occur disk failure. Suppose 
Bi is an event, and it denotes that there are I-servers of server system are failed at 
random time t.  Suppose the availability of single sever is Ad, then the availability of 

system ( )A ts  is: 

( ) ( ) ( )
0

1
r

in n i

s i d d

i

A t A A
−

=

= ⋅ − ( ) ( )( )21 1 1n n

d d d d
A nA A A−= + − + Ο −          

( ) ( )( )21 1 1n n

d d d
nA n A A−= − − + Ο −     

(3) 

So, we can conclude the normal formula of computing the availability of system, 
when n=3, r=1, suppose that MTBF=10000 hours, MTTR=1hour, then 

                           10000 (10000 1) 99.99%
d

A = + ≈  

        ( ) 2 33 2 99.99999%
s d d

A t A A= − =  

2. Bit error rate 
Suppose B denotes the event that there is no server failed, C denotes the event that 

there is only one server failed. Since the failure can be repaired quickly, so we can 
consider that there are no more than two servers are failed at the same time, and data 
are not failed in the course of transmission. Thus event B and C accord with following 
probability relation: 

P(C)=1–P(B)      (4) 

Suppose A is the event that there are error codes when reading data, there are n-r 
bits in n bits according with the definition and the format of conditional probability, 
averagely the probability of every bit is: 

( ) ( ) ( ) ( )( ) ( )
r

P P A n r P AB P AC n r= − = + −     

 ( ) ( ) ( ) ( )( ) ( )| |P B P A B P C P A C n r= ⋅ + ⋅ −  
(5) 
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And suppose that the probability of making a mistake when servers read data is Pe , 

we can conclude that: 

( ) ( ) ( )( ) ( )( )1
| 1 |

1
r s s

P A t P A B A t P A C
n

= ⋅ + − ⋅
−

                            (6) 

In addition n=3, r=1, 999.99%, 10
d e

A P −= = , then 161.26 10rP −≈ × . 

4.3   Transmission Reliability and Performance 

4.3.1   Reliability Analysis 
Suppose our network transmission system adopts multi-links redundancy, namely 
there are more than two passageways between every two nodes (such as double-
subnets-interconnected LAN or double-bridged LAN), parallel running and redun-
dancy passageways standby mutually. Failure mode is divided into two cases: main-
tainable failure and un-maintainable failure. 

1. Un-maintainable failure analyses  
For the architecture of n shunt-wound multi-links redundancy, suppose the reliabil-

ity of each link is NRRR ,,, 21 ⋅⋅⋅ , the failure of each link is independent. Suppose the 

probability of the failure of each link is ( )λ i i N= 1 2, , ,L , and Ri is the exponential 

function of λ i . So when N=2, if λ λ λ1 2= = , then  3 2pm λ=  

So we can see that MTTF prolongs 1.5 times contrast with N=1. 

Normally, if λ λ λ λ= = ⋅⋅⋅ = , then MTTF is  

1 1 2 1 N
p

m λ λ λ+ + ⋅ ⋅ ⋅ +=  (7) 

So, the influence of increasing the number of parallel connections is not obvious.    
2.  Maintainable failure analyses 
To be convenient, we assume the model of a parallel connection system with dou-

ble-links. Suppose the probability of the maintainable failure of each link is μ. Since 
the reliability of the maintainable failure of the parallel connection system is 

3 2λ and 22μ λ  is the reliability of the increased part that comes from the system 

that is maintained. The distribution of the un-maintainable failure and the maintain-

able failure is based on the probability, then suppose them as p1 , p2 1 2( 1)p p+ = , 

the reliability of the double links is: 

( )2

1 2
' (3 2 ) 3 2 u 2

p
m p pλ λ λ= ⋅ + ⋅ +  = 2

2
3 2 u 2pλ λ+ ⋅           (8) 

4.3.2   Total Performance Analysis 
From M/D/1 model we can get the average diagram’s time delay of the network as 
follows:   

1 2(1 uc ) (1 2 (1 ))T uc ρ= + −      (9) 
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Where 1/U is a frame's length, C1 is media rate, C2 is the network channel capacity, 
ρ is the channel intensity. 

In equation (9) the first item is a datagram’s transmission time. 
In P_FTLAN, the introduced two subnets do not change either of the media’s com-

munication rate, so the first item's value is equal to the single networks. Now we 
analyze the second item, which is a datagram’s average waiting time and the time 
value to evaluate network's collisions. In the case of the system with two identical 
communication subnetworks, and the network's total channel capacity C2 will be 
doubled. Keep ρ constant we can make file's average waiting time reduce 50%, and 
from following equation shown in equation (10), when ρ is constant, N will also be 
doubled because of C2's doubling.  

2
N ucρ =  (10) 

N is the average number of the arrived files.  
According to the above description, in the dual subnet system we could not only 

double the average arrived file number but also reduce the average file waiting time 
by 50%, which will in turn make the possibility of the network collision reduce 50%. 

4.3.3   The Analysis of Individual Station Communication Rate  
We define that Parallel Degree H is the ratio between the time of two NIC simultane-
ously sending data and the whole period, where the period is the time from the mo-
ment the system begins to send any two diagrams through the dual subnetworks to the 
moment when system begins to send next two datagrams, shown in Fig. 5 so  

p p st (t 3t )H = +  (11) 

Where ts is the switching time between the two subnetworks, whose size depends 
on memory operation time (fetching time refreshing time) once and times for each 
datagram. 

        

Fig. 5. Time-space diagram for parallel communication       Fig. 6. The relation of H and ts/tp 

The relation of H and ts/tp is given in Fig. 6. Generally, the network transmission 
rates are among 10 Mb/s, 100Mb/s or 1000 Mb/s, and we get the system's Parallel 
Degree H is between 0.7 and 0.5. So the parallel communication rate is between 1.7 
and 1.5 times of that of the single network. 
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5   Related Works 

Our early work related to the proposed approach can be found in [6] [7] [8] [9]. 
Other related work includes studying the survivability of storage systems [10], ser-
vices [12] and networks [13] separately. General network information system sur-
vivability at a high level has been studied extensively, e.g. in [14], [15], [13], [16], 
[17]. Conceptually, however, survivability covers a wide spectrum of issues at many 
different levels of abstraction [19] and applications [18]. So some researches are 
more directly related to multi-layered surviving systems. In [20], Critical applica-
tions are referred to as critical infrastructure applications and their depended under-
lying information systems as critical information systems, but only the survivability 
of information system is dealt with. Services survivability and network survivability 
are considered differently in [4] and the former is sometimes called system surviv-
ability or disaster avoidance.  

Multi-layered strategy has traditionally been used to implement fault tolerance, or 
security, or both of them, but different multi-layered techniques have also been used 
to increase a whole system’s survivability. For example, a multi-layer framework is 
used as a unified approach to both address the survivability of a fragile infrastruc-
ture and defend against malicious attacks [3]. In the general case three layers are 
defined: (1) application layer; (2) traffic layer; and (3) physical layer. The emphasis 
of their research is to provide survivability to networked systems by developing a 
coherent and integrated approach across the three layers of the network model and 
implement into the coordination of different restoration techniques. Multi-Layered 
Network Survivability Models [13] provide similar three layers: the top (‘applica-
tion/service’) layer, the middle layer (‘switched network layer’), the bottom 
(‘physical’) layer. In this work, the emphasis is to address survivability to network 
design and management procedures towards minimizing the impact of failures on 
multi-networks. 

However, to the best of our knowledge there is still no project having explored the 
use of information-states-based techniques in survivability. We believe our ideas of 
putting this philosophy at work are truly unprecedented. 

6   Conclusions and Future Work 

Survivability is very important, but a composed and complex issue both in realization 
and evaluation. This paper has presented a holistic approach to realize and evaluate 
survivability for a DISCA system. The triple-states model makes the system’s archi-
tecture more clarity and less complexity. The services-oriented survivability strategy 
makes system implementation flexible and feasible and provides us with an easier 
method to demonstrate survivability and other performances quantifiably. 

Our future work is to make the approach more autonomic, that is, to pursuit Auto-
nomic Survivability using the philosophy of Autonomic Computing [21], and an inte-
grated and composed measure model to unify survivability, performance, reliability 
and security evaluation of a system also needs to be developed. 
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Abstract. Service broker is a software component that maps user’s request to 
proper services. By using the broker, users can access various services without 
any knowledge of the services. However, design of the service broker for GCE 
(Global Computing Environment) is quite difficult because a broker cannot 
cope with all the information of services which are spread over the world. Thus, 
we need to build new architectural foundations for global service brokering. In 
this paper, we propose a scalable broker system for GCE based on the federa-
tion of personalized brokers. In our broker system, every user can have a ser-
vice broker. The broker maintains the information of services related to the user 
and exchanges the information with neighboring brokers if necessary. As a re-
sult, the broker can provide proper services to users faster and a burden of bro-
kers can also be decreased. Experimental results show that the proposed service 
broker can reduce the average service discovery time and the average operation 
overhead of each broker comparing to other brokering architectures. 

1   Introduction 

Today’s computing infrastructure is gradually being integrated and abstracted. All 
functions, data, and many types of resources are interconnected physically and logi-
cally, and they tend to be represented in a uniform interface, named services. Thus, 
users can access many different kinds of distributed services via this uniform inter-
face. Software architects have made efforts to design such a global infrastructure and 
suggested several standards on services and architectures [8, 12, 14]. However, design 
of the service broker for global computing environments (GCE) is quite difficult be-
cause a broker cannot cope with all the information of services which are spread over 
the world. It is generally assumed that there are a huge number of services in GCE. 
Thus, the broker should be designed to operate properly without any performance 
degradation even if the number of services increases rapidly. In addition, GCE should 
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consider various types of users, so that the service broker should be able to reflect 
their preference for providing services more efficiently. Recently, numerous brokers 
have been developed, but there is no one that suits for global service brokering. Most 
systems are still based on the centralized architecture [2, 4, 10]. However, this central-
ized approach cannot reflect personal preference and also the system performance is 
not guaranteed when the number of services increases. Some advanced systems use 
multi-brokering mechanism with peer-to-peer architecture [1, 3, 5]. The peer-to-peer 
architecture considers the scalability, but it is not sufficient for designing the broker 
for GCE. There are many other issues that should be addressed to make a scalable and 
personalized broker system.  

In this paper, we propose a PnS (Personalized and Scalable) broker system for 
GCE. Our architecture is based on peer-to-peer and supplements some features to 
make the broker more efficient. Each broker maintains a real-time data structure 
named PSR (Personal Service Registry) which contains a portion of service interfaces 
related to the user. Thus, the user can quickly discover any particular service or ser-
vices related to the user and annotate useful information about services. Also, brokers 
can maintain relationships among neighboring brokers and neighbors can exchange 
information in the PSR. It can also support fast discovery of services. Experimental 
results show that the proposed broker system can reduce discovery time up to 50% 
and reduce the overhead of broker up to 30% comparing to general peer-to-peer sys-
tems. Rest of the paper is organized as follows: In Section 2, we introduce back-
ground of the research and related works. Section 3 describes the proposed broker 
system in detail and Section 4 demonstrates the effectiveness of our system. Finally, 
we conclude in Section 5.  

2   Background 

In this section, we frame the global brokering problem into several pieces and some 
related work will be discussed. 

2.1   Global Brokering Problem  

First of all, well-defined brokering architecture is required to solve the global broker-
ing problem. Brokering architecture for the GCE can be categorized in three types. 
The first one is global broker approach. As shown in Figure 1-(a), all services are 
registered to a central broker and it handles all requests from users. Because of its 
simplicity, many brokers are based on this architecture. However, it is not applicable 
to the GCE because of its inherited inscalability. The second one is broker federation 
approach. Several brokers join together to perform a role of a global broker. In this 
approach, the user sends a request to an accessible broker and the broker returns a 
service interface by cooperating with other brokers. This approach is separated into 
hierarchical architecture and peer-to-peer architecture as shown in Figure 1-(b) and 1-
(c). In the hierarchical architecture, services are registered to lower-level brokers and 
lower-level brokers are registered to higher-level brokers. Thus, users only need to 
know some higher-level brokers. It is comparatively scalable and requires reasonable 
maintenance cost. However, it is rather static and sensitive to faults. In peer-to-peer 
architecture, all brokers are composed as a network by communicating to each other 
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at equal positional level. Thus, users only need to know one broker to access any 
broker in the network. It is dynamic and applicable to very large system, but the algo-
rithm can be complex, requiring high network utilization. Considering the scale and 
characteristics of GCE, peer-to-peer approach is very plausible. The last one is user-
centric approach. It is similar to broker federation approach with peer-to-peer archi-
tecture. But, in this approach, every user has own broker and the broker can maintain 
user’s preference and history. Thus it acts like a personal agent, whereas other ap-
proaches treat brokers as the manager of a system.  

UserUser

BrokerBroker

ServicesServices Low-level
broker

Low-level
broker

High-level
broker

High-level
broker

Network of 
brokers

Network of 
brokers

(a) A Global Broker Approach (b) Broker federation with hierarchical architecture

(c) Broker federation with 
Peer-to-Peer architecture

(d) User-Centric Approach

 

Fig. 1. Various architectures for global brokering 

Next problem is how brokers aggregate information of services. The fundamental 
solution is that services are registered to pre-defined broker(s) and they update soft-
state information periodically. Specifically, brokers maintain index and data structures 
to store the information of services. Such index and data structures may affect the 
performance in discovering services significantly. UDDI (Universal Description, 
Discovery and Integration) suggest well-defined data structures to store the informa-
tion of services [6].  

The last one is the service discovery. Assuming the broker has sufficient informa-
tion of services, the next step is to find proper services corresponding to the user’s 
request. It can be divided into two procedures, i.e., matchmaking and service selec-
tion. Matchmaking is the procedure that the broker can determine whether the service 
satisfies user’s request or not. There can be more than one matched services in many 
cases. If so, we must choose efficient one among them, which is service selection 
procedure.  

2.2   Related Work 

There are a number of researches that attempt to address the global brokering problem 
or to introduce advanced service brokering architecture. Many researchers of Grid and 
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Web Services have been interested in the global brokering problem. Early researches 
focus on finding efficient resources and services. They provide efficient services or 
resource discovery methods with an assumption that information services provide all 
the necessary information to the broker system. However, as mentioned before, in-
formation gathering and maintenance are also important parts of brokering problem. 
Efficient brokering algorithms can be worthless according to the performance of in-
formation service. Thus, these kinds of researches always have to accompany with the 
research of the scaling information service. S. Venugopal et al. provides a well-
defined brokering architecture and an efficient discovery algorithm [11]. However, it 
is basically based on a centralized architecture and assumes that GIS provides all 
necessary information.  

Emergency of OGSA (Open Grid Service Architecture) [12] results in the conver-
gence of Grid computing and Web services. UDDI (Universal Description, Discovery 
and Integration) [6] is a standard Web Services registry having service descriptions 
and interfaces. It provides a well-defined index structure for finding a certain service. 
However, it is fundamentally a centralized architecture, so that it is hard to apply it to 
the global computing infrastructure. Also, it does not offer dynamic data model and 
personalized information. Several researches attempt to supplement additional fea-
tures to UDDI to make an efficient brokering architecture. S. Miles et al. introduces a 
method to use personalized metadata, their UDDI-M system can associate metadata 
with services, so that users can utilize several useful information such as price for 
accessing a service and reliability of the service by retrieving metadata in UDDI-M 
[2]. Also, K. Sycara et al. introduce usefulness of semantic information in service 
discovery. These researches partially suggest personalized brokering architecture, but 
do not get out of the centralized nature, so that it does not exploit scalability.  

InfoSlueth [1] is also an agent-based brokering system. Like Condor system, bro-
kering in InfoSlueth is a matchmaking process. It provides a service ontology for 
users and service providers to make subscriptions and advertisements easily. Addi-
tionally, it addresses many issues of the service broker such as collaboration of multi-
brokering, management of brokers, and maintaining connectivity. As a consequence, 
it provides a scalable service brokering mechanism. However, it rather overlooks 
performance improvement by exploiting personalization and locality caused by user’s 
pattern and preference. Also, it does not seem to consider the global infrastructure. 
Thus the concept of brokering is needed to be modified partially. In addition to above 
projects and systems, there are several research papers focused on global brokering 
and service discovery. Recently, most of them are based on peer-to-peer architecture 
rather than centralized and hierarchical architecture to exploit scalability [1, 2, 4, 12]. 
They supplement the peer-to-peer architecture to improve performance, to reduce 
overhead, and to reflect personal preferences and requirements. Our research holds 
the same view with those approaches. 

3   Personalized and Scalable Service Broker System 

Service broker needed to be designed as scalable and personalized in order to be ap-
plicable to the GCE, and both characteristics are our design objectives. In this section, 
the proposed PnS broker system is described in detail.  
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3.1   Architecture Overview 

Our broker system is built on peer-to-peer architecture because of its scalable nature. 
Also, several features are considered to exploit both scalability and personalization. In 
our broker system, every broker stores a portion of interfaces into its memory. We 
call this portion as the tablet of services and the memory as the PSR (Personal Service 
Registry) of the broker. Whole interface are stored in a file system which is called the 
repository. Brokers have a list of brokers which it can communicate with. These 
communicable brokers are defined as neighbors. The system consists of three kinds of 
participants, namely brokers, services, and users. Every user has his broker to help the 
user to discover and use services. Brokering is performed by following six operations 
among these participants.  

The first one is registration. A service has to be registered to at least one broker. 
At the first, the whole interface of the service is transferred to the broker. Then, the 
broker makes the tablet of the interface and stores it into its PSR. The original inter-
face is stored in the repository. Once the service is registered to the broker, only the 
changed information is updated to the broker periodically. The second one is ex-
change. This operation is only allowed between neighbors. Every broker has a 
neighbor list. A broker sends updates of the PSR to the neighbors and also receives 
neighbor’s updates. The next is request. A user can send a request to his broker. The 
request includes the name of service and some conditions to discover proper ser-
vices. The fourth one is discovery operation which means a broker obtains the inter-
face of services. When the broker receives user’s request, it searches the PSR and 
reads the interface in its repository or receives the interface from one of its 
neighbors. If the discovery is failed, the broker performs the flooding operation. The 
fifth one is flooding operation which is a well-known discovery method used in peer-
to-peer systems. If the broker fails to find a proper service on its PSR, the broker 
broadcasts the request to its neighbors. The message is passed on along the neighbors 
and the interface of service is returned to the broker if an appropriate service is found 
[8]. The last one is invocation. Once the broker obtains an interface of the service, 
the user can invoke the service or the broker can invoke the service and the result is 
returned to the user. 

Based on these six operations, users can find and use services efficiently. The con-
ceptual architecture of PnS broker system is shown in Figure 2. User C0 has a broker 
named B0 and all his requests are sent to B0. Similarly, C1, C2, C3, C4, C5, and C6 
are the owners of the brokers B1, B2, B3, B4, B5, and B6 respectively. The broker B0 
has the interface of S0 in the repository and the tablet of S0 in the PSR because S0 is 
registered to B0. Thus, B0 can return the interface of S0 immediately when the user 
C0 requests S0. Also, the brokers B1, B2, B3, and B4 are neighbors of B0. Thus, the 
broker B0 can exchange information in its PSR with those brokers periodically. Since 
the B0 exchanges the information in its PSR with the neighbors, B0 has information 
of services which are not registered to B0 directly. Assume that a user want to use the 
service S3. The broker can find S3 in its PSR because B0 exchanges the PSR with B2 
to which S3 is registered. Then, B0 can send a discovery message to B2 and receive 
the interface of S3. If the broker cannot find the service in the PSR, it means that the 
broker and even its neighbor do not have the information of the services. Therefore, 
the broker has to perform the flooding operation to find the service. For example, B0 
can find the S8 only by the flooding operation.  
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Fig. 2. The architecture of PnS broker system 

3.2   Information Management 

In this section, we describe how an individual broker maintains the information of 
services and how brokers exchange the information to each other. Such information 
management is highly associated with performance and scalability of the broker sys-
tem. Each PnS broker maintains a PSR and a repository to manage the information of 
services efficiently. The PSR is a real-time volatile memory space in the broker and 
the repository is non-volatile large memory space out of the broker. Figure 3 shows 
the structures of the PSR and the repository. The PSR consists of a list of the broker’s 
neighbors and a list of tablets. The neighbor list includes the broker itself and its all 
neighbors. An element of the neighbor list includes the name of the broker and its 
contact point. When the broker wants to connect a certain neighbor broker, it uses the 
contact point in the neighbor list. As mentioned before, a tablet is a part of each ser-
vice interface. It includes a service name, an interface name, and several conditions 
for the broker to discover a certain service. Because it only includes a small portion of 
the service interface, the broker can ensure whether the appropriate services exist or 
not very quickly by scanning the list of tablets in the PSR. Additionally, the user can 
annotate useful information to each tablet. A tablet for a particular service interface 
contains more useful information for several purposes such as personal preference and 
privacy. For example, assume that a service is always overburdened at 2 P.M. This 
information cannot be treated in service interfaces, but a user can add this information 
to the tablet of the service in his broker. Thus, it can be used in the discovery stage.  

The tablet list includes not only the services that are registered to the broker, but 
also the services that are registered to its neighbors because brokers exchange its 
information in PSR to each other. Thus, when the broker scans the list from the head 
of the list to the end, it can find any service that is registered to both itself and its 
neighbors. Also, the neighbor list and the tablet list are correlated. Each tablet has a 
pointer to a neighbor, which means that the service corresponding to the tablet is 
registered to the pointed neighbor. Thus, when the broker finds a proper tablet corre-
sponding to the service that the user wants, it will come to know what broker has the 
interface of the service. The repository is a simple file system which contains full 
interfaces of services. After the broker finds the service on the PSR, the broker re-
trieves an interface of the service from the repository.  
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Fig. 3. Data structures in a PnS broker 

4   Experimental Result  

In this section, we analyze the performance of the proposed broker system and de-
scribe several experimental results. We focus on two metrics, average service discov-
ery time (ASD) and operation overhead per broker (OPB). In Section 5.1, we analyze 
these metrics in the PnS broker system. In Section 5.2, we simulate a large-scale sys-
tem which comprises thousands of brokers and thousands of service providers and 
compare ASD and OPB of the PnS broker system to other brokering architectures.  

4.1   Performance Analysis of the PnS Broker 

The average service discovery time is expressed as equation (1): 

r

n

i
Di

n

T
ASD

r

= , (1) 

where TDi is the service discovery time for request i, and the number of requests is nr. 
Here, the service discovery time can be separated into the time to scan a certain service 
in some index structure like the PSR in PnS brokers and the time to retrieve an inter-
face from some storage like the repository. Thus, TD can be expressed as equation (2):  

RETRIEVESCAND TTT += ., (2) 

TSCAN also can be expanded as equation (3): 

)1(2 LTnT SCANUNITSCAN ×+×= − , (3) 

where the n is the number of elements for a given index structure, TUNIT-CAN  is the 
time to scan one element of the index, and L(m) is message transfer function. to the 
load m size of message. In equation (3), 2 × L(1) represents the time to send a query 
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for scanning index and to receive the response showing whether the index has the 
service or not. Either a query or a response can be treated as a unit load. If the index is 
located in the broker that receives the request, L(m) can be zero regardless of m. Thus, 
the location of index is the most important factor in TSCAN. Specifically, the time to 
scan the index stored in the memory in the main broker is shorter than the time to scan 
the index in the file system in the other brokers. Also, TRETRIEVE can be expressed as 
equation (4): 

)()1( sLLTT READRETRIEVE ++= , (4) 

where the TREAD is the time to read an interface from the storage and L(1) represent the 
time to send a command for sending the interface and L(s) is time to deliver the inter-
face whose size is s. Sending a command and delivering the interface occur only the 
storage is far from the main broker. Therefore, TD can be expanded as the equation (5): 

)()1(3 sLLTTnT READSCANUNITD +×++×= − , (5) 

We can apply the equation (5) to several brokering architectures. For example, 
suppose that a centralized system with a well-defined index in its memory stores the 
interfaces in a file system. Then discovery time can be equation (6) because both L(1) 
and L(s) are zero: 

fileerfacememoryindexD ttnT _int_ +×= , (6) 

where tindex_memory is time to scan one index from memory and tinterface_file is time to read 
one interface from the files system. Thus, it is natural that developers focus on build-
ing an efficient index structure and scanning algorithms to reduce tindex_memory. How-
ever, it cannot be applicable in the global system as we mentioned before because the 
number of services is extremely large and all services are registered to the centralized 
broker. In this case, n will be too large for the broker to store the entire index in its 
real time memory. Otherwise, general peer-to-peer architecture can reduce n, the 
number of elements for an index structure. TD can be modified as equation (7) in peer-
to-peer architecture: 

)()1(3_int_ sLLttnT fileerfacememoryindexpD +×++×= , (7) 

where np is the number of elements in an index structure in a peer. Because np is rela-
tively small, TD is dominated not by tindex_memory, but by L(s), i.e., the message transfer 
function. Therefore, developers of peer-to-peer architecture do not focus on the index 
structure, but on the selection of proper peer to reduce L(1) and L(s). Now, we will 
expand the equation (5) to be applied in PnS broker system. According to the archi-
tecture of the PnS broker system, the interface can be stored in the main broker, 
neighbors, or other brokers. Let pmain be the probability of the case that the interface is 
located in the main broker and pneighbor be the probability of the case the interface is 
located in a neighbor. Also, prepeat is the probability of the case that the original inter-
face is stored in a neighbor of main broker, but the main broker retrieved the interface 
and still holds the interface in his repository. Also, prepeat is a subset of pneighbor. The 
main broker can maintain the interface to be valid by exchanging operations. Then, 
the equation (5) can be expanded as equation (8): 
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Because the PSR includes the information of neighbors, npns is larger than np, so 
that TD of PnS broker can be higher than other architectures represented as equation 
(6) and (7). However, tPSR is extremely smaller than other operations such as tinterface_file 
and the message transmissions L(s), and such operations occurs with lower probabili-
ties, so that the average service discovery time of the PnS broker system can be lower 
than others. Table 3 shows the several operation times of PnS broker. To measure the 
operation times, we run a couple of PnS brokers on Pentium 4 machines in our cam-

pus and use 6KB WSDL file as an interface. tPSR is extremely small and PSRpns tn ×   

is not more than 10ms even though the PSR has 500 tablets.  
Now, let us consider OPB (Operation overhead Per Broker). It can be expressed as 

equation (9): 
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where Obi is the operation overhead of ith broker, and nb is the number of brokers. 
OB means the number of operations that a broker has to do for a given period. It in-
cludes many kinds of operations that we introduced in Section 3 such as service regis-
tration, service request, service discovery, and exchange. Therefore, Ob can be ex-
pressed as equation (10): 

DISCOVERYEXCHANGEREQUESTONREGISTRATIb OOOOO +++= , (10) 

We assume all other operations have a unit operation overhead except the 
ODISCOVERY. In the discovery operation, sub-operations such as scanning PSR and 
reading a file are considered as a unit operation overhead. Namely, when a service is 
registered to a broker, the Ob of the broker is increased by one, and when a broker 
performs service discovery operation, the Ob of the broker is increased by the num-
ber of sub-operations. In equation (9), OREGSTRATION is directly proportional to the 
ratio of services per a broker and OREQUEST is also directly proportional to the ratio of 
requests per broker. Thus, the centralized broker systems cannot cope with 
OREGSTRATION and OREQUEST when the numbers of services and requests are large, 
whereas the other brokering system based on the peer-to-peer does not suffer from 
the overhead because the brokers share the overhead with other peers. OEXCHANGE 
only exists in the PnS broker system, which is related to the number of neighbors. 
Therefore, we cannot increase the number of neighbors thoughtlessly to improve the 
TD. OEXCHANGE can increase the OPB of PnS broker system, but ODISCOVERY of PnS 
broker system is smaller than that of peer-to-peer architectures because the flooding 
operation is used only in restrictive situation. Thus OPB of PnS is less than that of 
peer-to-peer architecture. Next section describes ASD and OPB in detail with several 
experimental results. 
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4.2   Simulation-Based Experiments 

Based on the analysis described in the previous section, we also perform several 
simulation-based experiments to evaluate the performance of PnS broker system. Our 
objective is to simulate behaviors of the PnS broker system over Internet-like wide 
area network environments. To achieve this goal, we generate a physical network 
topology of 1000 nodes by using BRITE topology generation software [11]. We as-
sume links have constant latency and infinite capacity. Next, we generate PnS brokers 
and services, map them with the nodes in the generated topology, and make relations 
between brokers and services. Then, configuration of an environment is finished. 
Finally, we generate scenarios which consist of requests for services and run them on 
the generated environment. All generations are performed randomly. We repeat ex-
periments with changing the environment enough to guarantee the confidence. 
Namely, we regenerate brokers, services, and their relations and repeat the same ex-
periment to obtain a mean value for the experiment. As we mentioned before, evalua-
tion metrics are ASD and OPB. With changing parameters such as the number of 
brokers and the number of services, we observe ASD and OPB and compare them to 
those of other architectures. First of all, to show the scaling properties of PnS broker 
system, we fix other parameters as constants while varying the number of services 
from 10 to 10000. Figure 5 shows the ASDs and OPBs when the number of brokers is 
100 and the number of neighbor for each broker is 10. Four bars in each histogram 
show four brokering architectures, i.e., centralized architecture, peer-to-peer architec-
ture, peer-to-peer architecture with no index, and the proposed PnS broker system. 
Centralized architecture shows the best ASD if it can load and scan 10,000 elements 
of index on the memory efficiently. However, the centralized architecture cannot be 
used as a global brokering system because OPB is too high. Also, peer-to-peer with 
no index architecture cannot be used in the global system because the increase of 
services results in high scanning time. 

  

Fig. 4. Average service discovery time and operation overhead per broker (the number of bro-
ker is 100 and the number of neighbors is 10) 

Figure 4 also shows the rapid rise of ASD and OPB of peer-to-peer with no index 
architecture when the number of services is close to 10,000. Peer-to-peer architecture 
relatively reveals scaling properties. Both of ASD and OPB of peer-to-peer architec-
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ture are stable and not degraded even if the number of services increases to 10,000. 
However, the ASD and OPB are still high, which can be caused by using flooding 
operation too many times. PnS broker system overcomes such a problem by using the 
concept of PSR and neighbors. The PSR of the PnS broker includes not only services 
that are registered to the main broker, but also the services that are registered to 
neighbors. Thus, the flooding operation is used restrictively. The experimental result 
shows the ASD is decreased by 20% and the OPB is reduced by 30% compared to the 
peer-to-peer architecture.  

Performance improvement is related to the number of neighbors. Increasing the 
number of neighbors also results in the increase of the probability of the case that the 
services are found in the PSR. Thus, high neighbor ratio improves ASD and OPB. 
However, high neighbor ratio also causes the increase of OEXCHNGE, the overhead to 
exchange the PSR contents with neighbors. Thus, we should maintain proper number 
of neighbors to exploit both ASD and OPB. Figure 5 shows the change of ASD and 
OPB according to the ratio of neighbors. 
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Fig. 5. Change of ASD and OPB according to the ratio of neighbors (# of broker = 100, # of 
service = 10000) 

5   Conclusion 

Designing an algorithm to find a service from the unrealistic space that has information 
of all services in the world is not a good start in building an efficient global service 
brokering system. Several foundations have to be predefined. In this paper, we propose 
an efficient service brokering method for the global infrastructure based on the well-
defined architecture. Proposed PnS broker system is stable even though the numbers of 
brokers and services increase rapidly and shows better performance than other broker-
ing architectures. Experimental results show that it can reduce the average service 
discovery time and operation overhead per broker. Also, we consider personalization 
as much as scalability. In our system, every user can maintain his own broker and 
manage its data structures such as the PSR, so that the personal preferences are re-
flected in the PSR of the broker. Considering the future computing infrastructure is 
getting intelligent, personalized data will be used for various purposes. Therefore, we 
expect that our research can be a primitive to build a future brokering system. 
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Abstract. In this paper, we introduce graph theory into transient stability analy-
sis in power system. In the weighted graph, Vertex weight represents node’s 
parallel computing workload and edge weight represents serial computing 
workload on the border of regions, which reflects the degree of parallelism of 
computing and improves speed-up ration of system. In order to reduce commu-
nication time wastage induced by CSMA protocol in TCP/IP based LAN, asyn-
chronous message passing is used in our method. Simulation results show that it 
achieves better performance. 

1   Introduction 

In power system, real-time transient stability simulation according to “online budget, 
real-time matching” principle is the preconditions to protect power system against the 
disturbances. Single computer can’t satisfy the requirements of power system tran-
sient stability simulation because it is time critical and involves a large amount of data 
and solving of complicated non-linear equation. Parallel machine can meet the re-
quirements but it’s costly. For the relative cheap price of PC cluster, parallel comput-
ing technology based on PC cluster was introduced into power system transient stabil-
ity simulation. So far, the parallel algorithms have applied to the computation of tidal 
current, transient stability analysis and static security evaluation[1-3], etc. 

Coarse granularity parallel-in-space algorithms are usually used for transient stabil-
ity analysis in distributed network. Current granularity partition algorithms are largely 
based on selection of dominant nodes or random optimization or factorization tree, 
which emphasize the mathematical essence of the problem. In the real environment, 
power system is partitioned to several regions. It often lacks recognition that there are 
less links among the regions and there is unbalanced electric power in local region 
and some regions have more power than others. The goal of task allocation is limited 
to the parallel solution of network equation, which can’t reflect the overall computing 
workload, especially the serial computing workload on the border of regions. It causes 
more serial computing workload and more unnecessary computation and communica-
tion so that it can’t meet the requirements of real-time transient stability simulation. 

We introduce weighted graph including vertex weight and edge weight into transient 
stability analysis in power system. Vertex weight represents node’s parallel computing 
workload and edge weight represents the serial computation workload on the border of 
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regions. It reduces the serial computation workload and improves speed-up ratio conse-
quently. In our simulation, the results show that it achieves better performance. 

2   Discussion of Parallel Algorithm of Transient Stability Analysis  

The dynamic network model for an interconnected power system can be completely 
described by a set of differentiated equation as (1) and (2). Equation (1) describes 
dynamic properties of component in power system and equation (2) describes static 
properties of network[4-5] 

),(),( VxBuAxVxf +==Χ  (1) 

0)(),( =−= VxIVxg γ  (2) 

where x is state vector of dynamic component, V is node’s voltage vector. u is the 
input of network, which is a function of x and V.   is admittance matrix related to x. 

Parallel computing of transient stability analysis involves solving a large-scale 
sparse linear equation. According to features of electric power grid, the effective 
method to get solutions of transient stability in PC cluster is to build node’s admit-
tance matrix of each region and cutting-branch impedance matrix into a matrix of 
BBDF (Bordered Block Diagonal Form) [6-8]. Given the linear network equation 
Ax=b, the matrix A can be arranged into BBDF. Bordered block (Aci) links diagonal 
block (Ai) and bordered common block (Ac). Aci, Ai, Ac are allocated to each region. 
Fig. 1 shows the network partition of BBDF. 
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Fig. 1. Partition of BBDF 

Fig. 2 shows the process of parallel solving of power system transient stability simu-
lation. The partitioned region can be solved simultaneously, but the bordered block of 
each region needs to compute serially and communicate with all regions.  

Define speed-up ratio as: Sp = Ts/ TP, where Ts is the time taken to solve the prob-
lem using serial algorithm and TP is the time using parallel algorithm.  

TP = TPS+TPA+TPC,  

where TPS is the max computation time among all regions. TPA is the extra workload 
due to algorithm parallelization such as the solution of differentiated equation, which 
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S u b  n e t w o r k  1~n: event handling, solving of differentiated network 
equation, computing of injected current vector, judgment of local 
network convergence, vector revising and matrix computation.

Inter-communication: coordinated system collects the computing results 
from all regions;
Verification of global convergence (if the convergence conditions 
satisfied , then jump outside the iterative loop and set the convergent 
flag);
Coordinated system start to compute;
In t e r - c ommunication: distribute the computing results of coordinated 
system or global convergence information and the new event  t o  a l l 
nodes;

Sub network 1~n: local judgment of convergence, voltage computing, 
output the computing results

Output the computing results and export data to real-time database;
Accept new events from external system.

Parallel computing

Parallel computing

Serial computing

Serial computing

 

Fig. 2. Parallel processing of transient stability simulation in power system 

is dependent on conditions of the border. TPC is the communication overhead caused 
by the exchange of border information[9]. In order to increase the speed-up ratio, we 
should decrease TP by effectively partitioning network to decrease TPS+TPA, or de-
creasing TPC by using asynchronous communication to reduce communication traffic.  

Traditional partition method can’t reflect serial computing workload related to TPA 
so that there are unnecessary computing workload and more communication time if 
inappropriate partition. We optimize parallel computing of power system transient 
stability from the aspect of partition strategy and communication mechanism.  

3   Partition of Regions of Transient Stability Analysis 

3.1   Partition Strategy  

The network model of power system in China is a 4 hierarchical model: district, prov-
ince, region and power plant, which feature the regional property of electric power 
grid. The components and equipments in power plant can’t be partitioned for their 
strong electric coupling. Moreover, power plant level network model is large enough 
to reflect the correlation property of system and satisfies the requirement of coarse 
granularity parallel algorithm of transient stability. So power plant is used as the fin-
est level of network model rather than the computing node in power plant. 

The three steps of network partition is as follows: 1) Mapping electric power grid 
into a graph. 2) Partition of the graph. 3) Adjustment of partition. The first step trans-
forms hierarchical model into small-scale condensed graph, and the parallel computing 
workload of transient stability of each region is mapped into vertex’s weight while the 
serial computing workload on the border of regions is mapped into edge’s weight. The 
second step is to partition the weighted graph into several parts and searches the opti-
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mal solution with layered refinement. Finally, the partition results are mapped on the 
original network and the quality of partition may be improved by further adjustment. 

According to above partition strategy, partition algorithm with the regional prop-
erty can identify the weak correlation of network and solve the optimal combination 
problem of multiple regions. Layered refinement offers more freedom of partition and 
improves the balance degree of partition.  

3.2   The Solution of the Overall Computing Workload 

We introduce the concept of vertex weight and edge weight into the original con-
densed graph to reflect the overall workload of serial and parallel computation and 
transform the condensed graph into a weighted graph Gw=(V, E, WV, WE), where WV 
is the vertex weight set of the condensed graph, WE is the edge weight set of the con-
densed graph. Define the partition of condensed graph as follows: 

Given k, the number of partitioned region, and |V| = n, partition weighted graph 
Gw into k subsets SV1, SV2, ……and SVk, which satisfied the following conditions: 
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1) Vertex weight represents computing workload of condensed network and dy-
namic    components, which is the workload of solving the network equation and 
components computing. The number of path between the state variables in dynamic 
component model and interface variables in topology is used to measure the workload 
of solving dynamic component equation approximately. The number of non-zero 
elements of the admittance matrix of network equation is used to measure the work-
load of solving network equation. The approximation can match the relative comput-
ing workload of each condensed network by using global dynamic node numbering. 
So, the vertex weight of vertex Vi can be described as: 

++=
i

i
D

ibcnV DPNNW )(2  

where Nn is the number of nodes of condensed network; Nbc is the number of corre-
lated edges of condensed network, which is the number of non-zero elements of upper 
triangular block or lower triangular block in network admittance matrix; P(Di) is the 
path of dynamic components variables.  

2) Edge weight is used to measure the computing workload induced by cutting 
edges in condensed network. Under circumstance that exploits strategy based on 
node’s branch, it is the number of computing nodes after cutting edges rather than the 
number of cutting-edges itself that determines the computing workload of border 
blocks. Given the edge which links node Np and Nq in the original network, Ei =(Vi, 
Vj), define the edge weight before partitioning as: 
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where DE(Np) and DE(Nq) are out-degrees of node Np and Nq.  
3) Fig. 3 shows that our partition method has the advantage over traditional parti-

tion method. 
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(a) scheme 1 and scheme 2           
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(b) optimal partition scheme  

Fig. 3. Definition of condensed edge weight based on node’s out degree 

As seen from Fig. 3, node G1, G2, G3 and G4 are partitioned to 2 parts. Fig. 3 (a) 
shows traditional definition of condensed edge weight in which 5 edges have the same 
edge weight. Both scheme 1 and scheme 2 are reasonable partition, but the scale of 
their coordinate system are not the same, which the number of nodes of coordinate 
system is 4 in scheme 1 and 6 in scheme 2. Fig. 3 (b) describes an optimal partition 
scheme based on our definition of edge weight. Our method takes coordinate system 
into account and achieves the optimal partition. In conclusion, our partition method 
defines vertex weight and edge weight to build a weighted condensed graph. The 
computing task allocation of transient stability is transformed into the partition of 
weighted condense graph. 

4   Message Passing Mechanism 

As described in section 1, communication time TPC is one of the parameters to influ-
ence speed-up ratio. It is often negligible compared to TPA. But in our implementa-
tion, TPC can’t be ignored sometimes when using synchronous communication. The 
reason is that Ethernet is a bus-based LAN, which is based on TCP/IP protocol and 
adopts CSMA (Carrier Sense Multiple Access) technology. The goal of synchronous 
parallel computing is load balancing. Multiple processors exchange and evaluate their 
information before starting the computing until every processor has arrived at the 
same barrier. Synchronous communication will cause communication bottleneck and 
the exchanged messages will congest the communication. In the contrary, asynchro-
nous communication makes it possible, which processors can compute and communi-
cate simultaneously. So we use asynchronous message passing in our method. 
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5   Conclusion 

In this paper, we analyze the parallel algorithms of transient stability analysis and 
study the partition strategy of BBDF suitable for distributed PC cluster and its parallel 
computing process. To reflect the overall workload of parallel and serial computing, 
we introduce graph theory into power system transient stability analysis according to 
properties of power system. In our scheme, we use vertex weight to represent node’s 
parallel computing workload and use edge weight to represent serial computing work-
load on the border blocks, which reflects the degree of parallelism roundly and im-
proves the speed-up ratio of system. In order to reduce communication time wastage 
induced by CSMA protocol in LAN, computing units communicate with each other 
using asynchronous message passing. Simulation results show that it achieves better 
performance. 
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Abstract. In this paper, we propose a distributed power-efficient data gathering 
and aggregation algorithm (DPEG), in which a node, according to its residual 
energy and the strength of signal received from its neighboring nodes, 
independently makes its decision to compete for becoming a cluster head. In 
addition, assume that the inter-cluster communication data is, in a multi-hop 
manner, sent to the designated node, which then sends the data gathered by the 
whole network to the base station. DPEG also proposes a simple approach to 
solve the cluster coverage problem. With the increase in node density, this 
approach lets sensor network lifetime be linear in the number of nodes. Our 
experimental results have proved that DPEG algorithm, in the best case, lets 
sensor network lifetime be respectively increased by 1800% and 300% as 
compared with another two data gathering and aggregation protocols--- LEACH 
and PEGASIS.  

1   Introduction 

With the development of the sensor technology, the embedding technology and the 
technology of wireless communication with low power consumption, it has become 
possible to produce the micro wireless sensors for sensing, wireless communication 
and processing information. These inexpensive and power-efficient sensor nodes 
work together to form a wireless sensor network, which, through the cooperation of 
sensor nodes, delivers various kinds of monitored and sensed environment 
information (e.g. temperature, humidity, etc.) to the base station, which processes the 
report messages it receives. Wireless sensor networks (WSNs) enjoy a wide-range of 
applications, including military surveillance, disaster prediction, environment 
monitoring, etc. Since WSNs have great application value, they have been paid 
closest attention to in the fields of military, industry and academy in many countries. 
Actually, a lot of research efforts have been made on WSNs. Recently, wireless 
sensor networks, composed of micro sensor nodes, have already been developed into 
an important computing platform [1][2]. Wireless sensor networks, different from 
mobile ad hoc networks (MANETs), globally have comparatively high node density 
and weak node mobility (usually the sensor nodes do not move any more after they 
are deployed). Meanwhile, for the reasons of cost and volume, etc, the wireless sensor 
node resource is insufficient in terms of processing capability, wireless bandwidth and 
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battery power, etc. Especially, since in many applications sensor nodes are intended to 
work in hostile or inaccessible environments, e.g., the enemy-occupied areas, node 
energy fails to be recharged, and thus how to prolong sensor network lifetime has 
become one of the crucial problems needed to be considered in designing 
[3][4][5][6][7]. This paper, from the point of view of communication protocol, 
proposes a distributed power-efficient data gathering and aggregation algorithm, 
DPEG. 

2   Related Work 

The main task of a sensor network is to forward the data gathered by sensor nodes to 
the base station. One simple approach to the fulfillment of this task is direct data 
transmission, i.e., each node in the network directly sends gathered data to the base 
station. However, if the base station is remote from the sensor node, the node will 
soon die for suffering excessive energy consumption for delivering data. To solve this 
problem, some algorithms that are aimed to save energy have been proposed one after 
another [9][10][11][12][13].  

In the literature [9], Wendi and others proposed LEACH algorithm. LEACH is a 
kind of distributed self-configuring protocol, the fundamental concept of which 
focuses on energy efficiency by reducing the number of the nodes that can directly 
communicate with the base station. LEACH protocol involves round-operation. Each 
round includes two phases: setup and steady. In the phase of setup, first some sensor 
nodes, in a self-configuring manner, are randomly selected as the cluster heads, and 
then these selected cluster heads are broadcast. Which cluster head a regular node 
decides to join depends on the strength of the radio signal it receives. The phase of 
steady begins after clustering. In the phase of steady, the regular nodes first deliver 
gathered data to the cluster head, and then the cluster head fuses the data received and 
the data gathered by itself together. After that the cluster head delivers the fused data 
to the base station. In LEACH protocol, each round gets involved in the reselection of 
cluster heads. In this way, uniform energy consumption for all the nodes can be 
guaranteed. Compared with DIRECT protocol, LEACH protocol, by reducing the 
number of the nodes that directly communicate with the base station and using data 
fusion technology, can make sensor network lifetime (until the first node dies) be 
increased by 800% or so. Although LEACH algorithm can prolong sensor network 
lifetime by a wide margin compared with DIRECT protocol, it fails to consider the 
following issues: 1) To optimize the number of cluster heads; in LEACH algorithm, 
for any node, the probability of being a cluster head is p, so the number of cluster 
heads is proportional to the quantity of sensor nodes; 2) To reduce energy 
consumption of cluster heads; in LEACH protocol, all the cluster heads directly 
communicate with the base station; since the nodes selected as cluster heads, remote 
from the base station, have to receive data delivered by all the member nodes, they 
will suffer a faster energy consumption; and when the number of cluster heads in 
network is large enough, the global energy consumption of the network will have to 
increase; 3) To guarantee optimal cluster head distribution; since the cluster heads are 
randomly selected, LEACH algorithm does not guarantee good cluster head 
distribution, but the cluster head distribution determines the energy consumption of 
sensor network in the round.  
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In the literature [10], the authors notice that for a node, within a range of some 
distance, the energy consumed for receiving or sending circuits is higher than that 
consumed for amplifying circuits. In order to reduce the energy consumption of 
sensor nodes, the authors propose PEGASIS protocol, which uses GREED algorithm 
to form all the sensor nodes in the system into a link. The sum of the side length of 
the link is close to the minimum. Each side of the link receives and sends data only 
once. Specifically speaking, in each round, any node receives data from one 
neighboring node in the link, and fuses the data received and the data gathered by 
itself together, and then delivers the fused data to the other neighboring node in the 
link. The work of delivering and fusing data begins with the node at one end of the 
link, and continues till the data is sent to the designated node, which is in charge of 
delivering the final fused data to the base station. Compared with LEACH protocol, 
PEGASIS protocol lets the energy consumption in each round be remarkably reduced 
because it allows a smaller number of nodes that can directly communicate with the 
base station and a better data fusion. The result is particularly notable when the base 
station is remote from the working area of the sensor network. According to the 
simulation experiments, sensor network lifetime in PEGASIS protocol can be 
increased by 100% to 300% compared with that in LEACH protocol. However, 
PEGASIS algorithm’s contribution to prolong sensor network lifetime is made on the 
basis of the assumption that all the nodes know the global information of sensor 
networks. We argue this assumption fails to take the following problems into account: 
1) It is very difficult for a single node to store the global information of the sensor 
network because the number of sensor nodes in the network is very large while both 
the node’s processing capability and its memory capacity are quite limited; 2) Since in 
many applications sensor nodes are deployed in hostile or inaccessible environments, 
there exist other reasons for node failures in addition to energy depletion; so it has to 
pay a considerably high price for maintaining the storage of correct global 
information; 3) PEGASIS algorithm forms all the nodes in the sensor network into a 
link, but if some node in the link dies, the data gathered by all the nodes between the 
end of the link and the location of the node itself cannot be delivered to the base 
station;  4) Since the length of the link has much to do with the number of nodes and 
the quantity of sensor nodes in the network is considerably large, there exists much 
delay for transmitting gathering data to base station. 

3   System Model and Problem Statement 

The clustering algorithm DPEG proposed in this paper, like the other clustering 
algorithms in [9][10][11][12], also involves round-operation. Each round is divided 
into three phases: clustering, forming spanning tree and gathering data, respectively 
denoted by Tcluster Ttree and Tdata. Tdata refers to the phase of data gathering, in which 
the data gathered by sensor nodes are delivered to the base station for processing. In 
order to guarantee the useful (data gathering) working time of the network, the 
algorithm has to satisfy the condition: Tdata >> Tcluster + Ttree. 

3.1   Network Model 

This paper assumes that N sensor nodes are randomly deployed in a square field A, 
and the sensor network has the following properties: 
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1) Sensor nodes in the network do not move any more after they are deployed.  
2) There exists only one base station, which is deployed at a fixed place outside 

A.  
3) The deployed network does not need to be maintained by people. 
4) All the nodes share equal significance and similar capabilities 

(processing/communication). 
5) Sensor nodes in the network are not equipped with GPS, i.e. Nodes are 

location-unaware.  
6) The radio power can be controlled, i.e., a node can control its transmission 

power level according to the distance.  

The first four properties are typical setting in ordinary sensor networks. The fifth 
property makes it clear that DPEG algorithm proposed in this paper, like LEACH 
protocol, does not need to use location information of sensor nodes. We argue that for 
the approach to determine the location of sensor nodes through exchanging 
information, the increase in the number of nodes brings such rapid increase in the 
amount of exchanged information that the network efficiency degrades and the 
scalability of the system is immediately affected. Moreover, the energy consumption 
for exchanging information will also affect the lifetime of the sensor network. 
Considering energy efficiency a goal, the sixth property mainly deals with the 
definition of different power levels for intra-cluster and inter-cluster communications. 
In this way, the node energy consumption can be remarkably reduced so as to further 
prolong sensor network lifetime. 

3.2   Radio Model 

In the recent years, great deals of research efforts have been made on low-energy 
wireless communication. This paper uses the same radio model as in the literature 
[14]. This model provides a threshold d0 (d0 is a constant, which is decided by the 
application environment). When the value of distance from sender to the node 
receiver falls below d0, the energy consumption for sending data is proportional to the 
second power of the distance; otherwise it is proportional to the fourth power of the 
distance. These two energy attenuation models are respectively called free space 
model and multi-path fading model. Therefore, according to the distance of receiver, 
the node that sends data can use one of the above two models to calculate the energy 
consumption for its sending data. For example, the node a, which sends k-byte data to 
the node b (the distance from a to b is d), can uses the following formula to calculate 
its energy consumption:  

( ) ( ), ( ) ,tr elec ampE k d E k E k d= +  

{ 2

4
e l e c f s

a m p

k E k d

k E e l e c k d

ε
ε

+
+=                                                 (1) 

When b receives the message sent by a, the energy consumption of its wireless 
devices can be calculated through Formula 2:     

( )Rx elecE k kE=                                                                  (2) 
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In the above two formulae, Eelec denotes the energy consumption of the wireless 
circuit for sending and receiving data. The energy consumption of the amplifier is 
denoted by Eamp, which is decided by the distance from the sender to the receiver as 
well as the acceptable bit error rate. In addition, most protocols and algorithms prefer 
to use data fusion technology to reduce the amount of the data transferred in network 
so as to save energy. DPEG algorithm also adopts data fusion technology to reduce 
energy consumption. DPEG algorithm, like PEGASIS, assumes the ability of data 
fusion to be: Nk = k, where N denotes the number of nodes in the sensor network and 
k refers to the length of data packet. The energy consumption for fusing data is 
denoted by E_fusion.  

3.3   Problem Statement 

In essence, all approaches that involve round-operation and aim to prolong sensor 
network lifetime want not only uniform energy consumption for every node but also 
the minimization of the total energy consumption in every round. For the clustering 
algorithm, the formation of cluster will decide the amount of energy consumed in 
every round. Assume that N nodes are dispersed in the field A at random. Then we 
argue that the clustering algorithm, in order to reduce energy consumption in every 
round and guarantee energy consumption is uniformly distributed in every node, has 
to satisfy the following conditions: 

1) It should be a complete distributed and self-configuring algorithm in which a 
node uses only the local information to decide its own status. Before the phase 
of Tcluster ends, every node has to elect to become a cluster head or a member 
node of one cluster.    

2) The energy consumption for communication between nodes should, to the 
largest extent, satisfy free space model. In other words, both intra-cluster and 
inter-cluster communications have to satisfy free space model. However, 
LEACH algorithm fails to guarantee good cluster distribution. In this case, 
there may be more energy consumption, for the intra-cluster communication 
fails to satisfy free space model.  

3) The intra-cluster and inter-cluster communications use different power levels. 
When the node density is high enough, the power level for the inter-cluster 
communication should guarantee the communication range is over twice of the 
cluster range. In this case, the connectivity of the clustered network can be 
guaranteed. 

4) The cluster head distribution should be optimized. When free space model is 
satisfied, the inter-cluster communication should, to the largest extent, 
guarantee that the distance between any two cluster heads is larger than the 
cluster range rc. In this paper, rc denotes cluster size. Only those nodes located 
within the range rc of one cluster head are allowed to join the cluster. There 
exists signal interference in the wireless channel, and the signal inference will 
be worsened if a cluster head falls within the range of another cluster head. In 
this case, the data will be retransmitted so as to cause extra energy 
consumption. 
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4    Description of DPEG Protocol 

DPEG protocol involves round-operation. Each round includes three phases: 
Tcluster Ttree and Tdata.  

4.1   Clustering Algorithm 

Our clustering algorithm based on the algorithm proposed in [13]. In DPEG algorithm 
the cluster range is fixed, i.e., rc < d0/2. The communication range of a cluster head is 
denoted by Rch, and we define Rch = 2.5rc. The distance between two neighboring 
cluster head nodes, denoted by d, satisfies the formula: rc < d <= Rch, which will 
guarantee good distribution of cluster heads in sensor networks. Since the cluster 
range is fixed and the relationship between clusters is bound to the above formula, the 
number of clusters covering A, a monitored field, is directly related to the size of A as 
well as the cluster range rc. [15] presents a formula to calculate the minimum number 
of nodes needed to cover the field A, where n denotes the minimum number of nodes, 
as follows: 

2 / 2 / 27arean r Aπ π=                                                 (3) 

According to Formula 3, for each node Si (1< i < N), we define its initial 
probability of becoming a cluster head as: 

22 / 27init area cp A Nr=                                                                        (4) 

The initial probability is defined to control the number of initial candidate cluster 

heads. As to the number of final cluster heads, obviously, we have c initN Np≥ . With 

the execution of DPEG protocol, one node’s probability of becoming a cluster head 
(denoted by pch) has to be related to its energy in order to guarantee that energy 
consumption is uniformly distributed in every node: 

max

current
ch init

E
p p

E
= ×                                                      (5) 

Where Ecurrent denotes the current residual energy in the node and Emax denotes its 
initial energy. When a node’s residual energy is lower than the threshold Emin, the 
node will no longer join the competition for becoming a cluster head. Since the 
energy consumption for sending, receiving and aggregating data can be calculated, 
Emin may be computed through the following formula: 

( )2
min deg 0( )ree elec DA DA fsE cycle l C E E l E l dε= × × × + + × + × ×                        (6) 

Where cycle denotes the frequency of data gathering in each round, and deg reeC is the 

mean of the number of member nodes in the cluster, and l refers to the length of data 
packet.  

Any node Si, in the phase of Tcluster in each round, needs to execute the clustering 
algorithm. The clustering process requires a number of iterations. The number of 
iterations is related to Ecurrent, the current residual energy in the node. Every step takes 
time t, which should be long enough to guarantee that the node Si can receive the 
message sent by any node within the range rc of Si. We note that when a node is 
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competing for cluster head, its residual energy is not the only parameter necessary to 
be considered in an attempt to prolong sensor network lifetime.  

Before the iteration begins, Si broadcasts itself within the range rc and receives the 
broadcast messages sent by all the neighboring nodes within the range rc. According 

to the strength of signal received, let
1

m

n

PRI RadioStr m
=

= , where m is the number of 

Si’ s neighbor within the range rc. The higher PRI is, the lower energy the cluster, with 
Si as its cluster head, consumes. Thus, PRI will be considered as the priority of a node 
to compete for cluster head. In static sensor networks the normal death of a node (for 
energy depletion) can be calculated. If the node fault rate is lower, the neighbor set of 
every node does not change very frequently. Moreover, DPEG protocol distributes 
uniform energy consumption in every node and thus extends the lifetime of all the 
nodes in the sensor network, which adds to the stability of the neighbor set. As 
illustrated in Line 3-6, Figure 1, in DPEG protocol, PRI is computed through 
broadcast in every count-round, and the assumed value of count is related to the node 
fault rate in the network.  

1. If  round = 1 
2.   Bs_str = Receive_Str(msg form BS)   // radio strength
3. If  round%count = 0 
4.   Broadcast(Si->ID) 
5.   Receive_Str(msg from neighbor in si’s cluster range ) 
6.   PRI = Avr_Str(all neighbor in the cluster range of si) 
7. p = max(pch, pmin)            //pmin = pinit*(Emin/Emax) 
8. is_CH = false 
  
9. while(p > 1) 
10.   If  New_CH != empty 
11.     Add(CH_Set, New_CH) 
12.   If  CH_Set = empty and p != 1 
13.     If  random(0,1) <= p 
14.       Broadcast(Si->ID, temp, PRI) 
15.   Else If  CH_SET = empty and p = 1 
16.     Broadcast(Si->ID, CH, PRI) 
17.     is_CH = true 
18.   Else If  CH_Set != empty 
19.     cluster_head = Max_PRI(all nodes in CH_Set) 

20.     If  Si ∈  CH_Set and Si has highest PRI in CH_Set

21.       If  p = 1 
22.         Broadcast(Si->ID, CH, PRI) 
23.         is_CH = true 
24.       Else 
25.         Broadcast(Si->ID, temp, PRI) 
26.   p = min(2*p, 1) 

 

27. If  is_CH = true 
28.   Broadcast(Si->ID, CH, PRI) 
29. Else  
30.   If  CH_Set = empty 
31.     Broadcast(Si->ID, CH, PRI) 
32.   Else 
33.     join_cluster(cluster_head, Si->ID) 

 

Fig. 1. Clustering pseudo-code 

As each iteration starts, Si first judges whether there is any new cluster head 
announcement. If yes, let the new cluster head join the tentative set of candidate 
cluster heads, denoted by CH_Set. If CH_Set is not empty nor does include the node 
Si itself, Si will lose the chance of being selected as a cluster head. But if the iteration 
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ends with no candidate cluster head announcing itself to be a state cluster head, Si will 
consider itself uncovered, and then announces itself to be a final cluster head. If Si is a 

candidate cluster head ( _iS CH Set∈ ), then it is needed to judge whether the 

priority of Si PRI is the highest. If its priority is the highest, when the iteration ends, Si 
broadcasts itself to be a final cluster head; otherwise, when the iteration ends, Si will 
join the final cluster head some candidate node announces to be. If when the iteration 
ends, CH_Set is still empty, i.e., Si is not covered by any cluster, Si will broadcast 
itself to be a final cluster head. Note that in process of competing for becoming the 
cluster head, the node’s broadcasting range is rc, and the algorithm is illustrated in 
Figure 1. 

4.2   Formation of Approximate Minimum Spanning Tree 

After clustering, the cluster heads in the sensor network begin to compete for 
becoming the CHb node. We define each cluster head’s probability of becoming 
candidate CHb as follows: 

max max_ _b currentp BS str E BS str E= × ×                (7) 

where BS_str denotes the strength of radio signal received from the base station, and 
BS_strmax is the maximal strength of the signal received from the base station within 
the field A. Obviously, the smaller the distance from a cluster head to the base station 
is and the higher its power is, the larger the cluster head’s probability of becoming the 
candidate CHb is. The candidate CHb node broadcasts to its neighboring cluster heads 
within its broadcasting range Rch the message, which includes node_ ID and pb. The 
neighboring cluster heads transmit the broadcast message they receive to its neighbor 
so that all the cluster heads receive the message broadcast by the candidate CHb. The 
candidate cluster head with the largest pb will be selected as the CHb node (if there are 
two or more candidate cluster heads that have the same pb, the one with higher ID 
value becomes the CHb node). Note that in the later period of network lifetime, a large 
quantity of nodes die, so the node density in the field A fails to guarantee the cluster 
head connectivity. In this case, if a cluster head does not receive the message broadcast 
by the candidate CHb within a given time, it then automatically becomes the CHb node.  

 

Fig. 2. (2a, 2b, 2c): Illustration of the algorithm for producing approximate minimum spanning 
tree 
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The routing tree is formed with the selected CHb node as its root. First, the CHb 
node broadcasts the message including its own node_ID to all the neighboring cluster 
heads within its broadcasting range Rch. Then the neighboring cluster heads add the 
routing information from the CHb node to the local cluster heads to the message they 
receive and transmit the join message in a way similar to flooding algorithm till all the 
cluster heads receive the routing information from the local cluster heads to the CHb 
node. In order to reduce the degree of complexity in exchanging routing information 
and save limited resources in the node, the longer routing information will be dropped 
in the process of flooding. When the broadcast ends, each node reserves all the 
messages that travel the smallest number of hops from the CHb node to the local node, 
and then selects the closest node on the upper channel as its parent node (according to 
the strength of signal received) and sends child message to it. For example, Figure 2a 
illustrates the relationship between neighboring cluster heads. In this figure, A is the 
selected CHb node from which the broadcast starts. After receiving the message from 
A, Node B, C broadcast the messages A, B and A, C to all the neighboring 
nodes within the range Rch. Since the message A, B travels a larger number of hops 
than the message A , it is dropped by Node C; similarly, Node B drop the 
message A, C . For Node D, the number of hops the message A, B from Node B 
travels is as large as that the message A, C from Node C travels, so both A, 
B and A, C will be reserved. The routes reserved by the nodes after broadcasting 
are illustrated in Figure 2b. Assume that the strength of signal Node D receives from 
Node C is greater than that it receives from Node B. In this case, Node D sends the 
child message to Node C. The final spanning tree is illustrated in Figure 2c. 

4.3   Cluster Coverage 

For the random deployment, it is impossible to guarantee that the deployed nodes can 
cover the whole area. Therefore, we hope to solve the following problems: how many 
sensor nodes with the sensing range rs are needed to be randomly deployed in the 
monitored area C with the range R so as to guarantee that the covered sections in the 
whole area are as large as what they are expected to be.  

Definition 1. Neighborhood. For any point (x, y) C, its neighborhood is defined as: 

( ) ( ){ } ( ) ( )( )2 2 2, ', ' | ' ' sx y x y C x x y y rℵ = ∈ ∀ − + − ≤              (8) 

Definition 2. The area 'C . For the area 'C , have 'C C⊂ . And for any point 

( ) ',x y C∈ , satisfy the following formula: 

2 2 2( )sx y R r+ <= −                                                   (9) 

For any point (x, y) C, if there exists at least one node in its neighborhood, it is 
covered. Since sensor nodes in the area C are uniformly distributed, the probability 
that a node falls within the neighborhood of the point (x, y) is 

( ), / areaarea
p x y C= ℵ . Assume that m nodes are deployed in the area C. Then the 

probability that the point ( ),x y is covered is 
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( ) ( )1 21 2 21 1
coverage

m m m m
m m mCp p p C p p C p

− −
= − + − + ⋅⋅⋅⋅ ⋅ ⋅ +                  (10) 

For ( ), 'x y C∀ ∈ , the area of its neighborhood ( ) 2,
area sx y rπℵ = . Thus, the 

probability that a single node falls within the neighborhood 

( ) 2 2, / /area sarea
p x y C r Rπ π= ℵ = . According to Formula 10, if m nodes are 

randomly deployed in the area C, the probability that the point ( ), 'x y C∀ ∈ is 

covered is 

2 2

2
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1cover
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m

n

r r
p C

R R

−

=

= −                                     (11) 

If the node density is high enough, the clusters formed in the phase of Tcluster in each 

round will cover the whole monitored field A. Theoretically, the area of a cluster is 
2

crπ , but there exist overlapping parts between neighboring clusters in order to cover 

A, i.e., the practical area of the cluster is smaller than 2
crπ . Therefore, m the number 

of nodes needed to cover the designated area can be approximately computed through 

Formula 11, where coverp , according to the application, is determined. In order to 

save energy, a cluster head randomly selects m nodes from its member nodes as the 
active nodes and lets other nodes sleep. The cluster head’s arrangement of its member 
nodes is completed by the intra-cluster broadcast of TDMA schedule. 

5   Performance Evaluation 

5.1   Simulation Parameter 

We use GlomoSim as the simulation platform with various parameters in the 
simulation  experiments  shown  in  Table  1.  In  the  simulation  experiments,  sensor  

Table 1. Simulation parameter 
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network lifetime involves three kinds of definitions, which differ in terms of the time 
when sensor network terminates, i.e. sensor network terminates until the first node 
dies or half the nodes die or the last node dies. In addition, in the simulation 
experiments to verify DPEG protocol (DPEG-1 does not use the cluster algorithmic 
approach), we define the sensing range of each node as rs = 12m, and a node is 
considered dead if its residual energy is lower than Emin (0.0025J). 

With an attempt to make a comprehensive caparison among the four protocols, i.e., 
DIRECT, LEACH, PEGASIS and DPEG, through the simulation experiments we 
respectively observe how the performance of each protocol varies with the changes in 
the size of the monitored area, the location of the base station and the number of the 
nodes. The experimental results and the analysis of them are illustrated in Section 5.3, 
in which DPEG protocol includes DPEG-1 and DPEG-2 (using the cluster coverage 
method). 

5.3   Experimental Results And Analysis 

Figure 3 and Figure 4 respectively illustrate the relationship between the location of 
the base station and network lifetime of the above three definitions. As shown in 
Figure 3, in DPEG protocol, with the increase in the distance from the base station to 
the monitored area A network lifetime defined according to the death time of the first 
node decreases more slowly. The experimental results have shown that when the 
location of the base station is shifted from (50, 175) to (50, 300), network lifetime 
decreases by less than 18% from 892 rounds to 732 rounds. In this case, DPEG 
protocol is superior to PEGASIS and LEACH protocols. Meanwhile, it can be seen 
that there is the least alteration in the graphs that illustrate DPEG protocol in the two 
figures. This means that for the sensor network that executes DPEG protocol, there is 
no remarkable difference among the three definitions mentioned earlier in terms of 
sensor network lifetime. 

In the simulation experiments we consider that the change in the size of the 
monitored field A will influence the performance of various protocols. From Figure 5 
and Figure 6, it can be seen that DPEG protocol still performs very well with the 
monitored field enlarged. This is because that DPEG protocol can guarantee that there 
is good cluster distribution and the data are forwarded to the base station in a multi-
hop manner. Therefore, the performance of DPEG is, on the same condition, better 
than that of LEACH and PEGASIS. 
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Fig. 3. Network lifetime as sink 
travels farther (FND)  

Fig. 4. Network lifetime as sink travels 
farther (LND) 
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Fig. 5. Network size vs. network 
lifetime (FND)  

Fig. 6. Network size vs. network 
lifetime (LND) 

Figure 7 illustrates the relationship between the number of nodes and network 
lifetime. It is worth to note that as the number of nodes increases the above four 
protocols fail to prolong network lifetime (with the exception of DPEG-2). This is 
because that these algorithms do not take the coverage problem into account. When 
the node density is high enough, only a certain number of nodes are needed to cover 
the whole field A. Thus, it is necessary to let the surplus nodes sleep so as to reduce 
the energy consumption in these nodes and further prolong network lifetime. 
However, in the above four protocols that leave the coverage problem out of 
consideration, all the nodes are active nodes in each round so that the increase in the 
number of nodes cannot lead to the obviously increase in network lifetime. 
Meanwhile, the number of the member nodes in the cluster in DPEG-1will increase as 
the number of nodes increases, since the number of cluster heads formed in DPEG 
algorithm is only related to the size of the monitored field A and the cluster range rc. 
In this case, there will be more energy consumption in the cluster head so as to make 
the first node die at an earlier time. It can be seen in Figure 7 that when the number of 
nodes is 100, the first node dies in the 890th round. As the number of nodes reaches 
500, the first node dies as early as in the 831st  round. DPEG-2 uses the cluster 
coverage algorithm in which if the number of member nodes in a cluster is larger than 
is needed (according to the application requirements), the cluster head will inform the 
redundant nodes to fall asleep in this round. The experimental results have proved that 
in DPEG-2 the increase in network lifetime is linear with the number of nodes.   
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Fig. 8. The total number of sensing data 
gathered by all nodes in the network (FND) 
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In protocols that involve round-operation, for all the nodes, the frequency of 
gathering data in each round is uniform (in the simulation experiments we define that 
the frequency of gathering data by the node is 5 times in each round). So, the 
performance of the protocol can be assessed on the basis of the total frequency of 
gathering data by all the nodes in the sensor network. As shown in Figure 8, 
according to the variation in the distance from the base station to the monitored field 
A, we respectively calculate the total frequency of gathering data in the above four 
protocols before the network lifetime terminates. Obviously, the total frequency of 
gathering data in DPEG-1 is far higher than that in the other three protocols. So this 
means DPEG protocol is superior to the other three protocols in terms of the 
monitoring quality. 

6   Conclusion  

In this paper, we propose a distributed power-efficient data gathering and aggregation 
protocol for sensor networks, in which a node, according to its own residual energy 
and the strength of signal received from its neighboring nodes, independently makes 
its decision to compete for cluster head. After the selection of the cluster heads, the 
regular nodes choose to join the closest cluster head to form the cluster. In order to 
further reduce energy consumption, the cluster head remote from the base station 
sends the gathered data, in a multi-hop way, to the base station. Moreover, in DPEG 
protocol the execution of a simple cluster coverage algorithm helps to prolong 
network lifetime with the increase in node density. The experimental results have 
proved that DPEG protocol can prolong network lifetime by a wide margin and make 
the information monitored by the sensor network more reliable for all the nodes have 
to die within the last 40 rounds (the last node die) in DPEG.  
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Abstract. The current wireless sensor network designs are largely based on a 
layered approach. The suboptimality and inflexibility of this paradigm result in 
poor performance, due to constraints of power, communication, and computa-
tional capabilities. Key management plays an important role in wireless sensor 
networks, because it not only takes charge of securing link-layer communica-
tions between nodes, but also has great effects on other protocol layers, e.g. 
routing and IDS (Intrusion Detection System). However, no existing key man-
agement protocols have attached enough importance to cross-layering designs. 
In this paper, we propose a cross-layering key management scheme, which can 
provide other protocol layers with a nice trust-level metric. The trust-level met-
ric is generated during the pairwise key establishment phase, and it varies as 
system conditions change. This metric describes the security level between two 
neighboring nodes and helps other protocol layers to make decisions. We also 
present simulations and analysis to show the superior characteristics of our 
scheme against both passive attacks and active attacks. 

1   Introduction 

Recent advance in nano-technology makes it possible to develop low-power battery 
operated sensor nodes which are tiny and cheap, and could be deployed in a wide 
area. Many sensor systems are deployed in unattended and possibly adversarial envi-
ronments. Hence, security mechanisms that provide confidentiality and authentication 
are critical for the operations of many sensor applications. However, individual sensor 
nodes have limited power, computation, memory, and communication capabilities, 
which make it infeasible to use traditional public-key cryptosystem.  

Due to constraints of limited computational and communication capabilities, key 
management is a challenging problem in wireless sensor networks. It not only takes 
charge of securing link-layer communications between nodes, but also has great ef-
fects on other protocol layers, e.g. routing, MAC and IDS (Intrusion Detection Sys-
tem). A number of key management schemes for wireless sensor networks have been 
proposed recently [5,6,8,9,10,13,14]. However, none of the existing key management 
protocols has attached enough importance to cross-layering designs. We will intro-
duce more about these schemes in section 2. These schemes are especially vulnerable 
to active attacks, especially fabrication attacks. Suppose that a number of sensor 
nodes are compromised, and all secret information stored in their memory is exposed 
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to the adversary. Then the adversary can fabricate to be a legal node and make a suc-
cessful shake-hand with any other nodes in the network. Thus, the adversary can in-
ject any messages into the network at will. The existing key management schemes 
cannot distinguish between malicious shake-hands and friendly ones as long as the 
previous compromised nodes are not detected. We think that since key management 
takes charge of setting up and maintaining a secure communication link between two 
neighboring nodes, it can provide some important information about the communica-
tion link. This information could be very valuable for other protocol layers to make 
decisions, e.g. routing and IDS (Intrusion Detection System). In this way, even if the 
adversary could make a successful shake-hand, the activities of the adversary will be 
quite limited by other protocol layers. 

The current wireless sensor networks are largely based on a layered approach. The 
suboptimality and inflexibility of this paradigm result in poor performance [2], due to 
constraints of power, communication, and computational capabilities. The existing 
key management schemes have done a quite good job on the link-layer security prob-
lems [3,5,6,8,9,10,13,14]. Once a session key is created for a communication link, it’s 
hard for a passive attacker to eavesdrop and apply cryptanalysis. But the existing 
schemes are quite vulnerable to active and smart attackers. So now the challenge is 
how to intensify the network’s strength against active attacks, especially fabrication 
attacks. We believe that a cross-layering design [2] will help resolve the problem, in 
which different protocol layers, e.g. key management, routing and IDS (Intrusion 
Detection System), cooperate with each other to make the sensor system more effi-
cient and more robust. 

In this paper, we present a key management scheme for cross-layering designs in 
wireless sensor networks. The scheme provides a nice trust-level metric, which can 
dynamically evaluate the trust relationship between two neighboring nodes and help 
other protocol layers, such as MAC, routing, IDS, to make decisions. It could be util-
ized locally or globally in the network. For instance, if one node finds that one of its 
neighbors is not so reliable, it could change its routing table and avoid forwarding 
packets to the neighbor. What’s more, if all the network-wide trust-level metrics are 
collected, the IDS (Intrusion Detection System) could use the information to find out 
which nodes are the most suspicious nodes and which parts of the network are the 
most vulnerable parts. Our scheme is based on Zhu’s scheme [10]. We extend his 
scheme and adapt it to cross-layering designs. To the best of our knowledge, our 
scheme is a first attempt to design a cross-layering oriented key management scheme. 

The main contributions of this paper are as follows: 

1. Trust-level metric that helps the sensor system to make cross-layering deci-
sions. 

2. Strengthened pairwise keys that make the network stronger against the com-
promise. 

3. Theoretical analysis and simulations of different key management schemes. 

The remainder of this paper is organized as follows. We first review some other re-
lated work in adhoc network security problems, in section 2. In section 3, we describe 
our key management scheme in detail. Section 4 presents the analysis and simulations 
of our scheme in security, communication and computation. Finally, we provide some 
concluding remarks in Section 5. 
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2   Related Work 

We first review the work to establish shared keys in mobile ad-hoc network, and then 
review several key management schemes in wireless sensor network. 

Zhou and Hass [1] present a distributed public-key management scheme for ad hoc 
networks. Zhu et al [10] present an approach for establishing a pairwise key that is 
exclusively known to a pair of nodes with overwhelming probability. His scheme is 
based on the combination of probabilistic key sharing and (threshold) secret sharing. 

Eschenauer and Gligor [9] present a key management scheme for sensor networks 
based on probabilistic key pre-deployment. Chan et al [8] extend this scheme and 
present three new mechanisms for key establishment based on the framework of prob-
abilistic key predeployment. Wenliang Du et al. [14] proposed a method to improve 
the Eschenauer-Gligor scheme using a priori deployment knowledge. And later, he 
proposed a matrix-computation-based key pre-distribution scheme [13]. The scheme 
exhibits a threshold property that when the number of compromised nodes is less than 
the threshold, the probability that any other nodes are affected is close to zero. Zhu et 
al. [11] propose LEAP, a key management protocol for large-scale distributed sensor 
networks. In his scheme, keys for secure communication are divided into four types: 
individual key, group key, cluster key, and pairwise shared key. 

3   Key Management Scheme 

In this section, we first describe our assumptions and then present our scheme in  
detail. 

3.1   Assumptions 

We assume that sensor nodes are static once they are deployed. The network links are 
bidirectional, i.e., if node A can hear node B, B can also hear A. The resources of a 
node, such as power, computation, communication capacity, are relatively con-
strained. The sensor nodes are similar in their computational, communication capa-
bilities and power resources. We assume that every node has space for storing up to 
hundreds of bytes of keying material. Deployment knowledge of nodes will not be 
known in advance, i.e., sensor nodes do not know their neighboring nodes until de-
ployed. We also assume that an adversary can eavesdrop on all traffic, inject packets 
or replay older messages. If a node is compromised, all the information it holds will 
also be compromised. The adversary may launch fabrication attacks by manipulating 
the compromised secret keys. 

3.2   Detailed Key Management Scheme 

Motivation 
Current wireless sensor network protocol designs are largely based on a layer ap-
proach. However, a crossing-layer design can help different layers, including security 
layer, to cooperate with each other efficiently. For example, if a sensor node finds that 
one of his neighbors is not so reliable, its routing layer could avoid forwarding 
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packets to this neighbor. For another example, a node could attach some reliability 
evaluation at the end of the packets being forwarded. It finally helps the base station 
to recognize the fabricated data injected by the adversary. 

The existing key management protocols in sensor networks [5,6,8,9,10,11], didn’t 
attach enough importance to crossing-layer designs. After all the secure communica-
tion links over the network were set up, these protocols can do little, even when the 
adversary is launching an attack. We believe that key management protocol should 
cooperate with other protocol layers, such as, IDS (Intrusion Detection System). The 
key management protocol takes charge of setting up secure links between nodes, so it 
could also provide IDS with some suggestions, e.g. how secure some communication 
links are, or how suspicious some nodes behave. In our scheme, we provide a trust-
level metric to help the key management scheme to cooperate with other protocol 
layers. 

In our scheme, key management consists of four phases, namely key pre-
distribution, logical path establishment, pairwise key establishment, and key mainte-
nance. 

Key Pre-distribution 
During key pre-distribution phase, for each node, we select k random keys from a 

large key pool and store them in the node’s memory. The key pool size is P. This 
phase occurs before the deployment of the network. The key pre-distribution scheme 
enables every pair of nodes to share one or more keys with a chosen probability. 

Logical Path Establishment 
The logical path establishment phase occurs when a node wants to securely ex-

change with other nodes in the network. We say there are logical paths between two 
nodes when (i) the two nodes share one or more keys. We call such paths direct paths. 
(ii) the two nodes do not share any keys, but through other intermediate nodes they 
can exchange messages securely. We call such paths indirect paths and call the in-
volved intermediate nodes proxies. We have the same logical path establishment 
method as Zhu’s [10]. So for detailed description, please read Zhu’s [10]. 

Pairwise Key Establishment 
After the sensor nodes are deployed, a pairwise key establishment phase begins. 

Two neighboring nodes need to set up a session key to communicate securely. Sup-
pose that node u and v wish to communicate securely. Node u and v may already 
share one or more keys from the pool of keys after the key pre-distribution phase, but 
the shared key(s) is not known exclusively to u and v, it is also loaded in many other 
nodes during the key pre-distribution phase. So it is important for node u and v to set 
up a session key, which is known exclusively to node u and v. To establish session 
key, node u first generates a random number as its session key with node v, and then 
node u divides sk into n shares and sends these n shares to node v through different 
paths. If a (k,n) threshold algorithm is used, node v needs to get at least k shares to 
reconstruct the session key. Then node v could use this exclusive session key to com-
municate with node u. 

More specifically, the pairwise key establishment phase is as follows: 

{ }  id ||  id
u

broadcastu S keyS ⎯⎯→  (i1) 

First, each node broads its node id and the key id list which are stored in its mem-
ory during the key pre-distribution phase. After this, nodes get to know who their 
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neighbors are. We can also use a challenge method [9] to hide the key-sharing pat-
terns among nodes from the adversary, who might be a smart attacker and chooses an 
optimal set of nodes to compromise.  

Suppose that node u hears node v’s broadcast. Node u generates a random number 
as a secret key ks, then divides ks into n shares ks1,ks2,…,ksn, using a (k,n) threshold 
algorithm. Note that the secret key ks is not the final session key. Then node u saves 
ks and the n shares in its memory, and send them to node v through different logical 
paths. 

{ }Logical Path
ks  || idu vS S ks⎯⎯⎯⎯→  (i2) 

Node v need to successfully get at least k shares from different logical paths to re-
compute ks. When node v regain the secret key ks, it uses the following equation to 
generate the session key sk with node u. 

1 2
        

mi i isk ks ks ks ks m k= ⊕ ⊕ ⊕ ≥L  (i3) 

⊕ is an XOR operation. ksi1,ksi2,…,ksim are the secret key shares which node v suc-
cessfully gets from node u through different logical paths. Then node v sends the key 
id list of ksi1,ksi2,…,ksim to node u directly, i.e., not through any logical paths. 

{ } idv u ksS S⎯⎯→  (i4) 

After node u gets the id list of keys which node v successfully gets, node u can also 
generate the session key sk using equation (i3). 

 ( )u v skS S E data←⎯→  (i5) 

Once the session key sk is set up, node u and node v can communicate securely. 
This session key sk is exclusively known to node u and node v. The security analysis 
about the pairwise session key establishment will be described in section 4. 

Trust-level Metric 
In our scheme, we propose a trust-level metric, which is established during the 

pairwise key establishment phase. For each link between a node and its neighbors, 
there is a trust-level tuple which is stored in the node’s memory, i.e. if a node have 5 
neighboring nodes, it have 5 tuples stored in its memory, one for each. The tuples de-
scribe the security state of the communication links between a node and its neighbors. 

We define the trust-level metric as a tuple (m,t,B). In the tuple, m is the same in 
equation (i3), which is the number of secret shares which a node could get through 
logical paths, and t means secure time, i.e. how long have past since two neighboring 
nodes set up a secure link, B means behavior, i.e. how some neighboring node is be-
having recently, e.g. traffic. The parameter m could helps to evaluate the secure level 
of the communication link. Larger m means securer links, for if m is larger, the adver-
sary has to compromise more nodes in the logical paths. 

We think that the more actual definitions of m, t, B are application specific. Differ-
ent application purposes and different deployment environments make different re-
quirements. So it’s hard to provide a general compute method for these parameters. 
But we do provide a possible evaluation function f to evaluate the secure state of a 
communication link.  
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Fig. 1. Trust-level evaluation function 

expire 2( , , ) ( )
2

T
f m t A t m Bα β γ= − + −  (i6) 

In the equation, α , β, γ are some constants which we could adjust according spe-
cific application, Texpire is the expire time when re-keying should start, and m, t and B 
are the same as the ones in the trust-level tuple.  

We can see a nice sample of function f in Fig. 1. The x axe is time since pairwise 
session key is established, and the y axe is the security-level evaluation of some com-
munication link. The function f initially starts at a base security level, which is de-
cided by parameter m. Then as time is going, if the neighbor doesn’t show any ab-
normal behavior, the curve goes up. After the acme is reached, the curve goes down. 
And when the curve enters the shadowed area, i.e. the life time of session key expires, 
a re-keying operation must be taken. The parameter B is presumed to be zero in figure 
1. If parameter B is considered, some vibrations will appear on the curve. If the range 
of the vibration is so large that the curve falls below the base security level, we con-
sider that the communication link is in a dangerous state and a re-keying operation 
must be taken to ensure the neighbor is still a legal node. Many causes would lead to 
the vibrations of the curve, e.g.  a routing message received from this neighbor is 
quite different from the ones from the other neighbors, a bust of traffic is injected by 
this neighbor in a short time, etc. So the behavior parameter B is application specific. 
We could assign definite meaning to the parameter B according definite deployment 
requirements. 

The trust-level metric makes our key management scheme a dynamic scheme. The 
trust-level tuple provides an instant evaluation of the current network security state, 
and crossing-layer designs could make adaptive decisions on the fly. 

Key Maintenance 
After the nodes set up a session key with their neighbors, the network moves into a 

key maintenance phase. Key maintenance operations consist of three tasks: reporting, 
re-keying, and revocation. The trust-level metric is helpful for the sensor system to 
make key maintenance decisions. Nodes periodically report its trust-level metrics to 
the base station. If the base station finds some abnormal situations, e.g., attacks or 
abnormal sensor readings, the base station may send out revocation commands to let 
the nodes to revoke the compromised keys. Even if no attacks occur, re-keying is also 
necessary after the life-time of pairwise keys expires in case of cryptanalyzing.  
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4   Simulations and Analysis 

We use simulations to investigate the characteristics of our key management scheme. 
The simulations assume a network of 1000 nodes, which are deployed within a square 
area of 1000m x 1000m. The communication range of nodes is 50m, which also 
means that a node have 24 neighbors in average when deployed in the simulation 
area. The key pool size P is 10000, and each node is loaded with 75 random keys 
from the key pool. 

4.1   Security Analysis 

We mainly focus on the security problems about node compromise. Suppose that a 
number of nodes in the network are compromised by the adversary, the secret keys 
stored in the nodes’ memory are also uncovered, and what’s more, the compromise 
operations of the adversary might not be detected within a period of time. The adver-
sary can launch two kinds of attacks: passive attacks and active attacks. Passive attacks 
include communication-link eavesdropping, traffic analysis, key pre-distribution pat-
tern analysis, etc. Active attacks include injecting fake information, e.g. fake routing 
information and fake sensor readings, fabricating new sensor nodes, flooding and 
DOS[7] attacks, etc. Passive attacks can be effectively prevented by using session keys 
and re-keying, but active attacks are harder to prevent. The adversary can use the com-
promised secret keys to pretend to be a legal node to take a successful shake hand with 
any sensor node in the network. We call this type of shake -hands malicious shake-
hands, for after shake-hands the adversary could inject the network with all kinds of 
messages at will. Malicious shake-hands are hard to prevent, as long as the compro-
mise operations are not detected. Wireless sensor networks are usually deployed in an 
unattended environment, sometimes it’s impossible to give every node a physical 
check to make sure the node is still not compromised. The existing key management 
schemes [5,6,8,9,10,13,14] could do little to prevent these active attacks, especially 
malicious shake-hands. It’s hard for these schemes to distinguish malicious shake-
hands from friendly ones. We conclude Table 1 by taking some simple deductions and 
analysis for Eschenauer’s scheme [9], Chan’s q-composite scheme [8], and Zhu’s 
scheme [10]. From Table 1, we find that in Eschenauer’s scheme, if a node is compro-
mised, the adversary can take a successful shake-hand with 99.68% of nodes in the 
network, as long as the compromise is not detected. The percent value is the same as 
the connectivity probability of the network, but from another point of view, we can 
also regard it as a malicious shake-hand percent. The conclusion of Table 1 is based on 
the simulation configurations described in the head of this section, and for Chan’s q-
composite scheme, we suppose pconnect 0.33, please refer to Chan’s [8] for detail. 

Table 1. Fraction of malicious shake hand 

Scheme Fraction of malicious 
shake hand 

Eschenauer’s 1. 0.9968 
Chan’s q-composite 2. 0.9372 

Zhu’s 3. 0.9968 
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Our scheme cannot distinguish malicious shake-hands from friendly ones too, as long 
as the compromise is not reported. But we provide a trust-level metric to reduce the 
effects of possible malicious attacks. The trust-level metric provide the security state 
information between a node and its neighbors. It is a cross-layering metric, which could 
help other sensor layers to make decisions. For example, the routing layer could avoid 
forwarding packets to a new neighbor no matter whether it is friendly or malicious. The 
metric is a tuple, which contains three parts: m,t,B. m is the number of logical paths 
which were used to set up a session key. t is time since the session key has been set up. 
B is behavior, e.g. traffic. These parameters could be taken into account by other sensor 
protocol layers. Fig. 2 is a typical application of the trust-level metric. We call Fig. 2 a 
security map. In the map, (x,y) are the physical position of a node, axis z is the value of 
the evaluation function f which is introduced in section 4. We compute the value of the 
evaluation function f for every node, and then a security map forms. From the map, we 
can find the security weak area of the network. The protuberant area in the map is more 
secure than the concave ones. If the concave areas are below some pre-defined security 
level limit, the base station must send commands to let the nodes in that area to take re-
keying, key revocation or other security mechanisms to strengthen the security level. 
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The security map can be generated by a base station. When sensor nodes report 
their readings to the base station, the trust-level metrics could be attached in the 
packet. The security map is also a dynamic map. If the adversary takes malicious 
shake-hands with any nodes in the network, a new concave area will appear in the 
map. So we can pay more attention to the area and avoid some activities in the area, 
e.g. forwarding packets to the area.  

Fig. 3 shows the security level distribution among nodes. k is the number of secret 
keys each node loads before deployment. We vary k from 50 to 100. The y axis is also 
the value of the evaluation function f. When k is set to 100, we can find 100% nodes 
have a minimal security level of 7, and 90% nodes have a minimal security level of 
25. This figure can help us to choose a pre-defined security level limit. We believe 
this security limit is an application specific value, and it can be adjusted to meet spe-
cific requirements.  

In the following, we discuss the characteristics of our scheme against passive at-
tacks. Passive attacks include communication-link eavesdropping, traffic analysis, key 
pre-distribution pattern analysis, etc. Usually session key, re-keying, key revocation, 
etc. are used to prevent passive attacks [8,9,10]. One of the most important metrics to 
evaluate a key management scheme is the fraction of communications compromised 
when the adversary has captured some set of w nodes. This metric is also discussed by 
[8,10]. Our scheme is based on Zhu’s scheme, but Zhu’s analysis doesn’t take the 
(k,n) threshold algorithm into account. So in the following, we will extend Zhu’s 
analysis. 

Note that we only consider the communication links secured by a pairwise session 
key during the pairwise key establishment phase. So if the adversary begins to eaves-
drop the link after the session key has been set up, it would be very hard to decrypt 
the session key, which is exclusively known to the two neighboring nodes. But in our 
analysis, we suppose that the most terrible situation appears that a number of nodes 
are compromised at the very beginning, the adversary eavesdrops all the later proc-
esses of pairwise key establishment. 

Given that w nodes have been captured in the very beginning, P is the size of the 
key pool, k is the number of random keys each node has. The probability pc that any 
key is contained in the union of the key sets of the w nodes is 

1 (1 )w
c

k
p

P
= − −  

Suppose that node u hears node v’s request, then node u generates a random num-
ber as a secret key ks, then divides ks into n shares ks1,ks2,…,ksn, using a (k,n) thresh-
old algorithm. In the n shares, z1 shares are delivered through direct paths and z2 
shares are delivered through indirect paths. For simplicity, we suppose the indirect 
paths are one-proxy paths. Finally, node v successfully gets  only z10 shares from the 
z1 ones and z20 share s from the z2 ones, and node v must have k ≤  z10 +z20 ≤  z1 +z2 to 
recompute the secret key ks. We suppose that there are z10 direct paths and z20 indirect 
paths compromised by the adversary. Thus, for Zhu’s scheme, the security of the 
pairwise key is  

10 201 22

10 20

(1 (1 ) ) (1 (1 ) )z zw w
w

z zk k
p

z zP P
= − − × − −  
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But for our scheme, the security of the pairwise is 

10 202' (1 (1 ) ) (1 (1 ) )z zw w
w

k k
p

P P
= − − × − −  

So, we have 'w wp p≥ . This is because in Zhu’s scheme, the adversary need have 

any combination of   z1 shares taken z10 and any combination of z2 shares taken z20  to 
recompute the secret key ks. But in our scheme, the adversary must have capture the 
exact z10 shares and the exact z20 shares, which are the same as node  v gets, because 
node v makes the secret key ks XOR with the z10 z20 shares to generate the final ses-
sion key sk. So, compared with Zhu’s scheme, our scheme would have a less fraction 
of total communication links that are compromised by a capture of x nodes.  

Fig. 4 shows the simulation results of the fraction of communications compro-
mised when x nodes have been captured by the adversary. Eschenauer’s scheme [9], 
Chan’s q-composite [8], Zhu’s scheme [10] and ours are tested in the simulation. The 
figure shows that our scheme has nice strength against small-scale attacks. In our 
scheme, when the number of compromised nodes is 130, just about 1% of the total 
communication links are in danger. In the simulation, for Chan’s and our scheme, we 
use a (k,n) threshold algorithm where k=n-4. 
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Fig. 4. Fraction of communications compromised when x nodes have been captured by the 
adversary 

4.2   Computation Analysis 

The computation cost consists of two parts: pairwise key establishment cost and 
securing communication links cost. Once a session key is established during the 
pairwise key establishment phase, communication links can be secured by inexpen-
sive link-layer symmetric key operations. So the main computation cost of our 
scheme is the cost during the pairwise key establishment phase. Suppose that node u 
divides a secret key into n shares and deliver them to node v through logical paths. 
During the phase, the computation includes threshold algorithm and symmetric en-
cryptions and decryptions for logical paths. The threshold algorithm is based on 
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polynomial interpolation. Many efficient O(n log2n) algorithms are fast enough for 
the sensor’s key management system [15]. In the worst case when all the n shares are 
delivered through one-proxy logical paths, the number of encryptions and decryp-
tions is 4n.  

5   Conclusions 

Due to constrains of power, communication, and computational capabilities, protocol 
layers of a sensor should cooperate with each other to work more efficiently. In this 
paper, we present a key management scheme for cross-layering designs in wireless 
sensor networks. To the best of our knowledge, our scheme is a first attempt to design 
a cross-layering key management protocol which can provide other sensor protocol 
layers with dynamic security information. Our approach is also scalable and flexible. 
We provide simulations and analysis which indicate that our scheme has superior 
characteristics of resilience against both passive attacks and active attacks. 

In our future work, we are going to design secure routing layer and IDS (Intrusion 
Detection System) for wireless sensor networks, which can cooperate with our key 
management scheme.  
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Abstract. One of the most important issues on the sensor network
with resource-limited sensor nodes is prolonging the network lifetime
by effectively utilizing the limited node energy. The most representa-
tive mechanism to achieve a long-lived sensor network is the clustering
mechanism which can be further classified into the single-hop mode and
the multi-hop mode. In the single-hop mode, all sensor nodes in a clus-
ter communicate directly with the cluster head (CH) via single hop, so
the contention-less MAC protocol is preferred. In the multi-hop mode,
sensor nodes communicate with the CH with the help of other interme-
diate nodes and the contention-less MAC protocol is not required. One
of the most critical factors that impact on the performance of the exist-
ing multi-hop clustering mechanism (in which the cluster size is fixed to
some value, so we call this the fixed-size mechanism) is the cluster size
and, without the assumption on the uniform node distribution, finding
out the best cluster size is intractable. Since sensor nodes in a real sensor
network are distributed non-uniformly, the fixed-size mechanism may not
work best for real sensor networks. Therefore, in this paper, we propose
a new dynamic-size multi-hop clustering mechanism in which the cluster
size is adjusted according to the information on the load and the resid-
ual energy of a CH and that of other nodes near to the CH. We show
that our proposed scheme outperforms other clustering mechanisms by
carrying out simulations.

1 Introduction

The wireless sensor network is the network composed of wireless sensor nodes
distributed over a specific area to monitor the current condition within that area.
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Fig. 1. Communication modes within a cluster

Sensor nodes recognize and measure some requested phenomena, and send the
sensed data to the sink via the wireless channel. The sink collects and analyzes
data from sensor nodes. The sensor network is different from the mobile ad hoc
network in the sense that sensor nodes have lower mobility and more restricted
energy and denser distribution.

One of the most important issues in the sensor network is to prolong the
network lifetime. In general, the network lifetime is defined as the time when
for the first time any sensor node experiences energy depletion. Major part of
node energy consumption comes from the radio communication. For example,
the amount of the energy consumed for the delivery of 1 bit to a place located
100m apart is almost the same as the energy required for the execution of 3000
commands [1].

In the sensor network, there are two categories of approaches to reducing the
node energy consumption. The first approach is to turn off the radio of a node
which does not need to send or receive data at the MAC and the network layers.
In the mechanisms like [2] [3] [4], only those nodes belonging to the network
backbone turn on their radio and other nodes save their energy by turning it
off and entering into the sleep mode. And, in the mechanisms like [5] and [6],
each node tries to increase the network capacity by adjusting their transmission
power.

The second approach is using the data aggregation to reduce the amount
of the transmitted data for the reduction of the communication cost. The most
representative mechanism belonging to this approach is the clustering mecha-
nism. The clustering mechanism is very useful for those applications requiring
scalability to efficiently handle several hundreds to thousands of sensor nodes.
In the clustering mechanism, sensor nodes form a number of clusters and send
their sensed data to the cluster heads (CHs) of the clusters that they belong
to instead of sending them to the sink. Each CH aggregates collected data and
sends the aggregated data to the sink in lieu of sensor nodes in its cluster.

The clustering mechanism can be further classified into the single-hop and the
multi-hop clustering mechanisms according to the communication mode within
a cluster [7]. In the single-hop mode, as shown in figure 1.(a), all the sensor nodes
in a cluster communicate with the CH via single hop and, in this case, data is
not relayed from sensor nodes to the CH by other intermediate sensor nodes.
Because the communication between sensor nodes and the CH is direct, sensor
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nodes are not allowed to transmit data to the CH simultaneously and, therefore,
the contention-less MAC protocol (such as TDMA) is preferred and each sensor
node is required to send a join message to the corresponding CH.

On this other hand, in the multi-hop clustering, as shown in figure 1.(b), sen-
sor nodes communicate with the CH via multiple hops and intermediate sensor
nodes relay data to the CH, so there is no requirement on the contention-less
MAC protocol. However, sensor nodes near the CH may suffer from extra over-
head of relaying data between the CH and other sensor nodes.

Another aspect that we have to consider is the node distribution within a
sensor network. Since there is no guarantee on the uniform distribution of sensor
nodes, the node density within a cluster may be different from that within other
clusters, so in the single-hop mode some specific CHs may get overloaded. On
the other hand, the multi-hop mode can control the overhead imposed on a CH
by determining the best cluster size. However, since the node distribution within
a real sensor network is not uniform, it is almost infeasible to find out the best
cluster size for a real sensor network.

Therefore, in this paper, we propose a clustering mechanism which can pro-
long the entire network lifetime by controlling the load on each CH with ad-
justing the size of each cluster according to the information on the load and
the residual energy of the CH. The rest of this paper is organized as follows:
in section 2, we introduce the representative clustering mechanisms supporting
the single-hop and the multi-hop modes, respectively. In section 3, our proposed
dynamic-size multi-hop clustering mechanism is described in detail, and section
4 gives the performance comparison between the proposed mechanism and others
by carrying out simulations. Section 5 concludes this paper.

