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Abstract. Data structures for similarity search are commonly evalu-
ated on data in vector spaces, but distance-based data structures are
also applicable to non-vector spaces with no natural concept of dimen-
sionality. The intrinsic dimensionality statistic of Chávez and Navarro
provides a way to compare the performance of similarity indexing and
search algorithms across different spaces, and predict the performance
of index data structures on non-vector spaces by relating them to equiv-
alent vector spaces. We characterise its asymptotic behaviour, and give
experimental results to calibrate these comparisons.

1 Introduction

Suppose we wish to index a database for similarity search. For instance, we might
have a database of text documents which we query with an example document
to find others close to the example. Speaking of closeness implies we must have
a distance function applicable to the objects in the database. Maybe our objects
are actually vectors of real numbers with a Minkowski Lp metric. Many effective
data structures are known for that case, including R-trees and variants [3,11,17],
SR-trees [13], and pyramid-trees [4].

But maybe the objects are not vectors; and maybe the distance function is
not an Lp metric. Edit distance on strings, for instance, forms a metric space that
is not a vector space. Structures for indexing general metric spaces include V P -
trees [20], MV P -trees [5], GH-trees [19], and FQ-trees [2]. Such structures are
called “distance-based” because they rely exclusively on the distances between
the query point and other points in the space.

The problem of distance-based indexing seems to become harder in spaces
with more dimensions, but we cannot easily count dimensions in a non-vector
space. Even when we represent our documents as long vectors, indexing algo-
rithms behave much differently on real document databases from the prediction
for similar-length randomly generated vectors. In this work we consider how to
predict indexing performance on practical spaces by comparison with random
vector spaces of similar difficulty.

1.1 Intrinsic Dimensionality

Suppose we have a general space, from which we can choose objects according
to a fixed probability distribution, and measure the distance between any two
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objects, but the objects are opaque: all we know about an object is its distance
from other objects. We might wish to assume that we have a metric space,
with the triangle inequality, but even that might only hold in an approximate
way—for instance, only to within a constant factor, as with the “almost metrics”
defined by Sahinalp and others [16]. Some functions we might like to use do not
naturally obey the triangle inequality—such as relative entropy measured by
compression, proposed in bioinformatics applications [10,14].

Given such a space, the only way we can describe the space or distinguish
it from other general spaces is by choosing random points and considering the
probability distribution of distances between them. Chávez and Navarro intro-
duce a statistic called “intrinsic dimensionality” for describing spaces in terms of
the distribution of the distance between two randomly chosen points. Where µ
and σ2 are the mean and variance of that distance, the intrinsic dimensionality
ρ is defined as µ2/(2σ2) [6]. Squaring the mean puts it in the same units as
the variance; and as we prove, the constant 2 makes ρ equal the number of vec-
tor dimensions for uniform random vectors with L1 and approach it for normal
random vectors with L2.

Chávez and Navarro prove bounds on the performance of several kinds of
distance-based index structures for metric spaces in terms of ρ. Spaces that are
easy to index have small ρ, and the statistic increases as the spaces become harder
to index. They also give an argument (using a proof of Yianilos) for why intrinsic
dimensionality ought to be proportional to the number of vector components
when applied to points chosen uniformly at random from vector spaces [6,21].
To calibrate the dimensionality measurement, they show experimental results for
low-dimensional spaces to estimate the asymptotic constant of proportionality
for ρ in terms of n, with n-component vectors having each component chosen
from a uniform distribution and using Lp metrics [6].

We analyse the behaviour of ρ for vectors chosen with independent identically
distributed real components, and distance measured by an Lp metric; the result
is exact for L1. We find that ρ(n) is Θ(n) for Lp with finite p, but not necessarily
for L∞. We show ρ to be Θ(log2 n) in the case of normally-distributed random
vectors with the L∞ metric. We also present experimental results corroborating
our theory. The slopes of the lines are found to be significantly greater than
predicted by previous experiments, because the true asymptotic behaviour only
shows itself at large n. The behaviour of the asymptotic lines as p varies is seen
to be counter-intuitive, with the L∞ metric on uniform vectors much different
from the Lp metric for large but finite p.

1.2 Notation

Following the notation used by Arnold, Balakrishnan, and Nagaraja, [1] we write
X

d= Y if X and Y are identically distributed, X
d→ Y if the distribution of X(n)

converges to the distribution of Y as n goes to positive infinity, and X
d↔ Y if the

distributions of both X and Y depend on n and converge to each other. We also
write f(n) → x if x is the limit of f(n) as n goes to positive infinity, E[X ] and
V [X ] for the expectation and variance of X respectively, log x for the natural
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logarithm of x, and Γ (x) for the standard gamma function (generalised factorial).
Random variables that are independent and identically distributed are
called iid, a random variable’s probability density function is called its pdf,
and its cumulative distribution function is called its cdf.

