

Lecture Notes in Computer Science 3772
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Mariano Consens Gonzalo Navarro (Eds.)

String Processing
and Information
Retrieval

12th International Conference, SPIRE 2005
Buenos Aires, Argentina, November 2-4, 2005
Proceedings

13

Volume Editors

Mariano Consens
University of Toronto
Department of Mechanical and Industrial Engineering
Department of Computer Science
Toronto, Canada
E-mail: consens@cs.toronto.edu

Gonzalo Navarro
University of Chile
Center for Web Research, Dept. of Computer Science, Chile
E-mail: gnavarro@dcc.uchile.cl

Library of Congress Control Number: 2005934415

CR Subject Classification (1998): H.3, H.2.8, I.2, E.1, E.5, F.2.2

ISSN 0302-9743
ISBN-10 3-540-29740-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29740-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11575832 06/3142 5 4 3 2 1 0

Preface

The papers contained in this volume were presented at the 12th edition of
the International Symposium on String Processing and Information Retrieval
(SPIRE), held November 2–4, 2005, in Buenos Aires, Argentina. They were se-
lected from 102 papers submitted from 25 countries in response to the Call for
Papers. A total of 27 submissions were accepted as full papers, yielding an accep-
tance rate of about 26%. In view of the large number of good-quality submissions
the conference program also included 17 short papers that also appear in the
proceedings. In addition, the Steering Committee invited the following speakers:
Prabhakar Raghavan (Yahoo! Research, USA), Paolo Ferragina (University of
Pisa, Italy), and Gonzalo Navarro (University of Chile, Chile).

Papers solicited for SPIRE 2005 were meant to constitute original contri-
butions to areas such as string processing (dictionary algorithms, text search-
ing, pattern matching, text compression, text mining, natural language pro-
cessing, and automata-based string processing); information retrieval languages,
applications, and evaluation (IR modeling, indexing, ranking and filtering, in-
terface design, visualization, cross-lingual IR systems, multimedia IR, digital
libraries, collaborative retrieval, Web-related applications, XML, information re-
trieval from semi-structured data, text mining, and generation of structured data
from text); and interaction of biology and computation (sequencing and appli-
cations in molecular biology, evolution and phylogenetics, recognition of genes
and regulatory elements, and sequence-driven protein structure prediction).

SPIRE has its origins in the South American Workshop on String Process-
ing (WSP). Since 1998 the focus of the conference was broadened to include
information retrieval. Starting in 2000, Europe has been the conference venue
on even years. The first 11 meetings were held in Belo Horizonte (Brazil, 1993),
Valparáıso (Chile, 1995), Recife (Brazil, 1996), Valparáıso (Chile, 1997), Santa
Cruz (Bolivia, 1998), Cancún (Mexico, 1999), A Coruña (Spain, 2000), Laguna
San Rafael (Chile, 2001), Lisboa (Portugal, 2002), Manaus (Brazil, 2003), and
Padova (Italy, 2004).

SPIRE 2005 was held in tandem with LA-WEB 2005, the 3rd Latin Amer-
ican Web Congress, with both conferences sharing a common day in Web
Retrieval.

SPIRE 2005 was sponsored by Centro Latinoamericano de Estudios en In-
formática (CLEI), Programa Iberoamericano de Ciencia y Tecnoloǵıa para el
Desarrollo (CYTED), Center for Web Research (CWR, University of Chile),
and Sociedad Argentina de Informática e Investigación Operativa (SADIO).

We thank the local organizers for their support in the organization of SPIRE
and the members of the Program Committee and the additional reviewers for
providing timely and detailed reviews of the submitted papers and for their active
participation in the email discussions that took place before we could assemble

VI Preface

the final program. Finally, we would like to thank Ricardo Baeza-Yates, who, on
behalf of the Steering Committee, invited us to chair the Program Committee.

November 2005 Mariano P. Consens,
Gonzalo Navarro

SPIRE 2005 Organization

Steering Committee

Ricardo Baeza-Yates (Chair) ICREA-Universitat Pompeu Fabra (Spain)
and Universidad de Chile (Chile)

Alberto Apostolico Università di Padova (Italy)
and Georgia Tech (USA)

Alberto Laender Universidade Federal de Minas Gerais (Brazil)
Massimo Melucci Università di Padova (Italy)
Edleno de Moura Universidade Federal do Amazonas (Brazil)
Mario Nascimento University of Alberta (Canada)
Arlindo Oliveira INESC (Portugal)
Berthier Ribeiro-Neto Universidade Federal de Minas Gerais (Brazil)
Nivio Ziviani Universidade Federal de Minas Gerais (Brazil)

Program Committee Chairs

Mariano Consens Dept. of Mechanical and Industrial Engineering
Dept. of Computer Science
University of Toronto, Canada

Gonzalo Navarro Center for Web Research
Dept. of Computer Science
Universidad de Chile, Chile

Program Committee Members

Amihood Amir Bar-Ilan University (Israel)
Alberto Apostolico Università di Padova (Italy)

and Georgia Tech (USA)
Ricardo Baeza-Yates ICREA-Universitat Pompeu Fabra (Spain)

and Universidad de Chile (Chile)
Nieves R. Brisaboa Universidade da Coruña (Spain)
Edgar Chávez Universidad Michoacana (Mexico)
Charles Clarke University of Waterloo (Canada)
Bruce Croft University of Massachussetts (USA)
Paolo Ferragina Università di Pisa (Italy)
Norbert Fuhr Universität Duisburg-Essen (Germany)
Raffaele Giancarlo Università di Palermo (Italy)
Roberto Grossi Università di Pisa (Italy)
Carlos Heuser Universidade Federal de Rio Grande do Sul

(Brazil)

VIII Organization

Carlos Hurtado Universidad de Chile (Chile)
Lucian Ilie University of Western Ontario (Canada)
Panagiotis Ipeirotis New York University (USA)
Juha Kärkkäinen University of Helsinki (Finland)
Nick Koudas University of Toronto (Canada)
Mounia Lalmas Queen Mary University of London (UK)
Gad Landau University of Haifa (Israel)

and Polytechnic University (NY, USA)
Stefano Lonardi University of California at Riverside (USA)
Yoelle Maarek IBM Haifa Research Lab (Israel)
Veli Mäkinen Bielefeld University (Germany)
Mauricio Maŕın Universidad de Magallanes (Chile)
João Meidanis UNICAMP (Brazil)
Massimo Melucci Università di Padova (Italy)
Edleno de Moura Universidade Federal do Amazonas (Brazil)
Ian Munro University of Waterloo (Canada)
Arlindo Oliveira INESC (Portugal)
Kunsoo Park Seoul National University (Korea)
Prabhakar Raghavan Yahoo Inc. (USA)
Berthier Ribeiro-Neto Universidade Federal de Minas Gerais (Brazil)
Kunihiko Sadakane Kyushu University (Japan)
Marie-France Sagot INRIA (France)
João Setubal Virginia Tech (USA)
Jayavel Shanmugasundaram Cornell University (USA)
Ayumi Shinohara Tohoku University (Japan)
Jorma Tarhio Helsinki University of Technology (Finland)
Jeffrey Vitter Purdue University (USA)
Hugh Williams Microsoft Corporation (USA)
Hugo Zaragoza Microsoft Research (UK)
Nivio Ziviani Universidade Federal de Minas Gerais (Brazil)
Justin Zobel RMIT (Australia)

External Reviewers

Jussara Almeida Michela Bacchin
Ramurti Barbosa Bodo Billerbeck
Sebastian Böcker Michael Cameron
David Carmel Luis Coelho
Marco Cristo Giorgio Maria Di Nunzio
Alair Pereira do Lago Shiri Dori
Celia Francisca dos Santos Fan Yang
Feng Shao Nicola Ferro
Kimmo Fredriksson Gudrun Fisher
Paulo B. Golgher Alejandro Hevia
Jie Zheng Carmel Kent

Organization IX

Shahar Keret Tsvi Kopelowitz
Sascha Kriewel Michael Laszlo
Nicholas Lester Saadia Malik
Julia Mixtacki Viviane Moreira Orengo
Henrik Nottelmann Nicola Orio
Rodrigo Paredes Laxmi Parida
Hannu Peltola Patŕıcia Peres
Nadia Pisanti Benjamin Piwowarski
Bruno Possas Jussi Rautio
Davi de Castro Reis Nora Reyes
Luis Russo Klaus-Bernd Schürmann
Marinella Sciortino Rahul Shah
Darren Shakib Riva Shalom
S.M.M. (Saied) Tahaghoghi Eric Tannier
Andrew Turpin Rodrigo Verschae
Ying Zhang

Local Organization

SADIO (Argentine Society for Informatics and Operations Research)

SADIO President Gabriel Baum
Local Arrangements Chair Héctor Monteverde
Steering Committee Liaison Ricardo Baeza-Yates
Administrative Manager Alejandra Villa

Table of Contents

String Processing and Information Retrieval 2005

Enhanced Byte Codes with Restricted Prefix Properties
J. Shane Culpepper, Alistair Moffat . 1

Experimental Analysis of a Fast Intersection Algorithm for Sorted
Sequences

Ricardo Baeza-Yates, Alejandro Salinger . 13

Compressed Perfect Embedded Skip Lists for Quick Inverted-Index
Lookups

Paolo Boldi, Sebastiano Vigna . 25

XML Retrieval with a Natural Language Interface
Xavier Tannier, Shlomo Geva . 29

Recommending Better Queries from Click-Through Data
Georges Dupret, Marcelo Mendoza . 41

A Bilingual Linking Service for the Web
Alessandra Alaniz Macedo, José Antonio Camacho-Guerrero,
Maria da Graça Campos Pimentel . 45

Evaluating Hierarchical Clustering of Search Results
Juan M. Cigarran, Anselmo Peñas, Julio Gonzalo, Felisa Verdejo 49

Counting Suffix Arrays and Strings
Klaus-Bernd Schürmann, Jens Stoye . 55

Towards Real-Time Suffix Tree Construction
Amihood Amir, Tsvi Kopelowitz, Moshe Lewenstein,
Noa Lewenstein . 67

Rank-Sensitive Data Structures
Iwona Bialynicka-Birula, Roberto Grossi . 79

Cache-Conscious Collision Resolution in String Hash Tables
Nikolas Askitis, Justin Zobel . 91

Measuring the Difficulty of Distance-Based Indexing
Matthew Skala . 103

XII Table of Contents

N -Gram Similarity and Distance
Grzegorz Kondrak . 115

Using the k-Nearest Neighbor Graph for Proximity Searching in Metric
Spaces

Rodrigo Paredes, Edgar Chávez . 127

Classifying Sentences Using Induced Structure
Menno van Zaanen, Luiz Augusto Pizzato, Diego Mollá 139

Counting Lumps in Word Space: Density as a Measure of Corpus
Homogeneity

Magnus Sahlgren, Jussi Karlgren . 151

Multi-label Text Categorization Using K-Nearest Neighbor Approach
with M-Similarity

Yi Feng, Zhaohui Wu, Zhongmei Zhou . 155

Lydia: A System for Large-Scale News Analysis
Levon Lloyd, Dimitrios Kechagias, Steven Skiena 161

Composite Pattern Discovery for PCR Application
Stanislav Angelov, Shunsuke Inenaga . 167

Lossless Filter for Finding Long Multiple Approximate Repetitions
Using a New Data Structure, the Bi-factor Array

Pierre Peterlongo, Nadia Pisanti, Frederic Boyer,
Marie-France Sagot . 179

Linear Time Algorithm for the Generalised Longest Common Repeat
Problem

Inbok Lee, Yoan José Pinzón Ardila . 191

Application of Clustering Technique in Multiple Sequence Alignment
Patŕıcia Silva Peres, Edleno Silva de Moura . 202

Stemming Arabic Conjunctions and Prepositions
Abdusalam F.A. Nwesri, S.M.M. Tahaghoghi, Falk Scholer 206

XML Multimedia Retrieval
Zhigang Kong, Mounia Lalmas . 218

Retrieval Status Values in Information Retrieval Evaluation
Amélie Imafouo, Xavier Tannier . 224

Table of Contents XIII

A Generalization of the Method for Evaluation of Stemming Algorithms
Based on Error Counting

Ricardo Sánchez de Madariaga, José Raúl Fernández del Castillo,
José Ramón Hilera . 228

Necklace Swap Problem for Rhythmic Similarity Measures
Yoan José Pinzón Ardila, Raphaël Clifford, Manal Mohamed 234

Faster Generation of Super Condensed Neighbourhoods Using Finite
Automata

Lúıs M.S. Russo, Arlindo L. Oliveira . 246

Restricted Transposition Invariant Approximate String Matching
Under Edit Distance

Heikki Hyyrö . 256

Fast Plagiarism Detection System
Maxim Mozgovoy, Kimmo Fredriksson, Daniel White, Mike Joy,
Erkki Sutinen . 267

A Model for Information Retrieval Based on Possibilistic Networks
Asma H. Brini, Mohand Boughanem, Didier Dubois 271

Comparison of Representations of Multiple Evidence Using a Functional
Framework for IR

Ilmério R. Silva, João N. Souza, Luciene C. Oliveira 283

Deriving TF-IDF as a Fisher Kernel
Charles Elkan . 295

Utilizing Dynamically Updated Estimates in Solving the Longest
Common Subsequence Problem

Lasse Bergroth . 301

Computing Similarity of Run-Length Encoded Strings with Affine Gap
Penalty

Jin Wook Kim, Amihood Amir, Gad M. Landau, Kunsoo Park 315

L1 Pattern Matching Lower Bound
Ohad Lipsky, Ely Porat . 327

Approximate Matching in the L∞ Metric
Ohad Lipsky, Ely Porat . 331

An Edit Distance Between RNA Stem-Loops
Valentin Guignon, Cedric Chauve, Sylvie Hamel 335

XIV Table of Contents

A Multiple Graph Layers Model with Application to RNA Secondary
Structures Comparison

Julien Allali, Marie-France Sagot . 348

Normalized Similarity of RNA Sequences
Rolf Backofen, Danny Hermelin, Gad M. Landau,
Oren Weimann . 360

A Fast Algorithmic Technique for Comparing Large Phylogenetic Trees
Gabriel Valiente . 370

Practical and Optimal String Matching
Kimmo Fredriksson, Szymon Grabowski . 376

A Bit-Parallel Tree Matching Algorithm for Patterns with Horizontal
VLDC’s

Hisashi Tsuji, Akira Ishino, Masayuki Takeda . 388

A Partition-Based Efficient Algorithm for Large Scale Multiple-Strings
Matching

Ping Liu, Yan-bing Liu, Jian-long Tan . 399

Author Index . 405

Enhanced Byte Codes with Restricted Prefix Properties

J. Shane Culpepper and Alistair Moffat

NICTA Victoria Laboratory,
Department of Computer Science and Software Engineering,

The University of Melbourne, Victoria 3010, Australia

Abstract. Byte codes have a number of properties that make them attractive for
practical compression systems: they are relatively easy to construct; they decode
quickly; and they can be searched using standard byte-aligned string matching
techniques. In this paper we describe a new type of byte code in which the first
byte of each codeword completely specifies the number of bytes that comprise
the suffix of the codeword. Our mechanism gives more flexible coding than pre-
vious constrained byte codes, and hence better compression. The structure of the
code also suggests a heuristic approximation that allows savings to be made in
the prelude that describes the code. We present experimental results that com-
pare our new method with previous approaches to byte coding, in terms of both
compression effectiveness and decoding throughput speeds.

1 Introduction

While most compression systems are designed to emit a stream of bits that represent
the input message, it is also possible to use bytes as the basic output unit. For example,
Scholer et al. [2002] describe the application of standard byte codes – called vbyte en-
coding in their paper – to inverted file compression; and de Moura et al. [2000] consider
their use in a compression system based around a word-based model of text.

In this paper we describe a new type of byte code in which the first byte of each
codeword completely specifies the number of bytes that comprise the suffix of the code-
word. The new structure provides a compromise between the rigidity of the static byte
codes employed by Scholer et al., and the full power of a radix-256 Huffman code of
the kind considered by de Moura et al. The structure of the code also suggests a heuris-
tic approximation that allows savings to be made in the prelude that describes the code.
Rather than specify the codeword length of every symbol that appears in the message,
we partition the alphabet into two sets – the symbols that it is worth taking care with,
and a second set of symbols that are treated in a more generic manner.

Our presentation includes experimental results that compare the new methods with
previous approaches to byte coding, in terms of both compression effectiveness and
decoding throughput speeds.

2 Byte-Aligned Codes

In the basic byte coding method, denoted in this paper as bc, a stream of integers x ≥ 0
is converted into a uniquely decodeable stream of bytes as follows: for each integer
x, if x < 128, then x is coded as itself in a single byte; otherwise, (x div 128) − 1

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 1–12, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 J.S. Culpepper and A. Moffat

is recursively coded, and then x mod 128 is appended as a single byte. Each output
byte contains seven data bits. To force the code to be prefix-free, the last output byte
of every codeword is tagged with a leading zero bit, and the non-final bytes are tagged
with a leading one bit. The following examples show the simple byte code in action –
bytes with a decimal value greater than 127 are continuers and are always followed by
another byte; bytes with a decimal value less than 128 are stoppers and are terminal.

0 → 000
1 → 001
2 → 002

1,000 → 134-104
1,001 → 134-105
1,002 → 134-106

1,000,000→ 188-131-064
1,000,001→ 188-131-065
1,000,002→ 188-131-066

To decode, a radix-128 value is constructed. For example, 188-131-066 is decoded
as ((188− 127)× 128 + (131− 127))× 128 + 66 = 1,000,002.

The exact origins of the basic method are unclear, but it has been in use in appli-
cations for more than a decade, including both research and commercial text retrieval
systems to represent the document identifiers in inverted indexes. One great advantage
of it is that each codeword finishes with a byte in which the top (most significant) bit is
zero. This identifies it as the last byte before the start of a new codeword, and means that
compressed sequences can be searched using standard pattern matching algorithms. For
example, if the three-element source sequence “2; 1,001; 1,000,000” is required, a byte-
wise scan for the pattern 002-134-105-188-131-064 in the compressed representa-
tion will find all locations at which the source pattern occurs, without any possibility of
false matches caused by codeword misalignments. In the terminology of Brisaboa et al.
[2003b], the code is “end tagged”, since the last byte of each codeword is distinguished.
de Moura et al. [2000] consider byte codes that are not naturally end-tagged.

The simple byte code is most naturally coupled to applications in which the symbol
probabilities are non-increasing, and in which there are no gaps in the alphabet caused
by symbols that do not occur in the message. In situations where the distribution is not
monotonic, it is appropriate to introduce an alphabet mapping that permutes the sparse
or non-ordered symbol ordering into a ranked equivalent, in which all mapped symbols
appear in the message (or message block, if the message is handled as a sequence of
fixed-length blocks), and each symbol is represented by its rank.

Brisaboa et al. [2003b] refer to this mapping process as generating a dense code.
For example, consider the set of symbol frequencies:

20, 0, 1, 8, 11, 1, 0, 5, 1, 0, 0, 1, 2, 1, 2

that might have arisen from the analysis of a message block containing 53 symbols over
the alphabet 0 . . . 14. The corresponding dense frequency distribution over the alphabet
0 . . . 10 is generated by the alphabet mapping

[0, 4, 3, 7, 12, 14, 2, 5, 8, 11, 13]→ [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ,

that both extracts the n = 11 subset of alphabet symbols that occur in the message, and
also indicates their rank in the sorted frequency list. Using dense codes, Brisaboa et al.
were able to obtain improved compression when the underlying frequency distribution
was not monotonically decreasing, with compressed searching still possible by map-
ping the pattern’s symbols in the same manner. Our experimentation below includes a
permuted alphabet dense byte coder, denoted dbc. The only difference between it and

Enhanced Byte Codes with Restricted Prefix Properties 3

bc is that each message block must have a prelude attached to it, describing the alpha-
bet mapping in use in that block. Section 4 considers in more detail the implications of
including a prelude in each block of the compressed message.

In followup work, Brisaboa et al. [2003a] (see also Rautio et al. [2002]) observe that
there is nothing sacred about the splitting point of 128 used to separate the stoppers and
the continuers in the simple byte coder, and suggest that using values S and C, with
S + C = 256, gives a more flexible code, at the very small cost of a single additional
parameter in the prelude. One way of looking at this revised scheme is that the tag bit
that identifies each byte is being arithmetically coded, so that a little more of each byte
is available for actual “data” bits.

The codewords generated by a (S, C)-dense coder retain the end-tagged property,
and are still directly searchable using standard character-based pattern matching algo-
rithms. The same per-block prelude requirements as for the dbc implementation apply
to scdbc, our implementation of (S, C)-dense coding.

Brisaboa et al. describe several mechanisms for determining an appropriate value of
S (and hence C) for a given frequency distribution, of which the simplest is brute-force
– simply evaluating the cost of each alternative S, and choosing the S that yields the
least overall cost. Pre-calculating an array of cumulative frequencies for the mapped al-
phabet allows the cost of any proposed set of codeword lengths to be evaluated quickly,
without further looping. Brute-force techniques based on a cumulative array of frequen-
cies also play a role in the new mechanism described in Section 3.

Finally in this section, we note that Brisaboa et al. [2005] have recently described
an adaptive variant of the (S, C)-dense mechanism, in which the prelude is avoided and
explicit “rearrange alphabet mapping now” codes are sent as needed.

3 Restricted Prefix Byte Codes

The (S, C)-dense code is a byte-level version of the Golomb code [Golomb, 1966],
in that it matches best with the type of self-similar frequency sets that arise with a
geometric probability distribution. For example, once a particular value of S has been
chosen, the fraction of the available code-space used for one byte codewords is S/(S +
C); of the code-space allocated to multi-byte codewords, the fraction used for two byte
codes is S/(S + C); and so on, always in the same ratio.

On the other hand, a byte-level Huffman code of the kind examined by
de Moura et al. [2000] exactly matches the probability distribution, and is minimum-
redundancy over all byte codes. At face value, the Huffman code is much more versa-
tile, and can assign any codeword length to any symbol. In reality, however, a byte-level
Huffman code on any plausible probability distribution and input message block uses
just four different codeword lengths: one byte, two bytes, three bytes, and four bytes.
On an n-symbol decreasing probability distribution, this observation implies that the
set of dense symbol identifiers 0 . . . (n− 1) can be broken into four contiguous subsets
– the symbols that are assigned one-byte codes, those given two-byte codes, those given
three-byte codes, and those given four-byte codes. If the sizes of the sets are given by h1,
h2, h3, and h4 respectively, then for all practical purposes a tuple (h1, h2, h3, h4) com-
pletely defines a dense-alphabet byte-level Huffman code, with n = h1 +h2 +h3 +h4.

In the (S, C)-dense code, the equivalent tuple is infinite, (S, CS, C2S, . . .), and it
is impossible, for example, for there to be more of the total codespace allocated to two-

4 J.S. Culpepper and A. Moffat

11 prefix followed by10 prefix followed by

5 6 7 8 9 10 21

00

0

10 11 00 00 00 01 00 10 01 00 11 1100 11

0100

01

1 2 3 4

v1=2

20 11 8 5 2 2 1 1 1 1 1

v2=1 v3=1

Fig. 1. Example of a restricted prefix code with R = 4 and n = 11, and (v1, v2, v3) = (2, 1, 1).
The codewords for symbols 11 to 21 inclusive are unused. The 53 symbols are coded into 160
bits, compared to 144 bits if a bitwise Huffman code is calculated, and 148 bits per symbol if a
radix-4 Huffman code is calculated. Prelude costs are additional.

byte codewords than to one-byte codewords. On a input message that consists primarily
of low probability symbols, compression effectiveness must suffer.

Our proposal here adds more flexibility. Like the radix-256 Huffman code, we cat-
egorize an arrangement using a 4-tuple of numbers (v1, v2, v3, v4), and require that the
Kraft inequality be satisfied. But the numbers in the tuple now refer to initial digit ranges
in the radix-R code, and are set so that v1 + v2 + v3 + v4 ≤ R. The code itself has v1
one-byte codewords; Rv2 two-byte codewords; R2v3 three-byte codewords; and R3v4
four-byte ones. To be feasible, we thus also require v1+v2R+v3R

2+v4R
3 ≥ n, where

R is the radix, typically 256. We will denote as restricted prefix a code that meets these
criteria. The codeword lengths are not as freely variable as in an unrestricted radix-256
Huffman code, but the loss in compression effectiveness compared to a Huffman code
is slight.

Figure 1 shows an example code that has the restricted prefix property, calculated
with a radix R = 4 for a dense alphabet covering n = 11 symbols. In this code, the
first two-bit unit in each codeword uniquely identifies the number of two-bit units in
the suffix. Two symbols have codes that are one unit long (v1 = 2); four symbols have
codes that are two units long, prefixed by 10; and five symbols have codes that are two
units long, prefixed by 11. There are eleven unused codewords.

The great benefit of the additional constraint is that the first unit (byte) in each
codeword unambiguously identifies the length of that codeword, in the same way that
in the K-flat code of Liddell and Moffat [2004] each codeword commences with a k-bit
binary prefix that determines the length of the suffix part for that codeword, for some
fixed value k. In particular, for the code described by (v1, v2, v3, v4), the first byte of
any one-byte codeword will be in the range 0 . . . (v1− 1); the first byte of any two-byte
codeword in the range v1 . . . (v1 +v2−1); and the first byte of any three-byte codeword
will lie between (v1 + v2) . . . (v1 + v2 + v3 − 1). With this structure, it is possible to
create an R-element array suffix that is indexed by the first byte of each codeword and
exactly indicates the total length of that codeword.

Algorithm 1 shows how the suffix array, and a second array called first , are initial-
ized, and then used during the decoding process. Once the codeword length is known,
the mapped symbol identifier is easily computed by concatenating suffix bytes together,
and adding a pre-computed value from the first array.

Enhanced Byte Codes with Restricted Prefix Properties 5

Algorithm 1. Decoding a message block
input: a block-length m, a radix R (typically 256), and control parameters v1, v2, v3, and v4,
with v1 + v2 + v3 + v4 ≤ R.
1: create tables(v1, v2, v3, v4, R)
2: for i ← 0 to m − 1 do
3: assign b ← get byte() and offset ← 0
4: for i ← 1 to suffix [b] do
5: assign offset ← offset × R + get byte()
6: assign output block [i] ← first [b] + offset

output: the m symbols coded into the message block are available in the array output block

function create tables(v1, v2, v3, v4, R)

1: assign start ← 0
2: for i ← 0 to v1 − 1 do
3: assign suffix [i] ← 0 and first [i] ← start and start ← start + 1
4: for i ← v1 to v1 + v2 − 1 do
5: assign suffix [i] ← 1 and first [i] ← start and start ← start + R
6: for i ← v1 + v2 to v1 + v2 + v3 − 1 do
7: assign suffix [i] ← 2 and first [i] ← start and start ← start + R2

8: for i ← v1 + v2 + v3 to v1 + v2 + v3 − v4 − 1 do
9: assign suffix [i] ← 3 and first [i] ← start and start ← start + R3

Algorithm 2. Seeking forward a specified number of codewords
input: the tables created by the function create tables(), and a seek offset s.
1: for i ← 0 to s − 1 do
2: assign b ← get byte()
3: adjust the input file pointer forwards by suffix [b] bytes

output: a total of s − 1 codewords have been skipped over.

The new code is not end tagged in the way the (S, C)-dense method is, a change
that opens up the possibility of false matches caused by byte misalignments during
pattern matching. Algorithm 2 shows the process that is used to seek forward a fixed
number of symbols in the compressed byte stream and avoid that possibility. Because
the suffix length of each codeword is specified by the first byte, it is only necessary to
touch one byte per codeword to step forward a given number s of symbols. By building
this mechanism into a pattern matching system, fast compressed searching is possible,
since standard pattern matching techniques make use of “shift” mechanisms, whereby
a pattern is stepped along the string by a specified number of symbols.

We have explored several methods for determining a minimum-cost reduced prefix
code. Dynamic programming mechanisms, like those described by Liddell and Moffat
[2004] for the K-flat binary case, can be used, and have asymptotically low execution
costs. On the other hand, the space requirement is non-trivial, and in this preliminary
study we have instead made use of a generate-and-test approach, described in Algo-
rithm 3, that evaluates each viable combination of (v1, v2, v3, v4), and chooses the one
with the least cost. Even when n > 105, Algorithm 3 executes in just a few hundredths
or tenths of a second, and requires no additional space. In particular, once the cumula-
tive frequency array C has been constructed, on average just a few hundred thousand

6 J.S. Culpepper and A. Moffat

Algorithm 3. Calculating the code split points using a brute force approach

input: a set of n frequencies, f [0 . . . (n − 1)], and a radix R, with n ≤ R4.
1: assign C[0] ← 0
2: for i ← 0 to n − 1 do
3: assign C[i + 1] ← C[i] + f [i]
4: assign mincost ← partial sum(0, n) × 4
5: for i1 ← 0 to R do
6: for i2 ← 0 to R − i1 do
7: for i3 ← 0 to R − i1 − i2 do
8: assign i4 ← �(n − i1 − i2R − i3R

2)/R3�
9: if i1 + i2 + i3 + i4 ≤ R and cost(i1, i2, i3, i4) < mincost then

10: assign (v1, v2, v3, v4) ← (i1, i2, i3, i4) and mincost ← cost(i1, i2, i3, i4)
11: if i1 + i2R + i3R

2 ≥ n then
12: break
13: if i1 + i2R ≥ n then
14: break
15: if i1 ≥ n then
16: break
output: the four partition sizes v1, v2, v3, and v4.

function partial sum(lo, hi):
1: if lo > n then
2: assign lo ← n
3: if hi > n then
4: assign hi ← n
5: return C[hi] − C[lo]

function cost(i1, i2, i3, i4)
1: return partial sum(0, i1) × 1 +

partial sum(i1, i1 + i2R) × 2 +
partial sum(i1 + i2R, i1 + i2R + i3R

2) × 3 +
partial sum(i1 + i2R + i3R

2, i1 + i2R + i3R
2 + i4R

3) × 4

combinations of (i1, i2, i3, i4) are evaluated at step 9, and there is little practical gain in
efficiency possible through the use of a more principled approach.

4 Handling the Prelude

One of the great attractions of the simple bc byte coding regime is that it is completely
static, with no parameters. To encode a message, nothing more is required than to trans-
mit the first message symbol, then the second, and so on through to the last. In this
sense it is completely on-line, and no input buffering is necessary. On the other hand,
all of the dense codes are off-line mechanisms – they require that the input message be
buffered into message blocks before any processing can be started. They also require
that a prelude be transmitted to the decoder prior to any of the codewords in that block.

As well as a small number of scalar values (the size of the block; and the code
parameters v1, v2, v3, and v4 in our case) the prelude needs to describe an ordering of
the codewords. For concreteness, suppose that a message block contains m symbols in

Enhanced Byte Codes with Restricted Prefix Properties 7

total; that there are n distinct symbols in the block; and that the largest symbol identifier
in the block is nmax.

The obvious way of coding the prelude is to transmit a permutation of the alpha-
bet [Brisaboa et al., 2003a,b]. Each of the n symbol identifiers requires approximately
log nmax bits, so to transmit the decreasing-frequency permutation requires a total of
n log nmax bits, or an overhead of (n log nmax)/m bits per message symbol. When n
and nmax are small, and m is large, the extra cost is negligible. For character-level cod-
ing applications, for example with n ≈ 100 and nmax ≈ 256, the overhead is less than
0.001 bits per symbol on a block of m = 220 symbols. But in more general applica-
tions, the cost can be non-trivial. When n ≈ 105 and nmax ≈ 106, the overhead cost on
the same-sized message block is 1.9 bits per symbol.

In fact, an exact permutation of the alphabet is not required – all that is needed is
to know, for each alphabet symbol, whether or not it appears in this message block,
and how many bytes there are in its codeword. This realization leads to a better way
of describing the prelude: first of all, indicate which n-element subset of the symbols
0 . . . nmax appears in the message block; and then, for each symbol that appears, indicate
its codeword length. For example, one obvious tactic is to use a bit-vector of nmax bits,
with a zero in the kth position indicating “k does not appear in this message block”, and
a one in the kth position indicating that it does. That bit-vector is then followed by a set
of n two-bit values indicating codeword lengths between 1 and 4 bytes. Using the values
n ≈ 105 and nmax ≈ 106 bits, the space required would thus be nmax +2n ≈ 1.2×106,
or 1.14 bits per symbol overhead on a message block of m = 220 symbols.

Another way in which an ordered subset of the natural numbers can be efficiently
represented is as a sequence of gaps, taking differences between consecutive items in
the set. Coding a bit-vector is tantamount to using a unary code for the gaps, and more
principled codes can give better compression when the alphabet density differs signifi-
cantly from one half, either globally, or in locally homogeneous sections.

In a byte coder, where the emphasis is on easily decodeable data streams, it is natural
to use a simple byte code for the gaps. The sets of gaps for the symbols with one-byte
codes can be encoded; then the set of gaps of all symbols with two-byte codes; and so
on. To estimate the cost of this prelude arrangement, we suppose that all but a small
minority of the gaps between consecutive symbols are less than 127, the largest value
that is coded in a single byte. This is a plausible assumption unless, for example, the
sub-alphabet density drops below around 5%. Using this arrangement, the prelude costs
approximately 8n bits, and when n ≈ 105 corresponds to 0.76 bit per symbol overhead
on a message block of m = 220 symbols.

The challenge is to further reduce this cost. One obvious possibility is to use a code
based on half-byte nibbles rather than bytes, so as to halve the minimum cost of coding
each gap. But there is also another way of improving compression effectiveness, and
that is to be precise only about high-frequency symbols, and to let low-frequency ones
be assigned default codewords without their needing to be specified in the prelude. The
motivation for this approach is that spending prelude space on rare symbols may, in the
long run, be more expensive than simply letting them be represented with their “natural”
sparse codes.

Algorithm 4 gives details of this semi-dense method, and Figure 2 gives an exam-
ple. A threshold t is used to determine the number of high-frequency symbols for which
prelude information is supplied in a dense part to the code; and all symbols (including

8 J.S. Culpepper and A. Moffat

Algorithm 4. Determining the code structure with a semi-dense prelude
input: an integer nmax, and an unsorted array of symbol frequency counts, with c[s] recording the
frequency of s in the message block, 0 ≤ s ≤ nmax; together with a threshold t.
1: assign n ← 0
2: for s ← 0 to nmax do
3: assign f [t + s].sym ← s and f [t + s].freq ← c[s]
4: identify the t largest freq components in f [t . . . (t + nmax)], and copy them and their

corresponding symbol numbers into f [0 . . . (t − 1)]
5: for s ← 0 to t − 1 do
6: assign f [f [s].sym].freq ← 0
7: assign shift ← 0
8: while f [t + shift] = 0 do
9: assign shift ← shift + 1

10: for s ← t + shift to nmax do
11: assign f [s − shift] ← f [s]
12: use Algorithm 3 to compute v1, v2, v3, and v4 using the t + nmax + 1 − shift elements now

in f [i].freq
13: sort array f [0 . . . (t − 1)] into increasing order of the sym component, keeping track of the

corresponding codeword lengths as elements are exchanged
14: transmit v1, v2, v3, and v4 and the first t values f [0 . . . (t − 1)].sym as a prelude, together

with the matching codeword lengths for those t symbols
15: sort array f [0 . . . (t − 1)] into increasing order of codeword length, with ties broken using

the sym component
16: for each symbol s in the message block do
17: if ∃x < t : f [x].sym = s then
18: code s as the integer x, using v1, v2, v3, and v4

19: else
20: code s as the integer t + s − shift , using v1, v2, v3, and v4

those in the dense code) are allocated sparse codewords. A minimum-redundancy re-
stricted prefix code for the augmented symbol set is calculated as before; because the
highest frequency symbols are in the dense set, and allocated the shortest codewords,
compression effectiveness can be traded against prelude size by adjusting the control
knob represented by t. For example, t might be set to a fixed value such as 1,000,
or might be varied so as to ensure that the symbols that would originally be assigned
one-byte and two-byte codewords are all in the dense set.

Chen et al. [2003] describe a related mechanism in which symbols over a sparse al-
phabet are coded as binary offsets within a bucket, and a Huffman code is used to spec-
ify bucket identifiers, based on the aggregate frequency of the symbols in the bucket. In
their method, each bucket code is sparse and self-describing, and the primary code is a
dense one over buckets. In contrast, we partially permute the alphabet to create a dense
region of “interesting” symbols, and leave the uninteresting ones in a sparse zone of the
alphabet.

5 Experiments

Table 1 describes the four test files used to validate the new approach to byte coding.
They are all derived from the same source, a 267 MB file of SGML-tagged newspaper

Enhanced Byte Codes with Restricted Prefix Properties 9

11 prefix followed by

13 14

11 1111 10

00 01

00 00 00 01 00 10 01 0000 11

10

..... 11 0111 00

0 1 2 3 4 5 6 7 8 9 10 1211

1 1 1 20 020 110 0 5 1 21 8

1 220 11 8 5 21001 0 1(0) (0) (0)

20 11 8 5

t=4

1(0) 0

1 (0) (0) 1 0 1 22101(0)

v1=3 v3=1

0

Fig. 2. Example of a semi-dense restricted prefix code with R = 4, nmax = 14, and a threshold
of t = 4. The largest four frequencies are extracted, and the rest of the frequency array shifted
right by four positions, with zeros inserted where elements have been extracted. In the third row,
shift = 2 leading zeros are suppressed. The end array has t + nmax + 1 − shift = 13 elements,
and is minimally represented as a (v1, v2, v3) = (3, 0, 1) code, with a cost of 162 bits. The
modified prelude contains only four symbols, seven less than is required when the code is dense.

text, but processed in different ways to generate streams of integer symbol identifiers.
The first two files are of particular interest, and can be regarded as respectively repre-
senting the index of a mid-sized document retrieval system, and the original text of it.
In this example the index is stored as a sequence of d-gaps (see Witten et al. [1999] for
a description of inverted index structures), and the text using a word-based model.

Table 2 shows the compression effectiveness achieved by the experimental methods
for the four test files described in Table 1, when processed as a sequence of message
blocks (except at the end of the file) of m = 220 symbols. Table 2 does not include any
prelude costs, and hence only those for the basic byte coder bc represent actual achiev-
able compression. The file wsj267.repair shows the marked improvement possible
with the rpbc approach compared to the scdbc method – on this file there are almost
no one-byte codewords required, and a large number of two-byte codewords.

The first three columns of Table 3 show the additional cost of representing a dense
prelude, again when using blocks of m = 220 symbols. Storing a complete permutation
of the alphabet is never effective, and not an approach that can be recommended. Use
of a bit-vector is appropriate when the sub-alphabet density is high, but as expected, the
gap-based approach is more economical when the sub-alphabet density is low.

The fourth column of Table 3 shows the cost of the semi-dense prelude approach
described in Section 4. It is expressed in two parts – the cost of a partial prelude de-
scribing the dense subset of the alphabet, plus a value that indicates the extent to which
compression effectiveness of the rpbc method is reduced because the code is no longer
dense. In these experiments, in each message block the threshold t was set to the sum
v1 + v2R generated by a preliminary fully-dense evaluation of Algorithm 3, so that all

10 J.S. Culpepper and A. Moffat

Table 1. Parameters of the test files. The column headed “n/nmax” shows the average sub-
alphabet density when the message is broken into blocks each containing m = 220 symbols.

File name and origin
Total Maximum n/nmax Self-information

symbols value (m = 220) (bits/sym)
wsj267.ind: Inverted index d-gaps 41,389,467 173,252 10.4% 6.76

wsj267.seq: Word-parsed sequence 58,421,983 222,577 22.5% 10.58

wsj267.seq.bwt.mtf: Word-parsed
sequence BWT’ed and MTF’ed

58,421,996 222,578 20.8% 7.61

wsj267.repair: Phrase numbers from
a recursive byte-pair parser

19,254,349 320,016 75.3% 17.63

Table 2. Average codeword length for different byte coding methods. Each input file is processed
as a sequence of message blocks of m = 220 symbols, except at the end. Values listed are in terms
of bits per source symbol, excluding any necessary prelude components. Only the column headed
bc represents attainable compression, since it is the only one that does not require a prelude.

File
Method

bc dbc scdbc rpbc
wsj267.ind 9.35 9.28 9.00 8.99
wsj267.seq 16.29 12.13 11.88 11.76
wsj267.seq.bwt.mtf 10.37 10.32 10.17 10.09
wsj267.repair 22.97 19.91 19.90 18.27

symbols that would have been assigned one-byte and two-byte codes were protected
into the prelude, and symbols with longer codes were left in the sparse section.

Overall compression is the sum of the message cost and the prelude cost. Comparing
Tables 2 and 3, it is apparent that on the files wsj267.ind and wsj267.seq.bwt.mtf
with naturally decreasing probability distributions, use of a dense code is of no overall
benefit, and the bc coder is the most effective. On the other hand, the combination of
semi-dense prelude and rpbc codes result in compression gains on all four test files.

Figure 3 shows the extent to which the threshold t affects the compression achieved
by the rpbc method on the file wsj267.seq. The steady decline through to about t =
200 corresponds to all of the symbols requiring one-byte codes being allocated space
in the prelude; and then the slower decline through to 5,000 corresponds to symbols
warranting two-byte codewords being promoted into the dense region.

Table 4 shows measured decoding rates for four byte coders. The bc coder is the
fastest, and the dbc and scdbc implementations require around twice as long to decode
each of the four test files. However the rpbc code recovers some of the lost speed, and
even with a dense prelude, outperforms the scdbc and dbc methods. Part of the bc
coder’s speed advantage arises from not having to decode a prelude in each block. But
the greater benefit arises from the absence of the mapping table, and the removal of the
per-symbol array access incurred in the symbol translation process. In particular, when
the mapping table is large, a cache miss per symbol generates a considerable speed
penalty. The benefit of avoiding the cache misses is demonstrated in the final column

Enhanced Byte Codes with Restricted Prefix Properties 11

Table 3. Average prelude cost for four different representations. In all cases the input file is
processed as a sequence of message blocks of m = 220 symbols, except for the last. Values listed
represent the total cost of all of the block preludes, expressed in terms of bits per source symbol.
In the column headed “semi-dense”, the use of a partial prelude causes an increase in the cost of
the message, the amount of which is shown (for the rpbc method) as a secondary component.

File
Prelude representation

permutation bit-vector gaps semi-dense
wsj267.ind 0.31 0.20 0.14 0.08+0.00
wsj267.seq 0.59 0.22 0.27 0.13+0.01
wsj267.seq.bwt.mtf 0.65 0.25 0.29 0.15+0.01
wsj267.repair 4.44 0.78 1.87 0.49+0.02

1 10 100 1000 10000

Threshold t

11.0

12.0

13.0

14.0

15.0

16.0

17.0

E
ffe

ct
iv

en
es

s
(b

ps
)

wsj267.seq
wsj267.seq, fully dense

Fig. 3. Different semi-dense prelude thresholds t used with wsj267.seq, and the rpbc method

Table 4. Decoding speed on a 2.8 Ghz Intel Xeon with 2 GB of RAM, in millions of symbols per
second, for complete compressed messages including a prelude in each message block, and with
blocks of length m = 220. The bc method has no prelude requirement.

File
bc dbc scdbc rpbc

(none) dense dense dense semi-dense
wsj267.ind 68 30 30 47 59
wsj267.seq 59 24 24 36 43
wsj267.seq.bwt.mtf 60 26 26 39 50
wsj267.repair 49 9 9 12 30

of Table 4 – the rpbc method with a semi-dense prelude operates with a relatively
small decoder mapping, and symbols in the sparse region of the alphabet are translated
without an array access being required. Fast decoding is the result.

6 Conclusion

We have described a restricted prefix code that obtains better compression effectiveness
than the (S, C)-dense mechanism, but offers many of the same features. In addition,
we have described a semi-dense approach to prelude representation that offers a use-

12 J.S. Culpepper and A. Moffat

ful pragmatic compromise, and also improves compression effectiveness. On the file
wsj267.repair, for example, overall compression improves from 19.90 + 0.78 =
20.68 bits per symbol to 18.27+(0.49+0.02) = 18.78 bits per symbol, a gain of close
to 10%. In combination, the new methods also provide significantly enhanced decoding
throughput rates compared to the (S, C)-dense mechanism.

Acknowledgment. The second author was funded by the Australian Research Coun-
cil, and by the ARC Center for Perceptive and Intelligent Machines in Complex Envi-
ronments. National ICT Australia (NICTA) is funded by the Australian Government’s
Backing Australia’s Ability initiative, in part through the Australian Research Council.

References

N. R. Brisaboa, A. Fariña, G. Navarro, and M. F. Esteller. (S, C)-dense coding: An optimized
compression code for natural language text databases. In M. A. Nascimento, editor, Proc.
Symp. String Processing and Information Retrieval, pages 122–136, Manaus, Brazil, October
2003a. LNCS Volume 2857.

N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá. Efficiently decodable and search-
able natural language adaptive compression. In Proc. 28th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Salvador, Brazil, August
2005. ACM Press, New York. To appear.

N. R. Brisaboa, E. L. Iglesias, G. Navarro, and J. R. Paramá. An efficient compression code for
text databases. In Proc. 25th European Conference on Information Retrieval Research, pages
468–481, Pisa, Italy, 2003b. LNCS Volume 2633.

D. Chen, Y.-J. Chiang, N. Memon, and X. Wu. Optimal alphabet partitioning for semi-adaptive
coding of sources of unknown sparse distributions. In J. A. Storer and M. Cohn, editors, Proc.
2003 IEEE Data Compression Conference, pages 372–381. IEEE Computer Society Press,
Los Alamitos, California, March 2003.

E. S. de Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word searching on
compressed text. ACM Transactions on Information Systems, 18(2):113–139, 2000.

S. W. Golomb. Run-length encodings. IEEE Transactions on Information Theory, IT–12(3):
399–401, July 1966.

M. Liddell and A. Moffat. Decoding prefix codes. December 2004. Submitted. Preliminary
version published in Proc. IEEE Data Compression Conference, 2003, pages 392–401.

J. Rautio, J. Tanninen, and J. Tarhio. String matching with stopper encoding and code splitting. In
A. Apostolico and M. Takeda, editors, Proc. 13th Ann. Symp. Combinatorial Pattern Matching,
pages 42–51, Fukuoka, Japan, July 2002. Springer. LNCS Volume 2373.

F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. Compression of inverted indexes for fast
query evaluation. In M. Beaulieu, R. Baeza-Yates, S. H. Myaeng, and K. Järvelin, editors,
Proc. 25th Annual International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pages 222–229, Tampere, Finland, August 2002. ACM Press, New York.

I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing Docu-
ments and Images. Morgan Kaufmann, San Francisco, second edition, 1999.

Experimental Analysis of a Fast

Intersection Algorithm for Sorted Sequences

Ricardo Baeza-Yates and Alejandro Salinger

Center for Web Research, Department of Computer Science,
University of Chile, Blanco Encalada 2120,

Santiago, Chile

Abstract. This work presents an experimental comparison of intersec-
tion algorithms for sorted sequences, including the recent algorithm of
Baeza-Yates. This algorithm performs on average less comparisons than
the total number of elements of both inputs (n and m respectively) when
n = αm (α > 1). We can find applications of this algorithm on query
processing in Web search engines, where large intersections, or differ-
ences, must be performed fast. In this work we concentrate in studying
the behavior of the algorithm in practice, using for the experiments test
data that is close to the actual conditions of its applications. We com-
pare the efficiency of the algorithm with other intersection algorithm and
we study different optimizations, showing that the algorithm is more ef-
ficient than the alternatives in most cases, especially when one of the
sequences is much larger than the other.

1 Introduction

In this work we study different algorithms to compute the intersection of sorted
sequences. This problem is a particular case of a generic problem called multiple
searching [3] (see also [15], research problem 5, page 156), which consists of,
given an n-element data multiset, D, drawn from an ordered universe, search
D for each element of an m-element query multiset, Q, drawn from the same
universe. The found elements form, exactly, the intersection of both multisets.

The sorted sequences intersection problem finds its motivation in Web search
engines, since most of them use inverted indices, where for each different word, we
have a list of positions or documents where it appears. Generally, these lists are
ordered by some criterion, like position, a global precomputed ranking, frequency
of occurrence in a document, etc. To compute the result of a query, in most
cases we need to intersect these lists. In practice these lists can have hundreds
of millions of elements, hence, it is useful to have an algorithm that is fast and
efficient on average.

In the case when D and Q are sets (and not multisets) already ordered, mul-
tiple search can be solved by merging both sets. However, this is not optimal for
all possible cases. In fact, if m is small (say if m = o(n/ log n)), it is better to do
m binary searches obtaining an O(m log n) algorithm [2], where the complexity
metric is the number of comparisons between any pair of elements. Baeza-Yates’

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 13–24, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

14 R. Baeza-Yates and A. Salinger

algorithm matches both complexities depending on the value of m. On average,
it performs less than m+n comparisons when both sets are ordered under some
pessimistic assumptions.

This work focuses on the experimental study of this algorithm, as well as dif-
ferent optimizations to it. The experiments consisted on measuring the running
time of the original algorithms and its optimizations with sequences of ordered
random integer numbers and comparing it to an algorithm based on merging
and to the Adaptive algorithm, proposed by Demaine et al. [10], which seems to
be the most used in practice. Our results show that Baeza-Yates’ algorithm is
slightly better than Adaptive and much better than Merge when the length of
the sequences differ considerably.

In Section 2 we present related work. Section 3 presents the motivation for
our problem and some practical issues. Section 4 presents the algorithms used
for the comparison, including the algorithm of Baeza-Yates and a proposed opti-
mization. Section 5 presents the experimental results obtained. Throughout this
paper n ≥ m and logarithms are base two unless explicitly stated otherwise.

2 Related Work

In order to solve the problem of determining whether any elements of a set of
n + m elements are equal, we require at least Θ((n + m) log(n + m)) compar-
isons in the worst case (see [13]). However, this lower bound does not apply to
the multiple search problem nor, equivalently, to the set intersection problem.
Conversely, the lower bounds of the search problem do apply to the element
uniqueness problem [12]. This idea was exploited by Demaine et al. to define
an adaptive multiple set intersection algorithm [10,11] that finds the common
elements by searching in an unbounded domain. They also define the difficulty
of a problem instance, which was refined later by Barbay and Kenyon [8].

For the ordered case, lower bounds on set intersection are also lower bounds
for merging both sets. However, the converse is not true, as in set intersection
we do not need to find the actual position of each element in the union of both
sets, just if one element is in the other set or not. Although there has been a lot
of work on minimum comparison merging in the worst case, almost no research
has been done on the average case because it does not make much of a difference.
However, this is not true for multiple search, and hence for set intersection [3].

The algorithm of Baeza-Yates [1] adapts to the input values. In the best case,
the algorithm performs �log(m + 1)��log(n + 1)� comparisons, which for m =
O(n), is O(log2(n)). In the worst case, the number of comparisons performed by
the algorithm is

W (m, n) = 2(m + 1) log((n + 1)/(m + 1)) + 2m + O(log(n))

Therefore, for small m, the algorithm is O(m log(n)), while for n = αm it
is O(n). In this case, the ratio between this algorithm and merging is 2(1 +
log(α))/(1 + α) asymptotically, being 1 when α = 1. The worst case is worse
than merging for 1 < α < 6.3197 having its maximum at α = 2.1596, where it is

Experimental Analysis of a Fast Intersection Algorithm for Sorted Sequences 15

1.336 times slower than merging. Hence the worst case of the algorithm matches
the complexity of both, the merging and the multiple binary search, approaches,
adapting nicely to the size of m. For the average case, under pessimistic assump-
tions, the number of comparisons is:

A(m, n) = (m + 1)(ln((n + 1)/(m + 1)) + 3− 1/ ln(2)) + O(log n)

For n = αm, the ratio between this algorithm and merging is (ln(α) + 3 −
1/ ln(2))/(1 + α) which is at most 0.7913 when α = 1.2637 and 0.7787 when
α = 1. The details of the algorithm are presented on section 4.2.

3 Motivation: Query Processing in Inverted Indices

Inverted indices are used in most text retrieval systems [4]. Logically, they are
a vocabulary (set of unique words found in the text) and a list of references
per word to its occurrences (typically a document identifier and a list of word
positions in each document). In simple systems (Boolean model), the lists are
sorted by document identifier, and there is no ranking (that is, there is no notion
of relevance of a document). In that setting, an intersection algorithm applies
directly to compute Boolean operations on document identifiers: union (OR) is
equivalent to merging, intersection (AND) is the operation on study (we only
keep the repeated elements), and subtraction implies deleting the repeated ele-
ments, which is again similar to an intersection. In practice, long lists are not
stored sequentially, but in blocks. Nevertheless, these blocks are large, and the
set operations can be performed in a block-by-block basis.

In complex systems ranking is used. Ranking is typically based in word sta-
tistics (number of word occurrences per document and the inverse of the number
of documents having it). Both values can be precomputed and the reference lists
are then stored by decreasing intra-document word frequency order to have first
the most relevant documents. Lists are then processed by decreasing inverse
extra-document word frequency order (that is, we process the shorter lists first),
to obtain first the most relevant documents. However, in this case we cannot
always have a document identifier mapping such that lists are sorted by that
order. Nevertheless, they are partially ordered by identifier for all documents of
equal word frequency.

The previous scheme was used initially on the Web, but as the Web grew, the
ranking deteriorated because word statistics do not always represent the content
and quality of a Web page and also can be “spammed” by repeating and adding
(almost) invisible words. In 1998, Page and Brin [9] described a search engine
(which was the starting point of Google) that used links to rate the quality
of a page, a scheme called PageRank. This is called a global ranking based in
popularity, and is independent of the query posed. It is out of the scope of this
paper to explain PageRank, but it models a random Web surfer and the ranking
of a page is the probability of the Web surfer visiting it. This probability induces
a total order that can be used as document identifier. Hence, in a pure link based
search engine we can use the intersection algorithm as before. However, nowadays

16 R. Baeza-Yates and A. Salinger

hybrid ranking schemes that combine link and word evidence are used. In spite
of this, a link based mapping still gives good results as it approximates well the
true ranking (which can be corrected while is computed).

Another important type of query is sentence search. In this case we use the
word position to know if a word follows or precedes a word. Hence, as usually
sentences are small, after we find the Web pages that have all of them, we can
process the first two words1 to find adjacent pairs and then those with the third
word and so on. This is like to compute a particular intersection where instead
of finding repeated elements we try to find correlative elements (i and i + 1),
and therefore we can use again the intersection algorithm as word positions are
sorted. The same is true for proximity search. In this case, we can have a range
k of possible valid positions (that is i± k) or to use a different ranking weight
depending on the proximity.

Finally, in the context of the Web, an adaptive algorithm is in practice much
faster because the uniform distribution assumption is pessimistic. In the Web,
the distribution of word occurrences is quite biased. The same is true with query
frequencies. Both distributions follow a power law (a generalized Zipf distribu-
tion) [4,6]. However, the correlation of both distributions is not high [7] and even
low [5]. That implies that the average length of the lists involved in the query
are not that biased. That means that the average lengths of the lists, n and
m, when sampled, will satisfy n = Θ(m) (uniform), rather than n = m + O(1)
(power law). Nevertheless, in both cases our algorithm makes an improvement.

4 The Algorithms

Suppose that D is sorted. In this case, obviously, if Q is small, will be faster
to search every element of Q in D by using binary search. Now, when Q is also
sorted, set intersection can be solved by merging. In the worst or average case,
straight merging requires m + n− 1 comparisons. However, we can do better for
set intersection. Next, we describe here the different algorithms compared. We
do not include the merging algorithm as it is well known.

4.1 Adaptive

This algorithm [10,11] works as follows: we take one of the sets, and we choose
its first element, which we call elim. We search elim in the other set, making
exponential jumps, this is, looking at positions 1, 2, 4, . . . , 2i. If we overshoot,
that is, the element in the position 2i is larger than elim, we binary search elim
between positions 2i−1 and 2i2 If we find it, we add it to the result. Then, we
remember the position where elim was (or the position where it should have
been) so we know that from that position backwards we already processed the
1 Actually, it is more efficient to use the two words with shorter lists, and so on until

we get to the largest list if the intersection is still non empty.
2 This is the classical result of Bentley and Yao for searching an element in an un-

bounded set which is O(log n).

Experimental Analysis of a Fast Intersection Algorithm for Sorted Sequences 17

set. Now we chose elim as the smallest element of the set that is greater than
the former elim and we exchange roles, making jumps from the position that
signals the processed part of the set. We finish when there is no element greater
than the one we are searching.

4.2 Baeza-Yates

Baeza-Yates’ algorithm is based on a double binary search, improving on average
under some pessimistic assumptions. The algorithm introduced in [1] can be seen
as a balanced version of Hwang and Lin’s [14] algorithm adapted to our problem.

The algorithm works as follows. We first binary search the median (middle
element) of Q in D. If found, we add that element to the result. Found or not,
we have divided the problem in searching the elements smaller than the median
of Q to the left of the position found on D, or the position the element should
be if not found, and the elements bigger than the median to the right of that
position. We then solve recursively both parts (left sides and right sides) using
the same algorithm. If in any case, the size of the subset of Q to be considered
is larger than the subset of D, we exchange the roles of Q and D. Note that
set intersection is symmetric in this sense. If any of the subsets is empty, we do
nothing.

A simple way to improve this algorithm is to apply the original algorithm
not over the complete sets D and Q, but over a subset of both sets where they
actually overlap, and hence, where we can really find elements that are part of
the intersection.

We start by comparing the smallest element of Q with the largest of D,
and the largest of Q with the smallest of D. If both sets do not overlap, the
intersection is empty. Otherwise, we search the smallest and largest element
of D in Q, to find the overlap, using just O(log m) time. Then we apply the
previous algorithm just to the subsets that actually overlaps. This improves
both, the worst and the average case. The dual case is also valid, but then
finding the overlap is O(log n), which is not good for small m. This optimization
is mentioned in [1], but it is effectiveness is not studied.

5 Experimental Results

We compared the efficiency of the algorithm, which we call Intersect in this sec-
tion, with an intersection algorithm based on merging, and with an adaptation of
the Adaptive algorithm [10,11] for the intersection of two sequences. In addition,
we show the results obtained with the optimizations of the algorithm.

We used sequences of integer random numbers, uniformly distributed in the
range [1, 109]. We varied the length of one of the lists (n) from 1,000 to 22,000
with a step of 3,000. For each of these lengths we intersected those sequences
with sequences of four different lengths (m), from 100 to 400. We use twenty
random instances per case and ten thousand runs (to eliminate the variations
due to the operating system given the small resulting times).

18 R. Baeza-Yates and A. Salinger

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect v/s merge

intersect m=100
merge m=100

intersect m=200
merge m=200

intersect m=300
merge m=300

intersect m=400
merge m=400

Fig. 1. Experimental results for Intersect and Merge for different values of n and m

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect v/s adaptive

intersect m=100
adaptive m=100
intersect m=200
adaptive m=200
intersect m=300
adaptive m=300
intersect m=400
adaptive m=400

Fig. 2. Experimental results for Intersect and Adaptive, for different values of n and m

The programs were implemented in C using the Gcc 3.3.3 compiler in a Linux
platform running an Intel(R) Xeon(TM) CPU 3.06GHz with 512 Kb cache and
2Gb RAM.

Experimental Analysis of a Fast Intersection Algorithm for Sorted Sequences 19

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect, Optimized Intersect, Merge

intersect m=200
intersectOpt m=200

merge m=200
intersect m=400

intersectOpt m=400
merge m=400

Fig. 3. Experimental results for Intersect, optimized Intersect and Merge, for different
values of n and m = 200 y m = 400

Figure 1 shows a comparison between Intersect and Merge. We can see that
Intersect is better than Merge when n increases and that the time increases for
larger values of m.

Figure 2 shows a comparison between the times of Intersect and Adaptive.
We can see that the times of both algorithms follow the same tendency and that
Intersect is better than Adaptive.

Figure 3 shows the results obtained with the Intersect algorithm and the
optimization described at the end of the last section. For this comparison, we
also added the computation of the overlap of both sequences to Merge.

We can see that there is no big difference between the original and the opti-
mized algorithm, and moreover, the original algorithm was a bit faster than the
optimized one. The reason why the optimization did not result in an improve-
ment can be the uniform distribution of the test data. As the random numbers
are uniformly distributed, in most cases the overlap of both sets covers a big
part of Q. Then, the optimization does not produce any improvement and it
only results in a time overhead due to the overlap search.

5.1 Hybrid Algorithms

We can see from the experimental results obtained that there is a section of
values of n where Merge is better than Intersect. Hence, a natural idea is to
combine both algorithms in one hybrid algorithm that runs each of them when
convenient.

In order to know where is the cutting point to use one algorithm instead of
the other, we measured for each value of n the time of both algorithms with

20 R. Baeza-Yates and A. Salinger

 0

 200

 400

 600

 800

 1000

 0 3000 6000 9000 12000 15000 18000 21000

m

n

Value of m where merge starts to be faster than intersect

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect, merge, hybrid 1, hybrid 2

intersect m=200
merge m=200

hybrid_1 m=200
hybrid_2 m=200
intersect m=400

merge m=400
hybrid_1 m=400
hybrid_2 m=400

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect, merge, hybrids 1, 2 and 3

intersect m=200
merge m=200

hybrid_1 m=200
hybrid_2 m=200
hybrid_3 m=200

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect, merge, hybrids 1, 2 and 3

intersect m=200
merge m=200

hybrid_1 m=200
hybrid_2 m=200
hybrid_3 m=200

Fig. 4. Up: on the left, value of m from which Merge is faster than Intersect. On the
right, a comparison between the original algorithm, Merge and the hybrids 1 and 2
for m = 200 y m = 400. Down: comparison between Intersect, Merge and the three
hybrids for m = 200. The plot on the right is a zoom of the one on the left.

different values of m until we identified the value of m where Merge was faster
than Intersect. These values of m form a straight line as a function of n, which we
can observe in Fig. 4. This straight line is approximated by m = 0.033n+ 8.884,
with a correlation of r2 = 0.999.

The hybrid algorithm works by running Merge whenever m > 0.033n+8.884,
and running Intersect otherwise. The condition is evaluated on each step of the
recursion.

When we modify the algorithm, the cutting point changes. We would like
to find the optimal hybrid algorithm. Using the same idea again, we found the
straight line that defines the values where Merge is better than the hybrid al-
gorithm. This straight line can be approximated by m = 0.028n + 32.5, with
r2 = 0.992. Hence, we define the algorithm Hybrid2, which runs Merge when-
ever m > 0.028n+32.5 and runs Intersect otherwise. Finally, we combined both
hybrids, creating a third version where the cutting line between Merge and In-
tersect is the average between the lines of the hybrids 1 and 2. The resulting
straight line is m = 0.031n + 20.696. Figure 4 shows the cutting line between
the original algorithm and Merge, and the results obtained with the hybrid al-
gorithms. The optimal algorithm would be on theory the Hybrid.i when i tends
to infinity, as we are looking for a fixed point algorithm.

Experimental Analysis of a Fast Intersection Algorithm for Sorted Sequences 21

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 3000 6000 9000 12000 15000 18000 21000

m
ili

se
co

nd
s

n

Intersect, merge, hybrid 1, hybrid 4

intersect m=200
merge m=200
hybrid_1=200

hybrid_4 m=200

Fig. 5. Experimental results for Intersect, Merge and the hybrids 1 and 4 for different
values of n and for m = 200

We can observe that the hybrid algorithms registered lower times than the
original algorithm in the section where the latter is slower than Merge. However,
in the other section the original algorithm is faster than the hybrids, due to the
fact that in practice we have to evaluate the cutting point in each step of the
recursion. Among the hybrid algorithms, we can see that the first one is slightly
faster than the second one, and that this one is faster than the third one. An
idea to reduce the time in the section that the original algorithm is faster than
the hybrids is to create a new hybrid algorithm that runs Merge when it is
convenient and that then runs the original algorithm, without evaluating the
relation between m and n in order to run Merge. This algorithm shows the
same times than Intersect in the section where the latter is better than Merge,
combining the advantages of both algorithms in the best way. Figure 5 show the
results obtained with this new hybrid algorithm.

5.2 Sequence Lengths with Zipf Distribution

As we said before, one of the applications of the algorithm is the search of Web
documents, where the number of documents in which a word appears follows a
Zipf distribution.

It is interesting to study the behavior of the Intersect algorithm depending
of the ratio between the lengths of the two sequences when these lengths follow
a Zipf distribution and the correlation between both sets is zero (ideal case). For
this experiment, we took two random numbers, a and b, uniformly distributed
between 0 and 1,000. With these numbers we computed the lengths of the se-
quences D and Q as n = K/aα y m = K/bα, respectively, with K = 109 and
α = 1.8 (a typical value for word occurrence distribution in English), making

22 R. Baeza-Yates and A. Salinger

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 3 6 9 12 15

m
ili

se
co

nd
s

n/m

Intersect v/s merge Zipf

intersect
merge

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 1 1.2 1.4 1.6 1.8 2

m
ili

se
co

nd
s

n/m

Intersect v/s merge Zipf

intersect
merge

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 10 100

m
ili

se
co

nd
s

n/m

Intersect v/s merge Zipf (log)

intersect
merge

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 1 5 25

m
ili

se
co

nd
s

n/m

Intersect v/s merge Zipf (log)

intersect
merge

Fig. 6. Up: times for Intersect and Merge as a function of the ratio between the lengths
of the sequences when they follow a Zipf distribution. The plot on the right is a zoom
of the one on the left. Down: times for Intersect and Merge in logarithmic scale. The
plot on the right is a zoom of the one on the left.

sure that n > m. We did 1,000 measurements, using 80 different sequences for
each of them, and repeating 1,000 times each run.

Figure 6 shows the times obtained with both algorithms as a function of
n/m, in normal scale and logarithmic scale.

We can see that the times of Intersect are lower than the times of Merge
when n is much greater than m. When we decrease the ratio between n and m,
it is not so clear anymore which of the algorithms is faster. When n/m < 2, in
most cases the times of Merge are better.

6 Conclusions

In this work we have experimentally studied a simple sorted set intersection
algorithm that performs quite well in average and does not inspect all the ele-
ments involved. Our experiments showed that Baeza-Yates’ algorithm is faster
than Merge when one of the sequences is much larger than the other one. This
improvement is more evident when n increases. In addition, Baeza-Yates’ al-
gorithm surpasses Adaptive [10,11] for every relation between the sizes of the
sequences. The hybrid algorithm that combines Merge and Baeza-Yates’ algo-

Experimental Analysis of a Fast Intersection Algorithm for Sorted Sequences 23

rithm according to the empiric information obtained, takes advantage of both
algorithms and became the most efficient one.

In practice, we do not need to compute the complete result of the intersection
of two lists, as most people only look at less than two result pages [6]. Moreover,
computing the complete result is too costly if one or more words occur several
millions of times as happens in the Web and that is why most search engines
use an intersection query as default. Hence, lazy evaluation strategies are used
and the results is completed at the user’s request.

If we use the straight classical merging algorithm, this naturally obtains first
the most relevant Web pages. The same is true for the Adaptive algorithm.
For Baeza-Yates’ algorithm, it is not so simple, because although we have to
process first the left side of the recursive problem, the Web pages obtained do
not necessarily appear in the correct order. A simple solution is to process the
smaller set from left to right doing binary search in the larger set. However
this variant is efficient only for small m, achieving a complexity of O(m log n)
comparisons. An optimistic variant can use a prediction on the number of pages
in the result and use an intermediate adaptive scheme that divides the smaller
sets in non-symmetric parts with a bias to the left side. Hence, it is interesting
to study the best way to compute partial results efficiently.

As the correlation between both sets in practice is between 0.2 and 0.6,
depending on the Web text used (Zipf distribution with α between 1.6 y 2.0) and
the queries (Zipf distribution with a lower value of α, for example 1.4), we would
like to extend our experimental results to this case. However, we already saw that
in both extremes (correlation 0 or 1), the algorithm on study is competitive.

Acknowledgements

We thank the support of Millennium Nucleus Grant P04-067-F.

References

1. R. Baeza-Yates. A Fast Set Intersection Algorithm for Sorted Sequences. In
Proceedings of the 15th Annual Symposium on Combinatorial Pattern Matching
(CPM 2004), Springer LNCS 3109, pp 400-408, Istanbul, Turkey, July 2004.

2. R.A. Baeza-Yates. Efficient Text Serching. PhD thesis, Dept. of Computer Sci-
ence, University of Waterloo, May 1989. Also as Research Report CS-89-17.

3. Ricardo Baeza-Yates, Phillip G. Bradford, Joseph C. Culberson, and Gregory J.E.
Rawlins. The Complexity of Multiple Searching, unpublished manuscript, 1993.

4. R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval, ACM
Press/Addison-Wesley, England, 513 pages, 1999.

5. R. Baeza-Yates, and Felipe Sainte-Jean. A Three Level Search Engine Index bases
in Query Log Distribution. SPIRE 2003, Springer LNCS, Manaus, Brazil, October
2003.

6. Ricardo Baeza-Yates. Query Usage Mining in Search Engines. In Web Mining:
Applications and Techniques, Anthony Scime, editor. Idea Group, 2004.

24 R. Baeza-Yates and A. Salinger

7. Ricardo Baeza-Yates, Carlos Hurtado, Marcelo Mendoza and Georges Dupret.
Modeling User Search Behavior, LA-WEB 2005, IEEE CS Press, October 2005.

8. Jérémy Barbay and Claire Kenyon. Adaptive Intersection and t-Threshold Prob-
lems. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pp. 390-399, San Francisco, CA, January 2002.

9. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
In 7th WWW Conference, Brisbane, Australia, April 1998.

10. Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Adaptive set inter-
sections, unions, and differences. In Proceedings of the 11th Annual ACM-SIAM
Symposium, on Discrete Algorithms, pages 743-752, San Francisco, California,
January 2000.

11. Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. Experiments on
Adaptive Set Intersections for Text Retrieval Systems. In Proceedings of the 3rd
Workshop on Algorithm Engineering and Experiments, LNCS, Springer, Wash-
ington, DC, January 2001.

12. Dietz, Paul, Mehlhorn, Kurt, Raman, Rajeev, and Uhrig, Christian; “Lower
Bounds for Set Intersection Queries”, Proceedings of the 4th Annual Symposium
on Discrete Algorithms, 194-201, 1993.

13. Dobkin, David and Lipton, Richard; “On the Complexity of Computations Under
Varying Sets of Primitives”, Journal of Computer and Systems Sciences, 18, 86-91,
1979.

14. F.K. Hwang and S. Lin. A Simple algorithm for merging two disjoint linearly
ordered lists, SIAM J. on Computing 1, pp. 31-39, 1972.

15. Rawlins, Gregory J. E.; Compared to What?: An Introduction to the Analysis of
Algorithms, Computer Science Press/W. H. Freeman, 1992.

Compressed Perfect Embedded Skip Lists
for Quick Inverted-Index Lookups

Paolo Boldi and Sebastiano Vigna

Dipartimento di Scienze dell’Informazione, Università degli Studi di Milano

Abstract. Large inverted indices are by now common in the construc-
tion of web-scale search engines. For faster access, inverted indices are
indexed internally so that it is possible to skip quickly over unneces-
sary documents. To this purpose, we describe how to embed efficiently a
compressed perfect skip list in an inverted list.

1 Introduction

The birth of web search engines has brought new challenges to traditional in-
verted index techniques. In particular, eager (or term-at-a-time) query evalua-
tion has been replaced by lazy (or document-at-a-time) query evaluation. In the
first case, the inverted list of one of the terms of the query is computed first
(usually, choosing the rarest term [4]), and then, it is merged or filtered with
the other lists. When evaluation is lazy, instead, inverted lists are scanned in
parallel, retrieving in sequence each document satisfying the query.

Lazy evaluation requires keeping constantly in sync several inverted lists. To
perform this operation efficiently, it is essential that a skip method is available
that allows the caller to quickly reach the first document pointer larger than
or equal to a given one. The classical solution to this problem [1] is that of
embedding skipping information in the inverted list itself: at regular intervals,
some additional information describe a skip, that is, a pair given by a document
pointer and the number of bits that must be skipped to reach that pointer. The
analysis of skipping given in [1] concludes that skips should be spaced as the
square root of the term frequency, and that one level of skip is sufficient for
most purposes.

Nonetheless, the abovementioned analysis has two important limitations.
First of all, it does not contemplate the presence of positions, that is, of a de-
scription of the exact position of each occurrence of a term in a document, or
of application-dependent additional data, thus underestimating the cost of not
skipping a document; second, it is fundamentally based on eager evaluation,
and its conclusions cannot be extended to lazy evaluation. Motivated by these
reasons, we are going to present a generic method to self-index inverted lists
with a very fine level of granularity. Our method does not make any assumption
on the structure of a document record, or on the usage pattern of the inverted
index. Skips to a given pointer (or by a given amount of pointers) can always
be performed with a logarithmic number of low-level reads and bit-level skips:
nontheless, the size of the index grows just by a few percents.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 25–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

26 P. Boldi and S. Vigna

Our techniques are particularly useful for in-memory indices, that is, for in-
dices kept in core memory (as it happens, for instance, in Google), where most of
the computational cost of retrieving document is scanning and decoding inverted
lists (as opposed to disk access), and at the same time a good compression ratio
is essential. All results described in this paper have been implemented in MG4J,
available at http://mg4j.dsi.unimi.it/.

2 Perfect Embedded Skip Lists for Inverted Indices

Perfect skip lists. Skip lists [3] are a data structure in which elements are
organised as in an ordered list, but with additional references that allow one to
skip forward in the list as needed. More precisely, a skip list is a singly linked
list of increasingly ordered items x0, x1, . . . , xn−1 such that every item xi,
besides a reference to the next item, contains a certain number hi ≥ 0 of extra
references, that are called the skip tower of the item; the t-th reference in this
tower addresses the first item j > i such that hj ≥ t.

We are now going to describe perfect skip lists, a deterministic version of skip
lists (which were originally formulated in randomised terms) that is suitable for
inverted lists. We fix two limiting parameters: the number of items in the list,
and the maximum height of a tower.

For sake of simplicity, we start by describing an ideal, infinite version of a
perfect skip list. Let LSB(x) be defined as the least significant bit of x if x is
a positive integer, and ∞ if x = 0. Then, define the height of the skip tower of
item xi in an infinite perfect skip list as hi = LSB(i). We say that a finite skip
list is perfect w.r.t a given height h and size T when no tower contains more
than h + 1 references, and all references that would exist in an infinite perfect
skip list are present, provided that they refer to an item with index smaller than
or equal to T , and that they do not violate the first requirement.

Theorem 1. In a perfect skip list with T items and maximum height h, the
height of a tower at element i is min(h, LSB(k), MSB(T − i)) + 1, where k =
i mod 2h, and MSB(x) is the most significant bit of x > 0, or −1 if x = 0. In
particular, if i < T −T mod 2h the tower has height min(h, LSB(k))+1, whereas
if i ≥ T −T mod 2h the tower has height min(LSB(k), MSB(T mod 2h−k))+1.

Addressing directly all pointers in an inverted list would create unmanageable
indices. Thus, we shall index only one item out of q, where q is a fixed quan-
tum that represents the minimally addressable block of items. Figure 1 shows a
perfect skip list.

Embedding Skip Lists into Inverted Indices

The first problem that we have to deal with when trying to embed skip lists into
an inverted index is that we want to access data in a strictly sequential manner,
so the search algorithm we described cannot be adopted directly: we must store
not only the bit offset of the referenced item, but also the pointer contained
therein.

Compressed Perfect Embedded Skip Lists for Quick Inverted-Index Lookups 27

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

0
000

1
001

2
010

3
011

4
100

5
101

6
110

7
111

0
000
110

1
001
101

2
010
100

3
011
011

4
100
010

5
101
001

6
110
000

Fig. 1. A perfect skip list with T = 31 items, q = 2 and h = 3. The first line show
the values of k; the second line their h-bit binary expansion. The list of made of two
blocks, and for the latter (a defective block of L = 15 items), also the binary expansion
of �L/q� − k is shown. The ghosted references do not exist (they are truncated by
minimisation with MSB(�L/q� − k)).

Pointer Skips. Let us consider a document collection of N documents, where
each term t appears with relative frequency pt; according to the Bernoulli
model [4], every term t is considered to appear independently in each docu-
ment with probability pt. As a result, the random variable describing a pointer
skip to � documents farther is approximated by a normal distribution with mean
�/pt and standard deviation

√
�(1− pt)/pt (details appear in the full paper). We

also suggest to predict the pointer skips that are not a tower top using a halving
model, in which a pointer skip of level s is stored as the difference from the
skip of level s + 1 that contains it, divided by 2 (standard deviation drops to√

�(1− pt)/2/pt).

Gaussian Golomb Codes. We are now left with the problem of coding integers
normally distributed around 0. We compute approximately the best Golomb code
for a given normal distribution. This is not, of course, an optimal code for the
distribution, but for σ � 1 it is excellent, and the Golomb modulus can be
approximated easily in closed form: integers distributed with standard deviation
σ are Golomb-coded optimally with modulus 2 ln 2

√
2
π σ ≈ 1.106 σ.

Bit Skips. The strategy we follow for bit skips is absolutely analogous to that of
pointers, but with an important difference: it is very difficult to model correctly
the distribution of bit skips. We suggest a prediction scheme based on the average
bit length of a quantum, coupled with a universal code such that γ or δ.

3 Inherited Towers

As remarked in the previous sections, the part of a tower that has greater variance
(and thus is more difficult to compress) is the tower top. However this might
seem strange, our next goal is to avoid writing tower tops at all. When scanning
sequentially an inverted list, it is possible to maintain an inherited tower that
represent all “skip knowledge” gathered so far (see Figure 2), similarly to search
fingers [2].

Note that inherited entries might not reach height h if the block is defective
(see the right half of Figure 1). Supposing without loss of generality that q = 1,
we have:

28 P. Boldi and S. Vigna

0

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

0

17 18 19 20

1

21 22

0

23 24 25 26 27 28 29 30 31

Fig. 2. Scanning the list (q = 1, h = 5), we are currently positioned on element x = 22,
with a tower of height 2; its inherited tower is represented in grey, and the items it is
inheriting from are in bold

Theorem 2. The highest valid entry in an inherited tower for a defective block
of length L is MSB(L⊕ k), where ⊕ denotes bit-by-bit exclusive or.

The above computation leads us the following, fundamental observation: a non-
truncated tower with highest entry h̄ inherits an entry of level h̄ + 1 that is
identical to its top entry. As a consequence, if lists are traversed from their
beginning, top entries of non-truncated towers can be omitted. The omission of
top entries halves the number of entries written, and, as we observed at the start
of the paragraph, reduces even further the skip structure size.

Experimental Data and Conclusions

We gathered statistics indexing a partial snapshot of 13 Mpages taken from the
.uk domain containing about 50GiB of parsed text (the index contained counts
and occurrences). The document distribution in the snapshot was highly skewed,
as documents appeared in crawl order. Adding an embedded perfect skip list
structure with arbitrary tall towers caused an increase in size of 2.3% (317 MiB)
with q = 32 and 1.23% when q = 64; indexing using the square-root spaced
approach caused an increase of 0.85%. Compressing the same skip structures
using a γ or δ code instead of Gaussian Golomb codes for pointer skips caused
an increase in pointer-skip size of 42% and 18.2%, respectively.

Speed is, of course, at the core of our interests. The bookkeeping overhead
of skip lists increases by no more than 5% (and by .5% on the average) the
time required to perform a linear scan. On the contrary, tests performed on
synthetically generated queries in disjunctive normal form show an increase in
speed between 20 and 300% w.r.t. the square-root spaced approach.

References

1. Alistair Moffat and Justin Zobel. Self-indexing inverted files for fast text retrieval.
ACM Trans. Inf. Syst., 14(4):349–379, 1996.

2. William Pugh. A skip list cookbook. Technical report UMIACS-TR-89-72.1, Univ. of
Maryland Institute for Advanced Computer Studies, College Park, College Park,
MD, USA, 1990.

3. William Pugh. Skip lists: a probabilistic alternative to balanced trees. Commun.
ACM, 33(6):668–676, 1990.

4. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing Gigabytes: Com-
pressing and Indexing Documents and Images. Morgan Kaufmann Publishers, Los
Altos, CA 94022, USA, second edition, 1999.

XML Retrieval with a Natural Language Interface

Xavier Tannier1 and Shlomo Geva2

1 École Nationale Supérieure des Mines de Saint-Etienne, 158 Cours Fauriel,
F-42023 Saint-Etienne, France

tannier@emse.fr
2 Centre for Information Technology Innovation, Faculty of Information Technology,

Queensland University of Technology,
GPO Box 2434, Brisbane Q 4001, Australia

s.geva@qut.edu.au

Abstract. Effective information retrieval in XML documents requires
the user to have good knowledge of document structure and of some for-
mal query language. XML query languages like XPath and XQuery are
too complex to be considered for use by end users. We present an ap-
proach to XML query processing that supports the specification of both
textual and structural constraints in natural language. We implemented
a system that supports the evaluation of both formal XPath-like queries
and natural language XML queries. We present comparative test results
that were performed with the INEX 2004 topics and XML collection.
Our results quantify the trade-off in performance of natural language
XML queries vs formal queries with favourable results.

1 Introduction and Motivation

Applications of Natural Language Processing to Information Retrieval have been
extensively studied in the case of textual (flat) collections (see overviews [1, 2,
3, 4]). Among other techniques, linguistic analysis of queries was meant to bring
about decisive improvements in retrieval processes and in ergonomy. However,
only few linguistic methods, such as phrasal term extraction or some kinds of
query expansion, are now commonly used in information retrieval systems.

The rapidly growing spread of XML document collections brings new moti-
vating factors to the use of natural language techniques:

– Benefits that can be gained from the use of natural language queries are
probably much higher in XML retrieval than in traditional IR. In the later,
a query is generally a list of keywords which is quite easy to write. In XML
retrieval, such a list is not sufficient to specify queries on both content and
structure; for this reason, advanced structured query languages have been
devised.

XML is now widely used, particularly on the Internet, and that implies
that novice and casual users ought to be able to query any XML corpus. From
that perspective, two major difficulties arise, because we cannot expect such
users to:

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 29–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

30 X. Tannier and S. Geva

• learn a complex structured formal query language (a language with for-
malized semantics and grammar, as opposed to natural language);

• have full knowledge of the DTD and its semantics.
– In structured documents, a well-thought and semantically strong structure

formally marks up the meaning of the text; this can make easier query “un-
derstanding”, at least when this query refers (partly) to the structure.

– Finally, formal queries do not permit information retrival in heteregenous
collections (with different and unknown DTDs). A natural language interface
could resolve this problem, since users can express their information need
conceptually.

Note that these comments could be made about the database domain too,
and that the issues seem quite similar. Many natural language interfaces for
databases have been developed, most of them transforming natural language
into Structured Query Language (SQL) (see [5, 6, 7] for overviews). But the
problem is different for the following reasons:

– Unlike databases, XML format looks set to be used and accessed by the gen-
eral public, notably through the Internet. Although unambiguous, machine-
readable, structured and formal query languages are necessary to support
the retrieval process (in order to actually extract the answers), the need for
simpler interfaces will become more and more important in the future.

– Database querying is a strict interrogation; it is different to Information Re-
trieval. The user knows what kind of information is contained in the data-
base, her information need is precise, and the result she gets is either right
or wrong. This means that the natural language analysis must interpret the
query perfectly and unambiguously, failing which the final answer is incorrect
and the user disatisfied.

In XML IR, as well as in traditional IR, the information need is loosely
defined and often there is no perfect answer to a query. A natural language
interface is a part of the retrieval process, and thus it can interpret some
queries imperfectly, and still return useful results. The problem is then made
“easier” to solve. . .

2 INEX, NLPX Track and NEXI

2.1 INEX

The Initiative for Evaluation of XML Retrieval, INEX [8], provides a test col-
lection consisting of over 500 Mbytes of XML documents, topics and relevance
assessments. The document set is made up of 12,107 articles of the IEEE Com-
puter Society’s publications. Topics are divided into two categories:

– Content-and-Structure (CAS) queries, which contain structural constraints.
e.g.: Find paragraphs or figure-captions containing the definition of Godel,
Lukasiewicz or other fuzzy-logic implications. (Topic 127)

XML Retrieval with a Natural Language Interface 31

– Content-Only (CO) queries that ignore the document structure.
e.g.: Any type of coding algorithm for text and index compression. (Topic 162)

This article focuses on CAS topics. Figure 1 shows an example of CAS topic.
The description element is a natural language (English) description of the
user’s information need; The title is a faithful translation of this need into a
formal XPath-like language called Narrowed Extended XPath I (NEXI) [9]. The
narrative part is a more detailed explanation of the information need.

<inex_topic topic_id=”130” query_type=”CAS”>

<title>
//article[about(.//p,object
database)]//p[about(.,version management)]

</title>
<description>

We are searching paragraphs dealing with version management
in articles containing a paragraph about object databases.

</description>
<narrative>

The elements to be considered relevant are . . .
</narrative>
<keywords>object database version management</keywords>

</inex_topic>

Fig. 1. An example of CAS topic

The participants in the ad-hoc INEX task use only NEXI titles in order
to retrieve relevant elements. We adapted our system so that it takes the topic
description (natural language expression depicting the same query) as input, and
returns a well-formed NEXI title. Going through this pivot language presents
many advantages: it allows the use of an existing NEXI search engine in the
retrieval process. Furthermore a user can still specify her query in this formal
language if she prefers to. Finally, we can evaluate the translation by comparing
the translated queries with the original hand-crafted NEXI titles. On the other
hand, the transformation to a pre-existing restrictive language may result in loss
of information.

2.2 NEXI

NEXI CAS queries have the form //A[B]//C[D] where A and C are paths
and B and D are filters. We can read this query as “Return C descendants of A
where A is about B and C is about D”. B and D correspond to disjunctions or
conjunctions of ’about’ clauses about(//E, F), where E is a path and F a list
of terms. The ’title’ part of Fig. 1 gives a good example of a query formulated
in NEXI. More information about NEXI can be found in [9].

32 X. Tannier and S. Geva

3 Description of Our Approach

Requests are analysed through several steps:

1. A part-of-speech (POS) tagging is performed on the query. Each word is
labeled by its word class (e.g.: noun, verb, adjective. . .).

2. A POS-dependant semantic representation is attributed to each word. For
example the noun ’information’ will be represented by the predicate infor-
mation(x), or the verb ’identify’ by evt(e1, identify).

3. Context-free syntactic rules describe the most current grammatical construc-
tions in queries and questions. Low-level semantic actions are combined with
each syntactic rule. Two examples of such operations, applied to the descrip-
tion of topic 130 (Fig. 1), are given in Fig. 2. The final result is a logical

e x y

evt(e, search)
paragraph(x)
databases(y)
about(x, y)

object(e, x)
VP → VERB NP

e

evt(e, search)
VERB

searching

a b x y

paragraph(x)
databases(y)
about(a, b)

a = x
b = y

=

x y

paragraph(x)
databases(y)
about(x, y)

NP → NOUN PREP NOUN

x

paragraph(x)
NOUN

paragraph

a b

about(a, b)
PREP
about

y

databases(y)
NOUN

databases

Fig. 2. Example of rule application for the verbal phrase “searching paragraphs about
databases” (rules NP → NOUN PREP NOUN and VP → VERB NP). Basic semantic
representations are attributed to part-of-speeches (leaf components). When applying
syntactic rules, components are merged and semantic actions are added (here identity
relations and verbal relation predicate – bold predicates).

XML Retrieval with a Natural Language Interface 33

representation shown in the left part of Fig. 3. This representation is totally
independant from the queried corpus, it is obtained by general linguistic
operations.

4. The semantic representation is then reduced with the help of specific rules:
– a recognition of some typical constructions of a query (e.g.: Retrieve +

object) or of the corpus (e.g.: “an article written by [. . .]” refers to the
tag au – author);

– and a distinction between semantic elements mapping on the structure
and, respectively, mapping on the content;

This part is the only one that uses corpus-specific information, among which
the DTD, a dictionary of specific tag name synonyms (e.g.: paper=article),
some simple ontologic structures (“a article citing somebody” refers to bibli-
ography in INEX collection). Figure 3 shows the specific rules that apply to
the example.

5. A treatment of relations existing between different elements;
6. The construction of a well-formed NEXI query.

Steps 1 to 5 are explained in more details in [10], as well as necessary corpus
knowledge and the effect of topic complexity on the analysis.

Initial representation Rules Result

a b c d e f g e1 e2 e3

evt(e1, search)
paragraph(a)
object(e1, a)
evt(e2, deal)
version(b)
management(c)
agent(e2, a)
with(e2, c)
noun_modifier(c, b)
article(d)
evt(e3, contain)
paragraph(e)
object(f)
databases(g)
agent(e3, d)
object(e3, e)
about(e, g)
noun_modifier(g, f)

����������������������������������
���������������������������������

e1 a

evt(e1, search)
object(e1, a)

⇒ a

e2 a c

evt(e2, deal)
agent(e2, a)
with(e2, c)

⇒ a c

about(a, c)

e3 d e

evt(e3, contain)
agent(e3, d)
object(e3, e)

⇒ d e

contains(d, e)

paragraph ⇒ p
article ⇒ article

����������������������������������
���������������������������������

a b c d e f g

p(a)
article(d)
p(e)

contains(d, e)
about(a, c)
about(e, g)

version(b)
management(c)
object(f)
databases(g)

noun_modifier(c, b)
noun_modifier(g, f)

Fig. 3. The semantic analysis of topic 130 (left), is reduced by some generic rules
(center), leading to a new representation (right). Bold predicates emphasize words
representing XML tag names and the framed letter stands for the element that should
be returned to the user. The first three rules deal with verbal phrases “to search sth”,
“to deal with sth” and “to contain sth”.

34 X. Tannier and S. Geva

The representation obtained at the end of step 5 does not depend on any
retrieval system or query language. It could be transformed (with more or less
information loss) into any existing formal language.

3.1 Getting to NEXI

Transformation process from our representation to NEXI is not straightforward.
Remember that a NEXI query has the form //A[B]//C[D].

– At structural level, a set of several tag identifiers (that can be DTD tag
names or wildcards) has to be distributed into parts A, B, C and D, that
we respectively call support requests, support elements, return requests and
return elements.

– At content level, linguistic features (like noun_modifier in the example)
cannot be kept and must be transformed in an appropriate manner.

Structural Level. These four parts A, B, C and D are built from our repre-
sentation (Fig. 3) in the following way:

– C is the ’framed’ (selected) element name (see Fig. 3 and its caption);
– D is composed of all C children (relation contains) and their textual content

(relation about);
– A is the highest element name in the DTD tree, that is not C or one of its

children;
– B is composed of all other elements and their textual content.

Wildcard-identified tags of the same part are merged and are considered to
be the same element. See an example in Sect. 4.

Table 1. Examples of linguistic features and of their NEXI equivalents

Predicate Initial text Representation NEXI content
noun_property “definition of a

theorem”
definition(a)
theorem(b)
noun_property(a, b, of)

“defition of theorem”

noun_modifier “version
management”

version(a)
management(b)
noun_modifier(b,)

“version management”

adjective “digital library” digital(a)
library(b)
adjective(b, a)

“digital library”

disjunction “definition of Godel
or Lukasiewicz”

definition(a)
noun_property(a, b, of)
b = c ∨ d
Godel(c)
Lukasiewicz(d)

“definition of Godel de-
finition of Lukasiewicz”

XML Retrieval with a Natural Language Interface 35

Content Level. The main linguistic predicates generated by our system are
np_property, noun_modifier, adjective and disjunction or conjunction rela-
tions. NEXI format requires ’about’ clauses to contain only textual content. In
most cases we chose to reflect as far as possible the initial text, because the
search engine can deal with noun phrases. In the case of disjunctions and con-
junctions, for the same reason, we built separated noun phrases. Examples of
each operation are given in Tab. 1.

The transformation of the semantic representation of Fig. 3 results in:

//article[(about(.//p, object databases))]//p[(about(.,
version management))]

4 Example

We give here a significant example, with the analysis of topic 127 (INEX 2004).
Several syntactic parsings could be possible for the same sentence. In practice
a “score” is attributed to each rule release, depending on several parameters
(among which distance between words that are linked, length of phrases, type of
relations. . . Unfortunately we lack space to explain more precisely this process).
In our sample topic only the best scored result is given.

c1 c2 c3 c4 c5 c6 c7 c8 c9
c10 c11 c12 c13

1. event(c1, find)
2. object(c1, c2)
3. c2 = c3 ∨ c4
4. paragraph(c3)
5. figure(c5)
6. caption(c4)
7. rel_noun_modifier(c4, c5)
8. event(c6, contain)
9. agent(c6, c2)
10. object(c6, c7)
11. definition(c7)
12. rel_np_relation(c7, c8, of)
13. c8 = c9 ∨ c10, c10 = c11 ∨ c12
14. c9 = Godel, c11 = Lukasiewicz
15. ’fuzzy-logic’(c13)
16. implication(c12)
17. rel_noun_modifier(c12, c13)
18. rel_adjective(c12, other)

reduction−−−−−−→
rules

c3 c4 c5 c6 c8 c9 c10 c11
c12 c13

p(c3)
fgc(c4)

about(c2, c7)

c2 = c3 ∨ c4
definition(c7)
c8 = c9 ∨ c10, c10 = c11 ∨ c12
c9 = Godel, c11 = Lukasiewicz
’fuzzy-logic’(c13)
implication(c12)

rel_np_relation(c7, c8, of)
rel_noun_modifier(c12, c13)
rel_adjective(c12, other)

//article//(p|fgc)[(about(., “definition of Godel” “definition of
Lukasiewicz” “definition of fuzzy-logic implications”))]

Fig. 4. Semantic representations of topic 127, and automatic conversion into NEXI

36 X. Tannier and S. Geva

(127) Find paragraphs or figure captions containing the definition of Godel, Lukasiewicz
or other fuzzy-logic implications.

Figure 4 shows the three major steps of the analysis of topic 127. The left
frame represents the result of step 3 (see Sect. 3). Some IR- and corpus-specific
reduction rules are then applied and lead to right frame: terms paragraph and
figure-captions are recognized as tag names p and fgc (lines 4 to 7); the con-
struction “c2 contains c7” is changed into about(c2, c7) (lines 8 to 11). The
other relations are kept.

Translation into NEXI is performed as explained above, disjunctions c8 and
c10 result in the repetition of the term “definition” with preposition “of ” and
three distinct terms.

5 Processing NEXI Queries

5.1 XML File Inversion

In our scheme each term in an XML document is identified by three elements: its
filename, its absolute XPath context, and its ordinal position within the XPath
context. An inverted list for a given term is depicted in Tab. 2.

Table 2. Inverted file

Document XPath Position
e1303.xml article[1]/bdy[1]/sec[6]/p[6] 23
e1303.xml article[1]/bdy[1]/sec[7]/p[1] 12
e2404.xml article[1]/bdy[1]/sec[2]/p[1]/ref[1] 1
f4576.xml article[1]/bm[1]/bib[1]/bibl[1]/bb[13]/pp[1] 3
f4576.xml article[1]/bm[1]/bib[1]/bibl[1]/bb[14]/pp[1] 2
g5742.xml article[1]/fm[1]/abs[1] 7

Fig. 5. Schema for XML Inverted File

XML Retrieval with a Natural Language Interface 37

In principle at least, a single table can hold the entire cross reference list
(our inverted file). Suitable indexing of terms can support fast retrieval of term
inverted lists. However, it is evident that there is extreme redundancy in the
specification of partial absolute XPath expressions (substrings). There is also
extreme redundancy in full absolute XPath expressions where multiple terms
in the same document share the same leaf context (e.g. all terms in a para-
graph). Furthermore, many XPath leaf contexts exist in almost every document
(e.g. /article[1]/fm[1]/abs[1] in INEX collection). For these reasons we chose to
normalize the inverted list table to reduce redundancy.

The structure of the database used to store the inverted lists is depicted in
Fig. 5. It consists of four tables. The Terms table is the starting point of a query
on a given term. The Term_Stem column holds the Porter stem of the original
term. The List_Position is a foreign key from the Terms table into the List
Table. It identifies the starting position in the inverted list for the corresponding
term. The List_Length is the number of list entries corresponding to that term.
The List table is (transparently) sorted by Term so that the inverted list for
any given term is contiguous.

5.2 Ranking Scheme

Elements are ranked according to a relevance judgment score. Leaf and branch
elements need to be treated differently. Data usually occur at leaf elements, and
thus, our inverted list mostly stores information about leaf elements. A leaf ele-
ment is considered candidate for retrieval if it contains at least one query term. A
branch node is candidate if it contains a relevant child element. Once an element
(either leaf or branch) is deemed to be a candidate for retrieval its relevancy
judgment score is calculated. A heuristically derived formula (Equation (1)) is
used to calculate the relevance judgment score of leaf elements. The same equa-
tion is used for both return and support elements. The score is determined from
query terms contained in the element. It penalises elements with frequently oc-
curring query terms (frequent in the collection), and it rewards elements with
evenly distributed query term frequencies within the elements.

L = Kn−1
n∑

i=1

ti
fi

(1)

Here n is the number of unique query terms contained within the leaf element,
K is a small integer (we used K = 5). The term Kn−1 scales up the score of
elements having multiple distinct query terms. We experimented with K = 3
to 10 with little difference in results. The sum is over all terms where ti is the
frequency of the ith query term in the leaf element and fi is the frequency of
the ith query term in the collection. This sum rewards the repeat occurrence of
query terms, but uncommon terms contribute more than common terms.

Once the relevance judgment scores of leaf elements have been calculated,
they can be used to calculate the relevance judgment score of branch elements.
A naïve solution would be to just sum the relevance judgment score of each

38 X. Tannier and S. Geva

branch relevant children. However, this would ultimately result in root elements
accumulating at the top of the ranked list, a scenario that offers no advantage
over document-level retrieval. Therefore, the relevance judgment score of children
elements should be somehow decreased while being propagated up the XML tree.

A heuristically derived formula (Equation (2)) is used to calculate the scores
of intermediate branch elements:

R = D(n)
n∑

i=1

Li (2)

Where:
– n = the number of children elements
– D(n) = 0.49 if n = 1

0.99 otherwise
– Li = the ith return child element

The value of the decay factor D depends on the number of relevant children
that the branch has. If the branch has one relevant child then the decay constant
is 0.49. A branch with only one relevant child will be ranked lower than its child.
If the branch has multiple relevant children the decay factor is 0.99. A branch
with many relevant children will be ranked higher than its descendants. Thus, a
section with a single relevant paragraph would be judged less relevant than the
paragraph itself, but a section with several relevant paragraphs will be ranked
higher than any of the paragraphs.

Having computed scores for all result and support elements, the scores of
support elements are added to the scores of the corresponding result elements
that they support. For instance, consider the query:

//A[about(.//B,C)]//X[about(.//Y,Z)]
The score of a support element //A//B will be added to all result elements

//A//X//Y where the element A is the ancestor of both X and Y.
Finally, structural constraints are only loosely interpreted. Elements are col-

lected regardless of the structural stipulations of the topic. Ancestors or descen-
dants of Y may be returned, depending on their score and final rank.

More information about this system can be found in [11].

6 Results

We tested our system using the INEX 2004 collection (set of topics and evalua-
tion metrics). Recall/precision graphs have been calculated by the official INEX
evaluation program. In the following we call Sadhoc the system using official,
hand-crafted NEXI titles. SNLP is the same system, but using natural language
queries, automatically translated into NEXI.

Sadhoc is ranked 1st from 52 submitted runs in the task, with an average
precision of 0.13. SNLP is ranked 5th with an average precision of 0.10, and 1st

among the systems using natural language queries.

XML Retrieval with a Natural Language Interface 39

The Recall/Precision curves are presented in Fig. 6. The top bold dashed
curve represents results for Sadhoc, the lower bold one is SNLP curve, and the
other curves are all the official runs submitted at INEX 2004.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

S_adhoc
S_NLP

Fig. 6. INEX’04 VCAS Recall/Precision curve averaged over all topics and all metrics

The precision loss caused by the natural language interface is limited. SNLP

looses only four ranks with this interface, and still outperforms most of ad-hoc
systems. We think that this trade-off is very interesting; indeed, as we pointed
out in the introduction, the benefits brought by a natural language interface
compensate for the precision loss, at least for non-expert users1.

7 Conclusion

In this paper we presented an XML retrieval system that allows the user to ex-
press a query over an XML collection, using both structural and content retrieval
cues, in natural English expression. An NLP module analyses this expression syn-
tactically and semantically, applies some specific rules and translates the result
into a formal query language. This intermediate language is then processed by
a backend system.

This system had been tested with INEX 2004 collection, topics, and rele-
vance assessments and with good results. This study shows that natural lan-
guage queries over XML collections can offer promising prospects for deploying
in general public applications.
1 We can note that before an online NEXI parser became available for INEX topic

developers, the majority of submitted topics were not well formed (depicting the
wrong meaning) and/or syntactically incorrect. However INEX participants are XML
retrieval professionals that have at least a good knowledge of XPath and NEXI. The
task would have been much more difficult for casual users.