2 Related Work

LEACH [8] and HEED [9] are the most representative clustering mechanisms
using the single-hop mode. LEACH [8] is the mechanism whose goal is to balance
the load on each CH by allowing each sensor node to become a CH in a round-
robin fashion by applying Eq.1. P is the probability of a sensor node being
elected as a CH (ex. P = 0.05), r indicates the number of the current round,
and G is the set of nodes not elected as CHs for 1

P rounds. The node elected as
a CH announces itself as a newly elected CH by broadcasting an advertisement
message. Each non-CH sensor node receiving advertisement messages decides
a cluster that it is going to join and sends a message notifying its join to the
corresponding CH. This procedure is called the set-up stage and, once all sensor
nodes join clusters, they enter into the steady-state. In the steady-state, each
sensor node transmits its sensed data to the CH of the cluster that it belongs
to instead of directly sending them to the sink. The CH receiving data from
sensor nodes reduces the amount of the transmitted data by aggregating the
collected data, and sends the aggregated data to the sink. A round is composed
of the set-up and the steady-state stages and, for each round, a new CH is
elected.
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T (n) = {
P

1−P×(rmod 1
P ) if n ∈ G

0 otherwise
(1)

HEED [9] tries to increase the network lifetime by assigning the same proba-
bility of being a CH to each node and electing the node with the largest amount
of available energy as a CH using Eq.2. Eresidual is the amount of available
energy and Emax is the initial node energy.

CHprob = CHprob ×
Eresidual

Emax
(2)

S. Bandyopadhyay [10] has proposed a multi-hop clustering mechanism in
which a sensor node elected as a CH with probability p broadcasts an adver-
tisement message of its becoming a CH and other nodes relay this message up
to k hops (which is the cluster size). A sensor node receiving more than one
advertisement messages decides which cluster it is going to join, and transmits
a join message to the corresponding CH. In this case, the most critical factor
that affects the performance is the cluster size and the best cluster size has been
calculated with assuming the uniform distribution of sensor nodes. However, in
the real network environment, it is almost impossible to distribute sensor nodes
uniformly and, with non-uniform distribution of sensor nodes, it is not feasible
to compute the best cluster size. Therefore, in this, paper, we propose a multi-
hop clustering mechanism that dynamically adjusts the cluster size based on the
information on the node density and the available energy of a CH.

3 The Dynamic-Size Multi-hop Clustering Mechanism

We assume a contention-based MAC protocol and the multi-hop mode for our
proposed mechanism. The multi-hop mode is adopted since it gives a higher
probability of aggregation than the single-hop mode since usually the single-hop
mode requires more CHs.

The existing multi-hop clustering mechanism assumes all clusters have the
same size (we call this the fixed-size mechanism) and tries to compute the best
cluster size with assuming the uniform node distribution. However, the node dis-
tribution in most real sensor networks is non-uniform (i.e., each cluster may have
different node density) making the fixed-size mechanism less efficient in improv-
ing the network lifetime. Hence, if the size of a cluster is decided according to
the node density and the available energy of the corresponding CH, the overhead
imposed on the CH can be controlled according to the current condition of the
CH and, ultimately, the non-uniform node distribution problem can be resolved.
Therefore, our proposed clustering mechanism, the dynamic-size multi-hop clus-
tering mechanism, adopts the concept of adjusting the cluster size according to
the information on the node density within a cluster and the available energy of
the corresponding CH. The operation of the proposed mechanism is as follows.

If a node is elected as a CH by applying either Eq.1 or Eq.2 (i.e., the CH
election mechanism of either LEACH or HEAD) (in this paper, we do not focus
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Fig. 2. Operation of the set-up stage of the dynamic-size multi-hop clustering

on how to elect a CH, but on the way of adjusting the cluster size to prolong the
network lifetime), the CH broadcasts an advertisement message with TTL being
set to the size of the corresponding cluster. The initial cluster size is set to a
default value and, after that, the cluster size is increased or decreased according
to the load condition of the CH. The load on a CH comes from the processing
load PLCH and the communication load CLCH .

LCH = f(PLCH , CLCH) (3)

CLCH is the load receiving sensed data from other nodes within the cluster
and transmitting the aggregated data to the sink.

CLCH =
n∑

j=0

ERX,j + ETX,sink (4)

The load information on a CH, CLCH

Eresidual
(where CLCH is obtained from

Eq.4), is included in an advertisement message. Each sensor node receiving this
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message stores the information and, when it becomes a CH, it compares its own
load information with that of other nodes. If its own load information is less
than that of others, it increases its cluster size (i.e., increases TTL by 1) and,
if its load information is greater than that of others, it decreases its cluster size
(i.e., decreases TTL by 1). The algorithm for the set-up stage is described in
figure 2.

A sensor node receiving advertisement messages decides the cluster that it is
going to join, but it does not need to send a join message to the corresponding
CH since the contention-based MAC protocol is used (i.e., the CH does not have
to maintain the list of nodes within the cluster). A sensor node not receiving
any advertisement message within a specific time interval becomes a CH, and
a sensor node receiving more than one advertisement messages selects the CH
which seems to be the nearest to itself (the TTL value within an advertisement
message can be used for this purpose).

Once a cluster is formed, sensor nodes within the cluster send data to the
CH and the CH aggregates the collected data and transmits the aggregated data
to the sink.

4 Performance Evaluation

In order to evaluate the performance of the proposed dynamic-size multi-hop
clustering mechanism, we have used the NS-2 simulator [11] and the sensor
network extension package of NRL [12]. Simulations are performed for the range
of 1000m × 1000m with randomly distributed 50 ∼ 120 nodes. The initial energy
for each sensor node is set to 5 J (Joule) and each sensor node can store up to
50 packets. If the available energy of a sensor node is less than or equal to 10−4

J, the node is assumed to be dead. The transmission range of a sensor node
is 200 m and the packet length is 100 bytes. The event that triggers a sensor
node to send sensed data occurs at every second, and the location of the event
is randomly selected. The simulation parameters are shown in table 1.

The performance of the proposed dynamic-size multi-hop clustering mecha-
nism is compared with the single-hop mode and the multi-hop mode, and the
CH selection rules of LEACH and HEED are both applied. The performance

Table 1. Simulation parameters

Parameter Value
Network grid 1000×1000m
Initial energy 5J

Tx/Rx power of a node 160mW
Max. transmission range of a sensor 200m

Message size 100bytes
Pulse rate of a target phenomenon 1 packet/sec

CH re-election interval 5×pulse rate
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Fig. 3. Network lifetime of the single-hop and the multi-hop modes (with using LEACH
as the CH selection mechanism)

Fig. 4. Network lifetime of the single-hop and the multi-hop modes (with using HEAD
as the CH selection mechanism)

evaluation factors considered for the simulation are the network lifetime, the
variance of the available energy of each node, and the size of clusters.

Figure 3, figure 4 and figure 5 show the network lifetime with varying the
number of nodes. figure 3 is the result obtained by using LEACH as the CH
selection mechanism, and LEACH single represents the single-hop mode case
and LEACH fixed the multi-hop mode with fixed-size clusters and LEACH var
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Fig. 5. Network lifetime of the fixed-size and the dynamic-size multi-hop modes (with
using either LEACH or HEED as the CH selection mechanism)

the multi-hop mode with dynamic-size clusters (i.e., our proposed mechanism).
As shown in the figure, the multi-hop mode gives 30 ∼ 50 % higher performance
than the single-hop mode. In the single-hop mode, the number of CHs required
to include most of network nodes within clusters is almost four times more than
that of the multi-hop mode with the cluster size being 3. Thus, in the single-
hop mode, because of more CHs, more advertisement messages are broadcast and
more aggregated data are transmitted to the sink, so it yields lower performance.
In the multi-hop mode, if all the sensor nodes receiving an advertisement message
forward the message, the overhead caused by the forwarding can become severe
especially in a dense sensor network. Therefore, we have tried to reduce this
overhead by allowing nodes located near the boundary of a cluster (by using
the Received Signal Strength Indicator (RSSI)) to forward the advertisement
message. In the multi-hop mode, the fixed-size clustering mechanism shows 10
∼ 15 % less performance than the dynamic-size mechanism. The reason for this
is that the dynamic-size clustering mechanism controls the amount of energy
consumption of a CH by adjusting the cluster size with increasing or decreasing
it according to the load on the CH which is affected by the node density within
the cluster.

Figure 4 shows the network lifetime when HEED is used for the election of
CHs. Overall, HEED gives longer lifetime than LEACH. This shows that HEED
considering the available energy of a node is more effective in prolonging lifetime
than LEACH making all nodes become CHs in a round-robin fashion. Also, we
can see that the dynamic-size multi-hop mode improves the performance by 10
∼ 15 % compared with the fixed-size multi-hop mode as shown in figure 3.

Figure 5 shows the network lifetime of the fixed-size clustering mechanism
and that of the dynamic-size mechanism with varying the number of nodes.
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Fig. 6. Standard variation of the amount of available energy of each sensor node for the
fixed-size and the dynamic-size multi-hop clustering mechanisms (with using HEED as
the CH selection mechanism)

Fig. 7. Cluster size vs. simulation time

Overall, HEED gives better performance than LEACH and the dynamic-size
clustering mechanism than the fixed-size one. This is due to the fact that the
fixed-size clustering mechanism forms fixed-size clusters without considering the
load of a CH. That is, if a node located in an area with higher node density
becomes a CH, it has to receive and process that many number of messages
from the cluster members and, as a result, the difference between the available
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energy of the CH and that of others gets increased and the network lifetime
decreases.

Figure 6 shows the standard variation of the available energy on each node
for the fixed-size and the dynamic-size clustering mechanisms with using HEED
as the CH selection rule.

Lastly, figure 7 shows the cluster size for the dynamic-size clustering mech-
anism. As the simulation proceeds, the cluster size gets smaller because the
amount of available energy in the entire network decreases. However, since the
dynamic-size clustering mechanism considers not only the available energy of
CHs but also the load of other near-by nodes, CHs with relatively more available
energy increase their own cluster size even if the amount of the entire network
energy is reduced.

5 Conclusion

One of the most important issues on the sensor network with resource-limited
sensor nodes is prolonging the network lifetime by effectively utilizing the given
energy. The most representative mechanism to prolong the network lifetime is
the clustering mechanism. In the clustering mechanism, sensor nodes are formed
into clusters and the cluster head (CH) of a cluster collects data from sensors
noticing a specific phenomenon and aggregates the collected data and sends it
to the sink.

The clustering mechanism is classified into the single-hop mode and the multi-
hop mode. In the single-hop mode, all the sensor nodes in a cluster communicate
with the CH via single hop and, as a result, the contention-less MAC protocol is
preferred. On the other hand, the multi-hop mode does not need the contention-
less MAC protocol. One of the main issues on the multi-hop mode is to determine
the best cluster size for prolonging the network lifetime. However, it is almost
impossible to find out the best cluster size for a real sensor network with non-
uniform node distribution.

Therefore, in this paper, we have proposed a clustering mechanism to prolong
the network lifetime by adjusting the cluster size according the load and the
amount of available energy of a CH. The performance of the proposed clustering
mechanism is provided by carrying out simulations and the simulation results
imply that the dynamic-size clustering mechanism increases the network lifetime
by 10∼15 % compared with the fixed-size one.
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Abstract. Recent researches on energy efficient coverage configuration in wire-
less sensor networks mainly address the goal of 100% or near 100% coverage 
preserving. However, we find that a small percentage of loss of coverage, which 
is acceptable in many applications, can result in dramatic increase in energy 
savings. Therefore, in this paper percentage coverage rather than complete cov-
erage is selected as the design goal, and a location-based Percentage Coverage 
Configuration Protocol (PCCP) is developed to assure that the proportion of the 
sensing area after configuration to the original sensing area is no less than a de-
sired percentage. Numerical testing results show that PCCP can not only guar-
antee the desired coverage percentage but also generate more energy efficient 
configuration in comparison with the existing schemes so that the system life-
span is extended significantly. 

1   Introduction 

Energy consumption (or system lifespan, accordingly) is one of the most important 
issues in wireless sensor networks (WSN). Since significant energy conservation can 
be achieved by appropriately scheduling the sensors between ACTIVE and OFF 
states, where in OFF state, a sensor node consumes very little energy, coverage con-
figuration becomes a key issue in order to assure the coverage quality. 

Recent study on coverage configuration concentrates on the goal of coverage pre-
serving, which means the sensing area within the Area of Interest (AoI) even with 
some sensors scheduled OFF should be exactly the same as the original sensing area 
without any loss of coverage. The work of Tian and Georganas [6,7], Wang et al. [8] 
and Jiang and Dou [4], etc., belongs to this category. 

However, complete coverage is unnecessary in many applications, and a percent-
age of sensing loss below a certain threshold is acceptable. This has been noticed by 
many researchers as seen from the definitions of system lifetime. For example, Ye et 
al. [9] define coverage lifetime as the time that coverage drops below a threshold and 
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never comes back again. Wang et al. [8] define the overall system lifetime as the 
continuous operational time of the system before the coverage drops below a speci-
fied threshold. Zhang and Hou [13] define the sensor network lifetime as the entire 
interval in which at least α  portion of the AoI is covered by at least one sensor node. 

 Relaxing the requirement from complete coverage to a percentage of coverage can 
result in dramatic increase in energy savings. In [13], Zhang and Hou have derived 
that the upper bound of the lifetime can increase by 15% for 99%-coverage and over 
20% for 95%-coverage. An intuitive explanation is: when many disks are used to 
cover a convex region completely, there must be much overlap of the disks; while if 
certain uncovered areas (sensing loss) are acceptable, the overlap can be reduced 
significantly.  

In this paper the percentage coverage preserving is proposed as a new design goal 
for coverage configuration such that the sensing area within the AoI with some sen-
sors scheduled OFF should be no less than a certain percentage of the original sensing 
area. A location-based Percentage Coverage Configuration Protocol (PCCP) is devel-
oped to achieve this goal with assurance. Numerical testing results show that PCCP 
can not only guarantee the desired coverage percentage but also generate more energy 
efficient configuration in comparison with the existing schemes under the same cir-
cumstances so that the system lifespan is extended significantly.  

The rest of the paper is organized as follows. In the next section, we review the re-
lated work in the literature. In section 3, the problem is formulated and the PCCP is 
described in details. Simulation experiments and numerical testing results with PCCP 
are presented in Section 4 and are compared with the existing work. The concluding 
remarks are given in Section 5. 

2   Related Work 

Energy-efficient coverage problem has attracted the interests of many researchers. 
Cardei and Wu [2] and Sahni and Xu [5] have given a detailed survey of the existing 
contributions in this area respectively. Here we only review those distributed algo-
rithms since they are scalable and more suitable for WSN. 

Ye et al. [9,10] proposed a node scheduling algorithm called PEAS. In PEAS, ac-
tive sensors remain working until their energy is used up, and off sensors turn active 
randomly. Once an off sensor become active, it checks whether there are active sen-
sors within its probing range. If so, it turns off again; otherwise, it stays active and 
remains working. Though there may be sensing loss, the proportion of sensing loss is 
not quantified in PEAS. 

Tian and Georganas [6] presented a scheme to maintain complete coverage. Their 
scheme divides the lifetime of WSN into rounds. At the beginning of each round, 
every sensor will check whether its neighbors can help it to monitor its whole sensing 
area. If so, it will turn off. After them, Hsin and Liu [3] and Jiang and Dou [4] have 
developed this scheme.  

Wang et al. [8] proved a sufficient condition for satisfying multi-degree of com-
plete coverage and presented a coverage configuration protocol (CCP) based on the 
sufficient condition. CCP can dynamically configure the network to get coverage and 
connectivity at the same time. Different from their work, here we only consider cov-



782 H. Bai et al. 

erage issue, because for many off-the-shelf wireless sensors, sensing module is inde-
pendent of radio module. Therefore, a coverage configuration algorithm will not af-
fect the connectivity of the network. 

Zhang and Hou [11] presented a density control algorithm called OGDC, which 
works in rounds. In each round, with a random starting sensor, other sensors will 
decide whether to be active or not according to locations of themselves and the sen-
sors which become active before them. 

All above work cannot afford flexible coverage percentage requirement. 
Tian and Georganas also proposed three location-free schemes in [7], including 

nearest-neighbor-based, neighbor-number-based and probability-based schemes. All 
of them work in rounds, and each sensor determines its own OFF-duty eligibility 
according to whether the nearest neighbor’s distance, the minimal neighbor number or 
a randomly generated number is more than a threshold D, K or p respectively. The 
parameter choosing of D, K or p is based on a statistical calculation (also based on the 
assumption that sensors are uniformly randomly deployed in the AoI) given a desired 
coverage percentage loss. At the first sight, their design goal is very similar to ours. 
However, in their work, the coverage percentage is a statistical concept and cannot be 
guaranteed above a desired threshold always. This is the fundamental difference be-
tween PCCP and their schemes. In fact, since location information are not used, these 
location-free schemes will suffer from either bad efficiency (turn on much more sen-
sors than PCCP) or bad coverage quality (cannot assure the coverage percentage 
above the desired threshold), which will be shown in section 4.1. 

3   Percentage Coverage Configuration 

3.1   Basic Assumptions and Concepts 

We have the following assumptions and concepts: 

1. All sensors are homogeneous. 
2. All sensors are time-synchronized. Time synchronization methods in WSN can be 

found in [14, 15]. 
3. Each sensor knows its own position. It is not impractical, since many researchers 

have addressed node localization problems in WSN, such as in [16, 17]. 
4. Each sensor’s sensing region is a disk centered at the sensor’s location with a fixed 

radius Rs.  
5. The communication radius is larger than two times of the sensing radius. 

Definition 1 (Neighbor). For any two sensors A and B, if the distance between them 
is less than or equal to 2*Rs, then sensor A and B are neighbors. 

Definition 2 (Coverage Percentage). Suppose the original sensing area is A, the 
sensing area within the AoI after coverage configuration is B. The ratio of B to A is 
called coverage percentage.

In this paper, we denote the desired coverage percentage threshold as p*.  
Another important concept used in PCCP is Voronoi diagram. Suppose there are N 

sensor nodes in a two dimensional plane, if we partition the plane into N convex 
polygons such that each polygon contains exactly one node and every point in a given 



 Percentage Coverage Configuration in Wireless Sensor Networks 783 

polygon is closer to the node in this polygon than to any other node, then we get a 
Voronoi diagram [1].  

In a Voronoi diagram, each polygon is called a Voronoi cell. Particularly, we call a 
sensor node’s Voronoi cell as its Occupation Area (OA) in this paper. If two OAs 
share a common edge, the owner sensors of the two OAs are called Voronoi 
neighbors. 

3.2   Description of PCCP 

The basic idea of our protocol is Divide and Conquer. Since all OAs constitute the 
AoI without overlap, we can divide the AoI into regions based on the concept of OA. 
More precisely, each region is a collection of several OAs in the AoI. After that, the 
percentage coverage configuration will be done in each region. 

The following is the detailed description of PCCP. 
In PCCP, the network lifetime is divided into a sequence of working rounds. Each 

round begins with a node scheduling phase, followed by a sensing phase. At the be-
ginning of each round, all sensors turn on and enter the node scheduling phase. After 
deciding its state, the ACTIVE-duty sensors enter the sensing phase starting working 
(sensing) and the OFF-duty sensors turn off. Then each sensor stays in its state until 
the next round starts. 

The node scheduling procedure consists of two sub-phases: occupation area obtain-
ing sub-phase and Percentage Coverage Configuration (PCC) sub-phase.  

In the occupation area obtaining sub-phase, each sensor broadcasts its ID and loca-
tion with radio radius 2*Rs and records the ID and location information of its 
neighbors when hearing their messages. To avoid collision, each sensor should gener-
ate a random back-off (bounded by the length of this phase) time Tb and only broad-
cast when Tb expires. At the end of this phase, each sensor knows the location infor-
mation of its neighbors. Then by calculating its own OA and the original sensing area 
within its OA (denoted by SOA), it finishes its task in this sub-phase. The OA and SOA 
calculation algorithm will be described in section 3.2.1 and 3.2.2. 

In the percentage coverage configuration sub-phase, for each sensor, there are three 
possible statuses: Waiting Sensor for broadcasting Start Sensing Message (SSM), 
Percentage Coverage Configuration Head (PCC Head) and Percentage Coverage 
Configuration Member (PCC Member). All sensors start with the status of a waiting 
sensor at the beginning of percentage coverage configuration sub-phase. Then each 
sensor will negotiate with its neighbors and changes its status accordingly as de-
scribed in the below. 

For a Waiting Sensor: 
Each sensor of this status first generates a random delay time Td. When a waiting 

sensor’s Td expires, it will broadcast a Start Sensing Message (SSM), turn on its sensing 
module and assume itself a PCC head. If a waiting sensor receives an SSM from one of 
its neighbors before its own Td expires, it will stop the timer for Td, assume itself a PCC 
member of the SSM sender, and ignore any other SSM when it is a PCC member. 

For a PCC Member: 
A PCC member O will calculate the area of the part in sensor O’s OA which is 

covered by its neighbors which are PCC heads (denoted by Sc). Then this sensor sends 
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SOA and Sc to its PCC head. After that, this sensor will listen to the channel until it 
receives an OFF-duty Eligible Neighbors Message (OENM) from its PCC head. 
When this sensor receives the OENM, it will check whether its ID is contained in the 
OENM. If so, it will turn off itself; otherwise, it will generate a random delay time Td 
once more and then become a waiting sensor again. 

What need to be pointed out is, since there are usually many PCC members sharing 
a common PCC head, to avoid collision, each PCC member should send its Sc and SOA 
with a random back-off time. The maximal back-off time should be bounded by a 
predetermined time Th in order to let the PCC head make sure all members have sent 
their messages. 

For a PCC Head: 
A PCC head will listen to the channel during the Th time interval to collect the SOA 

and Sc information of its PCC members. When Th expires, this sensor will execute an 
OFF-duty Eligible Neighbor Choosing Algorithm (as described in section 3.2.3) to 
judge which members can be turned off. Then it will broadcast an OENM which in-
cludes the OFF-duty eligible sensors’ IDs. After that, it will remain ACTIVE until the 
next round comes. 

Either PCC head or PCC member is a temporary role for a sensor. The relationship 
between head and member will disappear after the PCC head sends the OENM. 

Remark 1. To minimize the energy consumption overhead in percentage coverage 
configuration, the length of each round should be long enough compared to the con-
figuration time, but it should be much smaller than the sensors’ average continuous 
working time. 

Remark 2. If the sensors have no IDs, they can use their locations as their IDs since 
they can distinguish each other according to their locations. 

3.2.1   OA Calculation Algorithm 
In general, suppose the AoI can be described as the solution of J inequalities: 

0≤++ jjj cybxa , j=1,2,…,J. Suppose there are totally N sensors in the AoI with 

locations (xi, yi), i=1,2,…,N respectively. Then any point (x, y) in the kth sensor’s OA 
should satisfy the following inequalities: 

=≤++
=−+−≤−+−

Jjcybxa

Niyyxxyyxx

jjj

iikk

,...,2,1,0

,...,2,1,)()()()( 2222

 (1) 

Though there are N+J inequalities above, no more than L+J of them are active con-
straints where L is the number of the kth sensor’s Voronoi neighbors. As any sensor’s 
Voronoi neighbors are usually near the sensor, in this paper we use the neighbors’ 
locations to calculate any sensor’s OA. We name the neighbor-based calculation re-
sult as the sensor’s Neighbor-based OA (NOA).  

For an arbitrary sensor node O, denote its own location as (x0, y0). Suppose sensor 
O has totally M neighbors with locations (zi, wi), i=1,2,…,M respectively. Then we 
describe sensor O’s NOA by the J+M inequalities 
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0≤++ jjj cybxa , j=1,2,…, J+M (2) 

where )(2 0xza iiJ −=+ , )(2 0ywb iiJ −=+ and )()( 222
0

2
0 iiiJ wzyxc +−+=+   

(for i=1,2,…,M) are come from the first part of (1). 
We assume the AoI is a convex polygon. Thus an NOA (or OA) is also a convex 

polygon, which can be determined by its vertices. Therefore, sensor O only needs to 
calculate and record the vertices of an NOA, where a vertex is an intersection of two 

lines 0=++ jjj cybxa and 0=++ kkk cybxa (j,k=1,2,…, J+M and j ≠ k) 

which is a feasible solution of (2). Thus we can calculate all the (J+M)(J+M-1)/2 
intersections and select those satisfying all the inequalities in (2). 

According to the definition of “neighbor” we presented in section 3.1, an arbitrary 
sensor O’s Voronoi neighbors may not be contained in sensor O’s neighbors. As the 
number of constraints in (2) is less than those in (1), sensor O’s NOA may be the 
same as its OA, or larger than its OA. However, when a sensor uses NOA instead of 
OA to calculate SOA and Sc, the sensor will get the right values of SOA and Sc. This will 
be proved in section 3.2.2. 

3.2.2   SOA and Sc Calculation Algorithm 
To calculate SOA, we give the following theorems in advance.  

Theorem 1. For an arbitrary sensor O, if some point P in sensor O’s OA is in the 
original sensing area, then P is covered by sensor O’s sensing disk. 

Proof. As point P is in sensor O’ OA, for any sensor Q in the AoI, we have dPO ≤ dPQ 
according to the definition of OA, where dAB denotes the distance between point A and 
point B. If dPO>Rs, P cannot be covered by any sensor’s sensing disk. Therefore, if P is 
in the original sensing area, P must be within sensor O’s sensing range.  

From Theorem 1 we know that a sensor O’s SOA can be calculated as the area in 
sensor O’s OA covered by its own sensing disk. 

Theorem 2. For any point P within sensor O’s sensing disk, if P is in sensor O’s 
NOA, P is also in sensor O’s OA, and vice versa. 

Proof. For any point P in sensor O’s sensing disk, for any sensor Q which is more 
than 2*Rs far away from sensor O, Q cannot be P’s nearest sensor, since dPO ≤ Rs and 
dPQ>Rs. That means, the nearest sensor to P is either sensor O or one of sensor O’s 
neighbors. Therefore, it is sufficient to assure sensor O is P’s nearest sensor, given 
dPO ≤  dPU for any U which is a neighbor of sensor O. Thus if P is in sensor O’s NOA, 
P is also in sensor O’s OA, and vice versa.  

According to Theorem 2, we propose in PCCP that any sensor obtains its SOA by 
calculating the area in its NOA covered by its own sensing disk.  

In PCCP, another important value is Sc, i.e., the part of area in a sensor’s OA that is 
covered by its neighbors which are PCC heads. Next we show how to calculate Sc. 

Theorem 3. For any sensor O, if some point P in sensor O’s NOA is covered by the 
sensing disk of one of sensor O’s neighbors, then P is in sensor O’s OA. 
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Proof. For any point P’ within sensor O’s NOA but outside sensor O’s sensing disk, 
P’ cannot be covered by the sensing disk of any of sensor O’s neighbors, because 
sensor O is nearer to P’ than to sensor O’s neighbors, and dP’O>Rs. Since P is cov-
ered by one sensor O’s neighbor’s sensing disk, P is within sensor O’s sensing disk. 
According to Theorem 2, P is in sensor O’s OA.  

By Theorem 3, a sensor’s Sc calculated in its NOA is no more than the real Sc (cal-
culated in its OA). Since a sensor’s NOA is always no smaller than its OA, a sensor’s 
real Sc is no more than the Sc calculated in its NOA. So a sensor’s real Sc is equal to its 
Sc calculated in its NOA. Thus we can calculate Sc based on NOA.  

Since a PCC member O may be OFF-duty ineligible informed by a PCC head U 

and then become a waiting sensor again, sensor O may become a PCC member of 
another PCC head V. In this case, we use an iterative way to calculate sensor O’s Sc. 
Limited by the length of the paper, here we only give an example as an illustration. 
Suppose sensor O’s OA is the pentagon p1p2p3p4p5 as in Fig. 1(a). When one of sensor 
O’s neighbors U becomes a PCC head, sensor O becomes a PCC member of sensor U. 
Then sensor O will calculate Sc as the area of the pentagon p1p6p7p4p5. 

Suppose sensor U has not chosen sensor O as an OFF-duty eligible neighbor, sen-
sor O becomes a waiting sensor again. After that, sensor O hears another neighbor V 
broadcasting an SSM. In this case, sensor O calculates its Sc as the last-time Sc (re-
corded in sensor O’s memory) plus the area of the quadrangle p3p7p8p9. See Fig. 1(b). 

p1 p2

p3

p4p5

p6

p7

U
O

V

p9

p8

 
(a)                                                    (b) 

Fig. 1. An illustration of Sc calculation 

3.2.3   OFF-Duty Eligible Neighbor Choosing Algorithm 
When a sensor becomes a PCC head, it may have many PCC members. But there may 
be only a part of them can be turned off to guarantee a certain coverage percentage. If 
there are K PCC members, the number of possible solutions is 2K. To select the opti-
mal set of OFF-duty eligible PCC members is a NP-hard problem. Therefore, in 
PCCP, we only use a two-step heuristic choosing algorithm as described below: 

1. For those PCC members whose Sc/SOA ≥ p*, add them into the OFF-duty Eligible 
Neighbors Message (OENM). 
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2. For those members whose Sc/SOA<p*, first sort them according to their values of 
Sc/SOA descendingly (for those members with equal Sc/SOA, sort them according to 
their distances to the PCC head). Then following the sorted order, add as many as 
possible PCC members into the OENM until the cumulated Sc/SOA (including the 

PCC head itself) is smaller than p*, i.e., when cS / OAS <p*, eliminate the 

last selected PCC members from the OENM and end the choosing algorithm. 

In each working round, PCCP in fact divides the AoI into H pieces of regions 
without overlap, where H is the number of PCC heads and each region consists of the 
OAs of one PCC head and its OFF-duty eligible PCC members. If for any sensor the 
proportion of its SOA to the area of its OA is no smaller than p*, according to the heu-
ristic algorithm above, by using PCCP, the coverage percentage in any piece of the 
divided region is no less than p*. Therefore, the coverage percentage of the total AoI 
is no less than p*, too. 

In fact, as the Sc calculation is conservative, the real coverage percentage is usually 
much larger than p*. This fact can be seen in the experimental results in section 4. 

4   Experimental Results 

In this section, performance evaluation of PCCP and comparison between PCCP and 
others’ work are shown via simulation experiments. In the simulation, N sensors are 
uniformly randomly deployed (distributed) in a 50×50 square field (the AoI). The 
sensing radius Rs is set as 10. To calculate coverage percentage in each round, we 
divide the AoI into 0.1×0.1 unit cells. Since in the experiment, the original sensing 
area is the same as the area of the AoI in most replications and very near to the area of 
the AoI in other replications, we use the ratio of the number of cells whose centre is 
covered by at least one ACTIVE sensor to the total number of cells (250,000) as the 
coverage percentage. 

4.1   Comparison with Location-Free Algorithms 

In this section we compare PCCP with three location-free algorithms proposed in [7]. 
We set p*=80%, N=100, Rc=2*Rs, and implement PCCP and the three location-free 
schemes in100 rounds. As suggested in [7], when p*=80%, the parameters setting in 
the three location-free algorithms are: the nearest neighbor distance D=0.315*Rs, the 
minimal neighbor number K=6, and probability p is calculated in terms of D and N). 
In the experiment, the coverage percentage and active sensor number in each round 
are recorded. We repeat the experiment in several replications, where in each replica-
tion we randomly generate one topology of the WSN. We find the results are similar 
in all replications, so we here only give the result in one replication as illustrated in 
Fig. 2. 

Fig. 2(a) shows the coverage percentage got by each algorithm in each round. We 
can see that PCCP can guarantee the coverage percentage above 80% all through the 
100 rounds, as well as the nearest-neighbor-based and probability-based schemes. 
However, the neighbor-number-based scheme provides a less than 80% coverage 
percentage in many rounds. 
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Fig. 2(b) illustrates the active sensor number in each round. We can see that active 
sensor number in PCCP is far less than the others. The nearest-neighbor-based and 
probability-based schemes even cost 3-5 times ACTIVE sensors than PCCP. There-
fore, PCCP is much more energy efficient than these location-free schemes. 
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(a)                                                             (b) 

Fig. 2. Comparison PCCP with three location-free schemes 

From the experimental results we can see that the location-free schemes suffer 
from either bad coverage quality (cannot assure the coverage percentage above a 
threshold all the time) or bad efficiency (turn off much less sensors than PCCP). It is 
reasonable, since PCCP makes use of the location information of each sensor, while 
these location-free schemes only use statistical calculation. 

4.2   Comparison with CCP 

This section will illustrate the further improvement obtained by percentage coverage 
compared with complete coverage. We use the performance obtained by CCP [8] as a 
reference, because CCP provides a better performance than the other coverage pre-
serving algorithms, such as in [4,6,9] (this can be seen from the experimental results 
in their papers). In the experiments, we choose N from 50 to 300 with an increment of 
50. Under each value of N, 100 replications are implemented where in different repli-
cation sensors are uniformly randomly deployed in the AoI with different network 
topology. Since the random delay time will affect the configuration result in CCP and 
PCCP, in each replication, we run CCP in 5 rounds and run PCCP in 5 rounds at each 
value of p*=0.5, 0.6, 0.7, 0.8, 0.9 separately. The coverage percentage and active 
sensor number are shown in Fig. 3. Both metrics are measured after the coverage 
configuration process is finished. Each point in Fig. 3 represents the mean value of 
100 replications times 5 rounds. 

From Fig. 3 we can see that PCCP can not only provide desired coverage percent-
age, but also let more sensors turn off. In general, the active sensor number in PCCP 
is less than the active sensor number in CCP multiplied by p*. This shows the energy 
efficiency of PCCP. Notice that when N=50, the AoI is not completely covered when 
all sensors are ACTIVE. In this case, PCCP performs a little bad (also because the 
calculation error of Sc is large due to the large OA when N is small). 
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(a)                                                    (b) 

Fig. 3. Comparison PCCP with CCP on Coverage Percentage and Active Sensor Number 

Here we introduce the concept of system lifetime upper bound to show the effect of 
active sensor number on network lifetime. Assume the working round is long enough 
so that the over head of coverage configuration can be ignored. If the average con-
tinuous working time of one sensor is Ts, then the system lifetime upper bound is Ts 
multiplied by the total number of sensors divided by the mean active sensor number 
in a round. We plot the system lifetime upper bound obtained by CCP and PCCP 
under different p* in Fig. 4, which shows that the system lifetime upper bound is 
further extended obviously by PCCP. For example, when N=300, CCP extends the 
system lifetime (the upper bound) by about 15 times, while PCCP with p*=0.5 (the 
average real-time coverage percentage is more than 75% which can be see from Fig. 
3(a)) can extend the system lifetime (the upper bound) by more than 35 times! 
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Fig. 4. Comparison PCCP with CCP on system lifetime upper bound 

5   Conclusions and Future Work 

In this paper we have investigated the energy efficient coverage configuration prob-
lem in WSN. Instead of pursuing the complete coverage preserving, we have designed 
the Percentage Coverage Configuration Protocol (PCCP) for scheduling the sensors to 
maintain the coverage percentage above a desired threshold. Simulation experiments 
show that PCCP can turn off much more sensors than the existing location-free algo-
rithms, while the desired coverage percentage is guaranteed. Comparison with CCP 
also shows that PCCP makes good trade off between active sensor number and cover-
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age percentage, so PCCP can further extend the system lifetime a lot beyond the ex-
tension obtained by 100% coverage preserving methods. 

Further improvement of PCCP is still possible. First, the calculation of the area of 
covered occupation area Sc can be more precise, given enough computation resource. 
Second, since the current OFF-duty eligible neighbor choosing algorithm is a heuris-
tic one, there may be better choosing algorithm to schedule the PCC members. Fi-
nally, it is worthy to analyze the relationship between desired coverage percentage p* 
and the system lifetime when using a distributed and localized coverage configuration 
protocol, as the existing analysis in [13] only considered the upper bound given the 
global information. 

Acknowledgements. The research presented in this paper is supported in part by the 
National Outstanding Young Investigator Grant (6970025), National Natural Science 
Foundation (60243001) of China.  The work of the third author is supported in part by 
ARO contract DAAD19-01-1-0610, AFOSR contract F49620-01-1-0288 and NSF 
grant ECS-0323685.   

References 

1. Aurenhammer, F.: Voronoi Diagrams – A Survey of a Fundamental Geometric Data Struc-
ture. ACM Computing Surveys, Vol. 23 (3), 1991, pp. 345-405. 

2. Cardei, M., Wu, J.: Energy-Efficient Coverage Problems in Wireless Ad Hoc Sensor Net-
works. Accepted to appear in Special Issue of the Journal of Computer Communications 
on Sensor Networks. (This paper can be got from the following link: http://polaris.cse. 
fau.edu/~jie/research/publications/Publication_files/coverage.pdf). 

3. Hsin, C. and Liu M.: Network Coverage Using Low Duty-Cycled Sensors: Random & Coor-
dinated Sleep Algorithms. IPSN’04, Berkeley, California, USA, April, 2004, pp. 433-442. 

4. Jiang, J., Dou, W.H.: A Coverage-preserving Density Control Algorithm for Wireless Sen-
sor Networks. Lecture Notes in Computer Science 3158, 2004, pp. 42-55. 

5. Sahni, S., Xu, X.: Algorithms for Wireless Sensor Networks, International Journal on Dis-
tributed Sensor Networks, 2004. 

6. Tian, D., Georganas, N.D.: A Coverage-Preserving Node Scheduling Scheme for Large 
Wireless Sensor Networt. WSNA’02, Atlanta, Geogia, USA, September, 2002. 

7. Tian, D., Georganas, N.D.: Location and Calculation-free Node-scheduling Schemes in 
Large Wireless Sensor Networks. Ad Hoc Networks, Vol. 2, 2004, pp. 65-85.  

8. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R. Gill, C.: Integrated Coverage and Con-
nectivity Configuration in Wireless Sensor Networks. ACM SenSys’03, Los Angeles, CA, 
USA, November 2003. 

9. Ye, F., Zhong, G., Lu, S., Zhang, L.: Energy Efficient Robust Sensing Coverage in Large 
Sensor Networks. Technical Report, 2002. 

10. Ye, F., Zhong, G., Lu, S., Zhang, L.: PEAS: A Robust Energy Conserving Protocol for 
Long-Lived Sensor Networks. ICNP’02, Paris, France, November, 2002, pp. 200-201. 

11. Zhang, H., Hou, J.C.: Maintaining Sensing Coverage and Connectivity in Large Sensor 
Networks. Technical Report. UIUCDCS-R-200302351. 

12. Zhang, H., Hou, J.C.: Maintaining Coverage and Connectivity in Large Sensor Networks. 
The Wireless Ad Hoc and Sensor Networks: An International Journal, 2005. 



 Percentage Coverage Configuration in Wireless Sensor Networks 791 

13. Zhang, H., Hou, J.C.: On Deriving the Upper Bound of alpha-Lifetime for Large Sensor 
Networks. MobiHoc’04, Roppongi, Japan, May, 2004, pp.121-132 

14. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync protocol for sensor networks. 
ACM SenSys’03, Los Angeles, CA, USA, November 2003. 

15. Li, Q., Rus, D.: Global Clock Synchronization in Sensor Networks. Infocom’04, Hong 
Kong, China, March, 2004. 

16. Savvides, A., Han, C.C., Srivastava, M.B.: Dynamic Fine-Grained Localization in Ad-Hoc 
Networks of Sensors. MobiCom’01, Rome, Italy, July, 2001, pp.166-179  

17. He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.: Range-Free Localization 
Schemes for Large Scale Sensor Networks. MobiCom ’03, San Diego, California, USA, 
September, 2003. 



A Fault-Tolerant Content Addressable Network�

Daisuke Takemoto, Shigeaki Tagashira, and Satoshi Fujita

Department of Information Engineering,
Graduate School of Engineering, Hiroshima University

{strategist, shigeaki, fujita}@se.hiroshima-u.ac.jp

Abstract. In this paper, we propose a new method to enhance the fault-
tolerance of the Content Addressable Network (CAN), which is known
as a typical pure P2P system based on the notion of Distributed Hash
Table (DHT). The basic idea of the proposed method is to introduce
a redundancy to the management of index information distributed over
the nodes in the network, by allowing each index to be assigned to sev-
eral nodes, which was restricted to be one in the original CAN system.
To keep the consistency among several copies of indices, we propose an
efficient synchronization scheme based on the notion of labels assigned to
each copy in a distinct manner. The performance of the proposed scheme
is evaluated by simulation. The result of simulations indicates that the
proposed scheme really enhances the fault-tolerance of the CAN system.

Keywords: Peer-to-peer system, fault-tolerance, distributed hash table,
content addressable network.

1 Introduction

According to the recent advancement of network technologies, it emerges an
increasingly strong requirement for the high quality communications over the
large-scale interconnection networks. In fact, as the number of web sites serving
real-time contents increases, the number and the size of data flows exchanged
among remote hosts also increase, and in addition, it significantly increases the
complexity of server procedures to keep (or often to improve) the quality of such
data streams to be satisfactory. In general, a high complexity of server procedures
will limit the scalability of distributed systems under the conventional server-
client model, which motivates the study of fully distributed systems such as grid
computers and peer-to-peer (P2P) systems. A P2P system consists of a collection
of host computers called nodes or peers, and those nodes are connected with each
other by an interconnection network such as the Internet. In recent years, a lot
of important services such as shared file systems and Domain Name Systems
(DNS) have been constructed over the P2P model, and they have been used
in many application fields, such as electronic bulletin broad system, network
auction systems, and so on.
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By their logical structure, P2P systems could be classified into two categories,
i.e., hybrid type or pure type. In hybrid P2P systems, retrieval of objects will be
realized by sending an inquiry message to a dedicated server who maintains a set
of indices to the objects in a centralized manner, while the actual contents of the
objects will be maintained by each node in a distributed manner. On the other
hand, pure P2P systems do not rely on servers, and the retrieval of contents will
be realized by peer nodes in a distributed manner. Examples of pure P2P systems
include Gnutella [3] and FreeNet [2], where in Gnutella, indices of objects will
be retrieved by using collective communications (i.e., flooding) over all nodes in
the system, which severely limits the scalability of the overall system.

Distributed Hash Table (DHT) is a common technique to overcome such
a low scalability of the flooding-based indexing schemes, and it has been ap-
plied to many pure P2P systems such as Tapestry [8], Chord [6], P-Grid [1],
and Content-Addressable Network (CAN) [5]. In particular, in the CAN sys-
tem proposed by Ratnasamy et al., indices to the objects that are distributed
over the physical network will be maintained by those nodes in the system in a
fully distributed manner. More concretely, CAN assumes a virtual d-dimensional
coordinate space, and each index to be stored and retrieved is mapped onto a
point in the space by an appropriate uniform hash function. At any point in
time, the entire coordinate space is dynamically partitioned among all nodes in
the system, in such a way that every node “owns” its individual portion within
the overall space called “zone,” and thus, the store and the retrieval of an index
will be realized by routing an inquiry message to the corresponding point, i.e.,
to the node who owns the point. Since each node in CAN is associated with
its own zone, an unexpected leave of a node due to node or link failures would
cause a fatal damage to the overall system, since the zone owned by a leaving
node becomes invisible to the other nodes. To overcome such a critical prob-
lem, the basic design of the CAN system took an approach such that each node
keeps a copy of its neighboring zones in addition to its own zone, and uses it
to recover from unexpected leave of its neighbors. Unfortunately however, such
a sharing of copies among nearby nodes is not sufficient in actual P2P environ-
ments, which may contain several mobile hosts that could easily be disconnected
due to the physical mobility of the participating nodes, and may contain several
nodes that are likely to be simultaneously disappeared without any notifications
(e.g., imagine nodes settled in an isolated island).

In this paper, we propose a new method to enhance the fault-tolerance of
the CAN system. The basic idea of the proposed method is to introduce an
additional redundancy to the management of DHT by allowing each zone to be
assigned to several nodes, which was restricted to be one in the original CAN
system. To keep the consistency among several copies of a zone, we propose an
efficient synchronization scheme based on the notion of labels assigned to each
copy in a distinct manner. The performance of the proposed scheme is evaluated
by simulation. The result of simulations indicates that the proposed scheme
really enhances the fault-tolerance of the CAN system. Although it causes an
increase of the maintenance cost, the maintenance cost will be dominated by
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the recovery cost if the number of nodes participating to the CAN system is
sufficiently large.

The remainder of this paper is organized as follows. After describing the basic
notion of the CAN in Section 2, we propose a method to enhance the fault-
tolerance of the CAN in Section 3. The performance of the proposed method
is evaluated in Section 4. Finally, Section 5 concludes the paper with future
works.

2 Content Addressable Network

2.1 Design

In this section, we describe the basic design of CAN, with several techniques to
enhance the fault-tolerance.

CAN [5] provides a mechanism for managing and retrieving objects dis-
tributed over the network, in a fully distributed manner. The design of CAN
is based on a virtual d-dimensional Cartesian coordinate space on d-torus. In
the following exposition, we fix d to two for simplicity. Note that this coordinate
space is completely logical, and bears no relation to any physical coordinate
system. At any point in time, the entire coordinate space is dynamically parti-
tioned among all nodes in the system in such a way that every node “owns” its
individual, distinct space within the overall space. In the following, we refer to a
distinct space owned by each node as a zone. Figure 1 illustrates an overview of
CAN. Each node in the system learns and maintains the IP addresses of those
nodes that own coordinate zones adjacent with its corresponding zone. This set
of neighboring nodes in the coordinate space serves as a coordinate routing table
that enables routing between arbitrary points in this space. For example, nodes
A and B in the figure are assigned to the zones, which are adjacent with each
other in the coordinate space, and connected by a logical link in such a way that
they know their IP addresses with each other.

0,0

0,MAX MAX,MAX

MAX,0
node A node B

link

node BContent3

Content1
Content2 node C

node A
Content4 node D

Content6 node A
Content7 node C

Content5 node B

index node name
Key Value

a zone managed by nodeA zones supported by node A

Fig. 1. Overview of CAN
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Consider an object held by a node in the system. To realize an efficient
management of objects, CAN stores a key-value pair (K1, V1) to the virtual
coordinate space, where K1 is the name of an object and V1 is the name of
a node who holds the contents of the object. The management scheme first
maps key K1 onto a point in the coordinate space in a deterministic manner
by using a uniform hash function. It then stores the corresponding pair at the
node that “owns” the zone within which the point lies. (see Figure 1 again for
illustration). The retrieval of a stored pair could be done in a similar manner;
that is, to retrieve an object corresponding to key K1, any node can apply the
same deterministic hash function to map the key onto the target point and then
retrieve the corresponding value from the point.

If the calculated target point is owned by the requesting node or an immediate
neighbor of him, the value associated to the given key can easily be obtained by
using a local communication. However, if it is not the case, the request must be
routed through the CAN infrastructure until it reaches the node who owns the
zone containing the target point.

2.2 Join Operation

In the CAN system, the entire coordinate space is divided into zones, and those
zones are assigned to the nodes currently in the system in a one-to-one manner.
Thus, to allow the CAN to grow incrementally, a new node joining the system
must be assigned its own portion of the coordinate space, by splitting a zone
owned by an existing node to several subzones and by taking over one of them
to the new node. More concretely, such an assignment is conducted as follows:

procedure JOIN

1. First, the new node u locates a node v in the CAN by using an appropriate
locating mechanism, and sends a join message to v.

2. Upon receiving the message, node v splits his zone into two halves by using
an appropriate coordinate, and sends back one half to node u.

3. After receiving it, u becomes the owner of the zone assigned by v, and notifies
the fact to all neighbors to keep the consistency of the routing table.

In the method shown in the original paper [5], the locating of node v in the first
step is conducted in a random manner. More concretely, it randomly chooses a
point in the coordinate space and sends a join request destined for the point,
which will eventually be received by the node who owns that point. Recently, we
proposed several methods to locate a target zone to be split into several subzones,
which could realize a load balancing on the number of inquiries received from
the other nodes in the system [7].

2.3 Leave Operation

Before leaving the system, a leaving node must take over its zone to the other
node to keep the consistency of the coordinate space; i.e., in such a way that the
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Failure zone

Fig. 2. Lost zone

coordinate space is covered by zones owned by the existing nodes. In addition, it
must keep the consistency of the routing table, and if possible, it should balance
the size of zones owned by those nodes as much as possible. A concrete procedure
for the leaving is described as follows:

procedure LEAVE

1. Let α be a zone owned by the leaving node u. Node u selects a node v with
a smallest zone among all neighbors of u, and sends a leave message to node
v to take over α to v.

2. Upon receiving the message, node v examines if α could be merged with a
zone owned by v, say β; i.e., examines if α ∪ β is a tetragon or not.

3. If it could be merged, v merges them, and becomes an owner of the new zone
α ∪ β; otherwise, it becomes the owner of α in addition to β. After that, it
notifies the result to all neighbors of u and v.

4. If node u still owns a zone, then go to Step 1; otherwise, terminate.

2.4 Fault-Tolerance Problem

If a node in CAN fails by an accident, or leaves the system without executing the
ordinary procedure described in the last subsection, the zone(s) owned by the
node will be “lost,” i.e., it becomes invisible from the other nodes (see Figure
2 for illustration, where a lost zone is painted black). In addition, it causes
an inconsistency in routing tables maintained by the neighboring nodes, which
violates an efficient message routing conducted by the remaining nodes. In the
following, we refer to the zone owned by such a disappeared node as the lost
zone, and will discuss about several methods to recover it.

In the design of the (original) CAN system, the problem of lost zones was
tried to be fixed by sharing copies of a zone by its neighboring nodes. Suppose
that a node leaves the system without notifications. In CAN, such an unexpected
leave of a node could be detected by its neighboring nodes either by periodically
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sending hello messages or when forwarding a message to the leaved node. In both
cases, it must execute a recovery procedure before going back to a normal state;
i.e., a neighbor must become a new owner of the lost zone and it must notify
the fact to the other neighboring nodes. Such a recovery procedure generally
takes a long time compared with the normal message routing, and in addition,
such a local sharing of copies among nearby nodes is not sufficient in actual P2P
environments, since it may occur critical situations in which all nodes around
a zone are simultaneously damaged. Hence, in order to improve the availability
of the CAN system, we have to develop a new method such that the amount of
redundancy could be controlled by adjusting an appropriate parameter and the
time required for the recovery could be bounded as small as possible.

In the next section, we propose a new method to enhance the fault-tolerance
of CAN which allows each zone to be assigned to several nodes besides neighbors.
Although it has already been pointed out that the recovery time against an
accident could significantly be reduced by assigning each zone to several nodes
[5], to the authors’ best knowledge, there have not been proposed any concrete
schemes to realize the maintenance of those copies with a reasonably small cost.

3 Proposed Architecture

3.1 Overview

In this section, we propose a new method to enhance the fault-tolerance of the
CAN system, which will be referred to as Multiple Management CAN (MM-
CAN) in what follows. The basic idea of MM-CAN is to associate nodes to
zones in such a way that: 1) each node owns several zones, and 2) each zone
is shared by several nodes. The shape of each zone in the coordinate space is
restricted to be a tetragon, which could be changed dynamically by applying
split and merge operations as in the original CAN.

Let V = {v1, v2, . . . , v|V |} be the set of nodes participating to the system,
and Z = {z1, z2, . . ., z|Z|} be the current set of zones. Let Pj denote the number
of nodes sharing zone zj ∈ Z, and Qi denote the number of zones owned by node
vi ∈ V . In the proposed method, we define an upper limit on Pj , denoted by
Pmax, to control the trade-off between the fault-tolerance and the efficiency of
the underlying resource management scheme. That is, a larger Pmax increases the
fault-tolerance because it increases the number of copies stored in the system,
whereas it degrades the efficiency because it causes a larger overhead due to the
maintenance of those copies.

3.2 Join Procedure

Let u be a node who wants to join the system. In the join procedure of the
proposed method, a zone owned by a node will be “copied” or “taken over” to
u without splitting, as long as it does not violate a predetermined condition. In
the procedure, node u first locates a zone zj by using an appropriate locating
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scheme, and it will be assigned (a copy of) a different portion of the coordinate
space around zj , depending on the number of nodes sharing zj .

procedure MM JOIN
Let zj ∈ Z be a zone located by u. Let Pj be the number of nodes sharing zone
zj. If Pj = Pmax then go to Case 1; if 0 ≤ Pj ≤ Pmax/2 then go to Case 2; and
if Pmax/2 < Pj < Pmax then go to Case 3.
Case 1: Let Sj be the set of nodes sharing zj . If zj has a neighbor zi such

that Pi < Pmax, then go to Case 2 or 3 by letting zi as a new located zone;
otherwise, 1) split zj into two subzones z1

j and z2
j by using an appropriate

coordinate, 2) partition Sj ∪ {u} into two subsets S1
j and S2

j of an equal
size, and 3) (re)assign zone zk

j to all nodes in Sk
j for k = 1, 2. After that, it

notifies the fact to all nodes owing a neighbor of zj to keep the consistency
of the routing table.

Case 2: A copy of zj is assigned to u, and after that, u notifies the fact to all
nodes owning zj or its neighbor.

Case 3: Let vi be a node in Sj such that Qi = maxvk∈Sj{Qk}. If Qi = 1, then
split zj into two subzones, and (re)assign them to the corresponding nodes
as in Case 1; otherwise, the set of zones owned by vi into two halves, and a
half of them is taken over to u.

3.3 Leave Procedure

Let u be a node who wants to leave the system. In the leave procedure of the
proposed method, a leaving node first examines neighboring zones for each zone
owned by the node, and tries to merge them with zones owned by u.

procedure MM LEAVE
For each zone zj owned by a leaving node u, execute the following operation in
a concurrent manner. If Pj = 1 then go to Case 1; if 1 < Pj ≤ Pmax/2 then go
to Case 2; and if Pj > Pmax/2 then go to Case 3.
Case 1: Node u first selects an appropriate neighbor z̃ of zj that could be

merged with zj. If there are no such neighbors, go to Case 2 to take over zj

to an appropriate neighboring node w. Otherwise, u sends a merge message
to the owner v of z̃. Upon receiving that, v merges zj with z̃, and notifies
the fact to all nodes sharing z̃ to replace the shared zone with the merged
one.

Case 2: Node u finds a node w with the smallest Qi among its all neighbors,
and sends a message to take over zj to w. Upon receiving the message, w
becomes a new owner of (a copy of) zone zj.

Case 3: Node u simply sends a leave message to all nodes sharing the same
zone.

3.4 Maintenance of Indices

Next, we describe the mechanism adopted in the proposed method to keep the
consistency among copies of the same zone. Note that to realize a transparent
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access to the indices held by the nodes distributed over the network, a modifi-
cation of indices stored in a zone must be reflected to all copies of the zone, as
well as the change of the shape of zones due to split and merge operations.

In general, there is a trade-off between the accuracy and the efficiency on the
consistency holding mechanism; i.e., we could increase the accuracy by increas-
ing the frequency of synchronizations, and we could increase the efficiency by
decreasing the frequency. In the proposed method, we introduce the notion of
label, which will be associated with each copy of a zone in a distinct manner, to
improve the efficiency without degrading the accuracy. More concretely, in the
proposed method, each copy of a zone is associated with a label drawn from set
P def= {0, 1, . . . , Pmax−1} in an injective manner (i.e., in such a way that any two
copies are associated with distinct labels), and for each index to be retrieved, a
node with a most appropriate label will be selected as the leader of those nodes
sharing the zone containing the index, and will be given a privilege to control
the other nodes.

The appropriateness of a label with respect to the given index is determined
as follows: Let f be an appropriate hash function from the set of indices to set P .
We first apply f to the given index i, and examine if a node with label f(i) ∈ P
exists or not. If it exists, the node with label f(i) is selected as the leader with
respect to index i; otherwise, it examines labels f(i)+1, f(i)+2, . . . in this order,
and selects the firstly found one as the leader, where all additions is conducted
with modulo Pmax. By using the notion of leader, the management of copies is
conducted as follows: 1) An update of a zone is notified only to the leader of
the zone with respect to the given index, which will be forwarded to the other
nodes from the leader, and 2) an inquiry destined for a zone will be received
only by the leader with respect to the inquiry, which is given a responsibility to
adequately reply to the inquiry.

4 Evaluation

4.1 Simulation Environment

Let V be the set of nodes to be considered in the simulation. In this paper, we
consider a situation in which: 1) the CAN system initially contains a single
node in V called an anchor, and 2) the other nodes in V repeat join and
leave operations in a dynamic and concurrent manner. In addition, each node
participating with the system repeatedly tries to access an object stored in the
system, and issues an inquiry message to find the index of the object accordingly.

More concretely, a node who is not contained in the system issues a join
message according to a Poisson distribution with mean λjoin = 150 [sec], and the
time duration before issuing a leave message follows an exponential distribution
with mean λhold = 200 [sec]. A node who is participating with the system issues
an inquiry message according to a Poisson distribution with mean λaccess = 8
[sec]. In addition, we assume that the message transmission between any pair of
nodes takes 1 sec, and the transaction of an inquiry takes 1 sec on any node.
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Table 1. The number of invocations of initialization

Pmax 64 128 256 512 1024 2048 4096 8192 16384
1 0 0 5 5 5 16 31 43 72
3 0 0 1 1 1 0 5 2 16
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0

We use a hash function with range 1024 × 1024. In addition, the number
of nodes who repeat join and leave operations (i.e., the cardinality of set V ) is
varied from 64 (= 26) to 16384 (= 214), and we examine several characteristics
including the fault-tolerance and the maintenance cost by varying Pmax as 1, 3,
4, 5, and 6 and by fixing the maximum number of zones that could be owned
by each node by three. Note that the case of “Pmax = 1” coincides with the
original CAN. Finally, upon detecting an inconsistency of the coordinate space
that could not be recovered by the underlying resource management scheme, each
node invokes an “initialization” to reconstruct the entire coordinate space from
scratch in the worst case. Thus, the frequency of initializations represents the
fault-tolerance of the resource management scheme, which significantly affects
to the overall performance of the underlying scheme.

4.2 Results

(a) Frequency of Initializations. At first, we evaluate the fault-tolerance of
the proposed scheme by measuring the number of initializations invoked dur-
ing the simulation time. Table 1 summarizes the result. As is shown in the
table, although it causes no initializations for sufficiently large Pmax (i.e., when
Pmax ≥ 4), when Pmax is relatively small (i.e., when Pmax ≤ 3), it causes sev-
eral initializations and its frequency will be increased as increasing the number
of nodes participating to the system. In addition, the number of initializations
reduces to about 20% by increasing Pmax from 1 to 3. By those observations,
we can conclude that an increase of Pmax is really effective to enhance the fault-
tolerance of the underlying resource management system.

(b) Average Number of Hops. Next, we evaluate the impact of the pro-
posed scheme to the efficiency of the underlying message routing schemes. An
increase of the value of Pmax would reduce the number of resultant zones, since
it reduces the frequency of splitting a zone into two halves. Thus, it is strongly
expected that an increase of Pmax reduces the number of hops before reaching
to the destination for each message. To verify this intuition, we examine the av-
erage number of hops destined for randomly generated points in the coordinate
space by varying Pmax from 1 to 6. Figure 3 illustrates the result, where the
horizontal axis is the number of nodes. As is shown in the figure, the average
number of hops monotonically decreases as increasing the value of Pmax, which
monotonically increases as increasing the cardinality of V . In particular, the av-
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erage number of hops reduces to about 50% by increasing Pmax from 1 to 6.
Thus, we can conclude from this result that, as a side effect, an increase of Pmax
really improves the performance of the underlying routing scheme.
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(c) Total Data Size. Although there are several advantages as examined
previously, an increase of Pmax causes an increase of the maintenance cost, which
would degrade the performance of the overall system. To clarify that point,
we evaluate the maintenance cost of the proposed scheme by measuring the
total amount of data exchanged among nodes in the system, which includes
the data required for the ordinary operations in addition to the overhead due
to the redundancy having been introduced to the proposed scheme. Figure 4
summarizes the result, where the horizontal axis is the number of nodes, as
before. As is shown in the figure, although it keeps a constant value regardless of
the number of nodes for sufficiently large Pmax (i.e., when Pmax ≥ 4), the amount
of exchanged data is significantly affected by the number of nodes if Pmax is
smaller than or equal to three. More concretely, the amount of exchanged data
monotonically increases as increasing the cardinality of V , which corresponds to
the increase of the number of initializations observed in Table 1. In addition, the
amount of exchanged data monotonically increases as increasing Pmax for small
number of nodes, which would correspond to the increase of the maintenance
cost due to the increase of the number of copies in the proposed scheme.

To examine the effect of the maintenance cost in more detail, we finally evalu-
ate the average number of neighbors in the proposed scheme. Figure 5 illustrates
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the result. As is shown in the figure, the number of neighbors increases as in-
creasing Pmax, which is very similar to the increase of the amount of exchanged
data observed in Figure 4. Although it is not clear why it rapidly changes by
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varying the cardinality of V from 64 to 256, we could conclude from those results
that the maintenance cost of the proposed scheme really increases as increasing
Pmax, which will be dominated by the initialization cost that could be frequently
incurred for small Pmax’s.

5 Concluding Remarks

In this paper, we proposed a new method to enhance the fault-tolerance of the
CAN system that is known as a typical pure P2P system. The basic idea of the
proposed method is to introduce a redundancy to the management of indices
distributed over the P2P network, and to keep the consistency among copies
of such indices, we proposed an efficient synchronization scheme based on the
notion of labels assigned to each copy in a distinct manner. The performance
of the proposed scheme was experimentally evaluated by simulation. The result
of simulations indicates that the proposed scheme really enhances the fault-
tolerance of the CAN system.

We have left several important issues as future problems, such as the exami-
nation of the proposed scheme under a realistic environment and an application
of the scheme to the other DHT-based systems.
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Abstract. To extend a Peer-to-Peer (P2P) network system with the
mechanisms of distributed/Grid computing, we developed a flexible JXTA-
based P2P network interface and architecture, JXTPIA. The JXTPIA
system provides the basic functionalities for Grid computing, such as re-
sources allocation and sharing, task scheduling and assignment, network
structure constructing and maintenance, etc. One of the main challenges
in developing the JXTPIA system is efficient allocation of resources. We
developed and evaluated algorithms for resource allocation to improve
the efficiency of the JXTPIA system. The experimental results show that
the efficiency of the JXTPIA system differs depending on the adopted
algorithms. It indicates that scheduling based on limited information
about peers has effects on the performance of the entire system. Though
the adopted algorithms are specialized for the JXTPIA system only, the
principle of the algorithms can be widely used on similar systems.

Keywords: JXTPIA system, resource allocation, Grid computing, net-
work structures.

1 Introduction

Grid computing is an emerging technology that enables the sharing, selection,
and aggregation of geographically distributed “autonomous” resources dynam-
ically at runtime depending on their availability, capability, performance, cost,
and users’ quality-of-service requirements [1]. Especially, PC Grid, a type of
Grid Computing like SETI@HOME [2] and UD Cancer Research [3], has be-
come popular to ordinary people as the most familiar type of grid computing
and has gathered millions of participants. In order to develop a PC Grid plat-
form that can provide more general computing services, we launched a project
named “JXTa-based Peer-to-peer Interface and Architecture,” or JXTPIA [4].

Grid computing system are distributed system connected within a physical
network, such as the Internet. The distributed components in a Grid computing
system must distribute and search resources dynamically. It is quite frequent, and
naturally not in a balanced way, to transfer and search for resources in a Grid
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computing system. So the resource distributed processing becomes congested.
Communication between all devices on the network causes network traffics, which
is one of bottlenecks in PC Grid computing. So one of the objectives in developing
the JXTPIA system is to efficiently allocate resources to reduce the network
traffics. In this paper, we seek the more suitable resource allocation methods
adapted to the nature of JXTPIA.

This paper is organized as follows. Section 2 describes related work on re-
source allocation in distributed/Grid computing environment. In Section 3, the
overview of the JXTPIA system is presented. In Section 4, we present the re-
source allocation algorithms and Section 5 evaluates their performance. Section 6
illustrates experiments on resource allocation, and conclusions are in Section 7.

2 Related Work

There are many papers on resource allocation under Grid computing environ-
ments. Grid resource allocation and control have been studied in Ref. [5] by using
a model called G-commerce. In G-commerce model, users and Grid-aware ap-
plications are resource consumers, while resource producers are the sellers. The
GridSim toolkit [6] provides some tools to model and simulate some main entities
in Grid computing, such as users, applications, resources, and resource brokers
etc. In Ref. [7], resource allocation using reinforcement learning is studied in a
simplified Grid-like environment. Java Market project [8] treats resources and
tasks as goods in markets. Nimrod [9], and Compute Power Market (CPM) [10]
are also market based resource management and scheduling systems.

JNGI [11] is a distributed computing framework based on JXTA [12][13]
that users can use it to submit jobs to JXTA groups. These jobs can be split
and distributed among several peers. A Personal Power Plant (P3) [14] is a
middleware on pure P2P facilities provided by JXTA for distributed computing
using volatile personal computers.

Since resource allocation is very important in Grid computing systems, they
must be implemented efficiently within Grid computing systems. Globus [15][16]
architecture is a de facto standard for computational grid [17]. Globus Toolkit
provides the basic system to achieve Grid computing, and it is very close to
satisfy the demand of Grid computing. In Globus architecture, GRAM service
supports submission, monitoring, and control of jobs on computers. GRAM pro-
vides interfaces which can integrate with other traditional resource allocation
systems, such as Portable Batch System (PBS) [18], Platform LSF [19], Condor
[20]. In our experience, using Globus Toolkit is only a small part of cost on de-
veloping a Grid computing program. Globus requires programmers an additional
overload and much stress. Of course, Globus has the value which offsets these
costs. It is a trade-off between working cost and effectiveness.

3 JXTPIA System Overview

The JXTPIA system contains four main modules: JXTPIA network module,
JXTPIA Homework Distribution module (JHD), JXTPIA Trigger Distribution
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JXTA P2P network

JXTPIA Network

JXTPIA Triger Distribution System
JTD

JXTPIA Home work Distribution 
system (JHD)

JXTPIA User Interface (JUI)

JXTPIA Data Sharing System (JDS)

Fig. 1. Layers in the JXTPIA System

module (JTD), and JXTPIA Data Sharing module (JDS). The relationships of
these modules are illustrated in Figure 1. JXTPIA network layer, built upon
JXTA [12][13] P2P network, supports the core of system layers, such as JTD,
JHD, and JDS, where JTD distributes task information to peers and gets feed-
back from peers, JHD provides users distribute JHD tasks to JXTPIA network
via the JXTPIA user interface, and JDS keeps the data communication among
these system layers.

There are two principal types of peers in the JXTPIA system, leader peer and
worker peer. A worker peer is an ordinary peer which handles practical work.
A leader peer is responsible for managing the information of worker peers in
a worker ring. Leader peers are also connected roundly to make a leader ring.
Since the network is organized on JXTA, JXTPIA has an advanced network
transparency such as connecting across NAT, or connecting in the condition
where only HTTP protocol works.

To get the system scalability, a message-listener model is adopted in the
JXTPIA system. The message-listener model can handle large numbers of clients
/ connections, spread across multiple machines. It can minimize what needs to
be stored in memory, and make it possible for multiple classes to reuse instances
of event handlers and events.

The ring-based network structure in the JXTPIA system keeps its scalability
and solid [4]. JXTPIA network has construction methods for fast building the
network and also self-recovering methods to avoid the collapse. JXTPIA network
treats the leader loss and the worker peer loss in different ways to reduce the
communication time and messages.

4 Resource Allocation in JXTPIA

Two principal elements in the JXTPIA system are task and resource (or data).
One task commonly has a large number of data as its targets. For example, in
the case of matrix multiplication, the task is the program which describes the
algorithm of matrix multiplication, and the resources are two matrices being
targets of the matrix multiplication. In JXTPIA, the task is expressed as JAR
archives named homework set (HWS), and the resources are expressed as com-
mon files named target data. An HWS is an ordinary JAR archive apart from



Effective Resource Allocation 807

Search RequestSearch Response

Search Client

Owner Peer

Transfer Request

Data Flow

Fig. 2. Task searching algorithm. Details can be found in Section ??

including the class file inside which implements a particular interface and whose
name is the same as the HWS. Also, target data can be any types of resources
such as a plain text file and/or a binary file storing serialized objects. If a peer
wants to issue a task, all it has to do is to outfit an HWS and the target data
associated with it.

The JDS module searches for the resources within the network, and/or trans-
fers the resource to the client peer. After transferring the tasks and arguments
to the peer, the JTD module executes the task and receives the results. To
distribute many tasks in a short time, it is necessary to reduce network loads
and the searching response time when deploying and searching resources. In this
section, we will describe algorithms used for resources allocation.

Resource allocation includes resource searching and resource distribution.
Figure 2 shows the outline of the resource searching algorithm. Since in the

TransferRequest

Disribution Request

Data Flow

Fig. 3. Message flow in the ring distribution algorithm
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Fig. 4. Data flow in the ring distribution algorithm

JXTPIA system, the leader peer knows the resources in each worker peer within
the same group, the resource can be found by asking the leader peer only. A
resource searching client peer creates the search entry and requests its leader
peer to search for the specific resource. The leader peer sends a request to its
neighbor leader peer for the resource location. After finding it, the leader peer
will inform the client peer the resource location. If the leader peer can not
know find the location, the leader peer keeps asking its neighbor leader peer.
When the searching client peer receives information from the owner peer, it will
request the owner peer to transfer the resource directly. Then, the searching
client peer informs its leader peer to update its list of resources, and then delete
the searching entry.

Resource distribution processes include sending/receiving messages and then
sending/receiving resources based on the response to the request message. Since
the JXTPIA system is built upon the ring-based network structure, one of our
main concerns is how to efficiently use it to reduce the network traffics. Here
we introduce two resource distribution algorithms: ring distribution algorithm
(RDA) and wide distribution algorithm (WDA). In RDA, data are distributed to
the neighbor worker peer in the worker ring. Simultaneously, data are distributed
to the leader peers in the leader ring. In WDA, data are distributed to peers in
each worker ring, and each distribution source search for two destination peer.
Hence, the number of distribution exponentially increases like tree structure.
By computing WDA’s and RDA’s response time, we can find the more effective
algorithm.

4.1 Ring Distribution Algorithm

In the ring distribution algorithm (RDA), a peer first sends out requests to its
neighbor worker peer and its leader peer. Then both peer send the request to
its neighbor which hasn’t received the request, while the leader peer sends the
request to the neighbor leader peer in the leader ring. In the meantime, the leader
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peer decreases the rest number of distribution by the number of the worker peer
in its leader ring. The message flow and data flow of RDA are illustrated in
Figures 3 and 4, respectively. In Figure 3, transfer-request messages are sent to
its neighbor peers, including the leader peer, then the leader peer forward the
request to other leader groups. Simultaneously, distribution requests are sent out
in the inverse direction. In Figure 4, we show an example of the data flow in
RDA. Data are distributed from Distributor to eight Receivers A, B, C, D, E,
F, G, and H. Here we suppose each peer can send out only two copies of data
simultaneously. The distributor first sends out data to both leader peer A and
worker peer E. Then the worker peer E sends data inside the ring, while peer A
sends data to the next leader peer B and worker peer C. Peer H receives data
from the distribution inside the ring supervised by leader peer B. So data are
distributed in peer group A and peer group B.

The distribution time of RDA becomes large because data are distributed to
only its neighbor worker peers and/or its neighbor leader peer.

4.2 Wide Distribution Algorithm

In the wide distribution algorithm (WDA), a peer first sends requests to its
leader peer. The leader peer sends the request to other leader peers, and then
each leader peer sends request to the worker peers in its worker ring. The message
flow and data flow of WDA are illustrated in Figures 5 and 6, respectively. In
Figure 5, a client peer asks its leader peer to request two destination peers which
are not in the same worker ring. The processes are repeated by the destination
peers on the basis of remaining storage amount. The receiving peer distributes
and transfers data until the number of distribution becomes zero. We show
an example of data flow of WDA in Figure 6. Data are distributed from the
distributor to eight receivers A, B, C, D, E, F, G, and H. As done in RDA, we
assume that each peer can send out only two copies of data simultaneously. The
distributor first sends out data to peer A and peer B. Then peer B sends data

TransferRequest

Disribution Request

Data Flow

Fig. 5. Message flow in the wide distribution algorithm
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Fig. 6. Data flow in the wide distribution algorithm

to peer E and peer F, while peer A sends data to peer C and peer D. Finally,
peer C sends data to peer G, and peer E sends data to peer H.

WDA can quickly find resources because resources are widely distributed to
rings, but the distribution costs much time because the time to search for the
destination peer is quite long.

5 Performance Evaluation

The average search response time is the time that a peer receives the specific
resource from other peers. Equation (1) shows the average resource search re-
sponse time. An average resource search response time, TSR, is expressed by
an average time to discover a peer, TS, and an average time for transferring
resource, TT . TS is used to find the peer which has the required resources and
then get the peer’s identification which is like IP address. TT is the time for
transferring resource from one peer to another, and the time is a constant if the
size of the resource is a constant. PAll is the probability of the resource located
in a peer. The probability PAll is led by equation (2). In Equation (2), (1 - PAll)
shows the frequency of searching request. Thus, If PAll equals to 1, a peer does
not need to search anything. In Equation (2), DAll is the number of distributed
resources. NAll is the total number of peers in JXTPIA.

TSR = (TS + TT ) × (1 − PAll) (1)

PAll =
DAll

NAll
(2)

5.1 Allocation Time in RDA

The average search time, TS, in Equation (1), can be expressed as in Equa-
tion (3),
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TS(NL, PL) =
NL∑

H=1

(H × Tenq × (1 − PL)H) (3)

where, H is the number of hop counts, and NL and PL are the total number of
peers and the probability of the resource located in a peer in the worker peer
group L, respectively. Tenq shows an enquiry time to inquire whether a leader
has the resources, and normally it is a constant. (1 − PL)H shows the rate of
occurring search request to the peer at a distance of n hops. This Equation shows
PL has much effect on TS .

DL =
DAll

NW
(4)

PL =
DL

NL
=

DAll

(NL × NW )
(5)

In RDA, DL can be decided by DAll and NW , the number of worker peers
in a worker ring. The value of PL alters when using different algorithms. When
using RDA, PL can be obtained from Equation (5).

TD =
{

(DL + NW ) × TT , if(DAll ≥ NW )
DAll × TT , if(DAll < NW ) (6)

When using RDA, the distribution time can be figured out by Equation (6).
In Equation (6), (DL +NW ) is the number of hop counts to the most deep peer.
If DAll is smaller than NW , the resource is distributed in the leader ring.

5.2 Allocation Time in WDA

The average discover time in the wide distribution algorithm (WDA), TS in
Equation (1), can also be expressed as in Equation (3) but with different param-
eters.

In WDA, DL is the minimum of DL and DAll, shown in Equation (8). PL in
Equation (8) is different from the one used in the ring distributed algorithm. It
shows that PL increases in using WDA more than RDA. It also shows that TS

is exponentially reduced in using WDA.

DL =
{

DL, if(DAll ≥ DL)
DAll, if(DAll < DL) (7)

PL =
DAll

NL
(8)

Equation (9) presents the distribution time, TD when using WDA. When dis-
tributing resources, WDA needs to decide which peer receives the resource. (TT

+ TM ) is the time to transfer resource in one step, where TM is the management
time to assign the resource to a suitable peer, which includes looking up leader’s
resource information list, sending the request, and getting the response. If DAll

is small, TD becomes smaller with RDA than WDA. On the contrary, if DAll is
large, TD becomes smaller with WDA than RDA.

TD = 2 × (TT + TM ) × log2(DAll − 1) (9)
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6 Experimental Results and Discussion

The experimental environments and execution times are shown in Table 1. The
JXTPIA system is tested on network with more than 200 Sun Blade 150 worksta-
tions. Each Sun Blade workstation has a 550 MHz CPU and a 512 MB Memory
running with the Solaris 8 operating system. The parameters such as the task
file size, transferring time, management time, sending message time are set to
constants as in Table 1, if not be further specified.

Figure 7 shows the effects of the file size to the distribution times of both Ring
Distribution Algorithm and Wide Distribution Algorithm. In the experiment, the
management time is set to 0.001 ms, but the transferring time is changed from
1 ms to 8 ms. The distribution times of both RDA and WDA increase linearly
when the file size becomes larger. For small transferring time, for example, 1 ms
or 2 ms, the distribution time of WDA is larger than that of RDA. For large
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    File Size (MB) 

Executable Time (ms)

Fig. 7. Effects of the file size to the distribution times of both the Ring Distribution
Algorithm and the Wide Distribution Algorithm

Table 1. Environments

Machine Sun Blade150
CPU UltraSPARC-IIe 550MHz
Memory 512 MB
OS Solaris 8
A task file size 30 MB
Transferring time 1.0 ms
Management time 0.012 ms
Sending message time 0.01 ms
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transferring time, say, 4 ms or 8 ms, the distribution time of WDA is larger than
that of RDA if the file size is smaller than 30 MB, but smaller if the file size is
larger than 30 MB. Further detailed experiments will be conducted soon.

Figure 8 shows the effects of the distribution number to the distribution times
of both RDA and WDA. Same as the previous experiment, the management
time is set to 0.001 ms, and the transferring time is changed from 1 ms to
8 ms. When the distribution number increases, the distribution time of RDA
increases linearly, but the distribution time of WDA increases much more quickly.
It indicates that RDA has better performance on distributing a large number of
resources. The transferring time, the number of distribution resources, and the
resource size affect on distribution time dominantly. It is effective to use RDA if
the transferring time is small. WDA is more effective only if both the resource
size and the transferring time are large. To treat a large number of distributions,
RDA is chosen since its character of linearly increasing with the distribution
number.
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Fig. 8. Effects of the distribution number to the distribution times of both Ring Dis-
tribution Algorithm and Wide Distribution Algorithm

7 Conclusions

We developed an extended Peer-to-Peer (or P2P) network system with the mech-
anisms of cluster computing and Grid computing, JXTPIA system. It provides
the basic facilities for Grid computing, such as resources allocation and sharing,
task scheduling, task assignment, network structure constructing and mainte-
nance, etc. One of main challenges in developing Grid computing system are
network traffics.
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In this paper, we proposed some efficient algorithms for the JXTPIA system
to efficiently allocate of resources. We devise, test, and evaluate new algorithms
for resource allocation in the JXTPIA system. The experimental results show
that it is effective to reduce network load and search response time by using
these algorithms. Transferring time and the number of distributions affects the
executable time largely. The efficiency of the JXTPIA system differs depending
on the adopted algorithms. The results indicate that scheduling based on limited
information about peers has some effects on the performance of the entire system.
Though the adopted algorithms are specialized for the JXTPIA system only, the
principle of the algorithms can be widely used on systems similar to the JXTPIA
system.

The JXTPIA system is still under development. No existence of security
system is a fatal defect. The implementation of a security system into JXTPIA
also will affect the algorithms and performances of resource allocation. Also,
more experimental results will be committed to improve the reliability of the
JXTPIA system.
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Abstract. With the help of distributed hash tables, the structured peer-
to-peer system has a short routing path and good extensibility. However,
the mismatch between the overlay and physical network is the barrier to
build an effective peer-to-peer system in the large-scale environment. In
this paper, we propose a generic approach to solve this problem, which is
quite different from other protocol-dependent methods. We reserve the
structure of system and break the coupling between the node and its
identifier by swap operations. We also propose several policies to reduce
the traffic overhead. The policies include adaptive probing and shadow
scheme. The experiment shows that our approach can greatly reduce the
average latency of overlay networks and the overhead is controllable.

Keywords: peer-to-peer, overlay network, topology-aware, stretch.

1 Introduction

Several recent peer-to-peer (P2P) systems (CAN [1], Chord [2], Pastry [3], etc.)
provide a self-organizing substrate for large-scale P2P applications. These struc-
tured P2P systems can be viewed as providing a scalable, fault-tolerant dis-
tributed hash table (DHT). Any item (content) can be located with in a bounded
number of hops, using a small per-node routing table. However, as a node is
hashed to a random identifier (node ID), the mismatch between physical topolo-
gies and logical overlays is a major factor that delays the lookup response time.
In this situation, “hop” is no longer a reasonable metric to measure the delay. We
usually call it mismatching or topology-aware problem. There are several meth-
ods to solve the problem. Most of methods solve it in two basic steps [4]: 1) to
gather some information about network proximity, and 2) to construct or repair
the overlay network using information above. In order to show the limitations
of recent work, we will discuss these two steps in the following two subsections.

1.1 Collect Proximity Information

To solve the mismatching problem, some sort of proximity information of the
underlying network is needed. There are two general ways which have been pro-
posed – landmark clustering and flooding or heuristic-based search. Landmark
clustering is based on the intuition that nodes close to each other are likely to

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 816–826, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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have similar distances to a few landmark nodes. S. Ratnasamy et al [5] utilize
this idea to optimize CAN system. The main limitation of this solution is that
it is a coarse method to discover the proximity of different nodes. Besides, the
landmarks are like servers in the system, introducing some single-point failure
problems [6]. Flooding or heuristic-based search is another choice to get proxim-
ity information. It is like searching method in a P2P system. Instead of getting
contents, it tries to get delay information. In this way, we can gather more de-
tailed knowledge about the physical network than landmark method. However,
uncontrollable searching will be too expensive for topology matching. So the
challenge is to make tradeoff between effectiveness and probing cost.

1.2 Utilize Proximity Information

When we have got some knowledge about the proximity, the next step is to uti-
lize the proximity information to construct or repair the structured peer-to-peer
system. Three basic approaches have been suggested for exploiting proximity
in DHT protocols [7] – proximity routing, proximity neighbor selection and geo-
graphic layout. There are several systems which use one of these three policies.
Topologically-Aware CAN [5] is an example with geographic layout. This ap-
proach unfortunately creates uneven distribution of nodes on the overlay. Pastry
uses proximity neighbor selection to construct the routing table [8]. However,
the ID prefix of Pastry is a constraint to limit the selection range. As a matter
of fact, all of these have a common limitation – protocol-dependent. For instance,
geographic layout ensures that nodes that are close in the network topology are
close in the node ID space, which is only suitable for the system like CAN [9].
Because in CAN, the nearness in node ID means less hops in routing. In systems
like Pastry or Tapestry, we have some degree of freedom to choose nodes in the
routing table. But in Chord or CAN, the entries in routing table are determin-
istic. Proximity routing also has the requirement that there must be more than
one choice for next hop, which is not suitable for systems like Chord.

The further problem is the dynamism in peer-to-peer systems. As nodes ar-
rive or depart, the existing routing tables need to be repaired. Without timely
repairing, the structure of overlay will digress from optimal condition as in-
efficient routes gradually accumulate in routing tables. So an effective overlay
should be adaptive to the system’s dynamic change.

In order to solve all problems mentioned above, we propose a novel method
to make the structured P2P system topology-aware. This method periodically
adjusts the node ID and preserves the structure of P2P systems. By iteratively
reducing the average logical link latency, the overlay trends to match the phys-
ical network. This method is protocol-independent and easy to be built on any
structured P2P systems. Through our experiment based on Chord, we find that
this approach can greatly reduce average logical/physical link latency. Besides,
the overhead of adjustment is very low when using adaptive policies.

This paper is organized as follows. In section 2 we describe our approach
in detail, including basic policy and several overhead-reducing mechanisms. In
section 3, we illustrate the results of our experiment and give some explanations.
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Other related work is introduced in section 4. Finally, in section 5 we conclude
the paper and point out some future work.

2 Variable Node ID

2.1 Basic Method

We propose a novel solution to the mismatching problem of distributed hash
table, which is based on variable node ID. As we know, in a DHT system, one
node is hashed into a unique identifier which is called node ID. Usually, the node
ID will not change during the node’s lifetime. The advantage of this scheme is
obvious. It is very easy to manage a large-area system using these identifiers.
Besides, the hashing process is totally random. In other words, each peer in the
system is anonymous. The disadvantage of invariable node ID is also apparent.
There are many constraints of routing and some constraints are unreasonable.
“Mismatching problem” is an example. Figure 1 gives a mismatching situation. If
node A wants to route a message to B in structure (b), the cost is 12 (A → C →
B) or 14 (A → D → B), both larger than routing in (a). The essential cause of
mismatching is that each node is always combined with an identifier. When one
node joins into the system, its position is unchangeable. We consider whether it
is possible to make the node ID more flexible, without weakening the power of
DHT scheme. There are several guidelines we should follow when making some
kind of node ID varying . First, the change of node ID should not change the
structure of a P2P system. As we mentioned in section 1, the common limitation
of most recent methods is that they rely on the specific protocols. If our change
breaks the original structure, we can not reconstruct it without specific protocol
information. In other words, it will also be protocol-dependent. Second, this
change should not be arbitrary. As we know, one of the basic characteristics of
the P2P system is its anonymity. If the node ID can be changed discretionarily,
the system will become fragile and easily attacked by hackers. Last, the overhead
of changing should be controllable. If the overhead is too expensive, the method
can not achieve good performance.

A B

C D

8

2

1

11

A

C

B

D C

A B

D

2

10

3
8

1

310 31011

(a) (b) (c)

Fig. 1. A mismatching example. (a) is the physical topology with four nodes, and the
latencies are marked with integer numbers. (b), (c) are both overlay structures on
that physical topology. We assume that neighbors’ latencies in overlay are the shortest
paths between them. For example, the latency of A → D in (b) is calculate as the path
A → C → D in (a). So it equals to 3.
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Table 1. The notation table

Notation Meaning
t0 the time before nodes a and b swap
t1 the time after nodes a and b swap
Nti(a) the neighbor set of node a at time ti

d(ij) latency between nodes i and j
Lti the accumulated latency value of overlay at ti

We explain our method as follows. In a structured P2P system, each item is
hashed into a unique identifier. All of these identifiers constitute a “ID space”
At the same time, each node also has one identifier. We call the set of these
identifiers “node ID space”. It is a subset of ID space. Regardless of peers’
dynamism, node ID space is relatively invariable. In our method, each node
can not arbitrarily choose an identifier in id space. However, each one has the
freedom to choose a better identifier in the node ID space. In this way, the
logical structure which is built on node ID space will not be broken (following
guideline one). In addition, as the identifiers in node ID space is totally random,
the anonymity will be preserved (following guideline two). To achieve this kind
of node ID re-assignment, the basic operation is swap: swap the node ID, and
exchange the corresponding routing tables. For example, if we want to adjust
the identifiers in figure 1(b) or 1(c), we will just swap node B’s id and D’s or
swap C’s and D’s correspondingly. After the adjustment, the overlay will totally
match the physical network.

Figure 1 just illustrates a simple and ideal case. In a real P2P system, things
are more difficult. Table 1 gives several useful notations for our expression. We
assume there is a swapping try between nodes a and b. Node a is the counterpart
of b, and vice versa. Two different situations t0 and t1 represent the time before
and after a swap . In fact, t1 is not actually the time after the swap, but the
hypothetical time if we make the swap. In addition, Nti(a) represents the neigh-
bor set of node a at time ti. It is worth to emphasize the fact that neighbors
of one node N are not just the entries in its routing table. The nodes which
point to node N should be also included. At the beginning, nodes a and b will
exchange their neighbors’ addresses. Then both of them probe the counterpart’s
neighbors and measure these latencies d(ij). Node a calculates the accumulated
latency of its current neighbors

∑
i∈Nt0 (a) d(ai) and the one if the swap is done∑

i∈Nt1(a) d(ai). The similar results are calculated by node b. The difference
between before and after swap is shown in equation 1.

Diff =
∑

i∈Nt0 (a)

d(ai) +
∑

j∈Nt0 (b)

d(bj) −
∑

i∈Nt1 (a)

d(ai) −
∑

j∈Nt1 (b)

d(bj) (1)

If Diff > 0, nodes a and b will exchange their identifiers and routing tables.
Unfortunately, in many structured P2P systems, it is not enough to change the
state of these two nodes. The reason is that the routing in most systems is
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unidirectional1. As a result, the change of any node N will impact the nodes
which have an entry E = N in their routing tables. However, the unidirectional
property will not complicate the implementation of our approach. Because the
change of each node can be realized using leave() and join() procedures, which
are already implemented in any P2P system. Until now, we just illustrate a
single swap operation. In a distributed environment, every node will periodically
contact a random node. The TTL-packet is used to realize this contact. At the
beginning, we set TTL = k. When TTL becomes zero, the target node is located.
Given that the method is totally distributed, each node tries to make a swap
at a fixed interval. If a swap can improve the match degree, many swaps at the
same time will achieve accumulated effect. In the next subsection, we will try to
explain the effectiveness of node swap.

2.2 Effectiveness of Node Swap

To explain the effectiveness of node swap, we make several definitions and explain
the meaning of notations first. We define stretch as the ratio of the average
logical link latency over the average physical link latency. Stretch is a common
parameter to quantify the topology match degree. Average latency (AL) is a
basic parameter to quantify the property of a network. If there are n nodes in a
network, and accumulated latency of any two nodes is Acc(n), then2

AL = Acc(n)/n2 (2)

We analyze the change of average latency after a swap between nodes a and
b. Supposing that the number of nodes is invariable during t0 → t1, so the
accumulated latency (Lti) is analyzed instead. Next two equations show this
change:

Lt0 = C +
∑

i∈Nt0 (a)

αid(ai) +
∑

j∈Nt0 (b)

βjd(bj) (3)

Lt1 = C +
∑

i∈Nt1(b)

γid(bi) +
∑

j∈Nt1 (a)

δjd(aj) (4)

In equation 3 and 4, C represents the invariable part before and after one swap
operation. The coefficients of the summations α, β, γ, δ represent the times each
neighbor link used. We notice that nodes a and b just exchange their neighbors,
so Nt1(b) = Nt0(a) and Nt0(b) = Nt1(a). Besides, assuming that each link has
the same probability to be visited, then αi ≈ γi and βj ≈ δj . To calculate
the variation by (3) − (4), we get that if Diff > 0 then Lt0 > Lt1 , which
implies that a swap makes the stretch reduced. It is worth to mention that it is
an approximate analysis. In fact, when the positions of the nodes changed, the
times each neighbor link visited are variable. In other words, those coefficients
are different, that is why not all swaps can reduce the average latency. We will
see that in our experiment.
1 CAN is an exception. Its routing is bidirectional.
2 We assume the latency between one node and itself is zero.
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2.3 Controllable Overhead

In section 2.1, we have given three guidelines to change node ID. However, we
have not given the method to control the overhead yet. The overhead of our
approach includes four aspects: (1) the probing of neighbors, (2) the probing
of random nodes, (3) exchanges of the routing tables, and (4) exchanges of
the contents. We believe that the cost (1) is limited as it can be realized as a
piggyback process when constructing the P2P system. So we just give solutions
to reduce cost of (2-4).

Adaptive Probing. Cost (2) and (3) are relative to swap times. In our basic
method, we do probing periodically at a fixed interval. However, as the system
trends to be steady, this periodic adjustment becomes costly and not necessary.
The ideal time to stop the periodic adjustment is when the system’s average
latency doesn’t change obviously. Due to the limitation of distributed systems,
we can only make decisions based on the local information. So we propose an
adaptive policy to reduce the operations of probing and swapping. From a local
view, every node lives in an environment consisting of its neighbors. If neighbors
of one node change continually, this node lives in an unstable environment. So
it will try to do probing and make swapping. Oppositely, if the node’s neighbors
do not change at a relatively long interval, we can believe that this node is
stable. To realize this idea, a parameter activity is used as the description of
node’s state and the criterion of periodic probing. At the beginning, the activity
parameter is set as an initial number. If one node makes a swap operation, it
will move to a new environment, so this parameter will increase to make probing
continue. Besides, it will also notify its neighbors to increase activity number.
As the fixed intervals pass, the activity number will be reduced. Algorithm 1
is the pseudo code of adaptive probing. Tow parameters – initial number and
threshold both have an effect on the number of probing operations. Appropriate
value of the two parameters will make the system achieve a better performance.
In our experiment, both of them are zero. The results show that this adaptive
method greatly reduce the number of the nodes’ probing and swap operations
without sacrificing the effectiveness of stretch reduction too much.

Shadow Scheme. In a real P2P system, all contents reside on different nodes.
In other words, each node owns one part of id space. After exchanging the
identifiers of nodes a and b, the contents that they owns should be exchanged
respectively. This process may be most expensive one among four aspects men-
tioned above. Inspired by Baumann et al’s work in mobile agent area [10], we
propose a shadow scheme to reduce the overhead. We view the nodes a and b
as mobile agents. After they swap their identifiers, they will not exchange the
contents immediately. Instead, both of them own their counterpart’s shadow,
which records the specific lifetime of the shadow and the address information
of their counterpart. So before the lifetime becomes zero, the content queries
will be forwarded by the counterpart to the correct destination. When the nodes
become stable and the lifetime is over, the contents will be exchanged. The value
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Algorithm 1. Adaptive probing of each node
activity = initial number
while activity ≥ threshold do

probe one node
if swap is necessary then

exchange the node ID and routing tables
activity = activity + 1
notify neighbors to increase activity

end if
activity = activity − 1
wait for an fixed interval

end while

of the lifetime is related to the state of a node which we describe above. Uti-
lizing shadow scheme, the content distribution times are reduced. Obviously, it
will take a longer path to locate the content. So it’s necessary to consider the
tradeoff between the query latency and the distribution overhead in a real P2P
application. As the content distribution is relative to specific applications, we
propose a generic scheme here and will not consider it in our experiments.

3 Performance Evaluation

3.1 Simulation Methodology

We use the GT-ITM topology generator [11] to generate transit-stub models
of the physical network. In fact, we generate two different kinds of topologies.
The first topology, ts-large has 70 transit domains, 5 transit nodes per transit
domain, 3 stub domains attached to each transit node and 2 nodes in each stub
domain. The second one, ts-small, differs from ts-large in that it has only 11
transit domains, but there are 15 nodes in each sub domain. Intuitively, ts-large
has a larger backbone and sparser edge network than ts-small. Except in the
experiment of physical topology, we always choose ts-large to represent a situa-
tion in which the overlay consists of nodes scattered in the entire Internet and
only very few nodes from the same edge network join the overlay. We also assign
latencies of 5, 20 and 100ms to stub-stub, stub-transit and transit-transit links
respectively. Then, several nodes are selected from the topology as overlay nodes,
with the node number n = {300, 600, 1200}. Chord is chosen as the platform of
our simulation because the limitation of Chord makes it unsuitable for many
mismatching solutions. We have discussed the limitation in section 1.

3.2 Effectiveness of Swap

The stretch is used to characterize the match degree of the overlay to the physical
topology. The time interval is fixed as one minute. Figure 2 shows the impact
of the TTL scale on stretch. We choose node number n = 600 and four typical
scenes of probing node. In a centric scene, we can just choose a random node as
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the probing target. In a distributed system, we use TTL = {1, 2, 4}. TTL = 1
means probing neighbors; TTL = 2 means probing neighbors’ neighbors and
TTL = 4 means probing the node half of diameter away from the original node3.
We can find that neighbors’ swap is not suitable as it can’t greatly reduce the
stretch, while other three different ways have nearly the same impact on stretch
reduction. The reason is obvious, as TTL = 1 gets only neighbor information
which is too limited. Given that random probing is not practical in a distributed
system, only when TTL ≥ 2 can achieve a good performance in a P2P system.
In order to minimize cost, TTL = 2 may be a better choice, and it will be used
in next several experiments. In figure 2, we can also discover that the stretch is
not reduced all the time, which is consistent with our approximate analysis in
section 2.2.
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Figure 3 illustrates the impact of system size. We choose n = 300, 600, 1200.
The effectiveness is reduced as the size becomes larger. This situation can be

3 As node number is 600, we suppose that the diameter d = log2 n ≈ 8.



824 T. Qiu, F. Wu, and G. Chen

explained in two different directions. First, when the system has a large size
and probing method fixes TTL as 2, the information we get is relatively limited.
Second, as we choose the nodes from the same physical network, when the overlay
becomes larger, it is closer to the physical topology. And the effectiveness will
be not so obvious.

The impact of physical topology is presented in figure 4. We have generated
two different types of topologies ts-large and ts-small by GT-ITM tools. Both of
them contain 2200 nodes. It is obvious that ts-large topology has much better
performance. In ts-large topology, only a few stub nodes attach to transit nodes.
So the probability that two stub nodes belong to different transit nodes is rela-
tively high. Accordingly, the probability that these nodes exchange is also great.
It means that two far nodes make adjustment to match the physical topology
with a high probability. This kind of swap will greatly improve the performance
of the system. As we mentioned above, ts-large topology is much like the Inter-
net, so our method will significantly improve performance in a real large-scale
system.

3.3 Dynamic Environment

Dynamism is a very important property in P2P systems. In this part, we try to
discover the impact of dynamism on our approach. Although people do several
searches about dynamism of the P2P system [12], there is not a standard model
to describe it. In our simulation, we just set a very simple dynamic environment.
There are δ percent of nodes join and δ percent of nodes leave at a time interval t.
δ = {0, 1, 5} and t = 1min. Figure 5 shows the results. It is obvious that stretch
fluctuates greatly when the system is under a dynamic situation in which 5
percent of nodes change per minute. However, we can see that nodes’ arrival
and departure may not lead the system to a poor match degree. It’s possible
that nodes’ changes have the similar effect as our swap operation which reduces
the stretch of the system. Although there is a fluctuation, our method can be
still effective in dynamic environment.

3.4 Adaptive Probing

Regardless of the distribution of the content, the largest overhead is related to
times of swapping. In section 2, we introduce an adaptive method to reduce
swapping times. Figure 6 illustrates the effect of this method. We compare two
different policies. The first one is to probe at a fixed interval, while the second one
is to probe with an additional parameter – activity. Initial number and threshold
are both zero. In this figure, x axis represents stretch and y axis represents the
swap times. One point records the swap times in one minute and the stretch value
after these swap operations. The adaptive method significantly reduces the swap
times. At the same time, it sacrifices the effectiveness of stretch reduction. The
points at the high-stretch interval of fixed method are less than adaptive one.
However, it is not as significant as the reduction of swap operation. So we choose
the adaptive method to reduce the overhead.



A Generic Approach to Make Structured P2P Systems Topology-Aware 825

0

20

40

60

80

100

120

140

160

180

2.6 2.8 3 3.2 3.4 3.6 3.8

sw
ap

 ti
m

es

stretch

fixed interval
adaptive method

Fig. 6. Tradeoff between swap and stretch

4 Related Work

There are several methods that try to solve the mismatching problem. The most
related one to our work is a method called “SAT-Match” [13]. The basic oper-
ation in this system is jump. When one node discovers several nearby nodes by
flooding, it will jump to the nearest node in the nearby area. In fact, it is one
kind of variable node ID. However, this method has several limitations. First, the
node ID space changes after jumping. So the original overlay structure is bro-
ken. Arbitrary change of ID also violates the anonymity of the P2P system. One
node which is controlled by a hacker can easily jump to a specific area. Second,
although author mentioned the impact of the dynamism, we can not find detail
evaluation in different dynamic environments. Last, with respect to the overhead,
SAT-Match didn’t give a solution to reduce the cost of the content movement.