Let X = Y be a real random variate realised as random variables Xi and Yi.
Let xn = 〈X1, X2, . . . , Xn〉 and yn = 〈Y1, Y2, . . . , Yn〉 be vector random variables
with n iid components each, each component drawn from the variate. Let Dp,n

be the distance between x and y under the Lp metric ‖x − y‖p, defined as
(
∑n

i=1 |Xi − Yi|p)1/p for real p > 0 or maxn
i=1 |Xi − Yi| where p = ∞. We are

concerned with the distribution of the random variable Dp,n, and in particular
the asymptotic behaviour for large n of the intrinsic dimensionality statistic
ρp(n) = E[Dp,n]2/2V [Dp,n] [6].

When discussing L∞, which is defined in terms of the maximum function, it
is convenient to define for any real random variate Z random variates max(k){Z}
and min(k){Z} realised as random variables max(k)

i {Z}. and min(k)
i {Z} respec-

tively. Each max(k)
i {Z} is the maximum, and each min(k)

i {Z} the minimum, of
k random variables from Z.

1.3 Extreme Order Statistics

Extreme order statistics of collections of random variables (the maximum, the
minimum, and generalisations of them) have been thoroughly studied [1,9]. If
F (x) is the cdf of Z, then Fn(x) is the cdf of max(n){Z}. We say that the
random variable W with non-degenerate cdf G(x) is the limiting distribution
of the maximum of Z if there exist sequences {an} and {bn > 0} such that
Fn(an + bnx) → G(x). There are only a few possible distributions for W , if it
exists at all.

Theorem 1 (Fisher and Tippett, 1928). If (max(n){Z}−an)/bn
d→ W , then

the cdf G(x) of W must be of one of the following types, where α is a constant
greater than zero [1, Theorem 8.3.1] [8]:

G1(x; α) = exp(−x−α) for x > 0 and 0 otherwise; (1)
G2(x; α) = exp(−(−x)α) for x < 0 and 1 otherwise; or (2)

G3(x) = exp(−e−x) . (3)

2 Intrinsic Dimensionality of Random Vectors

Even though intrinsic dimensionality is most important for non-vector spaces,
like strings with edit distance, we wish to know the behaviour of the intrin-
sic dimensionality statistic on familiar vector spaces so we can do meaningful
comparisons. Let x and y be random n-component vectors as described above,
using the Lp metric. We will compute the asymptotic behaviour of the intrinsic
dimensionality ρp(n) as n goes to infinity, based on the distribution of |X − Y |.
Let µ′

k represent the k-th raw moment of |X − Y |; that is, the expected value of
|X − Y |k.
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2.1 The Lp Metric for Finite p

We would like the intrinsic dimensionality statistic to be proportional to the
length of the vectors when applied to random vectors with iid components and
distance measured by Lp metrics. For finite p as the number of components goes
to infinity, it does indeed behave that way.

Theorem 2. With the Lp metric for fixed finite p, when the |Xi − Yi| are iid
with raw moments µ′

k, then ρp(n) → [p2(µ′
p)2/(2(µ′

2p − (µ′
p)2))]n.

Proof. The Lp metric for finite p is computed by taking the sum of random
variables |Xi − Yi|p; call the result S. Then the metric is S1/p. We have V [|Xi −
Yi|p] = µ′

2p − (µ′
p)

2, E[S] = nµ′
p, and V [S] = n(µ′

2p − (µ′
p)

2).
Since the mean and variance both increase linearly with n, the standard

deviation will eventually become small in relation to the mean. For large n we
can approximate the function x1/p with a tangent line:

E[S1/p] → E[S]1/p = n1/p(µ′
p)

1/p (4)

V [S1/p] → V [S]
(

d

dS
S1/p

)2
∣
∣
∣
∣
∣
S=E[S]

=
µ′

2p − (µ′
p)

2

np2(µ′
p)2

n2/p(µ′
p)

2/p (5)

ρp(n) =
E[S1/p]2

2V [S1/p]
→ n

p2(µ′
p)2

2(µ′
2p − (µ′

p)2)
(6)

��
If we are using the L1 metric, the analysis is even better:

Corollary 1. When p = 1, the approximation given by Theorem 2 becomes
exact: ρ1(n) = [(µ′

1)
2/(2(µ′

2 − (µ′
1)

2))]n.