40 X. Tannier and S. Geva

References

[1] Smeaton, A.F.: Information Retrieval: Still Butting Heads with Natural Language
Processing? In Pazienza, M., ed.: Information Extraction – A Multidisciplinary
Approach to an Emerging Information Technology. Volume 1299 of Lecture Notes
in Computer Science. Springer-Verlag (1997) 115–138

[2] Smeaton, A.F.: Using NLP or NLP Resources for Information Retrieval Tasks.
[12] 99–111

[3] Arampatzis, A., van der Weide, T., Koster, C., van Bommel, P.: Linguistically-
motivated Information Retrieval. In Kent, A., ed.: Encyclopedia of Library and
Information Science. Volume 69. Marcel Dekker, Inc., New York, Basel (2000)
201–222

[4] Sparck Jones, K.: What is the role of NLP in text retrieval? [12] 1–24
[5] Androutsopoulos, I., G.D.Ritchie, P.Thanisch: Natural Language Interfaces to

Databases – An Introduction. Journal of Natural Language Engineering 1 (1995)
29–81

[6] A.Copestake, Jones, K.S.: Natural Language Interfaces to Databases. The Knowl-
edge Engineering Review 5 (1990) 225–249

[7] Perrault, C., Grosz, B.: Natural Language Interfaces. Exploring Articial Intelli-
gence (1988) 133–172

[8] Fuhr, N., Lalmas, M., Malik, S., Szlàvik, Z., eds.: Advances in XML Information
Retrieval. Third Workshop of the Initiative for the Evaluation of XML retrieval
(INEX). Volume 3493 of Lecture Notes in Computer Science., Schloss Dagstuhl,
Germany, Springer-Verlag (2005)

[9] Trotman, A., Sigurbjörnsson, B.: Narrowed Extended XPath I (NEXI). [8]
[10] Tannier, X., Girardot, J.J., Mathieu, M.: Analysing Natural Language Queries at

INEX 2004. [8] 395–409
[11] Geva, S.: GPX - Gardens Point XML Information Retrieval at INEX 2004. [8]
[12] Strzalkowski, T., ed.: Natural Language Information Retrieval. Kluwer Academic

Publisher, Dordrecht, NL (1999)

Recommending Better Queries from

Click-Through Data�

Georges Dupret1 and Marcelo Mendoza2

1 Center for Web Research, Department of Computer Science,
Universidad de Chile

gdupret@dcc.uchile.cl
2 Department of Computer Science, Universidad de Valparaiso

marcelo.mendoza@uv.cl

Abstract. We present a method to help a user redefine a query based
on past users experience, namely the click-through data as recorded by
a search engine. Unlike most previous works, the method we propose
attempts to recommend better queries rather than related queries. It is
effective at identifying query specialization or sub-topics because it take
into account the co-occurrence of documents in individual query sessions.
It is also particularly simple to implement.

The scientific literature follows essentially two research lines in order to recom-
mend related queries: query clustering algorithms [1,4,5] and query expansion
[2,3]. Most of these works use terms appearing in the queries and/or the doc-
uments. By contrast, the simple method we propose here aims at discovering
alternate queries that improve the search engine ranking of documents: We or-
der the documents selected during past sessions of a query according to the
ranking of other past queries. If the resulting ranking is better than the original
one, we recommend the associated query.

Before describing the algorithm, we need first to introduce a definition for
consistency. A document is consistent with a query if it has been selected a
significant number of times during the sessions of the query. Consistency ensures
that a query and a document bear a natural relation in the opinion of users and
discards documents that have been selected by mistake once or a few time.
Similarly, we say that a query and a set of documents are consistent if each
document in the set is consistent with the query.

Consider the set D(sq) of documents selected during a session sq of a query
q. If we make the assumption that this set represents the information need of
the user who generated the session, we might wonder if alternate queries exist in
the logs that 1) are consistent with D(sq) and 2) better rank the documents of
D(sq). If these alternate queries exist, they return the same information D(sq)
as the original query, but with a better ranking and are potential query recom-
mendations. We then repeat the procedure for each session of the original query,
� This research was supported by Millennium Nucleus, Center for Web Research (P04-

067-F), Mideplan, Chile.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 41–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

42 G. Dupret and M. Mendoza

U U U U U U1 2 3 4 5 6

1 2 3 4 5 6

xxx
xxx
xxx

xxx
xxx
xxx

1

2
q

q

Fig. 1. Comparison of the ranking of two queries. A session of the original query q1

contains selections of documents U3 and U6 appearing at position 3 and 6 respec-
tively. The rank of this set of document is 6 by virtue of Def. 1. By contrast, query q2

achieves rank 4 for the same set of documents and therefore qualifies as a candidate
recommendation.

select the alternative queries that appear in a significant number of sessions and
propose them as recommendations to the user interested in q.

To apply the above algorithm, we need a criteria to compare the ranking of a
set of documents for two different queries. We first define the rank of document u
in query q, denoted r(u, q), as the position of document u in the listing returned
by the search engine. We say that a document has a high or large rank if the
search engine estimates that its relevance to the query is comparatively low. We
extend this definition to sets of documents:

Definition 1 (Rank of a Set of Documents). The rank of a set U of docu-
ments in a query q is defined as

r(U, q) = max
u∈U

r(u, q) .

In other words, the documents with the worse ranking determines the rank
of the set. If a set of documents achieves a lower rank in a query qa than in a
query qb, then we say that qa ranks the documents better than qb. This criteria
is illustrated in Fig. 1 for a session containing two documents.

Definition 2 (Ranking Comparison). A query qa ranks better a set U of
documents than a query qb if r(U, qa) < r(U, qb).

One might be reluctant to reject an alternative query that orders well most
documents of a session and poorly only one or a few of them. The argument
against recommending such a query is the following: If the documents with a
large rank in the alternate query appear in a significant number of sessions, they
are important to the users. Presenting the alternate query as a recommendation
would mislead users into following recommendations that conceal part of their
information need. We can formalize the method as follows:

Definition 3 (Recommendation). A query qa is a recommendation for a
query qb if a significant number of sessions of qa are consistent with qb and
are ranked better by qa than by qb.

The recommendation algorithm induces a directed graph between queries.
The original query is the root of a tree with the recommendations as leaves.

Recommending Better Queries from Click-Through Data 43

armada of chile
5

sea of chile

3

biografy arturo prat
naval battle in iquique

47

2 2

3

goverment of jose joaquin prieto

3

ancon treaty

3

valparaiso
33

harbour of valparaiso

9

university

9

electromecanics in valparaiso

8

www.valparaiso.cl
7

municipality valparaiso

7

mercurio valparaiso

9

el mercurio
20

2
11

fiat
32

auto nissan centra

7

automobiles fiat7

fiat bravo

9

fiat 147

9

fiat 600
11

9

fiat palio

9

fiat uno
3

9

second hand fiat

7

tire fiat 600
7

spare pieces fiat 600

7

fiat sale

14

6

6

8

4

2

6

4

8

2

2

2

Fig. 2. Queries Valparaiso(a), Naval battle in Iquique(b), Fiat(c) and their as-
sociated recommendations. Numbers inside the nodes represent the number of query
sessions for the associated query, and number on the edges represented the number of
query sessions improved by the pointed query.

Each branch of the tree represents a different specialization or sub-topic of the
original query. The depth between a root and its leaves is always one, because we
require the recommendations to improve the associated document set ranking.

The algorithm was implemented using the logs of the TodoCL search engine for
a period of three months (www.todocl.cl). TodoCL is a search engine that mainly
covers the .cl domain (Chilean web pages). Over three months the logs gathered
20,563,567 requests, most of them with no selections: Meta search engines issue
queries and re-use the answer of TodoCL but do not return information on user
selections. A total of 213,540 distinct queries lead to 892,425 registered selections
corresponding to 387,427 different URLs.

We intend to illustrate that the recommendation algorithm has the abil-
ity to identify sub-topics and suggest query refinement. For example, Fig. 2(a)
shows the recommendation graph for the query valparaiso. The number inside
nodes refer to the number of sessions registered in the logs for the query. The
edge numbers count the sessions improved by the pointed query. Valparaiso is

44 G. Dupret and M. Mendoza

an important touristic and harbor city, with various universities. It also recom-
mends some queries that are typical of any city of some importance like city
hall, municipality, a local newspaper and so on. The more potentially beneficial
recommendations have a higher link number.

For another example (see figure 2(b)), a recommendation concerns the‘‘naval
battle in Iquique’’ in May 21, 1879 between Peru and Chile. The point we
want to illustrate here is the ability of the algorithm to extract from the logs
and to suggest to users alternative search strategies. Out of the 47 sessions, 2
sessions were better ranked by armada of Chile and sea of Chile. In turn,
out of the 5 sessions for armada of Chile, 3 would have been better answered
by sea of Chile. An interesting recommendation is for biography of Arturo
Prat, who was captain of the “Esmeralda”, a Chilean ship involved in the battle.

Finally, another recommendation related to the query ‘‘fiat’’, suggests
to specify the car model he is interested in, if he wants spare parts, or if he
is interested in selling or buying a fiat. It also suggests to a user interested in
– say – the history or the profitability of the company to issue a query more
specific to his needs. The graph is shown in fig 2(c).

Contrary to methods based on clustering where related queries are proposed
to the user, the recommendation method we propose are made only if they are
expected to improve. Among the limitations of the method, one is inherent to
query logs: Only queries present in the logs can be recommended and can give
rise to recommendations. Problems might also arise if the search engine presents
some weakness or if the logs are not large enough. Currently, we are working on
query recommendation systems that overcome these limitations.

References

1. R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query recommendation using query
logs in search engines. In LNCS 3268, pages 588–596, 2004.

2. B. Billerbeck, F. Scholer, H. E. Williams, and J. Zobel. Query expansion using
associated queries. In CIKM03, pages 2–9, New York, NY, USA, 2003. ACM Press.

3. F. Scholer and H. E. Williams. Query association for effective retrieval. In CIKM02,
pages 324–331, New York, NY, USA, 2002. ACM Press.

4. J. Wen, J. Nie, and H. Zhang. Clustering user queries of a search engine. In 10th
WWW Conference, 2001.

5. O. R. Zaiane and A. Strilets. Finding similar queries to satisfy searches based on
query traces. In EWIS02, Montpellier, France, 2002.

A Bilingual Linking Service for the Web

Alessandra Alaniz Macedo1, José Antonio Camacho-Guerrero2,
and Maria da Graça Campos Pimentel3

1 FFCLRP, Sao Paulo University, Ribeirão Preto, Brazil
2 3WT, São Carlos, Brazil

3 ICMC, Sao Paulo University, São Carlos, Brazil

1 Introduction

The aim of Cross-Language Information Retrieval (CLIR) area is to address sit-
uations where a query is made in one language and the application is able to
return documents in another. Many CLIR techniques attempt to translate the
user’s query to the language of the target documents using translation dictionar-
ies. However, these techniques have limitations in terms of lexical coverage of the
dictionary adopted. For some applications, the dictionaries are manually edited
towards improving the results — but this may require much effort to represent
a large collection of information.

In this article we propose an infrastructure for defining automatically rela-
tionships between Web documents written in different languages. Our approach
is based on the Latent Semantic Indexing Technique, which tries to overcome the
problems common to the lexical approach due to words with multiple meanings
and multiple words with the same meaning. LSI automatically organizes text
objects into a semantic structure appropriate for matching [3]. To support the
identification of relationships among documents in different languages, the pro-
posed infrastructure manipulates the stem portion of each word in order to index
the corresponding Web documents when building the information space manip-
ulated by LSI. To experiment this proposal, we studied the creation of links
among news documents in English and Spanish in three different categories:
entertainment, technology and world. The results were positive.

2 A Bilingual Linking Approach

LinkDigger is a Web application allowing monolingual repositories to be related
according to their set of words [5]. We extended LinkDigger to support the cre-
ation of links between bilingual Web repositories by extracting stems from their
textual information in order to compose the information space manipulated by
LSI. The current Bilingual LinkDigger relates Spanish and English repositories.

To activate LinkDigger, a user (i) selects the number of sites to be linked and
feeds their URLs, (ii) informs an email address and (iii) activates the service.
The service runs in the background in order to support large sites to be indexed.

The windows shown on the right portion of Fig. 1 correspond to the selec-
tion of the title “CNN.com - Robot ship braces for death by Jove - Sep. 19,

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 45–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

46 A.A. Macedo, J.A. Camacho-Guerrero, and M. da Graça Campos Pimentel

Fig. 1. The page in English (left) automatically related to the pages in Spanish (right)

2003” in the user interface of LinkDigger, and the related two titles to the first:
“CNNenEspañol.com - Sonda Galileo concluye misión estrellándose en Júpiter -
Septiembre 21, 2003” and “CNNenEspañol.com - Con un impacto contra Júpiter
concluye la misión de la sonda Galileo - Septiembre”. Those hyperlinks — relat-
ing the page in English with the two pages in Spanish — are a good example of
the relevant links created in the experiment described next.

The LinkDigger Infrastructure supporting the processing carried out by
the Bilingual LinkDigger is built with several components. Towards facilitating
the presentation of those components, we grouped the processes in three levels:
Linking Level, Storage Level and Anchoring Level. The Linking Level defines
links between the bilingual Web documents, and its processing is as follows:

– Crawling Web Repositories. Initially the repositories are indexed. Significant
words, excluding stop words, are extracted from the Web pages.

– Stemming. The relevant words extracted from the pages are analyzed by a
stemmer, specific to the language of repositories manipulated [4] [7].

– Weighting the stems. To differentiate the stems from words, appropriate
weights must be given to them. Weights are composed by the number of
times a radical appears in a given document relative to the number of times
that it appears in each document in the whole repository of documents [8].

– Generating the Term by Document Matrix. The index resulting from the
previous steps is used to generate a term by document matrix X , which is
used in the process of Latent Semantic Indexing [3].

– Computing SVD. The matrix X is decomposed into the product of three
other component matrices T , S and D

′
using the Single Value Decomposition

(SVD) exploited by LSI. Following SVD, the k most important dimensions
are selected, and all others are omitted. The choice of k is detailed in [2].

A Bilingual Linking Service for the Web 47

– Defining the Semantic Matrix. A semantic matrix is generated by the inner-
product among each column of the matrix generated on the last step.

– Computing Similarities. Given the semantic matrix generated in the previous
step, relationships between Web documents are identified by considering the
cells that have the higher values of similarity. A threshold level of similarity
is used to filter the relationships created towards generating a relevance
semantic matrix which is used to define bilingual links between documents.

In the Anchoring Level, the links created can be stored in databases or open
hypermedia linkbases. The communication between the Linking Level and the
Storage Level is supported by procedures in the Anchoring Level.

Our current implementation uses as Storage Level the Web Linkbase Ser-
vice (WLS) [1] to store the links created. WLS is an XML-based open linkbase,
developed as an API, that aims at providing hypermedia functionalities to appli-
cations in general. By using WLS, hyperlinks generated by Bilingual LinkDigger
can be exploited by other Web applications — such characteristic makes Bilin-
gual LinkDigger an example of applying open hypermedia on the Web.

On top of the Linking Level, the Request Interface supports user-interaction
functionalities. For further details about the Storage Level and the Linking Level,
respectively, see [5] and [6].

3 Experimentation

We run an experiment to relate documents from two news services in two differ-
ent languages: CNN in English (CNN-E: http://cnn.com) and CNN in Spanish
(CNN-S: http://cnnenespanol.com). In September 2003, our service scanned, in
each language, 3 sections: Technology, Entertainment and World. The overall
data for the experiment is summarized in Table 1. A total of 86 pages were col-
lected from CNN-S and a total of 126 pages from CNN-E. Pages containing only
images or that could not be read at the time of the harvesting were removed.

Considering that the documents in the repositories were in different lan-
guages, we used a threshold of 20% on the level of similarity that defines when
pages are related. We had a total of 7 links relating pages on Technology, 27 links
relating the pages on Entertainment and 10 links relating the pages in the World
sections. A native Spanish speaking user, highly fluent in English, analyzed each
link to rate whether the link was of high, medium, low or no relevance. For
the links relating the sections on Technology, all 7 links were considered highly
relevant. For the links relating the Entertainment sections, 12 links were rated
highly relevant, 1 link was rated with medium relevance, 1 link was rated with
low relevance and 13 links were considered not relevant. For the links relating
the World section, from the 10 links generated, 5 were rated highly relevant, 3
were rated with medium relevance and 2 were rated not relevant.

The fact that most links (66%) were considered relevant — indeed, almost
55% were rated highly relevant — is a good result. It is also important to observe
that the total number of links generated is not a small one considered the total
number of pages in the collections.

48 A.A. Macedo, J.A. Camacho-Guerrero, and M. da Graça Campos Pimentel

Table 1. Characteristics of the Experiments with the Bilingual Linking Service

Technology Entertainment World
Spanish English Spanish English Spanish English

Web pages in collections 83 48 38 89 33 92

Web pages after filtering 48 25 21 45 17 56

Total of terms 12327 11996 10410 23213 8207 26490

Stop Words 351 570 351 570 351 570

Relevance(High,Medium,Low,None) (7,0,0,0) (12,1,1,13) (5,3,0,2)

Precision Average 60 48.15 100
Recall Average 60 36.12 22.58

4 Conclusion

Bilingual LinkDigger is a service that can be exploited towards the internation-
alization of the contents of the Web. The results obtained in the experiment
motivate the investigation of other techniques towards improving LinkDigger.
Possible improvements could be achieved exploiting implicit and explicit user-
feedback and linguistic analysis. Another alternative is to exploit the structure
of the document contained in the repositories. We also intend to investigate the
benefits that a thesaurus would bring to our service.

Acknowledgments. The authors are supported by FAPESP.

References

1. R. F. Bulcão Neto, C. A. Izeki, M. G. C. Pimentel, R. P. M. Pontin, and K. N.
Truong. An open linking service supporting the authoring of web documents. In
Proc. of the ACM DocEng, pages 66–73, 2002.

2. S. Deerwester, S. T. Dumais, T. Landauer, G. Furnas, and R. Harshman. Indexing
by latent semantic analysis. J. of the Society for Inf. Science, 41(6):391 – 407, 1990.

3. G. W. Furnas, S. Deerwester, S. T. Dumais, T. K. Landauer, R. A. Harshman,
L. A. Streeter, and K. E. Lochbaum. Information retrieval using a singular value
decomposition model of latent semantic structure. In Proc. of the ACM SIGIR,
pages 465–480, 1988.

4. S. Group. Spanish stemming algorithm. Internet: snowball.tartarus.org, 2002.
5. A. A. Macedo, M. G. C. Pimentel, and J. A. Camacho-Guerrero. An infrastructure

for open latent semantic linking. In Proc. of ACM Hypertext, pages 107–116, 2002.
6. A. A. Macedo, M. G. C. Pimentel, and J. A. C. Guerrero. Latent semantic linking

over homogeneous repositories. In Proc. of the ACM DocEng, pages 144–151, 2001.
7. M. Porter. An algorithm for suffix stripping. Program, 14(3):130 – 137, 1980.
8. G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval.

Information Processing and Management, 24(5):513 – 523, 1988.

Evaluating Hierarchical Clustering

of Search Results

Juan M. Cigarran, Anselmo Peñas, Julio Gonzalo, and Felisa Verdejo

Dept. Lenguajes y Sistemas Informáticos, E.T.S.I. Informática UNED��

{juanci, anselmo, julio, felisa}@lsi.uned.es

Abstract. We propose a goal-oriented evaluation measure, Hierarchy
Quality, for hierarchical clustering algorithms applied to the task of or-
ganizing search results -such as the clusters generated by Vivisimo search
engine-. Our metric considers the content of the clusters, their hierarchi-
cal arrangement, and the effort required to find relevant information by
traversing the hierarchy starting from the top node. It compares the effort
required to browse documents in a baseline ranked list with the mini-
mum effort required to find the same amount of relevant information by
browsing the hierarchy (which involves examining both documents and
node descriptors).

1 Motivation

Clustering search results is an increasingly popular feature of web search and
meta-search engines; examples include many industrial systems like Vivisimo,
Kartoo, Mooter, Copernic, IBoogie, Groxis, Dogpile and Clusty and research
prototypes such as Credo [1] or SnakeT [4].

For navigational search goals (finding a specific web site), clustering is proba-
bly useless. But for complex information needs, where there is a need to compile
information from various sources, hierarchical clustering has clear advantages
over plain ranked lists. According to [9], around 60% of web searches are infor-
mational, suggesting that techniques to organize and visualize search results can
play an increasingly important role in search engines.

Although evidences show that this kind of systems seems to work fine and
may be helpful, there is not a consensus about what kind of metrics are suitable
to evaluate and to compare them in a quantitative way.

The research described in this paper attempts to design task-oriented eval-
uation metrics for hierarchical clusters that organize search results, according
to their ability of minimizing the amount of irrelevant documents that has to
be browsed by the user to access all the relevant information. Our metrics com-
pare generated clusters with the original ranked list considering the navigational
properties of the cluster, counting all clusters with relevant information and also
�� This work has been partially supported by the Spanish Ministry of Science and

Technology within the project(TIC-2003-07158-C04) Answer Retrieval From Digital
Documents (R2D2).

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 49–54, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

50 J.M. Cigarran et al.

how they are interconnected. Although our metrics compare the original ranked
list with the clustering created, we have to remark that we work in an scenario
where recall is maximum.

Regarding task-oriented clustering, there has been some attempts to evaluate
the quality of clusters for Information Retrieval tasks. Scatter/Gather system [5],
for instance, generates a hierarchical clustering but the evaluation issues are only
focused on the highest scoring cluster to be compared with the original ranked
list of documents and without considering the effort required to reach it. [8] also
assume that a good clustering algorithm should put relevant and nonrelevant
documents into separate classes but, again, in a flat approach that ignores the
hierarchical and navigational properties of the cluster. More recently, [7] and
[6] consider the hierarchical properties of the clusters in a task-oriented evalu-
ation methodology and propose metrics to measure the time spent to find all
the relevant information. [7] scores hierarchies estimating the time it takes to
find all relevant documents by calculating the total number of nodes that must
be traversed and the number of documents that must be read. In this case, the
measure is used to compare the structure of hierarchies built using different ap-
proaches. The algorithm calculates the optimal path to each relevant document
and then averages the results. No differences between the cognitive cost of read-
ing a document and a cluster description are made in this approach. [6] present
a similar strategy that compares the retrieval improvements of different cluster-
ing strategies versus the original ranked list. They consider differences between
the cognitive cost of reading a document and a cluster description but, again,
the algorithm operates over each relevant document separately and then aver-
ages the results. Our metrics do not calculate an optimal path to each relevant
document averaging the results. Instead, a Minimal Browsing Area (MBA) (i.e.
an optimal area within the hierarchy containing all the relevant documents) is
calculated and then the measures (i.e. Distillation Factor and Hierarchical Qual-
ity) are applied. MBA is a way to reflect the power of the clustering to isolate
relevant information allowing to work with it as a whole (i.e. we suppose the user
is going to access all the relevant documents but taking the advantages of the
set of nodes previously traversed). This approach relies on the idea of working
at maximum recall.

The paper is organized as follows. First we present some preliminaries about
how should be a good clustering organization and the basic assumptions in which
our metrics are based. Then we explain the metrics, Distillation Factor and
Hierarchical Quality and finally we present the conclusions and the future work.

2 Basic Assumptions

At least, four features of a hierarchical clustering have to be considered: a) the
content of the clusters. A clustering that effectively groups relevant informa-
tion is better than a clustering that mixes relevant and non-relevant documents;
b) the hierarchical arrangement of the clusters. For instance, if the user has to
browse a chain of clusters with irrelevant information before reaching a clus-
ter with several relevant documents, the clustering is non-optimal for the task;

Evaluating Hierarchical Clustering of Search Results 51

c) the number of clusters. To be effective, the number of clusters that have to
be considered to find all relevant information should be substantially lower than
the actual number of documents being clustered. Otherwise, the cognitive cost
of examining a plain ranked list would be smaller than examining the cluster
hierarchy, and; d) how clusters are described. A good cluster description should
help the user predicting the relevance of the information that it contains. Opti-
mal cluster descriptions will discourage users from exploring branches that only
contain irrelevant information. We think that this last feature cannot be mea-
sured objectively without user studies. But before experimenting with users -
which is costly and does not produce reusable test beds - we can optimize hi-
erarchical clustering algorithms according to the first three features: contents of
the clusters, number of clusters and hierarchical arrangement. Once the cluster-
ing is optimal according to these features, we can compare cluster descriptions
by performing user studies. In this paper we will not discuss the quality of the
cluster descriptions, focusing on those aspects that can be evaluated objectively
and automatically (given a suitable test bed with relevance judgments).

In order to make our metrics to work, we propose the following two main as-
sumptions: a) the first assumption considers that a hierarchical clustering should
build each cluster only with those documents fully described by its descriptors.
For instance, a cluster about physics with sub-clusters such as nuclear physics
astrophysics should only contain those generic documents about physics, but not
those about nuclear physics or astrophysics. Moreover, specific documents about
any of the physics subtopics should be place in lower clusters (i.e. otherwise, we
do not have a hierarchical clustering but only a hierarchical description of clus-
ters). From the evaluation point of view, it has no sense to have a top high level
cluster containing all the documents retrieved because it will will force the user
to read the whole list at the very first time. This approach is the same as used
in web directories and is considered the natural way of browsing hierarchical de-
scriptions; b) the second assumption considers that clustering is made with an
’open-world’ view. This means that, if a document is about very different topics,
it should be placed (i.e. repeated) in its corresponding topic clusters and, as a
consequence, it should appear in different parts of the hierarchy. For instance, if
we have a document about physics which also includes some jokes about physics
and a clustering hierarchy with clusters about physics and jokes without any
connection between them, clustering should place the document anywhere in
the physics hierarchy and it should repeat it in the jokes hierarchy. This ’open-
world’ view is more realistic than the classical ’closed-world’ view, applied by
some hierarchical clustering algorithms, and where a document only belongs to
one part of the hierarchy. As a drawback of this assumption, it is very difficult to
deal with evaluation issues when repeated documents appear in different parts
of the hierarchy. As a possible solution, we propose the use of lattices instead
of hierarchies as the data models used to represent the clustering. From the
modeling and browsing point of view there are no differences between lattices
and hierarchies and it is always possible to unfold a lattice into a hierarchy and

52 J.M. Cigarran et al.

viceversa. [2], [3] and [1] show how to deal with concept lattices in a document
clustering framework.

3 Evaluation Measures

Let us start with a ranked list obtained as a result of a search which is going to
be clustered using a lattice. Let N be the set of nodes of the lattice L, where each
node is described by a pair (DOCS, DESC), with DOCS the set of documents
associated to the node (but not to its subnodes) and DESC the description that
characterizes the cluster (if any).

Our proposal is to measure the quality of a lattice, for the purpose of browsing
search results, as the potential reduction of the cognitive load required to find
all the relevant information as compared to the original ranked list. This can be
expressed as a gain factor:

Quality(lattice) ≡ cognitive load(ranked list)
cognitive load(lattice)

The effort required to browse a ranked list is roughly proportional to the
number of documents in the list. Of course, the non-trivial issue is how to esti-
mate the effort required to browse the lattice. In the remainder of this section, we
will discuss two approaches to this problem: the first one is an initial approach
that only considers the cost of examining documents. The second approach, in
addition, also considers the cost of taking decisions (which nodes to explore,
which nodes to discard) when traversing the lattice.

3.1 Distillation Factor

Let us assume that the user begins browsing the lattice at the top node; Let
us also assume that, in our evaluation testbed, we have manual assessments
indicating whether each document is relevant or not for the query that produced
the ranked list of documents.

We can then define the Minimal Browsing Area (MBA) as the smallest part
of the lattice that has to be explored by the user to find all relevant information
contained in the lattice (i.e. a complete description of how to build MBA can
be found in [2]). If we compute the cognitive cost of exploring the lattice as the
cost of examining the documents contained in the MBA, then the quality of a
lattice L would be given by the ratio between the cost of examining the list of
documents and the cost of examining the documents in the MBA.

Then, if kd is the cognitive cost of examining a document, DRankedList is the
number of documents in the ranked list, and DMBA is the number of documents
in the minimal browsing area, then the quality of the lattice, according to the
definition above, would be:

DF(L) =
kd ∗DRankedList

kd ∗DMBA
=

DRankedList

DMBA

Evaluating Hierarchical Clustering of Search Results 53

We call this measure Distillation Factor (DF), because it describes the ability
of the lattice to ’distill’ or filter relevant documents in a way that minimizes user
effort. Its minimum value is 1 (when all nodes in the lattice have to be examined
to retrieve all relevant documents), which means that there is no improvement
over the ranked list.

Notice that DF can also be seen as the factor between the precision of the
set of documents in the MBA and the precision of the original ranked list:

DF (L) =
DRelevant/DMBA

DRelevant/DRankedList
=

DRankedList

DMBA

3.2 Hierarchy Quality

The DF measure is only concerned with the cost of reading documents, but
browsing a conceptual structure has the additional cost (i.e. as compared to a
ranked list of documents) of examining node descriptors and deciding whether
each node is worth exploring. For instance, a lattice may lead us to n relevant
documents and save us from reading another m irrelevant ones, ... but force us
to traverse a thousand nodes to find the relevant information! Obviously, the
number of nodes has to be considered when computing the cost of using the
lattice to find relevant information.

To compute the cost of browsing the lattice we need to count all node de-
scriptions that have to be considered to explore all relevant nodes. Let us call
this set of nodes Nview . It can be computed starting with the nodes in the MBA
and adding the lower neighbors of every node in the MBA.

Then, if the cognitive cost of examining a node description is kn, the quality
of the lattice can be defined as:

HQ(L) =
kd ∗DRankedList

kd ∗DMBA + kn ∗ |Nview|
=

DRankedList

DMBA + kn

kd
|Nview |

We call this measure Hierarchy Quality (HQ). This is the improved measure
that we propose to evaluate the quality of a lattice for the task of organizing
and visualizing search results. Note that it depends on a parameter k ≡ kn

kd
,

which estimates the ratio between the effort needed to examine a document
(i.e. its title, its snippet or another kind of description) and the effort required
to examine a node description. This value has to be settled according to the
retrieval scenario and the type of node descriptions being considered.

Unlike the Distillation Factor, the HQ measure can have values below 1, if
the number of nodes to be considered is too large. In this case, the HQ measure
would indicate that the lattice is worse than the original ranked list for browsing
purposes.

Of course, this formula implies to fix (i.e. for each retrieval scenario) a value
for k. This value has a strong influence on the final HQ values and should be
estimated conducting user studies.

54 J.M. Cigarran et al.

4 Conclusions

We have introduced task-oriented evaluation metrics for hierarchical clustering
algorithms that organize search results. These metrics consider the features of a
good clustering for browsing search results. Our main evaluation measure, HQ
(Hierarchy Quality), compares the cognitive effort required to browse the lattice,
with the effort required to browse the original ranked list of results. Our measure
is computed using the concept of Minimal Browsing Area and the related concept
Nview of minimal set of node descriptions which have to be considered in order to
traverse the minimal browsing area. Our future work aims at trying to estimate
the value of k over different kinds of documents and cluster descriptions using
different clustering strategies.

References

1. C. Carpineto and G. Romano. Concept Data Analysis. Data and Applications.
Wiley, 2004.

2. J. Cigarran, J. Gonzalo, A. Peñas, and F. Verdejo. Browsing search results via formal
concept analysis: Automatic selection of attributes. In Concept Lattices. Second
International Conference on Formal Concept Analysis, ICFCA 2004, Springer.

3. J. Cigarran, A. Peñas, J. Gonzalo, and F. Verdejo. Automatic selection of noun
phrases as document descriptors in an fca-based information retrieval system. In
Formal Concept Analysis. Third International Conference, ICFCA 2005, Springer,
2005.

4. P. Ferragina and A. Gulli. A personalized search engine based on web-snippet
hierarchical clustering. In WWW ’05: Special interest tracks and posters of the 14th
international conference on World Wide Web, pages 801–810, New York, NY, USA,
2005. ACM Press.

5. M. Hearst and J. Pedersen. Reexamining the cluster hypothesis: Scatter/gather on
retrieval results. In Proceedings of SIGIR-96, 19th ACM International Conference
on Research and Development in Information Retrieval, pages 76–84, Zurich, CH,
1996.

6. K. Kummamuru, R. Lotlikar, S. Roy, K. Singal, and R. Krishnapuram. A hierar-
chical monothetic document clustering algorithm for summarization and browsing
search results. In WWW ’04: Proceedings of the 13th international conference on
World Wide Web, pages 658–665, New York, NY, USA, 2004. ACM Press.

7. D. Lawrie and W. Croft. Discovering and comparing topic hierarchies. In Proceedings
of RIAO 2000., 2000.

8. A. Leouski and W. Croft. An evaluation of techniques for clustering search results,
1996.

9. D. E. Rose and D. Levinson. Understanding user goals in web search. In WWW ’04:
Proceedings of the 13th international conference on World Wide Web, pages 13–19.
ACM Press, 2004.

Counting Suffix Arrays and Strings

Klaus-Bernd Schürmann and Jens Stoye

AG Genominformatik, Technische Fakultät, Universität Bielefeld, Germany
Klaus-Bernd.Schuermann@CeBiTec.Uni-Bielefeld.DE

Abstract. Suffix arrays are used in various application and research
areas like data compression or computational biology. In this work, our
goal is to characterize the combinatorial properties of suffix arrays and
their enumeration. For fixed alphabet size and string length we count the
number of strings sharing the same suffix array and the number of such
suffix arrays. Our methods have applications to succinct suffix arrays
and build the foundation for the efficient generation of appropriate test
data sets for suffix array based algorithms. We also show that summing
up the strings for all suffix arrays builds a particular instance for some
summation identities of Eulerian numbers.

1 Introduction

In the early 1990s, Manber and Myers [1] and Gonnet et al. [2] introduced
the suffix array as an alternative data structure to suffix trees. Since then the
application of and the research on suffix arrays advanced over the years [3,4,5,6].

In bioinformatics and text mining applications suffix arrays with some further
annotations are often used as an indexing structure for fast string querying [3],
and also in the data compression community suffix arrays received more and
more attention over the last decade. At first, this interest has arisen from the
close relation with the Burrows-Wheeler-Transform [7] which is mainly based on
the fact that computing the Burrows-Wheeler-Transform by block-sorting the
input string is equivalent to suffix array construction.

Moreover, in the last years, the task of full-text index compression emerged
after Grossi and Vitter introduced the compressed suffix array [8] that reduces
the space requirements to a linear number of bits. Other compressed indices
of that type are Ferragina and Manzini’s FM-index [9] based on the Burrows-
Wheeler-Transform, a compressed suffix array based index of Sadakane [10] that
does not use the text itself, and a suffix array based succinct index developed
by He et al. [11], just to mention a few. Also lower bounds for the size of such
indices are known. Demaine and López-Ortiz [12] proved a lower bound for
indices providing substring search, and Miltersen [13] showed lower bounds for
selection and rank indices.

All these developments on compressed indices, however, restrict themselves
to certain queries. Therefore, information may get lost when compressing an
original base index, like the suffix array. We believe that a profound knowledge of
the algebraic and combinatorial properties of suffix arrays is essential to develop
suffix array based, succinct indices preserving their original functionality.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 55–66, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

56 K.-B. Schürmann and J. Stoye

Duval and Lefebvre [6] already characterized strings for the same suffix ar-
ray. Further on, Crochemore et al. [14] recently showed combinatorial proper-
ties of the related Burrows-Wheeler transformation, but these properties are
unassignable for suffix arrays. They rely on the fact that the Burrows-Wheeler
transform is based on the order of cyclic shifts of the input sequence, whereas
the suffix array is based on suffixes cut at the end of the string which destroys
that nice group structure.

Most suffix array applications face strings with small, fixed alphabets like
the DNA, amino acid, or ASCII alphabet. The possible suffix arrays for such
strings are just a small fraction of all possible permutations. Therefore, besides
discovering their combinatorial structure, our goal is to enumerate the different
suffix arrays for strings over fixed size alphabets.

In Section 2 we give the basic definitions and notations concerning alphabets,
strings, permutations, and suffix arrays. Strings sharing the same suffix array are
counted in Section 3 and distinct suffix arrays in Section 4. Section 5 proves iden-
tities by summing up over suffix arrays and their strings, and Section 6 concludes.

An extend version of this article including all proofs is available as [15].

2 Strings, Permutations, and Suffix Arrays – Definitions
and Terminology

The interval [g, h] = {z ∈ Z | g ≤ z ≤ h} denotes the set of all integers greater
than or equal to g, and less than or equal to h.

Alphabet and Strings. Let Σ be a finite set of size |Σ|, the alphabet, and t =
t1t2 . . . tn ∈ Σn a string over Σ of length n, the text. Σ(t) = {c ∈ Σ | ∃i ∈
[1, |t|] : ti = c} is the subset of characters actually occurring in t and is called
the character set of t. We usually use σ for the alphabet size but, if the strings are
required to use all characters such that their character set equals the alphabet,
we use k.

For i ∈ [1, n], t[i] denotes the ith character of t, and for all pairs of indices
(i, j), 1 ≤ i ≤ j ≤ n, t[i, j] = t[i], t[i + 1], . . . , t[j] denotes the substring of
t starting at position i and ending at position j. Substrings t[i, n] ending at
position n are suffixes of t. The starting position i of a suffix t[i, n] is called its
suffix number.

We deal with different kinds of equivalences of strings. The natural definition
is that strings are equivalent if they are equal, and distinct otherwise.

In order to define the other two equivalences, we first introduce a bijective
mapping m of the characters of a string t to the first |Σ(t)| integers, m : Σ(t) −→
[1, |Σ(t)|] such that m(t) = m(t[1])m(t[2]) . . .m(t[n]). We call m order-preserving
if c1 < c2 ⇔ m(c1) < m(c2) for all pairs of characters (c1, c2) ∈ Σ2(t).

We call two strings t1 and t2 order-equivalent, if there exists an order-
preserving bijection m1 for t1 and another such bijection m2 for t2 such that
m1(t1) = m2(t2); otherwise the strings are order-distinct. If there exist not
necessarily order-preserving mappings m1 and m2 such that m1(t1) = m2(t2),
we call t1 and t2 pattern-equivalent ; otherwise the strings are pattern-distinct.

Counting Suffix Arrays and Strings 57

Equivalent strings are also order-equivalent and order-equivalence implies
pattern-equivalence. The strings AT and AG, for example, are distinct but order-
equivalent, and the strings AG and GA are order-distinct but pattern-equivalent.

Permutations and Suffix Arrays. Let P be a permutation of [1, n]. Then i ∈
[1, n−1] is a permutation descent if P [i] > P [i+1]. Conversely, a non-extendable
ascending segment P [i] < P [i + 1] < . . . < P [j] of P is called a permutation
run, denoted by the index pair (i, j). Each permutation run of P is bordered
by permutation descents, or the permutation boundaries 1 or n. Hence, the
permutation runs define the permutation descents and vice versa.

The suffix array sa(t) of t is a permutation of the suffix numbers {1, . . . , n}
according to the lexicographic ordering of the n suffixes of t. More precisely, a
permutation P of [1, n] is the suffix array for string t of length n if for all pairs
of indices (i, j), 1 ≤ i < j ≤ n, the suffix t[P [i]], t[P [i] + 1], . . . , t[n] at position
i in the permutation is lexicographically smaller than the suffix t[P [j]], t[P [j] +
1], . . . , t[n] at position j in the permutation.

The rank array RP , further on simply denoted by R, and sometimes called the
inverse suffix array, for the permutation P , is defined as follows. For all indices
i ∈ [1, n] the rank of i is j, R[i] = j, if i occurs at position j in the permutation,
P [j] = i. We extend the rank array by R[n + 1] = 0, indicating that the empty
suffix, not contained in the suffix array, is always the lexicographically smallest.

Further on, we define the R+-array to be R+[i] = R[P [i]+1] for all i ∈ [1, n].
We define the R+-descents and R+-runs of P similar to the permutation descents
and permutation runs, respectively: A position i ∈ [1, n − 1] is called an R+-
descent if R+[i] > R+[i + 1]. A non-extendable ascending segment R[P [i]+ 1] <
R[P [i + 1] + 1] < . . . < R[P [j] + 1], denoted by the index pair(i, j), i < j, is
called an R+-run. Moreover, the set of R+-descents {i ∈ [1, n− 1] |R[P [i]+ 1] >
R[P [i + 1] + 1]} is denoted by R+-desc(P), or shortly desc(P), and the set of
R+-runs {(i, j) ∈ [1, n]2 | i < j ∧ (i = 1 ∨ i − 1 ∈ desc(P)) ∧ (j = n ∨ j ∈
desc(P)) ∧ ∀h ∈ [i, j − 1] : h /∈ desc(P)} is denoted by R+-runs(P), or shortly
runs(P).

Further Definitions. Besides the binomial coefficient
(
x
y

)
= x!

y!(x−y)! , combina-
torial objects related to permutations that are important for this work are the
Stirling numbers and the Eulerian numbers. Although these numbers have a
venerable history, their notation is less standard. We will follow the notation of
[16] where the Stirling number of the second kind

{
n
k

}
stands for the number of

ways to partition a set of n elements into k nonempty subsets, and the Eulerian
number

〈
n
d

〉
gives the number of permutations of [1, n] having exactly d permu-

tation descents, also defined through the recursion (i)
〈

n
0

〉
= 1, (ii)

〈
n
d

〉
= 0 for

d ≥ n, and (iii)
〈

n
d

〉
= (d + 1)

〈
n−1

d

〉
+ (n− d)

〈
n−1
d−1

〉
for 0 < d < n.

3 Counting the Strings Per Suffix Array

In this section, we count the number of strings over a fixed size alphabet all
sharing the same suffix array.

58 K.-B. Schürmann and J. Stoye

3.1 Characterizing Strings Sharing the Same Suffix Array

We repeat a characterization of the set of strings sa−1(P) sharing the same suffix
array P that states that the order of consecutive suffixes in the suffix array is
determined by their first character and by the order of suffixes with respect to
offset one. This result was already given by Burkhardt and Kärkkainen [5], and
equivalent characterizations were given by Duval and Lefebvre [6].

Theorem 1. Let P be a permutation of [1, n] and t a string of length n. P is
the suffix array of t if and only if for all i ∈ [1, n] the following two conditions
hold:

(a) t[P [i]] ≤ t[P [i + 1]] and
(b) R[P [i] + 1] > R[P [i + 1] + 1]⇒ t[P [i]] < t[P [i + 1]].

Theorem 1 characterizes the strings in the preimage sa−1(P) of P , and it
also suggests criteria to divide the strings in equivalence classes according to
their suffix array that will be counted in Section 4.

For a permutation P with d R+-descents, Bannai et al. [4] already showed
that the number of different characters in a string t with suffix array P is at
least the number of R+-descents plus one, |Σ(t)| ≥ d+1. They also presented an
algorithm to construct a unique string bP consisting of exactly d + 1 characters,
|Σ(bP)| = d + 1.

W.l.o.g., we assume the character set of bP contains the smallest natural
numbers, Σ(bP) = [1, d + 1], and call bP the base string of the suffix array P .

The algorithm suggested in [4] works as follows. It starts with the initial
character c = 1. For each index position i ∈ [1, n] in ascending order, the al-
gorithm proceeds through all suffix numbers from P [1] to P [n] by setting P [i]
to c. If i is an R+-descent, c is incremented by one to satisfy condition (2) of
Theorem 1, such that bP [i] = di + 1 where di is the number of descents in the
prefix P [1, . . . , i] of the suffix array P .

Remark 1. Let P be a permutation with d descents, then the base string bP has
the properties

(a) bP [P [1]] = 1 and bP [P [n]] = d + 1,
(b) for i ∈ ([1, n− 1] \R+-desc(P)) : bP [P [i]] = bP [P [i + 1]],
(c) for i ∈ R+-desc(P) : bP [P [i]] + 1 = bP [P [i + 1]].

3.2 Counting Strings Composed of Up to σ Distinct Characters

Strings sharing the same suffix array P of length n can be derived from the base
string for the suffix array by applying a certain sequence of rewrite-operations
to the base string, after which the order of suffixes remains untouched. The
modification sequence starts with the largest suffix. Increasing the first character
of the largest suffix by r does not change the order of suffixes. Then, the first
character of the second largest suffix can be increased by at most r without
changing the order of suffixes, and so on.

Counting Suffix Arrays and Strings 59

Definition 1. Let P be a permutation of [1, n] with base string bP . Moreover,
let m be a sequence of length n of numbers from [0, ψ], for some ψ ∈ N. The
m-incremented sequence sP,m of P is defined as

sP,m[i] = bP [P [i]] + m[i] for all i ∈ [1, n].

We show a relationship between the sequences sharing the same suffix array
and non-decreasing sequences.

Theorem 2. Let P be a permutation of [1, n] with d R+-descents and SP,Σ

the set of sequences over the ordered alphabet Σ, σ = |Σ|, with suffix array P .
Moreover, let M be the set of non-decreasing sequences of length n over the
ordered alphabet [0, σ − d− 1].

There exists an isomorphism between SP,Σ and M.

Proof. Let bP be the base string for permutation P . W.l.o.g., we assume Σ =
[1, σ]. For each m ∈M, the corresponding m-incremented string sP,m fulfills the
conditions of Theorem 1. Each other sequence o of length n, o /∈ M, is either
decreasing at one position, or it is not a sequence over [0, σ − d − 1]. If it is
decreasing at one position, then sP,o contradicts Theorem 1. Otherwise, if o is
not a sequence over [0, σ − d − 1], then the character set of sP,o is not covered
by Σ. ��

To count the number of non-decreasing sequences of length n over k + 1
elements, we observe the following.

Lemma 1. Let M(n, a) be the number of non-decreasing sequences of length n
of elements in [0, a− 1]. For any positive integers n and a

M(n, a) =
(

n + a− 1
a− 1

)
.

Proof. The non-decreasing sequences of length n on a symbols can be modeled
as a sequence of two different operations. Initially, the current symbol is set to 0.
Then, we apply a sequence of operations to generate non-decreasing sequences
of length n. One possible operation is to write the current symbol behind the
so far written symbols, and the other one is to increment the symbol by 1. To
generate a non-decreasing sequence, we apply n + a − 1 operations, n to write
down the non-decreasing sequence and a − 1 to increment the current symbol
until a − 1 is reached. For this sequence of length n + a − 1, we have

(
n+a−1

a−1

)
possibilities to choose the a− 1 positions of the increment operations. ��

Applying this observation to Theorem 2, we get the number of strings sharing
the same suffix array.

Theorem 3. Let P be a permutation of length n with d R+-descents and Σ an
alphabet of σ = |Σ| ordered symbols. The number of strings over Σ with suffix
array P is |SP,Σ | =

(
n+σ−d−1

σ−d−1

)
.

60 K.-B. Schürmann and J. Stoye

The non-decreasing sequences of length n over [0, σ − d − 1] can simply be
enumerated in-place by applying one change operation at a time, beginning with
the sequence 0n. The bijection described through Definition 1 suggests to apply
these enumeration steps directly to the base string of a certain suffix array. In
this way, we can enumerate all |SP,Σ | strings over a given alphabet Σ for a
certain suffix array P in optimal O(n + |SP,Σ |) time, where n steps are used to
construct the base string.

3.3 Counting Strings Composed of Exactly k Distinct Characters

So far, we have considered the strings over a fixed alphabet all sharing the same
suffix array. Now, we characterize the subset of such strings all composed of
exactly k different characters.

Theorem 4. Let P be a permutation of length n with d R+-descents. The num-
ber of strings with suffix array P composed of exactly k different characters is(
n−d−1
k−d−1

)
.

Proof. The proof works similar as for Theorem 3. Obviously, we have to count
each non-decreasing sequence m in M for which sP,m consists of exactly k letters.
To assure that none of the k characters [1, k] is left out, it is sufficient to count
all m such that sP,m[P [1]] = 0, sP,m[P [n]] = k, and consecutive characters are
not differing by more than one. This property is realized by a sequence m, if and
only if, (a) m[1] = 0 and m[n] = k−d−1, (b) m[i] = m[i+1] or m[i]+1 = m[i+1]
if i is not a descent position, and (c) m[i] = m[i + 1] if i is a descent position.

We again represent these kind of non-decreasing sequences as n write oper-
ations and a− 1 increment operations, as it has been modeled above. Here, for
the placement of the k − d − 1 increment operations, we are restricted by the
mentioned conditions.

In order not to hurt these conditions, (a) an increment operation must not
appear before or after the first or last write operation, (b) at most one increment
operation must appear between two write operations, and (c) the d descent
positions are blocked for the increments. We are thus left with n−1−d mutually
exclusive positions from which we choose k − d− 1 increment operations. ��

3.4 Filling the Gaps

For a given permutation P of length n with d R+-descents, we have already
counted the strings over an alphabet of size σ and the strings composed of
exactly k distinct characters, respectively.

Table 1 summarizes the results. For different conditions, it shows the number
of distinct, order-distinct, and pattern-distinct strings of length n. The first row
shows the number of strings composed of exactly k different characters, the
second row the number of strings over a certain alphabet of size σ, and the third
and fourth rows the number of such strings sharing the same suffix array.

Some of the numbers were proven by other authors or in the previous sections,
but there are yet some gaps to be filled. We start with the first row. Moore et

Counting Suffix Arrays and Strings 61

Table 1. Number of distinct, order-distinct and pattern-distinct strings of length n in
general, and those mapped to the same suffix array. In the analyses, d is always the
number of R+-descents for the respective suffix array.

number of distinct order-distinct pattern-distinct

strings with exactly k letters
�

n
k

� · k!
�

n
k

� · k!
�

n
k

�
[17]

strings for alphabet size σ σn �σ
k=1

�
n
k

� · k!
�σ

k=1

�
n
k

�

string with exactly k letters
sharing same suffix array

�
n−d−1
k−d−1

�
[Thm. 4]

�
n−d−1
k−d−1

�
–

strings for alphabet size σ
sharing same suffix array

�
n+σ−d−1

σ−d−1

�
[Thm. 3]

�σ
k=d+1

�
n−d−1
k−d−1

�
–

al. [17] already showed that the number of pattern-distinct strings composed of
exactly k different characters is

{
n
k

}
. For each pattern-distinct string, we permute

the alphabet in k! different ways to get a total of
{

n
k

}
k! order-distinct strings.

These are already all the distinct strings since we have no flexibility to choose
different characters to produce distinct strings yet order-equivalent.

The numbers of strings over a given alphabet of size σ are shown in the
second row. Needless to say, we have σn distinct strings. For the order- and
pattern-distinct strings, we just sum up the number of strings for all possible k.

The number of distinct strings composed of exactly k different characters
sharing a suffix array P with d R+-descents was given in Theorem 4. All these
strings are again order-distinct. For a pattern-distinct string, we cannot nec-
essarily determine a unique suffix array. For example, ab and ba are pattern-
equivalent, but have different suffix arrays. This is indicated by a dash in the
table.

The number of distinct and order-distinct strings over an alphabet of size σ
sharing the same suffix array are given in the fourth row. Theorem 3 gave the
number of distinct strings, and for the order-distinct strings we just sum up over
all possible k.

4 Counting Suffix Arrays for Strings with Fixed Alphabet

In this section, the distinct suffix arrays for strings over a fixed size alphabet
are counted. This also yields a tight lower bound for the compressibility of suffix
arrays.

We first confine ourselves to the equivalent problem of counting the number
of suffix arrays with a certain number of R+-descents.

Bannai et al. [4] already stated that the number of suffix arrays of length
n with exactly d R+-descents is equal to the Eulerian number

〈
n
d

〉
. In their

explanation, they interpret Eulerian numbers as the number of permutations of
length n with d permutation descents, and explain how their algorithm checks
for these permutation descents. In fact, their algorithm counts the number of

62 K.-B. Schürmann and J. Stoye

R+-descents, but the R+-array is not a permutation. Nevertheless, as we show
in this section, their proposition is true.

For a permutation P of length n − 1, we map P to a set P ′ of successor
permutations, each of length n. We show some relations between P and P ′,
finally leading to the recursive definition of the Eulerian numbers.

First of all, we define the mapping from P to P ′.

Definition 2. Let P be a permutation of length n − 1. A set of successor per-
mutations P ′ of P is defined as P ′ = {P ′

i | i ∈ [1, n]} where P ′
i evolves from P by

incrementing each element of P by one and inserting the missing 1 at position
i, such that each position j in P corresponds to a position j′ in P ′

i :

j′ = j, if j < i.

and j′ = j + 1, if j ≥ i,

and

P ′
i [j

′] = P [j] + 1, if j′ �= i

and P ′
i [j

′] = 1, if j′ = i.

The insertion at position i shifts the elements at positions j, j ≥ i, to the
right resulting in an increased rank for the respective elements of P ′

i .

Lemma 2. Let P be a permutation of length n− 1 and P ′ = P ′
i a successor of

P with insertion position i, then we have for all e ∈ [1, n− 1] that

(a) R′[e + 1] = R[e] if R[e] < i,
(b) R′[e + 1] = R[e] + 1 if R[e] ≥ i, and
(c) R′[1] = i.

Furthermore, mapping P to P ′ basically preserves the R+-order:

Lemma 3. Let P be a permutation of length n− 1 with successor P ′.
For all indices g and h, g, h ∈ [1, n− 1],

R+[g] < R+[h] =⇒ R′
+[g′] < R′

+[h′].

Lemma 3 considers the R+-order of P ′, but leaves out the insertion position
i. The next lemma states that the R+-order at position i just depends on the
position R[1] of element 1 in the permutation P .

Lemma 4. Let P ′ be a successor of P with insertion position i and g an index
of P , then

R+[g] < R[1]⇐⇒ R′
+[g′] < R′

+[i] for all g ∈ [1, n− 1].

After characterizing the R+-order of successor permutations, we now prove
that through the mapping from P to an arbitrary successor permutation the
number of R+-descents is preserved or increased by one.

Counting Suffix Arrays and Strings 63

Lemma 5. Let P be a permutation of length n − 1 with d R+-descents and
P ′ the set of successor permutations for P , then for all successor permutations
P ′

i ∈ P ′, we have |desc(P)| ≤ |desc(P ′
i)| ≤ |desc(P)|+ 1.

Proof. Due to Lemma 3, the mapping with respect to a certain insertion position
i does only touch the R+-order of positions adjacent to i. Lemma 4 then adds
that, through the mapping, the number of descents is preserved or increased by
one, depending on whether i is a descent, or not. ��

Lemma 6. Let P be a permutation with d R+-descents and P ′ the set of suc-
cessor permutations for P , then the number of successor permutations with d
R+-descents is d + 1.

Proof. By considering several distinct cases it can be shown that for each R+-
run of P there exists exactly one insertion position that does not add a descent
through the mapping, and P has d + 1 R+-runs. We omit the details here. ��

Theorem 5. Let A(n, d) be the number of permutations of length n with d R+-
descents, then A(n, d) =

〈
n
d

〉
.

Proof.

(i) Since the permutation (n, n − 1, . . . , 1) is the only one without any R+-
descent, A(n, 0) = 1.

(ii) Obviously, the number of potential R+-descents is limited by n− 1. Hence,
there is no permutation of length n with more than n− 1 R+-descents, and
thus A(n, d) = 0 for d ≥ n.

(iii) As mentioned before, mapping each permutation P of length n to P ′
i with

all possible insertion positions i leads to n successor permutations each of
length n. If P contains d descents, then Lemma 6 implies: there exist exactly
d + 1 successor permutations with d descents and, according to Lemma 5,
the other n− d successors permutations contain d + 1 descents. Combining
these observations leads to the recursion A(n, d) = (d + 1)A(n− 1, d)+ (n−
d)A(n− 1, d− 1) for 0 < d < n.

The propositions (i),(ii), and (iii) yield the same recursion as for the Eulerian
numbers. Hence, A(n, d) =

〈
n
d

〉
. ��

Bannai et al. [4] showed that each suffix array with d R+-descents can be
associated with a string of at least d + 1 different characters. Therefore, we sum
up the appropriate suffix arrays to obtain the number of suffix arrays for strings
over a fixed size alphabet.

Corollary 1. Let Σ be a fixed size alphabet, σ = |Σ|. The number of distinct
suffix arrays of length n for strings over Σ is

∑σ−1
d=0

〈
n
d

〉
.

Proof. After Bannai et al. [4], all suffix arrays with up to σ− 1 descents have at
least one string with no more than σ characters. ��

64 K.-B. Schürmann and J. Stoye

Many application areas for suffix arrays handle small alphabets like the DNA,
amino acid, or ASCII alphabet. Corollary 1 thus limits the number of distinct
suffix arrays for such applications. For a DNA alphabet of size 4, for example, the
number of distinct suffix arrays of length 15 is 861, 948, 404 =

∑3
d=0

〈15
d

〉
, whereas

the number of possible permutations of length 15 is 1, 307, 674, 368, 000 = 15!
which is about 1, 517 times larger, and this difference rapidly increases for larger
n.

Moreover, we achieve a lower bound on the compressibility of the whole
information content of suffix arrays.
Corollary 2. For strings of length n over an alphabet of size σ, the lower
bound for the compressibility of their suffix arrays in the Kolmogorov sense is
log
∑σ−1

d=0

〈
n
d

〉
.

Proof. There are
∑σ−1

d=0

〈
n
d

〉
distinct suffix arrays. Among them, there exists

at least one binary representation with Kolmogorov complexity not less than
log
∑σ−1

d=0

〈
n
d

〉
. ��

5 Summation Identities

We present constructive proofs for two long known summation identities of
Eulerian numbers deduced by summing up the number of different suffix ar-
rays for fixed alphabet size and string length. We believe that our constructive
proofs are simpler than previous ones.

The identity σn =
∑

i

〈
n
i

〉(
σ+i
n

)
, as given in [16–eq. 6.37], was proved by J.

Worpitzki, already in 1883. We prove it by summing up the number of distinct
strings of length n over a given alphabet of size σ for each suffix array:

σn =
σ−1∑
d=0

〈
n

d

〉(
n + σ − d− 1

σ − d− 1

)
(1)

=
σ−1∑
d=0

〈
n

n− 1− d

〉(
n + σ − d− 1

n

)
(2)

=
n−1∑

i=n−σ

〈
n

i

〉(
σ + i

n

)
(3)

=
∑

i

〈
n

i

〉(
σ + i

n

)
. (4)

Equality (2) follows from the symmetry rule for Eulerian and binomial numbers,
equality (3) from substituting i = n − d − 1, and equality (4) from

〈
n
i

〉
= 0 for

all i ≥ n and
(
a+i
n

)
= 0 for all i < n− σ, respectively.

The second summation identity, which we are concerned with, is the summa-
tion rule for Eulerian numbers to generate the Stirling numbers of the second
kind [16–Eq. 6.39]: k!

{
n
k

}
=
∑

i

〈
n
i

〉(
i

n−k

)
. To prove this identity, we count the

k!
{

n
k

}
strings composed of exactly k different characters. Summing up these

strings for each suffix array gives

Counting Suffix Arrays and Strings 65

k!
{

n

k

}
=

k−1∑
d=0

〈
n

d

〉(
n− d− 1
k − d− 1

)
(5)

=
∑

d

〈
n

d

〉(
(n− k) + (k − d− 1)

k − d− 1

)
(6)

=
∑

d

〈
n

n− 1− d

〉(
n− d− 1

n− k

)
(7)

=
∑

i

〈
n

i

〉(
i

n− k

)
. (8)

Equality (6) holds since
〈

n
d

〉
= 0 for d ≥ k, equality (7) follows from the symme-

try rule for Eulerian and binomial numbers, and equality (8) from substituting
d = n− 1− i.

6 Conclusion

We have presented constructive proofs to count the strings sharing the same suf-
fix array as well as the distinct suffix arrays for fixed size alphabets. For alphabets
of size σ,

(
n+σ−d−1

σ−d−1

)
strings share the same suffix array (with d R+-descents)

among which
(
n−d−1
σ−d−1

)
are composed of exactly σ distinct characters. For these

strings we have given a bijection into the set of non-decreasing sequences over
σ−d integers. The number of distinct suffix arrays is

∑σ−1
d=0

〈
n
d

〉
. This has yielded

a log
∑σ−1

d=0

〈
n
d

〉
lower bound for the compressibility of such suffix arrays.

Moreover, summing up the number of strings for each suffix array yields con-
structive proofs for Worpitzki’s identity and for the summation rule of Eulerian
numbers to generate the Stirling numbers of the second kind, respectively. One
could also say the number of suffix arrays and its strings form a particular in-
stance of these identities.

Of further interest will be the development of efficient enumeration algo-
rithms for which our constructive proofs have already suggested suitable meth-
ods. For the enumeration of strings sharing the same suffix array, we have proved
the equivalence to the enumeration of non-decreasing sequences which can be
easily performed in optimal time, whereas the enumeration of distinct suffix
arrays in optimal time requires further development.

Acknowledgments. We thank Veli Mäkinen, Hans-Michael Kaltenbach, and Con-
stantin Bannert for helpful discussions.

References

1. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing 22 (1993) 935–948

2. Gonnet, G.H., Baeza-Yates, R.A., Snider, T.: New indices for text: Pat trees and
pat arrays. In Frakes, W.B., Baeza-Yates, R.A., eds.: Information retrieval: data
structures and algorithms. Prentice-Hall (1992) 66–82

66 K.-B. Schürmann and J. Stoye

3. Abouelhoda, M.I., Kurtz, S., Ohlebusch, E.: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2 (2004) 53–86

4. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Proceedings of the 28th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2003). Volume 2747 of LNCS., Springer
Verlag (2003) 208–217

5. Burkhardt, S., Kärkkäinen, J.: Fast lightweight suffix array construction and check-
ing. In: Proceedings of the 14th Annual Symposium on Combinatorial Pattern
Matching (CPM 2003). Volume 2676 of LNCS., Springer Verlag (2003) 55–69

6. Duval, J.P., Lefebvre, A.: Words over an ordered alphabet and suffix permutations.
RAIRO – Theoretical Informatics and Applications 36 (2002) 249–259

7. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
Technical Report 124, Digital System Research Center (1994)

8. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. In: Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing (STOC 2000). (2000) 397–406

9. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proceedings of the 41st Annual Symposium on Foundations of Computer Science
(FOCS 2000), IEEE Computer Society (2000) 390–398

10. Sadakane, K.: Compressed text databases with efficient query algorithms based on
the compressed suffix array. In: Proceedings of the 11th International Symposium
on Algorithms and Computation (ISAAC 2000). Volume 1969 of LNCS., Springer
Verlag (2000) 410–421

11. He, M., Munro, J.I., Rao, S.S.: A categorization theorem on suffix arrays with
applications to space efficient text indexes. In: Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), SIAM (2005) 23–
32

12. Demaine, E.D., López-Ortiz, A.: A linear lower bound on index size for text
retrieval. Journal of Algorithms 48 (2003) 2–15

13. Miltersen, P.B.: Lower bounds on the size of selection and rank indexes. In:
Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2005), SIAM (2005) 11–12

14. Crochemore, M., Désarménien, J., Perrin, D.: A note on the Burrows-Wheeler
transformation. Theoretical Computer Science 332 (2005) 567–572

15. Schürmann, K.B., Stoye, J.: Counting suffix arrays and strings. Technical Report
2005-04, Technische Fakultät, Universität Bielefeld, Germany (2005)

16. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics. Second edn.
Addison-Wesley (1994)

17. Moore, D., Smyth, W.F., Miller, D.: Counting distinct strings. Algorithmica 23
(1999) 1–13

Towards Real-Time Suffix Tree Construction

Amihood Amir1,2,�, Tsvi Kopelowitz1,
Moshe Lewenstein1,��, and Noa Lewenstein3

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
2 College of Computing, Georgia Tech, Atlanta GA 30332-0280

3 Department of Computer Science, Netanya College, Israel

Abstract. The quest for a real-time suffix tree construction algorithm
is over three decades old. To date there is no convincing understandable
solution to this problem. This paper makes a step in this direction by
constructing a suffix tree online in time O(log n) per every single input
symbol. Clearly, it is impossible to achieve better than O(log n) time
per symbol in the comparison model, therefore no true real time algo-
rithm can exist for infinite alphabets. Nevertheless, the best that can
be hoped for is that the construction time for every symbol does not
exceed O(log n) (as opposed to an amortized O(log n) time per symbol,
achieved by current known algorithms). To our knowledge, our algorithm
is the first that spends in the worst case O(log n) per every single input
symbol.

We also provide a simple algorithm that constructs online an in-
dexing structure (the BIS) in time O(log n) per input symbol, where
n is the number of text symbols input thus far. This structure and
fast LCP (Longest Common Prefix) queries on it, provide the back-
bone for the suffix tree construction. Together, our two data structures
provide a searching algorithm for a pattern of length m whose time is
O(min(m log |Σ|, m + log n) + tocc), where tocc is the number of occur-
rences of the pattern.

1 Introduction

Indexing is one of the most important paradigms in searching. The idea is to
preprocess the text and construct a mechanism that will later provide answer to
queries of the the form ”does a pattern P occur in the text” in time proportional
to the size of the pattern rather than the text. The suffix tree [7,13,16,17] and
suffix array [11,12] have proven to be invaluable data structures for indexing.

One of the intriguing questions that has been plaguing the algorithms com-
munity is whether there exists a real time indexing algorithm. An algorithm is
online if it accomplishes its task for the ith input without needing the i + 1st
input. It is real-time if, in addition, the time it operates between inputs is a con-
stant. While not all suffix trees algorithms are online (e.g. McCreight, Farach)

� Partly supported by NSF grant CCR-01-04494 and ISF grant 282/01.
�� Partially supported by an IBM Faculty Fellowship.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 67–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

68 A. Amir et al.

some certainly are (e.g. Weiner, Ukkonen). Nevertheless, the quest for a real-
time indexing algorithm is over 30 years old. It should be remarked that Weiner
basically constructs an online reverse prefix tree. In other words, to use Weiner’s
algorithm for online indexing queries, one would need to reverse the pattern.
For real-time construction there is some intuition for constructing prefix, rather
than suffix trees, since the addition of a single symbol in a suffix tree may cause
Ω(n) changes, whereas this is never the case in a prefix tree.

It should be remarked that for infinite alphabets, no real-time algorithm is
possible since the suffix tree can be used for sorting. All known comparison-
based online suffix tree construction algorithms have amortized time O(n log n),
for suffix tree or suffix array construction, and O(m log n+ tocc) (in suffix trees),
or O(m + log n + tocc) (in suffix arrays) search time. The latter uses non-trivial
pre-processing for LCP (longest common prefix) queries. However, the best that
can be hoped for (but not hitherto achieved) is an algorithm that pays at least
Ω(log n) time for every single input symbol.

The problem of dynamic indexing, where changes can be made anywhere
in the text has been addressed as well. Real-time indexing can be viewed as
a special case of dynamic indexing, where the change is insertions and dele-
tions at the end (or, symmetrically, the beginning) of the text. If dynamic in-
dexing could be done in constant time per update, then it would result in a
real-time indexing algorithm. Sahinalp and Vishkin [15] provide a dynamic in-
dexing where updates are done in time O(log3 n). This result was improved
by Alstrup, Brodal and Rauhe [14] to an O(log2 n log log n log∗ n) update time
and O(m + log n log log n + tocc) search time. To date, the pattern matching
community still seeks a simple algorithm for the real-time indexing problem.
The motivation for real-time indexing is the case where the data arrives in a
constant stream and indexing queries are asked while the data stream is still
arriving. Clearly a real-time suffix tree construction answers this need.

Grossi and Italiano [9] provide a dynamic data structure for online handling
of multidimensional keys. Their algorithm needed to be further tuned to al-
low indexing of a single text. Such improvement was made by Franceschini and
Grossi [8]. However, their algorithm uses complex data structures for handling
LCP and does not provide a suffix tree.

Our contribution is the first algorithm for online suffix tree construction
over unbounded alphabets where the worst case processing per input symbol
is O(log n), where n is the length of the text input so far. Furthermore, the
search time for a pattern of length m is O(min(m log |Σ|, m + log n)), where Σ
is the alphabet. This matches the best times for amortized algorithms in the
comparison model.

Similar complexity results for searches on a suffix list can also be achieved
by the techniques of Franceschini and Grossi [8]. They give a full constant-time
LCP query mechanism. We present a data-structure that avoids their heavy
machinery and solves the problem more simply and directly. In some sense we
use the simpler techniques of [9] to solve the indexing problem. In addition, this

Towards Real-Time Suffix Tree Construction 69

is the first known algorithm that builds a suffix tree on-line with time O(log n)
per input symbol.

Our paper is divided into two main thrusts. In the first we construct a bal-
anced indexing data structure which enables insertions (and deletions) in time
O(log n). For the O(m+log n+tocc) search it was necessary to devise an efficient
dynamic LCP mechanism.

The more innovative part is the second thrust of the paper, where we maintain
and insert incoming symbols into a suffix tree in time O(log n) per symbol. We
employ some interesting observations that enable a binary search on the path
when a new node needs to be added to the suffix tree.

We note that deletions of letters from the beginning of the text can also be
handled within the same bounds. This is left for the journal version. Also, all of
the omitted proofs are left for the journal version.

2 Preliminaries and Definitions

Consider a text S of length n and let S1, · · · , Sn be the suffixes of S. We describe a
new data structure for indexing, which we call the Balanced Indexing Structure,
BIS for short. The Balanced Indexing Structure has as its basic elements, n
nodes, one for each suffix Si. The node corresponding to the suffix Si is denoted
by node(Si). The suffix associated with a given node u (or the suffix that u
represents) is denoted by suffix(u). However, when clear from the context, we
allow ourselves to abuse notation and to refer to node u as the suffix it represents.

The BIS data structure will incorporate three data structures on these nodes.
(1) An ordered list of the suffixes in lexicographic order, as in a suffix array or
the leaves of a suffix tree, (2) a balanced search tree on the suffixes, where the
node ordering is lexicographic (we specifically use AVL trees [1] - although other
binary search trees can also be used such as red-black trees [3] and B-trees [2])
and (3) a textual ordering of the suffixes.

Within the BIS data structure we maintain pointers on the nodes to capture
the three data structures we just mentioned, namely:

1. Suffix order pointers: next(u) and previous(u) representing the node v that is
the lexicographic successor and predecessor of suffix(u), respectively.

2. Balanced tree pointers: left(u), right(u), and parent(u).
3. Text pointers textlink(u) - if node u represents suffix ax then textlink(u) is the

node v representing suffix x.

A node u is called a leaf if it is a leaf with respect to the balanced tree. A node
u is called the root if it is the root with respect to the balanced tree. Likewise,
when we refer to a subtree of a node u we mean the subtree of node u with
respect the balanced tree. A node u is said to be a descendant of v if it appears
in v’s subtree. A leaf v is said to be the rightmost, or leftmost, leaf of a node u
if for all nodes x such that x is in u’s subtree and v is in x’s subtree, v is in the
subtree of right(x), respectively left(x). A node u is said to be between nodes x
and y if x is u’s lexicographic predecessor and y is u’s lexicographic successor.

70 A. Amir et al.

We now state a couple of connections between the lexicographic ordered list
and the balanced tree that will be useful in handling the BIS data structure.
The following observations can be easily proven and hence we omit their proofs.

Observation 1. Let u be a node that is not a leaf. Then the rightmost leaf in
the subtree of left(u) is previous(u) and the leftmost leaf in the subtree of right(u)
is next(u).

Observation 2. Let r be a node. Then (1) if u = left(r), then v is between u
and r iff v is in u’s right subtree, and (2) if u = right(r), then v is between u
and r iff v is in u’s left subtree.

We also maintain a copy of the text and point out that although the text
changes dynamically by insertions to its head it can be dynamically main-
tained with O(1) time per operation by using standard doubling and halving
de-amortization techniques. Likewise we directly index into the text taking into
account that the insertions are done at the head of the text.

We note that auxiliary information will still be needed within the BIS data
structure for the queries. We show how this information is stored and maintained
in Section 4.

3 BIS Operations

Obviously, using a suffix-array the suffix order pointers can be constructed in lin-
ear time, from which the balanced tree pointers can be created. The text pointers
are easy to create. However, the purpose of the BIS is to support indexing when
the text is online. So, our goal is to support Addition(a, x) (updating the data
structure for x into the data structure for ax, and Query(p, x) (finding all of
the occurrences of p in x). In this section we show how to support the addition
operation and in the next we show how to handle queries.

3.1 Addition Operation

Assume we have the BIS for string T̄ = x of size n, and we want to update the
BIS to be for T = aT̄ = ax where a ∈ Σ by inserting the new suffix ax into the
data structure. To do so, we traverse the BIS on its balanced tree pointers, with
ax, starting from the root. We make a lexicographic comparison between ax and
the suffix represented by each node and continue left or right accordingly. We
continue comparing until we reach a leaf (we must reach a leaf as any node u in
the BIS, and in particular the nodes on the traversal path, have u �= ax, as ax
is the longest suffix). Assume the suffix associated with the leaf is S. So from
the properties of binary search trees we know that either ax is between S and
next(S), or between previous(S) and S. By comparing ax with S we can know
which of the two options is correct, and then we can insert ax into the list and
into the balanced tree (maintaining balancing).

In order for us to compare ax with a suffix of T̄ we can note that the order
is determined either by the first letters of the strings, and if those letter are

Towards Real-Time Suffix Tree Construction 71

the same, then using the textlinks and the data structure presented by Dietz
and Sleator in [6] (or the simplified data structures of Bender, Cole, Demaine,
Farach-Colton and Zito [4]) we can compare the two strings in constant time.
Of course, when inserting a new suffix, we must also insert it into the Dietz and
Sleator data structure, and balance the BIS. Full details will be prvided in the
journal version. This gives us the following:

Theorem 3. We can maintain the BIS of an online text under additions in
O(log n) worst-case time per update, where n is the size of the current text.

4 Navigating and Querying Balanced Indexing Structures

In the previous section we saw how to construct an online BIS. In this section we
show how to answer indexing queries on the BIS. An indexing query is a pattern
P = p1p2 · · · pm for which we wish to find all occurrences of P in a text T .

We use the BIS of T in a similar way to that of the query on a suffix array,
which takes O(m + log n + tocc) time. When answering a query using the suffix
array we preprocess information in order to be able to answer longest common
prefix (LCP) queries between any two suffixes in constant time. One seeks the
pattern in a binary search of the suffix array, where the LCP is used to speed
up the comparison and decide the direction of the binary search. The following
lemma can be easily proven and is crucial for answering queries in a suffix array.

Lemma 1. For string T = t1t2...tn let π(i) denote the rank of the ith suffix of
T in the lexicographic ordering of the suffixes of T . Then for π(i) < π(j):

lcp(Tπ(i), Tπ(j)) = minπ(i)≤k<π(j)lcp(Tk, Tk+1)

Corollary 1. For string T = t1t2...tn let π(i) denote the rank of the ith suffix of
T in the lexicographic ordering of the suffixes of T . Then for any π(i) < � < π(j):

lcp(Tπ(i), Tπ(j)) = min(lcp(Tπ(i), T�), lcp(T�, Tπ(j)))

However, there are two issues that need to be considered in our online setting.
The first is how to perform a binary-like search on the ordered list of suffixes,
and the second is how to implement the LCP queries (being that we cannot
preprocess in an online setting). For the first we use the induced balanced tree
of the BIS to perform a binary-like search on the ordered list of suffixes (we
elaborate on this later). For the second we maintain the following information
for each node u in the BIS: the LCP between the leftmost leaf and the right-
most leaf of the subtree of u(denoted by lcpsub(u)), and the LCP between u
and previous(u). We first show how this information helps us answer indexing
queries in O(m + log n + tocc) time, and then, how to maintain this information
through additions.

4.1 Answering Indexing Queries

We are given a pattern P = p1p2 · · · pm and wish to find all of the occurrences
of P in T using the ordered list of suffixes of T . As we mentioned before, the

72 A. Amir et al.

idea is to perform a binary-like search on the ordered list of suffixes using the
induced balanced tree of the BIS. We begin with the following lemmas that will
lead to our query algorithm.

Lemma 2. Let r be a node in the BIS of T , u a node in left(r)’s subtree
(right(r)’s subtree, respectively), and k = lcp(r, P). If all of the occurrences of P
in T correspond to nodes which are in the subtree of u, then: (1) if lcp(r, u) < k
then all occurrences of P in T correspond to nodes in the subtree of right(u) (sub-
tree of left(u), respectively), and (2) if lcp(r, u) > k, then all occurrences of P in
T correspond to nodes in the subtree of left(u) (subtree of right(u),respectively).

We now present a recursive procedure which answers an indexing query.

IndexQuery(node root, string P)

1. for(i = 1; i < m; i + +)
(a) if pi < tlocation(root)+i−1 then return IQR(u,left(root),P,i− 1)
(b) if pi > tlocatin(root)+i−1 then return IQR(u,right(root),P,i− 1)

2. return root

IQR(node r, node u, string P , int k)

1. � ← lcp(r, u).
2. if � = k then

(a) for(i = k + 1; i < m; i + +)
i. if pi < tlocation(u)+i−1 then return IQR(u,left(u),P,i− 1)
ii. if pi > tlocation(u)+i−1 then return IQR(u,right(u),P,i− 1)

(b) return u
3. if u is a leaf then return NIL
4. if u is in r’s left subtree then

(a) if � < k then return IQR(r,right(u),P,k)
(b) else then return IQR(r,left(u),P,k)

5. if u is in r’s right subtree then
(a) if � < k then return IQR(r,left(u),P,k)
(b) else then return IQR(r,right(u),P,k)

Theorem 4. (Correctness:) The algorithm IndexQuery(root, P), where root
is the root of the BIS of T and P is the query pattern, returns NIL if P does
not occur in T , and otherwise, it returns a node v such that P matches T at
location(v), and all other occurrences of P in T correspond to suffixes with nodes
in the subtree of v.

Now, in order to analyze the running time of IndexQuery, we need the fol-
lowing lemma regarding the time it takes to calculate the LCP in step 1 of the
IQR procedure.

Lemma 3. Step 1 in IQR can be implemented to take constant time.

Lemma 4. (Running Time:) The procedure IndexQuery takes has running
time O(m + log n).

Towards Real-Time Suffix Tree Construction 73

Theorem 5. Let T be a text of size n, P be a pattern of size m, G be the BIS
for T , and root be the root of G. Denote by occ the number of occurrences of
P in T . Then there exists an algorithm which runs in O(m + log n + occ) time,
returns NIL if occ = 0, and otherwise, it returns all occ nodes in G such that P
matches T at the locations of those nodes.

Proof. The IndexQuery and IQR can easily be manipulated to find all occur-
rences in the desired upper bound. ��

4.2 Answering LCP Queries and Maintaining the LCP Data

As we will soon see, in order to be able to maintain the LCP data, we need to
be able to answer LCP queries between any two suffixes u and v in the BIS in
O(log n) time. This can be done by finding the least common ancestor of u and
v in the balanced tree (denote this node by Ru,v), and then use Corollary 1 and
Lemma 3 to calculate the LCp in O(log n) time. The full details are left for the
journal version.

Now, when inserting the suffix ax into the BIS, ordered after S = s1s2...sr

and before S′ = s′1s
′
2...s

′
r′ we need to update lcp(node(ax), previous(node(ax))),

and lcp(node(S′), previous(node(S′))). If S = ay then lcp(S, ax) = 1 + lcp(x, y)
which we showed can be calculated in O(log n) time. If s1 �= a then lcp(S, ax) =
0. The computation of lcp(node(S′), previous(node(S′))) is done in a symmetric
manner. Regarding lcpsub for the nodes in the BIS, we note that the nodes
affected due to the new addition are only the nodes that are ancestors of the
new node in the BIS. Thus, we can traverse up the BIS from the new node, and
update the LCP data in O(log n) time. Of course, we must also balance the BIS.
Again, the full details are left for the journal version.

5 Online Construction of Suffix Trees

We now present an online procedure which builds a suffix tree in O(log n) time
per insertion of a letter to the beginning of the text. Our solution uses the BIS
for the construction. We already showed that the BIS can be constructed in
O(log n) time per addition. This is now extended to the suffix tree construction.

5.1 Suffix Tree Data

We first describe the relevant information maintained within each inner node in
the suffix tree. Later we will show how to maintain it through insertions. For a
static text, each node in the suffix tree has a maximum outdegree of |Σ| where
Σ is the size of the alphabet of the string We use a balanced search tree for
each node in the suffix tree (not to be confused with the balanced search tree
from the previous section). Each such balanced search tree contains only nodes
corresponding to letters of outgoing edges. This gives linear space, but we spend
O(log |Σ|) time locating the outgoing edge at a node. We can use this solution
in the online scenario because balanced search trees allow us to insert and delete

74 A. Amir et al.

new edges dynamically. Therefore, we assume that the cost of adding or deleting
an outgoing edge is O(log |Σ|). The time for locating an outgoing edge is also
O(log |Σ|). Note that we always have |Σ| ≤ n. Hence, if during the process of
an addition we insert or remove a constant number edges in the suffix tree, the
total cost is bounded by O(log n) as needed. In addition, for each node in the
suffix tree we maintain the length of the string corresponding to the path from
the root to that node. For a node u in the suffix tree we denote this length
by length(u). We also note that it is possible to maintain suffix links through
insertions, which have proven useful in several applications [10]. The details are
left for the journal version.

For the sake of completeness we note that many of the operations done on
suffix tree (assuming we want linear space) use various pointers to the text in
order to save space for labelling the edges. We leave such issues for the journal
paper. We also note that a copy of the text can be saved in array format may be
necessary for various operations, requiring direct addressing. This can be done
with constant time update by standard deamortization techniques.

5.2 Some Simple Cases

We now proceed to the online construction of the suffix tree. We begin by looking
at some special cases of additions which will give us a better understanding
towards the more general scenarios. It is a known fact that a depth first search
(DFS) on the suffix tree encounters the leaves, which correspond to suffixes, in
lexicographic order of the suffixes. Hence, the leaves of the suffix tree in the
order encountered by the DFS form the lexicographic ordering of suffixes, a part
of the BIS. So, upon inserting ax into the tree, node(ax) is inserted as a leaf,
and according to the lexicographic ordering of the suffixes, we know between (as
defined by the DFS) which two leaves of the suffix tree node(ax) will be inserted.
If the LCP between ax and each of its neighboring suffixes in the lexicographic
order of the suffixes equals zero, then the letter a at the beginning of the text
appears only at the beginning of the text. In such a case we add an outgoing
edge from the root of the suffix tree to node(ax) and we are done. So we assume
that the LCP between ax and at least one of its neighbors is larger than zero. If
the LCP between ax and only one of its neighboring suffixes in the lexicographic
order of the suffixes is more than zero, we know that in the suffix tree for the
string ax, that neighbor and node(ax) share a path from the root till their least
common ancestor (LCA) in the suffix tree. This is because the LCA is equivalent
to the LCP between them. If the LCP between ax and both of its neighboring
suffixes in the lexicographic order of the suffixes is more than zero, the neighbor
whose suffix has the larger LCP with ax has a longer common path with node(ax)
in the suffix tree for the string ax, and what we need to do is find the location on
that neighbor’s path (from the root) that splits towards node(ax). If we can find
this location efficiently we will be done. This is discussed in the next subsection.

5.3 A More General Scenario - Looking for the Entry Node

Continuing the more general case from the previous subsection, we assume
w.l.o.g., that node(ax) is inserted between node(ay) and node(z), where x is

Towards Real-Time Suffix Tree Construction 75

lexicographically bigger than y (hence node(ax) follows node(ay) in the lexico-
graphic order of the suffixes), and ax is lexicographically smaller than z (hence
node(z) follows node(ax) in the lexicographic order of the suffixes). Also, we
assume ,w.l.o.g., that node(ax) will be inserted into the path from the root of
the suffix tree to node(ay), (meaning that lcp(ax, ay) ≥ lcp(ax, z)). All of the
lemmas and definitions in the rest of this section are under these assumptions.
The other possible scenarios use a similar method.

Definition 1. Let x be a string, and a be a character. Then the entry node of
node(ax) in ST (x) is the node v (in ST (x)) of maximal length such that label(v)
is a prefix of ax.

We denote by v the entry node for node(ax). First, note that v is on the path
from the root of ST (x) to node(ay). Also, note that the LCA of node(ay) and
node(z) is either v or an ancestor v (due to the maximality of v). Finally, note
that when we add node(ax) to ST (x) (in order to get ST (ax)), all of the changes
made in the suffix tree are in close vicinity of v. Specifically, the only nodes or
edges which might change are v and its outgoing edges. This is because node(ax)
will enter into the subtree of v, and for each son of v in ST (x), node(ax) cannot
be in its subtree because the label of the son is not a prefix of ax. So our first
task will be to find v which will be the place of entry for node(ax) (we explain
how to do this in the next subsection). After finding v, the two options at hand
will be either to add node(ax) as one of v’s sons, or break one of v’s outgoing
edges into two, creating a new node that will be the parent of node(ax).

In order for us to find v we note that if k = lcp(ay, ax) (we can calculate this
in O(log n) time, as shown above), then v is the node with maximum length on
the path from the root of the suffix tree to node(ay) for which length(v) ≤ k.
Specifically, if we have equality, then v will be the parent of node(ax), and if
there isn’t equality, then we must break an edge for the parent of node(ax). This
observation leads us to the following lemma, which will help us find v efficiently.

Lemma 5. Let x be a string, a be a character, and v be the entry node for
node(ax) in ST (x). If v �= LCA(node(ay), node(z) in ST (x), then there exists
a leaf u in the suffix tree such that v is the LCA u and node(ay), and u is to the
left of node(ay) in the lexicographic order of the suffixes. We call the rightmost
such node in the lexicographic order of the suffixes the beacon of node(ax).

Proof. Note that if v is not the LCA of node(ay) and node(z), then node(ay) is
the right most leaf in v’s subtree. This is because, as mentioned above, the LCA
of node(ay) and node(z) is either v (which we assume is not the case) or a parent
of v. Hence, node(z) is not in v’s subtree. There obviously exists another leaf u
in v’s subtree for which the LCA of u and node(ay) is v, because the outdegree
of v is at least two (by the definition of the suffix tree). ��

5.4 Searching for the Entry Node

We now consider the task of finding the entry node v. We first find the LCA of
node(ay) and node(z) in ST (x). Being that the LCP of any two suffixes S and

76 A. Amir et al.

S′ corresponds to the length in the suffix tree of the LCA of those two suffixes,
the maintenance of the data needed to answer LCA queries is done in a similar
method to that of maintaining the lcp-data. Thus, we can locate the LCA of
any two nodes already in the suffix tree in O(log n). We note that other more
complicated solutions exist (Cole and Hariharan [5]), but they are not needed in
order to maintain our O(log n) upper bound.

After finding the LCA of node(ay) and node(z) in ST (x), we can quickly
check whether this is the entry node v that we are looking for in the following
manner. We simply check whether the length of the LCA is exactly k, and if
not (then it must be less - it cannot be more), in O(log(Σ)) we can find the
outgoing edge from the LCA leading towards node(ay), and in constant time we
can check the length of the node on the other side of that edge - we check if the
length of this node is more than k. If both fail, v is not the LCA of node(ax)
and node(z) in ST (x), and we continue as follows in the next paragraph.

If v is not the LCA of node(ay) and node(z) in ST (x), then from Lemma 5
there exists a node u which is the beacon for node(ax). Once we find u, we
know that v is the LCA of u and node(ay) in ST (x), and u is a leaf. So, as we
previously mentioned, we can find v in O(log n) time. Observe that for any node
w between u and node(ay), lcp(w, ay) > k. This is because lcp(next(u), ay) > k
and Lemma 1. With this observation in hand we can use the balanced tree
pointers in order to find the beacon u using the following method.

Recall that a subtree refers to the subtree of the node in the BIS, unless
stated otherwise. We separate the task of finding u into two. If u is in the
subtree rooted by node(ay), then u must be in the subtree of left(node(ay)).
If u is not in the subtree rooted by node(ay), then we observe that there exists
some subtree that has both node(ay) and u in it. Specifically, if we traverse the
path from node(ay) to the root of the subtree, until we reach the first node w
that has u in its subtree, then u is in the subtree of left(w), and node(ay) is
in the subtree of right(w). This is because if both u and node(ay) are in the
subtree of left(w) or right(w), then w would not be the first node that has
u in its subtree when traversing the path from node(ay) to the root. So, now
we observe that w is lexicographically between u and node(ay) and if w �= u,
then we know that lcp(u, ay) = lcp(w, u). This is because by definition of the
beacon, LCA(w, node(ay)) in ST (x) is an internal node on the path from w
LCA(u, node(ay)) in ST (x), thus lcp(w, ay) > k, and being that k = lcp(u, ay) =
min(lcp(u, w), lcp(w, ay)) we have lcp(u, ay) = lcp(w, u) = k. Using the last two
observations, we can traverse up the tree, spending constant time at each node
(We look for the first node w′ on the path from node(ay) to the root for which
lcpsub(left(w′)) ≤ k), until we reach w.

Now we are left with the situation where we have a node w, the beacon u is
in the subtree of left(w), and lcp(u, ay) = lcp(w, u). Specifically, if u is in the
subtree of node(ay), then w = node(ay), and otherwise, w is the first node that
has u in its subtree when traversing the path from node(ay) to the root. Now,
we begin searching downwards in the subtree rooted by left(w), looking for u.
We use the following recursive procedure in order to achieve this task.

Towards Real-Time Suffix Tree Construction 77

The recursive procedure uses the node-variables r and w. First, we assume
the following invariants in our recursive procedure: u is in the subtree rooted by
r, the right most descendant in the subtree rooted by right(r) is previous(w),
and the LCA in the suffix tree of w and u is v (hence lcp(u, ay) = lcp(w, u)). We
initialize w = w and r = left(w) - the invariants obviously hold. The recursion
is as follows.

FindBeacon(node r, node w)

1. if min(lcpsub(root(right(r))), lcp(w, previous(w)), lcp(r, next(r))) > k then
return FindBeacon(left(r),r)

2. if min(lcpsub(root(B′)), lcp(w, previous(w))) ≤ k then return FindBeacon
(right(r),w)

3. return r

In the first step we check whether u is in the subtree rooted by left(r). We
do this by looking at lcp(r, w). If it is more than k then we know that u is to the
right of r. So we continue recursively to the subtree of left(r) (the invariants
obviously hold). In the second step (assuming u is not in the subtree rooted by
left(r)) we check whether u is in the subtree rooted by right(r). we do this by
looking at lcp(next(r), w). If it is not greater than k, this means that r is not u,
because it is not the rightmost in the lexicographic order of the suffixes which
is to the left of node(ay) for which the lcp is less than or equal to k. So, we
continue searching in the subtree of right(r). finally, if we reach the third step,
we know from the invariant that u is in the subtree rooted by r, but due to steps
one and two, u is not in the subtree rooted by either of r’s sons. So it must be
that u = r. To complete the correctness of the procedure we note that in the
case we reach a leaf (during the recursion), then due to the invariant, that leaf
must be u - so the algorithm will always return our beacon.

5.5 Final Touch

After finding u, we can find the LCA of u and node(ay) in O(log n) (as mentioned
before), giving us the entry node v. After we have found v, we wish to insert
node(ax) into the suffix tree. If length(v) = k, then we simply add an outgoing
edge to v entering node(ax). If length(v) < k then we must break the edge
leading from v to node(ay) to two, creating a new node with length k, and this
new node has a new outgoing edge which connects to node(ax).

The time required to update the suffix tree due to an addition operation
comes from performing a constant number of LCA queries, traversing up and
down the balanced search tree, and performing a constant number of searches,
additions, and removal of outgoing edges. This takes a total of O(log n) time.

Searching for a pattern on the suffix tree can be done in the usual manner
in time O(m log |Σ|) by following the path from the suffix tree root. It is then
possible to find all occurrences by DFS on the subtree rooted at the suffix tree
node corresponding to the pattern, or, if the pattern ends in an edge, the tail
of that edge. The size of this subtree is O(number of leaves) because the suffix
tree has no degree-one nodes.

78 A. Amir et al.

References

1. G.M. Adelson-Velskii and E.M. Landis. An algorithm for the organizaton of infor-
mation. Soviet Math. Doklady, 3:1259–1263, 1962.

2. R. Bayer. Symetric Binary B-trees: Data structure and maintenance algorithms.
In Acta Informatica, 1:290–306, 1972.

3. R. Bayer, E. M. McCreight. Organization and maintenance of large ordered in-
dexes, In Acta Informatica, 1(3):173–189, 1972.

4. M. Bender, R. Cole, E. Demaine, M. Farach-Colton, and J. Zito. Two simplified al-
gorithms for maintaining order in a list. In Proc. 10th Annual European Symposium
on Algorithms (ESA 2002), pages 152–164, 2002.

5. R. Cole and R. Hariharan. Dynamic lca queries in trees. In Proc. 10th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 235–244, 1999.

6. P.F. Dietz and D.D. Sleator. Two algorithms for maintaining order in a list. In
Proc. 19th ACM Symposium on Theory of Computing (STOC), pages 365–372,
1987.

7. M. Farach. Optimal suffix tree construction with large alphabets. Proc. 38th IEEE
Symposium on Foundations of Computer Science, pages 137–143, 1997.

8. G. Franceschini and R. Grossi. A general technique for managing strings in
comparison-driven data structures. In Proc. 31 Intl. Col. on Automata, Languages
and Programming (ICALP), pages 606–617, 2004.

9. R. Grossi and G. F. Italiano. Efficient techniques for maintaining multidimensional
keys in linked data structures. In Proc. 26th Intl. Col. on Automata, Languages
and Programming (ICALP), pages 372–381, 1999.

10. Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

11. Juha Kärkkäinen and Peter Sanders. Simple linear work suffix array construction.
In Proc. 30th International Colloquium on Automata, Languages and Programming
(ICALP 03), pages 943–955, 2003. LNCS 2719.

12. U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
In Proc. 1st ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 319–327,
1990.

13. E. M. McCreight. A space-economical suffix tree construction algorithm. J. of the
ACM, 23:262–272, 1976.

14. T. Rauhe S. Alstrup, G. S. Brodal. Pattern matching in dynamic texts. In Proc.
11th ACM-SIAM Symposium on Discrete algorithms(SODA), pages 819–828, 2000.

15. S. C. Sahinalp and U. Vishkin. Efficient approximate and dynamic matching of
patterns using a labeling paradigm. Proc. 37th FOCS, pages 320–328, 1996.

16. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.
17. P. Weiner. Linear pattern matching algorithm. Proc. 14 IEEE Symposium on

Switching and Automata Theory, pages 1–11, 1973.

Rank-Sensitive Data Structures

Iwona Bialynicka-Birula and Roberto Grossi

Dipartimento di Informatica, Università di Pisa,
Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

{iwona, grossi}@di.unipi.it

Abstract. Output-sensitive data structures result from preprocessing n
items and are capable of reporting the items satisfying an on-line query
in O(t(n) + �) time, where t(n) is the cost of traversing the structure
and � ≤ n is the number of reported items satisfying the query. In this
paper we focus on rank-sensitive data structures, which are additionally
given a ranking of the n items, so that just the top k best-ranking items
should be reported at query time, sorted in rank order, at a cost of
O(t(n) + k) time. Note that k is part of the query as a parameter under
the control of the user (as opposed to � which is query-dependent). We
explore the problem of adding rank-sensitivity to data structures such
as suffix trees or range trees, where the � items satisfying the query form
O(polylog(n)) intervals of consecutive entries from which we choose the
top k best-ranking ones. Letting s(n) be the number of items (including
their copies) stored in the original data structures, we increase the space
by an additional term of O(s(n) lgε n) memory words of space, each of
O(lg n) bits, for any positive constant ε < 1. We allow for changing
the ranking on the fly during the lifetime of the data structures, with
ranking values in 0 . . . O(n). In this case, query time becomes O(t(n)+k)
plus O(lg n/ lg lg n) per interval; each change in the ranking and each
insertion/deletion of an item takes O(lg n) time; the additional term in
space occupancy increases to O(s(n) lg n/ lg lg n).

1 Introduction

Output-sensitive data structures are at the heart of text searching [13], geo-
metric searching [5], database searching [28], and information retrieval in gen-
eral [3,31]. They are the result of preprocessing n items (these can be textual
data, geometric data, database records, multimedia, or any other kind of data)
into O(n polylog(n)) space in such a way, as to allow quickly answering on-line
queries in O(t(n) + �) time, where t(n) = o(n) is the cost of querying the data
structure (typically t(n) = polylog(n)). The term output-sensitive means that
the query cost is proportional to �, the number of reported items satisfying the
query, assuming that � ≤ n can be much smaller than n. In literature, a lot of
effort has been devoted to minimizing t(n), while the dependency on the vari-
able cost � has been considered unavoidable because it depends on the items
satisfying the given query and cannot be predicted before querying.

In recent years we have been literally overwhelmed by the electronic data
available in fields ranging from information retrieval, through text processing and

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 79–90, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

80 I. Bialynicka-Birula and R. Grossi

computational geometry to computational biology. For instance, the number �
of items reported by search engines can be so huge as to hinder any reasonable
attempt at their post-processing. In other words, n is very large but � is very
large too (even if � is much smaller than n). Output-sensitive data structures
are too optimistic in a case such as this, and returning all the � items is not the
solution to the torrent of information.

Motivation. Search engines are just one example; many situations arising in
large scale searching share a similar problem. But what if we have some pref-
erence regarding the items stored in the output-sensitive data structures? The
solution in this case involves assigning an application-dependent ranking to the
items, so that the top k best-ranking items among the � ones satisfying an on-line
query can be returned sorted in rank order. (We assume that k ≤ � although the
general bound is indeed for min{k, �}.) Note that the overload is significantly
reduced when k � �. For example, PageRank [24] is at the heart of the Google
engine, but many other rankings are available for other types of data. Z-order
is useful in graphics, since it is the order in which geometrical objects are dis-
played on the screen [14]. Records in databases can be returned in the order of
their physical location (to minimize disk seek time) or according to a time order
(e.g. press news). Positions in biological sequences can be ranked according to
their biological function and relevance [13]. These are just basic examples, but
more can be found in statistics, geographic information systems, etc.

Our Results for Rank-Sensitive Data Structures. In this paper, we study
the theoretical framework for a class of rank-sensitive data structures. They
are obtained from output-sensitive data structures such as suffix trees [30,27]
or range trees [5], where the � items satisfying the query form O(polylog(n))
intervals of consecutive entries each. For example, string searching in suffix trees
and tries goes along a path leading to a node v, whose descending leaves represent
the � occurrences to report, say, from leaf v1 to leaf v2 in symmetrical order.
In one-dimensional range searching, two paths leading to two leaves v1 and v2
identify the � items lying in the range. In both cases, we locate an interval of
consecutive entries in the symmetrical order, from v1 to v2. In two-dimensional
range trees, we locate O(lg n) such (disjoint) intervals. For higher dimensions,
we have O(polylog(n)) disjoint intervals.

As previously said, for this class of output-sensitive data structures, we obtain
the retrieved items as the union of O(polylog(n)) disjoint intervals. We provide
a framework for transforming such intervals into rank-sensitive data structures
from which we choose the top k best-ranking items satisfying a query. We aim
at a cost dependency on the parameter k specified by the user rather than
on the query-dependent term �. Let rank denote a ranking function such that
rank(v1) < rank(v2) signifies that item v1 should be preferred to item v2. We do
not enter into a discussion of the quality of the ranking adopted; for us, it just
induces a total order on the importance of the items to store. Let s(n) be the
number of items (including their copies) stored in any such data structure D.
Let O(t(n) + �) be its query time and let |D| be the number of memory words
of space it occupies, each word composed of O(lg n) bits. We obtain a rank-

Rank-Sensitive Data Structures 81

sensitive data structure D′, with O(t(n) + k) query time, increasing the space
to |D′| = |D|+ O(s(n) lgε n) memory words, for any positive constant ε < 1.

We allow for changing rank on the fly during the lifetime of the data struc-
ture D′, with ranking values in the range from 0 to O(n). In this case, query
time becomes O(t(n) + k) plus O(lg n/ lg lg n) per interval and each change in
the ranking takes O(lg n) time per item copy. Our solution operates in real
time as we discuss later. When D allows for insert and delete operations on
the set of items, we obtain an additive cost of O(lg n/ lg lg n) time per query
operation and O(lg n) time per update operation in D′. The space occupancy is
|D′| = |D|+ O(s(n) lg n/ lg lg n) memory words. The preprocessing cost of D′ is
dominated by sorting the items according to rank , plus the preprocessing cost
of D.

Attacking the Problem. While ranking itself has been the subject of intense
theoretical investigation in the context of search engines [17,18,24], we could not
find any explicit study pertaining to ranking in the context of data structures.
The only published data structure of this kind is the inverted lists [31] in which
the documents are sorted according to their rank order. McCreight’s paper on
priority search trees [19] refers to enumeration in increasing order along the y-
axis but it does not indeed discuss how to report the items in sorted order along
the y-axis. An indirect form of ranking can be found in the (dynamic) rectangular
intersection with priorities [15] and in the document listing problem [21].