5 Conclusion

This paper proposes a novel method to solve the mismatching problem in struc-
tured P2P systems. This method is totally protocol-independent, which can be
easily used on any P2P system based on DHT. Besides, we propose a series of
solutions to minimize the overhead cost, including adaptive probing and shadow
scheme. Our experiment has shown that node swap greatly reduces the stretch
of overlay networks, and the number of swap operations is also greatly reduced
when using adaptive probing. In the near further, we will try to combine our
method with other different solutions like proximity neighbor selection (PNS)
together to achieve better performance.

Acknowledgement. This work is supported by the China NSF grant, the
China Jiangsu Provincial NSF grant (BK2005208), the China 973 project
(2002CB312002) and TRAPOYT award of China Ministry of Education.



826 T. Qiu, F. Wu, and G. Chen

References

1. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content-
addressable network. In: Proceedings of the ACM SIGCOMM. (2001)

2. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A
scalable peer-to-peer lookup service for internet applications. In: Proceedings of
the ACM SIGCOMM. (2001)

3. Rowstron, A., Druschel, P.: Pastry: Scalable, distributed object location and rout-
ing for large-scale peer-to-peer systems. In: IFIP/ACM International Conference
on Distributed Systems Platforms (Middleware). (2001)

4. Xu, Z., Tang, C., Zhang., Z.: Building topology-aware overlays using global soft-
state. In: Proceedings of ICDCS 2003. (2003)

5. Ratnasamy, S., Handley, M., Karp, R., Shenker., S.: Topologically-aware overlay
construction and server selection. In: Proceedings of INFOCOM 2002. (2002)

6. Winter, R., Zahn, T., Schiller, J.: Random landmarking in mobile, topology-aware
peer-to-peer networks. In: Proceedings of the 10th IEEE International Workshop
on Future Trends of Distributed Computing Systems (FTDCS04). (2004)

7. Ratnasamy, S., Shenker, S., Stoica., I.: Routing algorithms for DHTs: Some open
questions. In: 1st International workshop on P2P Systems(IPTPS02). (2002)

8. Castro, M., Druschel, P., Hu, Y., Rowstron, A.: Exploiting network proximity in
distributed hash tables. In: Proceedings of FuDiCo 2002. (2002)

9. Waldvogel, M., Rinaldi., R.: Efficient topology-aware overlay network. In: Pro-
ceedings of HotNets-I. (2002)

10. Baumann, J., Hohl, F., Rothermel, K., StraBer, M.: Mole – concepts of a mobile
agent system. In: Proceedings of World Wide Web. (1996)

11. Zegura, E.W., Calvert, K.L., Bhattacharjee., S.: How to model an internetwork.
In: Proceedings of INFOCOM. (1996)

12. Ge, Z., Figueiredo, D.R., Jaiswal, S., Kurose, J., Towsley, D.: Modeling peer-to-
peer file sharing systems. In: Proceedings of IEEE INFOCOM. (2003)

13. Ren, S., Guo, L., Jiang, S., Zhang, X.: SAT-Match: A self-adaptive topology match-
ing method to achieve low lookup latency in structured P2P overlay networks. In:
Proceedings of the 18th International Parallel and Distributed Processing Sympo-
sium (IPDPS04). (2004)



A Workflow Management Mechanism for
Peer-to-Peer Computing Platforms

Hong Wang1, Hiroyuki Takizawa1, and Hiroaki Kobayashi2

1 Graduate School of Information Sciences, Tohoku University,
6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578 Japan
wangh@sc.isc.tohoku.ac.jp, tacky@isc.tohoku.ac.jp

2 Information Synergy Center, Tohoku University,
6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8578 Japan

koba@isc.tohoku.ac.jp

Abstract. This paper proposes a workflow management mechanism to
address a neglected aspect of existing P2P computing platforms - the lack
of support for various computational models. In the workflow manage-
ment mechanism, a workflow description file is used to define the work-
flow diagram of the target application. We develop a prototype system,
and evaluate it using a test program to demonstrate how the workflow
management mechanism effectively works.

1 Introduction

The aim of P2P computing [4] is to use the Internet-connected individual com-
puters to solve computing problems. Existing P2P computing platforms in-
cludes SETI@home [1], XtremWeb [2], and JNGI [3]. SETI@home currently
provides a processing rate of more than 60 Teraflops. Anderson mentioned that
SETI@home’s 1 million computers represent a tiny fraction of the approximately
150 million Internet-connected PCs, and the latter number is projected to grow
to 1 billion by 2015 [5]. Thus it has the potential to provide many Petaflops of
computing power.

Embarrassingly parallel computation is best suited for the existing P2P com-
puting platforms. However, it is only minority of all the computational problems.
Since many computational problems cannot be divided into independent tasks,
support for task dependency handling is crucial for P2P computing platforms.

To our knowledge, no workflow management mechanism exists for P2P com-
puting platforms. In the field of grid workflow management, WebFlow [6] is a
visual programming paradigm to develop high performance distributed comput-
ing applications. Bivens has defined a grid workflow specification [9] in XML.
GridFlow [7] is a two-layer workflow management system for grid computing,
including global job workflow management and local sub-workflow scheduling.
GridAnt [10] extends the vocabulary of Apache Ant to support workflow man-
agement in grid. The key issue that differentiates this work from the related
studies for grid is that the dynamic management of P2P computing is the main
concern, because the P2P computing platforms consist of much more volatile

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 827–832, 2005.
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peers. In the previous work related to grid computing, the optimized schedul-
ing/mapping of tasks to resource is mainly discussed, without considering the
unstable behavior of computing platforms.

In this paper, a workflow management mechanism with redundant task dis-
patching is proposed to solve various computational problems that can be de-
scribed with a set of tasks and their dependency. Implemented with Java and
XML, the mechanism can be applied to heterogeneous environments that are
common for P2P systems. To achieve a simple and low-overhead implementa-
tion, we develop a prototype system on one of the representative P2P platforms
- JNGI [3].

2 A P2P Computing Platform

Using the master-worker model, existing P2P computing platforms usually con-
sist of two kinds of peers: master peers and worker peers. For most existing
platforms, the master peer is a specified server. Worker peers are volatile peers.

Here, we use JNGI as an example P2P platform. JNGI is a P2P computing
platform based on JXTA [8]. A job of JNGI consists of independent tasks. A
computational job is processed by JNGI in the following four steps.

1. A job submitter submits a job to a monitor group (the portal server). The
monitor group decides the destination worker group for this job

2. A task dispatcher (master peer) in the worker group dispatches independent
tasks of the job to workers.

3. A worker sends back the results of task to the task dispatcher after the task
is processed.

4. While all results of tasks in the job are received, the master peer sends back
the results to the job submitter.

Without any process sequence control, the task dispatcher simply dispatches
an un-dispatched task in the task list when a worker peer inquires for a task.
Since existing P2P computing platforms are basically designed based on this
architecture, their applicable areas are limited to embarrassingly parallel prob-
lems.

3 Workflow Management Mechanism

To control the job’s process sequence, we propose a workflow management mech-
anism for P2P computing platforms. The functions of this mechanism include
task dependency check in workflow, task dispatch, and redundant task dispatch.
All these functions will be included in a workflow management module. With
the workflow management module, we name a task dispatcher of JNGI a job
manager.

To describe a workflow, we define a vocabulary of the workflow markup lan-
guage in XML. A workflow parser is designed to parse the workflow description
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P2P Computing Platform

Worker 
Group 1

Monitor Group
Worker Group 3

Job Manager Group 3

Workflow Management

2. Dispatch job

Job Submitter

1. Submit job

workers
3. Task Processing

4. Send Results

Fig. 1. Overview of the proposed P2P computing platform

file in the markup language into a workflow DAG (directed acyclic graph). Each
task has its own status in a workflow DAG.

As shown in Figure 1, when a job (a set of tasks and a workflow descrip-
tion file) is submitted to a monitor group, the monitor group forwards it to a
worker group. Then the task distribution of this job is controlled by the workflow
management module of the job manager with the workflow description file.

We introduce a redundant task dispatching mechanism to handle the dy-
namic nature of P2P systems. By processing the same task on different peers,
this mechanism can provide a higher probability that the dispatched tasks will
be finished without failure. When workflow is blocked, there will be some work-
ers that keep waiting for tasks. Redundant task dispatching uses these workers
for redundant execution of the dispatched tasks. Suppose the failure probability
of each worker is 1/f , then the failure probability of a task that is processed
by x workers is 1/fx. Without redundant task dispatching, a failed task is only
re-dispatched after the worker failure is noticed. Therefore, a P2P computing
platform with frequent peer failure will have a serious performance loss. Redun-
dant task dispatching can save lots of time from re-dispatching of failed tasks.
Thus the performance can be improved. On the other hand, unlimited redundant
task dispatching may result in a performance loss because too much computing
power is wasted for the processing of same task. Therefore, when the workflow
passes a blocked status, there will be many available tasks while few workers
can start processing in a short time. This situation may also results in a per-
formance loss. To have a trade-off between re-process time of failed tasks and
performance loss for redundant task dispatching, we define i as the acceptable
redundancy rate for one task. The “redundancy” value (“redundancy”≤i) of task
status records how many workers are processing this task at the same time.

The overview of the workflow management module is shown in Figure 2. The
initial status of each task is “undispatched” and “redundancy”=0. When the
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Fig. 2. Process diagram of workflow management module
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task is dispatched for the first time, the status is set to “dispatched,” and a
“redundancy” status is set to “1”. When the results of a task are received, the
workflow management module sets the status of this task to “finished.” Worker
peers inquire the job manager group for new tasks when they are idle or finish
their tasks. The workflow management module on a peer in the job manager
group checks the current job’s “undispatched” and “dispatched” tasks in the
task list, and analyzes the task dependency in the workflow DAG. If all the tasks
that the next task depends on are “finished,” the module updates the arguments
of the next task with the results of “finished” tasks following the definition in
the workflow DAG. Then the next task is dispatched to the worker. If there is
any “dispatched” task whose results are needed to launch subsequent tasks, the
workflow is blocked and redundant task dispatching mechanism is used. Status
of “dispatched” tasks is checked to find a task with the least “redundancy” value.
This task is dispatched again and the “redundancy” is incremented. If there is
no such task, which means the “dispatched” tasks already have a low failure
probability, the workflow will be blocked and the worker will wait for the next
inquiring time. When all the tasks are “finished,” the workflow management
module returns the results back to the job submitter.

4 Evaluation

We implemented a JNGI-based prototype system with the proposed mechanism
on 10 PCs. Both the monitor group and job manager group have one peer each.
These two peers are running on two PCs each equipped with an Intel Celeron
2.2GHz CPU. The worker group has eight workers. Each worker peer is a PC
with an AMD Athlon 64 3400+ CPU.

A test program for performance evaluation consists of two parts. The first
part checks large integers to find prime numbers. It is a computation-intensive
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problem. The second part simply adds the non-prime numbers together. Each
task checks and adds the same number of integers. The acceptable redundancy
rate is 2 (i=2). As the later part depends on the former one, the workflow
management is required to perform this job, even though the original JNGI
cannot execute it due to the task dependency. Accordingly, it is clear that the
workflow management can extend the applicable area of P2P computing.

The workflow description file is presented as follows:

<Workflow>
<Group id=1>
<TaskList first="1" last="n" />
<Description>Prime Checking</Description>

</Group>
<Group id=2>
<TaskList first="n+1" last="2n" />
<Dependency groupID="1" arg="1" />
<Description>Summation</Description>

</Group>
</Workflow>

Figure 3 shows all the following four possible cases of workflow DAG status.

Case 1: If the next task has no dependency, it is dispatched, and its status is
changed.

Case 2: If the tasks that the next task depends on are not “finished,” and there
is a task “a” with the status “dispatched” and “redundancy”=1, then the
workflow management module dispatches a redundant task of the task “a”
and sets the “redundancy”=2.

Case 3: If the tasks that the next task depends on are not “finished,” and “re-
dundancy” of all the “dispatched” tasks is 2, then the workflow management
module stalls the workflow.

Case 4: If all the tasks that the next task depends on are “finished,” it is
dispatched and its status is changed.

We also discuss the computational efficiency. Let N be the number of tasks
and M be the number of integers that are checked or added in one task. The
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integer range starts from 10000001. As shown in Figure 4, while M increases, the
maximum computation time per task increases and the communication time per
task does not change, therefore the speedup ratio improves. While the number
of workers is increased, we can always achieve a better performance. However, as
the computation time for prime numbers is much longer, the task computation
times of different tasks are different. Therefore the workloads of different workers
are different, and the performance does not improve linearly.

5 Conclusions

We have designed and implemented the workflow management mechanism for
P2P computing platforms. We describe how task dependency is actually de-
scribed, translated and performed in the experiment. The experimental results
indicate that this workflow management mechanism works well. For our future
work, internal message passing within worker groups will be designed and im-
plemented to extend the capability of the mechanism.
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Abstract. Today many current and emerging applications require support for 
on-line analysis of rapidly changing data streams. Limitations of traditional 
DBMSs in supporting streaming applications have been recognized, prompting 
research to augment existing technologies and build new systems to manage 
streaming data. Stream-oriented systems are inherently geographically distrib-
uted and because distribution offers scalable load management and higher 
availability, future stream processing systems will operate in a distributed  
fashion. Moreover, service-based approaches have gained considerable atten-
tion recently for supporting distributed application development in e-business 
and e-science. In this paper, we present our innovative work to build a large 
scale distributed query processing over streaming data, this system has been de-
signed as a WSRF-compliant application built on top of standard Web services 
technologies. Our distributed data stream Queries are written and evaluated 
over distributed resources discovered and accessed using emerging the WS-
Resource Framework specifications. The data stream query processor has been 
designed and implemented as a collection of cooperating services, using the fa-
cilities of the WSRF to dynamically discover, access and use computational re-
sources to support query compilation and evaluation. 

1   Introduction 

Today many applications routinely generate large quantities of data. The data often 
takes the form of a stream -- an ordered sequence of records. Traditional DBMS need 
to store the data before they can handle it. However, many application domains would 
benefit from on-line analysis and immediate indication of results. Therefore, we focus 
our attention on a new emerging DBMS technology called Data Stream Management 
Systems (DSMSs). In contrast to traditional DBMSs, DSMSs can execute continuous 
queries over continuous data streams that enter and leave the system in real-time, i.e., 
data is only stored in main memory for processing. Analysis of this data requires 
stream-processing techniques, which differ in significant ways from what current 
database query languages and statistical analysis tools support today. These applica-
tions are characterized by the need to process high-volume data streams in a timely 
and responsive fashion. It is impossible to control the order in which items arrive, nor 
is it feasible to locally store a stream in its entirety. Likewise, queries over streams 
run continuously over a period of time and incrementally return new results as new 
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data arrive. A technique for querying such data is so called continuous queries, these 
are known as long-running, continuous, standing and persistent queries [1]. Motivat-
ing applications include: 

(i) Networking traffic engineering, network monitoring and intrusion detection. 
(ii) Fraud detection and data mining in telecommunications. 
(iii) Financial monitoring, financial Tickers, clickstream analysis and personalization 

service in e-commerce.  
(iv) ensor networks, location-tracking services, fabrication line management.  

These applications have spawned a considerable and growing body of research into 
data stream processing [2], ranging from algorithms for data streams to full-fledged 
data stream systems such as Aurora and Medusa [3], STREAM [4], TelegraphCQ [5], 
Gigascope [6], Hancock [7], Niagara [8], Tangram [9, 10], Tapestry [11], Tribeca 
[12], and others. For the most part, research in data stream systems has hitherto fo-
cused on devising novel system architectures, defining query languages, and design-
ing space-efficient algorithms, and so on. Important components of systems research 
that have received less attention to date are architectural issues facing the design of 
large-scale distributed data stream query processing system.  

In this paper we focus on architectural aspect of large-scale distributed data stream 
query processing (DDSQP). A WSRF-enabled architecture of DDSQP systems com-
prising a collection of distributed Web services is presented [13,14,15]. The distrib-
uted service architecture increases the portability by isolating platform dependent 
services to appropriate sites accessible using a well-defined API, facilitates the overall 
maintenance of the system, and enables light-weight clients, which are easy to install 
and manage. Moreover, it decouples the clients from the system, allowing users to 
move, share, and access the services from different locations. 

We base DDSQP system on WSRF and build it as a Web service for the following 
two aspect reasons: on the one hand, utilization of parallel and distributed environ-
ment facilitates distributed resources dynamic, scalable sharing and coordination in 
dynamic, heterogeneous, multi-institutional environments. Specifically, (i) The vol-
ume of data produced is too large to fit in a single main-memory, and therefore sug-
gests data to be distributed among clusters of main-memories. (ii) The very high data 
flow rate requires very high performance of insert, delete and data processing opera-
tions. (iii) The Web service also provide an ideal substrate in an environment where 
different number of data streams are used over time or the source streams have vary-
ing incoming rates. (iv) The Web service allows the query optimizer to choose from 
multiple providers, and to spawn multiple copies of a query-algebraic operator to 
exploit parallelism. 

On the other hand, WSRF convention address the constructs used to enable Web 
services to access state in a consistent and interoperable manner. It identifies and 
standardizes the patterns by which state is represented and manipulated, so as to fa-
cilitate the construction and use of interoperable services.  

The remainder of this paper is structured as follows: The next section gives an 
overview of the WSRF-based distributed data stream queries system. Sections 3 de-
scribe the basic components of the system. Section 4 discusses WSRF Implementa-
tion Mechanism of system. Section 5 contains conclusions and summarizes open 
problems for future research.  
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2   System Architecture Overview  

This section describes a distributed data stream query processing framework in which 
query compilation, optimization and evaluation are viewed and implemented as invo-
cations of WSRF-compliant Web service having an association with a stateful re-
source. 

Node1
���

Query Executing Monitor client

Query Visualiser client

Query Committing client

�����

QPES

Node4
RS

Client

����� QPGS

Node5

 

Fig. 1. Distributed data stream queries WSRF-based architecture 

A Web service site is a host that can be accessed over the Internet. A WSRF-
compliant WS-Resource is an application that runs on a Web service site and can be 
remotely invoked through a well-defined interface. In this system, a Web service site 
can elect to provide services and it can also access services provided by other Web 
service sites. It serves as an internal server or client in each context respectively. Ser-
vices are usually partitioned, replicated, aggregated, and then delivered to external 
clients. The Web service site may cluster nodes when the target applications produce 
very large streams that cannot be managed through a single node. 
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The goal of the architecture design for WSRF-based DDSQP system is to propose 
a simple, flexible yet efficient query model in aggregating and replicating Web ser-
vices with frequently updated persistent data stream. The model has to be simple 
enough to shield application programmers from the complexities of data replication, 
service discovery, load balancing, failure detection and recovery. 

This DDSQP system is designed as a WSRF-compliant architecture, depicted in 
Fig. 1, consisting of several distinct Web services, for which arbitrarily many in-
stances distributed over several Web service sites may exist, and several persistent 
store repository. Stream wrapper service (SWS) wraps a great diversity of stream data 
sources. The UDDI-based service repository is used to publish existing implementa-
tions of Web services. Through the Registry service, the UQP locates a Query Plan 
Generator Service (QPGS) to which it generates the query plan of user application. 
QPGS is modular, as shown in Figure 1, compositing of dispatcher Module, Resource 
Manager Module, QoS Monitor and Load Shedding Module, dispatcher Module, 
Operator scheduler Module and query plan compiler module. 

The QPGS provides the primary interaction interfaces for the user and acts as a co-
ordinator between the underlying query compiler/optimizer engine and the Query 
Plan Executing Service (QPES) instances. The QPES, on the other hand, is used to 
execute a query sub-plan assigned to it by the QPGS. The number of QPES instances 
and their location on the distributed network is specified by the QPGS based on the 
decisions made by the query optimizer and represented as an execution schedule for 
query partitions (i.e. sub-plans). QPES instances are created and scheduled dynami-
cally, and their interaction is coordinated by the QPGS.  

3   System Components  

3.1   User Query Portal (UQP) 

The UQP is a GUI-based client, which represents the entry point of the system for a 
user. It normally resides on the user’s local machine. Its main purpose is to submit, 
control, and monitor distributed data stream queries plan execution on the target ma-
chine, and to visualize query processing performance and output data. The UQP is the 
client part of WSRF-based distributed data stream queries system. The UQP consists 
of three client components: Query Committing client (QMC), Query Executing Moni-
tor client (QEMC), and Query Visualiser client (QVC). UQP supports a declarative 
query language using an extended version of SQL. 

3.2   Registry Service (RS)  

All Web services register with a Registry Service, thus making themselves publicly 
available. The Registry service is a persistent service which maintains an updated list 
of endpoint reference that contain URLs to the WSDL files of registered Web service 
instances and Reference Properties components that may contain an XML serializa-
tion of a stateful resource identifier, as understood by the Web service addressed by 
the endpoint reference.  
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We use the UDDI-based Service Repository to store (static) information about 
Web service implementations only, and not about Web service instances. Instead, 
Web service instances are published within this registry service. 

There can be an arbitrary number of RS services in the system. A WS-Resource 
factory may convey the reference to the new WS-Resource through means such as 
placing the WS-Resource-qualified endpoint reference into a registry for later re-
trieval.  

RS follows the lease mechanism. The RS grants leases to services for a certain pe-
riod of time. If a service does not, renew its lease before the lease expires, the RS 
deletes the service from its list. Leasing is a very effective and efficient way to cope 
with network failures and to ensure network resilience. WS-Notification mechanism 
is used to inform the clients (i.e. the UQP) about new services that registered with the 
RS and about existing services that failed to renew their lease. Thereby, clients are 
always provided with a dynamically updated view of the Web service environment. 

The registry would range over a Virtual Organization (VO) known to the client, 
and would be identified by a WS-Addressing endpoint reference. The UQP imple-
mented for DDSQP system provides a dialog where it is possible to enter the WS-
Addressing qualified endpoint references of a registry and inspect its content. A Web 
service registers itself with at least one, but potentially multiple, registries when it is 
initialized. 

The new operator, schema, or stream registers entity-name in RS. To find the defi-
nition of an entity given its name, or the location where a data stream is available or a 
piece of a query is executing, we define two types of catalogs of UDDI service reposi-
tory in our distributed infrastructure: intra-VO and inter-VO catalogs. Within a VO, 
the catalog contains definitions of operators, schemas, streams, and queries. For 
streams, the catalog also holds information on the physical locations where entities 
are being made available. Indeed, streams may be partitioned across several nodes for 
load balancing. For queries, the catalog holds information on the content and location 
of each running piece of the query. Inter-VO catalogs includes the list, description, 
and current location of pieces of queries running at each service instance that collabo-
rate and offer services that cross their boundaries, this catalogs must be made globally 
available. The catalog may be centralized or distributed. Each participant that pro-
vides query capabilities holds a part of the shared catalog. 

3.3   Query Plan Generator Service (QPGS)  

The QPGS resides on the S-site and uses the query request document committed by 
client via UQP to generate appropriate QPGS instances. The distributed query execu-
tion plans are generated on the local S-site. Query plans execution can be copied to a 
target E-site or deleted if no longer needed. 

Our QPGS is modular. There are five types of modules: 

Dispatcher Module: the dispatcher generates the dispatcher’s local view of the load 
situation of the service hosts by means of Resource Manager Module. The dispatcher 
looks for the service instance running on the least loaded service host and forwards 
the query operator message to it. A dispatcher service can act as a proxy for arbitrary 
services and a general coordination of DDSQP system. Using this dispatcher service, 
it is possible to enhance many existing services or develop new services with load 
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balancing and high availability features without having to consider these features 
during their development. All kinds of services are supported as long as concurrency 
control mechanisms are used, e.g. by using a database as back-end. The concurrency 
control mechanisms ensure a consistent view and consistent modifications of the data 
shared between all service instances. The standard operation mode of the dispatcher  
is forward, other modes are buffer or reject.  

Resource Manager Module: The modules can measure the average CPU, disc I/O 
and memory load on service hosts and on hosts running database management sys-
tems and collect to the load situation archive which stores aggregated load informa-
tion. It also does provide a high-level Index Service, to enable collecting, caching and 
aggregating of computational resource metadata.  

QoS Monitor and Load Shedding Module: A QoS specification is a function of 
some performance, result precision, or reliability related characteristic of an output 
stream that produces a utility value to the corresponding application. The operational 
goal of DDSQP is to maximize the perceived aggregate QoS delivered to the client 
applications. A user can specify quality constraints on the query execution itself to 
fulfill QoS-aware query execution algorithms. These constraints can be separated in 
three different dimensions: result, cost and time. QoS constraints will be treated dur-
ing all the phases of query processing. DDSQP system must constantly monitor the 
QoS of output tuples, this information is important since it drives the QPGS in its 
decision-making, and it also informs the Load Shedder when and where it is appropri-
ate to discard tuples in order to shed load. Load shedding is one technique employed 
by DDSQP system to improve the QoS delivered to applications.  

Query Plan Compiler Module: This module follows the two-step optimization para-
digm, which is popular for both parallel and distributed database systems [16]. In the 
first phase, the single node optimizer produces a query plan as if it was to run on one 
processor. In the second phase, the sequential query plan is divided into several parti-
tions i.e. subplans  which are allocated QPESs by the QPGS. 

Operator Scheduler Module: The module encapsulates adaptive flow control, tuple 
routing and inter-service communication. Operator level load balancing is provided 
via online repartitioning of the input stream and the corresponding internal state of 
operators and employs buffering and reordering mechanisms to smoothly repartition 
operator state across service instances with minimal impact to ongoing processing. It 
also fulfill fault-tolerance for dataflows by leveraging these state movement mecha-
nisms to replicate an operator's internal state and in-flight data. Operator scheduler 
Module decides whether or not and how partition and schedule operator and data 
when executed on multiple service instances and whether data needs to be exchanged 
among the service instances. Currently, data distribution policy supported by DDSQP 
system includes round rubin, hash distribution and range partitioning. The Operator 
can be composed into multi-step dataflows, exchanging records via this module that 
can support communication via either asynchronous push or synchronous   pull mo-
dalities. This module also supports to constructs a query plan that contains adaptive 
routing function, which are able to re-optimize the query plan on a continuous basis 
while a query is running and adaptively decide how to route data to other query opera-
tors on a tuple-by-tuple basis. Moreover, these modules can serve to partition-
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ing/replication of dataflows across multiple service instances and reconsider and re-
vise these decisions while a query is in flight. 

The QPGS service type implements two port types from DataService (DS) port-
Type and DataTransport (DT) portType. To these, it adds a Distributed Query (DQ) 
port type that allows source schemas to be imported. Note that this provides a context 
over which global models can be specified. The Distributed Query (DQ) port type that 
is extended from OGSI-DAI specification is composed of five portType, i.e. Dis-
patcher portType, Resource Manager portType, QoS Monitor and Load Shedding 
portType, Query plan compiler portType, Operator scheduler portType, which is 
respectively associated with one stateful resource property document that act as a 
view on, or projection of  the actual state of WS-Resouce of every module. Client can 
use QueryResourceProperties, QueryResourcePropertiesResponse, GetMultiple Re-
source Properties, SetResourcePropertiesResponse operations to query and modify via 
Web service message exchange[14,15]. 

DS portType allows the QPGS to import logical and physical schemas of the par-
ticipating data sources as well as information about computational resources into the 
resource property document used by the query compiler and optimizer.  

3.4   Query Plan Executing Service (QPES)  

Each QPES instance is an execution node and is dynamically created by the QPGS on 
the node it is scheduled to run. The QPES execute query plan on the target machine 
called E-site (Which could coincide with the S-site). The QPES enables compilation 
and execution control of query plan. Upon completion, the QPES optionally stores the 
query result’s output into the Persistent Data Repository (PDR) or dispatch the partial 
results to other QPESs. UQP can access the PDR concurrently for post-mortem per-
formance analysis, load shedding and visualization. Evaluator functionality is exposed 
via QPES instances that implement the DS and DT port types.  

The QPGS receives the request and compiles it into a distributed query plan, each 
partition of which is assigned to one or more execution nodes. Each execution node 
corresponds to a QPES instance, which is created by the QPGS, Each plan partition to 
its designated QPES instance. Upon receiving its plan partitions, each QPES instance 
initiates its evaluation The overall behavior of a QPES instance is a data flow compu-
tation using an iterator model of Graefe [17,18], with each operator implementing an 
{open(), next(),close()}interface.  

Note that each operator is implemented as a function, instead of a thread due to the 
fact that (i) the context switch cost from one thread to another is much higher than a 
function call; (ii) it is much easier to control a function through scheduling and to 
manage resource for a function than a thread.  

3.5   Stream Wrapper Service (SWS) 

A data stream is a continuous sequence of attribute-value tuples that all conform to 
some pre-defined schema (sequence of typed attributes). Operators are functions that 
transform one or more input streams into one or more output streams. A loop-free, 
directed graph of operators is called a query network and all queries are continuous, 
because they continuously processes tuples pushed on their input streams. 
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A stream data source can be associated with many SWSs. SWSs is responsible for 
interfacing with external data sources and act as wrappers, such as an HTML/XML 
screen scraper, a proxy for fetching data from popular peer-to-peer networks, and a 
local file reader. SWSs may also cache data locally to hide network delays. In addi-
tion more sophisticated function can be built that can also send messages back to the 
network. For example a sensor proxy may send control messages to adjust the sample 
rate of a sensor network based on the queries that are currently being processed. Simi-
larly, SWSs are also able to pass bindings into remote websites to perform lookups. 

4   WSRF Implementation Mechanism  

When a user sends a request message to a Web service that WS-Addressing-related 
conventions used in the implied resource pattern. An endpoint reference is returned to 
the requestor in response to some request sent to the Web service. This processing of 
the request resulted in the creation of the stateful resource that has a WS-Resource-
qualified endpoint reference which contains an XML serialization of a stateful re-
source identifier. Specifically, the Web service represents an explicit WS-Resource 
factory.  

In WSRF, a specific resource’s state may be implemented as an actual XML 
document that is stored in memory, in the file system, in a database, or in some XML 
Repository, also as active programmatic entity abstraction. In this abstraction, the 
WS-Resource can be thought of as a piece of code being executed by a thread of con-
trol separate from the web service. The execution context provided to the web service 
allows the web service to communicate with this code, parameterize it, access its state 
or invoke functions that it exposes. This WS-Resource abstraction also allows legacy 
code to be used as a WS-Resource. The five modules of QPGS use this resource’ state 
characteristic to fulfill functionality described in 4.3.   

In the implementation of our system, Elements of WS-Resource properties docu-
ment of SWS, QPES, RS, QPGS and QPES serves two purposes in our system. First, 
some WS-Resource properties elements are used to dynamically control the behavior 
of service instance in DDSQP system. For example, the amount of memory used by a 
QPES instance can be controlled by updating the value of Memory element in its WS-
Resource properties document of Resource Manager Module. Second, some WS-
Resource properties elements are used to collect statistics about service instance be-
havior. For example, the number of tuples that have passed through a queue q stored 
in SWS. These statistics are available for resource management and for user-level 
system monitoring. It is a simple matter to add new WS-Resource properties elements 
to WS-Resource properties document as needs arise, offering convenient extensibility. 

Note that WSDL 1.2 has introduced the notion of multiple portType extension. 
Web services allow us to construct a new interface from several existing interfaces via 
a process of composition. It is absolutely essential for our system implementation. 
Use it, We may aggregate the WS Resource properties defined in the WS-Resource 
properties documents of the various constituent portTypes to yield the final, complete 
WS-Resource property document declared with the final composed portType. This 
WS-Resource properties document composition may be accomplished by adding 
additional XML element declarations. WS-Resource properties document of the 
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QPGS follows this methods to construct its assembled interface from DS, DT, DQ, 
Dispatcher portType, Resource Manager portType, QoS Monitor and Load Shedding 
portType, Query plan compiler portType, Operator scheduler portType. 

DDSQP system also support normal operations of WSRF on resource properties, 
such as QueryResourceProperties, QueryResourcePropertiesResponse, SetResource 
PropertiesResponse,GetMultipleResourceProperties, GetMultipleResourceProperties 
Response, WS-information operation and WS-ResourceLifetime resource operaties 
operations[14,15]. 

The data sources have to be identified by the SWSs WS-Addressing endpoint ref-
erence that wraps those data sources. The query service has to be identified by URLs, 
which point to the WSDL documents describing those services.  Both the endpoint 
reference and the WSDL URLs have to be structured as a list inside an XML docu-
ment. 

The DS allows clients to access information about its state, including information 
on the data resources to which it provides access, and the operations upon these data 
resources, which it supports. This access is provided via the DS’s GetMultipleResour-
ceProperties operation. The DS supports a document-oriented interface for database 
requests in which clients to specify operations use DS Perform documents. These 
documents contain the statement text and delivery instructions. 

 

Fig. 2. An overview of interactions of query implementation process 

The QPGS allows clients to access information about its state, including informa-
tion on the data resources to which it provides access, and the operations (activities) 
upon these data resources, which it supports. This access is provided in the form of 
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WS Resource Properties document via the DataService::FindServiceData operation. 
Since QPGS implements DS port type most of the WS Resource Properties elements 
defined by that port type are supported. 

Fig.2 illustrates a walkthrough of the interactions that take place when client sub-
mit a query to DDSQP system. The Solid arrows labeled by sequence numbers denote 
interactions that take place. 

We are assumed that all persistent service in DDSQP system has registered them-
selves to registry service repository via registry service. The interactions process is 
described as follow: 

Client locates the QPGS by querying the Registry service repository. In the re-
sponse message, client obtains the endpoint reference content of the QPGS and SWS. 
Message that client send a query also causes to create QPGS and SWS in-
stance(Interaction 1).Then the client calls the importSchema operation on the DQ port 
type of QPGS instance and provides a list of resources (interaction 2). The QPGS then 
interacts with the specified DS portType of SWS to obtain the schemas of the datab-
ses they wrap (interactions 3). The QPGS also creates DS instances so that the QPES 
can access data during query execution. The QPGS accepts query submissions in the 
form of SQL queries via the DS port type of QPGS instance (interactions 4). The 
query is embedded within an XML document called a DS perform Resource Proper-
ties document that is used to compile and optimize into a distributed query execution 
plan, whose partitions are scheduled for execution at different QPESs. The perform 
Resource Properties document can be configured such that the results are delivered 
synchronously to the client, or streamed another service instance. The QPGS then 
uses this information to create QPES instances on their designated execution nodes 
(interaction 5). Next, the QPGS hands over to each QPES the sub-plan assigned to it 
(interaction 6). This initiates the query execution process whereby some of the QPES 
instances interact with other SWS instances to obtain data (interaction 7). Eventually, 
the results start to propagate across QPES instances and, ultimately, reach the client as 
a response document (interaction 8). 

5   Conclusions and Future Work 

The WSRF specifications represent the merging of the web service, show consider-
able promise as an infrastructure over which distributed applications in e-business and 
e-science can be developed. This paper present our ongoing work that seeks to con-
tribute to the corpus of work on higher-level services by demonstrating how tech-
niques from distributed data stream query processing can be deployed in a service-
based sites. There are a number of concrete contributions to report on at this point: 

(i)Our distributed data stream Queries are written and evaluated over distributed re-
sources discovered and accessed using emerging the WS-Resource Framework speci-
fications.  
(ii)The data stream query processor has been designed and implemented as a collec-
tion of cooperating services, using the facilities of the WSRF to dynamically dis-
cover, access and use computational resources to support query compilation and 
evaluation. 
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We plan to extend our DDSQP system in a number of areas. Firstly, extend our 
system to operate with resources grid-enabled using Globus 4.0[19] via cross-
platform web services interface. Secondly, we are working on support for caching 
with communication between query plan execution. Thirdly, we plan to support util-
ity-based resource allocation policies driven by economic, quality of services, and 
service-level agreements. Fourthly, we are investigating strategies for supporting to 
minimal transaction support. Finally, we plan to provide d topic hierarchy approach 
for publish/subscribe-based notification, which is a common model followed in large-
scale, distributed event management. 
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Abstract. Many studies have shown that Zipf’s law governs many features of 
the WWW and can be used to describe the popularity of the Web objects. Based 
upon Zipf’s law, we analyze quantitatively the relationship between the hit ratio 
and the size of Web cache, present approximate formulae to calculate the size 
of Web cache when the hit ratio is given under the condition of basic Zipf’s law 
and Zipf-like law, determine the critical value n in the top-n prefetching algo-
rithm by studying the effect of parameter  on the hot Web documents. Zipf’s 
law plays an important role in solving the Internet latency, and holds the prom-
ise of more effective design and use of Web cache resources. 

Keywords: Zipf’s law, Web Cache, Web Prefetching, Top-N. 

1   Introduction 

The WWW latency problem is a critical problem in Quality of Service (QoS) of net-
work. It depends on several factors such as network bandwidth, propagation time, 
queuing latency and speed of server and client computers. Currently, Web caching 
and prefetching are the two main solutions to reduce the Web latency and to improve 
QoS. The hit ratio of caching is usually below 50%, while prefetching can improve it 
up to 60% or even more. It is certain that there are close relationships between the 
characteristics of Web access pattern, especially the distribution of Web objects ac-
cess popularity and the caching and prefetching policy the Web system adopted. 
Zipf’s law has been proven that it can be employed to describe the phenomena [1][3]. 

Recent studies [2][3][4] have shown that Zipf’s law (basic Zipf’s law) and Zipf-
like law govern many features of the WWW such as Web objects access distribution, 
the number of pages within a site, the number of links to a page, the number of visits 
to a site, the number of people in the Usenet discussion group, the access pattern in 
VOD system. Some studies, for example, the work of Glassman’s [2] where Zipf’s 
law was first employed to describe the Web object access distribution argued that 
Web access pattern satisfies Zipf’s law quite well, but more studies such as Breslau 
[3] gave the evidence that Web access pattern follows Zipf-like law. How to make use 
of the law has been discussed these recent years [5][6][7][8], but most of which are 
based on the Zipf’s law with one parameter or two parameters with fixed  [7].  
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The modeling method above has some limitations due to the influence of the diver-
sity of a group of users’ surfing interests on parameter . This paper considers the 
general form of the Zipf’s law. In Web caching research area, one of the key points in 
designing Web cache systems is to analyze the close relationship between the hit ratio 
and the size of Web cache quantitatively. In Web prefetching, it is important to study 
the attributes of hot Web objects in Web prefetching algorithms and how to determine 
the critical value n in the top-n prefetching approach is the essence of the algorithm, 
which is still under discussion to our knowledge. These motivate the problems solved 
herein. 

The rest of this paper is organized as follows. Section 2 introduces the backgrounds 
of Zipf’s law. Section 3 discusses the relationship between the size and the hit ratio of 
the Web cache, and gives the method to calculate the sizes of the caches required to 
achieve high cache hit ratio under the condition of basic Zipf’s law and Zipf-like law. 
Section 4 studies the effect of parameter  on the hot Web documents, and determines 
the critical value n in the top-n prefetching algorithm. Section 5 contains the summary 
and conclusions. 

2   Backgrounds 

Zipf’s law was originally applied to the relationship between words in a text and their 
frequency of use. The probability of occurrence of words or other items starts high 
and tapers off. Thus, a few occur very often while many others occur rarely. The 
frequency Pi of the i'th most frequent item satisfies the formula below: 

i

C
Pi =  (1) 

where C is a constant. Formula (1) is called basic Zipf’s law or Zipf’s law with one 
parameter. At most circumstances, Zipf’s law is usually used to refer to the basic law. 
Apparently Zipf’s law predicts that the probability of access for an object is a function 
of its popularity.  

A more generalized form of Zipf’s law may be stated mathematically as:  

ai
i

C
P =  (2) 

where C is also a constant ,  a positive parameter and 10 ≤< α . Formula (2) can be 
called Zipf-like law or Zipf’s law with two parameters.  It’s in the form of power law. 
Obviously basic Zipf’s law is the special form of Zipf-like law. 

Considering the facts that Internet object requests follow a Zipf-like distribution, 
this paper assumes that the client requests Req is a series of independent events and 

>=< |Re|10 ,.......,Re qRRRq  where |Req| is the length of Req.  

Let N stand for a set of N possible objects such as Web pages. The popularity of a 
Web object can be measured , and refers to the access probability of the object, and 
for any object Oi, i represents the i'th popularity. S is a set of N objects, where 
S={Oi|1<=i<=N}. It will be accessed by a group of users during a time interval ti. The 
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time interval of the Web objects is long enough, which will be described in the defini-

tion of stability below. The harmonic number of order n of  is defined as  )(nHα . 

Most of the reported estimates of lie in the range between 0.6 and 1.0. Studies 
[3][4] have revealed that the value of parameter  is ranged between 0.75 and 0.85 for 
the Web servers, 0.64 and 0.83 for the Web proxies.  

Definition 1. The Web object popularity model can be set up based on the redefini-
tion of the Zipf’s law as follows: 

ai
i

C
P = ]1,5.0[∈  (3) 

where the meaning of parameter C and i are the same as in (2), Pi is the probability of 
the i'th Web object Oi. 

3   Web Cache Size and Web Caching Hit Ratio 

The harmonic number of order n of  can be written as: 
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If 1≤α , while ∞→n , the harmonic series does not converge. Actually the sum 

is the Riemann zeta function. When ),1[ ∞∈n , we can calculate the approximate 

value of )(nHα  as follows: 
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Since the sum of all probabilities is equal to 1, then:  
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Thus C can be calculated as: 

1

1

1
−

=

=
N

i
ai

C α
α
−

−≈
1

1

N
, 1≠α  (7) 

Let (k, ) be the cumulative probability of the k most popular Web objects, then 

(k, )= )(
1
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i
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So the number of accesses of the k most popular objects O1, O2,O3 …Ok  can be 
computed as follows. As any object Oj, 1 i N, will be accessed Pi×NW times (where 
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NW is the number of accesses and large enough), the total number of accesses to the k 
most popular Web objects will be: 

==

×=×
k

i
iW

k

i
iW PNPN

11

)(k,αΦ×= WN  (9) 

If the system caches the k most popular objects, then it is likely to get a high hit ra-
tio. Considering the ideal situation when the cache is large enough, if the k most 
popular objects are cached, then the cache hit ratio is: 

h= =
×

=

W

k

i
iW

N

PN
1 )(k,αΦ  

(10) 

For different value of , There are two typical cases: 

Case 1: If 1≠α , the situation is corresponding to the Zipf-like distribution. From 
formula (8) and (10), under the assumption of a given hit ratio h, the number of ob-
jects in the cache k can be expressed as: 

α−×= 1

1

hNk  
(11) 

Case 2: If 1=α , corresponding to the basic Zipf distribution, then, 

nnH nn lnln ≈++= εγ  (12) 

where γ  is the Euler’s constant 0.5772156649…, when n is large enough, 

0lim =
∞→ n

n
ε . 

Constant C can be calculated as the following equation: 

1

1

1

1 −
−

=

== n

N

i

H
i

C  (13) 

Thus, the basic Zipf’s law can be written as: 

Pi=
i

C
=

iNiH n ×
≈

× ln

11
 (14) 

And formula (8) can be changed to the following form: 

(k,1)=
N

k
k
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i H

H
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i

C =×=
=1 N

k

ln

ln≈  (15) 

From formula (10) and (15), the number of objects k in the cache, under the as-
sumption of a given hit ratio h and the basic Zipf’s law, can be calculated as: 
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e
Nh

N kHhk
ln

ln
×≈×=  (16) 

(11) and (16) reveal the relationship between the size and the hit ratio of the Web 
cache under the condition of the basic Zipf’s law ( 1=α ) and Zipf-like ( 1≠α ) law. 

4   The Parameter  and Hot Web Objects 

Now let’s turn to the study of the impact of  on the hot Web objects. Since 1<
N

k
, 

formula (8) shows the close relationship between (k, ) and : The larger parameter  
is, the higher (k, ) will be. Thus comes to the conclusion: A larger  increases 

(k, ), which means more requests are concentrated on a few hot Web objects such 
as Web pages. 

Furthermore, Formula (3) implies: if i=1, P1=C, C is actually the probability of the 
first Web object; if i=2, comparing P1 and P2 ,we can find that P1 and P2 increase as  
increases ,and P1 increases quicker than P2; P2 and P3 have the same property. But 
when i goes up to some extent, Pi will increase incipiently and then decrease after-
wards along with , as shown in Figure 1. Assuming n is the critical point, now we 
can determine the critical value n in a mathematical analysis method. 

Calculate the one order derivative of formula (3), we have: 
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Let the above expression equal to 0, then 
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Fig. 1. Diagram of Pi versus when (a)N=1000, i=100; (b)N=5000, i=300; (c)N=10000, i=500

Figure 2 shows that n is a function of N and in terms of formula (20). Each curve 
refers to the critical n over N with a different . when  goes up , n goes down; when 

 goes down, n goes up. They develop in an opposite way. 
Among the Web prefetching algorithms, top-10 approach is an effective way [10]. 

The algorithm predicts the 10 most popular Web documents and stores them in the 
local Web cache. If N is relatively big, based upon the analysis above, the hit ratio of 
the Web cache will be quite low. For instance, if N=10000, even if a quite high value 
of , say 0.9 is used, it’s difficult for the hit ratio of top-10 exceeding 40%. In con-
trast, if we modify top-10 approach to top-n approach, where the value of n is deter-
mined by formula (20), since n is a critical value and according to the principle of 
locality, the system can enhance the hit ratio to a relative high degree if the top-n 
popular Web objects are cached. Under the same circumstance, when N=10000, 

=0.9, the ideal hit ratio of top-n algorithm can reach 66% approximately. Table 1 
shows the N, n and (k, ) relationship when =0.9. 
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Apparently, the theoretical result discussed above can be used to guide the design 
of simple and effective top-n prefetching algorithm.  
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Fig. 2. Diagram of n versus N based on formula (20) 

Table 1. n and (k, ) over N( =0.9) 

N 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 

n 38 58 76 91 105 118 131 142 154 164 

(k, ) 72% 70% 69% 68% 68% 68% 67% 67% 67% 66% 

5   Conclusions 

One of the most important problems in the application of Web caching is how to 
manage Web cache efficiently, studying the Web access characteristics is the founda-
tion of managing Web cache efficiently and also plays an important role in the design 
of Web site. Zipf’s law has been proven that it can be used to describe the popularity 
of the Web objects. 

Based on the Zipf’s law, this paper analyzes quantitatively and discusses in two as-
pects: (1) the relationship between the hit ratio and the Web cache size, where ap-
proximate calculation formulae are presented. (2) the effect of parameter  on the hot 
Web documents where the value n in top-n algorithm is determined. 

The effective use of Zipf’s law will be an important component of effective Web 
caching and Web prefetching. Zipf’s law holds the promise of more effective design 
and use of Web cache resources. 
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Abstract. Heterogeneity of Web objects is the important causes of the decrease 
the performance of web caching algorithms. To increase the throughput of web 
caching process and to improve service availability, we may consider 
heterogeneity of web object adaptively. In this study, we proposed the new 
web-caching algorithm. A heterogeneity variation of an object can be reduced 
as the proposed method dividedly managing. Web objects and a cache scope 
with heterogeneity, and it is adaptively reflecting a variation of object reference 
characteristics with the flowing of time. In the experiments, we verified that the 
performance of the proposed method was more improved than existing 
algorithms through the two experiment models, which considered heterogeneity 
of an object.  

1   Introduction  

With the progress of network technology and advancement of production technology 
of digital contents, the heterogeneity of Web objects has gradually increased and has 
gradually had many influences to Web efficiency [1,2]. The heterogeneity increase of 
objects more frequently substitutes Web objects, but traditional substitute techniques 
cannot reflect enough these characteristics. Also, the reference locality [5,6] and other 
reference characteristics vary depending on the flow of time, and are major factors 
decreasing the performance of previous caching techniques [3,4]. This study proposed 
Adaptive Caching Algorithm with Size Heterogeneity, which is a Web caching 
technique that adaptively reflects the heterogeneity of Web objects. The proposed 
method approached Web caching problems as follows.  

• The heterogeneity of Web objects has a close relationship with size variation, and 
the identification of objects according to heterogeneity is able to divide objects 
according to object size.  

• The SIZE technique and LRUMIN algorithm can decrease the cases in which a 
big size object eliminates many small size objects from the storage domain.  
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• By managing objects by unit size, the variation of object size in each storage 
domain can be decreased compared to management by one unit. We can reduce the 
number of small size objects needed to substitute a big size object with the decrease 
of size variation.  

• The reference characteristics of objects is very variable, and the variation of 
heterogeneity also is variable. An adaptive caching technique needs to reflect variable 
reference characteristics.  

So, to increase the throughput of caching process and to improve service 
availability, we may consider heterogeneity of web object adaptively. Also, to 
evaluate the performance, this study presented two kinds of object use models which 
reflected the heterogeneity of objects: it analyzed the hitting ratio and response time 
of objects, and the profit ratio by comparing a developed substitute technique with 
pervious substitute techniques (LRU, LRUMIN, SIZE). By these experimental results, 
the developed substitute technique could confirm a greater improvement of 
performance than the previous substitute techniques.  

2   Proposed Method 

We divide the storage space of a Web cache into two kinds of domain according to 
object size. Then the following points are considered:  

• It is best to store web objects as often as possible in a Web cache and to save 
small-sized web objects in the cache with this perspective.  

• As above research, the replacement of a big-sized object generates the 
replacement of many small-sized ones at same time. This largely decreases the 
performance of a cache. The absence of a cache for a big-sized object highly increases 
network traffic and reduces the performance of a system. Finally, to save a big-sized 
object in a cache is better with respect to the network.  

According to the analysis of web object reference characteristics in prior research, 
we can identify a large amount of difference between the total transmission quantity 
and the number of frequency references based on a 10K size object. Therefore, 
ACASH manages web objects by dividing LARGE (over 10K in object size) from 
SMALL (below 10K in object size). Then, the reference characteristics of web objects 
gain the adaptability according to time flow by managing the division rate of each 
available cache domain. If there is an object requested by a client, a cache manager 
checks the existence of the object in the division domain constituted by object size. 
Generating a cache hit, it thereby provides the object service for a client request, and 
the cache manager updates the used time record for which this object receives a high 
priority in a LRUMIN replacement. (See Figure 1)  

After generating a cache miss, the cache manager receives the transmission of the 
object by requesting service from the URL Internet server that generated the cache 
miss. The transmitted object then divides the object on the basis of object size. The 
cache manager then checks the storage space to save this object in the cache domain 
in the proper object level. If there is space to save it, the object is stored in the cache, 
and if there is no space to save it, the object is assigned to free space by LRUMIN and 
is saved in the cache. The web object saved in each space level can be placed between 
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same level objects, and high priority is assigned by saving the time record of the 
newly stored object. At this time, because the proposed method manages the storage 
space of object by dividing object size into SMALL and LARGE, it has a relatively 
smaller variation of web object size compared with LRU, LRUMIN and SIZE. 
Therefore, compared with the previous algorithm, the number of small-sized objects 
generated by a big size object can be reduced. 
 

 

Fig. 1. Flow Chart 

 
Also, the proposed method adaptively reflects change according to the reference 

characteristics time of a web object. In order to do this, we use Cache Adaptor as 
follows in Figure 2.  

1) Each domain is divided into a lightly loaded state, lightly overloaded state, and 
an overloaded state. The basis rate of a load state (SMALL and LARGE domains) 
reflects the variation of object size, these difference are presented in Figure 2.  

2) The load state of each domain increases according to the reference object for 
each division domain. This is first divided into 5:5.  



856 Y.J. Na, I.S. Ko, and G.H. Han 

3) According to the time flow, each divided ADAPTOR load state is changed by 
reflecting the reference characteristics of an object. If the load state of a domain 
arrives at an overloaded state, ADAPTOR checks the load state of different domain.  

3-1) If the load state of other domains is smaller than the overloaded state, the total 
cache division rate for overload state is increased by 5%.  

3-2) If the load state of another domain is in a slightly overload state; the total 
cache division rate operates without an adjustment to the division rate.  

4) The rate of one domain cannot be over 70% in a division rate adjustment. In 
other words, the maximum rate of division is 7:3 or 3:7.  

 

 

Fig. 2. Cache Adaptor Load Balancing  

3   Experiments and Analysis 

We established an experimental model that has two kinds of object reference 
characteristics, as in Table 1, to evaluate the performance of the proposed method. 
Experimental model 1 has a generally small variation in the object and many small-
sized object references. Experimental model 2 has an almost small variation in the 
object and many big-sized object references. In these experiments, we measured the 
object-hit ratio, the average object-hit ratio, and the response time, and evaluated 
them by comparing the proposed algorithm with the LRU, LRUMIN and SIZE of 
previous algorithm.  

To reflect the physical environment of the network, we have to consider factors 
influencing traffic. Of various factors influencing traffic, object size is a factor of the 
objects themselves. Hence, we can reflect the size factor of web object. An average 
object size hit ratio in equation (1) reflects the factor of object size to object-hit ratio. 
An average object-hit ratio indicates an average value of the object size and object-hit 
ratio of the requested object.  
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OBreq(i) : the requested object  
SOreq(i) : size of the requested object  
OBhit(i) : the hit object  
OBhit(i) : size of the hit object  
 
In light of the experiment results of the object-hit ratio, MODEL 1 resulted in more 

of a decrease than did the previous algorithm in the object hit-ratio. This is because 
the object characteristics of MODEL 1 generate frequent object requests for small-
sized objects, and the size decrease in the small domain due to the division of large 
domain is why the new algorithm is better than was the previous algorithm not using 
the division domain. In the experiment we considered object size as Figure 3, and the 
new algorithm indicates an average better performance improvement of 15% against 
the previous algorithm due to the increase in the object-hit ratio for big-sized objects.  

 

Table 1. Characteristics of Experimental Model 

Division Reference Characteristics Variation 

MODEL1  Includes a high quantity of text object small 

MODEL2  High ratio of big-sized objects such as MPEG large 

 

The object-hit ratio for MODEL 2 has more of an increase than it does for MODEL 
1. This is because the average value of the object-hit ratio is raised by many requests 
for big-sized objects. However, we can ascertain that the object-hit ratio has little 
decrease or is much the same as the previous algorithm for the same reasons as the 
experiment results for MODEL 1. The new algorithm indicates an average 30% more 
than the previous algorithms do, as per the experiment results in Figure 4 showing the 
improvement of the object-hit ratio for big-sized objects. The difference however of 
the object hit ratio between the proposed method and the previous algorithms will 
decrease with the increase in use of a cache exclusive server and cache capacity.  

   

Fig. 3. Object Size Hit Ratio in MODEL1 
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Fig. 4. Object Size Hit Ratio in MODEL2  

4   Conclusion  

The proposed method reflected this heterogeneity based on object reference 
characteristics and indicated user reference characteristics within the flow of time. 
According to the experiment results, the proposed method verified the improvement 
of performance in the scale in which considered object size for the previous 
replacement algorithms is considered. The proposed method, as proposed by this 
study, is a replacement algorithm reflecting object reference characteristics based on a 
key. In future research, an algorithm reflecting the transmission expense on the 
network and the heterogeneity of web objects need to be developed by studying the 
mixed form algorithm based on key and expense.  
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Abstract. Because of the limited bandwidth, wireless communication in mobile 
environments is much more expensive than the communication cost in wired 
network. Thus, to save the cost of wireless communication, during the process 
of wireless Web page access, mobile unit usually prefetches some Web pages 
into its local cache and then disconnect itself from the network, so that updates 
are performed in its local cache and propagated back to Web server upon re-
connection again. In this paper, after discussing the design rationale of a new 
Web page access mechanism, the performance of this mechanism is analyzed 
theoretically and experimentally. The results show that the efficiency of update 
propagation is improved and the burden of Web server is decreased. 

1   Introduction 

The rapidly expanding technology of cellular communication, wireless LANs, and 
satellite services will make information accessible anywhere and at any time [1]. 
People equipped with mobile devices can access Web page along wireless links eve-
rywhere. Recently, as real-time Web applications being more popular, supporting 
disconnected write operation in mobile environments becomes necessary. However, 
for the limited hardware capability of mobile unit (MU) and the high cost of wireless 
communication, MU can’t connect with Web server continuously during the process 
of Web access. Usually in hoarding phrase, it prefetches some web pages into its local 
cache and then disconnects from the web server. During disconnection, the write 
operations to these Web pages performed by MU are recorded into a log. After a 
certain period, MU reconnects to networks and sends the log to Web server for reinte-
gration. During this reintegration process, the conflicts of updates performed by other 
users need to be resolved.  As the cost of hoarding is usually fixed, how to reduce the 
total cost of wireless communication in reintegration phrase becomes important.  

Until now, different mechanisms proposed in [2], [4], [5], [6], [7] support discon-
nected Web access in wireless environments in the above three phases. Most existing 
schemes just support read-only Web page access during disconnection. However, 
with the rapidly increasing of distributed web authoring and form-based electronic 
commerce web applications [7], supporting to write operations is needed. Work re-

                                                           
* Funded by NNSFC (60233010, 60273034, 60403014), 973 Program of China (2002CB 

312002), NSFC of Jiangsu Province(BK2002203, BK2002409), 863 Program of China. 



860 H. Hu et al. 

ported in [11] proposes the concepts of lock and version. Each PUT request indicates 
the original version of the web page from which its new revision is derived. If the web 
page has already been updated by other applications, the update request of the client is 
denied. The client can then fetch the new version of the page and lock the web page to 
ensure there is no update for the page from other clients at the same time. The client 
can lock multiple web pages on the same web server to ensure an atomic update be 
done on these web pages. [5] uses a cache manager named Venus on the client-side. 
During disconnection, all updates to the Web pages made by the client are recorded 
into an operation log. Upon reintegration, the Venus resynchronizes its local cache 
with the server. If Venus detects a divergence, an application specific resolver (ASR) 
is invoked to resolve the difference. If the ASR fails to resolve the difference, then a 
manual repair tool running on the client side is invoked. [14] integrates the concept of 
coherency interval of supporting disconnected Web browsing proposed in [9] with the 
concept of versioning and locking as proposed in [16] to support disconnected write 
operations for wireless Web access, and presents three update propagation algorithms. 
The goal of it is to identify the length of the disconnected period so that to minimize 
the total communication costs during the reintegration phrase. 

However, in reintegration phrase, all of the above works directly propagate their 
updated Web page to Web server. If some of the Web pages have already been up-
dated by other applications, then these updated Web pages will be rejected by Web 
server. Thus, transferring these pages along wireless link becomes unnecessary to MU 
and the correlated communication cost is wasted. On the other hand, during the rein-
tegration phrase, MU has to communicate with Web server many times for conflicts 
resolving and forced updating, thus, the burdens of Web server are increased. This 
paper presents a new reintegration protocol based on mobile agents to improve the 
efficiency of update propagation and decrease the burdens of Web server. The moti-
vation of our scheme is inspired by [17], [19], [20] and [21]. Also the mobile agents 
help us to implement a fault-tolerant Web page access progress, as they can be used to 
facilitate seamless logging of access activities for the future recovery from failure. 
The related content is out scope of this paper, and we have presented it in [22]. 

This paper is organized as follows. Section 2 gives the analysis for update propagation 
of Web pages in MU’s reintegration phrase. Section 3 presents our reintegration proto-
cols based on mobile agents. Performance analysis of the protocols compared with other 
protocols is given in section 4. Finally, Section 5 concludes the paper. 

2   Protocol Design 

Suppose that MU has prefetched Web page i in hoarding phrase, then in reintegration 
phrase, there exist four possible states for this page ( shown in Table 1). 

If the Web page has both been updated by MU and some other applications, then 
the update propagation performed by MU becomes unnecessary and will be rejected 
by Web server. In this scenario, MU has to receive the update-to-date version of the 
page and perform operations for resolving conflict based on the data of the page. So 
we can see that, if MU has the capability to know the state of the page in advance, its 
unnecessary propagation action can be avoided, so that to decrease the cost of wire-
less communication. 
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In disconnected phrase, 
whether MU has updated it 

In disconnected phrase,  
whether other applications 
have updated it 

In reintegration phrase, the 
following operations that MU 
will have to perform  

          Yes             Yes      Resolving conflicts 
          Yes             No          Update propagation 
          No             Yes          Force update 
          No             No           Force update 
 

If the Web page has only been updated by MU, it can perform update propagation 
smoothly without worrying about the rejection from Web server. 

If the Web page has only been updated by other applications, MU also has to per-
form force update operations depending on the latest version of the page and then 
propagate its updated page. 

If the Web page has not been updated by MU or other applications, MU must per-
form a forced update to the page ( because of the real-time requirements of online 
Web applications ). 

From the above analysis, we can see that if MU has the ability to know the states of 
the Web pages in advance, it can pay less for the cost the wireless communication and 
improves the efficiency of update propagation. Inspired by [17], [19], [20], [21], we 
use mobile agent as the broker of MU on base station to pre-detect the state of the 
Web pages that MU has prefetched and tell MU the following operations that it has to 
perform. This agent called MuAg is responsible for a certain MU. In this way, MU 
doesn’t communicate with Web server directly. All the messages and data sent from 
one part are first transmitted to MuAg, and it sends them to the other. Before the in-
coming reintegration phrase, MU inquires Web server about the state information of 
the Web pages which MU has prefetched in hoarding phrase and locks all these Web 
pages to ensure that there is no update for these pages from other applications when 
MU perform its update propagation. If such a Web page has already been updated by 
other applications, Web server sends the data of the new Web page to MuAg. In rein-
tegration phrase, MU first sends MuAg an inquiry message containing the states of 
the Web pages as which pages have already been updated. Depending on this message 
and the table 1, MU tells MU the following operations which it will perform. This 
process is shown in Fig.1. 

 
 

 
 
 
 
 
 
 
 
 
 

MU MuAg Web Server 

Inquiry 
and lock 

 

Fig. 1. MU’s “pre-detecting” the states of Web pages 

Inquiry 

the following  
operations 

Data of  
Web pages 

Table 1. Four possible states for a Web page prefetched by MU 
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Depending on table 1, there are four different kinds of following operations that 
MU will perform. Here, we give three protocols to cope with the four kinds of follow-
ing operations. 

Protocol 1: For the Web page i already updated by MU, if it has not been updated 
by other users, then MuAg sends MU a message informing MU to propagate the 
modified Web page to Web server. MU propagates the updates to MuAg. MuAg puts 
them to Web server and release the lock ( shown in Fig.2). 

Protocol 2: Shown in fig.3, for the Web page i cached by MU, if some other user 
has also already updated it when MU is in disconnection phrase, then MuAg sends the 
differences of the Web page to MU. Based on the new version received, MU applies a 
merge algorithm to resolve the update conflict and sends a data packet carrying the 
differences of the updated Web page to MuAg. MuAg propagates the updates to Web 
server and releases the lock. 

Protocol 3: For the Web pages i cached by MU, if there are no updates to it during 
disconnection phrase, MU must perform a forced update on the page ( because of the 
real-time requirements of online Web applications ) when it reconnects with network 
again. Thus, after receiving a reply message indicating forced update from MuAg, 
MU performs forced updates and propagates the updates to MuAg. After MuAg 
propagates the updated Web page sent by MU to Web server, MuAg releases the lock.  

 

3   Wireless Web Page Update Propagation 

The same as in [14], [22], to analyze the protocols of Web page update propagation 
quantitatively, we define the following parameters. For a Web page i cached by MU, 
the update rate done to it by MU is denoted as m

i
λ and the update rate done by all other 

users is denoted as o

i
λ . Thus, for read-only cached Web pages, its iλ 0. There are two 

general cost parameters, mC and wC . mC  is the average one-way communication cost 

of transmitting a simple message over the wired network; wC  is the average one-way 

communication cost of transmitting a data packet carrying a Web page over the wired 
network. α is denoted as the ratio of the bandwidth of wired network to the band-
width of wireless network. Then the average cost of transmitting a message from base 

MU 
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Fig. 4. Protocol 3 
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station to MU is denoted as mCα , and the average cost of transmitting a data packet 

over wireless network is wCα . rmC  is the cost of resolving Web page conflicts per-

formed by MU, and we also denote rmC  as the cost of force update.  

At the time of Lx- wmnC  (here, n is the number of Web pages cached by MU, m is 

the number of static nodes between the base station and Web server), MuAg inquires 
Web server about the up-to-date versions of the Web pages which MU has prefetched 
in hoarding phrase and applies to Web server for locking all these Web pages. 

Supposing that updates to Web page i arrive at the system as an exponential distri-
bution and the length of disconnection period is Lx, then Pi , the probability that up-
dates to page i performed by other users during MU’s disconnected phrase, is given as 

( )1 w
o
i L mnC

i
xp e λ− −= −                                                 (1) 

Also, qi, the probability that Web page i has been updated by MU during the pe-
riod of Lx, is as follows 

1
m
i L

i
xq e λ−= −                                                       (2) 

Based on the above, we now present and analyze the wireless Web page propagation 
process in our scheme quantitatively. Supposing that MU propagates only one modified 
Web page to Web server during reintegration phrase, there are two cases as follows: 

1. In disconnection phrase, MU has updated the page i and restored it in local 
cache. After the period of Lx, MU propagates the updates to MuAg. With the probabil-
ity ip that the update request is rejected, the overall communication cost is 

2 mCα +2 wCα + rmC ; The cost is 3 mCα + wCα  with the probability 1- ip that the update 

request is accepted. 
2. In disconnection phrase, MU has not updated the page i. When it reconnects to 

the network again, MU has to perform forced update propagation. The communica-
tion cost is 2 mCα +2 wCα + rmC  with the probability ip that other users have already 

updated the page, or the cost is 3 mCα + wCα + rmC  with the probability 1- ip that no 

other user has updated the page during Lx. 

Summarizing 1) and 2), the average communication cost of MU propagating the 
updates of one Web page i to MuAg upon reconnection, is as follows: 

1( )s iC = iq ( ip (2 mCα +2 wCα + rmC )+(1- ip )(3 mCα + wCα ))+(1- iq ) 

( ip (2 mCα +2 wCα + rmC )+(1- ip )(3 mCα + wCα + rmC ))                 (3) 

The minimized value of 1( )s iC is obtained as a solution of  

                                      s

x

C

L

∂
∂

=0   and 
2

2( )
s

x

C

L

∂
∂

>0                                                      (4) 

And this means that both the following formulas hold at the same time: 

(ln( ( )) ln(( ) )) /m o o m

x rm i i w rm m i i w
L C C C C mnCλ λ α α λ λ= + − + − +  and 

2 2(ln( ( ) ) ln( ( ))) /m o o m

x rm i i i w rm m i w
L C C C C mnCλ λ λ α α λ< + − + − +  
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Now suppose that MU prefetches a set of Web pages in local cache in hoarding 
phrase. Then in reintegration phrase, MU propagates multiple modified Web pages to 
Web server. MU can send one updated Web page to MuAg each time or send all the 
updated Web pages in batch to MuAg. In the first case, the overall communication 
cost of propagating n updated Web pages is as follows: 

                                      2sC
1( )

1

n

s i

i

C
=

                                                      (5) 

In the second case, MU sends all the updated Web pages in batch to MuAg. The 
protocol is shown below: 

1 MU sends an inquiry message to base station indicating which pages it has 
already updated. 

2 After receiving the message, MuAg sends MU a data packet carrying new 
version of the pages already received from Web server and a message indi-
cating the following operations that MU will have to perform. The commu-

nication cost is
1

n

i w
i

p Cα
=

. 

3 When MU receives the data packet sent by MuAg, it knows immediately 
which pages can be accepted by Web server. MU sends them to MuAg. The 

cost is 
1

(1 )
n

i i w
i

q p Cα
=

− . 

4 Depending on the data packet received, MU performs forced updates for the 
pages that could have been rejected by Web server, including 1) pages up-
dated by MU and also by other users; 2) pages not updated by MU but up-
dated by other users; 3) pages not updated by MU and also not by other us-
ers. Then, MU propagates these updated pages to MuAg. The overall com-
munication cost needed is as follows: 

   
1

(1 )(1 )( )
n

i i w rm
i

C Cq p α
=

− − + +
1

( )
n

i i w rm
i

C Cq p α
=

+ +
1

(1 ) ( )
n

i i w rm
i

C Cq p α
=

− +  

5 MuAg receives the updated Web pages and sends an ACK message to MU. 
6 MuAg propagates the updated Web pages to Web server and release the 

lock. 

Thus, the overall communication cost of multiple Web page update propagating is 
as follows: 

     
1

1 1 1

3 (1 ) (1 )(1 )( )
n n n

s m i w i i w i i w rm

i i i

C C p C q p C q p C Cα α α α
= = =

= + + − + − − +  

1 1

( ) (1 ( ))
n n

i i w rm i i w rm

i i

q p C C q p C Cα α
= =

+ + − +                                         (5)' 

Comparing (5) with (5)’, the difference is 
1

(3 ) 3
n

i m m
i

P C Cα α α
=

− − . Since mC ≈  

0  (5) ≈ (5)’ for a not large value n. 
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Fig. 5. Multiple Web pages update propagation 

4   Performance Analysis 

We compare our mechanism with SPUPA (single page update propagation algorithm), 
MPUPA-1 (multiple-page update propagation algorithm 1), and MPUPA-2 (multiple-
page update propagation algorithm 2) that are proposed in [14]. This section tests the 
effects of different parameters ( o

iλ , m
iλ , rmC , wC ) on them. Table 2 lists the input parame-

ters needed. The values of these parameters come from [14], [16] and [20]. 
 
 
 

Input Parameter  Value 
Wireless network factor α  10 

Update rate for web page i iλ  (= o
iλ + m

iλ ) (0,15)updates/hour 

Average cost of transferring a message over wired network mC  0.01 second 

Average cost of transferring a web page over wired network wC  (0.5, 5) second 

Average cost of resolving update conflicts rmC  (30, 180)second 

Average cost of transferring a MuAg AgC  0.1 second 

Bandwidth of a wireless channel 9.6 K/S 

 
 

We use MAWA-1 to denote the single-page update propagation protocol in our 
scheme and use MAWA-2 to denote the multiple-page update propagation protocol in 
our scheme. 

To demonstrate the effect of ( o
iλ , m

iλ ) on the two different single-page update 

propagation algorithms (MAWA-1 vs. SPUPA), we fix rmC 100 seconds, wC =1.5 

second, iλ 10 updates/hour, mC =0.01second. The value of m
iλ / iλ varies from 0.2 to 

1.0. Figs.6-8 shows the results. Observed from the figures 6 and 7, the minimized cost 
of update propagation in reintegration phrase with the value of Lx is in the range of 
(200,600). But this requires MU to reconnect to network more frequently. And in this 

Table 2. The values of input parameters 
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way for every 400 seconds MU has to reconnect to network to do update reintegration 
for about 110 seconds. When the curves slope gently, MU can get a longer disconnec-
tion period just for paying a little additional communication cost. For instance as 

m
iλ / iλ = 0.6, when Lx prolongs from 400 seconds to 3200 seconds, the additional cost 

paid by MU increases only 25 second. So if MU chooses an appropriate Lx during the 
period when curves slope gently, the overall cost for network connection can be re-
duced. From Figs.7, the average cost consumed in MAWA-1 decreases about 14.7% 
than that of SPUPA. However, when m

iλ / iλ 1(shown in Fig.8), there is little differ-

ence between the two single-page update propagation algorithms. The reason is that in 
this case all the updates to Web page are only done by MU, and all the updates propa-
gated by MU are accepted by Web server. So MU can prolong Lx freely without wor-
rying about performing forced updates. 
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Fig.9-11 shows the effect of parameter rmC  on the two single-page update propaga-

tion algorithms. We fix m
iλ / iλ 0.6 iλ 10 updates/hour wC 1.5 sec-

ond mC =0.01second, and rmC varies in the range of [30, 150]. Seen from the figures, 

the curves in two algorithms both get deeper with rmC  increased. The means that MU 

has to pay more cost for resolving update conflicts. When rmC 30, the average cost 

of MAWA-1 is about 26.7% lower than that of SPUPA. As rmC  increases, the effi-

ciency of MAWA-1 decreases. However, even for rmC increase up to 150, the average 

cost of MAWA-1 is still 9.4% lower than that of SPUPA. And this is because MU in 

Fig. 6-8. Effect of update rate on the two single-page update propagation algorithms 

Fig. 9-11. Effect of rmC on the two single-page update propagation algorithms 

Fig. 6. m
iλ / iλ =0.3 Fig. 7. m

iλ / iλ =0.6 Fig. 8. m
iλ / iλ =1.0 

Fig. 9. Crm=30 Fig. 10. Crm=90 Fig. 11. Crm=150 
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our scheme first sends MuAg a message to inquire the state of the cached Web pages. 
Thus, some unnecessary page update propagation performed by MU is avoided.   

Figs.12-14 shows the effect of wC  on the two single-page update propagation al-

gorithms. We fix m
iλ / iλ 0.6, iλ 10 updates/hour, rmC =100 seconds, and 

mC =0.01second. The value of wC varies from 1 to 5 seconds. The communication cost 

increases when the value of wC  increased. Indicated by the figures, when wC 1, the 

cost of MAWA-1 is only 6% lower than that of SPUPA. However, when wC  in-

creases up to 5, the cost of MAWA-1 is nearly 25% lower than that of SPUPA. We 
can see that as the cost of transferring the data packet of Web pages increases, 
MAWA-1 shows an obvious advantage than SPUPA. 
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The multiple-page update propagation algorithms MPUPA-1, MPUPA-2 and 

MAWA -2 are compared in Figs.15-23, under the effect of the different parame-

ters m
iλ , rmC and wC . In this case MU is assumed to updates ten Web pages each time 

and the updated rate iλ of each Web page i is selected in the range of [0,15] randomly. 

Observed from the figures, MAWA-2 is distinctly more effective than MPUPA-1, and 
is slightly more effective than MPUPA-2. The reason is that in MPUPA-2, MU also 
sends an inquiry message to Web server to avoid unnecessary updates propagation. 
The distinction between them is that in MAWA-2 all the differences of Web pages are 
sent to MU by MuAg, while in MPUPA-2 they are sent by Web server. So if there is a 
long distance from Web server to the base station, MU in MAWA-2 can save more 
communication cost. And Figs.24 shows this case, the average cost of MAWA-2 is 
about 15.7% lower than that of MPUPA-2 when the data sent by Web server has to be 
transmitted over four other physical nodes to the base station in the wired network. 
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Fig. 12-14. Effect of wC on the two single-page update propagation algorithms 

Fig. 15-17. Effect of update rate on the multiple-page update propagation algorithms 

Fig. 12. Cw=1 Fig. 13. Cw=3 Fig. 14. Cw=5 
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5   Conclusion 

This paper presents a set of new Web page access protocols based on mobile agents 
which help MU implement its update propagation in reintegration phrase. In the 
scheme, mobile agent is used as the broker of MU on base station to pre-detect the 
state of the Web pages that MU has prefetched in advance and tells MU the following 
operations that it has to perform. As a result, the efficiency of update propagation has 
been improved and the burdens of Web server have been decreased. Compared with 
other protocols, our mechanism shows its efficient behavior.  
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Abstract. Both TCP and ICMP are applied in network measurement, while in-
vestigating differences between the measured results of them is important but 
has been less addressed. To compare the differences between TCP and ICMP 
when they are used in measuring host connectivity, RTT, and packet loss rate, 
we designed two groups of comparison programs, after careful evaluating of the 
program parameters, we executed a lot of experiments on the Internet. The ex-
perimental results shows, there are significant differences between the host 
connectivity measured using TCP or ICMP; in general, the accuracy of TCP is 
20%-30% higher than that of ICMP. The case of RTT and packet loss rate is 
complicated, which are related to path loads and destination host loads. While 
commonly, the RTT and packet loss rate measured using TCP or ICMP are very 
close. We also give some advices on protocol selection for conducting accurate 
network measurements.  

1   Introduction 

Network measurement is an important research area and a hot topic in network com-
munity. It is an effective method to investigate network performance and behavior 
characteristics. It also gives straightforward guidance to the evolution of the Internet 
infrastructure and the enhancement of protocols [1,2,3]. 

There are mainly two ways to measure the network: active and passive. Active 
measurement means that the user injects probe packets into the network from a probe 
host, and observes the response of the network to the probe packets at the probe host 
or destination host, to get knowledge about network performance. Active measure-
ment is the primary method of network measurement. For example, the ping and 
traceroute programs are the most frequently used active measurement tools. In active 
measurement, the probe packets injected into the network usually are IP packets in 
which encapsulated with ICMP message. But ICMP is not designed for data transmit-
ting, and it can be easily imposed by network attack activities. Accompanying with 
the popularization of Internet, in considering of the security and efficiency of net-
work, many routers and end hosts have rate limited or even blocked ICMP packets, 
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which may lead to obtain wrong measuring results or the measurement cannot be 
conducted at all [6]. Therefore recently, researchers proposed to measure network 
using the three-way handshake process of TCP [5,7].  

Replace ICMP with TCP, when measuring network performance, an accompanied 
question is: Do there have any differences between the measured results of TCP and 
ICMP? The significance of research on this problem is manifold. First, researchers 
and operators have accumulated lots of history data about network performance; most 
of them were collected with ICMP. While after replacing ICMP with TCP in network 
measurement, we need understand the difference of measurement results of the two 
protocols. Secondly, some researches, e.g. [18,19], have analyzed and concluded 
network performance characteristics from measurement done with TCP or ICMP 
separately. Whether these conclusions truly reflect the network performance, it also 
needs we understand the differences of measurement results of the two protocols. Still 
other researches assume that there is no difference in the results of the two protocols, 
for example, the authors of [8] use the RTT and packet loss rate measured by ping 
(ICMP) to calculate and predict TCP throughput. To validate these researches, we 
must check this assumption. At last, in [4], the authors are aware of that; the same 
performance metric may have different measurement results, if it is measured using 
different protocols, and advise that, when discussing the measurement results, the 
protocol used in measuring must be pointed out. However this approach unnecessarily 
increases the amount of measurement, and augments the difficulty of result analysis, 
for people just wants to know the networks performance while not cares about 
protocols. 

To investigate the differences in the measurement results of some network per-
formance metrics such as host connectivity, RTT, and loss rate measured using TCP 
and ICMP, we designed two groups of comparison programs, and after carefully 
evaluate the values of the program parameters, we conducted lots of comparison ex-
periments on the Internet.  

The paper is organized as follows. We summarize the related work in section 2. In 
section 3, we describe the design of test programs and two groups of comparison 
experiments for finding out the protocol differences. We analyze the results differ-
ences of TCP and ICMP based on the experimental results in section 4. Finally, we 
conclude and discuss some future works in section 5. 

2   Related Works 

To the best of our knowledge, there has been no prior work that focused on compar-
ing the network performance measured using TCP against which measured using 
ICMP. In [9], the authors proposed a high precision active measurement method, and 
compared the delays measured using the proposed method against passive measure-
ment. The authors of [12] proposed a TCP-based RTT passive measurement method 
and compared the measured RTTs with ping. In [10], the authors compared active and 
passive measurement methods on packet loss rate. The authors of [11] compared two 
different measurement implementations of one way delay and one way loss rate met-
rics, which both are based on UDP. These researches mainly focus on comparison of 
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active and passive measurement methods or implementations, they do not deal with 
the comparison of results measured using TCP or ICMP.  

In the appendix of [13], the authors compared the path minimum delays measured 
using TCP or ICMP, and found that they are highly correlative. The authors of [14] 
compared the packet loss rate measured using ping against real loss rate in the bottle-
neck router under TCP flow, the experiments are conducted under a single router 
connected mini IP network which is built by the authors. Although these researches 
are partially related to comparison of the results measured using TCP or ICMP, they 
only involve a single metric or are experimented on a single router. 

3   Experiments Design 

For comparing the difference of TCP and ICMP in network measurement, we de-
signed two groups of comparison programs: host connectivity comparison program 
and RTT, loss rate comparison program. The experiments are mainly completed with 
four PCs which all located at a same LAN in the campus network of Hunan Univer-
sity, these four PCs have the same configuration with P4 1.4GHz CPU, 256 MB 
memory, and RED HAT LINUX7.2 operating system. We denote them as source host 
HNU1, to HNU4 in this paper. The probe packets size is 64 bytes. All experiments 
had been done from Jun. 18, 2004 to Sept. 14. 

In addition, to validate whether the experimental results are related to the location 
of source hosts, we also select a PC located at the Institute of Software of the Chinese 
Academy of Science, to execute some experiment. We denote this PC as IOS1 in this 
paper. The results from HNU1- HNU4 and IOS1 show that the locations of source 
hosts have no effect on results, so we do not select more source hosts from the Inter-
net to execute our experiments. 

3.1   Measurement Progress 

One of the most frequent used network measurement tools using ICMP is ping pro-
gram, it measures based on ICMP Echo request/reply mechanism. The measuring 
process is shown in Figure 1. We denote the method that measures using ICMP Echo 
request/reply as Iping. 

Echo Request

Echo Repl y

SRC DEST

T1

T2

RTTICMP = T2-T1  

Fig. 1. The measurement process of ICMP 

SYN

SYN-ACK

RST
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T1

T2

T1

T2

RTTTCP = T2-T1  

Fig. 2. The measurement process of TCP 
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In [5,7], the authors proposed another measurement method which based on TCP 
SYN /ACK, it makes use of the three-way handshake process of TCP. The measuring 
process is shown in Figure 2. One thing must be noted is that, when the source re-
ceives a SYN-ACK packet, it must send a RST packet to the destination to break 
down the established connection, to void continuous measurement process has been 
treated as a SYN-Flood attack by the destination, and refuses to respond the probe 
packet. We denote the method that measures using TCP SYN/ACK as Tping. 

3.2   Connectivity Measurement Comparison Program 

The processes of the program comparing connectivity results of TCP and ICMP are as 
follows: To a certain destination, the program first measures the host connectivity 
using Tping, then waits for a while, and measures the host connectivity using Iping. 
We use the connection rate calculated after measuring a lot of destination hosts to 
compare the differences of Tping versus Iping in connectivity measurement  

3.2.1   Destination Host Sets Selection 
The selection of destination hosts may affect the accuracy of comparison experiment. 
To find out the real difference of Iping and Tping in connectivity measurement, we 
build two destination host sets. One set is the top 500 websites from [15]. This set 
presents the difference of Tping and Iping in probing connectivity of web servers, and 
we denote it as TOP500 in this paper. 

Beside the web servers, there still are a large number of other servers and clients on 
the Internet. To make the experiment more commonly, we need experiment more 
amounts and more types destination hosts. Then we collect 50,000 IP addresses or 
host names using the approach mentioned in [17] for comparison experiment, and we 
denote this host set as LARGE in this paper.  

The experiment of LARGE set, if is executed by a single host, will persist 90 
hours. The consumed time makes the experiment difficult. So we divide the LARGE 
set into four sub-sets, and execute one sub-set experiment on HUN1-HUN4 sepa-
rately, to reduce the time needed for LARGE set experiment.  

3.2.2   Setup of Test Parameters 
Several parameters of the test program also may have effect on the experiment accu-
racy. The first parameter is the wait time twait between Iping and Tping probing. For 
network status keeps stable on the time scale of minutes [16], we set twait to 1 second. 
One similar parameter of the test program is the wait time between the probing of two 
different destination hosts, for the same reason, we set it to 1 second too. 

Another parameter may affect the experiment accuracy is tout, which means the du-
ration the source wait for response after it send a Tping or Iping probe packet. To set 
a proper tout, we first set tout to 5 second, and measure the RTT of hosts in TOP500, 
most hosts have RTT no more than 2 second, so we set tout to 3 second. 

The last parameter may affect the experiment accuracy is cre, the repeat probing 
times when the source received no answer. Analysis of results of RTT experiment 
discussed later show that, in the normal network status, the frequency of three con-
tinuous packets lost is tiny, so we set cre to 3. 
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3.3   RTT and Loss Measurement Comparison Program 

The processes of the program comparing RTT and loss rate results of TCP and ICMP 
are as follows: To a certian destination, the program first measures RTT using Tping, 
then waits for a while, and measures RTT using Iping, we denote the two probing as a 
probe packet pair; at last, the program waits 3 second and repeats the above process. 
If the source host gets no response after sending probe packet in a certain period, then 
it judges it detects a loss event. 

4   Results Analysis 

4.1   The Differences in Connectivity Measurement 

4.1.1   Data Collection 
We repeat connectivity comparison experiment many times.In every test, we record 
destination hosts count(hdest), actually probed hosts count (hprb), the amount of hosts 
which respond to both Tping and Iping(hboth), the amount of hosts only respond to 
Tping(htcp), the amount of hosts only respond to Iping(hicmp), and the amount of hosts 
respond to none(hnone). We compare the difference of connectivity results measured 
using Tping and Iping by calculateting host connection rate of Tping and Iping. If we 
don’t care about whether the hosts respond to neither Tping nor Iping are really inac-
cessible, the connection rate of Tping or Iping can be computed using formula (1) or 
formula (2), and we denote them as nominal connection rate. 

( ) / 100%R h h hTCP both tcp prb= + ×  (1) 

( ) / 100%R h h hICMP both icmp prb= + ×  (2) 

The nominal connection rate ascribes causes of hosts respond to neither Tping nor 
Iping to the protocols can’t probe the host connection, this may underestimates the 
connection probing capability of Tping or Iping. In fact, these hosts are unaccessible 
even using web browser, i.e. these hosts real have connection problems, while it is not 
the protocols do not probe their connectivity. Reasonable comparison of the results 
must be based on the connectible hosts, So we must calculate the connection rate after 
exclude the really inaccessible hosts, using formula (3) or formula (4), we denote 
them as real connection rate. 

( ) /( ) 100%TR h h h hTCP both tcp prb none= + − ×  (3) 

( ) /( ) 100%TR h h h hICMP both icmp prb none= + − ×  (4) 

As discussed in section 3.2.2, the program parameters tout and cre may have effect 
on the results, we compound three parameters cases with different values of tout and 
cre, and repeat experiments under each case, to find out the proper parameters set for 
final comparison. The detailed compounding of parameters are as follows: Case 1 set 
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tout to 3 second and cre to 1; Case 2 set tout to 3 second and cre to 3; Case 3 set tout to 5 
second and cre to 3.  

4.1.2   The Effect of Test Parameters 
Table 1 lists the real connection rate of TOP500 at HNU2 under different parameters 
cases; other source hosts have similar results. As can be seen from it, all the statistics 
of real connection rate measured under case 1 are lower than that measured under case 
2 and case 3. In addition, the results measured under case 2 and case 3 are more stable 
than which measured under case 1. This indicates that small cre actually makes the 
experiment results unstable and lower than the real conditions.  

Furthermore, we also noticed that the results measured under case 2 and case 3 al-
most have no difference. This shows that, to do experiments under case 2 gets stable 
and accurate results and saves experiment time. So we only select the results meas-
ured under case 2 to analyze the differences of TCP and ICMP in the connectivity 
measurement on TOP500, and only do experiment under case 2 for LARGE set.  

Table 1. The real connection rate measured on HNU2 for TOP500 under different parameter 
cases 

Case 
Test 

count 
Mean 
TRTCP 

Max. 
TRTCP 

Min. 
TRTCP 

Mean 
TRICMP 

Max. 
TRICMP 

Min. 
TRICMP 

Case 1 13 94.6 98.7 91.3 63.1 65.7 59.1 
Case 2 17 99.0 99.8 98.0 65.0 66.0 63.7 
Case 3 12 99.0 99.6 98.1 65.1 66.0 63.8 

4.1.3   The Differences in Connectivity Measurement 
Table 2 lists the final results of connection rate of TOP500, which measured under 
case 2. The actually probed hosts count (hprb) is smaller than destination hosts 
count(hdest), it is because some host name in the TOP500 can not been resolved by the 
DNS. The TRTCP is about 99%, while TRICMP is only 65% around. This means that the 
connectivity measured using TCP is far more accurate than which measured using 
ICMP, For the TOP500 host set, the difference of them is 35% approximately. Even 
the nominal connection rate, which ascribes cause of hosts respond to neither Tping 
nor Iping to the protocols can’t probe the host connection, Tping’s is still upwards of 
90%, which higher than Iping’s with 30% nearly. 

Table 2. The connection rate results for TOP500 set 

Response Connection rate (%) 
Src host hdest hprb 

hboth htcp hicmp hnone RTCP RICMP TRTCP TRICMP 

HNU1 500 485 285 160 3 37 91.8 59.9 99.3 64.3 

HNU2 500 486 285 156 6 39 90.7 59.9 99.0 65.0 

HNU3 500 483 283 155 4 42 90.5 59.3 99.1 64.9 
HNU4 500 484 287 158 4 35 91.9 60.1 99.1 64.8 
IOS1 500 491 290 160 3 38 91.6 59.7 99.3 64.7 
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We also seen from Table 2 that, both the source hosts HNU1-HNU4 which locate 
at the same LAN and the host IOS1, have similar results, i.e. the experiment results 
are not related to the location of source hosts. Therefore, although the experiments are 
mainly completed at one place on the Internet, the conclusions are universal. 

Table 3. The connection rate results for LARGE set 

Response Connection rate (%) Test 
num. 

hdest hprb 
hboth htcp hicmp hnone RTCP RICMP TRTCP TRICMP 

1 50000 49104 36829 9034 231 3010 93.4 75.5 99.5 80.4 

2 50000 49066 37446 8725 139 2756 94.1 76.6 99.7 81.2 

3 50000 49125 36764 8774 276 3311 92.7 75.4 99.4 80.9 
4 50000 49094 37324 8971 233 2566 94.3 76.5 99.5 80.7 

The experiments of LARGE set repeat four times on source hosts HNU1-HNU4, 
the results are shown in Table 3. The connection rate of both TCP and ICMP in-
creased more or less. But the connection rate of TCP is still higher than ICMP with 
20% for TRTCP and with 18% for RTCP.  

4.2   The Differences in RTT Measurement 

4.2.1   Data Collection 
In general, the mean RTT is a token of the performance baseline of a path at regular 
load. To find out the difference of RTT and loss rate measured using TCP or ICMP 
under different path conditions and host statuses, according to the RTTs of TOP500, 
and based on the subjective judgment, we divide the mean RTT into five levels, to 
present five kinds of typical path packet transmitting performance separately. Then, 
based on mean RTT to the host, we select two destination hosts for each level from 
TOP500 to measure their RTT and loss rate. The division of path performance level is 
shown in Table 4, the last row of it present the notations used for selected hosts at 
each level. 

Table 4. Path performance level divisions 

Performance 
Level 

LEVEL1 LEVEL2 LEVEL3 LEVEL4 LEVEL5 

RTT range 30ms 30 100ms 100 900ms 0.9 1.5s 1.5 3.0s 

Evaluation Excellent Good Moderate Bad Poor 

Host notation L1A, L1B L2A, L2B L3A, L3B L4A, L4B L5A, L5B 

The hosts in TOP500 usually have high load, to make the experiment general, we 
need some light loaded hosts in experiment. But it is not so easy to find such hosts on 
the Internet, through measuring, the mean RTT of the path from HNU1-HNU4 to 
IOS1 is about 246 ms, then we select IOS1 as a light loaded hosts at level 3. How-
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ever, there are no light loaded hosts at the other performance levels, this may have 
some effects on the final comparison of RTT and loss rate measured using TCP and 
ICMP. 

4.2.2   The Difference in RTT Measurement 
We use measured mean RTT to compare the quantitive difference of RTTs measured 
using TCP and ICMP, the results are shown in Table 5. For small delay paths, the 
mean RTTs measured using Tping have no significant difference compared with 
which measured using Iping, but the IOS1 is an exception, with mean RTTs of Iping 
is larger than that of Tping with several millisecond. While for large delay paths, the 
mean RTTs measured using TCP is larger than which measured using Iping with tens 
of millisecond. The other statistics of measured RTT such as median, 25 percentile, 
75 percentile etc. have similar characteristics, although the minimum RTTs of Tping 
and Iping are basically equal, as shown in Table 6, also with the exception of IOS1. 

Table 5. Mean RTTs measured using Tping and Iping (ms) 

Host Tping Iping Host Tping Iping 
L1A 7.4 8.1 L1B 22.1 22.5 
L2A 37.8 37.3 L2B 66.9 67.5 
L3A 274.1 273.6 L3B 255.4 255.9 
L4A 1423.1 1262.5 L4B 1030.1 1014.8 
L5A 2072.1 2051.9 L5B 2244.5 2222.5 
IOS1 237.6 243.4    

Table 6. Minimum RTTs measured using Tping and Iping (ms) 

Host Tping Iping Host Tping Iping 
L1A 2.74 2.78 L1B 3.43 3.41 
L2A 26.59 26.71 L2B 29.57 29.53 
L3A 48.6 48.5 L3B 33.9 34.2 
L4A 23.77 23.79 L4B 37.65 37.32 
L5A 27.61 27.55 L5B 57.43 57.52 
IOS1 223.4 225.1    

The minimum RTT comprises of the fixed delays of the path, which presents the 
static performance of the path; while the mean RTT include the effects of the path 
loads and host loads at statistical meaning, which presents the dynamic performance 
of the path. The ratio of them can reflect the effect of path loads and host loads have 
on measured RTT in the rough, we define the ratio as RTT expanding ratio as in 
formula (5). 

/mean minRTT RTTα =  (5) 

Table 7 lists the  of every host for Tping and Iping. We can see from it, that small 
delay path has small , while large delay path has  exceed 20.  
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Table 7. The RTT expanding ratio for the paths to destination hosts 

 L1A L1B L2A L2B IOS1 L3B L3A L4B L4A L5B L5A 
Tping 2.7 6.4 1.4 2.3 1.1 7.5 5.6 27.4 59.9 39.1 75.0 
Iping 2.9 6.6 1.4 2.3 1.1 7.5 5.6 27.2 53.1 38.6 74.5 

Therefore, for the large delay path in experiment, the loads of path and destination 
host may have large effect on RTT measurement. In general, the routers give TCP 
packet higher transmitting priority, the effect of path on RTT measured using TCP 
should less than which measured using ICMP. While for the large delay path in ex-
periment, the RTT measured using Tping is larger than which measured using Iping, 
it may because of that, the loads of destination host reach or exceed its process capa-
bility. In this situation, due to the process of TCP packet is more complicated than 
ICMP packet, the response of destination host to TCP packet will be slower than to 
ICMP packet. For the small delay paths in experiment, the loads of destination host 
are although high, while are still in the process ability of it, so there is little difference 
in the mean RTT measured using TCP and ICMP. 

Based on Table 5-7, we can conclude that, for the path destined to light loaded 
host, the RTT measured using TCP will smaller than which measured using ICMP. 
While for the path to high loaded host, the quantitative relation of RTT measured 
using TCP and ICMP is determined by the RTT expand coefficient , when is smaller 
than 20, the RTT measured using TCP and ICMP are basically the same; if is larger 
than 20, the RTT measured using TCP may larger than which measured using ICMP. 
For accurately measuring the path RTT, we can select the measuring protocols ac-
cording to , for the path have smaller than 20, using TCP, when is larger than 
20,using ICMP.  

4.2.3   Similarity in Statistics 
Figure 3 shows the Tping and Iping RTT time series of the path to host L2A in 24 
hours. The time serieses of RTT measured using Tping and Iing are very similar. In 
fact, this characteristic appears for almost all hosts in experiment, including IOS1, i.e. 
in the most case, Tping and Iping can measure the same RTT time series trend. 

But this is not true for the path to host L4A. Figure 4 shows the Tping and Iping 
RTT time series of the path to host L4A in 24 hours. The RTT measured using Tping 
varied sharply along with time line; while the RTT measured using Iping are far more 
stable. We find that the path to L4A has large loss rate, for Tping, to 32%, Iping, 42%. 
This means that the path is very congested, however, the loss rate of the path to the last 

Fig. 4. One RTT time 
series for the path to L4A 

 

Fig. 3. One RTT time 
series for the path to L2A 

 

Fig. 5. The RTT CDF and 
frequency distribution of 
the path to L2A 
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router in the route to L4A, is only 7%. Then the high loss rate is due to that L4A host is 
overloaded. In the host, the process of TCP packet is more complicated than ICMP 
packet; when the host is overloaded, the response time of it to TCP packet varied 
sharply, while to ICMP packet keep relative stable, although with high loss rate. 

The cumulate distribution function (CDF) and frequency distribution of RTT meas-
ured using Tping and Iping are also very similar, as an example, we show the RTT 
distributions of one measurement of the path to L2A in Figure 5. The CDF and fre-
quency distribution curves of RTT measured using Tping and Iping are nearly super-
posed. All the other hosts, except L4A, have such characteristic too, i.e. at the normal 
case, Tping and Iping can measure very similar RTT distribution characteristics.       

4.2.4   The Correlation Between RTT Values 
To inspect whether the RTT measured using Tping and Iping in a packet pair is corre-
lated, we also draw the scatter plot of the RTTs for consecutive Tping and Iping, and 
also calculate the correlation coefficient of them. Figure 6 is the RTT scatter plot of 
the measurement corresponding to Figure 3. It shows that the RTTs measured using 
TCP and ICMP in a packet pair are nearly not correlative. In fact, the correlation 
coefficient of RTT measured using Tping and Iping is only 0.034. Although the time 
series, CDF and frequency distribution are very similar for RTTs measured using 
Tping and Iping, they are not correlative in a packet pair. 

To find out the cause of the lack of correlation between Tping and Iping in a packet 
pair, we slightly modified the test program, made it sends two TCP packets or two 
ICMP packets in a probe packet pair. Figure 7 shows the scatter plot of the case that 
both the packets in a probe packet pair are ICMP packets; the correlation coefficient 
of them is 0.041. The case of TCP has similar results. Therefore, the lack of correla-
tion shown in Figure 6 occurs for the measurement method, and is not due to the pro-
tocols used in the measurement method. 

While the minimum RTTs measured using Tping and Iping are strongly correla-
tive. In Table 8, we list the correlation coefficient of minimum RTT measured using 
Tping and Iping in one-minute interval for all hosts we experimented. 

  

Fig. 6. The scatter plot of Tping RTT versus 
Iping RTT 

Fig. 7. The scatter plot of RTT in an ICMP 
packet pair 

Table 8. The correlation coefficient for minimum RTT measured using TCP and ICMP in a 
minute 

 L1A L1B L2A L2B IOS1 L3A L3B L4A L4B L5A L5B 
R 0.74 0.81 0.78 0.76 0.85 0.81 1.0 0.60 0.67 0.71 0.74 
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4.3   The Difference in Loss Rate Measurement 

The packet loss rate measured using Tping and Iping for all experimented hosts are 
listed in Table 9. For most destination hosts, the loss rate measured using Tping is 
very close to which measured using Iping. For the high loaded hosts with small path 
RTT, the loss rate measured using Tping is larger than which measured using Iping 
slightly; while if the path RTT is large, then the Tping measured loss rate is smaller 
than Iping measured slightly. But for the hosts have light loads, such as IOS1, al-
though the RTT is relative small, the Iping measured loss rate is still larger than Tping 
measured with about 2%. 