Proof. When p = 1, then E[S1/p] = E[S] = E[S]1/p and V [S1/p] = V [S] =
V [S]1/p, regardless of n, and the limits for large n in the proof of Theorem 2
become equalities. ��

2.2 Binary Strings with Hamming Distance

Binary strings under Hamming distance are an easy case for the theory, and
are of interest in applications like the Nilsimsa spam filter [7]. We can find the
intrinsic dimensionality of the space of n-bit binary strings under Hamming
distance by treating the strings as vectors with each component a Bernoulli
random variable, equal to one with probability q and zero otherwise. Then the
Hamming distance (number of bits with differing values) is the same as the
L1 distance (sum of absolute component-wise differences), and by Corollary 1,
ρ1(n) = nq(1 − q)/(1 − 2q + 2q2).

Note that q = 1/2 produces the maximum value of ρ1(n), namely n/2. Sub-
stituting into the lower bound of Chávez and Navarro, we find that a pivot-based
algorithm using random pivots on a database of m strings each n bits long, with
the Hamming metric, must use at least 1

2 (
√

n−1/
√

f)2 ln m distance evaluations
on average per query, to satisfy random queries returning at most a fraction f
of the database [6].
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2.3 The L∞ Metric

The distance D∞,n is the maximum of n variables drawn from |X − Y |. We can
eliminate the absolute value function with the following lemma.

Lemma 1. If Z is a real variate with distribution symmetric about zero, and
W, an, and bn exist with (max(n){Z} − an)/bn

d→ W , then max(n){|Z|} d↔
max(2n){Z}.

Proof. Instead of taking the maximum absolute value of a set of n variables
from Z, we could find the maximum and the negative of the minimum and
then take the maximum of those two. But as described by Arnold, Balakrish-
nan, and Nagaraja, the maximum and minimum of a collection of random vari-
ables are asymptotically independent [1, Theorem 8.4.3]. Thus max(n){|Z|} d↔
max{max(n){Z}, − min(n){Z}}; and by symmetry of Z,

max{max(n){Z}, − min(n){Z}} d= max(2n){Z} (7)

��

Given the distribution of X −Y or |X −Y |, we can obtain the limiting distri-
bution for D∞,n = max(n){|X −Y |}; and if it exists, it will be in one of the three
forms stated in Theorem 1. We can then integrate to find the expectation and
variance, and standard results give acceptable choices for the norming constants
an and bn, giving the following theorem.

Theorem 3. For random vectors with the L∞ metric, when Theorem 1 applies
to max(n){|X − Y |}, we have:

ρ∞(n) → (an + bnΓ (1 − 1/α))2

2b2
n(Γ (1 − 2/α) − Γ 2(1 − 1/α))

for G1(x; α), α > 2; (8)

ρ∞(n) → (an + bnΓ (1 + 1/α))2

2b2
n(Γ (1 + 2/α) − Γ 2(1 + 1/α))

for G2(x; α); and (9)

ρ∞(n) → 3(an + bnγ)2

b2
nπ2 for G3(x); (10)

where γ = 0.57721 56649 015 . . ., the Euler-Mascheroni constant. ��

Unlike in the finite-p case, ρ∞(n) does not necessarily approach a line.

2.4 Uniform Vectors

Let X and Y be uniform real random variates with the range [0, 1), as used by
Chávez and Navarro in their experiment [6]. The pdf of |X − Y | is 2 − 2x for
0 ≤ x < 1. Simple integration gives the raw moments µ′

p = 2/(p + 1)(p + 2) and
µ′

2p = 1/(2p + 1)(p + 1), and then by Theorem 2, ρp(n) → [(4p + 2)/(p + 5)]n.
For the L∞ metric, we note that the cdf of |X − Y | is F (x) = 2x − x2. Then

standard results on extreme order statistics [1, Theorems 8.3.2(ii), 8.3.4(ii)] give
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us that (max(n){|X − Y |} − an)/nb
d→ W where an = 1, bn = 1/

√
n, and the cdf

of W is G2(x; α) with α = 2. By (9), ρ∞(n) → n/(2 − (π/2)). So as n increases,
ρ∞(n) approaches a line with slope 1/(2−(π/2)) = 2.32989 61831 6 . . .; the same
line approached by ρp̃(n) where p̃ = (1 + π)/(7 − 2π) = 5.77777 31051 9 . . ..