For our class of output-sensitive data structures, we can formulate the ranking
problem as a geometric problem. We are given a (dynamic) list L of n entries,
where each entry e ∈ L has an associated value rank(e) ∈ 0 . . .O(n). The list
induces a linear order on its entries, such that ei < ej if and only if ei precedes
ej in L. Let us indicate by pos(e) the (dynamic) position of e in L (but we do
not maintain pos explicitly). Hence, ei < ej if and only if pos(ei) < pos(ej). We
associate point (pos(e), rank (e)) with each entry e ∈ L. Then, given ei and ej ,
let e′ be the kth entry in rank order such that pos(ei) ≤ pos(e′) ≤ pos(ej). We
perform a three-sided or 1 1

2 -dimensional query on pos(ei) . . . pos(ej) along the
x-axis, and 0 . . . rank(e′) along the y-axis.

Priority search trees [19] and Cartesian trees [29] are among the prominent
data structures supporting these queries, but do not provide items in sorted order
(they can end up with half of the items unsorted during their traversal). Since
we can identify the aforementioned e′ by a variation of [10], in O(k) time, we
can retrieve the top k best-ranking items in O(k + lg n) time in unsorted order.
Improvements to get O(k) time can be made using scaling [12] or persistent data
structures [6,8,16]. Subsequent sorting reports the items in O(k lg k) time using
O(n) words of memory.

What if we adopt the above solution in a real-time setting? Think of a server
that provides items in rank order on the fly, or any other similar real-time appli-
cation in which guaranteed response time is mandatory. Given a query, the above
solution and its variants can only start listing the first items after O(t(n)+k lg k)
time! In contrast, our solution works in real-time by using more space. After
O(t(n)) time, it provides each subsequent item in O(1) worst-case time accord-

82 I. Bialynicka-Birula and R. Grossi

ing to the rank order (i.e. the qth item in rank order is listed after c1t(n) + c2q
steps, for 1 ≤ q ≤ k and constants c1, c2 > 0).

Persistent data structures can attain real-time performance, in an efficient
way, only in a static setting. Let us denote L’s entries by e0, e1, . . . , en−1, and
build persistent sublists of 2r consecutive entries, for r = 0, 1, . . . , lg n. Namely,
for fixed r, we start from the sublist containing e0, e1, . . . , e2r−1 in sorted rank
order. Then, for i = 2r, . . . , n − 1, we remove entry ei−2r and add ei using
persistence to create a new version of the sorted sublist. Now, given our query
with ei and ej, we compute the largest r such that 2r ≤ j − i. Among the
versions of the sublists for 2r entries, we take the one starting at ei and the one
ending in ej . Merging these two lists on the fly for k steps solves the ranking
problem. This solution has two drawbacks. First, it uses more space than our
solution. Second, it is hard to dynamize since a single entry changing in L can
affect Θ(n) versions in the worst case. (Also the previous solutions based on
persistence, priority search trees and Cartesian trees suffer similar problems in
the dynamic setting.) We extend the notion of Q-heap [11] to implement our
solution, introducing multi-Q-heaps described in Section 3.

2 The Static Case and Its Dynamization

Our starting point is a well-known scheme adopted for two-dimensional range
trees [5]. Following the global rebuilding technique described in [23], we can
restrict our attention to values of n in the range 0 . . .O(N) where n = Θ(N).
Consequently, we use lookup tables tailored for N , so that when the value of N
must double or halve, we also rebuild these tables in o(N) time. Our word size
is O(lg N). As can be seen from [23], time bounds can be made worst-case.

We recall that the interval is taken from the list of items L = e0, e1, . . . , en−1,
indicating with pos(ei) the dynamic position of ei in L (but we do not keep pos
explicitly) and with rank(ei) its rank value in 0 . . .O(N). We use a special rank
value +∞ that is larger than the other rank values; multiple copies of +∞ are
each different from the other (and take O(lg N) bits each).

2.1 Static Case on a Single Interval

We employ a weight-balanced B-tree W [2] as the skeleton structure. At the
moment, suppose that W has degree exactly two in the internal nodes and that
the n items in L are stored in the leaves of W , assuming that each leaf stores
a single item. For each node u ∈ W , let R(u) denote the explicit sorted list of
the items in the leaves descending from u, according to rank order. If u0 and u1
are the two children of u, we have that R(u) is the merge of R(u0) and R(u1).
Therefore, we can use 0s and 1s to mark the entries in R(u) that originate,
respectively, from R(u0) and R(u1). We obtain B(u), a bitstring of |R(u)| bits,
totalizing O(n lg n) bits, hence O(n) words of memory, for the entire W (see [4]).

Rank query works as expected [5]. Given entries ei and ej in L, we locate
their leaves in W , say vi and vj . We find their least common ancestor w in W
(the case vi = vj is trivial). On the path from w to vi, we traverse O(lg n)

Rank-Sensitive Data Structures 83

internal nodes. If during this traversal, we go from node u to its left child u0,
we consider the list R(u1), where u1 is the right child of u. Analogously, on the
path from w to vj , if we go from node u to its right child u1, we consider list
R(u0) for its left child. In all other cases, we skip the nodes (including w and its
two children). Clearly, we include vi and vj if needed.

At this point, we reduce the rank-sensitive query for vi and vj to the problem
of selecting the top k best-ranking items from O(lg n) rank-sorted lists R(), con-
taining integers in 0 . . .O(N). Following Chazelle’s approach, we do not explicitly
store the lists R(), but keep only the bitstrings B() and the additional machin-
ery for translating bits in B() into entries in R(), which occupies O(n lgε n)
words of memory, for any positive constant ε < 1. (See Lemma 2 in Section 4
of [4].) As a result, we can retrieve the sorted items of lists R() using Chazelle’s
approach.

2.2 Polylog Intervals in the Dynamic Case

In the general case, we are left with the problem of selecting the top k best-
ranking items from O(polylog(n)) rank-sorted dynamic lists R(), containing in-
tegers in 0 . . .O(N). We cannot use Chazelle’s machinery in the dynamic setting.
We maintain the degree b of the nodes in the weight-balanced B-tree W , such that
(β/4) lg n/ lg lg n ≤ b ≤ (4β) lg n/ lg lg n, for a suitable constant in 0 < β < 1. As
a result from [2], the height of the tree is O(lg n/ lg b) = O(lg n/ lg lg n). We also
explicitly store the lists R(), totalizing O(n) words per level of W , and thus yield-
ing O(n lg n/ lg lg n) words of memory. Note that the cost of splitting/merging
a node u ∈ W along with R(u) can be deamortized [2].

To enable the efficient updating of all the lists R(), we use a variation of dy-
namic fractional cascading described in [25], which performs efficiently on graphs
of a non-constant degree. Fractional cascading does not increase the overall space
complexity. At the same time, for a given element e of list R(u), it allows locating
the predecessor (in rank order) of e in R(u′) when u′ is a child or parent of u.
This locating is performed in time O(lg b + lg lg n) which amounts to O(lg lg n)
under our assumption concerning b, the degree of the tree.

Let us consider a single interval identified by a rank query. It is described by
two leaves vi and vj , along with their least common ancestor w ∈ W . However,
we encounter O(lg n/ lg lg n) lists R() in each node u along the path from w to
either vi or vj . For any such node u, we must consider the lists for u’s siblings
either to its left or its right. So we have to merge O((lg n/ lg lg n)2) lists on the
fly. But we can only afford O(lg n/ lg lg n) time.

We solve this multi-way merging problem by introducing multi-Q-heaps in
Section 3, extending Q-heaps [11]. A multi-Q-heap stores O(lg n/ lg lg n) items
from a bounded universe 0 . . .O(N), and performs constant-time search, inser-
tion, deletion, and find-min operations. In particular, searching and finding can
be restricted to any subset of its entries, still in O(1) time. Each instance of a
multi-Q-heap requires just O(1) words of memory. These instances share common
lookup tables occupying o(N) memory words. We refer the reader to Theorem 2
in Section 3 for more details.

84 I. Bialynicka-Birula and R. Grossi

We employ our multi-Q-heap for the rank values in each node u ∈ W . This
does not change the overall space occupancy, since it adds O(n) words, but it
allows us to handle rank queries in each node u in O(1) time per item as follows.
Let d = α lg N/ lg lg N be the maximum number of items that can be stored
in a multi-Q-heap (see Theorem 2). We divide the lists R() associated with
u’s children into d clusters of d lists each. For each cluster, we repeat the task
recursively, with a constant number of levels and O(polylog(n)/d) multi-Q-heaps.
We organize these multi-Q-heaps in a hierarchical pipeline of constant depth. For
the sake of discussion, let’s assume that we have just depth 2. We employ a (first-
level) multi-Q-heap, initially storing d items, which are the minimum entry for
each list in the cluster. We employ further d (second-level) multi-Q-heap of d
entries each, in which we store a copy of the minimum element of each cluster.
To select the top k best-ranking leaves, we extract the k smallest entries from the
lists by using the above multi-Q-heaps: We first find the minimum entry, x, in
one of the second-level multi-Q-heaps, and identify the corresponding first-level
multi-Q-heap. From this, we identify the list containing x. We take the entry, y,
following x in its list. We extract x from the first-level multi-Q-heap and insert y.
Let z be the new minimum thus resulting in the first level. We extract x from
the suitable second-level multi-Q-heap and insert z. By repeating this task k
times, we return the k leaves in rank-sensitive fashion.

This does not yet solve our problem. Consider the path from, say, vi to its an-
cestor w. We have O(lg n/ lg lg n) lists for each node along the path. Fortunately,
our multi-Q-heaps allow us to handle any subset of these lists, in constant time.
The net result is that we need to use just O(lg n/ lg lg n) multi-Q-heaps for the
entire path. For each node u in the path, the find-min operation is limited to the
lists corresponding to a subset of u’s sibling at its right. They form a contiguous
range, which we can easily manage with multi-Q-heaps. Hence, we can apply
the above 2-level organization, in which we have O(lg n/ lg lg n) multi-Q-heaps
in the path from vi to w in the second level. (An analogous approach is for the
path from vj to w.) In this way, we can perform a multi-way merging on the
fly for finding the least k keys in sorted rank order, in O(k + lg n/ lg lg n) time.
Note that the bound is real-time as claimed. In the case of polylog intervals, we
use an additional multi-Q-heap hierarchical organization (of constant depth) to
merge the items resulting from processing each interval separately.

We now describe how to handle rank changes of entries in L, as well as
insertions and deletions in L. Changing the rank of entry ei, say in leaf vi ∈ W
is performed in a top-down fashion. It affects the nodes on the path from the root
of W to vi. The list R(u) for each node u along this path contains a copy of ei

but whose rank no longer complies with the ordering of the list. This element
is extracted from the list and inserted into the correct place on this list. Both
the element itself and the new correct place can be located in the list associated
with the root in O(lg n) time. Next, using the fractional cascading structure, we
can relocate the copy of ei in the list for the next node in the downward path
to vi, having already done it in the current node. This takes O(lg lg n) time per
node, thus yielding O(lg n) total time to relocate the copy of ei in all the lists of

Rank-Sensitive Data Structures 85

the path. As for the insertions in L (and also in W), they follow the approach
in [2]; moreover, the input item e has its rank(e) value, in the range 0 . . .O(N),
inserted into the lists R() of the ancestor nodes as described above. Deletions
are simply implemented as weak, changing the rank value of deleted items to
+∞. When their number is sufficiently large, we apply rebuilding as in [23]. If
the original data structure contains multiple copies of the same item (as in the
case of a range tree) then the update in the rank-sensitive structure is applied
separately to the individual copies.

We obtain the following result. Let D be an output-sensitive data structure
for n items, where the � items satisfying a query on D form O(polylog(n))
intervals of consecutive entries. Let O(t(n) + �) be its query time and s(n) be
the number of items (including their copies) stored in D.

Theorem 1. We can transform D into a static rank-sensitive data structure D′,
where query time is O(t(n) + k) for any given k, thus reporting the top k best-
ranking items among the � listed by D. We increase the space by an additional
term of O(s(n) lgε n) memory words of space, each of O(lg n) bits, for any posi-
tive constant ε < 1. For the dynamic version of D and D′, we allow for changing
the ranking of the items, with ranking values in 0 . . .O(n). In this case, query
time becomes O(t(n) + k) plus O(lg n/ lg lg n) per interval. Each change in the
ranking and each insertion/deletion of an item take O(lg n) time for each item
copy stored in the original data structure. The additional term in space occupancy
increases to O(s(n) lg n/ lg lg n).

3 Multi-Q-Heaps

The multi-Q-heap is a relative of the Q-heap [11]. Q-heaps provide a way to
represent a sub-logarithmic set of elements in the universe [N] = 0 . . .O(N),
so that such operations as inserting, deleting or finding the smallest element
can be executed in O(1) time in the worst case. The price to pay for the speed
is the need to set up and store lookup tables in o(N) time and space. These
tables, however, need only to be computed once as a bootstrap cost and can be
shared among any number of Q-heap instances. Our multi-Q-heap is functionally
more powerful than Q-heap, as it allows performing operations on any subset of
d common elements, where d ≤ α lg N/ lg lg N for a suitable positive constant
α < 1. Naturally, this could be emulated by maintaining Q-heaps for all the
different subsets of the elements, but that solution would be exponential in d
(for each instance!), while our multi-Q-heap representation requires two or three
memory words and still supports constant-time operations. Our implementation
based on lookup tables is quite simple and does not make use of multiplications
or special instructions (see [9,26] for a thorough discussion of this topic). We
first describe a simpler version (to be later extended) supporting the following:

– Create a heap for a given list of elements.
– Find the minimum element within a given range.
– Find an element within a given range of items.
– Update the element at a given position.

86 I. Bialynicka-Birula and R. Grossi

In the rest of the section, we prove the following result.

Theorem 2. There exists a constant α < 1 such that d distinct integers in
0 . . .O(N) (where d ≤ α lg N/ lg lg N) can be maintained in a multi-Q-heap sup-
porting search, insert, delete, and find-min operations in constant time per op-
eration in the worst case, with O(d) words of space. The multi-Q-heap requires
a set of pre-computed lookup tables taking o(N) construction time and space.

3.1 High-Level Implementation

The d elements are integers from [N]. We can refer to their binary representations
of w = �lg[N]� bits each. These strings can be used to build a compacted trie on
binary strings of length w. However, instead of labeling the leaves of the compact
trie with the strings (elements) they correspond to, we keep just the trie shape
and the skip values contained in its internal nodes, like in [1,7]. We store the
d elements and their satellite data in a separate table. To provide a connection
between the trie and the values, we store a permutation which describes the
relation between the order of elements in the trie and the order in which they
are stored in the table.

When searching for an element, we first perform a blind search on the trie
[1,7]. Next we access the table corresponding to the found element and we com-
pare it with the sought one. Note that this way we only access the table of
values in one place, while the rest of the search is performed on the trie. With
an assumption about the maximum number of elements stored in the multi-Q-
heap, we can encode both the trie and the permutation as two single memory
words. The operations are then performed on these encodings and only the rel-
evant entries in the value table are accessed, which guarantees constant time.
The operations on the encoded structures are realized using lookup tables and
bit operations.

To support multi-Q-heap operations, we store a single structure containing
all the elements. We implement all the extended operations so as to consider only
the given subset of the elements while maintaining constant time. We assume a
word size of w = O(lg N) bits. We use d to refer to the number of items stored
in the multi-Q-heap. We assume d ≤ α lg N/ lg lg N for some suitable constant
α < 1. We use x0, x1, . . . , xd−1 to refer to the list of items stored in the multi-
Q-heap. For our case, the order defined by the indices is relevant (when using
multi-Q-heaps in the nodes of the weight-balanced B-tree of Section 2).

3.2 Multi-Q-Heap: Representation

The multi-Q-heap can be represented as a triplet (S, τ, σ), where S is the array
of elements stored in the structure, τ is the encoding of the compact trie and σ is
an encoding of the permutation. The array S stores the elements x0, x1, . . . , xd−1
in that order and their satellite data. Each element occupies a word of space.

The encoding of the trie, τ , can be defined in the following fashion. First, let
us encode the shape of the binary tree of which it consists. This tree is binary,
with no unary nodes and edges implicitly labeled with either 0 or 1. We can

Rank-Sensitive Data Structures 87

encode it by traversing the tree in inorder (visiting first 0 edges and then 1
edges) and outputting the labels of the edges traversed. This encoding can be
decoded unambiguously and requires 4d − 4 bits, since each edge is traversed
twice and there are 2d − 2 edges in the trie. Next, we encode the skip values.
The internal nodes (in which the skip values are stored) are ordered according
to their inorder which leads to an ordered list of skip values. Each skip value is
stored in �lg w� bits, so the encoding of the list takes (d − 1)�lg w� bits. For a
suitable value of α the complete encoding of the trie does not exceed 1/4 lgN
bits and hence can be stored in one word of memory.

The permutation σ reflects the array order x0, x1, . . . , xd−1 with respect to
the order of these elements sorted by their values (which is the same as the in-
order of the corresponding leaves in the trie). There are d! possible permutations,
so we choose α so that lg d! < 1/4 lgN and the encoding on the permutation
fits in one word of memory. We use the encoding described in [22], which takes
linear time to rank and unrank a permutation, hence to encode and decode it.

3.3 Multi-Q-Heap: Supported Operations

The Init operation sets up all the lookup tables required for implementing the
multi-Q-heap. It needs to be performed only once. See section 3.4 for details
concerning the lookup tables. These lookup tables are used in the implementa-
tions of the operations described below. If invoked multiple times, only the first
is effective.

The Create operation takes the array S of values x0, x1, . . . , xd−1 and sets
up the structures τ and σ. It takes the time required to construct the compact
trie for d elements, hence O(d).

The function Findmin returns the smallest element among the elements
xi, . . . , xj stored in the multi-Q-heap. We implement it using the lookup table
Subheap and Index . We use Subheap[τ, σ, i, j] to obtain τ ′ and σ′, the structure
for elements xi, . . . , xj . We then use Index [σ′, 1] to obtain the array index of the
smallest element in the range.

The function Search searches the subset of elements xi, . . . , xj stored in the
multi-Q-heap and returns the index of the element in the multi-Q-heap which
is smallest among those not smaller than y, where y ∈ [N] can be any value. As
previously, we use Subheap[τ, σ, i, j] to obtain τ ′ and σ′, the subheap for elements
xi, . . . , xj . We then search the reduced trie for x′, the first half (bitwise) of x,
by looking up u = Top[τ ′, x′]. Next, using LDescendant [τ ′, u], we identify one of
the strings descending from u and compare this string with x′ to compute their
longest common prefix length lcp. This computation can be done in constant
time with another lookup table, which is standard and is not described. If lcp <
1/2 lgN , then LDescendant [τ ′, u] identifies the sought element. If lcp = 1/2 lgN ,
we continue the search in the bottom part of the trie by setting u = Top[τ ′, x′, u].
Also here LDescendant [τ ′, u] provides the answer.

The Update operation replaces the element xr in the array S with y, where
y ∈ [N] can be any value. It updates τ and σ accordingly. We first simulate the
search for y in τ , as described in the previous paragraph to find the rank i of y

88 I. Bialynicka-Birula and R. Grossi

among x0, . . . xd and use this together with the table UpdatePermutation [σ, r, i]
to produce the updated permutation. We then use values obtained during the
simulated blind search for y in τ to obtain values needed to access the UpdateTrie
table. During the search we find the node u at which the search for y ends (in
the second half of the trie in the case the search gets that far) and the lcp
obtained by comparing its leftmost descendant with y. We use Ancestor [τ, u, lcp]
for identifying the node whose parent edge is to be split for inserting. The lcp is
the skip value the parameter c depends on the bit at position lcp + 1 of y. With
this information, we access UpdateTrie .

3.4 Multi-Q-Heap: Lookup Tables

This section describes the lookup tables required to perform the operations de-
scribed in the previous section. The number of tables can be reduced, but at the
expense of the clarity of the implementation description.

The Index table provides a way for obtaining the array index of an element
given the inorder position of its corresponding leaf in the trie (let us call this the
trie position). It contains the appropriate array index entry for every possible
permutation and trie position. The space occupancy is 21/4 lg N × d × lg d =
N1/4 × d× lg d = o(N).

The Index−1 table is the inverse of Index in the sense that it provides a way
of obtaining a trie position from an index, by containing a position entry for
every possible permutation and index. The space occupancy is the same as for
Index .

The Subheap table provides a means of obtaining a new subheap structure,
(S, τ ′, σ′), from a given one (S, τ, σ). The new subheap structure uses the same
array S, but takes into account only the subset xi, . . . , xj of its items. Note
that only τ , σ, i, and j are needed to determine τ ′ and σ′ and not the val-
ues stored in S. The new trie τ ′ is obtained from the old trie τ by removing
leaves not corresponding to xi, . . . , xj (these can be identified using σ). The
new permutation σ′ is obtained from the old one σ by extracting all the ele-
ments with values i, . . . , j and moving them to the beginning of the permutation
(without changing their relative order) so that they now correspond to the ap-
propriate j− i+1 leaves of the reduced trie. The space occupancy of Subheap is
21/4 lg N×21/4 lg N×d×d×1/4 lgN×1/4 lgN = N1/2×d2×(1/4 lgN)2 = o(N).

The Top and Bottom tables allow searching for a value in the trie. The
searching for a value must be divided into two stages, because a table which in
one dimension is indexed with a full value, one of O(N) possible, would occupy
too much space. We therefore set up two tables: Top for searching for the first
1/2 lgN bits of the value and Bottom for the remaining. The table Top contains
entries for every possible trie τ and x′, the first 1/2 lgN bits of some sought
value x. The value in the table specifies the node of τ (with nodes specified
by their inorder position) at which the blind search [1,7] for x′ (starting from
the root of the trie) ends. The table Top contains entries for every possible
trie τ , x′′ (the second 1/2 lgN bits of some sought value x) and an internal
node of the trie v. The value in the table specifies the node of τ at which the

Rank-Sensitive Data Structures 89

blind search [1,7] for x′′ ends, but in this case the blind search starts from v
instead of from the root of the trie. The space occupancy of Top is 21/4 lg N ×
21/2 lg N × lg d = N3/4 × lg d = o(N) and the space occupancy of Bottom is
21/4 lg N × 21/2 lg N × d× lg d = N3/4 × d× lg d = o(N).

The UpdateTrie table specifies a new multi-Q-heap and permutation which
is created from a given one by removing the leaf number i from τ and inserting
instead a new leaf. The new leaf is the c child of a node inserted on the edge
leading to u. This new node has skip value s. The space occupancy is 21/4 lg N ×
d× 2× 2lg lg N × d× 1/4 lgN × 1/4 lgN = N1/4 × d2 × 1/8 lg3 N = o(N).

The UpdatePermutation table specifies the permutation obtained from σ if
the element with index r is removed and an element ranking i among the original
elements of the multi-Q-heap is inserted in its place. The space occupancy is
21/4 lg N × d× d× 1/4 lgN = N1/4 × d2 × 1/4 lgN = o(N).

The LDescendant table specifies the leftmost descending leaf of node u in τ .
Its space occupancy is 21/4 lg N × d× lg d = N1/4 × d× lg d = o(N).

The Ancestor table specifies the shallowest ancestor of u having a skip value
equal to or greater than s. The space occupancy is 21/4 lg N × d× 2lg lg N × lg d =
N1/4 × d× lg N × lg d = o(N).

We will describe the general case of multi-Q-heap and discuss an example in
the full version. Here we only say that we need also to encode a permutation π
in a single word since x0, . . . , xd−1 can be further permuted due to the insertions
and deletions. An arbitrary subset is represented by a bitmask that replaces the
two small integers i and j delimiting a range. The sizes of the lookup tables in
Section 3.4 increase but still remain o(N).

References

1. M. Ajtai, M. Fredman, and J. Komlòs. Hash functions for priority queues. Infor-
mation and Control, 63(3):217–225, December 1984.

2. Lars Arge and Jeffrey S. Vitter. Optimal external memory interval management.
SIAM Journal on Computing, 32:1488–1508, 2003.

3. Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., 1999.

4. Bernard Chazelle. A functional approach to data structures and its use in multi-
dimensional searching. SIAM Journal on Computing, 17(3):427–462, June 1988.

5. Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwartzkopf.
Computational Geometry: Algorithms and Applications. Springer, 1997.

6. James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Making
data structures persistent. J. Computer and System Sciences, 38(1):86–124, 1989.

7. P. Ferragina and R. Grossi. The string B-tree: A new data structure for string
search in external memory and its applications. J. ACM, 46:236–280, 1999.

8. Amos Fiat and Haim Kaplan. Making data structures confluently persistent. J.
Algorithms, 48(1):16–58, 2003.

9. Faith E. Fich. Class notes CSC 2429F: Dynamic data structures, 2003. Department
of Computer Science, University of Toronto, Canada.

10. Greg N. Frederickson. An optimal algorithm for selection in a min-heap. Inf. Com-
put., 104(2):197–214, 1993, June.

90 I. Bialynicka-Birula and R. Grossi

11. Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for mini-
mum spanning trees and shortest paths. JCSS, 48(3):533–551, 1994.

12. Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. Scaling and related
techniques for geometry problems. In STOC ’84, 135–143, Washington, D.C., 1984.

13. Dan Gusfield. Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press, 1997.

14. D. Hearn and M. Baker. Computer Graphics with OpenGL. Prentice-Hall, 2003.
15. Haim Kaplan, Eyal Molad, and Robert E. Tarjan. Dynamic rectangular intersection

with priorities. In STOC ’03, 639–648. ACM Press, 2003.
16. Kitsios, Makris, Sioutas, Tsakalidis, Tsaknakis, and Vassiliadis. 2-D spatial index-

ing scheme in optimal time. In ADBIS: East European Symposium on Advances
in Databases and Information Systems. LNCS, 2000.

17. Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of
the ACM, 46(5):604–632, September 1999.

18. R. Lempel and S. Moran. SALSA: the stochastic approach for link-structure analy-
sis. ACM Transactions on Information Systems, 19(2):131–160, 2001.

19. Edward M. McCreight. Priority search trees. SIAM Journal on Computing,
14(2):257–276, 1985.

20. C. W. Mortensen. Fully-dynamic two dimensional orthogonal range and line seg-
ment intersection reporting in logarithmic time. In SODA ’03, 618–627, 2003.

21. S. Muthukrishnan. Efficient algorithms for document retrieval problems. In SODA
’02: Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete al-
gorithms, pages 657–666. Society for Industrial and Applied Mathematics, 2002.

22. Wendy Myrvold and Frank Ruskey. Ranking and unranking permutations in linear
time. Information Processing Letters, 79(6):281–284, September 2001.

23. Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture
Notes in Computer Science. Springer-Verlag, 1983.

24. L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking:
Bringing order to the web. Tech. rep, Stanford University, Stanford, CA, 1998.

25. Rajeev Raman. Eliminating amortization: on data structures with guaranteed re-
sponse time. PhD thesis, Rochester, NY, USA, 1993.

26. Mikkel Thorup. On AC0 implementations of fusion trees and atomic heaps. In Pro-
ceedings of the fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA-03), pages 699–707, New York, January 12–14 2003. ACM Press.

27. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.
28. Jeffrey Scott Vitter. External memory algorithms and data structures: dealing

with massive data. ACM Computing Surveys, 33(2):209–271, June 2001.
29. Jean Vuillemin. A unifying look at data structures. Communications of the ACM,

23(4):229–239, April 1980.
30. P. Weiner. Linear pattern matching algorithms. In Conference Record, IEEE 14th

Annual Symposium on Switching and Automata Theory, pages 1–11, 1973.
31. Ian H. Witten, Alistair Moffat, and Timothy C. Bell. Managing gigabytes: Com-

pressing and indexing documents and images. Morgan Kaufmann Pubs. Inc., 1999.

Cache-Conscious Collision Resolution
in String Hash Tables

Nikolas Askitis and Justin Zobel

School of Computer Science and Information Technology,
RMIT University, Melbourne, Australia 3000
{naskitis, jz}@cs.rmit.edu.au

Abstract. In-memory hash tables provide fast access to large numbers of strings,
with less space overhead than sorted structures such as tries and binary trees. If
chains are used for collision resolution, hash tables scale well, particularly if the
pattern of access to the stored strings is skew. However, typical implementations
of string hash tables, with lists of nodes, are not cache-efficient. In this paper we
explore two alternatives to the standard representation: the simple expedient of
including the string in its node, and the more drastic step of replacing each list of
nodes by a contiguous array of characters. Our experiments show that, for large
sets of strings, the improvement is dramatic. In all cases, the new structures give
substantial savings in space at no cost in time. In the best case, the overhead space
required for pointers is reduced by a factor of around 50, to less than two bits per
string (with total space required, including 5.68 megabytes of strings, falling from
20.42 megabytes to 5.81 megabytes), while access times are also reduced.

1 Introduction

In-memory hash tables are a basic building block of programming, used to manage
temporary data in scales ranging from a few items to gigabytes. For storage of strings, a
standard representation for such a hash table is a standard chain, consisting of a fixed-
size array of pointers (or slots), each the start of a linked list, where each node in the
list contains a pointer to a string and a pointer to the next node.

For strings with a skew distribution, such as occurrences of words in text, it was
found in earlier work [10] that a standard-chain hash table is faster and more compact
than sorted data structures such as tries and binary trees. Using move-to-front in the
individual chains [27], the load average can reach dozens of strings per slot without
significant impact on access speed, as the likelihood of having to inspect more than the
first string in each slot is low.

Thus a standard-chain hash table has clear advantages over open-addressing alter-
natives, whose performance rapidly degrades as the load average approaches 1 and
which cannot be easily re-sized. However, the standard-chain hash table is not cache-
conscious, as it does not make efficient use of CPU cache. There is little spatial locality,
as the nodes in each chain are scattered across memory. While there is some temporal
locality for skew distributions, due to the pattern of frequent re-access to the common-
est strings, the benefits are limited by the overhead of requiring two pointers per string
and by the fact that there is no opportunity for hardware prefetch. Yet the cost of cache

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 91–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

92 N. Askitis and J. Zobel

inefficiency is serious: on typical current machines each cache miss incurs a delay of
hundreds of clock cycles while data is fetched from memory.

A straightforward way of improving spatial locality is to store each string directly in
the node instead of using a pointer, that is, to use compact chaining. This approach both
saves space and eliminates a potential cache miss at each node access, at little cost.
In experiments with large sets of strings drawn from real-world data, we show that,
in comparison to standard chaining, compact-chain hash tables can yield both space
savings and reductions in per-string access times.

We also propose a more drastic measure: to eliminate the chain altogether, and store
the sequence of strings in a contiguous array that is dynamically re-sized as strings are
inserted. With this arrangement, multiple strings are fetched simultaneously — caches
are typically designed to use blocks of 32, 64, or 128 bytes — and subsequent fetches
have high spatial locality. Compared to compact chaining, array hash tables can yield
substantial further benefits. In the best case (a set of strings with a skew distribution)
the space overhead can be reduced to less than two bits per string while access speed
is consistently faster than under standard chaining. Contiguous storage has long been
used for disk-based structures such as inverted lists in retrieval systems, due to the high
cost of random accesses. Our results show that similar factors make it desirable to use
contiguous, pointer-free storage in memory.

These results are an illustration of the importance of considering cache in algorithm
design. Standard chaining was considered to be the most efficient structure for manag-
ing strings, but we have greatly reduced total space consumption while simultaneously
reducing access time. These are dramatic results.

2 Background

To store a string in a hash table, a hash function is used to generate a slot number. The
string is then placed in the slot; if multiple strings are hashed to the same location,
some form of collision resolution is needed. (It is theoretically impossible to find find a
hash function that can uniquely distinguish keys that are not known in advance [12].) In
principle the cost of search of a hash table depends only on load average — though, as
we show in our experiments, factors such as cache efficiency can be more important —
and thus hashing is asymptotically expected to be more efficient than a tree.

Therefore, to implement a hash table, there are two decisions a programmer must
make: choice of hash function and choice of collision-resolution method. A hash func-
tion should be from a universal class [22], so that the keys are distributed as well as
possible, and should be efficient. The fastest hash function for strings that is thought to
be universal is the bitwise method of Ramakrishna and Zobel [18]; we use this function
in our experiments.

Since the origin of hashing — proposed by H.P. Luhn in 1953 [12] — many methods
have been proposed for resolving collisions. The best known are separate or standard
chaining and open addressing. In chaining, which was also proposed by Luhn, linear
linked lists are used to resolve collisions, with one list per slot. Linked lists can grow
indefinitely, so there is no limit on the load average, that is, the ratio of items to slots.

Open addressing, proposed by Peterson [17], is a class of methods where items are
stored directly in the table and collisions are resolved by searching for another vacant

Cache-Conscious Collision Resolution in String Hash Tables 93

slot. However, as the load average approaches 1, the performance of open address-
ing drastically declines. These open addressing schemes are surveyed and analyzed by
Munro and Celis [16], and have recently been investigated in the context of cache [9].
Alternatives include coalesced chaining, which allows lists to coalesce to reduce mem-
ory wasted by unused slots [25], and to combine chaining and open-addressing [7]. It
is not clear that the benefits of these approaches are justified by the difficulties they
present.

In contrast, standard chaining is fast and easy to implement. Moreover, in principle
there is no reason why a chained hash table could not be managed with methods de-
signed for disk, such as linear hashing [13] and extensible hashing [19], which allow
an on-disk hash table to grow and shrink gracefully. Zobel et al. [27] compared the per-
formance of several data structures for in-memory accumulation of the vocabulary of
a large text collection, and found that the standard-chain hash table, coupled with the
bitwise hash function and a self-organizing list structure [12], move-to-front on access,
is the fastest previous data structure available for maintaining fast access to variable-
length strings. However, a standard-chain hash table is not particularly cache-efficient.
With the cost of a memory access in a current computer being some hundreds of CPU
cycles, each cache miss potentially imposes a significant performance penalty.

A cache-conscious algorithm has high locality of memory accesses, thereby ex-
ploiting system cache and making its behavior more predictable. There are two ways
in which a program can be made more cache-conscious: by improving its temporal lo-
cality, where the program fetches the same pieces of memory multiple times; and by
improving its spatial locality, where the memory accesses are to nearby addresses [14].
Chains, although simple to implement, are known for their inefficient use of cache. As
nodes are stored in random locations in memory, and the input sequence of hash table
accesses is unpredictable, neither temporal nor spatial locality are high. Similar prob-
lems apply to all linked structures and randomly-accessed structures, including binary
trees, skiplists, and large arrays accessed by binary search.

Prefetch is ineffective in this context. Hardware prefetchers [6,2] work well for
programs that exhibit regular access patterns. Array-based applications are prime can-
didates, as they exhibit stride access patterns that can be easily detected from an address
history that is accumulated at run time. Hardware based prefetches however, are not ef-
fective with pointer-intensive applications, as they are hindered by the serial nature of
pointer dereferences.

For such situations, techniques such as software prefetches [11,3] and different
kinds of pointer cache [5,21,26] have been proposed. To our knowledge, there has been
no practical examination of the impact of these techniques on the standard-chain hash
table, nor is there support for these techniques on current platforms.

Moreover, such techniques concern the manifestation of cache misses, as opposed
to the cause, being poor access locality. Chilimbi et al. [4] demonstrates that careful
data layout can increase the access locality of some pointer-intensive programs. How-
ever, use of their techniques requires work to determine the suitability for tree-like
data structures, which could prove limiting. Chilimbi et al. [4] note the applicability of
their methods to chained hashing, but not with move-to-front on access, which is likely
to be a limiting factor, as move-to-front is itself an effective cost-adaptive reordering

94 N. Askitis and J. Zobel

Fig. 1. The standard-chain (left), compact-chain (right) and array (below) hash tables

scheme. Nor is it clear that such methods will be of benefit in the kinds of environ-
ments we are concerned with, where the volume of data being managed may be many
hundred times large than cache. However, significant gains should be available through
cache-conscious algorithms, such as those we propose in this paper.

3 Cache-Conscious Hash Tables

Every node access in a standard-chain hash table incurs two pointer traversals, one to
reach the node and one to reach the string. As these are likely to be randomly located
in memory, each access is likely to incur a cache miss. In this section we explain our
proposals for eliminating these accesses. We assume that strings are sequences of 8-bit
bytes, that a character such as null is available as a terminator, and a 32-bit CPU and
memory address architecture.

A straightforward step is to store each string in its node, rather than storing it in
separate space. This halves the number of random accesses and saves 4 bytes per string,
but requires that the nodes themselves be of variable length. Each node consists of 4
initial bytes, containing a pointer to the next node, followed by the string itself. We call
this variant of chaining compact. The cache advantages of a compact-chain hash table
are obvious, especially in the context of a skew distribution and move-to-front: each
hash table lookup will involve only a single memory access, and the reduction in total
size will improve the likelihood that the next node required is already cached.

We propose a novel alternative — to eliminate the chain altogether, and store the
strings in a contiguous array. Prefetching schemes are highly effective with array-based
structures, so this array hash table (shown, with the alternatives, in Figure 1) should
maximize spatial access locality, providing a cache-conscious alternative to standard
and compact chaining. Each array can be seen as a resizable bucket. The cost of access
is a single pointer traversal, to fetch a bucket, which is then processed linearly.

Use of copying to eliminate string pointers for string sorting was proposed by Sinha
et al. [23], who demonstrate that doing so can halve the cost of sorting a large set of
strings [24]. It is plausible that similar techniques can lead to substantial gains for hash
tables.

Cache-Conscious Collision Resolution in String Hash Tables 95

A potential disadvantage is that these arrays must be of variable size; whenever a
new string is inserted in a slot, it must be resized to accommodate the additional bytes.
(Note that this method does not change the size of the hash table; we are not proposing
extendible arrays [20].) Another potential disadvantage is that move-to-front— which
in the context of chaining requires only a few pointer assignments — involves copying
of large parts of the array. On the other hand, the space overheads of an array hash table
are reduced to the table itself and any memory fragmentation due to the presence of
variable-length resizable objects. We explore the impact of these factors in our experi-
ments.

A further potential disadvantage of array hash tables is that such contiguous stor-
age appears to eliminate a key advantage of nodes — namely, that they can contain
multiple additional fields. However, sequences of fixed numbers of bytes can easily be
interleaved with the strings, and these sequences can be used to store the fields. The
impact of these fields is likely to be much the same on all kinds of hash table. In our
experiments, no fields were present.

We have explored two variants of array hash tables, exact-fit and paging. In exact-
fit, when a string is inserted the bucket is resized by only as many bytes as required.
This conserves memory but means that copying may be frequent. In paging, bucket
sizes are multiples of 64 bytes, thus ensuring alignment with cache lines. As a special
case, buckets are first created with 32 bytes, then grown to 64 bytes when they overflow,
to reduce space wastage when the load average is low. (Note that empty slots have no
bucket.) This approach should reduce the copying, but uses more memory. The value of
64 was chosen to match the cache architecture of our test machine, a Pentium IV.

The simplest way to traverse a bucket is to inspect it a character at a time, from
beginning to end, until a match is found. Each string in a bucket must be null terminated
and a null character must follow the last string in a bucket, to serve as the end-of-bucket
flag. However, this approach can cause unnecessary cache misses when long strings
are encountered; note that, in the great majority of cases, the string comparison in the
matching process will fail on the first character.

Instead, we have used a skipping approach that allows the search process to jump
ahead to the start of the next string. With skipping, each string is preceded by its length;
that is, they are length-encoded [1]. The length of each string is stored in either one or
two bytes, with the lead bit used to indicate whether a 7-bit or 15-bit value is present.
It is not sensible to store strings of more than 32,768 characters in a hash table, as the
cost of hashing will utterly dominate search costs.

4 Experimental Design

To evaluate the efficiency of the array, compact-chain, and standard-chain hash tables,
we measured the elapsed time required for construction and search over a variety of
string sets, as well as the memory requirements and the number of cache misses. The
datasets used for our experiments are shown in Table 1. They consist of null-terminated
variable length strings, acquired from real-world data repositories. The strings appear
in order of first occurrence in the data; they are, therefore, unsorted. The trec datasets
trec1 and trec2 are a subset of the complete set of word occurrences, with duplicates,
in the first two TREC CDs [8]. These datasets are highly skew, containing a relatively

96 N. Askitis and J. Zobel

Table 1. Characteristics of the datasets used in the experiments

Dataset Distinct String Average Volume (MB) Volume (MB)
strings occs length of distinct total

trec1 612,219 177,999,203 5.06 5.68 1,079.46
trec2 411,077 155,989,276 5.00 3.60 937.27
urls 1,289,854 9,987,316 30.92 46.64 318.89
distinct 20,000,000 20,000,000 9.26 205.38 205.38

small set of distinct strings. Dataset distinct contains twenty million distinct words
(that is, without duplicates) extracted from documents acquired in a web crawl and
distributed as the “large web track” data in TREC. The url dataset, extracted from the
TREC web data, is composed of non-distinct complete URLs. Some of our experiments
with these sets are omitted, for space reasons, but those omitted showed much the same
characteristics as those that are included.

To measure the impact of load factor, we vary the number of slots made available,
using the sequence 10,000, 31,622, 100,000, 316,227 and so forth up until a minimal
execution time is observed. Both the compact-chain and standard-chain hash tables are
most efficient when coupled with move-to-front on access, as suggested by Zobel et
al. [27]. We therefore enabled move-to-front for the chaining methods but disable it for
the array, a decision that is justified in the next section.

We used a Pentium IV with 512 KB of L2 cache with 64-byte lines, 2 GB of RAM,
and a Linux operating system under light load using kernel 2.6.8. We are confident —
after extensive profiling — that our implementation is of high quality. We found that
the hash function was a near-insignificant component of total costs.

5 Results

Skewed data. A typical use for a hash table of strings is to accumulate the vocabulary of
a collection of documents. In this process, in the great majority of attempted insertions
the string is already present, and there is a strong skew: some strings are much more
common than others. To evaluate the performance of our hash tables under skewed
access, we first construct then search using trec1. When the same dataset is used for
both construction and search, the search process is called a self-search.

Figure 2 shows the relationship between time and memory for the hash tables during
construction for trec1; the times in some of these results are also shown in Table 3 and
the space in Table 5. Array hashing was the most efficient in both memory and speed,
requiring in the fastest case under 24 seconds and around six megabytes of memory —
an overhead of 0.41 MB or about 5 bits per string. This efficiency is achieved despite
a load average of 20. Remarkably, increasing the number of slots (reducing the load
average) has no impact on speed. Having a high number of strings per slot is efficient
so long as the number of cache misses is low; indeed, having more slots can reduce
speed, as the cache efficiency is reduced because each slot is accessed less often. Thus
the usual assumption, that load average is a primary determinant of speed, does not
always hold.

Cache-Conscious Collision Resolution in String Hash Tables 97

5 10 15 20 25

Memory (MB)

24

26

28

30

32

T
im

e
(s

ec
on

ds
)

Array-exact
Array-page
Compact
Standard

Fig. 2. Time versus memory when trec1 is used for construction. Each point represents a differ-
ent number of slots: 10,000, 31,622, 100,000, 316,228, and 1,000,000 respectively.

Table 2. The number of L2 cache misses during the construction and self-search with trec1

Slots Array Compact Standard
10,000 68,506,659 146,375,946 205,795,945

100,000 89,568,430 80,612,383 105,583,144
1,000,000 102,474,094 94,079,042 114,275,513

The exact-fit and paging methods are compared in Figure 2. The exact-fit model is
much more space-efficient. The relationship with speed is more complex, with paging
faster in some cases, but degrading relative to exact-fit due to a more rapid increase in
space consumption. We found that there is little relationship between speed and number
of instructions executed.

The chaining hash tables use much more space than the array hash tables, and are no
faster. The best case for chaining was with the compact chains, which in the best case
required over 23.5 seconds and 13 MB of memory — an overhead of about 12 bytes
per string. The standard-chain hash table was markedly inferior to both the array and
compact approaches for both time and space. Given that the standard hash table was
the fastest-known data structure for this task, we have strong evidence that our new
structures are a significant advance.

The extent to which the speed is due to cache misses is shown in Table 2, where the
valgrind tool (available online) is used to measure the number of L2 cache misses.
(L1 misses have only a small performance penalty.) There is a reasonable correlation
between the number of misses and the evaluation time. As can be seen, increasing the
number of slots to 100,000 can reduce the number of misses for the chained methods,
but as the table grows — and exceed cache size — performance again falls. When the
load average is below 1, chaining becomes slightly more cache-efficient than the array,
due to the fact that the array search function is slightly more complex.

In another experiment, the hash tables were constructed using dataset trec1 and then
searched using trec2. The array offered both the best time and space at 19.6 seconds
with 31,662 slots. The compact chain was also able to offer a search time of about 20

98 N. Askitis and J. Zobel

seconds, but required 100,000 slots and more than double the memory required by the
array. The standard chain was considerably slower.

Despite its high memory usage, the compact chain performed well under skewed
access, partly due to the use of move-to-front on access. With buckets, move-to-front is
computationally expensive as strings must be copied. Table 3 compares the construction
and self-search costs of trec1 with and without move-to-front on access, and includes
the comparable figures for compact and standard chaining (both with move-to-front).
The use of move-to-front results in slower construction and search times for the array
hash; even though the vast majority of searches terminate with the first string (so there
is no string movement), the cases that do require a movement are costly. Performing
a move-to-front after every kth successful search might be more appropriate. Alterna-
tively, the matching string can be interchanged with the preceding string, a technique
proposed by McCabe [15]. However, we believe that move-to-front is unnecessary for
the array, as the potential gains seem likely to be low.

URLs. Our next experiment was a repeat of the experiment above, using urls, a data
set with some skew but in which the strings were much longer, of over thirty characters
on average. As in the skewed search experiments discussed previously, our aim was to
find the best balance between execution time and memory consumption. Construction
results are shown in Figures 3; results for search were similar.

As for trec1, array hashing greatly outperformed the other methods. However, the
optimum number of slots was much larger and the best load average was less than 1.
Exact-fit achieved its fastest time of 4.54 seconds, using 3,162,228 slots while consum-
ing 60 MB; paging was slightly faster, at 4.38 seconds, but used much more space. The
best speed offered by the standard chain was 4.84 seconds with 3,162,228 slots, con-
suming over 90 MB. Compact chaining had similar speed with 74 MB. Again, array
hashing is clearly the superior method.

Table 3. Elapsed time (seconds) when trec1 is used for construction and search, showing the
impact of move-to-front in the array method, and comparing to compact and standard chaining.
Self-search times for paged array hash tables are omitted as they are indistinguishable from the
times for exact array hash tables.

Slots Array Array-MTF Compact Standard
page exact page exact

10,000 24.34 24.27 23.94 25.29 27.65 31.73
31,622 23.82 23.61 23.70 23.68 23.73 26.53

Construction 100,000 24.82 25.13 24.96 25.08 24.16 26.89
316,228 25.20 25.80 25.23 26.07 25.22 27.86

1,000,000 25.88 25.43 25.71 25.45 25.83 28.52
10,000 — 23.25 — 24.58 27.10 31.71
31,622 — 23.17 — 24.23 22.62 25.51

Self-search 100,000 — 24.93 — 25.94 22.68 25.60
316,228 — 25.26 — 25.98 23.75 26.56

1,000,000 — 25.27 — 26.07 24.26 27.02

Cache-Conscious Collision Resolution in String Hash Tables 99

50 60 70 80 90

Memory (MB)

5

10

15

20

T
im

e
(s

ec
on

ds
)

Array-exact
Array-page
Compact
Standard

Fig. 3. Time versus memory when urls is used for construction. Each point represents a different
number of slots: 10,000, 31,622, 100,000, 316,228, 1,000,000, and 3,162,287 respectively.

Table 4. Elapsed time (in seconds) when distinct is used for construction and self-search

Slots Array Compact Standard
page exact

10,000 133.26 275.69 3524.32 3936.41
100,000 50.70 59.45 370.30 419.45

Construction 1,000,000 13.54 18.70 44.71 51.05
10,000,000 9.79 10.80 11.57 13.92

100,000,000 9.20 8.65 8.60 10.97
10,000 — 109.11 3516.36 3915.26

100,000 — 21.99 366.20 413.59
Self-search 1,000,000 — 11.14 42.47 47.08

10,000,000 — 8.90 9.73 10.34
100,000,000 — 6.96 6.67 6.94

Distinct Data. We then used the distinct dataset for construction and search. This
dataset contains no repeated strings, and thus every insertion requires that the slot be
fully traversed. Results for construction and self-search are shown in Table 4.

The difference in performance between the array and chaining methods is startling.
This is an artificial case, but highlights the fact that random memory accesses are highly
inefficient. With only 10,000 slots, the exact-fit array hash tables is constructed in about
275 seconds, whereas the compact and standard chains required about 3524 and 3936
seconds respectively. Paging requires only 133 seconds, a saving due to the lack of
copying. This speed is despite the fact that the average load factor is 2000.

The results for self-search are similar to those for construction, with the array being
up to 97% faster than the chaining methods. Once again, increasing the number of
slots allows the chaining methods to be much faster, but the array is competitive at
all table sizes. The chaining methods approach the efficiency of the array only when
given surplus slots. For instance, with 100,000,000 slots, the compact chain is by a
small margin the fastest method. However, the compact chain required 845 MB and the
standard chain 1085 MB. The array used only 322 MB, a dramatic saving.

100 N. Askitis and J. Zobel

Memory Consumption. Hash tables consume memory in several ways: space allocated
for the strings and for pointers; space allocated for slots; and overhead due to compiler-
generated structures and space fragmentation. The memory required by the hash tables
was measured by accumulating the total number of bytes requested with an estimated 8-
byte overhead per memory allocation call. (With a special-purpose allocator, the 8-byte
overhead for fixed-size nodes could be largely eliminated, thus saving space in standard
chaining. On the other hand, in many architectures 8 rather than 4 bytes are required for
a pointer.) We compared our measure with the total memory reported by the operating
system under the /proc/stat/ table and found it to be consistent.

For a standard chain, each string requires two pointers and (in a typical implemen-
tation) two malloc system calls. A further four bytes are required per slot. The space
overhead is therefore 4n+24s bytes, where n is the number of slots and s is the number
of strings inserted. In a compact chain, the overhead is 4n + 12s bytes.

The memory consumed by the array hash table is slightly more complicated to
model. First consider exact-fit. Apart from the head pointers leading from slots, there
are no further pointers allocated by the array. The space overhead is then notionally 4n
bytes plus 8 bytes per allocated array — that is, up to 12n bytes in total — but the use
of copying means that there is unknown amount of space fragmentation; fortunately,
inspection of the actual process size shows that this overhead is small. The array uses
length-encoding, so once a string exceeds 128 characters in length an additional byte
is required. For likely data the impact of these additional bytes is insignificant. Even in
urls only 5,214 strings required this extra byte.

With paging, assume that the block size is B bytes. When the load average is high,
on average each slot has one block that is half empty, and the remainder are fully used;
thus the overhead is 12n + B/2 bytes. When the load average is low — that is, s < n —
most slots are either empty, at a cost of 4n bytes, or contain a single block, at a cost
of B− l + 8, where l is the average string length. For short arrays, we allow creation of
blocks of length B/2. Thus the wastage is around 4n + s(B− l+ 8) bytes.

The memory consumed is shown in Table 5. As can be seen by comparison with
Table 1, the overhead for the exact-fit is in the best case less than two bits per string.
This is a dramatic result — the space overhead is around one-hundredth of that required
for even compact chaining, with, on trec1, only minimal impact on access times.

Exact-fit is considerably more space-efficient than paging, in particular when the
table is sparse; for large tables, compact chaining is preferable. Again, there are no cases
where standard chaining is competitive. These results are a conclusive demonstration
that our methods are a consistent, substantial improvement.

Table 5. Comparison of the memory (in megabytes) consumed by the hash tables

Slots trec1 urls distinct
10,000 1,000,000 10,000 1,000,000 10,000 1,000,000 10,000,000

array-exact 5.81 13.78 46.77 57.16 205.52 218.39 322.64
array-page 6.13 22.51 47.04 72.94 205.83 249.66 463.29
compact 13.07 17.03 62.16 66.12 445.43 449.39 485.39
standard 20.42 24.38 77.64 81.60 685.43 689.39 725.39

Cache-Conscious Collision Resolution in String Hash Tables 101

6 Conclusions

We have proposed new representations for managing collisions in in-memory hash ta-
bles used to store strings. Such hash tables, which are a basic data structure used in
programs managing small and large volumes of data, have previously been shown to be
faster and more compact than sorted structures such as trees and tries. Yet in-memory
hash tables for strings have attracted virtually no attention in the research literature.

Our results show that the standard representation, a linked list of fixed-size nodes
consisting of a string pointer and a node pointer, is not cache-efficent or space-efficient.
In every case, the simple alternative of replacing the fixed-length string pointer with the
variable-length string, yielding a compact chain, proved faster and smaller.

We proposed the novel alternative of replacing the linked list altogether by storing
the strings in a contiguous array. Despite what appears to be an obvious disadvantage —
whenever a string is inserted, the array must be dynamically resized — the resulting
cache efficiency means that the array method can be dramatically faster. In most cases,
the difference in speed compared to the compact chain is small, but the space savings
are large; in the best case the total space overhead was less than two bits per string,
a reduction from around 100 bits for compact chaining, while speed was similar. We
explored cache-aligned storage, but even in the best case the further gains were small.
Our results also show that, in an architecture with cache, and in the presence of a skew
data distribution, the load average can be very high with no impact on speed of access.

Our new cache-conscious representations dramatically improve the performance of
this fundamental data structure, reducing both time and space and making a hash table
by far the most efficient way of managing a large volume of strings.

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, January 1974.

2. J. Baer and T. Chen. Effective hardware-based data prefetching for high-performance proces-
sors. IEEE Transactions on Computers, 44(5):609–623, 1995.

3. D. Callahan, K. Kennedy, and A. Porterfield. Software prefetching. In Proc. ASPLOS Int.
Conf. on Architectural Support for Programming Languages and Operating Systems, pages
40–52. ACM Press, New York, 1991.

4. T. M. Chilimbi, M. D. Hill, and J. R. Larus. Cache-conscious structure layout. In Proc. ACM
SIGPLAN conf. on Programming Language Design and Implementation, pages 1–12. ACM
Press, New York, 1999.

5. J. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer cache assisted prefetching. In Proc.
Annual ACM/IEEE MICRO Int. Symp. on Microarchitecture, pages 62–73. IEEE Computer
Society Press, 2002.

6. J. W. C. Fu, J. H. Patel, and B. L. Janssens. Stride directed prefetching in scalar processors.
SIGMICRO Newsletter, 23(1-2):102–110, 1992.

7. C. Halatsis and G. Philokyprou. Pseudochaining in hash tables. Communications of the
ACM, 21(7):554–557, 1978.

8. D. Harman. Overview of the second text retrieval conference (TREC-2). In Information
Processing & Management, pages 271–289. Pergamon Press, Inc., 1995.

102 N. Askitis and J. Zobel

9. G. L. Heileman and W. Luo. How caching affects hashing. In Proc. ALENEX Workshop on
Algorithm Engineering and Experiments, January 2005.

10. S. Heinz, J. Zobel, and H. E. Williams. Self-adjusting trees in practice for large text collec-
tions. Software—Practice and Experience, 31(10):925–939, 2001.

11. M. Karlsson, F. Dahlgren, and P. Stenstrom. A prefetching technique for irregular accesses
to linked data structures. In Proc. Symp. on High-Performance Computer Architecture, pages
206–217, January 2000.

12. D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3. Addison-
Wesley Longman, second edition, 1998.

13. P. Larson. Performance analysis of linear hashing with partial expansions. ACM Transactions
on Database Systems, 7(4):566–587, 1982.

14. A. R. Lebeck. Cache conscious programming in undergraduate computer science. In Proc.
SIGCSE Technical Symp. on Computer Science Education, pages 247–251. ACM Press, New
York, 1999.

15. J. McCabe. On serial files with relocatable records. Operations Research, 13:609–618, 1965.
16. J. I. Munro and P. Celis. Techniques for collision resolution in hash tables with open ad-

dressing. In Proc. ACM Fall Joint Computer Conf., pages 601–610. IEEE Computer Society
Press, 1986.

17. W. W. Peterson. Open addressing. IBM J. Research & Development, 1:130–146, 1957.
18. M. V. Ramakrishna and J. Zobel. Performance in practice of string hashing functions. In

Proc. DASFAA Symp. on Databases Systems for Advanced Applications, volume 6, pages
215–224. World Scientific, April 1997.

19. A. Rathi, H. Lu, and G. E. Hedrick. Performance comparison of extendible hashing and
linear hashing techniques. In Proc. ACM SIGSMALL/PC Symp. on Small Systems, pages
178–185. ACM Press, New York, 1990.

20. A. L. Rosenberg and L. J. Stockmeyer. Hashing schemes for extendible arrays. Jour. of the
ACM, 24(2):199–221, 1977.

21. A. Roth and G. S. Sohi. Effective jump-pointer prefetching for linked data structures. In Proc.
Int. Symp. on Computer Architecture, pages 111–121. IEEE Computer Society Press, 1999.

22. D. V. Sarwate. A note on universal classes of hash functions. Information Processing Letters,
10(1):41–45, 1980.

23. R. Sinha, D. Ring, and J. Zobel. Cache-efficient string sorting using copying. In submission.
24. R. Sinha and J. Zobel. Cache-conscious sorting of large sets of strings with dynamic tries.

ACM Jour. of Exp. Algorithmics, 9, 2005.
25. J. S. Vitter. Analysis of the search performance of coalesced hashing. Jour. of the ACM,

30(2):231–258, 1983.
26. C. Yang, A. R. Lebeck, H. Tseng, and C. Lee. Tolerating memory latency through push

prefetching for pointer-intensive applications. ACM Trans. Architecture Code Optimisation,
1(4):445–475, 2004.

27. J. Zobel, H. E. Williams, and S. Heinz. In-memory hash tables for accumulating text vocab-
ularies. Information Processing Letters, 80(6):271–277, December 2001.

Measuring the Difficulty

of Distance-Based Indexing

Matthew Skala

University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
mskala@cs.uwaterloo.ca

Abstract. Data structures for similarity search are commonly evalu-
ated on data in vector spaces, but distance-based data structures are
also applicable to non-vector spaces with no natural concept of dimen-
sionality. The intrinsic dimensionality statistic of Chávez and Navarro
provides a way to compare the performance of similarity indexing and
search algorithms across different spaces, and predict the performance
of index data structures on non-vector spaces by relating them to equiv-
alent vector spaces. We characterise its asymptotic behaviour, and give
experimental results to calibrate these comparisons.

1 Introduction

Suppose we wish to index a database for similarity search. For instance, we might
have a database of text documents which we query with an example document
to find others close to the example. Speaking of closeness implies we must have
a distance function applicable to the objects in the database. Maybe our objects
are actually vectors of real numbers with a Minkowski Lp metric. Many effective
data structures are known for that case, including R-trees and variants [3,11,17],
SR-trees [13], and pyramid-trees [4].

But maybe the objects are not vectors; and maybe the distance function is
not an Lp metric. Edit distance on strings, for instance, forms a metric space that
is not a vector space. Structures for indexing general metric spaces include V P -
trees [20], MV P -trees [5], GH-trees [19], and FQ-trees [2]. Such structures are
called “distance-based” because they rely exclusively on the distances between
the query point and other points in the space.

The problem of distance-based indexing seems to become harder in spaces
with more dimensions, but we cannot easily count dimensions in a non-vector
space. Even when we represent our documents as long vectors, indexing algo-
rithms behave much differently on real document databases from the prediction
for similar-length randomly generated vectors. In this work we consider how to
predict indexing performance on practical spaces by comparison with random
vector spaces of similar difficulty.

1.1 Intrinsic Dimensionality

Suppose we have a general space, from which we can choose objects according
to a fixed probability distribution, and measure the distance between any two

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 103–114, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

104 M. Skala

objects, but the objects are opaque: all we know about an object is its distance
from other objects. We might wish to assume that we have a metric space,
with the triangle inequality, but even that might only hold in an approximate
way—for instance, only to within a constant factor, as with the “almost metrics”
defined by Sahinalp and others [16]. Some functions we might like to use do not
naturally obey the triangle inequality—such as relative entropy measured by
compression, proposed in bioinformatics applications [10,14].

Given such a space, the only way we can describe the space or distinguish
it from other general spaces is by choosing random points and considering the
probability distribution of distances between them. Chávez and Navarro intro-
duce a statistic called “intrinsic dimensionality” for describing spaces in terms of
the distribution of the distance between two randomly chosen points. Where µ
and σ2 are the mean and variance of that distance, the intrinsic dimensionality
ρ is defined as µ2/(2σ2) [6]. Squaring the mean puts it in the same units as
the variance; and as we prove, the constant 2 makes ρ equal the number of vec-
tor dimensions for uniform random vectors with L1 and approach it for normal
random vectors with L2.

Chávez and Navarro prove bounds on the performance of several kinds of
distance-based index structures for metric spaces in terms of ρ. Spaces that are
easy to index have small ρ, and the statistic increases as the spaces become harder
to index. They also give an argument (using a proof of Yianilos) for why intrinsic
dimensionality ought to be proportional to the number of vector components
when applied to points chosen uniformly at random from vector spaces [6,21].
To calibrate the dimensionality measurement, they show experimental results for
low-dimensional spaces to estimate the asymptotic constant of proportionality
for ρ in terms of n, with n-component vectors having each component chosen
from a uniform distribution and using Lp metrics [6].

We analyse the behaviour of ρ for vectors chosen with independent identically
distributed real components, and distance measured by an Lp metric; the result
is exact for L1. We find that ρ(n) is Θ(n) for Lp with finite p, but not necessarily
for L∞. We show ρ to be Θ(log2 n) in the case of normally-distributed random
vectors with the L∞ metric. We also present experimental results corroborating
our theory. The slopes of the lines are found to be significantly greater than
predicted by previous experiments, because the true asymptotic behaviour only
shows itself at large n. The behaviour of the asymptotic lines as p varies is seen
to be counter-intuitive, with the L∞ metric on uniform vectors much different
from the Lp metric for large but finite p.

1.2 Notation

Following the notation used by Arnold, Balakrishnan, and Nagaraja, [1] we write
X

d= Y if X and Y are identically distributed, X
d→ Y if the distribution of X(n)

converges to the distribution of Y as n goes to positive infinity, and X
d↔ Y if the

distributions of both X and Y depend on n and converge to each other. We also
write f(n) → x if x is the limit of f(n) as n goes to positive infinity, E[X] and
V [X] for the expectation and variance of X respectively, log x for the natural

Measuring the Difficulty of Distance-Based Indexing 105

logarithm of x, and Γ (x) for the standard gamma function (generalised factorial).
Random variables that are independent and identically distributed are
called iid, a random variable’s probability density function is called its pdf,
and its cumulative distribution function is called its cdf.

Let X = Y be a real random variate realised as random variables Xi and Yi.
Let xn = 〈X1, X2, . . . , Xn〉 and yn = 〈Y1, Y2, . . . , Yn〉 be vector random variables
with n iid components each, each component drawn from the variate. Let Dp,n

be the distance between x and y under the Lp metric ‖x − y‖p, defined as
(
∑n

i=1 |Xi − Yi|p)1/p for real p > 0 or maxn
i=1 |Xi − Yi| where p = ∞. We are

concerned with the distribution of the random variable Dp,n, and in particular
the asymptotic behaviour for large n of the intrinsic dimensionality statistic
ρp(n) = E[Dp,n]2/2V [Dp,n] [6].

When discussing L∞, which is defined in terms of the maximum function, it
is convenient to define for any real random variate Z random variates max(k){Z}
and min(k){Z} realised as random variables max(k)

i {Z}. and min(k)
i {Z} respec-

tively. Each max(k)
i {Z} is the maximum, and each min(k)

i {Z} the minimum, of
k random variables from Z.

1.3 Extreme Order Statistics

Extreme order statistics of collections of random variables (the maximum, the
minimum, and generalisations of them) have been thoroughly studied [1,9]. If
F (x) is the cdf of Z, then Fn(x) is the cdf of max(n){Z}. We say that the
random variable W with non-degenerate cdf G(x) is the limiting distribution
of the maximum of Z if there exist sequences {an} and {bn > 0} such that
Fn(an + bnx) → G(x). There are only a few possible distributions for W , if it
exists at all.

Theorem 1 (Fisher and Tippett, 1928). If (max(n){Z}−an)/bn
d→W , then

the cdf G(x) of W must be of one of the following types, where α is a constant
greater than zero [1, Theorem 8.3.1] [8]:

G1(x; α) = exp(−x−α) for x > 0 and 0 otherwise; (1)
G2(x; α) = exp(−(−x)α) for x < 0 and 1 otherwise; or (2)

G3(x) = exp(−e−x) . (3)

2 Intrinsic Dimensionality of Random Vectors

Even though intrinsic dimensionality is most important for non-vector spaces,
like strings with edit distance, we wish to know the behaviour of the intrin-
sic dimensionality statistic on familiar vector spaces so we can do meaningful
comparisons. Let x and y be random n-component vectors as described above,
using the Lp metric. We will compute the asymptotic behaviour of the intrinsic
dimensionality ρp(n) as n goes to infinity, based on the distribution of |X − Y |.
Let µ′

k represent the k-th raw moment of |X −Y |; that is, the expected value of
|X − Y |k.

106 M. Skala

2.1 The Lp Metric for Finite p

We would like the intrinsic dimensionality statistic to be proportional to the
length of the vectors when applied to random vectors with iid components and
distance measured by Lp metrics. For finite p as the number of components goes
to infinity, it does indeed behave that way.

Theorem 2. With the Lp metric for fixed finite p, when the |Xi − Yi| are iid
with raw moments µ′

k, then ρp(n)→ [p2(µ′
p)2/(2(µ′

2p − (µ′
p)2))]n.

Proof. The Lp metric for finite p is computed by taking the sum of random
variables |Xi−Yi|p; call the result S. Then the metric is S1/p. We have V [|Xi−
Yi|p] = µ′

2p − (µ′
p)

2, E[S] = nµ′
p, and V [S] = n(µ′

2p − (µ′
p)

2).
Since the mean and variance both increase linearly with n, the standard

deviation will eventually become small in relation to the mean. For large n we
can approximate the function x1/p with a tangent line:

E[S1/p] → E[S]1/p = n1/p(µ′
p)

1/p (4)

V [S1/p] → V [S]
(

d

dS
S1/p

)2
∣∣∣∣∣
S=E[S]

=
µ′

2p − (µ′
p)

2

np2(µ′
p)2

n2/p(µ′
p)

2/p (5)

ρp(n) =
E[S1/p]2

2V [S1/p]
→ n

p2(µ′
p)2

2(µ′
2p − (µ′

p)2)
(6)

��
If we are using the L1 metric, the analysis is even better:

Corollary 1. When p = 1, the approximation given by Theorem 2 becomes
exact: ρ1(n) = [(µ′

1)
2/(2(µ′

2 − (µ′
1)

2))]n.

Proof. When p = 1, then E[S1/p] = E[S] = E[S]1/p and V [S1/p] = V [S] =
V [S]1/p, regardless of n, and the limits for large n in the proof of Theorem 2
become equalities. ��

2.2 Binary Strings with Hamming Distance

Binary strings under Hamming distance are an easy case for the theory, and
are of interest in applications like the Nilsimsa spam filter [7]. We can find the
intrinsic dimensionality of the space of n-bit binary strings under Hamming
distance by treating the strings as vectors with each component a Bernoulli
random variable, equal to one with probability q and zero otherwise. Then the
Hamming distance (number of bits with differing values) is the same as the
L1 distance (sum of absolute component-wise differences), and by Corollary 1,
ρ1(n) = nq(1− q)/(1− 2q + 2q2).

Note that q = 1/2 produces the maximum value of ρ1(n), namely n/2. Sub-
stituting into the lower bound of Chávez and Navarro, we find that a pivot-based
algorithm using random pivots on a database of m strings each n bits long, with
the Hamming metric, must use at least 1

2 (
√

n−1/
√

f)2 lnm distance evaluations
on average per query, to satisfy random queries returning at most a fraction f
of the database [6].

Measuring the Difficulty of Distance-Based Indexing 107

2.3 The L∞ Metric

The distance D∞,n is the maximum of n variables drawn from |X − Y |. We can
eliminate the absolute value function with the following lemma.

Lemma 1. If Z is a real variate with distribution symmetric about zero, and
W, an, and bn exist with (max(n){Z} − an)/bn

d→ W , then max(n){|Z|} d↔
max(2n){Z}.

Proof. Instead of taking the maximum absolute value of a set of n variables
from Z, we could find the maximum and the negative of the minimum and
then take the maximum of those two. But as described by Arnold, Balakrish-
nan, and Nagaraja, the maximum and minimum of a collection of random vari-
ables are asymptotically independent [1, Theorem 8.4.3]. Thus max(n){|Z|} d↔
max{max(n){Z},−min(n){Z}}; and by symmetry of Z,

max{max(n){Z},−min(n){Z}} d= max(2n){Z} (7)

��

Given the distribution of X−Y or |X−Y |, we can obtain the limiting distri-
bution for D∞,n = max(n){|X−Y |}; and if it exists, it will be in one of the three
forms stated in Theorem 1. We can then integrate to find the expectation and
variance, and standard results give acceptable choices for the norming constants
an and bn, giving the following theorem.

Theorem 3. For random vectors with the L∞ metric, when Theorem 1 applies
to max(n){|X − Y |}, we have:

ρ∞(n)→ (an + bnΓ (1− 1/α))2

2b2
n(Γ (1− 2/α)− Γ 2(1− 1/α))

for G1(x; α), α > 2; (8)

ρ∞(n)→ (an + bnΓ (1 + 1/α))2

2b2
n(Γ (1 + 2/α)− Γ 2(1 + 1/α))

for G2(x; α); and (9)

ρ∞(n)→ 3(an + bnγ)2

b2
nπ2 for G3(x); (10)

where γ = 0.57721 56649 015 . . ., the Euler-Mascheroni constant. ��

Unlike in the finite-p case, ρ∞(n) does not necessarily approach a line.

2.4 Uniform Vectors

Let X and Y be uniform real random variates with the range [0, 1), as used by
Chávez and Navarro in their experiment [6]. The pdf of |X − Y | is 2 − 2x for
0 ≤ x < 1. Simple integration gives the raw moments µ′

p = 2/(p + 1)(p + 2) and
µ′

2p = 1/(2p + 1)(p + 1), and then by Theorem 2, ρp(n) → [(4p + 2)/(p + 5)]n.
For the L∞ metric, we note that the cdf of |X − Y | is F (x) = 2x− x2. Then

standard results on extreme order statistics [1, Theorems 8.3.2(ii), 8.3.4(ii)] give

108 M. Skala

us that (max(n){|X −Y |}− an)/nb
d→W where an = 1, bn = 1/

√
n, and the cdf

of W is G2(x; α) with α = 2. By (9), ρ∞(n)→ n/(2− (π/2)). So as n increases,
ρ∞(n) approaches a line with slope 1/(2−(π/2)) = 2.32989 61831 6 . . .; the same
line approached by ρp̃(n) where p̃ = (1 + π)/(7− 2π) = 5.77777 31051 9

We repeated the experiment described by Chávez and Navarro [6, Fig. 3],
of randomly choosing one million pairs of points, finding their distances, and
computing the intrinsic dimensionality. The results are shown in Fig. 1. Exami-
nation reveals an apparent linear trend for each metric, but the points seem to
be on much shallower lines than the theory predicts. The points for L256 match
those for L∞, supporting the intuition that Lp for large p should have the same
asymptotic behaviour as L∞.

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16 18 20

in
tr

in
si

c
di

m
en

si
on

al
ity

vector components

Uniformly distributed small vectors

L1 exp.
L1 asymp.

L2 exp.
L2 asymp.
L256 exp.

L256 asymp.
L∞ exp.

L∞ asymp.

Fig. 1. Experimental results for short vectors with uniform random components

Intuition turns out to be wrong. Repeating the experiment with vectors of
up to one million components (Fig. 2), we see that the line for Lp does approach
a slope of four as p increases, but with the L∞ metric, the line drops to coincide
with the line for Lp̃, p̃ ≈ 5.778, just as predicted by the theory. This phenomenon
is actually not quite so strange as it may seem: this is simply a situation where
we are taking two limits and it matters which order we take them.

2.5 Normal Vectors

Consider a similar case but let X and Y be standard normal random variates.
Since X and Y are standard normal, their difference X−Y is normal with mean

Measuring the Difficulty of Distance-Based Indexing 109

 100

 1000

 10000

 100000

 1e+06

 100 1000 10000 100000

in
tr

in
si

c
di

m
en

si
on

al
ity

vector components

Uniformly distributed large vectors

L1 exp.
L1 asymp.

L2 exp.
L2 asymp.
L5.778 exp.

L256 exp.
L256 asymp.

L∞ exp.
L∞ asymp.

Fig. 2. Experimental results for long vectors with uniform random components

zero and variance two. Then each |X −Y | has a “half-normal” distribution with
pdf (

√
2/π)e−x2/2π . As before, we compute the raw moments and substitute

into the intrinsic dimensionality formula, finding that µ′
p = π(p−1)/22p/2Γ ((p +

1)/2), µ′
2p = πp−1/22pΓ (p+1/2), and so ρp(n)→ n[p2Γ 2((p+1)/2)/2(

√
πΓ (p+

1/2) − Γ 2((p + 1)/2))]. As in the uniform case, ρp(n) = Θ(n), but the slope
is quite different. The maximum slope is one, with the L2 metric; L1 and L3
give slopes of approximately 0.9; and for larger p the slope rapidly approaches
zero.

Now, D∞,n = max(n){|X − Y |}. By Lemma 1 we can instead consider
max(2n){X − Y }. Each X − Y is normal with mean zero and variance two.
Standard results on the maximum of normal random variables give us that
(D∞,n − a2n)/b2n

d→ W where the cdf of W is G3(x) = exp(−e−x) and the
norming constants are a2n = 2

√
log 2n − (log(4π log 2n))/2

√
log 2n and b2n =

1/
√

log 2n [1,9,12]. Then we can substitute into (10) to find the asymptotic in-
trinsic dimensionality ρ∞(n) → (3/4π2) · [4 log n− log log 2n + log(4/π) + 2γ]2,
which is Θ(log2 n).

As with uniform vector components, the intrinsic dimensionality shows mark-
edly different asymptotic behaviour with the L∞ metric from its behaviour with
Lp metrics for finite p; but here, instead of being linear with a surprising slope,
it is not linear at all. The argument for linear behaviour from Yianilos [21,
Proposition 2] only applies to finite p.

110 M. Skala

To verify these results, we generated one million pairs of randomly-chosen
vectors for a number of combinations of vector length and Lp metric, and calcu-
lated the intrinsic dimensionality. The results are shown in Figs. 3 and 4 along
with the theoretical asymptotes. As with uniform components, the true asymp-
totic behaviour for some metrics is only shown at the largest vector sizes.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 4 6 8 10 12 14 16 18 20

in
tr

in
si

c
di

m
en

si
on

al
ity

vector components

Normally distributed small vectors

L1 exp.
L1 asymp.

L2 exp.
L2 asymp.

L4 exp.
L4 asymp.

L8 exp.
L8 asymp.

L16 exp.
L∞ exp.

L∞ asymp.

Fig. 3. Experimental results for short vectors with normal random components

Normal distributions in high-dimensional vector spaces have smaller intrinsic
dimensionality than uniform distributions with vectors of the same length, when
considered with L∞ and Lp for large p. Does that mean normal distributions
are easier to index, or only that intrinsic dimensionality is a poor measure of
indexing difficulty? We argue that normal distributions really are easier to index.

A random vector x from a high-dimensional normal distribution will typ-
ically have many small components and one, or a few, of much greater mag-
nitude. Comparing x to another random point y, the greatest components of
x will usually correspond to small components of y and vice versa, so the L∞
distance between the two will usually be approximately equal to the one largest
component of either vector. At high enough dimensions we could closely approx-
imate the distances between points in almost all cases by only examining the
index and magnitude of the single greatest component of each vector. We could
achieve good indexing by just putting the points into bins according to index
of greatest component, and using cheap one-dimensional data structures within
bins. That is how pyramid-trees work [4], and they work well in this case.

Measuring the Difficulty of Distance-Based Indexing 111

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000

in
tr

in
si

c
di

m
en

si
on

al
ity

vector components

Normally distributed large vectors

L1 exp.
L1 asymp.

L2 exp.
L2 asymp.

L4 exp.
L4 asymp.

L8 exp.
L8 asymp.

L16 exp.
L16 asymp.

L∞ exp.
L∞ asymp.

Fig. 4. Experimental results for long vectors with normal random components

However, when the vectors are selected from a uniform distribution, then
componentwise differences have a triangular distribution, with heavier tails.
More components of the difference vector are likely to be large and have a
chance of determining the distance, so the indexing structure must represent
more information per vector.

3 Other Spaces

Random vector spaces are of interest for calibrating the intrinsic dimensionality
statistic, but practical spaces may be more difficult to analyse. Here we show
the application of the statistic to some other spaces of interest.

3.1 Balls in Hamming Spaces

Consider a ball of radius r in the space of n-bit binary strings; that is, a fixed
n-bit string c and all the strings with Hamming distance from c equal to or
less than r. If we consider this set as a metric space itself, using the Hamming
distance and choosing points uniformly at random from the set, what is its
intrinsic dimensionality?

Theorem 4. For a ball in the space of n-bit strings of constant radius r using the
Hamming metric and choosing strings uniformly at random, ρ → [r/(2r + 1)]n.

112 M. Skala

Proof. Consider how many ways we could choose i of the n bits, then j of the
remaining n− i bits, then k of the remaining n− i− j bits. This number is given
by the multichoose function (i, j, k, n− i− j − k)! = n!/i!j!k!(n− i− j − k)!. If
we choose two strings x and y from the ball, let i be the number of bit positions
where x is different from c and y is equal, let j be the number of bit positions
where y is different from c and x is equal, and then let k (which must be from
zero to r − max{i, j}) be the number of bit positions where x and y are both
different from c and thus equal to each other. We can count the number of ways
to choose these two strings as

N =
r∑

i=0

r∑
j=0

r−max{i,j}∑
k=0

(i, j, k, n− i− j − k)! (11)

=
1

r!2
n2r − r − 3

r!(r − 1)!
n2r−1 + o(n2r−1) . (12)

Similarly, by finding the leading terms of the sums and applying long division,
we can find expressions for the first two raw moments of the distance for two
strings chosen uniformly at random from the ball:

µ′
1 =

1
N

r∑
i=0

r∑
j=0

r−max{i,j}∑
k=0

(i + j)(i, j, k, n− i− j − k)! (13)

= 2r − 2r(r + 1)n−1 + o(n−1) (14)

µ′
2 =

1
N

r∑
i=0

r∑
j=0

r−max{i,j}∑
k=0

(i + j)2(i, j, k, n− i− j − k)! (15)

= 4r2 − 2r(4r2 + 2r + 1)n−1 + o(n−1) . (16)

Then by substitution into the intrinsic dimensionality formula, we obtain
ρ → [r/(2r + 1)]n. ��

3.2 An Image Database

We constructed an image database by selecting frames at random from a selec-
tion of commercial DVD motion pictures, choosing each frame with 1/200 prob-
ability to create a database of 3239 images, which were converted and scaled to
give 259200-element vectors representing the RGB colour values for 360 × 240
pixels. Sampling 105 pairs of these vectors using each of the L2 and L∞ met-
rics produced ρ values of 2.759 for L2 and 38.159 for L∞. These results suggest
that the L2 metric reveals much stronger clumping structure on this database
than the L∞ metric does; and with L2, this database is approximately as hard
to index as a three-dimensional normal distribution in L2 space (ρ = 2.813,
from the experiment shown in Fig. 3). If we have a choice about which metric
to use, the L2 metric will produce a much more efficient index than the L∞
metric.

Measuring the Difficulty of Distance-Based Indexing 113

3.3 A Text Database

We obtained a sample of 28999 spam email messages from SpamArchive.org [18],
and added 2885, or approximately 10 percent, non-spam messages from locally
collected outgoing email, to simulate the database a practical spam-filtering
application might process. We sampled 105 pairs of messages, computed their
distances using the Perl Digest::Nilsimsa [15] 256-bit robust hash, and Hamming
distance, and computed the intrinsic dimensionality ρ = 10.338. For the spam
messages alone, and for the non-spam messages alone, we obtained ρ values
of 10.292 and 11.262 respectively, again with sampling of 105 pairs for each
database. An index of the email database based on Hamming distance of the
Nilsimsa hashes would perform better than a similar index on uniform random
256-bit strings, but answering queries would still be quite difficult, a little more
difficult than for random data normally distributed in 10-dimensional L2 space.

4 Conclusions and Future Work

Intrinsic dimensionality answers questions about spaces: which spaces have com-
parable indexing difficulty, which metrics will allow good indexing, and lower
bounds on query complexity. We have characterised the asymptotic behaviour
of the intrinsic dimensionality statistic for randomly chosen vectors with the
components having uniform or normal distributions, and the Lp metrics for
both finite and infinite p. As our theoretical results show, uniform and normal
components produce vastly different results, especially for Lp with large p and
L∞. In those metrics, high-dimensional normal distributions are easier to index
than uniform distributions of the same dimension. We have also given results
for more complicated spaces: balls in Hamming space, and practical databases
of images and email messages, demonstrating the flexibility of the technique.

The ultimate question for indexing difficulty measurement is how much mak-
ing a distance measurement reduces our uncertainty about the query point’s
distance to points in the index. Intrinsic dimensionality attempts to answer the
question based on the mean and variance of the distribution of a single distance;
but we might obtain a more useful statistic by considering the joint distribution
of distances among more than two randomly chosen points. Such a statistic could
allow the proof of highly general bounds on indexing performance.

References

1. Arnold, B.C., Balakrishnan, N., Nagaraja, H.N.: A First Course in Order Statistics.
Wiley series in probability and mathematical statistics. John Wiley & Sons, Inc.,
New York (1992)

2. Baeza-Yates, R.A., Cunto, W., Manber, U., Wu, S.: Proximity matching using
fixed-queries trees. In: CPM (Combinatorial Pattern Matching). Volume 807 of
Lecture Notes in Computer Science., Springer (1994) 198–212

3. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: An efficient
and robust access method for points and rectangles. In: SIGMOD (International
Conference on Management of Data). (1990) 322–331

114 M. Skala

4. Berchtold, S., Böhm, C., Kriegel, H.P.: The pyramid-tree: Breaking the curse of
dimensionality. In: SIGMOD (International Conference on Management of Data).
(1998) 142–153

5. Bozkaya, T., Ozsoyoglu, M.: Indexing large metric spaces for similarity search
queries. ACM Transactions on Database Systems 24 (1999) 361–404

6. Chávez, E., Navarro, G.: Measuring the dimensionality of general metric
spaces. Technical Report TR/DCC-00-1, Department of Computer Science, Uni-
versity of Chile (2000) Submitted. Online ftp://ftp.dcc.uchile.cl/pub/users/
gnavarro/metricmodel.ps.gz.

7. Damiani, E., De Capitani di Vimercati, S., Paraboschi, S., Samarai, P.: An open
digest-based technique for spam detection. In: 2004 International Workshop on
Security in Parallel and Distributed Systems, San Francisco, CA, USA (2004)

8. Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the
largest or smallest member of a sample. Proceedings of the Cambridge Philosoph-
ical Society 24 (1928) 180–190

9. Galambos, J.: The Asymptotic Theory of Extreme Order Statistics. Second edn.
Robert E. Krieger Publishing Company, Malabar, Florida, U.S.A. (1987)

10. Grumbach, S., Tahi, F.: A new challenge for compression algorithms: Genetic
sequences. Journal of Information Processing and Management 30 (1994) 875–886

11. Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD
Record (ACM Special Interest Group on Management of Data) 14 (1984) 47–57

12. Hall, P.: On the rate of convergence of normal extremes. Journal of Applied
Probability 16 (1979) 433–439

13. Katayama, N., Satoh, S.: The SR-tree: an index structure for high-dimensional
nearest neighbor queries. In: SIGMOD (International Conference on Management
of Data). (1997) 369–380

14. Li, M., Badger, J.H., Xin, C., Kwong, S., Kearney, P., Zhang, H.: An informa-
tion based sequence distance and its application to whole mitochondrial genome
phylogeny. Bioinformatics 17 (2001) 149–154

15. Norwood, C., cmeclax: Digest::Nilsimsa 0.06. Computer software (2002) Online
http://search.cpan.org/~vipul/Digest-Nilsimsa-0.06/.

16. Sahinalp, S.C., Tasan, M., Macker, J., Ozsoyoglu, Z.M.: Distance based indexing for
string proximity search. In: ICDE (International Conference on Data Engineering),
IEEE Computer Society (2003)

17. Sellis, T.K., Roussopoulos, N., Faloutsos, C.: The R+-tree: A dynamic index for
multi-dimensional objects. In: VLDB’87 (International Conference on Very Large
Data Bases), Morgan Kaufmann (1987) 507–518

18. SpamArchive.org: Donate your spam to science. Web site (2005) Online
http://www.spamarchive.org/.

19. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters 40 (1991) 175–179

20. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in
general metric spaces. In: SODA (Symposium on Discrete Algorithms), SIAM
(1993) 311–321

21. Yianilos, P.N.: Excluded middle vantage point forests for nearest neighbour search.
In: ALENEX (Algorithm Engineering and Experimentation: International Work-
shop). (1999)

N -Gram Similarity and Distance

Grzegorz Kondrak

Department of Computing Science, University of Alberta,
Edmonton, AB, T6G 2E8, Canada

kondrak@cs.ualberta.ca
http://www.cs.ualberta.ca/~kondrak

Abstract. In many applications, it is necessary to algorithmically quan-
tify the similarity exhibited by two strings composed of symbols from
a finite alphabet. Numerous string similarity measures have been pro-
posed. Particularly well-known measures are based are edit distance and
the length of the longest common subsequence. We develop a notion
of n-gram similarity and distance. We show that edit distance and the
length of the longest common subsequence are special cases of n-gram
distance and similarity, respectively. We provide formal, recursive defini-
tions of n-gram similarity and distance, together with efficient algorithms
for computing them. We formulate a family of word similarity measures
based on n-grams, and report the results of experiments that suggest
that the new measures outperform their unigram equivalents.

1 Introduction

In many applications, it is necessary to algorithmically quantify the similarity
exhibited by two strings composed of symbols from a finite alphabet. For exam-
ple, for the task of automatic identification of confusable drug names, it is helpful
to recognize that the similarity between Toradol and Tegretol is greater than the
similarity between Toradol and Inderal. The problem of measuring string simi-
larity occurs in a variety of fields, including bioinformatics, speech recognition,
information retrieval, machine translation, lexicography, and dialectology [9]. A
related issue of computing the similarity of texts as strings of words has also
been studied.

Numerous string similarity measures have been proposed. A particularly
widely-used method is edit distance (EDIT), also known as Levenshtein dis-
tance, which is defined as the minimum number of elementary edit operations
needed to transform one string into another. Another, closely related approach
relies on finding the length of the longest common subsequence (LCS) of the two
strings. Other similarity measures are based on the number of shared n-grams,
i.e., substrings of length n.

In this paper, we develop a notion of n-gram similarity and distance.1 We
show that edit distance and the length of the LCS are special cases of n-gram
1 This is a different concept from the q-gram similarity/distance [12], which is simply

the number of common/distinct q-grams (n-grams) between two strings.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 115–126, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 G. Kondrak

distance and similarity, respectively. We provide formal, recursive definitions of
n-gram similarity and distance, and efficient algorithms for computing them.
We formulate a family of word similarity measures based on n-grams, which are
intended to combine the advantages of the unigram and the n-gram measures.
We evaluate the new measures on three different word-comparison tasks: the
identification of genetic cognates, translational cognates, and confusable drug
names. The results of our experiments suggest that the new n-gram measures
outperform their unigram equivalents.

We begin with n-gram similarity because we consider it to be conceptually
simpler than n-gram distance. The latter notion is then defined by modifying
the formulation of the former.

2 Unigram Similarity

In this section, we discuss the notion of the length of the LCS, which we view
as unigram similarity, in the context of its applicability as a string similarity
measure. After defining the longest common subsequence problem in a standard
way, we provide an alternative but equivalent formulation of the length of the
LCS. The recursive definition not only elucidates the relationship between the
LCS length and edit distance, but also generalizes naturally to n-gram similarity
and distance.

2.1 Standard Definition

The standard formulation of the LCS problem is as follows [3]. Given a sequence
X = x1 . . . xk, another sequence Z = z1 . . . zm is a subsequence of X if there
exist a strictly increasing sequence i1, . . . , im of indices of X such that for all j =
1, . . . , m, we have xij = zj . For example, tar is a subsequence of contrary. Given
two sequences X and Y, we say that a sequence Z is a common subsequence of X
and Y if Z is a subsequence of both X and Y. In the LCS problem, we are given
two sequences and wish to find their maximum-length common subsequence.
For example, the LCS of natural and contrary is ntra. The LCS problem can be
solved efficiently using dynamic programming.

For the purpose of measuring string similarity, which is our focus here, only
the length of the LCS is important; the actual longest common subsequence is
irrelevant. The length of the LCS as a function of two strings is an interesting
function in itself [2].

2.2 Recursive Definition

We propose the following formal, recursive definition of the function s(X, Y),
which is equivalent to the length of the LCS. Let X = x1 . . . xk and Y = y1 . . . yl

be strings of length k and l, respectively, composed of symbols of a finite al-
phabet. In order to simplify the formulas, we introduce the following notational
shorthand, borrowed from Smyth [10]. Let Γi,j = (x1 . . . xi, y1 . . . yj) be a pair

N-Gram Similarity and Distance 117

of prefixes of X and Y , and Γ ∗
i,j = (xi+1 . . . xk, yj+1 . . . yl) a pair of suffixes of X

and Y .
For strings of length one or less, we define s directly:

s(x, ε) = 0, s(ε, y) = 0, s(x, y) =
{

1 if x = y
0 otherwise

where ε denotes an empty string, x and y denote single symbols.
For longer strings, we define s recursively:

s(X, Y) = s(Γk,l) = max
i,j

(s(Γi,j) + s(Γ ∗
i,j))

The values of i and j in the above formula are constrained by the requirement
that both Γi,j and Γ ∗

i,j are non-empty. More specifically, the admissible values
of i and j are given by the following set of pairs:

D(k, l) = {0, . . . , k} × {0, . . . , l} − {(0, 0), (k, l)}

For example, D(2, 1) = {(0, 1), (1, 0), (1, 1), (2, 0)}.
It is straightforward to show by induction that s(X, Y) is always equal to

the length of the longest common subsequence of strings X and Y .

2.3 Rationale

Our recursive definition exploits the semi-compositionality of the LCS. Clearly,
LCS is not compositional in the usual sense, because the LCS of concatenated
strings is not necessarily equal to the sum of their respective LCS. For example,
‖LCS(ab, a)‖ = 1 and ‖LCS(c, bc)‖ = 1, but ‖LCS(abc, abc)‖ = 3. What is
certain is that the LCS of concatenated strings is always at least as long as the
concatenation of their respective LCS:

s(X1, Y1) + s(X2, Y2) ≤ s(X1 + X2, Y1 + Y2)

Loosely speaking, s(X, Y) is superadditive, rather than compositional. It is
always possible to compose the LCS of two strings by concatenating the LCS of
their substrings, provided that the decomposition of the strings into substrings
preserves all identity matches in the original LCS. Such a decomposition can
always be found (cf. Figure 1, left pair).

2.4 A Reduced Set of Decompositions

Any decomposition of a pair of strings can be unambiguously defined by a pair
of indices. The set D contains all distinct decompositions of a pair of strings.
The number of distinct decompositions of a pair of strings is (k +1) ∗ (l+1)− 2.

The set of decomposition can be reduced without affecting the values of the
function s. Let D′ be the following set of decompositions:

D′(k, l) = {k − 1, k} × {l− 1, l} − {(0, 0), (k, l)}

118 G. Kondrak

C O N T R A R Y

N A T U R A L

CO

NA ALRAURTUAT

RYARRATRNTON

Fig. 1. A decompositions of a unigram alignment that preserves all identity matches
(left), and a decomposition of a bigram alignment with various levels of bigram simi-
larity (right)

For example, D′(2, 1) = {(1, 0), (1, 1), (2, 0)}. D′ never contains more than three
decompositions. By substituting D by D′ in the recursive definition given in
section 2.2, we obtain an alternative, equivalent formulation of s:

s(X, Y) = s(Γk,l) = max(s(Γk−1,l), s(Γk,l−1), s(Γk−1,l−1) + s(xk, yl))

The alternative formulation directly yields the well-known efficient dynamic-
programming algorithm for computing the length of the LCS [14].

2.5 Beyond Unigram Similarity

The main weakness of the LCS length as a measure of string similarity is its
insensitivity to context. The problem is illustrated in Figure 2. The two word
pairs on the left demonstrate that neighbouring identity matches are a stronger
indication of similarity than identity matches that are far apart. The two word
pairs on the right show that parallel identity matches are a stronger indication
of similarity than identity matches that are separated by unmatched symbols.

A family of similarity measures that do take context into account is based
on Dice coefficient [1]. The measures are defined as the ratio of the number of
n-grams that are shared by two strings and the total number of n-grams in both
strings:

2× |n-grams(X) ∩ n-grams(Y)|
|n-grams(X)|+ |n-grams(Y)|

where n-grams(X) is a multi-set of letter n-grams in X . Dice coefficient with
bigrams (DICE) is a particularly popular word similarity measure. For example,
DICE(Zantac, Contac) = (2 · 3)/(5 + 5) = 0.6 because three of the bigrams are
shared.

Although more sensitive to context that LCS length, DICE has its own prob-
lems. First, because of its “low resolution”, it often fails to detect any similarity

B N A D R O L

M I T O

E

SO R L

B N A D R O L

C R D U R AA

EA K I N

V A

M

D I O N

IA I K I N

A A R Y LM

M

Fig. 2. Two pairs of words with different levels of similarity and the same length of
the longest common subsequence

N-Gram Similarity and Distance 119

between strings that are very much alike; for example, the pair Verelan/Virilon
have no n-grams in common. Second, DICE can return the maximum similarity
value of 1 for strings that are non-identical; for example, both Xanex and Nexan
are composed of the same set of bigrams: {an,ex,ne,xa}. Finally, the measure
often associates n-grams that occur in radically different word positions, as in
the pair Voltaren/Tramadol.

Brew and McKelvie [1] propose an extension of DICE, called XXDICE, in
which the contribution of matching n-grams to the overall score depends on
their absolute positions in the strings. XXDICE performed best among several
tested measures, and it has subsequently been used by other researchers (e.g.,
[11]). Unfortunately, the definition of XXDICE is deficient: it does not specify
which matching bigrams are to be selected for the calculation of the score when
bigrams are not unique. There are a number of ways to amend the definition,
but it then becomes implementation-dependent, which means that the results
are no longer fully replicable. The case of XXDICE serves as an illustration that
it is essential to define string similarity measures rigorously.

In the next section, we formulate the notion of n-gram similarity sn, which
is intended to combine the advantages of the LCS length and Dice coefficient
while eliminating their flaws.

3 n-Gram Similarity

The main idea behind n-gram similarity is generalizing the concept of the longest
common subsequence to encompass n-grams, rather than just unigrams. We
formulate n-gram similarity as a function sn, where n is a fixed parameter. s1 is
equivalent to the unigram similarity function s defined in Section 2.2.

3.1 Definition

For the purpose of providing a concise recursive definition of n-gram similarity,
we slightly modify our convention regarding Γ . When dealing with n-grams for
n > 1, we require Γi,j and Γ ∗

i,j to contain at least one complete n-gram. This
requirement is consistent with our previous convention for n = 1. If both strings
are shorter than n, sn is undefined.

In the simplest case, when there is only one complete n-gram in either of the
strings, n-gram similarity is defined to be zero:

sn(Γk,l) = 0 if (k = n ∧ l < n) ∨ (k < n ∧ l = n)

Let Γ n
i,j = (xi+1 . . . xi+n, yj+1 . . . yj+n) be a pair of n-grams in X and Y . If

both strings contain exactly one n-gram, our initial definition is strictly binary: 1
if the n-grams are identical, and 0 otherwise. (Later, we will consider modifying
this part of the definition.)

sn(Γn,n) = sn(Γ n
0,0) =

{
1 if ∀1≤u≤n xu = yu

0 otherwise

120 G. Kondrak

For longer strings, we define n-gram similarity recursively:

s(X, Y) = sn(Γk,l) = max
i,j

(sn(Γi+n−1,j+n−1) + sn(Γ ∗
i,j))

The values of i and j in the above formula are constrained by the requirement
that both Γi,j and Γ ∗

i,j contain at least one complete n-gram. More specifically,
the admissible values of i and j are given by D(k− n + 1, l− n + 1), where D is
the set defined in Section 2.2.

3.2 Computing n-Gram Similarity

As in the case of s, a set of three decompositions is sufficient for computing sn.

sn(Γk,l) = max(sn(Γk−1,l), sn(Γk,l−1), sn(Γk−1,l−1) + sn(Γ n
k−n,l−n))

An efficient dynamic-programming algorithm for computing n-gram similar-
ity can be derived directly from the alternative formulation. For n = 1, it reduces
to the well-known algorithm for computing the length of the LCS. The algorithm
is discussed in detail in Section 5.

3.3 Refined n-Gram Similarity

The binary n-gram similarity defined above is quite crude in the sense that it
does not differentiate between slightly different n-grams and totally different n-
grams. We consider here two possible refinements to the similarity scale. The
first alternative, henceforth referred to as comprehensive n-gram similarity, is to
compute the standard unigram similarity between n-grams:

sn(Γ n
i,j) =

1
n
s1(Γ n

i,j)

The second alternative, henceforth referred to as positional n-gram similarity,
is to simply to count identical unigrams in corresponding positions within the
n-grams:

sn(Γ n
i,j) =

1
n

n∑
u=1

s1(xi+u, yj+u)

The advantage of the positional n-gram similarity is that it can be computed
faster than the comprehensive n-gram similarity.

Figure 1 (right) shows a bigram decomposition of a pair of words with various
levels of bigram similarity. The solid link denotes a complete match. The dashed
links are partial matches according to both positional and comprehensive n-
gram similarity. The dotted link indicates a partial match that is detected by
the comprehensive n-gram similarity, but not by the positional n-gram similarity.

N-Gram Similarity and Distance 121

4 n-Gram Distance

Since the standard edit distance is almost a dual notion to the length of the LCS,
the definition of n-gram distance differs from the definition of n-gram similarity
only in details:

1. Recursive definition of edit distance:

d(x, ε) = 1, d(ε, y) = 1, d(x, y) =
{

0 if x = y
1 otherwise

d(X, Y) = d(Γk,l) = min
i,j

(d(Γi,j) + d(Γ ∗
i,j))

2. An alternative formulation of edit distance with a reduced set of decompo-
sitions:

d(X, Y) = d(Γk,l) = min(d(Γk−1,l)+1,d(Γk,l−1)+1,d(Γk−1,l−1)+d(xk, yl))

3. Definition of n-gram edit distance:

dn(Γk,l) = 1 if (k = n ∧ l < n) ∨ (k < n ∧ l = n)

dn(Γn,n) = dn(Γ n
0,0) =

{
0 if ∀1≤u≤nxu = yu

1 otherwise

dn(Γk,l) = min
i,j

(dn(Γi+n−1,j+n−1) + dn(Γ ∗
i,j))

4. An alternative formulation of n-gram distance:

dn(Γk,l) = min(dn(Γk−1,l)+1,dn(Γk,l−1)+1,dn(Γk−1,l−1)+dn(Γ n
k−n,l−n))

5. Three variants of n-gram distance dn(Γ n
i,j):

(a) The binary n-grams distance, as defined in 3.
(b) The comprehensive n-grams distance: dn(Γ n

i,j) = 1
nd1(Γ n

i,j).
(c) The positional n-gram distance: dn(Γ n

i,j) = 1
n

∑n
u=1 d1(xi+u, yj+u).

The positional n-gram distance is equivalent to the the comprehensive n-
gram distance for n = 2. All three variants are equivalent for n = 1.

5 n-Gram Word Similarity Measures

In this section, we define a family of word similarity measures (Table 1), which in-
clude two widely-used measures, the longest common subsequence ratio (LCSR)
and the normalized edit distance (NED), and a series of new measures based on
n-grams, n > 1. First, however, we need to consider two measure-related issues:
normalization and affixing.

Normalization is a method of discounting the length of words that are being
compared. The length of the LCS of two randomly-generated strings grows with

122 G. Kondrak

Table 1. A classification of measures based on n-grams

n = 1 n = 2 n = 3 . . . n
Similarity LCSR BI-SIM TRI-SIM . . . n-SIM
Distance NED1 BI-DIST TRI-DIST . . . n-DIST

the length of the strings [2]. In order to avoid the length bias, a normalized
variant of the LCS is usually preferred. The longest common subsequence ratio
(LCSR) is computed by dividing the length of the longest common subsequence
by the length of the longer string [8]. Edit distance is often normalized in a
similar way, i.e. by the length of the longer string (e.g., [5]). However, Marzal and
Vidal [6] propose instead to normalize by the length of the editing path between
strings, which requires a somewhat more complex algorithm. We refer to these
two variants of Normalized Edit Distance as NED1 and NED2, respectively.