Table 9. Packet loss rate (%) measured using TCP and ICMP 

 L1A L1B L2A L2B IOS1 L3B L3A L4B L4A L5B L5A 
Tping 0.56 2.58 1.22 0.59 1.67 0.76 2.43 4.21 31.6 3.75 10.2 
Iping 0.52 2.56 0.92 0.53 3.02 0.95 2.65 4.87 42.9 3.96 10.6 

5   Conclusions and Future Works 

For quantitatively investigating the differences of network performance measured 
using TCP and ICMP, we have designed two groups of comparison tests, and done a 
large amount of experiments on the Internet, to find out the differences of TCP and 
ICMP when used to measure some basic network performance metrics such as host 
connectivity, RTT and packet loss rate. The experiment results show that, there really 
has difference, when using TCP or ICMP in network measurement.   

The probe packet size is only set to be 64 bytes in our experiments, as the next 
steps, we will repeat the experiment with more packet sizes to find out whether the 
packet length has effect on the difference of TCP and ICMP when using in network 
measurement. We also plan to experiment more metrics on this problem. 
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Abstract. As an enhancement mechanism for the end-to-end conges-
tion control, Active Queue Management (AQM) can keep smaller queu-
ing delay and higher throughput by proposing fully dropping the packets
at the intermediate nodes. comparing with RED algorithm, although PI
controller for AQM designed by Hollot improves the stability, it seems
other methods to design of robust controllers may lead to better results.
Morover, the transient performance of PI controller is not perfect, such
as the regulating time is so long. In order to overcome to this drawback,
in this paper, a novel adaptive fuzzy logic based controller is designed
for Active Queue Management (AQM) in TCP/AQM networks. From
control point of view, it is rational to regard AQM as a typical reg-
ulation system. Recently many AQM algorithms have been proposed
to address performance degradations of end-to-end congestion control.
However, these AQM algorithms show weaknesses to detect and control
congestion under dynamically changing network situations. A simulation
study over a wide range of IP traffic conditions shows the effectiveness
of the proposed controller in terms of the queue length dynamics, the
packet loss rates, and the link utilization.

1 Introduction

A typical information exchange over the Internet is guaranteed by several in-
termediate nodes (routers) which direct packets originated by the sender to the
receiver over links with limited bandwidths. Each router has a finite buffer for
storing packets exceeding the total capacity of the link. When the packet net
flow exceeds the buffer size the link becomes congested causing a so-called packet
drop to occur. Namely, the packet is lost and the sender required to transmit it
again.

TCP congestion control mechanism, while necessary and powerful, are not
sufficient to provide good service in all circumstances, specially with the rapid
growth in size and the strong requirements to Quality of Service (QoS) sup-
port, because there is a limit to how much control can be accomplished at end
system. It is needed to implement some measures in the intermediate nodes
to complement the end system congestion avoidance mechanisms. Active Queue
Management (AQM), as one class of packet dropping/marking mechanism in the
router queue, has been recently proposed to support the end-to-end congestion
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control in the Internet [1-5]. It has been a very active research area in the Inter-
net community. The goals of AQM are (1) reduce the average length of queue in
routers and thereby decrease the end-to-end delay experimented by packets, and
(2) ensure the network resources to be used efficiently by reducing the packet
loss that occurs when queues overflow. AQM highlights the tradeoff between
delay and throughput. By keeping the average queue size small, AQM will have
the ability to provide greater capacity to accommodate nature-occurring burst
without dropping packets, at the same time, reduce the delays seen by flow, this
is very particularly important for real-time interactive applications. RED [6,7]
was originally proposed to achieve fairness among sources with different burst
attributes and to control queue length, which just meets the requirements of
AQM. However, many subsequent studies verified that RED is unstable and too
sensitive to parameter configuration, and tuning of RED has been proved to be
a difficult job [8-10].

Fuzzy logic controllers have been developed and applied to nonlinear system
for the last two decades [11]. The most attractive feature of fuzzy logic control is
that the expert knowledge can be easily incorporated into the control laws [12].

The intuition and heuristic design is not always scientific and reasonable
under any conditions. Of course, since Internet is a rather complex huge sys-
tem, it is very difficult to have a full-scale and systematic comprehension, but
importance has been considerably noted. The mathematical modeling of the In-
ternet is the first step to have an in-depth understanding, and the algorithms
designed based on the rational model should be more reliable than one original
from intuition. In some of the references, the nonlinear dynamic model for TCP
flow control has been utilized and some controllers like PI and Adaptive Virtual
Queue Algorithm have been designed for that [13-17]. In the research, we will
apply a fuzzy controller to design the AQM system for congestion avoidance.
The simulation results show the superior performance of the proposed controller
in comparison with classic PI controller.

2 TCP Flow Control Model

In [13], a nonlinear dynamic model for TCP flow control has been developed
based on fluid-flow theory. This model can be stated as follows

dW (t)
dt

=
1

R(t)
− W (t)W (t − R(t))

2R(t)
p(t − R(t));

dq(t)
dt

=
N(t)
R(t)

W (t) − C(t) (1)

The definition of the parameters can be found in [2,13].
We believe that the AQM controller designed with the simplified and inaccu-

rate linear constant model should not be optimal, because the actual network is
very changeful; the state parameters are hardly kept at a constant value for a long
time. Moreover, the equations (1) only take consideration into the fast retrans-
mission and fast recovery, but ignore the timeout mechanism caused by lacking
of enough duplicated ACK, which is very usual in burst and short-lived services.
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Fig. 1. Block diagram of AQM control system

In addition to, there are many non-respective UDP flows besides TCP connec-
tions in networks; they are also not included in equations (1). These mismatches
in model will have negative impact on the performance of controller designed
with the approach depending with the accurate model. For the changeable net-
work, the robust control should be an appropriate choice to design controller
for AQM. The above nonlinear and time-varying system was approximated as
a linear constant system by small-signal linearization about an operating point
[2,5,13] (Fig. 1), where

K(t) =
[R(t)C(t)]3

[2N(t)]2
; T1(t) = R(t); T2(t) =

R2(t)C(t)
2N(t)

(2)

To describe the system in state space form, suppose that x1 = e; x2 = de
dt , so

the plant depicted in Fig. 1 is described by a second order system as

dx1

dt
= x2;

dx2

dt
= −a1x1 − a2x2 − b + F (3)

where

a1 =
1

T1T2
; a2 =

T1 + T2

T1T2
; b =

K

T1T2
; F =

d2q0

dt2
+

T1 + T2

T1T2

dq0

dt
+

q0

T1T2
(4)

3 Design of Fuzzy Controller

Fuzzy logic control (FLC) has been demonstrated to solve some practical prob-
lems that have been beyond the reach of conventional control techniques. Fuzzy
logic control is a knowledge-based control that uses fuzzy set theory, fuzzy rea-
soning and fuzzy logic for knowledge representation and inference [11,12]. The
apparent success of FLC can be attributed to its ability to incorporate expert
information and generate control surfaces whose shape can be individually ma-
nipulated for different regions of the state space with virtually no effects on
neighboring regions.

In this paper, a fuzzy system consisting of a fuzzifier, a knowledge base (rule
base), a fuzzy inference engine and defuzzifier will be considered. The knowledge
base of the fuzzy system is a collection of fuzzy IF-THEN rules. Fuzzy logic
control is ideal for the AQM problem, since there is no complete mathematical
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model. However, human experience and experimental results can be used in the
control system, design.

The controller has two inputs, the error (e) and its derivative (ė) and the
control input (p) . Five triangular membership functions are defined for speed
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error (Fig. 2), namely, Negative Large (NL), Negative Small (NS), Zero, Posi-
tive Small (PS), and Positive Large (PL). Similarly three triangular membership
functions are defined for derivative of the error (Fig. 3) and there are as follows,
Negative Small (NS), Zero, and Positive Small (PS). Also five triangular mem-
bership functions are defined for the control input (Fig. 4) and there are Zero,
Small, Medium, Large and Very Large. The complete fuzzy rules are shown in
Fig. 5. The first rule is outlined below

Rule 1: If (e) is PL AND (ẋ) is Zero, THEN (p) is Large.
The rest of the rules are derived similarly. The label names used here give an

intuitive sense of how the rules apply. Through experimentation and tuning of
the membership functions it was determined that the number of rules was suffi-
cient to encompass all realistic combinations of inputs and outputs. This fuzzy
logic controller is implemented using product inference and a center-average de-
fuzzifier.

4 Simulation Results

The network topology used for simulation, is depicted in Fig. 6 [2,5]. The only
bottleneck link lies between node A and node B. the buffer size of node A is
200 packets, and default size of the packet is 350 bytes. All sources are classed
into three groups. The first one includes N1 greedy sustained FTP application
sources, the second one is composed of N2 burst HTTP connections, each con-
nection has 10 sessions, and the number of pages per session is 3. The thirds
one has N3 UDP sources, which follow the exponential service model, the idle
and burst time are 10000msec and 1000msec, respectively, and the sending rate
during ”on” duration is 40kbps. We introduced short-lived HTTP flows and
non-responsive UDP services into the router in order to generate a more realis-
tic scenario, because it is very important for a perfect AQM scheme to achieve
full bandwidth utilization in the presence of noise and disturbance introduced
by these flows. The links between node A and all sources have the same capacity
and propagation delay pair (L1, τ1) . The pair (L2, τ2) and (L3, τ3) define the
parameter of links AB and BC, respectively.

A B C

  11 , L

  22 , L   33 ,  L

1N

2N

3N Buffer size = 200 packets

Fig. 6. The simulation network topology
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Fig. 7. Queue evaluation (FLC)
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Fig. 8. Queue evaluation (PI)

In the first study, we will use the most general network configuration to tes-
tify whether the proposed Adaptive Fuzzy Logic Controller (FLC) can reach the
goals of AQM, and freely control the queue length to stabilize at the arbitrary
expected value. Therefore, given that (L1, τ1) = (10Mbps, 15ms), (L2, τ2) =
(15Mbps, 15ms), (L3, τ3) = (45Mbps, 15ms), N1 = 270, and N2 = N3 = 0. Let
the expected queue length equal to 75 packets. The instantaneous queue length
using the proposed FLC is depicted in Fig. 7. After a very short regulating
process, the queue settles down its stable operating point. RED algorithm is un-
able to accurately control the queue length to the desired value [7,9]. The queue
length varies with network loads. The load is heavier the queue length is longer.
Attempting to control queue length through decreasing the interval between high
and law thresholds, then it is likely to lead queue oscillation. To investigate the
performance of the proposed FLC, we will compare the results with that of PI
controller designed in [13]. The queue evaluation using PI controller is shown in
Fig. 8. As it can be seen FLC acts much better that PI one.

Finally, we evaluate the integrated performance of the the proposed controller
using one relatively real scenario, i.e., the number of active flows is changeable,
which has 270 FTP flows, 400 HTTP connections and 30 UDP flows. Figs. 9
and 10 show the evaluation of queue controlled by FLC and PI controllers,
respectively. It is clear that the integrated performance of FLC controller, namely
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Fig. 9. Queue evaluation (FLC) for (FTP+UDP+HTTP) queue
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Fig. 10. Queue evaluation (PI) for (FTP+UDP+HTTP) queue

transient and steady state responses is superior to that of PI controller. The FLC
controller is always keeping the queue length at the reference value, even if the
network loads abruptly change, but PI controller has the inferior adaptability.
In other words, the former is more powerful, robust and adaptive than the later
one, which is in the favor of achievement to the objectives of the AQM policy.

5 Conclusion

In this paper, an adaptive fuzzy logic based controller was applied to TCP/AQM
networks for the objective of queue management and congestion avoidance. For
this purpose, a linearized model of the TCP flow was considered. We took a
complete comparison between performance of the proposed FLC and classical
PI controller under various scenarios. The conclusion was that the integrated
performance of FLC was superior to that of PI one.
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Abstract. On the basis of analyzing the evolution and drawbacks of current 
network fault diagnosis methods, a novel network data link troubleshooting sys-
tem (NDTS) based on fuzzy neural network is proposed. NDTS tightly com-
bines neural network and rough sets, so that it can be used to fit the smooth 
curves perfectly. Let the membership function as the base, an rule scavenging 
method is put forward in NDTS, which is the variable-precision modal, and the 
notion of variable-precision be founded on the measurement of dependent de-
gree. Furthermore, NDTS is adopted to deal with the mapping relation, catego-
rizing the network faults. The experiment system implemented by this method 
shows the proposed system is an open and efficient troubleshooting engine. 

1   Introduction 

Due to the rapid growth in computer networks and the fast evolution in technology, 
the need for a more efficient and effective network management approach becomes 
more urgent. Today's networks are commonly put together by integrating equipment 
from multiple vendors. Consequently, management of such networks is becoming a 
more important and more difficult task. Due to various reasons, the network, or a 
portion of the network, can become disabled, or its performance can be degraded to 
an unacceptable level. In applications, when end-to-end network performance is guar-
anteed, many network entities need to be managed simultaneously. With larger net-
works, network management cannot be managed by human efforts alone. The com-
plexity of such a network requires the use of automated network management tools. A 
considerable effort has been made to standardize network management protocols and 
develop network management systems, such as the Simple Network Management 
Protocol and the Common Management Information Protocol. However, there is 
much to be done towards formally specifying problems in network management and 
developing formal techniques to solve these problems. Many neural network applica-
tions can be found in network troubleshooting, most of which adopt 3-layer back 
propagation neural network (BPN) [1-4]. Those complicated BPNs contain severe 
localization. The more complicated of those models are, the weaker the generalization 
is, and at the same time the real-time computing ability also will descend. The repre-
sentative causations are as follows: 
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• The convergence speed of these algorithms is too slow to fit on-line diagnosis; 
• There are local optimization problems in most of the circumstances; 
• The structural of the network is so indeterminate that   we are difficult to get hold 

of the ideal model. 

So, more effective analysis and solution techniques are needed. Leading the rough-
fuzzy neural network into network data link troubleshooting, this paper proposed a 
novel method: NDTS. NDTS is good at solving indetermination problem and self-
study ability. 

2   The Network Troubleshooting Strategy 

Network data link state can be classified: adding attribution, multiply attribution and 
min-max attribution. For some section of network P ),,,( 121 −sEEE L , in which E be 

the states of network entities, if
1, +iie  iE ( i=1,2,… S-1), define the j property of 

1, +iie  as j
iif 1, + , and define the j property of the whole net-segment P as j

pf , we get 

hold of the definitions as follows: 

1 adding attribution: If
−

=
+=

1

1
1

s

i

j
ii,

j
p ff , name the j property of P a adding attri-

bution, such as receive-datagram number, send-datagram number, jump number, 
delay time, delay tingle, cost, etc. 

 

 

Fig. 1. The architecture of NDTS: (1) Collection of network situation information: Catch the 
attributed-values of network entities. (2) Capture of network situation characters: Without 
uniform form, network information needs to take the pretreatment, which maps original data to 
cognizable disperse state that is the capture operation of network situation characters. (3) Net-
work status information database: The data in it can be used for data mining, and get some new 
potential fault modes. (4) Learning machine: Through training, the system gets neural network 
classifier for fault classification. (5) Fault classifier: the core unit of the system. (6) Reasoning 
machine: It is mostly used for assorting with (3) and (4). (7) Diagnosis manager: It provides 
interface with responsibility for the whole troubleshooting system. 
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2 multiply attribution. If ∏
−

=
+=

1

1
1

s

i

j
ii,

j
p ff , name the j property of P a multiply 

attribution, such as error rate, losing rate, node utilization rate, etc. 

3 min-max attribution. If }min 1
11

j
ii,

s,2,...,i

j
p f{f +−=

= , name the j property of P a min 

attribution, such as fluff rate, fee, etc. If }max 1
11

j
ii,

s,2,...,i

j
p f{f +−=

= , we name it a max 

attribution, such as port utilization rate, flux, bandwidth, etc. 
The essence of network data link troubleshooting is to capture a set of situation in-

formation on network entities, and deduce the fault reason or fault equipments. So 
that fault diagnosis is a kind of mapping from the situation information to the type of 
fault.  

NDTS is composed by the building of normal situation database and detection. The 
process is shown by figure1. 

2.1   Rule Scavenging  

In network fault circumstance we can only get some sample data, but no rules. As 
rules are the foundation of constructing NDTS, how to acquire rules becomes the 
focus. This chapter tries to solve this problem using a novel approach. 

Let an information system ),,( DCUK = be an fault decision system, where U is 

a non-empty finite set, called the domain of discourse, C  is a non-empty set that 
contains condition attributes, and D is a non-empty set which consists of decision 
attributes. Let DCA ∪= , attribute a ( Aa ∈ ) can be regarded as a function from 

the domain of discourse U  to value set aVal . An information system may be repre-

sented in the form of attribute-value table, in which rows are labeled by objects in the 
domain of discourse and columns labeled by the attributes. For every subset of attrib-
utes CB ⊆ , equivalence relation BI  on U  is defined as: 

))}()(,(),(|),{( yaxaBaUyxyxI B =∈∀∧∈=  (1) 

Then the equivalence class of an object Ux ∈  with respect to BI  can be defined 

as: 

}),(|{][ BB IyxUyyx ∈∧∈=  
(2) 

Given subset UX ⊆ , CB ⊆ , X ’s B-Lower and B-Upper approximation are be 
defined as: 

}][|{)( XxUxxXB B ⊆∧∈= ; }][|{)( Φ≠∩∧∈= XxUxxXB B  (3) 

Suppose U is partition into m classes { mxxx ,...,, 21 } by equivalence relation de-

fined on D . Given any class },...,,{ 21 mxxxx ∈ , all objects belonging to and not 

belonging to it are numbered with subscripts ),...,2,1( γ=ii and ),...,2,1( ρ=jj , 
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respectively. The decision matrix )()( ijMKM = of K is defined as a ργ ×  matrix 

( )( ijM |))(,{( ill xaa= Cal ∈ ∧  )}()( jlil xaxa ≠ ), whose entry at position 

),( ji is a set of attribute-value pair. To a given object ),...,2,1( γ=ii  belong to 

class },...,,{ 21 mxxxx ∈ ; we can compute its minimal-length decision rule: 

ij
j

i MB UI=|| . Here I and U are generalized interaction and union operator. So 

for the given class },...,,{ 21 mxxxx ∈ , its decision rule set can be represents as: 

),...,2,1(|,| γ=∪= iBRUL i . 

There is no problem when extract decision rules from consistent information ta-
ble using the method described above. However, when the information table is 
inconsistent, how can we extract rules? To solve the problem, we first give two 
definitions:  

Definition 1: Certain Decision Matrix of Concept c . Label the element in )(cB  

with i ( ni ,...,2,1= ), and the element not in )(cB  with j ( mj ,...,2,1= ). Then 

the certain decision matrix of concept c  in K  is )()( certain
ij

certain
c MkM = . The 

value in cell ),( ji  is an attribute-value pair, defined as follows: 

)}()(|))(,{( jlillill
certain
ij xaxaCaxaaM ≠∧∈=

 

(4) 

Definition 2: Possible Decision Matrix of Concept c . Label the element in )(cB  

with i ( pi ,...,2,1= ), and the element not in )(cB  with j ( qj ,...,2,1= ). Then 

the possible decision matrix of concept c  in K  is )()( possible
ij

possible
c MkM = . The 

value in cell ),( ji  is an attribute-value pair, defined as follows:  

)}()(|))(,{( jlillill
possible

ij xaxaCaxaaM ≠∧∈=  (5) 

From definition 1 and 2, we can extract certain and possible rules from inconsistent 
rules as follows: 

(1) Rules extracted from certain decision rules of c  are certain rules: 

),...,2,1(,|| niBRUL certain
cc

certain i
=∪=  (6) 

(2) Rules extracted from possible decision rules of c  are certain rules: 

),...,2,1(,|| piBRUL possible
cc

possible i
=∪=  (7) 
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2.2   Neural Network Model of NDTS 

A lot of literature has proceeded with the research of fuzzy logical neuron model [8]-
[10], especially in 2001 Glorennec put forward the concept of weak T/ S norm, which 
looses the constraint of associative law in T norm in order to make some controllable 
operation combination with simple form as and/or operation. He also constructed a 
kind of neuron model based on weak T/ S norm cluster. We improve his model, so 
that it could realize not only weak T/ S norm cluster, but also both equivalence opera-
tion and sequential average operation, which meet the requirement of data link fault 

prediction. Let ),,( 2121 nn uuuAAA ′⊗⊗′⊗′ L = ))((
1

iii

n

i
uAg ′∧

=
, in which ig  con-

tent 1)1( =ig  in [0, 1]. The elasticity of every rule: nggg ,,, 21 L  is set on through 

its importance. Let ),,,( 21 nkkk uuu L ∈ nUUU ××× L21 , 

where iik Uu ∈ , Lk ,,2,1 L= , nUUU ××× L21 =L. The neuron model is shown 

in Fig. 2. 

 

Fig. 2. The basic neuron of ),,( 2121 nkkkn uuuAAA ′⊗⊗′⊗′ L = ))((
1

ikii

n

i
uAg ′∧

=
 

In order to make rendering neural network chart easier, we take fig. 3 to replace 
fig. 2 as a simple form. 

 
Fig. 3. The simple form of the neuron 

We design the neural network shown as figure 4.  

Suppose ))()),(((
1

))(( jikii

n

i
jk vBuAgRR

=
∧= , based on fig.4, we get  

)(vB′ = ))]()),((())(()[({
11

1
),,( 1

vBuAgRuAgvp ikii

n

i
ikii

n

i
uu nkk

==
∧∧′∧∨

L

)[(2 vp+
n

i 1=
∧ (ig

))]}()),((())(
1

vBuAgRuA ikii

n

i
iki =

∧∨′ , where Vv ∈ . 
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Fig. 4. Neural network structure for network data link fault prediction 

Let 1)(1 =vp  0)(2 =vp  ))(( ikii uAg = )( iki uA , then  

)(vB′ = ))](),(()([
11

),,( 1

vBuARuA iki

n

i
iki

n

i
uu nkk

==
∧∧′∧∨

L

. 

Distinctly, above is the CRI form of Zadeh now. 

Consistency of consequence  
Let nAAA ⊗⊗⊗ L21 B→  be a known rule, ),( BAR  be discretional implica-

tion relation. When training the neural network in fig4, always be )(, 21 VFpp ∈ , 

 if ii AA =′ then Vv∈∀ , BB =′  iff  

)(vB ≤ ∨
),,( 1 nkk uu L

([
1

i

n

i
g

=
∧  (( iA ))]()),((())

1
vBuAgRu ikii

n

i
ik =

∧+ . 

Proof  First, if ii AA =′ , ∃ )(, 21 VFpp ∈ which makes BB =′ . That is, 

))](),(()()[({)( 1
1

vBuARuAvpvB ii

n

i
∧∨=

=
))]}(),(()()((2 vBuARuAvp ii ∨+ . 
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Because ]1,0[)(),( 21 ∈vpvp , so  

)(vB ≤ ))](),(()([
1

vBuARuA ii

n

i
+∨

=
. 

Conversely, 

),( yxf = ))]()),((())(([{
11

),,( 1

vBuAgRuAgx ikii

n

i
ikii

n

i
uu nkk

==
∧∧∧∨

L

 

))]}()),((())(([
11

vBuAgRuAgy ikii

n

i
ikii

n

i ==
∧∨∧+ . 

Now, 2]1,0[),( ∈yx . Through mathematics analysis: if ),(1 yxh  and ),(2 yxh  are 

continuous functions in closed interval, then ),,(min{ 1 yxh )},(2 yxh , 

)},(),,(max{ 21 yxhyxh  and +× ),(1 yxha ),(2 yxhb × ba, R∈  are 

also continuous functions in closed interval. It is not difficult to find that ),( yxf is 

continuous functions in 2]1,0[ . So the domain of ),( yxf  be  

H= )]1,1(),0,0([ ff . 

Because )0,0(f = 0, and 

)1,1(f = ))]()),((())(({[
11

),,( 1

vBuAgRuAg ikii

n

i
ikii

n

i
uu nkk

==
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So if ))]()),((())((([)(0
11

),,( 1

vBuAgRuAgvB ikii

n

i
ikii

n

i
uu nkk

==
∧+∧≤≤ ∨

L

, obeying 

continuous function interpose-value theorem ∃ ),( 21 pp ′′  leads 

to )(),( 21 vBppf =′′ , then let 11 )( pvp ′= , 22 )( pvp ′= . For the randomicity of v , 

it always ∃  )(1 vp and )(2 vp , which hold reasoning results BB =′ , when ii AA =′ . 

2.3   Network Data Link Fault Prediction 

Using NDTS to single-step forecast, we choose the structure with two inputs and one 
output. Carve inputs variable into seven fuzzy subsets: {NL NM NS ZO PS, 
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PM PL}, which express negative large, negative middle, negative small, zero, posi-
tive small, positive middle and positive large respectively. 

Original partition is shown as figure 5. The value of x is disposed through normali-
zation. So we get hold of 49 fuzzy rules, marking R: 

R1: if x1 is NL, x2 is NL, then y1= 2
1
21

1
1

1
0 xCxCC ++    

R2: if x1 is NL, x2 is NM, then y2= 2
2
21

2
1

2
0 xCxCC ++  

… 

R49: if x1 is PL, x2 is PL, then y49= 2
49
21

49
1

49
0 xCxCC ++  

 

Fig. 5. Subjection function before training: x1 and x2 mean the node loading of the former two 
time segments Ti-2, Ti-1 (Ti-1, Ti) at time of Ti. Let the network desired output be Bd, then 

output error be 2
2
1 )( BBJ d −= .  

3   Simulation and Analysis 

According to Gabarit approximation [6-7], data flow could be represented by contin-
uum condition discrete time AR Markov model. If we let )(nλ  express the bit rate of 

No.n packets then one rank AR Markov equation is shown as follows by the using of 
recursion relation: 

)()()1( nmnln ϖλλ ⋅+⋅=−  (8) 

l and m  are influence genes. Following experience, we can evaluate 
l 0.8781 m 0.1108. )(nϖ  is the independence gauss white noise sequence, and 

its mean is 0.572, its variance is 1[5]. Every node loading could be expressed by the 
formula: 

=

=
n

i
ii akL

1

2 )(  
(9) 

In the formula, L represents the loading value of local node; ,,...,, 21 aaa n are load-
ing targets; ,,...,, 21 kkk n are weights. 

The simulation environment in this paper is NS2. Figure 6 presents the network to-
pology of simulation experiment.  
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Fig. 6. Simulation network topology: Design a share bottleneck connection A and B in the 
topology, and the bandwidth of link is 100Mbit/s. Other link bandwidths are all 5Mbit/s. The 
link delay between node A and B is a variable, whose value is between 10ms and 300ms. Let 
packets length be 1024bytes. The buffer length in router A and B are all 40M. m=n=40. The 
send-velocity minimum of every node is 300kbits/s, and the maximum is 1500kbits/s. 

We choose data link traffic prediction as an example. Set sampling cycle be 
40ms and get 400s sampled data to train. Get eight sets at random once more. In 
each sets, 320s data is to test. Based upon these hypothesis and parameter, the result 
of training is shown as figure 7. The figure 8 exhibits the subjection function curve 
after training. 

The results of comparing BPN with the neural network of NDTS are shown in ta-
ble 1. The first row represents TSE (total squared error) and the second and the third 
row represent iteration degree, when BPN or the neural network of NDTS reach cor-
responding TSE. We also can hold MSE (mean square error, MSE TSE 400). From 
table 1, we can find that convergence rate of the neural network of NDTS is more 
quickly than BPN in evidence, and the neural network of NDTS could gain wee TSE 
and MSE in tolerable iteration degree. 

 

 

Fig. 7. Prediction result of node data flow 
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Fig. 8. The subjection function after training 

Table 1. Iteration degrees of BPN and the neural network of NDTS 

TSE BPN the neural network of NDTS 
2.43 238 58 
2.23 633 69 
2.03 13232 81 
1.83  95 
1.63  118 

4   Conclusion 

The network troubleshooting with NDTS is provided with several advantages as fol-
lows: 

(1) It is not necessary to establish accurate mathematical model. Making use of its 
powerful self-learning function, it is able to obtain features by rule and line with ap-
propriate training. 

(2) The parallel-distributed frame of neural network is fit for multi-info amalgama-
tion and multimedia technique. It may integrate the fixed and qualitative information 
robustly. 

(3) Neural network is easy to be implemented by VLSI hardware or software simu-
lation. Once succeeding in training, the network would attain high response velocity, 
which is fit for the real-time requirement of high-speed net. 

NDTS is combined by neural network and rough-fuzzy logic. This strategy is pro-
pitious to catch the flow features with mutative time exactly. Because the weight of 
network is adjustable, this strategy can satisfy the consistency requirement of fuzzy 
consequence for any implication relation ),( BAR . The experiment shows that it is 

effective to the adjustment of network rate and the of loss rate reduction. The strategy 
could show extensive adaptability with the adjustment of weight. 
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Abstract. The way conventional Ethernet is used today differs in two aspects
from how dedicated system area networks are used. Firstly, dedicated system
area networks are lossless and only drop frames when bit errors occur, while
conventional Ethernet drop frames whenever congestion occur. Secondly, these
networks are either deadlock free or use mechanisms which avoids deadlock sit-
uations, while still using all available links. Ethernet avoids deadlocks by using a
spanning tree protocol which turns any topology into a tree. A drawback of this
approach is that we are left with a lot of unused links and thus wasting resources.

In this paper we describe how to obtain a lossless deadlock free network with
the best possible performance, while adhering to the current Ethernet standard
and using off-the-shelf Ethernet equipment. We achieve this by introducing flow
control in all network nodes and by taking control over the routing algorithm.
Also, we use TCP to illustrate the effect of flow control on higher layer protocols.

Through simulations we verify the following tree improvements. Firstly, the
activation of flow control turns Ethernet into a lossless network. Secondly, taking
control over the routing algorithm allows us to build any topology without the
limitations of the spanning tree protocol. And thirdly, an overall improvement in
throughput is achieved by combining these enhancements.

1 Introduction

For a long time Ethernet has been the dominating local area network standard. The in-
troduction of 1 Gigabit Ethernet has further strengthened this position, while the recent
introduction of 10 Gigabit Ethernet has made it more attractive in system and wide
area networking. Furthermore, the recent effort for Backplane Ethernet will allow Eth-
ernet to be used in server and I/O backplanes in the future. Ethernet has also gained
popularity in the automation world [1–3], and wireless Ethernet has in a short time be-
come the technology of choice for mobile computing. All things considered, Ethernet
is truly on its way to become omnipresent. Still, there are some fields that have not yet
fully embraced Ethernet, fields such as high performance computing, cluster comput-
ing and system area networks [4, 5]. These areas are still using a variety of technologies
such as Fibre Channel [6], InfiniBand [7], Myrinet [8], and Scalable Coherent Interface
[9]. These technologies are all niche products compared to Ethernet, something which
makes them more expensive to produce, acquire and maintain. If Ethernet could be used
in these environments huge savings would be possible with regards to both acquirement
and maintenance costs.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 901–914, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The way conventional Ethernet is used today differs in two aspects from how dedi-
cated system area networks are used. Firstly, dedicated system area networks are loss-
less and only drop frames when bit errors occur. Conventional Ethernet drop frames
whenever congestion occurs. Secondly, these networks are either deadlock free or use
mechanisms which avoid deadlock situations, while still using all available links. As
conventional Ethernet allows frame dropping deadlock has not been a problem tradi-
tionally.

In Ethernet technology the issue of lossless networking was solved with an exten-
sion to the standard in 1997. This extension adds control frames and on/off type flow
control to Ethernet [10], making lossless Ethernet a reality. Several contributions have
studied the effect of Ethernet flow control on TCP congestion control and how TCP
benefits from link layer flow control [11–14]. Furthermore, W. Noureddine et al. have
proposed several improvements to the current mechanism by increasing the flow control
granularity from port based to source/destination based [13, 15]. Common for all of the
above studies is that they only consider simple scenarios with one or two switches.

The second problem with conventional Ethernet is how to handle deadlocks. When
we introduce flow control and disallow frame dropping the possibility for deadlock
appears in topologies with loops [16, 17]. Ethernet solves this by using a spanning tree
protocol which turns any topology into a tree. This is done by disabling links until we
are left with a tree, and since a tree contains no loops we have no deadlock potential. A
drawback of this approach is that we are left with a lot of unused links and thus wasting
resources. In many local area networks this might not be a severe problem, but with
system area networks we want efficient topologies and we want to use every link to
achieve the best performance possible. Then the spanning tree protocol is no longer a
valid solution. A lot of research has been done on deadlock avoidance in general [16, 17]
, but few of these techniques can be applied to Ethernet. And deadlock avoidance in
Ethernet itself has received little attention. The only work we are aware of is by M.
Karol et al., where they suggests a deadlock prevention scheme for Ethernet [18]. They
have a novel approach, but with the drawback of changing the semantics of the Ethernet
pause frame and adding extra housekeeping to the switches. This makes it incompatible
with current off-the-shelf Ethernet equipment.

Several other contributions have studied Gigabit Ethernet as a cluster technology
and compared it with technologies such as Myrinet. These contributions have shown
Ethernet to be a feasible alternative as long as a suitable messaging system is used [19–
22]. But none of these contributions have considered how to use Ethernet as a lossless
and deadlock free architecture in a topology independent manner. Furthermore, most
of these studies are limited to only a handful of nodes connected through one or two
switches.

The objective of this paper is to show how to obtain a lossless deadlock free network
with the best possible performance, while adhering to the current Ethernet standard and
using off-the-shelf Ethernet equipment. We achieve this by introducing flow control in
all network nodes and by taking control over the routing algorithm. Flow control puts
the congestion control into the network allowing the network to signal end nodes when
congestion occurs. This in turn makes the network lossless. Taking control over the
routing algorithm lets us avoid deadlock and leverage the performance increase that
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regular topologies such as meshes and tori allows. Furthermore, we also model TCP to
illustrate the effect of flow control on reliable transport protocols.

In Sect. 2 we discuss flow control in general and Ethernet flow control in particular.
In Sect. 3 we review some deadlock prevention techniques and deadlock free routing
schemes. In Sect. 4 we combine these two building blocks to a scheme capable of
supporting high performance Ethernet in system area networks. We continue with a
brief description of our simulation environment in Sect. 5 and an evaluation of our
results in Sect. 6. Finally, in Sect. 7, we conclude.

2 Flow Control

In a system area network (SAN) environment the loss of frames is unacceptable in most
situations. And Ethernet without flow control is unable to satisfy this requirement as
Fig. 3(a) clearly shows. There is a large increase in frame loss as network load increase.
At an injection rate of 300 Mb/s almost 90% of all frames are dropped. To remove frame
loss we need to make sure that the sender never swamps the receiver with more frames
than it can buffer. We achieve this with the use of flow control. Flow control puts the
control of network congestion back into the network by letting the network itself signal
the end nodes whenever congestion occurs. This stands in contrast to the way most link
layer technologies in the Internet works, where the end nodes themselves, in the form
of TCP, must be well-behaved and try to detect and avoid congestion.

2.1 On/Off Flow Control

To achieve flow control we need a way to inform the upstream nodes about our buffer
situation. In on/off flow control this is done by simple on/off messages. When the down-
stream node have available buffer space it sends an on message to the upstream node
telling it to start sending frames if any are available. As the transmission proceeds and
the downstream node runs out of buffer space it sends an off message telling the up-
stream node to halt frame transmission. For this scheme to work we must make sure
that these messages are sent in a timely manner. When the downstream node sends an
off message it must do it at a point in time where it has enough space to buffer frames
received while it waits for the off message to take effect. There will be a delay between
the transmission and the activation of the off message due to the propagation and pro-
cessing delay for the off message. According to [16] the buffer requirements and trigger
values can be calculated as follows1:

F ≥ Fon +
trtb

Lf
≥ Foff +

trtb

Lf
≥ 2trtb

Lf
(1)

Here F is the total buffer space, Fon the number of buffers triggering the on message,
Foff the number of buffers triggering the off message, trt the propagation and processing
delay for a frame, b the link bandwidth, and Lf the frame size. The minimum number

1 The formula shown is for frames while the original is for flits. The end result is the same as
mentioned in [16] Sect. 13.3 page 245.
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Table 1. Minimum buffer requirements for Gigabit Ethernet flow control

Allotment Bits

Frame on transit 12,336
Frame on receive 12,176
Pause frame 512
Pause frame decode 1024
Propagation delay (10m UTP) 114

of buffers needed to allow full speed operation is 2trtb. We need trtb bytes to make sure
we have buffers available to receive data sent after the off message was sent, but before
it was received and processed at the other end. We need another trtb bytes to make sure
we have data to send while we wait for an on message to be received and processed at
the other end. If we want to further reduce the number of on/off messages sent at the
cost of more buffers, we can increase the number of buffers used for F , Fon and Foff
according to the formula.

2.2 Ethernet Flow Control

When flow control was added to Ethernet the concept of control frames was introduced
for the first time in Ethernet technology. Currently, there is only one flow control scheme
specified and this is an on/off approach similar to the one described in the previous
section. Here a pause frame is used to communicate the on/off messages. A pause frame
is a special instance of the control frame shown in Fig. 1. According to the standard
a pause frame must have the MAC control opcode set to 0x0001 and a MAC control
parameter consisting of a 2 byte field called the pause time. The pause time P means the
time the upstream node must wait before sending the next frame. This time is measured
in 512 bit-time increments, where the bit-time B is the time it takes to send a single
bit. For Gigabit Ethernet B equals 1 ns which gives P a range of 0–33.6 ms in 512 ns
increments. A pause time P with a value of zero equals an on message and overrides
any earlier pause times. A P between 1 and 255 equals an off message lasting P × B
bit-times. As time passes the pause time will eventually expire, this is a safety measure
to avoid permanently pausing a link if the on message should be lost. If the situation
persists, however, we must refresh the pause by sending another pause frame.

As the exact algorithm to trigger the pause frame mechanism is unspecified, it is up
to the individual vendors to find their own solutions. In our approach we use a threshold
function to trigger the transmission of pause frames and a timer to check if the pause
should be refreshed. This timer is a countdown to the expiration of the last pause frame
transmitted. If the timer reaches zero and the current port is still congested, we have to
resend the pause frame telling the upstream node to extend its pause time.

The threshold function is tightly connected to the minimum buffer space we need
to avoid dropping frames and to keep the link running at full speed as described in
(1). With the numbers from Table 1 we get the following buffer requirements when we
replace trtb

Lf
, Fon and Foff with 4566 bytes:
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Fig. 1. MAC control frame format

F ≥ 2 × 4566 (2)

These 4566 bytes consist of the fields in Table 1 described as follows: Frame on transit
is a frame that has just been flushed for transmission when flow control has been acti-
vated on the sender side. This frame must be completed before we can send the pause
frame. Frame on receive is a frame that has just been flushed for transmission when we
have decoded the pause frame on the receiver side. We must finish transmission of this
frame before we pause the link. Pause frame and pause frame decode is the time it takes
to send and decode a pause frame respectively. The propagation delay is the delay over
10 meters of unshielded twisted pair for Gigabit Ethernet. All together this makes up
3270 bytes, but since we only buffer complete frames we round this upwards to three
maximum-length Ethernet frames which equals 4566 bytes. Thus, the minimum buffer
space necessary for full speed operation becomes:

F ≥ 9132 bytes (3)

As we try to minimise buffer space we set Fon = Foff . This gives us a total of 9132
bytes for each port and a pause frame trigger at 4566 bytes.

The granularity of Ethernet flow control is per port, thus the upstream node can
be told to stop frame transmission when the downstream node runs out of buffer space
without affecting traffic on any other ports. The effect of increasing and decreasing flow
control granularity is studied in [13]. The main conclusion being that increasing flow
control granularity to act on source/destination pairs further improves performance. In
this paper we assume port based flow control as this is the level of flow control that is
supported by the Ethernet standard.
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3 Deadlock

The combination of topology loops and lossless flow control introduce a potential for
deadlock. A deadlock is a situation where a frame gets blocked forever because of a
resource conflict in the network. These resources can be buffers or links in the network
and a deadlock occurs when a sequence of resource requests form a cycle. When this
happens forward progress in the whole or parts of the network is halted. To avoid dead-
locks we could choose to avoid topologies with loops altogether, which is the case with
the spanning tree algorithm where every topology is turned into a tree. But this is a bad
option with regards to performance, since topologies such as meshes and tori contain
lots of loops.

There are three ways to handle deadlock, namely [17]: deadlock avoidance, dead-
lock recovery and deadlock prevention. Below we will discuss deadlock avoidance in
Ethernet. A more extensive coverage is available in [16, 17].

3.1 Deadlock Avoidance

Deadlock has been thoroughly studied in other network architectures where the use of
flow control is the default practise [23, 16, 17]. One popular way of achieving deadlock
avoidance is through the use of deadlock free routing algorithms. Such algorithms are
either topology dependent or topology agnostic. Topology dependent algorithms are
used for regular topologies where the regularity is exploited to improve the routing ef-
ficiency, while topology agnostic algorithms make no assumptions about the topology.
They can be used for both regular and irregular networks. Topology dependent algo-
rithms gives the best results with regards to performance, but they are more sensitive
to topology changes. A faulty switch in a regular topology will degrade it into an ir-
regular topology and then a topology dependent algorithm will fail. Topology agnostic
algorithms will not have this problem.

One of the most well known topology agnostic routing algorithms is Up*/down*
[24]. Up*/down* can be used with any topology and it does not require virtual channels.
This makes it suitable for a wide range of network technologies, including Ethernet.
Up*/down* is a spanning three based routing algorithm that works in two steps. First
it creates a breadth-first spanning tree of the topology to be used. Next it assigns either
an up or down direction to each link in the topology. For host-to-switch links the up
end is the switch end and for switch-to-switch links the up end is the end closest to
the spanning tree root. Now packets can be routed deadlock free as long as we follow
the up*/down* rule [24]: “a packet may never traverse a link in the up direction after
having traversed one in the down direction.”

For topology dependent routing one of the simplest and most popular options is
dimension-order routing [17]. This algorithm is applicable to n-dimensional meshes
and hypercubes, and works by crossing dimensions in strictly increasing order. E.g. in
a 2-D mesh we would first route along the x-dimension until we reach the correct x-
coordinate, then we would route along the y-dimension until we reach the destination.

More efficient routing algorithms exist, but as we limit ourselves to algorithms that
can be used with the current Ethernet standard we cannot use algorithms that require
functionality such as virtual channels. We end up with a deadlock avoidance scheme
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consisting of up*/down* and dimension-order routing. Both these algorithms allow us
to use all available links in a network, compared to only a small subset (a tree) of links
with the STP. Both up*/down* and dimension-order routing outperform STP, and when
combined with flow control we have a high performance lossless network architecture.

Up*/down* and dimension-order routing can be used with most of the managed
Ethernet switches available today. There are only two requirements, the switch must al-
low manual configuration of the MAC address table and it must support address entries
which consider both destination and input port when forwarding frames2.

In [18] Karol et al. propose a lossless deadlock avoidance scheme using advanced
buffer management. Their scheme has a novel approach where the deadlock avoidance
mechanisms is independent of the routing algorithm. The drawback is that it changes the
semantics of the Ethernet pause frame and requires additional control logic for buffer
handling. This makes it incompatible with current off-the-self Ethernet equipment.

4 Switch Architecture

Every switch needs an internal interconnect to allow the external connections to com-
municate with each other through the switch. This switching fabric can be designed
in many ways. Three alternatives widely used in commercial switches are shared bus,
shared memory and crossbars [25]. The switch model used in our evaluation has a
shared memory architecture using store and forward switching.

4.1 Switch Organisation

We have modelled our switch as a shared memory architecture. Shared memory was
chosen because it reduces the effect of head of line blocking. In a crossbar approach
this must be dealt with specifically. Shared memory is also the most deployed switch
architecture in current equipment [25].

Our switch model is shown in Fig. 2. It has a shared memory used to exchange
frames between ports, and each port have a dedicated lookup engine to allow for dis-
tributed address lookup. The output port lookup is completed before the frame is stored
in shared memory, but it would also be possible to store the frame before or in paral-
lel with the lookup. Then the frame could be updated with the output port information
when the lookup is complete. On the output side each output port has a FIFO queue
for outgoing frames. This queue is implemented as pointer table to the corresponding
frames in the shared memory. When an output queue is ready to transmit a frame it
follows the pointer at the front of the queue, transmits the frame and frees the memory
previously occupied by the frame. In order delivery is ensured by using links among
packets received through the same input port.

4.2 Buffer Organisation

To combine our shared memory architecture with flow control we have divided our
memory in global and local partitions. The global partition is common for all ports

2 With dimension-order routing only the destination address is needed so even a wider range of
equipment can be used.
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Fig. 2. Switch Architecture

(global memory), while the local partition (local memory) is dedicated to a single port
(Fig. 2). The global memory is where frames are stored when there is no severe con-
gestion in the switch. If short term congestion occurs the amount of global memory
will be able to handle this without activating flow control, i.e. global memory is not
subject to flow control. In case of long term congestion the global memory will be filled
by frames destined for the congested port. As this happens additional frames destined
for the congested port must use the local memory that belongs to the input port of the
frame. Furthermore, as the local memory fills up flow control will be activated on this
port. This scheme allows ports without frames destined for a congested port to continue
operation as normal. To a certain extent it also removes head of line blocking from
the ports with frames destined for a congested port, but as the local memory is filled no
more progress can be made on this port until congestion resolves. This could be avoided
if we, for each input port, had a local memory for each output port.

Flow control is triggered by the use of local memory as described in Sect. 2.2.
As the local memory is filled a threshold function triggers the transmission of pause
frames according to (3). With the current Ethernet standard per port flow control is
the highest granularity allow. Improved performance is possible by increasing the flow
control granularity to act on source address. This has been studied in [13].

5 Simulation

We have built our own Ethernet simulator in the JSim environment. JSim is a Java
based environment for development of network simulation models [26]. Our simulator
implements a shared memory architecture and Ethernet flow control as described in
previous sections.

We have studied both regular and irregular topologies where each switch has a total
of eight Gigabit Ethernet ports. The first four ports are used for host connections and
the last four ports are used for network connections. Furthermore, each switch has a
total of 146112 bytes of memory. Where the first half (73056 bytes) is global memory
and the other half is local memory. The local memory is divided equally on the 8 ports
for a total of 9132 bytes for each port.

We have evaluated networks with 16 and 32 switches, which amounts to 64 and 128
nodes respectively. The irregular topologies consist of 16 randomly generated topolo-
gies, while the regular topologies consist of one 4x4 mesh, one 8x4 mesh, one 4x4 tori
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and one 8x4 tori. Due to lack of space only results from topologies with 32 switches are
presented here.

Our traffic model have a Poisson arrival rate with an increasing average rate and
a fixed frame size of 1522 bytes. We use a traffic pattern with a uniform destination
addresses distribution. Each simulation is run for 5 seconds of real time on each topol-
ogy with 12 load levels increasing from 5%–100% load. The average throughput and
latency is then calculated from the observed results.

6 Evaluation

Our evaluation consists of three routing schemes on both regular and irregular topolo-
gies with the major performance properties being throughput, latency and frame loss.
We also consider TCP throughput and latency as a means to evaluate the effect of flow
control on reliable transport protocols.

6.1 Throughput

For Ethernet performance we ran the spanning tree protocol (STP) and up*/down* (UD)
routing on a set of irregular topologies. And for regular topologies we ran UD and
dimension order routing (DOR) on a 8x4 torus and a 8x4 mesh respectively. We have
also studied TCP performance in combination with UD routing, DOR and flow control.
TCP in combination with STP was left out due to the poor performance of STP. The
results for irregular topologies are presented in Fig. 3(a) and 3(b). The x-axis show the
amount of traffic that each node is trying to send in Mbit/s, the left y-axis shows the
average per node receive rate in Mbit/s, and the right y-axis shows the frame loss in
Mbit/s. The frame loss for TCP is left out as the actual loss is negligible due to TCP’s
built in congestion avoidance mechanism. The actual packet loss with TCP when flow
control is disabled (not shown) is in the order of tens of kilobytes while for Ethernet it
is several megabytes (Fig. 3(a)).

Fig. 3(a) shows us that UD enabled Ethernet achieves more than tree times the
throughput of conventional Ethernet when flow control is disabled. UD gives a per node
throughput of 131 Mbit/s compared to 39 Mbit/s for STP. These data rates, however,
are only of theoretical interest since the frame loss is so high. Figure 3(a) shows that
an injection rate of 300 Mbit/s results in a 60% frame loss for UD and 88% frame loss
for conventional Ethernet. Few applications are usable under such conditions, some-
thing the TCP results in Fig. 3(b) shows. Here the achieved throughput when running
TCP over Ethernet without flow control is only 55 Mbit/s, which is less than half the
throughput we measured on Ethernet with UD routing. This decrease in throughput
happens because TCP use sliding windows and retransmissions to achieve a reliable
service with in order delivery of packets. And it is a good example of the retransmis-
sion penalty that any application requiring a reliable transport layer will run into when
trying to use Ethernet without flow control as in the UD scenario above. Even if we
are allowed to inject a lot of frames most of them are wasted since they will either be
dropped or retransmitted. The benefits of reducing retransmissions are larger than the
benefits of blindly increasing the injection rate as we shall see below.
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Fig. 3. Throughput

To improve performance we enable flow control. The new achieved throughput,
now with zero frame loss, is 65 Mbit/s for UD and 21 Mbit/s for STP (Fig. 3(a)). When
the network saturates, the end nodes are throttled since the switches in the network
run out of buffer space. Throttling is achieved by pausing links in the network as de-
scribed in Sect. 2.2. Thus, as more links in the network enters a paused state, the pause
state propagates to the end nodes and reduced the number of frames injected into the
network. The achieved throughput for TCP is now 65 Mbit/s compared to 55 Mbit/s
without flow control. Which shows that the introduction of flow control has improved
TCP throughput by 18% even if the Ethernet throughput has been reduced from 131
Mbit/s to 65 Mbit/s (Fig. 3(a)). TCP throughput is increased since we no longer drop
frames, meaning that the TCP congestion mechanism is never activated. Every frame
we inject arrives at its destination and there is never need for any retransmissions, this
leads to increased throughput from the applications point of view even if the Ether-
net injection rate has been reduced. With flow control we inject less frames, but every
frame is useful. Without flow control we inject a lot of frames, but only a few of them
are useful.



Ethernet as a Lossless Deadlock Free System Area Network 911

For regular topologies we obtain even better results, when we introduce flow con-
trol, compared to irregular topologies. With TCP the throughput is about 50 Mbit/s on
both the torus and the mesh without flow control. When we enable flow control the TCP
throughput increase by 30 % to 65 Mbit/s on the torus and by 60 % to 80 Mbit/s for the
mesh. Again we see an increase in TCP performance even if the Ethernet injection rate
is reduced. The 8x4 torus with UD routing and no flow control achieves a throughput
of 160 Mbit/s, when we enable flow control this is reduced to 65 Mbit/s (Fig. 3(c)).
For the 8x4 mesh with dimension-order routing throughput is slightly lower with 130
Mbit/s and when flow control is enabled this is reduced to 80 Mbit/s (Fig. 3(d)). It is
easy to be seduced by these seemingly good numbers for Ethernet without flow control,
but the truth is that the frame loss and the resulting retransmission rate leads to very
poor performance for applications, something the TCP numbers confirms.

The large difference between the torus and mesh is due the different routing algo-
rithms. The UD algorithm is unable to utilise the extra connectivity that is present in
the torus due to its vulnerable to congestion around the root of the UD tree when flow
control is enabled. This weakness of the UD algorithm is studied in [27]. DOR on the
other hand is tailored to exploit the regularity of the mesh topology and handles the
situation much better. The improvement in TCP follows from the reduction in packet
loss as discussed earlier. In addition to the removal of frame loss TCP also benefits
from the improvement in the routing algorithm. DOR is known to be better than UD
routing, as can be seen in the differences between the torus and the mesh (Fig. 3(c)
and 3(d)).

6.2 Latency

We present latency results for both Ethernet and TCP simulations to see how they differ
when flow control is enabled and disabled. For irregular networks latency is increased
with a factor of 2.5, from 1000 μs to 2500 μs, when flow control is enabled and STP is
used (Fig. 4(a)). For UD routing latency is just about doubled, from 700 μs to 1300 μs,
when flow control is enabled. The use of UD routing gives lower latency and higher
throughput since it can use all links in the network.

The increase in latency that we observe when flow control is enabled is expected,
and is due to the back pressure created by the pause frame mechanism. When links
are paused data frames must wait in buffers along the path from source to destination,
where they, in case of no flow control, would have been dropped. It is this waiting that
causes the growth in latency. The worst case scenario is that a frame will wait at every
hop towards its destination, resulting in a large increased in latency.

If we compare latency at the Ethernet and TCP level we see that there is almost
no difference when flow control is enabled, and a large difference when flow control is
disabled. When flow control is enabled TCP latency is only slightly higher than Eth-
ernet latency because the only difference is the protocol overhead in the end nodes3.
When we disable flow control we see an increase in TCP latency compared to Ethernet

3 The latency introduced by the protocol stack in the end node can be large. As we are con-
centrating on the features of the network infrastructure the end node complexity has not been
studied in detail. For more information on this topic please refer to [2, 19, 20, 21]
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Fig. 4. Latency

latency. This increase is caused packet loss. Packet loss triggers the TCP retransmission
mechanisms and this affects latency in the same way we saw it affect throughput in the
previous section. Thus, the introduction of flow control increase throughput, but at the
cost of also increasing latency.

The behaviour for regular topologies is very similar to that of regular topologies.
When we enable flow control both the 8x4 torus and the 8x4 mesh see a doubling of
latency from 750 μs to 1400 μs (Fig. 4(b) and 4(c)). The results are very similar even
though the torus has a higher connectivity than the mesh. This is again due to DOR and
its ability to exploit the regularity of the mesh topology better than UD routing is able to
exploit the torus. When we consider TCP latency we see the same differences between
TCP and Ethernet latency as for irregular topologies.

For applications where low latency is important further actions must be taken to im-
prove latency. Possible solutions are admission control and Ethernet priorities combined
with DiffServ, which have been effective with other technologies [28, 29].
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7 Conclusion

We have shown how it is possible to use Gigabit Ethernet as a topology independent,
lossless and deadlock free network architecture, while still being compatible with cur-
rent off-the-shelf Ethernet equipment.

We have reviewed how conventional use of Ethernet has severe performance limita-
tions and we have illustrated this through the use of TCP as a higher layer protocol. Fur-
thermore, we have shown how to solve this by activating flow control and taking control
over the routing algorithm. This has resulted in the following improvements. Firstly, the
activation of flow control turns Ethernet into a lossless network. Secondly, taking con-
trol over the routing algorithm allows us to use any topology without the limitations of
the spanning tree protocol. And thirdly, the combination of these enhancements issues
results in a an overall improvement in throughput.
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Abstract. The goal of geocasting protocols is to deliver data packets to
a group of nodes that are within a specified geographical area, i.e., the
geocast region. In an ad hoc environment, there are numerous scenarios
which benefit from geocast communication. In this paper, the network
is divided into grids, we propose a new routing protocol for geocast-
ing, which combines anycast and flood. The proposed protocol utilizes
the location information to route messages in grid-by-grid manner. The
routing path by using proposed protocol is the shortest route between
hosts in grids. The grid structure is successfully used to eliminate redun-
dant transmission of geocasting messages. The time complexity of route
discovery and the routing overhead are reduced.

1 Introduction

A mobile ad hoc network(MANET) is a network, which consists of a set of mobile
hosts that communicate with each other without the assistance of base stations.
Due to considerations such as radio power limitation, power consumption, and
channel utilization, a mobile host may not be able to communicate directly with
other hosts in a single-hop. In this case, a multi-hop scenario occurs, where the
packets sent by the source host are relayed by several intermediate hosts before
reaching the destination host. Routes between two hosts in a MANET may con-
sist of hops through other hosts in the network. The ability to establish an ad
hoc network without using a fixed infrastructure makes them useful in many sce-
narios, including disaster recovery, search-and-rescue in remote areas, and home
networking application. Application of MAENTs occurs in situations like battle-
fields or major disaster area, where networks need to be deployed immediately
but base stations or fixed network infrastructure are not available. The advance-
ment in wireless communication and economical, portable computing devices has
made the design of mobile ad hoc network possible.

Since a MANET is likely to operate in a physical area, it is very natural
to apply location information of mobile hosts on such an environment. We call
this property location awareness, this means that a mobile host may know its
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own physical location and the physical location of some other mobiles. One
way for a mobile host to know its current location is through a GPS(global
positioning system) receiver connected to the host [6][13]. Location-aware or
context-aware applications will be an important domain in mobile computing,
such as navigation systems, telematic systems to facilitate communication with
moving vehicles, geocasting, and tour guide system. The location information of
destination nodes is used to reduce the overhead of route discovery and assist
broadcasting in a MANET.

A MANET is a peer-to-peer network that allows direct communication be-
tween any two nodes, when adequate radio propagation conditions exist between
the two nodes and are subject to transmission power limitations of the nodes.
If there is no direct link between the source and the destination nodes, multi-
hop routing is used. Of course, appropriate routing protocols are necessary to
discover routes between the source and destination, or even to determine the
presence or absence of a path to the destination node. Because of the lack of
central elements, distributed protocols have to be used.

The main challenge in the design and operation of the MANETs, compared
to more traditional wireless networks, stems from the lack of a centralized en-
tity, the potential for rapid node movement, and the fact that all communi-
cation is carried over the wireless medium. In standard cellular wireless net-
works, there are a number of centralized entities( e.g., the basestation, the
Mobile Switching Centers, the Home Location Register(HLR) and the visitor
Location Register(VLR)), which perform the function of coordination. In ad-
hoc networks, there is no preexisting infrastructure. The lack of these entities
in the MANETs requires distributed algorithms to perform these functions. In
particular, the traditional algorithms for mobility management, which rely on
a centralized HLR/VLR, and the medium access control schemes by using the
base-station/MSC support, become inappropriate in the MANETs.

Because of the possibly rapid movement of the nodes and variable propaga-
tion conditions, network information, such as a route table, become absolutely
quick. Frequent network reconfiguration may trigger frequent exchanges of con-
trol information to reflect the current state of the network. However, the short
lifetime of this information means that a large portion of this information never
be used. Thus, the bandwidth used for distribution of the routing update infor-
mation is wasted.

A node in an ad hoc network is in charge of routing information between
its neighbors, thus it contributes to and maintains connectivity of the network.
Many unicast routing protocols have been proposed for ad hoc networks. A re-
view of unicast routing protocols appears in [19]. To do multicasting, some way
is needed to define multicast groups. In wireless ad hoc environments, two ap-
proaches can be used for multicasting: multicast flooding or multicast tree-based
approach. Tree-based multicast may not work well in mobile ad hoc networks as
dynamic movement of group members can cause the frequent tree reconfigura-
tion with excessive channel overhead and loss of datagrams [4][9]. Since the task
of keeping the tree structure up-to-date in the multicast tree-based approach is
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nontrivial, sometimes, multicast flooding may be considered as an alternative
approach in MANET [18]. The Location-based multicast schemes [9] attempt
to decrease delivery overhead of geocasting packets by reducing the forwarding
space for mutlicast packets, as compared to multicast flooding.

Geocasting, a variant of the conventional multicasting problem, delivers data
packets to a group of nodes that are within a specified geographical area, i.e.,
the geocasting region. The concept of geocast was first proposed in [8][16] in the
context of the Internet. In their scheme also, group members are defined as all
nodes within a certain region. To support location-dependent services such as
geographically-targeted advertising, they suggested three methods: Geographic
Routing Method(i.e., georouting with location aware routers), Geographic Multi-
cast Routing Method(i.e., geo-multicasting modifying IP multicast), and Domain
Name Service Method(i.e., an application layer solution using extended domain
name service).

GPS application in geographic messaging is presented in [16], which describes
how to send packets to users who are located on a wired network within a
particular polygon or circle defined by latitude and longitude. We will refer to
the specified area as the ”geocast region”–set of nodes in the geocast region
forms the geocast group. If a host resides within the geocst region at a given
time, it automatically becomes a member of the corresponding geocast group
at that time. To determine group membership, each node is required to know
its own physical location, i.e., its precise geographic coordinates, which may be
obtained by using the Global Positioning System(GPS)[7]. It is assumed that
each node has available its own location by deploying GPS in user terminals,
and whenever a node in the geocast region receives a geocast packet, it will flood
the geocast message to all its neighbors within the geocast region.

The geocast protocols are classified into two categories: data-transmission
oriented protocols and routing creation oriented protocols in [20]. Since all the
nodes in the geocast region share information among each other by flooding, the
difference between these two categories is how they transmit information from
a source to one or more nodes in the geocast region. Data-transmission oriented
protocols use flooding or a variant of flooding to forward geocast packets from
the source to the geocast region, such as LBM [9], GeoGrid [15] and others
[11]. Routing-creation oriented protocols create routes from the source to the
geocast via control packets, such as GeoTORA [10] and mesh-based Geocast
routing protocol [2][3]. As mentioned in [15], flooding data packets may cause
a storing effect giving serious redundancy, contention and collision. Routing-
creation oriented protocols create route to transmit data from the source to the
geocast region, one advantage of this kind of protocol is the reduced overhead
in the transmission of data packets, as compared to data-transmission oriented
protocols. One disadvantage of this kind of protocol is that it requires more
latency and control overhead to create routes.

GeoGrid protocol [15] partitions the geographic area of the MANET into 2D
logical grids. Each grid is a square of size d × d. There are trade-off in choosing
a good value of d, as discussed in the details of [15]. In GeoGrid protocol, the
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forwarding zone is defined by the location of the source and the geocast region,
a gateway node is selected within each grid to transmit data to a forward zone.
There are two suggestions on how to send geocast packets by GeoGrid in [15]:
flooding-based GeoGrid and Ticket-based GeoGrid. In Flooding-based GeoGrid,
only gateways in every grid within the forwarding zone will rebroadcast the
received geocast packets. Overhead is the big problem of flooding scheme. In
Ticket-based GeoGrid, the geocast packets are still forwarded by gateway nodes,
but not all the gateways in the forwarding zone will forward each geocast packet.
In this GeoGrid protocol, m + n tickets are created by the source if the geocast
region is a rectangle of m×n grids. The source then evenly distributes the m+n
tickets to the neighboring gateway nodes in the forwarding zone that are closer
to the geocast region than the source. A gateway node that receives X tickets
follows the same procedure as the one defined for the source.

The next two geocast routing protocols are route-based protocols, which
create one or more routes to transmit geocast data between the source and the
geocast region. GeoTORA [10] use a unicast routing protocol TORA(Temporally
Ordered Routing Algorithm) to provide geocast communication. TORA is a
distributed routing protocol based on a ”link reversal” algorithm. It attempts to
provide multiple routes to a destination with minimal communication overhead.
TORA uses the notion of heights to determine the direction of each link. It
attempts to maintain a destination-oriented directed acyclic graph such that
each node can reach the destination. In GeoTORA, a source node essentially
performs an anycast to any geocast group member via TORA. When a node in
the geocast region receives the geocast packet, it floods the packet such that the
flooding is limited to the geocast region.

MGRP(Mesh-based Geocast Routing Protocol) [2] is another route-based
protocol. Unlike GeoTORA, this protocol establishes multiple paths via a mesh
to send geocast packets. Mesh-based multicasting approach has been developed
in order to avoid week performance with source tree-based and core-based mul-
ticasting protocols in ad hoc networks [5][14]. A mesh is a subset of the network
topology that provides multiple paths between multicast senders and receivers.
In the creation of the mesh, the protocol floods JOINT-REQUEST packets to
a forwarding zone until it reaches a node within the geocast region. The node
in a geocast region unicasts a JOIN-TABLE packet back to the source following
the reverse route taken by the JOIN-REQUEST packet. Once the first JOIN-
TABLE packet is received by the source, data packets can be sent to the nodes
in geocast regions.

In this paper, the network is divided into grids, we combine data-transmission
oriented protocols with routing creation oriented protocols. First, an anycast is
used to rout packet from source to a node in the geocast region, then packet is
flooded to any member in the geocast region. We propose a new routing protocol
for geocasting, which utilizes the location information to select the host in each
grid. The routing path by using proposed protocol is the shortest route between
hosts in grids. The grid structure is successfully used to eliminate redundant
transmission of geocasting messages. The time complexity of route discovery
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Table 1. The comparison of geocast routing protocols

Protocol Flood-based or Data Travels to
route-based Geocast region via

LBM [9] Flood Multiple routes
GeoGrid [15] Flood Multiple routes
GeoTORA [10] Route One route
MGRP[2] Route Multiple routes
GAMER[3] Route Multiple routes
Our Protocol Route and flood One route

and the routing overhead are reduced. Our geocast routing protocol is compared
to others as shown in Table 1.

This paper is organized as follows. Section 2 presents the scheme of construc-
tion and label assignment of 2D grid; Section 3 gives an anycast-based geocasting
protocol; In Section 4, Our anycast-based geocasting protocol is compared with
other geocasting protocols; Section 5 concludes the paper and proposes further
works.

2 Construction and Label Assignment of 2D Grid

The geographic area of the MANET is partitioned into 2D logical grids as shown
in Fig. 1, in which each square is called a grid zone. Each grid is a square of size
d× d, where d is side length of grids. Let r be the transmission of a radio signal.
The smaller value of d means more number of gateways in the network, which will
in turn implies a higher overhead of delivering packet and more broadcast storm.
If d is too large, the radio signal of a gateway host will have difficulty in reaching
places outside of the grid, and thus a gateway-to-gateway communication is
unlikely to succeed. Selection of d is related to r and routing protocol. In this
paper, we define the relation of d and r as r = 3

√
2

2 d as shown in Fig. 2, which
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Fig. 1. Logical grid to partition a physical area
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Fig. 2. The relation of transmission of radio signal r with side length d of a grid
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Fig. 3. 6 × 5 grid network with label

guarantees a host in a grid to reach any host in its eight neighbor grids. This is
convenient for selection of gateway in the grid.

In this section, we will propose a label assignment scheme for grid topology
and prove that this assignment scheme will provide the shortest routing path
in grid hops for any given pair of source and destination nodes. Suppose the
address of a grid in 2D region is represented by its integer coordinate (x, y),
where the lower left grid is (0, 0). Each grid u is assigned a label l(u). The label
assignment function l for an m× n grid region can be expressed in terms of the
x− and y−coordinates of grids as following:

l(x, y) =

{
y ∗ n + x if y is even,

y ∗ n + n − x − 1 if y is odd

Each logical grid u in Fig. 1 is assigned by a label l(u). Fig. 3 shows such a
labeling in an 6× 5 grid region, in which each grid is represented by an integer.
We assume that every grid can communicate with its eight neighbors directly,
the labeling effectively divides the grid network into two kinds of sub-networks.
The high-channel subnetwork can be used to communicate from lower-labeled
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(a)High-channel subnetwork
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(b)Low-channel subnetwork

Fig. 4. The high-channel and low-channel subnetwork in 6 × 5 grid network

grids(gateways) to higher-labeled grids (gateways), for an example in Fig. 4(a);
the low-channel subnetwork can be used to pass message from higher-labeled
grids(gateways) to lower-labeled grids(gateways), such as in Fig. 4(b). Anycast
communication will use the labeling for message routing. If the label of the
destination zone is greater than the label of the source zone, the anycast routing
always takes place in the high-channel subnetwork, otherwise, it will take the
low-channel subnetwork.

3 An Anycast-Based Geocasting Protocol

Due to consideration such as radio power limitation, power consumption, and
channel utilization, a mobile host may not be able to communicate directly with
other hosts in a single-hop fashion. In this case, a multi-hop scenario occurs,
where the packets sent by the source host are relayed by several intermedi-
ate hosts before reaching the destination host. In this paper, we combine data-
transmission oriented protocols with routing creation oriented protocols. First,
an anycast routing is used to rout packet from source to a node in geocast re-
gion; second, a multicast routing sends packets from one node in geocast region
to all grid zones of geocast region; then packet is flooded to any member in each
zone of geocast region. We describe the proposed protocol using 2D logical grid
location information as shown in [15], and a gateway node is selected within each
grid to transmit data to a forward zone. The forward zone is only determined by
the current grid and the geocast region, and the optimal geocast routing path
on grid level will be obtained.

In the location-unaware protocols, the route discovery is done by a blind
flooding, it easily leads to cause broadcast storm problem, which is pointed out
in [17]. Location-based multicast schemes in [9] use forwarding zones to avoid
network-wide flooding, since its forwarding zones are too large, there may still
exist a lot of unnecessary flooding packets within a forwarding zone and it does
not give solution how to select the relay host, when source cannot reach the
destination. This problem will be solved in this paper.
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There are two suggestions in [15] on how to send geocast packets by GeoGrid:
flooding-based GeoGrid and Ticket-based GeoGrid. The overhead is still a prob-
lem in ticket-based GeoGrid protocol, and it needs to maintain many (m × n)
routes. GeoGrid protocol does not mention how to calculate the distance be-
tween two nodes in grid, and the host is roaming, the cost is high if we keep
the distance among hosts. So anycast-based geocast protocol is proposed in this
paper, and we use the distance of grid to determine the forward host. To perform
an anycast, we need to define an anycast group, which consists of a subset of
the hosts in network. When a host sends a message to the anycast group, the
message is delivered to any one member of the anycast group.

In the following, we will describe how the anycast selects the forward zone
in our protocol. To save the route discovery cost, no route search procedure is
performed, instead, a source node will forward the packet to the neighbor node
that is closest to the destination node. The location of source and geocast region
is used to confine the forwarding range. The same procedure is repeated until
the destination node is reached.

In our protocol, routing is performed in a grid-by-grid manner through grid
gateways, which is the same as in [15]. If a gateway leaves its original grid, a
behavior similar to the ’hand off’ procedure in cellular systems will take place.
In this case, the gateway passes its routing table to the next gateway. Each
gateway only keeps the destination information, the intermediate node must
keep a routing table to determine which node to forward packet to. The three
major issues of a routing protocol should be considered in designing a routing
protocol, that is route discovery, packet relay, and route maintenance. In route
discovery, the location information is used to determine the quality of a route.
A node in the ad hoc network obtains its location from a system such as the
Global Positioning System(GPS). Some work in geocasting has considered how
to integrate geographic coordinates into Internet protocol[8] . The only local
information, instead of global information, is used to find the next host to forward
the packet. We will consider two issues in our protocol design, one is that as less
as possible nodes are searched in the each step of route discovery. Another is
that the route path is as short as possible.

In order to reduce propagation of the flood, the route to a forwarding zone is
determined by the location of the sender and coordinates of the geocast region.
We define the distance between two grids u = (x1, y1) and v = (x2, y2) as
d(u, v) = max{|x1 −x2|, |y1 − y2|}, the forwarding grid is selected by computing
distance between the neighbor of current grid and destination, then select the
grid with minimum distance to destination as forwarding grid.

Let V be the gateway node set in the grid. Finding a deadlock-free anycast
algorithm for the 2D grid is to define a routing function R1 : V ×V → V that uses
the two subnetworks in such a way to avoid cycle routing. Here two grids (i0, j0)
and (i1, j1) are neighbors, which denotes 8-neighbors ,i.e., max{|i0 − i1|, |j0 −
j1|} = 1. One such routing function, for a source node in u and destination node
in v, is defined as R1(u, v) = w, such that w is in a neighboring grid of u, and if
l(u) < l(v), then we have the following equation:
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Fig. 5. Anycast Routing in the high-channel and low-channel subnetwork of 6 × 5 grid

d(w, v) = min{d(z, v) : l(z) ≤ l(v) and z is a neighboring node of u},

or if l(u) > l(v), then we have the following equation:

d(w, v) = min{d(z, v) : l(z) ≥ l(v) and z is a neighboring node of u}.

If more hosts satisfy the condition, we only select anyone of them.
Anycast examples in high-channel subnetwork and low-channel subnetwork

is shown in Fig. 5. All possible routes from source host in grid s (l(s) = 1) to
destination host in grid d(l(d) = 28) in high-channel subnetwork is shown in Fig.
5(a), where all routes are only from hosts in low label grid to hosts in high label
grid; All possible routes from source host in grid s (l(s) = 23) to destination
host in grid d(l(d) = 6) in low-channel subnetwork is shown in Fig. 5(b), where
all routes are only from hosts in high label grid to hosts in low label grid. The
packet is forwarded one hop closer to its destination at each step and the route
is along the shortest path between source and its destination in grid level.

4 The Anycast-Based Geocasting Protocol vs. Other
Geocasting Protocols

In this paper, we propose an anycast-based geocasting protocol, a grid-by-grid
routing protocol, the goal is to reduce the overhead of transmission of geocast
packets, each gateway only keeps the destination and its neighbor grid infor-
mation, which is used to determine which node to forward packet to. In the
anycast-based geocasting protocol, a source node essentially performs an any-
cast to any geocast group host. The advantage of this strategy is that routes
are adaptable to the dynamically changing environment of MANETs, since each
host can update its routing table when it receives fresher topology information.
In route discovery, the location information is used to determine a route and to
improve the performance(i.e., low overhead) of a unicast routing, only local in-
formation, instead of global information, is used to find the next host to forward
the packet. We will consider two issues in our protocol design, one is that as less
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as possible nodes are searched in the each step of route discovery. Another is
that the route path is as short as possible.

In our anycast-based geocasting protocol, the key technology is the scheme
of forwarding grid selection, with which the forwarding grid is determined by the
location of the source and the geocast region. Under this scheme, the distance
of the route path for any source node u and destination v is equal to d(u, v),
which is larger one of x-coordinate offset and y-coordinate offset. Because our
route protocol makes the routing message one hop close to the destination at
each routing step. The routing is the shortest path routing. It can establish
routes quickly and minimize communication overhead by using local information
only.

Our anycast-based geocasting protocol has some advantages in comparison
with other geocast protocols. In the ticket-based GeoGrid approach [15], GeoGrid
uses location information to define the forwarding zone and to elects special host
for forwarding the geocast packets. But the forwarding zone in GeoGrid incurs
unnecessary packet transmission, which will select its three neighbors that closer
to the destination, and sends the ticket to these three neighbors. The disadvan-
tage of Ticket-based GeoGrid is that some gateways will receive and transmit
the geocast packet more than one times. This will cost more bandwidth and
communication time. In comparison, our protocol does not provide redundant
path from a source to a multicast group of nodes and has less searched nodes in
the each step of route discovery. So it is less costly to provide routing path from
a source to a geocast region than to provide the redundant paths from a source
to a multicast group of nodes in a geocast region. It further reduces overhead
(the number of nodes that forward geocast packet) in the transmission of data
packets as compared to Ticket-Based GeoGrid protocol.

In GeoTORA protocol [10], creating routes from sources to the destina-
tion corresponds to establishing a sequence of directed links from each source
to the geocast group. This is accomplished by maintaining a directed acyclic
graph(DAG) rooted at each geocast group. The disadvantage of GeoTORA
is that the algorithm may produce temporary invalid routes and it needs to
maintain a directed acyclic graph(DAG) rooted at each destination geocast
group.

MGRP [2] and GAMER [3] are mesh-based protocol for geocast routing.
A mesh is used establish multiple paths between a source node and the geo-
cast region. Unlike GeoTORA, these protocols establish multiple paths(via a
mesh) to send geocast packets. For example, GAMER dynamically chooses one
of three different forwarding approaches to forward packets to the geocast region.
They reduce the control overhead by reducing forwarding zone, when forward-
ing zone is restrained to a small region, only a few mobile nodes are available to
forward packets which reduces control overhead. In addition, fewer forwarding
mobile nodes create a sparse mesh, which compared to a large forwarding zone
and denser mesh, reduce transmission accuracy. Here forwarding region is deter-
mined by source node and geocast region, so it needs more setup time for each
routing.
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5 Conclusion

In this paper, a new geocasting protocol for MANETs is presented. The grid
structure is successfully used to eliminate redundant transmission of geocasting
messages. This is achieved by only one gateway in each grid. The time complex-
ity of route discovery and the routing overhead are reduced. However, further
evaluation of the protocol is needed, for example, how can the protocol effectively
divide the network into grids? what is an effective gateway election procedure?
how can the protocol provide the high level of reliability? the further research
is needed to answer these question, further analysis and simulation to compare
with other geocasting protocols are needed.
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Abstract. Ad hoc networks became a hot topic recently, but the routing algo-
rithm of anycast in the ad hoc networks has not yet been much explored. In this 
paper, we propose a mesh-based anycast routing algorithm (MARP) for ad hoc 
networks. The proposed routing model is robust and reliable, which can solve 
the unsteady topology problem in ad hoc networks. The future work is dis-
cussed at the end of this paper. 

1   Introduction 

Ad hoc networks have no fixed routers or gateways, and all the nodes are capable of 
movement and can be connected dynamically in an arbitrary manner, furthermore, 
each node can act as a router to provide the routing service for the others. Ad hoc 
networks have wide applications and the routing foundation is totally different in ad 
hoc networks; therefore new routing protocols should be designed explicitly for uni-
cast, multicast and anycast. It is essential that the designed routing algorithm is simple 
and has minimum control message exchanging. 

Mesh-based routing methods have been proposed for unicast and multicast in ad 
hoc network environments [7] [11] [12]. It is a reliable method in the wireless net-
works, because the mesh offers the sources more routes to the receivers, and the mesh 
has a strong recovery capability of local link failures. Mesh based routing method is 
very suitable for routing service in ad hoc network, however, to the best of our 
knowledge, it is not yet applied to anycast routing issue in ad hoc networks. 

In this paper, we propose a mesh based anycast routing protocol (MARP in short), 
which provide reliable and efficient anycast routing service in ad hoc networks. The 
mesh architecture makes the routing service reliable; moreover, the proposed protocol 
can prevent the traffic storm in the network, and deduct the bandwidth consumption 
by reducing the control packets delivery. 
The rest of this paper is organized as follows. Section 2 presents the related work of 
routing algorithms in wireless networks.  A new mesh based anycast routing protocol 
is proposed in Section 3. Finally, Section 4 concludes the paper and discusses the 
future work. 

2   Related Work 

[16] reviewed the routing algorithms for ad hoc mobile wireless networks, and classi-
fied them into two categories: table-driven and source-initiated (demand-driven). 
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Table-driven ad hoc routing algorithms include Destination-Sequenced Distance-
Vector (DSDV) routing [14] and Wireless Routing Protocol (WRP) [13]. The Clus-
terhead Gateway Switch Routing (CGSR) protocol [3] is derived from DSDV. All the 
table-driven algorithms try to maintain consistent, up-to-date routing information for 
every node in the network. Source-initiated on-demand algorithms have four proto-
cols: the Ad hoc On-demand Distance Vector (AODV) [15], Dynamic Source Rout-
ing (DSR) [9], Temporally Ordered Routing Algorithm (TORA) [PAR97] which is 
similar to the Lightweight Mobile Routing (LMR) [4], Associativity-Based Routing 
(ABR) [17], and the Signal Stability Routing (SSR) [6] which was derived from the 
ABR. Source-initiated on-demand protocols create routes only when it is desired by a 
source node. Some papers [2] [5] [10] have shown that the source-initiated on-
demand algorithms outperform the table-driven ad hoc routing algorithms. 

[8] made simple extensions to the three existing routing algorithms for mobile ad 
hoc networks: Dynamic Source Routing (DSR), Ad-hoc On-demand Distance Vector 
(AODV) Routing and Temporally Ordered Routing Algorithm (TORA). All the up-
dates locate at the sinks, for this reason, the modifications are very limited. In the 
mobile ad hoc environment, robustness of routing is a critical issue. Flooding is a 
reliable routing method in ad hoc networks, such as, the research in [18].  

[7] [11] [12] researched on mesh-based multicast protocols, which provide alterna-
tive paths and a link failure does not trigger a recomputation of a mesh. All the multi-
cast sources, receivers, forwarding nodes and the links establish a mesh, and the one 
hop away neighbours of the mesh nodes are the group neighbours. The multicast 
source submits a local request packet to maintain the mesh, and only the mesh nodes 
and the group neighbours deliver the packet. Once a request packet arrives at a re-
ceiver, the receiver responds with a reply packet back to the source along the reversal 
path, therefore a route is created between the source and the receiver. 

3   An Anycast Routing Protocol in Ad Hoc Networks 

Because of the ever changing ad hoc network topology, robustness is a critical issue 
that the routing service has to deal with. For this reason, we propose a mesh-based 
anycast routing protocol (MARP) for ad hoc networks. In the context of this paper, 
anycast source and source are exchangeable, and the same for anycast receiver, any-
cast server and receiver. 

3.1   An Overview of MARP 

The mesh-based anycast routing protocol is a robust and efficient protocol. Generally 
speaking, the mesh-based protocols are not as efficient as that of the tree-based proto-
cols in terms of performance, but they are robust against topology changes [7] [12]. In 
the proposed MARP, some related hosts establish a mesh, and the anycast routing 
service depends on the mesh.  

At the initial state of an anycast service, an anycast source uses broadcasting to 
flood mesh-establishing messages (flooding route discovery), once an anycast server 
receives the mesh-establishing message, it will respond an acknowledgement mes-
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sage, a route between the source and the receiver will then be established. After that, 
an on-mesh route discovery procedure is employed for the mesh refreshment and link 
failure recovery. The on-mesh route discovery packet is only delivered by the mesh 
nodes and the group neighbour nodes (which will be defined in section 3.2). This can 
prevent the mesh maintenance packets broadcast unnecessarily in the ad hoc network.  
The previous research [1] has proven that most link failure recoveries can be localized 
to a small region along a previous route, therefore, the method is feasible for on-mesh 
link failure recovery. 

Because of the ever changing topology of ad hoc networks, MARP performs flood-
ing route discovery occasionally, which can refresh the whole mesh and make sure its 
correctness. Flooding route discovery can also deal with the network partition issue. 
The flooding route discovery is expensive in terms of network bandwidth. 

3.2   Anycast Mesh Creation 

When an anycast source tries to join an anycast group, it initially broadcasts a 
JOIN_REQ packet, the JOIN_REQ packet has an upstream node field. When an in-
termediate node caches the JOIN_REQ packet, it updates the upstream node field 
with its own address, and then forwards (broadcasts) the updated packet to the next 
nodes. When an anycast server receives the JOIN_REQ packet, it responds a 
MESH_ACK packet back to the node from which it received the JOIN_REQ packet. 
Once the upstream node receives the MESH_ACK packet, it adds an entry for the 
anycast group to its routing table, and then it forwards the MESH_ACK packet to its 
own upstream node. This procedure continues until the MESH_ACK packet gets to 
the anycast source. And then an anycast route is established between the source and 
the receiver. The intermediate nodes that relay the MESH_ACK packet become for-
warding nodes. An anycast mesh of an anycast group consists of anycast sources, 
anycast receivers, forwarding nodes, and links connecting them. All the nodes in an 
anycast mesh are called mesh nodes. 

Figure 1 shows an ad hoc network as an example. In the ad hoc network, there are 
29 nodes in total, includes two anycast sources (node 5 and node 20) and two anycast 
servers (node 7 and node 16). The link between any two nodes means that there is a 
network connection for the two nodes.   

Figure 1 also demonstrates how an anycast mesh is established. In the initial state, 
node 7 and node 16 belong to an anycast group, we express it as { }16,7)( =AG . We 
assume that node 5 is a new anycast source as an example, and it broadcasts the 
JOIN_REQ packet, which includes the ID of node 5 and a broadcasting sequence 
number. When the JOIN_REQ packet arrives at node 6, node 6 updates the upstream 
node field of the packet with its own address and forwards the packet to its 
neighbours. Once node 7, an anycast server receives the packet, it sends a 
MESH_ACK packet back to node 6 which is the upstream node of node 7. Then node 
6 realises that it is on the anycast mesh, it updates its routing table and relays the 
MESH_ACK to its upstream node, node 5. After this procedure, a route between the 
anycast source and one of the anycast servers is established. Similarly, there is a route 
between node 5 and node 16, which is another server of the anycast group.  
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Fig. 1. The Ad Hoc Network after Mesh 
Creation 

Fig. 2. The Network after Link Failure Re-
covery 

 
MARP prefers a path that contains more existing forwarding nodes for route effi-

ciency and maintenance reasons. Figure 1 shows the result after the anycast mesh is 
established. Once the anycast mesh is created, an anycast source holds all the routes 
to the anycast group members, respectively, therefore a “best” server can be chosen 
based on given metrics. For example, if we choose the “best” server based on the 
shortest path, then the anycast server node 7 is chosen for the source node 5 on 
path { }7,6,5P ; and the anycast server node 16 is chosen for the source node 20 on 
path { }16,15,20P . When there are packet deliveries in the anycast group, the packets 
are only transported by the forwarding nodes among the sources and the receivers.  

Anycast Group Neighbour nodes are defined as the nodes that are directly con-
nected to at least one anycast mesh node. In Figure 1, nodes 1, 2, 3, 8, 10, 12, 17 and 
25 are the group neighbour nodes. Group neighbour nodes are defined for the on-
mesh broadcasting. In MARP, only the mesh nodes and group neighbour nodes for-
ward the on-mesh broadcasting packets, while the other nodes do not forward the on-
mesh broadcasting packets. Therefore MARP can effectively prevent the potential 
traffic storm and therefore reduce the network load. 

3.3   Anycast Mesh Maintenance 

In order to provide the up-to-date information of network topology in ad hoc net-
works, the route information has to be updated in time, and kept consistent with the 
instant practical network status. Anycast mesh maintenance includes two parts: on-
mesh route discovery and flooding route discovery. 

A. On-mesh Route Discovery 
Each anycast source periodically broadcasts a MESH_REQ packet, and only the mesh 
nodes and the group neighbour nodes forward the packet. Similar to the JOIN_REQ 
packet for mesh creation, a mesh node or a group neighbour node updates the up-
stream node field of the received MESH_REQ packets with its own address and for-
wards the modified packets to the next nodes. When the MESH_REQ packet arrives 
at an anycast receiver, a MESH_ACK packet is sent back to the anycast source along 
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the path from which the MESH_REQ packet came. After the on-mesh route discovery 
procedure, the updated mesh is established, and the forwarding nodes and the group 
neighbor nodes are refreshed as well. 

Based on the rule of MARP, the nodes more than two hops away from the mesh 
can not receive the MESH_REQ. This mechanism can efficiently save the valuable 
network bandwidth in mobile ad hoc networks, and prevent the potential traffic 
storms. For example, in Figure 1, there are nearly ¼ nodes (node 14, 19, 23, 24, 27, 
28, and 29) are not involved in the MESH_REQ packet broadcasting.  

More importantly, on-mesh route discovery procedure can repair most link failures 
caused by node movements in ad hoc networks. For example, we assume that the 
mobile node 11 in Figure 1 is power off, then there are three link failures occur, 
namely link (6, 11), link (10, 11) and link (11, 16), when the anycast source node 5 
submits the MESH_REQ packet, node 10 will deliver it to node 15, and further to 
node 16, then a path { }16,15,10,5P is established. Figure 2 shows the ad hoc network 

after the link failure recovery.   
Previous research [1] has shown that most of the on-mesh link failures can be re-

paired by on-mesh route discovery, but it can not solve all the possible link failures 
and network partitions. For example, if there are two link failures of link (5, 10) and 
link (12, 17) in Figure 2, the original mesh is then divided into two parts, and it can 
not be repaired by the on-mesh route discovery.  

The on-mesh route discovery procedure tries to keep all the sources and receivers 
connected with each other by the mesh. This is important to provide a reliable anycast 
service in ad hoc networks. For example, to the source node 5 in Figure 2, if the 
“best” receiver node 7 is not reachable, then there is an alternative receiver node 16, 
which can provide the same service. 

B. Flooding Route Discovery 
Flooding route discovery is an important procedure to maintain an anycast mesh, 
although it is expensive in terms of network bandwidth. When a node initiates the 
flooding route discovery procedure, the JOIN_REQ packet is broadcasted to all its 
neighbors, and every node in the ad hoc network will forward the packet. The 
JOIN_REQ packet will cover all nodes of the ad hoc network, therefore, it brings an 
up-to-date view of the network topology and the anycast mesh. MARP does not per-
form flooding route discovery frequently, because of the expensive network band-
width consumption. It happens in several cases, such as a new anycast source joins 
the group or a network partition happens.   

5   Conclusions and Future Work 

We proposed a mesh based anycast routing protocol (MARP) for the ad hoc networks. 
The proposed algorithm improves the robustness for routing in dynamic ad hoc mo-
bile networks. Moreover, it also reduces the bandwidth consumption caused by con-
trol packets. We discussed the routing mechanism in details. The examples show that 
the proposed model does possess advantages in robustness and link failure recovery. 
A performance analysis based on queueing theory and evaluating the performance of 
MARP through simulations is the topics for future work.  
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Abstract. Power conservation is a critical issue in mobile ad hoc networks, as 
the nodes are powered by batteries only. In this paper, according to the mobility 
of nodes, the power-aware dynamic adaptive replica allocation algorithm is 
proposed. In the power-aware dynamic adaptive replica allocation algorithm, 
based on the locality of data access, the replica allocation scheme is adjusted 
regularly in order to reduce the power consumption, and thus extend the 
survival time of network. The relation between mobility models and efficiency 
of power-aware dynamic adaptive replica allocation algorithm is studied. The 
results of performance evaluation show that the power-aware dynamic adaptive 
replica allocation algorithm can reduce the total power consumption of  
network greatly.  

1   Introduction  

Recent advances in computer and wireless communication technologies have led to an 
increasing interest in mobile ad hoc networks (MANET) which are constructed by 
only mobile nodes.  

A traditional mobile network consists of a fixed network of servers and clients, 
with a collection of mobile clients that move throughout the geographic area of the 
network. Within the mobile network, servers have unlimited power and communicate 
with mobile nodes over a wireless connection. Mobile clients may only communicate 
among themselves through a server.  

In contrast, a MANET consists of a collection of wireless nodes without a fixed 
infrastructure. All nodes are wireless, mobile and battery powered [1]. The topology 
can change frequently. The nodes organize themselves automatically, and can be a 
standalone network or attached to a larger network, including the Internet. All nodes 
can freely communicate with every other node. Even if the source and the destination 
mobile nodes are not in the communication range of each other, each node in the 
network forwards packets for its peer nodes, data packets are forwarded to the 
destination mobile node by relaying transmission through other mobile nodes. In 
addition to the issues associated with a mobile network, the power consumption and 
mobility of the server(s) must also be considered in a MANET.  

Data replication is an important way to improve the system performance and 
reliability, which is broadly used in database system, files system, operation system, 
and distributed system. In mobile ad hoc networks, wireless communication 
bandwidth is limited, disconnections occur frequently, and this causes frequent 
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network division. While data replication is very effective for improving the data 
availability, mobile nodes generally have poor resources and it is impossible for 
mobile nodes to have replicas of all data items in the network. Therefore, data 
replication in such a dynamic resource-limited environment is a significant challenge.  

At present, several algorithms are proposed for replica allocation in mobile ad hoc 
networks. Most of the existing algorithms are focused on the data availability during 
the network division, the power consumption of nodes is not considered sufficiently. 
The algorithms SAF[2], DAFN[3] and DCG[4] are proposed by Takahiro Hara in Osaka 
University. In these three algorithms, the access frequency from mobile nodes to each 
data item and the status of the network connection are taken into account to improve 
the data availability during the network division. The collection of global information 
of data access frequency will bring about vast communication cost, especially while 
the network topology changes frequently. The algorithm [5] proposed by Karen H. 
Wang in Toronto University, the algorithm [6] proposed by Jiun Long Huang in 
National Taiwan University and the algorithm [7] proposed by Kai Chen in Illinois 
University are all aimed at the group mobility model, and the replica allocation is 
decided by the prediction of network division.  

In order to maximize the total battery life of mobile ad hoc networks, the power 
consumption of the entire network must be minimized. In this paper, in view of the 
power consumption and mobility of nodes, a power-aware dynamic adaptive replica 
allocation algorithm (PADARA) is proposed. Section 2 states the problem and our 
motivation. Section 3 describes the power-aware dynamic adaptive replica allocation 
algorithm. Section 4 presents the results of performance evaluation. Section 5 
provides a summary of our research work.  

2   Model and Statement of the Problem 

2.1   The Power Consumption Model 

Received signal power is smaller than the transmit power due to losses that occur due 
to several reasons. These path losses can be divided into large scale path loss, and 
small scale path loss. Large scale path loss models are used to predict the mean signal 
power for any transmitter-receiver separation. Small scale path loss models 
characterize the rapid fluctuations of the received signal strength over very short 
travel distances [8]. There are several models for large scale path loss, according to the 
log-distance path loss model, the transmit power falls as d n1 , 2≥n , so relaying 

information between nodes may result in lower power transmission than 
communicating over large distances. 

The power consumption of a data transmission between node s and r includes 
transmit power, receive power and computation power. The transmit power is 

( ) ( )n
t rsKdrsP ,, = , K is a constant, d(s, r) is the distance between s and r. When a 

node receives a signal from other node, it needs consume some power to receive, 
store and then process that signal. This additional power consumed at the receiver 
node is referred as the receive power. Typically, every node consumes the same 
receive power due to the nature of its operations. Hereafter, we will denote such 
power by a constant c. Notice that additional power will also be consumed when 
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running the routing algorithm. In the design of modern processors, however, the 
power consumption required for such processing and computation can be made 
negligible compared to the transmit power and receive power. Therefore, the power 

consumption of a data transmission between node s and r is ( ) ( ) crsKdrsP n += ,, . 

2.2   Power Control  

In the mobile ad hoc networks, nodes communicate with each other either through a 
single-hop transmission if the receiver node is within the transmission range of 
sender, or through multi-hop wireless links by using intermediate nodes to relay the 
message. In other words, each node in the network also acts as a router, forwarding 
data packets for other nodes. The transmission by a node can be received by all nodes 
within its transmission range. There are two models of the transmission range of all 
nodes: either all nodes have the same transmission power, or each node can adjust its 
transmission power independently according to its neighborhood information to 
possibly reduce the power consumption. In this paper, we assume that each mobile 
node can adjust the transmission power accordingly, and that the nodes are deployed 
in a two dimensional area, where no two nodes are in the same physical location. 
Minimizing power consumption has been a major design goal for mobile ad hoc 
networks. According to the power consumption model, even a node r is within the 
transmission range of another node s, it may be power efficient to use another node to 
relay the signal sent from s to r [9,10,11,12,13].  

We assume that each mobile node typically has a portable set with transmission 
and reception processing capabilities, and that each node has a low-power GPS 
receiver, which provides the position information of the node itself, within at least 5 
meters of accuracy [14]. 

Definition 1. Relay Region 
The relay region of a node r for a node s is defined as 

                ( ) ( ) ( ) ( ){ }xsPxrPrsPxrsR ,,,, <+= . 

s

r4 r1

r2
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r
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Fig. 1. Relay region of relay node r for transmit node s Fig. 2. Neighbors of transmit node s 
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( )xsP ,  is the power incurred if node s directly transmits signal to node x, and 

( ) ( )xrPrsP ,, +  is the power incurred if node s uses the node r as the relay node for 

transmission from s to node x. Thus, given node s and node r, the locus of all node x, 
such that relaying through node r consumes less power than directly transmitting from 
s to x, is called the relay region of r for s. Fig. 1 illustrates a typical relay region in a 
propagation environment with d 41  transmit power rolloff. 

Definition 2. Enclosure Region  
The enclosure region of a node s is defined as 

                ( ) ( )
( )
I

sTr

rsEsE
∈

= , . 

The region ( )rsE ,  is called the enclosure region of node s by node r, it is the 

complement of region ( )rsR , . ( )sT  is the set of nodes lying within the transmission 

range of node s. 

Definition 3. Neighbors  
The neighbors of a node s is defined as 

                ( ) ( ) ( ){ }sEysTyysN ∈∈= , . 

The nodes that lie in the enclosure region of s is called the neighbors of s (Fig. 2), and 
they are the only nodes to which s will maintain communication links for power-
efficient transmission. The other nodes lie in the relay regions of the neighbors of s, 
so it is not power-efficient to transmit directly to these nodes, it may be power 
efficient to use neighbors to relay the signal sent from s to these nodes. 

While node transmits data, it can adjust the transmission power to the minimum 
power enough for the neighbor node to receive the data. 

2.3   Data Access 

Definition 4. Read-Write Pattern 
The read-write pattern for an object O is the number of data access requests (read and 
write) to O generated by each node in a time interval t.  

In this paper, we assume that the data access requests are independent. The read 
requests are implemented by access the replica node, the write requests are 
implemented by update all replica nodes. 

2.4   Replica Allocation 

Definition 5. Replica Allocation Scheme 
The replica allocation scheme for an object O is the set of nodes at which O is 
replicated.  

The power consumption of a single read request by node s is  

( ) ( ) ( ) ( ) ( )vu

u

i
iivread rnPnnPnsPrsPOsP ,,,,,,

1

1
11 ++==

−

=
+K . 
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vr  is the replica node of object O, which is chosen for read request. in (i = 1, 2, …, u)  

is the relay nodes between s and vr . 

The power consumption of a single write request by node s is  

( ) ( ) ( )
( )∈

+=
Osetrr

ivvwrite

i

rrPrsPOsP
_

,,,,, KK . 

vr  is the replica node of object O, which is chosen for write request. ( )Osetr _ is the 

set of replica nodes of object O. ( )vrsP ,,K  is the power consumption of update 

operation on vr , ( )
( )∈ Osetrr

iv

i

rrP
_

,,K  is the power consumption of update operations 

on other replica nodes in ( )Osetr _ . 

The total power consumption of data access to object O in a time interval t is  

( ) ( ) ( ) ( ) ( )( )
∈

×+×=
Ns

writeread OsPOsWriteOsPOsadOPOWER ,,,,Re . 

( )Osad ,Re  is the number of read requests to O in a time interval t, ( )OsWrite ,  is the 

number of write requests to O in a time interval t.  
For an optimal replica allocation scheme for object O, the total power consumption 

of data access to object O in a time interval t is minimum, but the problem of finding 
an optimal replica allocation scheme has been proved to be NP-complete for different 
power consumption models [15]. In this paper, based on the heuristic algorithm, a 
power-aware dynamic adaptive replica allocation algorithm is proposed to find a 
suboptimal replica allocation scheme. 

3   Replica Allocation Considering Power Consumption 

In the power-aware dynamic adaptive replica allocation algorithm, based on the local 
information of access requests collected from the neighbors by each replica node, 
replica expansion, replica switch and replica contraction are done in order to reduce 
the power consumption, and thus extend the survival time of network.  

PADARA is executed periodically and independently in each replica node, the 
execution cycle is set according to the change of network topology and read-write 
pattern. 