We repeated the experiment described by Chávez and Navarro [6, Fig. 3],
of randomly choosing one million pairs of points, finding their distances, and
computing the intrinsic dimensionality. The results are shown in Fig. 1. Exami-
nation reveals an apparent linear trend for each metric, but the points seem to
be on much shallower lines than the theory predicts. The points for L256 match
those for L∞, supporting the intuition that Lp for large p should have the same
asymptotic behaviour as L∞.
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Fig. 1. Experimental results for short vectors with uniform random components

Intuition turns out to be wrong. Repeating the experiment with vectors of
up to one million components (Fig. 2), we see that the line for Lp does approach
a slope of four as p increases, but with the L∞ metric, the line drops to coincide
with the line for Lp̃, p̃ ≈ 5.778, just as predicted by the theory. This phenomenon
is actually not quite so strange as it may seem: this is simply a situation where
we are taking two limits and it matters which order we take them.

2.5 Normal Vectors

Consider a similar case but let X and Y be standard normal random variates.
Since X and Y are standard normal, their difference X −Y is normal with mean
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Fig. 2. Experimental results for long vectors with uniform random components

zero and variance two. Then each |X −Y | has a “half-normal” distribution with
pdf (

√
2/π)e−x2/2π . As before, we compute the raw moments and substitute

into the intrinsic dimensionality formula, finding that µ′
p = π(p−1)/22p/2Γ ((p +

1)/2), µ′
2p = πp−1/22pΓ (p+1/2), and so ρp(n) → n[p2Γ 2((p+1)/2)/2(

√
πΓ (p+

1/2) − Γ 2((p + 1)/2))]. As in the uniform case, ρp(n) = Θ(n), but the slope
is quite different. The maximum slope is one, with the L2 metric; L1 and L3
give slopes of approximately 0.9; and for larger p the slope rapidly approaches
zero.

Now, D∞,n = max(n){|X − Y |}. By Lemma 1 we can instead consider
max(2n){X − Y }. Each X − Y is normal with mean zero and variance two.
Standard results on the maximum of normal random variables give us that
(D∞,n − a2n)/b2n

d→ W where the cdf of W is G3(x) = exp(−e−x) and the
norming constants are a2n = 2

√
log 2n − (log(4π log 2n))/2

√
log 2n and b2n =

1/
√

log 2n [1,9,12]. Then we can substitute into (10) to find the asymptotic in-
trinsic dimensionality ρ∞(n) → (3/4π2) · [4 log n − log log 2n + log(4/π) + 2γ]2,
which is Θ(log2 n).

As with uniform vector components, the intrinsic dimensionality shows mark-
edly different asymptotic behaviour with the L∞ metric from its behaviour with
Lp metrics for finite p; but here, instead of being linear with a surprising slope,
it is not linear at all. The argument for linear behaviour from Yianilos [21,
Proposition 2] only applies to finite p.
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To verify these results, we generated one million pairs of randomly-chosen
vectors for a number of combinations of vector length and Lp metric, and calcu-
lated the intrinsic dimensionality. The results are shown in Figs. 3 and 4 along
with the theoretical asymptotes. As with uniform components, the true asymp-
totic behaviour for some metrics is only shown at the largest vector sizes.
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Normal distributions in high-dimensional vector spaces have smaller intrinsic
dimensionality than uniform distributions with vectors of the same length, when
considered with L∞ and Lp for large p. Does that mean normal distributions
are easier to index, or only that intrinsic dimensionality is a poor measure of
indexing difficulty? We argue that normal distributions really are easier to index.

A random vector x from a high-dimensional normal distribution will typ-
ically have many small components and one, or a few, of much greater mag-
nitude. Comparing x to another random point y, the greatest components of
x will usually correspond to small components of y and vice versa, so the L∞
distance between the two will usually be approximately equal to the one largest
component of either vector. At high enough dimensions we could closely approx-
imate the distances between points in almost all cases by only examining the
index and magnitude of the single greatest component of each vector. We could
achieve good indexing by just putting the points into bins according to index
of greatest component, and using cheap one-dimensional data structures within
bins. That is how pyramid-trees work [4], and they work well in this case.
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However, when the vectors are selected from a uniform distribution, then
componentwise differences have a triangular distribution, with heavier tails.
More components of the difference vector are likely to be large and have a
chance of determining the distance, so the indexing structure must represent
more information per vector.

3 Other Spaces

Random vector spaces are of interest for calibrating the intrinsic dimensionality
statistic, but practical spaces may be more difficult to analyse. Here we show
the application of the statistic to some other spaces of interest.

3.1 Balls in Hamming Spaces

Consider a ball of radius r in the space of n-bit binary strings; that is, a fixed
n-bit string c and all the strings with Hamming distance from c equal to or
less than r. If we consider this set as a metric space itself, using the Hamming
distance and choosing points uniformly at random from the set, what is its
intrinsic dimensionality?