Affixing is a way of increasing sensitivity to the symbols at string boundaries.
Without affixing, the boundary symbols participate in fewer n-grams than the
internal symbols. For example, the word abc contains two bigrams: ab and bc; the
initial symbol a occurs in only one bigram, while the internal symbol b occurs in
two bigrams. In the context of measuring word similarity, this is a highly unde-
sirable effect because the initial symbols play crucial role in human perception of
words. In order to avoid the negative bias, extra symbols are sometimes added
to the beginnings and/or endings of words.

The proposed n-gram similarity and distance measures N-SIM and N-DIST
incorporate both normalization and affixing (Figure 3). Our affixing method
is aimed at emphasizing the initial segments, which tend to be much more

Algorithm N-SIM (X, Y)

K ← length(X)
L ← length(Y)
for u ← 1 to N − 1 do

X ← x′
1 + X

Y ← y′
1 + Y

for i ← 0 to K do
S[i, 0] ← 0

for j ← 1 to L do
S[0, j] ← 0

for i ← 1 to K do
for j ← 1 to L do

S[i, j] ← max(
S[i − 1, j],
S[i, j − 1],
S[i − 1, j − 1] + sN(Γ N

i−1,j−1))
return S[K, L]/ max(K, L)

Algorithm N-DIST (X, Y)

K ← length(X)
L ← length(Y)
for u ← 1 to N − 1 do

X ← x′
1 + X

Y ← y′
1 + Y

for i ← 0 to K do
D[i, 0] ← i

for j ← 1 to L do
D[0, j] ← j

for i ← 1 to K do
for j ← 1 to L do

D[i, j] ← min(
D[i − 1, j] + 1,
D[i, j − 1] + 1,
D[i − 1, j − 1] + dN(Γ N

i−1,j−1))
return D[K, L]/ max(K, L)

Fig. 3. The algorithms for computing N-SIM and N-DIST of strings X and Y

N-Gram Similarity and Distance 123

important than final segments in determining word similarity. A unique special
symbol is defined for each letter of the original alphabet. Each word is augmented
with a prefix composed of n − 1 copies of the special symbol that corresponds
to the initial letter of the word. For example, if n = 3, amikin is transformed
into ââamikin. Assuming that the original words have lengths K and L respec-
tively, the number of n-grams is thus increased from K +L− 2(n− 1) to K +L.
The normalization is achieved by simply dividing the total similarity score by
max(K, L), the original length of the longer word. This procedure guarantees
that the new measures return 1 if and only if the words are identical, and 0 if
and only if the words have no letters in common.

6 Experiments

In this section we describe three experiments aimed and comparing the effec-
tiveness of the standard unigram similarity measures with the proposed n-gram
measures. The three experiments correspond to applications in which the stan-
dard unigram measures have been used in the past.

6.1 Evaluation Methodology

Our evaluation methodology is the same in all three experiments. The underly-
ing assumption is that pairs of words that are known to be related in some way
(e. g., by sharing a common origin) exhibit on average much greater similarity
than unrelated pairs. We evaluate the effectiveness of several similarity measures
by calculating how well they are able to distinguish related word pairs from un-
related word pairs. In order for a measure to achieve 100% accuracy, any related
pair would have to be assigned a higher similarity value than any unrelated pair.
In practice, most of the related pairs should occur near the top of a list of pairs
sorted by their similarity value.

The evaluation procedure is as follows:

1. Establish a gold standard set G of word pairs that are known to be related.
2. Generate a much larger set C of candidate word pairs, C ⊃ G.
3. Compute the similarity of all pairs in C using a similarity measure.
4. Sort the pairs in C according to the similarity value, breaking ties randomly.
5. Compute the 11-point interpolated average precision on the sorted list.

The 11-point interpolated average precision is an information-retrieval eval-
uation technique. Precision is computed for the recall levels of 0%, 10%, 20%,
. . . , 100%, and then averaged to yield a single number. We uniformly set the
precision value at 0% recall to 1, and the precision value at 100% recall to 0.

6.2 Data

Genetic Cognates. Cognates are words of the same origin that belong to dis-
tinct languages. For example, English father, German vater, and Norwegian far
constitute a set of cognates, since they all derive from a single Proto-Germanic

124 G. Kondrak

word (reconstructed as *faδēr). The identification of cognates is one of the prin-
cipal tasks of historical linguistics. Cognates are usually similar in their phonetic
form, which makes string similarity an important clue for their identification.

In the first experiment, we extracted all nouns from two machine-readable
word lists that had been used to produce an Algonquian etymological dictio-
nary [4]. The two sets contain 1628 Cree nouns and 1023 Ojibwa nouns, re-
spectively. The set C of candidate pairs was created by generating all possible
Cree-Ojibwa pairs (a Cartesian product). An electronic version of the dictio-
nary, which contains over four thousand Algonquian cognate sets, served as the
gold standard G. The task was to identify 409 cognate pairs among 1,650,780
candidate word pairs (approx. 0.025%).

Translational Cognates. Cognates are usually similar in form and meaning,
which makes string similarity a useful clue for word alignment in statistical ma-
chine translation. Both LCSR and edit distance have been employed for cognate
identification in bitext-related tasks (e.g., [8]).

In the second experiment, we used Blinker, a word-aligned French-English
bitext containing translations of 250 sentences taken from the Bible [7]. For the
evaluation, we manually identified all cognate pairs in the bitext, using word
alignment links as clues. The candidate set of pairs was generated by taking a
Cartesian product of words in corresponding sentences. This time, the task was
to identify those 959 pairs among 36,879 candidate pairs (approx. 2.6%).

Confusable Drug Names. Many drug names either look or sound similar,
which causes potentially dangerous errors. An example of a confusable drug
name pair is Zantac and Zyrtec. Orthographic similarity measures have been
applied in the past for detecting confusable drug names. For example, Lambert
et al. [5] tested edit distance, normalized edit distance, and LCS, among other
measures.

In the final experiment, we extracted 582 unique drug names form an online
list of confusable drug names [13]. The candidate set of pairs was the Cartesian
product of the names. The list itself served as the gold standard. The task was
to identify 798 confusable pairs among 338,142 candidate pairs (approx. 0.23%).

6.3 Results and Discussion

Table 2 compares the average precision achieved by various measures in all
three experiments. The similarity-based measures are given first, followed by
the distance-based measures. PREFIX is a baseline-type measure that returns
the length of the common prefix divided by the length of the longer string.
Three values are given for the N -SIM and N -DIST measures corresponding to
the binary, positional, and comprehensive variants, respectively.

Although the average precision values vary depending on the difficulty of
a particular task, the relative performance of the measures is quite consistent
across the three experiments. The positional and comprehensive variants of the
n-gram measures outperform the standard unigram measures (the only exception
is that NED slightly outperforms TRI-DIST on genetic cognates). The difference

N-Gram Similarity and Distance 125

Table 2. The average interpolated precision for various measures on three word-
similarity tasks

DICE XXDICE LCS LCSR BI-SIM TRI-SIM
bin pos com bin pos com

Drug names .262 .308 .152 .330 .377 .403 .400 .356 .393 .396
Genetic cognates .394 .519 .141 .564 .526 .597 .595 .466 .593 .589
Transl. cognates .775 .815 .671 .798 .841 .841 .846 .829 .838 .832

PREFIX EDIT NED1 NED2 BI-DIST TRI-DIST
bin pos com bin pos com

Drug names .256 .275 .364 .369 .389 .399 .399 .352 .391 .391
Genetic cognates .276 .513 .592 .592 .545 .602 .602 .468 .589 .589
Transl. cognates .721 .681 .821 .823 .840 .838 .838 .828 .829 .830

is especially pronounced in the drug names experiment. The bigram methods are
overall somewhat more effective than the trigram methods. The differences be-
tween the positional and the comprehensive n-gram variants, where they exist,
are insignificant, but the binary variant is sometimes much worse. The normal-
ized versions substantially outperform the un-normalized versions in all cases.
NED consistently outperforms LCSR, but the differences between the similarity-
based methods and the distance-based methods for n > 1 are minimal.

6.4 Similarity vs. Distance

Interestingly, there is a considerable variation in performance among the unigram
measures, but not among the multigram measures. The reason may lie in LCSR’s
lack of context-sensitivity, which we mentioned in Section 2.5. Consider again
the two pairs on the right side of Figure 2. The LCS lengths are identical in
both cases (3), but edit distances differ (7 and 5, respectively). Notice the highly
parallel arrangement of the identity links between the second pair, a phenomenon
which usually positively correlates with perceptual similarity. Since by definition
LCSR is concerned only with the number of identity matches, it cannot detect
such a clue. The multigram measures, on the other hand, are able to recognize
the difference, because n-grams provide an alternative mechanism for taking
context into account.

7 Conclusion

We have formulated a new concept of n-gram similarity and distance, which
generalizes the standard unigram string similarity and distance. On that ba-
sis, we have formally defined a family of new measures of word similarity, We
have evaluated the new measures on three different word-comparison tasks. The
experiments suggest that the new n-gram measures outperform the unigram
measures. In general, normalization by word length is a must. With respect to

126 G. Kondrak

the unigram measures, we have argued that the normalized edit distance may be
more appropriate than LCSR. For n ≥ 2, BI-SIM with positional n-gram simi-
larity is recommended as it combines relative speed with high overall accuracy.

Acknowledgments

Thanks to Bonnie Dorr for collaboration on the confusable drug names project.
This research was supported by Natural Sciences and Engineering Research
Council of Canada.

References

1. Chris Brew and David McKelvie. 1996. Word-pair extraction for lexicography. In
Proc. of the 2nd Intl Conf. on New Methods in Language Processing, pages 45–55.

2. Vacláv Chvátal and David Sankoff. 1975. Longest common subsequences of two
random sequences. Journal of Applied Probability, 12:306–315.

3. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
2001. Introduction to Algorithms. The MIT Press, second edition.

4. John Hewson. 1993. A computer-generated dictionary of proto-Algonquian. Hull,
Quebec: Canadian Museum of Civilization.

5. Bruce L. Lambert, Swu-Jane Lin, Ken-Yu Chang, and Sanjay K. Gandhi. 1999.
Similarity As a Risk Factor in Drug-Name Confusion Errors: The Look-Alike (Or-
thographic) and Sound-Alike (Phonetic) Model. Medical Care, 37(12):1214–1225.

6. A. Marzal and E. Vidal. 1993. Computation of normalized edit distance and appli-
cations. IEEE Trans. Pattern Analysis and Machine Intelligence, 15(9):926–932.

7. I. Dan Melamed. 1998. Manual annotation of translational equivalence: The Blinker
project. Technical Report IRCS #98-07, University of Pennsylvania.

8. I. Dan Melamed. 1999. Bitext maps and alignment via pattern recognition. Com-
putational Linguistics, 25(1):107–130.

9. D. Sankoff and J. B. Kruskal, editors. 1983. Time warps, string edits, and macro-
molecules: the theory and practice of sequence comparison. Addison-Wesley.

10. Bill Smyth. 2003. Computing Patterns in Strings. Pearson.
11. Dan Tufis. 2002. A cheap and fast way to build useful translation lexicons. In

Proc. of the 19th Intl Conf. on Computational Linguistics, pages 1030–1036.
12. Esko Ukkonen. 1992. Approximate string-matching with q-grams and maximal

matches. Theoretical Computer Science, 92:191–211.
13. Use caution — avoid confusion. United States Pharmacopeial Convention Quality

Review, No. 76, March 2001. Available from http://www.bhhs.org/pdf/qr76.pdf.
14. Robert A. Wagner and Michael J. Fischer. 1974. The string-to-string correction

problem. Journal of the Association for Computing Machinery, 21(1):168–173.

Using the k-Nearest Neighbor Graph

for Proximity Searching in Metric Spaces�

Rodrigo Paredes1 and Edgar Chávez2

1 Center for Web Research, Dept. of Computer Science, University of Chile,
Blanco Encalada 2120, Santiago, Chile

raparede@dcc.uchile.cl
2 Escuela de Ciencias F́ısico-Matemáticas, Univ. Michoacana, Morelia, Mich. México

elchavez@fismat.umich.mx

Abstract. Proximity searching consists in retrieving from a database,
objects that are close to a query. For this type of searching problem,
the most general model is the metric space, where proximity is defined
in terms of a distance function. A solution for this problem consists in
building an offline index to quickly satisfy online queries. The ultimate
goal is to use as few distance computations as possible to satisfy queries,
since the distance is considered expensive to compute. Proximity search-
ing is central to several applications, ranging from multimedia indexing
and querying to data compression and clustering.

In this paper we present a new approach to solve the proximity search-
ing problem. Our solution is based on indexing the database with the
k-nearest neighbor graph (knng), which is a directed graph connecting
each element to its k closest neighbors.

We present two search algorithms for both range and nearest neighbor
queries which use navigational and metrical features of the knng graph.
We show that our approach is competitive against current ones. For
instance, in the document metric space our nearest neighbor search al-
gorithms perform 30% more distance evaluations than AESA using only
a 0.25% of its space requirement. In the same space, the pivot-based
technique is completely useless.

1 Introduction

Proximity searching is the search for close or similar objects in a database. This
concept is a natural extension of the classical problem of exact searching. It
is motivated by data types that cannot be queried by exact matching, such as
multimedia databases containing images, audio, video, documents, and so on.
In this new framework the exact comparison is just a type of query, while close
or similar objects can be queried as well. There exists a large number of com-
puter applications where the concept of similarity retrieval is of interest. This
applications include machine learning and classification, where a new element
� This work has been supported in part by the Millennium Nucleus Center for Web

Research, Grant P04-067-F, Mideplan, Chile, and CYTED VII.19 RIBIDI Project.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 127–138, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

128 R. Paredes and E. Chávez

must be classified according to its closest existing element; image quantization
and compression, where only some samples can be represented and those that
cannot must be coded as their closest representable one; text retrieval, where we
look for words in a text database allowing a small number of errors, or we look
for documents which are similar to a given query or document; computational
biology, where we want to find a DNA or protein sequence in a database allowing
some errors due to typical variations; and function prediction, where past be-
havior is extrapolated to predict future behavior, based on function similarity.
See [6] for a comprehensive survey on proximity searching problems.

Proximity/similarity queries can be formalized using the metric space model,
where a distance function d(x, y) is defined for every object pair in X. Objects
in X do not necessarily have coordinates (for instance, strings and images).

The distance function d satisfies the metric properties: d(x, y) ≥ 0 (posi-
tiveness), d(x, y) = d(y, x) (symmetry), d(x, y) = 0 iff x = y (reflexivity), and
d(x, y) ≤ d(x, z)+d(z, y) (triangle inequality). The distance is considered expen-
sive to compute (for instance, when comparing two documents or fingerprints).

We have a finite database of interest U of size n, which is a subset of the
universe of objects X and can be preprocessed to build a search index.

A proximity query consists in retrieving objects from U which are close to a
new object q ∈ X. There are two basic proximity queries:

Range query (q, r)d: Retrieve all elements in U which are within distance r to
q ∈ X. This is, (q, r)d = {u ∈ U / d(q, u) ≤ r}.

Nearest neighbor query NNk(q)d: Retrieve the k closest elements in U to
q ∈ X. This is, |NNk(q)d| = k, and ∀ u ∈ NNk(q)d, v ∈ U − NNk(q)d,
d(u, q) ≤ d(v, q).

There are some considerations about NNk(q)d. In case of ties we choose any k-
element set that satisfies the query. The query covering radius crq is the distance
from q towards the farthest neighbor in NNk(q)d. Finally, a NNk(q)d algorithm
is called range-optimal if it uses the same number of distance evaluations than
a range search with radius the distance to the k-th closest element [11].

An index is a data structure built offline over U to quickly solve proximity
queries online. Since the distance is considered expensive to compute the goal of
an index is to save distance computations. Given the query, we use the index to
discard as many objects from the database as we can to produce a small set of
candidate objects. Later, we check exhaustively the candidate set to obtain the
query outcome.

There are three main components in the cost of computing a proximity query
using an index, namely: the number of distance evaluations, the CPU cost of
side computations (other than computing distances) and the number of I/O
operations. However, in most applications the distance is the leader complexity
measure, and it is customary to just count the number of computed distances to
compare two algorithms. This measure applies to both index construction and
object retrieval. For instance, computing the cosine distance [3] in the document
metric space takes 1.4 msecs in our machine (Pentium IV, 2 GHz), which is
really costly.

Using the kNNG for Proximity Searching in Metric Spaces 129

An important parameter of a metric space is its intrinsic dimensionality.
In R

D with points distributed uniformly the intrinsic dimension is simply D.
In metric spaces or in R

D where points are not chosen uniformly, the intrin-
sic dimensionality can be defined using the distance histogram [6]. In practice,
the proximity query cost worsens quickly as the space dimensionality grows. In
fact, an efficient method for proximity searching in low dimensions may become
painfully slow in high dimensions. For large enough dimensions, no proximity
search algorithm can avoid comparing the query against all the database.

1.1 A Note on k-Nearest Neighbor Graphs

The k-nearest neighbors graph (knng) is a directed graph connecting each el-
ement to its k nearest neighbors. That is, given the element set U the knng
is a graph G(U, E) such that E = {(u, v, d(u, v)), v ∈ NNk(u)d}, where each
NNk(u)d represent the outcome of the nearest neighbor query for each u ∈ U.

The knng is interesting per se in applications like cluster and outlier de-
tection [9,4], VLSI design, spin glass and other physical process simulations [5],
pattern recognition [8], and query or document recommendation systems [1,2].
This contribution starts with the knng graph already built, we want to prove
the searching capabilities of this graph. However, we show some specific knng
construction algorithms for our present metric space application in [14].

Very briefly, the knng is a direct extension of the well known all-nearest-
neighbor (ann) problem. A näıve approach to build knng uses n(n−1)

2 = O(n2)
distance computations and O(kn) memory. Although there are several alterna-
tives to speed up the procedure, most of them are unsuitable for metric spaces,
since they use coordinate information that is not necessarily available in general
metric spaces. As far as we know, there are three alternatives in our context.

Clarkson generalized the ann problem for general metric spaces solving the
ann by using randomization in O(n(log n)2(log Γ (U))2) expected time, where
Γ (U) is the distance ratio between the farthest and closest pair of points in U

[7]. The technique described there is mainly of theoretical interest, because the
implementation requires o(n2) space.

Later, Figueroa proposes build the knng by using a pivot-based index so as
to solve n range queries of decreasing radius [10]. As it is well known, the per-
formance of pivot-based algorithms worsen quickly as the space dimensionality
grows, thus limiting the applicability of this technique.

Recently, we propose two approaches for the problem which exploit several
graph and metric space features [14]. The first is based on recursive partitions,
and the second is an improvement over the Figueroa’s technique. Our construc-
tion complexity for general metric spaces is around O(n1.27k0.5) for low and
medium dimensionality spaces, and O(n1.90k0.1) for high dimensionality ones.

1.2 Related Work

We have already made another attempt about using graph based indices for
metric space searching by exploring the idea of indexing the metric space with a

130 R. Paredes and E. Chávez

t-spanner [12,13]. In brief, a t-spanner is a graph with a bounded stretch factor
t, hence the distance estimated through the graph (the length of the shortest
path) is at most t times the original distance. We show that the t-spanner based
technique has better performance searching real-world metric spaces than the
obtained with the classic pivot-based technique. However, the t-spanner can
require much space. With the knng we aim at similar searching performance
using less space.

In the experiments, we will compare the performance of our searching algo-
rithms against the basic pivot-based algorithm and AESA [15]. It is known that
we can trade space for time in proximity searching in the form of more pivots in
the index. So, we will compare our knng approach to find out how much memory
a pivot-based algorithm need to use to be as good as the knng approach. Note
that all the pivot-based algorithms have similar behavior in terms of distance
computations, being the main difference among them the CPU time of side com-
putations. On the other hand, we use AESA just like a baseline, since its huge
O(n2) memory requirement makes this algorithm suitable only when n is small.
See [6] for a comprehensive explanations of these algorithms.

1.3 Our Contribution

In this work we propose a new class of proximity searching algorithms using the
knng as the data structure for searching U. This is the first approach, up to the
best of our knowledge, using the knng for metric searching purposes.

The core of our contribution is the use of the knng to estimate both an
upper bound and a lower bound of the distance to the query from the database
elements. Once we compute d(q, u) for some u we can upper bound the distance
from q to many database objects (if the graph is connected, we upper bound
the distance to all the database objects). We can also lower bound the distance
from the query to the neighbors of u. The upper bound allows the elimination
of far-from-the-query elements whilst the lower bound can be used to test if an
element can be in the query outcome.

As we explain later (Sections 2 and 3), this family of algorithms have a large
number of design parameters affecting its efficiency (not the correctness). We
tried to explore all the parameters experimentally in Section 4.

We selected two sets of heuristics rising two metric range query algorithms,
and building on top of them we designed two nearest neighbor search algorithms.

The experiments confirm that our algorithms are efficient in distance eval-
uations. For instance, in the document metric space with cosine distance our
nearest neighbor query algorithms just perform 30% more distance evaluations
than AESA, but only using a 0.25% of its space requirement. In the same space,
the pivot-based technique is completely useless.

2 knng-Based Range Query Algorithms

Given an arbitrary subgraph of the distance matrix of U, one can upper bound
the distance between two objects by using the shortest path between them.

Using the kNNG for Proximity Searching in Metric Spaces 131

G(u,v)

vu

d

d(u,v)

(a) We upper bound the
distance d(u, v) with the
length of the shortest
path dG(u, v)

pq

cr
p

r

d
p

q

(b) If the ball (p, crp) cov-
ers (q, r), we make C =
(p, crp)

p

q

(c) If we find an ob-
ject p ∈ (q, r)d, we
check its neighbor-
hood

Fig. 1. Using the knng features. In 1(a), approximating the distance in the graph. In
1(b), using the container. In 1(c), checking the neighborhood.

Formally, d(u, v) ≤ dG(u, v) where dG(u, v) is the distance in the graph, that is,
the length of the shortest path between the objects. Figure 1(a) shows this.

A generic graph-based approach for solving range queries consists in starting
with a set of candidate nodes C of the provable smallest set containing (q, r)d. A
fair choice for an initial C is the whole database U. Later, we iteratively extract
an object u from C and if d(u, q) ≤ r we report u as part of (q, r)d. Otherwise,
we delete all the objects v such that dG(u, v) < d(u, q)−r. Figure 2(a) illustrates
this, we discard all the gray nodes because their distance estimations are small
enough. We repeat the above procedure as long as C have candidate objects. In
this paper we improve this generic approach using the knng properties.

Using Covering Radius. Notice that each node in knng has a covering radius
cru (the distance towards its k-th neighbor). If the query ball (q, r)d is contained
in (u, cru)d we can make C = (u, cru)d, and proceed iteratively from there.
Furthermore, we can keep track of the best fitted object, considering both its
distance to the query and its covering radius using the equation cru−d(u, q). The
best fitted object will be the one having the largest difference, we call container
this difference. Figure 1(b) illustrates this. So, once the container is larger than
the searching radius we can make C = (u, cru)d as stated above. The probability
of hitting a case to apply this property is low; but it is simply to check and the
low success rate is compensated with the dramatic shrink of C when applied.

Propagating in the Neighborhood of the Nodes. Since we are working over a graph
built by an object closeness criterion, if an object p is in (q, r)d it is likely that
some of its neighbors are also in (q, r)d. Moreover, since the out-degree of a knng
is a small constant, spending some extra distance evaluations on neighbors of
processed nodes do not add a large overhead to the whole process.

So, when we found an object belonging to (q, r)d, it is worth to examine its
neighbors, and, as with any other examination update the container. Note that
every time we hit an answer we recursively check all of its neighbors. Special care
must be taken to avoid multiple checks or cycles. Figure 1(c) illustrates this.

Note also that since we can lower bound the distance from the query to the
neighbors of a processed object, we can discard some neighbors without directly
computing the distance. Figure 2(b) illustrates this.

132 R. Paredes and E. Chávez

d

−r
d

pq

pq

crp r

qp

(a) The balls do not intersect each other

pqd

d
pq −r

dpq+r

q
p

rpcr

(b) The balls intersect each other

Fig. 2. In 2(a), we extract gray objects which have a distance estimation lower that
dpq − r and count visits to the white ones which have estimations lower than dpq. In
2(b), we use p as a pivot discarding its gray neighbors when the distance from p towards
them is not in [dpq − r, dpq + r], else, we count the visit to the white nodes.

Working Evenly in All Graph Regions. Since we use path expansions from some
nodes it is important to choose them scattered in the graph to avoid concen-
trating efforts in the same graph region. Otherwise, we will compute a path
several times. A good idea is to select elements far apart from q and the previ-
ous selected nodes, because these nodes would have major potential of discarding
non-relevant objects. Unfortunately, the selection of distant objects cannot be
done by directly computing the distance to q. However, we can estimate “how
visited” is some region. In fact, our two range query algorithms differ essentially
in the way we select the next node to review.

2.1 First Heuristic for Metric Range Query (knngRQ1)

In this heuristic we prefer to start shortest path computations from nodes with
few discarded neighbors, since these nodes have major discarding potential. Ad-
ditionally, we also consider two criteria so as to break ties. The second criterion
is to use nodes with small covering radius, and the third is that we do not want
to restart elimination in an already visited node, and between two visited nodes
we will choose the least traversed. So, to select a node, we consider the following:

1. How many neighbors already discarded has the node. Nodes with few dis-
carded neighbors have major discarding potential, so they can reduce heavily
the number of distance computations performed to solve the query.

2. The size of the covering radius. Objects having small covering radius, that
is, very close neighbors, have major chance of discarding them (since if cru <
d(u, q) − r, all its neighbors are discarded). Moreover, it is also likely that
distance estimations computed from u would have tighter upper bounds.

3. The number of times the node was checked in a path expansion (when com-
puting the graph distance). We prefer a node that it had been checked few
times in order to scatter the search effort on the whole graph.

The above heuristics are condensed in Eq. (1).

p = argminu∈C{|U| · (dnu + f(u)) + #visit} (1)

Using the kNNG for Proximity Searching in Metric Spaces 133

With f(u) ∈ [0, 1], f(u) = cru−crmin

crmax−crmin
, and crmin = minu∈U{cru}, crmax =

maxu∈U{cru}, and dnu represents the number of discarded neighbors of u. Note
that in Eq. (1) the leading term selects nodes with few discarded neighbors, the
second term is the covering radius and the last term the number of visits.

The equation is computed iteratively for every node in the graph. For each
node we save the value of Eq. (1) and every time we visit a node we update the
heuristic value accordingly. Figure 2(a) illustrates this. Note that when we start
a shortest path expansion we can discard some nodes (the gray ones), but for
those that we cannot discard (the white nodes) we update their value of Eq. (1).

Please note that when we compute the graph distance (the shortest path
between two nodes), we use a variation of Dijkstra’s all shortest path algorithm
which limits the propagation up to an estimation threshold, since a distance
estimation grater that d(u, q)− r cannot be used to discard nodes.

2.2 Second Heuristic for Metric Range Query (knngRQ2)

A different way to select a scattered element set is by using the graph distance.
More precisely we assume that if two nodes are far apart according to the graph
distance, they are also far apart using the original distance. The idea is to select
the object with the largest sum of graph distances to all the previously selected
objects. From other point of view, this heuristic tries to start shortest path
computations from outliers.

3 knng-Based Nearest Neighbor Queries

Range query algorithms naturally induce nearest neighbor searching algorithms.
To this end, we use the following ideas:

– We simulate the nearest neighbor query using a range query of decreasing
radius, which initial radius crq is ∞.

– We manage an auxiliary set of nearest neighbor candidates of q known up to
now, so the radius crq is the distance from q to its furthest nearest-neighbor
candidate.

– Each non-discarded object reminds its own lower bound of the distance from
itself to the query. For each node its initial lower bound is 0.

Note that, each time we find and object u such that d(u, q) < crq, we re-
place the farthest nearest-neighbor candidate by u, so this can reduce crq. Note
also that, if d(u, q) < crq it is likely that some of the neighbors of u can also
be relevant to the query, so we check all the u neighbors. However, since the
initial radius is ∞ we change a bit the navigational schema. In this case, instead
of propagating in the neighborhood, we start the navigation from the node u
towards the query q by jumping from one node to another if the next node is
closer to q to than the previous one. Figure 3 illustrates this. In the figure, we
start in p, and we navigate towards q until we reach pc.

On the other hand, unlike range queries, we split the discarding process in
two stages. In the first, we compute the lower bound of all the non-discarded

134 R. Paredes and E. Chávez

cr
q2

u
LB[u

]

pf

pc

p

cr

q

q1

Fig. 3. If we find an object p ∈ NNl(q)d we traverse through the graph towards q.
Later, as crq decreases, it is possible to discard the node u when LB[u] > crq.

nodes. In the second, we extract the objects such that their lower bound are big
enough, that is, we discard u if LB[u] > crq. This is also illustrated in Figure 3.
Note that, when we start in p the covering radius is crq1. However, upon we
reach pc the covering radius has been reduced to crq2 < LB[u], so we discard u.

LB[u] is computed as the maxp{d(p, q) − dG(p, u)}, where p is any of the
previously selected nodes. Note that LB[u] allows us to delay the discarding of
u until crq is small enough, even if we only update LB[u] once.

With these modifications we produce the algorithms knngkNNQ1 which
selects the next node according to Eq. (1), and knngkNNQ2 which selects
nodes far apart from each other.

4 Experimental Results

We have tested our algorithms on synthetic and real-world metric spaces. The
synthetic set consists of 32,768 points distributed uniformly in the D-dimensional
unitary cube [0, 1]D, under the Euclidean distance. This space allows us to mea-
sure the effect of the space dimension D on our algorithms. Of course, we have
not used the coordinates for discarding purposes, but just treated the points as
abstract objects in an unknown metric space.

We also included two real-world examples. The first is a string metric space
using the edit distance (the minimum number of character insertions, deletions
and replacements needed to make two strings equal). The strings came from an
English dictionary, where we index a random subset of 65,536 words. The second
is a document metric space of 25,000 objects under the cosine distance. Both
spaces are of interest in Information Retrieval applications.

Each point in the plots represents the average of 50 queries q ∈ X − U.
For shortness we have called RQ the range query and NNQ the nearest neigh-
bor query. We have compared our algorithms against AESA and a pivot-based
algorithm (only in this case have we used range-optimal NNQs). For a fair com-
parison, we provided the same amount of memory for the pivot index and for
our knng index (that is, we compare a knng index against a 1.5k pivot set size).

With our experiments we tried to measure the behavior of our technique
varying the vector space dimension, the query outcome size (by using different
radii in RQs or different number of retrieved neighbors in NNQs), and the graph
size (that is, number of neighbors per object) to try different index size.

Using the kNNG for Proximity Searching in Metric Spaces 135

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 28 24 20 16 12 8 4

D
is

ta
nc

e
E

va
lu

at
io

ns

dimension

Vector space: Range Query, retrieving 1 object, n = 32,768

8nngRQ1
8nngRQ2
8Eq Pivot

32nngRQ1
32nngRQ2
32Eq Pivot

AESA

(a) Vectors, RQ varying dimension

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 28 24 20 16 12 8 4

D
is

ta
nc

e
E

va
lu

at
io

ns

dimension

Vector space: 1-Nearest Neighbor Query, n = 32,768

8nng1NNQ1
8nng1NNQ2

8Eq Pivot k=1
32nng1NNQ1
32nng1NNQ2

32Eq Pivot k=1
AESA k=1

(b) Vectors, 1NNQ varying dimension

 512

 1024

 2048

 4096

 8192

 16384

 32768

 2 4 8 16 32 64

D
is

ta
nc

e
E

va
lu

at
io

ns

neighbors per vector in the graph

Vector space dim 16: Range Query retr. 1 and 10 vectors, n = 32,768

knngRQ2 r=0.66
Pivot r=0.66

AESA r=0.66
knngRQ2 r=0.78

Pivot r=0.78
AESA r=0.78

(c) Vectors, RQ varying index size

 512

 1024

 2048

 4096

 8192

 16384

 32768

 1 2 4 8 16

D
is

ta
nc

e
E

va
lu

at
io

ns

k nearest vector retrieved

Vector space: 32 Near Neighbor Graph, n = 32,768

dim 16, 32nngkNNQ2
dim 16, 32Eq Pivot

dim 16, AESA
dim 24, 32nngkNNQ2

dim 24, 32eq Pivot
dim 24, AESA

(d) Vectors, NNQ in dim 16 and 24

Fig. 4. Distance evaluations in the vector space for RQ (left) and NNQ (right)

Figure 4 shows results in the vector space. Figure 4(a) shows RQs using radii
that retrieve 1 object per query in average indexing the space with 8nng and
32nng graphs versus the dimension; and the Figure 4(b) shows the equivalent
experiment for NNQs retrieving 1 neighbor. As can be seen from these plots,
even though our NNQ algorithms are not range-optimal per se, they behave as
if they were. Due to both RQ knng based variants behave very similar, we only
show the better of them in the following plots in order to simplify the reading.
We do the same in the NNQ plots.

Figure 4(c) shows RQs retrieving 1 and 10 vector in average per query versus
the index size. Figure 4(d) shows NNQs over a 32nng in dimension 16 and 24,
versus the size of the query outcome. It is very remarkable that knng based
algorithms are more resistant to both the dimension effect (Figures 4(a) and
4(b)) and the query outcome size (Figures 4(c) and 4(d)). As we can expect, the
bigger the index size (that is, the more the neighbors in the knng), the better
the searching performance (Figure 4(c)). Furthermore, all the plots in Figure 4
show that our algorithms have better performance than the classic pivot based
approach for medium and high dimension metric spaces, that is D > 8.

Figure 5 shows results in the string space. Figure 5(a) shows RQs using
radii r = 1, 2, and 3, and Figure 5(b) shows NNQs retrieving 2 and 16 nearest
neighbors, both of them versus the index size. They confirm that knng based

136 R. Paredes and E. Chávez

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 2 4 8 16 32 64

D
is

ta
nc

e
E

va
lu

at
io

ns

neighbors per string in the graph

String space: Range Query, n = 65,536

knngRQ2 r = 1
Pivot r = 1

knngRQ2 r = 2
Pivot r = 2

knngRQ2 r = 3
Pivot r = 3

(a) Strings, RQ for r = 1, 2 and 3

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 2 4 8 16 32 64

D
is

ta
nc

e
E

va
lu

at
io

ns

neighbors per string in the graph

String space: k-Near Neighbor Query k = 2 and 16, n = 65,536

knng2NNQ1
Pivot k=2

knng16NNQ2
Pivotk=16

(b) Strings, kNNQ for k = 2 and 16

Fig. 5. Distance evaluations in the string space for RQ (left) and NNQ (right). In RQs,
AESA needs 25, 106 and 713 distance evaluations for radii r = 1, 2 and 3 respectively. In
NNQs, AESA needs 42 and 147 evaluations to retrieve 2 and 16 neighbors respectively.

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 2 4 8 16 32 64

D
is

ta
nc

e
E

va
lu

at
io

ns

neighbors per document in the graph

Document space: Range Query retrieving 1 and 10 docs, n = 25,000

knngRQ1 r=0.61
Pivot r=0.61

AESA r=0.61
knngRQ1 r=0.91

Pivot r=0.91
AESA r=0.91

(a) Docs., RQ for r = 0.61 and 0.91

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 1 2 4 8 16

D
is

ta
nc

e
E

va
lu

at
io

ns

k nearest document retrieved

Document space: 32 Near Neighbor Graph, n = 25,000

32nngkNNQ1
32Eq Pivot

64nngkNNQ1
64Eq Pivot

AESA

(b) Docs., kNNQ over a 32nng

Fig. 6. Distance evaluations in the document space for RQ (left) and NNQ (right)

search algorithms are resistant against the query result size, as expected from the
synthetic space experiments. With radii r = 1, 2 and 3, we retrieve approximately
2, 29 and 244 strings per query in average, however the performance of our
algorithms do not degrade so strongly as the pivot-based one. With radius 1 the
pivot based technique has better performance than our algorithms. However,
with radius r = 2 and 3, our algorithms outperform the pivot-based algorithm.
In this figures, we do not plot the AESA results because it uses too few distances
evaluations, however recall that the AESA index uses O(n2) memory which is
impractical in most of the scenarios. Note that the difference between pivot range
queries of radius 1 and the 2-nearest neighbor queries appears because there are
strings that have much more than 2 neighbors at distance 1, for example the
query word “cams” retrieves “jams”, “crams”, “cam” and seventeen others, so
these words distort the average for radius 1. We also verify that, the bigger the
index size, the better the performance.

Figure 6 shows results in the document space. Figure 6(a) shows RQs using
radii r = 0.61 and 0.91 versus the index size. Figure 6(b) shows NNQs over

Using the kNNG for Proximity Searching in Metric Spaces 137

a 32nng versus the query outcome size. This space is particularly difficult to
manage, please observe that the pivot-based algorithms check almost all the
database. Even in this difficult scenario, our algorithms handle to retrieve object
checking a fraction of the database. It is remarkable that in NNQs, our algorithms
perform 30% more distance evaluation than AESA using only a 0.25% of its space
requirement.

Note that in the three spaces, the grater the knng index size, the better the
behavior of our algorithms. However, the search performance improves strongly
as we add more space to the graph only when we use small indices, that is, knng
graphs with few neighbors. Fortunately, our algorithms behave better than the
classic pivot technique in low memory scenarios with medium or high dimension-
ality. According to our experiments for k ≤ 32 we obtain better results than the
equivalent memory space pivot-based algorithm in D-dimensional vector spaces
of D > 8 and the document space. In the string space we obtain better results
in RQ using radii r > 2 or in NNQ retrieving more than 4 nearest strings.

5 Conclusions

We have presented four metric space searching algorithms that use the k-nearest
neighbor graph knng as a metric index.

Our algorithms have practical applicability in low memory scenarios for met-
ric spaces of medium or high dimensionality. For instance, in the document met-
ric space with cosine distance our nearest neighbor algorithm uses just 30% more
distance computations than AESA only using a 0.25% of its space requirement.
In same space, the pivot-based technique is completely useless.

The future work involves the development of range-optimal nearest neighbor
queries and the researching of knng optimizations tuned for our metric appli-
cations. For instance, we want to explore other local graphs, like the all range
r graph where we assign to each node all the nodes within distance r. This way
also allow us to control the size of the neighbor ball.

Since our data structure can efficiently search for nearest neighbor queries, it
is natural to explore an incremental construction of the graph itself. To do this
end we need to solve reverse nearest neighbor problem with this data structure.
Incremental construction is very realistic in many real-world applications.

References

1. R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query clustering for boosting web
page ranking. In Proc. AWIC’04, LNCS 3034, pages 164–175, 2004.

2. R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query recommendation usign query
logs in search engines. In Proc. EDBT Workshops’04, LNCS 3268, pages 588–596,
2004.

3. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-
Wesley, 1999.

138 R. Paredes and E. Chávez

4. M. Brito, E. Chávez, A. Quiroz, and J. Yukich. Connectivity of the mutual k-
nearest neighbor graph in clustering and outlier detection. Statistics & Probability
Letters, 35:33–42, 1996.

5. P. Callahan and R. Kosaraju. A decomposition of multidimensional point sets with
applications to k nearest neighbors and n body potential fields. JACM, 42(1):67–
90, 1995.

6. E. Chávez, G. Navarro, R. Baeza-Yates, and J.L. Marroqúın. Searching in metric
spaces. ACM Computing Surveys, 33(3):273–321, September 2001.

7. K. Clarkson. Nearest neighbor queries in metric spaces. Discrete Computational
Geometry, 22(1):63–93, 1999.

8. R. O. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley, 1973.
9. D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal poly-

topes. Discrete & Computational Geometry, 11:321–350, 1994.
10. K. Figueroa. An efficient algorithm to all k nearest neighbor problem in metric

spaces. Master’s thesis, Universidad Michoacana, Mexico, 2000. In Spanish.
11. G. Hjaltason and H. Samet. Incremental similarity search in multimedia databases.

Technical Report TR 4199, Dept. of Comp. Sci. Univ. of Maryland, Nov 2000.
12. G. Navarro and R. Paredes. Practical construction of metric t-spanners. In Proc.

ALENEX’03, pages 69–81, 2003.
13. G. Navarro, R. Paredes, and E. Chávez. t-Spanners as a data structure for metric

space searching. In Proc. SPIRE’02, LNCS 2476, pages 298–309, 2002.
14. R. Paredes and G. Navarro. Practical construction of k nearest neighbor graphs

in metric spaces. Technical Report TR/DCC-2005-6, Dept. of Comp. Sci. Univ.
of Chile, May 2005. ftp://ftp.dcc.uchile.cl/pub/users/gnavarro/knnconstr.
ps.gz.

15. E. Vidal. An algorithm for finding nearest neighbors in (approximately) constant
average time. Pattern Recognition Letters, 4:145–157, 1986.

Classifying Sentences Using Induced Structure�

Menno van Zaanen, Luiz Augusto Pizzato, and Diego Mollá

Division of Information and Communication Sciences (ICS),
Department of Computing, Macquarie University,

2109 North Ryde, NSW Australia
{menno, pizzato, diego}@ics.mq.edu.au

Abstract. In this article we will introduce a new approach (and several
implementations) to the task of sentence classification, where pre-defined
classes are assigned to sentences. This approach concentrates on struc-
tural information that is present in the sentences. This information is
extracted using machine learning techniques and the patterns found are
used to classify the sentences. The approach fits in between the existing
machine learning and hand-crafting of regular expressions approaches,
and it combines the best of both. The sequential information present in
the sentences is used directly, classifiers can be generated automatically
and the output and intermediate representations can be investigated and
manually optimised if needed.

1 Introduction

Sentence classification is an important task in various natural language process-
ing applications. The goal of this task is to assign pre-defined classes to sentences
(or perhaps sequences in the more general case). For example, document sum-
marisers that are based on the method of text extraction, identify key sentences
in the original document. Some of these summarisers (e.g. [4,8]) classify the
extracted sentences to enable a flexible summarisation process.

Sentence classification is also a central component of question-answering sys-
tems (e.g. the systems participating in the question answering track of TREC1).
Different types of questions prompt different procedures to find the answer. Thus,
during a question analysis stage the question is classified among a set of prede-
fined expected answer types (EAT). Classes can be, for instance, “number” or
“location”, but they can also be more fine-grained, such as “number-distance”,
“number-weight”, “location-city”, or “location-mountain”.

Here, we will introduce a novel approach to the problem of sentence classifi-
cation, based on structural information that can be found in the sentences. Re-
occurring structures, such as How far . . . may help finding the correct sentence
class (in this case a question with EAT “distance”). The approach described here

� This work is supported by the Australian Research Council, ARC Discovery grant
no. DP0450750.

1 See http://trec.nist.gov/ for more information.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 139–150, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

140 M. van Zaanen, L.A. Pizzato, and D. Mollá

automatically finds these structures during training and uses this information
when classifying new sentences.

In the next section, the main approach will be described, as well as two dif-
ferent systems (with corresponding implementations) based on this idea. To get
a feeling for whether the approach is feasible, we have applied implementations
of the systems to real data in the context of question classification. The results
published here indirectly provide insight in the approach. We will conclude with
an overview of the advantages and disadvantages of these systems and finish
with a discussion of future work.

2 Approach

Past approaches to sentence classification can be roughly divided into two groups:
machine learning and regular expression approaches.

Grouping sentences in a fixed set of classes is typically a classification task
for which “standard” machine learning techniques can be used. In fact, this has
been done in the past [4,6,14]. However, an inconvenience of these methods is
that the intermediate data produced by most machine learning techniques is
difficult to interpret by a human reader. Therefore, these methods do not help
to understand the classification task, and consequently the determination of the
features to use by the classifier is usually reduced to a process of trial and error,
where past trials do not help much to determine the optimal set of features.

Also, many features that are or have been used do not allow a description
of the inherently sequential aspect of sentences. For example, bags of words,
occurrence of part-of-speech (POS) tags, or semantically related words, all lose
the sequential ordering of words. The order of words in a sentence contains
information that may be useful for the classification.

The alternative approach, handcrafted regular expressions that indicate when
sentences belong to a certain class do (in contrast to the machine learning ap-
proach) maintain word order information. As an example, one might consider the
regular expression /^How far/ that can be used to classify questions as having
an EAT of “distance”. This method brings fairly acceptable results when there
are specific structures in the sentence that clearly mark the sentence type, as is
the case with question classification into a coarse-grained set of EAT [9,13]. The
regular expression approach also has the advantage that regular expressions are
human readable and easy to understand. However, creating them is not always
trivial. Having many fine-grained classes makes it extremely hard to manually
create regular expressions that distinguish between closely related classes.

Our method aims at using the advantages of both methods based on machine
learning and methods based on regular expressions. Using machine learning,
patterns are extracted from the training data. The resulting patterns are easy
to read by humans, and we believe they give insight about the structure of the
sentences and the ordering of words therein. These patterns serve as regular
expressions during the classification task. An overview of the approach is given
in Figure 1.

Classifying Sentences Using Induced Structure 141

Training
Data

Extract
Structure

Structure

Sentence Sentence
Classifier

Class

Fig. 1. Overview of the structure induction classification process

In the next two sections, we will describe two classifiers that fit into this
approach. The alignment-based learning classifier uses a grammatical inference
system to find structure in the sentences explicitly. This structure is converted
into a set of regular expressions that are fed to the classifier. The trie classifier
builds a trie structure that represents the sentences in the training corpus. It
finds regularities in the trie and classifies new sentences using these regularities.

2.1 Alignment-Based Learning Classifier

The structure extraction phase of the first system is done by Alignment-Based
Learning (ABL). ABL is a generic grammatical inference framework, that learns
structure using plain text only. It has been applied to several corpora in dif-
ferent languages with good results [10] and it also compares well against other
grammatical inference systems [12].

The underlying idea of ABL is that constituents in sentences can be inter-
changed. To give an example, if we substitute the noun phrase the man in the
sentence He sees the man with another noun phrase a woman, we get another
valid sentence: He sees a woman. This process can be reversed (by aligning sen-
tences) and possible constituents, called hypotheses, are found and marked as
such by grouping them. This is called the alignment learning phase. Table 1
shows the structure that would be learned from a sample of four sentences.
Grouping is marked by parentheses.

The ABL framework consists of two more phases: clustering and selection
learning. The clustering phase groups similar non-terminal labels that are as-
signed to the hypotheses during the alignment learning phase. The selection
learning phase resolves a problem of the alignment learning phase. The align-
ment learning phase may introduce overlapping hypotheses. These are unwanted
if the underlying grammar is considered context-free and the resulting structure
is taken as a parse of the sentence using the underlying grammar. However,
we are not interested in this now, we only need the structure that is found.
Therefore, neither clustering nor selection learning are used here and we only
concentrate on the results of the alignment learning phase.

Several methods of the alignment learning phase have been described in the
literature [3,10]. Due to practical restrictions of time and space (memory) [11],
we have used the suffixtree implementation [3]. Here, the alignments are found
by building a suffixtree, which uncovers re-occurring sequences of words in the
sentences. Using these sequences, the hypotheses are introduced.

142 M. van Zaanen, L.A. Pizzato, and D. Mollá

Once the structure has been found, it is extracted and used in classifica-
tion. Each training sentence is associated with its corresponding class, so the
structure extracted from a certain sentence provides some evidence that this
structure is related to the class. If a structure occurs with several classes (i.e. it
occurs in multiple sentences that have different classes associated with them),
the structure is stored with all classes and their respective frequencies.

The stored structures can be seen as regular expressions, so during classifica-
tion, all structures can be matched to the new sentence. If a regular expression
matches, its class and corresponding frequency information is remembered and
when all structures have been tried, the class with the highest frequency is se-
lected as output.

We will explain the different implementations by walking through an exam-
ple. For this, we take a look at question classification with a set of four training
questions and two EAT. Consider the questions combined with the structure
found by ABL and their EAT depicted in Table 1.

The first implementation, which we will call hypo, takes the words in the hy-
potheses (i.e. the words between the brackets), turns them into regular expres-
sions and stores them together with the corresponding EAT of the questions.
The resulting regular expressions can be found in Table 2. For example, the first
two questions both generate the regular expression /What/ combined with EAT
“DESC”, so it has frequency 2.

The second implementation, called unhypo, takes each hypothesis and re-
moves it from the question when it is turned into a regular expression. The
regular expressions extracted from the example questions can also be found in
Table 2. For example, the first two questions would introduce /What/ combined
with EAT “DESC” and frequency 2. The last question would introduce /What/
with class “LOC” and frequency 1.

Table 1. Example questions with ABL structure

“DESC” (What) (is (caffeine))
“DESC” (What) (is (Teflon))
“LOC” (Where) is (Milan)
“LOC” What (are the twin cities)

Table 2. Regular expressions found by ABL-based methods

hypo unhypo

caffeine “DESC” 1 What is “DESC” 2
is caffeine “DESC” 1 What “DESC” 2
What “DESC” 2 is caffeine “DESC” 1
Teflon “DESC” 1 is Teflon “DESC” 1
is Teflon “DESC” 1 Where is “LOC” 1
Milan “LOC” 1 is Milan “LOC” 1
Where “LOC” 1 What “LOC” 1
are the twin cities “LOC” 1

Classifying Sentences Using Induced Structure 143

Once the structures are stored with their class and frequency, the actual clas-
sification can start. We have built two methods that combine the evidence for
classes of the sentence differently. Both start with trying to match each of the
stored regular expressions against the sentence. If a regular expression matches,
the first method (called default) will increase the counts of the classes of the ques-
tion with the frequency that is stored with the classes of the regular expression.

The second method (called prior) will increase the counts of the classes of
the sentence that are related to the regular expression with 1 (where the default
method would increase it with the frequency count of each class).

When all regular expressions are tried, the default method selects the class
with the highest frequency (if there are more with the same frequency, one
is chosen at random), whereas the prior method also selects the one with the
highest count, but if there are more than one, it selects one based on the class
with the highest overall frequency.

2.2 Trie Classifier

The other system we describe here is based on finding structure using a trie.
By searching this data structure, it can be used directly to classify new, unseen
sentences. The work discussed here is an extension of the work in [7].

A trie T (S) is a well-known data structure that can be used to store a
set of sentences in an efficient way. It is defined by a recursive rule T (S) =
{T (S/a1), T (S/a2), . . . , T (S/ar)}, where S is a set of sequences (sentences, in
our case). S/an is the set of sequences that contains all sequences of S that start
with an, but stripped of that initial element [2].

In each node, local information extracted during training is stored. This
includes the word, class and frequency information. Since each node represents
part of a unique path in the trie, frequency information is the number of sentences
that use that particular node in a path in the trie.

To get a feeling for what a trie looks like, Figure 2 illustrates the trie contain-
ing the questions of Table 1 (without the bracketed structure generated by ABL).
Extra information is stored per node, so for instance, the node that is reached
by following the path What contains “DESC”: 2 and “LOC”: 1 as frequency
information, which is similar to the information found by the unhypo system.

The classification of new sentences is performed by extracting the class in-
formation stored in the trie nodes. The words of the new sentence are used to

What

is
caffeine

Teflon

are
the twin cities

Where
is Milan

Fig. 2. The trie containing the example questions

144 M. van Zaanen, L.A. Pizzato, and D. Mollá

find a path in the trie. The class information can then be extracted from the
final node of the path through the trie. To be more concrete, consider a sentence
S = (s1, s2, . . . , sn) and a trie T (S). The classification of the sentence is done by
finding the path T (S/s1/s2/ . . . /sn). The class information stored in the final
node of the path is returned.

Notice that only with the sentences present in the training data, we can find
a complete path in the trie (ending in a final node). To find a path for sen-
tences that have not been seen in the training data, we skip non-matching words
wherever needed to complete the path. This is called the look-ahead process.

The look-ahead process works as follows. Let us say that the words of sen-
tence S match up to sk, k < n, and the next word does not match sk+1. That is,
T (S/s1/s2/ . . . /sk−1/sk) �= ∅, and T (S/s1/s2/ . . . /sk−1/sk/sk+1) = ∅. The look-
aheadprocess thenbuilds a set of sub-triesT (S/s1/s2/ . . . /sk−1/sk/β/sk+2),with
β ∈ {x|T (S/s1/s2/ . . . /sk−1/sk/x) �= ∅}.

One of these sub-tries is selected based on the frequency of the prefix defined
by the sub-trie in the training data. In other words, for each sub-trie in the
set, the prefix is extracted (s1, s2, . . . , sk−1, sk, β, sk+2) and the frequency of this
prefix in the training data is looked up. The sub-trie that has the prefix with
the highest frequency associated to it is selected. This defines β and the process
continues with the next word until all words in the sentence are consumed. In
a sense we are replacing sk with β. This defines a final node for the particular
sentence and the class information present in that node is used to find a class.

Here, we will describe two different implementations of the classification sys-
tem using a trie structure. The first uses a method called strict, where a word can
only be replaced (if needed) by another word if sk+2 in the sentence matches the
information in the trie. If there are several options, the one that has the highest
frequency is selected. If no option is found, the search process stops at that node
and the class information is retrieved from node sk.

The second trie-based implementation, called flex, allows a word in the sen-
tence to be replaced with one or more words in the trie. Initially, it works similar
to the strict method. However, if no β set of sub-tries can be found, because no
match on sk+2 can be found, it considers δ as in T (S/s1/s2/ . . . /sk−1/sk/β/δ),
where β can be anything and δ should match sk+2. If no such δ can be found, it
tries to match δ with the next sentence token, i.e. sk+3. This continues until a
match is found, or the end of the sentence is reached (and the class information
present in T (S/s1/s2/ . . . /sk−1/sk) is used). Again, if at some point multiple
options are introduced, the most frequent is selected.

3 Results

3.1 Data

To get a feeling of the feasibility of the structure-based classification approach,
we have applied the implementations described above to the annotated TREC
questions [6]. This is a collection of 5,452 questions that can be used as training
data and 500 questions testing data. The mean question length is 10.2 words

Classifying Sentences Using Induced Structure 145

in the training data and 7.5 words in the testing data. The corpus contains
coarse-grained and fine-grained EAT information for each of the questions. In
total, there are 6 coarse-grained classes and 50 fine-grained classes. Note that 8
fine-grained classes do not occur in the testing data. Some example questions are:

“NUM:dist” How tall is the Sears Building ?
“NUM:period” How old was Elvis Presley when he died ?
“LOC:city” What city had a world fair in 1900 ?
“LOC:other” What hemisphere is the Philippines in ?

There are some minor errors in the data that will affect the result of the
structural, sequential systems described in this article.2 In addition to an odd
incorrect character, a few questions in the training data have POS tags instead
of words:

Who wrote NN DT NNP NNP ” ?
What did 8 , CD NNS VBP TO VB NNP POS NN .
Why do USA fax machines not work in UK , NNP ?

In [6], some additional problems with the data are described. Firstly, the
training and testing data are gathered from different sources. In initial experi-
ments, we found that this has quite an effect on the performance. The systems
described in this article perform much better during development on the train-
ing data (using ten fold cross-validation) than on the testing data.3 However, to
make the most of the limited amount of data that is available, we have decided
to stick with this division.

Secondly, in [6] it is mentioned that some questions are ambiguous in their
EAT. For example, What do bats eat? can be classified in EAT “food”, “plant”,
or “animal”. They (partially) solve this by assigning multiple answers to a ques-
tion. An adjusted precision metric is then needed to incorporate the multiple
answers. We have decided not to do this (even though it is possible to do so),
because we investigate the feasibility of the approach, which is not only depen-
dent on the results of the systems applied to a particular problem. The approach
encompasses many different systems of which only a few are tested here. Instead
of focusing on the actual results, we want to show the validity of the structure
induction approach in general.

Part-of-Speech. In addition to applying the systems on the plain text, we also
apply them to tokens consisting of the word combined with their POS tag. This
illustrates that the algorithms in the classification framework are not just limited
to plain text. Extra information can be added to the data.

We create the POS information using the Brill tagger [1]. The POS informa-
tion is simply combined with the plain words. However, adjacent words that have
the same POS are combined into one token. Thus, the question Who is Federico

2 We have decided to use the original data, without correcting the errors.
3 The difference in performance of the systems displayed here is similar to that during

development.

146 M. van Zaanen, L.A. Pizzato, and D. Mollá

Fellini? is, after POS tagging, divided into three tokens: (Who, WP), (is, VBZ)
and (Federico Fellini, NNP). Federico and Fellini are combined in one unique
token, because Federico and Fellini are adjacent words that have the same POS.

The ABL approach simply uses these complex tokens as elementary units,
so for tokens to be aligned, both the word and its POS tag have to match. The
trie approach is slightly modified. When searching for a matching β (i.e. when
the word and POS tag do not match in the trie), the additional information of
that position in the sub-tries should match. This means that in this case, the
POS tag of the β nodes in the trie should match the POS tag of the word in
that position in the sentence.

3.2 Numerical Results

The different systems are first allowed to learn using the training data, and
after learning, they are applied to the testing data. The output of the systems
is compared against the correct class (as present in the testing data) and the
precision is computed

precision =
correctly classified questions

total # of questions

The results of all implementations can be found in Table 3. To be able to
compare the results, we have also computed a baseline. This simple baseline
always selects the most frequent class according to the training data. This is the
“HUM:ind” class for the fine-grained data and “ENTY” for the coarse-grained
data. This baseline is, of course, the same for the plain words and POS tagged
data. All implementations perform well above the baseline.

Looking at the coarse-grained results of the implementations using ABL, it
shows that adding POS information to the words helps improving performance.
We suspect that the POS information guides the alignment learning phase in
that the POS restricts certain alignments. For example, words that can be a
noun or a verb can now only be matched when their POS is the same. However,
slightly fewer regular expressions are found because of this.

The trie-based implementations do not benefit from the POS information.
We think that this is because the POS information is too coarse-grained for β
matching. Instead of trying to find a correct position to continue walking through
the trie by finding the right word, only a rough approximation is found, namely
a word that has the same POS.

Overall, it shows that the trie-based approach outperforms the ABL imple-
mentations. We expect that it has to do with how the trie-based implementations
keep track of the sequence of the words in a question, whereas the ABL-based
implementations merely test if word sequences occur in the question.

The results on the fine-grained data show similar trends. Adding POS gener-
ally improves the ABL-based system, however, this is not the case for the unhypo
implementation. Again, the performance of the trie-based system decreases when
POS information is added.

Classifying Sentences Using Induced Structure 147

Table 3. Results of the ABL and Trie systems on question classification

coarse fine
words POS words POS

Baseline 0.188 0.188 0.110 0.110

ABL hypo default 0.516 0.682 0.336 0.628
prior 0.554 0.624 0.238 0.472

unhypo default 0.652 0.638 0.572 0.558
prior 0.580 0.594 0.520 0.432

Trie strict 0.844 0.812 0.738 0.710
flex 0.850 0.794 0.742 0.692

To get a further idea of how the systems react to the data, we give some ad-
ditional information. Each ABL-based classifier extracts roughly 115,000 regular
expressions when applied to the training data and the trie that contains the set
of training questions consists of nearly 32,000 nodes.

When investigating how the trie-based system works, we noticed that around
90% of the questions that performed β replacement (15% of the total number
of questions) in the strict method (on the POS tagged data) provided correct
results. This indicates that β replacement in this implementations is often per-
formed correctly. However, in the flex method on the same data, the same test
shows a much lower success rate (around 65%). We think that this is due to the
fewer constraints for the β substitution in the latter method, causing it to occur
in more than a half of the questions.

Unfortunately, it is hard to compare these results to other published results,
because the data and corresponding classes (EAT) are often different. Given
that [6] uses more information during classification (among others, chunks and
named entities), the comparison is not reliable. We decided to compare our
results to those in [14], who used the same question data to train various machine
learning methods on bag-of-words features and bag-of-n-grams features. Their
results ranged from 75.6% (Nearest Neighbours on words) to 87.4% (SVM on
n-grams) in the coarse-grained data and from 58.4% (Näıve Bayes on words) to
80.2% (SVM on words) in the fine-grained data. Our results fit near the top on
course-grained and near the middle on fine-grained data.

4 Future Work

The results on the question classification task indicate that classification based
on induced structure is an interesting new approach to the more general task
of sentence classification. However, there are many more systems that fall into
the structure-based classification framework. These systems can be completely
different from the ones described here, but modifications or extensions of these
systems are also possible.

For example, some preliminary experiments show that in the case of the
ABL-based system, it may be useful to retain only the regular expressions that
are uniquely associated with a class. Taking only these regular expressions makes

148 M. van Zaanen, L.A. Pizzato, and D. Mollá

Table 4. Similar tokens found by the trie-based approach

Galileo triglycerides calculator Milan
Monet amphibians radio Trinidad
Lacan Bellworts toothbrush Logan Airport
Darius dingoes paper clip Guam
Jean Nicolet values game bowling Rider College
Jane Goodall boxcars stethoscope Ocho Rios
Thucydides tannins lawnmower Santa Lucia
Damocles geckos fax machine Amsterdam
Quetzalcoatl chloroplasts fountain Natick
Confucius invertebrates horoscope Kings Canyon

hand-tuning of the expressions easier and the amount of regular expressions is
reduced, which makes them more manageable.

More complex regular expressions can be learned from the data, incorporating
more information from the structure found by the system. For instance, there
can be further restrictions on the words that are skipped by the systems or even
systems that perform robust partial parsing using the extracted structure can
be envisioned.

Perhaps other grammatical inference techniques are better suited for the
task described here. Alternative trie-based implementations include those using
finite-state grammatical inference techniques such as EDSM or blue-fringe [5].

An interesting characteristic we found in the trie-based system is the discov-
ering of semantic relations between the replaced tokens and their β substitutes.
In Table 4 we give a few subsets of related tokens that have been found. Similar
groups of syntactic/semantic related words or word groups can be found using
the ABL framework as well, as shown in [10–pp. 76–77]. In fact, these are found
using their context only. Words or word groups that tend to occur in the same
contexts also tend to be used similarly, which is found in both systems. We plan
to use this knowledge to place extra restrictions in the regular expressions.

Finally, we suspect that the structure (in the form of a trie or regular ex-
pressions) may help in tasks related to sentence classification, such as finding
the focus of the question, which is another part of the question analysis phase
of question answering systems. The learned structure may give an indication on
where in the question this information can be found. For example, if the regular
expression /How far is .* from .*/ is found, the system can understand that
it should find the distance between the values of the variables (.*). This is one
area that we intend to explore further.

5 Conclusion

In this article, we have introduced a new approach to sentence classification.
From the (annotated) training data, structure is extracted and this is used to
classify new, unseen sentences. Within the approach many different systems
are possible and in this article we have illustrated and evaluated two different

Classifying Sentences Using Induced Structure 149

systems. One system uses a grammatical inference system, Alignment-Based
Learning, the other system makes use of a trie structure.

The approach falls in between the two existing approaches: “standard” ma-
chine learning techniques and manually created regular expressions. Using ma-
chine learning techniques, regular expressions are created automatically, which
can be matched against new sentences. The regular expressions are human-
readable and can be adjusted manually, if needed.

The results on the annotated questions of the TREC10 data, which stand in
line with the current state-of-the-art results, show that the approach is feasible
and both systems generate acceptable results. We expect that future systems
that fall in the structure induced sentence classification framework will yield
even better performance.

References

1. Eric Brill. A simple rule-based part-of-speech tagger. In Proceedings of ANLP-92,
third Conference on Applied Natural Language Processing, pages 152–155, Trento,
Italy, 1992.

2. J. Clément, P. Flajolet, and B. Vallée. The analysis of hybrid trie structures. In
Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 531–539, Philadelphia:PA, USA, 1998. SIAM Press.

3. Jeroen Geertzen and Menno van Zaanen. Grammatical inference using suffix trees.
In Georgios Paliouras and Yasubumi Sakakibara, editors, Grammatical Inference:
Algorithms and Applications: Seventh International Colloquium, (ICGI); Athens,
Greece, volume 3264 of Lecture Notes in AI, pages 163–174, Berlin Heidelberg,
Germany, October 11–13 2004. Springer-Verlag.

4. Ben Hachey and Claire Grover. Sentence classification experiments for legal text
summarisation. In Proceedings of the 17th Annual Conference on Legal Knowledge
and Information Systems (Jurix 2004), 2004.

5. Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the Ab-
badingo One DFA learning competition and a new evidence-driven state merging
algorithm. In V. Honavar and G. Slutzki, editors, Proceedings of the Fourth Inter-
national Conference on Grammar Inference, volume 1433 of Lecture Notes in AI,
pages 1–12, Berlin Heidelberg, Germany, 1998. Springer-Verlag.

6. Xin Li and Dan Roth. Learning question classifiers. In Proceedings of the 19th
International Conference on Computational Linguistics (COLING); Taipei, Tai-
wan, pages 556–562. Association for Computational Linguistics (ACL), August 24–
September 1 2002.

7. Luiz Pizzato. Using a trie-based structure for question analysis. In Ash Asudeh,
Cécile Paris, and Stephen Wan, editors, Proceedings of the Australasian Language
Technology Workshop; Sydney, Australia, pages 25–31, Macquarie University, Syd-
ney, Australia, December 2004. ASSTA.

8. Simone Teufel and Marc Moens. Argumentative classification of extracted sen-
tences as a first step towards flexible abstracting. In Inderjeet Mani and Mark
Maybury, editors, Advances in automatic text summarization. MIT Press, 1999.

9. Proceedings of the Twelfth Text Retrieval Conference (TREC 2003); Gaithers-
burg:MD, USA, number 500-255 in NIST Special Publication. Department of Com-
merce, National Institute of Standards and Technology, November 18–21 2003.

150 M. van Zaanen, L.A. Pizzato, and D. Mollá

10. Menno van Zaanen. Bootstrapping Structure into Language: Alignment-Based
Learning. PhD thesis, University of Leeds, Leeds, UK, January 2002.

11. Menno van Zaanen. Theoretical and practical experiences with Alignment-Based
Learning. In Proceedings of the Australasian Language Technology Workshop; Mel-
bourne, Australia, pages 25–32, December 2003.

12. Menno van Zaanen and Pieter Adriaans. Alignment-Based Learning versus EMILE:
A comparison. In Proceedings of the Belgian-Dutch Conference on Artificial Intel-
ligence (BNAIC); Amsterdam, the Netherlands, pages 315–322, October 2001.

13. E.M. Voorhees and Lori P. Buckland, editors. Proceedings of the Eleventh Text
REtrieval Conference (TREC 2002); Gaithersburg:MD, USA, number 500-251 in
NIST Special Publication. Department of Commerce, National Institute of Stan-
dards and Technology, November 19–22 2002.

14. Dell Zhang and Wee Sun Lee. Question classification using support vector ma-
chines. In Charles Clarke, Gordon Cormack, Jamie Callan, David Hawking, and
Alan Smeaton, editors, Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 26–32,
New York:NY, USA, 2003. ACM Press.

Counting Lumps in Word Space:

Density as a Measure of Corpus Homogeneity

Magnus Sahlgren and Jussi Karlgren

SICS, Swedish Institute of Computer Science,
Box 1263, SE-164 29 Kista, Sweden

{mange, jussi}@sics.se

Abstract. This paper introduces a measure of corpus homogeneity that
indicates the amount of topical dispersion in a corpus. The measure
is based on the density of neighborhoods in semantic word spaces. We
evaluate the measure by comparing the results for five different corpora.
Our initial results indicate that the proposed density measure can indeed
identify differences in topical dispersion.

1 Introduction

Word space models use co-occurrence statistics to construct high-dimensional
semantic vector spaces in which words are represented as context vectors that
are used to compute semantic similarity between the words. These models are
now on the verge of moving from laboratories to practical usage, but while the
framework and its algorithms are becoming part of the basic arsenal of language
technology, we have yet to gain a deeper understanding of the properties of the
high-dimensional spaces.

This study is ment to cast some light on the properties of high-dimensional
word spaces; we find that computing a measure for the density of neighborhoods
in a word space provides a measure of topical homogeneity — i.e. of how top-
ically dispersed the data is. This is a fortunate discovery, since there are no
established measures for corpus homogeneity. The hitherto most influential pro-
posal boils down to defining a measure of homogeneity based on the similarity
between randomly allocated parts of a corpus: the more similar the parts, the
more homogeneous the corpus [3].

As an experimental evaluation of our density measure, we apply it to five
different types of text corpus, each of varying degrees of topical homogeneity.
The results show that the measure can indeed identify differences in topical
dispersion and thus help provide some amount of understanding of what a word
space is in relation to the language and the collection of text it models.

2 The Density Measure

The intuition our measure is based upon is the idea that words in a topically
homogeneous data are used in more uniform ways than words in a topically

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 151–154, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

152 M. Sahlgren and J. Karlgren

dispersed data. This would imply that the words in a topically homogeneous data
have sparser semantic neighborhoods (i.e. fewer semantically related words) than
would their topically more promiscuous counterparts. As an example, consider
the difference between the semantic neighborhoods of a word with many possible
meanings, such as “bark”, which has nine meanings in WordNet 2.0, and a word
with very few possible meanings, such as “toxin”, which has only one meaning
in WordNet. Obviously, the semantic neighborhood of “bark” is more populated
(in the WordNet space) than the semantic neighborhood of “toxin”.

In analogy with such WordNet neighborhoods, we suggest a measure of the
number of words that occur within some specified radius around a given word
in the word space. A large resulting number means that the word has a dense
neighborhood, which indicates that the word occurs in a large number of con-
texts in the data, while a small resulting number means that it has a sparse
neighborhood resulting from occurences in a small number of contexts. We de-
fine the density of the neighborhood of a word as the number of unique words
that occur within the ten nearest neighbors of its ten nearest neighbors.

3 The Word Space Model

We use the Random Indexing [1,2] word space methodology, which is an alter-
native to algorithms such as Latent Semantic Analysis [4] that use factor ana-
lytic dimensionality reduction techniques. Rather than first assembling a huge
co-occurrence matrix and then transforming it using factor analysis, Random
Indexing incrementally accumulates context vectors in a two-step operation:

1. First, each word in the text is assigned a unique and randomly generated rep-
resentation called an index vector. These random index vectors have a fixed
dimensionality k, and consist of a small number ε of randomly distributed
+1s and −1s.

2. Next, context vectors are produced by scanning through the text, and each
time a word occurs, the index vectors of the n surrounding words are added
to its context vector.

This methodology has a number of advantages compared to other word space
algorithms. First, it is an incremental method, which means that the context vec-
tors can be used for similarity computations even after just a few examples have
been encountered. Most other algorithms require the entire data to be sampled
and represented in a very-high-dimensional space before similarity computations
can be performed. Second, it uses fixed dimensionality, which means that new
data do not increase the dimensionality of the vectors. Increasing dimensionality
can lead to significant scalability problems in other algorithms. Third, it uses
implicit dimensionality reduction, since the fixed dimensionality is much lower
than the number of contexts in the data. This leads to a significant gain in
processing time and memory consumption as compared to algorithms that em-
ploy computationally expensive dimensionality reduction techniques. Fourth, it
is comparably robust with regards to the choice of parameters. Other algorithms
tend to be very sensitive to the choice of dimensionality for the reduced space.

Counting Lumps in Word Space 153

4 Experiment

In order to experimentally validate the proposed measure of corpus homogeneity,
we first build a 1,000-dimensional word space for each corpus using Random
Indexing, with parameters n = 4, k = 1,000, and ε = 10.1 Then, for each corpus,
we randomly select 1,000 words, find their ten nearest neighbors, and then those
neighbors’ ten nearest neighbors. For each of the 1,000 randomly selected words,
we count the number of unique words thus extracted. The maximum number of
extracted neighbors for a word is 100, and the minimum number is 10. In order
to derive a single measure of the neighborhood sizes of a particular corpus, we
average the neighborhood sizes over the 1,000 randomly selected words. The
largest possible score for a corpus under these conditions is 100, indicating that
it is severly topically dispersed, while the smallest possible score is 10, indicating
that the terms in the corpus are extremely homogeneous.

We apply our measure to five different corpora, each with a different degree of
topical homogeneity. The most topically homogeneous data in these experiments
consist of abstracts of scientifical papers about nanotechnology (NanoTech). Also
fairly homogeneous are samples of the proceedings from the European parliament
(EuroParl), and newswire texts (ReutersVol1). Topically much more dispersed
data are two examples of general balanced corpora, the TASA and the BNC
corpora. Since the NanoTech data is very small in comparison with the other
corpora (only 384,199 words, whereas the other corpora contain several millions
of words), we used samples of comparable sizes from the other data sets. This was
done in order to avoid differences resulting from mere sample size. The sampling
was done by simply taking the first ≈ 380,000 words from each data set. We did
not use random sampling, since that would affect the topical composition of the
corpora.

We report results as averages over three runs using different random index
vectors. The results are summarized in Table 1.

Table 1. The proposed density measure, as compared with the number of word tokens,
the number of word types, and the type-token ratio, for five different English corpora

Corpus Word Word Type Average Standard
tokens types token density deviation

ratio measure

NanoTech 384,199 13,678 28.09 49.149 0.35
EuroParl (sample) 375,220 9,148 41.47 50.9736 0.38
ReutersVol1 (sample) 368,933 14,249 25.89 51.524 0.18
TASA (sample) 387,487 12,153 31.88 52.645 0.45
BNC (sample) 373,621 18,378 20.33 54.488 0.74

1 These parameters were chosen for efficiency reasons, and the size of the context
window n was influenced by [2].

154 M. Sahlgren and J. Karlgren

5 Provisional Conclusions

The NanoTech data, which is by far the most homogeneous data set used in
these experiments, receives the lowest density count, followed by the also fairly
homogeneous EuroParl and ReutersVol1 data. The two topically more dispersed
corpora receive much higher density counts, with the BNC as the most topically
dispersed. This indicates that the density measure does in fact reflect topical
dispersion: in more wide-ranging textual collections, words gather more contexts
and exhibit more promiscuous usage, thus raising their density score.

Note that the density measure does not correlate with simple type-token
ratio. Type-token ratio differentiates between text which tends to recurring ter-
minological usage and text with numerous introduced terms. This can be seen
to indicate that terminological variation — in spite of topical homogeneity — is
large in the EuroParl data, which might be taken as reasonable in view that in-
dividual variation between speakers addressing the same topic can be expected;
text style and expression have less effect on the density measure than the topical
homogeneity itself. The ranking according to the density measure:

Nano > EuroParl > ReutersVol1 > TASA > BNC

and the ranking according to type-token ratio:

EuroParl > TASA > Nano > ReutersVol1 > BNC

only show a 0.5 rank sum correlation by Spearman’s Rho.
This is obviously only a first step in the investigation of the characteristics

of the well established word space model. The present experiment has clearly
demonstrated that there is more to the word space model than meets the eye:
even such a simple measure as the proposed density measure does reveal some-
thing about the topical nature of the data. We believe that a stochastic model
of the type employed here will give a snapshot of topical dispersal of the text
collection at hand. This hypothesis is borne out by the first experimental sam-
ple shown above: text of very differing types shows clear differences in the score
defined by us. We expect that other measures of more global character will serve
well to complement this proposed measure which generalizes from the character
of single terms to the character of the entire corpus and the entire word space.

References

1. Kanerva, P., Kristofersson, J., Holst, A.: Random Indexing of text samples for Latent
Semantic Analysis. CogSci’00 (2000) 1036.

2. Karlgren, J., Sahlgren, M.: From Words to Understanding. In Uesaka, Y., Kan-
erva, P., Asoh, H. (eds.): Foundations of Real-World Intelligence. CSLI Publications
(2001) 294–308.

3. Kilgariff, A.: Comparing Corpora. Int. Journal of Corpus Linguistics 6 (2001) 1–37.
4. Landauer, T., Dumais, S.: A solution to Plato’s problem: The Latent Semantic

Analysis theory of acquisition, induction and representation of knowledge. Psycho-
logical Review 104 (1997) 211–240.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 155 – 160, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Multi-label Text Categorization Using K-Nearest
Neighbor Approach with M-Similarity*

Yi Feng, Zhaohui Wu, and Zhongmei Zhou

College of Computer Science, Zhejiang University, Hangzhou 310027, P.R. China
{fengyi, wzh, zzm}@zju.edu.cn

Abstract. Due to the ubiquity of textual information nowadays and the multi-
topic nature of text, it is of great necessity to explore multi-label text categori-
zation problem. Traditional methods based on vector-space-model text repre-
sentation suffer the losing of word order information. In this paper, texts are
considered as symbol sequences. A multi-label lazy learning approach named
kNN-M is proposed, which is derived from traditional k-nearest neighbor
(kNN) method. The flexible order-semisensitive measure, M-Similarity, which
enables the usage of sequence information in text by swap-allowed dynamic
block matching, is applied to evaluate the closeness of texts on finding k-
nearest neighbors in kNN-M. Experiments on real-world OHSUMED datasets
illustrate that our approach outperforms existing ones considerably, showing the
power of considering both term co-occurrence and order on text categorization
tasks.

1 Introduction

With the rapid growth of online information, the majority of which is textual, effec-
tive retrieval is difficult without good indexing and summarization of document con-
tent. Text categorization (TC), also known as text classification and topic spotting, is
a solution to this problem. In definition, text categorization solves the problem of
assigning text content to predefined categories. Most researches in TC addressed the
single-label TC problem, where a document can belong to only one category. In real-
word situation, however, a document is always of multiple topics. Thus, it is of great
necessity to explore the multi-label TC problem, where a piece of text is classified
into more than one category. This is the motivation behind our research.

Existing methods to multi-label TC include Naïve Bayes (NB), Rocchio, Support
Vector Machine (SVM), k-nearest neighbor (kNN), Boosting, etc. Most of the above
TC approaches are based on the VSM, which treats each document as a bag of words.
Although this model behaves well in many applications, it suffers from two main
problems: 1) Its ignorance of term order. 2) Its assumption of term independence. As
an inherent part of information for text, term order should be taken into account on
text categorization. Especially, when the text is of short to medium length, the se-
quence information should be given more consideration. That is to say, the term order

* This research is supported by National Basic Research Priorities Programme of China Minis-

try of Science and Technology (2004DKA20250) and China 973 project (2003CB317006).

156 Y. Feng, Z. Wu, and Z. Zhou

should be considered on the calculation of text distance. This problem is related to the
research area of string matching. However, most of the edit distance-based methods
are unsuitable for TC due to the concentration on the character level and non-support
for swap-based matching. Pattern matching with swap [1] partly solved this problem
by allowing local swap. Tichy [6] firstly applied block-moving approach to handle
string-to-string correction problem, which extended to allow blocks to swap. The
usage of swap-allowed block matching methods might help TC tasks. However, few
work has been done to combine string matching techniques into TC until now. In
2002, Lodhi et al.[3] used string kernels to classify texts and achieved good perform-
ance, showing the power of combining string matching method into TC. As another
attempt, we incorporate M-Similarity proposed in [2] into traditional kNN method,
which is named kNN-M approach, to handle multi-label TC problem in this paper.

The major differences between kNN-M and traditional one lie in the representation
of text and the calculation of text distance on finding k-nearest neighbors. Different
from VSM representation, documents are simply considered as symbol sequences in
kNN-M. To evaluate the closeness of documents in this case, we use the flexible
hybrid measure M-similarity proposed by Feng et al.[2]. M-Similarity is capable to
partly use sequence information by giving extra weight to continuous matching. Be-
sides, the size of each matching block in M-Similarity is dynamically determined,
which makes it applicable to many applications where phrase segmentation is not a
trivial problem. The text comparison using M-Similarity is actually a process of swap-
allowed dynamic block matching. Experimental results on OHSUMED datasets dem-
onstrate the effectiveness of kNN-M combining the power of kNN and M-Similarity.

The rest of the paper is organized as follows. A description of M-Similarity is
given in Section 2. In Section 3 this similarity is incorporated into kNN-M algorithm
to handle TC problem. Section 4 provides experimental results of kNN-M on real-
world multi-label OHSUMED datasets. Finally, we conclude in Section 5.

2 M-Similarity

In this section a brief introduction to M-Similarity is presented. According to the
order perspective of text similarity proposed in [2], M-Similarity belongs to the cate-
gory of order-semisensitive similarities. Text comparison using this kind of similarity
is a process of swap-allowed dynamic block matching.

In definition, given two texts S (with shorter length N) and L (with longer length
M), and current position curpos within S, the sum of weights for maximum sequence
matching and potential matching can be defined below:

()(, ,) 0 (1)
(, ,)

(, ,) [(, ,) 1] ()

0
lm

s ec

if S L curpos
S L curpos

S L curpos W S L curpos W otherwise

θ
λ

θ θ
=

× + − ×

⎧
= ⎨

⎩

 (,)pm S Lλ = [() (1)] pms ecM N W M N W P− × + − − × × (2)

where sW stands for weight of single item matching, and ecW represents extra

weight of continuous matching.
pmP is potential matching parameter, which stands for

 Multi-label Text Categorization Using KNN Approach with M-Similarity 157

the possibility of two texts of different length would be totally same when the shorter
one is expanded to the length of longer one. It can also be seen as a normalizing pa-
rameter for text length. Given current position curpos within S, the system scans L
from left to right for longest possible matching with substring in S starting from
S[curpos] and returns the matching length as (, ,)S L curposθ . Thus, M-Similarity

can be calculated as below:

M-Similarity (S, L) =
(, ,) (,)

(1)

lm pmcurpos

s ec

S L curpos S L

M W M W

λ λΣ +

× + − ×
 (3)

To calculate M-Similarity, curpos is increased from 1 to N+1. Note that, not all of
the increase value of curpos is 1 at every step, and it is controlled by

(, ,)S L curposθ . Starting from initial position 1, curpos will move to the right adja-

cent position whenever (, ,)S L curposθ = zero. However, curpos will advance

(, ,)S L curposθ positions whenever (, ,) 0S L curposθ > . This process continues

until curpos equals N+1, and the M-Similarity value are cumulated through this proc-
ess as in formula (3).

3 kNN-M

In this section, a novel k nearest neighbor based method for multi-label text categori-
zation named kNN-M is presented. Given a testing document, the kNN classifier
scans for the k nearest neighbors among the training documents under a pre-defined
similarity metric. After that, the categories of k neighbors are used to weight the cate-
gory candidates. Suppose d is a test document, di is the ith training document, and Cj
is the jth category (1 | |j C≤ ≤ , | |C is the total number of distinct training-set cate-

gories), the score of d belonging to Cj is calculated as in (4). When score (Cj | d) for d
is calculated for all possible j, a ranked list for the test document can be obtained by
sorting the scores of candidate categories. Afterwards, by thresholding on these scores
or ranks, binary document-category assignment can be made.

&

(|) (,)
i i j

j i
d kNN d C

score C d sim d d
∈ ∈

= ∑ (4)

To extending the above process of kNN to kNN-M, there are three questions that
should be answered. The first question is how to calculate sim(d, di). Different from
traditional cosine metric, we use M-Similarity in kNN-M, that is: sim(d, di)= M-
Similarity(d, di). The second question is what kind of thresholding strategy to use.
There are several candidate strategies available, including RCut, PCut, SCut, etc. The
appropriate thresholding strategy for kNN-M should be selected according to charac-
teristics of application. The third question is how to set the parameter k. In practice,
this parameter is usually tuned empirically.

158 Y. Feng, Z. Wu, and Z. Zhou

4 Experiment Results and Evaluation

In this section we describe the experiments that compare the performance of kNN-M
with other methods to handle multi-label text categorization problem. We start with a
description of the datasets and settings we used in our experiments.

4.1 Datasets and Settings

The corpus used in this paper is the widely used multi-label collection OHSUMED,
which is a subset of MEDLINE database. Since the number of subheadings in MeSH
field of OHSUMED rarely changes with time, we use subheadings as categories on
TC in this paper. To evaluate how kNN-M behaves on small and large datasets, we
pick two subsets of OHSUMED. The small subset, named OH-2000, is formed by
2000 records in 1991. The first / last half 1000 records of OH-2000 are used as train-
ing / testing set, respectively. The large subset, named OH-8788, consists of all re-
cords in 1987 and 1988 with non-null subheadings. All together, there are 119,565
records in OH-8788, in which 52,242 records in 1987 constitute training set, while
67,323 records in 1988 form testing set. The process of subheading extraction from
MeSH field is carried out on both OH-2000 and OH-8788 to form a new field named
category. On average 3 categories are assigned to each document in both datasets.

The next issue is the content to be categorized. In this paper, we use the title of
each record as the text to be classified. One reason is that only a part of records have
abstracts. However, the main motivation behind this choice is that classification on
short text like title is worthy noting. In this age of information explosion, a tremen-
dous volume of new textual information is produced everyday, which is hard to or-
ganize and use. However, mostly it contains a title given by authors. Thus, it is ideal
if we could automatically categorize these materials only based on their titles.

In preprocessing steps, removal of punctuation marks and stemming are carried
out. The stop-word removal in kNN-M is not recommended, especially for short text.
Actually, for text with short length like title, almost each word is informative. Thus,
we skip stop-word removal and feature selection in kNN-M, as well as in
AdaBoost.MH, NB and Rocchio. (The influence of eliminating stop-words to short
text categorization is found to be almost negligible by experiments). Considering the
trade-off between precision / recall, we use the widely accepted micro-F1 as the
evaluation measure.

4.2 Experimental Results

In this section, kNN-M, as well as NB, Rocchio and AdaBoost.MH, are carried out on
both OH-2000 and OH-8788. The algorithms NB and Rocchio are available as part of
the publicly Bow text categorization system [4]. The boosting algorithm
AdaBoost.MH comes from BoosTexter text categorization system [5].

The thresholding strategy and other parameters in kNN-M can greatly influence the
performance of TC. Since the OHSUMED dataset have some rare categories, we use
Pcut to compute the thresholding of each category in kNN-M. For the parameter k,
the value of 10, 20, 30, 40, 50 are tested. However, we find the resulting differences
in the micro-F1 of kNN-M are almost negligible for different k. Thus, only the best

 Multi-label Text Categorization Using KNN Approach with M-Similarity 159

case is listed. Besides, sW , ecW , pmP are tuned empirically to 0.8, 0.2, 0.1. The trip-

let Pm with form (value1, value2, value3) is used to denote sW , ecW , pmP . By setting

Pm = (0.8, 0, 0), kNN-M simulates the behavior of conventional kNN (without
TFIDF-weighting). As for AdaBoost.MH, the number of boosting setps is set to 1000
and we regard labels with positive weights as category assignment decisions.

The experiments here include both closed evaluation and open evaluation. In
closed evaluation, the training set is also used as testing set. In open evaluation, a
classifier h is learned from training set, and this h is used to categorize texts in testing
set. The results of closed/open evaluation on OH-2000/OH-8788 are presented in
Table 1.

Table 1. Micro-F1 of different multi-label text classifiers on OH-2000 / OH-8788

Micro-F1 Data-
set

Text
Classifiers Closed evaluation Open evaluation

NB 0.2793 0.1163
TFIDF/Rocchio 0.2699 0.0915
AdaBoost.MH 0.4525 0.1293

kNN-M (k=30, Pm=(0.8, 0.2, 0.1)) 0.2212 0.2185
kNN-M (k=30, Pm=(0, 0.2, 0)) 0.1696 0.1676

OH-
2000

kNN (k=30) 0.1842 0.1803
NB 0.2514 0.1987

TFIDF/Rocchio 0.1807 0.1571
AdaBoost.MH 0.2954 0.2656

kNN-M (k=40, Pm=(0.8, 0.2, 0.1)) 0.3803 0.3749

OH-
8788

kNN (k=40) 0.3186 0.3143

4.3 Analysis

From the figures above, we can draw some conclusions as follows:

- Multi-label Text Categorization on short document is a difficult problem. As
Table 1 shows, the best micro-F1 of closed / open evaluation on OH-8788 we can
achieve is less than 0.4. These numbers on OH-2000 are 0.4525 and 0.2185. The
reason behind this low micro-F1 lies in that the information inherent in short text
used to construct the classifiers is very limited.

- kNN-M outperforms other algorithms on multi-label text categorization. As
we can see from Table 1, the best micro-F1 of open evaluation on both OH-2000
and OH-8788 are achieved by kNN-M (0.3803, 0.3749). Besides, the best micro-F1
of closed evaluation on OH-2000 is also obtained from kNN-M (0.2185), while
this number on OH-8788 is generated from AdaBoost.MH (0.4525). Considering
most of TC tasks in real-world applications are open evaluation, we can conclude
that kNN-M outperforms other algorithms on multi-label TC. Especially, kNN-M
outperforms NB, TFIDF/Rocchio and AdaBoost.MH considerably in open evalua-
tion.

160 Y. Feng, Z. Wu, and Z. Zhou

- Incorporating M-Similarity into kNN-M can improve the performance. From
Table 1, we can see kNN-M outperforms kNN (without TFIDF-weighting) by 3%
on OH-2000 and 6% on OH-8788. These figures reflect the influence of using M-
Similarity in kNN-M. It is not good to weigh too much on position information in
text (Setting Pm=(0, 0.2, 0) lowers micro-F1 by more than 5%), but it is not good
either to neglect term order. Thus, we can conclude that taking term order into ac-
count can improve short text categorization performance (TC on long texts need
further experiments) and a balance should be achieved between considering term
co-occurrence and order. (Pm is tuned to (0.8, 0.2, 0.1) empirically here).

5 Conclusion

In this paper, we have proposed a kNN-based method, kNN-M, to multi-label text
categorization. The order-semisensitive measure, M-Similarity, is incorporated into
kNN-M to evaluate the closeness of texts on finding k-nearest neighbors. Due to the
usage of swap-allowed dynamic block matching, kNN-M is capable to use the infor-
mation of both term co-occurrence and order. Experiments on real-world OHSUMED
datasets show the effectiveness of kNN-M and the power of incorporating string
matching techniques into conventional TC approaches. Since there are three change-
able parameters in the calculation of M-Similarity in kNN-M, we can adjust these
parameters according to the characteristics of application, which makes kNN-M very
flexible. Future work includes evaluating kNN-M on long documents and testing
combining kNN with other string matching approaches to achieve higher perform-
ance.

References

1. Amir, A., Aumann, Y., Landau, G.M., Lewenstein, M., Lewenstein, N.: Pattern Matching
with Swaps, Journal of Algorithms, 37. (2000) 247–266

2. Feng, Y., Wu, Z., Zhou, Z.: Combining an Order-semisensitive Text Similarity and Closest
Fit Approach to Textual Missing Values in Knowledge Discovery, In: KES 2005, (2005)

3. Lodhi, H., Saunders, C., et. al.: Text Classification using String Kernels. Journal of Ma-
chine Learning Research 2. (2002) 419–444

4. McCallum, A.K.: Bow: A toolkit for statistical language modeling, text retrieval, classifica-
tion and clustering. http://www-2.cs.cmu.edu/~mccallum/bow. (1996)

5. Schapire, R.E., Singer, Y.: BoosTexter: A boosting-based system for text categorization.
Machine Learning, 39(2/3). (2000) 135–168

6. Tichy, W.F.: The string to string correction problem with block moves. ACM Trans. Comp.
Sys. 2(4). (1984) 309–321

Lydia: A System for Large-Scale News Analysis�

(Extended Abstract)

Levon Lloyd, Dimitrios Kechagias, and Steven Skiena

Department of Computer Science,
State University of New York at Stony Brook,

Stony Brook, NY 11794-4400
{lloyd, dkechag, skiena}@cs.sunysb.edu

1 Introduction

Periodical publications represent a rich and recurrent source of knowledge on
both current and historical events. The Lydia project seeks to build a relational
model of people, places, and things through natural language processing of news
sources and the statistical analysis of entity frequencies and co-locations. Lydia
is still at a relatively early stage of development, but it is already producing in-
teresting analysis of significant volumes of text. Indeed, we encourage the reader
to visit our website (http://www.textmap.com) to see our analysis of recent news
obtained from over 500 daily online news sources.

Perhaps the most familiar news analysis system is Google News [1], which
continually monitors 4,500 news sources. Applying state-of-the-art techniques in
topic detection and tracking, they cluster articles by event, group these clusters
into groups of articles about related events, and categorize each event into pre-
determined top-level categories, finally selecting a single representative article
for each cluster. A notable academic project along these lines is Columbia Uni-
versity’s Newsblaster [2,4,8], which goes further in providing computer-generated
summaries of the day’s news from the articles in a given cluster.

Our analysis is quite different from this. We track the temporal and spatial
distribution of the entities in the news: who is being talked about, by whom,
when, and where? Section 2 more clearly describes the nature of the news analysis
we provide, and presents some global analysis of articles by source and type to
demonstrate the power of Lydia.

Lydia is designed for high-speed analysis of online text. We seek to analyze
thousands of curated text feeds daily. Lydia is capable of retrieving a daily
newspaper like The New York Times and then analyzing the resulting stream
of text in under one minute of computer time. We are capable of processing
the entire 12 million abstracts of Medline/Pubmed in roughly two weeks on a
single computer, covering virtually every paper of biological or medical interest
published since the 1960’s.

A block diagram of the Lydia processing pipeline appears in Figure 1. The
major phases of our analysis are:
� This research was partially supported by NSF grants EIA-0325123 and DBI-0444815.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 161–166, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

162 L. Lloyd, D. Kechagias, and S. Skiena

Type 1
Reformatter Reformatter

Type 2

Document
Type 2Type 1

Document

Document
Identity
Extractor

Part−Of−Speech
Tagging

Syntactic
Tagging
Pipeline

Actor
Classification

Rule−Based
Processing

Alias
Expansion

Geographic
Normalization

Database

Applications Juxtaposition
Analysis

Synset
Identification

Heatmap
Generation

Fig. 1. Block diagram of the Lydia Pipeline

– Spidering and Article Classification – We obtain our newspaper text via spi-
dering and parsing programs which require surprisingly little customization
for different news sources.

– Named Entity Recognition – Identifying where entities (people, places, com-
panies, etc.) are mentioned in newspaper articles is a critical first step in
extracting information from them.

– Juxtaposition Analysis – For each entity, we wish to identify what other
entities occur near it in an overrepresented way.

– Synonym Set Identification – A single news entity is often mentioned using
multiple variations on their name. For example, George Bush is commonly
referred to as Bush, President Bush and George W. Bush.

– Temporal and Spatial Analysis – We can establish local biases in the news
by analyzing the relative frequency given entities are mentioned in different
news sources. To compute the sphere of influence for a given newspaper,
we look at its circulation, location, and the population of surrounding cities.
We expand the radius of the sphere of influence until the population in it
exceeds the circulation of the newspaper.

2 News Analysis with Lydia

In this section, we demonstrate the juxtapositional, spatial, and temporal en-
tity analysis made possible by Lydia. We again encourage the reader to visit
(http://www.textmap.com) to get a better feel of the power of this analysis on
contemporary news topics.

Lydia: A System for Large-Scale News Analysis 163

Table 1. Top 10 Juxtapositions for Three Particular Entities

Martin Luther King Israel North Carolina
Entity Score Entity Score Entity Score

Jesse Jackson 545.97 Mahmoud Abbas 9, 635.51 Duke 2, 747.85

Coretta Scott King 454.51 Palestinians 9, 041.70 ACC 1, 666.92

”I Have A Dream” 370.37 West Bank 6, 423.93 Wake Forest 1, 554.92

Atlanta, GA 286.73 Gaza 4, 391.05 Virginia 1, 283.61

Ebenezer Baptist Church 260.84 Ariel Sharon 3, 620.84 Tar Heels 1, 237.39

Saxby Chambliss 227.47 Hamas 2, 196.72 Maryland 1, 029.20

Douglass Theatre 215.79 Jerusalem, ISR 2, 125.96 Raymond Felton 929.48

SCLC 208.47 Israelis 1, 786.67 Rashad McCants 871.44

Greenville, SC 199.27 Yasser Arafat 1, 769.58 Roy Williams 745.19

Harry Belafonte 190.07 Egypt 1, 526.77 Georgia Tech 684.07

Except where noted, all of the experiments in this paper were run on a set
of 3, 853 newspaper-days, partitioned among 66 distinct publications that were
spidered between January 4, 2005 and March 15, 2005.

Juxtaposition Analysis. Our mental model of where an entity fits into the
world depends largely upon how it relates to other entities. For each entity,
we compute a significance score for every other entity that co-occurs with it,
and rank its juxtapositions by this score. Table 1 shows the top 10 scoring
juxtapositions (with significance score) for three popular entities. Some things
to note from the table are:

– Many of the other entities in Martin Luther King’s list arise from festivities
that surrounded his birthday.

– The position of Mahmoud Abbas at the top of Israel’s list reflects his ascent
to the presidency of the Palestinian National Authority.

– The prominence of other universities and basketball terms in the North Car-
olina list reflects the quality and significance of the UNC basketball team.

There has been much work [5,6] on the similar problem of recommender sys-
tems for e-commerce. These systems seek to find what products a consumer is
likely to purchase, given the products they have recently purchased. Our prob-
lem is also similar to the word collocation problem[7] from natural language
processing. The goal there is to find which sets of two or more words occur close
to each other more than they should by chance.

Developing a meaningful juxtapositionness function proved more difficult
than anticipated. First, we discovered that if you simply use raw article counts,
then the most popular entities will overly dominate the juxtapositions. Care
must be taken, however, when punishing the popular entities against spurious
juxtapositions dominated by the infrequently occurring entities. Our experience
found that the popular scoring functions appearing in the literature [3] did not
adequately correct for this problem.

164 L. Lloyd, D. Kechagias, and S. Skiena

To determine the significance of a juxtaposition, we bound the probability
that two entities co-occur in the number of articles that they co-occur in if
occurrences where generated by a random process. To estimate this probability
we use a Chernoff Bound:

P (X > (1 + δ)E[X]) ≤ (
eδ

(1 + δ)(1+δ))E[X]

where δ measures how far above the expected value the random variable is. If we
set (1+ δ)E[X] = F = number of co-occurrences, and consider X as the number
of randomized juxtapositions, we can bound the probability that we observe at
least F juxtapositions by calculating

P (X > F) ≤ (
e

F
E[X]−1

(F
E[X])

(F
E[X])

)E[X]

where E[X] = nanb

N , N = number of sentences in the corpus, na = number of
occurrences of entity a, and nb = number of occurrences of entity b, as the
juxtaposition score for a pair of entities. We display − log of this probability for
numerical stability and ranking.

Spatial Analysis. It is interesting to see where in the country people are talking
about particular entities. Each newspaper has a location and a circulation and
each city has a population. These facts allow us to approximate a sphere of
influence for each newspaper. The heat an entity is generating in a city is now
a function of its frequency of reference in each of the newspapers that have
influence over that city.

Figure 2 show the heatmap for Washington DC and Phoenix, in the news
from over 500 United States news sources from April 11–May 30, 2005. The
most intense heat for both city-entities focuses around their location, as should
be expected. Washington DC generates a high level of interest throughout the
United States. There is an additional minor concentration in the Pacific North-
west, which reflects the ambiguity between Washington the city and the state.

Fig. 2. Geographic News Distribution of two Spatially-Sensitive Entities

Lydia: A System for Large-Scale News Analysis 165

Table 2. Most Overrepresented Entities in Three Important U.S. Newspapers

San Francisco Chronicle Chicago Tribune Miami Herald
Entity Score Entity Score Entity Score

Gavin Newsom 10.84 Chicago, IL 8.57 Miami, FL 10.26

San Francisco, CA 10.56 Richard Daley 7.06 South Florida 9.53

Bay Area 8.44 Joan Humphrey Lefkow 5.20 Fort Lauderdale, FL 8.76

Pedro Feliz 5.36 Aon Corp. 4.69 Cuba 8.09

BALCO 5.29 Salvador Dali 4.54 Caracas 7.02

Kimberly Bell 5.02 Wrigley Field 4.42 Florida Marlins 6.91

Fig. 3. Reference Frequency Time-Series for Michael Jackson, partitioned by article
type

An alternate way to study relative geographic interest is to compare the
reference frequency of entities in a given news source. Table 2 presents the most
overrepresented entities in each of three major American newspapers, as scored
by the number of standard deviations above expectation. These over-represented
entities (primarily local politicians and sports teams) are all of stronger local
interest than national interest.

Temporal Analysis. Our ability to track all references to entities broken down
by article type gives us the ability to monitor trends. Figure 3 tracks the ebbs
and flows in the interest in Michael Jackson as his trial progressed in May 2005.
Note that the vast majority of his references are classified as news instead of
entertainment, reflecting current media obsessions.

3 Conclusions and Future Work

We have presented the basic design and architecture of the Lydia text analysis
system, along with experimental results illustrating its capabilities and perfor-
mance. We are continuing to improve the entity recognition algorithms, particu-
larly in synset construction, entity classification, and geographic normalization.

Future directions include dramatically increasing the scale of our analysis, as
we anticipate moving from a single workstation to a 50-node cluster computer
in the near future. With such resources, we should be able to do long-term

166 L. Lloyd, D. Kechagias, and S. Skiena

historical news analysis and perhaps even larger-scale web studies. We are also
exploring the use of the Lydia knowledge base as the foundation for a question
answering system, and extracting semantic labels for explaining juxtaposition
relationships.

Acknowledgments

We thank Alex Kim for his help in developing the pipeline, Manjunath Srini-
vasaiah for his work on making the pipeline more efficient, Prachi Kaulgud for
her work on markup and web interface design, Andrew Mehler for his Bayesian
classifier and rules processor, Izzet Zorlu for his web interface design, Namrata
Godbole for her work on text markup and spidering, Yue Wang, Yunfan Bao,
and Xin Li for their work on Heatmaps, and Michael Papile for his geographic
normalization routine.