PADARA includes expansion test, switch test and contraction test. The description 
of PADARA is as follows: 

//for object O, m∈ r_set(O) 
Calculate the neighbors of replica node rn, which is denoted as N(rn). 
for ( u∈N(m) , u∉r_set(O) )  
{ // expansion test is done for each neighbor of m, which is not replica node of 

object O  
      if ( the expansion condition is satisfied ) 
      { // replica expansion 
             r_set(O) = r_set(O) + {u} ; 
             return; 
      } 
} 
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for ( u∈N(m) , u∉r_set(O) )  
{ // expansion test is done for each neighbor of m, which is not replica node of 

object O 
      if ( the switch condition is satisfied ) 
      { // replica switch 
             r_set(O) = r_set(O) - {m} + {u} ; 
             return;  
      } 
} 
for ( m )  
{ // contraction test is done for m 
      if ( the contraction condition is satisfied ) 
      { // replica contraction 
            r_set(O) = r_set(O) - {m}; 
            return;  
      } 
} 
 
For replica expansion, the number of replicas is increased, the power consumption 

of read operations for some nodes is decreased, but the power consumption of write 
operations on new replica should be considered. For replica switch, the power 
consumption of some nodes maybe decreased, but the power consumption of other 
nodes maybe increased. For replica contraction, the number of replicas is decreased, 
the power consumption of some write operations is avoided, but the power 
consumption of read requests on some nodes maybe increased. In PADARA, local 
information is utilized, so it is not guaranteed that each replica adjustment will reduce 
the power consumption, but the total power consumption of network will be 
decreased continuously. 

3.1   Expansion Test 

There are two extreme situations for expansion test (Fig.3).  
In Fig.3(a), each shortest path between u and replicas of object O will pass through 

m. While the replica is expanded to u, the read requests forwarded by u to other 
replicas will be processed just by u, the power consumption of data transmission 
between u and m will be avoided; in order to maintain the consistency of replicas, the 
write requests will be propagated to all replicas including the new replica u, so the 
power consumption of the write requests will be increased. Therefore, the expansion 
condition is as follows: 

( ) ( )
( )

( )( ) ( ) ( ) ( ) ( ) 0,,1__,...,
_

<×−××−+×=Δ
∈

muPureadmuPuwriteOsetrnumurPrwriteE
Osetrr

 (1) 

( )rwrite  is the number of write requests on object O received by r in the time interval 

t, ( )uread  is the number of read requests on object O received by u in the time 

interval t. ( )Osetrnum __  is the number of replicas in ( )Osetr _ . 
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Fig. 3. Two extreme situations for expansion test and switch test 

In Fig.3(b), each shortest path between m and other replicas of object O will pass 
through u. While the replica is expanded to u, the read requests forwarded by u to 
other replicas will be processed just by u, the power consumption of data transmission 
between u and m will be avoided; in order to maintain the consistency of replicas, the 
write requests will be propagated to all replicas including the new replica u, the power 
consumption of the write requests received by u will be decreased, the power 
consumption of the write requests to other replicas will be increased. Therefore, the 
expansion condition is as follows: 

( ) ( )
( )

( )( ) ( ) ( ) ( ) ( ) 0,,1__,...,
_

<×−××−−×=Δ
∈

muPureadmuPuwriteOsetrnumurPrwriteE
Osetrr

 (2) 

The expansion condition (1) may be too strict to miss some expansions. The 
expansion condition (2) may be too loose to make wrong expansions. Therefore, the 
compromised expansion condition is as follows: 

( ) ( )
( )

( ) ( )( ) ( ) 0,,...,
_

<×+−×=Δ
∈

muPuwriteureadurPrwriteE
Osetrr

        (3) 

3.2   Switch Test 

There are two extreme situations for switch test (Fig.3).  
In Fig.3(a), each shortest path between u and replicas of object O will pass through 

m. While the replica is switched from m to u, the read requests forwarded by u to 
other replicas will be processed just by u, the power consumption of data transmission 
between u and m will be avoided; the read requests to m will be forwarded to u, so the 
power consumption of these read requests will be increased; in order to maintain the 
consistency of replicas, the write requests will be propagated to all replicas including 
the new replica u, so the power consumption of the write requests will be increased. 
Therefore, the switch condition is as follows: 
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( ) ( )( ) ( ) ( )
( )

( )

( )( ) ( ) ( ) ( ) ( ) 0,,1__

,1__2
_

<×−××−+

×+×−×+=Δ
∈

muPureadmuPuwriteOsetrnum

muPrwritemwriteOsetrnummreadE
Osetrr       (4) 

In Fig.3(b), each shortest path between m and other replicas of object O will pass 
through u. While the replica is switched from m to u, the read requests forwarded by u 
to other replicas will be processed just by u, the power consumption of data 
transmission between u and m will be avoided; the read requests to m will be 
forwarded to u, so the power consumption of these read requests will be increased; in 
order to maintain the consistency of replicas, the write requests will be propagated to 
all replicas including the new replica u, because each shortest path between m and 
other replicas of object O will pass through u, the power consumption of the write 
requests will be decreased. Therefore, the switch condition is as follows: 

( ) ( )( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( ) ( ) 0,,__

,1__
_

<×−××−

×−×−−=Δ
∈

muPureadmuPuwriteOsetrnum

muPrwritemwriteOsetrnummreadE
Osetrr             (5) 

The switch condition (4) may be too strict to miss some switch. The switch condition 
(5) may be too loose to make wrong switch. Therefore, the compromised switch 
condition is as follows: 

( ) ( )( ) ( ) ( ) ( )( ) ( ) 0,2, <×+×−×+=Δ muPureaduwritemuPmwritemreadE                (6) 

3.3   Contraction Test 

There are two extreme situations for contraction test (Fig.4).  
In Fig.4(a), each shortest path between u and other replicas of object O will pass 

through m. While the replica u is deleted, the read requests to u will be forwarded to 
m, the power consumption of data transmission between u and m will be increased; 
the write requests to u will be forwarded to m, because each shortest path between u 
and other replicas of object O will pass through m, the power consumption of these 
write requests will be decreased; in order to maintain the consistency of replicas, the 
write requests will be propagated to all replicas, because the replica u is deleted, so 
the power consumption of the write requests to other replicas will be decreased. 
Therefore, the contraction condition is as follows: 

( ) ( )( ) ( )( ) ( ) ( ) ( )
( )

0,...,,2__
_

<×−××−−=Δ
∈ Osetrr

urPrwritemuPuwriteOsetrnumureadE    (7) 

In Fig.3(b), each shortest path between m and other replicas of object O will pass 
through u. While the replica u is deleted, the read requests to u will be forwarded to 
m, the power consumption of data transmission between u and m will be increased; 
the write requests to u will be forwarded to m, because each shortest path between m 
and other replicas of object O will pass through u, the power consumption of these 
write requests will be increased; in order to maintain the consistency of replicas,  
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the write requests will be propagated to all replicas, because the replica u is deleted, 
so the power consumption of the write requests to other replicas will be decreased. 
Therefore, the contraction condition is as follows: 

( ) ( )( ) ( )( ) ( ) ( ) ( )
( )

0,...,,2__
_

<×−××−+=Δ
∈ Osetrr

urPrwritemuPuwriteOsetrnumureadE    (8) 
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Fig. 4. Two extreme situations for contraction test 

The contraction condition (7) may be too loose to make wrong contractions. The 
contraction condition (8) may be too strict to miss some contractions. Therefore, the 
compromised contraction condition is as follows: 

( ) ( )( ) ( ) ( ) ( )
( )

0,...,,
_

<×−×+=Δ
∈ Osetrr

urPrwritemuPuwriteureadE                            (9) 

4   Performance Evaluation 

In this section, the performance of power-aware dynamic adaptive replica allocation 
algorithm is analyzed.  

4.1   Influence of Mobility of Nodes on Efficiency of Power-Aware Dynamic 
Adaptive Replica Allocation Algorithm 

The parameters of test environment are shown in Table 1. We compare PADARA and 
algorithm ADR-G [16]. In ADR-G, the spanning tree is build to organize replicas. The 
mobility model of nodes is Random Waypoint Mobility Model [17].  

In Fig.5, the total mobile node power decreased gradually. Compared with 
ADR_G, the mean power consumption in PADARA is 35.7% less. In ADR_G, the 
write requests are propagated among replica nodes along spanning tree, and the 
replicas are located in nodes adjacent to each other. While nodes move, the network 
topology changes, and the replica nodes are no longer adjacent physically, so the 
power consumption in ADR_G increases rapidly. In PADARA, the replica allocation 
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scheme is adjusted according to power consumption, so the power consumption is 
reduced greatly, and the survival time of network is extended. 

Table 1. Parameters of test environment 

parameter default value 
range of movement 1000m×1000m 

number of mobile nodes 50 
speed of migration 0m/s ~ 10m/s 

direction of migration 0 ~ 2ð 
number of objects 1 

interval of algorithm execution 10s 
initial number of replica 5 

ratio between reads and writes 5:1 
initial node power 10×103 J 

power consumption model two-ray ground reflection Model (n=4) 
antenna Omni-directional Antenna 
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Fig. 5. Mobility of nodes 

4.2   Relation Between Mobility Models and Efficiency of Power-Aware Dynamic 
Adaptive Replica Allocation Algorithm 

Three typical mobility models [17] are selected to investigate the relation between 
mobility models and efficiency of PADARA. Three mobility models are Random 
Waypoint Mobility Model, Random Gauss-Markov Mobility Model and Reference 
Point Group Mobility Model, which are denoted as RW, GM and RPG respectively. 
The parameters of test environment are shown in Table 1. We observe the influence 
of different mobility models with different speed of migration on efficiency  
of PADARA.  
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Fig. 6. Mobility models 

In Random Waypoint Mobility Model (Fig.6), the power consumption difference 
between different speeds of migration is little. The movement of nodes is 
concentrated in the center of moving area, thus the replica allocation scheme is 
relatively stable.   

In Random Gauss-Markov Mobility Model (Fig.6), the speed of migration 
influences the power consumption obviously. For high speed of migration, the power 
consumption changes greatly; for low speed of migration, the power consumption 
changes calmly; compared with the low speed of migration, the mean power 
consumption for high speed of migration is 53.4% more. The speed of migration is 
higher, network topology changed more frequently, if the replica allocation scheme is 
not adjusted in time, the power consumption will be increased more greatly. 

In Reference Point Group Mobility Model (Fig.6), only one group is selected, the 
relative movement between nodes is little, the network topology is relatively stable, 
thus the replica allocation scheme can be adjusted in time, so the power consumption 
will not increased greatly. 

5   Conclusion  

Compared with the traditional mobile network, the power consumption and mobility 
of nodes are significant characteristic of mobile ad hoc network. In the power-aware 
dynamic adaptive replica allocation algorithm, according to the power consumption of 
nodes, the replica allocation scheme is adjusted regularly, thus the survival time of 
network is extended. The results of performance evaluation show that the power-
aware dynamic adaptive replica allocation algorithm can reduce the total power 
consumption of network greatly. The relation between mobility models and efficiency 
of power-aware dynamic adaptive replica allocation algorithm is studied In the future 
research, the power-aware dynamic adaptive replica allocation algorithm will be 
improved in view of the feature of different mobility models. 
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Abstract. Call Admission Control (CAC) is crucial for assuring the quality of 
service (QoS) of communication in wireless cellular networks. In this paper, we 
propose a model, called Guard Channel Prediction Model (GCPM), for efficient 
call admission control satisfying the QoS requirements. A predictive value of the 
appropriate number of guard channels can be calculated based on this model by 
using statistical properties of new and handoff call arrival rates and mean call 
residency time, as well as the total capacity of a specific cell. Simulation studies 
are carried out to evaluate the performance in comparison with an existing 
adaptive algorithm under variable traffic loads and mobility patterns. Simulation 
results show that our proposed GCPM, using the static and fractional Guard 
Channel policy to process both types of incoming calls based on the predictive 
values, has gained better QoS with less blocking probabilities of both types of 
calls and meanwhile, larger network utilizations. 

Keywords: Call Admission Control, Guard Channel, Guard Channel Prediction 
Model (GCPM), Quality of Service (QoS), Wireless/Mobile Cellular Networks. 

1   Introduction 

Call Admission Control (CAC) policy is an important research issue in wireless/mobile 
cellular networks, which comprise a wired backbone network and a large number of 
fixed base stations (BSs) interconnected together through the backbone. The geo-
graphical area covered by a BS is referred to as a cell. A mobile, while needing to 
communicate with another party (a node on the wired network or another mobile), first 
tries to obtain a free channel from the BS of the cell it is located in to make a wireless 
connection. Since the number of channels allocated to each BS is limited, when there is 
no channel available, the call request will be blocked. There are two kinds of blocking 
in cellular networks: new call blocking, the refusal of a new call request, and handoff 
call blocking, the refusal of a handoff call request, which occurs while an ongoing call 
moving in from an adjacent cell. The quality of service (QoS) provided by wireless 
cellular network carriers will be determined by the probabilities of these two types of 
blocking, while the latter is usually given higher priority because an unsuccessful 
handoff which results in an abrupt, premature termination of an on-going conversation 
will definitely upset the caller more than a rejection of the call in the first place [1].  
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Handoff is referred to as the action of switching a call in progress in order to main-
tain the continuity and the required quality of service (QoS) of the call. It is one of the 
most important aspects of mobile computing since it allows for the uninterrupted 
movement of mobile users [2]. Handoff relies on the underlying call admission control 
(CAC) policies. CAC has been studied by many researchers during the last two decades 
and many schemes have been proposed for it [1, 3 -14].  

The Guard Channel Scheme is a well-known and efficient CAC policy which was first 
introduced by Hong et al. in the mid-80s [3]. In this policy, a set of channels called the 
guard channels are permanently and exclusively reserved for handoff calls [3] to give 
priority to handoff calls over new calls. Ramjee et al. introduced the Fractional Guard 
Channel Policy [4], which effectively reserves a non-integral number of guard channels 
for handoff calls by rejecting new calls with some probability that depends on the current 
channel occupancy. A Dynamic Channel Reservation Scheme (DCRS) [5] was proposed 
by Kim et al., which is based on the notion of guard channels. The number of guard 
channels is static in that proposal, but they can also be used for new calls according to the 
mobility of calls and status of the network. A scheme for dynamically adjusting the 
number of guard channels [1] was proposed by Zhang et al. They developed an adaptive 
algorithm for CAC in wireless networks, which can automatically search the optimal 
number of guard channels to be reserved at each base station [1]. 

However, the setting of the threshold number of guard channels in DCRS and the 
adjusting algorithm from Zhang et al. are mainly derived from experience, lacking the 
support of a mathematical model. The reliance on experience may cause unstable 
performance in practice and be lack of the ability to adapt to changes. That means an 
improper setting of the threshold in DCRS will become a severe restriction to this 
scheme, as the threshold of guard channels’ number is an upper bound for adjustment 
and cannot be exceeded according to DCRS procedure. Moreover, the adjusting algo-
rithm [1] from Zhang et al. lacks the consideration of potential changes of network load 
and users’ mobility, which will cause unstable QoS under different traffic patterns due 
to fluctuation of traffic load and calls’ mobility. 

In this paper, we propose a model, called Guard Channel Prediction Model (GCPM), 
for efficient call admission control. GCPM is based on the statistical properties of both 
types of calls in wireless/mobile cellular networks. It takes into consideration the rela-
tionships among cell’s capacity, traffic load, users’ mobility and the reserved number 
of guard channels, by which rational predictive values for the number of guard channels 
under different traffic patterns can be easily obtained. Using these predictive values, 
desired QoS can be achieved as shown in our simulations. 

The remaining part of this paper is organized as follows. In Section 2, we will describe 
the GCPM model in detail. Simulations and evaluations will be presented in Section 3, 
with the discussion of the performance comparison with the adaptive adjusting algorithm 
[1]. Finally, Section 4 provides the conclusions and describes our future work. 

2   The GCPM Model  

2.1   Assumptions 

Considering a mobile communication network with a cellular wireless infrastructure, 
there are a total number of C  channels (in the form of frequencies, time slots or codes 
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depending on the radio technology used) in each cell and each ongoing call is allocated 
a channel. When the number of mobile users is much larger than the total number of 
channels in the cell, call arrivals may approximate to a Poisson process [5]. We assume 
that new and handoff calls arrive according to Poisson processes with rates nλ  and hλ  

respectively. Each accepted call (either new or handoff) will reside in the cell for an 
exponentially distributed time with mean μ/1 . When a call is completed in the cell or 

a user moves to an adjacent cell while his/her call is still in progress, a channel in this 
cell will be released. Such assumptions were also used in existing studies [1, 12]. 

In this paper, we will not consider the following issues: multiple services with dif-
ferent QoS requirements and traffic characteristics in the network, soft capacity and 
bandwidth degradation in Code Division Multiple Access (CDMA) systems, soft 
handoff in CDMA systems, in which a mobile can communicate with two base stations 
simultaneously, and delay-insensitive applications, which can tolerate long handoff 
time delay when there is momentarily insufficient bandwidth [6, 7]. Based on the above 
assumptions, the handoff queuing scheme [8] also will not be considered. 

2.2   Mathematical Model 

As mentioned before, GCPM is based on the statistical properties of both types of calls 
in wireless/mobile cellular networks. It takes into consideration and models the rela-
tionships among cell’s capacity, traffic load, users’ mobility and the reserved number 
of guard channels, by which rational predictive values for the number of guard channels 
under different traffic patterns can be easily obtained. 

We assume that, after a long period of time for adjustment, the whole system will 
step into a steady state, during which the number of guard channels will be stabilized at 
a specific value, denoted by GC . In that case, new call blocking rate and handoff call 
blocking rate will also be stabilized at 

nR  and 
hR  respectively. Considering any time t  

in this steady state, the number of ongoing calls at t  is approximately equal to the 

number of those calls which were admitted during the time period from 
μ
1−t  to t , 

based on the assumption that call residency time of both types of calls follows an ex-
ponential distribution with mean μ/1 .  

Therefore, we get: 

)]1()1([
1

)( hhnn RRtlsongoingCal −⋅+−⋅= λλ
μ

. (1) 

And the number of free channels in time t  will be: 

)]1()1([
1

)()( hhnn RRCtlsongoingCalCtlsfreeChanne −⋅+−⋅−=−= λλ
μ

. (2) 

Then, we consider the process of call completions and call arrivals during a time 
period from t  to tt Δ+ , with any time interval tΔ . The number of calls that will 

complete during this time period approximates to those admitted from time 
μ
1−t  to 
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tt Δ+−
μ
1 , that is: )1( nn Rt −⋅⋅Δ λ  new calls and )1( hh Rt −⋅⋅Δ λ  handoff calls will 

be completed during this time interval. Based on the stabilized new call blocking rate 
and handoff call blocking rate in the stable state, there will also be )1( nn Rt −⋅⋅Δ λ  new 

calls and )1( hh Rt −⋅⋅Δ λ  handoff calls admitted during this time period. Therefore, 

the system will be steady with invariable number of both types of ongoing calls  
in theory. 

To make the maximum utilization of network resources, the free channels of each 
cell should be optimized to zero in the steady state. Based on eq. (2), we can get: 

0)]1()1([
1 =−⋅+−⋅− hhnn RRC λλ
μ

. (3) 

To satisfy Hh TR ≤ , where HT  is an upper bound for handoff call blocking prob-

ability and specified as QoS requirement, we get the lower bound of new call blocking 
rate as follows: 

.TRwhere
)1(
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Considering ]1,0[R n ∈ , if 1
)1(

1 >−⋅−⋅−
n

Hh TC

λ
λμ , Hh TR ≤  can not be satisfied 

in theory. Meanwhile, if 0
)1(

1 <−⋅−⋅−
n

Hh TC

λ
λμ , the minimum upper bound of 

hR  will be reduced to 
h

nC

λ
λμ −⋅−1 , which is smaller than HT . 

As a result, we get 
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(5) 

Based on inequations (5), the appropriate values of 
hR  and 

nR  can be acquired by 

reducing 
hR  to satisfy Hh TR ≤  if possible, and meanwhile minimizing the value of 

nR  as QoS requires. Using the appropriate values of 
hR  and 

nR , we can obtain the 
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predictable number of guard channels GC  in the steady state. As discussed above, we 
know that the number of either type of ongoing calls will be stabilized in theory. As a 
result, we assume that there will be x  new calls and )( xC −  handoff calls in the 

steady state. 

To admit x  new calls, there should be 
nR

x
−

⋅
1

1  new calls arrived. With the ratio 

hn λλ :  of the arrival rates for new calls and handoff calls, 
n

h

nR
x

λ
λ⋅

−
⋅
1

1  handoff calls 

were accompanied to arrive, among which only )1(
1

1
h

n

h

n

R
R

x −⋅⋅
−

⋅
λ
λ  were admitted, 

based on the steady handoff call blocking probability 
hR . So, we can get eq. (6):   

.
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1
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−⋅⋅
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⋅=−
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λ
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It means that 
)1()1(
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λ  new calls and 

)1()1(
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λ  

handoff calls are located in the steady system. While 
nR  is not equal to 

hR , the allo-

cated numbers of new calls and handoff calls are not in accord with the ratio of their 
arrival rates 

hn λλ : . This is caused by the existence of guard channels, in which only 

handoff calls can be accepted exclusively. 
Additional number of allocated handoff calls hA  due to the existence of available 

guard channels in the steady state can be calculated as follows: 
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(7) 

The steady value of guard channels’ number GC  should be proportional to hA  with 

a coefficient k  due to the distribution rules and the mobility of allocated channels in 

practice. k  is an important design parameter in our model and chosen as 
3

1 . In ad-

dition, we assign a lower bound minGC  to GC  for ensuring the priority of handoff 

calls even if the traffic load or calls’ mobility is very light. And here, we set 
0.1min =GC . 
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Thus, we obtain the predictive number of guard channels as follows: 

{ }

.3
1,0.1)(

1
,max

,max

minmin

min

==−⋅⋅⋅=

⋅=

kGCwhereRRkGC

AkGCGC

hnh

h

λ
μ

 (8) 

Based on equation (8), using reasonable blocking rates for both types of calls cal-
culated from (5) with the statistical properties of new and handoff call arrival rates and 
mean call residency time in a specific cell obtained from historical records, we can 
predict an appropriate value of the number of guard channels. This value will facilitate 
the system to step into a steady state, maintaining the blocking rate of handoff calls as 
low as QoS requires, and meanwhile reducing the blocking probability of new calls as 
much as possible. The computational complexity of GCPM is so low that not much 
overhead will be imposed on the CAC procedure, which makes the prediction model 
feasible in practice. 

3   Simulations 

We have carried out simulations to study the performance of the proposed GCPM 
model. In this section, we describe the setup of the simulation environment and discuss 
the simulation results for performance evaluation in comparison with an existing al-
gorithm, namely Zhang et al.’s adaptive adjusting algorithm [1]. 

3.1   Simulation Environments 

Based on the predictive value of guard channels’ number obtained from GCPM, we 
adopt the Limited Fractional Guard Channel Policy [4] to process the incoming calls in 
a cell. We set the threshold T  in Ramjee et al.’s policy [4] as GCC −  and the new 

call accepting probability β  in state T  as GCGC − .   

We consider a cell with total number of 60=C  channels, new call and handoff call 
arrivals are both modeled by Poisson processes with mean nλ  and hλ  respectively. 

Call residency time of both types of calls in the specific cell is assumed to follow an 
exponential distribution with mean 1801 =μ

 seconds. Following notations denote 

traffic parameters and performance metrics used to evaluate the performance of 
GCPM: 

• ρ : offered load, a measurement of the traffic load in a cell, is defined as follows: 

μ
λλρ

⋅
+=

C
hn ; 

• α : mobility of ongoing calls, a measurement of the terminal mobility, is defined as 

the ratio of handoff call arrival rate to new call arrival rate. That is: 
n

h

λ
λα = ; 

• 
nP : new call blocking probability; 
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• 
hP : handoff call blocking probability; 

• HT : threshold for handoff call blocking rate and a measurement for QoS, which is 

commonly chosen as 0.01; and 
• CF : cost function, a weighted sum of the two blocking probabilities and another 

measurement for QoS, is defined as 
hn PPCF )1( ωω −+= , where ]1,0[∈ω . We 

choose 
11

1=ω , and such that 10/1)1/( =− ωω  to give higher priority to 

handoff calls over new calls as QoS requires. 

Similar parameters and performance metrics are also seen in [5, 9]. Based on the 
definitions of ρ  and α , new call arrival rate and handoff call arrival rate can be 

represented respectively as eq. (9). 

+
⋅⋅⋅=

+
⋅⋅=

.
1

,
1

α
αρμλ

α
ρμλ

C

C

h

n  (9) 

3.2   Experimental Results 

Predictive values of the number of guard channels obtained from GCPM are listed in 
Table 1 and Table 2, with variable offered loads and terminal mobility patterns re-
spectively. 

Table 1. Predictive number of guard channels 

with variable offered load ρ  and stable ter-

minal mobility 8.0=α  

ρ  α  nλ  
hλ  GC  

0.8 0.8 8.89 7.11 1.0 

1.0 0.8 11.11 8.89 1.0 

1.2 0.8 13.33 10.67 3.008 

1.4 0.8 15.56 12.44 6.176 

1.6 0.8 17.78 14.22 9.344 

1.8 0.8 20 16 12.512 

2.0 0.8 22.22 17.78 15.68 

2.2 0.8 24.44 19.56 18.848  

Table 2. Predictive number of guard channels 

with variable terminal mobility  α  and stable 

offered load 4.1=ρ  

α  ρ  
nλ  

hλ  GC  

0.2 1.4 23.33 4.67 1.544 
0.4 1.4 20 8 3.088 
0.6 1.4 17.5 10.5 4.632 
0.8 1.4 15.56 12.44 6.176 
1.0 1.4 14 14 7.72 
1.2 1.4 12.73 15.27 9.264 
1.4 1.4 11.67 16.33 10.808 
1.6 1.4 10.77 17.23 12.352 
1.8 1.4 10 18 13.896 
2.0 1.4 9.33 18.67 15.44  

The results of simulations based on the predictive values of guard channels’ number 
listed in Table 1 and Table 2 are described below. 

Figure 1 shows the handoff call blocking rate, new call blocking rate, cost function 
and network utilization as functions of offered load ρ  for stable mobility 8.0=α  of 

GCPM and Zhang et al.’s adaptive algorithm [1]. As shown in Fig. 1, we can observe 
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that GCPM can achieve much less handoff blocking rates than Zhang’s algorithm while 
keeping the new call blocking rates approximately at the same level. Meanwhile, 
GCPM can keep handoff call blocking rates under the threshold 01.0=HT  as QoS 

requires with normal offered load (i.e. load less than 1.8, offered load larger than 2.0 
with mobility 0.8 may be too heavy to adjust no matter what methods) while the 
handoff blocking rates based on Zhang’s algorithm are so easy to exceed this threshold 
though the offered load is not very heavy. 

( ) ( )  
(a) (b) 

( ) ( )
 

(c) (d) 

Fig. 1. Comparisons of handoff call blocking rate (a), new call blocking rate (b), cost function (c) 
and network utilization (d) of GCPM and Zhang et al.’s algorithm [1] under different offered 
loads ρ  and stable mobility of calls 8.0=α  

Cost functions and network utilizations based on these two methods show similar 
changing trends when the offered load increases as shown in Fig. 1 (c) and (d). GCPM 
has obtained smaller values of cost functions with average 0.0604 compared to 0.0661 
of Zhang’s algorithm, and meanwhile obtained larger network utilizations with average 
84.896% compared to 83.800% of Zhang’s algorithm. 

In Figure 2 (a)~(d), handoff call blocking rate, new call blocking rate, cost function 
and network utilization according to the variation of mobility patterns are presented 
respectively. As shown in Fig. 2 (a) and (b), GCPM achieves much less handoff call 
blocking rates than Zhang’s algorithm and meanwhile keeps a slower increasing rate of 
new call blocking probabilities with a similar starting point compared to Zhang’s al-
gorithm when the mobility of calls increases. For example, when terminal mobility 
increases to 1.6, the new call blocking rate achieved by GCPM is a little more than 0.8, 
while that obtained from Zhang’s algorithm is very close to 1.0, which means ap-
proximately no admission to new call requests. Moreover, similar to that shown in 
Figure 1, under normal level of terminal mobility (i.e. mobility less than 1.6, terminal 



 GCPM: A Model for Efficient Call Admission Control 953 

mobility larger than 1.6 with offered load 1.4 may be too heavy to adjust no matter what 
methods), GCPM can keep the blocking rate of handoff calls lower than the threshold 

01.0=HT  while it’s probably impossible for Zhang’s algorithm as Fig. 2 (a) shows. 

( ) ( )
 

(a) (b) 

( ) ( )
 

(c) (d) 

Fig. 2. Comparisons of handoff call blocking rate (a), new call blocking rate (b), cost function (c) 
and network utilization (d) of GCPM and Zhang et al.’s algorithm [1] under different terminal 
mobility patterns α  and stable offered load 4.1=ρ  

Cost functions and network utilizations comparison results shown in Fig. 2 (c) and 
(d) are similar to those shown in Fig. 1. Smaller values of cost functions and larger 
network utilizations have been obtained by GCPM with average 0.0675 and 88.390% 
respectively, compared to 0.0773 and 86.433% of Zhang’s algorithm. Furthermore, 
most network utilizations obtained by GCPM are larger than 85% while the minimum 
network utilization from Zhang’s algorithm approximates to 80% under the stable of-
fered load 4.1=ρ  as it is shown in Fig. 2 (d). 

From above results, we can see that our proposed GCPM has gained very good 
performance in simulations, with restricted and much smaller handoff call blocking 
rates, smaller new call blocking rates and cost functions, and larger network utilizations 
in comparison with Zhang et al.’s adaptive algorithm [1]. 

4   Conclusions and Future Work 

In this paper, we have proposed a Guard Channel Prediction Model (GCPM) for effi-
cient call admission control in wireless/mobile cellular networks. The proposed model 
is applicable to predict appropriate values of the number of guard channels based on 
statistical properties of new and handoff call arrival rates, mean call residency time and 
the total capacity of a specific cell. Different predictive values will be derived from 
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different traffic loads and terminal mobility patterns; as a result, our model is adaptive 
to the changes of traffic properties. Based on the predictive values obtained from 
GCPM, we have gained satisfied QoS in our simulations with lower blocking prob-
abilities of both types of calls and larger network utilizations in comparison with the 
dynamically adaptive algorithm proposed by Zhang et al. [1]. 

For our future work, we will explore extending our GCPM model to handle the 
possible particular circumstances of traffic bursts in mobile wireless networks. 
Multi-class multimedia services and soft bandwidth degradation in CDMA networks 
will also be taken into consideration to enforce the adaptability of our model to the 
forthcoming 3G mobile communication environments. 
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Abstract. In this paper, we first present a simple and effective path capacity 
predicting method to model the complex interaction between medium access 
mechanism and routing scheme. Based on the predicting model, an end-to-end 
cross-layer flow control architecture is proposed. The key issues about flowing 
control are discussed deeply. As we designed, whenever the path length 
changes, the applications adaptively modify their sending rate with the pre-
computed optimal value. Simulation evaluation has demonstrated that this tech-
nique can greatly improve the performance of end-to-end transmission in ad hoc 
network: the throughput of the long path is improved by up to 40%. 

1   Introduction 

Ad hoc network is formed and functioning without any established infrastructure. It 
consists of nodes that use a wireless interface to communicate with each other. These 
nodes serve as both hosts and routers, so they can forward packets to each other. 
Hence, they are able to communicate beyond their transmission range by supporting 
multi-hop communication. Ad hoc network has been proposed for use in military, 
disaster relief, emergency operations and sensor networks. 

The most commonly used MAC protocol in MANET today is the IEEE 802.11 
Distributed Coordination Function (DCF) [1]. Many studies have been conducted on 
802.11 DCF and there are some concerns about its dysfunction in an ad hoc context. 
Among the most widely recognized problems, we can cite the hidden terminal prob-
lem [2], the gray zone problem [3] and the serious performance decrease due to the 
interaction between the medium access mechanism and routing scheme [4]. 

In this paper, we present a novel cross-layer flow control architecture based on the 
path capacity prediction. Firstly, a simple and effective path capacity predicting 
model is proposed. For the given path length, it can pre-calculate the maximum 
throughput (namely capacity) and optimal sending rate of the source node. Different 
from previously proposed node-oriented analysis models in [5-8], our model is based 
on path-orientation and focuses on end-to-end transmission time, so the complexity 
level normally encountered is reduced in this model by such standpoint turnaround. 
Furthermore, it considers a more realistic scenario. For example, it takes the hidden 
terminal problem into account and doesn’t assume that every node must send packet 
at every moment.  
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A series of cross-layer optimization approaches have been developed in recent 
years. These approaches exhibit a distinct interaction between entities of different 
layers and include various transmission strategies such as MAC layer variable-rate 
according to SINR in [9], network layer multiple paths routing in [10] and PHY layer 
power control in [11]. Similar end-to-end flow control mechanism involving applica-
tion layer is also researched in [12], but that main idea behind it is that the optimal 
sending-rates are got by simulation experiments and stored in the applications. Based 
on the analytical algorithm that allows applications to pre-compute optimal sending-
rate, our flow control technique can be more accurate and flexible in the complicated 
situations. For example, the density of the network is time-varying because of topol-
ogy changes. 

The remainder of this paper is organized as follows. Section 2 describes the path 
capacity predicting model in detail. Section 3 introduces key issues of the end-to-end 
flow control based on the model. Section4 applies simulations and statistical analysis 
to evaluate the performance of the flow control. Finally, Section 5 presents the con-
clusions. 

2   Path Capacity Predicting Model for MANET 

We first briefly summarize the 802.11 DCF. For a more complete and detailed de-
scription, you can refer to the 802.11 standard [1]. 

A station with a new packet to transmit monitors the channel activity. If the chan-
nel is idle for a period of time equal to a distributed inter-frame space (DIFS), the 
station transmits. Otherwise, if the channel is sensed busy (either immediately or 
during the DIFS), the station persists to monitor the channel until it is measured idle 
for a DIFS. At this point, to minimize the probability of collision with packets being 
transmitted by other stations, the station generates a random back-off interval before 
transmitting (this is the Collision Avoidance feature of the protocol). In addition, to 
avoid channel capture, a station must wait a random back-off time between two con-
secutive packet transmissions, even if the medium is sensed idle in the DIFS time. For 
efficiency reasons, DCF employs a discrete-time back-off scale. The time immedi-
ately following an idle DIFS is slotted, and a station is allowed to transmit only at the 
beginning of each slot time. The slot time sizeσ is set to the time needed by other 
station to detect the transmission of a packet. 
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Fig. 1. RTS/CTS Access Mechanism 
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There is much work focused on the performance analysis of wireless LANS and ad 
hoc networks [5-8]. The model proposed in [5] is a classic one that depicts the per-
formance of 802.11 DCF by employing a two dimensional Markov chain analysis. 
Based on [5], we propose a path-oriented model for predicting path capacity in 
MANET. The analysis currently assumes that the nodes keep stationary when packets 
are being transmitted and the data packets are generated only by the source node. 
Moreover, no other paths interference is considered now (A more delicate model 
considering path coupling and mobility is our future research work). The notations 
used in the model are defined in Table-1 and system parameters in simulations to 
validate the model are outlined in Table-2. 

            Table 1. Required notation in the model           Table 2. Parameter values in simulation 

 

2.1   Path Transmission Time Analysis 

The key feature of the model is path-oriented. From the observation of the whole 
path, when there is no packet being transmitted along the path, any nodes attempting 
to transmit contend equally regardless of their previous transmitting. Once a node 
captures the path, the other nodes in its carrier sense range in the path must keep 
silent until the packet is received by its next hop. From the observation, we noted the 
packet transmission delay from source to the destination (or packet-arriving intervals 
at destination) should be multiple of a unit - sucT , just like a pipeline. This is illustrated 

by Fig.2. sucT consists of the node-waiting time from DCF, the back-off time because 

of RTS collision and the time of frames transmission. According to Fig 1, sucT can be 

expressed as: 

WTTSIFSTTDIFST ACKDATACTSRTSSuc +++×+++= 3  (1) 
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Where TRTS and TCTS indicate the time required to transmit the RTS and CTS frames 
respectively,TDATA is the time required to transmit a MAC data frame including the 
PHY header, MAC header, and payload, and TACK is the time required to transmit an 
ACK frame including the PHYhdr and MAChdr. The values of DIFS and SIFS are de-
termined by PHY layer (DSSS or FSSS), W  is the average waiting and back-off time. 
Note that when the density of the networks changes, for sucT , only waiting time and 

back-off time needs re-computing.  

 

Fig. 2. Example of packet transmission along a path like a pipeline 

2.2   Path Delay Time Analysis  

RTS/CTS exchange can guarantee successful packet delivery in WLAN. Unfortu-
nately, the hidden terminal problem still occurs in multi-hop ad hoc network because 
carrier sense range is larger than transmission range. Considering a chain of nodes 
depicted in Fig 3, r is the node A’s transmission range in which nodes can success-
fully receive packets from A. R is the carrier sense range of D in which other nodes 
even can not receive D’s packet correctly but can sense the channel busy and keep 
silent.  

As illustrated in Fig.3, assuming node A wants to send data to B and at the same 
time D is forwarding data packet to E. Because be outside the carrier sense range of 
D, A does not overhear D’s transmission and sends RTS to B. But being in the carrier 
sense range of D, B either receives corrupted RTS or is unable to send CTS after 
receiving RTS. When A waits for a CTS timeout, A will enter the back-off stage and 
then send RTS again after back-off time. However, because the data packet transmis-
sion time is long, collision occurs again at B. A thus repeats above back-off stage 
until CTS is received or transmission is cancelled. It can be noted in Fig.3 that there is 
an interval from the time the DATA arrives at E to the time that A’s current back-off 
stage ends. No packet is transmitted along the path in the interval. From the view of 
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the path transmission efficiency, the interval is wasted. We refer to this wasted inter-
val as Path Delay Time (PDT). As shown in the next section, the PDT is generated by 
the hidden terminal problem and affects the end-to-end throughput of the path. The 
approximate computation of agv

PDTT  is given in appendix. 

 

D E A B 

r 

R 

sending data sending fail 

 

Fig. 3. Path Delay Time caused by the hidden terminal problem 

2.3   Path Capacity Calculation 

We first analyze the capacity of the short path in which all intermediate nodes are in 
the carrier sense range of the source node (namely PN RN ). As illustrated in Fig 4, 

scenarios (a),(b),(c) all belong to short path and corresponding RN is 3,4,5 respec-

tively.  

 

Fig. 4. Different scenarios of short path 

Based on the RTS/CTS scheme, it is understood that when a pair of nodes are 
communicating with each other over a multi-hop short path, the spatial reuse of the 
path is 1. The path spatial reuse is defined as that approximately in one sucT slot, how 

many packets can be transmitted simultaneously along the path. So the minimal 
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packet transmission time of the short path should be sucPtrans TNT ×=min  and the capacity 

can be defined as: 

SucP
P TN

PE
Thr

×
= ][max  (2) 

When PN RN +1, the source node is affected by the hidden terminal problem (As 

node A in Fig. 3 shows). So the spatial reuse of the path is still 1 and PDT should be 
counted. When PN RN +1, the spatial reuse of the path may be greater than 1. There-

fore, it is true that if the spatial reuse of the routing path is greater than 1, the interval 
time between simultaneous transmitted packets must be greater than or equal to the 
time sucR TN ×+ )1( . Moreover, taking into account the fact that intermediate nodes will 

be affected by the hidden terminal problem when the path length increases, the capac-
ity of long path ( PN RN +1) can be defined as: 

agv

PDThidSucR

P
TNTN

PE
Thr

×+×+
=

)1(

][max  where ),1min( RRPhid NNNN −−≈  (3) 

According to (2) and (3), the general equation of path capacity (maximum through-
put) can be expressed as (phid = hidN /( PN - RN )): 

agv

PDTRPhidSucRP

P
TNNpTNN

PE
Thr

×−×+×+−
=

)0,max(}1),1{min(

][max  (4) 

We simulated in ns-2[13] to validate the predicting model. Physical ratio and other 
parameter values are outlined in Table-2. The topology in simulations contains a 
chain of stationary nodes which are distributed uniformly. Considering a more realis-
tic condition, the carrier sense range is set 550 m. The CBR traffic is generated only 
by the source nodes and we logged the maximum throughput at the destination when 
the path length (namely the route hops) increased from 1 hop to 10 hops. The 
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Fig. 5. Maximum Throughput vs Path length (simulation results and analytical results) 
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experimental results for three different scenarios (corresponding to RN 3,4,5 respec-

tively ) and the analytical values calculated by the model are presented in Figure 6. 
Statistical analysis shows that the simulation results almost consistent with analytical 
ones with a 95% confidence level. So the model is accurate in predicting the path 
capacity of MANET. 

3   Cross-Layer End-to-End Flow Control 

3.1   The Effect of over Sending-Rate at the Source 

The throughput calculated by equation (4) is the maximum value. In fact, the 
throughput actually degrades from its maximum value when the sending rate in-
creases beyond an optimal point. To more concretely describe the phenomenon, we 
fixed RN 3 and the path length (hops), then vary the source node sending-packet 

intervals from 48ms to 10ms (corresponding sending rate is from low to high). The 
available throughput at the destination for CBR is presented in Fig.7. 
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Fig. 6. Available throughput vs Sending rate 

In Fig.7, for the path lengths of 3,4 hops, the throughput is gradually increasing to 
a certain point as sending rate growing and then stays flat. However, for the path 
lengths of more than 4 hops, a decrease by up to 30% of the maximum throughput is 
experienced! The result can be explained by our model: when the path length is less 
than 4 hops, intermediate nodes in the paths do not suffer from the hidden terminal 
problem because the carrier sense range is usually about 2.2 times of the transmission 
range. Nodes overhear another’s transmission and almost no data collisions occur 
(Note that RTS frame collision has been accounted into sucT as discussed in 2.1). The 

extra packets by higher sending rates are discarded by the source node and such 
source-drops only added PDT to the whole path transmission time. But when the path 
length exceeds 4 hops, the hidden terminal problem will reduce intermediate nodes’ 
probability of catching the path. This leads to that the input packets sent to an inter-
mediate node are more than output packets forwarded from it. Therefore, the exces-
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sive input packets may overflow the intermediate node’s buffer and be dropped. From 
the standpoint of path-orientation, such intermediate-drops greatly undermine the 
efficiency of the path transmission because the time used to transmit those intermedi-
ate-dropped packets is actually wasted.Therefore, this suggests that there is opportu-
nity for achieving higher throughput by employing a flow-control routing technique. 

3.2   Key Issues About the Flow Control 

The key issues related to predict optimal sending rate by the module are:  

 Determining the PHY layer characteristic, which includes PHY channel rate, the 
size of RTS, CTS, ACK frames, the size of PHY header, the values of slot 
time(σ ) and CWmin. All these parameters are used to compute W and sucT . 

 Estimating the approximate distance between adjacent nodes in the path. This 
parameter is used when calculating RN in equation (4). There are some methods 

to estimate the distance in the literature. We assume the wireless channel radio-
propagation model is TwoWayGround and the height and the gain of the antenna 
are fixed. Then the range estimation algorithm in Ref[14] is used in our architec-
ture. 

 Measuring the average length of the payload. We use a simple but efficient 
method to get it:Given the application is observed to send n payloads from point 

of time t1 to t2.The time observation window is 12 ttt −=Δ . Define
n

L
L

n

i
i

== 1  

where Li is the length of the ith payload. Then we have 21 )1(][ LLPE ×−+×= ββ  

where L1 is the average length measured in last observation window , L2 is one in 
current window and is remembering factor. Having E[P], sucT can be deter-

mined with other parameters. 
 The hops of path can be reported by routing algorithm and we are able to get the 

value of PN with the hops information. 

The predicting module is performed at the routing layer and the parameters estima-
tion resorts to already proposed methods or the new ones designed by us at different 
layers. An application that is interested to achieve the maximum throughput should 
adaptively modify its sending rate according to the information provided by the pre-
dicting model. Such applications register a callback function at the underlying routing 
layer. The function is invoked by the module whenever the path length changes, for 
example, as a new route discovered. On accepting the notification, the application sets 
the new sending rate based on the pre-computed optimal packet-sending interval. The 
flow control method can be achieved by Leaky Bucket Queue Algorithm. 

4   Performance Evaluation  

We compare the performance of the cross-layer flow control with that of usual CBR 
with a fixed sending rate. PHY characteristics and topology are the same with the 
simulations in section 2 and the fixed sending-packet interval of CBR traffic is 6ms. 
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We refer to the version of CBR with flow control as CF-CBR and the other as CM-
CBR in the following discussion. 

In Fig. 7, we execute simulations in the sparse network (the distance between 
nodes is long enough to make RN =3). The bars represent the available throughput at 

destination when the path length gradually increases. It can be seen that the through-
puts of both CBRs are almost equal in the path length from 2 to 4 hops and CF-CBR 
outperforms CM-CBR when the path length is more than 4. This is an expected result 
as discussed in section 3, because when the path is long, the flow control can reduce 
the intermediate-drops and improve the efficiency of the path transmission. Further-
more, we find that the larger the size of average payload is, the higher the improve-
ment of CF-CBR. For example, in Fig.7, the average improvement of throughput is 
nearly 40% with E[P]=512bytes and about 58% with E[P]=1000bytes. The reason is 
that dropping larger packets at intermediate nodes wastes more time. 

 

Fig. 7. Available Throughput of CF-CBR vs CM-CBR in the sparse network 

 

Fig. 8. Achievable Throughput of CF-CBR vs CM-CBR in the dense network 

We then repeat the simulations in the dense network (namely RN =5) and the re-

sults are similar. As presented in Fig.8, the available throughput can be improved 
when PN RN +1 and the improvement is higher when E[P] is larger. Moreover, it 

can be observed that the improvement in the dense network is lower than that in the 
sparse network (Improvements are 30% and 40% respectively). This is because 
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fewer nodes are affected by the hidden terminal problem in dense network given the 
same path length. 

5   Conclusions 

The performance of 802.11DCF-based ad hoc networks deeply relies on the complex 
interaction between medium access mechanism and routing scheme. In this paper, we 
model the interaction and present the method for computing for optimal sending-rate 
a given path in the ad hoc networks. Different from the previous researches, we work 
with a more realistic scenario: the packet is scheduled arbitrarily and the carrier sense 
range of a node is longer than its transmission range. The effect of the over sending-
rate is analyzed and the issues about flowing control are discussed deeply. Simula-
tions has shown that our technique outperform usual CBR with fixed sending rate by 
improving throughput by up to 40% 
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Appendix: computation process and result of agv
PDTT  

We first define variant Tc=DIFS+TRTS+TCTS_OUT, which is the collision time of the 
node. Equation (10) is the expression to calculate PDT derived from 802.11 DCF 
specification. ]2,0( minCWXi i ×∈  
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Suc

N

i
icSuccccPDT TXTNTXiTXTXTT −×+×=−×+++×++×+=
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21 σσσσ L  (5) 

Because Xi and N are all random variants, and N is dependent on Xi and Tsuc, it is 
very difficult to calculate the expectation of TPDT. But we can get the bounds of it. it is 
easily understood that 

 When the time the DATA arrives at E and the time A’s current back-off stage 
ends are the same time, TPDT gets the minimal value: 0min =PDTT . 

 When the time the DATA arrives at E and the time of A’s new back-off stage 
starts are the same time, TPDT gets the maximum value: 
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We approximately use agv
PDTT as the average value of PDT in the model and it is de-

fined as: 

σ××=+= −
min

2
maxmin

2
2

CW
TT

T iPDTPDTagv
PDT   where i satisfies 

Suc

i

j

j
c TCWTi >××+×−

−

=

1

1

min2)1( σ  
(6) 

 



Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 966 – 971, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Constructing the Robust and Efficient Small World 
Overlay Network for P2P Systems* 

Guofu Feng, Ying-chi Mao, and Dao-xu Chen 

Department of Computer Science and Technology, Nanjing University, 
The State Key Lab. for Novel Software Technology, Nanjing University, 

Nanjing, Jiangsu, China, 210093 
fgfmail@dislab.nju.edu.cn 

Abstract. The current P2P application protocols are usually constructed over 
the application-level overlay network. However, because the users in the P2P 
systems always follow a very dynamic mode, the overlay network with poor 
performance will leads to the problem of connectivity---the departures of peers 
often break the network into plenty of small parts, and results in the resource is-
lands. Although increasing the links between peers can enhance the perform-
ance of connectivity by information redundancy. But it will lead to the severe 
cost of maintenance. Then there is an urgent need to integrate the online peers 
as a “giant component” as large as possible, so that the resources online can be 
shared completely; at the same time to guarantee the cost of maintenance as lit-
tle as possible. And due to the prevalence and significance of small world in re-
ality and theory, in this paper we analyzed the correlation between the shortcuts 
density and the connectivity, as well as the impact of shortcuts density to ro-
bustness over the popular WS Small World model. At last, numerical simula-
tion was done to confirm our analytic results. 

1   Introduction 

The peer-to-peer (P2P) computing model offers a radically different and appealing 
alternative to the traditional client-server model for many large-scale applications in 
distributed environment. The users in P2P model shares resources in a peer style, poten-
tially acting as both client and server. The P2P approach removes central points of fail-
ure and associated performance bottlenecks and balances the load. It also releases the 
network from the hard traffic load by providing the service locally. P2P is gaining an 
increasing attention from both the academe and the Internet user community. 

In current general approaches the P2P applications firstly integrate the end-users 
into one overlay network, and then construct the application protocols over the over-
lay network. Theoretically, the topology of the overlay network can be organized as 
any type, i.e. any regular structured network or irregular unstructured. However, for 
the P2P system is mostly composed of a mass of peers with less power, designing 
scalable P2P application level protocols is not straightforward and remains an active 

                                                           
*  This work is partially supported by the National Natural Science Foundation of China under 

Grant No.60402027, the National High-Tech Research and Development Program of China 
(863) under Grant No.2001AA113050. 
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area of research. The users in the P2P systems always follow a very dynamic mode, 
and always keep a very limited time online. Therefore, the overlay network with poor 
performance may be broken into pieces and pieces when some peers leave, resulting 
in the information islands. Most of the structured P2P reconnect the topology as soon 
as the peers leave in a real time manner. But it will consume too many messages, and 
sometimes it is not feasible, for many peers depart without any warnings. Although 
increasing the links between peers can enhance the performance of connectivity by 
the information redundancy, however which will lead to the waste of storage and the 
severe cost of maintenance. In addition, to avoid the real time maintenance of the 
peers’ departure, the redundancy of appropriate links and replicas is another effective 
approach. Then there is an urgent need to integrate the online peers as a “giant com-
ponent” as large as possible, so that the resources online can be shared completely; at 
the same time to guarantee the cost of maintenance as little as possible. In other 
words, 

the largest cluster interconnected by the online peers should scale linearly with 
the system size when given the proportion of the online peers to all the peers.  

This is because: if the rate is under the linear scale, the online peers will be broken 
into smaller and smaller clusters with the expansion of system; conversely if the rate 
is over the linear scale, the online peers will be ultimately integrated as one super 
large scale “giant component” with the extension of the whole network, which is 
beyond the “critical value” of link redundancy, resulting in much waste of storage and 
cost of maintenance. 

And due to the prevalence and significance of small world model in reality and the-
ory, in this paper we analyzed the correlation between the shortcuts density and the 
connectivity over WS small world model, as well as the impact of shortcuts density to 
the robustness of the overlay network based on the popular WS small world model. In 
addition, numerical simulation was done to confirm our analytic results. 

2   Small World Model 

The experiment of six-degree separation in 1976 proves that by simply forwarding 
mail among acquaintances, it only takes a chain of five to seven mails to reach a spe-
cific mail user unknown by the original mailer. This reveals the prevalent existence of 
short paths between individuals in a large social network. And the publication of [1] 
revives people’s attention to the small world, and then the small world model is ex-
tensively introduced into their respective research fields [2,6,7]. The phenomenon of 
small world is embodied in the complex networks of a wide range of systems in na-
ture and society, including the cell, a network of chemicals linked by chemical reac-
tions, or the Internet, a network of routers and computers connected by physical links 
[2]. Some P2P applications also have proven the existence of small world in the net-
works composed of the active nodes [3,4]. [4,5,8] have designed P2P systems under 
the notion of small world and achieved not bad performance. Therefore, the research 
of fault-tolerance based on small world model is necessary and significant. Our work 
in this paper aims at the construction of the robust and efficient small world overlay 
network for the P2P systems.  
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Fig. 1. (a) An example of a small-world graph with L=24, k=1 and 4 shortcuts (b) An example 
with k =3 

The original small-world model suggested by Watts and Strogatz (WS) is defined 
as follows [6]. Take a one-dimensional lattice of L nodes with links between nearest 
neighbors and periodic boundary conditions (the lattice is a ring). Then go through 
each of the link in turn and independently with some probability  “rewire” it. The 
rewired links are referred to as “shortcuts”. The Watts-Strogatz model embodies clus-
tering property and a small average path length between any two individuals. 

For the purposes of analytic treatment the Watts and Strogatz made a slight modi-
fication over the model above. In the variant version of the small world model Add 
shortcuts between pairs of nodes chosen uniformly at random with probability  but 
do not remove any links from the regular lattice. Fig. 1(a) shows one realization of the 
model for L = 24. 

To simulate the more out-degree in real social networks, Watts and Strogatz [1] 
proposed adding links to next-nearest or further neighbors on the underlying one-
dimensional lattice up to some fixed range, which we will call k. Fig. 1(b) shows one 
realization for L= 24, k=3. Watts and Strogatz found that the model displays many of 
the characteristics of true random graphs even for <<1, and it seems to be in this 
regime that the model’s properties are most like those of real world social networks 
[1]. Our main interest in this paper is the influence of the shortcut probability  on 
the connectivity of the whole small world overlay network. 

3   Constructing the Robust Small World Overlay Network 

Considering a one-dimensional small world model as described above, it is standard 
to define the parameter  to be the average number of shortcuts per link on the under-
lying lattice. For large sites number L, the probability that two randomly chosen nodes 
have a shortcut is then 

 = 2k /L (1) 

Define the parameter p to be the average online probability of a peer. Online peers 
are connected together by the near-neighbor links on the underlying lattice and the 
shortcuts. Offline peers disconnect some links, resulting in some isolated local clus-
ters. Let’s firstly ignore the shortcuts. For k=1, the average number of local clusters, 
the discrete clusters, of size i then is 

Ni=(1-p2)piL (2) 
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For general k 1,      Ni=(1-p)2kp(1-(1-p)k)i-1L     (3) 

Now we build a connected larger cluster by the local clusters as follows. Let’s start 
with an original cluster, one particular local cluster. We can get a new original cluster 
if we add other local clusters that can be reached by traveling along a single shortcut 
to it. Then we add local clusters, which can be reached from those new ones by travel-
ing along a single shortcut step by step, and so forth until all the clusters that can 
reach from the first original local cluster are added. Let us define a vector 
Vi[v1,v2,v3…vi…] at each step in this process, whose components vj are equal to the 
probability that a local cluster of size j have been added to the overall connected 
original cluster in step i . Then vj  , vj  Vi equal to the number of clusters added in 
step i.  

Define a matrix M, 

Mij=Nj(1-(1- )ij) (4) 

Here Nj is the number of local clusters of size j, and 1-(1- )ij is the probability of 
a shortcut between two clusters respectively with size i and size j. And then Mij 
stands for the number of clusters with size j that connect to a given cluster with size 
i. Then 

Vi+1[v1,v2,v3…vi…]= Vi[v1,v2,v3…vi…] M (5) 

If  is held constant, then  tends to zero as L , so for large L we can approxi-
mately get  

1-(1- )ij=ij  (6) 

Mij=ij Nj (7) 

Then matrix M is the product of two vector I=[…i …]T and J=[…jNj…]. Then Eq. 
(5) can be transformed to 

Vi+1=Vi M=ViIJ, i.e.    vi=iNi vik vk, vi Vi+1, vk Vi (8) 

Let vector x is the eigenvector of matrix M corresponding to the eigenvalue , 

Mx= x (9) 

And according to Eq. (9)  

Vi+1= Vi (10) 

Therefore, if  and i is larger, vi  , vi  Vi  tends to zero, namely, the number 
of new clusters added in step i is less and less until vi  , vi  Vi equals to zero, and 
then the largest “giant component” will not augment with the increase of i and the 
system scale, which cant answer for the issue described in section one. On the con-
trary, if , vi  , vi  Vi will grows until the size of the cluster becomes limited by 
the size of the whole system, which cannot be coincident with our target also, for the 
purpose of link maintenance. Therefore, our expected critical value p occurs at the 
point . 
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Consider Eq. (10), and according to Eq. (8) 

i= vik vk[…i2Ni…], vk Vi (11) 

Sum the left and right side respectively  

vikvk= vikvk vi i
2Ni vi i

2Ni (12) 

For k=1, (1-p)2L  i2pi (13) 

pL(1+p)/(1-p)=2 p(1+p)/(1-p) (14) 

Setting yields the correlation between the shortcut density  and the critical 
value p for a resilient and efficient small world overlay network 

=(1-p)/2p(1+p) (15) 

For general k, we have 

2k p(2-(1-p)k)/(1-p)k (16) 

Setting , we also have the correlation equation on p and  

(1-p) /2k p(2- (1-p)k) (17) 
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Fig. 2. The shortcut density as a function of online rate to preserve the overlay network having 
a good connectivity for a small world graph of L=10,000with k=3(triangles) and 5(squares), 
where the consecutive curve is our results and the discrete point is the experimental results. 

4   Numerical Calculations 

We have performed computer simulations on small world networks as a check on our 
analytic results. In the experiment, there are initially zero online peers. And then the 
offline peers are randomly selected and wakened at a step of ten peers until all the 
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peers are online. And a BFS (Breadth First Search) from every peer is used to find the 
largest cluster. 

Fig. 2 shows the shortcut density as a function of the peers’ online rate to preserve 
the overlay network having a good connectivity for a system of size L=10,000. As the 
figure shows the agreement between simulation and theory is good although there are 
some differences. The results fail to agree for lower online rate--- higher shortcut 
density. This is because Eq. (6) is not a correct expression for the larger . 

5   Conclusions 

We have derived exact analytic expressions on the shortcut density and the proportion 
of online peers to preserve the robustness of small world overlay network, which can 
be considered the guidance when to construct the practicable applications based on 
small world overlay network. We also have performed numerical simulations and 
confirmed our conjecture and the analytic result. 
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1 Introduction

The widespread diffusion of large scale systems has brought many researchers to pro-
pose distributed software solutions capable of ”moving” the computation among net-
worked physical computing machines. What is considered computable depends on the
execution environment such as the JVM execution context where threads are com-
putable. The problem of natively moving the computation among software computing
machines such as instances of JVMs is our focus. Natively, the Java language allows
expressing the parallel execution through threads and natively JVM performs parallel
execution of threads inside the same execution context holding the same java applica-
tion. What the JVM natively does not perform is the distribution of threads over external
JVM execution contexts.

As an example, moving the computation among distributed machines [1] can be done
for: code components (e.g. Sun Microsystems’ Java Applets and Microsoft’s ActiveX);
data objects (e.g. IBM’s Aglets [2] and Concordia [3]); processes (e.g. Esmerald [4],
Sprite [5] and Charlotte [6]). All this kind of distributed computing requires specific
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operating system software component integration, implementing appropriate remote
execution mechanisms. But if the execution context is not a physical machine but a
virtual one, different problems arise.

In this paper we:

– formally extend the JVM computational model defining a native JVM distribution
paradigm. We adopt the Abstract State Machine notation [7]. More precisely, the
Java Virtual Machine formal description presented in [8] is extended.

– specify a formalized Transparent Java Thread Migration Protocol (JTTMP);

– show some aspects af the prototyping activity about our solution, to verify the ex-
tention of the JVM computational model and to verify the JTTMP, based on a Peer
To Peer paradigm (JTTMPoP2P). The peer to peer thread migration protocol is then
presented by means of a mapping between the Thread Migration Protocol and the
JXTA Peer to Peer (P2P) primitives [9]. The choice of P2P as the communication
paradigm among the DJVM nodes is motivated: it offers an intuitive approach to
resource discovery and sharing, often without the need for a central authority [10].
The adoption of P2P makes it possible to enable dynamic discovery and automatic
aggregation of computing farms belonging to different organizations.

The analysis of the sound and complete mathematical formalization of the JVM [8]
has been a great inspiration for this work. It has been the starting point of the project
for extending the JVM computational model. In particular the Evolving Algebra (EA)
paradigm [7] used as a formal method for specifing and verifing JVMs has attracted
our attention, giving us the possibility to formally prove our idea. The limit of the JVM
computational model lies with the absence of mechanisms for moving the computation
over instances of JVMs. We argue that this problem is well expressed by the following :
A JVM is local to the main thread of a java application, whereas all the other instances
with respect to the same application are remote, either if they are running on the same
physical machine or if they are running on other physical machines. The JVM compu-
tational model does not describe any aspect concerning the java threads lifecycle, about
migration and synchronization among multiple local and remote JVMs. As a consen-
quence no advantages are taken from the distribution computation paradigm applied to
the JVM computational model.

In this paper wefocusourattentionontheJVMASM[8]model, because eachextension
can be formally verified. The verification process can be done through code develop-
ment or formal verification. On the other hand the JVM ASM uses a metacomputing
environment that simulates the execution environment for Abstract State Machines. The
environment is a programming system called AsmGofer [11], an extension to the func-
tional programming environment Gofer. The JVM ASM has been developed in this
environment so that our computational model extension can be applied and verified. In
particular in developing our idea we want to focus on the abstraction process [12] that

1.1 JVM Computational Model
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we have adopted to create the intrinsic distribution model for JVM. The process has
been focused on analysing the properties of JVM’s thread control, trying to understand
how the structure of computation could be manipulated for migrating and delegating
thread mechanisms, and then considering these properties in isolation from the exper-
imental JVMs. The abstraction process is followed by a reconstructive generalization
using the EA formalism. The reconstructive generalization has produced the Signatures
Set i.e. the new operators used to specify the distribution model. In this paper our atten-
tion has been focused on the communication model for moving the computation among
JVM instances. The effectiveness of the model has been shown through informal anal-
isys of a useful implementation of the JTTMP over P2P paradigm.

2 Java Thread Transparent Migration

Our idea has been developed by extending the mathematical structures execJavaThread
and execJavaT defined in [8]. No change about the java thread statement specifications
has been made. From a user point of view the JVM thread has the same behaviour
and the same lifecycle of the original computational model. On the other hand, from a
JVM point of view the thread controller method specifications have been extended in
a way that particularly affects the lifecycle states and the synchronization phase. It is
important to note that the dynamic semantic of the execJavaThread structure has been
extended in order to support the execution of the threads migration tasks. We considered
the JVM mechanisms for thread management, expecially those for synchronization,
waiting and notification introduced for an effective transfer of control between JVMs.
Such mechanisms define the delegating new phrase, and mechanisms for notification
and waiting used for defining the migrating new phrase. Our solution focuses on three
main aspects: i) modification of the mechanisms controlling the thread lifecycle states;
ii) extension of the local scheduling process to the remote scheduling; iii) definition of
the JVM communication protocol to support thread distribution.

In this paper we limit the description to the dynamic semantics of the support to mi-
gration and delegation, without proving the invariance of properties, proved in [8] for
threads. We focus on the third point, showing an approach for embedding into a JVM
the comunication framework for moving the computation. In particular we believe that
an embedded distributed extension of java virtual machine mechanisms to perform mi-
gration and to invoke remote scheduling, is an important addition for the JVM, that does
not have influence on the language specifications. First we define the protocol and then
we give an implementation of it.

The actors. Two roles are defined in such a protocol: JVMConsole and JVMWorker.
Moreover the JTTMP defines both a Thread Manager (TM) and a Migration Manager
(MM) actors defined for the mentioned roles. T M and MM are thread daemons that let a
JVM keep running independently of a java multithreaded application ( jmta) execution.
Moreover the MM and TM embed normal java threads specifications, but their methods
are reserved to execJavaThread control. MM and T M are synchronized on the threads
that can be migrated. When a new thread is created, its mode has to be initialised, and
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its locks stack and wait set have to be initialised to empty. Considering our extension,
the migration stack is set to empty and its delegating stack, under certain conditions,
is set to T M. Since MM and TM are initialised as any other thread, then the normal
thread initialisation phase is not discussed in detail in the present work, because many
entailments would have to be considered. Here we just discuss about some activity that
are charged on the two actors. A MM is responsible for: discovering the network topol-
ogy; collecting and maintaining the cluster nodes’ load status information; applying
the thread migration policy; selecting the unloaded nodes as migration targets; select-
ing the threads to migrate; selecting an unloaded node from which to subtract a previ-
ously migrated thread. A Thread Manager is responsible for creating a context for the
migrated thread; destroying the context for the migrated thread; synchronising active
remote threads in execution on the local node; scheduling the migrated thread.

Intuitively speaking, given a jmta to run, all JVM instances running on distributed re-
sources start cooperating. The main goal of each JVM instance is to aggregate itself to
a farm of JVMs. JTTMP provides rules for roles and actors, defining the behaviour of
the Migration Manager (whose aim is the control of direct/inverse migration), as well
as for defining the behaviour of the Thread Manager (whose tasks are status delegation
and remote scheduling). Any computational resource can play both roles, but for the
sake of simplicity and without loss of generality we consider a DJVM with a single
JVMConsole. When a jmta is executed on a resource, the latter becomes the JVMCon-
sole for that jmta, see the previous 1.1. All other nodes will behave as an extension
to the computational and memory resources available on the Console, and will act as
JVMWorkers with respect to the jmta. In order to show the protocol and behaviour
of T M and MM, a natural language description and a reference to the formal funtional
opearators are used. The reader can find in round brackets, the number of the referenced
function.

Protocol Workflow. Obviously the first phase is the opening of a communication
channel. Any JVM, independently from its role, defines a migration channel CHM
(12) and a communication channel CHC (11). When a jmta is started on a JVM, the
latter plays the role of JVMConsole by creating CHCis towards the JVMWorkers. It
will also create CHMs towards those JVMWorkers where to migrate threads. As a main
difference between those two channel types, the latter requires larger bandwidth. All
JVMs other than the Console will act as JVMWorkers and will define a communication
(11) and a migration (12) channel towards the JVMConsole. Furthermore, by relaxing
the requirement of the uniqueness of the JVMConsole, in a scenario where any resource
can start a jmta, each JVM would have (n− 1) channels at its disposal. We will later
discuss threads migration from a communication channel point of view. In the following
two sections we discuss on the protocol workflows with respect to the formal definition
of the list of functions involved in the protocol. The protocol first phase is followed by
the Discovery Information Request. When running a JVMConsole on a resource, the
MM looks for other MMs on JVMWorkers running on other resources. In this way it
collects informations on the topology of distributed JVM instances (1). The Load In-
formation Request is performed when the jmta start running, and the MM, in order
to balance the load on the JVMConsole, sends the load request to every other resource
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to retrieve the load information of any other JVMWorker (3). Each JVMWorker han-
dles the request according to its own load information, that is evaluated following the
request (4). At this point the JVMConsole enter the next phase, where the Evaluation
of remote load information is performed. The load status information of remote nodes
is received, evaluated and compared in order to select a worker (5). Then the migra-
tion can be started towards that worker by using the function for direct migration. The
most important phase is the Direct Migration. The T M on the JVMConsole selects
the thread whereas the MM on the JVMConsole selects the JVMWorker to migrate to.
The first thread to be evaluated is the currently executing thread. If the current thread
can not be migrated, then the JVMConsole examines the other ones (9). A thread can
migrate if it has a correct type (8) i.e. : i) it must not be a daemon thread; ii) it must be a
local thread (i.e. it cannot be an immigrated (i.e. previously migrated there) thread); iii)
it must not be the main thread. Once a thread is chosen, the JVMConsole instructs the
selected JVMWorker to prepare the execution context for the migrating thread (10). At
this point, the JVMWorker sets up the migration channel (12) where the migration will
take place. It then informs the JVMConsole that the CHM and the execution context
have been set up. The JVMWorker instructs the JVMConsole to prepare for sending
the sequence of frames the thread is composed of (13) and requests sending the frames
(17). The JVMConsole creates, a thread clone to send (14), and a migration channels
(12). The JVMConsole splits the execution context Δ of the thread to send into ordered
numbered fragments (15) called δ f rame and sends them (16), indicating the number of
fragments and the total dimension of Δ .

As soon as the JVMWorker has collected the complete Δ , the latter is ordered in a
machine-compatible format (17) and is executed (18). A request for re-sending a sin-
gle δ f rame or the entire Δ (19) can be performed. Such a continuous control passing
between JVMConsole and JVMWorker continues until the complete delta set has been
received. At the end of the migration, the various T Ms on the JVMWorker take care
of migrated threads. The JVMConsole keeps listening for machine-dependent requests
coming from migrated thread via the JVMWorker. There are four types of such requests
(20): i) for synchronisation; ii) for acquiring a lock on a shared object; iii) for releasing
a lock on a pre-acquired object; iv) for discovering who owns a certain lock. During the
execution of the jmta, the TM requests informations on the status of the threads that
have been migrated to a JVMWorker (21). The T M will take care of such requests (22).
Furthermore, the JVMConsole might want to synchronise its knowledge on what has
been migrated on JVMWorkers. It does so by requesting informations (23). Moreover,
dynamic loading for some remote library can be necessary as well (24), or requesting
the allocation of more memory (26). The dual phase of the previous one, is the In-
verse Migration. The inverse migration may be invoked on a JVMWorker that is: i)
the more heavily loaded, ii) the one that has finished executing a thread, iii) the one
which is unable to satisfy the machine-dependent requests coming from a previously
migrated thread (7). During the inverse migration process, after individuating the de-
parture node (5), the JVMConsole starts the migration process (7). The JVMConsole is
not responsible for choosing which thread must be retrieved back. The selected JVM-
Worker chooses among the higher priority threads, the first ”retreat-able thread” (8), i.e.
an active remote thread that does not contain machine-dependent code instructions. If
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such thread is found, the JVMConsole is required to prepare for receiving a modified
thread execution context (19). After splitting and ordering the execution context Δ (17),
the JVMWorker starts sending every δ f rame (16), also specifying the number and total
size of Δ . A retransmission can be requested for the single δ f rame or the entire Δ (19)
in case of partial or total reception failure.

For of a good understanding, we do not describe more phases of the protocol, but in the
following we focus, on the dynamic semantic of the extensions introduced in the JVM
model, that should explain the behaviour of roles and actors mentioned.

3 JTTMP Transitions

A jvm is started with a couple of initial threads MM and TM that are runnable and
active, then the main thread of a jmta is started. The rule execJavaT , defined in [8],
starts the MM and TM thread. MM or TM never dies, then the JVMConsole is forced
to keep being alive. After a first phase for local synchronization, both MM and TM
go upon normal execution of their protected statement. Alternatively the MM and the
TM becomes the current thread in the execJavaThread. For both, methods are defined
through which execJavaT can control their status as was mentioned above. Definition:
For all threads two simulated states are defined that are delegating and migrating. The
delegating state is composed by the waiting and the notified states, the migrating state
is composed by the waiting and the synchronizing states. The first responsibility of a
MM, started on a JVMConsole is to attempt to collect information about other MMs on

execJavaThreadConsole =
–if � DJVM then
—-choose DJVM in createDJVM
–choose SELFLOAD with requestLoad (..) in directMigrate(q)
–choose SELFLOAD with requestLoad (..) in inverseMigrate(q)
–requestsincroT hread(..)
–statusmigratedT hread(..)
–requestsincroNode(..)
–if dependency then
—-prepareloadLib(..)
—-prepareallocateMem(..)

execJavaThreadWorker=
–preparetoSend(..)
–executeWδ f rame

(..)

Table 1. jvmConsole and jvmWorker are the main transition of the protocol for clustering remote
JVM
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the JVMs neighborhood. If some JVMWorker is available and answers, then the JVM-
Console grabs load information and tries to define a DJVM. The MM keeps checking
its own workload and the JVMWorker workload and it decides about the migration, or
uses workload information for inverse migration later, in order to balance the load over



1) createDJVM =
–forall WORKER ∈ DJVM
—-looksUpJVM
—-storeLoadInfoWorker

2) directMigrate(q) =
-forall WORKER
–if q /∈ {DAEMON ∧LOCAL∧notMAIN)} then
—–if loadratioD(WORKER)≤SELFLOAD then
——-if directMigrationT hread(..) then
————preparetoReceive(..) (preparing context of execution)

3)inverseMigrate(q)=
–if (loadratioI(WORKER) ≤ SELFLOAD)
vee (exec(q) ∈ {Dead ∨Machine−dep}) then
—if inverseMigrationT hread(WORKER) then
—–preparetoReceive(..) (preparing context of execution)

4)looksUpJVM = if discoveryin f o(..) then WORKER:=WKPROFILE

5) storeLoadInfoWorker : WORKER → LOAD storing function worload of WORKER

6) loadratioD : CONSOLE → LOAD computing function ratio workload of JVMConsole
7) loadratioI : WORKER → LOAD computing function ratio workload of JVMWorker

Table 3. Transitions of the protocol for evaluating the workload of remote JVMs

A structure containing load information about JVMWorker nodes participating in a
DJVM is thus created and maintained by the JVMConsole. As regards the migration
policy, whose description is here simplifyed, in order to choose the targeting JVM-
Worker for thread migration, the JVMConsole must know the load information about
them. The choosing policy for each resource consist in a comparative analysis between
its own load status and the load status of the other Workers.

Table 2. looksUpJVM, createDJVM, and directMigrate are the transitions of the protocol for dis-
covering remote JVM, for creating a cluster of JVM, and for starting a thread migration progress

At this point it is important to show the set of new function name introduced for the
definition of the new actions that JVM and thread can performe. The set of functions

the DJVM. A MM on a JVMWorker that has been aggregated into a DJVM keeps listen-
ing for thread migration and execution requests. In the following we show the modified
formal main transition rules of ASM for JVM [8, pg.99]:

describing the protocol operations is reported below. In the following by [[f]] we mean,
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1. discoveryin f o(WORKERQUERY) → [ [[responsein f o(..)]]].

2. responsein f o(WORKERRESPONSE)→ [〈WORKER,WKPROFILE〉].

3. requestload(WORKER,LOADINFO) → [ [[evaluateload(..)]]].

4. evaluateload(SELF) → [〈SUCCESS,LOAD〉,FAILED].

5. selectworker( [[requestload(..)]]) → [true, f alse,unde f ].

6. directMigrationThread( [[selectworker(..)]]) → [SUCCESS,FAILED]

7. inverseMigrationThread( [[selectworker(..)]]) → [SUCCESS,FAILED]

8. requesttypeT hread(APOThread)→ [TID]

9. selectT hread( [[requesttypeT hread(..)]]) → [true, f alse,unde f ]

10. preparetoReceive( [[selectT hread(..)]],MIGRATE) → [ [[preparetoSend(..)]]]

11. createCommchannel() → [CHC]

12. createMigchannel() → [CHM]

13. preparetoSend( [[createMigchannel(..)]],CONT,READY) → [ [[sendδ f rame
(..)]]]

14. createcloneThread(T ID) → []

15. sortδ f rame
() → [Δ ]

16. sendδ f rame
( [[sortδ f rame

(..)]],FRAME,FRAMESIZE) → []

17. sortδ f rame
() → [Δ ]

18. executeWδ f rame
( [[sortδ f rame

(..)]]) → [MORE,FAILED]

19. preparetoReceive( [[selectT hread(..)]],RETREAT ) → [ [[preparetoSend(..)]]]

20. requestsincroThread(T ID) → [LOCK,UNLOCK,GET LOCKHOLDER]

21. statusmigratedT hread(STATE,T ID) → [ [[evaluatethreadStatus(..)]]]

22. evaluatethreadStatus(..) → [WAITING,RUNNING,STOPPED,FINISHED]

23. requestsincroNode(MBARRIERSYNC,BARRIERID)→ []

24. prepareloadLib(LIBLOAD,LIBSIZE) → [ [[sendlib(..)]]]

25. sendlib(lib) → []

26. prepareallocateMem(REMOT EMALLOC,MEMSIZE)→[ [[preparedallocatedMem(..)]]]

27. preparedallocatedMem(MCONT,MEMPOINT ER) → []

TID=Thread Identifier
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In this section we briefly describe the JXTA protocol we make use of when modeling
JTTMP. In the following sections we will informally describe the usage we make of
the JXTA protocol, with respect to the transitions described in the JTTMP protocol. All
actors participating in the P2P protocol are interconnected nodes P (peers). Such nodes
can be generally considered as service providers. In a DJVM context, they are the TMs
and MMs. Every peer operates independently and asynchronously with respect to all
others, and it is univoquely identified by an ID.

In a peer to peer network four kind of peers coexist: i)minimum Peer: can send and
receive messages, but cannot store messages or route messages created by other peers.
Essentially it is a limited resource peer. ii)full Peer: can send, receive and store mes-
sages, but cannot route messages created by other peers. iii)rendezvous Peer: can send,
receive and store messages (advertisements). It can also route messages created by other
peers. iiii)Peer relay: Gives a client/server mechanism that allows communicating with
unaccessible peers (i.e. those behind NAT/firewalls). In a DJVM, the peerJVMConsoles
implement the second, third and fourth kind of peer, whereas the peerJVMWorker only
the second one. Peers aggregate themselves in Peer Groups where a set of peers can
share the same ”interest area” and can establish, independently from others, its own
network membership policy. Peers can, as an example, belong to more than one group
at the same time. Peers create logical regions on the net and access to these regions
is given only to group members. These regions must not necessarily reflect the struc-
ture and physical links of the underlying network. The goal of a DJVM on a Peer to
Peer network is that of creating peerGroupDJVMs. The protocols we make use of for
implementing the JTTMP protocol are the following: Peer Discovery Protocol (PDP):
peers can use it for publishing their resources and the services they can offer, and for
discovering other peers’ resources; every resource is described and published via adver-
tisements. Peer Information Protocol(PIP): peers can use it to obtain information from
other peers. Pipe Binding Protocol(PBP): peers can use it to establish a virtual commu-
nication channel, called pipe, among two or more peers. Rendezvous Protocol(RVP):
this mechanism allows peers to subscribe to the Propagation Service. In fact, in a peer
group, peers can be rendezvous peers or peers that listen to rendezvous peers.

The main consideration is about the Peer Discovery Protocol implementing JTTMP.
A jmta instance on a JVMConsole starts the peerGroupDJVM process by publishing
the related group advertisement. The peerJVMConsole implements the Membership,
Rendezvous and Resolver services. The peerGroupDJVM consists of a virtual clus-
ter composed of a number of peerJVMWorker whose advertisement specifies the Java
bytecode computation service and the set of libraries they possess.

The creation of a peerGroupDJVM consist in dynamically searching for the peerJVM-
Workers (transitions-1) that are able to offer a service or that possess some required
libraries. The Peer Discovery Protocol (PDP) has been adopted since it has been specif-
ically designed to allow performing the publishing and search operations on a Peer
to Peer network. In particular: i) the peerJVMConsole sends a Discovery Query mes-
sage via the MM component, to find a bytecode-execution-capable service. ii) All peer-

4 JTTMP Binding to P2P
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JVMWorker’s MMs respond by sending its own profile, i.e. its peerJVMWorker adver-
tisement, or the profile of specific libraries that are available on that Worker via the
Module Class Advertisement; they also return the availability time of the JVM itself.
iii) The MMs on every peerJVMWorker create and send a pipe advertisement speci-
fying the CHC used to reach them (transitions-8), i.e. it contains the information on
which peer offers the communication channel startpoint. iiii) The peerJVMConsole
saves the collected MM advertisements inside its local cache; after having collected the
peerJVMWorker’s advertisements and the pipe advertisement for every CHCi the peer-
GroupDJVM is active (transitions-2) and can proceed to publishing the group profile.

The peerJVMConsole apart from the peerJVMWorker or peerGroupDJVMcharacteris-
tics, can decide the virtual cluster size and specify the number of advertisements to be
returned from peerRandevouzs. We assume at the moment to run non-interactive jm-
tas that massively use computing resources. As a consequence, the peerJVMConsole
will try to aggregate as many peerJVMWorkers as possible. The response received by
the peerJVMConsole will come from a peerRandevouz or from a peerJVMWorker or
from another peerJVMConsole with its own group advertisement. The number of po-
tential peerJVMWorkers or peerJVMConsoles, and the remaining availability time of
the service offered are essential information allowing the peerJVMConsole to decide
the topology of the DJVM. The knowledge of a service length in time is particularly
important during the direct and inverse thread migration phases, since the peerJVM-
Console must be aware of the DJVM evolution over time.

To retrive updated information about the other JVM instances the Peer Information
Protocol is applied to the Thread Migration Protocol The peerJVMConsole, after
having stored in its local cache the result of its Discovery Query, collects informa-
tion on the peerJVMWorkers’ load. Such information is required in order to choose
the scarcely loaded peerJVMWorkers to migrate threads to and those overloaded to
retrieve back threads from. The information is collected using the Peer Information
Protocol (transition-3). The peerJVMConsole sends to its peerGroupDJVM a PeerInfo-
QueryMessage, where a load request is specified. Every peerJVMWorker replies with a
PeerInfoResponseMessage.

The creation of the CHMi (transition-8) is particularly important and the Endpoint
Routing Protocol and Pipe Binding Protocol are useful for the effective and efficient
communication among JVM. In fact migration paths have to be optimized by the peer-
JVMConsole, in terms of bandwidth, availability, etc. We adopt the Endpoint Routing
Protocol to manage such channels towards all peerGroupDJVM members. ERP is used
by peerJVMConsole to find routes (paths) to DJVM members. Route information in-
cludes an ordered sequence of relay peer IDs that can be used to send a message to the
destination. After defining the best available path, the peerJVMConsole uses PBP. The
MM on the peerJVMConsole creates the communication channels with the MMs on the
peerJVMWorkers. The PBP allows creating virtual communication channels between
peers. Such channels are called pipes. The PBP takes care of specifying the virtual com-
munication medium between peers, while the physical channel is taken care of by the
Endpoint Routing Protocol. Every pipe has two endpoints, the InputPipe, for reception,
and the OutputPipe, for sending. Every peerJVMWorker associates a listener to every
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InputPipe in order to synchronize the migration. The listener is awakened every time
a message is received. Last but not least are the consideration about the Rendezvous
Protocol implementing JTTMP. Rendezvous Peers are particular peers that can route
and propagate messages on the network. A peerJVMConsole implements the Peer to
Peer protocol and creates the peerGroupJVM (transition-2). The discovery of a peer-
Randevouz allows a peerJVMConsole to exploit isolated peerJVMWorkers, whereas the
discovery of another peerJVMConsole will allow to aggregate other peerGroupDJVMs.

5 Related Work

The research field on Distributing JVMs is valuable for high-performance comput-
ing [13]. Several prototypes have been presented such as [14],[15],[16],[17], each one
implementing a different kind of computational moving over instances of JVM. The
main of them consist in capturing the current execution state of the thread (mainly the
thread stack) and then transferring such state to a target node on which execution is
restored. The capturing activity mainly is charged on JVM external controller that per-
formes surveillance of the local JVM and interacts with it. Moreover most of them
are able to use operating system communication channel and for this kind of DJVM
it is assumed that they are effective into a cluster machine. A conseguence of these
approach is that a DJVM supports the parallel execution of a multithreaded Java ap-
plication on networked virtual machines as if it were executed on a single machine.
Some DJVMs do not require any modification to the underlying operating system and
expose the standard Java APIs. Furthermore, current DJVM prototypes usage is limited
by some deficiencies affecting the thread migration subsystem. These problems regard
the discovery, reachability and aggregation of distributed JVMs. In fact, present DJVM
implementations do not care about firewalls, NATs and VPNs. This prevents their de-
ployment over large area networks and, as a consequence, it prevents aggregating com-
puting farms belonging to different organizations. Furthermore, existing DJVMs have
to be statically aggregated and a priori configuration of the resources participating in
a DJVM is needed. Such configurations have to be replicated and made consistent on
every DJVM node. In this way the set of resources is not dynamically configurable and
its management is difficult.

6 Conclusion

We have proposed an extension of the JVM computational model of JVM and in partic-
ular an implementation analysis of a Transparent migration protocol for Java threads
over a Peer to Peer (P2P) infrastructure. The idea provides distributed JVM run-time lo-
cation, aggregation and reachability. Moreover, it allows distributing threads effectively
over wide area networks. Last but not least, it provides a mechanism for aggregating
JVMs into Virtual Farms for Java Multi-threaded applications computing. In the future
we will proof the formal correctness of the extentended model and the protocol and we
will produce experimental result. Further in the future we will try the binding with other
distribution framework such as Nexus [18].
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Abstract. Over the past decade, many fully adaptive routing algorithms have 
been proposed in the literature, of which Duato's routing algorithm has gained 
considerable attention for analytical modeling. In this study we propose an 
analytical model to predict message latency in wormhole routed 2-dimensional 
torus networks in which fully adaptive routing, based on Linder-Harden's 
methodology [10], is employed. This methodology presents a framework in 
which adaptive routing algorithms can be developed for the k-ary n-cube 
network. Simulation experiments reveal that the latency results predicted by the 
proposed analytical model are in good agreement with those provided by 
simulation experiments.  

1   Introduction 

Most current multicomputers employ k-ary n-cubes for low-latency and high-
bandwidth inter-processor communication. The two most popular instances of k-ary 
n-cubes are the hypercube (where k = 2) and the Torus (where n = 2) [7]. The 
former has been used in early multicomputers such as the cosmic cube, N-cube and 
iPSC/2. 

The latest generations of multicomputers have widely used wormhole switching 
due to its low buffering requirements and, more importantly, it makes latency almost 
independent of the message distance in the absence of blocking [7].  

Fully adaptive routing has often been suggested to improve network performance 
by enabling messages to explore all available paths. Several authors like Linder-
Harden [10], Duato [6, 7], and Lin et al [9] have proposed fully adaptive routing 
algorithms that can achieve deadlock freedom with a minimal requirement for 
hardware resources. 

Many studies have proposed analytical models for the performance evaluation of 
different interconnection networks [1-5,8,11-13] using results from combinatorial 
theory and/or queuing theory. 

In this paper, a new analytical model for computing the mean message latency in 
2-D torus with Linder-Harden's fully adaptive routing algorithm is proposed. Results 
from simulation experiments reveal that the present model exhibits a good degree of 
accuracy under light, moderate, as well as heavy traffic regions.  
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2   The Analytical Model 

The proposed model here uses assumptions that are widely used in the literature [1-
5,8,11-13]: (a) Nodes generate traffic independently of each other, and which follows 
a Poisson process with a mean rate of   messages per cycle, (b) The arrival process at 
a given channel is approximated by an independent Poisson process, (c) Message 
destinations are uniformly distributed across network nodes, (d) Message length is 
fixed and equal to M flits each of which is transmitted in one cycle from one router to 
the next, (e) The local queue at the injection channel in the source node has infinite 
capacity, (f) 6 virtual channels are used per physical channel in dimension X and the 
number of virtual channels used in dimension Y is 3 virtual channels per physical 
channel. With S  being the mean network latency,  SW  being the mean waiting time 

seen by a message in the source node to be injected into the network , and V  being 
average degree of virtual channels multiplexing, the mean message latency can be 
written as 

Latency = VWS s )( +      (1) 

With d  being the average number of hops that a message makes across the 
network, the rate of messages received by each channel can then be computed as [11] 

4/dc λλ =                    (2) 

Since the torus is symmetric averaging the network latencies seen by the messages 
generated by only one node for all other nodes gives the mean message latency in the 
network. Let S = (sx, sy) be the source node and D = (dx, dy) denotes a destination node 
such that }{ SGD −∈  where G is the set of all nodes in the network. Let us define 
the set H = {hx, hy}, where hx and hy  denotes the number of hops that the message 
makes along X and Y dimensions, respectively, i.e. (sx + hx) mod k = dx  and  (sy + hy) 
mod k = dy. The network latency, SH , seen by the message crossing from node S to 
node D consists of two parts: one is the delay due to the actual message transmission 
time, and the other is due to the blocking time in the network. Therefore, SH can be 
written as 

( )
1

H

H c j
j

S M H t B
=

= + +         (3) 

where M is the message length, |H| the distance (in terms of the number of hops made 
by the message) between the source and the destination node, tc is the channel cycle 
time, and Bj the blocking time seen by a message on its j th hop. The terms |H| and Bj 

are given by 

,x yH h h= +      (4) 

,  if

,      if
jblock C

j

ejection

P W j H
B

W j H

<
=

=
                 (5) 

with Pblockj being the probability that a message is blocked on its j-th hop during its 
journey; Wc is the mean waiting time to acquire a channel in the event of blocking,  
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and also Wejection is that for an ejection channel. Let us now calculate the blocking 
probability Pblockj. Let N0

H (j) define the number of ways that j hops can be distributed 
over two dimensions such that the number of hops made in dimension X and Y be at 
most the hx and hy. The calculation of N0

H (j) can be determined as 

jH
H

0 QjN ,)( =                                  (6) 

, {( , ) , 0 , 0 }H j x yQ x y x y j x h y h= + = ≤ ≤ ≤ ≤             (7) 

So, the probability that a message has entirely crossed dimension X and Y on its  
j-th hop is respectively given by 

{0, 1}
0

0

( )

( )

yh
x x
j H

N j h
Pass

N j

− −= , 
{ 1,0}
0

0

( )
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j H

N j h
Pass

N j

− −
=                 (8)  

A message is blocked at a given channel when the virtual channels in both 
dimensions (to be traversed) are busy. The virtual channels that a message can utilize 
in each dimension, depends on the virtual network and level in which the message 
resides. Let PDx be the probability of the virtual channel used by a message in 
dimension X being busy, and PDy be the probability of dimension Y (messages in 
dimension X can move in both directions but they can move only in one direction in 
dimension Y depending on the virtual network). So the number of virtual channels in 
dimension X is two times greater than the number of virtual channels in dimension Y. 
The probability of blocking depends on the number of output channels (and thus on 
the virtual channels) that a message can use at its next hop. When a message has not 
entirely passed any dimension it can select each of two dimensions that has free 
virtual channel, but when a message has entirely crossed a dimension it should select 
virtual channels of the other dimension to make its next hop. A message is blocked at 
its j-th hop, if all the virtual channels that it can choose for its next hop, are busy. The 

probability of blocking, 
jblockP , can therefore be written as 

(1 )
j y x x y

x y x y
block j D j D j j D DP Pass P Pass P Pass Pass P P= + + −        (9) 

where PDx and PDy can be computed as follows  
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To determine the mean waiting time, WC, to acquire a virtual channel a physical 
channel is treated as an M/G/1 queue with a mean waiting time of [13] 

( ) ,
)(

ρ
ρ

−
+=

12

C1S
W

2
S

C     ,Scλρ =  
2

2
S2

S

S
C

σ
=                    (11) 

where c is the traffic rate on the channel, S  is its service time, and 2
S

σ  the variance 
of the service time distribution. While c is given above by Eq. (4), the quantities S  
and 2

S
σ  are computed as follows. As adaptive routing distributes traffic evenly 
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among all channels, the mean service time at each channel is the same regardless of 
its position, and is equal to the mean network latency, S . Eq. (5) gives the network 
latency, SH , seen by a message to cross from the source node S to the destination node 
D. Averaging over the (N – 1) possible destination nodes in the network yields the 
mean network latency as  

−∈−
=

}{SGD

H
2

S
1k

1
S .      (12) 

Since the minimum service time at a channel is equal to the message length, M, 
following a suggestion proposed in [5], the variance of the service time distribution 
can be approximated as ( )2

2
cS

S M tσ = − . Hence, the mean waiting time becomes 

22 2
(1 ( ) / )
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c
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.                        (13) 

A message originating from a given source node sees a network latency of S . 
Modeling the local queue in the source node as an M/G/1 queue, with the mean 
arrival rate /6 (recalling that a message in the source node can enter the network 
through any of the 6 virtual channels) and service time S  with an approximated 
variance 2( )cS M t− yields the mean waiting time seen by a message at source node 

as [13]  
22 2
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The waiting time at the ejection channel for a message arrived in the destination 
node can be approximated using an M/D/1 queue with arrival rate λ , service time M, 
to be 

2( )
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c
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                (15) 

The probability, Px,v, that v virtual channels are busy at a physical channel  
in dimension X , and Py,v, that v virtual channels are busy at a physical channel in 
dimension Y can be respectively determined as [13]  
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When multiple virtual channels are used per physical channel in dimension X, they 
share the bandwidth in a time multiplexed manner. The average degree of 
multiplexing of virtual channels, that takes place at a given physical channel in 
dimension X, can be estimated by [12,13] 
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6 2
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Similarly the average degree of multiplexing of virtual channels, that takes place at 
a given physical channel in dimension Y, can be estimated by  

3 2
,1
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y vv
y

y vv
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The average virtual channel multiplexing degree can be then approximated by 

2
x xV V

V
+= .          (19) 

3   Simulation Experiments 

The proposed analytical model above has been validated through comparison with the 
results obtained from a discrete-event simulator that mimics the behavior of Linder-
Harden fully adaptive routing in the 2-D torus at the flit level. In each simulation 
experiment, a total of 100K messages are delivered. Statistics gathering was inhibited 
for the first 10K messages to avoid distortions due to the initial start-up conditions.  
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Fig. 1. Average message latency predicted by the model against simulation results 

Numerous validation experiments have been performed for different network sizes 
and message lengths. However, for the sake of specific illustration, Fig. 1 shows 
latency results predicted by the proposed model plotted against those provided by the 
simulator for 8×8 torus networks, and for different message lengths M = 32, 64 and 
100 flits. The horizontal axis in the figures shows the traffic generation rate at each 
node ( ) while the vertical axis shows the mean message latency.  

The figure reveals that in all cases, the analytical model predicts the mean message 
latency with a good degree of accuracy in the steady-state regions. Moreover, the 
model predictions are still good even when the network operates in the heavy traffic 
region, and when it starts to approach the saturation region.  
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4   Conclusions 

An analytical model to compute the mean message latency in wormhole-routed torus 
networks with Linder-Harden's fully adaptive routing algorithm has been proposed in 
this paper. Simulation experiments have revealed that the latency results predicted by 
the analytical model are in good agreement with those obtained through simulation. 
The proposed model achieves a good degree of accuracy under different operating 
conditions because it computes the exact expression for the probability of message 
blocking at a given router. Furthermore, it manages to achieve this good degree of 
accuracy while maintaining simplicity, making it a practical evaluation tool that can 
be used to gain insight into the performance behavior of Linder-Harden's fully 
adaptive routing in wormhole-routed torus interconnection networks. 
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Abstract. High availability in peer-to-peer DHTs requires data redundancy. This
paper takes user download behavior into account to evaluate redundancy schemes
in data storage and share systems. Furthermore, we propose a hybrid redundancy
scheme of replication and erasure coding. Experiment results show that repli-
cation scheme saves more bandwidth than erasure coding scheme, although it
requires more storage space, when average node availability is higher than 48%.
Our hybrid scheme saves more maintenance bandwidth with acceptable redun-
dancy factor.

Keywords: Peer-to-Peer, Distributed Hash Table, Replication, Erasure Coding.

1 Introduction

The last several years have seen the emergence of a class of structured peer-to-peer
systems that provide a distributed hash table (DHT) abstraction [13, 16, 18]. DHTs pro-
pose a determined object locating service, and already are used in many applications
[6, 7, 10, 17]. However, to provide high data availability in the DHT, when the peers that
are storing them are not 100% available, needs some form of data redundancy. Peer-to-
peer DHTs have proposed two different redundancy schemes: replication [6, 17] and
erasure coding [7, 10].

Some comparisons [2, 7, 19] argued that erasure coding is the clear winner, due to
huge storage and bandwidth savings for the same availability levels (or conversely, huge
availability gains for the same storage space). The other comparisons [3, 15] argued that
coding is an clear winner only when peer availability is low; the benefits of coding are
so limited in some cases that they can easily be outweighed by some disadvantages such
as extra complexity, download latency and lack of ability of keyword searching.

This paper argues that sharing user downloaded files for subsequent accesses (repli-
cation) and meanwhile utilizing erasure coding to maintain files’ availability will achieve
better performance: saving more bandwidth with acceptable redundancy factor. There
are two talking points. First, in current peer-to-peer file sharing communities, popu-
lar files are automatically kept at high availability level, due to thousands of times of
user downloads. Second, current hardware deployment suggests that idle bandwidth is
the limiting resource that volunteers contribute, not idle disk space. Further, since disk
space grows much faster than access point bandwidth, bandwidth is likely to become
even scarcer relative to disk space.

This paper makes the following contributions: First, to our best knowledge, this pa-
per is the first to take user download behavior into account — sharing user downloaded
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files for subsequent accesses — to evaluate redundancy schemes in data storage and
share systems. Second, this paper demonstrates that replication saves more bandwidth
than erasure coding, although it requires more storage space, when average peer avail-
ability is higher than 48%. Finally, this paper shows that the hybrid redundancy scheme
of replication and erasure coding can achieve better overall performance: saving more
bandwidth with redundancy factor less than 9.4 for three nines (99.9%) of per-file avail-
ability.

The rest of the paper is organized as follows. Section 2 formulates and describes
three schemes for high availability: replication, erasure coding and the combination of
them. Section 3 evaluates these three schemes by two sets of experiments. Finally, we
conclude the paper and point out future work in Section 4.

2 Redundancy Schemes

This section presents three redundancy schemes for high availability: replication, era-
sure coding and a hybrid scheme which shares user downloaded files for subsequent
accesses (replication) and utilizes erasure coding to adjust files’ availability. All of them
work upon consistent hashing [9], as used by storage systems such as CFS [6].

First, several key terminologies should be introduced. For simplicity, each file is
identified by a unique identifier d, which is consistent hash of the file name. The
peer that keeps location indexes for file copies or fragments is named indexer. Be-
sides, a dualistic hash function should be declared: h(d, n), where n ≥ 1 is the se-
quence number of each indexer. h(•, •) is the allocation function, typically based on
the hash function shared by all peers. The allocation function might be defined as fol-
lows: h(d, n) = H(d || n), where H(•) is the hash function which is used in the DHTs
and || is a concatenation.

All schemes consist of three parts with some difference due to their particularity:
register, request and maintenance.

– Register: Each peer periodically registers the unique IDs of the files it holds and/or
fragments in its cache in M distributed and independent indexers. The logical lo-
cation of M indexes is determined by the hash function defined above: h(d, n), n ∈
[1, M ]. If the peer pointed by h(d, n) is not alive, its successor takes over its role. The
indexer associates each item in the index with a timer. A copy of file or a fragment
will be recognized as unavailable and removed from the index if its timer runs out.

– Request: When requesting a file d, a peer randomly refers to one or more indexers
responsible for d. If the checked indexers do not provide enough whole file or frag-
ment location information, the peer will turn to other indexers. If all M distributed
indexers fail to provide enough location information, the peer will wait a period of
time and do the procedure as stated above again, until maximum lookup time ex-
pires. This balances the load of directory service and reduces the chance of getting
incomplete location index. Then the peer downloads the file or enough fragments
to reconstruct the original file from peers registered in location index.