Theorem 4. For a ball in the space of n-bit strings of constant radius r using the
Hamming metric and choosing strings uniformly at random, ρ → [r/(2r + 1)]n.
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Proof. Consider how many ways we could choose i of the n bits, then j of the
remaining n− i bits, then k of the remaining n− i− j bits. This number is given
by the multichoose function (i, j, k, n − i − j − k)! = n!/i!j!k!(n − i − j − k)!. If
we choose two strings x and y from the ball, let i be the number of bit positions
where x is different from c and y is equal, let j be the number of bit positions
where y is different from c and x is equal, and then let k (which must be from
zero to r − max{i, j}) be the number of bit positions where x and y are both
different from c and thus equal to each other. We can count the number of ways
to choose these two strings as

N =
r∑

i=0

r∑

j=0

r−max{i,j}∑

k=0

(i, j, k, n − i − j − k)! (11)

=
1

r!2
n2r − r − 3

r!(r − 1)!
n2r−1 + o(n2r−1) . (12)

Similarly, by finding the leading terms of the sums and applying long division,
we can find expressions for the first two raw moments of the distance for two
strings chosen uniformly at random from the ball:

µ′
1 =

1
N

r∑

i=0

r∑

j=0

r−max{i,j}∑

k=0

(i + j)(i, j, k, n − i − j − k)! (13)

= 2r − 2r(r + 1)n−1 + o(n−1) (14)

µ′
2 =

1
N

r∑

i=0

r∑

j=0

r−max{i,j}∑

k=0

(i + j)2(i, j, k, n − i − j − k)! (15)

= 4r2 − 2r(4r2 + 2r + 1)n−1 + o(n−1) . (16)

Then by substitution into the intrinsic dimensionality formula, we obtain
ρ → [r/(2r + 1)]n. ��

3.2 An Image Database

We constructed an image database by selecting frames at random from a selec-
tion of commercial DVD motion pictures, choosing each frame with 1/200 prob-
ability to create a database of 3239 images, which were converted and scaled to
give 259200-element vectors representing the RGB colour values for 360 × 240
pixels. Sampling 105 pairs of these vectors using each of the L2 and L∞ met-
rics produced ρ values of 2.759 for L2 and 38.159 for L∞. These results suggest
that the L2 metric reveals much stronger clumping structure on this database
than the L∞ metric does; and with L2, this database is approximately as hard
to index as a three-dimensional normal distribution in L2 space (ρ = 2.813,
from the experiment shown in Fig. 3). If we have a choice about which metric
to use, the L2 metric will produce a much more efficient index than the L∞
metric.
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3.3 A Text Database

We obtained a sample of 28999 spam email messages from SpamArchive.org [18],
and added 2885, or approximately 10 percent, non-spam messages from locally
collected outgoing email, to simulate the database a practical spam-filtering
application might process. We sampled 105 pairs of messages, computed their
distances using the Perl Digest::Nilsimsa [15] 256-bit robust hash, and Hamming
distance, and computed the intrinsic dimensionality ρ = 10.338. For the spam
messages alone, and for the non-spam messages alone, we obtained ρ values
of 10.292 and 11.262 respectively, again with sampling of 105 pairs for each
database. An index of the email database based on Hamming distance of the
Nilsimsa hashes would perform better than a similar index on uniform random
256-bit strings, but answering queries would still be quite difficult, a little more
difficult than for random data normally distributed in 10-dimensional L2 space.

4 Conclusions and Future Work

Intrinsic dimensionality answers questions about spaces: which spaces have com-
parable indexing difficulty, which metrics will allow good indexing, and lower
bounds on query complexity. We have characterised the asymptotic behaviour
of the intrinsic dimensionality statistic for randomly chosen vectors with the
components having uniform or normal distributions, and the Lp metrics for
both finite and infinite p. As our theoretical results show, uniform and normal
components produce vastly different results, especially for Lp with large p and
L∞. In those metrics, high-dimensional normal distributions are easier to index
than uniform distributions of the same dimension. We have also given results
for more complicated spaces: balls in Hamming space, and practical databases
of images and email messages, demonstrating the flexibility of the technique.

The ultimate question for indexing difficulty measurement is how much mak-
ing a distance measurement reduces our uncertainty about the query point’s
distance to points in the index. Intrinsic dimensionality attempts to answer the
question based on the mean and variance of the distribution of a single distance;
but we might obtain a more useful statistic by considering the joint distribution
of distances among more than two randomly chosen points. Such a statistic could
allow the proof of highly general bounds on indexing performance.
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