References

1. Google news. http://news.google.com.
2. R. Barzilay, N. Elhadad, and K. McKeown. Inferring strategies for sentence ordering

in multidocument news summarization. Journal of Artifical Intelligence Research
(JAIR), 17:35–55, 2002.

3. W. Frakes and R. Baeza-Yates. Information Retrieval: Data Structures and Algo-
rithms. Prentice-Hall, 1992.

4. V. Hatzivassiloglou, L. Gravano, and A. Maganti. An investigation of linguistic
features and clustering algorithms for topical document clustering. In Proceedings
of the 23rd ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 224–231, Athens, Greece, 2000.

5. W. Hill, L. Stead, M. Rosenstein, and G. Furnas. Recommending and evaluating
choices in a virtual community of use. In Proceedings of ACM Conference on Human
Factors in Computing Systems(CHI’95), 1995.

6. T. Malone, K. Grant, F. Turbak, S. Brobst, and M. Cohen. Intelligent information-
sharing systems. Communications of the ACM, 30:390–402, 1987.

7. C.D. Manning and H. Schutze. Foundations of Statistical Natural Language Process-
ing. MIT Press. Cambridge, MA, 2003.

8. K. McKeown, R. Barzilay, D. Evans, V. Hatzivassiloglou, J. Klavans, A. Nenkova,
C. Sable, B. Schiffman, and S. Sigelman. Tracking and summarizing news on a daily
basis with columbia’s newsblaster. In Proceedings of HLT 2002 Human Language
Technology Conference, San Diego, California, USA, 2002.

Composite Pattern Discovery

for PCR Application

Stanislav Angelov1,� and Shunsuke Inenaga2

1 Department of Computer and Information Science,
School of Engineering and Applied Sciences,

University of Pennsylvania, Philadelphia, PA 19104, USA
angelov@cis.upenn.edu

2 Department of Informatics, Kyushu University, Fukuoka 812-8581, Japan
shunsuke.inenaga@i.kyushu-u.ac.jp

Abstract. We consider the problem of finding pairs of short patterns
such that, in a given input sequence of length n, the distance between
each pair’s patterns is at least α. The problem was introduced in [1] and
is motivated by the optimization of multiplexed nested PCR.

We study algorithms for the following two cases; the special case when
the two patterns in the pair are required to have the same length, and the
more general case when the patterns can have different lengths. For the
first case we present an O(αn log log n) time and O(n) space algorithm,
and for the general case we give an O(αn log n) time and O(n) space
algorithm. The algorithms work for any alphabet size and use asymptot-
ically less space than the algorithms presented in [1]. For alphabets of
constant size we also give an O(n

√
n log2 n) time algorithm for the gen-

eral case. We demonstrate that the algorithms perform well in practice
and present our findings for the human genome.

In addition, we study an extended version of the problem where pat-
terns in the pair occur at certain positions at a distance at most α, but
do not occur α-close anywhere else, in the input sequence.

1 Introduction

1.1 Composite Pattern Discovery

Pattern discovery is a fundamental problem in Computational Biology and Bioin-
formatics [2,3]. A large amount of effort was paid to devising efficient algorithms
to extract interesting, useful, and surprising substring patterns from massive
biological sequences [4,5]. Then this research has been extended to more com-
plicated but very expressive pattern classes such as subsequence patterns [6,7],
episode patterns [8,9], VLDC patterns [10], and their variations [11].

The demand for composite pattern discovery has recently arisen rather than
simply finding single patterns. It is motivated by, for instance, the fact that many
� Supported in part by NSF Career Award CCR-0093117, NSF Award ITR 0205456

and NIGMS Award 1-P20-GM-6912-1.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 167–178, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

168 S. Angelov and S. Inenaga

of the actual regulatory signals are composite patterns that are groups of monad
patterns occurring near each other [12]. The concept of composite patterns was
introduced by Marsan and Sagot [13] as structured motifs which are two or more
patterns separated by a certain distance. They introduced suffix tree [14] based
algorithms for finding structured motifs, and Carvalho et al. [15] presented a
new algorithm with improved running time and space.

In a similar concept, Arimura et al. [16,17] introduced proximity patterns and
proposed algorithms to find these patterns efficiently. MITRA [12] is another
method that looks for composite patterns. BioProspector [18] applies the Gibbs
sampling strategy to discover gapped motifs. Bannai et al. [19] and Inenaga et
al. [20] considered Boolean combinations of patterns, in order to find regulatory
elements that cooperate, complement, or compete with each other in enhancing
and/or silencing certain genomic functions.

Another application of composite pattern discovery is to find good adapters
for primers used in polymerase chain reaction (PCR). PCR is a standard tech-
nique for producing many copies of a DNA region [21]. It is routinely used for
example in medicine to detect infections and in forensic science to identify indi-
viduals even from tiny samples. In PCR a pair of short fragments of DNA called
primers is specifically designed for the amplified region so that each of them is
complementary to the 3’ end of one of two strands of the region (see also Fig. 1).

In order to achieve ultrasensitive detection, repeated PCR with nested primers,
so-called nested PCR, is used. Also, detection tests are preferred to be carried
out in a multiplexed fashion. Let S denote any sequence taken from a sample of
genome, and S′ denote the reverse complement of S. To obtain a good primer
pair for multiplexed nested PCR, we are required to find a pair of patterns (A, B)
such that any occurrences of A and B are separated further than α in both se-
quences S and S′, where α is a given threshold value. Then, the pair (A, B) is
called a missing pattern pair (or shortly a missing pair). For the application of
multiplexed nested PCR, the patterns in a missing pair have to also satisfy that
|A| = |B| = k and k is as short as possible. Namely, a missing pair with patterns
of the same, and shortest length, is demanded. More details of the relationship
between missing patterns and PCR can be found in [1].

1.2 Finding Missing Patterns

The problem of finding missing pattern pairs was firstly considered in [1]. The
paper presented an algorithm which finds missing pattern pairs in O(αn log log n)

Fig. 1. Illustration for polymerase chain reaction (PCR)

� ��

� �

�

� � � �

Adapter

� � � �

� � � �

Adapter
Left primer

Right primer

Composite Pattern Discovery for PCR Application 169

time with O(αn) space, where n denotes the length of the input sequence. For
a more general case where the two patterns in a missing pair can have different
lengths, the paper showed that the problem is solvable in O(n2) time and O(n)
space, or in O(αn log n) time and O(n log n) space, both on a constant-size al-
phabet. We remark that the patterns considered in [1] were substring patterns,
that is, exact match without errors was considered.

In this paper, we give simpler and more efficient algorithms that solve the
stated problems for an arbitrary alphabet size σ. We give an O(αn log logσ n)
time algorithm for the case when the patterns in the missing pairs are of the
same length, and O(min{αn logσ n, n

√
n(σ + log n) logσ n}) time algorithm for

the case when the two patterns can have different lengths. In both cases the
space requirement is only O(n).

See Tables 1 and 2 for a more detailed comparison between our algorithms
and those in [1]. For patterns of the same length and constant-size alphabets,
Algorithm 1 saves computational space by a factor of α. It also improves the
time complexity for arbitrary alphabet sizes. For pairs of patterns of different
lengths, Algorithm 1 is superior to Suffix Tree Algorithm B on both constant
and arbitrary alphabets. It is also noteworthy that although both Suffix Tree
Algorithms heavily depend on manipulations on suffix trees [14], neither Algo-
rithm 1 or 2 in this paper needs advanced data structures which can be rather
expensive in practice.

Furthermore, since primers need to be present around the region to be am-
plified, we also study a natural extension of the problem where patterns in the
pair occur at certain positions at a distance at most α, but do not occur α-close
anywhere else, in the input sequence. We show how Algorithm 1 can be modified
for this extended problem. Since the restriction can make “short” pattern pairs
impossible, we also discuss a variant that allows for arbitrary pattern lengths.
We note that for the case of primers, which typically have lengths in the range
17..25, the obtained algorithm runs in O(αn) time and O(n) space.

Table 1. Summary of results for finding missing pairs of patterns of same length

Algorithm Time Space

Algorithm 1 O(αn log logσ n) O(n)
Bit Table Algorithm [1] O(αn(σ + log logσ n)) O(αn)

Table 2. Summary of results for finding missing pairs of patterns of different length

Algorithm Time Space

Algorithm 1 O(αn logσ n) O(n)
Algorithm 2 O(n

√
n(σ + log n) logσ n) O(n)

Suffix Tree Alg. A [1] O(n2) O(n)
Suffix Tree Alg. B [1]∗ O(αn log n) O(n log n)
Suffix Tree Alg. B [1] O(log σαn logσ n) O(log σαn logσ n)

∗ Constant size alphabet.

170 S. Angelov and S. Inenaga

1.3 Organization

In Section 2 we formally introduce our model and state the considered problem.
In Section 3 we present the main algorithm, and subsequent results. Next, in
Section 4, we discuss natural extensions to the main algorithm and their im-
plications. In Section 5 we discuss our findings on the human genome. Finally,
Section 6 concludes this paper with possible directions for future work.

2 Preliminaries

A string T = t1t2 · · · tn is a sequence of characters from an ordered alphabet Σ
of size σ. We assume w.l.o.g. Σ = {0, 1, . . . , σ− 1} and that all characters occur
in T . A substring of T is any string Ti...j = titi+1 · · · tj , where 1 ≤ i ≤ j ≤ n. A
pattern is a short string over the alphabet Σ. We say that pattern P = p1p2 · · · pk

occurs at position j of string T iff p1 = tj , p2 = tj+1, . . . , pk = tj+k−1. Such
positions j are called the occurrence positions of P in T .

A missing pattern P (with respect to sequence T) is such that P is not a
substring of T , i.e., P does not occur at any position j of T . Let α > 0 be a
threshold parameter. A missing pattern pair (A, B) is such that if A (resp. B)
occurs at position j of sequence T , then B (A) does not occur at any position
j′ of T , such that j − α ≤ j′ ≤ j + α. If (A, B) is a missing pair, we say that A
and B do not occur α-close in T . These notions are illustrated in Fig. 2.

α α α α

α α
T

A B

Fig. 2. Missing pattern pair (A,B). No occurrences of A and B are at a distance closer
than α.

We study the following problem:

Problem 1 (Missing Pattern Pair Problem). Given a sequence T and a threshold
α, find patterns A and B of minimum total length, such that (A, B) is a missing
pattern pair with respect to T , i.e., A and B do not occur α-close in T .

3 Finding Missing Pattern Pairs

Missing pattern pairs can be formed by two processes. When a pattern does not
occur in the input sequence T , it can be combined with any pattern to form a
missing pair. Alternatively, both patterns in the pair may occur in the sequence,
but always at least α positions away from each other. The first case, when a
single pattern is missing, provides an insight to the upper bound on the missing
pair length and is an interesting property on its own.

Composite Pattern Discovery for PCR Application 171

It is not hard to see that there is a missing pattern of length �logσ n� from
sequence T with size n, where σ is the input alphabet size. This is because
there are at most n − k + 1 distinct patterns of length k in T . In [1], a linear
time algorithm based on suffix trees is proposed that finds the shortest missing
pattern when σ is a constant. The algorithm can be readily extended for the case
of arbitrary alphabet sizes by a loss of log σ factor. Instead, we can compute a
bit table of all patterns of length "logσ n# that occur in T using the natural
bijective mapping of the patterns to the integers 0, 1, . . . , σ�logσ n� − 1. This can
be done in linear time by scanning the input sequence from left to right using the
established technique of computing the entry of pattern Y b knowing the entry
of pattern aY (see for example [22]). By examining consecutive runs of missing
patterns of this length, one can compute the shortest string (the longest missing
pattern prefix) that is missing from the input sequence. If all patterns of length
"logσ n# are present in T , then the shortest missing pattern is of length �logσ n�.
In this case we can find a representative by computing the first n entries of the
corresponding bit table.

Proposition 1. The shortest single missing pattern problem can be solved in
linear time and space.

In what follows, we let m be the length of the shortest missing pattern.

3.1 Finding Missing Pairs of Fixed Lengths

We now present an O(αn) time and O(n) space algorithm that finds a missing
pattern pair (A, B), where the lengths of A and B are given as input parameters.
The algorithm serves as a basis for the missing pattern pairs algorithms that
follow. Let |A| = a and |B| = b and assume w.l.o.g. a ≥ b. We will consider the
case when a < m, or else there is a pattern of length m that is missing and by
Proposition 1 it can be found in linear time. Let N1 = σa and N2 = σb be the
number of distinct patterns of length a and b respectively. (Clearly, n > N1 ≥
N2). The proposed algorithm heavily uses the bijective mapping of patterns to
integers described in the previous subsection.

Algorithm 1. We now describe the steps of the algorithm.

1. Let L be an array of length N1, where L[h] is the list of occurrence positions
in T of the pattern of length a mapped to the integer h.

2. Compute an array H s.t. H [j] is the mapped value of the pattern of length
b at position j of T .

3. For h = 0 . . .N1 − 1, count the number of distinct patterns B of length b
that occur at distance at most α from the pattern A of length a mapped to
h. We do this by maintaining a bit table of the distinct patterns B that are
α-close to A.

At each iteration we perform the following sub-steps. Let A be the pattern
mapped to h.

(i) For each occurrence in L[h] of pattern A, we mark in a table M of size
N2 all patterns of length b that occur at distance at most α by scanning
the corresponding positions of the array H .

172 S. Angelov and S. Inenaga

(ii) When a pattern of length b is seen for the first time we increment a
counter. The counter is set to 0 at the beginning of each iteration.

(iii) The iteration ends when the maintained counter becomes equal to N2 to
indicate that all patterns of length b are α-close to A, or when all of L[h]
is processed. At the end of an iteration, if the counter is less than N2 we
scan M to output a missing pattern pair and the algorithm terminates.

Analysis. Step 1 of the algorithm can be performed in O(n) time by scanning T
from left to right. Compute the value h of the pattern at position i from that of
position i− 1 and append i to the list L[h]. The total size of all lists is n− a+1.
The array H in Step 2 can be computed in a similar fashion and takes n− b + 1
space. An iteration of Step 3 takes O(α|L[h]|) time for a total of O(αn) time
and an additional O(N2) = O(n) space. We conclude the algorithm will output
a missing pair (A, B) with the desired pattern lengths, if such a pair exists, in
O(αn) time and O(n) space.

3.2 Finding Missing Pairs of the Same Length

We combine the algorithm from the previous subsection and the following prop-
erty to obtain an efficient algorithm for the problem of finding missing pairs
when the patterns are of the same length.

Property 1 (Monotonicity Property). If a pattern pair (A, B) is missing, the pair
(C, D), where A is a substring of C and B is a substring of D, is also missing.

We are now ready to state the following theorem.

Theorem 1. The missing patterns problem on a sequence of length n for pat-
terns of the same length can be solved in O(αn log logσ n) time and O(n) space,
where σ is the alphabet size.

Proof. Recall that there exists a missing pattern pair (A, B), where a = b = m ≤
�logσ n�. Therefore, such missing pair can be found in linear time by Proposition
1. In order to find the shortest pair, we can do binary search on the pattern
length 1 . . .m−1 and apply Algorithm 1 for each length. From the Monotonicity
Property we are guaranteed to output the shortest missing pattern pair of the
same length in O(αn log logσ n) time and O(n) space. ��

3.3 Finding Missing Pairs

We now consider the problem when the two patterns in a missing pair do not
necessarily have the same length. From Proposition 1, there exists a missing
pattern pair (A, B), where a = m and b = 1 for a combined pair length of
m + 1. Recall that m ≤ �logσ n� is the length of the shortest missing pattern of
the input sequence T and can be found in linear time and space. Such missing
pattern can be combined with any non-empty pattern to form a missing pattern
pair. For α ≥ m, it is easy to see that for any missing pattern pair (A, B) of
length ≤ m, the concatenation of A and B should also be missing, otherwise A
and B occur at a distance ≤ α. Therefore, for any missing pattern pair (A, B),
a + b ≥ m.

Composite Pattern Discovery for PCR Application 173

Theorem 2. The missing patterns problem on sequence of length n can be solved
in O(αn logσ n) time and O(n) space, where σ is the alphabet size.

Proof. We showed that the shortest missing pattern pair is of length at least m
and at most m + 1. To find if a pattern pair (A, B) of length m is missing it
is enough to verify all possible combinations of a + b = m. This can be done
by applying m = O(logσ n) times Algorithm 1. Therefore, we obtain the desired
running time and space. ��

The above analysis assumes α ≥ m. In the case when α < m, there is also
a solution to take in consideration of total length 2α + 1. Let G, T ∈ Σ be two
arbitrary letters of the input alphabet. Consider the pattern pair

(G . . . G︸ ︷︷ ︸
α+1

, T . . . T︸ ︷︷ ︸
α

) .

Trivially, it is a missing pair since the two patterns cannot occur α-close.

Remark 1. Let the alphabet size σ be a constant. Since there are σm = O(n)
pattern pairs of combined length m = O(logσ n), one can adapt the bit-table
algorithm from [1] to match the above running time and space requirements.

We now present an algorithm with running time independent of the threshold
parameter α. The algorithm finds for each pair of patterns (A, B) of given length,
the smallest αAB s.t. the two patterns occur αAB-close. Therefore, a pattern pair
(A, B) is missing iff αAB > α. The algorithm also finds the smallest αmin s.t. all
pattern pairs are αmin-close.

Algorithm 2. The algorithm takes advantage from the fact that there are not
too many pattern pairs of total length m. More precisely, there are at most
σ	logσ n
 < σn such pairs. Again, we present the algorithm for fixed lengths of
the pattern pairs (A, B) and adapt similar notation to Algorithm 1. We further
assume a + b = m. The steps of the algorithm are as follow:

1. Let L be an array of length N1, where L[h] is the list of occurrence positions
in T of the pattern of length a mapped to the integer h. Let R be an array of
length N2, where R[h′] is the list of occurrence positions in T of the pattern
of length b mapped to the integer h′.

2. For each pattern pair (A, B), merge efficiently the corresponding lists of
occurrence positions (which are sorted by construction) to find the closest
occurrence of A and B and therefore αAB.

Analysis. The algorithm clearly requires O(n) space, and we claim it takes
O (n

√
n(σ + log n)) time. Step 1 of the algorithm can be performed in O(n) time

by scanning T from left to right. We now analyze Step 2. For a given pattern,
we will call its list of occurrence positions long if it has length at least

√
n. We

note that there are at most
√

n long lists in L since the total length of all lists
is at most n. Similarly, there are at most

√
n long lists in R. All pairs of lists

174 S. Angelov and S. Inenaga

that are not long can be merged in O(σn
√

n) time using merge sort since there
are O(σn) such pairs. Let I be the set of indices of long lists in L, i.e. for all
h ∈ I, |L[h]| ≥

√
n. Fix h ∈ I. The list L[h] can be merged using binary search

with all lists in R in time proportional to
∑

h′ |R[h′]| log |L[h]| = O(n log |L[h]|).
Summing over h ∈ I we obtain n

∑
h∈I log |L[h]| = O(n

√
n log n) since |I| ≤

√
n

and each list is of length at most n. Applying the same argument for the long
lists in R we obtain the desired running time.

The next theorem follows by an argument analogous to the proof of Theorem
2 but applying Algorithm 2.

Theorem 3. The missing pattern problem on sequence of length n can be solved
in O(n

√
n(σ + log n) logσ n) time and O(n) space, where σ is the alphabet size.

4 Extensions to the Missing Pattern Pair Problem

We discuss the following two extensions to the problem of finding missing pattern
pairs of fixed lengths. First, we show how to find missing pairs when the patterns
are restricted to occur at certain regions of the input sequence T . Next, in
addition, we allow the patterns to be of length greater than m. We describe
the required changes to Algorithm 1, and then state how it generalizes to the
problem of finding the shortest pattern pairs of the same or different lengths.

Localized Patterns. Let PL (PR) be the set of positions where pattern A
(B) of pair (A, B) need to be present. The sets can be specified as interval lists
or bit-tables. For simplicity we assume the latter representation, which can be
obtained from the interval lists in O(n) time and space1. We are interested in
finding pattern pairs that occur at the restricted positions at a distance at most
α, but do not occur α-close anywhere else.

We modify Algorithm 1 as follows. We restrict occurrence positions for A
patterns in lists in L only to those in PL in a straightforward manner. In the
same fashion, in Step 3, we count for each pattern A, the distinct patterns B that
occur at distance at most α. If there is a pattern missing, we do an additional
pass to look for α-close unmarked pattern that start in PR. It is not hard to see
that with the described modifications the time and space requirements of the
algorithm do not change.

Long Patterns. Since patterns are restricted to occur in the input sequence
T , there are at most n candidate patterns for each A and B irrespective to their
given length. For patterns of length greater than "logσ n#, we can maintain the
same framework of Algorithm 1 given a suitable (hash) function mapping valid
A and B patterns to integers 0 to O(n) in the corresponding lists L (Step 1)
1 The conversion from lists to a bit table can be done even when the intervals are

overlapping by storing for each position the number of intervals starting and ending
at that position, and then scanning the resulting array from left to right. We assume
there are O(n) lists.

Composite Pattern Discovery for PCR Application 175

and H (Step 2). We obtain the desired properties by computing the suffix tree
of T and using the node indices corresponding to the patterns of length a and b
in a standard way (see for details [14]). Computing the suffix tree only requires
an additional O(n log σ) time and O(n) space [14].

We are now ready to state the following theorem.

Theorem 4. The generalized missing patterns problem on a sequence of length
n can be solved in

– O(αn�) time when the patterns are of the same length;
– O(αn�2) time when the patterns are allowed to have different lengths,

where σ is the alphabet size, and � is the total length of the output pair. In both
cases the space requirement is O(n).

Proof. (Sketch) Note that because of the condition that patterns must occur α-
close at specific positions, the Monotonicity Property does not hold. We therefore
need to run the extended Algorithm 1 for all possible combinations of pattern
lengths up to �. Furthermore, note that "log σ# ≤ α since σ ≤ n, otherwise in
the case when pattern length is greater than α there are trivial missing pattern
pairs. Therefore, the term O(αn) in Algorithm 1 dominates the construction of
the suffix tree of O(n log σ) time. ��

5 Experiments

We have performed preliminary tests with the human genome2 to complement the
results reported in [1] for the baker’s yeast (Saccharomyces cerevisiae) genome.
We set the threshold parameter α to a realistic value 5000 and searched for the
shortest missing pattern pairs where the patterns are of the same length k. We
found 238 pattern pairs for k = 8. Interestingly, the shortest pattern pairs found
for the baker’s yeast genome, which is about 250 times smaller, were also of length
8 [1]. From the 238 pattern pairs, 20 pairs are missing from both the human and
the baker’s yeast genome. Table 3 summarizes these missing pairs and the shortest
distance between the patterns (or their reverse complements) of each pair in the
corresponding genomes. For reference, the shortest (single) missing patterns from
the human genome are of length 11 and are listed in Table 4. This is also surprising
since the human genome length is roughly equal to 416.

An implementation in Java of the used software is available at the author’s
homepage3. The program needed about 3 hours to process the baker’s yeast
genome on a 1GHz machine, and about 30 hours for the human genome. The stop
condition of step 3 of Algorithm 1, namely when all pattern pairs are discovered
for the current pattern, provides a significant optimization in practice which
allows the software to run only 10 times slower (rather than 250 times) for the
human genome compared to the yeast genome.
2 Available at ftp://ftp.ensembl.org/pub/current human/
3 http://www.cis.upenn.edu/∼angelov

176 S. Angelov and S. Inenaga

Table 3. Unordered missing pattern pairs in both the human and baker’s yeast
genomes for k = 8. The reverse complements of the shown pattern pairs are also
missing.

Missing Pairs Yeast αAB Human αAB

(AATCGACG, CGATCGGT) 5008 6458
(CCGATCGG, CCGTACGG) 5658 6839
(CGACCGTA, TACGGTCG) 13933 7585
(CGACCGTA, TCGCGTAC) 5494 5345
(CGAGTACG, GTCGATCG) 5903 8090
(CGATCGGA, GCGCGATA) 6432 6619

Table 4. (Single) missing patterns from the human genome of length 11. The reverse
complements of the shown patters are also missing.

Missing Patterns

ATTTCGTCGCG CGGCCGTACGA CGCGAACGTTA
CCGAATACGCG CGTCGCTCGAA CGTTACGACGA
CCGACGATCGA CGACGCGATAG GCGTCGAACGA
CGCGTCGATAG CGATTCGGCGA TATCGCGTCGA

6 Conclusions and Further Work

The missing pattern discovery problem was first introduced in [1] for optimal
selection of adapter primers for nested PCR. In this paper, we presented more
simple and efficient algorithms to solve the problem. The presented algorithms
only require linear space and thus are efficiently implementable, whereas most
algorithms in [1] take super-linear space. Our algorithms also have advantages
for running time compared to those in [1], especially when the alphabet size
σ is not constant. We implemented our algorithms and made experiments for
the human genome and the baker’s yeast genome, and we succeeded in finding
shortest missing pairs of length 8 for both human and yeast genomes. In addition,
we studied an extended version of the problem where patterns in the pair occur
at certain positions at a distance at most α, but do not occur α-close anywhere
else, in the input sequence.

As a generalization of the missing pattern discovery problem, the following
problem that allows mismatches is worth to consider: Given sequence T , distance
α, and an error parameter e, find pattern pair (A, B) such that any occurrence
of A and B within e mismatches in T is not α-close. In [13], they presented some
algorithms to discover structured motifs with errors in the Hamming distance
metric. Since the algorithms of [1] and [13] are both based on suffix trees, it
might be possible to solve the above general missing pattern discovery problem
by combining these algorithms.

Composite Pattern Discovery for PCR Application 177

Acknowledgement

The authors would like to thank Teemu Kivioja of VTT Biotechnology and Veli
Mäkinen of Bielefeld University, for their contributions to the pioneering work
on finding missing pattern pairs in [1] and their fruitful comments to this work.

References

1. Inenaga, S., Kivioja, T., Mäkinen, V.: Finding missing patterns. In: Proc. 4th
Workshop on Algorithms in Bioinformatics (WABI’04). Volume 3240 of LNCS.,
Springer-Verlag (2004) 463–474

2. Apostolico, A.: Pattern discovery and the algorithmics of surprise. In: Artificial
Intelligence and Heuristic Methods for Bioinformatics. (2003) 111–127

3. Shinohara, A., Takeda, M., Arikawa, S., Hirao, M., Hoshino, H., Inenaga, S.: Find-
ing best patterns practically. In: Progress in Discovery Science. Volume 2281 of
LNAI., Springer-Verlag (2002) 307–317

4. Shimozono, S., Shinohara, A., Shinohara, T., Miyano, S., Kuhara, S., Arikawa,
S.: Knowledge acquisition from amino acid sequences by machine learning system
BONSAI. Transactions of Information Processing Society of Japan 35 (1994) 2009–
2018

5. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M., Miyano, S.: Efficiently finding
regulatory elements using correlation with gene expression. Journal of Bioinfor-
matics and Computational Biology 2 (2004) 273–288

6. Baeza-Yates, R.A.: Searching subsequences (note). Theoretical Computer Science
78 (1991) 363–376

7. Hirao, M., Hoshino, H., Shinohara, A., Takeda, M., Arikawa, S.: A practical algo-
rithm to find the best subsequence patterns. In: Proc. 3rd International Conference
on Discovery Science (DS’00). Volume 1967 of LNAI., Springer-Verlag (2000) 141–
154

8. Mannila, H., Toivonen, H., Verkamo, A.I.: Discovering frequent episode in se-
quences. In: Proc. 1st International Conference on Knowledge Discovery and Data
Mining, AAAI Press (1995) 210–215

9. Hirao, M., Inenaga, S., Shinohara, A., Takeda, M., Arikawa, S.: A practical algo-
rithm to find the best episode patterns. In: Proc. 4th International Conference on
Discovery Science (DS’01). Volume 2226 of LNAI., Springer-Verlag (2001) 435–440

10. Inenaga, S., Bannai, H., Shinohara, A., Takeda, M., Arikawa, S.: Discovering
best variable-length-don’t-care patterns. In: Proc. 5th International Conference on
Discovery Science (DS’02). Volume 2534 of LNCS., Springer-Verlag (2002) 86–97

11. Takeda, M., Inenaga, S., Bannai, H., Shinohara, A., Arikawa, S.: Discovering most
classificatory patterns for very expressive pattern classes. In: Proc. 6th Interna-
tional Conference on Discovery Science (DS’03). Volume 2843 of LNCS., Springer-
Verlag (2003) 486–493

12. Eskin, E., Pevzner, P.A.: Finding composite regulatory patterns in DNA sequences.
Bioinformatics 18 (2002) S354–S363

13. Marsan, L., Sagot, M.F.: Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification.
J. Comput. Biol. 7 (2000) 345–360

14. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

178 S. Angelov and S. Inenaga

15. Carvalho, A.M., Freitas, A.T., Oliveira, A.L., Sagot, M.F.: A highly scalable al-
gorithm for the extraction of cis-regulatory regions. In: Proc. 3rd Asia Pacific
Bioinformatics Conference (APBC’05), Imperial College Press (2005) 273–282

16. Arimura, H., Arikawa, S., Shimozono, S.: Efficient discovery of optimal word-
association patterns in large text databases. New Generation Computing 18
(2000) 49–60

17. Arimura, H., Asaka, H., Sakamoto, H., Arikawa, S.: Efficient discovery of proximity
patterns with suffix arrays (extended abstract). In: Proc. the 12th Annual Sym-
posium on Combinatorial Pattern Matching (CPM’01). Volume 2089 of LNCS.,
Springer-Verlag (2001) 152–156

18. Liu, X., Brutlag, D., Liu, J.: BioProspector: discovering conserved DNA motifs
in upstream regulatory regions of co-expressed genes. In: Pac. Symp. Biocomput.
(2001) 127–138

19. Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano, S.: An O(N2)
algorithm for discovering optimal Boolean pattern pairs. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 1 (2004) 159–170

20. Inenaga, S., Bannai, H., Hyyrö, H., Shinohara, A., Takeda, M., Nakai, K., Miyano,
S.: Finding optimal pairs of cooperative and competing patterns with bounded
distance. In: Proc. 7th International Conference on Discovery Science (DS’04).
Volume 3245 of LNCS., Springer-Verlag (2004) 32–46

21. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular
Biology of the Cell, fourth edition. Garland Science (2002)

22. Karp, R., Rabin, M.: Efficient randomized pattern-matching algorithms. IBM
Journal of Research and Development 31 (1987) 249–260

Lossless Filter for Finding Long Multiple

Approximate Repetitions Using a New Data
Structure, the Bi-factor Array

Pierre Peterlongo1, Nadia Pisanti2,�,
Frederic Boyer3, and Marie-France Sagot3,4,��

1 Institut Gaspard-Monge, Universite de Marne-la-Vallée, France
2 Dipartimento di Informatica, Università di Pisa, Italy

and LIPN Université Paris-Nord, France
3 INRIA Rhône-Alpes and LBBE, Univ. Claude Bernard, Lyon, France

4 King’s College, London, UK

Abstract. Similarity search in texts, notably biological sequences, has
received substantial attention in the last few years. Numerous filtration
and indexing techniques have been created in order to speed up the res-
olution of the problem. However, previous filters were made for speeding
up pattern matching, or for finding repetitions between two sequences or
occurring twice in the same sequence. In this paper, we present an algo-
rithm called NIMBUS for filtering sequences prior to finding repetitions
occurring more than twice in a sequence or in more than two sequences.
NIMBUS uses gapped seeds that are indexed with a new data structure,
called a bi-factor array, that is also presented in this paper. Experimen-
tal results show that the filter can be very efficient: preprocessing with
NIMBUS a data set where one wants to find functional elements using a
multiple local alignment tool such as GLAM ([7]), the overall execution
time can be reduced from 10 hours to 6 minutes while obtaining exactly
the same results.

1 Introduction

Finding approximate repetitions (motifs) in sequences is one of the most chal-
lenging tasks in text mining. Its relevance grew recently because of its applica-
tion to biological sequences. Although several algorithms have been designed to
address this task, and have been extensively used, the problem still deserves in-
vestigation for certain types of repetitions. Indeed, when the latter are quite long
and the number of differences they contain among them grows proportionally to
their length, there is no exact tool that can manage to detect such repetitions
efficiently. Widely used efficient algorithms for multiple alignment are heuristic,
and offer no guarantee that false negatives are avoided. On the other hand, ex-
haustive inference methods cannot handle queries where the differences allowed
� Supported by the ACI IMPBio Evolrep project of the French Ministry of Research.

�� Supported by the ACI Nouvelles Interfaces des Mathématiques π-vert project of the
French Ministry of Research, and by the ARC BIN project from the INRIA.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 179–190, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

180 P. Peterlongo et al.

among the occurrences of a motif represent as many as 5− 10% of the length of
the motif, and the latter is as small as, say, 100 DNA bases. Indeed, exhaustive
inference is done by extending or assembling in all possible ways shorter motifs
that satisfy certain sufficient conditions. When the number of differences al-
lowed is relatively high, this can therefore result in too many false positives that
saturate the memory. In this paper, we introduce a preprocessing filter, called
NIMBUS, where most of the data containing such false positives are discarded
in order to perform a more efficient exhaustive inference. Our filter is designed
for finding repetitions in r ≥ 2 input sequences, or repetitions occurring more
than twice in one sequence. To our knowledge, one finds in the literature filters
for local alignment between two sequences [21,17,15], or for approximate pattern
matching [19,3] only. Heuritic methods such as BLAST [1,2] and FASTA [16]
filter input data and extend only seeds that are repeated short fragments sat-
isfying some constraints. NIMBUS is based on similar ideas but uses different
requirements concerning the seeds; among the requirements are frequency of oc-
currence of the seeds, concentration and relative position. Similarly to [17,15],
we use also a concept related to gapped seeds that has been shown in [4] to
be particularly efficient for pattern matching. The filter we designed is lossless:
contrary to the filter in BLAST or FASTA, ours does not discard any repetition
meeting the input parameters. It uses necessary conditions based on combina-
torial properties of repetitions and an algorithm that checks such properties in
an efficient way. The efficiency of the filter relies on an original data structure,
the bi-factor array, that is also introduced in this paper, and on a labelling of
the seeds similar to the one employed in [8]. This new data structure can be
used to speed up other tasks such as the inference of structured motifs [18] or
for improving other filters [14].

2 Necessary Conditions for Long Repetitions

A string is a sequence of zero or more symbols from an alphabet Σ. A string s of
length n on Σ is represented also by s[0]s[1] . . . s[n− 1], where s[i] ∈ Σ for 0 ≤
i < n. The length of s is denoted by |s|. We denote by s[i, j] the substring, or
factor, s[i]s[i+1] . . . s[j] of s. In this case, we say that the string s[i, j] occurs at
position i in s. We call k-factor a factor of length k. If s = uv for u, v ∈ Σ∗,
we say that v is a suffix of s.

Definition 1. Given r input strings s1, . . . , sr, a length L, and a distance d, we
call a (L, r, d)-repetition a set {δ1, . . . , δr} such that 0 ≤ δi ≤ |si| − L. For all
i ∈ [1, r] and for all i, j ∈ [1, r] we have that

dH(si[δi, δi+L−1], sj [δj , δj+L−1]) ≤ d.

where by dH we mean the Hamming distance between two sequences, that is, the
minimum number of letter substitutions that transforms one into the other.

Given m input strings, the goal is to find the substrings of length L that
are repeated in at least r ≤ m strings with at most d substitutions between

Lossless Filter for Finding Long Multiple Approximate Repetitions 181

each pair of the r repetitions, with L and d given. In other words, we want to
extract all the (L, r, d)-repetitions from a set of r sequences among m ≥ r input
sequences. The goal of the filter is therefore to eliminate from the input strings
as many positions as possible that cannot contain (L, r, d)-repetitions. The value
for parameter d can be as big as 10% of L. The main idea of our filter is based on
checking necessary conditions concerning the amount of exact k-factors that a
(L, r, d)-repetition must share. A string w of length k is called a shared k-factor
for s1, . . . , sr if ∀i ∈ [1, r] w occurs in si. Obviously, we are interested in shared k-
factors that occur within substrings of length L of the input strings. Let pr be the
minimum number of non-overlapping shared k-factors that a (L, r, d)-repetition
must have. It is intuitive to see that a (L, 2, d)-repetition contains at least L

k − d

shared k-factors, that is, p2 = L
k − d. The value of pr for r > 2 is given in the

following result whose proof is omitted due to space limitations. However, the
intuition is that the positions where there are substitutions between each pair
of sequences must appear clustered because if two sequences differ in a position,
then a third sequence will, at this position, differ at least from one of the other
two.

Theorem 1. A (L, r, d)-repetition contains at least pr = L
k − d− (r − 2)×

⌊
d
2

⌋
shared k-factors.

The theorem above applies also to the case where one is interested in finding
(L, r, d)-repetitions in a single string.

3 The Algorithm

NIMBUS takes as input the parameters L, r and d, and m (with m ≥ r) input
sequences. Given such parameters, it decides automatically the best k to apply
in order to filter for finding the (L, r, d)-repetitions either inside one sequence
or inside a subset of r sequences. In the following, we present the algorithm
for finding (L, r, d)-repetitions in r sequences. The algorithm can be adapted in
a straightforward way to the case of finding (L, r, d)-repetitions occurring in a
single sequence.

The goal of NIMBUS is to quickly and efficiency filter the sequences in
order to remove regions which cannot contain a (L, r, d)-repetition applying the
necessary conditions described in Section 2 and keeping only the regions which
satisfy these conditions. We compute the minimum number pr of repeated k-
factors each motif has to contain to possibly be part of a (L, r, d)-repetition.
A set of pr k-factors contained in a region of length L is called a pr-set≤L.
NIMBUS searches for the pr-sets≤L repeated in r of the m sequences. All the
positions where a substring of length L contains a pr-set≤L repeated at least
once in r sequences are kept by the filter, the others are rejected. To improve
the search for the pr-set≤L, we use what we call bi-factors, as defined below.

Definition 2. A (k, g)-bi-factor is a concatenation of a factor of length k, a
gap of length g and another factor of length k. The factor s[i, i + k− 1]s[i + k +

182 P. Peterlongo et al.

Step 1

Step 2

Step 3

 L

A

A

A

D

C

B

B

BC

Seq (AC) : 1, 3, 5, 6

Seq (AD) : 2, 3, 5, 8

Seq (AB) : 1, 3, 4, 5

Seq (ACB) 1, 3, 5

Seq (ADCB) 3, 5

Fig. 1. Example of the construction of a 4-set≤L. At the first step, we find a bi-factor
occurring at least once in at least r = 2 sequences among m = 8 sequences. During the
second step, we add a bi-factor starting with the same k-factor (here called A), included
inside the first one, and we merge the positions. We repeat this once and obtain a 4-
set≤L occurring in sequences 3 and 5. Actually not only the sequence numbers are
checked during the merging but also the positions in the sequences, not represented in
this figure for clarity.

g, i + 2 × k + g − 1] is a bi-factor occurring at position i in s. For simplicity’s
sake, we also use the term bi-factor omitting k and g.

For example, the (2, 1)-bi-factor occurring at position 1 in AGGAGAG is
GGGA. The bi-factors occurring in at least r sequences are stored in a bi-factor
array (presented in Section 4) that allows us to have access in constant time to
the bi-factors starting with a specified k-factor. The main idea is to first find
repeated bi-factors with the biggest allowed gap g that may still contain (pr−2)
k-factors (g ∈ [(pr − 2)k, L− 2k]). We call these border bi-factors. A border bi-
factor is a 2-set≤L that we then try to extend to a pr-set≤L. To extend a i-set≤L

to a (i + 1)-set≤L, we find a repeated bi-factor (called an extending bi-factor)
starting with the same k-factor as the border bi-factor of the i-set≤L and having
a gap length shorter than all the other gaps of the bi-factors already composing
the i-set≤L. The occurring positions of the (i + 1)-set≤L are the union of the
extending bi-factor positions and of the positions of the i-set≤L. An example of
this a construction is presented in Figure 1.

In order to extract all the possible pr-set≤L, we iterate the idea described
above on all the possible border bi-factors: all bi-factors with gap length in
[(pr−2)k, L−2k] are considered as a possible border of a pr-set≤L. Furthermore,
while extending a i-set≤L to a (i+1)-set≤L, all the possible extending bi-factors
have to be tested. The complete algorithm is presented in Figure 2.

Depending on the parameters, the k value may be too small (≤ 4) leading
to a long and inefficient filter. In this case, we start by running NIMBUS with
r = 2, often allowing to increase the k value, improving the sensitivity and the
execution time. At the end, the remaining sequences are filtered using the initial
parameters asked by the user. This actually results in an efficient strategy that
we refer to later as the double pass strategy.

3.1 Complexity Analysis

Let us assume NIMBUS has to filter m sequences each of length �. The total
input size is then n = �×m.

Lossless Filter for Finding Long Multiple Approximate Repetitions 183

NIMBUS Initialise()
1. for g in [(pr − 2)k, L − 2k]
2. for all (k, g)-bi-factors bf
3. NIMBUS Recursive(g − k, positions(bf), 2, firstKFactor(bf))
NIMBUS Recursive (gmax, positions, nbKFactors, firstKFactor)
1. if nbSequences(positions) < r then return //not in enough sequences
2. if nbKFactors = p then save positions and return
3. for g in [(pr − (nbKFactors + 1)) × k, gmax] // possible gaps length
4. for (k, g)-bi-factors bf starting with firstKFactor
5. positions = merge(position, positions(bf))
6. NIMBUS Recursive (g − k, positions, nbKFactors+1, firstKFactor)

Fig. 2. Extract the positions of all the pr-sets≤L

For each possible gap length of the bi-factors considered by the algorithm, a
bi-factor array is stored in memory (taking O(n) as showed in section (4)). The
bi-factor gap lengths are in [0, L − 2k]. The total memory used by NIMBUS
is therefore in O(n × L). Let us assume that the time needed by the recursive
extraction part of the NIMBUS algorithm depends only on a number of factors
denoted by nbKFactors. We call this time T (nbKFactors). With this notation
NIMBUS takes O (L× �× T (2)). Furthermore ∀ nbKFactors < p :

T (nbKFactors) = L︸︷︷︸
gap length

× min(|Σ|k, �)︸ ︷︷ ︸
extending bi-factors︸ ︷︷ ︸

replaced by Z in the following

×(n︸︷︷︸
merge

+T (nbKFactors + 1))

T (2) = Z × (n + T (3)) = Z × n + Z × T (3)

= n× Z + Z × (Z × n + Z × T (4)) = n× (Z + Z2) + Z2 × T (4)
...

= n×
∑p−2

i=1 Zi + Zp−2T (p) = n× Zp−1−Z
Z−1 + Zp−2 (T (p) = O(1))

T (2) = O(n × Zp−1)

The total time is therefore in O(L × �× n × Zp−1) with Z = L ×min(|Σ|k, �).
However, as we shall see later (Fig. 5), we have that this is just a rough upper
bound of the worst-case. For instance, we do not take into consideration the
fact that T (i) decreases when i increases because of the possible decrease in
the gap lengths. Furthermore, a balance exists between lines 4 and 5 of the
recursion algorithm. For instance, if the sequences are composed only by the
letter A, lines 4 and 5 will do only one merge but for n positions (in time O(n)).
On the other hand, if the sequences are composed by n different letters, lines
4 and 5 will do n merges each in constant time, thus these two lines will be
executed in time O(n) as well. There can thus be a huge difference between the

184 P. Peterlongo et al.

theoretical complexity and practical performance. The execution time strongly
depends on the sequences composition. For sequences with few repetitions, the
filter algorithm is very efficient. See Section 5 for more details.

Finally, we have that creating the bi-factor arrays takes O(L×n) time which
is negligible w.r.t. to the extraction time.

4 The Bi-factor Array

Since we make heavy use of the inference of repeated bi-factors, we have designed
a new data structure, called a bi-factor array (BFA), that directly indexes the
bi-factors of a set of strings. The bi-factor array is a suffix array adapted for
bi-factors (with k and g fixed) that stores them in lexicographic order (without
considering the characters composing their gaps). This data structure allows to
access the bi-factors starting with a specified k-factor in constant time. Notice
that the same data structure can be used to index bi-factors where the two
factors have different sizes (say, (k1, g, k2)-factors); we restrict ourselves here to
the particular case of k1 = k2 because this is what we need for NIMBUS. For the
sake of simplicity, we present the algorithm of construction of the bi-factor array
for one sequence. The generalisation to multiple sequences is straightforward.
We start by recalling the properties of a suffix array.

The Suffix Array Data Structure. Given a string s of length n, let s[i . . .] de-
note the suffix starting at position i. Thus s[i . . .] = s[i, n−1]. The suffix array
of s is the permutation π of {0, 1, . . . , n−1} corresponding to the lexicographic
order of the suffixes s[i . . .]. If ≤

l
denotes the lexicographic order between two

strings, then s[π(0) . . .]≤
l

s[π(1) . . .]≤
l

. . .≤
l

s[π(n − 1) . . .]. In general, another

information is stored in the suffix array: the length of the longest common
prefix (lcp) between two consecutive suffixes (s[π(i) . . .] and s[π(i + 1) . . .]) in
the array. The construction of the permutation π of a text of length n is done in
linear time and space [12][9][11]. A linear time and space lcp row construction
is presented in [10].

BFA Construction. We start by listing the ideas for computing the BFA using
a suffix array and its lcp:

1. Give every k-factor a label. For instance, in a DNA sequence with k = 2, AA
has the label 0, AC has label 1 and so on. A row is created containing, for
every suffix, the label of its starting k-factor. In the remaining of this paper,
we call a (label1, label2)-bi-factor a bi-factor of which the two k-factors are
called label1 and label2.

2. For each suffix, the label of the k-factor occurring k + g positions before the
current position is known.

3. Construct the BFA as follows: let us focus for instance on the bi-factors
starting with the k-factor called label1. The predecessor label array is tra-
versed from top to bottom, each time the predecessor label value is equal to

Lossless Filter for Finding Long Multiple Approximate Repetitions 185

label1, a new position is added for the part of the BFA where bi-factors start
with the label label1. Due to the suffix array properties, two consecutive
bi-factors starting with the label label1 are sorted w.r.t. the label of their
second k-factor. The creation of the BFA is done such that for each (label1,
label2)-bi-factor, a list of corresponding positions is stored.

We now explain in more detail how we perform the three steps above.

Labelling the k-factors. In order to give each distinct k-factor a different label,
the lcp array is read from top to bottom. The label of the k-factor corresponding
to the ith suffix in the suffix array, called label[i], is created as follows:

label[0] = 0

∀ i ∈ [1, n− 1] : label[i] =
{

label[i− 1] + 1 if lcp[i] ≤ k
label[i− 1] else

Giving each suffix a predecessor label. For each suffix the label of the k-factor
occurring k+g positions before has to be known. Let pred be the array containing
the label of the predecessor for each position. It is filled as follows: ∀ i ∈
[0, |s| − 1], pred[i] = label

[
π−1

[
π[i] − k − g

]]
(π−1[p] is the index in the suffix

array where the suffix s[p . . .] occurs). Actually, the pred array is not stored in
memory. Instead, each cell is computed on line in constant time. An example of
the label and pred arrays is given in Figure 3.

i lcp π associated suffix pred label

0 0 2 AACCAC ∅ 0
1 1 6 AC 1 1
2 2 0 ACAACCAC ∅ 1
3 2 3 ACCAC 1 1
4 0 7 C 4 2
5 1 1 CAACCAC ∅ 3
6 2 5 CAC 0 3
7 1 4 CCAC 3 4

Fig. 3. Suffix array completed with the label and the pred arrays for k = 2 and g = 1
for the text ACAACCAC

Creating the BFA. The BFA contains in each cell a (label1, label2)-bi-factor. We
store the label1 and label2 values and a list of positions of the occurrences of the
(label1, label2)-bi-factor. This array is constructed on the observation that for all
i, the complete suffix array contains the information that a (pred[i], label[i])-bi-
factor occurs at position π[i]−k−g. Let us focus on one first k-factor, say label1.
Traversing the predecessor array from top to bottom each time pred[i] = label1,
we either create a new (label1 = pred[i], label[i])-bi-factor at position π[i]−k−g,
or add π[i]−k−g as a new position in the list of positions of the previous bi-factor
if the label2 of the latter is equal to label[i]. Of course, this is done simultaneously
for all the possible label1. An example of a BFA is given in Figure 4.

186 P. Peterlongo et al.

position(s) (label1, label2) associated gapped-factor

2 (0,3) AACA
0, 3 (1, 1) ACAC
1 (3, 4) ACCC

Fig. 4. BFA. Here k = 2 and g = 1. The text is ACAACCAC. One can notice that
the (2, 1)-bi-factor ACAC occurs at two different positions.

Complexity for Creating a BFA. The space complexity is in O(n), as all
the steps use linear arrays. Furthermore, one can notice that no more than four
arrays are simultaneously needed, thus the effective memory used is 16×n bytes.
The first two steps are in time O(n) (simple traversals of the suffix array). The
last step is an enumeration of the bi-factors found (no more than n). The last
step is therefore in O(n) as well. Hence the total time construction of the suffix
array is in O(n). With the following parameters: L = 100 and k = 6, NIMBUS
has to construct BFAs for around 90 different g values, which means 90 different
BFAs. This operation takes for sequences of length 1Mb around 1.5 minutes on
a 1.2 GHz Pentium 3 laptop.

5 Testing the Filter

We tested NIMBUS on a 1.2 GHz Pentium 3 laptop with 384 Mb of memory.
Figure 5 shows the time and memory usage in function of the input data length.

We can observe that the memory usage is worse in the case of identical sequences.
This is due to the fact that all the positions contain L repeated bi-factors stored
in memory. Furthermore, when the sequences are identical, all the positions are
kept by the filter, representing the worst time complexity case. On the other hand,
when all the sequences are distinct, the complexity is clearly linear.

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

T
im

e
(m

in
ut

es
)

M
em

or
y

us
ed

 (
M

b)

 input data length (kB)

 Time and memory used same seqs.

time
memory

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

T
im

e
(m

in
ut

es
)

M
em

or
y

us
ed

 (
M

b)

 input data length (kB)

 Time and memory used diff seqs.

time
memory

Fig. 5. Time and memory spent by NIMBUS w.r.t. the input data length. The para-
meters are L = 100, k = 6, d = 7, r = 3 which implies p3 = 6. The input file contains
10 DNA sequences of equal length. On the left part of the figure the sequences are the
same, whereas on the right part they are randomised.

Lossless Filter for Finding Long Multiple Approximate Repetitions 187

Sequence filtered 2 Motifs 5 Motifs 100 Motifs MC58

Memory Used 675 675 681 943

Time (Min.) 4.8 4.8 5 53
r = 2 Kept (Nb and Ratio) 406: 0.04 % 1078: 0.10 % 22293: 2.2 % 127782 : 12.7 %

False Positive Ratio 0.02 % 0.08 % 2.0 % unknown

Time (Min.) 4.8 + 0 4.8 + 0.1 5 + 0.5 53 + 0.9
r = 3 Kept (Nb and Ratio) 0: 0 % 1078: 0.10 % 21751: 2.2 % 92069: 9.21 %

False Positive Ratio 0 % 0.11 % 2.0 % unknown

Time (Min.) 4.8 + 0 4.8 + 0.1 5 + 0.5 53 + 10
r = 4 Kept (Nb and Ratio) 0: 0 % 1066: 0.11 % 21915: 2.2 % 106304: 10.63 %

False Positive Ratio 0.0 % 0.09 % 1.8 % unknown

Fig. 6. NIMBUS behaviour on four types of sequences while filtering in order to find
r = 2, 3 and 4 repetitions

In Figure 6, we present the behaviour of the filter for four kinds of input DNA
sequences. The first three sequences are randomised and contain respectively 2,
5 and 100 motifs of length 100 distant pairwise by 10 substitutions. For each of
these three sequences we ran NIMBUS in order to filter searching for motifs of
length L = 100 occurring at least r = 2, 3 and 4 times with less than d = 10
substitutions. The last DNA sequence is the genomic sequence of the Neisseria
meningitidis strain MC58. Neisseria genomes are known for the abundance and
diversity of their repetitive DNA in terms of size and structure [6]. The size of
the repeated elements range from 10 bases to more than 2000 bases, and their
number, depending on the type of the repeated element, may reach more than
200 copies. This fact explains why the N. meningitidis MC58 genomic sequence
has already been used as a test case for programs identifying repetitive elements
like in [13]. We ran NIMBUS on this sequence in order to filter the search for
motifs of length L = 100 occurring at least r = 2, 3 and 4 times with less than
d = 10 substitutions.

For r = 2, we used k = 6 which gives a good result: less than 5 minutes
execution time for all the randomised sequences. On can notice that for the
MC58 sequence, the execution time is longer (53 to 63 minutes) due to its high
rate of repetitions.

For r = 3 and 4, we apply the double pass strategy described earlier, and start
the filtration with r = 2 and k = 6. The time results are therefore subdivided
into two parts: the time needed for the first pass and the one needed for the
second pass. The time needed for the second pass is negligible w.r.t. the time
used for the first one. This is due to the fact that the first pass filters from 89
% to 99 % of the sequence, thus the second pass works on a sequence at least
10 times shorter than the original one. This also explains why no extra memory
space is needed for the second pass. For r = 3, the second pass uses k = 5 while
for r = 4, the second pass uses k = 4. With k = 4, the efficiency of the filter
is lower than for superior values of k. That is why for MC58, more positions
are kept while searching for motifs repeated 4 times, than for motifs repeated
3 times. Without using the double pass, for instance on MC58, with r = 3 the

188 P. Peterlongo et al.

memory used is 1435 Mb (instead of 943 Mb) and the execution time is around
12 hours (instead of 54 minutes). The false positive ratio observed in practice
(that is, the ratio, computed on random sequences with planted motifs, of non
filtered data that are not part of a real motif) is very low (less than 1.2 %). In
general, many of the false positives occur around a (L, r, d)-repetition motif and
not anywhere in the sequences.

Efficiency of the filter. Although it depends on the parameters used and on the
input sequences, the efficiency of the filter is globally stable. For instance, when
asking for motifs of length L ≈ 100 of which the occurrences are pairwise distant
of d ≈ 10, NIMBUS keeps also motifs of which the occurrences are pairwise
distant up to d+7 ≈ 17. The smaller is d, the more efficient is NIMBUS. When
d = 1 substitution, NIMBUS thus keeps motifs of which the occurrences are
pairwise distant up to d + 3 ≈ 4 only instead of d + 7 as for d ≈ 10.

6 Using the Filter

In this section we show two preliminary but interesting applications of NIM-
BUS. The first concerns the inference of long biased repetitions, and the second
multiple alignments.

6.1 Filtering for Finding Long Repetitions

When inferring long approximate motifs, the number of differences allowed
among the occurrences of a motif is usually proportional to the length of the
motif. For instance, for L = 100 and allowing for as many as L/10 substitutions,
one would have d = 10 which is high. This makes the task of identifying such
motifs very hard and, to the best of our knowledge, no exact method for finding
such motifs with r > 2 exists. Yet such high difference rates are common in
molecular biology. The NIMBUS filter can efficiently be used in such cases as it
heavily reduces the search space. We now show some tests that prove this claim.
For testing the ability of NIMBUS concerning the inference of long approximate
repetitions, we ran an algorithm for extracting structured motifs called RISO [5]
on a set of 6 sequences of total length 21 kB for finding motifs of length 40 occur-
ring in every sequence with at most 3 substitutions pairwise. Using RISO, this
test took 230 seconds. By previously filtering the data with NIMBUS, the same
test took 0.14 seconds. The filtering time was 1.1 seconds. The use of NIMBUS
thus enabled to reduce the overall time for extracting motifs from 230 seconds
to 1.24 seconds.

6.2 Filtering for Finding Multiple Local Alignments

Multiple local alignment of r sequences of length n can be done with dynamic
programming using O(nm) time and memory. In practice, this complexity limits
the application to a small number of short sequences. A few heuristics, such as
MULAN [20], exist to solve this problem. One alternative exact solution could be

Lossless Filter for Finding Long Multiple Approximate Repetitions 189

to run NIMBUS on the input data so as to exclude the non relevant information
(i.e. parts that are too distant from one another) and then to run a multiple
local alignment program. The execution time is hugely reduced. For instance, on
a file containing 5 randomised sequences of cumulated size 1 Mb each contain-
ing an approximate repetition1, we ran NIMBUS in approximatively 5 minutes.
On the remaining sequences, we ran a tool for finding functional elements using
multiple local alignment called GLAM [7]. This operation took about 15 sec-
onds. Running GLAM without the filtering, we obtained the same results2 in
more than 10 hours. Thus by using NIMBUS, we reduced the execution time
of GLAM from many hours to less than 6 minutes.

7 Conclusions and Future Work

We presented a novel lossless filtration technique for finding long multiple ap-
proximate repetitions common to several sequences or inside one single sequence.
The filter localises the parts of the input data that may indeed present repetitions
by applying a necessary condition based on the number of repeated k-factors the
sought repetitions have to contain. This localisation is done using a new type of
seeds called bi-factors. The data structure that indexes them, called a bi-factor
array, has also been presented in this paper. It is constructed in linear time.
This data structure may be useful for various other text algorithms that search
for approximate instead of exact matches. The practical results obtained show a
huge improvement in the execution time of some existing multiple sequence local
alignment and pattern inference tools, by a factor of up to 100. Such results are
in partial contradiction with the theoretical complexity presented in this paper.
Future work thus includes obtaining a better analysis of this complexity.

Other important tasks remain, such as filtering for repetitions that present
an even higher rate of substitutions, or that present insertions and deletions
besides substitutions. One idea for addressing the first problem would be to
use bi-factors (and the corresponding index) containing one or two mismatches
inside the k-factors. In the second case, working with edit instead of Hamming
distance implies only a small modification on the necessary condition and on the
algorithm but could sensibly increase the execution time observed in practice.

References

1. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. A basic local
alignment search tool. J. Mol. Biol., 215:403–410, 1990.

2. S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI–BLAST: a new generation of protein
database search programs. Nucleic Acids Res., 25:3389–3402, 1997.

1 Repetitions of length 100 containing 10 substitutions pairwise.
2 Since GLAM handles edit distance and NIMBUS does not, in the tests we have used

randomly generated data where we planted repetitions allowing for substitutions
only, in order to ensure that the output would be the same and hence the time cost
comparison meaningful.

190 P. Peterlongo et al.

3. S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vingron.
q-gram based database searching using a suffix array (quasar). In proceedings of
3rd RECOMB, pages 77–83, 1999.

4. S. Burkhardt and J. Karkkainen. Better filtering with gapped q-grams. In Proceed-
ings of the 12th Annual Symposium on Combinatorial Pattern Matching, number
2089, 2001.

5. A. M. Carvalho, A. T. Freitas, A. L. Oliveira, and M-F. Sagot. A highly scalable
algorithm for the extraction of cis-regulatory regions. Advances in Bioinformatics
and Computational Biology, 1:273–282, 2005.

6. H. Tettelin et al. Complete genome sequence of Neisseria meningitidis serogroup
B strain MC58. Science, 287(5459):1809–1815, Mar 2000.

7. M. C. Frith, U. Hansen, J. L. Spouge, and Z. Weng. Finding functional sequence
elements by multiple local alignment. Nucleic Acids Res., 32, 2004.

8. C. S. Iliopoulos, J. McHugh, P. Peterlongo, N. Pisanti, W. Rytter, and M. Sagot.
A first approach to finding common motifs with gaps. International Journal of
Foundations of Computer Science, 2004.

9. J. Karkkainen, P. Sanders, and S. Burkhardt. Linear work suffix array construction.
J. Assoc. Comput. Mach., to appear.

10. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In Proceedings of
the 12th Annual Symposium on Combinatorial Pattern Matching, pages 181–192.
Springer-Verlag, 2001.

11. D.K. Kim, J.S. Sim, H. Park, and K. Park. Linear-time construction of suffix
arrays. In Proceedings of the 14th Annual Symposium on Combinatorial Pattern
Matching, june 2003.

12. P. Ko and S. Aluru. Space efficient linear time construction of suffix arrays. Journal
of Discrete Algorithms, to appear.

13. R. Kolpakov, G. Bana, and G. Kucherov. mreps: Efficient and flexible detection of
tandem repeats in DNA. Nucleic Acids Res, 31(13):3672–3678, Jul 2003.

14. G. Krucherov, L.No, and M.Roytberg. Multi-seed lossless filtration. In Proceedings
of the 15th Annual Symposium on Combinatorial Pattern Matching, 2004.

15. M. Li, B. Ma, D. Kisman, and J. Tromp. Patternhunter ii: Highly sensitive and
fast homology search. J. of Comput. Biol., 2004.

16. D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity searches.
Sci., 227:1435–1441, 1985.

17. B. Ma, J. Tromp, and M. Li. Patternhunter: faster and more sensitive homology
search. Bioinformatics, 18(3):440–445, 2002.

18. L. Marsan and M.-F. Sagot. Algorithms for extracting structured motifs using a
suffix tree with application to promoter and regulatory site consensus identification.
J. of Comput. Biol., (7):345–360, 2000.

19. G. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. Indexing text with approximate
q-grams. In Proceedings of the 11th Annual Symposium on Combinatorial Pattern
Matching, number 1848 in Lecture Notes in Computer Science, pages 350–363,
2000.

20. I. Ovcharenko, G.G. Loots, B.M. Giardine, M. Hou, J. Ma, R.C. Hardison,
L. Stubbs, , and W. Miller. Mulan: Multiple-sequence local alignment and vi-
sualization for studying function and evolution. Genome Research, 15:184–194,
2005.

21. K. R. Rasmussen, J. Stoye, and E. W. Myers. Efficient q-gram filters for finding
all ε-matches over a given length. In Proceedings of the 16th Annual Symposium
on Combinatorial Pattern Matching, 2005.

Linear Time Algorithm for the Generalised

Longest Common Repeat Problem

Inbok Lee� and Yoan José Pinzón Ardila

King’s College London, Dept. of Computer Science,
London WC2R 2LS, United Kingdom

inbok@dcs.kcl.ac.uk, Yoan.Pinzon@kcl.ac.uk

Abstract. Given a set of strings U = {T1, T2, . . . , T�}, the longest
common repeat problem is to find the longest common substring that
appears at least twice in each string of U , considering direct, inverted,
mirror as well as everted repeats. In this paper we define the generalised
longest common repeat problem, where we can set the number of times
that a repeat should appear in each string. We present a linear time
algorithm for this problem using the suffix array. We also show an
application of our algorithm for finding a longest common substring
which appears only in a subset U ′ of U but not in U − U ′.

Keywords: suffix arrays, pattern discovery, inverted repeats, DNA
repeats, DNA Satellites.

1 Introduction

Genomic sequences are far from random. One of the more intriguing features of
DNA is the extent to which it consists of repeated substrings. Repeated DNA
sequences account for large portions of eukaryotic genomes that have been stud-
ied to date. The origin of these repeats, as well as their biological function, is
not fully understood. Nevertheless, they are believed to play a crucial role in
genome organization and evolution [3].

There are basically four repeat sequences types, differing by their orientation
and localization. They are: direct, inverted, mirror and everted repeats. The eas-
iest to understand is the direct repeat, in which a substring is duplicated (see
Fig. 1(a)). Some multiple direct repeats have been associated with human ge-
netic diseases. For example, the triplet1 CGG is tandemly repeated 6 to 54 times
in a normal FMR-12 gene. In patients with the Fragile X syndrome, the pattern
occurs more than 200 times. People with this mutation fail to produce a protein
involved in making cellular connections in the brain producing mental impedi-
ment or retardation. An estimated 1 in 2000 boys (girls are also affected, but the

� This work was supported by the Korea Research Foundation Grant funded by Korean
Government(MOEHRD, Basic Research Promotion Fund) M01-2004-000-20344-0.

1 3 DNA bp, a.k.a microsatellites.
2 Fragile Mental Retardation 1.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 191–201, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

192 I. Lee and Y.J.P Ardila

incidence rate is lower) are mentally weakened because of Fragile X. Kennedy’s
disease, Parkinson’s disease, Huntington’s disease and Myotonic Dystrophy are
examples of other genetic diseases that have been associated with direct repeats
[4,19,21].

Inverted repeats are another important element in the Genomes. An inverted
repeat, also called palindrome, is except that the second half of the repeat is also
found nearby on the opposite strand (complementary strand) of the DNA helix,
as shown in Fig. 1(b). This implies that the substring and its reverse complement
are both to be found on the same strand, which can thus fold back to base-pair
with itself3 and form a stem-and-loop structure, as shown on the righthand
side of Fig. 1(b). Because of their nature, inverted repeats engages in intra- and
intermolecular base pairing. The ability to form hairpin, recursive (see Fig. 1(e)),
cruciform (see Fig. 1(f)) and pseudo-knot (see Fig. 1(g)) secondary structures is
associated with the initiation of DNA replication and frameshift mutations.

An application that makes repeats an interesting research topic is related
to the multiple alignment problem, producing multiple alignments becomes very
complicated when the sequences to be aligned contain multiple repeats, because
matches may be present in numerous places. As a precursor to multiple align-
ment, it is helpful to recognize all multiple repeats within the set of strings
that ought to be aligned [15]. Other applications of repetitive DNA analysis
range from genetic markers, DNA fingerprinting, mapping genes, comparative
genomics and evolution studies [3,8,7].

In this paper we consider the problem which combines two: finding common
repetitive substrings in a set of strings. In addition, we want to specify the
number of occurrences in each string. We focus on finding the longest substring
since the substrings of the longest substring also appear in each string. We also
consider reversed and reverse-complemented strings in finding repeats.

Before beginning, we will establish some notation. We will uniformly adopt
the four letter alphabet ΣDNA = {a, c, g, t}, each letter standing for the first
letter of the chemical name of the nucleotide in the polymer’s chain, and let a bar
notation represent an operation corresponding to simple base complementarity,
i.e. indicating bases that are able to physically base-pair between strands of
double-helical DNA:

g = c, c = g, a = t, and t = a

Let A be a string over ΣDNA. A[i] denotes the i-th character of A and A[i..j]
is the substring A[i]A[i + 1] · · ·A[j] of A. We denote the reverse of A by ←−A
and the reverse complemented of A by ↼

A. Sequence ↼
A is obtained by reversing

A and mapping each character to its complement. If A = gtaac, for example,
←−
A = caatg and ↼

A = caatg = gttac.
A repeat of A is a substring of A which appears at least twice in A. There

are four kinds of repeats.

3 Base-pairings within the same strand are called secondary structures.

Linear Time Algorithm 193

(b)

(a)

(e) (f)

®

¯

®

¯

°

±

°

±

"

"

® ®

¯ ±

¯ ±

° °

®

®

(g)

®

®
¯

¯

®
¯

®® ®

® ®¯

¯

stem loop

®

®

®

®

®

®

®

®

®

®

tandem repeat

hairpin

® ®

® ®

® ®

® ®

(c) (d)

50

30

30

50

50

30

30

50

50

30

30

50

30

50

50

30

50

30

50 30

50 30 50

30

Fig. 1. Different types of repetitions present in genomic sequences. (a) Direct repeat
(left: non-tandem direct repeat, right: tandem direct repeats — when two repeats im-
mediately follow each other in the string —). (b) Inverted repeat (left: single-stranded
hairpin structure containing an inverted repeat). (c) Mirror repeat. (d) Everted repeat.
(e) Recursive secondary structure containing several inverted repeats. (f) Cruciform
structure formed at inverted repeats by four hairpins and the four-arm junction. (g)
Nested double pseudo-knot structure including two inverted repeats.

— direct repeat: A string p is called a direct repeat of A if p = A[i..i+ |p|−1]
and p = A[i′..i′ + |p| − 1], for some i �= i′.

— inverted repeat: A string p is called an inverted repeat of A if p = A[i..i+
|p| − 1] and ↼p = A[i′..i′ + |p| − 1], for some i �= i′.

— mirror repeat: A string p is called a mirror repeat (or reverse repeat) of
A if p = A[i..i + |p| − 1] and ←−p = A[i′..i′ + |p| − 1], for some i �= i′.

— everted repeat: This type of repeat is equivalent to the direct repeat
described above.

We will only consider direct, mirror and inverted repeats as standard proto-
types. It is easy to see, that everted repeats are covered by direct repeats when
considering multiple strings.

194 I. Lee and Y.J.P Ardila

The generalised longest common repeat problem can subsequently be defined
as follows.

Problem 1. Given a set of strings U = {T1, T2, . . . , T�}, a set of positive inte-
gers D = {d1, d2, . . . , d�}, and a positive integer k, the generalised longest
common repeat problem is to find the longest string w which satisfies two
conditions: (a) There is a subset U ′ of U such that w appears at least di times
in every string Ti in U ′, and (b) |U ′| = k.

This definition is an extension of that in [16]. The difference is that we can
restrict the number of times that a repeat can appear in each string. Hence the
frequency of the repeats will be bound according to our needs. Note that the
above definition allows w to appear just once in some strings.

Karp, Miller, and Rosenberg first proposed an O(|T | log |T |) time algorithm
for finding the longest normal repeat in a text T . Also suffix trees [17,20,6] can
be used to find it in O(|T |) time. Landau and Schmidt gave an O(k|T | log k
log |T |) time algorithm for finding approximate squares where at most k edit
distance is allowed [14]. Schmidt also gave an O(|T |2 log |T |) time algorithm for
finding approximate tandem or non-tandem repeats [18]. Abouelhoda et al. [1]
for finding various types of repeats using the enhanced suffix array.

In [16], a linear time algorithm for finding the longest common repeat problem
using the generalised suffix tree was derived. Although it is the first approach
for this problem, so far as we know, it has some drawbacks. First, it is not easy
to implement. Second, it is based on the suffix tree data structure which is not
memory-efficient. Besides, it requires a generalised suffix tree for all the strings
and a suffix tree for each single string. Our new algorithm is easy to implement
and requires only one suffix array4. And it can handle a generalised problem.

The outline of the paper is as follows: In Section 2 we explain some basics. In
Section 3 we describe our algorithms for the generalised longest repeat problem.
In Section 4 we explain an application of our algorithm, i.e. finding the longest
repeat which appears only in a subset U ′ of U but not in U − U ′. Conclusions
are drawn in Section 5.

2 Preliminaries

The suffix array of a text T is a sorted array s[1..|T |] of all the suffixes of T .
That is, s[k] = i iff T [i..|T |] is the k-th suffix of T . We also define the auxiliary
LCP array as an array of the length of the longest common prefix between
each substring in the suffix array and its predecessor, and define lcp(a, b) =
min

a≤i≤b
lcp[i] with the following properties.

Fact 1. lcp(a, b) ≤ lcp(a′, b′) if a ≤ a′ and b ≥ b′.

Fact 2. The length of the longest common prefix of T [s[a]..|T |], T [s[a +
1]..|T |],. . ., T [s[b]..|T |] is lcp(a + 1, b).
4 A suffix array is more compact and amenable to store in secondary memory.

Linear Time Algorithm 195

We can build the suffix array over a set of strings U = {T1, T2, . . . , T�} as
in [5]. First we create a new string T ′′ = T1%T2% · · ·T� where % is a special
symbol which is smaller than any other character in ΣDNA. Then we compute
the lcp array using the technique presented in [10] in O(|T ′′|) time. By a simple
trick we can use only one special character % instead of � symbols, that is, %
does not match itself. We also compute the ids array such that ids[k] = i if
T ′′[k]T ′′[k + 1] · · · % is originally a suffix of Ti (of course, % is the symbol that
appears first after T ′′[k] in T ′′). The ids array can be calculated in O(|T ′′|) time
and space. Fig. 2 is an example of the suffix array over a set of strings. Note
that in this example we discarded all the suffixes which begin with %.

1
3
11
-
a
a
c
%

2
2
6
3
a
a
c
%

3
3
12
1
a
c
%

4
1
3
2
a
c
%

5
2
7
2
a
c
%

6
1
1
2
a
c
a
c
%

7
3
13
0
c
%

8
1
4
1
c
%

9
2
8
1
c
%

10
3
10
1
c
a
a
c
%

11
1
2
2
c
a
c
%

i
ids
s
lcp

suffix

T T T1 2 3= , = , =acac aac caac

a c a c % a a c % c a a c %
1

T 00=
2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 2. A suffix array over strings T1 = acac, T2 = aac, and T3 = caac

Given a suffix array over a set of strings, a set of positive integers D =
{d1, d2, . . . , d�}, and a positive integer k, a candidate range is a range (a, b) which
contains k distinct values in the set {ids[a], ids[a+1], . . . , ids[b]} and each value
i appears at least di times in the set. A critical range is a candidate range that
does not properly contain other candidate ranges. Based on these two definitions,
it is straightforward to draw the following lemma.

Lemma 1. The answer for the generalised longest common repeat problem is
T ′′[s[a′]]..T ′′[s[a′+ lcp(a′+1, b′)] such that (a′, b′) is a critical range and lcp(a′+
1, b′) is the greatest among all critical ranges.

Proof. Fact 2 and the definition of the candidate range implies that if (a, b) is a
candidate range, then T ′′[s[a]]..T ′′[s[b] + lcp(a + 1, b)] is a common string of at
least k strings in U . Fact 1 says that we should narrow the range which contains
the k different values in order to find the longest substring, which will correspond
to the critical range. Among the critical ranges (a′, b′), we select that one whose
lcp(a′ + 1, b′) is the greatest as the answer to the problem.

196 I. Lee and Y.J.P Ardila

3 Algorithm

The algorithm’s framework for the generalised longest common repeat problem
is as follows.

— Step 1: Create a new string T ′
i for each 1 ≤ i ≤ � to consider inverted, mirror

and everted repeats, and another string T ′′ which is the concatenation of all
T ′

i ’s.
— Step 2: Construct the suffix array of T ′′.
— Step 3: Find the critical ranges.
— Step 4: Find the longest common substring for each critical range.

Steps 1,2 and 4 are easy to compute. Step 3 is the key step and needs a bit
more or care. Following, we show each step in more detail and show how to
use Kim et al.’s algorithm [12] to find the answer for the generalised longest
common repeat problem.

Step 1: We first modify each string in U to consider inverted, mirror and
everted repeats. For each i = 1, 2, . . . , �, we create a new string T ′

i = Ti%
←−
T i%

↼
Ti.

And we create a string T ′′ = T ′
1%T

′
2% . . .%T ′

�%.

Step 2: We build the suffix array of T ′′. The construction of the suffix array
takes O(|T ′′|) time and space [9,11,13]. We also compute lcp and ids arrays in
O(|T ′′|) time and space. Note that the suffixes of Ti,

←−
T i and ↼

Ti have the same
value i in the ids array.

Step 3: We will present an uncomplicated explanation on how to find the critical
ranges. For a more exhaustively detailed account, interested readers are directed
to [12].

We maintain a range (a, b) during this step. At first a = 1 and b = 0. We
maintain � counters c1, c2, . . . , c� (initially c1 = c2 = · · · = c� = 0) and a counter
h which contains the number of ci’s (1 ≤ i ≤ �) that are ≥ di. Initially h = 0.

We now define the following two sub-steps: expanding and shrinking. In the
expanding sub-step, we find a candidate range. We expand the range from (a, b)
to (a, b + 1). We check ids[b] and set cids[b] = cids[b] + 1. If cids[b] = di, then
h = h + 1. We stop the expanding sub-step if h = k. Now (a, b) is a candidate
range and we move to the shrinking sub-step. To speed up, we use the following
idea, if lcp[b] = 0, then we reset all counters c1, c2, · · · , c� and h to 0. We then
start expanding sub-step again with a = b and b = b− 1.

In the shrinking sub-step, we find a critical range from the candidate range
(a, b) found in previous sub-step. We start by shrinking the candidate range
downwards. First, we set ca = ca − 1 and a = a + 1. If ca < da, then h = h− 1.
If h < k, then (a − 1, b) is a critical range. We report it and go back to the
expanding sub-step with a and b. All these steps run in O(|T ′′|) time and space.

Step 4: For each critical range (a′, b′) found in Step 3, we use Bender and
Farach-Colton’s technique [2] to compute lcp(a′ + 1, b′). After O(|T ′′|) time and

Linear Time Algorithm 197

T T T1 2 3= , = , =acac aac caac

a c a c % a a c % c a a c %
1

T 00=
2 3 4 5 6 7 8 9 10 11 12 13 14

D= 2,1,1{ }

1
3
11
-
a
a
c
%

2
2
6
3
a
a
c
%

3
3
12
1
a
c
%

4
1
3
2
a
c
%

5
2
7
2
a
c
%

6
1
1
2
a
c
a
c
%

7
3
13
0
c
%

8
1
4
1
c
%

9
2
8
1
c
%

10
3
10
1
c
a
a
c
%

11
1
2
2
c
a
c
%

i
ids
s
lcp

suffix

I1
I2 (ac)

I3
I4
I5 (c)

i
ids
suf
lcp

I1 (a)

I2
I3 (ac)

1
1
9
-
a
%

2
2
22
1
a
%

3
2
21
1
a
a
%

4
2
16
2
a
a
c
%

5
3
29
3
a
a
c
%

6
3
34
3
a
a
c
%

7
2
17
1
a
c
%

8
3
30
2
a
c
%

9
1
3
2
a
c
%

10
3
35
2
a
c
%

11
1
7
2
a
c
a
%

12
1
1
3
a
c
a
c
%

13
2
18
0
c
%

14
3
31
1
c
%

15
1
4
1
c
%

16
3
36
1
c
%

17
1
8
1
c
a
%

18
2
20
2
c
a
a
%

19
3
28
3
c
a
a
c
%

20
3
33
4
c
a
a
c
%

21
1
2
2
c
a
c
%

22
1
6
3
c
a
c
a
%

23
3
41
0
g
%

24
1
13
1
g
t
%

25
1
11
2
g
t
g
t
%

26
2
24
2
g
t
t
%

27
3
38
3
g
t
t
g
%

28
1
14
0
t
%

29
2
26
1
t
%

30
3
40
1
t
g
%

31
1
12
2
t
g
t
%

32
2
25
1
t
t
%

33
3
39
2
t
t
g
%su

ff
ix

a c a c % c a c a % g t g t % a a c % c a a % g t t % c a a c % c a a c % g t t g %
1

T 00=
5 10 15 20 25 30 35 40

T T T1 2 3
0 0 0= , = , =acac%caca%gtgt aac%caa%gtt caac%caac%gttg

I4 (c)

I5 (c)

I6 (c)

I7
I8 (ca)

I9 (ca)

I10 (g)

I11(gt)

I12 (t)

Fig. 3. An example of the generalised longest common repeat problem. The table at the
top only considers direct repeats. The table at the bottom considers direct, inverted,
mirror and everted repeats. The intervals depicts dashed lines for candidate ranges and
bold lines for critical ranges.

space preprocessing, each query takes O(1) time. Since it is easy to show that the
number of critical ranges is O(|T ′′|), the time complexity of Step 4 is O(|T ′′|).

Theorem 1. The generalised longest common repeat problem can be solved in
O(
∑�

i=1 |Ti|) time and space.

198 I. Lee and Y.J.P Ardila

Proof. We showed that all the steps run in O(
∑�

i=1 |T ′
i |) time and space. And

|T ′
i | = O(|Ti|) for 1 ≤ i ≤ �.

Fig. 3(top) is an example. We have three strings T1 = acac, T2 = aac, and
T3 = caac, k = 2, and D = {2, 1, 1}. For simplicity, we do not consider the
inverted repeats here. We first build the suffix array, then we find the critical
ranges. At first we find a candidate range I1 = (1, 6). Then we shrink this
range to find a critical range I2 = (3, 6). Here lcp(4, 6) = 2, therefore this range
shares a common prefix ac. Then we try to find the next candidate range from
position 5, but we meet position 7 where lcp[7] = 0. So we discard I3 = (5, 7)
and move to position 7 to find a new candidate range. From position 7, we find
candidate range I4 = (7, 11). Then we shrink to find critical range I5 = (8, 11).
lcp(8, 11) = 2, meaning that they share a common prefix c. Since ac is longer
than c, the answer is ac.

Fig. 3(bottom) consider the previous example but taking into consideration
all type of repeats. Once the suffix array is built, we proceed to find the critical
ranges. At first we find a candidate range I1 = (1, 9). It is also a critical range
and lcp(2, 9) = 1. Hence the suffixes in I1 shares a common prefix a. Then we
try to find the next candidate range from position 2. We find a candidate range
I2 = (2, 11). Next, we shrink it to find a critical range I3 = (7, 11). lcp(8, 11) = 2
and it shares a common prefix ac, which is longer than a we found before.
We begin again from position 9, but we meet position 13 where lcp[13] = 0
before finding a candidate range. So we begin again from position 13. We find
a candidate range I4 = (13, 17) which is also a critical range. lcp(14, 17) = 1
and the common prefix is c. Next we find a candidate range I5 = (14, 18) which
contains a critical range I6 = (15, 18), whose common prefix is c again. Then we
find a candidate range I7 = (16, 21) containing a critical range I8 = (17, 21). Its
common prefix is ca. We find another critical range I9 = (18, 22) and again we
find ca. Since lcp[23] = 0, we start the search for the critical range from here. We
find two critical ranges I10 = (23, 26) and I11 = (24, 27). Their common prefix is
g and gt, respectively. From position 28, we have one critical range I12 = (28, 31).
We find t from here. After finding all the critical ranges, we find seven substrings
a, c, g, t, ac, ca, and gt. In this case, the answer is ac, ca, and gt.

4 An Application

We extend our algorithm for the generalised longest common repeat problem,
finding a longest feature from a set. A feature of a subset U ′ ⊂ U is a common
string which appears only in U ′ but not in U − U ′. More formally, this problem
can be defined as follows.

Problem 2. Given a set of strings U = {T1, T2, . . . , T�}, and a set of non-negative
integers D = {d1, d2, . . . , d�}, the generalised longest feature problem
is to find the longest string w which satisfies two conditions: (a) There is a subset
U ′ of U such that w appears at least di times in every string Ti in U ′ if di > 0,
(b) |U ′| = k, and (c) w should not appear in Ti if di = 0.

Linear Time Algorithm 199

1
1
4
-
a
%

2
3
11
1
a
a
c
%

3
2
6
3
a
a
c
%

4
3
12
1
a
c
%

5
2
7
2
a
c
%

6
1
2
2
a
c
a
%

7
3
13
0
c
%

8
2
8
1
c
%

9
1
3
1
c
a
%

10
3
10
2
c
a
a
c
%

11
1
1
2
c
a
c
a
%

i
ids
s
lcp

suffix

T T T1 2 3= , = , =caca aac caac

c a c a % a a c % c a a c %
1

T 00=
2 3 4 5 6 7 8 9 10 11 12 13 14

D= 2,0,1{ }

I1 I2 I3 I4(ca)

Fig. 4. An example for the generalised longest feature problem. Bold lines where used
to indicate critical ranges.

To find the longest feature, we modify our algorithm for the generalised
longest repeat problem. First, we partition the suffix array into intervals so that
each partition would contain only suffixes of strings in U ′. Then we find the
candidates of the longest feature. We find critical ranges using the algorithm
in Section 3. Finally, we check if the candidates are valid or not. A candidate
is not valid if it appears in some string Ti where di = 0. For an interval [a, b]
and a critical range [a′, b′] where a ≤ a′ and b ≥ b′, we compute lcp(a, b′) and
lcp(a′ + 1, b + 1). If either of the two equals to lcp(a′ + 1, b′), it means that it
appears in some string Ti where di = 0.

Fig. 4 is an example. We have three strings, T1 = caca, T2 = aac, and T3 =
caac. And D = {2, 0, 1}, meaning that a feature should appear at least twice
in T1, and at least once in T3, but it should not appear in T2. We partition the
suffix array into four intervals, I1 = [1, 2], I2 = [4, 4], I3 = [6, 7], and I4 = [9, 11].
There is no critical range in I1, I2, and I3. I4 contains a critical range [9, 11]
which represents a candidate ca. Since lcp(9, 11) = 1 (‘c’) and lcp(10, 11) = 2,
we say that ca never appears in T2.

Theorem 2. The generalised longest common repeat problem can be solved in
O(
∑�

i=1 |Ti|) time and space.

Proof. We showed that all the steps run in O(
∑�

i=1 |T ′
i |) time and space. And

|T ′
i | = O(|Ti|) for 1 ≤ i ≤ �.

5 Conclusions

We have defined the generalised longest common repeat problem and presented
a linear time algorithm for the problem, allowing direct and inverted repeats.

200 I. Lee and Y.J.P Ardila

A remaining work is to devise a more space-efficient algorithm for the problem.
Another possibility is to incorporate the detection of degenerated repeats (which
are called approximate repeats in the stringology literature).

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch. The enhanced suffix array and its
application to genome analysis. In Proceedings of the 2nd Workshop on Algorithms
in Bioinformatics (WABI 2002), pages 449–463, 2002.

2. M. A. Bender and M. Farach-Colton. The LCA problem revisited. In Proceedings
of the Fourth Latin American Symposium, pages 88–94, 2000.

3. J. Beckman and M. Soller. Toward a unified approach to genetic mapping of
eukaryotes based on sequence tagged microsatellite sites. Biotechnology. pages
8:930–932, 1990.

4. C. T. Caskey, et al. An unstable triplet repeat in a gene related to Myotonic
Dystrophy, Science, pages 255:1256–1258, 1992.

5. S. Dori and G. M. Landau. Construction of aho-corasick automaton in linear time
for integer alphabets. In Proceedings of the 16th Annual Symposium on Combina-
torial Pattern Matching (CPM 2005), page to appear, 2005.

6. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan. On the sorting-complexity
of suffix tree construction. Journal of the ACM, 47(6):987–1011, 2000.

7. K. Inman and N. Rudin. An introduction to forensic DNA analysis. CRC press,
Boca Raton, Florida, 1997.

8. A. Jeffreys, D. Monckton, K. Tamaki, D. Neil, J. Armour, A. MacLeod, A. Collick,
M. Allen, and M. Jobling. Minisatellite variant repeat mapping: application to
DNA typing and mutation analysis. In DNA Fingerprinting: State of the Science.
pages 125–139, Basel, 1993.

9. J. Kärkkäinen and P. Sanders. Simpler linear work suffix array construction. In
Proceedings of the 13th International Colloquim on Automata, Languages and Pro-
gramming (ICALP 2003), pages 943–945, 2003.

10. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-time longest-
common-prefix computation in suffix arrays and its applications. In Proceedings
of the 12th Annual Symposium on Combinatorial Pattern Matching (CPM 2001),
pages 181–192, 2001.

11. D. K. Kim, J. S. Sim, H. Park, and K. Park. Linear-time construction of suffix
arrays. In Proceedings of the 14th Annual Symposium on Combinatorial Pattern
Matching (CPM 2003), pages 186–199, 2003.

12. S.-R. Kim, I. Lee, and K. Park. A fast algorithm for the generalised k-keyword prox-
imity problem given keyword offsets. Information Processing Letters, 91(3):115–
120, 2004.

13. P. Ko and S. Aluru. Space-efficient linear time construction of suffix arrays. In
Proceedings of the 14th Annual Symposium on Combinatorial Pattern Matching
(CPM 2003), pages 200–210, 2003.

14. G. M. Landau and J. P. Schmidt. An algorithm for approximate tandem repeats. In
Proceedings of the Fourth Combinatorial Pattern Matching, pages 120–133, 1993.

15. G. M. Landau, J. P. Schmidt and D. Sokol. An algorithm for approximate tandem
repeats. In Journal of Computational Biology, pages 8(1): 1–18 , 2001.

16. I. Lee, C. S. Iliopoulos, and K. Park. Linear time algorithm for the longest common
repeat problem. In Proceedings of the 11th String Processing and Information
Retrieval (SPIRE 2004), pages 10–17, 2004.

Linear Time Algorithm 201

17. E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262–272, April 1976.

18. J. P. Schmidt. All highest scoring paths in weighted grid graphs and its applica-
tion to finding all approximate repeats in strings. SIAM Journal on Computing,
27(4):972–992, 1998.

19. R. H. Singer. Triplet-repeat transcripts: A role for RNA in disease. Science,
280(5364):696-697, 1998.

20. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.
21. K. J. Woo, K. Sang-Ho, and C. Jae-Kwan. Association of the dopamine trans-

porter gene with Parkinsons disease in Korean patients Journal of Korean Medical
Science, 15(4), 2000.

Application of Clustering Technique in Multiple

Sequence Alignment

Patŕıcia Silva Peres and Edleno Silva de Moura

Universidade Federal do Amazonas,
Manaus, AM, Brasil

{psp, edleno}@dcc.ufam.edu.br

Abstract. This article presents a new approach using clustering tech-
nique for creating multiple sequence alignments. Currently, the most
widely used strategy is the progressive alignment. However, each step
of this strategy might generate an error which will be low for closely
related sequences but will increase as sequences diverge. For that rea-
son, determining the order in which the sequences will be aligned is very
important. Following this idea, we propose the application of a cluster-
ing technique as an alternative way to determine this order. To assess
the reliability of this new strategy, two methods were modified in or-
der to apply a clustering technique. The accuracy of their new versions
was tested using a reference alignment collection. Besides, the modified
methods were also compared with their original versions, obtaining bet-
ter alignments.

1 Introduction

The simultaneous alignment of many nucleotide or amino acid sequences is one of
the commonest tasks in molecular biological analyses [5,6]. Multiple alignments
are important in many applications, such as, predicting the secondary or tertiary
structure of new sequences, demonstrating homology between new sequences and
existing families, inferring the evolutionary history of a protein family, finding
the characteristic motifs between biological sequences, etc.

The automatic generation of an accurate multiple sequence alignment is a
tough task and many efforts have been made to achieve this goal. There is a well-
known algorithm for pairwise alignment based on Dynamic Programming where
the optimal alignment according to an objective-function is given. It is possible
to adapt this method to multiple alignments, but it becomes impracticable, since
it requires CPU time proportional to nk, where n is the average length of the
sequences and k is the number of sequences [4].

Some heuristics to align multiple sequences have been developed in the last
years, with the purpose of accomplishing comparisons more quickly, even without
the same precision of the Dynamic Programming algorithms. Nonetheless, even
if these heuristic methods successfully provide the optimal alignments, there
remains the problem of whether the optimal alignment really corresponds to the

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 202–205, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Application of Clustering Technique in Multiple Sequence Alignment 203

biologically correct one, since there is not a standard to define the best multiple
alignment [8].

Most of the heuristic methods are based on the progressive alignment strat-
egy, especially the one proposed by Feng and Doolittle [3], in which a guide tree
is built to specify the sequences alignment order. Examples of methods based on
progressive alignment strategy are Muscle [2] and ClustalW [9].

The progressive alignment method is based on a greedy approach and the
error introduced once during the alignment cannot be corrected subsequently.
Each alignment step in the multiple alignment process might generate an er-
ror which will be low on average for closely related sequences but will increase
as sequences diverge. Therefore, determining the order in which the sequences
will be aligned is an important stage, where it is desired that the most similar
sequences are aligned first, so the error would be low in the beginning of the
process.

Based on that hypothesis, this work consists in a first effort to apply a cluster-
ing technique as an alternative way to determine the order in which the sequences
will be aligned, with the purpose of achieving better results at the end of the
process.

To develop this idea, two well-known methods were modified in order to
apply a clustering technique to their algorithms. These two methods are Muscle1

version 3.52 and ClustalW2 version 1.83. The performance of these new modified
methods was assessed using a set of reference alignments and they achieve better
results than their original versions.

2 Applying the Clustering Strategy

The process of constructing the guide tree in the progressive alignment can also
be considered as a clustering technique, since the multiple alignment is generated
by clustering in each iteration only the closest pair of sequences or profiles3

according to the branch order of the tree. However, this behavior may cause a
loss of important information about the other sequences and their relationship,
and such information can be very helpful in the whole alignment process.

Therefore, it is proposed the application of a clustering method, as a previous
stage of the progressive alignment, whose main purpose is to determine the order
in which the sequences will be aligned by performing a global analysis of the
sequences similarities before clustering them.

It was used a simple global clustering algorithm fully explained in [7]. This
global clustering algorithm is based on the entries of a distance matrix (part
of the progressive alignment process) returning as a result a list of sequences
clusters which will be aligned later.

1 http://www.drive5.com/muscle/
2 http://www.ebi.ac.uk/clustalw/
3 A profile consists in a group of sequences already aligned. Such group, however, may

contain just one sequence.

204 P. Silva Peres and E. Silva de Moura

3 Experiments and Preliminary Results

To assess the reliability of our new strategy, Muscle version 3.52 and ClustalW
version 1.83 were modified in order to apply the global clustering algorithm as
a new stage of the whole multiple alignment process. Then, it was used the
BAliBASE reference collection [1,10,11] to compare the results obtained by the
new versions of Muscle and ClustalW and their original ones.

BAliBASE (Benchmark Alignment dataBASE) is a reference collection of
manually refined protein sequence alignments categorized into eight different
references, where each one characterizes a real problem. However, reference 6, 7
and 8 of BAliBASE are not used in this work because they characterize problems
for which none of the tested algorithms is designed. A separate program is used
to compute BAliBASE score, which is divided into sum-of-pairs score (SP score)
and total column score (TC score) [11]. It was used version 2 of BAliBASE freely
available in the Web4.

The results are depicted in Table 1, in which there is a comparison between
original Muscle and its modified version called C-Muscle; and a comparison
between ClustalW and its modified version called C-ClustalW. The best results
are underlined.

The results correspond to the SP and TC scores associated with five refer-
ences of BAliBASE collection denoted here as Ref1 – Ref5. As it can be observed,
the new version of Muscle achieved better results than its original one in refer-
ences 1, 3 and 4. In reference 5, we have the same results and in reference 2 we
have a decrease in the result.

Table 1. SP and TC scores on each reference of BAliBASE for each version of Muscle
and ClustalW algorithms

Ref1 Ref2 Ref3 Ref4 Ref5
Method SP TC SP TC SP TC SP TC SP TC
C-Muscle 78.10 67.83 87.58 46.30 70.54 41.75 68.33 38.00 82.78 65.17
Muscle 78.06 67.73 87.83 46.83 70.43 41.50 68.23 37.83 82.78 65.17

C-ClustalW 77.43 66.70 85.78 44.57 65.05 34.67 63.04 33.75 76.02 51.58
ClustalW 77.38 66.60 86.09 45.61 64.65 34.42 63.08 33.50 75.78 50.75

On the other hand, the new version of ClustalW achieved better results than
its original one in references 1, 3, 4 and 5. In reference 2, we have a decrease in
the result.

It is important to notice that there are some cases, especially when the se-
quences are very similar to each other, where the clustering technique does not
interfere in the results. In these cases, the results are equal than those obtained
by the original version of the methods.

4 http://bips.u-strasbg.fr/en/Products/Databases/BAliBASE2/

Application of Clustering Technique in Multiple Sequence Alignment 205

4 Conclusions and Future Work

This work consists in a first effort to apply clustering techniques as a previous
stage of the progressive multiple alignment to achieve better results. It was used
a simple clustering method whose main purpose is to determine the order in
which the sequences will be aligned by performing a global analysis of them,
instead of the local one proposed by the guide tree [7].

In the previous section, it was depicted the preliminary results obtained
by our proposed strategy compared with the original results of Muscle and
ClustalW, using the BAliBASE reference collection. From the experiments, it
is possible to conclude that applying clustering techniques in multiple sequence
alignment methods can help to improve their results.

Therefore, in future work, we intend to study other clustering techniques and
apply them to existing multiple sequence alignment methods, in order to assess
their viability and reliability in achieving better alignment results and as a way
to consolidate this first attempt presented in this work.

References

1. A. Bahr, J. D. Thompson, J. C. Thierry, and O. Poch. Balibase (benchmark align-
ment database): enhancements for repeats, transmembrane sequences and circular
permutations. Nucleic Acids Res., 29(1):323–326, 2001.

2. R. C. Edgar. Muscle: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Res., 32:1792–1797, 2004.

3. D. F. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisite
to correct phylogenetic trees. J. Mol. Evol., 25:351–360, 1987.

4. D. Gusfield. Algorithms on strings, tress, and sequences: computer science and
computational biology. Cambridge University Press, 1997.

5. C. Korostensky and G. Gonnet. Near optimal multiple sequence alignments using
a traveling salesman problem approach. Proc. of the 6th International Symposium
on String Processing and Information Retrieval, Cancun, Mexico, pages 105–114,
1999.

6. J. Meidanis and J. C. Setúbal. Multiple alignment of biological sequences with
gap flexibility. Proc. of the 2nd South American Workshop on String Processing,
Valparaiso, Chile, pages 138–153, 1995.

7. P. S. Peres and E. S. Moura. Application of clustering technique in multiple se-
quence alignment. Unpublished manuscript.

8. J. C. Setúbal and J. Meidanis. Introduction to coputational molecular biology. PSW
Publishing Company, 1997.

9. J. D. Thompson, D. G. Higgins, and T. J. Gibson. Clustal w: improving the
sensitivity of progressive multiple sequence alignment through sequence weight-
ing, position-specific gap penalties and weight matrix choice. Nucleic Acids Res.,
22:4673–4680, 1994.

10. J. D. Thompson, F. Plewniak, and O. Poch. Balibase: a benchmark alignment data-
base for the evaluation of multiple sequence alignment programs. Bioinformatics,
15:87–88, 1999.

11. J. D. Thompson, F. Plewniak, and O. Poch. A comprehensive comparison of
multiple sequence alignment programs. Nucleic Acids Res., 27:2682–2690, 1999.

Stemming Arabic Conjunctions and Prepositions

Abdusalam F.A. Nwesri, S.M.M. Tahaghoghi, and Falk Scholer

School of Computer Science and Information Technology,
RMIT University, GPO Box 2476V, Melbourne 3001, Australia

{nwesri, saied, fscholer}@cs.rmit.edu.au

Abstract. Arabic is the fourth most widely spoken language in the
world, and is characterised by a high rate of inflection. To cater for
this, most Arabic information retrieval systems incorporate a stemming
stage. Most existing Arabic stemmers are derived from English equiv-
alents; however, unlike English, most affixes in Arabic are difficult to
discriminate from the core word. Removing incorrectly identified affixes
sometimes results in a valid but incorrect stem, and in most cases reduces
retrieval precision. Conjunctions and prepositions form an interesting
class of these affixes. In this work, we present novel approaches for deal-
ing with these affixes. Unlike previous approaches, our approaches focus
on retaining valid Arabic core words, while maintaining high retrieval
performance.

1 Introduction

Arabic is a Semitic language, with a morphology based on building inflected
words from roots that have three, four, or sometimes five letters. For exam-
ple, each verb can be written in sixty-two different forms [14]. Words are in-
flected and morphologically marked according to gender (masculine and femi-
nine); case (nominative, genitive, and accusative); number (singular, dual, and
plural); and determination (definite and indefinite).

Arabic has three types of affixation: prefixes, suffixes and infixes. In contrast
with English, some Arabic affixes are very difficult to remove without proper
identification. It is common to have multiple affixes on a word. A clear example
is the use of pronouns. Unlike English, where words and possessive pronouns are
written separately, Arabic possessive pronouns are attached at the end of the
word in most cases. For instance, the English sentence “they will teach it to you”
can be written in one Arabic word as ���������	
� (see Table 1 for the mapping
between this word and its English translation). A good stemmer identifies the
stem ���
 (teach) or �� (knew) for this word.

Arabic prefixes are widely used in Arabic text. Some of these prefixes are
used with verbs, some with nouns, and others with both. Affixes that are three
letters in length are easily identified; however, the shorter the affix is, the more
difficult it is to identify. A sub-class of prefixes is formed by prepositions and
conjunctions; this sub-class is of particular interest because, if they are iden-
tified and removed correctly, we will obtain valid Arabic core words. Some of

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 206–217, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Stemming Arabic Conjunctions and Prepositions 207

Table 1. Mapping between the Arabic word ���������	
� and its English translation

��� �� ���� ���	
� ���
It you they teach will

these prefixes are letters attached to the beginning of the word. However, these
same letters also frequently appear as part of affix-free words. For example, the
letter � (waw) in the word ����� (respect) is part of the word, whereas, it is a
conjunction in the word �� ������ (and the student). Removing this letter from
the first word results in the word ���� (Asphalt); this should be avoided, because
the meaning of the returned word is changed. However, in the second word, it
is essential to remove the letter in order to obtain the stem �� ��� (student). Al-
though it is important to remove such prefixes, current popular search engines
do not do so. Moukdad [10] showed that searching for the words �������� � (the uni-
versity), �������� �� (and the university),and �������� ��� � (and by the university) by
four well-known search engines, gives different results by each search engine for
each particular word. All four search engines performed badly when searching
for the second and the last words.

1.1 Arabic Conjunctions and Prepositions

Arabic has nine conjunctions. The majority of these are written separately, ex-
cept the inseparable conjunctions � (waw) and �� (faa), which are usually at-
tached to a noun or a verb.

In Arabic, prepositions are added before nouns. There are twenty preposi-
tions. Five of these are usually attached to the beginning of a word. These in-
separable prepositions [13] are: � (lam),� (waw), � (kaf), �� (baa), and �� (taa).