– Maintenance: Periodically, each indexer estimates the availability of files and/or
fragments registered on it, and attempts to increase the availability of ones that is
not yet at target availability.
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2.1 Replication Scheme

Replication is the simplest redundancy scheme. Here r identical copies of each file are
kept at each instant by peers. The value of r must be set appropriately depending on
the desired object availability a (i.e., a has some “number of nines”), and on the aver-
age peer availability p. Throughout the analysis, it is assumed that the peer availability
is independent and identically distributed. The needed number of copies can be deter-
mined by:

a = 1 − (1 − p)r (1)

which upon solving for r yields

r =
log(1 − a)
log(1 − p)

(2)

Each peer periodically registers shared and cached files in M distributed and inde-
pendent indexes. When requesting a file d, a peer lookups a random index responsible
for d. If the referred indexer fails, the peer will turn to another indexer. If all M index-
ers fail, the peer will wait a period of time and do the lookup procedure again, until
maximum lookup time is reached. Then the peer accesses the file from a random peer
registered in location index. The already downloaded file is automatically treated as a
shared file for subsequent accesses. Finally, each indexer periodically adjust the avail-
ability of its indexed files by scheduling necessary number of file transfers from the
whole file holder to randomly chosen peers to reach the desired availability of file d.

2.2 Erasure Coding Scheme

Erasure codes (e.g., Reed-Solomon [14] or Tornado [5]) divide an object into m frag-
ments and recode them into n fragments, where n > m. This means that the effective
redundancy factor is r = n/m. The common property of erasure codes is that the orig-
inal object can be reconstructed from any m fragments (where the combined size of m
fragments is approximately equal to the original object size).

We assume that we place one encoded fragment per file per peer and there is no
duplicate fragments. File availability can be calculated by the probability of at least m
out of n fragments are available:

a =
n∑

i=m

(
n

i

)
pi(1 − p)n−i (3)

where p is the average peer availability.
The number of files per host follows a Poisson distribution. Because it is difficult

to directly evaluate the Poisson distribution, we use the normal approximation to the
Poisson distribution. With the normal approximation, if we perform random placement
of files on hosts then the number of files per host follows a normal distribution. Using
algebraic simplifications and the normal approximation to the binomial distribution (see
[1]), we get the following formula for the erasure coding redundancy factor:

r =
n

m
=

⎛
⎝σa

√
p(1−p)

m +
√

σa
2p(1−p)

m + 4p

2p

⎞
⎠

2

(4)
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where σa is the value of standard deviations in a normal distribution for the required
level of availability. Table 1 shows the standard deviations in a normal distribution for
different values of availability a. These results are standard for any normal distribution.
For instance, σa = 3.1 corresponds to three nines of availability.

Table 1. Standard deviations that follows a normal distribution for the given level of availability

a σa

0.800 0.84
0.900 1.28
0.990 2.48
0.995 2.81
0.998 2.88
0.999 3.10

When erasure coding is used, an indexer that generates new fragments to adjust
availability must have access to the whole file. It is unscalable to download enough
fragments to reconstruct the file and then generate new fragments, since it is likely
that m fragments need to be downloaded to regenerate merely a new fragment. Thus
the amount of file that needs to be transferred is m times as much as the amount of
redundancy lost. An alternative is to associate the peer whose identifier is closest to the
consistent hash of the file name as the home peer for that file. The home peer stores
a permanent copy of the file and manages its fragment generation. If the home peer
fails, the next closest peer in the identifier space automatically becomes the new home
peer. This is reasonable because the peer that takes responsibility of a file restores a
complete copy, generates and pushes new fragments to targets in need. This corresponds
to increasing the redundancy factor by 1.

However, erasure coding scheme does not share the whole user downloaded files.
All shared objects in the system are erasure coded fragments stored in caches. Each peer
periodically registers all fragments it keeps in M distributed and independent indexes.
When requesting a file d, a peer lookups a random indexer responsible for d’s fragments.
If the referred indexer can not provide enough fragment location information, the peer
will turn to another indexer. If all M indexers fail, the peer will wait a period of time
and do the lookup procedure again, until maximum lookup time is reached. Then it
downloads enough number of fragments and resembles the original file, and tries to
regenerate and leave a fragment in cache. Finally, each indexer periodically adjusts the
availability of its indexed fragments. For a file whose availability is below target level,
the indexer consigns the home peer of the file to generate and push necessary number
of fragments to randomly selected peers.

2.3 Hybrid Scheme

The replication scheme shares user downloaded files for subsequent accesses to save
maintenance bandwidth. It saves more maintenance bandwidth than the erasure coding
scheme when average peer availability is high, but requires much larger redundancy
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factor. The erasure coding scheme requires much less storage space than the replication
to reach the availability level with the same average peer availability, and saves more
maintenance bandwidth in highly dynamic environment, but still unscalable when av-
erage peer availability is low. This paper proposes a hybrid scheme which combines
replication and erasure coding to achieve to better overall bandwidth saving with ac-
ceptable redundancy factor.

The hybrid scheme shares user downloaded files for subsequent accesses (replica-
tion) and utilizes erasure coding to maintain files’ availability. It automatically treats a
downloaded file as shared file for subsequent accesses as the replication scheme. When
adjusting file availability, it consigns a whole file holder to generate and push necessary
number of fragments to other peers, instead of transferring whole copy of file. On one
hand, the hybrid scheme utilizes file copies already downloaded on network for subse-
quent downloads to reduce maintenance bandwidth overhead as the replication scheme.
On the other hand, the hybrid scheme uses erasure coding to achieve less bandwidth
overhead than replication for the same increment of availability level.

We now exhibit the analogue of Equation (1) and (3) for the case of hybrid scheme.
We assume that we do not place files and fragments with the same ID on the same
peer, and there is no duplicate fragments. File availability a, can be calculated by the
probability of at least a whole copy or at least m out of n fragments are available. So
a is estimated as 1 minus the probability that all whole copies of a file are simultane-
ously unavailable and there are not enough (at least m out of n) fragments available to
reconstruct the original file:

a = 1 − (1 − p)h

(
1 −

n∑
i=m

(
n

i

)
pi(1 − p)n−i

)
(5)

where h is number of file copies.
The hybrid scheme’s redundancy factor can be calculated by adding redundancy

factor of replication and erasure coding:

r = h +
n

m
= h +

⎛
⎝σa(h)

√
p(1−p)

m +
√

σa
2(h)p(1−p)

m + 4p

2p

⎞
⎠

2

(6)

where σa(h) is a function of h, and its value corresponds to the availability level (see
Table 1) a′ that erasure coding has to obtain. a′ is derived from Equation (5) as follows:

a′ =
n∑

i=m

(
n

i

)
pi(1 − p)n−i = 1 − 1 − a

(1 − p)h
(7)

Figure 1 captures the theoretical redundancy factor for the replication, erasure cod-
ing and hybrid schemes determined by Equation (2), (4) and (6) to achieve three nines
of per-file availability. The redundancy factor of the hybrid scheme is determined by
two factors: average peer availability p and number of file copies h. With any fixed h,
there is a corresponding line. Intuitively, erasure coding requires less storage space to
reach the availability level than the other two with the same average peer availability.
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Fig. 1. Required redundancy factor for three
nines of per-file availability, as a function of
average peer availability, for the replication,
coding and hybrid schemes as determined by
Equation (2), (4) and (6)
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Fig. 2. Required redundancy factor for three
nines of per-file availability, as a function of
average peer availability, for the replication,
coding and hybrid schemes in simulation.

The hybrid scheme’s redundancy factor is slightly larger than erasure coding, and saves
more storage space than replication except when average peer availability is extremely
high.

Each peer periodically registers shared files and cached fragments in M distributed
and independent indexes. A peer locates a file with two kinds of indexes: whole file
location index and fragment location index. When requesting a file d, a peer randomly
refers to one or more indexers responsible for d. If the checked indexers do not provide
enough whole file or fragment location information, the peer will turn to other indexers.
If all M distributed indexers fail to provide enough location information, the peer will
wait a period of time and do the above procedure again, until the maximum lookup
time is reached. If the peer can not find a whole file living in system, it turns to gather
enough fragments to resemble the original file. The downloaded and resembled files are
regarded as shared.

Each indexer periodically adjusts the availability of its indexed files. For file d
whose availability is below target level, the indexer consigns a peer holding file d to
increase its availability by generating and pushing necessary number of fragments to
randomly selected peers. For those files without a complete copy, the adjustment will
be either delayed until a user download event happen, or performed as downloading
enough fragments to reconstruct original file and issue fragments by the indexer itself
when maximum waiting time is reached. Here, it is not necessary to use the mechanism
as erasure coding scheme to maintain a complete file in system, because almost all the
files have at least one copy in the system. Such, the hybrid scheme saves the bandwidth
on maintaining a copy of file on home peer.

3 Evaluation

We implemented the three schemes for high availability in a discrete-event packet level
simulator, p2psim [8]. The simulated network consists of 1024 peers. Each peer alter-
nately crashes and re-joins the network; the interval between successive events for each
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peer is exponentially distributed with a mean of given time. When a peer crashes, all
files, fragments and indexes on it are discarded. Each time a peer joins, it uses a dif-
ferent IP address and DHT identifier. There are 1000 same sized files in the system.
Distribution of requests follows Zipf-like distribution, in which relative probability of
requests for the i’th most popular file is proportional to 1/iα, where α is set as 0.74
(average of six traces shown in [11]). We did two sets of experiments: different peer
availability and different lookup rate. In different peer availability, average peer avail-
ability ranges from 30% to 90%. In different lookup rate, average number of lookups
during peer’s live time ranges from 2 to 20. Each simulation runs for a simulation time
of 6 hours; statistics are collected only during the second half of the simulation time.
We use m = 7, which is the number of fragments to reconstruct original object as used
in CFS [6]. The target file availability is set to 99.9% which is the availability that end
users might expect from today’s web services [12]. Finally, each data point in our plots
represents the average over 5 trials.

We evaluate three redundancy schemes using two primary metrics:

1. Redundancy factor is the total storage used to achieve target availability divided by
storage needed to store one copy of the whole file.

2. Bandwidth ratio is the total maintenance bandwidth incurred due to (1) maintaining
file availability, and (2) maintaining a copy of each file on home peer for erasure
coding scheme, divided by total bandwidth due to serving file requests. Bandwidth
on maintaining routing table and looking up is neglectable relative to maintenance
bandwidth (1) and (2). A bandwidth ratio of 0.1 implies that the bandwidth over-
head of maintaining availability is 10% as much as the system must consume for
normal operations.

Bandwidth ratio is regarded as more important factor in this paper, since idle band-
width is scarcer relative to idle disk space.

3.1 Redundancy Factor

In Figure 2, each line corresponds to a particular scheme for high availability. Figure 2
demonstrates that the erasure coding scheme’s line goes generally the same as predicted
in Figure 1, but the replication scheme’s does not, especially when peer availability goes
beyond 60%. While the erasure coding scheme makes the least use of user downloaded
files, leaving only a fragment in cache, the replication scheme shares the whole user
downloaded file. Meanwhile, the higher average peer availability is, the less copy loss
rate is. The replication scheme’s redundancy factor remains high with high average peer
availability, due to too many copies of popular files living in system.

Figure 2 also shows that although average peer availability varies from 30% to 90%,
the hybrid scheme’s redundancy factor changes not obviously, between 8.5 and 9.4.
When peer’s churn rate is intensive, the hybrid scheme takes the advantage of erasure
coding to save required storage space. When peer’s average availability is high, the
hybrid scheme’s redundancy factor does not continue falling, and even increase instead.
Its reason is the same as the replication scheme: too many copies of popular files living
in system. This extra redundancy is harmless. Useless copies can be discarded by user
or replacement function.
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3.2 Bandwidth Ratio

Figure 3 shows that the replication scheme saves more bandwidth than the erasure cod-
ing scheme when average peer availability is higher than 48%, and the erasure coding
scheme performs better than the replication scheme in the other case. The replication
scheme shares user download files to reduce the time and transfer load on maintenance.
The replication scheme is effective in communities with high average peer availabil-
ity, because most files are kept at desired availability level by user downloads. But in
highly dynamic communities, due to frequent peer joining and leaving, user downloads
do not compensate for the loss of copies. In this case, the erasure coding scheme shows
its advantage in achieving higher availability increment than replication does with the
same bandwidth consumption; or conversely, requiring less bandwidth for the same
increment of availability level.
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Fig. 3. Bandwidth ratio for three nines of per-file availability, as a function of average peer avail-
ability, for replication, coding and replication+coding

The highlight of Figure 3 is that the hybrid scheme of replication and coding
achieves the best overall performance on bandwidth ratio. The hybrid scheme makes
use of user download files as replication scheme, and maintains availability using era-
sure coding. When average peer availability is higher than 70%, the replication and the
hybrid scheme consume approximately the same bandwidth on maintenance, because
almost all of files’ availability is high enough. When average peer availability is lower
than 70%, the hybrid scheme’s advantage is obvious. The hybrid scheme shares user
downloaded files for subsequent accesses to save maintenance bandwidth. Another rea-
son why the hybrid scheme saves more maintenance bandwidth than the erasure coding
scheme is that the hybrid scheme do not need extra mechanism to maintain a copy of
the file on home peer.

Figure 4(a) shows the situation which we might expect to see in a corporate or uni-
versity environment with average peer availability is 80.7% [4]. It demonstrates that the
more intensive request rate is, the less bandwidth ratio requires. While bandwidth ratio
is a relative criterion, the absolute bandwidth overhead should also be paid attention to
as shown in Figure 4(b). Figure 4(b) shows that while the replication and the hybrid
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Fig. 4. Bandwidth ratio and number of file transferred on maintenance for three nines of per-file
availability when average peer availability is 80.7%, as a function of lookup rate, for replication,
coding and replication+coding. Where request rate is average number of requests issued during a
peer’s lifetime.

scheme’s number of transferred files on maintenance1 falls with increment of request
rate, erasure coding scheme’s absolute maintenance bandwidth overhead decreases not
obviously. This proves that sharing user downloaded files for subsequent accesses will
considerably reduce the bandwidth on maintenance.

Figure 4 also demonstrate that the hybrid scheme of replication and erasure coding
achieves better performance on bandwidth saving, especially when user request rate is
low. When request rate is larger than 10, the replication and hybrid scheme’s bandwidth
ratio are extremely adjacent and close to x-axis. File or fragment transfer is rarely per-
formed, because most of files’ availability is maintained at desired level by abundant
user downloaded files.

4 Conclusion and Future Work

This paper takes user download behavior into account to evaluate redundancy schemes
in data storage and share systems. Experiment results show that unlike previous com-
parisons argued: the replication scheme saves more bandwidth than the erasure cod-
ing scheme, although it requires more storage space, when average peer availability is
higher than 48%. When average peer availability is higher than 70%, the replication
scheme consumes approximately the same bandwidth on maintenance as the hybrid
scheme. Besides, the replication scheme introduces less complexity into system than
the other two. So the replication scheme is a good choice, in high peer availability en-
vironments, e.g. university environment.

1 Bandwidth overhead of the erasure coding scheme and the hybrid scheme is measured in terms
of fragments. For comparison, their transferred number of fragments should be converted to
number of files.
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The erasure coding scheme requires less storage space to reach the availability level
than replication with the same average peer availability, and consumes less maintenance
bandwidth in highly dynamic environment. But it suffers from heavier maintenance
bandwidth overhead than the replication, when average peer availability is higher than
48%, and introduces complexity into the system: not only encoding and decoding of
fragments, but also entire system design complexity.

The highlight of this paper is that sharing user downloaded files for subsequent
accesses (replication) and meanwhile utilizing erasure coding to maintain files’ avail-
ability will achieve better performance: saving more bandwidth with acceptable redun-
dancy factor (less than 9.4). The superiority of the hybrid scheme on saving mainte-
nance bandwidth is obviously shown when average peer availability is lower than 70%.
The experiment results also show that the hybrid scheme saves more bandwidth than the
other two, when user request rate is low relative to peer churn rate. The hybrid scheme
not only performs well in environments with high peer availability, but also demon-
strates its advantages in highly dynamic communities. The disadvantage of the hybrid
scheme is that it introduces complexity into the system.

The hybrid scheme achieve the best bandwidth saving, but in highly dynamic peer
communities where average peer availability is lower than 0.5, its bandwidth ratio is still
high, making the storage system suffer from poor scalability. Noting that bandwidth is
scarcer relative to idle disk space, the future work should focus on saving bandwidth.
Designing new coding algorithms and making further use of file copies already down-
loaded on network may be good for bandwidth saving. However, we leave these as
issues for future work. This paper did not consider the storage limitations of the peers,
we will consider it with some replacement strategies in the future.
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Abstract. Nowadays, the Internet architecture is complicated and IP
addresses are limited in IPV4 context. Many users located behind differ-
ent kinds of NATs or Firewalls can hardly get a public unique IP. So the
hosts behind the NAT can not be accessed by the hosts behind the other
NATs. Some P2P systems can partially solve such kind of problems, but
unfortunately, these systems just focus the specific self-contained appli-
cations such as Skype and BitTorrent whose P2P architectures and NAT
traversal mechanisms can not be re-used by other applications directly.
In this paper we present a solution by setting up a Virtual Intranet
Platform (VIP) which use the public DHT service -OpenDHT as the
distributed address/port information rendezvous. Without changing the
configuration of the NAT, all the network and distributed application
service behind the NAT can make use of the VIP to communicate with
the corresponding peer services outside the NAT. The performance of
the bandwidth, data lost and delay problems are much better than the
existing traditional C-S framework platforms, more general than specific
P2P applications. The P2P Communication Platform for NAT Traversal-
VIP, is robust and scalable because there are no single failure points in
the platform, the structure is in distributed, and majority of the traffic
data between two hosts behind the NAT can be transfer directly without
relaying.

1 Introduction

Nowadays,lotsof”middleboxes”areused,suchasnetworkaddresstranslators(NAT)[1],
driven primarily by the ongoing depletion of the IPv4 address space, to connect the
differentpartsofInternettogether.However,these”middleboxes”havecreatedunique
problems for peer-to-peer applications and protocols, such as teleconferencing and
multiplayeron-linegamingapplication[2].Theseproblemsaremostlytopersisteven
into the IPv6Network,whereNATisoftenusedasanIPv4compatibilitymechanism
[NAT-PT],andfirewallswillstillbecommonplaceevenafterNATisnolongerrequired.

� This paper is supported by National Natural Science Foundation of China(60403034)
and Shanghai Technology and Science Committee Municipality (03dz15026,
03dz15027).

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 1001–1011, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



1002 X. Wang and Q. Deng

Some excellent P2P systems such as Skype [3]have solved NAT Traversalproblem.
But most solutions are just focus on the specific applications and can’t be easily
re-usedbyotherapplication.Forexample,theNATTraversalsolutionofSkypecan’t
be used by other P2P applications. The ideal goal is to find out a general solution
of NAT Traversal, which can easily be co-used by many P2P applications . That is
the reason that we design and implement the Virtual Intranet Platform. Virtual
Intranet Platform (VIP) can help the data traffic of upper level applications access
through the NAT and successfully arrives at the destination hosts. Users behind
the NAT can use this VIP platform to set up any p2p application services such as
VOIP,Chat, Internetgameandallowtheoutsideuserscanfindouttheseservicesand
then connect to these NAT inside P2P communicate services. The host which has
installedtheVIPbuthadapublic IPaddress takes theroletorelaytrafficdataforthe
communication between the hosts behind the NAT if necessary. To make the whole
platform scalable and robust we integrate a public DHT service-OpenDHT [4] and
NAT Traversal solution similar with in ICE [5]. OpenDHT serves as a distributed
rendezvouscanstoreandpublishtheaddressandport informationofallVIPhoststo
helps users finding and connecting to their buddyusers. ICE is a general solution for
NAT Traversal, which both uses STUN [6] and TURN [7] methods synthetically to
find out the best way of NAT traversal.

2 Related Works

The existing NAT Traversal solutions have different kinds of disadvantages.

– STUN is Simple Traversal of User Datagram Protocol (UDP) Through Net-
work Address Translators (NATs). IETF, firstly, gave a standard NAT Traver-
sal protocol and defined the three kinds of NAT which are cone NAT, address-
restricted NAT and port-restricted NAT. STUN is in Client-server architec-
ture. The STUN clients, by using STUN protocol and connecting to STUN
server, map the private IP address into the public IP address and ports of the
NATs behind. Then the source IP address of the data package sent by the
STUN client will be changed into the NAT address and corresponding NAT
port to get through NAT. After the connection is established, the media data
is directly transmitted from NAT to NAT. It doesn’t need to use public server
node to relay the data. But STUN can’t solve all kinds of NAT Traversal prob-
lems. When the type of the NAT is symmetric, we can’t use STUN protocol
to access through NAT. That is fatal disadvantage of STUN.

– Traversal Using Relay NAT (TURN), which is similar to STUN, uses TURN
servers to relay all the traffic data to access through NAT. Although this
method can solve all kinds of NAT traversal problems, it has performance
problems. With the increasing of the users, more and more computers will
be behind the NAT and more and more traffic data has to be relayed by
the central TURN servers. The data delay and packet lost problems can’t
be radically solved by TURN.

– Application Layer Gateway (ALG) [8] and Middle box Communications
(MIDCOM) [9] and other solutions for NAT Traversal are all the classic
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NAT traversal solution. But these methods work by changing the NAT con-
figuration more or less to get through NAT. But generally speaking, ordinary
users behind the NAT have no right to change NAT configuration. So these
NAT Traversal solutions are not suitable for the general p2p communication
applications.

– Interactive Connecting Establishment (ICE) is a methodology for Network
Address Translator (NAT) Traversal for Multimedia Session Establishment
protocols. ICE synthesizes the STUN and TURN to get through all kinds
of NAT. ICE first tries STUN to get through NAT (because STUN method
doesn’t need middle nodes to relay media data). When a host is behind
symmetric NAT, another another host is behind the other NAT, traffic data
transmitted between two hosts has to be relayed by middle nodes which
only use TURN solution to get through. All the ”ICE connecting check pro-
cesses” [5] are set up from the NAT inside to avoid the anonymous connecting
request to be blocked and dropped by NAT.

OpenDHT is a publicly accessible distributed hash table (DHT) service. In con-
trast to the usual DHT model, clients of Open DHT do not need to run a DHT
node in order to use the service. Instead, they can issue put and get operations
to any DHT node, which processes the operations on their behalf. No creden-
tials or accounts are required to use the service, and the available storage is
fairly shared across all active clients. OpenDHT are used to store the user’s
ID and IP address lists of the user’s host which is shown in Table 1. Then the
other buddy users can get this information which includes user ID, IP address
list and type of NAT which it is behind from OpenDHT and finally judge the
way to connect to that user. The detail process and contents is illustrated in
section 4.

3 Components of VIP

To build a robust and scalable platform to make the different peer to peer com-
munications get through the different types of NAT, the least VIP should has
three components.

– NAT traversal: Because the P2P application services behind the NAT can
not be seen or accessed by outside Internet users. VIP should adopt some
ways and means to allow the outside hosts are able to get through NAT and
access to the inside service. VIP uses the similar way with in ICE.

– Service Register and Discovery: NAT assigns the port numbers for inside
applications services randomly , but these ports must be made known to the
outside users to get through NAT and send packet to the inside services. So
before the outside hosts set up the communication with the inside host it
must know the ports number and kind of application services it want to con-
nect. For example, NAT assigns port number 9999 for inside teleconference
application service for outside users connecting in. But outside users don’t
know port 9999 is opening for teleconference application and even don’t know
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his friend has already set up this service. So VIP makes use of OpenDHT to
store the user’s ID and IP address lists of the user’s host.

– Traffic Data Relay: Not all kinds of NAT support point to point media data
transmitting. In some situations, media data has to be relayed by other nodes
to get through NAT if the NAT is a symmetric NAT . The host which has
installed the VIP but had a public IP address takes the role to relay traffic
data for the communication between the hosts behind the NAT if necessary.
How to find an available public node as a proxy to relay these media data
and how to ensure the high quality and stable connection at the risk of the
proxy would be crashed.

4 Design and Realization of VIP

4.1 Overview of VIP Architecture

As the Figure 1 shown, OpenDHT serves as a distributed rendezvous which can
store and publish the address and port information of all VIP hosts. The hosts
behind the NATs we call them VIP hosts. The hosts which have installed the
VIP but had public IP addresses we call them VIP hosts/proxies, and they take
the role to relay traffic data for the communication between the hosts behind the
NAT if necessary. When any user is online and sets up any p2p communication
service, the VIP daemon running in the host will judge the type of the NAT
it behind and get the relative NAT address and port. Then VIP will put this
information onto the openDHT nodes which is closest to it. When the other
buddy users get online and want to connect with this user, the VIP daemon
running on their hosts will get this information from OpenDHT. Depending on
the type of the NAT it behind, VIP will choose the suitable way to get connected.
The media data may be directly transferred from NAT to NAT or may have to be
relayed by the proxy nodes on the Internet. The detail NAT Traversal algorithm
will introduced in section 4.2. P2P communication service register and discovery
process will be showed in section 4.3. Data Relay Traffic cases will be specified
in section 4.4.

VIP has three components which are NAT Traversal (NATT), Service Reg-
ister and Discovery (SRD) and Data Traffic Relay (DTR). NATT helps services
behind the NAT punch hole on the NAT to let the data get through NAT eas-
ily. This function is not visible for upper layer application. SRD will register
the NAT address, corresponding port and upper layer application type of the
NAT-inside services onto the OpenDHT node. Other buddy users who want to
connect to that user, are able to get this information down from OpenDHT. Ex-
cept functions of NATT and SRD, VIP has another important function which is
called Data Traffic Relay (DTR). When we deploy VIP platform onto the nodes
which have public IP address, the modular DTR of VIP have responsibility to
relay media data for other behind NAT users connecting. These relaying nodes
are called proxy.
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Fig. 1. VIP Platform Network

4.2 NAT Traversal

We use the algorithm similar with in ICE to get through NAT and punch hole
on NAT for application services behind the NAT. So other users on the Internet
could use the punched hole and NAT IP address to connecting to the P2P appli-
cation. VIP will register two ports on NAT for the upper layer P2P application
and stores IP and port mapping between local and NAT. VIP behind NAT can
not know which port is assigned for this application, because NAT assigns port
randomly. So VIP has to find the way to get the assigned port information. The
Internet VIP nodes with public IP address which is called proxy will help be-
hind VIP get this assigned port information. Proxy plays an important role in
VIP network which helps behind NAT VIP judge the NAT type. If necessary,
proxy also relays media data for other behind users connecting. The detail NAT
Traversal procedure is showed in Figure 2.

In Figure 2 step 1, a local user sets up application service in local com-
puter with private IP 192.168.42.210 which stays behind a NAT whose pub-
lic IP address is 202.120.7.98. In step2, the VIP finds that there is a appli-
cation with local IP address and port 3333 running up. In Step 3, VIP use
port 3333 to send packets to outside VIP proxy, when the packet with source
address-192.168.42.210:3333 through NAT, the packet source address will be
changed to 202.120.7.98:45678 (supposing NAT assigns port 45678 for this con-
necting session.) in step 4. When the packets arrive at proxy whose IP address is
202.108.9.12 and port 8899 in step 4. The proxy will send back an ACK packet
to VIP with NAT assigned port information-45678 in step 5. During step 6 to
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Fig. 2. Register and Collect IP Address List Process

Fig. 3. Connection Establishment and Media Transmitting Process of Two Hosts(A
and B) behind NAT VIP users A and B

7, VIP will get NAT assigned port information for proxy-DTR (Modular DTR
is to relay media data for other behind users connecting. Supposing the port is
56789). At last VIP stores these two couples IP & Port mapping information
into the local cache table for latter other users connecting. After the above pro-
cess, the application has two registered ports on NAT 45678 and 56789 (If this
NAT kind is cone-NAT, these two assigned ports have the same value. when this
NAT is kind of Symmetric NAT, these two assigned ports will have the different
value.). Till now, the inside p2p application has a unique IP and port on NAT
202.120.7.98:45678, all the media data from outside internet arriving at NAT
202.120.7.98:45678 will get through NAT and arrive at the 192.168.42.210:3333.
Because of different kinds of NAT and Firewalls restriction, all the anonymous
connecting requests will be blocked and drop at the NAT. So all the begin-
ning connecting session should be set up from inside VIP firstly. Figure 3 is the
connecting process between two VIP users. When the buddy host B in NAT
202.205.80.130 with local IP 10.54 1.1 wants to connect to this application ser-
vice AAA, B firstly sends connecting request to A’s NAT- 202.120.7.98:45678,
this request will be dropped by NAT. So host B has to use A’s proxy to relay this
connecting request to application service AAA during step 1 to step 4. When
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VIP receives the connecting request from host B, VIP will send Invite message
to host B. A and B will transfer media data flow point to point. But in case of
symmetric NAT, VIP can’t build the directly connecting for A and B, All the
media data from or out of A will be relayed by A’s proxy.

4.3 Service Register and Discovery

Another problem appears when the NAT Traversal problem is solved. How to
find whether my friends are online? What kinds of application are set up by my
friends behind NAT and how to find the NAT address and port information of
the application service? All the above problems could be resolved by VIP-SRD.
In P2P environment, there is no center control application services to record
which user is on line and which kind of application service is running. We use
VIP to put such kind of information onto the OpenDHT nodes. Other buddy
users could get the information from OpenDHT nodes and get the on line buddy
lists, application types and location information. The information includes:

– User Unique ID: User should use a unique ID to let other buddies find him
correctly. We use user email address as a unique ID.

– P2P application ID: There are many Internet applications. We should name
every application a unique ID to distinguish.

– NAT Type: when the value is 0, that means the resided host has a public
IP address and port. Value is 1 means the host is behind a Cone-NAT and
value 2 means the host is behind a Symmetric-NAT. If the host is behind
Symmetric-NAT, a proxy is to be used to relay the media data flow which
will be introduced in section 4.4.

– NAT Address list: It stores the registered NAT IP address and port of the
p2p application behind NAT.

For example:
User: Jacky whose email address is shak@sjtu.edu.cn, sets up a Counter-Strike
Internet Game service and FTP service with local IP address on Computer A
in Figure above. The Counter-Strike Internet Game has a unique ID AAA. The
FTP service has a unique ID BBB. The network topology is shown in Figure 3
above. When the services are set up correctly, VIP will starts processes shown
in Figure 2 processes and generate the following information as Table 1 shows.
The following information will be put onto OpenDHT nodes. When Jacky’s
friend Frank wants to know whether Jacky is online and what kinds of services
has already been set up by Jacky. He can search the Jacky information from
OpenDHT bye Jacky’s unique ID-shak@sjtu.edu.cn. When Frank wants to join
in Jacky’s Counter-Strike Game, he could send connecting request to Jacky. The
connecting establishment process is showed in Figure 3.

4.4 Traffic Data Relay

Not all the media data can be transmitted directly. In some cases, when a host
is behind a symmetric NAT, another host is behind a NAT, the media data has
to be relayed.
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Table 1. Information putted onto the Open DHT nodes

User Unique ID Application
Type ID

NAT
Type

NAT Address list On Line time

shak@sjtu.edu.cnAAA 1 NAT IP/port 202.120.7.98:4567813:56/2005/5/24
Proxy IP/port202.108.9.12

BBB 1 NAT IP/port 202.120.7.98:8888 13:59/2005/5/24
Proxy IP/port202.108.9.12

Different kinds of topology affect the media data packets routing paths. To-
tally there are four kinds of topology graphs in VIP network.

Fig. 4. Four Kinds of Topology and Media Flow Path

– The residing host of the application service has a public IP address. Other
hosts can directly connect to the application service without using VIP. It
shows in Figure 4 part A.

– The residing host of the application service is behind a Cone-NAT. Appli-
cation service is able to use VIP platform to let outside hosts connecting to
it directly. No matter hosts have a public IP or is behind a Cone-NAT. The
media data packet flow will directly send to the host from the application
service. It is shown in Figure 4 part B.

– The residing host of the application service is behind a Symmetric NAT. All
the media data will be relayed by a VIP proxy. It shows in Figure 4 part C.

– The residing host of the application service is behind a NAT and the residing
host of his buddy is behind a Symmetric-NAT. In this kind of situation, data
flow of the buddy host will be relayed by VIP proxy. It is shown in Figure 4
part D.

In general situation, media data transfers from host to host directly, such as
part A and B. But when two hosts are both behind NAT and one of them is
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behind symmetric NAT, Media data flow will be relayed by a VIP proxy. Any
VIP host who has public IP address will be responsible for relaying media data
flow. So no matter the point to point connecting or data relayed connecting, the
performance of communication will be ensured.

4.5 VIP Working Process

VIP is composed by NAT Traversal, Service Register and Discovery, Data Relay.
The Figure 5 shows the whole processes. After step 1 and 2, application service
and hosts check the NAT type, collecting and registering IP addresses. In step
3 and 4. All the buddy hosts using Open DHT API- put()and get() [10] to put
set up the application service and their IP address information onto the Open
DHT nodes. When other hosts find his buddy’s application service was set up, it
will set up ICE checking connecting process and find the path to transmit media
data flow. If there is no Symmetric-NAT exists, the media data packets are been
transmitted point to point in step 9, if one side is behind Symmetric-NAT, the
media data packets will be relayed by random VIP nodes around the Internet in
step 6 and 7.

Fig. 5. VIP Working Process

5 Limitation and Optimistic Consideration of VIP

Within the VIP network, there is no specific servers arranged and if necessary, the
media data is relayed by the nodes with public IP address for other behind NAT
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users. So the less nodes have public IP address, behind NAT users connecting
has the worse performance.

To ensure the stability and scalability of VIP network, we make some opti-
mistic consideration.

1. The hosts who are behind NAT keep a heart beat process with their proxies.
When a proxy is offline without any notification, the heart beat process will
notify the host to get another available proxy from OpenDHT. When a host
is offline without any notification, the proxy can’t get any heart beat from
the host for a while, it will update itself to OpenDHT. Then when other new
online hosts want to need a proxy, this proxy can be used again.

2. No matter with/without used, every proxy information will be stored into
OpenDHT. Much more overdue useless proxy information is also stored in
OpenDHT. So a new online host who needs proxy has to need more and
more time to find an available proxy. To solve this problem, we set a time
stamp to proxy information. When the information is time up, it will be
deleted from OpenDHT and the updated information is put into OpenDHT.

3. Because hosts may change their proxies during online time . The host con-
necting information is always overdue. We also set a time stamp on the host
information. Hosts will update their information onto the OpenDHT time to
time. So other buddy users can get the latest application service information
from OpenDHT.

4. With the hosts increasing, the frequent intercommunication will happens
between OpenDHT nodes and VIP network hosts. The OpenDHT latency
will become the bottleneck of the performance. We use the characteristic of
OpenDHT network to solve this problem. Because in OpenDHT network, any
information stored in a node of the OpenDHT network can be get out from
any other nodes in OpenDHT, besides, the OpenDHT nodes are deployed
into different locations. So VIP will choose the least delay time OpenDHT
node to put/get information. It can reduce the time lost of modular SRD
and enhance the whole VIP network performance.

5.1 Compared with Skype

Skype is P2P VOIP software. The media data from Skype users behind NAT will
is relayed by other Skype user (super node) who has public unique IP address. No
matter the type of NAT, all the media data has to be relayed by its super node.
But in VIP, only just media data from users behind Symmetric-NAT will have to
be relayed by other VIP users which have public unique IP address. Furthermore,
Symmetric-NAT is not be widely used by Internet users. So the used bandwidth
is less than Skype, at least equal to Skype. Another important advantage is
that, VIP is a P2P middleware. All the other application can use this platform
to communicate with each other rightly without changing or redeveloping. For
example, users behind NAT use VIP to set up a FTP service which can be
accessed by out side Internet users without changing the NAT configuration. But
Skype and its Skype network only is able to be used to its VOIP applications
which can not be used by FTP functions.
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6 Conclusion

Using VIP platform, behind NAT users can set up P2P communication software
easily. All the users can connect to each other and enjoy the communication
application such as teleconferencing and multiplayer on-line gaming application
without caring the limitation of NAT. VIP helps p2p communication software to
get through NAT and register the p2p service function types and corresponding
connecting information onto the OpenDHT network. Other peer p2p software
users can get this connecting information from OpenDHT. With the modular
NATT of VIP’s help, multiusers can set up P2P connecting easily. In some cases,
hosts with public IP address who is called proxy take the role of data relay for
other behind NAT users connecting. The more hosts with public IP address exists
on the Internet, the more proxies will be available for other behind NAT user
connecting. VIP reduces the data relay bandwidth using. Besides some above
optimistic consideration, VIP has better stability and scalability. VIP is much
better than C-S framework platform on bandwidth, data delay/lost problems
and more general and better performance than Skype. The source code of VIP
refers to http://grid.sjtu.edu.cn/resource2.jsp.
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Abstract. The long-tailed distribution characterizes many properties
of Internet traffic. The property is often modeled by Lognormal distri-
bution, Weibull or Pareto distribution theoretically. However, it hinders
us in traffic analysis and evaluation studies directly from these mod-
els due to their complex representations and theoretical properties. This
paper proposes a Hyper-Erlang Model (Mixed Erlang distribution) for
such long-tailed network traffic approximation. It fits network traffic with
long-tailed characteristic into a mixed Erlang distribution directly to fa-
cilitate our further analysis. Compared with the well-known hyperexpo-
nential based method, the mixed Erlang model is more accurate in fitting
the tail behavior and also computationally efficient.

1 Introduction

The self-similarity and long-range dependence nature of network traffic have been
significant discoveries in the Internet during the past decade [1–6]. Such traffic
pattern challenges the theoretical analysis and leads to difficulties in network
equipment designing and system planning[7]. Traditionally, these characteristics
are modeled by long-tailed (or heavy-tailed/fat-tailed) distributions[7, 8, 9, 10].
These stochastic models are mainly devoted to the expression of the tail behav-
ior and still difficult for analytical or numerical studies due to their complex
representations and theoretical properties. For example, the Pareto distribution
(an instance of power-tailed distributions) does not have analytic Laplace trans-
form, and Weibull and Lognormal do not have closed-form Laplace transforms.
This makes Laplace transform based queueing analysis difficult[11].

An alternative way to overcome above disadvantages is to model the long-
tailed network traffic by Markovian Arrival Process (MAP) or the Batch Marko-
vian Arrival Process (BMAP). Hyperexponential distribution, a special case of
Phase-type (PH) distributions, is widely used for such purpose. The merits of Ex-
ponential distributions and the existence of MAP/BMAP analytical framework
result in the elaborate studies for fitting long-tailed traffic pattern by hyperex-
ponential distributions [12–15]. The essence of such fitting methodology is to
� This project was granted financial support from China Postdoctoral Science Foun-
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approximate one distribution or (empirical) probability density function (pdf)
by another. Though hyperexponential-based modeling makes performance mod-
elling easier and tractable, Feldmann pointed out that the original pdf with com-
plete monotonicity should be a prior condition for accurate approximation[12].

In the paper, we propose the Hyper-Erlang (HE) distribution based algorithm
for long-tailed data set approximation. As a special case of PH distributions, HE
distribution not only captures the tail behavior well for the complete monotone
pdfs, but also achieves accurate fitting for non-monotone pdfs.

The rest of the paper is organized as follows. Section 2 reviews previous
works related to the long-tailed network traffic approximation. Then the long-
tailed distributions and the Hyper-Erlang model are introduced in Section 3 as
a preliminary for further analysis. In Section 4, an Expectation Maximization
(EM) based algorithm is derived for fitting data set directly by Hyper-Erlang
distribution. Section 5 compares the fitting performance with the hyperexponen-
tial model from several dimensions for several popular long-tailed distributions
and real network traffic as well. We conclude the paper in the last section.

2 Related Works

Replacing one distribution accurately by another, especially the phase-type dis-
tribution denoted by PH has been studied in many works. For the long-tailed
network traffic approximation, the hyperexponential distribution based fitting is
widely used. Feldmann summarized its advantages as that performance models
tend to be easier to analyze when component distributions in the model are
hyperexponential[12].

As to the fitting methodologies, [12] also developed a heuristic and recur-
sive fitting algorithm that fits complete monotone pdf into hyperexponential
distributions, which is referred to as Feldmann-Whitt (FW) algorithm. The FW
algorithm first fits the rightmost part of the tail by a single exponential distribu-
tion, and then calculates the residual distribution for the next round of fitting.
This procedure continues recursively until the parameters of all phases are de-
termined. In practice, the FW algorithm will encounter several drawbacks when
applied to real network traffic approximation.

– The FW algorithm is initially designed to fit the continuous distribution
functions like Pareto and Weibull rather than data set. Therefore, it will
need an additional step to describe the data set by such distributions, which
may unavoidably introduce extra errors to the fitting procedure. For data
sets, which can not modeled well by monotone pdfs, the errors introduced
by such preprocess will be even larger.

– Another drawback of FW algorithm is that the performance is sensitive to
the initial value of the algorithm parameters. How to choose the initial values
is still an open problem.

The above disadvantages motivated the works of fitting data sets directly into
hyperexponential distributions. Khayari proposed an Expectation Maximization
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(EM) based algorithm denoted by KSH algorithm for such purpose[13]. The EM
algorithm is a general solution of finding the maximum likelihood estimation of
the parameters of an underlying distribution from a given data set[16]. As the
nature of EM algorithm is to search the global optimal solution from parameter
space, such algorithm may fail to capture the tail part accurately.

Riska applied the popular EM algorithm in a divide-and-conquer fashion,
and proposed the D&C-EM algorithm. The algorithm splits the continuous data
histogram (CDH) built from the data set into partitions and then employs the
EM algorithm for each part. In this manner, the algorithm benefits from the
strengths of the EM algorithm and reduces the effects of its known weaknesses
at the same time[14]. As mentioned previously, the D&C-EM algorithm is also
faced the monotone requirement for a precise fitting.

Therefore, an algorithm which can deal with non-monotone pdfs and main-
tains the fitting accuracy and efficiency is strongly needed. In the paper, we
develop a Hyper-Erlang fitting algorithm (HE) for long-tailed network traffic to
meet with the non-monotone pdfs requirement. To facilitate our discussion, we
first introduce several popular long-tailed distributions used in network traffic
modeling and present the Hyper-Erlang model in the next section.

3 Long-Tailed Distributions and the Hyper-Erlang Model

3.1 Long-Tailed Distributions

Let F be a cumulative distribution function (CDF) and its complementary CDF
be F c(t) = 1−F (t) denoted by CCDF. Network traffic with long-tail character-
istic is generally defined as that the F c decays more slowly than the nonnegative
exponential distribution, i.e.,

lim
t→∞ exp (γt)F c(t) → ∞, γ > 0 (1)

Three well-known long-tailed distributions are Pareto, Weibull and the Log-
normal distributions. For the convenience of following illustration, we list their
pdfs, CDFs explicitly here as:

– Pareto distribution (denoted by Pareto(α, β))

f(x) =
αβα

xα+1 and F (x) = 1 − (
β

x
)α,

where α > 0, β > 0 and x ≥ β.
– Weibull distribution (denoted by Weibull(α, β))

f(x) = αβ−αxα−1 exp {−(
x

β
)α} and F (x) = 1 − e−( x

β )α

,

where α > 0, β > 0 and x > 0, Γ (·) is the gamma function.
– Lognormal distribution (denoted by LN(μ, σ2))

f(x) =
1√

2πσx
exp {−1

2
[
ln(x) − μ

σ
]2} and F (x) =

1
2
{1 + erf[

ln(x) − μ√
2σ

]},

where μ > 0, σ > 0 and x > 0, erf(·) is the error function.
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3.2 Hyper-Erlang Model

A random variable X is said to be the Hyper-Erlang distribution if X is with
probability αi an Erlang random variable Xi with scale parameter λi. In this
case, an I-phase, C-order Hyper-Erlang distribution can be seen as a probabilistic
choice between I C-order Erlang distributions. For such random variable, we
denote it by notation HEI,C(α1, · · · , αI ; λ1, · · · , λI) , or simply HE(I, C). The
pdf is given by Equation (2):

f(x) =
I∑

i=1

αiλ
C
i

Γ (C)
xC−1e−λix, x ≥ 0, λi > 0, αi ≥ 0 and

I∑
i=1

αi = 1. (2)

From Equation (2), the CDF and the nth moment of HE(I, C) can be derived
as:

F (x) = 1 −
I∑

i=1

αie
−λix

C−1∑
j=0

(λix)j

Γ (j + 1)
and E(Xn) =

I∑
i=1

αiλ
−n
i

Γ (C + n)
Γ (C)

.

Define H be set:

H =
{

f(x) | f(x) =
I∑

i=1

αiλ
C
i

Γ (C)
xC−1e−λix, C ≥ I > 0, λi ≥ 0,

I∑
i=1

αi = 1
}

. (3)

Clearly, set H is basically the set of all Hyper-Erlang distribution models with
fixed orders, it contains the exponential distribution, Erlang distribution and
the hyperexponential distribution.

Theorem 1. Let F denote the set of all pdfs of continuous nonnegative random
variables, then any element can be approximated by Hyper-Erlang distributions
in H.

Proof. Let G(x) be the CDF of a continuous nonnegative random variable X .
Then it is possible to choose a sequence of CDF Gm(x), each of which corre-
sponds to a Hyper-Erlang distributions, so that limm→∞ Gm(x) = G(x), x ≥ 0.
Then, by constructing Gm(x) as

Gm(x) = lim
C→∞

C∑
k=1

k

C

[
G(

k

m
) − G(

k − 1
m

)
]
GC

m(x) (4)

where GC
m(x) is the CDF of a C-order Erlang random variable Xm with mean

C
m and variance C

m2 , we get E(X) = E(Xi). Thus, Gm(x) shown in Equation (4)
is also an approximation of G(x) [17](see pp.77–80).

Let gm(x) denote the pdf of Gm(x) and gC
m(x) be the pdf of GC

m(x), then we
have

gm(x) = lim
C→∞

C∑
k=1

k

C

[
G(

k

m
) − G(

k − 1
m

)
]
gC

m(x) (5)

It indicates that the gm(x) is a Hyper-Erlang distribution. ��
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Fig. 1. Fitting a bimodal pdf by the HE model and the hyperexponential distribution

From Equation (5), we can use a finite number of phases to approximate an
objective CDF under a controllable accuracy. In this case, it results in the CDF
fitting by the I-phase and C-order Hyper-Erlang distribution (I ≤ C).

To show the power of fitting non-monotone pdfs, Fig. 1 illustrates the fitted
pdfs by HE model and hyperexponential distribution (denoted by D&C-EM,
for the result is calculated by D&C-EM algorithm) to a bimodal distribution.
The objective pdf is generated by a Hyper-Lognormal distribution, i.e., fX(t) =
0.5fX1(t) + 0.5fX2(t) where X1 ∼ LN(3.0, 1.22) and X2 ∼ LN(6.0, 0.62). From
the figure, the HE model may fit the f(t) well only with two phases of 2-order
Erlang distribution (there are five parameters including the order C in sum),
while the hyperexponential pdf can not capture the non-monotone pdf soundly.

4 Expectation Maximization (EM) Fitting Algorithm

4.1 Basic EM Algorithm for Hyper-Erlang Model

The EM algorithm implements maximum likelihood estimation to fit data set
into a given distribution by operating in an iterative manner. The mixture-
density parameter estimation is probably one of the most widely used applica-
tions of the EM algorithm[16, 18].

Consider the scenario in which we have a pdf f(x|Θ) governed by the set of
parameters Θ = (P , Λ) where P = (α1, α2, · · · , αI) and Λ = (λ1, λ2, · · · , λI). A
data set of size N is drawn from this distribution, i.e., X = (x1, x2, · · · , xN ). We
assume that the samples are independent and identically distributed (i.i.d) with
the pdf f . Then the likelihood function for the data set is

f(X|Θ) =
N∏

n=1

I∑
i=1

αi f(xn|λi) = L(Θ|X ),

where f(x|λi) is a C-order Erlang pdf with parameter λi. Thus the goal is to
find the Θ that maximizes function L, i.e., we want to search Θ̂ = (P̂ , Λ̂) where
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Θ̂ = argmaxΘ log L(Θ|X ) (6)

By introducing a hidden variable y, y ∈ {1, 2, · · · , I} and its pdf δ(y), Equa-
tion (6) is transformed into Equation (7) to find Θ̂ that maximizes function
Q(Θ, Θ̂).

Q(Θ, Θ̂) =
N∑

n=1

I∑
i=1

δ(i|xn, λi) log (αif(xn|Θ)δ(i|xn, Θ)) (7)

where δ(y|xn, λy) = αyf(xn|λy)
f(xn|Θ) .

As EM algorithm works iteratively, assuming in the round k, we obtain an
estimation Θk of Θ, then Θk is used as the initial value for Θk+1 calculation.
With auxiliary condition

∑I
i=1 αk+1

i = 1, then αk+1
i is given by

∂Q

∂αk+1
i

= 0 ⇒ αk+1
i =

1
N

N∑
n=1

αk
i f(xn|λk

i )
f(xn|Θk)

, i = 1, · · · , I. (8)

Similarly, by substituting the function f(xn|Θ)δ(i|xn, Θ) in Equation (7) with
Equation (2) and taking derivative of Equation (7) against λk+1

i , it gives

N∑
n=1

{
δ(i|xn, λk

i )
∂

∂λk+1
i

[
log (αk

i

(λk+1
i )C

Γ (C)
xC−1

n e−λk+1
i xn)

]}
= 0

⇒
N∑

n=1

δ(i|xn, λk
i )(

C

λk+1
i

− xn) = 0

⇒ λk+1
i =

C
∑N

n=1 δ(i|xn, λk
i )∑N

n=1 δ(i|xn, λk
i )xn

, i = 1, · · · , I (9)

From above discussions, the EM algorithm to estimate the parameter Θ with
Hyper-Erlang model is summarized as follows:

procedure EM: in(X , K, I), out(Θ)
initialize Θ and let Θ0 = Θ
for(k = 1; k ≤ K; k + +)

for(i = 1; i ≤ I; i + +)

f(xn|Θk−1) =
∑I

j=1 αk−1
j f(xn|λk−1

j ); δ(i|xn, λk−1
i ) = αk−1

i f(xn|λk−1
i )

f(xn|Θk−1)

αk
i = 1

N

∑N
n=1 δ(i|xn, λk−1

i ); λk
i = C

∑N
n=1 δ(i|xn,λk−1

i )∑N
n=1 δ(i|xn,λk−1

i )xn

end //end for i
end // end for k
return ΘK

end // end for procedure

As to the initialization of the EM algorithm input parameters, [13] presented
guidelines to choose the iteration K and Θ0. The computational complexity of
the EM algorithm is O(NKI), where N = |X |.
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4.2 Divide-and-Conquer EM Algorithm for Data Set Approximation

For the principle of searching the global optimal solution, employing EM al-
gorithm to fit long-tailed data set directly may not capture the tail behavior
accurately. A natural way is to split the empirical pdf of data set into partitions,
and apply the EM algorithm to each partition. This is the primary idea behind
Riska’s D&C-EM algorithm(divide-and-conquer EM algorithm). The D&C-EM
algorithm works as following steps [14]:

– Build the continuous data histogram (CDH), i.e., empirical pdf from the
data set.

– Split the CDH into partitions, such that the coefficient of variation (CoV)
of samples in each partition bellows a given threshold CoVmax.

– Apply the EM algorithm to fit partition j into I-phase hyperexponential
distribution, and obtain αj

i and λj
i , i = 1, · · · , I.

– Generate the final result. For each partition, let αj
i = αj

i wj , i = 1, · · · , I,
where wj is the weight of partition j.

Since each partition has reduced variability, D&C-EM algorithm can model
the tail behavior considerably accurate than the EM algorithm. In the paper,
this divide and conquer working mechanism is employed by replacing the above
step 3 with applying the EM algorithm to fit each partition into I-phase and
C-order Hyper-Erlang distribution. This will further improve the accuracy and
efficiency of our Hyper-Erlang model to fit long-tailed data set.

5 Experimental Validation

Let the notation D&C-EM(I) indicate fitting a data set with I-phase D&C-EM
algorithm, FW(I) be fitting a given pdf with I-phase Feldmann-Whitt (FW)
algorithm and HE(I,C) illustrate the approximation with I-phase and C-order
Hyper-Erlang model. As the D&C-EM algorithm and the EM algorithm devel-
oped in [13] all intend to fitting data set with hyperexponential distribution,
thus the EM algorithm is excluded for our performance comparisons.

5.1 Data Sets Description for Performance Comparisons

In order to evaluate the performance of the above three fitting algorithms, we
apply them to four highly variable data sets as shown in Table 1. The first three
data sets are artificially generated by the three well-known long-tailed analytical
models. Trace 4 consists of one month’s valid HTTP requests to the NASA
Kennedy Space Center WWW server from July 1, 1995 to July 31, 1995 [19].

5.2 Statistical Comparisons

In the paper, as we are concentrated on the fitting of long-tailed behavior, there-
fore algorithm performance are compared by checking the matching degree of
the moments and the fitting of CCFDs as that in [12, 13, 14].
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Table 1. Statistical metrics of the four data sets

trace analytic model entries mean CoV
1 Pareto(1.2, 1.0) 25000 5.19 448.97
2 Weibull(0.4, 9.2) 25000 30.76 301.11
3 LN(7.0, 1.52) 25000 3314.38 2.83
4 NASA http log 1732371 22337.0 3.59

Table 2 illustrates the matching from the first to fifth order moment. For the
high-order moment, the long tail may contribute much to the whole moment,
Thus it can present us an enlarged view of the moment matching performance
among different algorithms.

Table 2. Moments matching performance of different fitting algorithms for the four
traces

1–5 order relative moments EA(Xn)
E(Xn)

algorithm 1 2 3 4 5
(a) Pareto(1.2, 1.0) trace

FW(9) 1.20 > 105 > 1011 > 1017 > 1024

D&C-EM(4) 1.01 1.49 2.95 7.01 20.04
HE(4,25) 1.01 1.00 1.00 1.03 1.09

(b) Weibull(0.4, 9.2) trace
FW(4) 1.12 1.14 1.56 2.75 7.03

D&C-EM(4) 1.00 1.15 1.32 2.00 4.00
HE(2,2) 1.00 1.03 1.08 1.18 1.33

(c) LN(7.0, 1.52) trace
FW(4) 1.04 1.15 2.49 11.65 79.61

D&C-EM(4) 1.00 1.27 1.81 3.56 8.68
HE(4,5) 1.00 1.01 1.02 1.08 1.20

(d) NASA http log trace
D&C-EM(4) 1.95 0.55 0.09 0.01 0.001

HE(4,6) 1.00 0.92 0.89 1.06 1.85

In Table 2, the moment matching performance is shown by relative value,
which is defined as the estimated moment EA(Xn) by a fitting algorithm A, i.e.,
the D&C-EM, FW and HE algorithms relative to the calculated moment E(Xn)
from trace. For the first 3 traces, FW algorithm fits their corresponding analyt-
ical models into hyperexponential distributions, for the trace 4, comparison are
made only between HE algorithm and D&C-EM algorithm (the FW algorithm
can not generate reasonable results for this web trace). From Table 2, though the
FW algorithm could matching the first-order moment reasonable, the matching
performance deteriorates considerably for high-order moments, especially for the
first trace which means worse tail behavior is fitted (i.e., overestimated) by the
algorithm. Performance of the D&C-EM algorithm overcomes the FW’s, but it
overestimates the high-order moments of 1–3 traces and underestimates for the
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Fig. 2. CDFs and CCDFs for the Pareto trace
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Fig. 3. CDFs and CCDFs for the Weibull trace
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Fig. 4. CDFs and CCDFs for the Lognormal trace

NASA http trace. The HE algorithm is superior in the moment matching to the
FW and D&C-EM algorithms. It provides more accurate and stable moment
estimation for all traces whether for the highly variable analytical distributions
or for the collected real network traffic.

The Cumulative Distribution functions (CDFs), Complimentary Cumulative
Distribution functions (CCDFs) of the four traces and their counterparts fitted
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Fig. 5. CDFs and CCDFs for the NASA http trace

Table 3. Quantiles matching performance of different fitting algorithms for the four
traces

relative p quantile QA(p)/Q(p)
algorithm 0.99 0.999 0.9999 0.99999 0.999999 0.9999999

(a) Pareto(1.2, 1.0) trace
FW(9) 1.02 1.00 1.16 > 106 − −

D&C-EM(4) 1.02 1.00 0.94 1.7 − −
HE(4,25) 1.00 1.02 0.98 1.37 − −

(b) Weibull(0.4, 9.2) trace
FW(4) 1.21 0.98 0.96 1.58 − −

D&C-EM(4) 1.21 0.98 0.96 1.58 − −
HE(2,2) 1.02 1.06 0.96 1.19 − −

(c) LN(7.0, 1.52) trace
FW(4) > 107 > 106 > 106 > 106 − −

D&C-EM(4) 1.19 1.25 0.89 1.39 − −
HE(4,5) 1.09 1.03 1.06 1.04 − −

(d) NASA http log trace
D&C-EM(4) 0.67 0.27 0.32 0.17 0.19 0.10

HE(4,6) 1.33 0.85 1.27 0.87 1.15 1.28

by different algorithms are plotted in Fig 2–Fig 5. It shows that the FW algo-
rithm has similar performance as the D&C-EM algorithm in fitting the main
body of CDF. The two algorithms can not capture the main body of CDF well
especially for the first two highly variable traces. The Hyper-Erlang model has
more attractive performance on fitting the CDF with higher Erlang order C (see
Fig 2). Even with lower Erlang order, the CDF derived by Hyper-Erlang model
still tells the evolution trend of the objective CDF (see Fig 3–Fig 5, Fig 5 illus-
trates this ability more distinctly) and its performance also overcomes that of
the FW and D&C-EM algorithm. Extra experiments with higher Erlang order
indicate that the main body of CDF can be fitting more accurately as that in
Fig 2 which does not shown in the paper.
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To measure the CCDF or CDF tail fitting performance quantitatively, assume
F (x) be the objective CDF or empirical CDF derived from a data set, then the
quantile function Q(p) of F (x) is defined by

Q(p) = inf{x : F (x) ≥ p}, 0 < p < 1.

Similarly, let FA(x) denote a fitting phase-type distribution for F (x) by algo-
rithm A, and QA(p) be the corresponding quantile function. Table 3 apparently
illustrates that HE algorithm could match the p quantiles more accurately than
other algorithms for the four data sets. With this quantitative analysis, It is
concluded that the HE algorithm provides more accurate tail fitting than the
FW and D&C-EM algorithms’.

6 Conclusions

In this paper, we propose the Hyper-Erlang model for long-tailed network traffic
approximation for the first time. By applying the new model in a divide-and-
conquer fashion, experiments on three well-known long-tailed analytical distri-
butions and a real network traffic indicate that the new algorithm provides more
robust and accurate moments matching performance than previously proposed
algorithms provided. With this new model, it overcomes the complete mono-
tone pdf limitation of hyperexponential distributions. Therefore, as a general
fitting model, it possesses the ability to fit any continuous (empirical) pdfs, e.g.,
multimodal pdfs under controllable accuracy and efficiency.

References

1. Will Leland, Murad Taqqu, Walter Willinger, et al. On the Self-Similar Nature
of Ethernet Traffic (Extended Version). IEEE/ACM Transactions on Networking.
Vol.2, No.1, pp.1–15, February 1994.

2. Vern Paxson, Sally Floyd. Wide-Area Traffic: The Failure of Poission Modeling.
IEEE/ACM Transactions on Networking. Vol.3, No.3, pp.226–244, June 1995.

3. Mark E. Crovella, Azer Bestavros. Self-Similarity in World Wide Web Traffic: Ev-
idence and Possible Causes. IEEE/ACM Transactions on Networking. Vol.5, No.6,
pp.835–846, December 1997.

4. Martin Arlitt, Tai Jin. A workload characterization study of the 1998 World Cup
Web site. IEEE Network (Special Issue on Web Performance), Vol.14, No.3, pp.30–
37, May–June, 2000.

5. Anirban Mahanti, Carey Williamson, Derek Eager. Traffic Analysis of a Web Proxy
Caching Hierarchy. IEEE Network (Special Issue on Web Performance), Vol.14,
No.3, pp.16–23, May–June 2000.

6. Shivkumar Kalyanaraman, Bobby Vandalore, Raj Jain, et al. Performance of TCP
over ABR with Long-Range Dependent VBR Background Traffic over Terrestrial
and Satellite ATM Networks. In Proceedings of 23rd Annual Conference on Local
Computer Networks, (LCN 1998), Lowell, MA, pp.70–78, October 1998.

7. S. Ata, M. Murata, H. Miyahara. Analysis of Network Traffic and Its Application to
Design of High-speed Routers. IEICE Transactions on Information and Systems,
Vol.E83-D, No.5, pp.988–995, May 2000.



Hyper-Erlang Based Model for Network Traffic Approximation 1023

8. Takuya ASAKA, Katsunori ORI, Hiroshi YAMAMOTO. Method of Estimating
Flow Duration Distribution Using Active Measurements. IEICE Transactions on
Communications, Vol.E86-B, No.10, pp.3030–3037, October 2003.

9. A. B. Downey. Evidence for Long-tailed Distributions in the Internet. In Proceed-
ings of ACM SIGCOMM Internet Measurement Workshop 2001, San Diego, CA,
USA, November 2001.

10. Michael Greiner, Manfred Jobmann, Lester Lipsky. The Importance of Power-tail
Distributions for Modeling Queueing Systems. Operations Research, Vol.47, No.2,
March–April 1999.

11. John F. Shortle, Martin J. Fischer, Donald Gross, et al. Using the Transform
Approximation Method to Analyzed Queues with Heavy-Tailed Service. Journal
of Probability and Statistical Science, Vol.1, No.1, pp.15–27, 2003.

12. Anja Feldamann, Ward Whitt. Fitting Mixtures of Exponentials to Long-tailed
Distributions to Analyze Network Performance Models. Performance Evaluation,
Vol.31, No.3–4, pp.245–279, 1998.

13. Rachid El Abdouni Khayari, Ramin Sadre, Boudewijn R. Haverkort. Fitting World-
wide Web Request Traces with the EM-algorithm. Performance Evaluation, Vol.52,
No.2–3, pp.175–191, 2003.

14. Alma Riska, Vesselin Diev, Evgenia Smirni. An EM-based technique for approx-
imating long-tailed data sets with PH distributions. Performance Evaluation,
Vol.55, No.1–2, pp.147–164, 2004.

15. David Starobinski, Moshe Sidi. Modeling and Analysis of Power-Tail Distributions
via Classical Teletraffic Methods. Queueing Systems, Vol.36, No.1-3, pp.243–267,
2000.

16. Jeff A. Bilmes. A Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixutre and Hidden Markov Models. Technical
Report, TR-97-021, International Computer Science Institue, Berkeley CA, April
1998.

17. Frank Kelly. Reversibility and Stochastic Networks. New York, Wiley, http://www.
statslab.cam.ac.uk/ frank/rsn.html, June 2004.

18. Alexander Klemm, Christoph Lindemann, Marco Lohmann. Modeling IP Traffic
Using the Batch Markovian Arrival Process.

19. NASA HTTP traces, http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html, May
2004.



Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 1024 – 1035, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Prediction-Based Multicast Mobility  
Management in Mobile Internet 

Guojun Wang1,2, Zhongshan Gao1, Lifan Zhang1, and Jiannong Cao2 

1 School of Information Science and Engineering, Central South University, 
Changsha, Hunan Province, P. R. China, 410083 

2 Department of Computing, Hong Kong Polytechnic University, 
Hung Hom, Kowloon, Hong Kong 

Abstract. Multicast mobility management poses a great challenge in mobile 
Internet. This paper proposes a novel multicast mobility management algorithm 
using our proposed RingNet hierarchy, which takes advantage of our designed 
four states for mobility management: Not-in-the-group, PassiveReservation, 
QuasiReservation, and ActiveReservation, and two kinds of ranges which are 
closely related to a Mobile Host (MH) 's attached device called the Access Proxy 
(AP): TransmissionRange and ReservationRange. By judging the state of the AP 
and the distance between the AP and its attaching MH, operations of mobility 
management can be implemented. The introduction of prediction algorithm 
greatly decreases the blindness of resource reservation, and avoids the 
unnecessary waste of bandwidth. Furthermore, the introduction of resource 
reservation makes the smooth handoff highly probable. 

1   Introduction 

With the convergence of wired Internet and all kinds of wireless networks such as 
wireless LANs, cellular networks and satellite networks, mobile Internet becomes more 
and more popular in recent years. Mobility management is important to support roaming 
users with mobile terminals to enjoy their services in progress in mobile Internet. 

Multicast is an efficient service that provides delivery of data from one source to a 
group of receivers. It reduces transmission overhead and network bandwidth. By 
combining the concept of Multicast Communication and Mobility Management, we 
propose a concept of "Multicast Mobility Management (MMM)". Simply stated, 
MMM is a set of schemes, algorithms and protocols, which are used to adapt to the 
location changes of group members and to ensure the efficiency of multicast 
communication in mobile and wireless network environment. 

In this paper, we propose a novel multicast mobility management algorithm using 
our proposed RingNet hierarchy, which makes use of the location information got from 
our prediction algorithm to guide the resource reservation in order to realize smooth 
handoff. 

The remainder of the paper is organized as follows. Section 2 introduces some related 
works about multicast mobility management in mobile Internet. In section 3, we 
introduce our proposed RingNet hierarchy. In section 4, we describe the multicast 
mobility management algorithm using this hierarchy. The final section concludes the 
paper. 
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2   Related Works 

The two-tier Host-View protocol [8] provides a scalable mechanism for multicast 
communication in mobile Internet. The basic idea is to associate a Host-View with each 
group. The Host-View consists of a set of Mobile Support Stations (MSSs), which 
represents the aggregate location information of the group. Through tracking a set of 
MSSs other than each individual member MH, it only needs to send a copy of the 
message to those MSSs in the group's Host-View in order to deliver a multicast 
message to a group of MHs. In addition, through moving most functions from MHs to 
MSSs, the MHs are relieved from heavy tasks. However, this protocol does not allow 
dynamic joins or leaves, and does not specify a method for the creation or deletion of a 
multicast group. In particular, the global updates necessary with every "significant 
move" make it inefficient and may cause lengthy breaks in service to the MHs.  

To deal with problems, a three-tier Reliable Multicast (RelM) protocol is proposed 
[9]. The bottom tier consists of the MHs which roam between cells. The middle tier 
consists of MSSs which provide the MHs with connectivity to the underlying network. 
The top tier consists of groups of MSSs. Each group of MSSs is controlled by an 
assigned supervisor machine called the Supervisor Host (SH). Since the SH is part of 
the wired network, it can handle most of the protocol details for MHs such as 
maintaining connections for MHs, and collecting acknowledgement messages for 
reliable communication. Simulation results show that the RelM protocol uses fewer 
buffers in virtually any system configuration in comparison with the Host-View 
protocol. However, the advantage of moving most functions from MSSs to SHs will 
also become its disadvantage. Since the SHs have to do so many tasks, the RelM 
protocol does not scale well when the number of group members becomes very large. 

Another three-tier reliable multicast protocol with MHs, MSSs and Coordinators is 
proposed in [10]. In this protocol, each MSS maintains a data structure called local that 
identifies the set of MHs in its cell. In this way, the movements of MHs do not trigger 
any message transmission in the wired network as no notion of handoff is used in the 
wired network. As a consequence, it is potentially more scalable than the RelM 
protocol. 

Besides the above two/three-tier protocols, another related work is logical ring-based 
reliable multicast protocol in mobile Internet [11]. A logical ring is maintained among 
all the Base Stations (BSs) to handle the multicast traffic of the same multicast group. A 
token passing protocol enforces a consistent view among all the BSs with respect to the 
messages that are considered to have been delivered to all the MHs. Furthermore, a 
handoff protocol is designed to handle the interaction of reliable multicast and handoff 
events of the MHs. Since all the control information has to be transferred along the 
logical ring, it may lead to large latency and require large buffers when the logical ring 
becomes large. Each logical ring within our proposed RingNet hierarchy [12] functions 
in a similar way, but it deals with only a local scope of the whole group. In this way, our 
proposed protocol can be as simple as this logical ring-based protocol, but our protocol 
can scale better than this logical ring-based protocol because our protocol uses a 
hierarchy of logical rings.  
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3   The RingNet Hierarchy 

Researchers proposed many mobile Internet architectures, such as wireless overlay 
networking architecture [13], all-IP wireless/mobile network architecture [14], and 
Always Best Connected (ABC) architecture [15]. Based on them, we proposed a 
RingNet hierarchy for multicast mobility management shown in Fig. 1 (also see [12]). 

 

 

 

Fig. 1. The RingNet Hierarchy for Multicast Mobility Management 

The four tiers of the RingNet hierarchy are Border Router Tier (BRT), Access 
Gateway Tier (AGT), Access Proxy Tier (APT), and Mobile Host Tier (MHT). The 
higher two tiers are dynamically organized into logical rings. Each logical ring has a 
leader node, which is also responsible for interacting with upper tiers. Access Proxies 
(APs) are the Network Entities (NEs) that communicate directly with the Mobile Hosts 
(MHs). Access Gateways (AGs) are the NEs that communicate either between different 
wireless networks or between one wireless network and one wired network. Border 
Routers (BRs) are the NEs that communicate among administrative domains. Notice 
that only those NEs that are configured to run the proposed protocol will be involved in 
the hierarchy. 

Multicast communication using the RingNet hierarchy is simple [12]: Multicast 
Senders (MSs) send multicast messages to any of the BRs at the top logical ring. Then 
the multicast messages are transmitted along each logical ring, and downward to all the 
children nodes. Finally the MHs receive multicast messages from their attached APs. 
Thus the multicast data are delivered to all the MHs efficiently. 
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4   The Multicast Mobility Management Algorithm 

In this section, we first overview the proposed algorithm and give some basic 
assumptions. We then design the corresponding data structures and operations for the 
algorithm. Finally we describe the proposed algorithm in detail. 

4.1   Overview of the Proposed Algorithm 

We use RingNet (RN)-based prediction algorithm to provide necessary information for 
advance resource reservation, and propose a novel multicast mobility management 
algorithm based on prediction and RSVP [16]. The algorithm makes use of four states: 
Not-in-the-group, PassiveReservation, QuasiReservation, and ActiveReservation, and 
two kinds of range which are closely related to the AP: TransmissionRange and 
ReservationRange. By judging the state of the AP and the distance between the AP and 
the MH, operations of mobility management can be implemented. Notice that the 
well-known MRSVP [17] algorithm uses only two states, i.e., PassiveReservation and 
ActiveReservation, which is not flexible compared with our proposed algorithm. 

The multicast mobility algorithm can be divided into three procedures in Fig. 2. We 
define six types of messages, through which the system communicates with other 
procedures. 

 

 

Fig. 2. The Framework of Multicast Mobility Management Algorithm 

• RSVP_Request Message: MH sends the message to most likely reached AP for 
making resource reservation. 

• Prediction_OK Message: MH sends the message to most likely reached AP in the 
case of accurate prediction. 

• Prediction_Failure Message: MH sends the message to most likely reached AP in 
the case of inaccurate prediction. 

• Handoff_Start Message: MH sends the message to most likely reached AP to start 
the handoff processing. 
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• Reserve_Failure Message: AP sends the message to MH in the case of the failure of 
resource reservation. 

• Reserve_OK Message: AP sends the message to MH in the case of the success of 
resource reservation. 

Firstly the initialization procedure runs to initiate the state of MH and other network 
entities. Then the three procedures run in a parallel and distributed way. The RN-based 
prediction procedure runs to predict the next location after a predefined time period, 
and the RN-based RSVP procedure runs to make advance resource reservation for the 
forthcoming handoff. Then the handoff procedure will be conducted using the reserved 
resources. 

4.2   Basic Assumptions 

The following assumptions are made for our proposed algorithm: 

(1) For the AP tier, APs may be access points in WLANs, base stations in cellular 
networks, and satellites in satellite networks. 

(2) We suppose that, at any specific time, at most one AP is selected as an MH's 
current AP, though the MH can simultaneously communicate with one or more APs at 
the same time. 

(3) When an MH first moves into the range of an AP, there should be a "Join the 
Group" operation with Join_Group messages. When it leaves out of the range of the 
AP, there should be a "Leave the Group" operation with Leave_Group messages. 

(4) For each AP, it periodically sends heartbeat messages to the MHs within its 
transmission range for mobility detection. We call it a heartbeat protocol. For each AP, 
we define two ranges associated with the AP: TransmissionRange, which denotes the 
signal transmission range (the MH within this range can receive signals transmitted by 
the AP); ReservationRange, within this range the AP will make resource reservation 
accordingly. 

(5) We define four states: Not-in-the-group, PassiveReservation, QuasiReserv- 
ation, and ActiveReservation. Notice that we also define the four states for other related 
NEs such as AGs and BRs. Simply stated, when an MH moves from far away to the 
transmission range of an AP, the initial state of the AP is "Not-in-the-group". If it is not 
in the ReservationRange, the AP's state becomes "PassiveReservation"; otherwise, it 
becomes "QuasiReservation", and its parent AG's state and the state of AG's parent BR 
also become "QuasiReservation". When the MH handoffs to a new AP and begins the 
handoff, the new AP's state becomes "ActiveReservation" and the states of its parent 
AG and BR also change to "ActiveReservation". Then it moves out of this AP's 
ReservationRange; the AP's state becomes "PassiveReservation". Finally it moves out 
of the AP's TransmissionRange, the states of all NEs associated with the MH become 
"Not-in-the-group". The four-states transition can be seen in Fig. 3. 

As to the states of "ActiveReservation" and "QuasiReservation", they have both 
similarities and differences. They both require the changes of states of corresponding 
NEs. For example, when an AP's state is "ActiveReservation" or "QuasiReservation", 
other NEs also require making such changes. There is actual data transportation when 
the state of an AP is "ActiveReservation", while no real data transportation when the 
state of the AP is "QuasiReservation". 
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When the AP's state is "PassiveReservation", reservation is only made between the 
AP and the MH. While the AP's state is "ActiveReservation" or "QuasiReservation", 
reservation is made among the whole hierarchy. 

(6) For each MH, it periodically sends back heartbeat messages to those APs from 
where it received the heartbeat messages with a list of records of its "location (x, y, z)", 
"velocity", and "direction". We suppose the location, velocity and direction 
information can be got from a GPS system or some location estimation techniques. 

(7) For each AP, when it received the above information, it will use a prediction 
algorithm to predict its new location with a predefined time period as a parameter. If the 
new location is within the AP's ReservationRange, then the AP's state will become 
"QuasiReservation" when its original state is either "Not-in-the-group" or 
"PassiveReservation". 

(8) As to multicast data transportation, we suppose that the multicast sender is fixed, 
and that there is only one multicast sender. 

 

 

Fig. 3. Four-States Transition 

4.3   Data tructures and Operations 

Data Structure of MH: 

• GID: GroupID. Group identity of some group addressing scheme, e.g. Class D 
address in IP Multicast. 

• AP: NodeID. Node identity of the attached AP. 
• GUID, LUID: UniqueID. Globally/locally unique identity of MH from some unique 

identity scheme, e.g. Mobile IP Home Address/Care-of Address. 
• Dist(MH, AP): the distance between MH and AP, the value of which can be 

computed by MH, and the location information of which can be got from a GPS 
system or some location estimation techniques. 
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• SI(MH, AP) the Signal Intensity (SI) that MH receives from an AP. 
• Reserve: the success or failure of resource reservation, with TRUE for the former 

case and FALSE for the latter case. 
• Predict: the accuracy and inaccuracy of prediction, with TRUE for the former case 

and FALSE for the latter case. 

Data Structure of NE (AP/AG/BR): 

• GID: GroupID. Same as GID used by the MH. 
• Current, Leader, Previous, Next, Parent, Children[]: NodeID. Node identities of this 

node, leader, previous, next, parent, and children nodes, respectively. Notice that 
Children[] consists of a list of node identities, each of which stands for one child node. 

• PreviousOK, NextOK, ParentOK, ChildrenOK[]: Boolean. States of the previous, 
next, parent, and children nodes, respectively. Notice that ChildrenOK[] consists of 
a list of sub-items, each of which describes the state of one child node. 

• State(MH, AP), State(AP, AG), State(AG, BR): NE has four kinds of states: 
Not-in-the-group, PassiveReservation, QuasiReservation and ActiveReservation. 
Since the states of AP, AG, and BR are closely related to the lower level of the 
hierarchy, for example, possibly many MHs attach to one AP, many APs attach to 
one AG, and many AGs attach to one BR, we define the state of AP state(MH, AP), 
the state of AG state(AP, AG), and the state of BR state(AG, BR). The value of the 
four states can be 1, 2, 3, and 4, respectively. 

Basic Operations: 

• JoinGroup: MH sends Join_Group message to the sender, and the sender processes it. 
• LeaveGroup: MH sends Leave_Group message to the sender, and the sender 

processes it. 
• ActiveReserve: When MH begins to handoff into a new AP, this operation is 

invoked. It reserves the resource among the whole hierarchy. 
• QuasiReserve: When MH is in the ReservationRange, this operation is invoked. 
• PassiveReserve: It reserves the resource between AP and MH, and it is not involved 

in the upper tiers of the hierarchy. 

4.4   RN-Based Prediction Algorithm 

We assume to use the random waypoint mobility model [18] which is natural and 
realistic to characterize the movement of MHs in a 2-dimensional space. The 
movement of MHs consists of a sequence of mobility epochs with random length 
between neighboring epochs. The speed V and direction  of an MH keep constant 
during mobility epochs, and vary randomly from epoch to epoch, here V ≥ 0 and ≥ 0. 

 addition, we assume that the acceleration  of the same direction of previous speed 
exists in a very short time, because of the inertia effect. 

Each MH detects the change of its speed and moving direction. When a new epoch 
starts, it records its current 2-dimentional coordinate (x, y), speed V and direction , the 
changing duration time , and current time t'. Then the time interval T between two 
neighboring epochs can be got by Ti=t'i+1-t'i, the acceleration 

iγ  can be got by 
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Δ
−+ )( 1 ii vv , where 1  i  P. Here P is the number of sampling points. We call this 

recording process as sampling, and the recording place as sampling point. The number 
P of sampling points each MH recorded is determined by itself based on the degree of 
mobility. As the MH moves faster, P becomes larger. 

Interpolation is used in the situation that function f (x) is known at a ≤ x ≤ b, while we 
compute the value of f (x) when x<a or x>b. The extrapolation method is used to predict 
the location after a predefined time period. Extrapolation is not always very accurate, 
but it is relatively simple. Since the extrapolation in low-power multinomial is more 
accurate than that in high-power multinomial [19], we will use Subsection Low-power 
Interpolation method to get an approximate function. 

Theorem 1: The predicted coordinate. 
Given a quaternion (P, vx, vy, T), vx and vy denote the speed of MH in the direction of 
X-axis and Y-axis, got by vx = Vcos( ) and vy =Vsin( ). Suppose vx , vy , T ,  denote 
the predicted values, and suppose current coordinate is (xp, yp), and current speed is (vxp, 
vyp), then the predicted coordinate (x , y ) at time t can be attained by Formulae 4.1 and 
4.2, respectively. 
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Suppose vx  is the value got from the latest subsetion’s function. Then the value of vy , 
T , and  can be got through the same method. So the predicted coordinate (x , y ) at the 
time t can be attained by Formulae 4.1 and 4.2. Furthermore, we predict those 
parameters not only based on the latest subsection's function, but also considering the 
varying rule of the whole function vx = fx (t) if the movement regularity of MH can be 
seen easily. 

Theorem 2: The distance between MH and AP. 
Suppose the coordinate of AP is (XAP, YAP), and the coordinate of MH is (x, y), then the 
distance between AP and MH can be got by Formula 4.4:  

22 )()(),( yYxXAPMHDist APAP −+−=                            ... (4.4) 
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Proof: According to the distance between two points in right-angle coordinates, it can 
be induced easily. 

We define an AccuracyRange variable, which is decided by the difference between 
MH's actual position and predicted position in the usual case, to denote the degree of 
accuracy. If the prediction result is in the AccuracyRange, then the prediction is 
accurate; otherwise, the prediction is inaccurate. And we also define a t_threshold 
variable, which describes that MH predicts the new location after t_threshold time and 
can be tuned according to continuous system test. The proposed RN-based prediction 
algorithm is shown in Fig. 4. 

Algorithm. RN-based prediction 
Given an MH's speed ï  and direction  at time t0, and location coordinate (x0, y0); 
While TRUE Do { 

Do  
Sampling; 

While the speed or direction changes; 
If a prediction event is triggered Then 

Get the predicted coordinate (xï, yï) at t_threshold value of time; 
Start the timer; 
Compute which AP the MH is in its transmission range; 
Send RSVP_Request message to AP; 
On the timer event: 

If the prediction is in the AccuracyRange Then { 
           Send Prediction_OK message to the AP; 
           MH.Predict=TRUE; 
        } 

Else { 
           Send Prediction_Failure message to the AP; 
           MH.Predict=FALSE. 
       } 
} 
Remark: The random length between mobility epochs should be larger than t_threshold, 

since we predicted the location after t_threshold value of time. 

Fig. 4. RN-based Prediction Algorithm 

4.5   RN-Based RSVP Algorithm 

This algorithm mainly executes in the APs. Every AP constantly listens to the message 
from MHs, which makes the possible state changes of the AP and all the corresponding 
NEs. Finally the AP makes resource reservation according to different states. The 
proposed RN-based RSVP algorithm is shown in Fig. 5. 

4.6   RN-Based Multicast Handoff Management Algorithm 

We define a SI_threshold variable, which describes the state an MH begins to trigger a 
handoff when the signal intensity that the MH receives from its attached AP comes to 
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the SI_threshold value. This variable can be tuned according to continuous system test. 
When the signal intensity that the MH receives is larger than SI_threshold, the MH 
triggers the handoff, the states of all the corresponding NEs become 
"ActiveReservation", and it begins to transmit multicast data accordingly. The 
proposed RN-based multicast handoff management algorithm is shown in Fig. 6. 

Algorithm. RN-based RSVP 
Initiate AP, AG, and BR, and make the states of NEs Not-in-the-group; 
While TRUE Do { 

On Receiving RSVP_Request message: 
         If MH.Dist(MH, AP)>AP.TransmissionRange Then 
              Tear down old resource reservation (if exists); 

       Else If MH.Dist(MH, AP)>AP.ReservationRange Then { 
AP.state(MH, AP)=PassiveReservation; 
Do PassiveReserve;  

        } 
Else { 

AP.state(MH, AP)=QuasiReservation; 
              AG.state(AP, AG)=QuasiReservation; 
              BR.state(AG, BR)=QuasiReservation; 
              Do QuasiReserve; 
        } 

On Receiving Prediction_Failure message: 
        Tear down old resource reservation if exists; 
        If MH.Dist(MH, AP)>AP.TransmissionRange Then { 

        AP.state(MH, AP)=Not-in-the-group; 
            AG.state(AP, AG)= Not-in-the-group; 
             BR.state(AG, BR)= Not-in-the-group;  
        } 

On Receiving Prediction_OK message: 
        If MH.Dist(MH, AP)>AP.TransmissionRange Then { 

        AP.state(MH, AP)=Not-in-the-group; 
            AG.state(AP, AG)= Not-in-the-group; 
             BR.state(AG, BR)= Not-in-the-group;  
        } 

On Receiving Handoff_Start message: 
  AP.state(MH, AP)=ActiveReservation; 

         AG.state(AP, AG)=ActiveReservation; 
         BR.state(AG, BR)=ActiveReservation; 
         Do ActiveReserve; 
         If the required resource is not available Then 
             Send Reserve_Failure message to MH; 
         Else  

Send Reserve_OK message to MH. 
} 

Fig. 5. RN-based RSVP Algorithm 
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Algorithm. RN-based Handoff Management 
While TRUE Do { 

On Receiving the signal from AP: 
If MH.Dist(MH,AP) < AP.TransmissionRange && 

MH.AP.state(MH, AP)==Not-in-the-group Then 
         Do JoinGroup;  

If MH.Dist(MH,AP) > AP.TransmissionRange && 
MH.AP.state(MH, AP)==Not-in-the-group Then 

         Do LeaveGroup; 
     If MH.SI(MH, AP)>SI_threshold Then { 
          If MH.Reserve==TRUE && MH.Predict==TRUE 
            || MH.Predict==FALSE && the resource is available at the same time Then { 
              Send Handoff_Start message to AP; 

Establish new connection; 
              Tear down old connection; 
          } 
          Else { 

Start a timer and wait a certain period of time until the resource is 
available; 

              Send Handoff_Start message to AP; 
Establish new connection; 

              Tear down old connection; 
         } 
     }             
 On Receiving Reserve_OK message: 
     MH.Reserve=TRUE; 
 On Receiving Reserve_Failure message: 
     MH.Reserve=FALSE. 

} 
Remark: If MH receives the signal from more than one AP at the same time, then the first 

one that reaches the SI_threshold value triggers the handoff. 

Fig. 6. RN-based Multicast Handoff Management Algorithm 

5   Conclucsions 

In this paper, we proposed a novel multicast mobility management algorithm, which 
combines advance prediction information and resource reservation. The prediction 
procedure sends three kinds of messages to RSVP procedure, which makes the latter 
one more efficient and straightforward, and the handoff procedure makes smooth 
handoff highly possible because of prediction and RSVP. As our future work, 
simulation is needed to evaluate the performance of our multicast mobility algorithm. 
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Abstract. With the frequent changes in recent business and scientific environ-
ment, more efficient and effective workflow infrastructure is required. Besides, 
with increasing emphasis on Service-oriented architecture, service composition 
becomes a hot topic in workflow research. This paper proposes a novel ap-
proach of using ECA rules to realize the workflow modeling and implementa-
tion for service composition. First of all, the concept and formalization of ECA 
rule-based Workflow is presented. Second, an automatic event composition al-
gorithm is developed to ensure the correctness and validness of service compo-
sition at design time. Finally, the proposed ECA rule-based approach for service 
composition is illustrated through a prototype system. 

1   Introduction 

Workflow technology is increasingly used to manage complex processes in scientific 
and business field. The main characteristics of workflow approach are the clear sepa-
ration of application program code from the overall process logic and the integration 
of automated and manual activities. Hence, it has been widely adopted as a core tech-
nology to support long-term application processes in heterogeneous and distributed 
environments.  Meanwhile, with increasing emphasis on Service-oriented architec-
ture, service composition becomes a hot topic in workflow research. Through the 
workflow approach, various customized services can be provided through the coordi-
nated use of numerous distributed and heterogeneous services. 

In this paper, we propose an approach of applying ECA rules to control workflow 
process as well as realize service composition. Compared with other workflow man-
agement system, the workflow model based on ECA rules can represent complicated 
business logic and provides more flexible support to the running of business. We 
give the formalization of the ECA rule-based workflow model for service composi-
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tion, where special activities and data structures are customized for the purpose of 
service composition. When modeling complicated ECA rule-based workflow, it’s 
inevitable that the events composition occurs. If let user specify the event, it’s error-
prone and troublesome. Thus, this paper proposes an event composition algorithm to 
automate the event processing as well as ensure the validness of service composition 
at design time. Since the rules is an internal representation and difficult for user to 
understand, we visualize the meaning of the rules through a graphical process-
modeling tool for human user to grasp the actual process and compose new ones 
conveniently. The workflow design tool transforms the graphical model into a set of 
ECA rules, so that the workflow execution engine is capable of controlling its execu-
tion automatically.  

The remainder of this paper is structured as follows. Related work is addressed 
in Section 2. Then, we will present the formalization of ECA rule-based Workflow 
for service composition in Section 3. After that, we will introduce one algorithm 
with the automatic event composition to realize ECA rule-based modeling. In sec-
tion 5, we will present a workflow prototype system based on ECA rules. Finally, 
Section 6 closes this paper with some brief concluding remarks and future research 
directions. 

2   Related Work 

There are quite a few works related to workflow system for service composition that 
have been proposed and used by researchers. The Business Process Execution Lan-
guage for Web Services (BPEL4WS) is one of the leading candidates for business 
process modeling [4]. BPEL4WS supports business process coordination among mul-
tiple parties and enables modeling of long-running interactions between business 
processes [5] [6] [7]. However, BPEL only supports static binding and reference of 
Web Services, that is, every service partner has to be bound in design time. Besides, it 
doesn’t address the composition of Grid Services [8], which becomes more and more 
important nowadays. 

As to other workflow process modeling approaches, some workflow systems adopt 
the Directed Acyclic Graphs (DAG) [9] [10] [11]. However, DAG has no cycle cir-
cuits in its model; it’s not applicable to explicitly express loops. Another modeling 
approach, Petri Nets, is frequently used in workflow systems [12] [13] [14]. They use 
Petri Net modeling method to describe user tools and depict the characteristics of a 
workflow process. However, Petri-net based workflow is hard to model uncertainty, 
thus it is not adaptive to the un-deterministic situations which usually appears in ser-
vice composition. 

There are also a lot of works related to ECA rule-based workflow systems. [1] pro-
poses a systematic method of reducing an ECA rule-based process into a simple form. 
[15] reports the use of ECA rules to support workflows in product development. A 
rule-based workflow engine is implemented in [16]. However, they are limited to 
traditional applications. None of them address the issues of Web Service or Grid Ser-
vice composition. 
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3   Formalization of ECA Rule-Based Workflow Modeling for 
Service Composition 

3.1   The ECA Rules 

ECA rule is originally used in active database systems [2] [3]. An ECA rule consists 
essentially three parts: an event, a condition, and an action. As shown in Figure 1, 
when the active DBMS detects that an event has occurred, it evaluates the condition, 
if the condition is satisfied, it executes the action. Events can be classified into primi-
tive events and composite events. Primitive events refer to elementary occurrences 
that are predefined in the system, such as the state change of an activity, simple opera-
tion and time event. A composite event is a set of primitive events or composite 
events related by defined event operators. The condition is a logical expression that 
must be satisfied in order to activate the action part. The action involves the activity 
that needs to be executed or the Event needs to be triggered. 

 
RULE <RuleName> [ (Parameter list) ] 
WHEN <Event Expression> 
IF <Condition 1> THEN <Action1> 
… 
IF <Condition n> THEN <Action n> 
END RULE 

Fig. 1. ECA Rules 

There are many attempts in applying ECA rules to workflow management. The 
characteristic of ECA rule-based workflow, such as strong expressive power, flexible 
exception handling mechanism and automatic control of workflow process has enti-
tled it a perfect candidate for solving complicated business logic and scientific prob-
lems. However, it’s not easy to visualize the meaning of the rules, and also it’s very 
difficult for user to construct and manage the rules. This is in fact the main reason 
why the ECA rule-based approach has not been a popular choice among commercial 
WFMSs [1]. Therefore, we propose a modeling approach combining graphical proc-
ess representation and ECA rules. During modeling, we transform the graphical 
model into a set of ECA rules, so that our workflow execution engine is able to con-
trol its execution automatically. To adapt to new context of Web Service and Grid 
Service composition, special activities and data structures are customized for it. This 
leads to a new formalization of ECA rule-based workflow for service composition. 

3.2   Formalization of ECA Rule-Based Workflow 

In this section, we give a formal definition of ECA rule-based Workflow. This defini-
tion is based on the traditional process model and extended according to new features 
in service composition domain.  

Definition 1. (ECA rule-based workflow) An ECA rule-based workflow model is an 
eight-tuple ),,,,,,,( DFTCLCRCAE : 
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• E  is a finite set of events, 

• A  is a finite set of activities, 

• C  is a finite set of conditions, 

• R  is a finite set of rules, ACER ××⊆ , 

• LC  is a finite set of logical connectors, 

• { }{ }ORANDOutInOutInLCTC ,,, ∈→∈  is a function, which maps 

each logic connector onto a connector type. In the connector type expres-

sion OutIn, , “In” represents the incoming flow logic whereas “Out” repre-

sents the outgoing flow logic. 

• )()()()( AALCLCALCLCAF ×∪×∪×∪×⊆  is a set of flows. 

• D is a finite set of data structures’ definition used in workflow model. 

Definition 2. ( DC FF , ) F is divided into control flow ( CF ) and data flow ( DF ). 

And ,, φ=∩∪= DCDC FFFFF )()()( LCLCALCLCAFC ×∪×∪×⊆ , )( AAFD ×⊆ . 

This definition denotes that data flow can only be connected from activity to ac-
tivity. However the control flow can be connected from activity to logic connector, 
from logic connector to activity or from logic connector to another logic connector. 

Definition 3. ( outinoutin aalclc ,,, ) Let LC be a set of logical connectors and F be 

the set of flow. For each logical connector LClc ∈ , we define the set of its ingoing 

flows ( ) ( ){ }FlcxLCxAxlcxlcin ∈∧∈∃∨∈∃= ,)(, , and we define the set of its 

outgoing flows ( ) ( ){ }FylcLCyAyylclcout ∈∧∈∃∨∈∃= ,)(, . Similarly, we get 

outin aa , for activities. 

Definition 4. ( CASWSVTXAPPGSWSes AAAAAAAAA ,,,,,,,, ) An ECA rule-based 

workflow for service composition may have nine kinds of activities as follows: 

• sA and eA are start and end activity set. There are one start activity and one end 

activity, for es AbAa ∈∈ , , 0=ina  and 0=outb . 

• WSA  refers to the set of activities responsible for the invocation of Web Services 

whereas GSA  is utilized to invoke Grid Services. APPA  represents the activity 

set for legacy application, such as Java class, EJB, CORBA applications etc. 

• The activity set of TXA is utilized to execute the transformation of XML docu-

ment by XSLT while the activities in SVA are responsible for the value assign-

ment of variables.  

• SWA  refers to the set of activity which specify a sub workflow by referencing 

the name of an already existing workflow model. CAA  represents the set of 
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composite activity which divide a complicate activity into a serial of primitive 
activities.  

• SWA  and CAA  allow the recursive composition of services and facilitate reuse of 

workflow models. All the activities are customized to new situations in service 
composition. It can be applied to most circumstance. 

Definition 5. (PE, CE) Events in the workflow model are divided into primitive 
events ( PE ) and composite events ( CE ): 

• There are six kinds of primitive events for each activity. 

)(),(),({,{ aEndOfaStartedadInitializeeAaePE ∈∈∀⊆
)}(),(),(, aErroraAbortedaOvertime The six primitive event types de-

note the different execution state of an activity.  
• CE  is a set of primitive events or composite events related by defined event 

operators. We define two operators: AND, OR. 1e AND 2e means that both 

1e and 2e has to happen. 1e OR 2e denotes that at least 1e or 2e should happen. 

Definition 6. (DO) There are four categories of data object (DO) definitions for the 
control and exchange of data in ECA rule-based workflow model for service compo-
sition: 

• Inherent Variable is basic data type, such as Boolean, integer, string etc. It can be 
utilized to set guarding condition or act as a decision point.  

• XML Objects are XML schema based data and generally used to represent the 
input and output messages of services.  

• Object Variable is data item extracted from XML Object or Other Document 
Object. It is usually used to assign values from one field of XML Object to an-
other.  

• Other Document Object is an abstract representation of documents formats data 
except XML document, such as word, PDF, rtf and so on. 

Through this definition, our workflow modeling supports various data formats 
that can be exchanged between different services. 

Definition 7. fFf D ,∈∀ has following attributes (E, DO, Right). E refer to the 

triggering event of dataflow, it may be a primitive event or composite event. DO 
denote the data object set that sends from one activity to another. Right is utilized to 
differentiate target activity’s access right to the data object. 

Definition 8. lcLClc ,∈∀ has following attributes (E, C, A). E refers to the trigger-

ing event of the control flow. Triggering event is a composite event related by “In” 

operator of the logical connector, if the 1>inlc ; otherwise, triggering event is a 

primitive event or null. 
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For example, if >=<∈∃ ORANDlcTCLClc ,)(, , and fff {, 21 ∈∃  

}}{}{ lcLClcAf ×∪×∈ suppose that the triggering event of 21, ff is respec-

tively 1e and 2e , then the triggering event of lc is 21 ANDee . It is equal to the 

AND-JOIN workflow pattern in Petri-Net. Similarly, if there are two outgoing control 
flow to activities, the execution pattern is in accordance with the “Out” operator, in 
this case OR for parallel execution of activities. This is equal to the OR-SPLIT work-
flow pattern in Petri-Net. 

Definition 9. (Reachability) A directed path p from a logic connector 1lc to a logic 

connector klc  is a sequence klclclc ,...,, 21 , so that Cii Flclc ∈+1, , for 11 −≤≤ ki , 

if the “Out” operator of ilc is AND, we call the triggering event of logic connector 

1lc is reachable to the logic connector of klc . 

Triggering event of a logical connector is transitive in ECA rule-based workflow 
model when the “Out” operator is AND and the following node is also a logical con-
nector. However, if the “Out” operator is “OR”, it may induce another branch and be 
executed only if the condition is satisfied, so the triggering event is not transitive in 
this case. 

4   Event Composition Algorithm 

When modeling complicated ECA rule-based workflow for service composition, it’s 
inevitable that the events composition appear. If let user specify the event, it’s error-
prone and troublesome. Thus, this paper proposes one event composition algorithm 
that can be utilized to automate the event processing as well as ensure the validness of 
manual activities composition at design time.  

When developing the algorithm, there are two principles need to keep in mind. 
First one is that when encountering the logic connector whose “Out” operator is 
AND, the triggering event of the logic connector has to be passed to the following 
nodes. Second one is that each logic connector has a triggering event, if there are two 
ingoing flows connecting to the logic connector, a composite event needs to be cre-
ated. Listed below is the notation used in the algorithm. 

• input_event_list: the set of input events coming from ingoing flows of a logic 
connector. 

• InOperator(lc): the “In” operator of a logic connector. 
• OutOperator(lc): the “Out” operator of a logic connector. 
• triEvent(lc): the triggering event of a logical connector. 

• (InOperator(lc))(input_event_list): the triggering event of logical connector com-
posed by all the input events. 

• NEXTlc : the set of logic connectors which directly follows lc . 



1042 L. Chen, M. Li, and J. Cao 

In case of event composition, the algorithm first saves the former triggering event 
of the logical connector at which the event composition happens and then adds the 
new event to the input event list of this logical connector. After that, the algorithm 
detects the number of former ingoing flows and processes the events accordingly. If 
the number is zero, the triggering event is the new event; if the number is one, a com-
posite event has to be composed by the former input event and the new event, also the 
triggering event is the newly created composite event; if the number is two or more, 
the triggering event is already a composite event, the only thing needs to be done is to 
refresh the triggering event to compose the new event. Finally, this algorithm checks 
the set of logical connectors that is reachable by the triggering event. If the set is not 
null, the changed triggering event has to be passed to the following logical nodes until 
a logical connector whose “Out” operator is OR appears. 

 
PROCEDURE Event_Composition (Event e, LogicConnector lc) { 

formerTriEvent :=(InOperator(lc))(input_event_list); 
add e to input_event_list; 

if ( 0==inlc ) then triEvent(lc) := e; 

else if ( 1==inlc ) then { 

    // create a new composite event and add to event set. 
    ce := (InOperator(lc))(input_event_list); 
    add ce to CE; 
    triEvent(lc):= ce;  

} else if( 2>=inlc ) then  

     // refresh the triggering event 
triEvent(lc):= (InOperator(lc))(input_event_list); 

if (OutOperator(lc)==”OR”) then return; 
else { 
  //pass triggering event to reachable logical connector 

for(all NEXTx lclc ∈ )do 

     if ( 0==inlc ) then Event_Composition(e, xlc ); 

      else if ( 1==inlc ) then PassEventChange(formerTriEvent, triEvent(lc), xlc ); 

} 
} 
 
PROCEDURE PassEventChange (Event formerInputEvent, Event e, LC lc){ 

formerTriEvent :=((InOperator(lc))(input_event_list); 

if ( 1==inlc ) then { 

triEvent(lc) := e;  
let e be the only element in input_event_list 

}else if ( 2>=inlc ) then { 

     // replace the former input event with new event 
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remove formerInputEvent from input_event_list 
    add e to input_event_list; 
    triEvent(lc):= (InOperator(lc))(input_event_list); 
} 
if (OutOperator(lc)==”OR”) then return; 
else{ 

for(all NEXTx lclc ∈ )do 

        if ( 1==inlc ) then PassEventChange(formerTriEvent, triEvent(lc), xlc ); 

} 
} 
 

Event decomposition is the reverse process of event composition. When users de-
sign a workflow model, this algorithm can be utilized to automate the event process-
ing. It greatly simplifies the process of modeling and ensures the validness of service 
composition at design time. 

5   Rule-Based Workflow Prototype System for Service Composition 

Based on above workflow model definition and algorithm, we develop an ECA rule-
based workflow system for service composition. This system includes following 
parts: a graph-based workflow modeling tool to provide a GUI environment, which 
assists users quickly, and easily to create new workflow model from scratch or com-
pose more complicated workflow based on legacy workflows [3] [17]; a workflow 
execution engine which responsible for the execution of workflow model; and web-
based portal for user to submit the workflow to the workflow engine for running.  

A workflow model contains different kinds of components. Fig.2 shows the class 
view of all the main components and their relationships. Generally speaking, a work-
flow model can be divided into four categories of components, that is, activity, link, 
logic node and data object. This components are in accordance with the definition in 
Section 3. 

In the workflow-modeling tool as illustrated in Figure 3, we provide a graphical 
process representation for human user to design actual process conveniently. Mean-
while, we transform the graphical model into a set of ECA rules during modeling, so 
that our workflow execution engine is able to control its execution automatically. 
Each activity is associated with six possible events in our workflow modeling tool, 
that is, Initialized, Started, EndOf, Overtime, Aborted, Error. Through Overtime, 
Aborted, Error event of an activity, the system can automatically trigger additional 
failure handling when some exception event or situation of interest occurs. It’s very 
convenient to define exception flow separately from “routine” steps of the workflow 
and enable the system to be more easily modified or extended to react to events that 
were not anticipated. Data flow enables user to specify the access right and triggering 
event of data objects, which makes the fine-grained control of data flowing between 
different services a possibility.  

Our workflow system currently supports three categories of services: Web  
Services,  Grid  Services  and  legacy applications. A service repository containing the  
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Fig. 2 Class view of the components of ECA rule-based Workflow 

 

Fig. 3. A screenshot of the Workflow Modeling Tool. This Tool includes a menu bar and tool 
bar (top), a navigation tree to show the hierarchical structure of  all the entities in the workflow 
(left), an element tool bar for drawing different workflow nodes and links (middle), and a com-
position panel for ECA rules based workflows (right). This Tool supports drag and drop to 
introduce new components to the workflow model. 

available services’ metadata exists. When user plan to create an activity invoking 
service, a service selection panel appears, this loads all the available services defini-
tion from the service repository and allows user to select proper services. However, 
when no suitable service exists in the service repository, user can resort to integration 
adapters to locate new services. There are three kinds of integration adapter presented 
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to facilitate the composition of those three categories of possible services. Web Ser-
vice adapter, for example, user can input a service WSDL Documents links or set a 
default UDDI registry, then the adapter explore the WSDL document, extract ser-
vices, port types, input/output message’s schemas and save them within the service 
repository for facilitating share and reuse of available services. Other integration 
adapters work in similar way. 

Workflow model can be submitted through user portal to the workflow engine for 
running. Fig 4 shows the ECA rule-based workflow engine. It’s supposed to deploy 
and start model service and process service firstly, which make preparations for the 
execution of forthcoming workflow request. When the workflow request is coming, 
workflow engine obtains a copy of the workflow model from database and then takes 
charge of the specific invocation and routing according to ECA rules. 

 

Fig. 4. ECA rule-based Workflow Engine 

This ECA rule-based workflow-modeling tool together with the workflow engine 
has already been a vital part of Shanghai Grid and utilized frequently. The workflow 
model based on ECA rules can represent complicated business logic and provides a 
more flexible support to the running of business.  It proves to be very flexible and 
powerful, which can satisfy the disparate need of both business and scientific domain. 

6   Conclusions and Future Work 

This paper describes an ECA rule-based workflow management system for service 
composition. The goal is to solve the complicated business logic or scientific applica-
tion problems where the interaction between services and composition of new work-
flow out of existing ones needed. The formalization of ECA rule-based workflow for 
service composition is presented and an algorithm for event composition and decom-
position is proposed to automate the event processing. The design principle and im-
plementation details are also given in this paper.  

In the future, we plan to apply agent technologies responsible for the dynamical 
discovery of suitable services at run time so that the process can be more flexible, 
conduct research on transaction based exception-handling mechanism. Additionally, 
the ongoing work focuses on providing support for automatic workflow generation by 
the aid of artificial intelligence planning technologies.
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Abstract. Managing distributed ontologies is a challenging issue in the Seman-
tic Web area. Different to most current distributed ontologies management re-
searches, which focus on ontologies maintenance, evolutions, and versioning, 
this paper proposes a new distributed ontologies management framework based 
on the function-oriented perspective, and its goal is to bring multiple distributed 
ontologies together to provide more powerful capabilities. Ontology mapping is 
the key factor for manage distributed ontologies. This management framework 
also proposes a novel approach to eliminate the redundancies and errors of 
mappings in distributed ontologies. 

1   Introduction 

An ontology is a formal, explicit specification of a shared conceptualization [1]. On-
tology plays critical role for dealing with heterogeneous and computer-oriented huge 
amount data, and has been used popularly in many fields. Especially in recent years, 
the rapid development of Semantic Web [2], which aims at providing high quality 
intelligent services on the Web, promotes the researches and applications of ontology 
greatly. 

Usually, the ontologies are distributed, and produced by different community. 
These reasons cause ontologies are frequently heterogeneous, that has been the major 
difficulty to develop distributed applications based on ontologies. Integration and 
mapping are the two popular methods to solve these problems. Whereas, integrating 
ontologies is not only time-consuming and laborious, but lacks of automatic approach 
to support. It is difficult to keep consistent with changes of ontologies. Therefore, 
integration is unsuitable for handling distributed and dynamic ontology-based applica-
tions. Mapping just realizes the ontology interoperability by finding communication 
rules between ontologies. However, the number of mappings between distributed 
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Research Foundation for the Doctoral Program of Higher Education of China (20020286004), 
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ontologies may be large, and their forms may be complex too. It faces the problem of 
how to organize mappings reasonably. Managing distributed ontologies reconciles 
multiple ontologies through collecting useful ontologies and organizing mappings 
between ontologies. Additionally, when mappings are introduced into distributed 
ontologies, the semantic balances in each original ontology would be destroyed 
meanwhile. Unexpected redundancies and clashes may appear in the whole distrib-
uted ontologies. So it is very necessary to refine redundancies and clashes to keep 
distributed ontologies sound and simple. 

This paper presents a distributed ontologies management framework: FOMOM. 
Different to most existing works, which focus on evolutions and versioning [3-4], 
FOMOM focuses on how to exploiting the potential power of multiple ontologies. 
Additionally, FOMOM also can refine the mappings between distributed ontologies. 

The paper is organized as follows: Section 2 presents the management framework. 
Section 3 discusses refinement method in distributed ontologies. Conclusions are 
given in Section 4. 

2   A Framework for Managing Distributed Ontologies 

Usually, traditional ontology managements are two-layer: ontology repository layer 
and application layer. Such architecture is too coarse for multiple ontologies man-
agements, and the functions provided by multiple ontologies are embedded into the 
concrete applications. We designed a distributed ontologies management framework 
FOMOM with five-layer architecture as shown in Fig. 1. Through organizing map-
pings, the framework reconciles multiple ontologies soundly, and provides flexible 
and powerful services for applications. 

 

Fig. 1. The architecture of FOMOM 

Ontology repository layer. This layer collects and stores the ontologies harvested 
from different ways. 

Ontology representation layer. There are many different Ontology languages on the 
Web, such as OWL, DAML+OIL and Ontolingua. Besides the different in syntax, 
ontology languages may be based on different logic model, such as Frame Logic and 
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Description Logic. Translating ontologies into a unified internal representation is 
necessary. 

Definition 1. An ontology is a six-tuple O=(C,AC,R,AR,H,X), where C is a set of con-
cepts; AC is a attribute sets about concepts; R is a set of relationships; AR is a collec-
tion of attribute sets about relationships; H represents a concept hierarchy; and X is 
the set of axioms. 

Bridge ontology layer. To use the distributed ontologies efficiently and to avoid the 
ontology integration, we use bridge ontology to describe the communications between 
multiple ontologies. Bridge ontology is a special ontology, and can represent 12 kinds 
of mappings about the concepts and relations between ontologies [5]. The bridges 
between concepts include nine kinds: Cequal, Cdiffer, Cisa, Cinstanceof, Coverlap, 
Chasa, Ccover, Copposed and Cconnect. The bridges between relations include Rsub-
sume, Rinverse and Rcompose. In this layer, we use the methods in [6-7] to generate 
mappings between ontologies. 

Multiple ontologies function layer. Distributed ontologies management should pro-
vide some general functions. First, bridges in bridge ontology should provide many 
simple and complex ontology mappings. Secondly, it should provide reasoning ser-
vices across different ontologies. Thirdly, it should provide the services including the 
transformation and rewriting of querying expressions. Fourth, the services that inte-
grating multiple ontologies and extracting the required sub ontology from multiple 
ontologies should be provided [8]. 

Multiple ontologies application layer. We use multiple ontologies to provide more 
detailed semantic data for the Semantic Web applications, and the method can avoid 
the problems of finding right ontology or building new one [9]. 

3   Refining Distributed Ontologies 

3.1   Analyzing and Dividing the Refining Problems 

Seven kinds of mapping: Cequal, Cias, Cinstanceof, Chasa, Ccover, Rsubsume, and 
Rsubsume are transitive relationships. Other kinds of mappings are not transitive and 
cannot cause reasoning failure and semantic redundancies. Because Cinstanceof is 
reverse to Cias, and can be translated to the Cias mappings, so the operation about the 
Cinstanceof mappings is similar to the Cisa mappings’. We can use the similar 
method of refining Cisa to deal with Chas. The way to solve relation mappings is 
similar to the concepts’, and Rsubsume is similar to Cisa. We only focus on Cequal, 
Cisa, Ccover mappings, which is suit to other mappings too. 

3.2   Mathematical Model 

We use a graph to represent the concept direct inherited relations of an ontology. To 
keep the semantic integrity of the multi-ontologies graph, we add a global concept 
Thing, and every top concept in original ontology is the direct child of Thing. 
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Definition 2. The multi-ontologies direct inherited graph is denoted with G=(C,E), 
where C is the set of concepts; E is set of direct inherited edges. If

1 2
( , )c c E∈ , c1 is 

the direct child of c2. 
A matrix n nU × is used to describe all edges of graph G, where n=|C|. All concepts in 

C are numbered form c1 to cn. The values of Uij is: 

1 ( , )

0 ( , )i j

i j E
U

i j E

∈
=

∉

Before any mapping is imported, U only has the direct inherited relations in every 
original ontology, as Fig. 2 (a) shown, where [Oi] denotes all direct inherited relations 
in the i-th ontology. 

1) Importing global concept Thing 
Every top concept in ontologies is the direct child of Thing, and the intersections of 

the top concepts and Thing in U are filled with 1. Matrix U becomes ( 1) ( 1)n n+ × + as 

Fig. 2. (b). 
2) Importing the Ccover mappings 
The Ccover mappings will cause some new concepts added to the graph G. 
Given a mapping 1 2 1 2(( , , ..., ), ( , , ..., ))cover m nB a a a b b b , where 1 | |m C≤ ≤  and 

1 | |n C≤ ≤ , we will discuss four different processes according to different values of m 

and n as follows. 
(1) 1m n= = . The Ccover mapping degenerates to Cias mapping. 
(2) 1m = , 2n ≥ . We add a new concept cp in C, and its semantic meaning is 

1
i

i n
b

≤ ≤
U . 

Meanwhile, new edges 1 i n∀ ≤ ≤ , ( , )i pb c E∈  and 1( , )pc a E∈  are added to G . 

(3) 2m ≥ , 1n = . We add a new concept cq in C, its semantic meaning is
1

i
i m

a
≤ ≤
U . 

Meanwhile, new edges 1 i m∀ ≤ ≤ , ( , )i qa c E∈ , 1( , )qb c E∈ and ( , )qc Thing E∈ are 

added. 
(4) 2m ≥ , 2n ≥ . We add two new concepts cp and cq to graph G, and add the new 

edge ( , )p qc c E∈  and all new edges in the situation (2) and (3) to graph G  as well. 

 

Fig. 2. The changes of matrix U in the introduction of mappings 



 Manage Distributed Ontologies on the Semantic Web 1051 

3) Importing the Cias mappings 
Cias mappings do not change the concepts, but add the direct inherited edges to 

graph G. We use Eij to denote all direct inherited concept relations as Fig. 2. (d). 
4) Importing the Cequal mappings 
A Cequal mapping declares two concepts is synonym. Two concepts in a Cequal 

mapping should be removed one. In Algorithm 1, all semantic information of cl is 
transferred to ck. 

3.3   Semantic Checking 

Graph G should keep semantic consistency. If the cycles appear in graph G, the rea-
sons may be the following two. (1) Healthy cycles. The concepts or relations in cycle 
are equal. We can use Algorithm 1 to delete redundant ones. (2) Ill cycles. The se-
mantic conflicts may exist in the original ontology and bring about semantic error 
cycles. No algorithm can judge whether cycles are ill or healthy. Therefore, the man-
ual interactions are needed. 

3.4   Semantic Refinement 

We should assure that every direct inherited relation in graph cannot be inferred from 
other direct inherited relations, that assures the graph is semantic irredundant. Our 
aim is refining graph G after mappings are introduced, which must satisfy two goals: 
(1) The graph G is irredundant; (2) The refining operations do not change the connec-
tivity of graph G. 

Definition 3. Minimal graph is denoted with ( , )
min min

G C E= , for ( , )x y minc c E∀ ∈ , there not 

exist a directed path 1( , ,..., , )xy x s yp c a a c= , where 0s > , 1 1i s≤ ≤ − , 

1 1( , ),( , ),( , )x s y i ic a a c a a E+ ∈ . 

If path 1( , ,..., , )xy x s yp c a a c=  exists, we call it the substitute path of edge ( , )x yc c . 

Definition 4. ' ( , ')G C E=  is the equivalent connective graph of G=(C,E), iff 

,x yc c C∀ ∈ , if G has a directed path ( ,..., )xy x yp c c= , then 'G  must has a directed 

path from xc  to yc  too. 

Definition 5. If ' ( , )'
min minG C E=  is minimal graph, and is equivalent connective gra- 

ph, we call ' ( , )'
min minG C E=  is minimal equivalent connective graph of G=(C,E). 

The goal of the refinement is to seek for the graph ' ( , )'
min minG C E= . 

Algorithm 1. Reducing synonym concepts 
For each mapping Cequal(ck, cl), ck and cl is corresponding to the k-th and l-th row and 
column of matrix U  respectively. 

Step1. Uki=Uki+Uli, where 1 i U≤ ≤ , if the result 0kiU > , let Uki=1. Delete the l-th row. 

Step2. Uik=Uik+Uil, where 1 i U≤ ≤ , if the result 0ikU > , let Uik=1. Delete l-th column. 

Next mapping 



1052 P. Wang et al. 

From the Definition 3, 4 and 5, we have the following three obvious conclusions: 

Conclusion 1. Deleting all edges having substitute paths in G can get ( , )min minG C E= . 

Conclusion 2. For a edge ( , )x yc c E∈  in G=(C,E), if it has a substitute 

path 1( , ,..., , )xy x s yp c a a c= , we can infer there is more than one directed path from xc  

to yc . 

Conclusion 3. Delete all direct inherited edges having more than one directed path 
from cx to cy in G=(C,E), we can get the minimal graph ( , )min minG C E= . 

Then we discuss methods of finding all edges having substitute paths in graph as 
follows. 

Let matrix U denotes all edges in G, and 1n nU U U−= × , where 2n ≥  and 
1U U= . 

Theorem 1. ,i jc c C∀ ∈ , k
ijU  denotes that the number of paths with k length from ci 

to cj. 
According to Theorem 1, U1, … , Un denote the number of paths, whose length is 

1,2,...,n . 

Let matrix 
2

n
k

k

W U
=

= , we compare W with U. According to Conclusion 2, if 

( , )i jc c  have substitute paths, that equal to 1ijU =  and 1ijW ≥ . 

Definition 6. If a direct inherited edge has substitute paths, we call it deleting edge. 
All deleting edges compose the deleting edge set Ed, 

{( , ) | ( , ) 1}d i j i j ijE c c c c E and W= ∈ ≥ . 

Definition 7. If (cm, ck) has substitute path 1 1( , ,.., , , , ,.., , )mk m p x y q kp c a a c c b b c= , 

where 0p > or 0q > , 1 1( , ),( , ),( , ),( , )m p x y q kc a a c c b b c E∈ , and for 1 1i p≤ ≤ − , 

have 1( , )i ia a E+ ∈ , for1 1j q≤ ≤ − , have 1( , )j jb b E+ ∈ . Meanwhile, ( , )x yc c is a part of 

pmk, denote with ( , ) ( , )x y m kc c c cp . 

Theorem 2. Relation p  is irreflexive, asymmetric and transitive. 

Definition 8. Eb is the bottom edges set in Ed, 
{( , ) | ( , ) ( , ) , ( , ) ( , )}b i j i j d x y d x y i jE c c c c E c c E and c c c c= ∈ ¬∃ ∈ p . x d bE E E= −  is the unbot-

tom edges set in Ed under the relation p . 
Obviously, 1( , ,..., , )xy x s yp c a a c= is composed by the set: 

1

1 1
1

{( , ) {( , ) ( , )}
s

p x i i s y
i

E c a a a a c
−

+
=

= U U . 

Theorem 3. If ( , )x y dc c E∈ , must have a substitute path 1( , ,..., , )xy x s yp c a a c= , 

where 0s > , 1 1i s≤ ≤ − , and every edge in the path dE∉ . 
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Proof: 
(1) ( , )x y bc c E∈ , the theorem is valid obviously. 

(2) ( , )x y xc c E∈ , it must has a substitute path 1( , ,..., , )xy x s yp c a a c= , pE is the set of 

edges in the path. Algorithm 2 constructs such a substitute path. xyp  must exist. 

From (1) and (2), theorem 3 is proved.  

Algorithm 2. Construct the substitute path 

Input: xyp and its composing edges pE , edges in pE are stored in turn from xc  to 

yc . 

Step1. For each edge ei in xyp  

Step2. If i be E∈ , must has a substitute path Pl, all edges in Pl ∉  Ed, use the 

edges of Pl to substitute ie  in turn, go to Step 5. 

Step3. If i xe E∈ , must has a substitute path Pm, using the edges of Pm to substi-

tute ie  in turn. Return to Step2. 

Step4. If i be E∉  and i xe E∉ , go on to Step 5. 

Step5. Next edge 

Output: In the new substitute path
'
xyp , all edges dE∉ . 

Theorem 4. After delete all edges in Ed, ' ( , ')G C E=  is the equivalent connective 

graph of the original graph ( , )G C E= . 

According to the Conclusion 3 and Theorem 4, we can conclude that: after delete 
all edges Ed in ' ( , ')G C E= , it is the ' ( , )'

min minG C E=  of ( , )G C E= . 

We complete the semantic refinement for multi-ontologies with mapping ontology. 
All the steps in our methods have constant time complexity obviously. So our method 
has high efficiency and is feasible. 

4   Conclusions 

Managing distributed ontologies is a challenging issue. This paper proposed the 
FOMOM framework for managing distributed ontologies to bring these ontologies 
together for providing more powerful capabilities. The framework also proposes a 
novel approach to eliminate the redundancies and errors of mappings in distributed 
ontologies. 
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Abstract. Next-generation network (NGN) is a new concept and becoming 
more and more important for future telecommunication networks. This paper 
illustrates five function layers of NGN architecture and discusses some end-to-
end QoS (quality of service) issues for NGN (called NGNQoS). The five 
function layers are: (1) Application Layer that supports SIP protocol; (2) 
Network Control Layer that aims at overcoming the bottleneck problems at 
edge nodes or servers for end-to-end admission control; (3) Adaptation Layer 
that supports different network configurations and network mobility; (4) 
Network Transmission Layer that provides end-to-end QoS control for real-time 
communications through integrating Differentiated Service (DiffServ) and 
Multi-Protocol Label Switching (MPLS) and (5) Management Layer that 
provides Web-based GUI browser for data presentation, monitoring, 
modification and decision making in NGN. 

1   Introduction 

Next-generation network is a new concept commonly used by network designers to 
depict their vision of future telecommunication networks. Various views on NGN 
have been expressed by network operators, manufacturers and service providers. 
NGN seamlessly blends the end-to-end QoS into the public switched telephone 
network (PSTN) and the public switched data network (PSDN), creating a single 
multi-service network, rather than a large, centralized and proprietary infrastructure. 
Next-generation network architecture pushes central functionality to the edge of the 
network. The result is a distributed network infrastructure that leverages new, open 
technologies to reduce the cost of market entry dramatically, increase operational 
flexibility, and accommodate both circuit-switched voice and packet-switched data 
services. The integrated services will bring communication market billions of 
incomes, however, the R&D for NGN still lack behind the actual demands of the 
society [1]. On the other hand, the architecture of the Internet and IP-based networks 
is rapidly evolving towards one where service-enablement, reliability and scalability 
become paramount. 

Dynamic IP routing supported by routing protocols such as OSPF, IS-IS and BGP 
provides the basic internetworking function while confronting the dual challenges of 
larger scale and faster convergence. Many providers are looking to a converged 
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packet switching network (PSN) based on IP/MPLS. The transport layer protocols 
including TCP and SCTP continue to be an area of active research as developers seek 
optimal application throughput and resilience. IP QoS defined by IntServ and 
DiffServ continues to evolve and interesting efforts are underway to enhance QoS 
signaling for both wired and wireless networks. 

The challenges and opportunities associated with a fundamental transformation of 
current networks toward a multi-service ubiquitous infrastructure with a unified 
control and management architecture have been discussed in [2], which presented the 
outline of the fundamental reasons why neither the control infrastructure of the PSTN 
nor that of the present-day Internet is adequate to support the myriad of new services 
in NGN. Although NGN will inherit heavily from both the Internet and the PSTN, its 
control and management architecture is likely to be radically different from both, and 
will be anchored on a clean separation between a QoS-enabled transport/network 
domain and an object-oriented service/application domain, with a distributed 
processing environment that glues things together and universally addresses issues of 
distribution, redundancy, and concurrency control for all applications.  

This paper presents NGN architecture and discusses the layered end-to-end QoS 
control for NGN. In Section 2, a survey for NGN is given and the five function layers 
of NGN are illustrated in Section 3. Some end-to-end QoS issues in NGN are 
described in Section 4 and we conclude in the final section. 

2   Survey of NGN: Research and Development 

Telcordia Technologies in NJ, USA proposed next generation networks that support a 
variety of communication services (data, video, and voice) seamlessly [4]. Customers 
will demand that these networks be highly reliable as there will be more and more 
traffic and services. Because of the historically exceptional reliability of wireline 
voice telephony, the reliability of voice services supported by NGN necessitates 
special attention in order to achieve the customer satisfaction of the service. 

In South Koera, KT is considering the installation of NGN backbone network. QoS 
discussions on whether the IP router satisfies the forthcoming NGN customers who 
use basic application of NGN still remain. QoS values as packet delay, packet loss 
and jitter are measured and analyzed at the KT-NGN test bed, and are compared with 
the ITU-T QoS recommendation values [5]. 

Some German companies discuss QoS from a somewhat unconventional point of 
view and argue that high availability is a key ingredient in QoS perceived by the user. 
High availability with extremely short interruptions in case of failure is needed for 
acceptable QoS in real-time dialog services such as telephony or video conferencing 
and an even distribution of the traffic load over the network is essential to ensure the 
efficient network utilization given that some kind of admission control for QoS traffic 
has to be in place for overload avoidance [9]. 

Alcatel (France) proposes the NGN multimedia network structure and its business 
model with four players involved in charging: access provider, connection provider, 
telecommunication service provider, and value-added service provider. Often 
charging components must be correlated to create a clear postpaid bill and ensure 
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correct treatment of prepaid accounts, as well as settlement between the providers 
involved. If charging is to remain a prime competitive tool in next-generation 
networks, it must be functionally intelligent and flexible, and able to optimize 
network operator and service provider revenues while providing a fair policy toward 
the end users [10]. 

In UK, next generation IP-based networks that offering QoS guarantees by 
deploying technologies such as DiffServ and MPLS for traffic engineering and 
network-wide resource management have been proposed. An ongoing work towards 
inter-domain QoS provisioning is presented [16].  

The basic issue of NGN trials on Russian public networks is interoperability testing 
of foreign equipments that are adapted to Russian network, domestic NGN system 
SAPFIR. Results of these NGN trials will be used for the development of the “NGN 
Evolution Concept” for Russian public networks [17]. 

3   Overall NGN Architecture 

NGNQoS can be described from five function layers: (1) Application layer that 
contains the typical middleware for authorization, accounting, directory, search and 
navigation for millions of users; (2) Network control layer aims at overcoming the 
bottleneck problems at edge nodes or servers and it is composed of a series of control 
 

 Fig. 1. NGN Network Architectures 
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agents for admission control, call setup and end-to-end QoS control through available 
bandwidth detection, local information control, class priority and intelligent 
scheduling. Multicast and anycast group managements will be implemented to 
leverage the load for admission control or service/message distributions; (3) 
Adaptation layer that supports different network configurations and network mobility. 
This layer can provide soft switching between different networks on different levels 
such as IPv4, IPv6, ATM, Ethernet, WLAN, WMAN and 3G networks. It supports 
both packet and circuit switching and provides interconnection between the two 
switching networks; (4) Network Transmission Layer that provides the effective end-
to-end QoS control for real-time requests and flows through integration of 
parameterized QoS control and class priority control. This is particularly important to 
resolve the bottleneck problems such as multi-path routing that enables the multiple 
choices for the path and anycast routing that enables the selection from different 
(replicated) servers and (5) Management layer that provides Web-based GUI browser 
and wireless connection information such as the data access using XML and Web-
based visualization for data presentation, monitoring, modification and decision 
making in NGN. The IP telecommunication network architecture and software layer 
architecture are shown in Fig. 1 (see http://www.huawei.com) in which Bearer 
Control Layer and Logical Bearer Network perform network control together. 

4   Layered End-to-End QoS 

This section describes the details of each layer and their functions for layered end-to-
end QoS control. Note that we do not intend to give all the functions for NGN layers 
but give some important QoS issues and introduce our designs and algorithms. 

4.1   Application Layer: SIP 

Application layer contains typical middleware for authorization, accounting, 
directory, browser, search and navigation for millions of users. Web services have 
been discussed extensively; however, there are not many discussions about end-to-end 
service on the NGN architecture, especially with mobility and multimedia 
transmission supported. In this subsection, we only focus on a prototype that can 
provide wired and wireless QoS service using Session Initiation Protocol (SIP) [11].  

SIP is an application layer signaling protocol which is used for managing 
multimedia sessions among different parties. The principle role of SIP is to set up 
sessions or associations between two or more end users. Initiated Sessions can be 
used to exchange various types of media data using appropriate protocols such as 
RTP, RSTP. Currently, SIP is able to set up a call carrying the information of a more 
detailed multimedia session using protocols such as the Session Description Protocol 
(SDP) [21]. By using adaptive protocol, the selection mechanism is achieved through 
applying the most suitable protocol for end user devices during communication 
without any interruption and disconnection [22]. The SIP implementations in 
application layer may integrate both wired and wireless networks based on NGN 
architecture.  
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Fig. 2. SIP based end-to-end multimedia transmission system 

 
Little work is done to enable end-to-end QoS multimedia transmission over hybrid 

of wired and wireless networks with SIP. Based on SIP, we have implemented an 
end-to-end multimedia transmission system, called AnyServer, for real time and non-
real time video/audio communications, as shown in Fig. 2. To achieve SIP based end-
to-end multimedia transmission, SIP is not only used for call setup signaling, but also 
carries information for session establishment in adaptive protocol selection 
mechanism. SIP carries an SDP packet describing an audio or video session, 
indicating supported communication protocols and end terminals’ capabilities. To 
select the most suitable protocol for adapting different situations intelligently during a 
communication, data buffering service is also provided. In this way, end users can 
communicate with the others at their best acceptable QoS level. Currently, we are 
integrating AnyServer with NGN to provide multi-point end-to-end QoS applications 
such as video conferencing. QoS requirements of applications and session IDs are 
used for user identification of multi-parties communication in video-conferencing. 
Four major functional components of the current system are User Agent in client 
device, SIP Proxy Server, Database Server and Agent Server to form the 
heterogeneous wireless and Internet services [15, 22]. 
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4.2   Network Control Layer 

Network control layer is composed of a series of control agents for distributed 
admission control (DAC), call setup and end-to-end QoS control through available 
bandwidth detection, local information control, class priority and intelligent 
scheduling. We discuss this layer based on the following functions: 

(1) Traffic classification for incoming requests: This function is performed by 
scheduler agents that examine the legal incoming requests and make classifications. 
The classified traffic will be processed through admission control agents (or the 
admission nodes). To avoid any unnecessary delay, the scheduler and the admission 
control agents normally reside on the same site. By this approach, the Internet and 
telecommunication tasks can be classified and treated properly as detailed in the end-
to-end QoS design. 

(2) Admission control: We have designed admission control algorithms which 
perform bandwidth detection and connection control. Bandwidth detection enables the 
approximate network resources to be detected in case that the networks are managed 
by different administrators or involved in heterogeneous networks. Based on the 
available bandwidth detection and class priority for incoming requests, our distributed 
admission control algorithms can enhance the scalability and admission probability. A 
cooperative distributed approach can be implemented at some board NGN admission 
nodes and we give a brief discussion of admission control algorithm for anycast flows 
[6] below. 

Anycast flow is a flow which may connect to any destination in a target group. We 
consider anycast flow as a general flow concept because the anycast flow may be a 
unicast flow if the group only has one destination or multicast flows when the flow 
must be sent to every destination in the group. We first consider the destination 
selection issue. Destination selection determines which destination the anycast flow 
should be sent to. A good selection will bring a better chance for the flow to be 
admitted. We propose several weight assignment algorithms based on available 
information such as route distance and available bandwidth. Different status 
information surely impacts differently on the network performance in terms of 
admission probability, overhead, and compatibility as illustrated below: 

(1) Weighted destination selection based on the static route distance information 
[6, 20]: The admission control routers/servers may apply even weight assignments for 
the destination selection if none of the information is available. The length of the 
route may be easily obtained via current routing protocols [18, 19]. The differences of 
route distances reflect the different resource consumption by the anycast flow. 
Intuitively, the flow to destinations with shorter distances will consume less 
bandwidth and fewer resources. Hence a smart destination selection algorithm should 
prefer destinations with short route distances.  

(2) Weight assignment based on local admission history: The local admission 
history may be defined as a log that records the successfulness of selecting individual 
destinations in admission control. Let Hi record the number of the continual failures 
in the most recent admission history. For example, Hi = 3 implies that for the last 
three times when destination i was selected in admission control process, there was 
insufficient bandwidth and resource reservation. We proposed a destination selection 
algorithm to combine both route distance and local admission history information and 
the admission probability is expected to be higher than that of some static algorithm. 
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(3) Weighted Assignment based on available bandwidth: Local admission history 
may not accurately reflect the network dynamic status. We may also use available 
bandwidth detection for admission control. Resource Reservation can be made by 
some standard protocols such as RSVP [12] or by checking the availability of link 
bandwidth along the route based on the approach illustrated before. We have extended 
our anycast admission control protocol [3, 6] to include the available bandwidth 
information. 

4.3   Adaptation Layer 

This layer provides soft-switching between different networks on different levels such 
as IPv4, IPv6, ATM, Ethernet, WLAN, WMAN or 3G networks which support both 
packet and circuit switching. The layer can be divided into the following major 
functions: 

(1) Soft switching between IPv4 and IPv6 using tunneling techniques carried out 
by edge routers of the subnet between the networks. 

(2) ATM convergence sub-layer merges the ATM cells to IP packets (which may 
be used by WLAN and WMAN networks). 

(3) Soft switching between ITU H.323/H.324 protocols to handle the circuit/packet 
switching. 

We have efficiently implemented the 3G-324M protocol stack for 3G wireless 
communications [7]. Fast transformation between circuit switching networks to 
packet switching networks is under development. We are currently designing some 
new algorithms for the connections of heterogeneous wireless networks such as 
WLAN, WMAN and 3G networks. 

4.4   Network Transmission Layer 

In this layer, we focus on the discussions of Differentiated Service and Multi-Protocol 
Label Switching and the related end-to-end QoS issues. 

Differentiated service. Differentiated Service architecture achieves scalability by 
aggregating traffic classification state. Packets are classified and marked to receive a 
particular per-hop forwarding behavior on nodes along their path. Sophisticated 
classification, marking, policing, and shaping operations only need to be 
implemented at network boundaries or hosts. The major advantage of DiffServ is 
that the Internet flows can be differentiated from the telecommunication flows by the 
board routers that may deal them with different QoS requirements. This is 
particularly useful for NGNQoS. We designed some special devices called network 
mapping (NM) that maps user’s QoS requirement into service level agreements 
contract between customer and Internet service provider (ISP). The admission 
control can also be integrated with DiffServ architecture for the end-to-end QoS 
solutions. Fig. 3 shows the block diagram of a classifier and traffic conditioner. Note 
that a traffic conditioner may not necessarily contain all the four elements. For 
example, in the case where no traffic profile is in effect, packets may only pass 
through a classifier and a marker. 
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Fig. 3. Logical View of a Packet Classifier and Traffic Conditioner 

To achieve the scalability and QoS for the DiffServ flows, we have designed a 
generalized regulator to provide an adaptive traffic control mechanism for very high 
rate real-time aggregated flows, especially, for those traffic that have been marked as 
red. Normally, three classes of traffic flows (green, yellow and red) in DiffServ 
network are defined in [13, 14] and we are interested in the deterministic delay bound 
for the real-time flows which may be marked as red/yellow but have stringent delay 
requirements. The generalized regulator, based on the extended network calculus, is 
developed for the purpose of effective control of high rate flows with QoS 
requirements as detailed in [8]. 

Multi-Protocol Label Switching (MPLS). In MPLS, packets are encapsulated at 
ingress points. The local significant labels, which have short fixed-length, are used in 
the headers of encapsulated packets. The packets are forwarded via Label Switching 
Routers (LSRs) by label swapping. An explicit path for each connection is called 
Label Switched Path (LSP). A reservation protocol is required to establish a LSP 
through a network. MPLS networks provide QoS guaranteed services with a lower 
computational complexity and operational costs, compared with IP networks using 
ATM connectivity structure. The most important advantage of MPLS networks is that 
they can perform the traffic engineering for load balancing, which is able to improve 
the network performance in a long run. Traffic engineering (TE) is in general the 
process of specifying the manner in which traffic is treated within a given network. 
Users usually expect certain performance from the network, which in turn should 
attempt to satisfy these expectations. The expected performance depends on the type 
of traffic the network carries, and is specified in the service level agreement contract 
between customer and ISP. The network operator, on the other hand, should attempt 
to satisfy the user traffic requirements. Hence, the target is to accommodate as many 
traffic requests as possible by optimally using the available network resources. 

4.5   Management Layer 

This layer provides Web-based GUI browser and wireless connection information 
such as the data access using XML. Web-based visualization presentation is critical 
for the management of NGNQoS for data presentation, monitoring, modification and 
decision making. Network management is an indispensable building block in our 
proposed NGN architecture. Effective management of the NGN is becoming the key 
to the successful competition and continued growth. NGN management layer contains 
the management functions relating to QoS, security and network management. There 
are five levels in NGN Management Layer defined as (1) fault-management level, (2) 
configuration level, (3) accounting level, (4) performance level and (5) security level.  



 Next Generation Networks Architecture and Layered End-to-End QoS Control 1063 

Based on a modular concept of element management and domain management, we 
have designed the NGN Management Layer that fully supports day-to-day operation, 
administration and maintenance tasks, network configuration and service provisioning 
(including mass deployment for China Mobile in FoShan). We also plan to integrate 
NGN Management Layer into cross-domain management systems and the business 
processes of the network operators. 

5   Conclusions 

We have discussed some important design issues for the next generation architecture 
and different layers for end-to-end QoS control. The issues of NGNQoS presented in 
this paper are not exhaustive; however, the most functions presented are drawn from 
our design and implementation experiences. We are currently focusing on the 
implementation of cross layer platform of packet switching and circuit switching for 
3G wireless networks. The future work will tackle with the cross layer protocols that 
can harness the heterogeneous networks across Internet, telecommunication and 
wireless networks. 
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Abstract. The viability of overlay multicasting has been established by previ-
ous research. However, in order to apply overlay multicast to Internet-scale dis-
tributed systems, such as the Grid and Peer-to-Peer systems, the issue of effec-
tively enforcing fairness among peers so as to optimize overall performance 
remains as a challenge. This paper argues that simply applying a multiple-tree 
scheme does not provide sufficient fairness, in terms of performance. Instead, 
we believe that a better way to define fairness, for performance’s sake, is to fac-
tor in peers’ proportional contributions as it provides the opportunity to support 
many simultaneous multicasting sessions. This paper then presents a protocol, 
called FairOM (Fair Overlay Multicast), to enforce proportional contributions 
among peers in Internet-scale distributed systems. By exploiting the notion of 
staged spare capacity group and deploying a two-phase multicast forest con-
struction process, FairOM enforces proportional contributions among peers, 
which enables more simultaneous multicasting sessions and alleviates potential 
hot-spots. The simulation results of a large multicast group with 1000 members 
show that FairOM achieves the goal of enforcing proportional contributions 
among peers and does not overwhelm the peers, including the multicast source. 
FairOM also achieves low delay penalty for peers and high path diversity.  

1   Introduction 

In Internet-scale distributed systems, such as the Grid and Peer-to-Peer (P2P) comput-
ing, reliable and efficient data dissemination plays a very important role, with exam-
ples ranging from the massive data delivery in data Grid to multimedia delivery in 
P2P environment. In these systems, overlay multicasting [4, 5, 11] is a better choice 
than IP level multicast for several reasons. First, overlay multicasting does not need 
the support from the network infrastructure. Second, it can be configured on top of the 
application level, thus providing opportunities to capture the semantics of the applica-
tions. And finally, it is easy to use and configure in practice. 

The biggest challenge in applying overlay multicasting to an Internet-scale envi-
ronment, such as the Grid and P2P environment, is to meet the peers’ requirement of 
fairness [3], which stems from the equal status of peers in the distributed systems (in 
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Grid environment, different sites can be treated as equal status peers; in P2P environ-
ment, each node can be treated as a peer). In these environments, no one is supposed 
to contribute dramatically more or less than others.  

The conventional single-multicast-tree structure does not satisfy the fairness re-
quirement as the leaves in the tree have no contribution to the multicast effort while 
the interior nodes contribute all the forwarding bandwidth [3]. To tackle this problem, 
the notion of multicast forest, or multiple multicast-trees, has been explored in several 
studies [3, 9]. A good example of these systems is SplitStream [3], which builds a 
multicast forest and ensures that each peer only serves as an interior node once (as a 
contributor in one tree) on average and is a receiver in all other trees.  

In this paper we revisit the issue of fairness requirement by asking the question of 
how to properly define fairness so as to increase overall performance. Even if we have 
a multicast forest in which each peer contributes some (by being an interior node in 
one multicast tree, for example) and no peer is overwhelmed, is there any chance that 
the multicast is still unfair in the sense that it results in relatively poor performance? 

We argue that simply letting each peer contribute once and satisfying each peer’s 
outgoing bandwidth constraint is not enough for enforcing fairness for the sake of 
performance. A better way to define fairness, we believe, is to enforce that peers’ 
contributions are proportional to their total available outgoing bandwidths, which is 
analogous to taxation or donation. In taxation or donation, it is desirable for people to 
give the same percentage of their available capital as their contributions to the society 
(here, we assume all the people are in the same tax bracket).  

Performance-wise, enforcing proportional contribution provides an environment to 
support multiple simultaneous multicasting sessions that may not otherwise be 
achievable by simply asking every peer to contribute arbitrarily. Consider the follow-
ing example in which peers A and B are both going to multicast a movie and each 
multicast will span all the peers in the network. Suppose that A builds its multicast 
forest first and one peer, C, is assigned to contribute 90% of its outgoing bandwidth to 
it. Then when B tries to establish its multicast forest, chances are that C just does not 
have enough bandwidth to support it because it has contributed too much to the first 
multicast session. In this case, the construction of a forest for B becomes either infea-
sible or, barely feasible by saturating C’s outgoing bandwidth and making C a hot-
spot/bottleneck. In this case, if we instead let each peer contribute roughly the same 
percentage of its outgoing bandwidth, say 20%, then C has a chance to support the 
two multicasting sessions simultaneously.   

Moreover, as alluded to in the previous paragraph, enforcing proportional contri-
bution among peers can reduce the probability of hot-spots. Using the same example, 
if multiple multicasting sessions are forced upon C when it barely has enough band-
width, then C will become a hot-spot of the system and packets will be delayed, or 
worse yet, lost.  

We present a protocol, called FairOM (Fair Overly Multicast), to enforce propor-
tional contributions among peers through a two-phase forest construction process, 
with the assumption that all peers play by the rules. The case where peers may not be 
trustworthy is beyond the scope of this paper and will not be considered any further 
except for a brief discussion in Section 3.7.  

The performance of FairOM is evaluated in a large size multicast group with 1,000 
members through simulations. Simulation results demonstrate that FairOM achieves 
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the goal of enforcing proportional contributions among peers, does not overwhelm 
peers, including the source, has low delay penalty, and achieves high path diversity. 

Before we move on to the next section, it is noteworthy that, in terms of bandwidth 
constraint, we only concern about the outgoing bandwidth for two reasons. First, 
current broadband technologies, such as ADSL, have limited outgoing bandwidth and 
larger incoming bandwidth. Second, each peer should have enough incoming band-
width to accept all the stripes otherwise it cannot benefit from the multicast system.  

We also recognize that, if the network bandwidth is so constrained that all the 
bandwidth is needed, there is no need to concern about the proportionality. However, 
with the proliferation of wireless-enabled laptops and high-speed Internet connec-
tions, we believe that there will be certain amount of excessive bandwidth available 
within Internet-scale distributed systems in the near future that should be effectively 
exploited to benefit the overall performance.  

The rest of the paper is organized as follows. Section 2 formulates the problem and 
section 3 discusses the design of FairOM. The evaluation of FairOM is discussed in 
section 4 and related work is discussed in section 5. Finally, section 6 concludes this 
paper and discusses future work. 

2   Problem Formulation 

We represent each peer’s total outgoing bandwidth as its total contribution capacity. 
Because of the design goal of minimizing the standard deviation of contribution pro-
portions, we make the following three assumptions: 

• Each data package to be multicast is encoded into n equal sized stripes and each 
peer has enough incoming bandwidth to absorb all the n stripes. This is essential 
to successfully build a multicast forest because otherwise the receiver cannot re-
ceive all the stripes no matter what multicast scheme is used.  

• The total available outgoing bandwidth of peers is sufficient to build a forest to 
multicast data to the peers. Again, this assumption is to make the forest building 
feasible.   

• There is excessive outgoing bandwidth in this multicast group. While this as-
sumption is not essential to the correctness of the protocol, it provides the oppor-
tunity to show its advantages. If there is little excessive bandwidth left, all peers 
will have to contribute almost all their capacities, thus reducing to a special case 
of this protocol and making it identical or similar to other schemes. 

Before we state our design goal, let us first formally define several terms with the 
assumption that there are a total of n peers in this multicast group. 

• Ti: Total available outgoing bandwidth for each peer i, or, the maximum number 
of stripes it is capable of forwarding.  

• Ci: The forwarding load of peer i, in term of the number of stripes it is assigned 
to handle.  

• Ri: defined as Ci/Ti, is  the contribution ratio of peer i.  
• StdR: The standard deviation of the contribution ratios (R) of all the n peers.  

That is, 
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A complete multicast forest must satisfy the following two conditions: 

• Multicast satisfaction: each peer should receive all the n stripes. 
• Bandwidth limitation: the forwarding load of each peer i should be less than or 

equal to its total available outgoing bandwidth, or Ci ≤ Ti. 

The design goal is to minimize the standard deviation of all the peers’ contribution 
ratio StdR in a complete multicast forest. 

Goal: minimize StdR. 

3   Design of FairOM 

The basic idea of FairOM is to build a multicast forest in two phases. In the first 
phase, the peers join the multicast group and establish the neighborhood by a pair-
wise neighborhood establishment procedure and use this neighborhood information to 
build an initial multicast forest that may not be complete. In the second phase, a peer 
contacts the source to ask for any missing stripes to make the forest complete. 

FairOM assumes that a new peer knows at least one other member in the current 
multicast group when it joins, implying that FairOM does not directly deal with boot-
strap mechanism. Further, FairOM assumes that all the peers know when the forest 
construction starts and the number of trees they need to join. In practice, the source 
and the peers can exchange this information through web page announcements or 
emails. As well, a peer can learn this information from its neighbors.  

3.1   Establishment of Neighborhood 

After joining the multicast group, a new peer will eventually establish its neighbor list 
by running a periodical neighborhood establishment procedure. In each round of this 
procedure, the peer contacts its neighbors (there is at least one bootstrap neighbor by 
assumption) and checks this neighbor’s neighbor list. If its neighbor’s neighbors do 
not appear in this peer’s own neighbor list, it acts as follows. When its neighbor list is 
not full (each peer defines its length of neighbor list), it puts the new peers into its 
neighbor list. Otherwise, it compares the new peers with the ones already in its 
neighbor list according to the routing latency between the peers and itself. If a new 
peer has smaller latency, this peer replaces a current neighbor by the new one with a 
certain probability (currently we use 0.8) to prevent hot spot. If this peer adds a new 
peer to its neighbor list, it sends a notice to this new peer about this. While not imme-
diately clear here, the purpose of this operation will become obvious later when we 
discuss the staged quota relaxation next. 

In this way, each peer will establish its own neighbor list after a certain number of 
rounds. After that, this periodical process servers as a way to adjust peers’ neighbor 
lists and maintain the neighborhood among peers. 
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3.2   Staged Spare Capacity Group 

Staged spare capacity group is a key data structure in FairOM to enforce proportional 
contributions. Suppose that the spare capacity group has five stages, where each stage 
represents a percentage range of the capacity (e.g., stage 1 represents [0%, 20%], 
stage 2 (20, -40%], etc), then the source will put each of the registered peers into an 
appropriate stage. To illustrate this concept, we consider a simple example as illus-
trated in Figure 1.  

In Figure 1, suppose that peer A has a total outgoing bandwidth of 20 (i.e., it can 
forward 20 stripes of data) and has already contributed 3 units of the total, then its 
current contribution is 15% (3/20). Because A’s contribution is less or equal to 20%, it 
is put into stage 1. B is put into stage 2 because its contribution is in the range (20%, 
40%]. Follow the same criteria, C and D are put in stage 1 and 5, respectively.  

It is worth noting that the source maintains an independent staged capacity group 
for each stripe. So if a peer has contribution for more than one stripe, it needs to regis-
ter the contribution information for each stripe independently.  

 

Fig. 1. Layout of the staged spare capacity group for A, B, C and D while the contributions of 
them are 15%, 25%, 10% and 82%, respectively 

3.3   Phase I: Initial Forest Construction 

Now we illustrate the first phase of the multicast forest construction among all the 
peers. The purpose of the initial forest construction is by no means to build a com-
plete forest. Instead, it servers as a good start and provides a skeleton on which the 
second phase can improve. Because this is a quota-driven system, the system has a 
predefined initial quota. Each peer is willing to contribute as much as it can within 
this predefined quota. 

More specifically, the source first sends all the stripes out, which are then for-
warded to different neighbors to achieve path diversity. For each peer that receives a 
stripe, it forwards the stripe to as many neighbors as it can within the predefined 
quota. If a peer receives multiple transmissions of the same stripe, it picks one and 
rejects others. At this stage, let us assume that a peer picks the parent that notices it 
first. 

When a multicast relationship between a parent and a child has been established 
(the parent picks the child and the child accepts it), the parent and the child both re-
cord this relationship locally. Then both of them start to run a heartbeat checking 
procedure to detect any failure.  
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For each peer, when it receives a stripe and has gotten all the responses from the 
children candidates it picked, it calculates its contribution and registers it to the staged 
spare capacity group by sending a message to the multicast source. 

There is no clear line between the first phase and the second one in a global scale. 
Instead, it is each peer’s own decision on when to start the second phase that we de-
scribe next. 

3.4   Phase II: Making the Forest Complete 

After the forest building process starts, each peer checks with those peers that treat it 
as a neighbor (recall that a peer sends a notice to its neighbor after the neighbor is 
added to its neighbor list in the establishment of neighborhood procedure). If all peers 
it contacts have already gotten some stripes and did not choose it as a child in the 
initial forest construction, it will seek help from the source. Moreover, a peer contacts 
the source anyway if a predefined deadline has passed. 

In the message it sends to the source, the peer indicates the number of times it has 
requested for spare capacity, starting with 1 (the first time). When the source receives 
the message (with number 1), it only looks for parents for this peer in the first stage of 
the spare capacity group by randomly picking one eligible parent which has this 
stripe. Then it calculates what the new contribution for the parent would be. If the 
new contribution ratio is beyond the quota limit of this stage (20% for the first stage), 
the parent’s record is moved from the current stage to the next higher one (stage 2 in 
this case).  
 

 
Fig. 2. Pseudo code for making the forest complete 

Peer: 
  If (current > deadline && has not received all stripes) { 
      num = 1; 
      while (num_of_try <= 5) { 
           send (source,id of all missing stripe, num); 
           wait(waiting_time); 
           if( still has missing stripes) { 
               num++; 
           } else { 
               return success; 
      }} 
      return fail; 
  } 
Source: 
  While (1) { 
    recv(peer, ids of missing strips, num);         
    foreach stripe in missing stripes { 
        // find adoption from stage <= num; 
        parent = find_adoption_up_to(num); 
        if (parent != NULL) { 
         send(parent, peer, id of missing strip); 
         if (parent.contribution > limit of the current stage) 
             move parent to the next higher stage 
  }}} 
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If a parent is found, the parent will receive the adoption request of a potential child 
from the source and then send a request to the potential child that needs to be adopted. 
Thus the peer with missing stripes can get what it wants.  

If the source cannot find a parent in this stage, the peer with missing stripes waits a 
predefined period of time before it starts the next round of request. When the next 
round starts, the peer sends another message that has a request number of 2, which 
tells the source to search for an adoption up to stage 2. However, the source still starts 
to look for adoption from the first stage in a hope to find some new spare capacity 
from smaller contributors. Thus each round provides opportunities for the source to 
find a peer with smaller contribution ratio to adopt. By following this protocol, the 
source relaxes the quota gradually and finally builds a complete forest in which every 
peer is in all trees. A pseudo code of this process is illustrated in Figure 2. 

We need to mention that the delay between each round of requests for spare capac-
ity and the way the source looks for adoption (always starts from the first stages, and 
climbs to higher stages gradually) are essential to the effectiveness of FairOM to 
enforce proportional contributions because they provide an opportunity to utilize 
resource from newly joined smaller contributors.  

3.5   Incorporating Multicast Delay Information into Consideration 

The algorithm discussed so far does not consider multicast delay when it performs the 
forest construction. In this section, we try to minimize the multicast delay of the forest 
by incorporating the delay information into each of the two phases of the forest con-
struction. Here, the delay perceived by a peer in regard to a particular stripe is defined 
as the time delay for it to receive the stripe from the source. Performance-wise, the 
shorter the delay, the better the performance is perceived by this peer.  

In the initial forest construction process, each peer sends its delay information 
along with the message it sends to its neighbors. When a peer receives multiple trans-
missions of the same stripe, it picks the one with the smallest delay and drops others. 
Because the dropping process is based on delay, it will not create cycles as proved 
informally by following example. 

Consider three peers A, B and C. Suppose that Peer A chooses B as parent, B 
chooses C as parent, and C chooses A as parent. In this case, the delay Da of A is lar-
ger than delay Db of B, that is, Da > Db. Similarly, we have Db > Dc and Dc > Da, 
implying that Da > Da, which is impossible. Thus the scheme to incorporate delay 
information is cycle free. 

In the second phase of the forest construction, when a peer requests missing stripes 
from the source, the source chooses several parents for this child (we current use three 
parents) and the child chooses the parent that gives it the smallest delay.  

3.6   Handling Peer Join and Departure 

When a peer joins the multicast group after the forest has been built, it first estab-
lishes its neighbor list by following the neighborhood establishment procedure. Then 
it seeks for adoption from its neighbors. Upon receiving this request, a neighbor 
grants the request if this adoption will still keep itself in the same stage in the spare 
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capacity group. Otherwise, it rejects this request. If no neighbor is willing to adopt the 
new peer, it contacts the source for spare capacity. 

In the case of peer departure, we differentiate two kinds of departures: decent depar-
tures and failures. For a decent departure, the departing peer notifies its multicast par-
ents and children so that the parents can reclaim their contribution and its children can 
start seeking for adoptions by first contacting their neighbors and then contacting the 
source if none of their neighbors grant their requests. In the case of a failure, this failure 
will eventually be discovered by the heartbeat checking procedure which is run between 
each pair of multicast parent and child. After the failure is discovered, the failed peer’s 
parents and children can react accordingly, similar to the case of a decent departure. 

3.7   Discussions 

Stress Put on the Source: In FairOM, the source is leveraged to manage the spare 
capacity group. One concern of this is the stress put on the source. We have consid-
ered two possible solutions to reduce such stress, but neither of them is completely 
satisfactory. 

The first solution uses a source pool that includes several servers to share and dis-
tribute the burden of the source. While this scheme is simple, it assumes that the other 
peers in the pool are as trustable and stable as the source, which is not usually the case 
in a dynamic environment such as P2P. The second solution assigns several peers the 
same responsibility and uses Byzantine protocol to make the final decision and pre-
vent cheating. However, this design complicates the system substantially. 

The Security Issue: With the assumption that the peers are trustworthy, FairOM 
performs well and finally builds a fair-sharing multicast forest. However, when some 
peers do not work within the rule and cheat on their contributions, the multicast forest 
would not be fair any more. To prevent this from happening, distributed audit mecha-
nism, as proposed by Ngan et. al [8], can be deployed to detect cheating and remove 
the peer that cheats from the multicast group. 

4   Performance Evaluation 

In order to best evaluate the system performance, we choose the Transit-Stub model 
[10] to simulate a physical network. The Transit-Stub model generates 1452 routers 
that are arranged hierarchically, like the current Internet structure. Then we generate 
1,000 end nodes and attach them to routers randomly with uniform distribution. Fur-
ther, our simulator models peers’ bandwidths by assigning each peer a number that 
refers to the maximum number of stripes it can forward, which serves as the peer’s 
total outgoing bandwidth. For all the simulations, each peer’s total outgoing band-
width is randomly chosen between 10 and 20. 

4.1   Effectiveness of Enforcing Proportional Contributions 

We measure the effectiveness of enforcing proportional contribution by StdR, the 
standard deviation of the peers’ contributions. In this simulation, we run three con-
figurations with numbers of stripes being 2, 4 and 8, respectively.  
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In all the simulations, the algorithm satisfies the requirement to build a complete 
forest and satisfies all peers’ bandwidth constraints. Then the mean value and StdR 
are calculated and summarized in Table 1. This result clearly shows that FairOM 
performs very well when we change the number of stripes from 2 to 8.  

 
Table 1. Mean and Std of contribution ratios 

Statistics FairOM (2) FairOM (4) FairOM (8) 
Mean 0.131 0.257 0.521 
StdR 0.047 0.090 0.106 

4.2   Improvement on the Feasibility for Multiple Simultaneous Multicasting  
Sessions 

In this section, we qualitatively argue the effectiveness of FairOM in terms of improv-
ing the feasibility for multiple simultaneous multicasting sessions as follows. 

Because we assume that each multicast session needs to span the whole network, 
the feasibility of scheduling multicasting session is determined by the weakest peer in 
the network. Here, the weakest peer refers to the peer that has the least available out-
going bandwidth when a new multicasting session starts. When its available outgoing 
bandwidth is not enough to support one stripe, scheduling of that multicasting session 
becomes infeasible.  

We consider two schemes, the SplitStream-like systems, and FairOM. In Split-
Stream-like systems, when the weakest peer contributes more in one session, it can 
render the scheduling for additional sessions infeasible. While in FairOM, it enforces 
that when each new multicast session is scheduled, the contribution ratio of each peer 
increase proportionally, which implies that the more powerful peers will contribute 
more to support the multicast, thus leaving enough bandwidth at the small peers’ side 
for them to support more simultaneous sessions.  

4.3   Forest Construction Overhead 

To evaluate the overhead of the forest construction in FairOM, we use the number of 
messages received by each peer during the forest construction phase. In the relevant 
literature, this metric is also denoted as “node stress”. 

In a typical run, all the peers, except the source, have node stress less than 300. 
The node stress for the source is 6585. While 6585 appears extremely high compared 
with other nodes’ stress, it is amortized during the whole forest construction and does 
not induce much bandwidth cost for the source as shown in the following analysis. 

In that particular run, the time of the forest construction was 192 seconds. Let us 
conservatively assume that each packet is of size 1KB, which is much larger than is 
really needed for the purpose of forest construction according to our experience. 
These 6585 messages amount to a total size of 6.6MB and receiving these packets in 
192 seconds requires a bandwidth of 34.4KB. There is even less data sent out from 
the source during the forest construction phase (because certain messages, such as 
spare capacity registration, do not require response but account for a large portion of 
total messages received by the source). So this should not be a burden for a media 
server that usually has high-speed Internet connection. 
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Fig. 3. Cumulative distribution of delay for peers 

4.4.   Multicast Performance 

Figure 3 shows the cumulative distribution of peers’ delay in a typical run with 4 
stripes. In this figure, a point (x, y) indicates that a fraction y of all the peers have 
delay less than or equal to x. In this simulation, all peers receive all the stripes 
within 8 seconds and the average delay is 4.1 seconds. This clearly shows the ef-
fectiveness of incorporating multicast delay information into the forest construc-
tion process.  

4.5.   Path Diversity of the Multicast Forest 

Path diversity refers to the diversity between the paths from each node to the multi-
cast source. Ideally, the paths should be disjoint with each other so that one peer’s 
failure only causes the loss of one stripe for the receiver. While FairOM mainly uses 
randomization to achieve diversity, the enforced delay between quota relaxation re-
quests also contributes to the path diversity because it provides opportunities for a 
receiver to get stripes from different parents. 

In the simulation, we randomly fail one peer (not source, of course) in the multi-
cast group. We run the simulation with two configurations. First, we run FairOM with 
four stripes and then FairOM with eight stripes. The result is shown in Table 2.This 
result validates the effectiveness of the path diversity of FairOM, which successfully 
builds such a forest where one peer’s failure only costs the loss of a small number of 
stripes.  

Table 2. Max, mean and median # of  lost stripes with a single node failure 

Statistics FairOM (4) FairOM (8) 
Max 2 3 
Mean 1.02 1.66 

Median 1 1 
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5   Related Work 

Seminal work such as Overcast [5] and End System Multicast (ESM) [4] builds a 
single multicast tree for a multicast source. While these systems proved the feasibility 
and validity of overlay multicast, the asymmetric nature of tree implies that a single-
tree approach can not satisfy P2P’s requirement of fairness as the leaves in a tree have 
no contribution to the multicast transmissions at all. 

CoopNet [7, 9] uses a centralized mechanism to build multiple trees. To enforce 
fairness, CoopNet uses randomization in the tree construction process. There are two 
main differences between CoopNet and FairOM. First, FairOM utilizes both decen-
tralized initial forest construction and centralized forest improvement while CoopNet 
is based on a purely centralized algorithm. Second, there is no mechanism in CoopNet 
to enforce proportional contributions among peers.  

SplitStream [3] builds a multicast forest in which each peer only serves as an inte-
rior node once, and serves as leaves in all other trees, so is a fair system in the sense 
that each peer contributes once and only once. The main difference between FairOM 
and SplitStream lies in the way fairness is defined. Instead of defining fairness by 
letting each peer that contributes share certain forwarding load, FairOM defines fair-
ness as peers’ contributions being proportional to their total available bandwidths. 
SplitStream also has the concept of spare capacity and uses it as a backup mechanism 
to build a complete forest; however, the spare capacity group in FairOM is staged and 
plays a central role to enforce proportional contribution. 

Bullet [6] is a representative of mesh based multicast protocol, which builds an 
overlay mesh to disseminate data. Comparing with a single-tree based multicast, Bul-
let has the benefit of removing forwarding bottleneck, which helps achieve high 
bandwidth. The philosophy behind Bullet is to exploit excessive bandwidth while the 
primary design goal of FairOM is to enforce fair contribution among peers. 

Recently, Bharambe et. al [2] present the impact of heterogeneous bandwidth to 
DHT-based multicast protocols, such as Scribe, the origin of SplitStream. How-
ever, their work is based on DHT-based multicast while ours on an unstructured 
multicast. 

6   Conclusion and Future Work 

This paper presents the design and evaluation of FairOM, a fair overlay multicast-
ing scheme for Internet-scale distributed systems. Through a two-phase forest 
construction process, FairOM enforces proportional contribution among peers. 
Simulation results show that FairOM achieves this design goal and puts low node 
stress to all the peers. Furthermore, it achieves path diversity which makes it ro-
bust to node failure.  

In the future, we plan to investigate mechanism to reduce the source’s heavy duty 
and investigate the security issues. Finally, we plan to make this forest adaptive to the 
dynamic changes of bandwidth after it is initially built. 



1076 Y. Lu, H. Jiang, and D. Feng 

Acknowledgements 

This work is partially supported by the National Basic Research Program of China 
(973 Program) under Grant No. 2004CB318201. 

References 

[1] Planet-Lab, http://www.planet-lab.org 
[2] R. Bharambe, S. G. Rao, V. N.Padmanabhan, S. Seshan, and H. Zhang. The impact of 

heterogeneous bandwidth constraints on DHT-based multicast protocols, In IPTPS’05, 
2005  

[3] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh. Split-
stream: High-bandwidth multicast in cooperative environment. In Proc. of the SOSP, Bol-
ton Landing, New York, USA, October 2003. 

[4] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system multicast. IEEE 
Journal on Selected Areas in Communication (JSAC), Special Issue on Networking Sup-
port for Multicast, 20(8), 2002. 

[5] J. Jannotti, D. Gifford, K. Johnson, and M. Kaashoek. Overcast: Reliable multicasting 
with an overlay network. In Proc. OSDI, San Diego, CA, 2000. 

[6] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: Hight band-width data dis-
semination using an overlay mesh. In Proc. of the ACM Symposium on Operating System 
Principles (SOSP), October 2003. 

[7] V. N. Padmanabhan, H. J. Wang, and P. A. Chou. Supporting heterogeneity and conges-
tion control in peer-to-peer multicast streaming. In IPTPS, 2004. 

[8] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Enforcing fair sharing of peer-to-peer re-
sources. In Proc of IPTPS, 2003 

[9] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai. Distributing 
streaming media content using cooperative networking. In NOSSDAV'02, Miami, Florida, 
USA, May 2002. 

[10] E. Zegura, K. Calvert, and S. Bhattacharjee. How to model an internetwork. In 
INFOCOMM, San Francisco, California, 1996. 

[11] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz. Bayeux: An architecture for 
scalable and fault-tolerant wide-area data dissemination. In NOSSDAV'2001, June 2001. 



An Efficient QoS Framework with Distributed
Adaptive Resource Management in IPv6

Networks

Huagang Shao1,2, Weinong Wang2, Rui Xie2, and Xiao Chen2

1 Department of Computer Science and Engineering, Shanghai Jiaotong University
hgshao@cs.sjtu.edu.cn

2 Regional Network Center of East China of China Education and Research Network,
Floor 4, Haoran Building, 1954 Huashan Road, Shanghai 200030, China

{hgshao, wnwang, sherry, shawn}@sjtu.edu.cn

Abstract. In this paper, we proposed a new QoS framework with Dis-
tributed Adaptive Resource Management(DARM). DARM provides end-
to-end QoS guarantees to individual flows with minimal overhead, while
keeping the scalability characteristic of DiffServ. In DARM, per-flow ad-
mission control and resource reservation, in conjunction with a novel
IPv6 flow label mechanism, can be processed instantaneously in a fully
distributed and independent manner at edge of network without hop-by-
hop signaling. In addition, DARM is capable of reconfiguring network
resource adaptively according to dynamically changing of traffic load.
Through extensive simulations, the results clearly exhibit that DARM
has a better overall performance comparing to the IntServ and DiffServ.

1 Introduction

The enlargement of the Internet user community has generated the need for IP-
based applications requiring guaranteed Quality of Service (QoS) characters. An
Integrated Services (IntServ) model( RFC1633 ) has been proposed to provision
QoS for individual flows through resource reservation and admission control
mechanisms. The Resource ReSerVation Protocol(RSVP, RFC2205) is used as
the signaling protocol in IntServ. The IntServ/RSVP approach requires every
router to maintain per-flow state information. For large networks with millions of
simultaneous connections, maintaining the flow state information places a huge
storage and processing overhead on the routers. The IntServ/RSVP approach
suffers from scalability problems.

Consequently, a Differentiated Services(DiffServ) model has been proposed(
RFC2475 ). In contrast, the DiffServ architecture achieves scalability by lim-
iting QoS functionalities to class-based priority mechanisms. DiffServ makes a
distinction between operations performed in the core of the network, and oper-
ations at the edges of the network, scheduling and queue management only deal
with a few classes of traffic, and can thus remain relatively simple. However,
without per-flow admission control and resource reservation mechanism, such
an approach only supports weak QoS as compared to IntServ.

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 1077–1088, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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To achieve stronger QoS without sacrificing scalability, we have designed
a new QoS framework in IPv6 networks with Distributed Adaptive Resource
Management(DARM). In conjunction with a novel flow label mechanism, DARM
provides end-to-end QoS guarantees to individual flows with much less overhead
than IntServ, while keeping the scalability characteristic of DiffServ. DARM
makes per-flow admission control and end-to-end bandwidth reservation at the
edge of the network, while differentiating the traffic classes as in DiffServ in the
core of network.

The remainder of this paper is organized as follows. Section 2 is related work.
Section 3 presents the proposed DARM architecture. The details of adaptive
resource management mechanism is proposed in section 4. Section 5 shows results
based on our simulations. The paper is concluded by section 6.

2 Related Work

The pervasive proposal QoS provisioning architectures were to design a DiffServ
enhanced by using a centralized agent, called Bandwidth Broker(BB, RFC2638)
to manage the resources within each DiffServ domain and make local admission
control decisions. The BB carried the burden of per flow admission control in
domain, but there might be some scalability considerations if the BB has to
process thousands of requests per second and must maintain per flow information
about every flow that is currently active inside its domain. Moreover, BB lacked
suitable means to control diversiform network elements and implement traffic
engineering efficiently.

In literature[1, 2], a new QoS framework, named DiffServ-aware MPLS Traf-
fic Engineering(DS TE), was proposed. In this framework, DiffServ was comple-
mented by MPLS Traffic Engineering mechanisms that operate on an aggregate
basis across all DiffServ traffic classes. In order to reduce flooding overhead of
link state advertisements, Inter Gateway routing Protocol(IGP) extension of per
class-type Link State Advertisements(LSA) was used to exchange information
on the available bandwidth for each class type. However, the scalability of LSAs
was improved by propagating information on a per-class-type basis instead of on
a per-class basis, no bandwidth provisioning was enforced for each traffic class
within a class type. Flows of different traffic classes within a class type might
interfere with each other.

The more related work was done in literature [3], which has proposed a scala-
bility architecture for end-to-end QoS provisioning. In this work, authors adopted
similarity flow label function for resources reservation and performed admission
control at edge routers in the domain. But the architecture still existed a central-
ized agent(BB) to control the edge routers, which might more like a two-tier BB
architecture. Moreover, the architecture adopted a source routing framework and
k-shortest paths algorithm to pre-compute paths between the pair of two edge
routers, which has been found inefficiency in consideration of throughput[4].

Most recently, literature [5] has proposed an end-to-end QoS framework with
on-demand bandwidth reconfiguration. In this work, path bandwidth allocation
can be dynamic reconfigured in a on-demand manner. However, the authors
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neither gave any details on how to select resource for the admitted flow nor pro-
vided any means for how to deploy an admitted flow on corresponding physical
resource of underlying network.

3 DARM Architecture

In order to provide per-flow QoS guarantees while keeping the scalability, every
network elements need work harmoniously under some reasonable, efficient, and
practicable mechanisms. The two of most important issues among them are the
plans of admission control and the means of resource reservation. In this section,
we will discuss above two key issues in detail.

3.1 Network Model Overview

We consider the communications model of DARM as smart-edge and simple-
core, which places much more the functionality to the edge of the network,
and maintains a simple core. In DARM, all routers can be categorized into
edge routers and core routers. Edge routers are the points where traffic enters
and leaves the domain. Core routers connect the edge routers within the same
domain. Edge routers fulfill per-flow classifying, shaping and marking, just like
what traditional DiffServ edge router does. In DARM, edge routers also carry
the burden of per-flow admission control(see section 3.3). Core routers schedule
and forward packets according to type of service class and destination address.
In DARM, core routers forward QoS guaranteed packets further according to
flow label values. The details of forwarding with flow label will be discussed
in section 3.2. We assume that routers in the DARM are extended to include a
measurement process to track and maintain the local resource reserving state(e.g.
local outgoing links residual bandwidth), and support our adaptive resource
management mechanism which will be discussed in detail in section 4.

Routing is one of the most important technical issues in networking. In
DARM, we decouple QoS-based path selection from QoS-based routing, which
always introduces almost impossible dissemination of dynamic state information
(e.g. residual bandwidth, delay, and jitter.) in underlying network[6]. In DARM,
path selection and adaptive adjusting is performed by our proposed adaptive re-
source management mechanism. Hence, we assume that all the DARM domains
use a standard inter-domain routing protocol, such as the Border Gateway Pro-
tocol(BGP, RFC1771), to exchange reachability information with their neighbor
domains. All the edge routers in each domain will participate in this information
exchanging. Moreover, we assume that a standard link state routing protocol,
such as OSPF( RFC2328 ), operates inside each domain, in order for the routers
to advertise and exchange their (relative) static link state information to others.

3.2 Forwarding Packets with Flow Label

An factor of the scalable problem in IntServ is the slowest process in core router
to identify the arriving packets to corresponding admitted flows, which involves
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IP header multi-field classification. Specifically, when a packet is received at
a router, the next hop behavior is decided by looking into several fields on
the packet header (e.g. the source and destination addresses, ports, and the
transport protocol type), and then finding the appropriate entry at the local
database. However, IP addresses longest prefix match-up is a both CPU time and
memory storage consuming process. In addition, this operation will be even more
complicated for QoS-sensitive flows, since their packets should follow exactly
the same path. The worst situation is that these fields may be unavailable due
to either fragmentation or encryption. Clearly, these procedures become the
bottleneck in a multi-Gbps router of IntServ.

Using IPv6 20-bit flow label, which does not exist in the earlier IPv4, can be
a big help in alleviating this problem. In DARM, we introduce concept of Virtual
Path(VP), which connects two edge routers in the network. We then assign one
flow label value to one of these VPs, and construct new (much smaller) routing
tables inside the core routers of the domain, based only on flow labels. Because
flow label looking up is an exact match-up, comparing to IP address longest
prefix match-up, the data structure of this can be organized in a much simple
and efficient manner(e.g. adopt hash technique). Here, we should emphasize that
the flow label in our approach is not related to the traditional definition of a
flow (i.e., a connection between a certain source-destination pair). Instead, we
use the flow label field in the IP header, in order to identify a unique VP within
a DARM domain. As a result, any determined VP within a domain will be
assigned a specific flow label value, and all the QoS requirement packets that
have to follow the path will be marked with exact corresponding flow label value.

3.3 Admission Control

In IntServ, admission control is performed by hop-by-hop signaling through net-
work which is always a tedious process. In BB enhanced DiffServ, BB makes
admission control decisions for all the entry flow in the domain. There might be
some scalability considerations of a centralized manner. By introducing concept
of VP and packet forwarding with flow label mechanism, in DARM, we pro-
vide a fully distributed approach where all the edge routers will independently
participate in this procedure without hop-by-hop signaling.

In order to make instantaneous and independent admission control decisions
for new connection requests, in DARM, edge routers maintain total amount of
reserved bandwidth towards the destination. Let p as a Source edge router and
Destination edge router pair(SD pair) and Rp as the total amount of reserved
bandwidth of p. We assume that there are kp VPs (1 ≤ kp ≤ K) connected the
SD pair p currently, where K is the maximal number of paths between each SD

pair. Then we have Rp =
kp∑
i=1

ri
p, where ri

p represents current reserved bandwidth

on ith VP of kp VPs belonged to the SD pair p.
When a new flow connection request arrives at the source edge router of

SD pair p, which includes the destination address and the required amount of
bandwidth b, the source edge router will check whether there are enough resource
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to accommodate this flow. We denote ci
p as the capacity of ith VP of kp VPs

belonged to the SD pair p. In particular, for each VP belonged to SD pair p, it will
check whether have ri

p +b ≤ ci
p, for i = 1, 2, ..., kp. If none of the VP satisfies this

inequality, the new flow connecting request will be rejected. Otherwise, the VP
with the largest amount of residual bandwidth will be selected. Then, the packets
of admitted new flow will be marked with a flow label value, which unique identify
the corresponding VP in the domain. Packets marked with corresponding flow
label value will be exactly forwarded along this VP through the domain.

4 Adaptive Resource Management

Adaptive resource management is the soul of the DARM framework. The main
function of adaptive resource management include how to deploy(redeploy) VPs
with a certain resource assigned adaptively between a SD pair, and how to
probe available resource for VPs deploying(redeploying). To implement above
two issues, we designed an adaptive VP deploying module and an distributed
resource probing module.

4.1 Adaptive VP Deploying

In order to deploy VPs adaptively, we extend the source edge router to running
a measurement process. Source edge router of each SD pair p will periodically
measure (e.g. time slot τ = 500ms) the total amount of reserved bandwidth
Rp towards the destination. This means that each of the P routers will keep
(P − 1) different measurements, where P is the total amount of domain edge
routers. Moreover, in order to adaptively increase the capacity of a SD pair, the
source edge router of which also monitors the rejected traffic load. Let Qp as the
total amount of reserved bandwidth including the rejected traffic load, which
we refer to as potential reserved bandwidth. Qp is normally updated whenever
a new connection is accepted or an existing connection is terminated. However,
when a new request is rejected, the edge router will update Qp as if the request
was accepted. It will also assign a virtual finish time, which may be based on
some measure average call holding time. When those virtual connections are
terminated, Qp will be updated accordingly.

When we compute Rp and Qp, exponential averaging formula[7] is adopted.
Using an exponential weight gives more reliable estimation of burst traffic, even
when the packet inter-arrival time of the aggregate has significant variance. Refer
to [7] for detailed discussion.

Every measurement windows T (e.g. T = 60 seconds), the source edge router
will check the Qp, Cp, and Rp to determine resource allocation to the SD pair p,

where Cp =
kp∑
i=1

ci
p is current total capacity of SD pair p. When the bandwidth

utilization Rp

Cp
for SD pair p exceeds the predefined upper threshold θh, the

source edge router of SD pair p will initiate the increasing resource process,
adapting to accommodate the increased traffic load. Whereas, if the bandwidth
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IncreaseResource(p,Qp, Rp, kp)
1: Vp ← (Qp − Rp)
2: N ← (K − kp)
3: if N = 0 then
4: j ← i for i ∈ { i | Min(ci

p) ∧ ∀ i ∈ {1 . . . K}}
5: P reDeleteV P (j)
6: (Cavailable

p , path) ← ResouceP robe(p)
7: if Cavailable

p > Vp + cj
p then

8: CreateV P (x, p, path,Vp + cj
p)

9: else
10: CreateV P (x, p, path,Cavailable

p )
11: end if
12: DeleteV P (j)
13: j ← x
14: else
15: for i ← (kp + 1) to (kp + N) do
16: (Cavailable

p , path) ← ResouceP robe(p)
17: if Cavailable

p < α then
18: Break
19: end if
20: if Cavailable

p > Vp/N then
21: CreateV P (i, p, path, Vp/N)
22: else
23: CreateV P (i, p, path, Cavailable

p )
24: end if
25: end for
26: kp ← i
27: end if

Fig. 1. Pseudo code of increase resource algorithm for a SD pair

utilization is under the lower threshold θl, the source edge router will try to
shrink the capacity of the SD pair. Due to the space limit, we only give the
pseudo code of resource increase algorithm for a SD pair in Fig. 1. In algorithm,
source edge router will send control message to routers along the VP when
performing the CreateV P and DeleteV P procedure. The corresponding routers
will update their local flow label forwarding table upon received control message.
In addition, PreDeleteV P procedure is used for virtually releasing resource only
for resource probing procedure to compute available resource in more accurate
and reasonable way, while the details of resource probing procedure for a SD
pair in the network will be discussed in section 4.2.

4.2 Distributed Resource Probing

In general, using shortest path algorithm to find a feasible path between a
SD pair is a natural way to look at this problem. However, we argue that
path(resource) probing algorithm in our scenario should aim to preserve (to the
extent possible) the total flow available between the SD pair instead of simply
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aiming for the shortest path in order to ensure that the highest number (in vol-
ume) of demands are satisfied. Moreover, as reported in literature [8], for about
65% of paths measured in current Internet, there exists better alternative route.
Therefore, we adopt a distributed resource probing procedure for our adaptive
resource allocation between a SD pair.

Basically, the resource probing mechanism is used to generate Resource Dis-
covery(RD) packets for probing a feasible path in the network. Upon receiving
a RD packet, the router consults its local state information and modifies the
fields of the RD packets accordingly and then forwards the RD packets to other
router along the path to the destination edge router. The destination edge router
is responsible for making a decision and sending Resources Acknowledge(RA)
packet back to the source edge router.

In order to improve probing efficiency, we adopt a bounded directional prob-
ing technique. Specifically, RD packet will only be sent toward non-backward
directional links to the destination edge router. Moreover, when there are multi-
ple non-backward directional links available in a transition router, it will control
the probing number in parallel. In addition, network topology is relative static
state information, comparing to residual bandwidth. Therefore, every router can
pre-compute every link directions to each destination edge router based on hop
count information.

In practice, we follow the general procedure to represent the network by a
graph G = (V, E), where V denotes the set of routers and E denotes the set of
communication links connecting the routers. Let s as an arbitrary router of the
DARM domain. Then, we denotes V (s) as the set of neighbors of router s, U(s)
as the set of edge routers of the domain, O(s,v)[u] as the link (s, v) direction of
router s to destination u, and Hs[u] as the shortest distance(hop) computed using
the Dijkstra’s algorithm from router s to router u. Then, we give pseudo code of
direction per-computing algorithm as showing in Fig. 2, which is extended from
literature [9]. From pseudo code, we can find that the computational complexity
of this procedure is (1 + |V (s)|) times that of Dijkstra’s algorithm.

We now consider resource probing between a SD pair by using different com-
binations of forward and/or neutral links and identify the best path(s). To ex-
plore a readily available path and corresponding resource between a SD pair, the
source edge router sends a RD packet through its forward links towards the given
destination. Each receiving router does the same, i.e., selects one of its forward
links and sends the RD packets through that link until the RD packets reach
to the destination. Along the followed paths, each router updates the available
resource information accumulated in the RD packets and adds its ID to the path
vector carried in the RD packets.

Actually, neuter links can also be selected at each router. However, before
the next neutral link, we should select at least one forward link so that the
possibility of encountering a routing loop will completely disappear.

A key issue is how to select the next links at each router. In this paper, we
consider a traffic engineering approach. Let Lt as the set of candidate next links
at router t and l is one of its outgoing link, where t ∈ V , Lt ⊆ E, and l ∈ Lt.
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ComputeDirection(G, s)
/*computing every link direction at router s.*/
1: Hs[ ] ← Dijkstra(G, s)
2: V (s) ← GetNeighborRouters(G, s)
3: U(s) ← GetEdgeRouters(G)
4: for all v ∈ V (s) do
5: Hv[ ] ← Dijkstra(G, v)
6: end for
7: for all v ∈ V (s) do
8: for all u ∈ U(s) do
9: if Hs[u] > Hv[u] then

10: O(s,v)[u] ← forward
11: end if
12: if Hs[u] = Hv[u] then
13: O(s,v)[u] ← neutral
14: end if
15: if Hs[u] < Hv[u] then
16: O(s,v)[u] ← backward
17: end if
18: end for
19: end for

Fig. 2. Pseudo code of directions computing algorithm

we denote Cl and Rl as bandwidth capacity of link l and residual bandwidth of
link l respectively. For each l ∈ Lt, the bandwidth residual ratio ul is computed
as ul = Rl

Cl
.

Let Ft is set of selected next links for forwarding, and then Ft must follow
condition as Equation (1).⎧⎨

⎩
|Ft| ≤ β
ul ≥ γ, for ∀ l ∈ Ft

uj ≥ uk, for ∀ j ∈ Ft and ∀ k ∈ {Lt − Ft}
(1)

where β and γ is two constant (e.g. β = 3, γ = 0.1), which represent the maxi-
mal number of resource probing in parallel and lower threshold of physical link
residual bandwidth ratio, respectively.

According to the above conditions, we can find that the resource probing will
pursue the maximum residual bandwidth path, which can balance the network
load and improve global resource utilization.

For ∀ l ∈ Lt and having ul < γ, we can conclude Ft = ∅, which means that
no more bandwidth is available at router t. Then the router t will drop the RD
packet. We should point out that the transit routers drop the invalid resource
probing packets as early as possible, which can help to relieve the parallel probing
overheads significantly. When the destination router receives a RD packet, it will
still wait δ time expecting to receive all available RD packets. Here, δ is maximal
end-to-end packet transmission delay. Then it will select a best result and send
a RA packet back to corresponding source edge router. If the source edge router
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dose not receive RA packet in 3δ after sending RD packet, it will conclude that
there are no more available resource between the SD pair.

5 Simulation Results

We simulated the proposed framework in the MCI Internet topology of Fig. 3,
which has been widely used in many studies (e.g. [10]). We assume that all the
links have a capacity of 2.5 Gbps, and that all the capacity may be allocated to
QoS flows. In a real network, though, the service provider will allocate a portion
of the available bandwidth to QoS-sensitive traffic, according to some policy.

Fig. 3. The simulated network topol-
ogy(MCI)
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ison for different K

The new QoS requests may arrive at any one of the 19 routers. The new QoS
requests arriving at each router v follows Poisson distribution with mean λv.
The arrival rates for the different routers are taken as uniformly distributed in
the interval [1, λmax]. The value of λmax is properly adjusted in order to control
the average arrival rate per router. The duration of each admitted connection
obeys exponentially distributed with mean 25 minute. The required bandwidth
of every QoS request is uniformly distributed in the interval [64, 1024] kbps.
The every simulation is last 12 hours. We begin fetch the data after an initial
warm-up period.

First, we investigate the impact of the two main parameters of the DARM
system, namely the maximal number of paths K between the each SD pair and
resource adaptive reconfiguration window T . Fig. 4 illustrates that setting up
more than 1 paths per SD pair can improve global performance significantly.
However, we also find that the additional performance gain by moving K from
3 to 10 is very small. On the other hand, window T controls the sensitivity of
the adaptive reconfiguration and tradeoffs the reconfiguration overheads. From
what Fig. 5 showing, T = 3min can gain satisfied performance in the simulation.
In the rest of simulation, we adopt K = 5 and T = 3min respectively.
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Then, we compare the DARM performance with IntServ and DiffServ scheme.
In comparing the performance of DARM and IntServ, the four performance met-
rics are used, namely average blocking rate, average per connection setup time,
and the average and variance of the packet transmission delay. Note that since
neither admission control nor signaling messages are employed in DiffServ, only
the performance metrics of the average and variance of the packet transmission
delay are used in comparing the performance of DARM with what of DiffServ.
Fig. 6 and Fig. 7 show the average blocking rate and average per connection
setup time of IntServ and DARM. We can find that DARM outperforms the
IntServ on both metrics. This is because that due to adaptive resource reconfig-
uration and distributed resource probing, DARM is capable of providing more
bandwidth between the SD pair comparing to IntServ with traditional shortest
path first routing mechanism. Moreover, DARM makes admission control de-
cisions in a distributed and local manner without hop-by-hop signaling, which
results in a significantly faster process of per connection setup. Fig. 8 and Fig. 9



An Efficient QoS Framework with DARM in IPv6 Networks 1087

 0

 2

 4

 6

 8

 10

 12

 200 220 240 260 280 300 320 340 360

P
ac

ke
t t

ra
ns

im
is

si
on

 ji
tte

r(
m

s)

Average arrival rate per source(request/min)

DARM
IntServ

DiffServ

Fig. 9. Packet transmission jitter com-
parison for IntServ, DiffServ, and
DARM

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

 200 220 240 260 280 300 320 340 360

P
ea

k 
lin

k 
ut

ili
za

tio
n

Average arrival rate per source(request/min)

DARM
SP

k=3 SP
k=5 SP

Fig. 10. Peak link utilization compari-
son between proposed approach and k-
shortest path

exhibit average and variance of the packet transmission delay of the simulation
traffic for the IntServ, DiffServ, and DARM.

Finally, since the main objective of traffic engineering is to optimize the
global utilization of network resource, in the rest of simulation, we compare the
performance of proposed distributed resource probing approach in DARM with
Shortest Path(SP) scheme and k-shortest path scheme. Shortest path scheme has
higher peak link utilization than others(see Fig. 10), which is anticipated, be-
cause shortest path scheme tends to overload the links that belong to the shortest
paths. For a same level of traffic load, the combination of higher average link
utilization and lower average blocking rate generally implies higher throughput.
The proposed resource probing approach outperform k-shortest path scheme
with higher the average resource utilization and lower blocking rate as showing
in Fig. 11 and Fig. 12, respectively.
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6 Conclusions

In this paper, a new QoS framework with Distributed Adaptive Resource Man-
agement(DARM), was proposed. DARM provides per-flow admission control
and resource reservation as IntServ while keeping the salability characteristic
as DiffServ. The simulation results clearly show that DARM has a better overall
performance comparing to the IntServ and DiffServ.
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Abstract. In recent times, there are increasing numbers of computer vision and 
pattern recognition (CVPR) technologies being applied to real time video proc-
essing using single processor PCs. However, these multiple computational ex-
pensive tasks are generating bottlenecks in real-time processing. We propose a 
scheme to achieve both high throughput and accommodation to user-specified 
scheduling rules. The scheduler is then distributing ‘slices’ of the latency insen-
sitive tasks such as video object recognition and facial localization among the 
latency sensitive ones. We show our proposed work in detail, and illustrating its 
application in a real-time e-learning streaming system.  We also provide discus-
sions into the scheduling implementations, where a novel concept using inter-
leaved SIMD execution is discussed. The experiments have indicated successful 
scheduling results on a high end consumer grade PC.  

1   Introduction 

In current times, majority of PCs are adopting a single CPU configuration. When 
application software requires running multiple tasks in parallel on a single CPU, the 
application level scheduler, are used to determine which thread is being executed on 
the CPU at a given slice of time by various scheduling methods [1].  

Traditionally, most video streaming requires only minimal processing. These proc-
essing is limited to video compression, changing resolutions and frame rates. For this 
reason, the type of video scheduling involved only takes into consideration of infor-
mation on video bit-stream domain. For example, in [2], author presents two applica-
tion level scheduling for periodic video processing. These policies are used for hard 
real-time deadline scheduling.  Both of these policies are generated according to video 
types, frame size and frame rate. The information on video content is completely 
ignored by the scheduler.  

Our motivation lies in our real-time E-learning application [3] where a set of 
CVPR algorithms are used. These algorithms include object recognition based on 
SIFT [4] algorithm, frontal face detection using Haar-alike features [5], laser pointer 
detections using integral features, teaching object and instructor tracking based on 
mean shift tracking algorithm [6].  In addition, we have used both static and PTZ 
camera, where in many circumstances, video processing from both streams can occur 
simultaneously. 
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Some of these tasks, for example tracking, is executed continuously and dependant 
on its past processing information (locations of tracked object in previous frame) for 
current video frame processing. Some task, such as object recognition needs to be 
executed periodically and independent to its past processing. 

Many existing approaches have used specialized processor to achieve real-time 
processing and high frame rate output, such as using multi-processors and cluster 
computers [7]. Other literatures are found on parallelizing computer vision algorithms 
on single processor for real time performance. However most of these contributions 
are concentrated on parallel processing of a particular CVPR algorithm, rather than a 
set of continuous tasks [8]. In addition, most existing scheduling methods have fo-
cused on maximum throughputs and ignoring end user requirements. In our interac-
tive, peer-to-peer E-learning system, these requirements are important and often vary 
from application to application. 

2   Parallel CVPR Processing Properties in Synchronous E-learning 

To address the parallel processing challenges in our current e-learning application, we 
need to derive am appropriate scheduling method. There are a few properties in a 
synchronous application, where we can explore them to achieve scheduling more 
effectively and more meaningful: 

The first property is from an application and participant factor, where time re-
sponse tolerance to a particular vision event needs to be customized from a high level. 
The second property is the nature of content based video processing: 

2.1   Task Latency Sensitivities  

In a real time application, each event or algorithm has different levels of sensitivities 
to time delays, such as video capture, compression and streaming task is highly sensi-
tive to latency, as each frame must be processed and delivered in real time with mini-
mum fluctuation to a pre-specified quality. On the other hand, most video detection 
tasks can allow longer delays in processing times. For example, if a scheduler policy 
made teaching object recognition to execute two more seconds, it will not introduce 
significant quality degradation to the overall student’s multimedia viewing. We have 
listed latency sensitivities for each algorithm used in our work in Table 1: 

Table 1. Video task time latency sensitivity 

Tasks  Latency sensitivity 
Object Recognition Insensitive 
Face identification Insensitive 
Object Tracking Sensitive, but minor delays is tolerable, if ob-

jects or camera has slow motions 
Laser Pointer detection Sensitive  
Video capture, compression, 
streaming 

Sensitive 
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Although some video tasks can be insensitive to latency, however, the spatial in-
formation may be inconsistent as current video frame content may vary from when 
the task first commenced. For example, when the system performs teaching object 
recognition as shown in Figure 1 (a), when task started, the object is at location indi-
cated by the bounding box. When the task is completed, the object has moved to a 
different location, shown in Figure 1 (b). This spatial inconstancy has caused unac-
ceptable result in streaming, such as incorrect link building and subsequent tracking 
would be lost. Therefore, we must also recover the spatial relationships between the 
detected object with respect to the current video frame. Since this process contributes 
only overhead to processing, therefore, its computation must be efficient. This is dis-
cussed detail in later section 3.3. 

 

Fig. 1. Spatial discrepancy caused by time-delaying processing. (a) The location of object when 
it is first detected (b) The object moves to a different location in current video frame after de-
tection completes. 

2.2   Instructor’s High Level Input to Vision Events 

As stated in the beginning of this paper, scheduling policy can be made more mean-
ingful if e-learning participant’s factor is also being considered.  This is because in-
structor may choose different delay tolerance to an event during a real-time session, or 
at different times within the same session. Although instructor lacks unawareness to 
CVPR algorithm used, however, specification can be made from a high-level vision 
event and propagates to corresponding algorithm(s) by the system. This specification 
ability allowing greater flexibility to pre-configure the system adapting to different 
application needs.  

For a vision based synchronous e-learning, this awareness in “event processing 
time” is important to an instructor from an HCI perspective. For example, if an in-
structor is aware that a four seconds delay in recognition was pre-specified, then dur-
ing a synchronous session, instructor can be made sure that teaching object must re-
main in camera view for at least four seconds.  

2.2.1   Examples to Instructor’s High Level Inputs 
An example of such specification is shown in Figure 2. The instructor specifies teach-
ing object recognition event must be executed every 4 seconds interval during particu-
lar part of his teaching. At the same time, instructor may consider streaming at 15 FPS 
is sufficient during a recognition phase. 
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Another example is that system can be waiting for multiple possible events, such 
as teaching object recognition, face detection and laser pointer detection to occur 
during initialization. These events are occurring periodically to avoid CPU conges-
tion. Using the same instructor’s high level event scripting, each vision event interval 
can be specified prior to an e-learning session. Note that instructor’s specification are 
only made as “rules of guidance”, where our scheduler is trying to generate policy to 
best accommodate. 

2.2.2   Methods to Instructor’s High Level Input 
The first problem is that instructor has no knowledge to the nature of the vision algo-
rithms.  For this reason, instructor’s latency tolerance inputs are made through the 
scripting interface [3] abstracted to high level vision events. Figure 2 is an event tol-
erance scripting example: 

 

 
Fig. 2. Instructor specifies the time tolerance to vision events using high level scripting 

Another problem is that instructor lacks default values to vision executions time on 
his PC, i.e. instructor does not know how long each event really takes. For this rea-
sons, we will perform a benchmark collection to calculate processing time required 
for each algorithm. This process is only required whenever a PC setting has changed.  
It will record processing time against various benchmarked video and image, where 
average processing values are being used as default execution time required for  
an event.  

The same type of off-line benchmarking is also used to construct execution time 
histogram modeling. For the later case, training is being made in accordance with 
video frame features generated by EPGF for each entry in a hash table.   

In the case of collecting default value for instructor’s scripting, the process execu-
tion time is simplified to obtaining information according to video frame sizes. As 
instructor’s specification is only an indication to final scheduling policy, accuracy is 
not critical in the scripting stage. 

2.3   Content Dependant Execution 

Unlike traditional video scheduling proposed in [2], some CVPR algorithm execution 
time dose not only depending on its data bit domain, it is also relating to video content 
features for that algorithm. The processing times may vary dramatically from frames 
of the same video.  

Therefore, in order to ‘place’ portions of the video processing accurately and fairly 
into each frame delivery, an execution time prediction method is required prior to or 
during an initial computation of algorithm’s execution. 

On_Customized_Event (long currentT)
 … 

If event.Recognition.returnObj = Nothing Then 
Duration.max.Recognition = 3000 
Duration.min.Streaming = 66 // 15FPS 

End if 
… 
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In our work, our motivation lies into our hypothesis that, for each algorithm, there 
is some rules can be made, resulted from an “overhead processing”. This “overhead 
processing” can determine how long it will take to execute this algorithm. In addition, 
if we group the execution times containing similar features together and model them 
statistically, we can predicate how long a content based vision algorithm will take to 
execute on the current video frame. Therefore, the remaining challenge is how to 
derive this processing predication function for each algorithm and how to model them 
accurately. In addition, we also need to ensure the efficiency of this processing predi-
cation function, as this function contributes only overhead.  We will also present ex-
perimental results proving the validity of our hypothesis.  

3   Scheduling System Design 

The scheduling system is depicted in the following diagram: 
 

 

Fig. 3. Scheduler system diagram 

The scheduling policy takes account of all the factors influences a video process-
ing including instructor’s high level inputs, current video frame and current vision 
algorithms sets. The scheduler then generates the policy accordingly. There are three 
modules which we will present in detail as our unique contributions: 

1. The Execution Parameter Generation Function (EPGF) subsystem is an “over-
head video processing” that generates parameters which predicates the execu-
tion time of each algorithm required in our e-learning application. In this paper, 
we will present EPGF for mean shift tracking and SIFT generation algorithm. 

2. The Processing History Modeling subsystem considers the EPGF parameters 
being generated and produces a predication base on the histogram with similar 
parameters values. 

3. The Latency recovery function subsystem is used to recover spatial discrep-
ancy between a processed and current video frame, as stated in 2.1 

3.1   Execution-Time Parameters Generation Function (EPGF) 

As we stated previously, our hypothesis is to use an efficient “overhead” processing to 
predict an entire algorithm execution time. We have also stated we would model such 
information statistically for later execution predication. Therefore, parameter extrac-
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tion from these “overhead” processing can achieve both of our purposes. We name 
such parameter generation, Execution-time Parameter Generation Function (EPGF). 
EPGF function is unique for every CVPR algorithm. This method was proposed by us 
in [9]. 

Currently, in our work, there are various CVPR algorithms needs to be executed in 
parallel. Note that EPGF is not applicable to some algorithms such as laser pointer 
detection and face detection based on [5]. Both of these algorithms are using integral 
images. Integral images have theoretically resulted constant execution times which 
made predication only dependant on capturing video size.  

Therefore, in our work, our current EPGF implementation has been based on the 
mean-shift Tracking [6] and object recognition using local invariant features,  
SIFT  [4]: 

 
Mean shift tracking. In our work, since tracked object can have variable sizes which 
determined from an adaptive bandwidth scheme described by [6]. The intuitive pa-
rameters for mean-shift tracking execution time is x , y , which correspond to the 
elliptical shape of the region containing the tracking object. In fact any tracking algo-
rithm involves only a local search can be modeled using these two parameters. The 
values of [ x , y ]  is populated from the tracking result of the previous video frame, 
and updated when mean-shift tracking procedure completes on the  
current frame.  

In our previous experiment, we have also used the similarity measure, barta as a 
third execution parameter, which corresponds to the Bhattacharyya coefficients calcu-
lated from the first iteration of a mean-shift process. This parameter was proposed 
from a theoretical assumption that higher Bhattacharyya measure would mean less 
mean-shift iterations required before this algorithm converges (See [6]for detail). 
However, the experiment result has found that parameters containing only [ x , y ] is 
sufficiently for modeling.  

 
SIFT generation. Since most of computation in object recognition occurs in the SIFT 
points generations, the post-SIFT computations, include approximate nearest neighbor 
(ANN) search, Generalized Hough Transform and distance outlier removal are not 
being used from parameterization. 

  From analyzing SIFT algorithms, we have used a three parameters EPGF [ width,  

height, smooth ] where first two parameters are the size of video frame or region of 
interest (ROI) for SIFT computation if any pre processing is used. They are both con-
tent independent.  

smooth is a measure to how “smooth” the image is, since  SIFT algorithm searches 
the stable points using Difference of Gaussian (DoG), the more smooth image, the 
less scale stable points identified, hence less computation is required. In the EPGF 
modeling, we use binary counts to the first DoG filtered image. 