Prepositions and conjunctions occur frequently in Arabic text. To aid infor-
mation retrieval, they should be removed, so that variant forms of the same word
are conflated to a single form. Separable prepositions can be easily detected and
removed as stopwords. However, inseparable prepositions are difficult to remove
without inadvertently changing the meaning of other words in the text.

The set of inseparable prepositions and conjunctions consists of the six letters:
lam, waw, faa, taa, baa, and kaf. These letters differ in terms of their function
in Arabic text and can be further divided into three different groups:

– waw and faa, can be added to any Arabic word as they are conjunctions.
While waw is also a valid preposition, the fact that it is a conjunction means
that this letter can be added to any Arabic word.

– kaf, taa, and baa are prepositions that can only be used before a noun.
taa is also used as a prefix for verbs in the present simple tense. It is rarely
used as a preposition in modern standard Arabic.

– lam, in addition to its purpose as a preposition like kaf and baa, can also be
used with verbs as the “lam of command”. Here, it is usually prefixed to the
third person to give it an imperative sense, for example ��

�!�	� (say it).
It is also used to indicate the purpose for which an action is performed [13].

208 A.F.A. Nwesri, S.M.M. Tahaghoghi, and F. Scholer

In this paper, our main focus is on single-letter inseparable prepositions and
conjunctions, and their effects on Arabic stemming. For the reminder of this pa-
per, the term particles will be used to represent the class of inseparable prepo-
sitions and conjunctions together. The particle taa is not considered to be a
member of this class, due to its rare usage as a preposition in modern standard
Arabic.

The rest of this paper is structured as follows. We first present related back-
ground, examining previous approaches for dealing with particles. We then pro-
pose several new techniques for removing particles from Arabic text, with the aim
of retaining correct core words. The effectiveness of these techniques is evaluated
experimentally, both based on the characteristics of terms that are produced by
the various algorithms, as well as based on the impact that they have on retrieval
performance.

2 Arabic Stemming

There are two main classes of stemming algorithms: heavy stemming, and light
stemming [2]. In both cases, the aim of stemming is to remove affixes from an
input string, returning the stem of the word as an output.

Heavy — or root-based — stemming usually starts by removing well-known
prefixes and suffixes. It aims to return the actual root of a word as the remaining
stem, usually by applying patterns of fixed consonants [7]. The most well known
pattern is ���� ��, which is often used to represent three-letters root words. For
example: the word �� �

���	 (wrote) can be represented by the pattern ���� �� by
mapping
	 to
 ��,
��� to
��, and �� � to ��.

Many stems can be generated from this root using different standard pat-
terns. For instance, �� ��, �� ��, and �� ���� are three different patterns to form the
singular noun, nomina agentis, and present tense verb out of the pattern ���� ��
respectively. By fixing the core letters and adding additional letters in each pat-
tern, we can generate ��

��	 (book), ��
�� � (writer), ��

����� (write) respectively. The
new words can accept Arabic prefixes and suffixes.

Heavy stemmers usually reverse this process by first removing any prefixes
and suffixes from the word. They then identify the pattern the remaining word
corresponds to, and usually return the root by extracting letters that match the
letters
 ��,
�� and ��. For example, to find the root of the word ��

������ (and the
writer), any heavy stemmer has to remove the prefixes
� �� to get the stem ��

�� �,
then use the pattern �� �� which matches this (has the same length, and with
the letter � in the same position). The root ��

��	 is then returned 1.
Heavy stemming has been shown to produce good results in the context of

information retrieval. For example, Larkey et al. [8] show that mean average
precision is improved by 75.77% using the Khoja heavy stemmer. We discuss
retrieval metrics further in Sect. 4.
1 The letter
� and
�� are two forms for the same letter.

Stemming Arabic Conjunctions and Prepositions 209

Light stemming stops after removing prefixes and suffixes, and does not at-
tempt to identify the actual root. It has been demonstrated that light stemming
outperforms other techniques in Arabic information retrieval. Aljlayl et al. [2]
demonstrate an increase in mean average precision of 87.7%, and Larkey et al. [8]
report an increase in mean average precision of 100.52%.

The core of both approaches involves the removal of affixes. Generally, re-
moving prefixes has been dealt with in the same manner as for many European
languages, by matching the first character of the word to a pre-prepared list of
prefixes, and truncating any letters that match without first checking whether or
not it is a real prefix [3,4,7,8]. For Arabic text, this frequently results in incorrect
root extraction in heavy stemming, and an incorrect stem in light stemming. It
is therefore doubtful that these simple approaches are appropriate when deal-
ing with Arabic text. For example, ������� (two boys) returns the root ���� (soft)
instead of root word ��� (gave birth) using the Khoja stemmer, and the stem
�� (has no meaning) instead of the stem ��� (a boy) using the Larkey stemmer.
In the last two cases, the incorrect root (stem) was due to removal of the first
letter waw after incorrectly identifying it as a particle.

2.1 Current Approaches for Stemming Particles

Many stemmers have been developed for Arabic [1]. However, none deals with
the removal of all particles. Some particles, such as waw, are removed by all
existing stemmers; other particles, such as kaf, have never been considered on
their own in existing stemming approaches. The way in which existing stemmers
deal with particles can be grouped into three general categories:

– Matching the first letter with a pre-prepared list of particles. If a match is
found, the first letter is removed as long as the remaining word consists of
three or more letters. This approach is used by most of the current stemmers
to deal with a small subset of particles [3,4,7,8]. We call this approach Match
and Truncate (MT).

– Matching the first letter with a list of particles. If a particle is found, the
remaining word is checked against the list of all words that occur in the
document collection being stemmed. If the stemmed word occurs in the col-
lection, the first letter is considered a particle and removed. This approach
was used by Aito et. al. [3] in conjunction with the other two approaches.
We call this approach Remove and Check (RC).

– Removing particles with other letters. For example, removing a combination
of particles and the definite article �� 	 (the), particularly, �� 	� wal, ��
 �� fal,
��
�� bal, ��
 kal. These combinations are removed whenever they occur at the
beginning of any word, and this approach is used by most current stemmers.
We call this approach Remove With Other Letters (RW).

Existing stemmers often use a combination of these approaches. They usually
start by using the third approach, then continue by removing other particles,
particularly waw and lam.

210 A.F.A. Nwesri, S.M.M. Tahaghoghi, and F. Scholer

2.2 Evaluation of Current Approaches

To check the effectiveness of current approaches for particle removal in Arabic
text, we extracted all correct words that start with a particle from a collection of
Arabic documents used in the TREC 2001 Cross-Language Information Retrieval
track, and the TREC 2002 Arabic/English CLIR track [6,11]. Further collection
details are provided in Sect. 4.

The number of words start with a possible particle constitute 24.4% of this
collection. To ensure that we extracted only correct words, we checked them using
the Microsoft Office 2003 Arabic spellchecker [9]. Stopwords such as pronouns
and separable particles were then removed. This procedure resulted in a list
of 152,549 unique correct words that start with a possible inseparable particle.

We use three measures to evaluate the effectiveness of the above approaches:

– The number of incorrect words produced; Although correct words are not the
main target of stemming, an incorrect stem can have a completely different
meaning and correspond to a wrong index cluster. This is particularly true
when a a core letter is removed from an Arabic word,

– The number of words that remain with an initial letter that could be a
particle. This indicates how many possible particles remain after an approach
is applied. In Arabic, the second character could possibly be a particle if the
first character is a conjunction.

– The number of words actually changed; This shows the strength of each
approach [5] by counting the stems that differ from the unstemmed words.

Using the assumption that a correct Arabic word with a particle should also
be correct without that particle, we experimentally applied the MT, RC, and
RW approaches to every word in our collection of unique correct words. The
results are shown in Table 2.

Table 2. Removing particles using current approaches

Approach Incorrect words Possible particles Altered words

MT 5,164 21,945 151,040

RC 220 41,599 133,163

RW 724 122,878 33,847

It can be seen that the MT approach produces a large number of incorrect
words (3.39% of all correct words). The results also show that when the MT
approach truncates the first letter as a particle, there is a chance that the second
letter is also a particle. The portion of words that still start with letters that could
be particles constitutes 14.39% of the total number of correct words. Manual
examination of the stemmed list showed that many words have another particle
that should be removed, and that many words have their first letter removed
despite this letter not being a particle.

Stemming Arabic Conjunctions and Prepositions 211

The RC approach produces fewer incorrect words. This is because no prefix
removal is carried out when the remaining word is not found in the collection.
The incorrect words we obtain are due to the collection itself containing many
incorrect words. Approximately twice as many words still start with possible
particles as seen in the first approach. This implies that the RC approach leaves
the first letter of many words unchanged. This might be desirable, since these
might be valid words that do not actually start with a particle. Indeed, manual
examination of the result list revealed that many words with particles have been
recognised, and particles have been removed correctly. However, the result list
also contained a large proportion of words that still start with particles as their
first letter.

The RW approach produces a smaller number of incorrect words than the
first approach, but generates a very large number of words still starting with
possible particles (80.55% of the list of correct words). Moreover, many words
are left entirely unchanged.

To conclude, the first approach is too aggressive. It affects Arabic words by
removing their first letter, regardless of whether this letter is actually a particle.
The second approach, while better at recognising particles in the text, leaves a
considerable portion of words with real particles untouched. More importantly,
in many cases a word is modified to one with completely different meaning.
The third approach leaves a big portion of words without removing particles at
all, and only deals with a small subset of particles in the text. It also affects
words that start with the combination of particles and other letters especially
proper nouns and foreign words such as ������ �� (the Iraqi city of Fallujah) and
��	
�

�
� �� (the US city of Baltimore). It is also very hard to recognise such combina-
tions if they are preceded by another particle (conjunction) such as ������ � (and
by the land).

3 New Approaches

Given the incomplete way in which particles have been dealt with in previous
approaches, we have investigated techniques to identify and remove insepara-
ble conjunctions and prepositions from core words in a principled manner. Our
methods are based on removing particles using grammatical rules, aiming to
decrease the number of incorrect words that are produced by the stemming pro-
cess, and increasing the completeness of the process by reducing the number of
words that still start with a particle after stemming.

A requirement for being able to recognise affixes in text is a good lexicon. We
use the Microsoft Office 2003 Arabic lexicon; this contains more than 15,500,000
words covering mainly modern Arabic usage [9].

We introduce four rules, based on consideration of Arabic grammar, to iden-
tify particles in Arabic text. Let L be an Arabic lexicon, P be the set of preposi-
tions {kaf, baa, lam}, C be the set of two conjunctions {waw, faa}, c be a letter
in C, p be a letter in P, and w be any word in L. Then:

212 A.F.A. Nwesri, S.M.M. Tahaghoghi, and F. Scholer

– Rule 1: Based on grammatical rules of the Arabic language, a correct Arabic
word that is prefixed by a particle is also a correct word after that particle
is removed. More formally:

∀(p + w) ∈ L ⇒ w ∈ L

and
∀(c + w) ∈ L ⇒ w ∈ L

– Rule 2: Any correct Arabic word should be correct if prefixed by either
conjunction, waw or faa:

∀w ∈ L ⇒ (c + w) ∈ L

– Rule 3: Based on the above two rules, any correct word with a particle prefix,
should be correct if we replace that prefix with waw or faa:

∀(p + w) ∈ L ⇒ (c + w) ∈ L

– Rule 4: Any correct Arabic word that is prefixed by a particle should not
be correct if prefixed by the same particle twice, except the particle lam
which could occur twice at the beginning of the word. Let p1 and p2 be two
particles in (P ∪C), and p1 = p2 �= lam, then

∀(p1 + w) ∈ L ⇒ (p2 + p1 + w) /∈ L

Based on these rules, we define three new algorithms: Remove and Check in
Lexicon (RCL); Replace and Remove (RR); and Replicate and Remove (RPR).

Due to the peculiarities of the letter lam, we deal with this letter as a common
first step before applying any of our algorithms. Removing the particle lam from
words start with the combination ��� results in some incorrect words. We therefore
deal with this prefix before we deal with the particle lam by itself. The prefix ���

is a result of adding the particle lam �� to one of the following:

– A noun that starts with the definite article. When the particle �� is added to
a word whose first two letters are the definite article �� �, the first letter � is
usually replaced with the letter lam ��. For example, �

����	
� � (the university)
becomes �

������� (for the university). However, if the letter following the
definite article is also the letter lam ��, then next case applies.

– A noun that starts with the letter lam. For example, �
��� (surname or cham-

pionship) should be written as �
���� when prefixed by the particle lam ��.

– A verb that starts with the letter lam. For example,
�
�� (wrapped) should

be written as ��� when prefixed by the particle lam ��.

To stem this combination, we first check whether removing the prefix ���
produces a correct word. If so, we remove the prefix. Otherwise, we try adding

Stemming Arabic Conjunctions and Prepositions 213

the letter � before this word. If the new word is correct, we drop one lam from
the original word.

To remove the particle lam from words that originally start with the definite
article, we replace the first lam with the letter � and check whether the word
exists in the lexicon. If so, we can stem the prefix ��� without needing to check
whether the remaining part is correct. If not, we remove the first letter and check
to see whether we can drop the the first lam. This algorithm is used before we
start dealing with any other particles in the three following algorithms.

Remove and Check in Lexicon (RCL). In our first algorithm we start by
checking the first letter of the word. If it is a possible particle — that is, it is a
member of the set P of C — we remove it and check the remaining word in our
dictionary. If the remainder is a valid word, the first letter is considered to be
a particle, and is removed. Otherwise, the original word is returned unchanged.
This approach differs from the RC approach in that we check the remaining word
against a dictionary, rather than against all words occurring in the collection.
We expect that this will allow us to better avoid invalid words.

Replace and Remove (RR). Our second algorithm is based on Rule 3. If the
first letter of the word is a possible particle, we first test whether the remaining
string appears in our dictionary. If it does, we replace the first letter of the
original string with waw and faa in turn, and test whether the new string is
also a valid word. If both of the new instances are correct, the evidence suggests
that the original first letter was a particle, and it is removed, with the remainder
of the string being returned. The string is returned unchanged if any of the new
strings are incorrect.

Manual examination of the output list of the RR algorithm shows some inter-
esting trends. The algorithm achieves highly accurate particle recognition (few
false positives). However, it often fails to recognise that the first letter is an actual
particle, because replacing the first letter with faa and waw will often produce
valid new words. For example, consider the word ����� (clever). Applying the RR

algorithm results in two valid words: ���	 (and look after), and ���
� (and look

after). The first letter of the original word is therefore removed, giving the word
��� (look after), instead of the original word ����� (clever).

Replicate and Remove (RPR). Our third algorithm performs two inde-
pendent tests on a candidate string. First, the initial letter is removed, and the
remaining word is checked against the dictionary. Second, based on Rule 4 above,
the initial letter is duplicated, and the result is tested for correctness against the
dictionary. If either test succeeds, the unchanged original word is returned (no
stemming takes place).

We have noticed that if the word is a verb starting with baa or kaa, the first
letter is removed whether or not it is a particle, since these are particles that
cannot precede verbs. Duplicating them in verbs produces incorrect words, and
causes the first letter of the original word to be removed. We can use the letter

214 A.F.A. Nwesri, S.M.M. Tahaghoghi, and F. Scholer

lam to recognise verbs that start with those particles. Accordingly, we add a
new step where we add the letter lam to the word and check it for correctness. If
the word is incorrect with the letter lam and also incorrect with the first letter
replicated, then we conclude that the word is not a verb, and we remove the first
letter.

For words starting with the letter lam, we add both baa and kaf instead of
replicating them, since replication will result in a correct word, and lead to the
particle lam being preserved. If both new instances are incorrect, we remove the
first lam.

The above algorithms may be applied repeatedly. In particular, if stemming
a word starting with either waw or faa results in a new word of three or more
characters that has either waw, kaf, baa, or lam as its first character, the particle
removal operation is repeated.

3.1 Evaluation of Our Approaches

We have evaluated our new algorithms using the same data set described in
Sect. 2.2. As seen from Table 3, all three algorithms result in a low number of
incorrect words after stemming, with similar strength. However, they differ in
the number of words with possible particles after stemming. The RPR approach
leaves many words with possible particles (around 5,000 more than the RR
approach and 3,000 more than RCL approach).

Table 3. Results of the new approaches, showing significantly lower incorrect words,

lower possible particles, and a comparable strength over the baseline in Table2

Approach Incorrect words Possible particles Altered words

RCL 82 17,037 146,032

RR 82 15,907 146,779

RPR 82 20,869 142,082

Compared to the previous approaches for handling particles, our algorithms
result in 82 incorrect words, compared to 5,164 using MT, 724 using RW, and 220
using RC. The number of words that start with possible particles has also
dropped dramatically using both RCL and RR.

Using the RPR approach we extracted all words that have not been stemmed
(words still having a first letter as a possible particle). The list had 10,476 unique
words. To check algorithm accuracy, we randomly selected and examined 250 of
these. We found that only 12 words are left with particles that we believe should
be stemmed; this indicates an accuracy of around 95%.

As stemming particles can result in correct but completely different words, we
decided to pass the list we extracted using RPR approach to other approaches
and check whether stemmed words would be correct. We extracted correctly
stemmed words changed by each approach. Out of the 10,476 words, RR resulted
in 4,864 new correct stems.

Stemming Arabic Conjunctions and Prepositions 215

We noticed that about 90% of these are ambiguous, where the first character
could be interpreted as a particle or a main character of the stemmed word; the
meaning is different in the two cases. For example, the words ����

�� (film) could also

mean (and he collects) when considering the first letter as a particle. MT, and
RCL resulted in 3,950 similar stems, while RC resulted in 2,706 stems. Examples
are shown in Table 4.

Table 4. Words with different meaning when stemmed by RPR and RR

Stemmed using RPR Stemmed using RR
Word stem Meaning stem meaning

��
����	
�� ��

����	
�� my ID card ��
����	� my power

������� 	 �� ������� 	 �� they missed it ������� � it came to them���	����
���	� pillow

���	� masters

��
����� ��

����� my mate ��
���� made his promise

	� �� ��� 	� �� ��� her coffin 	� �� �� her art

	���	 ������ 	���	 ��� her recipes 	���	 ��� her characterstics

RPR keeps any letter that is possibly a core part of the word, even though
it might also be considered as a particle. In contrast, RR removes such letters.
In most cases, keeping the letter appears to be the best choice.

4 Information Retrieval Evaluation

While the ability to stem particles into valid Arabic words is valuable for tasks
such as machine translation application, document summarisation, and infor-
mation extraction, stemming is usually applied with the intention of increasing
the effectiveness of an information retrieval system. We therefore evaluate our
approaches in the context of an ad-hoc retrieval experiment.

We use a collection of 383,872 Arabic documents, mainly newswire stories
published by Agence France Press (AFP) between 1994 and 2000.

This collection was used for information retrieval experiments in the TREC
2001 and TREC 2002 Arabic tracks [6,11]. Standard TREC queries and ground
truth have been generated for this collection: 25 queries defined as part of
TREC 2001, and 50 additional queries as part of TREC 2002. Both sets of
queries have corresponding relevance judgements, indicating which documents
are correct answers for which queries.

As most stemmers in the literature start by using the RW approach and then
proceed to stem �� � prefixes, we decided to likewise not use this approach on its
own, but instead use it in conjunction with other approaches.

To form our baseline collection, we preprocessed the TREC collection, by
first removing all stopwords, using the Larkey light9 stopword list 2. Then we
2 http://www.lemurproject.org

216 A.F.A. Nwesri, S.M.M. Tahaghoghi, and F. Scholer

Table 5. Performance of different approaches

TREC 2001 TREC 2002
MAP P10 RP MAP P10 RP

Baseline 0.2400 0.5320 0.3015 0.2184 0.3200 0.2520
MT 0.2528 0.5400 0.3193 0.2405 0.3440 0.2683
RC 0.2382 0.5080 0.3037 0.2319 0.3360 0.2663

LarkeyPR 0.2368 0.4800 0.3102 0.2345 0.3280 0.2679
AlstemPR 0.2328 0.4800 0.2998 0.2194 0.3180 0.2582
BerkeleyPR 0.1953 0.4520 0.2460 0.2072 0.2680 0.2423

RCL 0.2387 0.5080 0.3041 0.2320 0.3360 0.2654
RPR 0.2586 0.5440 0.3246 0.2379 0.3420 0.2654
RR 0.2543 0.5320 0.3200 0.2394 0.3440 0.2681

removed all definite article combinations and ran each algorithm on this baseline
collection.

For retrieval evaluation, we used the public domain Zettair search engine
developed at RMIT University 3. We evaluate retrieval performance based on
three measures: mean average precision (MAP), precision at 10 documents (P10),
and R-precision (RP) [6]. Table 5 shows the results recorded for each approach.

Both RC and RCL perform badly and result in lower precision than the base-
line. In contrast, MT, RPR, and RR, showed an improvement over the baseline,
for all measures. The improvement for MT, RPR and RR is statistically signif-
icant for the TREC 2001 and TREC 2002 queries when using the t-test; this
test has been demonstrated to be particularly suited to evaluation of IR experi-
ments [12].

The RR and RPR approaches produce results comparable to previous prefix
removal approaches. By way of comparison, we also show the performance of
the particle removal stages only of three well-known stemmers: Larkey stemmer,
Alstem stemmer, and Berkeley stemmer. Our approaches performed better for
both the TREC 2001 and TREC 2002 query sets.

5 Conclusion

In this work, we have presented three new approaches for the stemming of
prepositions and conjunctions in Arabic text. Using a well-known collection of
Arabic newswire documents, we have demonstrated that our algorithms for re-
moving these affixes offer two significant advantages over previous approaches
while achieving information retrieval results that are comparable to previous
work. First, our algorithms identify particles more consistently than previous
approaches; and second, they retain a higher ratio of correct words after remov-
ing particles. In particular, we believe that by producing correct words as an
output, our approach will be of benefit for application to machine translation,

3 http://www.seg.rmit.edu.au/zettair/

Stemming Arabic Conjunctions and Prepositions 217

document summarisation, information extraction, and cross-language informa-
tion retrieval applications. We plan to extend this work to handle suffixes in
Arabic text.

Acknowledgements

We thank Microsoft Corporation for providing us with a copy of Microsoft Office
Proofing Tools 2003.

References

1. I. A. Al-Sughaiyer and I. A. Al-Kharashi. Arabic morphological analysis techniques:
A comprehensive survey. Journal of the American Society for Information Science
and Technology, 55(3):189–213, 2004.

2. M. Aljlayl and O. Frieder. On Arabic search: improving the retrieval effectiveness
via a light stemming approach. In Proceedings of the International Conference on
Information and Knowledge Management, pages 340–347. ACM Press, 2002.

3. A. Chen and F. Gey. Building an Arabic stemmer for information retrieval. In
Proceedings of the Eleventh Text REtrieval Conference (TREC 2002). National
Institute of Standards and Technology, November 2002.

4. K. Darwish and D. W. Oard. Term selection for searching printed Arabic. In
Proceedings of the ACM-SIGIR International Conference on Research and Devel-
opment in Information Retrieval, pages 261–268. ACM Press, 2002.

5. W. B. Frakes and C. J. Fox. Strength and similarity of affix removal stemming
algorithms. SIGIR Forum, 37(1):26–30, 2003.

6. F. C. Gey and D. W. Oard. The TREC-2001 cross-language information retrieval
track: Searching Arabic using English, French or Arabic queries. In Proceedings of
TREC10, Gaithersburg: NIST, 2001.

7. S. Khoja and R. Garside. Stemming Arabic text. Technical report, Computing
Department, Lancaster University, Lancaster, September 1999.

8. L. S. Larkey, L. Ballesteros, and M. E. Connell. Improving stemming for Arabic
information retrieval: light stemming and co-occurrence analysis. In Proceedings
of the ACM-SIGIR International Conference on Research and Development in In-
formation Retrieval, pages 275–282. ACM Press, 2002.

9. Microsoft Corporation. Arabic proofing tools in Office 2003, 2002.
URL: http://www.microsoft.com/middleeast/arabicdev/office/office2003/
Proofing.asp.

10. H. Moukdad. Lost in cyberspace: How do search engine handle Arabic queries. In
Proceedings of CAIS/ACSI 2004 Access to information: Skills, and Socio-political
Context, June 2004.

11. D. W. Oard and F. C. Gey. The TREC-2002 Arabic/English CLIR track. In
TREC, 2002.

12. M. A. Sanderson and J. Zobel. Information retrieval system evaluation: Effort,
Sensitivity, and Reliability. In Proceedings of the ACM-SIGIR International Con-
ference on Research and Development in Information Retrieval. ACM Press, 2005.
to appear.

13. W. Wright. A Grammar of the Arabic language, volume 1. Librairie du Liban,
1874. third edition.

14. A. B. Yagoub. Mausooat Annaho wa Assarf. Dar Alilm Lilmalayn, 1988. third
reprint.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 218 – 223, 2005.
© Springer-Verlag Berlin Heidelberg 2005

XML Multimedia Retrieval

Zhigang Kong and Mounia Lalmas

Department of Computer Science, Queen Mary, University of London
{cskzg, mounia}@dcs.qmul.ac.uk

Abstract. Multimedia XML documents can be viewed as a tree, whose nodes
correspond to XML elements, and where multimedia objects are referenced in
attributes as external entities. This paper investigates the use of textual XML
elements for retrieving multimedia objects.

1 Introduction

The increasing use of eXtensible Mark-up Language (XML) [6] in document reposi-
tories has brought about an explosion in the development of XML retrieval systems.
Whereas many of today's retrieval systems still treat documents as single large blocks,
XML offers the opportunity to exploit the logical structure of documents in order to
allow for more precise retrieval.

In this work, we are concerned with XML multimedia retrieval, where multimedia
objects are referenced in XML documents. As a kind of hypermedia with controlled
structure, XML multimedia documents are usually organized according to a hierarchi-
cal (tree) structure. We believe that exploiting this hierarchical structure can play an
essential role in providing effective retrieval of XML multimedia documents, where
indexing and retrieval is based on any textual content extracted from the XML docu-
ments.

An XML document can be viewed as a tree composed of nodes, i.e. XML ele-
ments. The root element corresponds to the document, and is composed of elements
(i.e. its children elements), themselves composed of elements, etc., until we reach leaf
elements (i.e. elements with no children elements). An XML multimedia element,
which is an element that references in an attribute a multimedia object as an external
entity, has a parent element, itself having a parent element, all of them constituting the
ancestor elements of that multimedia element. It can also have its own (i.e. self) tex-
tual content, which is used to describe the referenced multimedia entity. Our aim is to
investigate whether “hierarchically surrounding” textual XML elements of various
sizes and granularities (e.g., self, parent, ancestor, etc.) in a document or any combi-
nation of them can be used for the effective retrieval of the multimedia objects of that
document.

The exploitation of textual content to perform multimedia retrieval is not new. It
has, for example, been used in multimedia web retrieval [1,4]. Our work follows the
same principle, which is to use any available textual content to index and retrieve
non-textual content; the difference here is that we are making use of the hierarchical
tree structure of XML documents to delineate the textual content to consider.

 XML Multimedia Retrieval 219

The paper is organized as follows. In Section 2, we describe our XML multimedia
retrieval approach. In Section 3, we describe the test collection built to evaluate our
approach. In Section 4, we present our experiments and results. Finally we conclude
in Section 5.

2 Our Approach

A multimedia object is referenced as an external entity in the attribute of an XML
element that is specifically designed for multimedia content. We call this element a
multimedia element. Some textual content can appear within the element, describing
(annotating) the multimedia object itself. The elements hierarchically surrounding the
multimedia element can have textual content that provides additional description of
the object. Therefore, the textual content within a multimedia element and the text of
elements hierarchically surrounding it can be used to calculate a representation of the
multimedia object that is capable of supplying direct retrieval of this multimedia data
by textual (natural language) query.

We say that these hierarchically surrounding elements and the multimedia element
itself form regions. The regions of a given multimedia object are formed upward fol-
lowing the hierarchical structure of the document containing that multimedia object:
the self region, its sibling elements, its parent element, and so on; the largest region
being the document element itself. We define the text content of the region used to
represent the multimedia object as its region knowledge (RK).

As the elements of XML are organized in a hierarchical tree and nested within each
other, the regions are defined as hierarchically disjoint. This is important to avoid re-
peatedly computing the text content. We therefore define N+1 disjoint RKs, where N
is the maximum depth in the XML multimedia document collection:

• Self level RK: It is a sequence of one or more consecutive character informa-
tion items in the element information item, which is a multimedia element in
which the multimedia object is referenced as an external entity. This is the
lowest level region knowledge of a given multimedia object.

• Sibling level RK: It is a sequence of one or more consecutive character infor-
mation items in the element information items, which is at the same hierarchi-
cal level of the multimedia element and just before or after it.

• 1st ancestor level RK: It is a sequence of one or more consecutive character in-
formation items in the element information item, which is the parent element
of the multimedia element, excluding those text nodes having been used for
Self and Sibling RKs.

• …
• Nth ancestor level RK: It is a sequence of one or more consecutive character

information items in the element information item, which is the parent of the
element of N-1th ancestor level RK, excluding those text nodes having been
used for its lower level RKs.

The RKs are used as the basis for indexing and retrieving XML multimedia ob-
jects. At this stage of our work, we are only interested in investigating whether re-
gions can indeed be used for effectively retrieving multimedia XML elements. There-

220 Z. Kong and M. Lalmas

fore, we use a simple indexing and retrieval method, where it is straightforward to
perform experiments that will inform us on the suitability of our approach. For this
purpose indexing is based on the standard tf-idf weighting and retrieval is based on
the vector space model [3].

The weight of term t in the RK is given by the standard tf-idf, where idf, is com-
puted across elements (and not across documents) as it was shown to lead to better ef-
fectiveness in our initial experiments. The weight of a term in the combination of
RKs, which is then the representation of a given multimedia object, is calculated as
the weighted sum of the tf-idf value of the term in the individual RKs. The weight is
the importance associated with a given RK in contributing to the representation of the
multimedia object.

3 The Test Collection

To evaluate the effectiveness of our proposed XML multimedia retrieval approach,
we requires a test collection, with its set of XML documents containing non-textual
elements, its set of topics, and relevance assessments stating which non-textual ele-
ments are relevant to which topics. We used the collection developed by INEX, the
INitiative for the Evaluation of XML Retrieval [2], which consists of 12,107 articles,
marked-up with XML, of the IEEE Computer Society's publications covering the pe-
riod of 1995-2002, and totaling 494 mega-bytes in size. On average an article contains
1,532 XML elements, where the average depth of an element is 6.9 [2]. 80% of the ar-
ticles contain at least one image, totaling to 81,544 images. There is an average of
6.73 images per articles. The average depth of an image is 3.62.

We selected six volumes of the INEX document set, in which the average number
of images per XML document is higher than in others. Due to resource constraint, we
restricted ourselves to those articles published in 2001. The resulting document col-
lection is therefore composed of 7,864 images and 37 mega-bytes XML text con-
tained in 522 articles. There is an average of 15.06 images per article. On average, the
depth of an image ranges between 2 and 8, where the average depth is 3.92. In addi-
tion, we calculated the distribution of the images across various depths (levels). 62%
of images are at depth 4, 23.5% of them have depth 3, 13.5% of them have depth 5. If
an image has depth 4, its highest level RK is a 4th level RK, etc. In most cases, 4th
level RK corresponds to the article excluding the body elements (it contains titles, au-
thors and affiliation, i.e. heading information, classification keywords, abstracts); 3rd
level RK corresponds to the body element excluding the section containing the image;
2nd level RK corresponds to the section excluding the sub-section containing the im-
age; and 1st level RK corresponds to the sub-section excluding the caption and sibling
RKs of the image.

The topics designed for this test collection are modified versions of 10 topics of the
original INEX 2004 topics. These topics were chosen so that enough relevant XML
elements (text elements) were contained in the 522 XML articles forming the created
collection. These topics have a total of 745 relevant elements, with an average of 74.5
relevant elements per topic. Each topic was modified so that indeed images were
searched for.

 XML Multimedia Retrieval 221

Our topics are based on actual INEX topics, for which relevance assessments are
available. As such, for a given query, only articles that contained at least one relevant
element were considered. This simplified greatly the relevance assessment process.
The assessments were based on images and their captions, and performed by com-
puter science students from our department following the standard TREC guidelines
[5]. The relevance assessment identified a total of 199 relevant images (out of 7,864
images), and an average of 20 relevant images per topic.

4 Experiments, Results and Analysis

The purpose of our experiments is to investigate the retrieval effectiveness of the so-
called RKs for retrieving multimedia objects referenced in XML elements, which in
our test collection are image objects. Our experiments include self, sibling, and 1st
ancestor level up to 6th ancestor level RKs, used independently or in combination to
represent multimedia XML elements. We report average precision values for all ex-
periments. The title component of the topics was used, stop-word removal and stem-
ming were performed.

4.1 Individual RKs

Experiments were performed to investigate the types of RKs for retrieving image
elements. The average precision values for self level, 1st level, ..., to 6th ancestor
level RKs are, respectively: 0.1105, 0.1414, 0.1403, 0.2901, 0.2772, 0.2842, 0.0748,
and 0.0009. Therefore using lower (self, sibling, 1st) level RK leads to low average
performance. The reason could be two-fold: (1) the text content in self level RK are
captions and titles that are small so the probability of matching caption terms to query
terms is bound to be very low – the standard mismatch problem in information re-
trieval; and (2) captions tend to be very specific – they are there to describe the im-
ages, whereas INEX topics may tend to be more general, so the terms used in captions
and the topics may not always be comparable in terms of vocabulary set.

The 2nd, 3rd, and 4th level RKs give the best performance. This is because they
correspond to regions (1) not only in general larger, but also (2) higher in the XML
structure. (1) seems to imply - obviously - that there is a higher probability to match
query terms with these RKs, whereas (2) means that in term of vocabulary used, these
RKs seems to be more suited to the topics. Furthermore, 2nd level RKs perform best,
meaning usually the sections containing the images, and then 4th level RK performs
second best, meaning the heading information, abstract and reference of the article
containing the images.

Since a large number (i.e. 62%) of image objects in the INEX collection are within
lower level elements (i.e. depth 4), the images within a document will have the same
4th level RK, i.e made of same abstract and heading elements. Our results seem to in-
dicate that retrieving all the images of a document whose abstract and heading match
the query is a better strategy than one based on exploiting text very near to the actual
image.

Performance decreases when using higher levels RKs. This is because most images
have a 4th level RK (since they have depth of 4), much fewer have 5th level RK

222 Z. Kong and M. Lalmas

(13.5%), and less than 1% have a 6th level RKs. Thus nothing should be concluded
from these results. We therefore do not discuss performance using these RKs.

We also looked at the amount of overlaps between the images retrieved using the
various RKs (i.e. percentage of retrieved images that were also retrieved by another
RK). Although not reported here, our investigation showed that a high number of im-
ages retrieved using the self RK are also retrieved using most of the other RKs. The
reverse does not hold; many of the images retrieved using 2nd level RK are not re-
trieved using smaller RKs. This would indicate that higher level RKs have defini-
tively an impact on recall. The "many but not all" is a strong argument for combining
low level and high level RKs for retrieving multimedia objects.

4.2 Combination of RKs

This section investigates the combinations of various RKs for retrieving multimedia
objects. The combinations are divided into three sets: (1) combinations from lower
level up to higher level with the same weights for each participating level, i.e. self RK
is combined with sibling RK, and together they are combined with 1st ancestor level
RK, etc; (2) combinations of self, sibling, 1st up to 3rd level RKs, with the 4th ances-
tor level with the same weight for each participating level – level 4 RK was chosen as
it led to good performance in Section 4.1 (although images within a document could
be differentiated); and (3) combinations of all level RKs but with different weights to
each level.

The average precision values for the first set are: 0.1832, 0.2329, 0.2748, 0.2897,
and 0.3716. We can see that performance increases when a lower level RK is com-
bined with an upper level RK. In addition, we can see that the combinations up to 4th
level RK obtain much better performance than any single level (i.e. 2nd: 0.2901 and
4th: 0.2842). These results show clearly that combining RKs in a bottom-up fashion
lead to better performance, as they indicate that the RKs seem to exhibit different (and
eventually complementary) aspects, which should be combined for effective retrieval.

The average precisions for our second set of experiments are: 0.3116, 0.3061,
0.3336, 0.3512, and 0.3716, which are very comparable. We can see that by combin-
ing the self RK with the 4th ancestor level leads already to effectiveness higher than
when using any single level RK. As discussed in Section 4.1, using the 4th level RK
retrieves all the images in a document (as long as the RK matches the query terms), so
our results show that using in addition lower level RKs - which is based on elements
closer to the multimedia objects and thus will often be distinct for different images -
should be used to differentiate among the images in the document.

To further justify our conclusion, that is to make sure that our results are not
caused by the way our test collection was built, we looked at the relevant elements for
the original topics in the INEX test collection: 3.7% of them are at the document
level, whereas 81% have depth 3, 4 and 5. Therefore, this excludes the possibility that
the document level RKs (4th level RK combined with all lower level RKs) lead to the
best strategy for XML multimedia retrieval in our case, because they were the ele-
ments assessed relevant to the original topics. This further indicates that higher level
RKs seem best to identify which documents to consider, and then using lower level
RKs allows selecting which images to retrieve in those documents.

 XML Multimedia Retrieval 223

The last set of experiments aims to investigate if assigning different weights to dif-
ferent levels can lead to better performance. We did four combinations (including all
RKs) and the average precisions for the four combinations are: 0.3904 (same weight
to every level), 0.3796 (emphasize lower level RKs), 0.3952 (emphasize higher level
RKs), and 0.3984 (emphasizes 2nd and 4th level RKs). The performances are better
when weights are introduced - compared to previous experiments, although there is
not a great difference with the various weights. However, this increase could also be
due to the fact that the 5th and 6th ancestor level RKs are used, which corresponds for
some (few) images to the abstract and heading elements, which were shown to lead to
good performance.

5 Conclusions and Future Work

Our work investigates the use of textual elements to index and retrieve non-textual
elements, i.e. multimedia objects. Our results, although based on a small data set,
show that using elements higher in a document hierarchical structure works well in
selecting the documents containing relevant multimedia objects, whereas elements
lower in the structure are necessary to select the relevant images within a document.
Our next step is to investigate these findings on larger and different data sets, as that
being built by an XML multimedia track as INEX 2005.

References

1. Harmandas, V., Sanderson, M., & Dunlop, M.D. (1997). Image retrieval by hypertext links.
Proceedings of SIGIR-97, 20th ACM International Conference on Research and Develop-
ment in Information Retrieval, Philadelphia, US, pp 296–303.

2. INEX. Initiative for the Evaluation of XML Retrieval http://inex.is.informatik.uni-
duisburg.de/

3. Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic retrieval. In-
formation Processing & Management, 24(5):513-523.

4. Swain, M. J., Frankel, C., and Athitsos, V. (1997). WebSeer: An image search engine for
the World Wide Web. In Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (San Juan, Puerto Rico).

5. Text REtrieval Conference (TREC). http://trec.nist.gov/
6. XML (eXtensible Markup Language). http://www.w3.org/XML/

Retrieval Status Values in Information Retrieval

Evaluation

Amélie Imafouo and Xavier Tannier

Ecole Nationale Supérieure des Mines de Saint-Etienne,
158 Cours Fauriel - 42023 Saint-Etienne, Cedex 2, France

{imafouo, tannier}@emse.fr

Abstract. Retrieval systems rank documents according to their retrieval
status values (RSV) if these are monotonously increasing with the prob-
ability of relevance of documents. In this work, we investigate the links
between RSVs and IR system evaluation.

1 IR Evaluation and Relevance

Kagolovsk et al [1] realised a detailed survey of main IR works on evaluation.
Relevance was always the main concept for IR Evaluation. Many works studied
the relevance issue. Saracevic [2] proposed a framework for classifying the various
notions of relevance. Some other works proposed some definitions and formal-
izations of relevance. All these works and many others suggest that there is no
single relevance: relevance is a complex social and cognitive phenomenon [3].

Because of the collections growth nowadays, relevance judgements can not
be complete and techniques like the pooling technique are used to collect a set
of documents to be judged by human assessors. Some works investigated this
technique, its limits and possible improvements [4].

To evaluate and classify IR systems, several measures have been proposed;
most of them based on the ranking of documents retrieved by these systems, and
ranking is based on monotonously decreasing RSVs. Precision and recall are the
two most frequently used measures. But some others measures have been pro-
posed (the Probability of Relevance, the Expected Precision, the E-measure and
the Expected search length, etc). Korfhage [5] suggested a comparison between
an IRS and a so-called ideal IRS. (the normalized recall and the normalized
precision). Several user-oriented measures have been proposed (coverage ratio,
novelty ratio, satisfaction, frustration).

2 IR Evaluation Measures and RSV

2.1 Previous Use of RSVs

Document ranking is based on the RSV given to each document by the IRS.
Each IRS has a particular way to compute document RSV according to the IR

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 224–227, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Retrieval Status Values in Information Retrieval Evaluation 225

model on which it is based (0 or 1 for the Boolean model, [0, 1] for the fuzzy
retrieval, [0, 1]) or & for the vector-space,etc). Little effort has been spent on an-
alyzing the relationship between RSV and probability of relevance of documents.
This relationship is described by Nottelman et al. [6] by a ”normalization” func-
tion which maps the RSV onto the probability of relevance (linear and logistic
mapping functions).

Lee [7] used a min-max normalization of RSVs and combined different runs
using numerical mean of the set of RSVs of each run. Kamps et al. [8] and Jijkoun
et al. [9] also used normalized RSVs to combine different kinds of runs.

2.2 Proposed Measures

We will use the following notation in the rest of this paper: di is the document
retrieved at rank i by the system; si(t) is, for a given topic t, the RSV that a
system gives to the document di. Finally n is the number of documents that are
considered while evaluating the system.

We assume that all the scores are positive. Retrieved documents are ranked
by their RSV and documents are given a binary relevance judgement (0 or 1).

RSVs are generally considered as meaningless system values. Yet we guess
that they have stronger and more interesting semantics than the simple rank
of the document. Indeed, two documents that have close RSVs are supposed to
have close probabilities of relevance. In the same way, two distant scores suggest
a strong difference in the probability of relevance, even if the documents have
consecutive or close ranks. But the RSV scale depends on the IRS model and
implementation. Different RSV scales should not act on the evaluation. Never-
theless, the relative distances between RSVs attributed by the same system are
very significant; In order to free from the absolute differences between systems,
we use a maximum normalization:

For a topic t, ∀i s′i(t) = si(t)
s1(t)

. Thus, ∀i s′i(t), s′i(t) ∈ [0, 1] and s′i(t) < s′i+1(t).
s′i(t) gives an estimation by the system of the relative closeness of the docu-

ment di to the document considered as the most relevant by the system (d1) for
topic t. For d1, s′1 = 1, we consider that si = 0 and s′i = 0 for any non-retrieved
document. We assume that a lower bound exists for the RSV and is equal to
0. If it is not the case we need to know (or to calculate) a lower bound and to
perform a min-max normalization.

We propose a first pair of metrics, applicable to each topic; the figure r
determines a success rate while e is a failure rate (pi is the binary assessed
relevance of document di):

r1(n) =

∑
i=1..n

s′i × pi

n
and e1(n) =

∑
i=1..n

s′i × (1− pi)

n

r1(n) (resp e1) is the average normalized RSV (NRSV) considering only the
relevant documents (resp non relevant documents). The second proposed pair of
metrics is derived from r1 and e1:

226 A. Imafouo and X. Tannier

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r2(n) =

∑
i=1..n

(1− s′i)× (1 − pi)

n︸ ︷︷ ︸
r2,1

+

�

i=1..n

s′
i×pi

n

e2(n) =

∑
i=1..n

(1− s′i)× pi

n︸ ︷︷ ︸
e2,1

+

�

i=1..n

s′
i×(1−pi)

n

r2,1(n) is a distance representing the estimation by the system of the ”risk”
of non relevance for the document. e2,1(n) is equivalent to r2,1(n) for relevant
document. Documents with high NRSVs have a high influence on these metrics
by increasing ri (if they are relevant) and by penalizing the system through ei

(if they are not relevant).
A new problem arises at this step, if a document di is assessed as relevant,

it seems difficult to evaluate the system according to si. Indeed the assessor
cannot say how much the document is relevant (in the case of binary judgment).
One does not know if the confidence of the system was justified, whether this
confidence was strong (high NRSV) or not (low NRSV). We can also notice that
if a system retrieves n relevant documents (out of n), the success rates r1 and
r2 will be less than 1, which is unfair. Thus we propose a new measure

r3(n) =

∑
i=1..n

pi +
∑

i=1..n

(1 − si)(1 − pi)

n

Any relevant document retrieved contributes to this measure for 1, and a non
relevant document contributes by its distance to the top ranked document.

Measures r1 and r2 can be useful when comparing two IRSs, because they
favor systems that give good RSVs to relevant documents. On the other hand,
r3 may allow a more objective evaluation of a single system performances.

3 Experiments

We experimented on TREC9 WebTrack results (105 IRSs). We used a correla-
tion based on Kendall’s τ in order to compare our measures with classical IR
evaluation measures. IPR stands for Interpolated Precision at Recall level.

The ranking obtained with the measure r1 which is based on the normal-
ized RSV for relevant documents is highly correlated with precision on the first
documents retrieved (P@N). This correlations decreases as N increases.

Conversely, the ranking obtained with the e1 which is based on the normalized
RSVs for non relevant documents is inversely correlated with P@N and with
IPR at first recall levels (this was excepted, since e1 represents a failure rate).

The measures r2 (resp. e2) that combines NRSVs for relevant documents
(resp. for non relevant documents) with a value expressing the distance between

Retrieval Status Values in Information Retrieval Evaluation 227

Table 1. Kendall tau between IRS ranking

- IPR at 0 IPR at 0.1 IPR at 0.2 IPR at 1 MAP P@5 P@10 P@100 P@1000

r1 0.92 0.83 0.80 0.87 0.81 0.90 0.83 0.64 0.53

e1 −0.50 −0.06 0.18 0.59 0.52 −0.61 −0.43 −0.14 −0.11

r2 0.31 0.29 0.31 0.46 0.55 0.71 0.50 0.15 0.20

e2 −0.51 −0.064 0.20 0.59 0.59 −0.68 −0.47 −0.09 −0.09

r3 0.31 0.31 0.33 0.46 0.54 0.64 0.46 0.18 0.21

non relevant documents (resp. relevant documents) and the first document are
less (resp. less inversely) correlated with P@N and with IPR at first recall levels.

The measure r3 that combines contribution from relevant documents re-
trieved (1) and contribution from irrelevant documents retrieved (a value that
expresses the way the IRS valuate the risk of mistaking when ranking this irrel-
evant documents at a given position) is even less correlated with P@N and with
IPR at first recall levels.

4 Conclusion

RSV is used to rank the retrieved documents. Despite this central place, it is still
considered as a system value with no particular semantics. We proposed IR mea-
sures directly based on normalized RSVs. Experiments on the TREC9 results
show a high correlation between these measures and some classical IR evalua-
tion measures. These correlations indicate possible semantics besides documents
RSVs. The proposed measures are probably less intuitive than precision and
recall but they put forth the question of the real place of RSV in IR evaluation.

References

[1] Kagolovsk, Y., Moehr, J.: Current status of the evaluation in information retrieval.
Journal of medical systems 27 (2003) 409–424

[2] Saracevic, T.: Relevance: A review of and a framework for the thinking on the
notion in information science. JASIS 26 (1975) 321–343

[3] Mizzaro, S.: How many relevances in information retrieval? Interacting with Com-
puters 10 (1998) 303–320

[4] Zobel, J.: How reliable are the results of large scale information retrieval experi-
ments. In: Proceedings of ACM SIGIR’98. (1998) 307–314

[5] Korfhage, R.: Information storage and retrieval. Wiley Computer publising (1997)
[6] Nottelman, H., Fuhr, N.: From retrieval status value to probabilities of relevance

for advanced ir applications. Information retrieval 6 (2003) 363–388
[7] Lee, J.H.: Combining multiple evidence from different properties of weighting

schemes. In: Proceedings of SIGIR ’95. (1995) 180–188
[8] Kamps, J., Marx, M., de Rijke, M., Sigurbjrnsson, B.: The importance of morpho-

logical normalization for xml retrieval. In: Proceedings of INEX’03. (2003) 41–48
[9] Jijkoun, V., Mishne, G., Monz, C., de Rijke, M., Schlobach, S., Tsur, O.: The

university of amsterdam at the trec 2003 question answering track (2003)

A Generalization of the Method for Evaluation

of Stemming Algorithms Based on Error
Counting

Ricardo Sánchez de Madariaga, José Raúl Fernández del Castillo,
and José Ramón Hilera

Dept. of Computer Science, University of Alcalá, 28805 Madrid, Spain

Abstract. Until the introduction of the method for evaluation of stem-
ming algorithms based on error counting, the effectiveness of these al-
gorithms was compared by determining their retrieval performance for
various experimental test collections. With this method, the performance
of a stemmer is computed by counting the number of identifiable errors
during the stemming of words from various text samples, thus making the
evaluation independent of Information Retrieval. In order to implement
the method it is necessary to group manually the words in each sample
into disjoint sets of words holding the same semantic concept. One sin-
gle word can belong to only one concept. In order to do this grouping
automatically, in the present work this constraint has been generalized,
allowing one word to belong to several different concepts. Results with
the generalized method confirm those obtained by the non-generalized
method, but show considerable less differences between three affix re-
moval stemmers. For first time evaluated four letter successor variety
stemmers, these appear to be slightly inferior with respect to the other
three in terms of general accuracy (ERRT, error rate relative to trun-
cation), but they are weight adjustable and, most important, need no
linguistic knowledge about the language they are applied to.

1 Introduction

Stemming algorithms are widely used to improve the efficiency of Information
Retrieval (IR) Systems [1]. They are used to merge together words which share
the same stem but differ in their endings [2]. The idea is to remove suffixes
to produce the same stem, which is supposed to represent the basic concept
held by a word. Thus, different words holding similar concepts are reduced to a
common ”stem” and can be treated as equivalent [3] by the IR system, resulting
in improved retrieval performance.

No stemmer following one of the four automatic approaches [4] can be ex-
pected to work perfectly, since natural language is highly irregular. This results
in the fact that semantically distinct words are merged to the same stem (this is
called an overstemming error). Conversely there are many other cases in which
words with the same meaning are reduced to different stems (an understemming
error) [2]. Since different algorithms commit different errors the question raises
as whether an algorithm can be said to be ”better” than another one.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 228–233, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Generalization of the Method for Evaluation of Stemming Algorithms 229

Until the introduction by Paice of the method for evaluation of stemming
algorithms based on error counting [2], the effectiveness of these algorithms was
evaluated mainly by their retrieval performance in IR systems. Moreover, in
the vast majority of these studies there were difficulties to prove significant
differences between the retrieval performance of different stemmers [5] [4]. Fur-
thermore, IR performance measures provide no evidence about the detailed be-
haviour of a stemmer, preventing the design of better stemmers in the future.
Finally, it must be said that stemming is useful not only in IR, but also in many
other natural language applications like a semantic frame filler or an intelligent
command interface [2].

In the method introduced by Paice a stemmer is evaluated by counting the
actual understemming and overstemming errors which it makes. This approach
makes stemmer evaluation independent of IR. On the other hand, it requires that
the ”correct” merging are made explicit, i.e. all the words of the word samples
used to test the stemmer need to be grouped in sets of words holding the same
or similar concepts. This means that the correct ”merging are defined by human
intellectual decision, which naturally raises questions about the consistency of
the standard”. Besides the ”questions about the consistency” this means that,
in order to evaluate a stemmer on a specific corpus, all the words in that corpus
must be grouped manually into disjoint sets of words holding the same sense or
concept. In order to avoid this manual grouping step and do it automatically we
would need to use an automatic disambiguation procedure which would obtain
the actual sense of every word in the given corpus. But in this case, why not
use the automatic disambiguation procedure to obtain the stems i.e. to perform
the stemming rather than evaluating it? Moreover, suppose that we have lit-
tle knowledge about the language we are performing the stemming for. In this
case we would have no evident possibility of implementing the automatic dis-
ambiguation procedure to perform the sophisticated stemmer. In this paper we
are assuming that we have no knowledge about the language the stemmer is
being applied to, or else, for some reason, we are just applying a simple, i.e. not
sophisticated stemmer, but do not want to do the groupings manually for each
distinct corpus.

Instead of obtaining the actual sense of every word in the corpus, manually
or automatically, we let it have all its possible senses as they appear in one dic-
tionary or thesaurus for the given language. So instead of assigning one concept
group to each word in the corpus, these are allowed to belong to several concept
groups as usual. This generalization imposes some changes when computing the
under- and overstemming indexes as in the ERRT method, which are discussed
in the following sections.

2 The Method Based on Error Counting

2.1 Understemming Errors

Given a concept group g of Ng words morphologically related (i.e. sharing the
same stem) and holding the same semantic concept, suppose that the algorithm

230 R.S. de Madariaga, J.R.F. del Castillo, and J.R. Hilera

reduces all Ng words to fg distinct stems and each stem i is obtained in ngi
cases. In this case we can compute the ”unachieved merge total” UMTg for such
a group, which represents the total number of undertstemming errors, from the
following formula:

UMTg =
1
2

fg∑
i=1

ngi (Ng − ngi) . (1)

Since the total number of possible committed errors in this group, called the
”desired merge total” DMTg can be computed by

DMTg =
1
2
Ng (Ng − 1) (2)

we can compute the understemming index UI as the ratio UI = GUMT/GDMT
where GUMT is the ”global unachieved merge total” and GDMT is the ”global
desired merge total” and are obtained by adding over all word groups g.

2.2 Overstemming Errors

Every distinct stem produced by the stemmer defines now a ”stem group” whose
members are derived from a number of different original words. Suppose that
the stem group s contains stems derived from fs different concept groups. The
total number of overstemming errors can be computed as a ”wrongly-merged
total” WMTs for the stem following the formula

WMTs =
1
2

fs∑
i=1

nsi (Ns − nsi) (3)

where Ns is the total number of stems in the stem group and nsi is the number
of stems derived from the ith concept group.

The overstemming index is normalized according to the actual number of
word pairs which became identical after stemming. Following this, we can define
an ”actual merge total” AMTs given by

AMTs =
1
2
Ns (Ns − 1) (4)

2.3 ERRT (Error Rate Relative to Truncation)

The performance of a stemmer in terms of the number of errors may depend on
its concrete application. For one application, a light stemmer (few overstemming
errors) may be preferable than a heavy stemmer (few understemming errors), or
viceversa. In order to measure performance taking both opposite numbers into
account, a common baseline can be formed using the simple stemmers obtained
by the truncation of words to a fixed maximum length. Values of UI and OI can
be calculated for each of these stemmers and plotted into a two dimensional axis
to form a truncation line. Given a stemmer for evaluation with its point P and

A Generalization of the Method for Evaluation of Stemming Algorithms 231

point X as the intersection of line OP with the truncation line, its performance
can be computed as

ERRT = (lengthOP) / (lengthOX) . (5)

Moreover, it can be seen that the gradient of the OP line is a measure of the
weight or strength of the stemmer, i.e. the relation between the number of over-
and understemming errors: a strong or aggressive stemmer tends to produce
more overstemming and less understemming errors than a light stemmer.

3 The Generalized Method

In the method outlined in the previous section the correct merging for the sample
words must be made explicit in order to count the number of errors committed
by the stemmer.

In order to calculate UI using Equations (1) and (2) one word can belong to
only one concept group. In the generalized ERRT method, one word can belong
to (many) different concept groups.

When calculating OI using Equations (3) and (4) every word belonging to
each stem group also belongs to only one concept group. In the generalized
method, one single word is allowed to belong to as many concept groups as nec-
essary. Instead of doing this as a manual process, the classification is obtained
directly from an English language thesaurus [6]. Clearly the manual reclassifica-
tion approach would have made the method word sample adaptive, but its costs,
in terms of effort for each evaluation, is also almost prohibitive.

In the English thesaurus used in the present work, every entry, which is
a lemmatized word, is followed by a list of numbers that represent important
concepts or ”categories” it belongs to. A typical entry has a list of about 10
categories it belongs to. Of course a special file [7] was used to lemmatize the
declined words in the corpora.

3.1 Understemming Errors

In order to calculate the understemming index UI, Equations (1) and (2) are
still applicable. Now one single (declined) word form can belong to more than
one concept group, which means that its corresponding stem i, obtained in ngi
cases, may appear also in more than one concept group (strictly speaking, this
could happen in the non-generalized method too, but in much fewer cases).

3.2 Overstemming Errors

In this case Equation (3) needs to be rewritten, in order to reflect the fact that
now each original (declined) word form corresponding to each entry in one stem
group may belong to many distinct concept groups. The generalized formula is:

WMTGs =
1
2

gs∑
i=1

(Ns − ngsi) (6)

232 R.S. de Madariaga, J.R.F. del Castillo, and J.R. Hilera

where Ns is the number of entries in each stem group s. Each entry in s now
has a set of concept groups for which it belongs to, instead of just one. If this
set is called the ”set of concept groups”, then gs is the total number of distinct
sets of concept groups in s, and ngsi is the number of entries in s which belong
to a set of concept groups which has at least one concept group in common with
set of concept groups i.

4 Results

Table 1 shows results for three word sources and seven stemmers [8][9][10][11].
The Hafer stemmers are four variants of experiment number 11 reported by
Hafer and Weiss in [11].

Table 1. ERRT values(%) and stemming weights for seven stemmers and corpora CISI

Test Collection (A), MULTEXT JOC Corpus (B) and BLLIP WSJ Corpus (C)

Word source A Word source B Word source C
ERRT SW ERRT SW ERRT SW

Porter 52.7 0.293 48.1 0.290 50.6 0.205
Lovins 52.6 0.454 44.3 0.422 44.2 0.365
Paice/Husk 50.3 0.569 44.0 0.578 44.4 0.490
Hafer 2 16 60.6 0.304 53.8 0.303 50.9 0.288
Hafer 2 13 58.8 0.392 56.4 0.384 47.7 0.368
Hafer 2 10 62.2 0.445 52.0 0.460 50.5 0.451
Hafer 2 07 69.9 0.554 58.3 0.596 56.4 0.599

5 Conclusions

We have achieved an automatic IR-independent method for evaluation of stem-
ming algorithms which does not need to perform the equivalence relation among
every word of the corpus manually, allowing one word to have several different
meanings as usual. The alternative to this is manual classification of every word
from the corpus taking into account the actual sense of each word in the corpus.
This is done in the non-generalized (ERRT) method reported in [2]. In order
to avoid the manual step of the ERRT method, an automatic semantic disam-
biguation procedure could be used to find the actual sense of each word in the
corpus [12]. In this case, why not use the automatic disambiguation to perform
the stemming instead of evaluating it? This would really be a case of use of an
evaluating method much more sophisticated than the evaluated one. Moreover,
it could be used to rebuild the stemmer. And there are many cases in which
there is no reasonable access to such a tool.

The results obtained by the generalized ERRT method confirm those ob-
tained by the non-generalized ERRT method for the three affix removal stem-
mers in terms of stemming weight and in general accuracy (ERRT). However, in

A Generalization of the Method for Evaluation of Stemming Algorithms 233

the generalized method the three affix removal stemmers show considerable less
difference among them than in the non-generalized one – from 6% to 26%.

As in the non-generalized method, the Paice/Husk stemmer performs better
than the other two, but the Lovins stemmer obtains slightly better results in the
generalized method with respect to the non-generalized approach. This result
must take into account that the weight of these stemmers is very different, and
hence are not strictly comparable. The successor variety stemmers are evaluated
with the (generalized) ERRT method for the first time, and seem to show slightly
lower performance than the affix removal algorithms in terms of general accuracy.
However, the former are easily weight-adjustable, cover a wider spectrum and,
most important, do not need of linguistic knowledge about the language the
corpus is written in.

References

1. Kowalski, G., Maybury, M.T.: Information storage and retrieval. Theory and Im-
plementation. Kluwer Academic Publishers (2000)

2. Paice, C.D.: Method for evaluation of stemming algorithms based on error counting.
Journal of the American Society for Information Science 47 (8) (1996) 632–649

3. Salton, G., McGill, M.: Introduction to modern information retrieval. McGraw-Hill
New York (1983)

4. Frakes, W., Baeza-Yates, R.: Information Retrieval: data structures and algorithms.
Prentice-Hall Englewood Cliffs NJ (1992)

5. Lennon, M., Pierce, D. S., Tarry, B. D., Willet, P.: An evaluation of some conflation
algorithms for information retrieval. Journal for Information Science 3 (1981) 177–
183

6. Kirkpatrick, B. (ed.): Rogets thesaurus of English words and phrases. Penguin
Books (2000)

7. MULTEXT project: MULTEXT lexicons. Centre National de la Recherche Scien-
tifique (1996-1998)

8. Lovins, J. B.: Development of a stemming algorithm. Mechanical Translation and
Computational Linguistics 11 (1968) 22–31

9. Porter, M.F.: An algorithm for suffix stripping. Program 14 (1980) 130–137
10. Paice, C.D.: Another stemmer. SIGIR Forum 24 (1990) 56–61
11. Hafer, M., Weiss, S.: Word segmentation by letter successor varieties. Information

Storage and Retrieval 10 (1974) 371–385
12. Goldsmith, J.A., Higgins, D., Soglasnova, S.: Automatic language-specific stem-

ming in information retrieval. LNCS 2069 Cross-Language Information Retrieval
and Evaluation: Workshop CLEF 2000 C.Peters (Ed.) (2000) 273–284

Necklace Swap Problem for

Rhythmic Similarity Measures

Yoan José Pinzón Ardila1, Raphaël Clifford2,�, and Manal Mohamed1

1 King’s College London, Department of Computer Science,
London WC2R 2LS, UK

Yoan.Pinzon@kcl.ac.uk, manal@dcs.kcl.ac.uk
2 University of Bristol, Department of Computer Science, UK

raphael@clifford.net

Abstract. Given two n-bit (cyclic) binary strings, A and B, represented
on a circle (necklace instances). Let each sequence have the same number
k of 1’s. We are interested in computing the cyclic swap distance between
A and B, i.e., the minimum number of swaps needed to convert A to B,
minimized over all rotations of B. We show that this distance may be
computed in O(k2).

Keywords: repeated patterns, music retrieval, swap distance, cyclic
strings, rhythmic/melodic similarity.

1 Introduction

Mathematics and music theory have a long history of collaboration dating back
to at least Pythagoras1 [9]. More recently the emphasis has been mainly on
analysing string pattern matching problems that arise in music theory
[2,3,4,5,6,7].

A fundamental problem of both theoretical and practical importance in music
information retrieval is that of comparing arbitrary pieces of music. Here we
restrict our attention to rhythm similarity, i.e. to what extent is rhythm A similar
to rhythm B? Long term goals of this research include content-based retrieval
methods for large musical databases using such techniques as query-by-humming
(QBH) [10,12] and finding music copyright infringements [8].

In geometry and other branches of mathematics, we often measures of the
similarity of two objects that are in the same class but no identical. For example,
the relative similarity of two real numbers can be computed as the difference, or
the square of their differences. The similarity of two functions over some period
might be computed as the unsigned integral between them over this period. We
can say that two pieces of music are similar if their melody or rhythm are similar.

Six examples of 4/4 time clave and bell timelines are given in Fig. 1. Rhythms
are usually notated for musicians using the standard western music notation (see
� This work was carried out while the author was at King’s College London.
1 In the 5th century BC, Pythagoreas was quoted to have said,“There is geometry in

the humming of strings. There is music in the spacing of the spheres”.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 234–245, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Necklace Swap Problem for Rhythmic Similarity Measures 235

Ee E EE EEEe e e e EEEE

Ee EE E EEEe e e e EEEE

Ee E EEE EEe e e e EEEEEe E EE EEEe e e e EEEE

Ee E EE EEEe e ee EEEE Ee E EE EEEe e e eEEEE

(a) Son

(d) Shiko

(c) Rumba(b) Bossa-Nova

(e) Soukous (f) Gahu

[]1001001000101000

[] []

[]1001001000100100 []1001000100101000

[]1000101000101000 []1001001000110000 []1001001000100010

[]

[] [] []

()i

()ii

()iii

()iv

()i

()ii

()iii

()iv

Fig. 1. Six fundamental 4/4 time clave rhythms. Each rhythm is depicted using (i) a
standard western notation system, (ii) a box notation, (iii) a binary representation
and (iv) a common geometric representation using convex polygons. The dotted lines
indicate an axis of mirror symmetry (e.g. for the clave son, if the rhythm is started at
location 3 then it sounds the same whether it is played forward or backwards, thus,
clave son is a palindrome rhythm). It can be noticed that son rhythm is more like the
others, thus offering an explanation for its world wide popularity.

Fig. 1(a–f)(i)). A more popular way of representation is called the Box Notation
Method intended for percussionists that do not read music. It was developed by
Philip Harland and it is also known as TUBS (Time Unit Box System). The box
notation method is convenient for simple-to-notate rhythms like bell and clave
patterns as well as for experiments in the psychology of rhythm perception,
where a common variant of this method is simply to use one symbol for the
note (e.g. �) and another for the rest (e.g. ♦), For our purpose, A rhythm is
represented as a cyclic binary sequence where a zero denotes a rest (silence)
and a one represents a beat or note onset, for example, the clave son would
be written as the 16-bit binary sequence2: [1001001000101000]. An even better
representation for such cyclic rhythms is obtained by imagining a clock with 16

2 This rhythm can also be thought as a point in a 16-dimensional space (the hyper-
cube).

236 Y.J.P. Ardila, R. Clifford, and M. Mohamed

10

2

3

4

5

6

78
9

10

15

14

13

12

11

0 3 6 10 12 22 26 28 321916 38 42 44 4835

time

cycle 1 2 3

Fig. 2. 16-hours cycle clock representation of the clave son rhythm. The end of one
cycle is the same spatial position as the beginning of the next.

hours marked on its face instead of the usual 12. Let us think that the hour and
the minute hands have been broken off so that only the second-hand remains.
Now set the clock ticking starting at noon (16 O’clock) and let it strike a bell at
the 3, 6, 10 and 12 position for a total of five strikes per clock cycle. These times
are marked with a bell in Fig. 2. Thereof, a common geometric representation
of rhythms is obtained by connecting consecutive note locations with edges to
form a convex polygon inscribed in our imaginary clock (see Fig. 1(a–f)(iv)).

A natural measure of the difference between two rhythms represented as bi-
nary sequences is the well known Hamming distance, which counts the number of
positions in which the two rhythms disagree. Although the Hamming distance
measures the existence of a mismatch, it does not measure how far the mis-
match occurs, that is why, Toussaint [15] proposed a distance measure termed
the swap distance. A swap is an interchange of a one and a zero (note duration
and rest interval) that are adjacent in the sequence. The swap distance between
two rhythms is the minimum number of swaps required to convert one rhythm
to the other. The swap distance measure of dissimilarity was shown in [14] to be
more appropriate than several other measures of rhythm similarity including the
Hamming distance, the Euclidean interval-vector distance, the interval-difference
distance measure of Coyle and Shmulevich, and the chronotonic distance mea-
sures of Gustafson and Hofmann-Engl.

In this paper we aim to find an efficient algorithm to measure the difference
between two rhythms represented as binary sequences using the swap distance.
More formally, given two n-bit (cyclic) binary strings, A and B, represented
on a circle (necklace instances). Let each sequence have the same number k of
1’s. We are interested in computing the cyclic swap distance between A and B,
i.e., the minimum number of swaps needed to convert A to B, minimized over
all rotations of B. We show that this distance may be efficiently and elegantly
computed in O(k2).

The outline of the paper is as follows: Some preliminaries are described in
Section 2. An O(k3) solution is presented in Section 3 followed by a more efficient
O(k2) solution in Section 4. Conclusion is drawn in Section 5.

Necklace Swap Problem for Rhythmic Similarity Measures 237

2 Preliminaries

Let X [0..n− 1] be a necklace (circular string) of length n over Σ = {0, 1}. By
X [i] we denote the (i + 1)-st bit in X , 0 ≤ i < n. We also denote by k, the
number of 1’s in X . Let x = (x0, x1, . . . , xk−1) be the compressed representation
of X , such that X [xi] = 1 for 0 ≤ i < k. For some integer r, let x〈r〉 be
the r-inverted-rotation of x such that x

〈r〉
i = xi �− r for 0 ≤ i < k and i �− r =

mod(i − r, k). If X = [10000100010001001], for example, x = (0, 5, 9, 13, 16),
x〈1〉 = (5, 9, 13, 16, 0), and x〈3〉 = (13, 16, 0, 5, 9).

We define a mapping π:{1, . . . , k} → {1, . . . , k} such that π is a bijective (both
onto and 1-1) function. We will show in Lemma 3 that only mappings that don’t
cross should be considered. We define the non-crossing mappings π0, . . . , πk−1

as follows

πh(i) = (i + h) mod k, for 0 ≤ i, h < k. (1)

For n = 5, Fig. 3 graphically illustrates the πh mappings for 0 ≤ h < 5. Note
that these mappings have the property that their arrows never cross.

We define the median of a sorted sequence x = (x0, . . . , xk−1) as follows:

xmed =
{

x(k−1)/2 , k odd,
x�(k−1)/2�, k even.

(2)

Note that, when k is even, there are actually two medians, occurring at
"(k + 1)/2# (lower median) and �(k + 1)/2� (upper median). For simplicity, Eq.
2 considers the lower median as “the median” when k is even.

Let x = (x0, x1, ..., xk−1) and y = (y0, y1, ..., yk−1) be two compressed rep-
resentation of X and Y , respectively. Then the manhattan distance L1(x, y) is
defined as follows:

L1(x, y) =
k−1∑
i=0

|xi − yi| (3)

Problem 1. Given X and Y , two necklaces both of length n and same number of
1’s, the minimum necklace swap problem is to find the cyclic swap distance
between X and Y , i.e., the minimum number of swaps needed to convert X to
Y , minimized over all rotations of Y . A swap is an interchange of a one and a
zero that are adjacent in the binary string.

¼0

0 0
1
2

4
3

1
2
3
4

0 1
2
3

0
4

1
2
3
4

0 2
3
4

1
0

1
2
3
4

0 3
4
0

2
1

1
2
3
4

0 4
0
1

3
2

1
2
3
4

¼1 ¼2 ¼3 ¼4

Fig. 3. πh-mappings for 0 ≤ h < 5

238 Y.J.P. Ardila, R. Clifford, and M. Mohamed

3 An O(k3) Algorithm

The naive approach is to examine each mapping and calculate for each possible
rotation the sum of number of swap operations between each pair of mapped 1’s.
This approach costs O(nk2) time. This is because there are k possible mappings
(cf. Lemma 3) and n possible rotations per each mapping. The question is: Do
we really need to examine all possible n circular shifts for each mapping? Lemma
2 suggests that only k circular shifts need to be checked for each mapping. This
gives a total cost of O(k3) time. The algorithm works as follows:

Let u and v be the rest-interval sequences for x and y, resp., define as follows

ui =
{

xi+1 − xi , if 0 ≤ i < k − 1
n− xk−1 + x0, if i = k − 1 (4)

and

vi =
{

yi+1 − yi , if 0 ≤ i < k − 1
n− yk−1 + y0, if i = k − 1 (5)

Using this representation we can now compute the following sequences

x
[h]
i =

{
u
〈h〉
i , if i = 0

(x[h]
i−1 + u

〈h〉
i) mod n, if 0 < i < k

(6)

and

y
[h]
i =

{
v
〈h〉
i , if i = 0

(y[h]
i−1 + v

〈h〉
i) mod n, if 0 < i < k

(7)

with the characteristic that for x[i] and y[j], 0 ≤ i, j < k, the (i + 1)st 1-bit in X
coincides with the (j + 1)st 1-bit in Y .

Example 1. Let x = (1, 6, 9, 12, 13) and y = (0, 3, 4, 10, 16). To understand the
meaning u and v we first show the representation of x and y as bit string X
and Y in Table 1. Note that the 1’s are numbered from 0 to k, so for example
the 1st and 2nd bit in X are located at positions 1 and 6. So, it’ll be easier now
to understand the interval sequences u = (5, 3, 3, 1, 5) which corresponds to the
intervals where there is a rest (0’s) between two strokes (1’s). In other words u
stores the gaps between the 1’s in X . In the same way, we find v = (3, 1, 6, 6, 1).

Now let’s understand the meaning of, lets say, x[3]. To find x[3], according
with Eq. 6, we need to find u〈3〉, thus the 3rd-inverted-rotation of u. So since
u = (5, 3, 3, 1, 5), then u〈3〉 = (1, 5, 5, 3, 3) (i.e. u was rotated to the left by 3
positions). Notice that, by doing this we have moved the gap between the 4th
and the 5th 1’s in X , by three positions to the left. Using u〈3〉 and (6) we get
x[3] = (1, 6, 11, 14, 0). In plain English words, x[3] corresponds to a rotation of
X such that its 4th 1-bit is set at location 0; this is equivalent to shifting X to
the left by 12 places. Table 1 also shows the representation of Y [1] which has

Necklace Swap Problem for Rhythmic Similarity Measures 239

Table 1. Illustration of x[3] and y[1] computation for x = (1, 6, 9, 12, 13) and y =

(0, 3, 4, 10, 16). u = (5, 3, 3, 1, 5) and v = (3, 1, 6, 6, 1)

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X 0 10 0 0 0 0 11 0 0 12 0 0 13 14 0 0 0

Y 10 0 0 11 12 0 0 0 0 0 13 0 0 0 0 0 14

X [3] 13 14 0 0 0 0 10 0 0 0 0 11 0 0 12 0 0

Y [1] 11 12 0 0 0 0 0 13 0 0 0 0 0 14 10 0 0

Table 2. Computation of L1(x
[i], y[j]) for 0 ≤ i, j < 5. x = (1, 6, 9, 12, 13), y =

(0, 3, 4, 10, 16), u = (5, 3, 3, 1, 5) and v = (3, 1, 6, 6, 1)

u〈i〉 → x[i] 5,3,3,1,5 → 3,3,1,5,5 → 3,1,5,5,3 → 1,5,5,3,3 → 5,5,3,3,1 →
v〈j〉 → y[j] 5,8,11,12,0 3,6,7,12,0 3,4,9,14,0 1,6,11,14,0 5,10,13,16,0

3,1,6,6,1 → 3,4,10,16,0 11 9 3 7 11

1,6,6,1,3 → 1,7,13,14,0 9 11 9 3 9

6,6,1,3,1 → 6,12,13,16,0 11 19 17 15 3

6,1,3,1,6 → 6,7,10,11,0 4 8 10 10 12

1,3,1,6,6 → 1,4,5,11,0 15 7 9 11 23

����������

the property of having the 2nd 1-bit in Y moved at position 0. Note that if we
compute L1(x[3], y[1]) we compute the swap distance for π3 (cf. Fig. 3).

The minimum necklace swap problem is equivalent to calculating

s∗ = min
0≤i,j<k

L1(x[i], y[j]). (8)

Example 2. For x = (1, 6, 9, 12, 13) and y = (0, 3, 4, 10, 16) Table 2 shows the
computation of L1(x[i], y[j]) for 0 ≤ i, j < 5. 3 was the minimum swap distance
given by, for example, (3,4,9,14,0) and (3,4,10,16,0). This is also the number of
swaps needed to match [10011000010000100] and [10011000001000001].

Fig. 4 shows the main steps of the algorithm. Lines 5 can be compute in O(k),
hence Algorithm 1 runs in O(k3). By using the “high/low- frequency” technique
[1], Indyk et. al. proposed an algorithm to calculate all values L1(x[i], y[j]), 0 ≤
i, j < k in O(k(ω+3)/2) time, where O(kω) is the running time required to mul-
tiply two matrices of size k×k [11]. In the following section, we will show that
we don’t need to calculate all values L1(x[i], y[j]) in order to find s∗.

4 An O(k2) Algorithm

In this section we present the main algorithm for solving the necklace problem.
We show that in order to find the minimum swap distance we need only consider

240 Y.J.P. Ardila, R. Clifford, and M. Mohamed

Algorithm 1
Input: x, y, k
Output: s∗

1. � compute u and v using Eq. 4 and Eq. 5, resp.
2. s∗ = ∞
3. for i = 0 to k − 1 do
4. for j = 0 to k − 1 do
5. � compute x[i] and y[j] using Eq. 6 and Eq. 7, resp.
6. if s∗ < L1(x

[i], y[j]) then s∗ = L1(x
[i], y[j])

7. return s∗

Fig. 4. Algorithm 1

a column in Table 2 instead of the whole table, hence giving an overall time
complexity of O(k2). Our strategy is to consider each different mapping πh, for
0 ≤ h < k, in turn and to find the rotation for each that minimises the swap
distance. The algorithm works as follows:

If we define the residual sequence c[h] as

c
[h]
i = y

[h]
i − x

[0]
i , for 0 ≤ i, h < k, (9)

then the minimum necklace swap problem is equivalent to calculating

s∗ = min
0≤h<k

k−1∑
i=0

|δ[h]
i |, (10)

where
δ
[h]
i = c

[h]
i − c

[h]
med, for 0 ≤ i, h < k, (11)

and c
[h]
med is the median of c[h] as defined in Eq. 2.

Fig. 5 shows the main steps of the algorithm. Lines 1,2,5-6,8 can be computed
in O(k). Line 7 can be computed in O(k) using [13], therefore Algorithm 2 runs
in O(k2).

Before proving the correctness of Algorithm 2, we give an example.

Example 3. For x = (1, 6, 9, 12, 13) and y = (0, 3, 4, 10, 16), Table 3 shows the
computation of c[h], c

[h]
med, δ

[h], and
∑k−1

i=0 |δ
[h]
i | for 0 ≤ h < k. 3 was the minimum

swap distance between (5,8,11,12,0) and (6,7,10,11,0)〈−1〉. This is also the num-
ber of swaps needed to match [10001001001100000] and [01000011001100000].
This example is also fully illustrated in Fig. 6.

Lemma 1. For a given mapping π and two cyclic bit-strings X and Y , the
rotation of θ that minimises the swap distance between X and Y can be found
in O(k) time using Algorithm 2.

Proof. Let’s consider mapping π0, then we are trying to find the rotation θ that
minimises the swap distance between X and Y under π0. According with Eq. 1,
π0 pair’s the 1’s in X with the 1’s in Y as follows:

Necklace Swap Problem for Rhythmic Similarity Measures 241

Algorithm 2
Input: x, y, k
Output: s∗

1. � compute u and v using Eq. 4 and Eq. 5, resp.
2. � compute x[0] using Eq. 6.
3. s∗ = ∞
4. for h = 0 to k − 1 do
5. � compute y[h] using Eq. 7
6. � compute c[h] using y[h], x[0] and Eq. 9.

7. c
[h]
med = median(c[h])

8. � compute δ[h] using c[h], c
[h]
med and Eq. 11.

9. d = 0
10. for i = 0 to k − 1 do
11. d = d + |δ[h]

i |
12. if s∗ < d then s∗ = d
13. return s∗

Fig. 5. Algorithm 2

Table 3. Computation of c[h], c
[h]
med, δ[h], and

�k−1
i=0 |δ[h]

i | for 0 ≤ h < k. x =

(1, 6, 9, 12, 13), y = (0, 3, 4, 10, 16), u = (5, 3, 3, 1, 5), v = (3, 1, 6, 6, 1).

h v〈h〉 → y[h] x[0] c[h] c
[h]
med δ[h] �k−1

i=0 |δ[h]
i |

0 3,1,6,6,1 → 3,4,10,16,0 5,8,11,12,0 -2,-4,-1,4,0 -1 -1,-3,0,5,1 10

1 1,6,6,1,3 → 1,7,13,14,0 5,8,11,12,0 -4,-1,2,2,0 0 -4,-1,2,2,0 9

2 6,6,1,3,1 → 6,12,13,16,0 5,8,11,12,0 1,4,2,4,0 2 -1,2,0,2,-2 7

3 6,1,3,1,6 → 6,7,10,11,0 5,8,11,12,0 1,-1,-1,-1,0 -1 2,0,0,0,1 3

4 1,3,1,6,6 → 1,4,5,11,0 5,8,11,12,0 -4,-4,-6,-1,0 -4 0,0,-2,3,4 9

(0 → 0), (1 → 1), . . . , (k → k).

Since the locations of the 1’s in X and Y are stored in x[0] and y[0], resp.,
vector c[0] stores the number of swaps needed to make each 1-bit in Y coincides
with its corresponding 1-bit in X following π[0], but at the same time, since the
signs are kept, it also “stores” the direction in which the swaps are to be done.
Fig. 7 illustrates this fact.

Now we seek to find the value θ such that

k−1∑
i=0

|c[0]
i − θ| (12)

is minimum. To minimise (12) we need only set θ to be the median of c[0] which
can be calculated in O(k) time using a linear time selection algorithm [13]. Once

242 Y.J.P. Ardila, R. Clifford, and M. Mohamed

5

0
-3

-1

y
0

x y
1

2

3

7
9

13
12

x
14

y
5 x

y4
6

8
x

10

y 11
x

15
16

0
0

2

1

3

4

1

2

3

4

median=-1

4

-1

-4

-2

y
0

x
1

2

y3

7
9

13
12

x
14

5 x
y4

6

8
x

y 10

11
x

15

y
16

0 0

1

2

3

4

1

2

3

4

11

10

0

1

median=0

2

-1

-4

y
0

x y
1

2

3

y
7

9

y
13

12
x

y
14

5 x
4

6

8
x

10

11
x

15
16

0 1
2

4

1

2

3

4

9

0

0

2

-1

0
x

1
2

3

7
9

13
12

x
y

14

5 x
y4

6

8
x

y 10

y 11
x

y
15

16

0

0

2

1

3

4

1

2

3

4

4

4

1
2

y
0

x
1

2

3

7
9

y
13

y 12
x

14

5 x
4

y
6

8
x

10

11
x

15

y
16

0

0

1 2

3

4 1

2

3

4

11

7

0

1

3

0

2

2

-2

0
2

0
x y

1
2

3

y
7

9

13
y 12

x
14

5 x
4

6

y
8

x
10

y 11
x

15
16

0

0

2

1

3

4

1

2

3

4

-1

1

y
0

x
1

2

3

y
7

9

13
12

x
14

5 x
4

y
6

8
x

y 10

y 11
x

15
16

0

0
1

2

3

4

1

2

3

4

4

3

0

1

-1

-1

0

0

0

0
x

1
2

3

7

y
9

13
12

x
14

y
5 x

y4
6

y
8

x
10

11
x

y
15

0

0

2 1

3

4

1

2

3

4

y
0

x y
1

2

3

7
9

13
12

x
14

y
5 x

y4
6

8
x

10

y 11
x

15
16

0
0

1

2

3

4

1

2

3

4

15

9

0

4

-6

-1

0 0

-4

-4

0
-2

3

median=2

median=-1
median=-4

2

-1

-4

y
0

x y
1

2

3

y
7

9

y
13

12
x

y
14

5 x
4

6

8
x

10

11
x

15
16

0 1
2

4

1

2

3

4

9

0

3

0

2

16

¼0 ¼1 ¼2

¼3 ¼4

Fig. 6. Computation of the minimum cyclic swap distance for X =

[1000000100000101] and Y = [0001000000101010]. x = (0, 7, 13, 15), y = (3, 10, 12, 14),

u = (5, 3, 3, 1, 5), v = (3, 1, 6, 6, 1).

Necklace Swap Problem for Rhythmic Similarity Measures 243

x0
[0] x1

[0] x2
[0] xk-1

[0]...

y0
[0] y1

[0] y2
[0] yk-1

[0]...

c0
[0] c1

[0] c2
[0] ck-1

[0]...

X

Y

Fig. 7. Illustration of c[0] computation

θ has been found, (12) can be calculated in linear time. Hence, Eq. 10 produces
the minimum swap distance and it is the optimal. �

Lemma 2. In order to find the global minimum, the only rotations θ that need
to be consider are those where two 1’s coincide.

Proof. This follows from Lemma 1. For a given mapping h and residual sequence
c[h]; c

[h]
med is a value in c[h] therefore, there must be at least one δ

[h]
i = 0, for

0 ≤ i < k. �

Lemma 3. Consider cyclic string x and a linearised string y′. A minimum map-
ping for any shift contains no crossings.

Proof. Consider any linearisation of string y and let y′ be the concatenation
of y to itself to make a string of length 2n. Define π′:{1, . . . , n} → {1, . . . , 2n}
to be a mapping from the position of the 1’s in x to the 1’s in y′s such that
π′(1) ≤ π′(i) for all i and maxi,j π′(j)− π′(i) ≤ n. It is clear that there is an 1-1
correspondence between mappings of this type and those defined in Section 2.
We further extend the definition so that π′h(1) is equal to the position of the
hth 1 in y′.

We say that a mapping, π′, has a crossing if there exist i, j such that j > i
and π′(i) > π′(j). Given a mapping π′h (and a particular rotation of x), the swap
distance with respect to π′h is simply Σ|π′h(i)−i|. We define a minimum mapping
for a particular value of h to be any mapping that minimises the swap distance.

The proof is by contradiction. Consider a mapping π′ that both minimises
the swap distance for the alignment and also contains a crossing. It follows that
there exist i, j such that j > i and π′(i) > π′(j). Now consider a new map-
ping π′∗, identical to π′ except that π′∗(i) = π′(j) and π′∗(j) = π′(i). Now
|π′∗(i)− i| < |π′(i)− i| and |π′∗(j)− j| < |π′(j)− j| so the swap distance of π′∗

is less than the swap distance of π′. This gives us our contradiction. �

We can now prove the main theorem.

Theorem 1. Algorithm 2 solves problem 1 in O(k2) time.

Proof. Every set of swap moves has a corresponding mapping from which its
swap distance can be calculated. By Lemma 3, we need only consider crossing

244 Y.J.P. Ardila, R. Clifford, and M. Mohamed

free mappings. By Lemma 1, Algorithm 2 finds the minimum swap distance for
every mapping and as so by simply iterating over all crossing free mappings the
necklace problem is solved.

The running time of each iteration is determined by the time taken by Al-
gorithm 2 which Lemma 1 shows to be O(k). There are k iterations, giving an
overall time complexity of O(k2). �

5 Conclusion

We have presented a new algorithm that solve the problem of cyclic swap distance
between two n-bit (cyclic) binary strings in O(k2) where k is the number of 1’s
(same) in both strings. We have also shown that the swap distance calculated
by our algorithm is the optimal. Natural extensions to this problem could be
(1) to consider unequal number of 1’s among the input strings and (2) to allow
scaling (increased/decrease the rest intervals of one of the input strings by a
given constant).

References

1. K. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039-1051,
1987.

2. E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard, and Y. J.
Pinzon. Computing approximate repetitions in musical sequences. International
Journal of Computer Mathematics, 79(11):1135-1148, 2002.

3. P. Clifford, R. Clifford and C. S. Iliopoulos. Faster algorithms for δ, γ-matching and
related problems. In Proceedings of the 16th Annual Symposium on Combinatorial
Pattern Matching (CPM’05), pages 68-78, 2005.

4. R. Clifford, T. Crawford, C. Iliopoulos, and D. Meredith. Problems in computa-
tional musicology. In C. S. Iliopoulos and Thierry Lecroq, editors, String Algorith-
mics, NATO Book series, King’s College Publications, 2004.

5. R. Clifford and C. S. Iliopoulos. Approximate string matching for music analysis.
Soft Computing, 8(9):597-603, 2004.

6. T. Crawford, C. S. Iliopoulos, R. Raman. String matching techniques for musical
similarity and melodic recognition. Computing in Musicology, 11:71-100, 1998.

7. M. Crochemore, C. S. Iliopoulos, G. Navarro, and Y. Pinzon. A bit-parallel suffix
automaton approach for (δ,γ)-matching in music retrieval. In M. A. Nascimento,
Edleno S. de Moura, and A. L. Oliveira, editors, 10th International Symposium
on String Processing and Information Retrieval (SPIRE’03), ISBN 3-540-20177-7,
Springer-Verlag, pages 211-223, 2003.

8. C. Cronin. Concepts of melodic similarity in music-copyright infringement suits. In
W.B. Hewlett and E. Selfridge-Field, editors, Melodic Similarity: Concepts, Proce-
dures and Applications, MIT Press, Cambridge, Massachusetts, 1998.

9. J. Godwin. The Harmony of the spheres: A sourcebook of the pythagorean tradition
in music. Inner Traditions Intl. Ltd, 1993.

10. A. Ghias, J. Logan, D. Chamberlin and and B. C. Smith. Query by humming:
Musical information retrieval in an audio database. ACM Multimedia, pages 231-
236, 1995.

Necklace Swap Problem for Rhythmic Similarity Measures 245

11. P. Indyk, M. Lewenstein, O. Lipsky, E. Porat. Closest pair problems in very high
dimensions. ICALP, pages 782-792, 2004.

12. J-S. Mo, C. H. Han, and Y-S. Kim. A melody-based similarity computation al-
gorithm for musical information. Workshop on Knowledge and Data Engineering
Exchange, page 114, 1999.

13. A. Reiser. A Linear selection algorithm for sets of elements with weights. Inf.
Process. Lett., 7(3):159-162, 1978.

14. G. T. Toussaint. Computational geometric aspects of musical rhythm. Abstracts
of the 14th Annual Fall Workshop on Computational Geometry, Massachussetts
Institute of Technology, pages 47-48, 2004.

15. G. T. Toussaint. A comparison of rhythmic similarity measures. Proceedings of the
5th International Conference on Music Information Retrieval (ISMIR’04), Uni-
versitat Pompeu Fabra, Barcelona, Spain, pages 242-245, 2004. A longer version
also appeared in: School of Computer Science, McGill University, Technical Report
SOCS-TR-2004.6, August 2004.

Faster Generation of Super Condensed

Neighbourhoods Using Finite Automata

Lúıs M.S. Russo� and Arlindo L. Oliveira

IST / INESC-ID, R. Alves Redol 9, 1000 LISBOA, Portugal
lsr@algos.inesc-id.pt, aml@inesc-id.pt

Abstract. We present a new algorithm for generating super condensed
neighbourhoods. Super condensed neighbourhoods have recently been
presented as the minimal set of words that represent a pattern neigh-
bourhood. These sets play an important role in the generation phase of
hybrid algorithms for indexed approximate string matching. An existing
algorithm for this purpose is based on a dynamic programming approach,
implemented using bit-parallelism. In this work we present a bit-parallel
algorithm based on automata which is faster, conceptually much simpler
and uses less memory than the existing method.

1 Introduction and Related Work

Approximate string matching is an important subject in computer science, with
applications in text searching, pattern recognition, signal processing and com-
putational biology.

The problem consists in locating all occurrences of a given pattern string in
a larger text string, assuming that the pattern can be distorted by errors. If the
text string is long it may be infeasible to search it on-line, and we must resort
to an index structure. This approach has been extensively investigated in recent
years [1,5,6,9,13,16,17].

The state of the art algorithms are hybrid, and divide their time into a
neighbourhood generation phase and a filtration phase [12,9].

This paper is organised as follows: in section 2 we define the basic notation
and the concept of strings and edit distance. In section 3 we present a high level
description of hybrid algorithms for indexed approximate pattern matching. In
section 4 we present previous work on the neighbourhood generation phase of
hybrid algorithms. In section 5 we present our contribution, a new algorithm
for generating Super Condensed Neighbourhoods. In section 6 we describe the
bit-parallel implementation of our algorithm and present a complexity analysis.
Section 7 presents the experimental results obtained with our implementation.
Finally, section 8 presents the conclusions and possible future developments.

� Supported by the Portuguese Science and Technology Foundation through program
POCTI POSI/EEI/10204/2001 and Project BIOGRID POSI/SRI/47778/2002.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 246–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Faster Generation of Super Condensed Neighbourhoods 247

2 Basic Concepts and Notation

2.1 Strings

Definition 1. A string is a finite sequence of symbols taken from a finite al-
phabet Σ. The empty string is denoted by ε. The size of a string S is denoted
by |S|.

By S[i] we denote the symbol at position i of S and by S[i..j] the substring
from position i to position j or ε if i > j. Additionally we denote by S〈i〉 the
point1 in between letters S[i − 1] and S[i]. S〈0〉 represents the first point and
S〈i− 1..j〉 denotes S[i..j].

2.2 Computing Edit Distance

Definition 2. The edit or Levenshtein distance between two strings ed(S, S′)
is the smallest number of edit operations that transform S into S′. We consider
as operations insertions (I), deletions (D) and substitutions (S).

For example: D S I
abcd

ed(abcd, bedf) = 3 bedf

The edit distance between strings S and S′ is computed by filling up a dy-
namic programming table D[i, j] = ed(S〈0..i〉, S′〈0..j〉), constructed as follows:

D[i, 0] = i, D[0, j] = j
D[i + 1, j + 1] = D[i, j], if S[i + 1] = S′[j + 1]

1 + min{D[i + 1, j], D[i, j + 1], D[i, j]}, otherwise
The dynamic programming approach to the problem is the oldest approach

to computing the edit distance. As such it has been heavily researched and many
such algorithms have been presented, surveyed in [11].

One particularly important contribution was Myers proposal of an algorithm
to compute the edit distance in a bit-parallel way [10]. The previous algorithm
for computing Super Condensed Neighbourhoods [14] is based on this algorithm.

A different approach for the computation of the edit distance is to use a non-
deterministic automaton(NFA). We can use a NFA to recognise all the words
that are at edit distance k from another string P , denoted Nk

P . Figure 1 shows
an automaton that recognises words that are at distance at most one from abbaa.
It should be clear that the word ababaa is recognised by the automaton since
ed(abbaa, ababaa) = 1.

To find every match of a string P in another string T we can build an
automaton for P and restart it with every letter of T . This is equivalent to
adding a loop labelled with all the character in Σ to the initial state. We shall
denote this new automaton by N ′k

P .

1 The notion of point is superfluous but useful since it provides a natural way to
introduce automata states.

248 L.M.S. Russo and A.L. Oliveira

� �a �b �b �a �a

�
Σ

�
ε, Σ

�
Σ

�
ε, Σ

�
Σ

�
ε, Σ

�
Σ

�
ε, Σ

�
Σ

�
ε, Σ

�
Σ

�a �b �b �a �a

Fig. 1. Automaton for abbaa with at most one error

3 Indexed Approximate Pattern Matching

If we wish to find the occurrences of P in T in sub-linear time, with a O(|T |α)
complexity for α < 1, we need to use an index structure for T . Suffix arrays [12]
and q-grams have been proposed in the literature [6,9]. An important class of
algorithms for this problem are hybrid in the sense that they find a trade-off
between neighbourhood generation and filtration techniques.

3.1 Neighbourhood Generation

A first and simple-minded approach to the problem consists in generating all
the words at distance k from P and looking them up in the index T . The set of
generated words is the k-neighbourhood of P .

Definition 3. The k-neighbourhood of S is Uk(S) = {S′ ∈ Σ∗ : ed(S, S′) ≤ k}

Let us denote the language recognised by the automaton Nk
P as L(Nk

P). It
should be clear that Uk(P) = L(Nk

P). Hence computing Uk(P) is achieved by
computing L(Nk

P), this can be done by performing a DFS search in Σ∗ that
halts whenever all the states of NK

P became inactive.

3.2 Filtration Techniques

The classic idea of filtration is to eliminate text areas, by guaranteeing that there
is no match at a given point, using techniques less expensive than dynamic pro-
gramming. Since this approach has the obvious drawback that it cannot exclude
all such areas, the remaining points have to be inspected with other methods.

In the indexed version of the problem, filtration can be used to reduce the
size of neighbourhoods, hence speeding up the algorithm.

The most common filtration technique splits the pattern according to the
following lemma:

Lemma 1. If ed(S,S′)≤ k and S = S1x1S2x2 . . . Sl−1xl−1Sl then Sh appears
in S′ with at most "k/l# errors for some h.

This lemma was presented by Navarro and Baeza-Yates [12]. Myers had also
presented a similar proposition [9].

Faster Generation of Super Condensed Neighbourhoods 249

4 Neighbourhood Analysis

The k-neighbourhood, Uk(S), turns out to be quite large. In fact |Uk(S)| =
O(|S|k|Σ|k) [15] and therefore we restrict our attention to the condensed k-
neighbourhood [9,12].

Definition 4. The condensed k-neighbourhood of S, CUk(S) is the largest sub-
set of Uk(S) whose elements S′ verify the following property: if S′′ is a proper
prefix of S′ then ed(S, S′′) > k.

The generation of CUk(P) can be done using automaton Nk
P by testing the

words of Σ∗ obtained from a DFS traversal of the lexicographic tree. The search
backtracks whenever all states of Nk

P became inactive or a final state becomes
active.

The second criterion guarantees that no generated word is a prefix of another
one.

Algorithm 1 generates CUk(P) by performing a controlled DFS that does
not extend words of L(Nk

P) found in the process [2]. 2

Algorithm 1. Condensed Neighbourhood Generator Algorithm
1: procedure Search(Search Point p, Current String v)
2: if Is Match Point(p) then
3: Report(v)
4: else if Extends To Match Point(p) then
5: for z ∈ Σ do
6: p′ ← Update(p, z)
7: Search(p′, v.z)
8: end for
9: end if

10: end procedure
11: Search(〈0, 1, . . . , |P |〉, ε)

The search point p is a set of active states of Nk
P . The Is Match Point

predicate checks whether some state of p is a final state. The
Extends To Match Point predicate checks whether p is non-empty.
The Update procedure updates the active states of p by processing character
z with NP .

It has been noted [14] that the condensed neighbourhood still contains some
words that can be discarded without missing any matches.

Definition 5. The super condensed k-neighbourhood of S, SCUk(S) is the
largest subset of Uk(S) whose elements S′ verify the following property:if S′′

is a proper substring of S′ then ed(S, S′′) > k.
2 We can shortcut the generate and search cycle by running algorithm 1 on the index

structure. For example in the suffix tree this can be done by using a tree node instead
of v.

250 L.M.S. Russo and A.L. Oliveira

In our example ababaa and abaa are in the condensed neighbourhood of abbaa,
but only abaa is in the super condensed neighbourhood.

Figure 2 shows an example of the 1-neighbourhood, the 1-condensed neigh-
bourhood and the 1-super condensed neighbourhood of abbaa. Observe that
SCUk(P) ⊆ CUk(P) ⊆ Uk(P).

SCU1: abaa, abba, abbba, bbaa

CU1: aabaa, ababaa, babbaa, bbbaa, aabbaa

U1: abaaa, abbaa, abbaaa, abbaab, abbab, abbaba, abbbaa

Fig. 2. Figure representing the one-neighbourhoods of abbaa

The Super Condensed k-neighbourhood is minimal in the sense that we can’t
have a set with a smaller number of words that can be used in the search without
missing matches [14].

H. Hyyrö and G. Navarro [6] presented the notion of artificial prefix-stripped
length-q neighbourhood, that is smaller than the condensed neighbourhood but
it is not minimal.

5 Computing Super Condensed Neighbourhoods Using
Finite Automata

We now present the main contribution of this paper, a new approach to compute
super condensed neighbourhoods.

In order to compute the super condensed neighbourhood we define a new
automaton. Consider the automaton N ′′k

P that results from Nk
P by adding a new

initial state with a loop labelled by all the characters of Σ linked to the old
initial state by a transition also labelled by all the characters of Σ. An example
of N ′′k

P is shown in fig. 3. The language recognised by N ′′k
P consists of all the

strings that have a proper suffix S′′ such that ed(P, S′′) ≤ k.
The set L(Nk

P)\L(N ′′k
P) is not a super condensed neighbourhood by the fol-

lowing two reasons:

prefixes Some words might still be prefixes of other words. For example both
abaa and abaaa belong to L(Nk

abbaa)\L(N ′′k
abbaa). This can be solved when

performing the DFS traversal of the lexicographic tree, as before.
substrings The definition of L(Nk

P)\L(N ′′k
P) will yield the subset of L(Nk

P) such
that no proper suffix is at distance at most k from P . But this is not what
we want, since we desire a subset of L(Nk

P) that does not contain a string
and a proper substring of that string. In order to enforce this requirement
we must stop the DFS search whenever a final state of N ′′k

P is reached.

A point p in the DFS search of the lexicographical tree now corresponds to
two sets of states, one for Nk

P and one for N ′′k
P . The Is Match Point predicate

Faster Generation of Super Condensed Neighbourhoods 251

�

�
Σ

�Σ �a �b �b �a �a

�
Σ

�
ε, Σ

�
Σ

�
ε, Σ

�
Σ

�
ε, Σ

�
Σ

�
ε, Σ

�
Σ

�
ε, Σ

�
Σ

�a �b �b �a �a

Fig. 3. Automaton N ′′k
P for abbaa that matches every proper suffix

checks that no active state of N ′′k
P is final and that there is one active state of

Nk
P that is final. The Extends To Match Point checks that no active state

of N ′′k
P is final and that there is one active state of Nk

P that is inactive in N ′′k
P .