( ) ( , ) ( ) ( , )DoG G x, y,k x y G x, y,k x y1 2σ  ∗ Ι σ  ∗ Ι= −  

where G  is the Gaussian kernel derivative and Ι  is the current video frame. 1σ  and 
2σ  are the first two variable variances used in the Gaussian kernel.  
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3.1.1   Minimum Overhead EPGF 
The above two EPGF are designed which to generate parameters at minimum cost or 
from an initial part of the algorithm.  

For tracking algorithm, the values for [ x , y ]  are obtained from tracking process 
in the previous video frame. For recognition, parameter smooth is generated from a 
DoG function using the first two variances of Gaussian Kernel derivatives. This com-
putation also forms part of overall SIFT process. The only overhead involved is the 
binary counting on the DoG image, which can be obtained efficiently. In addition, 
EPGF itself involves fast computation, which can be computed in < 0.01% of the 
overall algorithm.  

3.2   Execution Time Histogram Modeling 

From EPGF, we have obtained two types of information, the feature parameter and 
the corresponding execution time. We then can model this information statistically.  

3.2.1   Necessity of Statistical Modeling 
Some reader may argue on the necessity of execution histogram modeling. As we 
have pointed out that EPGF usually forms an initial part of an algorithm. The software 
developer can therefore trace through an algorithm code and to determine in exact 
number of instructions required for the rest of computation based on the outcome of 
the initial computation.  

However, developing computer vision algorithms in current day research are made 
easier by having many libraries for low level image processing functionaries. In many 
instances, source code of these libraries is not being made available to developers. In 
addition, code scan approach takes enormous amount of manual effort. In our work, we 
have achieved the execution time predication from a high level algorithm approach.  

3.2.2   Offline Benchmarking and Online Training 
Offline benchmarking is required prior to first real-time streaming or there is a change 
in instructor’s PC setting. This is because initially, the e-learning system has no 
knowledge to instructor’s PC specification and hence there is no scheduler modeling 
information to begin with. Similar to the method used to collect execution time which 
allows instructor to script latency tolerance level, the same benchmark is to collect 
information where execution time can be modeled. 

In online execution training, as soon as a video task is completed, its actual execu-
tion time and parameters generated are being inserted PC’s memory. When a real-
time session finishes, the memory is dumped to the database for modeling. This mod-
eling is used for later sessions.  

3.2.3   Execution Time Histogram Modeling 
Our execution time modeling is inspired by [10], where a running average of pixel 
color from training/benchmarking is used to classify if a pixel belongs to the back-
ground in real-time. Base on the same methodology (different purpose), in our work, 
we will use histogram to model execution times for predication. Indicated by our 
hypothesis, that video frame generates similar parameters may contain similar proc-
essing times. Therefore, for each algorithm, we use a hash table, and each entry of the 
hash table contains a Gaussian model fitting. This work is detailed in [11] 
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3.3   Latency Recovery Functions 

Since computational expensive object detection is scheduled to process in a delayed 
manner. As a result, there may be a spatial discrepancy between the processing and 
current video frame when object detection completes. An example of this phenome-
non was illustrated in Figure 2. In the same section, we also state the necessity to 
locate the detected object in the current frame by an efficient method. In our current 
work, the latency recovery procedure is achieved using the following algorithm: 

Step 1: When a video recognition task commences, we will buffer the processing 
image.  

Step 2: The detected region is used to calculate target probability distribution func-
tion (pdf) used for mean-shift tracking [6].  

Step 3: When object recognition execution completes, we will compute the optical 
flow [12]between the processing and current video frame, using only features from 
the detected regions.   

Step 4: A region is estimated from the result of optical flow, based on which 
mean-shift tracking starts.  

We have performed several experiment on this latency function procedure, and no-
ticed that its computation usually takes less than few milliseconds to complete.  

4   Empirical Results on Scheduling 

We have tested our scheduling work using PC with specification Pentium M 1.6 
GHZ, 512 MB RAM. The objective is to verify if algorithms are being scheduled 
close to high level specification. Each algorithm is running in its own thread, the start 
and stop of the thread is according to the scheduling policies determined from instruc-
tor’s high level input and execution time predication (current video feature and execu-
tion modeling).  

The results are shown in Table 3 for two sets of latency tolerance levels. In (a), the 
specification is: recognition at 3 seconds interval maximum; Face detection at 2 sec-
ond interval maximum; and video frame output rate at 20FPS minimum; In (b), the 
specification is: recognition at 5 seconds interval maximum; face detection at 0.5 
second interval maximum; Video frame output rate at 20FPS minimum; In both cases, 
the left over CPU burst is allocated to tracking.  

The input static camera view is set at 640*480 resolutions and output video is at 
320 * 240 resolutions. We have turn off all other applications to ensure maximum 
CPU availability.  

The results have achieved is very close to the specified high level scheduling rules. 
In both cases, we have achieved desired frame rate around 20 FPS, object recognition 
task is being scheduled in a delayed but not far from the 0.33 HZ and 0.2 HZ respec-
tively.  Face detection is being executed around 0.5HZ and 1.8 HZ. The rest of CPU 
burst to tracking is performed around 5.2 and 4 HZ respectively. The slight fluctua-
tion to the excepted results may have caused by context switching and other back-
ground PC operations.  
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Table 2. Number of completed tasks 

 Video 1 Video 2 
Total play time in milliseconds 68330 182820 
# processed output frame 1298 3424 
FPS 18.99 18.72 
Completed SIFT 19 32 
Completed Face detection 33 334 
Completed Tracking 358 768 

5   Discussions 

In this paper, we have presented experimental results for a novel approach to sched-
ule multiple content dependent video processing tasks using instructor’s PC. We 
have achieved our aim in showcasing a system that accurately predicate the comple-
tion of tasks using unique execution time parameter generation functions (EPGF) 
and histogram modeling for video tasks incorporated in our e-learning work.   

Although in this work, we have used many concepts that may seem only appropri-
ate to e-learning scenarios, such as instructor adjusted latency time and the spatial 
discrepancy recoverable functions, but we argue that many of the scheduling policy 
generation can also be applied to other systems requiring multiple CVPR tasks. We 
also argue that most parts of our framework are also valid, if we are to apply this 
method to parallel and even distributed processing environment. 

6   Attempt to Parallel Execution Using Interleaved SIMD  

To further enhancing the scheduling efficiency, one experiment we have performed is 
to explore the potential use of Interleaved Single Instruction Multiple Data (SIMD) 
instructions to schedule multiple algorithms.  

SIMD is found in most modern day PC. SIMD processing allows multiple data 
elements to be operated by a single instruction to run sequential instructions in paral-
lel. An abstract illustration of our proposed interleaved SIMD instruction is shown in 
Figure 4.  

In essence, by using interleaved SIMD, we are aiming to achieve fine-grained par-
allelism based on merging independent processes (vision algorithms) into a single 
monolithic process in an attempt to artificially induce SIMD parallelism.  

During our experiment, several manual modifications to the existing video process-
ing source codes were performed in order to achieve Interleaved SIMD. We forced 
the program to keep the potentially SIMD merge-able tasks into the same type, using 
integer and float data types. We argue its feasibility, as normally, double float preci-
sion is not required for computer vision applications. We also modified the program 
in such as way that mutual exclusion was always the case between the merging func-
tions. 
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 (a) 

 
(b) 

Fig. 4. Parallel scheduling enhancement using interleaved SIMD, (a) shows a 4 SIMD data type 
registers, (b) is shows the CPU Burst using interleaved SIMD, note some “interleaved” threads 
are now processed in “true” parallel.  

However, contrary to our thoughts, the interleaved SIMD instruction has not 
achieved much system performance enhancements, where in most cases the degrada-
tion was notices. Our preliminary analysis into the root cause was using profile 
matching and the Superword Level Parallelism (SLP) algorithm [13] shown in Ap-
pendix. Therefore, much future studies are required to see how and where we would 
benefit from including interleaved SIMD execution, a novel and theologically sound 
method as a candidate for scheduling implementation. 
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Appendix: Profile Matching for SIMD execution 

We define a profile as high or low-level program representation of the independent 
video tasks that describes the combinations of control statements that make up the 
program. If two or more task components can be identified as having matching pro-
files (based on a relatively strict set of matching rules) then those components might 
be merged as shown in Figure 5 in a process similar to the if-conversion used in vec-
torizing compiles. Since this process preserves program semantics and does not pre-
vent the execution of code in vector units, the resulting code might be parallelizable 
for SIMD hardware even though the original independent tasks were not. 

Note that once we have identified components that could potentially merge, it is a 
necessary phase to determine whether or not it is profitable to do so. Profitable situa-
tions might include: 

 

Fig. 5. Processes merged using if-conversion and example 

• The components contain the same (or similar) sequences of statements 
• The components have identical control conditions (which effectively elimi-

nate the requirement of if-conversion) or the program can be transformed to 
nearly achieve this criteria. 

proc1() { 
  for(init1(); cond1(); incr1()) 
  body1(); 
} 
proc2() { 
  for(init2(); cond2(); incr2()) 
  body1(); 
} 
proc1(float A[]) { 
  for(i=1; i < N; i++) 
  A[i] = A[i-1] + 1.0; 
} 
proc1(float A[]) { 
  for(i=1; i < N; i++) 
  A[i] = A[i-1] + 4.0; 
}

proc() { 
  for(init1(),init2(); cond1()||cond1(); incr1(), incr2()) 
  { 
    if(cond1()) body1(); 
    if(cond2()) body2(); 
  } 
} 
 
proc(float A1[], float A2[]) { 
  for(i1=0, i2=0; i1 < N1 || i2 < N2; i1++,i2++) 
  { 
    A1[i1] = (i1 < N1) ? A1[i1-1] + 1.0 : A1[i1]; 
    A2[i1] = (i2 < N2) ? A2[i2-1] + 4.0 : A2[i2]; 
  } 
} 
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• The components only minimally access memory locations in an indirect 
manner (indirect memory accesses will make vectorization expensive due to-
tal overhead of packing and unpacking data). 

• The components have pairings of the same instruction opcodes (note: these 
criteria can be at least partially induced by acyclic condensation of the data 
dependence graph to determine the singleton nodes for each component.  

• The local data for the independent tasks can be packed into adjacent posi-
tions on the stack. 

• The components are not already completely vectorized for SIMD execution. 

Based on these criteria in our initial analyses, it illustrates that only code with very 
similar execution profiles can gain benefit interleaved SIMD execution.  
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Abstract. The importance of multiuser detection for CDMA-based ad hoc net-
work is addressed in this paper. Conventionally, the terminal in  
CDMA-based ad hoc network uses matched filter to receive packets, so the per-
formance (e.g., throughput) of the network suffers from multi-access interfer-
ence (MAI). Different from above scheme, in this paper, each terminal of the ad 
hoc network is equipped with an adaptive blind linear multiuser detector, so the 
ability of MAI-resistance is gained.  Based on fully-connected network model 
and Log-distance path loss radio propagation model, the throughput of ad hoc 
network with multiuser detection is studied. Simulation results show that multi-
user detection can remarkably enlarge the throughput of ad hoc network. 

1   Introduction 

Since Code Division Multi-access(CDMA) system has advantages such as larger 
capacity, graceful signal degradation, multipath resistance, inherent frequency diver-
sity, etc, it’s a wise choice to use CDMA for mobile ad hoc networks. Recently, Bao 
analyzed the throughput for CDMA-based ad hoc network employing slotted-Aloha 
random access protocols [1]. In his analysis, each node of ad hoc network was as-
sumed to have the capability of receiving multiple packets simultaneously, and near-
far effect was ignored. But for a practical CDMA-based ad hoc system, receiver-
based spreading-code protocol [2] is often adopted, thus it is impossible for a node to 
receive multiple packets destined to it at the same time. Besides, near-far effect 
should be considered because it usually affects the performance of mobile ad hoc 
networks greatly. Power control is a method to alleviate near-far effect, at the cost of 
decreasing the rate of channel utilization or sacrificing system bandwidth [3].  In this 
paper, we solve near-far effect by signal processing technique. We know that near-far 
effect is caused by MAI, and multiuser detection is an effective method to suppress 
MAI. We believe that if multiuser detection is used for a terminal to receive packets, 
throughput can be raised. A few papers about applying multiuser detection on ad hoc 
networks have been reported in recent years [4-6]. The throughput of CDMA-based 
ad hoc network combined with multiuser detection is firstly analyzed by us in [7], 
                                                           
* Supported by the National Natural Science Foundation of China(No.60372107). 
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where free space propagation model is adopted during throughput analysis and simu-
lations. But practical radio propagation is much more complicated than free space 
propagation. Consequently, though the results in [7] have qualitative meaning, they 
are disaccord with those in practice. In this paper, Log-distance path loss model is 
adopted to describe the mobile radio propagation, which characterizes indoor radio 
propagation well.  Based on this model, the throughput of ad hoc network with multi-
user detection is re-analyzed, and its simulation results are more close to  
realistic ones. 

The organization of this paper is as follows: The system model is given in Section 
2. Discussion of multiuser detector is given in Section 3. Based on Log-distance path 
loss radio propagation model, the throughput of our ad hoc network is deduced and 
analyzed in Section 4. Simulations and corresponding interpretations are given in 
Section 5. In Section 6, final conclusion is drawn. 

2   System Model 

Fully-connected model [1] is considered in our paper, which means that every node 
can directly communicate with anyone of other nodes in the network, and the total 
number of nodes in the network is finite. Such model suits indoor circumstance like 
office or home. Each node is half-duplex, i.e., it can be either a transmitter or a re-
ceiver in a slot. Direct sequence CDMA is employed in physical layer. Every node 
has an unique pseudo-random noise(PN) code, which is taken as spreading-code, and 
every node knows the knowledge about other nodes’ PN code. Receiver-based 
spreading-code protocol is employed. When node A sends a packet to node B, it will 
enter “transmitting” mode, use node B’s PN code to make spread-spectrum modula-
tion and send the packet to B. Otherwise, it will stay in “receiving” mode. In receiv-
ing mode, a node locks on its own PN code, receiving or preparing to receive any 
possible incoming packet from other nodes. Every data packet must be transmitted 
within a slot that has specified beginning time and ending time. 

Five assumptions are made in the paper to facilitate analysis. A) The network is 
synchronization on slot. B) The length of DATA packet is fixed, and the duration of 
one slot is the time that sending or receiving a DATA packet lasts. C) At any slot, for 
every node, the probability that a node has a packet to transmit is equal to p. And 
there is no buffer at any node. D) Each node has equal probability to transmit to every 
other node. E) There is an immediate feedback about the status of the transmission. 

3   Multiuser Detector with Bit Error Probability Analysis 

Each terminal of our ad hoc network uses multiuser detector instead of conventional 
detector(i.e., matched filter) to receive packets. Because a terminal only locks on its 
own PN code, and training sequence is not used in our protocol, so we adopts blind 
multiuser detector. We suppose that the total number of packets sent in this slot is L, 
and packet 1 is what we want to detect. At the receiver, the nth bit of mixed signal can 
be represented by 
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Here, Ai is the amplitude when packet i arrives at the receiver; bi,n ∈{-1,1} with dura-
tion T, which is the nth information bit of packet i; si(t) is the PN code for packet i; 
w(t) is the additive white Gaussian noise whose power is 2. Sampled by chip-rate, we 
get vectors s1 and rn from s1(t) and rn(t). Let c1 denote the “weight vector”(i,e., tap 
coefficients)of the detector. Then, the output of the detector for nth bit of packet 1 is 
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Note the dimension of vector c1 and rn are N (N is spreading gain of CDMA system). 
It is shown in [8] that mean output error(MOE) detector is equivalent to minimum 

mean-sqaure error(MMSE) detector, and has a unique global minimum with respect 
to  c1. So our blind linear multiuser detector chooses c1 so as to minimize the mean 
output error(MOE) cost function 
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To facilitate realization by hardware, adaptive algorithm is recommended to recur-
sively update c1, minimizing MOE. Let cn denote weight vector in nth recursion. Let 
rn,i and cn,i (i 1,2,…,N) denote the elements of rn and cn respectively. The constrained 
optimization problem (2) can be transformed into an unconstrained optimization prob-
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Adaptive Least-Mean-Square(LMS) algorithm [8] can be applied to solve (5), 
which has a low complexity O(N). Because each terminal in ad hoc network is en-
ergy-limited, we hope that the algorithm is as simple as possible. That’s the main 
advantage of multiuser detector using LMS algorithm. Meanwhile, we also hope that 
the algorithm can converge as fast as possible. For LMS algorithm, though we can 
raise its convergence velocity by increasing its step size, but its excess mean-square 
error is also enlarged. Adaptive Recursive-Least -Squares(RLS) algorithm [9] can also 
be used to solve (5). The rate of convergence for RLS algorithm is very fast, but its 
complexity is O(N2),which is too energy-cost to be used in ad hoc terminals. Re-
cently, blind adaptive gradient(BAG) algorithm was apposed in [10]. The perform-
ance of BAG algorithm is close to RLS algorithm, while the complexity of BAG 
algorithm is also O(N). Formulae for BAG algorithm are listed in Eqs.(9-11), where  
(0< <1, <<1) denotes a forgetting factor applied to the averaging procedure and μ 
denotes the step size of the tracking algorithm. 
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Let pe be the bit error probability of linear multi-user detection. Given an accurate 
expression for pe is very difficult, but Gaussian approximation can be used to get 
approximate result [11]: 
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Here, (x, y) denote the inner-product of vector x and vector y. We see that 1
2 signifies 

the effect of noise on pe, while i
2 (i=2,3,…,L) signifies the effect of MAI on pe.  

4   Throughput Analysis of Proposed Ad Hoc Network 

In this part, we analyze the throughput of our ad hoc network. We suppose that there 
are M nodes in the ad hoc network, and L nodes have packets to send in current slot. 
Following Assumptions C in Section 2, we know that the probability of L packets 
simultaneously being sent in current slot is 

(1 )L M L
L

M
p p p

L
−= −  (L=0,1,2,…,M) . (15) 

We also define the reception matrix r as 

10 11

20 21 22

0 1 2

0 0

0

M M M MM

r r

r r r

r r r r

=r

L

L

M O M

L

 . (16) 

where rij is the probability that j packets are received successfully when i packets have 
been sent in the network for current slot. Considering terminals’ half-duplex nature, if 
M nodes all send packets, there will be no node in receiving mode. So rM0=1 and 
rMj=0 (j=1,2,… M).  

Now, the task is to solve other non-zero elements of matrix r. Let  be the random 
variable for the total number of successfully received packets at the link layer, L be 
the random variable for the total number of packets sent in a time slot, and X be the 
random variable for the total number of packets intended for nodes which are in re-
ceiving mode (L-X packets are lost due to terminal’s half-duplex nature). Then, for 
1 L (M-1) and 0 n L, a non-zero element of matrix r is 

{ , | } { | , } { | }
L L

Ln
x n x n

r Prob n x L Prob n L x Prob x L
= =

= = = = = = = = = =N X L N L X X L  . (17) 

Under Assumption D in Section 2, we have  

1
{ | }

1 1

x L xL M L L
Prob x L

x M M

−− −= = =
− −

X L  . (18) 

In our protocol, if more than one packet sent to a same terminal in a slot, because 
they use the same PN code as the receiver’s, so the receiver can not distinguish them. 
Let Y be the random variable for the total number of packets can be distinguished by 
the receivers (X-Y packets fail at their receivers because of collisions). The value of 
Y is an integer varying from n to x except for x-1, for the reason that if collision hap-
pens at a terminal at least two packets will be involved and be rejected. Now  
we get 
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To solve (19), we need to determine Prob{Y=y | X=x,L=L}. It was proved in [7] that 
given L (0 L M-1) packets are sent in a time slot (which also means that L nodes are 
in transmitting mode and remained (M-L) nodes are in receiving mode), the probabil-
ity that y packets are free of collision is: 
(1) if x < (M-L), then  
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and K=M-L-y. 
Next, we need to determine Prob{N=n | L=L, X=x, Y=y} in (19). This probability 

relates to the bit error probability pe in physical layer. When k packets are sent in a 
slot, from Eqs.(12-14) we have  

2 22
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s c  . (24) 

As mentioned in section 2, fully-connected model suits indoor circumstance such 
as office and home. Let d be the distance between transmitter A and receiver B and d0 
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be a known received power reference point. Indoor path loss has been shown by many 
researchers to follow the distance power law in Eq.(25) 

0
0

( ) ( ) 10 log
d

PL d PL d
d

γ ζ= + +  (dB).  (25) 

Where the value of  depends on the surroundings and building type and  is a normal 
random variable in decibel having a standard deviation of  dB. [12]. That is, 

(0, )Nζ δ�  in decibels. Such model is called as Log-distance path loss model. 

Let Pt denote the received power at d0, then the received power at B(d>d0) is  

10
r t 10P Pd

ζ
γ−=  .  (26) 

Substitute (25) and (26) into (24), we get  
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It is seen that pe(k) is relative to the detection scheme at the receiver. Different de-
tection schemes have different c1, resulting in different values of pe(k).  

Remark1. If c1 equals to s1, then it becomes conventional detector. pe(k) is propor-
tional to the cross-correlations of PN codes as well as the distance ratios between 
expected source and interfering sources. That is to say, near-far effect caused by MAI 
directly deteriorates bit error performance of conventional detector. 

Remark2. If c1 is chosen to force (si,c1)=0 for each si, it becomes decorrelating detec-
tor. Though MAI is completely suppressed, background noise is magnified as by-
product, which will also deteriorate bit error performance of the detector. 

Remark3. It has been reported that MMSE detector outperforms decorrelating detec-
tor and conventional detector in many papers. When MMSE or equivalent MOE cost 

function is realized by adaptive iterations, the optimal c1 is 1 1
1 1 1

T− −R s s R s , where 

R=E{rnrn
T} denotes the autocorrelation matrix of rn [9]. So algorithm of blind adap-

tive multiuser detection should converge to the optimal c1 as fast as possible so as to 
get a small pe(k).  BAG algorithm recommended in Section 3 is a satisfactory one. 

We suppose that nodes in our ad hoc network are uniformly distributed in a square 
room with 2x0×2x0 m

2. To facility our analysis, we define an assisted random variable 
=d2/x0

2. Then the probability density function (pdf.) of  is 
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Then we can calculate pe(k) by a 2k-dimensional integral: 
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Let Lp be the length of a packet (in bits). Provided that at most t bit errors can be 
corrected by coding, we have the packet success probability on condition that k MAIs 
exist: 

( ) pLp
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L
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Now we get 
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Taking Eqs.(20-23) and Eq.(31) into Eq.(19), we solve Prob{N=n | L=L, X=x}. 
Together with Eq.(18), we can finally determine every non-zero element of r by 
Eq.(17).  

Throughput T is defined by the total number of packets received in a slot in the 
network, which is expressed by 

1 0

M L

L Ln
L n

T p nr
= =

=  , (32) 

where pL is given by Eq.(17) and rLn is the element of matrix r. 

5   Simulations and Remarks 

The scene for simulation is a 20m×20m indoor space, within which M randomly dis-
tributed terminals form a fully-connected CDMA-based ad hoc network. The trans-
mission of every data packet is done within a time slot and the length of each data 
packet is fixed to 800 bits. Distinct 31-bit length gold sequences are pre-assigned to 
every terminal as spreading codes. The operating frequency is 2.4GHz and the trans-
mission power of every node is fixed to 100mW. The power of ambient noise is -
60dBm. Our target is to study the link-level throughput for ad hoc network with 
BAG-algorithm-based multiuser detector(MUD) scheme, and compare it with the 
throughput of ad hoc network with conventional detector(CD) scheme. Following five 
parameters are used in simulations: p - the probability for a terminal to send packet in 
a time slot; M - the total number of nodes; t - the ability of bit error correction of cod-
ing in a packet. And another two parameters are from Log-distance path loss model:  
- the path loss exponent;  - the standard deviation of Gaussian random variable . In 
our simulations, p takes values from 0 to 1 with a step of 0.05. We link simulation 
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results for MUD case with solid lines, while link the simulation results for CD case 
with dashed lines.  
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It is shown in Figs.1-4 that MUD scheme has at least two advantages compared  
with CD scheme. First, the throughput of MUD scheme is always greatly larger than that 
of CD scheme. Second, MUD scheme reaches to its throughput’s peak at a bigger p 
while CD scheme reaches to its throughput’s peak at a smaller p. (e.g., in Fig.1, for t=20, 
we find that MUD scheme reaches its peak 1.58packets/slot when p=0.15, while CD 
scheme reaches its peak 0.63packets/slot when p=0.1.) We know that MAI is the main 
factor that debases bit-error-rate performance, especially when p becomes larger. The 
ability of effectively suppressing MAI is the reason why MUD scheme has these  
two advantages. 

Fig.1 shows the curves of throughput versus p when t equals 10, 15, 20, and 25 re-
spectively. M=20. =3. =10dB. We find that a bigger t brings better performance, 
both for MUD scheme and CD scheme. But increasing t also means occupying more 
bandwidth, so there is a trade off between throughput and bandwidth when deciding 
the value of t. 

Fig.2 shows the curves of throughput versus p with different path loss exponent . 
The typical value of indoor  is larger than 2, and is often smaller than 4. In fig.2 
curves of =2, 2.5, 3, 3.5, 4 are given. M=20. t=20. =10dB. We find that a larger path 
loss exponent will greatly decrease the throughput. Besides, when =2 and =0, the 
Log-distance path model returns to free space propagation model, whose performance 
was given in [7]. 

Fig.3 shows the curves of throughput versus p with different . The typical value of 
indoor  lies between 5dB and 14dB. In fig.3 curves of =6, 8, 10, 12, 14 are given. 
M=20, t=20, =3. We find when  grows the throughput will drop slightly. 
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When M grows, because more terminals are involved in communication, it is natu-
ral that the throughput of the whole network will rise. To fairly evaluate the effect of 
nodes’ density on the throughput, we divide the throughput by M, and call it 
“throughput per node”. Fig.4 shows the curves of throughput per node versus p when 
the total number of terminals M varies from 8 to 20 with a step of 4. We find that 
when M grows, throughput per node will descend, for both MUD and CD scheme. It 
is because the network becomes denser and the sum of MAIs becomes stronger when 
M grows. And because MUD scheme is MAI-resistant, the extent of throughput’s 
drop for MUD scheme is slight, while the extent of throughput’s drop for CD scheme 
is remarkable.  
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Fig. 4. Throughput per node vs. p for different M  (t=20, =3, =10dB) 

6   Conclusion 

This paper shows the importance of multiuser detection for fully-connected CDMA-based 
ad hoc networks. Because of fast convergence and low complexity, BAG is chosen as the 
algorithm of blind multiuser detector. Based on Log-distance path loss model, the 
throughput of ad hoc network with multiuser detection is analyzed. Simulations show that 
compared with conventional scheme using matched filter, proposed scheme can greatly 
increase the throughput. Besides, the impacts of parameters of Log-distance path loss 
model (path loss exponent and standard deviation) and network’s density on through-
put are also studied in the paper. 
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Abstract. The Internet is replacing the traditional telephone network
as the ubiquitous network infrastructure. Internet customers are increas-
ing at an exponential rate and will continue to increase in the near future.
With the proliferation of mobile communication technologies and wire-
less personal devices, the demand for mobile communications has grown
exponentially over the last decade and is expected to grow even more in
the near future. This paper proposes a new bandwidth allocation scheme
that guarantees the time independent fairness and fault tolerance in the
heterogeneous mobile communication services. It will hold some calls in
the second buffer rather than directly discarding it when the residual
bandwidth is insufficient. A multimedia call that satisfies all connection
requirements has precedence over other calls.

1 Introduction

The Internet is replacing the traditional telephone network as the ubiquitous
network infrastructure. Internet customers are increasing at an exponential rate
and will continue to increase in the near future. With the proliferation of mo-
bile communication technologies and wireless personal devices, the demand for
mobile communications has grown exponentially over the last decade and is ex-
pected to grow even more in the near future.

The explosive growth of Internet traffic has led to a dramatic increase in
demand for data transmission capacity, which requires high transmission rates
beyond the conventional electronic router’s capability. This demand has spurred
tremendous research activities in new high-speed transmission and switching
technologies [1].

In spite of the intrinsic scarcity of wireless bandwidth, mobile networks must
have an ability to maintain an acceptable level of service to provide diverse
QoS while achieving efficient bandwidth utilization. QoS provisioning is one of
the most urgent problem that needs to be solved in the multimedia mobile
communications [2][3].

Y. Pan et al. (Eds.): ISPA 2005, LNCS 3758, pp. 1113–1122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In the view point of the optical network based wireless communication envi-
ronment, one of the issues is to maintain the multimedia connection regardless of
the network failure (position). The management process for multimedia mobile
traffic is different from the conventional management process for voice in that a
node may have several active connections with different bandwidth requirements
and QoS constraints.

The bandwidth management function, then, should ensure that all active
connections are rerouted in a seamless manner. In other words, the design goal is
to minimize any service disruption and degradation during and after the recovery
process. This situation can also be equally applied to broadband multimedia
communication services.

The independent multi-class one-step prediction-complete sharing and reser-
vation (IMOSP-CS and IMOSP-RES) incorporates a new resource management,
which partitions the available bandwidth to reflect the desired blocking prob-
ability profile. Much of the bandwidth is allocated to underprivileged calls if
Call Blocking Probability (CBP) ratio between services is greater than the pre-
determined threshold. The numerical results demonstrate that BPMF actually
achieve CBP fairness between wideband and narrowband calls. But, IMOSP con-
trols the reservation partition by simple resource management algorithm so that
it often leads to system abnormalities depending on the traffic behavior. Above
all, IMOSP cannot guarantee short-term fairness in normal traffic conditions,
much less guarantee long-term fairness under heavy traffic conditions [4][5][6].

To make this possible, a new fairness control model is proposed to classify the
connection requests to the first buffer using the call identifier. It will hold some
calls in the second buffer rather than directly rejecting it when the residual band-
width is insufficient. A multimedia call that satisfies all connection requirements
takes precedence over the others.

The reminders of this paper are organized as follows. We discuss unfairness
problem on previous researches in section 1. The proposed scheme is described in
section 2 and the reference network is described in section 3. The traffic model
and queuing analysis of the scheme is described in section 4. The numerical
analysis is explained in section 5. Finally, we end this paper with the conclusion.

2 Survivable Fairness Control Scheme

Fig. 1 shows the strategy used in the proposed scheme to allocate multimedia
calls. In the proposed scheme, channels (bandwidths) are split into three sub-
channels. Gw and Gn channels are dedicated for wideband and narrowband calls,
respectively. The shared channels can be used by either type of the traffic.

Narrowband calls are blocked, if all the permitted channels are in use. How-
ever, wideband calls have finite queues so as to keep a certain amount when
all permitted channels are busy. In most cases, the wideband calls are hardly
admitted so that serious CBP unfairness occurs. Thus, we allocate finite buffers
for wideband traffic to admit all types of services fairly.
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Fig. 1. DPNP Control Scheme

In the proposed scheme, to ensure that all active connections composing a
multimedia call are rerouted one at a time, all connection requests are assorted
first into the call. In other words, the design goal of the proposed scheme is to
minimize any service disruption and degradation during and after the handoff
process. This situation can also be applied equally to fail over connections. In
the proposed scheme, all active connections composing a multimedia call are
executed or blocked all together.

When a new user arrives in a cell, the proposed scheme decides on acceptance
or rejection based on each call’s current resource occupancy, reservation parti-
tion, call state, and dynamic guide channels. A new narrowband call is admitted
if the number of existing narrowband calls is less than the number of guard
channels Gn. When the number of existing narrowband calls is greater than or
equal to the number of guard channels Gn, a new narrowband call is accepted
if and only if the total number of used channels are less than the predefined
threshold.

Assort the connections requests
if all or almost all connections that belong to the same call
satisfy requirements do

if narrow new call is requested do
if narrow new call is less than Gn do
then Accept
else if narrow new call is less than Tn do
then Accept
else Reject all connections that belong to the same call

if wide new call is requested do
if existing used channels is less than C do
then Accept
else Reject all connections that belong to the same call
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2.1 Fairness Control

To describe the proposed fairness control mechanism, the following parameters
are defined and Fig. 3 illustrates some examples of the proposed mechanism
framework [7].

• Dz: The set of Originator-Destination (O-D) pairs that have lost one or
more units of demand upon failure scenario z. Individual O-D pairs of Dz

are indexed by r.
• D: The set of all demand quantities exchanged between O-D pairs, with

index r, and element value dr.
• dr: The number of demand units between end-node pair r.
• pr: The master set of routes eligible for use in restoration of O-D pair r.
• pr

z: The set of eligible restoration routes available to O-D pair r for its restora-
tion under failure scenario z.

• F : A set of predefined failure scenarios, specified in terms of failed spans,
index z. In ESRLG, path recovery takes place in the context of one specific
failure scenario at a time.

• Xr
z : The number of demand units (e.g., individual lightpaths) lost by O-D

pair r, for failure scenario z.
• δr,p

z,j : Boolean parameter that is 1, if span j is in the pth eligible route for
restoration O-D pair r in the event of failure scenario z.

• δr,p
j : 1 if span j is in the pth eligible route for O-D pair r.
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• f r,p
z : The degree of sharing, which refers to the number of lightpaths that can

be allocated between one ultimate source-destination node pair on a link.
• fmax: The maximum degree of sharing on a link.
• gr,q: The amount of working demand flow assigned to the qth working route

between node pair r.
• S: The set of spans of the network.
• sj : The spare capacity on span j.
• wj : The working capacity on span j.

In equation (1), σ(X) denotes a standard deviation of X . An initial statement
of the proposed scheme for a given scenario z is:

maximize σ(
∑

r ∈ Dz

dr)

maximize

[
(1 − α) · ∑

r ∈ Dz

∑
p ∈ pr

z

f r,p
z + α · ∑

r ∈ Dz

λr

]
(1)

subject to: ∑
p ∈ pr

z

f r,p
z ≤ λr · Xr

z ∀r ∈ Dz (2)

λr ≤ 1 ∀r ∈ Dz (3)

λr ≥ λmin ∀r ∈ Dz (4)

∑
r ∈ Dz

∑
p ∈ pr

z

δr,p
j · f r,p

z ≤ sj ∀j ∈ S (5)

∑
p ∈ pr

z

f r,p
z ≥ 1 ∀r ∈ Dz (6)

Equation (2) denotes a limited requirement on each commodity, and equation
(5) denotes a limited capacity on the network spans. Equation (6) will ensure
that all affected O-D pairs enjoy at least one restoration path so they are not
disconnected, if this is feasible.

The objective of equation (1) is to maximize the total number of restora-
tion paths provided for the scenario as a whole. This is effected by finding the
assignments degree of sharing to the surviving eligible routes for restoration of
each pair of affected end-nodes with upper bounds so that no O-D pair can get
more restoration than it needs (equation (2)), and by ensuring simultaneous flow
assignments do not exceed the spare capacity of any span (equation (5)).
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3 Examined Network Model

Fig. 4 shows the architectural model for the IP over an optical broadband net-
work to which revised SRLG is applied. Fig. 4 also shows three interfaces ac-
cording to the overlay model and the peer/integrated model: the User-Network
Interface (UNI), the Internal Node-to-Node Interface (I-NNI) within a single
sub-network, and the External Node-to-Node Interface (E-NNI) between differ-
ent sub-networks.

These interfaces require the implementation of a signaling protocol with suf-
ficient capabilities. New messages are being defined by extension of the signaling
protocols (i.e., the Label Distribution Protocol (LDP) and Resource reservation
Protocol- Traffic Engineering (RSVP-TE)) in the standardization bodies, such
as the Internet Engineering Task Force (IETF) and Optical Internet working
Forum (OIF) [8].

4 Traffic Model and Analysis

Throughout the paper, we assume that system resources can be shared by two
traffic classes, wideband and narrowband calls. The wideband call requires m
bandwidths. The narrowband call requires only one basic bandwidth. It is as-
sumed that the new calls, hand-off calls, and fail over calls are arriving in a
Poisson process with mean arrival rate of λn

n , λh
n, λr

n and λn
w , λh

w, λr
w, respec-

tively. It also assumed that service time is exponentially distributed with mean
service time of 1/μns and 1/μws.
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Fig. 4. Network reference model

The time that calls stay in the cell also follows an exponentially distribution
with a mean of 1/hn, 1/hw, and 1/hr. We also describe that the narrowband and
wideband calls have Poisson distribution with arrival rates of λn(λn

n + λh
n + λr

n)
and λw(λn

w + λh
w + λr

w), respectively. Channel occupancy times for narrowband
and wideband calls are summed with the means of 1/μn(1/(μns + hn)) and
1/μw(1/(μws + hw)), respectively. We allocate finite buffers Bw for wideband
traffic. Let C be the total number of channels and Gn and Gw be the dedicated
channels for narrowband and wideband traffic, respectively.

Then, the system can be modeled as a two dimensional Markov process,
characterized by {i, j}, where i and j are the numbers of narrowband and
wideband calls in the system, respectively. The state space is represented by
the set {s(i, j)|0 � i < Gn, 0 � j � �(C − Gn + Bw)/m� and Gn � i �
C − Gw, 0 � j � �(C − i + Bw)/m�}. �x� denotes the greatest integer smaller
than or equal to x. Also, let the steady-state probability that the system is in
state s(i, j) be p(i, j). The steady-state probability vector p is then partitioned
as p = (p0, p1, ....).

From the state transition, we can obtain the transition rate matrix Q of the
Markov process [9][10]

Q =

⎡
⎢⎢⎢⎢⎢⎢⎣

A0 D
B1 A1 D

B2 A2 D
· · · · · · · · ·

· · · · · · · · ·
· · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

(7)

Let pi,−1 = 0 for 0 � i � C − Gw and p−1,i = 0 for 0 � j � �(C − Gn + Bw)/m�.
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The balance equations maybe written concisely in a matrix form. To do this,
we defined a set of (C − Gw) elements row vector pi

pi ≡ [pi0, pi1, pi2, ...] (8)

From above equations 8, we can define submatrices for i, j = 0, 1, ..., C −
Gw, 0 � j � �(C − Gn + Bw)/m� by

Al(i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λn if i = j − 1 and

(0 � i < Gn|i < C − l ∗ m)
(j)μn if i = j + 1 and

i < C − l ∗ m + Bw

al(i) if i = j

0 otherwise

Bl(i, j) =

⎧⎪⎨
⎪⎩

min(l, �(C − Gn)/m� , �(C − i)/m�)μw

if i = j and i < C − l ∗ m + Bw

0 otherwise

D(j, k) =

{
λw if i = j and i � C − l ∗ m + Bw

0 otherwise

(9)

Where ai(j) is the value that makes the sum of the row elements of Q equal
to zero. To solve 8 with this transition rate matrix Q , we apply the matrix-
geometric solution technique based on Neut’s solution process. First we find Q
matrix by solving the equation

R =
[
D + R2Bn1

]
[I − An1]

−1 (10)

We now start with a trial solution such as R = 0 and again iterate until

max
i.j

[Rij(n + 1) − Rij(n)] < ε (11)

Since all pi can be expressed in terms of p0 by solving the equation ?? re-
cursively, CBPn and CBPw can be easily obtained. Let Tn be the admission
threshold of narrow-band traffic. The new call blocking probability of narrow-
band traffic pnb

n is given by

pnb
n = 1 −

⎡
⎣Gn−1∑

i=0

C−Gn+Bw∑
j=0

pij+
C−Gw−1∑

i=Gn

i+j<Tn∑
j=0

pij

⎤
⎦ (12)

A narrowband hand-off call is accepted if the channels are available. Thus,
the hand-off call blocking probability of narrowband traffic phb

n is given by

phb
n = 1 −

⎡
⎣Gn−1∑

i=0

C−Gn+Bw∑
j=0

pij+
C−Gw−1∑

i=Gn

i+j<C∑
j=0

pij

⎤
⎦ (13)
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Fig. 5. CBP Fairness

Let Tw be the admission buffer threshold of wideband traffic. The new call
blocking probability of wideband traffic pnb

w is given by

pnb
w = 1 −

⎡
⎣Gn∑

i=0

Bw∑
j=Tw

pi,C−Gn+j+
C−Gw∑

i=Gn+1

Bw∑
j=Tw

pi,C−i+j

⎤
⎦ (14)

A wideband hand-off call is accepted if the buffers are available. Thus, the
hand-off call blocking probability of wideband traffic phb

w is given by

phb
w = 1 −

[
Gn∑
i=0

pi,C−Gn+Bw+
C−Gw∑

i=Gn+1

pi,C−i+Bw

]
(15)

5 Numerical Analysis

This section presents a numerical analysis of the performance of the proposed
scheme in the aspects of CBP fairness and resource utilization. The analysis is
done with IMOSP. The cell capacity accommodates 20 units.

As see in Fig. 5, the proposed scheme shows big difference in CBP fairness. In
case of proposed scheme, the traffic intensity between wideband and narrowband
is wide especially when the wideband call arrives with a larger traffic. IMOSP
shows an obvious CBP unfairness between wideband call and narrowband call.
On the other hand, proposed scheme shows a fair CBP between two services.
We can observe from Fig. 5 that the CBP of wideband decreases as the CBP of
narrowband increases. After all, two CBP are converged into their average CBP
value.

6 Concluding Remarks

This paper proposed a novel CAC scheme and resource management algorithm
that guarantee both short-term and long-term fairness between heterogeneous ser-
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vices with different traffic properties and enhance resource utilization of the sys-
tem. The proposed method has been analyzed using a two-dimensional Markov
chain and Neut’s matrix-geometric solutions. By numerical analysis, we demon-
strated that our CAC scheme actually achieves fair admitting probability for wide-
band and narrowband calls and also improves resource utilization regardless of the
traffic behavior.
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Abstract. The use of periodic invalidation reports (IRs), has been shown
to be a useful technique for conserving wireless bandwidth and battery
power. However, IR-based schemes have some drawbacks, such as long
query delay and low client caching availability, even if the clients have suf-
ficient local cache capacity. In this paper, we propose an efficient cache
access protocol to address these problems. Instead of passively waiting,
the clients use the local cache actively. Using our protocol, we can remove
the ”false alarm” that causes unnecessary delay. Based on our threshold-
based scheme, the proposed protocol can optimize response time with lit-
tle loss of data currency. Our simulation results are carried out to evaluate
the proposed methodology. Compared to previous IR-based schemes, our
scheme can reduce the response time significantly with a very little loss of
data currency.

1 Introduction

With the increasing proliferation of mobile devices such as cellular phones, PDAs,
and lap-tops, more services will be delivered in a wireless environment [11],[18].
These services may include traffic conditions, weather reports, and financial in-
formation. However, theses services are limited by the constraints of mobile
environments, such as narrow bandwidth, limitations of battery and frequent
disconnections. In a mobile and wireless environment, caching on the client side
is an important technique, used to reduce contention on the narrow bandwidth
channels and limited battery consumption [4],[5],[14],[16]. However, cached data
items may eventually become invalid due to asynchronous updates that simply
convey that the replica is not updated, though the source is modified [6]. As a
result, when caching is used, cache consistency must be addressed. In most pre-
vious work relating to the IR-based cache invalidation scheme, the latest value
consistency model is used [1],[4],[5].

Recently, much research has shown that the Invalidation Report (IR)-based
cache invalidation scheme is an attractive approach for a mobile environment
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[2],[7],[9]. Specifically, in this approach, the server periodically broadcasts IRs.
A client uses IRs to keep its cache consistent. However, the IR-based scheme has
drawbacks such as long query latency and low client caching availability. If a
query is issued from the client side and the client has the data item requested by
the query, the client must listen to the next IR whether its cache is valid or not
before answering. If an IR interval is long, a client may not submit the answer
in a timely manner. We illustrate this using the example below.

Example 1. Suppose the server broadcasts IRs periodically, and someone who
drives his/her own car requests traffic conditions regarding the next junction,
and this information resides in the local cache. If the information about the
next junction has not already been invalidated, he/she has a valid copy of the
information regarding the next junction. With the previous IR-based access
protocol, however, he/she must still wait for the next IR to validate the local
cache and serve the request. Hence, if he/she passes along the junction before
receiving the next IR and no information is updated, the data in the local
cache may not be helpful to the driver.

As shown in Example 1, these traffic information systems may not be able to
satisfy client requirements. Though the client receives an IR in a timely manner,
it may turn out that the IR leads to a ”false alarm” [5], while in fact the local
cache is valid, causing unnecessary response delay.

There is much work that attacks long query delay [3],[5]. However, most
work focuses on a passive client. The client just waits for the IRs passively,
though they have a data item in a local cache. In this paper, instead of passively
waiting, the client uses its cache actively. There is much research relating to
client’s cache consistency in mobile environments [6],[10],[12]. For efficient cache
access, we adopt a weak consistency model and propose new protocols: the Direct
Cache Access Protocol (DCAP) and the Threshold-based Cache Access Protocol
(TCAP). In our protocols, if we use an appropriate threshold, the ”false alarm”
problem does not occur. Our simulation results demonstrate that our protocols
reduce response time with little loss of data currency.

The rest of this paper is organized as follows: Section 2 introduces some
background information on cache invalidation and the system model employed in
this paper, and previous work. In Section 3, we describe the proposed protocols.
Section 4 evaluates the performance of the proposed protocols. Section 5 provides
some concluding remarks.

2 Background

2.1 The System Model

In order to describe the IR/UIR-based algorithms, we describe a system model
that is similar to [5]. As shown in Fig. 1, it consists of a single server, one
broadcast channel, multiple clients and an on-demand uplink channel. The server
broadcasts both the IRs/UIRs and data periodically. The server has three main
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Fig. 1. The system model

components: a broadcast manager component, a database and an on-demand
data manager component. The broadcast manager component responsible for
sending the IRs/UIRs and data periodically. If the size of the data that will be
sent by the server is not sufficient, idle frames will be sent. The database can be
accessed and updated only by the server.

2.2 The IR-Based/UIR-Based Cache Invalidation Schemes

The work [2] has proposed the basic IR-based Cache invalidation scheme. In the
basic IR-based scheme, the server broadcasts the IRs every L seconds. The IR
contains the current timestamp Ti and a list of pairs (dx, tx) such that tx>(Ti -
w∗L), where tx is the recent update time stamp of dx, w is the broadcast window
size, dx is the data item id, and D is the set of data items. Formally, the IRi

defined as follows:

– IRi= {<dx, tx>|(dx∈D)∧(Ti-w∗L < tx ≤Ti)}
Since the IRs include the history of w periods, a client can still validate

its cache as long as the disconnection time is shorter than w∗L. However, if
the disconnection time is longer than w∗L, A client must flush its entire caches
even if all cached items are valid. Much research has been done to address the
long disconnection problem [7],[9]. The fundamentals of the IR technique can be
further explained in Fig. 2. When the client receives a new query between Ti

and Ti+1, and if the client has a local cache data copy, the client must wait for
the next IR. Otherwise, the client sends an uplink request to the server. After
receiving the next IR broadcast at Ti+1, the client determines whether its cache
is valid or not. If the data copy is valid, the query can be served locally after the
IR broadcast at Ti+1. However, if the data copy is not valid, the client will send
an uplink request to the server. The query can be served after the IR broadcast
at Ti+2. The main advantages of the IR-based cache invalidation scheme are its
scalability and energy efficiency.

To reduce the long query delay, the concept of the UIR is proposed over
the original IR scheme [5],[17]. The UIR schemes use a technique similar to the
(1,m) indexing [8] to reduce query latency. Proposed (1,m) indexing replication
reduces the access latency during data broadcasting. Similar to (1,m) indexing,
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Fig. 2. An IR-based scheme Fig. 3. An UIR-based scheme

the IR is repeated every 1
m th of the IR interval. Since replicating the complete IR

m times may consume a large amount of broadcast bandwidth, the UIR contains
the data items id that have been updated after the last IR. Formally, the UIRi,k

can be defined as follows:

– UIRi,k={dx|(dx∈D)∧(Ti,k−1 < tx ≤Ti,k)} where, (0<k<m-1), (m-1) is the
number of replicated UIRs within one IR interval.

The idea of the UIR technique can be further explained in Fig. 3. When a
client receives a new query between Ti,1 and Ti,2, and if a client has a data copy
in the local cache, a client must wait for the next UIR. Otherwise, a client sends
an uplink request to the server. After receiving the next UIR broadcast at Ti,2,
a client determines whether its cache is valid. If the data copy is valid, the query
can be served locally after the UIR broadcast at Ti,2. If the data copy is not
valid, a client will send an uplink request to the server. The query can be served
after the IR broadcast at Ti+1. Therefore, the UIR-based scheme can reduce the
query delay by 1

m in case of an average cache hit.

3 The Proposed Protocol

3.1 Motivation

In the IR-based scheme, when a cache hit occurs, the client must wait for the
next IR even if the cached items are not updated. Therefore, even if the cache
size of clients is large enough to store all data items, the query delay may be
longer than when a client has low caching storage due to the ”false alarm”.

Although the UIR-based solution provides a mobile client with the freshest
bounded latency data item, it notably loses the availability benefit of client
caching, especially if the data item at the local cache is valid. In addition, it
may turn out that the IR leads to a ”false alarm” [5], while in fact the local
cache is valid, thereby causing unnecessary response delay.

The unnecessary delay is illustrated in the following example (Fig. 4). When
a new query is issued between Ti,1 and Ti,2, and if a client has a data copy
in the local cache, the client waits for the next UIR. If the data is updated at
Update A ( Ti,1 < Update A < Tcachehit ) or Update B ( Tcachehit < Update B
< Ti,2 ), the UIR broadcast at Ti,2 contains the requested data id. Therefore,
in both cases, the client will send uplink requests. If the client uses a data item
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Fig. 4. The example of unnecessary delay

located in the local cache, immediately before Update B, the data item has the
highest freshness even if the UIR broadcast at Ti,2 contains the data id. In this
case, the client does not need to wait for the next UIR and the client can use
the local cache immediately. The client may acquire fast access time and high
availability of client caching without problems. If the client uses a data item
located in local cache, immediately after Update A, the response time is shorter
than the previous UIR-based schemes but the client may access stale data items.

If a client uses the latest consistency model, the client can acquire high
currency. As a previous example, however, if the client wants to acquire fast
access time and high availability client caching, the latest-value model is not
suitable since it has the ”false alarm” problem. Since a notion of data consistency
is application dependent [1],[5],[6], in this paper, we adopt a weak consistency
model to improve the availability of client caching. Specifically, our consistency
is based on the latest-IR consistency model. In this consistency model, a client
must always access the value of a data item, guaranteed by the latest IR/UIR.
Therefore, the client can use its local cache more efficiently.

3.2 The Basic Idea

In most previous IR-based algorithms, the latest-value cache consistency model is
used for local cache consistency. In these IR-based algorithms, a client just waits
for data items requested and uses their cached data items only after listening
to the IRs or UIRs. We address the problem by asking the client to actively use
cached data items. For example, if a cached data item is updated after a client’s
request, it is irrelevant whether the client uses its cache directly or waits for the
next IRs or UIRs. Therefore, in this case, we can use the client’s cache directly. If
a cached data item is updated before the client’s request, the client may access a
stale data item. However, the chance of this case occurring is expected to be very
low because all the following requirements should be met: First, the requested
data item must be placed in a local cache. Second, the requested data item must
be updated during one IR or UIR period. Third, the update must occur before
the client’s request. Let us denote each probability for the requirements as Pc,
Pu and Pbefore. The probability, Pnf , that the client cannot obtain an up-to-date
data item, is Pc∗Pu∗Pbefore.

Based on these observations, we propose new protocols. In the DCAP, when
a client receives a new query, the client uses a data item immediately, if the
client has a data copy in the local cache. It may consist of stale data items.
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Algorithm 1 Algorithm at server
(A)During the broadcast interval L, construct IRi as follows:

IRi ={< dx,tx >| (dx∈D) ∧(Ti-L∗w < tx ≤ Ti)};
Broadcast IRi and Lbcast;
for each dx∈Lbcast do broadcast data item dx;
Execute Step B if the UIR interval reaches. Lbcast =∅;

(B) At interval time Ti,k, construct UIRi,k as follows:
UIRi,k = {dx|(dx ∈ D) ∧(Ti,k−1 < tx ≤ Ti,k)} , (0<k<m-1)
Broadcast UIRi,k;

(C) Receives a request Ldata from clients Cj :
Lbcast = Lbcast ∪ Ldata.

However there is a high probability that the data items are up-to-date and the
largest loss of currency, in the worst case, is L, that is one broadcast interval.
To obtain fresher data, we propose the TCAP. The simple but effective basic
idea of the TCAP is to use the time threshold. Each client may define its own
time threshold for the cache access protocol. Based on the time threshold, the
client can determine whether to access the cache immediately or not. By using
this threshold, the client can reduce Pbefore and loss of currency. For example,
when the threshold is 2

L , Pbefore, Pbefore and the loss of currency is expected to
be half the DCAP. When a new query is received before the time threshold, the
client uses the local cache immediately. On the other hand, when a new query
is received after the time threshold, the client waits for the next IR or UIR,
which is similar to the IR-/UIR-based cache invalidation schemes. In the TCAP,
the client can adjust the time threshold adaptively, in this manner, if the client
wants the highest currency, the client may adjust the time threshold to 0.

3.3 The Server Algorithm

As in [5], the server broadcasts the IRs/UIRs and requests client data peri-
odically. The server guarantees the IR/UIR interval by assigning the highest
priority, similar to a beacon broadcast in IEEE 802.11 [15]. The requested data
items are served on an FCFS (First Come First Serve) basis. The details of the
server side algorithm are described below. The server side algorithm is similar to
the previous IR/UIR-based algorithm [5]. L, w, dx, tx, D, m and Ti,k are defined
in the previous section. Ldata denotes an id list of the data items that a client
has requested from the server. Lbcast that is initialized to be empty, denotes an
id list of the data items that the server received in the last IR interval.

3.4 The Client Algorithm

In our client’s algorithm, the client does not wait for the IRs/UIRs to fetch the
requested data, if the data is in their local cache. The issued query can be served
from the client’s local cache immediately. When the client receives a query, the
client executes the client algorithm.
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Algorithm 2 Algorithm at client
(A) When a client Cj receives IRi and Lbcast:

if Tl < ( Ti -L∗w) then drop the entire cache entry;
for each data item < dx, tc

x > in the cache do
if ((dx,tx) ∈ IRi) ∧ (tc

j < tx) then invalidate dx;
for each dx ∈ Lbcast do

if (dx ∈ Ldata) then download dx into the cache, use dx to answer the query;
if dx is an invalid cache item

then download dx, into local cache and Tl = Ti;
if (Ldata �=∅) then query (Qi) and Ldata = ∅;

(B) When a client receives a UIRi,k:
if missed IRi then break and wait for the next IR;
for each data item < dx, tc

x > in the cache do
if (dx∈UIRi,k) then invalidatedx;

if (Ldata �= ∅) then query (Qi,k) and Ldata = ∅;
(C) When a client receives a query (dx):

if (Tc-Tt < Tthreshold)
if dx, is a valid entry in the cache then use the cached value immediately;
else send request(dx) to the server;

else Ldata = Ldata ∪ dx;

(D) Procedure query(Q)
for each dx ∈ Ldata do send request(Ldata) to the server;

When Tthreshold is equal to an IR/UIR period, the TCAP is same as the
DCAP. In the DCAP, a client executes this algorithm every time a new query is
received. Therefore, the client needs not gather issued queries. This simple but
effective algorithm, however, may serve stale data. It means that the client may
lose data currency, bound by one IR/UIR period. For higher levels of currency,
the TCAP is proposed. In this algorithm, the TCAP selects a threshold based
on the UIR scheme. The TCAP is a more general case of the DCAP that is,
if the time threshold is set to one UIR period, the TCAP is identical to the
DCAP. In the client algorithm, Tt denotes the timestamp of the last received
IR, Tc denotes the current time, tcx denotes the timestamp of cached data item
dx and Tthreshold denotes the time threshold(0 ≤ Tthreshold ≤ L). Qi, Qi,k are
the set which contains dx that has been queried from the threshold to Ti and dx

that has been queried in the interval [Ti,k−1, Ti,k], respectively.

4 Performance Results

4.1 Simulation Model

For our evaluation purposes, the discrete time simulation package CSIM [13] is
used. Using CSIM, we implement the system model of consideration throughout
the paper. Our simulation model is similar to that employed in [4],[5].

In this simulation, our protocols are implemented based on the UIR algo-
rithm. Our model consists of a single server, which serves multiple clients, one
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Table 1. Simulation parameters

The parameters (Utit) Contents The parameters (Utit) Contents
Database size (data item) 1000 UIR replicate times 4

Number of clients 100 Hot data items 5% of DB
Broadcast interval (sec) 200 Cold data items 95% of DB

Broadcast bandwidth (bits/sec) 10000 Hot data update probability 33%
Cache size (data item) 1 to 500 client’s Zipf. parameter 0.95

Broadcast window (broadcast interval) 4 Query generate time (data item) 1 to 200

broadcast channel and one uplink request channel. As mentioned in Section 3.1,
the server broadcasts both the IR/UIR and requested data items. Data items
can be divided into two subsets, hot and cold, hot data consists of frequently
updated data items, and cold data consists of others.

In our simulation model, We assume broadcast bandwidth is fully utilized
for broadcasting. Basically, we use the LRU cache replacement policy. The client
generates a new query one by one. The probability of generating each data item
follows the Zipf distribution with 0.95 as a parameter. To measure the access
time, we just observe one client, because, in this simulation environment, the
activity of a client does not affect the performance of other clients. Each new
query is generated by following an exponentially distributed time. The default
system parameters are listed in Table 1, which are similar to [4],[5]. To measure
the loss of data currency, we examine both time and version difference between
the last update and the response of interest. The currency is calculated by the
following equation, in this equation, Ntotal denotes the total number of data
items that a client received (from the server or the local cache), Ns denotes the
number of stale data items that a client received, Difft denotes the difference
of time between the last update and the response of interest and Diffv denotes
the difference of version between the last update and the response of interest.

The average loss of currency

=
Ns∗

∑
Difft
Ns

Ntotal
=

∑
Difft

Ntotal
(in terms of time)

=
Ns∗

∑
Diffv
Ns

Ntotal
=

∑
Diffv

Ntotal
(in terms of version)

4.2 Evaluation of Average Response Time

First, we evaluate the average response time of varying schemes. Fig. 5 shows
the resulting average response time of the IR, UIR, and our protocols. DCAP
is a special case of TCAP and has L(in this experiment, L denotes one UIR
period) seconds as the time threshold. It can be seen from Fig.5 that DCAP
has the lowest average response time and the gap between the UIR and DCAP
increases significantly when the cache size increases. This can be explained by
the fact that our algorithms use the local cache immediately, through which the
client can remove the ”false alarm”.
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Fig. 5. The average response time (L=40) Fig. 6. Total number of client requests

The TCAP (Threshold=L
2 ) outperforms the IR/UIR-based schemes. As can

be seen, the performance of the TCAP is similar to DCAP. This can be explained
by the following fact. In the TCAP, if a client has a copy of a data item in its
local cache, the client does not need to wait for the next UIR before the time
threshold. After the time threshold, even if the client must wait for the next UIR,
the waiting time is not long. In other words, when the client is in need of an
unnecessary long waiting time, the client can use its local cache immediately. For
example, when the Threshold=L

2 , the maximum waiting time does not exceed
L
2 . In the case of the IR, when the cache size is 70, the average response time
is smaller than when the client has a larger cache size. This can be explained
by the following fact. When the client has many items in its local cache, the
probability that data items will be updated will increase. Therefore, although
the client has a large local cache, the response time increases.

4.3 Evaluation of Loss of Currency

To evaluate the loss of currency, we observe the details of the client requests. As
shown in Fig. 6, the client receives very few stale data items. In the DCAP, about
only 1% data items are stale and 99% of date items are up-to-date. Note that
the frequency of stale data items is small. In the TCAP, which uses half of the
UIR period as the threshold time, about only 0.4% of data items are stale and
99.6% of data items are up-to-date. Furthermore, when we use the threshold,
the maximum loss of currency decreases to half of the DCAP.

When stale data items (i.e. that are diagonal lined parts of Fig. 6) are re-
ceived, the average time loss of currency is shown in Fig. 7(b). When the thresh-
old is used, we can reduce the average time loss. Therefore, total loss of currency
decreased in proportion to the threshold. Fig. 7 shows the currency loss in terms
of time. In Fig. 7(a), if the client uses the DCAP, the client has a probability of
accessing old previously updated data of about 0.005∗L. If the client uses the
TCAP, the client has a probability of accessing old data updated before 0.001∗L.
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(a) (b)

Fig. 7. The average loss of currency(in terms of time)

(a) (b)

Fig. 8. The average loss of currency(in terms of version)

For example, if the UIR interval is 0.2 sec. and we use the DCAP algorithm, we
may access old data, which is updated before an average of 0.001 sec.

Let us look at the loss of currency from a different angle. Fig. 8(a) shows the
average loss of currency in terms of version. When the client receives a stale data
item, the average loss of currency in terms of version is shown in Fig. 8(b). If the
client uses the DCAP, the client may receive average of 0.014 older version, even
if the client receives a stale data item, the version of the data is an average of 1.4
older version than up-to-date data. The simulation environment is same as the
previous experiment. In these cases, we measure the loss of currency by version.
The y axis represents a difference of version between the received data item and
up-to-date data items (see Section 4.1). Whenever a data item is updated, its
version is increased by one. For example, when the client receives a data item
whose version is 8.0 and the current version of the data item is 9.0, the value
of the y axis is 1.0. If the client receives up-to-date data items every time, the
value of the y axis is 0. In Fig. 8(a), we measure the differences of the version
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when the client receives a data item. In the case of DCAP, the client accesses an
average of 0.014 older version. In the case of the TCAP, the difference is lower
than that of the DCAP.

All of these cases occur just when the client has a stale data item in its local
cache, and the data item is updated after using the local cache. Furthermore,
even if the client uses a stale data item, the differences between the received
data item and up-to-date data item, in terms of versions, is not significant.

5 Conclusion

So far, the research into the IR based cache access schemes has focused on the
passive role of a client. In this paper, however, we focused on the active role of
a client to access a local cache. With this in mind, we have proposed the Direct
Cache Access Protocol (DCAP), which is used to access the client’s local cache
immediately and remove the ”false alarm” problem. To achieve higher data
currency, we have also proposed the Threshold-based Cache Access Protocol
(TCAP), a general case of DCAP.

In this paper, we have examined several cache retrieval cache access schemes
with the goal of improving access time and cache usability. The experimental
results show that the proposed protocols improve response time significantly
with minor loss of data currency. In the future, we plan to investigate the effect
of varying client access patterns and client disconnections.
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Abstract. Route caching strategy is an important on-demand routing protocol 
for mobile ad hoc networks. On-demand routing protocol for mobile ad hoc 
networks utilizes route caching in different forms to reduce overheads, peer-to-
peer delay. This paper presents a variation in view compared to DSR and HER, 
to minimize cache staleness, partitions and enhance reliability of service. The 
variation is with respect to identification of route and cache validation of errors 
using different techniques namely Update Route Caching (URC), Temporal 
Cache Validation (TCV), Negative Cache Validation (NCV) and Combined 
Cache Validation (CCV). The proposed method refreshes cache more often than 
the DSR and HER thereby initiating route requests earlier, when a route still be-
ing used is broken, thus reducing peer to peer delay to transmit packets. The re-
sults of GloMoSim simulator validates higher cache hit percentage and reliable 
delivery of packets in the technique Combined Cache Validation (CCV) when 
in comparison to DSR and HER  

1   Introduction 

In a wireless ad hoc network, individual mobile nodes forward packets for other 
communicating mobile nodes that are out of the transmission range of each other. The 
network is dynamically self-organizing and self-configuring, with nodes establishing 
the necessary routes. Dynamic topologies due to mobility and limited bandwidth and 
battery power make the routing problem in ad hoc networks more challenging than 
traditional wired networks. A key to designing efficient routing protocols for such 
networks lies in keeping the routing overhead minimal. In an ad hoc network, many 
routing protocols, such as DSR [1,2] and HER [3], operate on-demand.  These proto-
cols use source routing and each node maintains a cache of all routes that it has previ-
ously discovered or overheard in other packets. The source node chooses route for 
each packet it wishes to dispatch using routes from its route cache. This kind of cach-
ing can substantially reduce the overhead of routing protocol and also reduces the 
delay in delivering data packets when a cached route is already available. Utilizing 
cached information without robust mechanisms to keep it up-to-date can actually 
degrade performance and thus making caches counter-productive. However, routing 
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cache staleness presents a serious challenge to such protocols. Caches represent 
learned portions of the network topology, but a cache entry may become invalid due 
to changes such as two nodes moving out of wireless transmission range of each 
other.The current specification of DSR lacks a mechanism to determine the relative 
freshness among routes in the route caches, or even to purge all stale routes from 
route caches effectively. Performance studies have observed that caches in DSR can 
report invalid routes frequently, which affects performance negatively. This paper 
intends to develop and analyze effective caching mechanism along with energy based 
routing algorithm for the best overall performance. Some trouble spots in DSR are the 
root cause of the stale cache problem. The work is focused on reducing the invalid 
cache information by implementing the three techniques namely Update Route Cach-
ing (URC), Temporal Cache Validation (TCV) and the use of Negative Cache Valida-
tion (NCV) with the existing protocol DSR. Similar techniques for solving cache 
staleness extend to other ad hoc network routing protocols like HER [3] and com-
pared the performance.  

The rest of the paper is organized as follows. Section 2 of this paper gives an over-
view of the basic operation of the DSR and HER protocol. In Section 3, we describe 
the route caching in DSR and discusses the problems faced in route caching. In Sec-
tion 4, we describe the methodology of our simulation study, including our simulator 
features, the performance metrics we evaluated. In Section 5, we present the Simula-
tion results and analysis. We present the conclusion in section 6. 

2   Overview of the Existing Protocols 

In this section, two existing version of On-demand routing algorithms for MANET 
routing protocols, namely DSR and the energy based routing protocol HER  
are outlined. 

2. 1   Dynamic Source Routing Protocol  

DSR is used in this paper as a base protocol for the development of techniques to 
ensure cache freshness [1,2]. The operation of DSR is based on source routing, where 
in the source determines the complete sequence of hops to be used as the route for 
that packet to reach the destination. DSR divides the routing problem in two parts, 
Route Discovery and Route Maintenance, both of which operate entirely on-demand. 
In Route Discovery, a node actively searches through the network to find a route to an 
intended destination node. While using a route to send packets to the destination, 
Route Maintenance is the process by which the sending node determines if the route 
has broken. A node that has a packet to send to some destination searches its route 
cache for a route to that destination. If no cached route is found, the sending node 
initiates Route Discovery by locally broadcasting a ROUTE REQUEST (RREQ) 
packet containing the destination node address (known as the target of the Route 
Discovery), a list (initially empty) of nodes traversed by this RREQ, and a request 
identifier from the source node. A number of optimizations to the basic DSR protocol 
have been proposed [1]. 
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2.2   Highest Energy Routing (HER) Algorithm 

In this section, a new route selection mechanism for MANET routing protocols, 
Highest Energy Routing (HER) is described. In this algorithm, the selection of routes 
is based on the remaining energy levels of the nodes that constitute the route. The 
modifications in DSR have been proposed in such a way that the destination node 
knows about the energy levels of the intermediate nodes and hence can choose the 
most energy efficient route. HER [3] differ from the conventional DSR only in the 
Route Discovery. The other aspects of DSR remain essentially the same. 

In HER, an energy field in the RREQ packet is included, where the intermediate 
nodes insert their current energy level while forwarding the RREQ packet. The infor-
mation on the remaining energy levels of intermediate nodes reaches the destination 
node. Thus this algorithm makes energy information of the various paths traversed 
available to the destination node. The destination node chooses an energy efficient 
route from a set of possible routes. In HER, the destination node is designed to wait 
for a short duration of time (which is directly proportional to the remaining energy 
level of the node) during which the destination node caches the routes that are being 
reported to it by different RREQ packets. For this the destination node builds a cache 
during route discovery that is very similar to the route cache. We call this the Route-
Request cache. The destination node then send this Route Reply packet to the source 
by selecting the maximum of the minimum energy in the paths acquired from the 
RREQ packets. The selection of the route to reply by the destination depends on the 
energy level of the participating nodes during Route Discovery. Thus, by our algo-
rithm, the destination node selects the route with the highest lifetime from a set of 
available routes. 

3   Route Caching in DSR 

All routing information needed by a node participating in ad hoc network using DSR 
is stored in that node's route cache. A node adds information to its route cache as it 
learns of new links between nodes in the ad hoc network.  Nodes remove information 
from their route cache as they learn of broken links. By searching for a route in the 
route cache to a destination, the route cache is indexed by the destination node    ad-
dress.  

3.1   Problems Faced in Route Cache   

• In complete error notification: When a link breaks, route errors are not updated 
to all caches that have an entry with the broken link. Instead, the route error is unicast 
only to the source whose data packet is responsible for identifying the link breakage 
via a link layer feedback. Thus only a limited number of caches are cleaned. Piggy-
backing the link breakage information onto the subsequent route requests from the 
source propagates the failure information. But if the route requests are not be updated 
network-wide, many caches may remain unclean [4].  

• No expiry: No mechanism to expire stale routes. If not cleaned explicitly by the 
error corrective mechanism, stale cache entries will stay forever in the cache.  
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• Quick pollution:  No method to determine the freshness of any route informa-
tion. For example, even after a stale cache entry is erased by a route error, a subse-
quent “in-flight” data packet carrying the same stale route can put that entry right 
back in. This possibility increases at high data rates, as there will be a large number of 
“in-flight” upstream data packets carrying the stale route to “un-erase” the route. This 
problem is compounded by liberal use of snooping. Thus, cache “pollution” can 
propagate fairly quickly. 

3.2   Proposed Solutions to Route Cache Problem 

Four mechanisms in DSR and HER protocols are the following: 

Update Route Caching (URC): This URC is based on the idea that route errors 
should be updated very fast in all nodes’ cache. In order to increase the speed and the 
extent of error updating, route errors are now transmitted as broadcast packets. Ini-
tially, the node that determines the link breakage, broadcasts the route error packet 
containing the broken link information. The flow chart and the sequence diagram of 
URC mechanisms are shown in figures 1 and 2. Upon receipt of route error, nodes 
update their route cache so that all source paths containing the broken links are trun-
cated.  A node receiving a route error propagates (rebroadcasts) it further. By this 
mechanism, route error information is efficiently disseminated to all the nodes that 
forwarded packets along the broken route and to the neighbors of such nodes that may 
have acquired the (broken) route. 

URC Mechanism
S need to send to D

Lookup Cache for route S to D

Route 
found?

Start Route 
Discovery 
Process

Send 
packet to 

D

Write route in 
packet header

yes

No

If Link failure?
Detector (B) 

broadcasts RERR 
Packet

Yes

Each received 
Node updates
route cache

The Destination
receives Data

Packet

No

 

Fig. 1. Flow Diagram of URC mechanism 

Negative Cache Validation (NCV):  This technique is pro-active form to disable the 
wrong entry of stale routes in the cache. The variation is only in that part where the 
cache is been updated in the DSR protocol. NCV makes use of another cache struc-
ture to store the invalid routes existing in the network. In addition, the negative cache 
is always checked for broken links before adding a new entry in the route cache.  
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Figures 3 and 4 illustrate the flow chart and sequence diagram of Negative Cache 
mechanism. Essentially, route cache and negative cache are mutually exclusive with 
respect to the links present in them. This prevents the cache pollution problem. 

 

Fig. 2. Sequence Diagram of URC 

Negative Cache Mechanism
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Route 
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Start Route 
Discovery 
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packet header
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unicasts RERR 
Packet to S

Yes

Node S updates
R-cache & RERR
Entry in N-cache

The Destination
receives Data

Packet

No

Every time before making 
Entry in R-cache, route is 

checked with N-cache

  

Fig. 3. Flow Diagram of Negative Cache Mechanism 

Temporal Cache Validation (TCV): This technique leads to increased search of new 
routes in the network. TCV makes use of a time-dependent cache, which gets      re-
freshed after some period of time. This refreshment leads to higher good replies by 
the nodes for the route request packets. The stale routes get expired after some period 
of time and this leads to a minimized use of cache memory over a period of observa-
tion. TCV is a reactive based cache validation. The Sequence diagram of TCV is 
shown in figure 5. TCV has a timer over which the stale routes are automatically 
expired. 
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Combined Cache Validation (CCV): This technique is a conglomeration of the previ-
ous techniques to provide consistent routes for routing data packets. CCV is both 
reactive and pro-active way to update cache in the nodes. Since the validation of the 
cache is also based on the time, the invalid routes are removed before reception of 
route error packets and hence the delay in retransmission of request packets is re-
duced. CCV also removes stale entries before the routes expire by the URC mecha-
nism. 

 

Fig. 4. Sequence Diagram of Negative Cache Mechanism 

 

Fig. 5. Sequence Diagram of TCV Mechanism 

4   Performance Evaluations 

A detailed simulation study is carried out in the next sections to evaluate the effec-
tiveness of the caching mechanism described in the previous section. Their perform-
ances are compared with the base DSR protocol and HER protocols. 
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4.1   Simulation Environment 

The routing protocols are simulated within the GloMoSim library [5]. The GloMoSim 
library is a scalable simulation environment for wireless network systems using the 
parallel discrete-event simulation capability provided by PARSEC [6]. We simulated 
a network of mobile nodes placed randomly within a 1000m x 1000m area. Each node 
has a radio propagation range of 250 meters and channel capacity of 2 Mb/s was cho-
sen for each node. We used the IEEE 802.11 Distributed Coordination function 
(DCF) as the Medium Access Control (MAC) Protocol. Each simulation was exe-
cuted for 900 seconds. Multiple runs with different seed values were conducted for 
each scenario and the collected data was averaged over those runs. A traffic generator 
was developed to simulate CBR sources. The size of data payload is 512 bytes. 

4.2   Performance Metrics 

The following metrics are used for comparing the cache performance and evaluate the 
correctness of route caches in various protocols. 

Throughput: Measured as the ratio of the number of data packets delivered to the 
destination and the number of data packets sent by the sender.  
End-to-End delay: It is the time taken between the receipt of the last and the first 
packet / total number of packets reaching the application layer.  
Control Overhead: Measured as the total number of packets transmitted during the 
simulation period. 
Cache Hit ratio: Measured as the total no of hits at a particular node to the total re-
quest.  
Error Sent: Measured as the number of route errors registered due to link breakages. 

5   Simulation Results and Analysis 

In this section, the control overhead, throughput, end-to-end delay and energy left 
with respect to pause time, number of nodes and traffic loads are presented.    

5.1   Performance Variation with Respect to Nodal Density 

From the figure 5.1, it can be inferred that the combined cache validation is better 
than the other techniques, though the difference is marginal with respect to hit per-
centage, but the number of route errors propagating in the network is very less com-
pared to other protocols as shown in figure 5.2. Though link breakages occur due to 
mobility of the nodes, the updation of the cache in the surrounding of that node causes 
the data packets to be salvaged by the initiator of the route error by an alternate route 
to the destination. The throughput from figure 5.3, resemble close to each other for all 
techniques, but the overhead from figure 5.4 in case of DSR-CCV is comparatively 
higher than others, as route cache is only refreshed in this technique. But HER-CCV 
establishes routes considering both cache and energy of a node and hence the number 
of control packets (Overhead) for this technique is comparatively lesser than the other 
techniques. 
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Fig. 5.2. No. of Nodes Vs Error Sent 
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Fig. 5.3. No. of Nodes Vs Throughput 

5.2   Performance Variation with Respect to Speed 

Mobility of the nodes are an important factor to be considered in Mobile Ad-hoc 
Networks, as high mobile nodes intersect the ranges of various nodes at a pace    pro-
portional to their speed. Hence high validation techniques with energy consideration 
are needed to propagate data packets in this type of mobile environment. 
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CCV is one of the techniques that are used for cache validation and HER is used 

for considering the energy of the node for transmission of packets. HER-CCV shows 
higher hit percentage with lower route errors during data transmission maintaining the 
same throughput level for a node with marginal differences is shown in figures 5.5, 
5.6 and 5.7  
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Fig. 5. 5. Speed Vs Hits Percentage 
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Fig. 5.6. Speed Vs Error Sent 

5.3   Performance Variation with Respect to Terrain 

Terrain dimensions denote the distribution and scatter in a mobile environment. 
Though overhead in the case of CCV is higher the average energy left in nodes are 
comparatively better than the other techniques indicating reliable delivery of bulk data 
packets as shown in figures 5.8 and 5.9. Bulk data packets consume more energy than 
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control packets due to the difference in the time for transmission of packets of varied 
sizes. From the figure 5.10 the utilization of the cache is higher in CCV since the hit 
percentage is compromised with the number of route errors in the environment. 
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Fig. 5.7. Speed Vs Throughput 
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Fig. 5.8. Terrain Vs Overhead 
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Fig. 5. 10. Terrain Vs Hits Percentage 

6   Conclusion 

Mobile environments like Dynamic Ad hoc networks should consider both energy and 
cache metrics to counteract the effects of frequent route changes due to node mobility. 
Cache in nodes need to be refreshed at a faster rate to inhibit further pollution in the 
network. Techniques are proposed in this paper to improve caching performance in 
DSR and HER that primarily focuses on removal of stale entries in the route cache. 
By frequent flushing of hackneyed entries in the proposed technique, the probability 
of bad replies made by nodes is reduced, thereby discovering stable routes in shorter 
periods than the basic routing protocols. The results of the various simulations reveal 
the credibility of DSR-CCV and HER-CCV techniques in congested, highly mobile 
environment with lower broadcast range to reduce energy consumption while partici-
pating in routing of packets. It is also found that the HER-CCV has good performance 
with respect to hit ratio, overhead and throughput when compared to other techniques.  
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Abstract. This work studies the allocation of bandwidth resources in wireless 
ad hoc networks. The highest-density clustering algorithm is presented to 
promote reuse of the spatial channel and a new slot allocation algorithm is 
proposed to achieve conflict-free scheduling for transmissions. Since the 
location-dependent contention is an important characteristic of ad hoc networks, 
in this paper we consider this feature of ad hoc networks to present a new 
cluster formation algorithm, by increasing the number of simultaneous links to 
enhance spatial channel reuse. Furthermore, because each cluster has its own 
scheduler and schedulers operate independently of each other, the transmissions 
may conflict among the clusters. In this paper, we classify the flows by the 
locations of their endpoints to prevent this problem. Finally, the proposed 
mechanism is implemented by simulation and the results reveal that the 
conflicts can be efficiently avoided without global information and the network 
throughput is improved without violating fairness.  

1   Introduction 

An ad hoc wireless network is a collection of wireless mobile nodes that self-
configure to form a network without any established infrastructure. The nodes in such 
a network communicate with each other only if they can reach each other (meaning 
that they are within each other’s radio transmission range).   

In traditional wired or cellular networks, either routers or base stations participate 
in scheduling bandwidth allocation. However, in ad hoc networks, all nodes may be 
involved in scheduling precious wireless resources. The broadcast characteristic of the 
wireless medium is such that when a node transmits packets, the nodes within its 
transmission range can receive the sent packets. All links within vicinity can contend 
for using the wireless medium due to the nature of wireless propagation. Therefore, 
the simultaneous transmissions from various nodes without proper coordination may 
cause serious collisions. 

CDMA (Code Division Multiple Access), a multi-channel wireless technology, can 
address the contention for spatial channel at the physical layer where each channel is 
defined by a spread spectrum code [5] [10]. Each node schedules its transmission on 
different channels (codes) in such a way to avoid conflicts with neighboring nodes 
while making the most efficient use of the available wireless resource. Although this 
method settles collisions arising from broadcast transmissions, contention still exists 
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because each wireless node is usually equipped with a single transceiver that cannot 
transmit and receive simultaneously. Namely, a node with just one transceiver can not 
receive two or more transmissions from variant nodes simultaneously. Besides, a node 
can not send and receive packets at the same time. Thus, properly coordinating the 
packets transmission and systematically assigning channel to nodes to get so-called 
conflict-free scheduling are required. 

In addition to conflict-free scheduling, fair scheduling provides nodes sharing 
bandwidth resource fairly. In recent years, the scheduling of resource allocation in ad 
hoc networks has focused mainly on achieving fairness and promoting the reuse of 
spatial channels.  Here at least three unique characteristics of ad hoc networks are 
considered in studying scheduling.   

• Location-dependent contention: In an ad hoc network, transmissions are locally 
broadcast, making the channel contention location-dependent. Nodes are prohibited 
from transmitting if they are in the transmission range to prevent collisions. For 
instance, Figure 1   depicts a five-node network topology; a dotted line between 
two nodes indicates that they are within transmission range and the arrow denotes a 

flow from sender to receiver. The destination of 1f  is node A but node E can also 

hear 1f , so the flow 2f  cannot transmit packet at this moment, to prevent a 

collision on node E.    

• Spatial channel reuse: This is an important means of improving the channel 
utilization. Location-dependent contention and the nature of multi-hop ad hoc 
networks enable the reuse of the spatial channel. Any two flows can potentially 
transmit packets simultaneously if they do not interfere with each other. For 

example, in Fig. 1, node A, the receiver of flow 1f , is not within the transmission 

range of the sender of flow 3f so these two flows can transmit simultaneously.   

• Conflicts between fairness and channel utilization: Conflicts normally occur in 
ad hoc wireless networks when the channel utilization is being maximized and an 
attempt is simultaneously made to ensure fairness among the flows. For instance, 

in Fig. 1, if flows 1f  and 3f  transmit continuously, the maximum channel 

utilization is 2C, where C denotes the capacity of the wireless channel. However, 

flow 2f  is starved, unfairly to 2f .  

 
 
 
 
 

Fig. 1. Spatial channel contention and reuse 

The rest of this paper is organized as follows. Section 2 summarizes related works. 
Section 3 describes the proposed highest-density clustering algorithm and fair slot 
allocation mechanism. Section 4 presents the simulation results. Section 5 draws 
conclusions.  
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2   Related Work 

In recent years, research on resource allocation in ad hoc networks has focused on 
achieving fair scheduling and increasing the network throughput. Numerous works [1] 
[2] [3] [11] [12] have proposed various solutions, enabling the bandwidth to be shared 
fairly and the spatial channel to be reused to raise network throughput.  

2.1   Fair Scheduling 

The mechanisms in [11] [12] are similar in ensuring that all flows fairly share 
bandwidth. Each new packet is assigned two tags: one is the start tag and the other is 
the finish tag, as described in [7] [8]. Either tag can be used as the service tag. For 
instance, in [11], the start tag is the service tag. The packet with the smallest service 

tag will be sent first. Let i
fS  and i

fF be the start tag and the finish tag, 

respectively, for the ith packet of flow f. The tag is assigned by applying the following 
formula:   

 i
fS = max{v[A(P i

f )] , 1−i
fF } ; i

fF = 
i
fS + 

i
fL / fw  , 1≥i   

where i
fp  ' i

fL  and fw  are the ith packet of flow f, the length of i
fp  and the flow 

weight of flow f, respectively; A(P i
f ) is the arrival time of i

fp  and v[A(P i
f )] 

represents  the virtual arrival time of i
fp .   

In [1] [2] [3], some slot allocation mechanisms have been presented to make 
scheduling decisions based on the concept of credit rather than timestamp.  They 
compute the excess value as the actual usage minus the accumulated credit value. The 
flow with smaller excess has higher transmission priority. In this way, all flows can 
fairly share the slots. 

2.2   Increasing Network Throughput 

Spatial channel reuse, an important characteristic of ad hoc networks, must be 
considered in order to increase the network throughput. The nature of multi-hop in ad 
hoc networks enable channel reuse because any two flows can potentially transmit 
data packets simultaneously if they do not interfere with each other. To improve 
channel utilization, in [11] [12] a node graph is firstly converted into a flow 
contention graph(defined in section 3). Then an independent set of a flow contention 
graph, a subset of vertices such that no two vertices in the subset are neighbors in the 
graph, is found.  The flows in the same independent set are conflict-free so they can 
be transmitted simultaneously. However, to maintain the flow contention graph the 
global node information in the networks must be updated, requiring frequent 
computations and the storage of related node information.  

In [1] [2] [3], the spatial channel reuse is implemented by clustering. The network 
is logically partitioned into several clusters. Time-Division Multiple Access (TDMA) 
operates in each cluster. Separate codes are assigned to different clusters to reduce the 
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interference among clusters. Specifically, only one transmission can occur within 
each cluster, and various orthogonal codes are used in neighboring clusters to reduce 
the power interference and achieve spatial channel reuse. Consider the following 
example. Figure 2(a) depicts a network that contains two clusters. These two clusters 
were formed using the highest connectivity clustering algorithm [4]. The square 
nodes, S1 and S2, are the schedulers. Two separate codes are used in clusters 1 and 2. 
In this way, the network allows two flows to send packets simultaneously as long as 

they belong to different clusters, 2f  and 4f  for example. However, since the node 

distribution in cluster 1 is sparse [6], 1f  and 2f  are sufficiently far from each other 

and can be sent simultaneously. If the node distribution has been taken into account, 
cluster 1 would be partitioned into two dense clusters, as shown in Fig. 2(b). In the 

result, the spatial channel is better reused because flows 1f , 2f  and 4f  can send 

packets simultaneously in various clusters.  
In addition, the scheduling in [1] [2] [3] is centralized inside the cluster, but 

distributed among clusters because different schedulers cannot coordinate with each 
other. Therefore the flows that are associated with different clusters may be in 
conflict. Restated, certain time slots may be wasted.  Figure 2(a) also explains the 

conflict between two clusters. In this case, 1S  schedules flow 2f  and 2S  schedules 

flow 3f . A conflict exists at node D if flows 2f and 3f    use the same time slot for 

transmission 

 
. 
 
 
 
 
 

                                   (a)                                                           (b) 

Fig. 2. Example of spatial channel reuse and conflict between clusters 

3   Proposed Mechanism 

 3.1   Assumptions  

In this paper, some assumptions are made in the ad hoc networks:  

• We assume a time-division multiple access (TDMA) system on a signal channel 
shared by nodes. To avoid interference among different clusters, we further assume 
that TDMA is overlaid on the top of a CDMA system. A code assignment 
algorithm is assumed running in the lower layer of our system as in [1] [2] [3] [4].  

• We consider packet-switched multi-hop wireless networks, but do not consider 
node mobility as in [1] [2] [11] [12]. 

f1 

f2 
f4 

f3 D
f1 

f3 
DS1 S2 

f2 

f4 
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3.2   Definitions and Basic Concepts 

Definition 3.2.1. A set of packets transmitting from one node to another is called a 

flow. Flows if  and jf  are said to be conflict with each other if those packets from 

these flows cannot be scheduled for transmission simultaneously. Two flows are said 
to be conflict-free if they do not conflict with each other [13] [14].  

Definition 3.2.2. A flow contention graph (or flow graph) is defined as G= (V, E), 

where V denotes the set of all flows and an edge ( if , jf ) belongs to set E if and only 

if flows if  and jf  conflict with each other [13] [14]. 

The flows cannot be scheduled for transmission simultaneously in two situations: 
(1) the transmitters and receiver of two flows have common node. (2) The receiver of 
one flow is within the transmission range of the sender of another flow. Figure 3(a) 
displays a four-node network and its flow contention graph. This network includes 

three flows. Flow 1f  is in conflict with flows 2f and 3f  in situation (1). Flow  2f  is 

in conflict with flow 3f  in situation (2). Figure 3(b) is a complete flow contention 

graph. Notably, the node topology in Fig. 3(a) is a complete graph. It demonstrates 
that the corresponding flow contention graph must also be complete, because any two 
flows in a complete node graph must be in one of the two aforementioned situations.   
Accordingly, partitioning a network into several dense clusters, in which the node 
distribution is exactly close to that of a complete graph, will facilitate the 
implementation of spatial channel reuse if each cluster just allows one transmission 
(per code) at the same time. Specifically, if a sparse cluster can promote spatial 
channel reuse, then this sparse cluster will be partitioned into two or more dense 
clusters to do so.  

 
 
 

  
                                           (a)                               (b) 

Fig. 3. Node topology and the corresponding flow contention graph 

3.3   Highest-Density Clustering Algorithm 

A new cluster formation algorithm called the highest-density clustering algorithm is 
proposed. The distributed clustering algorithm is used to partition nodes into various 
clusters, each with a scheduler (or a cluster-head). The scheduler acts as a local 
coordinator to schedule time slots to all flows fairly within a cluster. The objective is 
to find clusters that have two properties: (1) in each cluster, the distribution of nodes 
is so dense that the node graph is similar to a complete graph. Namely, direct links 
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exist between nearly every pair of nodes within a cluster; (2) two flows in a same 
cluster will be in conflict if they use the same channel at the same time. Some 
notations are defined first as follows:  

• Di The number of neighbors within the transmission range of node i . 
• DRij: Degree Ratio. The ratio of connectivity of node i  to that of its neighbor, 

node j . If a ratio is under one, the nodes within the transmission range of node i  

will never form a complete graph. But if the ratio exceeds one, a complete graph or 
almost a complete graph is very likely to be formed.  

DRij Dj / Di  

• ZDi: Zone Density. For node i , the average degree ratio of all neighboring nodes is 
its zone density. A higher zone density generally implies greater location-
dependence. 

                   
∈∈

==
ii

Nj
iij

Nj
iiji DDDDRZD 2   

where Ni is the set of neighboring nodes in the transmission range of node i .  

The algorithm is described as below. 

1. When the network is initialized, each node broadcasts the list of nodes that it can 
hear (including itself). Then, each node can compute the ZD value and then 
broadcast it to its neighbors.  

2. A node is elected as a scheduler if it has a greater ZD value than all its uncovered 
neighbors.   

• A node that has not elected its scheduler is called an uncovered node. Otherwise, 
it is a covered node.  

• A node that has already elected another node as its scheduler is no longer a 
scheduler. 

Let C represent the capacity of the wireless channel and N be the number of 
clusters of the network. Then, the network system will have an upper bound NC of the 
throughput. For instance, Fig. 4(a) depicts a 11-node network topology, where a 
dotted line between two nodes means that the nodes are within each other’s 
transmission range, and the values near the nodes are their degree and ZD value. The 
network is partitioned into numerous clusters using two different cluster formation 
algorithms. In Fig. 4(b), the network is partitioned into two clusters using the highest-
connectivity clustering algorithm. Separate codes are assigned to each cluster for 
reducing interference among clusters and only one transmission can be allowed to 
avoid collisions in the same cluster. Accordingly, its network system throughput has 
an upper bound of 2C.  No more than two flows are involved in simultaneous 
transmission in a network. However, in Fig. 4(c) the highest-density clustering 
algorithm is used to organize the network into three clusters, so its throughput has an 
upper bound of 3C. if we applying an appropriate scheduling strategy, the three-
cluster network throughput may approach to the upper bound of 3C, which is much 
better than the upper bound of two-cluster, 2C.  
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                      (b)                                                                 (c) 

Fig. 4. Examples of cluster formation. (a) Network topology, (b) Highest-connectivity cluster 
formation and (c) Highest-density cluster formation.  

3.4   Scheduling Table 

Each scheduler maintains a scheduling table called a Flow Information Table (FIT), 
according to which schedulers can achieve two goals: (1) flows in the cluster can 
fairly share the time-slots; (2) conflict of flows among clusters can be prevented.    

The proposed mechanism involves three parameters for each flow to ensure the 
fairness of slot allocation; they are Credit, Total Flow Number and Share Value.  

1. Credit: the scheduler assigns time-slots to the flow with the largest credit value. 
2. Total Flow Number: the number of flows within the cluster. 
3. Share Value: the sharing ratio of bandwidth for flows in the same cluster.   

Since schedulers operate independently, conflicts of transmission may occur 
among clusters, which will waste slots. To solve this problem, we classify the flows 
into three types according to the location of their endpoint nodes. The three flow 
location types are described as follows. 

1. Normal flow: NF. Both the transmitter and the receiver of the flow are in the same 
cluster, and neither is a gateway node.  

2. Inside-gateway flow: GF. Both the transmitter and the receiver of the flow are in 
the same cluster, and at least one of them is a gateway node.  

3. Across-cluster flow: AF. The transmitter and the receiver of the flow are in 
different clusters. 

3.5   Slot Allocation Algorithm 

In the proposed mechanism, each scheduler maintains a FIT that has two kinds of 
fields: Basic information and scheduling information. The former has four entries - 
flow id, source id, destination id and TN (Total Flow Number), and the latter includes 
three entries - Credit, SV (Share Value) and FT (Flow Location Type).  

 The scheduler assigns the next slot to a flow using the slot allocation algorithm 
below, which is repeated as long as a flow is relayed through another node in the ad 
hoc network. The slot allocation algorithm is described as follows.  

(3,11/9) 

(3,12/9) 

(3,12/9)

(3,12/9) 

(6,20/36) 

(3,14/9) 

(4,15/16) 

(5,20/25) 

(4,15/16) 

 (3,14/9) 

(degree,ZD value) 

(a)
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1. The scheduler sets the initial value of the scheduling parameters for each flow i  in 
the cluster:   Credit(i)=SV(i) = 1 / (TN).   

2. For slot k, if k is odd, the scheduler assigns the time slot to the NF-flows or the GF-
flows with the greatest credit value; otherwise the scheduler assigns the slot to the 
NF-flows or the AF-flows with the highest credit value if k is even. 

3. If flow i  is scheduled to transmit at the next time slot, the scheduler updates the 
credit value: 

• Decrease the credit value of flow i  by one, i.e.,  
• Increase the credit value of each flow j by SV value, i.e., .

 

The above three steps are briefly elucidated as below. In step 1, the SV value is 
1/TN because the next time slot will be shared by TN flows. In step 2, the GF flows 
are sent at odd time slots and AF flows are sent at even time slots to coordinate flows 
among clusters, ensuring the flows to be conflict-free. In step 3, when a scheduler 
assigns a slot to a flow, its transmission priority falls by one and the transmission 
priority of each flow increases by SV.    

4   Simulation 

In this section, the performance of the proposed mechanism is evaluated by 
simulation. In the experiment, link throughput and the fairness index are two metrics 
used to evaluate the performance of the presented highest-density clustering algorithm 
and the slot allocation scheme, respectively.  The evaluation criteria are defined as 
follows. 

1. Link throughput  The sum of the throughputs on the links that are simultaneously 
active in the multi-cluster network. Channel capacity is assumed to be uniform 
throughout the network, so link throughput is proportional to the number of 
simultaneous links. Separate codes are assigned to different cluster in order to 
reduce interference across clusters to facilitate the evaluation of the link 
throughput. This simulation assumes at least one successful transmission always 
occurs in each cluster and in each slot. This assumption is acceptable in a 
comparison among strategies. Accordingly, the cluster has a link throughput of one 
if at least one link is present in this cluster and the average number of simultaneous 
active links is approximately equal to the average number of clusters [4]. 

2. Fairness index (FI): This metric represents fairness of the sharing of bandwidth by 
all flows. If  B( i ) is the ratio of the bandwidth used by  flow i , then B( i ) =  Slot( i 
) / total slots where Slot( i ) is the number of  packets received at the destination of 
flow i (if each packet has fixed packet length and is assumed to occupy one slot). If  
we further let X( i ) = B( i ) / SV( i ), then FI can be expressed as follows [9]. 

)/1( nFI = })(/])({[
1

22

1 =

n

i

n
iXiX  

 

where n is the number of flows in the network. For any medium access mechanism 
that achieves fairness, the FI is expected to be close to one.  
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4.1   Link Throughput 

Twenty nodes are randomly distributed over an area of 670m × 670m. The link 
throughput of two cluster formation algorithms, the proposed highest-density cluster 
algorithm (HD) and the highest-connectivity cluster algorithm (HC), are compared. 
The link throughput and number of clusters are measured and averaged over around 
50 random placements of nodes. Figures 5(a) and Figure 5(b) display the average link 
throughputs in various transmission ranges and the average number of clusters, 
respectively.  

 
 
                             (a)                                                                           (b) 

Fig. 5. (a) Throughput comparison. (b) Comparison of number of clusters. 

The results demonstrate two facts. First, a tradeoff exists between the transmission 
range and the throughput. If transmission range is too small, then various single node 
clusters are formed. Restated, no link that leads to lower throughput is present in the 
single-node clusters.  However, the number of clusters declines as the transmission 
range increases, so the efficiency of spatial channel reuse decreases , and so does the 
throughput.  Second, the network is partitioned into various dense clusters by the 
proposed HD algorithm which does not allow the formation of sparse clusters (nodes 
are sparsely distributed in the cluster). In contrast, sparse clusters cannot be prevented 
if HC algorithm is applied. Therefore, HD always is associated with more clusters 
than HC. The average number of simultaneous active links is approximately equal to 
the average number of clusters, so HD always has better link throughput than HC. A 
larger link throughput corresponds to better spatial channel reuse. 

4.2  Network Throughput and Fairness Index 

The simulation scenario is described as follows. Twenty nodes are randomly 
distributed in a 670m × 670m area. Each node has the same transmission range of 250 
meters. The ad hoc network is partitioned into four clusters, each of which has its own 
scheduler, as shown in Fig. 6(a). Fifteen single-hop flows are randomly generated in 
the network. Each packet has a fixed packet length and is assumed to occupy one time 
slot. No node moves during the simulation period. Figure 6(b) is the FIT information 
of each cluster 
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                              (a)                                                                   (b) 

Fig. 6. Simulation example. (a) Network topology. (b) FIT in schedulers. 

 

(a)  

 
                                           (b)                                     (c)  

Fig. 7. Comparison between 2TSAP and ours. (a) Flow throughput. (b) Network throughput. 
(c) Fairness index. 

The proposed slot allocation algorithm is compared with the two-tier slot allocation 
(2TSAP) [1] [2]. The throughput of each flow, the network throughput and the 
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fairness index are sketched in the Figure 7(a), (b) and (c), respectively. Our scheme 
outperforms 2TSAP in both network throughput and fairness index. From Fig. 7(a), 

we find that flows 3f , 4f , 8f and 13f  in 2TSAP have rather lower throughput. This 

fact can be explained from Fig. 6. Because four schedulers operate independently, the 
conflicts of flows will occur between the GF-flow and AF-flow, which are five pairs: 

( 3f , 12f ), ( 3f , 11f ), ( 4f , 6f ), ( 6f , 8f ) and ( 10f , 13f ) in this scenario. Since 

2TSAP make no effort to coordinate AF flows, flows 3f , 4f , 8f  and 13f  have lower 

throughput than others because conflicts happen. Besides, 2TSAP can not offer 
deterministic bandwidth allocation for AF-flows. However, if the proposed HD 
clustering algorithm is applied, cluster 4 will be divided into two clusters, and the 
network throughput can be enhanced further. 

5   Conclusion 

This work proposes a new cluster formation algorithm to promote spatial channel 
reuse and present a fair slot mechanism for wireless ad hoc networks. By classifying 
the flows according to their location, schedulers can provide conflict-free 
transmissions among clusters without global information. A simulation experiment 
was also conducted to evaluate the performance of the presented mechanism. The 
results reveal that our mechanism provides conflict-free transmissions and higher 
spatial channel reuse so network throughput is efficiently improved without violating 
fairness.  This work considers only static network topology. The authors’ next work 
will take into account the mobility of nodes. 
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