The Update procedure updates both automata using letter z.
Observe that, in this version of the algorithm, the string ababaa is no longer

reported. In fact the DFS search backtracks after having reached abab. After
reading abab the only active state of Nk

P is the one corresponding to abb on the
second column, since ed(abab, abb) = 1. This state is also active in N ′′k

P since
ed(ab, abb) = 1 and ab is a proper suffix of abab. Interestingly, the dynamic
programming DFS for this same example backtracked only after reaching ababa.
Clearly, the dynamic programming algorithm could be improved to backtrack
sooner but it is conceptually much simpler to use the automata approach.

It was shown by Myers [9] that |CUk(P)| = O(|P |pow(|P |/k)), where:

pow(α) = log|Σ|
(α−1+

√
1+α−2)+1

(α−1+
√

1+α−2)−1
+ α log|Σ|(α

−1 +
√

1 + α−2) + α

We establish no new worst case bound for the size of the super condensed
neighbourhood so |SCUk(P)| = O(|P |pow(|P |/k)). However ours results do show
a practical improvement in speed.

6 Bit Parallel Implementation and Complexity Analysis

We implemented Nk
P and N ′′k

P by using bit-parallelism techniques that have been
proposed for N ′k

P [17,4].
Algorithm2describes thedetails of implementationof thenecessarypredicates.
The Fi computer words store the Nk

P for row i. The Si computer words store
the N ′′k

P automata states for row i. The B[z] computer words stores the bit mask
of the positions of the letter z in P .

Our implementation of the Wu and Manber algorithm stores the first column of
the automata. Furthermore for automata N ′′k

P we don’t need to store the artificial
state that was inserted, since it is sufficient to initialise the Si state vectors to zero.

Since the Update and Extends To Match Point procedures run in
O(k�|P |/w�) the final algorithm takes O(k�|P |/w� |P | s) where s =
|SCUk(P)| = O(|P |pow(|P |/k)) and w is the size of the computer word. This
is a conservative bound since it is easy to modify the algorithm so that it runs in
O((k�|P |/w�+ |P |)s). This is achieved by using the KMP failure links and was

252 L.M.S. Russo and A.L. Oliveira

Algorithm 2. Bit-Parallel of the Algorithm. Nk
P represented by Fi and N ′′k

P by
Si. Bitwise operations in C-style.
1: procedure Is Match Point(Search Point F0, . . . , Fk, S0, . . . , Sk)
2: return Fk&&!Sk

3: end procedure
4: procedure Extends To Match Point(Search Point F0, . . . , Fk, S0, . . . , Sk)
5: return ((F0& S̃0)| . . . |(Fk& S̃k))&&!Sk

6: end procedure
7: procedure Update(Search Point F0, . . . , Fk, S0, . . . , Sk, letter z)
8: F ′

0 ← (F0 << 1)&B[z]
9: S′

0 ← ((S0 << 1)|1)&B[z]
10: for i ← 0, k do
11: F ′

i+1 ← ((Fi+1 << 1)&B[z])|Fi|(Fi << 1)|(F ′
i << 1)

12: S′
i+1 ← ((Si+1 << 1)&B[z])|Si|(Si << 1)|(S′

i << 1)
13: end for
14: return F ′

0, . . . , F
′
k, S′

0, . . . , S
′
k

15: end procedure

first presented by Myers [9]. Recently Heikki Hyyrö presented way of achieving
the same result in a sequential way that is relevant for bit-parallel algorithms [8].

We also implemented a version based on Navarro and Baeza-Yates [3] vari-
ation of the NFA. The procedures are implemented in a similar way and the
resulting algorithm runs in O(�k(|P | − k)/w� |P | s). We improved this to
O((�k(|P | − k)/w� + |P |) s) using an approach similar to the one followed by
Myers but found no time difference in practice. Usually O(�k(|P |−k)/w�) is ap-
proximately constant for small patterns, which is the case for hybrid algorithms.
We usually split the pattern into pieces of size Θ(logσ |T |).

In previous work [14], we reported a complexity of O(|P |�|P |/w�s) which
was too pessimistic, since it did not take into account the possible reduction
in complexity that is possible to achieve by applying the method based on the
KMP failure links of Myers [9].

Once again the Baeza-Yates and Navarro algorithm usually doesn’t store the
states below the first diagonal including the diagonal. We don’t need to keep
track of the states below the diagonal but we do need to keep track of the
diagonal 3.

7 Experimental Results

We tested our approach by analysing its impact in the hybrid index [12]. Since
we are only interested in the neighbourhood generation phase we set the j option
of the index to 1, preventing the pattern from getting split.

Tests were run in a 800MHz Power PC G3 processor with 512K level 2 cache
640MB SDRAM, Mac Os X 10.2.8 and gcc 3.3.

3 Actually this could be reduced but the gains would be practically none.

Faster Generation of Super Condensed Neighbourhoods 253

Our implementation was based on the original implementation of Navarro
and Baeza-Yates. The NFA is also based on the variation presented by Navarro
and Baeza-Yates [3].

For each (|P |, k) combination we tested 100 patterns randomly selected from
the text and computed the average time to search for those patterns. The pat-
terns were taken with sizes 10, 15 and 20. We used two source texts, an English
text [18], that consists of cleaned up newsgroups text and a DNA file of 5.6 Mb,
from the S. cerevisiae (baker’s yeast) genome. Results are shown in figure 4.

0.05

0.1

0.15

0.2

1 2 3

t
i
m
e

errors

DNA, m=10

SCUx

♦ ♦

♦

♦
CUx

+
+

+
+

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3

t
i
m
e

errors

NEWS, m=10

SCUx

♦
♦

♦

♦
CUx

+

+

+
+

0.1

0.2

0.3

0.4

0.5

1 2 3 4

t
i
m
e

errors

DNA, m=15

SCUx

♦ ♦ ♦

♦

♦
CUx

+ +

+

+

+

0.05

0.1

0.15

0.2

0.25

1 2 3 4

t
i
m
e

errors

NEWS, m=15

SCUx

♦ ♦
♦

♦

♦
CUx

+
+

+

+

+

0.2
0.4
0.6
0.8

1
1.2
1.4

1 2 3 4 5

t
i
m
e

errors

DNA, m=20

SCUx

♦ ♦ ♦ ♦
♦

♦
CUx

+ +
+

+

+

+

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

t
i
m
e

errors

NEWS, m=20

SCUx

♦ ♦ ♦
♦

♦

♦
CUx

+ +
+

+

+

+

Fig. 4. The left column shows the average time (in seconds) for searching in DNA data

and the right column shows the average time for searching in the Newsgroups data.

The pattern size is indicated by m.

254 L.M.S. Russo and A.L. Oliveira

Table 1. Average size of CUk vs SCUk

|Σ| = 2 |Σ| = 4
k = 2 k = 4 k = 2 k = 4

CUk 67 42 810 21430

SCUk 22 14 320 591

Table 2. Bit-parallel and increased bit-parallel algorithms in milliseconds

|Σ| = 2 |Σ| = 4
k = 2 k = 4 k = 2 k = 4

CUk 0.036 0.013 1.038 20.459

SCUk-CARRY 0.012 0.004 0.297 0.312

SCUk-INC-CARRY 0.009 0.003 0.125 0.142

SCUk-NFA 0.0043 0.0026 0.1048 0.171

We generated random patterns of size 8 for alphabets of size 2 and 4. The
average size results are shown in table 1 and the time to generate the neighbour-
hoods blindly without the text are shown in table 2.

The first row shows the times needed to generate Condensed Neighbourhoods,
while the next three rows show the times needed to generate Super Condensed
Neighbourhoods. The second and third rows were obtained using the algorithms
based on dynamic programming while the last line corresponds to the algorithm
described in this article implemented using Wu and Manber bit-parallel algorithm.

8 Conclusions

In this work we proposed a new algorithm for the generation of super condensed
neighbourhoods and used it to show the practical gains of using super condensed
neighbourhoods instead of condensed neighbourhoods.

We also compared the algorithms we presented with the ones that existed
based on dynamic programming. As expected, results favour this new approach.
However it was pointed out by Heikki Hyyrö [7] that when generating the neigh-
bourhoods the main time factor corresponds to accessing the index in memory
and not in how we compute the edit distance. This means that using NFA’s or
dynamic programming makes little practical difference. This is also an argument
in favour of this algorithm since it is conceptually much simpler than the one
based on dynamic programming.

Acknowledgements

We thank Gonzalo Navarro and Baeza-Yates for kindly lending us their im-
plementation of the hybrid index. We also thank Gonzalo Navarro and Heikki
Hyyrö for their suggestions and remarks. We thank Gene Myers for suggestions,
corrections and remarks.

Faster Generation of Super Condensed Neighbourhoods 255

References

1. Ricardo A. Baeza-Yates. Text-retrieval: Theory and practice. In Jan van Leeuwen,
editor, IFIP Congress (1), volume A-12 of IFIP Transactions, pages 465–476.
North-Holland, 1992.

2. Ricardo A. Baeza-Yates and Gaston H. Gonnet. A new approach to text searching.
Commun. ACM, 35(10):74–82, 1992.

3. Ricardo A. Baeza-Yates and Gonzalo Navarro. A faster algorithm for approximate
string matching. In Daniel S. Hirschberg and Eugene W. Myers, editors, CPM,
volume 1075 of Lecture Notes in Computer Science, pages 1–23. Springer, 1996.

4. Ricardo A. Baeza-Yates and Gonzalo Navarro. Faster approximate string matching.
Algorithmica, 23(2):127–158, 1999.

5. Archie L. Cobbs. Fast approximate matching using suffix trees. In Zvi Galil and
Esko Ukkonen, editors, CPM, volume 937 of Lecture Notes in Computer Science,
pages 41–54. Springer, 1995.

6. H. Hyyrö and G. Navarro. A practical index for genome searching. In Proceedings of
the 10th International Symposium on String Processing and Information Retrieval
(SPIRE 2003), LNCS 2857, pages 341–349. Springer, 2003.

7. Heikki Hyyrö. Practical Methods for Approximate String Matching. PhD thesis,
Faculty of Information of the University of Tampere, 2003.

8. Heikki Hyyrö. An improvement and an extension on the hybrid index for ap-
proximate string matching. In Proceedings of the 11th International Symposium
on String Processing and Information Retrieval (SPIRE 2003), LNCS 3246, pages
208–209. Springer, 2004.

9. E. Myers. A sublinear algorithm for approximate keyword matching. Algorithmica,
(12):345–374, 1994.

10. Gene Myers. A fast bit-vector algorithm for approximate string matching based
on dynamic programming. In Martin Farach-Colton, editor, CPM, volume 1448 of
Lecture Notes in Computer Science, pages 1–13. Springer, 1998.

11. G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

12. G. Navarro and R. Baeza-Yates. A hybrid indexing method for approximate string
matching. Journal of Discrete Algorithms, 1(1):205–239, 2000.

13. G. Navarro, R. Baeza-Yates, E. Sutinen, and J. Tarhio. Indexing methods for
approximate string matching. IEEE Data Engineering Bulletin, 24(4):19–27, 2001.

14. Lúıs M. S. Russo and Arlindo L. Oliveira. An efficient algorithm for generating
super condensed neighborhoods. In Alberto Apostolico, Maxime Crochemore, and
Kunsoo Park, editors, CPM, volume 3537 of Lecture Notes in Computer Science,
pages 104–115. Springer, 2005.

15. E. Ukkonen. Finding approximate patterns in strings. Journal of Algorithms, pages
132–137, 1985.

16. Esko Ukkonen. Approximate string-matching over suffix trees. In Alberto Apos-
tolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, CPM, volume 684
of Lecture Notes in Computer Science, pages 228–242. Springer, 1993.

17. Sun Wu and Udi Manber. Fast text searching allowing errors. Commun. ACM,
35(10):83–91, 1992.

18. file 20ng-train-all-terms from http://www.gia.ist.utl.pt/~acardoso/datasets

Restricted Transposition Invariant Approximate

String Matching Under Edit Distance

Heikki Hyyrö

Department of Computer Sciences, University of Tampere, Finland
heikki.hyyro@gmail.com

Abstract. Let A and B be strings with lengths m and n, respectively,
over a finite integer alphabet. Two classic string mathing problems are
computing the edit distance between A and B, and searching for approx-
imate occurrences of A inside B. We consider the classic Levenshtein dis-
tance, but the discussion is applicable also to indel distance. A relatively
new variant [8] of string matching, motivated initially by the nature of
string matching in music, is to allow transposition invariance for A. This
means allowing A to be “shifted” by adding some fixed integer t to the
values of all its characters: the underlying string matching task must then
consider all possible values of t. Mäkinen et al. [12,13] have recently pro-
posed O(mn log log m) and O(dn log log m) algorithms for transposition
invariant edit distance computation, where d is the transposition invari-
ant distance between A and B, and an O(mn log log m) algorithm for
transposition invariant approximate string matching. In this paper we
first propose a scheme to construct transposition invariant algorithms
that depend on d or k. Then we proceed to give an O(n + d3) algorithm
for transposition invariant edit distance, and an O(k2n) algorithm for
transposition invariant approximate string matching.

1 Introduction

Let Σ be a finite integer alphabet of size σ so that each character in Σ has a
value in the range 0, . . . , σ − 1. We assume that strings are composed of a finite
(possibly length-zero) sequence of characters from Σ. The length of a string A
is denoted by |A|. When 1 ≤ i ≤ |A|, Ai denotes the ith character of A. The
notation Ai..h, where i ≤ h, denotes the substring of A that begins at character
Ai and ends at character Ah. Hence A = A1..|A|. String A is a subsequence of
string B if B can be transformed into A by deleting zero or more characters
from it.

Let ed(A, B) denote the edit distance between strings A and B. For conve-
niency, the length of A is m and the length of B is n throughout the paper, and
we also assume that m ≤ n. In general, ed(A, B) is defined as the minimum num-
ber of edit operations that are needed in transforming A into B, or vice versa.
In this paper we concentrate specifically on Levenshtein distance (denoted by
edL(A, B)), which allows a single edit operation to insert, delete or substitute
a single character. But the methods are applicable also to indel distance (de-
noted by edid(A, B)), which differs only in that it does not allow substitutions.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 256–266, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Restricted Transposition Invariant Approximate String Matching 257

Indel distance is interesting for example because it is related to llcs(A, B), the
length of the longest common subsequence between A and B, by the formula
2× llcs(A, B) = m + n− edid(A, B).

If A takes the role of a pattern string and B the role of a text string, approx-
imate string matching is defined as searching for those locations j in B where
ed(A, Bh..j) ≤ k for some h ≤ j. Here k is a predetermined error threshold.

An interesting variation of string comparison/matching, allowing transposi-
tion invariance, was proposed recently by Lemström and Ukkonen in [8] in the
context of music comparison and retrieval. If musical pieces are stored as se-
quences of note pitches and we want to find a melody pattern p (ie. a string
whose characters are note pitch values) from a music database, it may be nat-
ural not to care about the overall pitch at which p is found. This leads to the
basic idea of transposition invariant matching: to allow A to match at any pitch.
Transposition invariance has also other possible uses. Mäkinen et al. [13] mention
several, such as time series comparison.

A transposition is represented as an integer t. Characters Ai and Bj match
under transposition t if Ai + t = Bj . With the finite integer alphabet Σ, the
set of all possible transpositions is T = {b − a | a, b ∈ Σ}. Let A + t denote
string A that has been shifted by transposition t. That is, the ith character of
A + t is Ai + t. The notation edt(A, B) denotes the transposition invariant edit
distance between A and B. It requires us to find the minimum distance over
all transpositions, ie. edt(A, B) = min{ed(A + t, B) | t ∈ T}. Then the task of
transposition invariant approximate matching is to find locations j in B where
edt(A, Bh..j) ≤ k for some h ≤ j.

At the moment there is no algorithm that is able to compute edt(A, B) more
efficiently in the worse case than the approach of simply computing the distances
ed(A+ t, B) separately for each possible transposition t. Hence the current non-
trivial solutions, including the ones we propose, are concentrated on how to
compute each distance ed(A+ t, B) efficiently [12,13], and on building heuristics
on how to quickly discard possible transpositions from further consideration [9].

We will assume for the remaining part if the paper that the notion of edit
distance refers to the Levenshtein distance (e.g. ed(A, B) = edL(A, B)).

2 Dynamic Programming

The classic O(mn) solution [19] for computing ed(A, B) is to fill an (m + 1) ×
(n+1) dynamic programming table D, where the cell D[i, j] will eventually hold
the value ed(A1..i, B1..j). Under Levenshtein distance it works as follows. First
the boundary values of D are initialized by setting D[i, 0] = i and D[0, j] = j for
i ∈ 0, . . . , m and j ∈ 1, . . . , n. Then the remaining cells are filled recursively so
that D[i, j] = D[i− 1, j − 1] if Ai = Bj , and otherwise D[i, j] = 1 + min{D[i−
1, j − 1], D[i− 1, j], D[i, j − 1]. The recurrence for indel distance is very similar.

The dynamic programming method can be modified to conduct approximate
string matching by changing the boundary initialization rule D[0, j] = j into
D[0, j] = 0 [16].

258 H. Hyyrö

2

S

P

I

R

E

S T RI

0 1 2 3 4 5

1 1

1 12

23

0

4

5

A

S

P

I

R

E

S T RI

0 1 2 3 4 5

1 1

1 1

2

2 2

23

0

4

5

A

Fig. 1. Assume the values L[1, −1] = 2, L[1, 0] = 2, and L[1, 1] = 1 are already known.

(Left) When computing the value L[2, 0], we have q = 0, s = max{L[1, −1], L[1, 0] +

1, L[1, 1] + 1} = 3, and lcp(s + 1, q + s + 1) = lcp(4, 4) = 0. Hence L[2, 0] = 3. (Right)
When computing the value L[2, 1], we have q = 1, s = max{L[1, 0], L[1, 1]+1, L[1, 2]+

1} = 2, and lcp(s, q + s) = lcp(3, 4) = 2. Hence L[2, 1] = 4.

2.1 Greedy Filling Order

Let diagonal q be the up-left to low-right diagonal in D whose cells D[i, j] satisfy
j−i = q. Ukkonen [17] proposed a greedy algorithm for computing edit distance.
The cells in D are filled in the order of increasing distance values 0, 1, The
algorithm is based on the well-known facts that the values along a diagonal q
are non-decreasing, and that moving from one diagonal to another costs one
operation. Let L[r, q] denote the lowest row on diagonal q of D that has a value
less or equal to r, and define L[r, q] = −1 if such row does not exist. Thus
L[r, q] = max{i | D[i, i + q] ≤ r ∨ i = −1}. The greedy method can be used as
follows under Levenshtein distance. First the values L[r, q] are initialized with
the value −1. Once the values L[r − 1, q] are known, the values L[r, q] can be
computed using the rule L[r, q] = min{m, s + lcp(s + 1, q + s + 1)}, where s =
max{L[r− 1, q− 1], L[r− 1, q] + 1, L[r− 1, q + 1] + 1}, and lcp(i, j) is the length
of the longest common prefix between Ai..m and Bj..n. Fig. 1 shows an example.
The value lcp(i, j) can be computed in constant time by using the method of
Chang and Lawler [1], which requires O(n) time preprocessing. Hence the greedy
algorithm is able to compute d = ed(A, B) in O(n + d2) time, as at most O(d)
diagonals are processed and a single diagonal involves O(d) computations.

3 Sparse Dynamic Programming

Sparse dynamic programming concentrates only on the matching points D[i, j]
where Ai = Bj . Let M(t) = {(i, j) | Ai + t = Bj} be the set of matching points
under transposition t. A single set M(t) can be represented in linear space and
generated in O(n log n) time [5]. By following [13], the sets M(t) can be computed
for all relevant transpositions in O(σ + mn) time. There are |M(t)| = O(mn)

Restricted Transposition Invariant Approximate String Matching 259

0 1 2 3 4 5 6

1

2

2

2

3

3

3

0

4

5

S

P

I

R

E

S T R I P E

0 1 2 3 4 5 6

1 1

1 1

2

2 2

2 2 2 2

2

3

3 3

3 3

3 3 3 3

33 3

0

4

4

4

4

4

444

5

5

S T R I P E

S

P

I

R

E

Fig. 2. (Left) A completely filled dynamic programming matrix for computing

ed(“SPIRE”,“STRIPE”). (Right) The same computation using sparse dynamic pro-

gramming. Only the cell (0, 0) and the match points are considered (shown in grey).

When the cell (i, j) = (5, 6) is computed, the preceding cells (i′, j′) are (0,0), (1,1),

(2,5), (3,4), and (4,3). The corresponding values D[i′, j′] + max{i − i′, j − j′} are 6,

5, 3, 2, and 3, respectively. The minimum value 2 corresponds to (i′, j′) = (3, 4). This

leads into setting D[5, 6] = D[3, 4] + 2 − 1 = 3.

matching points under a given transposition t. The overall number of matches
under all relevant1 transpositions is of this same complexity:

∑
t∈T
|M(t)| = mn,

as each point is a match point for exactly one value of t. This observation was
abstracted in [13] into the following Lemma, which reduces the solution of trans-
position invariant matching into finding an efficient sparse dynamic programming
algorithm for the basic case without transposition invariance.

Lemma 1 ([13]). If distance ed(A, B) can be computed in O(g(|M(t)|)f(m, n))
time, where g is a convex (concave up) increasing function, then the distance
edt(A, B) can be computed in O(g(mn)f(m, n)) time.

For edit distance, a sparse recurrence can be derived in a straightforward
manner from the corresponding dynamic programming recurrence. Let the no-
tation (i′, j′) ≺ (i, j) mean that i′ < i and j′ < j, and we also say that in
this case (i′, j′) precedes (i, j). The following sparse scheme for Levenshtein dis-
tance is adapted from Galil and Park [4]. First we initialize D[0, 0] = 0. Then
each value D[i, j] where Ai = Bj is computed recursively by setting D[i, j] =
min{D[i′, j′] + max{i− i′, j − j′} | (i′, j′) ∈ M(t) ∪ (0, 0) ∧ (i′, j′) ≺ (i, j)} − 1.
Fig. 2 shows an example. After computing the values at all matching points, the
possibly still uncomputed values D[m, j] can be computed with O(n) extra cost.
Approximate string matching is achieved by adding the value i as one possible
choice in the minimum clause. The decisive factor for efficiency of sparse dynamic
programming is how the preceding points (i′, j′) that give minimal distances at
D[i, j] are found.

Galil and Park [4], by following the framework of Eppstein et al. [2], discussed
a scheme that is able to compute the distances D[i, j] for all (i, j) ∈ M(t) in over-
1 A transposition is relevant if it leads into at least one match between A and B.

260 H. Hyyrö

all time of O(|M(t)| log log(min{|M(t)|, mn/|M(t)|})). They process the points
in row-wise manner for increasing i, and within each row for increasing j, and
maintain an owner list. The point (i′, j′) is the owner of (i, j) if it results in the
minimum distance at (i, j) in the sparse dynamic programming recurrence. On
row i, the owner list contains the column indices of the owners of the points (i, j)
on row i. Hence its size is O(n), and all its key values are integers in the range
1, . . . , n. The list of owners at each point (i, j) can be updated by doing an amor-
tized constant number of insert, delete and lookup operations on a priority queue.
This results in the overall cost O(|M(t)| log log(min{|M(t)|, mn/|M(t)|})) if the
priority queue is implemented using Johnson’s data structure [6]. When the val-
ues stored in the priority queue are integers in the range 0, . . . , z, this data struc-
ture facilitates a homogenous sequence of r ≤ z insertions/deletions/lookups (all
of the same type) in O(r log log(z/r)) time.

Mäkinen et al. [13] proposed to use two-dimensional range minimum queries
in finding the minimum point (i′, j′). They achieved O(|M(t)| log log m) time
for indel distance and O(|M(t)| log m log log m) time for Levenshtein distance by
using the data structure of Gabow et al. [3]. With the exception of computing
indel distance, Mäkinen et al. resorted to processing B in segments of O(m)
match points within the matrix D (distance), or O(m) characters (approximate
matching), in order to achieve the preceding time boundaries. They achieved
also O(|M(t)| log log m) in all cases by applying the segmenting techniques to
the approach of Eppstein et al. [2].

We note here that the above-mentioned segmenting technique is not neces-
sary for achieving O(|M(t)| log log m): the method of Eppstein et al. does not
internally rely on the typical assumption that m ≤ n. If we switch the roles of
the string pair so that A becomes B and vice versa, then that method leads di-
rectly into the run time O(|M(t)| log log m): now the owner list contains integers
in the range 1, . . . , m, in which case each operation on Johnson’s data structure
takes O(log log m) time. Taking this into account changes their time bound into
O(|M(t)| log log(min{m, |M(t)|, mn/|M(t)|})).

4 Restricting the Computation

Now we are ready to present our technique for restricting the computation with
transposition invariant edit distance. The first building block is the following
Lemma that is essentially similar to the idea of so-called counting filter [7,14].

Lemma 2. Let A and B be two strings and D be a corresponding dynamic
programming table that has been filled as described in section 2. The condition
D[i, j] ≤ k can hold only if the substring Bj−h+1..j , where h = min{i, j}, matches
at least i− k characters of A1..i.

Using the preceding lemma, we get the main rule for restricting the computation.

Lemma 3. Let c > 1 be a constant, and ck and j be positive integers that fulfill
the conditions k < ck ≤ m and 1 ≤ j ≤ n. There exists at most O(k) different
transpositions t for which Dt[ck, j] ≤ k.

Restricted Transposition Invariant Approximate String Matching 261

Proof. By Lemma 2, the length-ck prefix A1..ck can match a substring ending at
Bj with at most k errors only if the substring Bj−h+1..j , where h = min{ck, j},
matches at least ck− k characters of A1..i. The corresponding ck× h submatrix
of D, spanning rows 1, . . . , ck and columns j−h+1, . . . , j, contains at most c2k2

character-pairs (Ai, Bj). Since Ai + t = Bj for only one transposition t, there
can be at most c2k2/(ck − k) = k(c2/(c − 1)) = O(k) different transpositions
that have at least ck − k matches. �

The value c2/(c− 1) in Lemma 3 gets its minimum value, 4, when we choose
c = 2. In the following section we propose how to use this Lemma.

5 The Main Algorithm

Assume first that we wish to compute the accurate value edt(A, B) only if it is
at most k. We can use Lemma 3 in solving this problem efficiently. The first step
is to conduct sparse dynamic programming on a restricted part of D.

Step 1: Partial Sparse Dynamic Programming. Consider a given relevant
transposition t. In the first step we compute ed(A1..2k + t, B) by using sparse
dynamic programming. During (or after) this process we compute the values
D[2k, j] for j = 1, . . . , n and record the values that are ≤ k. This contains
several elements. The first is an ordered list matchPos that contains the pair
(j, D[2k, j]) if D[2k, j] ≤ k. The matchPos list is in ascending order according
to j. The positions j are also recorded into k + 1 ordered lists matchPos(p) for
p = 0, . . . , k. The list matchPos(p) contains in ascending order all positions j
where D[2k, j] = p.

At this point we have all relevant information of D until row 2k. Fig. 3
illustrates.

2k

0

m

n

A

B

For all relevant
transpositions t,
the values
D[2k, j] ≤ k for
j = 1, . . . , n.

Fig. 3. For each relevant transposition, the values D[2k, j] ≤ k are recorded for j =

1, . . . , n by using sparse dynamic programming within rows 0, . . . , 2k of the dynamic

programming matrix (shaded area)

262 H. Hyyrö

Step 2: Match Extension. Let consPos be an ordered list of the positions
and lengths of maximal groups of consecutive values D[2k, j] ≤ k. The pair (x, y)
appears in consPos if and only if D[2k, j] ≤ k for j = x, . . . , x + y − 1 and it
is not true that D[2k, x− 1] ≤ k or D[2k, x + y] ≤ k. We do not actually store
this complete list, as it can be recovered during a single linear time traversal
of the list matchPos. We start the traversal from the beginning of matchPos,
and every time an item (x, y) is recovered, the traversal is suspended until the
following checking phase is completed for that (x, y). Fig. 4a illustrates. Then we
recover the next item (x, y), and so on until the matchPos has been completely
traversed.

The final checking step applies a variation of a greedy edit distance algorithm
[17] (Section 2.1) over each group of consecutive potentially match-seeding posi-
tions. This stage checks which, if any, of the cells D[2k, j] recorded in matchPos
array can be extended to a full match between A and a prefix of B within edit
distance k. This is done separately for each item (x, y) in consPos. The con-
secutive cells D[2k, x], . . . , D[2k, x + y − 1] that correspond to (x, y) lie on the
diagonals x−2k, . . . , x−2k+y−1 in D. It is enough to consider these diagonals
using the greedy approach. Other type of diagonals are already known to con-
tain a value larger than k, and values along a diagonal never decrease. The basic
greedy algorithm needs to be modified in order to handle the fact that values on
row 2k do not originally follow the greedy computing order.

For simplicity, we consider a (m − 2k + 1) × y submatrix D′ of D in which
D′[i, j] is equal to D[2k + i, x + j]. We use the prime symbol to mean that a
previously used construct addresses via D′ instead of D. For example the value
L′[r, q] equals L[r, x − 2k + q] − 2k (see Section 2.1). We also use the notation
m′ = m− 2k.

We use two auxiliary arrays of size y = O(n) in our greedy algorithm. The
first array is called initDist, and it initially contains the values initDist[j] =
D′[0, j] = D[2k, x + j] for j = 0, . . . , y − 1. These values are set by re-traversing
the items of matchPos that were included in recovering the currently processed
item (x, y) of consPos. The second array, called sortDist, contains the indices
0, . . . , y−1 sorted according to the value of the corresponding entry in initDist.
Fig. 4b illustrates. This way initDist[sortDist[z]] ≤ initDist[sortDist[z + 1]]
for z = 0..y− 2. Also sortDist can be initialized in linear time by extracting the
values from the matchPos(p) lists.

We also use values readyCount and currDist. The value readyCount tells
how many diagonals have been completely processed, and it is first initialized to
0. The value currDist tells the distance values that will be expanded/added
next in L′[r, q]. That is, we will next update values of form L′[currDist, q]
among the diagonals that are still not completely processed. Initially currDist
is equal to the minimum value in initDist + 1, and this can be first computed
as initDist[sortDist[0]] + 1.

First all values L′[r, q] are initialized by setting L′[r, q] = −1 for q = 0, . . . , y−
1 and r = 0, . . . , k. Then the list initDist is traversed for j = 0, . . . , y − 1 and
at each j we set L′[initDist[j], j] = lcp(2k + 1, x + j + 1). This lets the current

Restricted Transposition Invariant Approximate String Matching 263

The previous item
in consPos

a)

b) c)

row 2k

Positions with a value D[2k, j] ≤ k = 2 are contained in matchPos (shaded).

x x− y + 1 = x + 6 (in this example, y = 7)

0 y − 1 = 6

initDist

sortDist

2 1 0 1 0 1 22 23 4 5333 3 4 3 3 44 4 43

The next item in
consPos

2 1 0 1 0 1 2

The current item
(x, y) = (x, 7) in consPos

2 01 34 5 6

sortDist
0 y − 1 = 6

2 01 34 5 6

readyCount = 1

Positions to the left of readyCount are for
completed diagonals. This example shows a case
where diagonal 2 has already reached row m′.

Fig. 4. Examples of the used variables and arrays

value D′[0, j] = D[2k, x + j] propagate along the diagonal j of D′ as long as
there are consecutive matching characters, if any. This in part makes the values
L′[r, q] more compatible with the basic greedy algorithm.

Before beginning a new round of iterations, the greedy algorithm starts from
position z = readyCount of sortDist. The positions readyCount, . . . , y − 1 of
sortDist always refer to the still unprocessed diagonals in ascending order of
their last computed value (highest r for which L′[r, q] is computed along the
corresponding diagonal q). Fig. 4c illustrates. At the beginning of each iteration,
at position z, the algorithm checks if z < y (did we already process all diagonals?)
and initDist[sortDist[z]] < currDist (did we already process all diagonals that
may get new values currDist?). If the check is successful, then the diagonal
that corresponds to sortDist[z] is processed, as described soon, and the value
of z is incremented. If the check fails, the algorithm begins a new iteration if
readyCount < y. The value currDist is incremented before the next iteration.

Let us use the shorthand q = sortDist[z] in the following. Processing diagonal
q begins by checking whether the value L′[r−1, q] has been properly propagated
to the two neighboring diagonals. If r > 0, q > 0 and L′[r, q−1] < L′[r−1, q]+1,
we set L′[r, q − 1] = min{m′, u′ + lcp(2k + u′ + 1, x + q + u′ + 1)}, where u′ =
L′[r−1, q]+1. In similar way, if r > 0, q < y−1 and L′[r, q+1] < L′[r−1, q], we set
L′[r, q+1] = min{m′, u′+lcp(2k+u′+1, x+q+u′+1)}, where u′ = L′[r−1, q]. This
removes possible anomalies present due to the initial setting that is incompatible
with the basic greedy algorithm. The cost of this extra processing is O(1) per
processed diagonal, but there could be more efficient ways in practice if one for
example records which diagonals no longer need to be checked like this. We also
note that this processing can lead into finding a match. But we let the match be
discovered and handled sometime later by the following step (the same is true
for the initial extension of the values from row 2k).

264 H. Hyyrö

Finally we update the value L[r, q] itself. Because we do know that all diago-
nals have already been processed at least up to the value currDist−1, we may use
the formula from section 2.1 as such, and set L′[r, q] = min{m′, s′ + lcp(2k+s′+
1, x+q+s′+1)}, where s′ = max{L′[r−1, q−1], L′[r−1, q]+1, L′[r−1, q+1]+1}.
If the new value is L′[r, q] = m′, we record the match, interchange the values
sortDist[z] and sortDist[readyCount] in sortDist, and increment readyCount.
The matches can be recorded into a size-y array so that the occurrences can be
reported in the end in O(y) time. After recording value L′[r, q], we also check
whether the value affects the neighboring diagonals.

As a final note, we would like to note how to compute the lcp-values efficiently.
A naive way would require us to do separate preprocessing for A + t for each
transposition t. But this can be avoided by doing the preprocessing for A and
B, where |A| = m − 1, |B| = n − 1, Ai = Ai+1 − Ai for i = 1, . . . , m − 1,
and Bj = Bj+1 − Bj for j = 1, . . . , n − 1. Let lcpT (i, j, t) be the value of
lcp(i, j) under transposition t. Now lcpT (i, j) = 0 if Ai + t �= Bj, and otherwise
lcpT (i, j) = 1+ lcp(i, j), where lcp(i, j) is as lcp(i, j) but for A and B instead of
A and B.

6 Analysis

The time complexity of the algorithm described in the preceding section is as
follows. The first stage of sparse computation takes a total time of O(|M(t)| log
log k) over all relevant transpositions. These computations produce a total of
O(kn) match points for further checking. The initialization phase before the
greedy algorithm takes linear time in the number of checked matches, that is,
O(1) per diagonal. The greedy algorithm spends O(k) time per diagonal (ie.
match point), which makes the checking cost O(k2n) time. This complexity
dominates the overall time.

In order to conduct approximate string matching, we only need to change
the stage of sparse dynamic programming. This does not change the cost, and
hence we have O(k2n) time for approximate string matching.

The O(k2n) procedure for thresholded edit distance computation can be
made O(n + k3) by considering only an O(k) diagonal band in D. And this
then enables us to obtain O(n + d3) time for computing d = edt(A, B). We first
do the computation with a limit k = 1, and then double k until the resulting
computation manages to find a value edt(A, B) ≤ k. The last round spends
O((2d)3) = O(d3) time, and the total time is bounded by O(d3)×

∑∞
h=0(1/2h)3 =

O(d3) ×O(1) = O(d3). The term O(n) comes from preprocessing (for example,
reading the input strings).

The space requirements for sparse dynamic programming are typically dom-
inated by the sets M(t), but a lower limit is the size of the input strings. When
we restrict the matching sets to contain matches only within the area of D that
participates in sparse dynamic programming, we use O(n + k2) in thresholded
and O(n+d2) space in edit distance computation. The space required in approx-
imate string matching is O(nk), but by imitating [13], this can be diminished to

Restricted Transposition Invariant Approximate String Matching 265

O(n+k2) by processing B in overlapping segments of length-O(k). The space re-
quirements for the second phase of extending the matches are of the same order:
the dominating factor is the table L′[r, q], whose size in each scenario happens
to have the same asymptotic limit as the corresponding total size of the match
sets (minus the basis O(n)).

7 Conclusion

Transposition invariant string matching is a relatively new and interesting prob-
lem proposed by Lemström and Ukkonen [8]. Previously Mäkinen et al. [12,13]
have given O(mn log log m) and O(dn log log m) algorithms for transposition in-
variant edit distance computation, where d is the transposition invariant distance
between A and B. The same authors also gave an O(mn log log m) algorithm for
transposition invariant approximate string matching. In the same work, Mäkinen
et al. also stated the challenge to develop error-dependent algorithms for trans-
position invariant string matching. In this paper we have given an initial answer
to that challenge by presenting a basic scheme for constructing transposition
invariant algorithms that depend on d or k. We then introduced an O(n + d3)
algorithm for transposition invariant edit distance and an O(k2n) algorithm for
transposition invariant approximate string matching. To the best of our knowl-
edge, these are the first such error-dependent algorithms for this problem.

References

1. Chang, W. I., and Lawler, E. L. Sublinear approximate string matching and bio-
logical applications. Algorithmica, 12:327–344, 1994.

2. Eppstein, D., Galil, Z., Giancarlo, R., and Italiano, G. F. Sparse dynamic pro-
gramming I: linear cost functions. Journal of ACM, 39(3):519–545, 1992.

3. Gabow, H. N., Bentley, J. L., and Tarjan, R. E. Scaling and related techniques
for geometry problems In Proc. 16th ACM Symposium on Theory of Computing
(STOC’84), 135–143, 1984.

4. Galil, Z., and Park, K. Dynamic programming with convexity, concavity and spar-
sity. Theoretical Computer Science, 92:49–76, 1992.

5. Hirschberg, D. S. Algorithms for the longest common subsequence problem Journal
of ACM, 24:664–675, 1977.

6. Johnson, D. B. A priority queue in which initialization and queue operations take
O(loglog D) time. Mathematical Systems Theory, 15:295–309, 1982.

7. Jokinen, P., Tarhio, J., and Ukkonen, E. A comparison of approximate string
matching algorithms. Software Practice & Experience, 26(12):1439–1458, 1996.

8. Lemström, K., and Ukkonen, E. Including interval encoding into edit distance
based music comparison and retrieval. In Proc. Symposium on Creative & Cultural
Aspects and Applications of AI & Cognitive Science (AISB 2000), 53–60, 2000.

9. Lemström, K., Navarro, G., and Pinzon, Y. Practical algorithms for transposition-
invariant string-matching To appear in Journal of Discrete Algorithms

10. Landau, G. M., and Vishkin, U. Fast parallel and serial approximate string match-
ing Journal of Algorithms, 10:157–169, 1989.

266 H. Hyyrö

11. Levenshtein, V. I. Binary codes capable of correcting spurious insertions and dele-
tions of ones (original in Russian). Russian Problemy Peredachi Informatsii 1,
12–25, 1965.

12. Mäkinen, V, Navarro, G., and Ukkonen, E. Algorithms for transposition invariant
string matching. In Proc. 20th International Symposium on Theoretical Aspects of
Computer Science (STACS’03)”, LNCS 2607, 191–202, 2003.

13. Mäkinen, V, Navarro, G., and Ukkonen, E. Transposition invariant string match-
ing. To appear in Journal of Algorithms.

14. Navarro, G. Multiple approximate string matching by counting. In Proc. 4th South
American Workshop on String Processing (WSP’97), 125–139, 1997.

15. Navarro, G. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

16. Sellers, P. The theory and computation of evolutionary distances: pattern recog-
nition. Journal of Algorithms, 1:359–373, 1980.

17. Ukkonen, E. Algorithms for approximate string matching Information and Control,
64:100–118, 1985.

18. van Emde Boas, P. Preserving order in a forest in less than logarithmic time and
linear space. Information Processing Letters, 6:80–82, 1977.

19. Wagner, R., and Fisher, M. The string-to-string correction problem. Journal of
ACM, 21(1):168–173, 1974.

Fast Plagiarism Detection System

Maxim Mozgovoy1, Kimmo Fredriksson1,�, Daniel White2, Mike Joy2,
and Erkki Sutinen1

1 Department of Computer Science, University of Joensuu,
PO Box 111, FIN–80101 Joensuu, Finland

{Maxim.Mozgovoy, Kimmo.Fredriksson, Erkki.Sutinen}@cs.joensuu.fi
2 Department of Computer Science, University of Warwick, Coventry CV4 7AL, U.K.

{D.R.White, M.S.Joy}@warwick.ac.uk

Introduction. The large class sizes typical for an undergraduate programming
course mean that it is nearly impossible for a human marker to accurately detect
plagiarism, particularly if some attempt has been made to hide the copying.
While it would be desirable to be able to detect all possible code transformations
we believe that there is a minimum level of acceptable performance for the
application of detecting student plagiarism. It would be useful if the detector
operated at a level that meant for a piece of work to fool the algorithm would
require that the student spent a large amount of time on the assignment and
had a good enough understanding to do the work without plagiarising.

Previous Work. Modern plagiarism detectors, such as Sherlock [3], JPlag [5]
and MOSS [6] use a tokenization technique to improve detection. These detec-
tors work by pre-processing code to remove white-space and comments before
converting the file into a tokenized string. The main advantage of such an ap-
proach is that it negates all lexical changes and a good token set can also reduce
the efficacy of many structural changes. For example, a typical tokenization
scheme might involve replacing all identifiers with the <IDT> token, all numbers
by <VALUE> and any loops by generic <BEGIN LOOP>...<END LOOP> tokens. Our
algorithm also makes use of tokenised versions of the input files and we use suffix
arrays [4] as our index data structure to enable efficient comparisons.

While all the above-mentioned systems use different algorithms to each other,
the core idea is the same: a many-to-many comparison of all files submitted for
an assignment should produce a list sorted by some similarity score that can
then be used to determine which pairs are most likely to contain plagiarism.
A näıve implementation of this comparison, such as that used by Sherlock or
JPlag, results in O(f(n)N2) complexity where N is the size (number of files)
of the collection, and f(n) is the time to make the comparison between one
pair of files of length n. Without loss of detection quality, our method achieves
O(N(n + N)) average time by using indexing techniques based on suffix arrays.
If the index structure becomes too large, it can be moved from primary memory
to secondary data storage without significant loss of efficiency [2].

The approach we describe can be also used to find similar code fragments in a
large software system. In this case the importance of fast algorithm is especially
� Supported by the Academy of Finland, grant 202281.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 267–270, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

268 M. Mozgovoy et al.

Algorithm 1. Compare a File Against an Existing Collection
1 p = 1 // the first token of Q
2 WHILE p ≤ q − γ + 1
3 find Q[p...p + γ − 1] from the suffix array
4 IF Q[p...p + γ − 1] was found
5 UpdateRepository
6 p = p + γ
7 ELSE
8 p = p + 1
9 FOR EVERY file Fi in the collection
10 Similarity(Q, Fi) = MatchedTokens(Fi)/q

high due to large file collection size. The Dup tool [1] uses parametrized suffix
trees to solve this task, but the algorithms are relatively complex compared to
our approach.

Algorithms and Complexity. Our proposed system is based on an index structure
built over the entire file collection. Before the index is built, all the files in the
collection are tokenized. This is a simple parsing problem, and can be solved in
linear time. For each of the N files in the collection, The output of the tokenizer
for a file Fi is a string of ni tokens. The total number of tokens is denoted by
n =

∑
ni.

We use suffix array as an index structure. A suffix array is a lexicographically
sorted array of all suffixes of a given string [4]. The suffix array for the whole
document collection is of size O(n). We consider the total memory requirements
to be acceptable for modern hardware. A suffix array allows us to rapidly find
a file (or files), containing any given substring. This is achieved with a binary
search, and requires O(m + log2 n) time on average, where m is the length of
the substring (it is also possible to make this the worst case complexity, see [4]).
The array can be constructed in time O(n log n), assuming atomic comparison
of two tokens.

Algorithm 1 is intended for finding all files within the collection’s index that
are similar to a given query file. It tries to find the substrings of the tokenised
query file, Q[1..q], in the suffix array, where q is the number of tokens. Matching
substrings are recorded and each match contributes to the similarity score. The
algorithm takes contiguous non-overlapping token substrings of length γ from
the query file and searches all the matching substrings from the index. These
matches are recorded into a ‘repository’. This phase also includes a sanity check
as overlapping matches are not allowed.

The similarity between the file Q being tested and any file Fi in the collection
is just a number of tokens matched in the collection file divided by the total
number of tokens in the test file (so it is a value between 0 and 1), i.e.

Similarity(Q, Fi) = MatchedTokens(Fi)/q,

In Algorithm 2, we encounter two types of collisions. The first one appears
when more than one match is found in the same file. If several matches that
are found correspond to the same indexed file, these matches are extended to

Fast Plagiarism Detection System 269

Algorithm 2. Update the Repository
1 Let S be the set of matches of Q[p...p + γ − 1]
2 IF some of the strings in S are found in the same file /* collision of type 1 */
3 leave only the longest one
4 FOR every string M from the remaining list S
5 IF M doesn’t intersect with any repository element
6 insert M to the repository
7 ELSE IF M is longer than any conflicting rep. element /* collision of type 2 */
8 remove all conflicting repository elements
9 insert M to the repository

Γ tokens, Γ ≥ γ, such that only one of the original matches survives for each
indexed file. Therefore, for each file in the index, the algorithm finds all matching
substrings that are longer than other matching substrings and whose lengths are
at least γ tokens. The second one is the reverse of the first problem: we should
not allow the situation when two different places in the input file correspond to
the same place in some collection file. To resolve the difficulty we use ‘longest
wins’ heuristics. We sum the lengths of all the previous matches that intersect
with the current one, and if the current match is longer, we use it to replace the
intersecting previous matches.

The complexity of Algorithm 1 is highly dependent on the value of the γ
parameter. Line 3 of Algorithm 1 takes O(γ +logn) average time, where n is the
total number of tokens in the collection (assuming atomic token comparisons). If
we make the simplifying assumption that two randomly picked tokens match each
other (independently) with fixed probability p, then on average we obtain npγ

matches for substrings of length γ. If Q was found, we call Algorithm 2. Its total
complexity is, on average, at most O((q/γ · npγ)2). To keep the total average
complexity of Algorithm 1 to at most O(q(γ + log n)), it is enough that γ =
Ω(log1/p n). This results in O(q log n) total average time. Since we require that
γ = Ω(log n), and may adjust γ to tune the quality of the detection results, we
state the time bound as O(qγ). Finally, the scores for each file can be computed
in O(N) time. To summarize, the total average complexity of Algorithm 1 can
be made O(q(γ + log n) + N) = O(qγ + N). The O(γ + log n) factors can be
easily reduced to O(1) (worst case) using suffix trees [7] with suffix links, instead
of suffix arrays. This would result in O(q + N) total time.

Note that we have excluded the tokenization of Q and that we have consid-
ered the number of tokens rather than the number of characters. However, the
tokenization is a simple linear time process, and the number of tokens depends
linearly on the file length.

To compare every file against each other, we can just run Algorithm 1 for
every file in our collection. After that, every file pair gets two scores: one when
file a is compared to file b and one when the reverse comparison happens, as the
comparison is not symmetric. We can use the average of these scores as a final
score for this pair.

Summing up the cost of this procedure for all the N files in the collection, we
obtain a total complexity of O(nγ + N2), including the time to build the suffix
array index structure. With suffix trees this can be made O(n + N2).

270 M. Mozgovoy et al.

Evaluation of the System. It is not feasible in the nearest future to compare
our system’s results with a human expert’s opinion on real-world datasets as
a human would not have the time to conduct a thorough comparison of every
possible file pair. However, we can examine the reports that are produced by
different plagiarism detection software when used on the same dataset. The
systems used for the analysis include MOSS [6], JPlag [5] and Sherlock [3].
Every system printed a report about the same real collection, consisting of 220
undergraduate student’s Java programs.

The simple approach (to consider only detection or rejection) allows us to
organize a ‘voting’ experiment. Let Si be the number of ‘jury’ systems (MOSS,
JPlag and Sherlock), which marked file i as suspicious. If Si ≥ 2, we should
expect our system to mark this file as well. If Si < 2, the file should, in general,
remain unmarked.

For the test set consisting of 155 files marked by at least one program, our
system agreed with the ‘jury’ in 115 cases (and, correspondingly, disagreed in 40
cases). This result is more conformist than the results obtained when the same
experiment was run on the other 3 tested systems. Each system was tested while
the other three acted as jury.

Conclusions. We have developed a new fast algorithm for plagiarism detection.
Our method is based on indexing the code database with a suffix array, which
allows rapid retrieval of blocks of code that are similar to the query file. This
idea makes rapid pairwise file comparison possible. Evaluation shows that this
algorithm’s quality is not worse than the quality of existing widely used methods,
while its speed performance is much higher. For the all-against-all problem our
method achieves O(γn) (with suffix arrays) or O(n) (with suffix trees) average
time for the comparison phase. Traditional methods, such as JPlag, need at least
O((n/N)2N2) = O(n2) average time for the same task. In addition, computing
the similarity matrix takes O(N2) additional time, and this cannot be improved,
as it is also the size of the output.

References

1. B. S. Baker. Parameterized Duplication in Strings: Algorithms and an Application
to Software Maintenance. SIAM Journal on Computing, 26(5):1343–1362, 1997.

2. D. Clark and J. Ian Munro. Efficient suffix trees on secondary storage. Proceedings
of the seventh annual ACM-SIAM symposium on Discrete algorithms, 1996.

3. M. S. Joy and M. Luck. Plagiarism in programming assignments. IEEE Transactions
on Education, 42(2):129–133, 1999.

4. U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches.
In Proceedings of SODA ’90, 319–327. SIAM, 1990.

5. L. Prechelt, G. Malpohl, and M. Phlippsen. JPlag: Finding plagiarisms among a
set of programs. Technical report, Fakultat for Informatik, Universitat Karlsruhe,
2000. http://page.mi.fu-berlin.de/~prechelt/Biblio/jplagTR.pdf.

6. S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for
document fingerprinting. In Proceedings of SIGMOD ’03, 76–85. ACM Press, 2003.

7. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249–260, 1995.

A Model for Information Retrieval Based on

Possibilistic Networks

Asma H. Brini, Mohand Boughanem, and Didier Dubois

IRIT, 118, route de Narbonne, Cedex 4, Toulouse, France

Abstract. This paper proposes a model for Information Retrieval (IR)
based on possibilistic directed networks. Relations documents-terms and
query-terms are modeled through possibility and necessity measures
rather than a probability measure. The relevance value for the docu-
ment given the query is measured by two degrees: the necessity and
the possibility. More precisely, the user’s query triggers a propagation
process to retrieve necessarily or at least possibly relevant documents.
The possibility degree is convenient to filter documents out from the re-
sponse (retrieved documents) and the necessity degree is useful for doc-
ument relevance confirmation. Separating these notions may account for
the imprecision pervading the retrieval process. Moreover, an improved
weighting of terms in a query not present in the document is introduced.
Experiments carried out on a sub-collection of CLEF, namely LeMonde
1994, a French newspapers collection, showed the effectiveness of the
model.

1 Introduction

The Information Retrieval (IR) process consists in selecting among a large col-
lection a set of documents that are relevant to a user’s query. The set of retrieved
documents in answer to a query does not usually correspond to the set of docu-
ments that are relevant to the user need. For an efficient Information Retrieval
System (IRS) these two sets must be equal as often as possible. The relevance
of a document to a query is usually interpreted by most of IR models, vector
space [14], probabilistic [12][13][18], inference and belief networks [20][11][17],
as a score computed by summing the inner products of term weights in the
documents and query representations.

Whatever the used model, the response to a user need is a list of documents
ranked according to a relevance value. Many approaches consider term weights as
probability of relevance. In such models the incompleteness of information is not
considered when representing or evaluating documents given a query. Notions of
certainty or possibility are not distinguished in this relevance computing. Yet,
the rough nature of document descriptions (a multi set of terms) and of the
query description (a list of terms) is hardly compatible with the high precision
of relevance values obtained by current methods. The aim of this work is to
propose an IR model based on possibilistic networks. Instead of using a unique

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 271–282, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

272 A.H. Brini, M. Boughanem, and D. Dubois

relevance value, we propose a possibilistic approach for computing relevance. The
relevance of a document to a given query is measured using two values i.e. the
necessity and the possibility of relevance. The possibility of relevance is meant
to eliminate irrelevant documents (weak plausibility). The necessity of relevance
focuses attention on what looks very relevant.

We briefly discuss the use of Bayesian networks in Information Retrieval
in section 2. In section 3 we present a general possibilistic approach for IR.
We separate reasons for rejecting a document as irrelevant from reasons for
selecting it by means of two evaluations: possibility and necessity. This approach
is a significant extension of a previous attempt based on possibilistic networks
[3]. This extension results from difficulties to find an efficient way of querying
the system. It is too restrictive (and demanding) to aggregate query terms by
an AND operator when the only information we have is a set of terms. Thus,
the idea is to aggregate query terms by conjunction or disjunction operators
according to different aggregation methods when no information is given about
the logical description of the query. To provide for such a flexibility, a query
node is required in the model architecture. We discuss in the latter section the
experiments we carried out, showing the importance of weighting schemes we
use and by comparing our approach by existing known models on a realistic
benchmark.

2 Related Works

We discuss in this section the use of Bayesian networks [9][7] in IR, with a
view to later comparing it to our model. Bayesian Nets (BNs) [7] provide an effi-
cient tool for storing and reasoning from large probability distributions involving
many discrete variables. When probability measures depend on a subjective view,
probabilities do not necessarily interpret relative frequencies (related to chance
events) but account for degrees of belief (conditional or not). BNs have been used
in IR since 1990. The well known IR models using BNs are Inference Networks
(INs) and Belief Networks. INs are used in INQUERY system [20] and their effi-
ciency is related to distinct IR approaches and their combination in one model.
This system evaluates the belief in a document with respect to a query, and a
list of weighted documents is retrieved. Belief Networks [11][17] have been used
to ”model knowledge derived from past queries and combine it with the vector
space model” [11]. The ranking of a document is based on the similarity between
document dj and query Q, computing the probability P (dj = 1/Q = 1). Q = 1
and dj = 1 means respectively Q activated and dj activated. Recent researchers
[4] [5], designed the Bayesian Network Retrieval Model, with a flexible topology
that can take into account term relationships as well as document relationships.

The meaning of document and query representations for all these models
and relevant document retrieval is identical. For these models a unique degree
of relevance is computed and generally weights given to arcs when term nodes
are instantiated are based on a combination of tf − idf . However, the model we
propose provides a different meaning to document and query representations as

A Model for Information Retrieval Based on Possibilistic Networks 273

well as to the selection of a document given a query. One way to solve our key
issue can be given by the use of possibilistic networks.

3 The Possibilistic Model

One main original idea behind our possibilistic model concerns the relevance
interpretation. Instead of using a unique relevance value of a document with
respect to a query, we propose a possibilistic approach [6]. A possibility distri-
bution π is a mapping from U to [0, 1]. π(u) evaluates the plausibility that u is
the actual value of some variable to which π is attached. π(u) = 0 means that
u is impossible but π(u) = 1 only indicates a lack of surprise about u. A propo-
sition A is evaluated by its degree of possibility Π(A) = maxu∈Aπ(u) and its
degree of necessity (or certainty) N(A) = 1−Π(A) where A is the complement
of A [6].

3.1 Model Architecture

Our approach is based on possibilistic directed networks [1][2], where relations
between documents, query and term nodes are quantified by possibility and
necessity measures. The proposed network architecture appears on Figure (1).
From a qualitative point of view, nodes in the graphical component represent
query, index terms and documents and the graph reflects the (in)dependence re-
lations existing between nodes. Document and query nodes have binary domains.
A document Dj is invoked or not, taking its values in the domain {dj , dj}. The
activation of a document node, i.e. Dj = dj (resp. dj) means that a document
is relevant or not. A query Q takes its values in the domain {q, q}. As only the
positive query instantiation is of interest, we consider Q = q only, and denote it
as Q. The domain of an index term node Ti, is {ti, ti}. (Ti = ti) means a term
ti is present in the object (document or query) and thus is representative of the
object to a certain degree. A non-representative term, denoted by ti, is a term
absent from the object.

D

T1

Q

Ti Tj TT

Fig. 1. Model architecture

274 A.H. Brini, M. Boughanem, and D. Dubois

Let T (Dj) (resp. T (Q)) be the set of terms indexed in document Dj (resp.
in the query). The query expresses a request for documents containing some
terms but excluding other terms. Arcs are directed from document node to in-
dex term nodes defining dependence relations existing between index terms and
documents. The values taken by index term nodes depend on the document node
(parent) instantiation. The query instantiation only gives evidence to propagate
through invoked terms, thus arcs are directed from term to query nodes. The
terms appearing in the user query form the parent set of Q in the graph. There
is an instantiation of the parent set Par(Q) of the query Q that represents the
query in its most demanding (conjunctive) form. Let θQ be such an instantiated
vector. Any instance of the parent set of Q is denoted θ. We show, later in this
section, how values are assigned to arcs. For simplicity a query is supposed to
contain positive terms only.

3.2 Evaluation Process

In this model, the propagation process is similar to the probabilistic Bayesian
propagation [1][2]. The query evaluation consists in the propagation of new evi-
dence through activated arcs to retrieve relevant documents. Our model should
be able to infer propositions like:

– It is plausible to a certain degree that the document is relevant for the user
need, denoted by Π(dj | Q)

– It is almost certain (in possibilistic sense) that the document is relevant to
the query, denoted by N(dj | Q)

The first kind of proposition is meant to eliminate irrelevant documents (weak
plausibility). The second answer focuses attention on what looks very relevant.
Under a possibilistic approach, given the query, we are thus interested in retriev-
ing necessarily or at least possibly relevant documents. Thus, the propagation
process evaluates the following quantities

Π(dj | Q)=
Π(Q ∧ dj)

Π(Q)
, N(dj | Q)=1−Π(dj | Q) where Π(dj | Q)=

Π(Q ∧ dj)
Π(Q)

The possibility of Q is Π(Q) = max(Π(Q∧dj), Π(Q∧dj)) so that Π(dj | Q) =
min(1,

Π(Q∧dj)
Π(Q∧dj)

) [6][1].
We are interested in defining Π(Q∧Dj). Given the model architecture, it is

of the form:

max
θ

(Π(Q | θ) ·
∏

Ti∈T (Q)∧T (Dj)

Π(θi | Dj) ·Π(Dj) ·
∏

Tk∈T (Q)\T (Dj)

Π(θk)) (1)

for θ being the possible instances of the parent set of Q, θi is the instance of Ti

in θ. This is computed for Dj ∈ {dj, dj}. Note that terms Ti ∈ T (Dj) \ T (Q)
are not involved in this computation.

The top retrieved documents are those having a necessary relevance value
greater than 0, and the set of possibly relevant documents are retrieved as a
second choice.

A Model for Information Retrieval Based on Possibilistic Networks 275

4 Query Aggregation

The possibility of the query given the index terms depend on query interpreta-
tion. Several interpretations exist, whereby query terms (Π(Q | θ)) are defined
as expressing conjunction, disjunction... or, like in Bayesian probabilistic net-
works, by sum and weighted sum as proposed for example in the works of Turtle
[20]. The basic idea is that for any instantiation θ, the conditional possibility
Π(Q | θ) is specified by some aggregation function merging elementary possi-
bilistic likelihood functions Π(Q | θi). Each Π(Q | θi) is the weight of instance
θi in view of its conformity with the instantiation of Ti in the query (in θQ).
We do not consider relations that may exist between terms even if the use of
networks would make it possible. Hence, it is difficult (space and time consum-
ing) to store all possible query term configurations or to compute them when
the query is submitted to the system. A reasonable organization is to let each
query term bear a weight and to compute the weight of joint terms in the query.
When the user does not give any information on the aggregation operators to
be used, the only available evidence one can use is the importance of each query
term in the collection. This evidence is available for single terms that form the
query. We give in what follows different manners to aggregate query terms.

4.1 Conjunctive, Disjunctive and Quantified Aggregations

For a Boolean AND query, the evaluation process searches documents containing
all query terms. Then, Π(Q | θi) = 1 if θi = θQ

i , and 0 otherwise. The possibility
of the query Q given an instance θ of all its parents, is given by Π(Q | θ), where
Π(Q | θ) = 1 if ∀Ti ∈ Par(Q) θi = θQ

i means that the term Ti in θ is instantiated
as in the query. Generally this interpretation of the query is too demanding.

For a Boolean OR query, the document is already somewhat relevant if there
exists a query term in it. The final document relevance should increase with
the number of present query terms. The pure disjunctive query is handled by
changing ∀ into ∃ in the conjunctive query. But this interpretation is too weak
to discriminate among documents.

Assume a query is considered satisfied by a document if they have at least
K common terms. Consider an increasing function, f(K(θ)

n), where K(θ) is the
number of terms in the query instantiated like in a given configuration θ of
Par(Q), given that the query contains n terms. It is supposed that f(0) = 0
and f(1) = 1. f is a fuzzy quantifier [22]. For instance, f(i/n) = 1 if i ≥
K(θ)

n , and 0 otherwise, requires that at least K terms in the query are in con-
formity with θ. But more generally f can be a non-Boolean function.

The quantifier approach to computing the possibility of the query Q given
an instance θ of all its parents, is given by:

Π(Q | θ) = f(
K(θ)

n
) (2)

276 A.H. Brini, M. Boughanem, and D. Dubois

4.2 Noisy OR

In general, we may assume that the conditional possibilities Π(Q | θi) are not
Boolean-valued, but depend on suitable evaluations of terms ti. A possible query
term combinations can be ”noisy-Or” [9] based. It means that Π(Q | θ) is
evaluated in terms of conditional possibilities of the form Π(Q | ti∧k �=i tk) using
a probabilistic sum. The primitive terms in a noisy OR are Π(Q | ti ∧k �=i tk) =
idfi

N = nidfi, denoted 1− qi for simplicity. Then

Π(Q | θ) = 0 if � ∃ i s.t. θi = θQ
i (3)

=
1−

∏
i:ti=θi=θQ

i
qi

1−
∏

Tk∈Par(Q) qk
otherwise

Only positive terms in the query configuration appear on the numerator. The
more query terms present in the document with the same positive instantiation
as in the query is, the higher the relevance of the document will be1.

5 Arc Values

In the first part of this section, we define term-document arc values depending on
term instantiations. Then we propose a weighting scheme for root nodes. We also
weight query-term arcs to aggregate query terms. For the proposed approach we
give a weight to prior document possibility, not a uniform one like in inference
network model [20] but based on its length.

5.1 Document-Term Arcs

To evaluate the possibility and necessity of a document relevance we need to
express and define relevance represented by arcs in the network. Our approach
tries to distinguish between terms which are possibly representative of docu-
ments (whose absence rules out a document) and those which are necessarily
representative of documents, i.e. terms which suffice to characterize documents.

Postulate 1 : A term is all the more possibly representative of a document as it
appears frequently in that document;

Postulate 2 : A term is all the more necessarily representative of a document as
it appears more frequently in that document and it appears fewer times in the
whole collection.

According to Postulate 1, Π(ti/dj) can be estimated from the frequency tf :

Π(ti/dj) = nftij (4)

where nftij is normalized term frequency, nftij = tfij

max∀tk∈dj
(tfkj)

.

1 We assume Closed World Assumption (CWA): Π(Q | ti) = Π(Q | ti ∧k �=i tk).

A Model for Information Retrieval Based on Possibilistic Networks 277

A term weight 0 means that a term is not compatible with the document. If it
is equal to 1, then the term is possibly representative or relevant to describe the
document. Here, ”representative” should not be necessarily understood in the
general sense, but only as ”useful to retrieve this document in the collection”. If a
term is representative of a document in the general sense, it may not be of much
help to retrieve a document. Namely, for a document in a collection devoted to
fuzzy sets, the word ”fuzzy” is very representative, but it is potentially useless as
it does not characterize it among other documents in the same area. Note that
the possibility degree is normalized (its maximum is 1). A term not appearing in
a document is not compatible with it, and if it appears with a maximal frequency
it is considered as a possible candidate to represent it. A discriminant term in
a collection is a term which appears (often) in few documents of the whole
collection. We assume that a discriminant term is a term which is necessarily
representative of a document thus certainly contributes to selecting a document.
We define the necessary relevance degree, φij , of term i to represent a document
j as a weight of the form:

φij = µ1

(
N

ni

)
∗ µ2

(
nftij

)
(5)

where ∗: product operator and µ1, µ2: normalization functions. For instance, µ1

logarithmic function, µ2 identity function, and then φij =
log N

ni

log(N) ·ntfij This de-
gree of necessarily relevance shows the necessity for a term to imply a document
and thus works to retrieve a document by:

N(ti → dj) = φij (6)

Since, Π(dj) = 1 a priori, Π(ti | dj) = Π(ti∧dj) = 1−N(ti → dj) = φij , while
Π(ti | dj) = 1. In table 1, we summarize the conditional possibilities of term
instantiations given the document instantiations.

Table 1. Conditional possibility table Π(Ti | Dj)

dj ¬dj

ti nftij 1 − φij

¬ti 1 1

5.2 Root Terms

Weights assigned to terms are mostly the result of a frequentist view because
no other information is available. Several works in the literature focus on the
definition and on the valuation of the term importance among a collection of
documents [12] [18] [8] [10]. Those problems are dealt with, using semantic [21]
or a statistical [14][19], [8][23], or probabilistic [10] point of views.

For our approach, when computing the relevance degree to a document given
a query, weights must be assigned not only to common terms between the doc-

278 A.H. Brini, M. Boughanem, and D. Dubois

ument and the query but also to terms that are present in the query and absent
from the document. To be sure to pick up the relevant set of documents, terms
must have a discrimination power. The more important is the discrimination
power assigned to a term the more efficiently this term helps in the retrieval
of documents. This power depends on the distribution of the term among the
collection and this distribution is quantified by the density of this term in doc-
uments or by the importance of terms across the collection. The less peaked is
the density distribution, the less discriminant is the term. We define a new dis-
criminative factor based on entropy, denoted by dfi for a term i in a collection.
It improves over the usual idf . The notion of entropy was firstly proposed to
evaluate how peaked is a density [16]. The weighting scheme aims to maximize
the entropy of the density of the term across the collection.

dfi = −
∑

j

pij log pij ; (7)

pij =
tfij

lj∑
k

tfik

lk

The lower the dfi value is, the more picked the density distribution, and the
more interesting the term for retrieving some documents. Thus:

∀ti �∈ T (Dj), Π(θi) =1 if θQ
i = ti

=
dfi

maxk∈T dfk
= ndfi otherwise (8)

where T is the set of terms in the collection.
The more discrimination power the term has, the less documents dj not

containing it are relevant to the query and the lower is Π(Q ∧ dj). It is clear
that two documents with same idf ′s may have different df values. idf is less
discriminant than df .

5.3 Prior Possibility of Documents

In absence of information, the a priori possibility on a document node is uni-
form (Π(dj) = Π(dj) = 1). Actually, we can obtain information on a document
given the importance of its terms, its length etc. This knowledge can be given
for instance, by the user, the user profile etc. Hence, for example, if we are inter-
ested in retrieving long documents, we define the prior possibility of activating
a document Dj = dj , Π(dj) = lj

maxk=1,..,N lk
= nldj where lj is the length in

frequency of document dj ; lj =
∑

i tfij . The shorter the document is, the less
possibly relevant it is. Besides, Π(dj) = 1.

6 Experiments and Results

The experiments were undertaken on the dataset Le Monde. The aim of these
experiments is to evaluate the reliability of the proposed approach based on

A Model for Information Retrieval Based on Possibilistic Networks 279

different weighting schemes specifically one considering the term discriminative
power based on entropy ndf and the second one the known nidf and its evalua-
tion process, i.e. its evaluation of documents given a query, based on two mea-
sures of relevance. The results obtained are discussed below and then compared
to OKAPI’s weighting scheme.

6.1 The Dataset Collection

Experiments are carried out on a sub-collection of CLEF, namely LeMonde 1994,
a French newspapers collection (44013 documents and 34 queries, 154 MB). For
each query, 1000 top documents are retrieved. We give the results evaluation by
means of P5, P10, ... i.e. the precision at point 5, which is the ratio of relevant
documents among the 5 top retrieved documents, among the 10 ones, etc.

6.2 Parameters

Our model is based on two measures that evaluate two kinds of relevance i.e.
the necessary and the possible one. The trust in necessarily relevant documents
is greater than in possibly relevant documents. If less than 1000 necessary docu-
ments are retrieved we complete to 1000 by adding possibly relevant documents.

Impact of each factor

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45
0,5

P5 P10 P15 P20 P30 P100 P100

Precision points

1
2
3
4

Fig. 2. Weights impact

As shown in sections above and by formula 1, different pieces of information
are used for the document evaluation given the query: the distribution of terms
inside a collection, the a priori possibility of documents, the importance of query
term absent from documents (ndf factor). The tuning of parameters is described
in table 2. Yes indicates the parameter is used and No that it is not used in the
computations. Figure 2 shows the impact on precision points of each piece of
information. As example, in case 1, the normalized length(nld), the normalized
entropy (ndf ′ = ndf

maxt∈T (Q)ndft
) and the Noisy Or are used for the document

evaluation given the query. The ndf ′ as shown in section 5.2 is normalized given

280 A.H. Brini, M. Boughanem, and D. Dubois

Table 2. Parameters tuning

nld ndf ′ Noisy Or ndf

1 Yes Yes Yes No

2 Yes No Yes Yes

3 Yes Yes No No

4 No Yes Yes No

all terms of the collection and a second time given the query terms. When not
ndf nor ndf ′ factors are considered inside the computations the results decrease
strongly (about 90% less for average precision)2. It is the case especially for
query terms having a high potential discrimination power between documents,
i.e., terms which have high density in few documents of the collection. In a such
case, there are no necessary documents for an important number of queries.
This ndf factor strongly decreases the relevance of documents not containing
”interesting” terms. In the case of removing the documents length, from the
propagation process, the number of necessary relevant documents increases. This
is because short documents relevance grows up as they contain not interesting
terms: documents with higher ndf (for root terms) than nidf (for present terms).
When the Noisy or is not considered, weights affeted to query terms present in
documents equal 1.

The average precision is higher when nidf is kept out computations than
when ndf is removed from the propagation computations. In our model, the df
factor is used once to decrease the relevance of documents not containing ”in-
teresting” terms, whereas nidf factor is used for terms present in the document
under concern. Both factors (nidf and ndf) try to find the extent to which a
term is specific in a given collection, the nidf in terms of presence/absence (of
a term in a document) whereas ndf in terms of density distribution.

6.3 Comparison

Figure 3 shows the precision points comparison between our approach (Pi-nets)
and the probabilistic approach (OKAPI).

The comparisons is between the BM25 weighting scheme (OKAPI) [12][13]
and our approach. We can note from figure above (figure 3) that precision points
are better for our approach for any points of precision. It improves average
precision by 7.99% compared to OKAPI system.

7 Conclusion

This paper presents a new IR approach based on possibility theory and a new
term discrimination index based on entropy. In a general way, the possibility
measure is convenient to filter out documents (or index terms from the set of

2 This result does not appear in the figure 2.

A Model for Information Retrieval Based on Possibilistic Networks 281

Model comparisons

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45
0,5

P5
P10 P15 P20 P30

P10
0

P10
00

Precision

OKAPI
Pi-nets

Fig. 3. Models comparison

representative terms of documents) whereas necessity captures document rele-
vance (or index terms representativeness). The originality of the proposed ap-
proach is due to the use of information about the distribution of terms across
the collection (example: use of df), and a new way of indexing documents by
separating different kinds of information. The first experiments carried out on
LeMonde are promising. Other experiments on the benchmark WT 10G of TREC
are also promising as we seem to obtain in most cases better average precision
than known models.

Acknowledgments

Thank to Luis de Campos for helpful discussions on the original possibilistic
model.

References

1. S. Benferhat, D. Dubois, L.Garcia, H. Prade: Possibilistic logic bases and possibilis-
tic graphs. In Proc. of the 15th Conference on Uncertainty in Artificial Intelligence,
(1999) 57-64.

2. C. Borgelt, J. Gebhardt and R. Kruse: Possibilistic graphical models. Compu-
tational Intelligence in Data Mining, CISM Courses and Lectures 408, Springer,
Wien, (2000) 51-68.

3. A.H. Brini and M. Boughanem and D. Dubois: Towards a possibilistic approach
for Information Retrieval. Proc. EUROFUSE Data and Knowledge Engineering,
Warsaw, (2004) 92-102

4. L.M. Campos, J.M. Fernandez-Luna, J.F. Huete. The BNR Model: Foundations
and Performance of Bayesian Network-based Retrieval Model. JASIST, (2003)
54(4),302-313.

5. F. Crestani, L.M. de Campos, J.M. Fernandez-Luna, J.F. Huete: A Multi-layered
Bayesian Network Model for Structured Document Retrieval, Proc. ECSQARU
LNAI 2711, Springer, (2003) 74-86.

282 A.H. Brini, M. Boughanem, and D. Dubois

6. D. Dubois and H. Prade: Possibility theory. Plenum, (1988)
7. F.V. Jensen. Bayesian Networks and Decision Graphs, Springer, 2000.
8. H.P. Luhn: The automatic creation of literature abstracts. IBM Journal of Research

and Development, (1958), 2, 159-165.
9. J. Pearl: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann San

Mateo, Ca, (1988)
10. M.E. Maron: Automatic indexing: an experimental enquiry. Journal of the ACM,

(1961), 8, 404-417
11. B. Ribeiro-Neto, I. Silva, R. Muntz: A Belief Network Model for IR. In Proc. Of the

19th ACM SIGIR Conf. on Research and Development in Information Retrieval,
(1996), 253-260, Zurich, Switzerland.

12. S.E. Robertson and S. Walker: Some simple effective approximations to the 2-
poisson model for probabilistic weighted retrieval, Proc. of the 17th Ann. Inter.
ACM SIGIR Conf. on Research and Dev. in Information Retrieval, Springer-Verlag,
(1994) 232-241

13. S.E. Robertson, S. Walker, S. Jones, M.M Hancock-Beaulieu and M. Gatford: Okapi
at TREC-3. Proc. of the 3rd Text REtrieval Conference (TREC-3), NIST Special
Publication (1995) 109-126

14. G. Salton: The Smart retrieval system-experiments. In Automatic Document Pro-
cessing, Prentice Hall Inc, (1971)

15. G. Salton and C. Buckley: Term-weighting approaches in automatic text retrieval.
IPM, (1988) VOL 24, 513-523

16. C. E. Shannon: The mathematical theory of communication. Bell System Technical
Journal, (1948) Vol. 27, 379-423 and 623- 656.

17. Ilmerio Silva, Berthier Ribeiro-Neto, Pavel Calado, Edleno Moura, and Nivio Zi-
viani: Link-Based and Content-Based Evidential Information in a Belief Network
Model. In ACM SIGIR 23rd Int. Conference on Information Retrieval, Athens,
Greece, (2000), 96-103.

18. K. Sparck Jones, S. Walker and S.E. Robertson: A probabilistic model of infor-
mation retrieval: development and comparative experiments, Parts 1 & 2. IPM,
(2000) VOL 36 779-808,809-840

19. K. Sparck Jones: A statistical interpretation of term specificity and its application
in retrieval. Journal of Doc, (1972) VOL 28 111-121

20. H.R. Turtle and W.B. Croft: Inference networks for document retrieval. In Proc.
13th Int.Conf. on Research and Development in Information Retrieval. (1990) 1-24

21. K. Van Rijsbergen: A Theoretical basis for the use of co-occurrence data in infor-
mation retrieval. In Jour. of Doc. (1977) 33 106-119.

22. R. R. Yager and H. Legind Larsen: Retrieving information by fuzzification of
queries. Int. Jour. of Intelligent Inf. Systems, (1993) Vol. 2(4).

23. H.P. Zipf: Human behaviour and the principle of least effort. Addison-Wesley,
Cambridge, Massachusetts (1949).

Comparison of Representations of Multiple

Evidence Using a Functional Framework for IR

Ilmério R. Silva, João N. Souza, and Luciene C. Oliveira

School of Computer Science,
Federal University of Uberlândia,

Uberlândia - MG, Brazil
{ilmerio, nunes}@facom.ufu.br, luciene@pos.facom.ufu.br

Abstract. The combination of sources of evidence is an important sub-
ject of research in information retrieval and can be a good strategy for
improving the quality of rankings. Another active research topic is mod-
eling and is one of the central tasks in the development of information
retrieval systems. In this paper, we analyze the combination of multiple
evidence using a functional framework, presenting two case studies of the
use of the framework to combine multiple evidence in contexts bayesian
belief networks and in the vector space model. This framework is a meta-
theory that represents IR models in a unique common language, allowing
the representation, formulation and comparison of these models without
the need to carry out experiments. We show that the combination of
multiple evidence in the bayesian belief network can be carried at in of
several ways, being that each form corresponds to a similarity function
in the vector model. The analysis of this correspondence is made through
the functional framework. We show that the framework allows us to de-
sign new models and helps designers to modify these models to extend
them with new evidence sources.

Keywords: Combination of Multiple Evidence, Functional Framework,
Information Retrieval Models.

1 Introduction

Modeling is one of the central and most active research topics in Information
Retrieval (IR). The implementation of any new idea to improve quality and
accuracy of an information retrieval system usually requires the first step of
modeling. The modeling task is complex, and also important, in modern IR
systems, such as search engines on the web and enterprise search systems. In
these cases, it is common to have more than one source of evidence available to
be exploited by the model in the task of providing answers to a given query. This
abundance of evidence sources certainly offers an opportunity to the development
of better systems, but also poses a challenge for who is in charge of developing
an IR model.

When searching for documents on the Web, the text of the documents may
be insufficient to provide good results. A recent popular approach for improving

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 283–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

284 I.R. Silva, J.N. Souza, and L.C. Oliveira

search effectiveness is to use alternative sources of evidence information. IR
models which combine evidence sources is a important subject of research in IR
[3,11,10,13]. We analyze two case studies for the combination of multiple sources
evidence in the bayesian belief network model and in the classic vector space
model using a powerful tool for developing of new IR models, called functional
framework. We show that the combination of multiple evidence in the bayesian
belief network can be can be carried at in of several ways, being that each
form corresponds to a similarity function in the vector model. The analysis of
this correspondence is made through the functional framework. This framework
is a meta-theory for IR models which help in producing new IR models. The
meta-theory is useful not only for devising new models, but also for representing
previously proposed models and helps designers to modify these models to extend
them with new sources of evidence. Moreover, the functional framework allows
the analysis of different models characteristics to fit inside the same plan of
representation and also allows the comparison of IR models through the use of
functions.

The main motivation behind this work is in the application of the framework
to combine multiple evidence and show that we can design new models equiva-
lent to other models using different modeling semantic. We present two forms of
modeling in two different environments, bayesian modeling and vector modeling,
for combining evidence. The functional framework allows to make the passage
among different types of modeling with ease, due to its capacity of abstraction
and expressibility supplying a functional environment. This passage of the mod-
els for the functional framework facilitates the design and comparison between
them therefore they are represented in a same language.

The rest of the paper is organized as follows. In section 2 we show the re-
lated works to the functional framework and the combination of evidence in
models IR. We explain the basics concepts of the functional framework for IR
in section 3. In sections 4 and 5 we analysis two case studies to combine mul-
tiple evidence in the bayesian network and vector models using the functional
framework. Finally in section 6, we discuss the potential advantages of using the
functional framework for creating IR models and combination of multiple source
of evidence, summarize our contributions and discuss future research directions.

2 Related Works

There are some works on combination of content-based and link-based pieces of
evidence in a single IR model. In paper [10] the use of belief networks to represent
and to combine link-based and content-based information is proposed. [6] extends
the model proposed in [10] presenting a generalization of this model to combine
evidence sources in belief network. In [11] the link and content combination in
the context of the vector space model is presented. Here we present two case
studies for the use of a meta-theory, functional framework, to combine some
evidence in the context of the belief network and vector space model. In the first
case study, we use the model proposed in [6] generalizing the operator used in

Comparison of Representations of Multiple Evidence 285

the composition of documents and design a model correspondent in the vector
model. This model designed uses the same semantics of the model proposed
in [11], but it is generalized for multiple evidence. In the second case study,
we use the vector model to combine multiple evidence found in the first case
study modifying the similarity function for the cosine similarity and then we
design a new corresponding belief network model through the use of functional
framework.

There is also a lot of works on meta-theories for IR: formal models [1,4,5,8],
logic-based meta-models [2,7,12,14] and probability-based meta-models [9]. The
functional meta-theory uses a different approach of previous meta-theories, based
on functions. One advantage in relation to the other meta-theories is the capacity
of the framework to represent the classic models, models that combine evidence
and all the models that can be expressed by an algorithm.

Our work presents a analysis of the combination of multiple evidence using
the functional framework. It differs from the others for a series of factors. We
show an application of the functional meta-theory for generic combination of
evidence pieces in two different contexts and in two distinct ways. This combi-
nation can be made in various forms in any modeling context. A tool to help
designers in the accomplishment of this task is the functional framework, which
unifies models. Moreover, we discuss the capacity of the framework to represent,
design, combine IR models and compare similar models or not without using
experimentation.

3 Fundamentals of the Functional Framework for IR

We present here the main definitions of the functional framework. All compo-
nents and definitions are based on functions.

3.1 Representation of Models

To represent IR models in the functional framework we define functional term,
weight function, functional objects, similarity function between two functional
objects, and functional model.

Definition 1. Functional Term. A functional term is a function whose seman-
tics relates to set of index terms. A functional term f is denoted by f(kl, ..., ks),
where kl, ..., ks are index terms.

Let K = {k1, . . . , kt} be a set of index terms and ρ(K) be a set of subsets of K
called power set. For example, the function syn : K −→ ρ(K) is the synonymous
function such that given a term returns a set of terms, this is the set of synonyms
of that term. The function syn(ki) = {ki1, . . . , kis} returns the set of synonyms
of the term ki.

Definition 2. Weight Function. A weight function is a function whose result
is the weight of the term in a document or in a query. Let C = {d1, . . . , dz}

286 I.R. Silva, J.N. Souza, and L.C. Oliveira

be a collection of documents, K = {k1, . . . , kt} be an index terms set in C, and
q a query. The weight function g : K × {C ∪ {q}} −→ R is such that g(ki, dj)
returns the weight associated with the pair (ki, dj) and g(ki, q) returns the weight
associated with the pair (ki, q).

To simplify we use the following notation. Let gj : K −→ R an unary function
that returns the weights of a term in the document dj . This function returns the
weight associated with the pair (ki, dj). Analogously, let gq : K −→ R an unary
function that returns the weights of a term in the query q. This function returns
the weight associated with the pair (ki, q).The weight functions gj and gq are
functional terms.

Definition 3. Functional Objects. Functional objects are functional documents
and functional queries. These objects are represented by a set of functional terms.
A functional document dfj is represented by a set of functional terms that relate
the index terms in the document dj . A functional query qf is represented by a
set of functional terms that relate terms in the query q.

Definition 4. Similarity Function between two Functional Objects. Given a set
of functional objects O = {df1, . . . , dfn, qf1, qf2, . . . , qfm}, the similarity is a
function ∆: O × O −→ R which assigns a positive real number ∆(ofj , ofi) for
every pair (ofj , ofi), where {ofj , ofi} ⊆ O, satisfying the following properties
(or axioms):

1. 0 ≤ ∆(ofj ,ofi) ≤ 1 (normalization)
2. ∆(ofj ,ofj) = 1 (reflexivity)
3. ∆(ofj ,ofi) = ∆(ofi,ofj) (symmetry)

The similarity function relates functional terms of the functional objects.
Notice that in this case the similarity function does not necessarily denote a
function of distance or metric (the property of the triangular inequality is not
mandatory). The vector model based on cosine similarity, for example, does not
satisfy the property of the triangular inequality, satisfying only the properties
of symmetry, reflexivity and normalization. The normalization property is im-
portant for the combination of the models, the reflexivity property is important
because for two identical functional objects need have the greatest possible sim-
ilarity and the symmetry property is important for documents clustering.

Definition 5. Functional Model. A functional model is defined by the tuple

Ψ = 〈D, Q, T, ∆〉

where D is a set of functional documents {df1, . . . , dfn}; Q is a set of functional
queries {qf1, . . . , qfm}; T is a set of functional terms of the functional docu-
ments and queries {g1, . . . , gv}; and ∆ is the similarity function, with the three
properties: normalization, reflexivity and symmetry.

The functional terms are extracted from functional documents and queries. In
general, functional queries are functional ad hoc queries, where pre-computation

Comparison of Representations of Multiple Evidence 287

cannot be anticipated. Then, without loss of representation power, and to sim-
plify the notation, we use of the following form: a functional model is represented
by a functional document collection, a functional query unitary set and a sim-
ilarity function. It is denoted by Ψ = 〈{df1, . . . , dfn}, {qf}, ∆〉, where ∆ is a
similarity function over pairs of functional documents or functional documents
and queries of a collection.

3.2 Comparison of Models

After carrying out the representation of the IR models in the functional frame-
work we can compare them. We define one relation of comparison between mod-
els: relation equivalence that will be shown as follows.

Definition 6. Functional Models Equivalence. Two functional models
Ψa = 〈{dfa1, ...,dfan},{qfa}, ∆a〉 and Ψb = 〈{dfb1, ..., dfbn}, {qfb}, ∆b〉 are equiv-
alents if and only if ∀ functional query qf there exist an bijective function:
φ : {dfa1, ..., dfan} → {dfb1, ..., dfbm} such that if φ(dfai) = dfbi and φ(dfak) =
dfbk then the two conditions below must be satisfied:

1. ∆a(qf, dfai) = ∆a(qf, dfak) ⇔ ∆b(qf, dfbi) = ∆b(qf, dfbk)
2. ∆a(qf, dfai) > ∆a(qf, dfak) ⇔ ∆b(qf, dfbi) > ∆b(qf, dfbk)

These conditions guarantee that the models Ψa and Ψb are equivalent if and
only if they generate the same ranking. To represent a model in the functional
framework means that its similarity and form of representation of documents
and queries are translated into another language. The objective of this represen-
tation is to have the model in the formalism of the functional framework. The
comparison of equivalence between the models is important for reutilization of
code or choice of implementation of a model and a better understanding of the
model semantics.

4 Combination of Multiple Evidence Using the
Functional Framework – From Bayesian to Vector
Model

In this section we discuss a first case study to combine multiple evidence in the
belief network model and in the vector space model with the utilization of the
functional framework. We propose a belief network model to combine multiple
evidence witch is a extension of the belief network model proposed in [6]. We rep-
resent this belief network model in the functional framework, find the correspond-
ing vector model to combine multiple evidence, pass this vector model to the
functional framework and verify that they are equivalent by their construction.

4.1 Belief Network Model to Combine Multiple Evidence Sources

The belief network model can be used to combine multiple evidence sources, such
as the text of links content and the information comes from the link analysis
between documents of the collection.

288 I.R. Silva, J.N. Souza, and L.C. Oliveira

Q

K1
... ...Ki

KtK

...
...E1 De1j De1N De21

...
...E2 De2j De2N

Dev1
...

...EV Devj DevN
...De11

D1 Dj
DN

... ...

Query side

Root nodes

Document side

.. .

Fig. 1. Generic belief network model to combine multiple evidence sources

We propose in this work a generic model of belief network to combine mul-
tiple evidence sources. This model is an extension of the belief network model
proposed in [6]. The difference is that we generalize the operator used in the
composition of documents. Figure 1 illustrates this belief network generalized to
combine multiple evidence.

In the bayesian network of Figure 1, the node Q models the user query and
the nodes set K models the set of keywords in the documents collection. The sets
of nodes E1, . . . ,Ev represent v evidence modeled in the network. To represent a
new evidence source ei in this network, new nodes Dei,j are associated with each
document Dj in retrieval set for the query Q. The nodes set K is used to model
the occurrence of keywords in query Q that induces values of belief in each one
of the nodes of the sets E1, . . . ,Ev. The node Dj represents the combination of
all the evidence modeled.

The ranking of a document is computed as the probability P (dj|q), as follows:

P (dj |q) = η
∑
∀k

P (dj |k)× P (q|k)× P (k) (1)

where η is a normalizing constant. Details on the derivation of this expression
can be seen in [10]. However, the conditional probability P (dj|k) now depends
of multiple pieces of evidence, combined through the operator *, that can be
disjunctive, conjunctive and noisy-OR operators.

For the disjunctive operator, this is accomplished as follows:

P (dj |k) = 1− (1− P (de1j |k))× (1 − P (de2j |k))× · · · × (1− P (devj |k)) (2)

where P (deij |k) is the value calculated for each evidence Ei in relation to the
document dj that we denote here as Eij . Eij can be, for instance, the weight of
content part of the document dj , computed by the classic vector model, or the
degree of hub and authority of the document dj . And P (q|k) is defined by:

Comparison of Representations of Multiple Evidence 289

P (q|k) =
{

1, if q = k
0, otherwise (3)

Substituting each P (deij |k) for Eij in Eq.(2), and Eq.(2) and (3) into Eq.(1),
defining the a priori probability P (k) as constant and considering that the
constant η does not influence in the final result of ranking, we can define the
similarity function as:

sim(dj , q) = 1− (1− E1j)(1 − E2j) . . . (1− Evj) (4)

Observe that any evidence ei can be ignored, attributing Eij = 0. This sim-
ilarity function does not satisfy the symmetry property.

For the conjunctive operator, we have the multiplication of the values of each
evidence as shown in the following function: sim(dj |q) = E1j × E2j · · · × Evj .
Notice that if for any evidence ei, Eij = 0, then sim(dj |q) = 0, ignoring all the other
evidence. For this the conjunctive operator is not utilized very much in practice.

The combination model using the disjunctive and conjunctive operator does
not make a priori assumption about the importance of each evidence source. The
probabilities to be combined depend only on the characteristics of the algorithms
and on the parameters used. However, the model can be modified to allow the
insertion of weights which can be accomplished by the use of the noisy-OR
operator. Thus, we have the following equation for the similarity function:

sim(dj |q) = 1− (1−W1 × E1j)(1−W2 × E2j) . . . (1−Wv × Evj) (5)

where W1 . . . Wv are the weights given to the multiple evidence e1, . . . , ev, re-
spectively. These weights can be defined by user, can depend or not on the query
or can be automatically calculated.

4.2 Functional Belief Network Models to Combine Multiple
Evidence Sources

We show here the representation of the belief network model using the dis-
junctive operator presented previously. To represent the generic belief network
model to combine multiple evidence sources using the disjunctive operator in the
functional framework we define the functional model Ψng = 〈{dfng1 , ..., dfngn},
{qfng}, ∆ng〉. The bayesian model with multiple evidence can be represented in
functional framework by:

– dfngj = {ge1j , ge2j , . . . , gevj}, where ge1j = Rj,q is function calculated by
cosine of the vector model and ge2j . . . gevj are functions that define values
for the evidence e2, . . . , ev associated with the document dj ,respectively.

– qfng = {ge1q , ge2q , . . . , gevq}, where ge1q = 1 and other functional terms are
defined in an analogous form to the functional documents

– Similarity function is given by

∆ng(dfngj , qfng) = 1− (1−Rj,q)(1− ge2j ge2q) . . . (1− gevj gevq) (6)

290 I.R. Silva, J.N. Souza, and L.C. Oliveira

K1

E2

dj

E3

EV

...

wi,j

E2,j

E3,j

Ev,j

Fig. 2. Generic Vector Model for combination of multiple evidence sources

The Eq. (4) does not satisfy the symmetry property and Eq. (6) subsumes
Eq.(4) setting ge2q = . . . = gevq = 1. Notice that we modified the original function
similarity Eq.(4) to satisfy the properties necessary for a similarity function in
our framework Eq. (6). Observe that in this case we have the noisy-OR operator
introduced here. Then, to represent the belief network using the disjunctive
operator we need to modify the similarity function for the operator noisy-OR to
satisfy the properties of the functional framework. This alteration can be carried
out due to the high power abstraction of functions. It is important, for example,
to work with the clustering of documents and in this case we have to calculate
the similarity between two documents.

4.3 Vector Model to Combine Multiple Evidence Sources

We define a vector space model extended to combine multiple evidence corre-
sponding to the previous bayesian network. In the vector classic space model
the set of index terms {ki|1 ≤ i ≤ t}, forms the axes of the vector space.
The documents and queries are represented as vectors in this space: dj =
(w1j , w2j , . . . , wtj) and q = (w1q , w2q, . . . , wtq), respectively.

We propose in this work a model that combines information of multiple
evidence sources through an extension of the vector space model. For this, we
extend the vector space adding v − 1 new axes, where v − 1 is the number of
new evidence. Figure 2 shows this vector model to combine of multiple evidence
sources.

In this case, the equation of the similarity function is:

sim(dj , q) = 1− (1−Rjq)(1 − E2q × E2j) . . . (1 − E2v × Evj) (7)

where Rjq is calculated by cosine of the vector model, E2q, . . . , Evq are the values
of each evidence e2, . . . , ev associated to query q and E2j , . . . , Evj are the values
of each evidence e2, . . . , ev associated to document dj , respectively.

4.4 Functional Vector Model to Combine Multiple Evidence
Sources

We represent the vector model to combine multiple evidence sources presented
previously in the functional framework. To represent the generic vector model

Comparison of Representations of Multiple Evidence 291

for combination of multiple evidence in the functional framework we define the
functional model Ψvg = 〈{dfvg1 , ..., dfvgn}, {qfvg}, ∆vg〉. The vector model Ψvg

with multiple evidence sources can be represented in the functional framework
by:

– dfvgj = {ge1j , ge2j , . . . , gevj}, where ge1j = Rj,q is function calculated by
cosine of the vector model and ge2j . . . gevj are functions that define values
for the evidence e2, . . . , ev associated with the document dj , respectively.

– qfvg = {ge1q , ge2q , . . . , gevq}, where ge1q = 1 and other functional terms are
defined in an analogous form to the functional documents

– Similarity function is given by

∆vg(dfvgj , qfvg) = 1− (1 −Rjq)(1 − ge2j ge2q) . . . (1− gevj gevq) (8)

We design a vector model to combine multiple evidence equivalent to the
belief network model to combine multiple evidence. We verify that the functional
models corresponding to them are equivalent by its construction. They possess
the same similarity function, then the two following properties of equivalence are
satisfied. The models Ψvg and Ψng are equivalents, because the models generate
the same ranking.

5 Combination of Multiple Evidence Using the
Functional Framework – From Vector to Bayesian
Model

In this section we present a second case study to combine multiple evidence
sources in the belief network model and in the vector space model with the
utilization of the functional framework. We propose another form to combine
evidence sources in the vector model. We represent this vector model extended
in the functional framework, find the corresponding belief network model to
combine multiple evidence, represent this belief network model in the functional
framework and verify that they are equivalent by its construction.

5.1 Vector Model to Combine Multiple Evidence Sources

There are some ways to combine multiple evidence sources in the vector model,
modifying the similarity function. Another form to extend the vector model to
combine evidence sources is use the cosine similarity function.

The vector modeling is the same presented in section 4.3. The model proposed
here also is an extension of the vector space model through the addition of v− 1
new axes, where v−1 is the number of new evidence. This vector model extended
to combine multiple evidence is presented in Figure 2.

The similarity function is defined by:

sim(dj , q) =

�t
i=1 wi,j · wi,q + E2jE2q + · · · + EvjEvq��t

i=1 w2
i,j + E2

2j + · · · + E2
vj ×

��t
i=1 w2

i,q + E2
2q + · · · + E2

vq

(9)

292 I.R. Silva, J.N. Souza, and L.C. Oliveira

where wi,j is the weight of the term ki in the document dj , wi,q is the weight of
the term ki in the query q, E2j , . . . , Evj are the values of each evidence e2, . . . , ev

associated to document dj and E2q, . . . , Evq are the values of each evidence
e2, . . . , ev associated to query q, respectively.

5.2 Functional Vector Model to Combine Multiple Evidence
Sources

We represent the vector model to combine multiple evidence sources presented
previously in the functional framework. To represent the generic vector model
to combine of multiple evidence sources in the functional framework we define
the functional model Ψvc = 〈{dfvc1 , ..., dfvcn}, {qfvc}, ∆vc〉. The vector model
with multiple evidence sources can be represented in functional framework by:

– dfvcj = {gj, ge2j , . . . , gevj}, where gj(ki) = wi,j is function that defines the
weight of the terms in the document and ge2j . . . gevj are functions that
define values associated to evidence e1, . . . , ev,respectively.

– qfvc = {gq, ge2q , . . . , gevq}, where functional terms are defined in an analo-
gous form to the functional documents

– Similarity function is given by

∆vc(dfvcj
, qfvc) =

�t
i=1 gj(ki) · gq(ki) + ge2j

ge2q + · · · + gevj
gevq��

t
i=1 gj(ki)2 + g2

e2j
+ · · · + g2

evj
×
��

t
i=1 gq(ki)2 + g2

e2q
+ · · · + g2

evq

(10)

5.3 Belief Network Model to Combine Multiple Evidence Sources

We design a belief network model to combine multiple evidence sources equiv-
alent to the vector model to combine multiple evidence sources using cosine
similarity function. The resulting network is shown in Figure 3.

In this bayesian network model, the ranking is computed as follows:

sim(dj , q) =

�t
i=1 wi,j · wi,q + E2jE2q + · · · + EvjEvq��t

i=1 w2
i,j + E2

2j + · · · + E2
vj ×

��t
i=1 w2

i,q + E2
2q + · · · + E2

vq

(11)

The derivation of this equation is made in a similar form to that presented in [10]
for Eq.(1) making the necessary substitutions for modeling the cosine function.

5.4 Functional Belief Network Models to Combine Multiple
Evidence Sources

We show here the representation of the belief network models presented previ-
ously. To represent the second bayesian network model in the functional frame-
work we define the functional model Ψnc = 〈{dfnc1 , ..., dfncn}, {qfnc}, ∆nc〉. The
second bayesian model with multiple evidence sources can be represented in
functional framework by:

Comparison of Representations of Multiple Evidence 293

Q

K1
... ...Ki

KtK

D1 Dj DN
... ...

Query side

Root nodes

Document side

E1 E2 EV
...

Fig. 3. Generic model of belief network to combine multiple evidence sources

– dfncj = {gj , ge2j , . . . , gevj}, where gj(ki) = wi,j , is function that defines the
weight of the terms in the document and ge2j . . . gevj are functions that
define values associated to evidence e1, . . . , ev,respectively.

– qfnc = {gq, ge2q , . . . , gevq}, where functional terms are defined in an analo-
gous form to the functional documents

– Similarity function is given by

∆nc(dfncj
, qfnc) =

�t
i=1 gj(ki) · gq(ki) + ge2j

ge2q + · · · + gevj
gevq��t

i=1 gj(ki)2 + g2
e2j

+ · · · + g2
evj

×
��t

i=1 gq(ki)2 + g2
e2q

+ · · · + g2
evq

(12)

We propose a belief network model to combine multiple evidence equivalent
to the vector model to combine multiple evidence with the cosine similarity
function. We verify that the functional models Ψvc and Ψnc are equivalent by its
construction.

6 Conclusions and Future Works

The functional framework allows the analysis of different models using different
modeling semantic. This framework is a simple, powerful, and flexible tool that
defines a level of abstraction to the representation, comparison, combination
and design of IR models. This allows one to work with theoretical and practical
applications, making it practical in the sense of implementation. Moreover, this
framework can to be used to generalize all the IR models that can be expressed
by algorithms because it is based on functions.

As seen in literature the combination of evidence can improve the ranking
quality. We present case studies using the bayesian and vector modeling for com-
bination of the multiple evidence sources, but other approaches can be used. One
of our contributions is the proposal of the use of the functional framework as
unifying of IR models and application of this framework to combine evidence
sources. The functional framework can be used for combination of multiple evi-
dence in several ways and helps to formulate new models and combine them.

Future work will include the design of other models for combining multiple
evidence sources using other modeling semantics and to verify through experi-
ments which of the models of the case studies possess the best quality. Moreover,

294 I.R. Silva, J.N. Souza, and L.C. Oliveira

other future work will be to make the comparison between other IR models and
the study of new models which are equivalent to the existing models, simpler
and of easier implementation and with more semantics than the existing models.
In addition, an interesting area of research will be to study the characteristics
of the models, for example, which define properties that the models must have
so that they possess more precision or recall than others.

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

2. F. Crestani and M. Lalmas. Logic and uncertainty in information retrieval. In
ESSIR, pages 179–206, 2000.

3. M. A. Pinheiro de Cristo, P. Calado, M. Silveira, I. Silva, R. R. Muntz, and B. A.
Ribeiro-Neto. Bayesian belief networks for ir. International Journal of Approximate
Reasoning, 34(2-3):163–179, 2003.

4. S. Dominich. A unified mathematical definition of classical information retrieval.
Jornal of the American Society for Information Science, 51(7):614–624, 2000.

5. S. Dominich. On applying formal grammar and languages, and deduction to in-
formation retrieval modelling. In Proceedings of the ACM SIGIR MF/IR, pages
37–41, 2001.

6. E. M. Abinader Júnior. Combinação e avaliação de múltiplas fontes de evidências
para recuperação de documento na web. Master’s thesis, Universidade Federal do
Amazonas, Instituto de Ciências Exatas, Amazonas,Manaus, 2004.

7. M. Lalmas and P. D. Bruza. The use of logic in information retrieval modeling.
Knowledge Engineering Review. In press., pages 13(3):263–295, 1998.

8. A. Montejo Rez. Formal models for ir: a review and a proposal for keyword assign-
ment. In Workshop on Mathematical/Formal Methods in Information Retrieval.
ACM-SIGIR, 2003.

9. B. Ribeiro(Ribeiro-Neto) and R. Muntz. A belief network model for ir. In Proc.
of the 19th ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 253–260, Zurich, Switzerland, 1996.

10. I. Silva, B. Ribeiro-Neto, P. Calado, E. Moura, and N. Ziviani. Link-based and
content-based evidential information in a belief network model. In Proceedings of
the 23rd Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 96–103, Athens, Greece, July 2000.

11. I. Silva, J. Souza, R. Moura, and Ribeiro-Neto. Informação de Links no Modelo
Vetorial Usando uma Estrutura Funcional. In Anais do 18th Simpósio Brasileiro
de Banco de Dados, pages 170–184, Manaus, AM, Brasil, 2003.

12. D.W. Song, K.F. Wong, P.D. Bruza, and Cheng C.H. Towards a common-
sense aboutness theory for information retrieval modeling. In In Proceedings of
the FourthWorld Multiconference on Systemics, Cybernetics and Informatics (SCI
2000), pages 23–26, Orlando, Florida (USA), July 2000.

13. T. Westerveld, W. Kraaij, and D. Hiemstra. Retrieving Web pages using content,
links, URLs and anchors. In The Tenth Text REtrieval Conference (TREC-2001),
pages 663–672, Gaithersburg, Maryland, USA, November 2001.

14. K.F. Wong, D. Song, P. Bruza, and C.H. Cheng. Application of aboutness to func-
tional benchmarking in information retrieval. ACM Trans. Inf. Syst., 19(4):337–
370, 2001.

Deriving TF-IDF as a Fisher Kernel

Charles Elkan

Department of Computer Science and Engineering,
University of California, San Diego

elkan@cs.ucsd.edu
http://www.cs.ucsd.edu/users/elkan/

Abstract. The Dirichlet compound multinomial (DCM) distribution
has recently been shown to be a good model for documents because
it captures the phenomenon of word burstiness, unlike standard mod-
els such as the multinomial distribution. This paper investigates the
DCM Fisher kernel, a function for comparing documents derived from
the DCM. We show that the DCM Fisher kernel has components that
are similar to the term frequency (TF) and inverse document frequency
(IDF) factors of the standard TF-IDF method for representing docu-
ments. Experiments show that the DCM Fisher kernel performs better
than alternative kernels for nearest-neighbor document classification, but
that the TF-IDF representation still performs best.

1 Introduction

A fundamental property of text documents, regardless of language, is that if a
word occurs once, it is likely that the same word will occur again. This phe-
nomenon is called burstiness [3]. Unfortunately, standard probabilistic models
for documents, in particular multinomial distributions, do not allow for bursti-
ness, since they assume that each word in a document is generated independently.
These models are therefore incorrect in a fundamental way. In recent research, an
alternative distribution has been proposed called the Dirichlet compound multi-
nomial (DCM) [7]. This distribution can capture the phenomenon of burstiness.
Experimentally, DCM models lead to significantly better classification accuracy
than multinomial models on standard document collections [7].

In this paper, we derive the Fisher kernel for the DCM distribution. A Fisher
kernel is a function that measures the similarity of two data items not in iso-
lation, but rather in the context provided by a probability distribution. For
documents, a Fisher kernel measures how much two members of a collection
are similar taking into account a whole corpus as background information. We
show that the Fisher kernel based on the DCM has a mathematical form related
to the well-known TF-IDF representation for documents [1]. This demonstra-
tion is a new approach towards explaining why the TF-IDF heuristic is justified
and why it is so successful experimentally. We provide experimental results for
nearest neighbor classification for seven different kernel functions, that is for

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 295–300, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

296 C. Elkan

seven different document representations: TF-IDF, the DCM Fisher kernel, the
multinomial Fisher kernel, the Bhattacharyya kernel [6], and L0, L1, and L2
normalized representations.

2 The Dirichlet Compound Multinomial Distribution

Throughout this paper, we assume the so-called “bag of words” representa-
tion for documents. In this representation, a document x is a vector of counts
〈x1, . . . , xw , . . . , xW 〉 where xw is the number of appearances of word w and W
is the vocabulary size. The DCM distribution is

p(x) =
n!∏W

w=1 xw !

Γ (s)
Γ (s + n)

W∏
w=1

Γ (xw + αw)
Γ (αw)

where the length of the document is n =
∑

w xw and s =
∑

w αw is the sum of the
DCM parameters [2] [7]. Like a multinomial, formally a DCM is a distribution
over alternative count vectors of the same length n. Since different lengths give
rise to different distributions, but a corpus always contains documents of different
lengths, we assume that a corpus is modeled by a family of DCMs that all have
the same parameter values αw.

Given a set D of documents, there is no closed-form expression for the max-
imum likelihood αw parameter values. However, these can be approximated
closely as

αw =
∑

d∈D I(xdw ≥ 1)∑
d∈D Ψ(s + nd)− Ψ(s)

where xdw is the count of word w in document d, nd is the length of document
d, and Ψ(·) is the digamma function (proof to be published elsewhere).

For typical document sets s and nd are both in the hundreds, so Ψ(s+nd)−
Ψ(s) is around one for each document, and therefore

αw ≈
1
|D|

∑
d∈D

I(xdw ≥ 1) (1)

where |D| is the number of documents in the collection. Since xdw = 0 for most
documents d and most words w, αw � 1 for most words. For example, for a
DCM trained on one class of newsgroup articles, the average αw is 0.004. Of
the 59,826 parameters, 99% are below 0.1, only 17 are above 0.5, and only 5 are
above 1.0.

3 The Fisher Kernel for the DCM

In general, a kernel function k(x, y) is a way of measuring the resemblance be-
tween two data items x and y. Standard kernel functions are scalar products
in some space of alternative representations of data items, that is k(x, y) =
s(x) · s(y) where s(x) is a re-representation of x.

Deriving TF-IDF as a Fisher Kernel 297

For documents, one common approach is to re-represent a count vector by
L2 normalization: s(x) = x/||x||2 where ||x||2 =

√∑
w x2

w . This yields what is
called cosine similarity, since k(x, y) = x · y/||x||2||y||2 is the cosine of the angle
between the vectors x and y. Intuitively, this re-representation is unsatisfying for
at least two reasons: (a) repeated appearances of one word in the same document
are of decreasing informativeness–a consequence of the burstiness phenomenon,
and (b) words that appear across a large number of different documents are less
informative. TF-IDF (term frequency-inverse document frequency) representa-
tions were proposed to address these concerns several decades ago [1] [9]. Most
commonly, each term frequency xw (i.e. each word count) is (a) log-transformed
and (b) multiplied by the log of the inverse of the number of documents that
word w appears in. This specific version of TF-IDF is

TF-IDF(xw) = log(xw + 1) · log
|D|∑

d∈D I(xdw > 0)
.

Typically (and in our experiments below) the TF-IDF representation is then L2
normalized.

The normalized TF-IDF representation and the corresponding kernel are
among the best approaches for retrieving documents relevant to a query, and for
categorizing documents into classes. However, no compelling theoretical reason
for preferring TF-IDF to other heuristic representations is known [9]. Here, we
show that a representation similar to TF-IDF arises naturally from the DCM.

A high-level motivation for TF-IDF is that it incorporates knowledge about
the distribution of all documents into the similarity measure for individual doc-
uments. Given a probability distribution p(x), the Fisher kernel measures the
similarity of x and y in the context of this distribution: k(x, y) = s(x)T Hs(y)
where s(x) = ∇x is the Fisher score vector for x, i.e. the vector of partial deriva-
tives of the log-likelihood l(x) = log p(x) with respect to the parameters αw,
and H is the Hessian of second partial derivatives of l(x) with respect to the
parameters [4] [5]. With this definition, k(x, y) is invariant to changes in the pa-
rameterization of p. However, H is usually approximated by the identity matrix,
and in this case the Fisher kernel is different for different parameterizations.

For the DCM, the partial derivative of the log-likelihood is

∂l(x)
∂αw

= Ψ(s)− Ψ(s + n) + Ψ(xw + αw)− Ψ(αw). (2)

The Fisher kernel k(x, y) is then the scalar product of the partial derivative
vectors for x and y.

Asymptotic values for the digamma function give insight into these score
vectors. For z ≥ 1, Ψ(z) is close to log(z − 0.5) with the difference tending to
zero as z tends to infinity. Similarly, Ψ(z) is close to −1/z + Ψ(1) for z � 1,
where Ψ(1) ≈ −0.577, with the difference tending to zero as z tends to zero from
above. As mentioned in Section 2, for a typical corpus αw � 1 for most words
w. Therefore, Equation (2) can be approximated as

∂l(x)
∂αw

≈ Ψ(s)− Ψ(s + n) + I(xw ≥ 1)[log(xw − 0.5) + 1/αw − Ψ(1)].

298 C. Elkan

In this form the Fisher score is clearly related to TF-IDF. First, given a docu-
ment, the term Ψ(s) − Ψ(s + n) is the same for all words w and as explained
in Section 2, it is typically around minus one for all documents. Therefore,
it has little influence on the ranking of which documents y are closest to a
document x, i.e. which y give the smallest k(x, y) values. Second, the term
log(xw−0.5) is a log transform of term frequency. Finally, Equation (1) says that
1/αw ≈ |D|/

∑
d∈D I(xdw ≥ 1) which is precisely inverse document frequency.

4 Experiments

In this section, we examine the performance of nine methods for document
classification. Two methods are Bayesian classifiers based on training multi-
nomial and DCM models. Seven methods are k-nearest neighbor classifiers. Of
these, three use different Lp normalizations of documents s(x) = x/||x||p for
p = 0, 1, 2. One nearest neighbor method uses the TF-IDF representation with
L2 normalization. Finally, three nearest neighbor methods use theoretically mo-
tivated kernels: the Fisher DCM kernel and two that are representative of those
proposed in other recent research. The Bhattacharyya kernel uses the represen-
tation s(x) = 〈

√
x1/||x||1, . . . ,

√
xW /||x||1〉, following the experiments of [6].

The Fisher kernel based on the multinomial distribution uses the representation
s(x) = 〈x1/θ̂1, . . . , xW /θ̂W 〉 where θ̂w =

∑
d∈D xdw/

∑
d∈D nd is the maximum

likelihood parameter value for word w for the multinomial distribution fitted to
the given document collection.

Bayesian classification uses Bayes’ rule and a different DCM or multinomial
model learned from the training documents in each class. However, classification
using a Fisher kernel uses just one DCM or multinomial model learned from the
entire collection of training documents.

We use two standard document collections called industry sector and 20
newsgroups. Documents are tokenized, stop words removed, and count vectors
extracted using the Rainbow toolbox [8]. The industry sector1 collection con-
tains 9555 documents distributed in 104 classes. It has a vocabulary of 55,055
words, and each document contains on average 606 words. The data are split into
halves for training and testing. The 20 newsgroups2 collection contains 18,828
documents belonging to 20 classes. This collection has a vocabulary of 61,298
words with an average document length of 116 words. The data are split into
80/20 fractions for training and testing.

Table 1 shows classification accuracy averaged over ten splits of each docu-
ment collection. Nearest neighbor results are for k = 3 neighbors. Not surpris-
ingly, the TF-IDF kernel performs best. Both Fisher kernel methods perform
well, particularly on the industry sector collection, which has only a small num-
ber of documents per class. The DCM Fisher kernel performs slightly better
than the multinomial Fisher kernel.

1 http://www.cs.umass.edu/∼mccallum/code-data.html
2 http://people.csail.mit.edu/people/jrennie/20Newsgroups

Deriving TF-IDF as a Fisher Kernel 299

Table 1. Accuracy averaged over ten random splits for different classifiers

Collection M DCM L0 L1 L2 TF-IDF Bhattacharyya Fisher-DCM Fisher-M

20 news 0.843 0.845 0.606 0.675 0.778 0.828 0.744 0.677 0.665
industry 0.791 0.795 0.624 0.017 0.567 0.881 0.254 0.761 0.735

Fig. 1. Average accuracy scores for increasing numbers of nearest neighbors for 20

newsgroups (left) and industry sector (right)

Given the theoretical arguments in favor of the DCM over the standard
multinomial model, it is surprising that a Bayesian classifier using multinomial
models performs so well. We have three explanations for this. First, our multino-
mial model uses additive smoothing with constant 0.01 instead of with constant
1.0, which is the standard Laplace smoothing, but performs considerably worse.
Second, both the 20 newsgroups and industry sector collections consist of rel-
atively short documents, in which burstiness is less apparent than in longer
documents. Third, it is well-known that Bayesian classifiers can be highly ac-
curate even when they use models that produce inaccurate probabilities, since
the ordering of the probabilities may still be correct.

Figure 1 shows how four of the k-nearest neighbor methods perform as k
varies. Both Fisher kernel methods benefit from using many neighbors on the
20 newsgroups collection, while the performance of cosine similarity decreases
as more neighbors are used. This fact possibly indicates that cosine similarity
can identify neighbors correctly only if they are very close, whereas the Fisher
kernel methods and TF-IDF can pick out not-so-close neighbors well also. For
each of the four methods, the optimum value of k is smaller on the industry
sector collection. This is perhaps because each class has fewer members in this
collection, so each document has fewer genuine neighbors.

5 Discussion

Although the TF-IDF representation for documents is widely used, its origin is
heuristic and it does not have a convincing theoretical basis [9]. However, TF-

300 C. Elkan

IDF implicitly contains an important insight: the similarity of two documents
(or two data items in general) should be a function not just of the documents
themselves, but also of the context of other documents in which they lie.

Fisher kernels are a general implementation of this idea of exploiting back-
ground context when computing the degree of similarity of two data items.
Above, we have derived and investigated the Fisher kernel induced by the Dirich-
let compound multinomial (DCM) distribution. We have shown that the expres-
sion for the DCM Fisher kernel contains components similar to the log-term-
frequency and inverse-document-frequency components of TF-IDF. We have also
shown experimentally that nearest neighbor classifiers based on the DCM Fisher
kernel perform well, although not as well as TF-IDF-based classifiers.

We are excited about continuing the research of this paper in three directions.
First, we want to experiment with collections of longer documents, where we
expect the superiority of the DCM over the multinomial to be greater. Second,
we want to use the DCM Fisher kernel in an SVM classifier, since SVMs are
generally rather more accurate than nearest neighbor methods. Third, given that
TF-IDF remains the best known representation for documents, can we find a new
probability distribution whose Fisher kernel is even more similar to TF-IDF?

Acknowledgments. David Kauchak and Rasmus Madsen assisted with the
experimental part of this paper.

References

1. Akiko Aizawa. An information-theoretic perspective of tf-idf measures. Information
Processing and Management, 39(1):45–65, 2003.

2. N. Balakrishnan, Norman L. Johnson, and Samuel Kotz. Discrete Multivariate
Distributions. New York: John Wiley and Sons Inc., 1997.

3. Kenneth W. Church and William A. Gale. Poisson mixtures. Natural Language
Engineering, 1(2):163–190, 1995.

4. Thomas Hofmann. Learning the similarity of documents: An information-geometric
approach to document retrieval and categorization. In Proceedings of NIPS, pages
914–920, 2000.

5. Tommi S. Jaakkola and David Haussler. Exploiting generative models in discrimi-
native classifiers. In Proceedings of NIPS, pages 487–493, 1999.

6. Tony Jebara and Risi Kondor. Bhattacharyya and expected likelihood kernels. In
Proceedings of the Conference on Learning Theory (COLT), pages 57–73, 2003.

7. Rasmus E. Madsen, David Kauchak, and Charles Elkan. Modeling word burstiness
using the Dirichlet distribution. To appear in Proceedings of ICML, 2005.

8. Andrew K. McCallum. Bow: A toolkit for statistical language modeling, text re-
trieval, classification and clustering. www.cs.cmu.edu/˜mccallum/bow, 1996.

9. Stephen Robertson. Understanding inverse document frequency: On theoretical
arguments for IDF. Journal of Documentation, 60(5):503–520, 2004.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 301 – 314, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Utilizing Dynamically Updated Estimates in Solving the
Longest Common Subsequence Problem

Lasse Bergroth1,2

1 TUCS – Turku Centre for Computer Science,
Lemminkäisenkatu 14−18 A, 20520 Turku, Finland

2 Turku University, Department of Information Technology, Programming techniques,
Ylhäistentie 2, 24130 Salo, Finland

bergroth@it.utu.fi

Abstract. The running time of longest common subsequence (lcs) algorithms is
shown to be dependent of several parameters. To such parameters belong e. g.
the size of the input alphabet, the distribution of the characters in the input
strings and the degree of similarity between the strings. Therefore it is very
difficult to establish an lcs algorithm that could be efficient enough for all
relevant problem instances. As a consequence of that fact, many of those
algorithms are planned to be applied only on a restricted set of all possible
inputs. Some of them are besides quite tricky to implement.

In order to speed up the running time of lcs algorithms in common, one of
the most crucial prerequisities is that preliminary information about the input
strings could be utilized. In addition, this information should be available after a
reasonably quick preprocessing phase. One informative a priori -value to
calculate is a lower bound estimate for the length of the lcs. However, the
obtained lower bound might not be as accurate as desired and thus no
appreciable advantages of the preprocessing can be drawn.

In this paper, a straightforward method for updating dynamically the lower
bound value for the lcs is presented. The purpose is to refine the estimate
gradually to prune more effectively the search space of the used exact lcs
algorithm. Furthermore, simulation tests for the new presented method will be
performed in order to convince us of the benefits of it.

Keywords: Longest common subsequence, string algorithms, heuristic
algorithms.

1 Introduction

There exist several practical applications where comparing the contents of two strings
is of essential importance. For instance, in molecular biology it is important to
estimate the similarity of two DNA or protein sequences. Especially for pre-selection
purposes, those biological sequences can be treated as strings from an appropriate
input alphabet. The degree of similarity can be measured by counting the maximal
number of identical symbols existing in both input strings in the same order.
Collecting these identical symbols and concatenating them produces (one of) the

302 L. Bergroth

longest common subsequence(s) of the strings the length of which numerically
describes the similarity between the strings. In order to specify some further
application fields, especially text and image compression and version maintenance
related problems in computer science are worth mentioning.

In this paper, the longest common subsequence problem of exactly two input
strings X[1..m] and Y[1..n] will be considered. Without loss of generality it can be
assumed that m ≤ n. The elements of the input strings are taken from the input
alphabet denoted by Σ, which consists of σ different symbols. A subsequence
S[1..s] (0 ≤ s ≤ m) of X can be obtained by deleting arbitrarily m-s symbols from X.
Further, if S is also a subsequence of Y, then S is a common subsequence of X and Y,
denoted briefly by cs(X,Y). The longest common subsequence of X and Y,
abbreviated by lcs(X,Y) (or solely lcs) is the cs(X,Y) having maximal length, which
will be denoted by r. The longest common subsequence need not be unique. That
means that there may be several subsequences satisfying the lcs criterion for the
actual problem instance. As well it is possible that the same longest common
subsequence can be collected from different positions of the input strings. The
following example clarifies this.

Example 1: X[1..11]=‘aadddbcdacd’, Y[1..11]=’cdacbddbaab’, Σ={ a, b, c, d }, σ =4
 r = 5, lcs(X,Y) = ‘addba’, ‘dddba’ or ‘cdacd’

In example 1, three different sequences satisfying the lcs criterion can be found. Also
it can be noticed that there exist several ways to build the sequence ‘addba’ by
alternating, which pair of symbols ‘d’ lying in positions 3, 4 and 5 in X will be chosen
to the lcs(X,Y). Also the first character of the lcs, ‘a’, can be selected freely from
either of the positions 1 or 2 of X.

The lcs problem has actually two variants. Sometimes it is enough that only the
length of the lcs, r, would be required, whereas in some applications the sequence
itself has to be produced. The former variant will be called r-variant and the latter lcs-
variant. Basically, every algorithm calculating r only can be modified to solve lcs also
by introducing additional bookkeeping that records the algorithm progression. After r
is known, the lcs can be constructed by backtracking the selections made. In this
paper, the lcs-variant will be emphasized. To be able to understand the lcs problem
properly, some additional definitions have to be declared.

The very first manageable approach to solve the lcs problem is from the year
1974. The method was based on dynamic programming technique [1]. That means
that each character lying in the input string X is compared with characters from each
position of Y. This leads to calculation of an lcs for all possible prefixes of X and Y.
Let us denote by r(i,j) the length of the lcs for the prefix pair X[1..i] and Y[1..j],
where 0 ≤ i ≤ m and 0 ≤ j ≤ n. The following recursive rule defines the connection
between the length of the lcs of two arbitrary prefix pairs, r(i,j), and the
immediately shorter ones, where at least one of the prefixes of X and Y has
shortened exactly by one character:

Utilizing Dynamically Updated Estimates in Solving the LCS Problem 303

 0 if i = 0 or j = 0
r(i,j) = r(i-1, j-1) + 1 if i 0 and j 0 and X[i] = Y[j]

 max{ r(i-1, j), r(i, j-1) } if i 0 and j 0 and X[i] Y[j]

Considering the recursive rule it can easily be realized that r(i,j) may be incremented
from its earlier value only in such index pairs (i,j) where two same characters are
found. Those index pairs are called matches. A match residing in the index pair (i,j) is
assigned to a certain class k, where k is equivalent with the value r(i,j). The k’th class
contains all the matches having the r(i,j) values k. In order to get the solution to the
original problem by using the recursive rule, the value r(m,n) has to be determined.
Before being able to calculate that value, all respective values for shorter prefix pairs
between X and Y have to be calculated. That means that this approach always
performs mn comparisons regardless of the properties of the input strings. The
calculation procedure can be illustrated by filling from top to bottom and from left to
right all the cells of a matrix, whose row indices refer to the positions of the input
string X and column indices analogically to the positions of the input string Y. The
0’th row and column are needed to the initialization of the process. The numbers in
each cell denote the appropriate r(i,j)-values.

The fact that only those matrix cells containing a match can have contribution to r –
and thus the pioneer lcs algorithm does a lot of excessive work – was detected in 1977
[2, 3, 4]. That means that all the non-matching index pairs can be skipped over. To find
exactly the matches without applying a linear scan repeatedly on one of the input
strings, it is possible to construct a case-supporting data structure called matchlist,
which contains ordered information about the positions where the next (previous)
instance of each symbol of the input alphabet can be found after (before) the current
index position. When discarding the non-matching index pairs, quite a lot of excessive
work can be avoided. Even though the construction cost of the matchlist is linear to n,
the methods basing on that technique can still be inefficient in numerous situations.
When the alphabet size is small, there may exist a great number of matching index pairs,
and the improvements in the running time and space complexity are thus only marginal.
Most algorithms using matchlists process one row (or column) at a time. Also it is
possible to search for all the matches belonging to one class at a time. Those methods
are suitable for the problem instances where lcs is relatively short [2, 5, 6, 7].

In 1984, it was realized [7] that there also exist matches which need not be
considered at all. It was proven that a match (i,j) belonging to a class k (1 ≤ k ≤ m) is
important only, if there does not exist any other match (i’,j’) belonging to the same class
k so that i’ = i and j’ < j or alternatively i’ < i and j’ = j. If such a match (i’,j’) cannot be
found, the match (i,j) is called a dominant match. The lcs problem can be solved by
qualifying only all the dominant matches. Auxiliary data structures, such as closest-
matrices, assist effectively in separating all the dominant matches from the set of all
matches [8, 9]. Unfortunately, the cost of building a data structure supporting direct
access during the preprocessing is O(nσ), which means that an increase in the alphabet
size quickly demolishes the advantages gained by the smarter processing [5, 8, 9].

A valuable observation contributing to the establishment of this paper was
discovered in 1990, when Rick in his technical report [9] proved that if r is known
beforehand, it might be possible to discard even some of the dominant matches. Let
us assume to be known that r = k + h, and k-1 is the length of the lcs found so far.

304 L. Bergroth

Then it would be unnecessary to register a dominant match of class k residing in index
pair (i,j) where min{ m-i, n-j } < h. The reason for rejecting such matches is that the
amount of symbols left either in X following the i’th index or in Y following the j’th
index is insufficient, if a cs of length k + h should be able to be constructed. The
remaining dominant matches which are potential candidates to be selected to the lcs
are called minimal witnesses. Recently, in 2003, it was realized that even though r is
not known exactly, a good approximation for it enables us to get rid of the majority of
unnecessary dominant matches [10]. In this paper will be shown in addition that the
estimate for r need necessarily not be extremely accurate immediately after the
preprocessing phase. In contrary, it can be dynamically refined during the running
time of the applied exact lcs algorithm.

To clarify the concepts, the next example illustrates a matrix derived from the same
strings as in example 1. The values in its cells present the r(i,j) values for each prefix
combination. The dominant matches are surrounded by boxes and the non-dominant
matches are encircled. The broken line, called a contour, separates two adjacent areas
having different r(i,j) values. Example 2 is a visualization of the first example, where,
for instance, value 4 at (6,11) represents r(X[1..6], Y[1..11]). There is also a match at
that index pair. Because there is a 4’th class match also in the position (6,8), the match
at (6,11) must be a non-dominant match. In contrary, (6,8) is a dominant match, because
no cs of length 4 can be found when a shorter prefix from either X or Y is selected while
another prefix is kept unchanged. If r = 5 is known in advance, a dominant match of
class 3 at (4,7) is a minimal witness, because there are enough characters (at least two)
in both input strings to construct a lcs of length 5 through it. Conversely, the dominant
match of the 2'nd class at (2,9) does not fulfil the criterion of a minimal witness.

0 1 2 3 4 5 6 7 8 9 10 11

Y ø c d a c b d d b a a b

X

0 ø 0 0 0 0 0 0 0 0 0 0 0 0

1 a 0 0 0 1 1 1 1 1 1 1 1 1

2 a 0 0 0 1 1 1 1 1 1 2 2 2

3 d 0 0 1 1 1 1 2 2 2 2 2 2

4 d 0 0 1 1 1 1 2 3 3 3 3 3

5 d 0 0 1 1 1 1 2 3 3 3 3 3

6 b 0 0 1 1 1 2 2 3 4 4 4 4

7 c 0 1 1 1 2 2 2 3 4 4 4 4

8 d 0 1 2 2 2 2 3 3 4 4 4 4

9 a 0 1 2 3 3 3 3 3 4 5 5 5

10 c 0 1 2 3 4 4 4 4 4 5 5 5

11 d 0 1 2 3 4 4 5 5 5 5 5 5

Utilizing Dynamically Updated Estimates in Solving the LCS Problem 305

Example 2: Graphical illustration of a matrix established by dynamic programming
for input strings X = ‘aadddbcdacd’ and Y =’cdacbddbaab’

The majority of the lcs algorithms follows either of the two principal processing
paradigms: either one matrix row at a time or one class at a time. But there is still
one approach that could be applied – advancing one diagonal at a time. Almost all
diagonal-wise processing algorithms have originally been developed for
calculating the edit distance between the input strings [11, 12, 13]. The edit
distance problem is closely connected with the lcs problem [5]. However, there
exists one pure lcs algorithm which processes the input strings one diagonal at a
time [14].

In this paper, the most common approach for processing − one row at a time − is
taken into consideration. According to the results in [5], the exact lcs algorithm of
Kuo and Cross [15], briefly KC, seems to have very competitive running times for
different types of input strings. The processing method of that algorithm is quite
simple, and its auxiliary data structures can be constructed in Ο(m) time. For these
reasons, that algorithm was selected for refinement. The motivation of this paper is to
show that despite the beforehand effectiveness of the KC algorithm its running time
can still remarkably be reduced. In the next section, the original KC algorithm is
described. In the third section, the idea of providing dynamically updated lower
bound estimates to the disposal of KC algorithm is presented. The purpose of the
fourth section is to present the practical impact and to demonstrate that the presented
idea of embedding the dynamic lower bound information can be applied analogically
on any row-wise lcs algorithm. Finally, the last section is reserved for conclusions and
discussion.

2 The Original KC Algorithm

The row-wise algorithms process one symbol of the shorter input string at a time, and
that symbol will be compared against symbols residing in the longer input string.
Depending on the degree of the refinement of the algorithm, either all matches or only
dominant matches for the appropriate symbol will be sought. The length of the lcs can
increase only by one during one execution round in the outermost loop of the
algorithm.

The KC algorithm uses matchlists for all different symbols of X and searches for
all the matching symbols in Y. As another auxiliary data structure an array denoted by
MinYPrefix[0..m] is needed. Each position l (0 ≤ l ≤ m) of that array contains
information, where the l'th contour crosses the current row i. The value p for
MinYPrefix[l] can in other words be interpreted, how long is the shortest prefix of Y to
form a cs of length l with X[1..i]. If no prefix of Y fulfils that requirement, then the
value p is set to n + 1, which has the meaning 'undefined'. On the other hand, the 0'th
index of that array is initialized to zero and it remains the same during the calculation.
All the not undefined values of MinYPrefix array are in an increasing order, because

306 L. Bergroth

the contours never intersect each other. The value in some position l of MinYPrefix is
updated to a lower one when processing the i'th row, if fewer symbols of Y are needed
to construct a cs of length l with X[1..i] than before with X[1..i-1]. In other case,
MinYPrefix[l] will be kept unchanged on the i'th round of the outermost algorithm
loop.

The rows will be processed from left to right. Each time when a match on a row
i at a position j is detected, the KC algorithm will determine to which class it
belongs. That can be found most effectively by performing a binary search on the
array MinYPrefix and searching for an index l of it for which is valid MinYPrefix[l-
1] < j ≤ MinYPrefix[l]. If the equality on the right hand side is met, the match
under consideration is not dominant and need not be registered. When, instead, the
value j is strictly smaller than MinYPrefix[l], a new dominant match of the class l
is found and the value MinYPrefix[l] will be updated to j. After processing the m'th
row, r can be found as the highest index of MinYPrefix containing a not undefined
value.

Table 1. Contents of the array MinYPrefix[0..m] after processing of each row

 MinYPrefix

 Row 0 1 2 3 4 5 6 7 8 9 10 11

0 0 12 12 12 12 12 12 12 12 12 12 12

1 0 3 12 12 12 12 12 12 12 12 12 12

2 0 3 9 12 12 12 12 12 12 12 12 12

3 0 2 6 12 12 12 12 12 12 12 12 12

4 0 2 6 7 12 12 12 12 12 12 12 12

5 0 2 6 7 12 12 12 12 12 12 12 12

6 0 2 5 7 8 12 12 12 12 12 12 12

7 0 1 4 7 8 12 12 12 12 12 12 12

8 0 1 2 6 8 12 12 12 12 12 12 12

9 0 1 2 3 8 9 12 12 12 12 12 12

10 0 1 2 3 4 9 12 12 12 12 12 12

11 0 1 2 3 4 6 12 12 12 12 12 12

It is worth mentioning that if only r is needed, the previous values of MinYPrefix
can be discarded totally. However, when at least one instance for the lcs is needed, all
the previously found dominant matches should be kept in memory so that the
sequence can be found by backtracking the dominant matches. The maintenance of

Utilizing Dynamically Updated Estimates in Solving the LCS Problem 307

the lcs-path information is nonetheless skipped here because of its insignificance for
the theoretic running time.

Let us consider again the input strings in example 2. For those strings, the contents
of the MinYPrefix-array would be the following after processing of each row. All the
updates after the initialization are marked with bold italic.

In figure 1 below, the original algorithm of Kuo and Cross is listed. The time
complexity of the algorithm is Ο(| M | + m(r + log m)), where M is the number of
matches between the input strings. The latter term describes the time needed for
checking the contents of MinYPrefix and performing the binary search on that array.
The extraordinary handling of indices for recovering one of the lcs-sequences is
omitted here. The original KC algorithm will be abbreviated by KC-ORIG in the
simulation test results.

 begin
(1) for i := 1 to m do MinYPrefix[i] := n + 1;
(2) MinYPrefix[0] := 0;
(3) r := 0;
(4) for i := 1 to m do
 /* Update the array values for row i. */
(5) for each match j on the i'th row do /* Scan all the matches on the row i. */
(6) Find the value k for which MinYPrefix[k] < j ≤ MinYPrefix[k+1]
(7) if j < MinYPrefix[k+1] then
(8) MinYPrefix[k+1] := j; /* The contour k is shifted to the left. */
(9) if k = r then r := r + 1; /* r increases by one. */
 end /* for each match j */
 end /* for i */
(10) return r;
 end;

Fig. 1. The formal description of the original KC algorithm

3 Modifications to the Original KC Algorithm

We have now considered the behavior of the original KC algorithm with such
granularity that we are able to propose on it some modifications, which would be
relevant to improve the practical running time of that algorithm. Two suggestions how
to intensify the functionality of the original method will be presented. Finally, the
algorithm KC-DYN will be presented as a sum of the gradual enhancements to the
original KC method.

3.1 Utilizing a Static a Priori Information Concerning the Length of the Lcs

The starting point for innovations of this paper is utilization of a heuristic lower
bound for the lcs. When the input strings are long, solving the lcs problem by using an

308 L. Bergroth

exact algorithm directly may take an unbearably long time. In some applications it is
enough that we get a reliable approximation for r. In such situations, a lower bound
for the lcs can give us a guard criterion, whether a more accurate investigation of the
strings is needed or not. For those purposes, heuristic approximation algorithms for
the lcs have been developed [16, 17, 18].

The idea of a lower bound heuristic is to relax the original problem. There exist
several methods to get the lower bound for r (abbreviated lbr). This can be done, for
instance, by remapping the original symbols onto a smaller alphabet [17]. Some
heuristics divide the original problem to smaller subproblems and combine their
results so that legal cs for the original problem can be extracted [17]. Some methods
have their foundations simply on the symbol frequency information concerning the
input strings [16, 17]. The fourth approach to calculate a lower bound is based on a
greedy selection of matches. The principle of them is to process one class at a time,
but only one locally viewed dominant match is selected from each class. The heuristic
called BestNext uses this kind of a processing manner selecting such a dominant
match that enables construction of the longest possible cs after the appropriate
selection [17, 18]. For instance, if we had input strings of length 10, and the dominant
matches of class 1 resided at (1,8), (3,5) and (7,1), the selection of (3,5) would enable
constructing an lcs of length 6, because there would be five symbols left in Y and
seven in X after that selection. Clearly, when choosing either of the other candidates,
one of the input strings would exhaust earlier. So the point (3,5) would be locally the
most economical selection. The BestNext heuristic performs in practice reliably and
very fast [17, 18], which contributed to the selection of that lower bound method for
this research work. The time complexity of the BestNext heuristic can be described
with the expression O(n + + · lbr).

If a reliable lbr is available, that can be used for pruning the search space of the KC
algorithm. The static variant of this technique has earlier been applied on a diagonal-
wise lcs method [10]. Let us assume that we were processing the i'th row using the
KC algorithm, and lbr in the actual problem instance were k + h. Further, we will
suppose that a match of class k would be found in an index-pair (i, j). If there are now
fewer than h columns left in Y after the j'th index of it, the match can be regarded as
non-significant (even if the match were dominant, it cannot be a minimal witness),
because it could not belong any more to a cs of length lbr or longer. When we detect
the first match like that on any row, all the remaining matches on that row can be
discarded as uninformative. For the same reason, if we detect a match of class k on
the i'th row, and there are not at least h rows left, all the matches belonging to classes
1..k can be omitted on the following rows. In addition, the number of omitted classes
increases by one from k on every following row for the same reason. It is evident that
the longer the estimated lbr value is, the more efficiently search space of the KC
algorithm can be cut. The running time of the KC algorithm embedded by a static
heuristic lower bound estimate is O(| M | + m(r + log m) + (n + + · lbr)), but the
simulation tests showed that it practically never performs worse than the original KC
algorithm. The KC algorithm refined with a static lower bound calculation will be
denoted by KC-STAT.

Utilizing Dynamically Updated Estimates in Solving the LCS Problem 309

3.2 Updating the Lower Bound Dynamically

When the properties of heuristic lower bound algorithms are studied accurately, it
is easy to realize that they unfortunately contain some weak points. For instance, if
a very fast but a rough lower bound method is used, e.g. utilizing solely the
frequency of the most common symbol in both input strings, the lower bound can
be very poor − especially, if the symbol distribution is even. Also the quite a
reliable BestNext algorithm fails to find a good estimate for r, if the lcs does not
lie near the main diagonal of the matrix presenting the index pairs of the input
strings.

Therefore updating the lower bound could be worth trying. The recalculation of
the lower bound could be done by following some specific guideline − e.g. after
processing a predefined fixed amount of rows. When recalculating the lower bound,
the sequences X and Y are both cut by a certain amount of characters from their
beginning. The length of the newly calculated lbr for the suffixes X[i+1..m],
Y[i+1..n] (denoted by lbrsuff) of the original strings can be added to the already
calculated exact lcs of the prefixes of X[1..i] and Y[1..i] (denoted by rpref). The lcs of
the appropriate prefixes can be found by searching for the highest index q for which
MinYPrefix[q] ≤ i. If the sum rpref + lbrsuff now exceeds the previously calculated lbr
value, a new better estimate for r is obtained, and therefore the value lbr will be
updated. The upgraded value for lbr will immediately be taken into consideration.
The procedure of recalculating the lower bound for suffixes of decreasing length
will be repeated again after the beforehand defined amount of rounds in the outer
loop of the algorithm. Every time we get an improved approximation for r, the
lower bound will be adjusted upwards according to the new estimate. If the
approximation remains unchanged or deteriorates, clearly no updates will be made
at that moment.

The following example 3 clarifies the idea of dynamic updates. The boxes denote
again dominant matches in the problem, non-dominant matches are not marked.
Before applying the exact KC algorithm, lbr is calculated for the whole problem. The
matches found by the BestNext lower bound heuristics are along the dotted line
beginning at the index pair (3,2) and ending at (16,15), the value for lbr is 9, whereas
r for this problem is 11. Because the BestNext algorithm maximizes the area for
remaining matches, it does not find the optimal choice (1,4) as its first step, but
instead the match at (3,2) is preferred. After that selection it is impossible to find the
run of contiguous matches in (1,4), (2,5), (3,6), (4,7) and (5,8), because the heuristic
never does any kind of backtracking due its greedy method of advancing. When the
run of the KC algorithm starts, it is no more necessary to record any matches which
cannot belong to an lcs of the length 9 or longer. For this reason, there is no need to
scan e.g. the 1'st row after the 8'th position of Y.

Let us suppose that after the 8'th row the new value for lbr is calculated, and 8
characters from the beginning of both input strings will be discarded. The BestNext
heuristic will find now that lbr is 6 for the suffixes X[9..16], Y[9..16]. The matches

310 L. Bergroth

belonging to the new lower bound are also combined with each other with a dotted
line. When the data structure MinYPrefix is then scanned after the 8'th row, it will be
revealed that r = 5 for the prefixes X[1..8], Y[1..8]. Sum of the new lbr and the current
r values is thus 11 and it will be registered as the updated value for lbr. This means
that we can restrict the search from now on only on those matches which can be
members of an lcs of length at least 11. Due to this, all the dominant matches which
lie under the 8'th row and are marked with dotted borderlines can be dropped out of
consideration. The matches chosen by the heuristics are marked with italic, and the
matches belonging to r are emboldened and underlined. In the test runs, the KC-
variant containing dynamic updating of lbr is abbreviated by KC-DYN.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Y ø e a f b d a c e b c d f a d b b

X

0 ø 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 b 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

2 d 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2

3 a 0 0 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3

4 c 0 0 1 1 1 2 3 4 4 4 4 4 4 4 4 4 4

5 e 0 1 1 1 1 2 3 4 5 5 5 5 5 5 5 5 5

6 f 0 1 1 2 2 2 3 4 5 5 5 5 6 6 6 6 6

7 f 0 1 1 2 2 2 3 4 5 5 5 5 6 6 6 6 6

8 f 0 1 1 2 2 2 3 4 5 5 5 5 6 6 6 6 6

9 b 0 1 1 2 3 3 3 4 5 6 6 6 6 6 6 7 7

10 a 0 1 2 2 3 3 4 4 5 6 6 6 6 7 7 7 7

11 d 0 1 2 2 3 4 4 4 5 6 6 7 7 7 8 8 8

12 f 0 1 2 3 3 4 4 4 5 6 6 7 8 8 8 8 8

13 f 0 1 2 3 3 4 4 4 5 6 6 7 8 8 8 8 8

14 a 0 1 2 3 3 4 5 5 5 6 6 7 8 9 9 9 9

15 d 0 1 2 3 3 4 5 5 5 6 6 7 8 9 10 10 10

16 b 0 1 2 3 4 4 5 5 5 6 6 7 8 9 10 11 11

Example 3: Graphical illustration of the technique of dynamic updates for lbr.

Utilizing Dynamically Updated Estimates in Solving the LCS Problem 311

The refined version KC-DYN of the exact algorithm is listed below.

 begin
(1) lbr := Calculate lower bound for r using the BestNext heuristic.
(2) repeat := value, how often the lower bound for r will be calculated
(3) for i := 1 to m do MinYPrefix[i] := n + 1;
(4) MinYPrefix[0] := 0;
(5) r := 0;
(6) for i := 1 to m do
 /* Update the array values for relevant classes on the row i. */
(7) minClass := max{ 1, lbr + i - m }
(8) for each match j in at least minClass on the i'th row do
 /* Scan all the relevant matches on the row i. */
(9) Find the value k for which MinYPrefix[k] < j ≤ MinYPrefix[k+1]
(10) if n - j < lbr - k - 1/* Too near to the rightmost column? */ then exit;
(11) if j < MinYPrefix[k+1] then
(12) MinYPrefix[k+1] := j; /* The contour k is shifted to the left. */
(13) if k = r then r := r + 1; /* r increases by one. */
(14) end; /* for each match j */
(15) if (row mod repeat = 0) then
 begin
(16) newlbr := Calculate lower bound for r(X[i+1..m], Y[i+1..n]) using BestNext;
(17) lbr := max{ lbr, r(X[1..i], Y[1..i]) + newlbr }
 end; /* for i */
(18) return r
end;

Fig. 2. The formal description of the KC-DYN algorithm

4 Practical Impact

In order to validate and verify the practical usefulness of the ideas presented in the
previous section, various simulation tests were performed. All the compared
algorithms were written in the C programming language. When compiling the
programs, gcc version 3.2 with optimization –O3 was used. The tests were run on a
Pentium IV (1.8 GHz) under Red Hat Linux 8.0 3.2-7. The space allocation and
deallocation for data structures were planned carefully and fairly. The original KC
version was implemented following exactly the algorithm description of its authors.
Tests were performed for a skew (Zipfian) character distribution. The length of the
input strings was held fixed 12000 characters for both input strings. For each type
of test case, 10 repetitions were made. The recalculation interval for the value lbr was
fixed to 1000 rows.

When considering figure 3, it can be noticed that the original KC algorithm is
clearly slower than its both refined variants. The difference between the two heuristic

312 L. Bergroth

m = n = 12000, = 64, skew (Zipfian)
distribution

0

100

200

300

400

500

600

40% 50% 60% 70% 80% 90%

Ratio r / m

R
u

n
n

in
g

 t
im

e

KC-ORIG

KC-STAT

KC-DYN

Fig. 3. Running times, when m = n = 12000, = 64, Zipfian character distribution, the ratio
r / m ranges from 40 % to 90 %

variants is conversely rather small. This can be clarified by the method used for
generating the input strings. Both X and Y were filled following the same selected
symbol distribution. So it is evident that the lcs path lies quite near the main diagonal
and no bigger distortions are expectable. When the ratio r / m increases the heuristic
preprocessing notably speeds up the exact algorithm. It is also valuable to realize that
using heuristic preprocessing − either static or dynamic − the performance of the
original algorithm never gets worse, although the calculated lower bounds are not
very tight.

If we let the alphabet size increase from 64 to 256, there are no radical differences
in the results, as we can see in figure 4. Because the amount of matches decreases
while the alphabet size increases, it is no wonder that the running times get fastened.
This is a remarkable advantage, when long input strings have to be taken into
consideration.

m = n = 12000, = 256, skew (Zipfian)
distribution

0

100

200

300

400

500

40 % 50 % 60 % 70 % 80 % 90 %

Ratio r / m

R
u

n
n

in
g

 t
im

e

KC-ORIG

KC-STAT

KC-DYN

Fig. 4. Comparison of the variants of KC: original, static and dynamic, with m = n = 12000,
 = 256 and Zipfian character distribution

Utilizing Dynamically Updated Estimates in Solving the LCS Problem 313

5 Conclusions

In this paper, methods for improving the performance of the lcs algorithm of Kuo and
Cross by utilizing static and dynamic lower bound estimates have been presented. It
was demonstrated that the usability of KC is greatly enhanced, when those intelligent
additional properties have been embedded into it. The test results showed that even
though the input strings may be long, it is not unavoidable to use linear space
algorithm which usually perform slowly if not only r but also one of the lcs instances
has to be recovered. Because the time and space complexities of KC depend indeed
on the amount of matches, it is quite acceptable to believe that the presented
techniques also remarkably reduce the bookkeeping for retrieving the lcs.

To the class of the newest and the most sophisticated linear lcs algorithms belong
e.g. the algorithms of Rick [19] and Goeman & Clausen [20]. It is worth mentioning
that even those two methods need a preprocessing phase the space complexity of
which is O(n). When the size of input alphabet increases strongly, the possibilities
for using direct access methods (closest-matrices etc.) when scanning the input strings
deteriorate undoubtedly. As a core conclusion of this paper can be expressed that the
utilization of heuristic methods is a key for improving any original lcs method, and
embedding heuristic preprocessing in the lcs algorithms is still a very fruitful field of
research in the future.

References

1. Wagner, R. A. & Fischer, M. J.: The string to string correction problem, Journal of the
Association for Computing Machinery, Vol. 21, nr 1, pages 168-173, 1974

2. Hirschberg, Daniel S.: Algorithms for the Longest Common Subsequence problem,
Journal of the Association for Computing Machinery, Vol. 24, nr 4, pages 664-675,
October 1977

3. Hunt, James W. & Szymanski, Thomas G.: A Fast Algorithm for Computing Longest
Common Subsequences, Communications of the ACM, Vol. 20, nr 5, pages 350-353, may
1977

4. Mukhopadhyay, Amar: A Fast Algorithm for the Longest-Common-Subsequence
Problem, Information Sciences 20, pages 69-82, Elsevier North Holland Inc., 1980

5. Bergroth, L & Hakonen H & Raita T: A Survey of Longest Common Subsequence
Algorithms, Proceedings of SPIRE 2000, A Coruña, Spain, 2000, pages 39 to 47

6. Chin, Francis Y. L. & Poon, C. K.: A Fast Algorithm for Computing Longest Common
Subsequences of Small Alphabet Size, Journal of Information Processing, Vol. 13 nr 4,
pages 463-469, 1990

7. Hsu, W. J. & Du, M. W.: New Algorithms for the LCS Problem, Journal of Computer and
System Sciences 29, pages 133-152, 1984

8. Apostolico, A. & Guerra, C.: The Longest Common Subsequence Problem Revisited,
Algorithmica (1987) 2: pages 315-336, Springer-Verlag

9. Rick, Claus: New Algorithms for the Longest Common Subsequence Problem, Institut für
Informatik der Universität Bonn, Research Report No. 85123-Cs, October 1994

10. Bergroth, L. & Hakonen, H. & Väisänen, J: New Refinement Techniques for Longest
Common Subsequence Algorithms, Proceedings of SPIRE 2003, Manaus, Brazil, October
2003, pages 287 - 303

314 L. Bergroth

11. Miller, Webb & Myers, Eugene W.: A File Comparison Program, Software − Practice and
Experience, Vol. 15(11), pages 1025-1040, November 1985

12. Myers, Eugene W.: An O(ND) Difference Algorithm and Its Variations, Algorithmica
(1986) 1: pages 251 – 266, Springer-Verlag

13. Wu, Sun & Manber, Udi & Myers, Gene & Miller, Webb: An O(NP) Sequence
Comparison Algorithm, Information Processing Letter 35 (1990), North-Holland, pages
317-323

14. Nakatsu, Narao & Kambayashi, Yahiko & Yajima, Shuzo: A Longest Common
Subsequence Algorithm Suitable for Similar Text Strings, Acta Informatica 18, pages
171-179, Springer-Verlag 1982

15. Kuo, Shufen & Cross, George R.: An Improved Algorithm to Find the Length of the
Longest Common Subsequence of Two Strings, ACM SIGIR Forum, Spring / Summer
1989, Vol. 23, No. 3-4, pages 89-99

16. Chin, F. & Poon, C. K: Performance Analysis of Some Simple Heuristics for Longest
Common Subsequences, Algorithmica, 12: 293-311

17. Bergroth, L. & Hakonen H. & Raita T.: New Approximation Algorithms for Longest
Common Subsequences, Proceedings of SPIRE 1998, Santa Cruz de la Sierra, Bolivia,
September 1998

18. Johtela, T. & Smed, J. & Hakonen, H. & Raita, T.: An Efficient Heuristic for the LCS
Problem, Third South American Workshop on String Processing, WSP’96, Recife, Brazil,
August 1996, pp. 126-140

19. Rick, Claus: Simple and Fast Linear Space Computation of Longest Common
Subsequences. Information Processing Letters 75(6): 275-281 (2000)

20. Goeman, H. & Clausen, M.: A New Practical Linear Space Algorithm for the Longest
Common Subsequence Problem, Proceedings of the Prague Stringology Club Workshop ‘99

Computing Similarity of Run-Length Encoded

Strings with Affine Gap Penalty�

Jin Wook Kim1, Amihood Amir2, Gad M. Landau3, and Kunsoo Park1

1 School of Computer Science and Engineering,
Seoul National University

{jwkim, kpark}@theory.snu.ac.kr
2 Department of Computer Science,

Bar-Ilan University and Georgia Tech
amir@cs.biu.ac.il

3 Department of Computer Science,
University of Haifa and Polytechnic University

landau@cs.haifa.ac.il

Abstract. The problem of computing similarity of two run-length en-
coded strings has been studied for various scoring metrics. Many algo-
rithms have been developed for the longest common subsequence met-
ric and some algorithms for the Levenshtein distance metric and the
weighted edit distance metric. In this paper we consider similarity based
on the affine gap penalty metric which is a more general and rather
complicated scoring metric than the weighted edit distance. To compute
similarity in this model efficiently, we convert the problem to a path
problem on a directed acyclic graph and use some properties of maxi-
mum paths in this graph. We present an O(nm′ + n′m) time algorithm
for computing similarity of two run-length encoded strings in the affine
gap penalty model, where n′ and m′ are the lengths of given two run-
length encoded strings, and n and m are the decoded lengths of given
two strings, respectively.

1 Introduction

A string S is run-length encoded if it is described as an ordered sequence of pairs
(σ, i), often denoted “σi”, each consisting of an alphabet symbols, σ, and an
integer, i [2]. Each pair corresponds to a run in S, consisting of i consecutive
occurrences of σ. Let A and B be two strings with lengths n and m, respectively.
Let A′ and B′ be two run-length encoded strings of A and B, and n′ and m′ be
the lengths of A′ and B′, respectively.

The problem of computing similarity of two run-length encoded strings, A′

and B′, has been studied for various scoring metrics. For the longest common
subsequence metric, Bunke and Csirik [3] presented an O(nm′ +n′m) time algo-
rithm, while Apostolico, Landau, and Skiena [1] gave an O(n′m′ log(n′m′)) time
� This work was supported by FPR05A2-341 of 21C Frontier Functional Proteomics

Project from Korean Ministry of Science & Technology.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 315–326, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

316 J.W. Kim et al.

algorithm and Mitchell [13] obtained an O((d + n′ + m′) log(d + n′ + m′)) time
algorithm, where d is the number of matches of compressed characters. Mäkinen,
Navarro, and Ukkonen [12] conjectured an O(n′m′) time algorithm on average
without proof.

For the Levenshtein distance metric, Arbell, Landau, and Mitchell [2] and
Mäkinen, Navarro, and Ukkonen [11] presented O(nm′ + n′m) time algorithms,
independently. Mäkinen, Navarro, and Ukkonen [11] posed as an open prob-
lem the challenge of extending these results to more general scoring metrics.
Crochemore, Landau, and Ziv-Ukelson [5,4] and Mäkinen, Navarro, and Ukko-
nen [12] gave O(nm′+n′m) time algorithms for the weighted edit distance metric
using techniques completely different from each other.

In this paper we consider similarity based on the affine gap penalty metric.
The affine gap penalty metric is a more general and rather complicated scoring
metric than the weighted edit distance. To compute similarity in this model
efficiently, we convert the problem to a path problem on a directed acyclic graph
and use some properties of maximum paths in this graph. It is not necessary to
build the graph explicitly since we come up with recurrences using the properties
of the graph.

We present an O(nm′ + n′m) time algorithm for computing similarity of two
run-length encoded strings in the affine gap penalty model, wheren′ and m′ are the
lengthsofgiventworun-lengthencodedstrings,andnandmarethedecodedlengths
of given two strings, respectively. This result shows that we successfully extended
comparison of run-length encoded strings to a more general scoring metric.

2 Preliminaries

We first give some definitions and notations that will be used in this paper. A
string is concatenations of zero or more characters from an alphabet Σ. A space
is denoted by ∆ /∈ Σ; we regard ∆ as a character for convenience. The length of
a string A is denoted by |A|. Let ai denote ith character of a string A and A[i..j]
denote a substring aiai+1 . . . aj of A. When a string α is a substring of a string
A, we denote it by α ≺ A. Given two strings A = a1a2 . . .an and B = b1b2 . . . bm,
an alignment of A and B is A∗ = a∗

1a
∗
2 . . .a∗

l and B∗ = b∗1b
∗
2 . . . b∗l constructed by

inserting zero or more ∆s into A and B so that each a∗
i maps to b∗i for 1 ≤ i ≤ l.

There are three kinds of mappings in a∗ and b∗ according to the characters of
a∗

i and b∗i .

• match : a∗
i = b∗i �= ∆,

• mismatch : (a∗
i �= b∗i) and (a∗

i , b
∗
i �= ∆),

• insertion or deletion (indel for short) : either a∗
i or b∗i is ∆.

Note that we do not allow the case of a∗
i = b∗i = ∆.

2.1 Global Alignments

Given two strings A and B, an optimal global alignment of A and B is an
alignment of A and B that has the highest similarity. We denote the similarity
of an optimal global alignment by SG(A, B).

Computing Similarity of Run-Length Encoded Strings 317

A well-known algorithm to find an optimal alignment was given by Smith
and Waterman [14], and Gotoh [7]. Given two strings A and B where |A| = n
and |B| = m, the algorithm computes SG(A, B) using a dynamic programming
table (called the H table) of size (n + 1)(m + 1). Let Hij for 0 ≤ i ≤ n and
0 ≤ j ≤ m denote SG(A[1..i], B[1..j]). Then, Hij can be computed by the
following recurrence:

Hi,0 = −gi, H0,j = −gj for 0 ≤ i ≤ n, 0 ≤ j ≤ m

Hij = max {Hi−1,j−1 + s(ai, bj), Cij , Rij} for 1 ≤ i ≤ n, 1 ≤ j ≤ m
(1)

where

C0,j = Ri,0 = −∞ for 0 ≤ i ≤ n, 0 ≤ j ≤ m

Cij = max {Hi−1,j − g1, Ci−1,j − µ} for 1 ≤ i ≤ n, 1 ≤ j ≤ m

Rij = max {Hi,j−1 − g1, Ri,j−1 − µ} for 1 ≤ i ≤ n, 1 ≤ j ≤ m

(2)

and s(ai, bj) is the similarity score between elements ai and bj such that s(ai, bj)=
1 if ai = bj and s(ai, bj) = −δ if ai �= bj, and gk is the gap penalty for an indel of
k ≥ 1 bases such that gk = γ +kµ where δ, γ, and µ are non-negative constants.
Then the value Hnm is SG(A, B) and it is computed in O(nm) time.

2.2 Gap Penalty Models [8]

We defined the gap penalty gk as gk = γ + kµ where γ and µ are non-negative
constants. This is called the affine gap penalty model, where γ is the gap initiation
penalty and µ is the gap extension penalty. We define g0 = 0. When there is no
gap initiation penalty, i.e., gk = kµ, it is called the linear gap penalty model.

The problem we consider in this paper is follows.

Problem 1. Let A and B be two strings, and let A′ and B′ be run-length encoded
strings of A and B, respectively. Given A′ and B′, compute SG(A, B) with affine
gap penalty.

2.3 Black and White Blocks [2]

We divide the H table into submatrices, which called “blocks”. A block is a
submatrix Hi1..i2,j1..j2 consisting of two runs - one of A and one of B. Thus,
by definition, the H table is divided into exactly n′m′ blocks where n′ and m′

are the run-length encoded lengths of A and B, respectively. The blocks are of
two types: black blocks, corresponding to pairs of identical letters ai1 = bj1 , and
white blocks, corresponding to pairs of distinct letters ai1 �= bj1 .

For a same block, there exists only one kind of similarity score s(ai, bj). In
a black block, every ai is equal to every bj and thus we use only 1 for s(ai, bj).
In a white block, every ai is different from every bj and thus we use only −δ for
s(ai, bj).

318 J.W. Kim et al.

HH

HH H

H

C

R R R

C C

CC

R R R

j+1

i

i+1

^ v
d

^
1

^

h

j

1

h

j+2

d

11

v

h h

b
1 1

w

1
1

C

Fig. 1. An alignment graph for ai+1 = g and bj+1bj+2 = gt

2.4 Dependency of Elements

The computation of similarity can be viewed as a path problem on a directed
acyclic graph called an alignment graph [9]. See Figure 1. At each position (i, j)
for 0 ≤ i ≤ n and 0 ≤ j ≤ m, there are three kinds of vertices: an H-vertex, a
C-vertex and an R-vertex. An alignment graph has the following edges:

1. h1 : a horizontal edge from an H-vertex at (i, j) to an R-vertex at (i, j + 1).
The edge weight |h1| is −γ − µ.

2. ĥ1 : a horizontal edge from an R-vertex at (i, j) to an R-vertex at (i, j + 1).
|ĥ1| = −µ.

3. v1 : a vertical edge from an H-vertex at (i, j) to a C-vertex at (i + 1, j).
|v1| = −γ − µ.

4. v̂1 : a vertical edge from an C-vertex at (i, j) to an C-vertex at (i + 1, j).
|v̂1| = −µ.

5. d1 : a diagonal edge from an H-vertex at (i, j) to an H-vertex at (i+1, j+1).
There are two kinds of diagonal edges: db

1 when ai+1 = bj+1 and dw
1 when

ai+1 �= bj+1. |db
1| = 1 and |dw

1 | = −δ.
6. Edges at (i, j) from an R-vertex to an H-vertex and a C-vertex to an H-

vertex. The edge weights are 0.

The edges from 1 to 4 are defined from recurrence (2) and the edges from 5
to 6 are defined from recurrence (1). Since Rij is the maximum of Hi,j−1 − g1
and Ri,j−1 − µ in recurrence (2), we define an edge h1 from an H-vertex to an
R-vertex with edge weight −γ − µ and define an edge ĥ1 from an R-vertex to
an R-vertex with −µ. The other edges are defined similarly.

We can define a path 〈·〉 from a vertex to a vertex. A horizontal path 〈ĥi〉 for
i > 1 is defined as i consecutive ĥ1 edges, i.e., 〈ĥ1 . . . ĥ1〉 and a horizontal path
〈hi〉 is defined as 〈h1ĥi−1〉. Vertical paths 〈v̂i〉 and 〈vi〉 are defined similarly. A
diagonal path 〈di〉 is defined as i consecutive d1 edges. A path P from (k, l)
to (i, j) is a sequence of edges from a vertex at (k, l) to a vertex at (i, j). For
example, 〈h2d1v1〉 is a path from an H-vertex at (i, j) to a C-vertex (or an H-
vertex) at (i + 2, j + 3). Let |〈·〉| denote a path weight of 〈·〉 which is the sum
of all edge weights in the path. For example, the path weight of 〈h2d

w
1 v1〉 is

|〈h2d
w
1 v1〉| = −γ − 2µ− δ − γ − µ.

Computing Similarity of Run-Length Encoded Strings 319

We can merge two paths or divide a path, denoted by 〈α〉〈β〉 ↔ 〈αβ〉,
if the path weights are the same. For example, 〈dahb〉〈ĥcvd〉 ↔ 〈dahb+cvd〉,
〈dahb〉〈hcvd〉 ↔ 〈dahbhcvd〉. However, for the following cases, the path weights
are changed: |〈hahb〉| ≤ |〈ha+b〉|, |〈vavb〉| ≤ |〈va+b〉|.

We can exchange the order of adjacent two edges in a path. If 〈havbdc〉 is a
path from (k, l) to (i, j), then 〈vbhadc〉 is also a path from (k, l) to (i, j) and the
path weights are the same. However, an exchange of edge d can cause the change
of a path weight because d depends on the match/mismatch of the position. Since
|dw

1 | < |db
1|, |〈vadw

b 〉| ≤ |〈dbva〉| and |〈vadb
b〉| ≥ |〈dbva〉| at any time.

We also define a maximum path from (k, l) to (i, j) which is a path that has
the maximum path weight among all paths from (k, l) to (i, j). A maximum path
from an H-vertex to another H-vertex will be called an HH-mp. Similarly, we
will use a CC-mp, an RR-mp, an HC-mp, etc. Each maximum path has some
restrictions: An Hx-mp cannot start with v̂ or ĥ (x is don’t care symbol). A
Cx-mp and an Rx-mp must start with v̂ and ĥ, respectively. An xC-mp must
end with v or v̂ and an xR-mp must end with h or ĥ.

From recurrence 1, we can get a relation between Hij and its previously
defined entries.

Lemma 1. Let P be an HH -mp from (k, l) to (i, j). Then Hij ≥ Hkl + |P |.

Note that the symmetric versions of Lemma 1 hold for an HH -mp, an RR-mp,
an HC -mp, etc.

Now we consider a maximum path in one block. Every maximum path in one
block consists of a permutation of di, hj and vk. We know that |〈hahb〉| ≤ |〈ha+b〉|
and the order exchange of d does not change the path weight because there is
only one kind of edge d in one block. Thus, a path that consists of a permutation
of di, hj and vk is a maximum path.

The number of diagonal edges in a maximum path depends on the weight of
d and that of v and h. Let 〈hk−tdtvk−t〉 be a path from (i, j) to (i + k, j + k)
for 0 ≤ t ≤ k. Then the path weight is |〈hk−tdtvk−t〉| = −2gk−t + t|d1| =
−2γ�(k − t)/k� − 2kµ + (2µ + |d1|)t since gk−t = −γ − (k − t)µ if t < k; it is
0 if t = k. The term −2γ�(k − t)/k� has a maximum value when t = k and the
term (2µ + |d1|)t has a maximum value when t = k for 2µ + |d1| ≥ 0 and t = 0
for 2µ + |d1| < 0. Thus, we compare |〈dk〉| with |〈hkvk〉| and select the greater
one for an HH -mp from (i, j) to (i + k, j + k). To determine an HH -mp from
(i, j) to (i + k + s, j + k) for s > 0, we compare |〈dk〉| with |〈hkv̂k〉| and select

kv

kh

kd kd kd

H

H

(b)
H

H

(a)
H

H

(c)

Fig. 2. Three cases for edge selection. |〈dk〉| is compared with (a) |〈hkvk〉|, (b) |〈hk v̂k〉|,
(c) |〈ĥkvk〉|.

320 J.W. Kim et al.

the greater one, i.e., one of 〈dkvs〉 and 〈hkvk+s〉 is an HH -mp. To determine an
HH -mp from (i, j) to (i + k, j + k + s), we compare |〈dk〉| with |〈ĥkvk〉|. See
Figure 2.

For a black block, |〈db
k〉| = k > 0 and |〈hk〉| = |〈vk〉| ≤ 0 (also |〈ĥk〉| =

|〈v̂k〉| ≤ 0). Thus we get the following proposition.

Proposition 1. Given a black block, we must maximize the number of diagonal
edges in a path.

Proposition 1 does not hold for a white block, because the similarity score
for mismatch, −δ, is also less than or equal to 0.

3 Algorithm

In this section we present an algorithm that computes the similarity between
two run-length encoded strings with affine gap penalty.

The outline of the algorithm is the same as that for the LCS [3], the Leven-
shtein distance [2,11] and the weighted edit distance [5,12]. Given two run-length
encoded strings A′ and B′, we compute blocks from left to right and from top
to bottom. For each block, we compute the bottom row from left to right and
the rightmost column from top to bottom. See Figure 3.

Given a block Hi+1..i+p,j+1..j+q , our goal is to compute the value of Ci+p,j+l,
Ri+p,j+l and Hi+p,j+l for 1 ≤ l ≤ q and Ci+k,j+q , Ri+k,j+q and Hi+k,j+q for
1 ≤ k ≤ p in O(p + q) time using Ci+k,j , Ri+k,j and Hi+k,j for 0 ≤ k ≤ p and
Ci,j+l, Ri,j+l and Hi,j+l for 0 ≤ l ≤ q.

We present two algorithms, one for a white block and another for a black
block. For each block, we first present how to compute the values of C and R,
and then show how to compute the values of H .

C
HR

C
HR
C
HR

C
HR

C
HR

C
HR

C
HR

i

i+1

i+p

...

a
a

a
c
c

c
b

b
b

......
...

p

HR

j+1 j+q

C

q

b b ba a a c c c
j

Fig. 3. H table for arcpbt and asbqcu is divided into 9 blocks which consist of 3 black

blocks and 6 white blocks. For one of the white blocks, Hi+1..i+p,j+1..j+q, we only need

to compute Hi+p,j+1..j+q and Hi+1..i+p,j+q from Hi..i+p,j and Hi,j..j+q.

Computing Similarity of Run-Length Encoded Strings 321

3.1 White Blocks

We give an algorithm for a white block. We only show how to compute the values
of the elements on the bottom row of the block. Computing the elements on the
rightmost column is done similarly.

Computing Ci+p,j+l. To compute the value of Ci+p,j+l for 1 ≤ l ≤ q, we need
Ri+k,j for 1 ≤ k ≤ p, Ci,j+s for 1 ≤ s ≤ l, Hi+k,j for 1 ≤ k ≤ p and Hi,j+s for
0 ≤ s ≤ l. Since there are various ways from each element to Ci+p,j+l, we give
some lemmas to select essential paths, i.e., the paths that must be considered to
compute Ci+p,j+l.

Lemma 2. Let Hi+k,j+l for 1 ≤ k ≤ p be an element within a white block and
P1 be a CH -mp from (i, j + l − s) to (i + k, j + l) for 0 ≤ s < l. Then, there
exists an element Ci,j+l such that Ci,j+l−s + |P1| ≤ Ci,j+l + |P2| where P2 is a
CH -mp from (i, j + l) to (i + k, j + l) or exists Hi,j+l−t for 0 ≤ t < s such that
Ci,j+l−s + |P1| ≤ Hi,j+l−t + |P3| where P3 is an HH -mp from (i, j + l − t) to
(i + k, j + l).

Lemma 3. Let P1 be a CC-mp from (i, j + l− s) to (i + p, j + l) for 0 ≤ s < l.
Then, there exists an element Ci,j+l such that Ci,j+l−s + |P1| ≤ Ci,j+l + |P2|
where P2 is a CC -mp from (i, j + l) to (i+p, j + l) or exists an element Hi,j+l−t

for 0 ≤ t < s such that Ci,j+l−s + |P1| ≤ Hi,j+l−t + |P3| where P3 is an HC-mp
from (i, j + l − t) to (i + p, j + l)

Lemma 4. Let P1 be an RC-mp from (i+k, j) to (i+p, j+l) for 1 ≤ k ≤ p−1. If
−δ > −2µ, there exists an element Ri+p−1,j such that Ri+k,j + |P1| ≤ Ri+p−1,j +
|P2| where P2 is an RC-mp from (i + p − 1, j) to (i + p, j + l) or exists Hi+t,j

for k < t ≤ p− 1 such that Ri+k,j + |P1| ≤ Hi+t,j + |P3| where P3 is an HC-mp
from (i + t, j) to (i + p, j + l).

If −δ ≤ −2µ, the RC -mp from (i + k, j) to (i + p, j + l) for 1 ≤ k ≤ p− 1 is
〈ĥlvp−k〉 and it is an essential path for every 1 ≤ k ≤ p− 1.

Lemma 5. Let P1 be an HC-mp from (i, j + l− s) to (i+p, j + l) for 0 ≤ s ≤ l.
Then, there exists an element Hi,j+l−t for 0 ≤ t ≤ min{l, p − 1} such that
Hi,j+l−s + |P1| ≤ Hi,j+l−t + |P2| where P2 is an HC-mp from (i, j + l − t) to
(i + p, j + l).

By the lemmas above, we can select essential paths from the row of C on
top of the block, the column of R to the left of the block, and the row of H on
top of the block to Ci+p,j+l. The maximum paths from the column of H to the
left of the block to Ci+p,j+l, i.e., the HC -mps from (i + k, j) to (i + p, j + l) for
1 ≤ k ≤ p − 1, are all essential paths. From these, we derive that the value of
Ci+p,j+l is the maximum of the following. See Figure 4.

(i) max1≤s≤p−1{Ri+s,j − gp−s} − lµ
(ii) Ci,j+l − pµ

322 J.W. Kim et al.

(b)

H

H

H

H

C

(iii)
H(vi)

C

H
(c)

(v)

(iv)

R

R

R

R

C

(a)

C

(i)

(ii)

Fig. 4. Computing Ci+p,j+l in a white block. (a) formulas (i) and (ii), (b) formula (iii),

(c) formulas (iv), (v) and (vi).

(iii) max1≤s≤p−1{Hi+s,j − gp−s} − gl

(iv) max0≤s≤min{l,p−1}{Hi,j+l−s − sδ − gp−s}
(v) max1≤s≤p−1−l{Hi+s,j − gp−s−l} − lδ when l < p− 1
(vi) max1≤s≤min{l−1,p−2}{Hi+p−1−s,j − gl−s − sδ} − g1 when l ≥ 2.

The value of each formula can be computed in O(p) time (of course, (ii) in
constant time) and the maximum of them is computed in constant time. Thus
we need O(p) time to compute the value of Ci+p,j+l.

Computing all the values of C of the bottom row needs O(pq) time using the
above result. However, since we compute the bottom row from left to right, i.e.,
l is increased from 1 to q, we can reduce the time complexity to O(p + q) using
some properties of the recurrences that two adjacent entries are very similar.

First, consider (i) max1≤s≤p−1{Ri+s,j − gp−s} − lµ and (iii) max1≤s≤p−1
{Hi+s,j − gp−s} − gl. The index s of the maximum value in (i) and that in (iii)
do not depend on l. Hence we compute (i) and (iii) for l = 1 in O(p) time and
then get the maximum value for l ≥ 2 in constant time by adding −(l − 1)µ.

Second, consider (iv) max0≤s≤min{l,p−1}{Hi,j+l−s− sδ− gp−s}. The range of
the column index for H in (iv) is j to j + l for 1 ≤ l < p and j + l− p+1 to j + l
for l ≥ p. As l increases, the range is increased by one till l < p and then the
position of the range is shifted to the right by one. See Figures 5(a) and 5(c).
Each time l increases, value −δ +µ is added to all the rest elements. It is almost
the same as the recurrence for C in Case 2 of [10]. Thus, using MQUEUE [10],
we can get the maximum value in amortized constant time. We can use a deque
with heap order [6] to get worst-case constant time.

Third, consider (v) max1≤s≤p−1−l{Hi+s,j − gp−s−l}− lδ when l < p−1. The
range of the row index for H in (v) is i + 1 to i + p − 1 − l for 1 ≤ l < p − 1.
That is, the range is decreased by one till l < p− 1. See Figure 5(a). Hence we
make a stack with heap order for l = 1 in O(p) time and then get the maximum
value for l ≥ 2 one by one in constant time by popping one element, getting the
maximum value of the stack and adding (l − 1)(−δ + µ) to it.

Last, consider (vi) max1≤s≤min{l−1,p−2}{Hi+p−1−s,j − gl−s − sδ} − g1 when
l ≥ 2. The range of the row index for H in (vi) is i+p−l to i+p−2 for 2 ≤ l < p−1
and i + 1 to i + p − 2 for l ≥ p − 1. As l increases, the range is increased by
one till l < p− 1 and then the index s of the maximum value does not depend

Computing Similarity of Run-Length Encoded Strings 323

C

H

C

H

C

H(vi)

C

H

(iv)

(v)

C

C

H

H

H

H

(iv)

(vi)

(a) (b) (c)

Fig. 5. The changes from Ci+p,j+l to Ci+p,j+l+1 when (a) (b) l < p−1 and (c) l ≥ p−1

on l for l ≥ p − 1. See Figures 5(b) and 5(c). Thus, we can get the maximum
value for l = 2 in constant time and then get the maximum value till l < p− 1
one by one in constant time by adding −µ to the previous maximum value and
comparing it with a new element. We also get the maximum value for l ≥ p− 1
in constant time by adding −(l − p + 2)µ to the maximum value for l = p− 2.

From above all, we compute (i) and (iii) in O(p+q) time, (ii), (iv) and (vi) in
O(q) time, and (v) in O(p) time. Therefore, we compute Ci+p,j+l for 1 ≤ l ≤ q
in O(p + q) time.

Computing Ri+p,j+l. To compute the value of Ri+p,j+l for 1 ≤ l ≤ q, we
need Ri+p,j+l−1 and Hi+p,j+l−1 by recurrence (2). Since we know the values of
Ri+p,j and Hi+p,j and we compute the value of the elements from left to right,
we have no problem to compute Ri+p,j+l and it takes O(1) time. Therefore, we
compute all the values of R of the bottom row in O(q) time.

Computing Hi+p,j+l. To compute the value of Hi+p,j+l for 1 ≤ l ≤ q, we
need Ci+p,j+l, Ri+p,j+l and Hi+p−1,j+l−1. Since we know the values of Ci+p,j+l

and Ri+p,j+l, we need only compute the diagonal incoming value.

Lemma 6. Let P1 be a RH -mp from (i + k, j) to (i + p − 1, j + l − 1) for
1 ≤ k ≤ p− 1. Then, Ri+k,j + |P1|+ |〈dw

1 〉| ≤ Ri+p,j+l.

Lemma 7. Let P1 be a CH -mp from (i, j + s) to (i + p − 1, j + l − 1) for
1 ≤ s ≤ l − 1. Then, Ci,j+s + |P1|+ |〈dw

1 〉| ≤ Ci+p,j+l.

Lemma 8. Let P1 be a HH -mp from (i + k, j) to (i + p − 1, j + l − 1) for
1 ≤ k ≤ p−1. Then, Hi+k,j + |P1|+ |〈dw

1 〉| ≤ Ri+p,j+l or Hi+k,j + |P1|+ |〈dw
1 〉| ≤

Hi+p−l,j + |〈dw
l 〉| when l ≤ p.

324 J.W. Kim et al.

H

R
C
H

Fig. 6. Computing Hi+p,j+l in a white block.

Lemma 9. Let P1 be a HH -mp from (i, j + s) to (i + p − 1, j + l − 1) for
1 ≤ s ≤ l− 1. Then, Hi,j+s + |P1|+ |〈dw

1 〉| ≤ Ci+p,j+l or Hi,j+s + |P1|+ |〈dw
1 〉| ≤

Hi,j+l−p + |〈dw
l 〉| when l > p.

By the lemmas above, we derive that the value of Hi+p,j+l is the maximum
of the following: (i) Ri+p,j+l, (ii) Ci+p,j+l, (iii) Hi+p−l,j − lδ when l ≤ p, (iv)
Hi,j+l−p − pδ when l > p. See Figure 6.

Since each value of (i), (ii), (iii) and (iv) is computed in constant time, we
can compute all the values of H of the bottom row in O(q) time.

Analysis. Given a white block with p rows and q columns, the bottom row of
the block is computed in O(p + q) time. The values of C of the bottom row are
computed in O(p + q) time and the values of R and H of the bottom row are
computed in O(q) time.

The rightmost column of the block is also computed in O(p + q) time and
thus the similarity of the white block can be computed in O(p + q) time.

3.2 Black Blocks

We give an algorithm for a black block. As white blocks, we only show how to
compute the values of the elements on the bottom row of the block.

Computing Ci+p,j+l. To compute the value of Ci+p,j+l for 1 ≤ l ≤ q, we need
Ri+k,j for 1 ≤ k ≤ p, Ci,j+s for 1 ≤ s ≤ l, Hi+k,j for 1 ≤ k ≤ p and Hi,j+s for
0 ≤ s ≤ l. We give two lemmas for a black block to select essential paths.

Lemma 10. Let P1 be a CC-mp from (i, j + l− s) to (i+p, j + l) for 1 ≤ s < l.
Then, there exists an element Hi,j+l−s such that Ci,j+l−s+|P1| ≤ Hi,j+l−s+|P2|
where P2 is an HC-mp from (i, j + l − s) to (i + p, j + l)

Lemma 11. Let P1 be an HC-mp from (i, j+ l−s) to (i+p, j+ l) for 0 ≤ s ≤ l.
Then, there exists an element Hi,j+l−t for 0 ≤ t ≤ min{l, p − 1} such that
Hi,j+l−s + |P1| ≤ Hi,j+l−t + |P2| where P2 is an HC-mp from (i, j + l − t) to
(i + p, j + l).

By Lemmas 10, 11 and Proposition 1, we can select essential paths from the
row of C on top of the block and the row of H on top of the block to Ci+p,j+l.
The maximum paths from the column of R to the left of the block and the
column of H to the left of the block to Ci+p,j+l are all essential paths. From
these, we derive that the value of Ci+p,j+l is the maximum of the following. See
Figure 7. (Hence we need O(p) time to compute Ci+p,j+l.)

Computing Similarity of Run-Length Encoded Strings 325

R

R

C

C

(b) (iii)

(ii)

H

H

R

R

C

(a)

(i)

H

C

(c)

(v)

(iv)

(vi)

Fig. 7. Computing Ci+p,j+l in a black block. (a) formula (i), (b) formulas (ii) and (iii),

(c) formulas (iv), (v) and (vi).

(i) max1≤s≤p−l{Ri+s,j − gp−s−l+1} − µ + (l − 1) for l ≤ p− 1
(ii) max0≤s≤min{l−2,p−2}{Ri+p−1−s,j − (l − s)µ + s} − g1 when l ≥ 2
(iii) Ci,j+l − pµ
(iv) max0≤s≤min{l,p−1}{Hi,j+l−s + s− gp−s}
(v) max1≤s≤p−1−l{Hi+s,j − gp−s−l}+ l when l < p− 1
(vi) max1≤s≤min{l−1,p−2}{Hi+p−1−s,j − gl−s + s} − g1 when l ≥ 2.

We can compute all the values of C of the bottom row in O(p + q) time.
Recurrences (iii), (iv), (v) and (vi) are essentially the same as recurrences (ii),
(iv), (v) and (vi) of a white block, and (i) and (ii) are similar to (v) and (vi),
respectively.

Computing Ri+p,j+l. Computing Ri+p,j+l for 1 ≤ l ≤ q in a black block is
the same as in a white block. We can compute Ri+p,j+l by recurrence (2) and it
takes O(1) time. Therefore, we compute all the values of R of the bottom row
in O(q) time.

Computing Hi+p,j+l. To compute the value of Hi+p,j+l for 1 ≤ l ≤ q, we
need Ci+p,j+l, Ri+p,j+l and Hi+p−1,j+l−1. Since we know the values of Ci+p,j+l

and Ri+p,j+l, we need only compute the diagonal incoming value.
To compute Hi+p,j+l, we need more terms than that in a white block. Because

Lemmas 6 and 7 do not hold for a black block, we need to compute paths from
Ri+k,j for 1 ≤ k ≤ p− 1 and Ci,j+s for 1 ≤ s ≤ l − 1.

Lemma 12. Let P1 be a RH -mp from (i + k, j) to (i + p − 1, j + l − 1) for
1 ≤ k ≤ p − 1. Then, Ri+k,j + |P1| + |〈db

1〉| ≤ Hi+p−l,j + |〈db
l 〉| when p ≥ l and

Ri+k,j + |P1|+ |〈db
1〉| ≤ Hi,j+l−p + |〈db

p〉| when l > p.

Lemma 13. Let P1 be a CH -mp from (i, j + s) to (i + p − 1, j + l − 1) for
1 ≤ s ≤ l − 1. Then, Ci,j+s + |P1| + |〈db

1〉| ≤ Hi+p−l,j + |〈db
l 〉| when p ≥ l and

Ci,j+s + |P1|+ |〈db
1〉| ≤ Hi,j+l−p + |〈db

p〉| when l > p.

By Lemmas 12, 13, 8, 9 and Proposition 1, we derive that the value of Hi+p,j+l

is the maximum one of the followings: (i) Ri+p,j+l, (ii) Ci+p,j+l, (iii) Hi+p−l,j + l
when p ≥ l, (iv) Hi,j+l−p + p when l > p.

Since each value of (i), (ii), (iii) and (iv) is computed in constant time, we
can compute all the values of H of the bottom row in O(q) time.

326 J.W. Kim et al.

Analysis. Given a black block with p rows and q columns, the bottom row of
the block is computed in O(p + q) time. The rightmost column of the block is
also computed in O(p + q) time and thus the similarity of the black block can
be computed in O(p + q) time.

Theorem 1. The similarity of two run-length encoded strings in the affine gap
penalty model can be computed in O(nm′ + n′m) time.

References

1. A. Apostolico, G. M. Landau, and S. Skiena. Matching for Run Length Encoded
Strings. Journal of Complexity, 15(1):4–16, 1999

2. O. Arbell, G. M. Landau, and J. Mitchell. Edit Distance of Run-Length Encoded
Strings. Information Processing Letters, 83(6):307–314, 2002

3. H. Bunke and H. Csirik. An Improved Algorithm for Computing the Edit Distance
of Run Length Coded Strings. Information Processing Letters, 54:93–96, 1995

4. M. Crochemore, G. M. Landau, B. Schieber, and M. Ziv-Ukelson. Re-Use Dynamic
Programming for Sequence Alignment: An Algorithmic Toolkit. String Algorith-
mices, NATO Book series, KCL Press, 2004

5. M. Crochemore, G. M. Landau, and M. Ziv-Ukelson. A Subquadratic Sequence
Alignment Algorithm for Unrestricted Scoring Matrices. SIAM Journal on Com-
puting, 32(6):1654–1673, 2003

6. H. Gajewska and R. E. Tarjan. Deques with Heap Order. Information Processing
Letters, 22:197–200, 1986

7. O. Gotoh. An Improved Algorithm for Matching Biological Sequences. Journal of
Molecular Biology, 162:705–708, 1982

8. D. Gusfield. Algorithms on Strings, Trees, and Sequences, Cambridge University
Press, 1997

9. X. Huang and W. Miller. A Time-Efficient, Linear-Space Local Similarity Algo-
rithm. Advances in Applied Mathematics, 12:337–357, 1991

10. J. W. Kim and K. Park. An Efficient Local Alignment Algorithm for Masked
Sequences. In Proc. 10th COCOON, LNCS, 3106:440-449, 2004

11. V. Mäkinen, G. Navarro, and E. Ukkonen. Approximate Matching of Run-Length
Compressed Strings, In Proc. 12th CPM, LNCS, 2089:31–49, 2001

12. V. Mäkinen, G. Navarro, and E. Ukkonen. Approximate Matching of Run-Length
Compressed Strings, Algorithmica, 35:347–369, 2003

13. J. Mitchell. A Geometric Shortest Path Problem, with Application to Computing a
Longest Common Subsequence in Run-Length Encoded Strings. Technical Report,
Dept. of Applied Mathematics, SUNY Stony Brook, 1997

14. T. F. Smith and M. S. Waterman. Identification of Common Molecular Subse-
quences. Journal of Molecular Biology, 147:195–197, 1981

L1 Pattern Matching Lower Bound�

Ohad Lipsky1 and Ely Porat2

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
Tel: +972 3 531-8408
ohadlipsky@yahoo.com

2 Department of Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel
Tel: 972 3 531-7620

porately@cs.biu.ac.il

Abstract. Let a text string T = t0, . . . , tn−1 and a pattern string P =
p0, . . . , pm−1 ti, pj ∈ IN be given. In The Approximate Pattern Matching
in the L1 metric problem (L1-matching for short) the output is, for every
text location i, the L1 distance between the pattern and the length m
substring of the text starting at i, i.e. Σm−1

j=0 |ti+j − pj |. The Less Than
Matching problem is that of finding all locations i of T where ti+j ≥ pj

j = 0, . . . , m−1. The String Matching with Mismatches problem is that of
finding the number of mismatches between the pattern and every length
m substring of the text. For the three above problems, the fastest known
deterministic solution is O(n

√
m log m) time.

In this paper we show that the latter two problems can be linearly
reduced to the problem of L1-matching.

1 Introduction

Approximate matching is one of the fundamental problems in pattern match-
ing. In approximate matching one defines a distance function between strings,
and seeks for the distance between the pattern and every length m substring of
the text. In the problem of String Matching with Mismatches [6] the hamming
distance is used as distance function. Almost two decades ago Abrahamson [1]
showed an O(n

√
m log m) time algorithm for the problem, which is the fastest

known so far. Amir, Lewenstein and Porat [3] gave an O(n
√

k log k) time al-
gorithm for the case that we can discard locations with distance greater than
a given bound k. However, in the general case k = m and it is not better
than Abrahamson’s result. More than that, Indyk [9] showed that improvement
over the Abrahamson algorithm to O(nmc) time will yield an O(n2+2c) time for
boolean matrix multiplication.

The number of mismatches is an important measure as part of an edit distance
between typed strings. Advances in Multimedia, Digital Libraries and Compu-
tational Biology have shown that a much more generalized theoretical basis
of string matching could be of tremendous benefit [16,15]. In computer vision,
for example, it does not make sense to say that a pattern pixel with a close

� Partially supported by GIF Young Scientists Program grant 2055-1168.6/2002.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 327–330, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

328 O. Lipsky and E. Porat

grey level to the text pixel should generate the same error penalty as, say, a
white pattern pixel being matched to a black text pixel. Similarly in biology, the
energy level for bonding different proteins is different, suggesting that not all
“mismatches” should be counted equally. In various other applications, such as
earthquake prediction [14], stock market analysis [13], and music retrieval [17],
the distance measure used is the Minkowsky L1 norm. The L1 norm is of par-
ticular importance also due to the fact that strings can be embedded in the L1
space and the distance between their associated vectors approximates the edit
distance with moves of the strings [8]. The problem of L1 matching was solved
in O(n

√
m logm) time in [12,4,7]. The solution of [12] was further extended

to solve closest pair problems in [10]; it was also the base for other pattern
matching algorithms in [11]. We believe it is hard to show a better time for the
L1 matching.

Our Contribution: We show here that String Matching with Mismatches can
be linearly reduced to L1 matching. We further show that the problem of Less
Than Matching can also be linearly reduced to L1 matching.

The problem of Less Than Matching was presented in [2] and solved in
O(n

√
m log m). It is still open problem whether that time is optimal.

2 Preliminaries

Let A = a0, . . . , am−1 and B = b0, . . . , bm−1 be two string of numbers. The
L1 distance between A and B, denoted by L1(A, B) is defined by L1(A, B) =
Σm−1

j=0 |aj − bj|.
Formally define the Approximate Pattern Matching in the L1 metric

problem:

Input: text T = t0, . . . , tn−1, pattern P = p0, . . . , pm−1,where ti, pj ∈ IN∀i, j.
Output: l0, l1, . . . , ln−m where li = L1(ti · · · ti+m−1, P) For every i ∈ [0, n−m].

The problem of String Matching with Mismatches is the problem of
counting the mismatches between the pattern and the text, for every alignment
possible. Formally:

Input: Text T= t0, t1, . . . , tn−1 and pattern P=p0, p1, . . . , pm−1, where ti, pj ∈ Σ.
Output: h0, . . . , hn−m where hi = Σm−1

j=0 neq(ti+j , pj) for every i ∈ [0, n−m] and
where

neq(x, y) =
{

1, x �= y
0, x = y

The problem of Less than Matching is defined as:

Input: text T = t0, . . . , tn−1, pattern P = p0, . . . , pm−1 where ti, pj ∈ IN.
Output: All locations i in T i ∈ [0, n−m] s.t. ti+j ≥ pj ∀j = 0, . . . , m− 1

L1 Pattern Matching Lower Bound 329

3 Reduction from String Matching with Mismatches

We use the following key observation:

Lemma 1. For any pair of integers x, y

|x− y + 1|+ |x− y − 1| − 2|x− y| =
{

0, x �= y
2, x = y

The Reduction: The input is a text T = t0t1 . . . tn−1 and a pattern P =
p0p1 . . . pm−1 both string of symbols from some alphabet Σ. We can assume that
Σ = {1, 2, . . . , |Σ|}. If not, just change T and P using any bijective function from
Σ to {1, 2, . . . , |Σ|}. This can be done in linear time.

1. Construct P− to be p0 − 1, p1 − 1, · · · , pm−1 − 1
and P+ to be p0 + 1, p1 + 1, · · · , pm−1 + 1.

2. Let
l0, l1, . . . , ln−m be the output of L1 matching of T and P ,
l+0 , l+1 . . . , l+n−m be the output of L1 matching of T and P+

and l−0 , l−1 . . . , l−n−m be the output of L1 matching of T and P−.
3. For every i ∈ [0, n−m]:

mi ← 1
2 (l+i + l−i − 2li).

hi ← m−mi.

It follows from the observation that mi equals to the number of matches at
location i and then clearly hi is the number of mismatches at location i. The
reduction is linear.

4 Reduction from Less Than Matching

Lemma 2. For any pair of integers x, y

|x− y + 1| − |x− y| =
{

+1, x ≥ y
−1, x < y

The Reduction: The input is text T = t0t1 . . . tn−1 and pattern P=p0p1 . . . pm−1
both strings of natural numbers. Take the following steps:

1. Run L1 matching with T and P , output will be l0, . . . , ln−m.
2. Run L1 matching with T + and P , where T + = t0 + 1, t1 + 1, . . . , tn−1 + 1.

The output will be l+0 , l+1 , . . . , l+n−m.
3. For every i ∈ [0, n−m]:

If l+i − li = m then output location i as a match.

Clearly, the reduction is linear. At location i, every pair of numbers ti+j

and pj can either add 1 to l+i − li or subtract 1 from l+i − li, it follows that if
l+i − li = m all pairs added 1, which mean that for all j = 0, . . . , m− 1 it holds
that ti+j ≥ pj , which mean we have a match. It is easily seen that if there is a
match at location i it will hold that l+i − li = m.

330 O. Lipsky and E. Porat

References

1. Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–
1051, 1987.

2. Amihood Amir and Martin Farach. Efficient 2-dimensional approximate matching
of half-rectangular figures. In Information and Computation, pages 118(1):1–11,
1995.

3. Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string
matching with k mismatches. J. Algorithms, 50(2):257–275, 2004.

4. Amihood Amir, Ohad Lipsky, Ely Porat, and Julia Umanski. Approximate match-
ing in the l1 metric. In Apostolico et al. [5], pages 91–103.

5. Alberto Apostolico, Maxime Crochemore, and Kunsoo Park, editors. Combinato-
rial Pattern Matching, 16th Annual Symposium, CPM 2005, Jeju Island, Korea,
June 19-22, 2005, Proceedings, volume 3537 of Lecture Notes in Computer Science.
Springer, 2005.

6. Alberto Apostolico and Zvi Galil, editors. Combinatorial Algorithms on Words.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1985.

7. Peter Clifford, Raphaël Clifford, and Costas S. Iliopoulos. Faster algorithms for
delta, gamma-matching and related problems. In Apostolico et al. [5], pages 68–78.

8. Graham Cormode and S. Muthukrishnan. The string edit distance matching prob-
lem with moves. In SODA, pages 667–676, 2002.

9. Piotr Indyk. Private communications. 1999.
10. Piotr Indyk, Moshe Lewenstein, Ohad Lipsky, and Ely Porat. Closest pair problems

in very high dimensions. In ICALP, volume 3142 of Lecture Notes in Computer
Science, pages 782–792. Springer, 2004.

11. Piotr Indyk, Ohad Lipsky, and Ely Porat. Approximate translation matching,
manuscript. 2004.

12. Ohad Lipsky. Efficient distance computations. Master’s thesis, Bar-Ilan University,
Department of Computer Science, 2003.

13. E. Maasoumi and J. Racine. Entropy and predictability of stock market returns.
In Journal of Econometrics, pages 107(1):291–312, 3, 2002.

14. L. Malagnini, R. B. Herman, and M. Di Bona. ground motion scaling in the
apenines (italy). In Bull. Seism. Soc. Am., pages 90:1062–1081, 2000.

15. M. V. Olson. A time to sequence. In Science, 270, pages 394–396, 1995.
16. Alex Pentland. Invited talk. nsf institutional infrastructure workshop. 1992.
17. Ilya Shmulevich, O. Yli-Harja, E. Coyle, D. Povel, and K. Lemstrom. Perceptual

issues in music pattern recognition - complexity of rhythm and key fining. 1999.

Approximate Matching in the L∞ Metric�

Ohad Lipsky1 and Ely Porat2

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel
Tel: +972 3 531-8408
ohadlipsky@yahoo.com

2 Department of Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel
Tel: 972 3 531-7620

porately@cs.biu.ac.il

Abstract. Let a text T = t0, . . . , tn−1 and a pattern P = p0, . . . , pm−1,
strings of natural numbers, be given. In the Approximate Matching in
the L∞ metric problem the output is, for every text location i, the L∞
distance between the pattern and the length m substring of the text
starting at i, i.e. Maxm−1

j=0 |ti+j − pj |. We consider the Approximate k −
L∞ distance problem. Given text T and pattern P as before, and a
natural number k the output of the problem is the L∞ distance of the
pattern from the text only at locations i in the text where the distance
is bounded by k. For the locations where the distance exceeds k the
output is φ. We show an algorithm that solves this problem in O(n(k +
log(min(m, |Σ|))) log m) time.

1 Introduction

One of the classical approximate pattern matching problems is the String match-
ing with Mismatches [3]. The input is a text string T = t0, . . . , tn−1 and pattern
string P = p0, . . . , pm−1 and the output is the number of mismatches between
the pattern and every length m substring of the text. The number of mismatches
is a very intuitive way for comparing strings, motivated by typing errors. How-
ever, this measure is not completely suitable in many fields. in computer vision,
for example, one might allow the pattern pixel to differ from text pixel within
some tolerated distance, without causing a mismatch. In music information re-
trieval [9] one might consider half tone changes as allowed, and seek for large
distortions only. In various other applications the L∞ Minkowsky norm is in use.
The problem of L∞ matching was discussed by Lipsky [7], and in recent papers
[4,1]. In [7,1] an O(n|Σ| log(m + |Σ|)) time algorithm is presented for the L∞
matching problem. Their technique was also extended to closest pair problems
[5] and to some other pattern matching problems [6]. In [4] They showed how
to find all locations for which the L∞ distance is less than some given δ in
O(δn log m) time. We present a simpler solution, that not only finds the loca-
tions it matches, but also computes the exact L∞ distance at those locations.
Let T i denote the length m substring of the text starting at i.

� Partially supported by GIF Young Scientists Program grant 2055-1168.6/2002.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 331–334, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

332 O. Lipsky and E. Porat

2 The Algorithm

Algorithm Outline

1. Discard all locations with distance > 2k.
2. Reduce the alphabet to an alphabet of size 2k.
3. Run the L∞ algorithm with the reduced alphabet.
4. Take distances as cyclic.

We discuss each step in detail.

Discarding Locations with too High a Distance: We use here an approx-
imation method for L∞ which approximates the L∞ values up to a factor of
1 ± ε [8]. We use ε = 1

4 . Then we discard every location with distance greater
than 5

4k. This ensures us that location with distance greater than 5
3k are dis-

carded for sure, and location with distance less than k are kept for sure. The
locations with distance between k and 5

3k might be discarded, and might be
kept. In the next steps we will exploit the fact that while there are locations
with distance greater than k, since they are bounded by 5k/3 it will only add a
constant factor. The time needed for this step is O(n log m log |Σ|)).

Reducing the Alphabet: This is done simply by taking each number modulo
4k, i.e. use T ′ = t0 mod 4k, t1 mod 4k, . . . , tn−1 mod 4k and P ′ = p0 mod 4k,
p1 mod 4k, . . . pm−1 mod 4k instead of the original T and P . The idea behind
this step is the following lemma:

Lemma 1. For any integers x, y, k s.t. |x− y| < 2k

|x mod 4k − y mod 4k| = |x− y|or|x mod 4k − y mod 4k| = 4k − |x− y|

Corollary 1. For any integers x, y, k s.t. |x− y| < 2k

|x− y| = |x mod 4k − y mod 4k|or|x− y| = 4k − |x mod 4k − y mod 4k|

This step is executed in linear time.

Run L∞ Algorithm with Reduced Alphabet: We simply use the algorithm
from the next section on P ′ and T ′, the alphabet size of T ′ and P ′ is bounded
by 4k. This step will take O(nk log(m+k)) time. Let l0, . . . , ln−m be the output.

Take Distances as Cyclic: Following from the corollary we know that for each
non discarded location i either the L∞ distance of the pattern from the length
m substring of the text starting at location i equals li or it equals 4k− li. Since
location i is not discarded we know that the output should be less than 2k, and
therefore only one of the two options fit. This step is executed in linear time.

Approximate Matching in the L∞ Metric 333

3 L∞ Matching O(n|Σ| log(m + |Σ|)) Algorithm

The method in this algorithm is encoding the text and the pattern in such a way
that in a single convolution, and a linear time pass on the convolution result we
compute the output.

Key Idea: We look at one text number, t, and one pattern number p. We encode
both of them to a |Σ| long binary strings. The encoding of t is all 0’s except the
t-th bit which is 1, and similarly with p, which is encoded to all 0’s except the
p-th bit. Let c(i) denote the encoded i. Now, we start by c(p) aligned below c(t)
and start at position −|Σ| (where c(t) fixed to start at position 1). We move
c(p) to the right till both 1-bits are one below the other. At this position, the
distance between the starting position of c(t) and the starting position of c(p)
equals to the difference |t − p|, an example is given in Figure 1. If we look at
r = c(t)⊗ c(p) we will have either r[−|t−p|] = 1 or r[|t−p|] = 1. Extending this
idea to encoding strings of numbers requires adding leading (or tracing) zeros
between the encoded numbers.

0 0 0 0 0 0 0 0 01t=8 c(t)
t-p=4

4 00000001000p=4 c(p)

0

000

1 0000000000

0
t-p=-3

3

p=11 c(p)

t=8 c(t)

1000000

Fig. 1. c(p) moved below c(t) till the 1-bits are aligned

In detail: first, define χ �=0(x) = 1 if x �= 0 and 0 otherwise. Next, define
For every x ∈ Σ = {1, . . . , n}, ct(x) = ct(x)1, . . . , ct(x)2|Σ| where ct(x)i = 1 if
i = |Σ|+x and 0 otherwise. Similarly define cp(x) = cp(x)1, . . . , cp(x)2|Σ| where
cp(x)i = 1 if i = x and 0 otherwise.

Algorithm Steps

1. Construct ct(T) = ct(t1) · · · ct(tn)
2. Construct cp(P) = cp(p1) · · · cp(pm)
3. Compute R = ct(T)⊗ cp(P)
4. For i = 1, . . . , n−m + 1

O[i] ← max|Σ|
s=−|Σ| χ �=0(R[(2i− 1)|Σ|+ 1 + s])|s|

Claim. At the end of the algorithm O[i] = maxm
j=1 |ti+j−1 − pj |.

334 O. Lipsky and E. Porat

Proof: First, we show that O[i] ≥ |ti+j−1 − pj| for every j ∈ {1, . . . , m}. In
order to see that, it is enough to show that for every j ∈ {1, . . . , m} it holds
that R[(2i− 1)|Σ|+ 1 + ti+j−1 − pj] �= 0 (since, then, the value of |ti+j−1 − pj |
is one of the values for the max taken in step 4). Now, since R[(2i − 1)|Σ| +
1 + ti+j−1 − pj] =

∑2m|Σ|
k=1 ct(T)(2i−1)|Σ|+1+ti+j−1−pj+k−1c

p(P)k and for k = pj

we have ct(T)(2i−1)|Σ|+ti+j−1 = 1 and cp(P)pj = 1 (from the way we defined the
encoding) it holds that R[(2i− 1)|Σ|+ 1 + ti+j−1 − pj] �= 0.

We have left to show that O[i] = |ti+j−1−pj| for some j ∈ {1, . . . , m}. Let sm

be the value for which O[i] = χ �=0(R[(2i−1)|Σ|+1+sm])|sm|. We can assume that
R[(2i−1)|Σ|+1+sm] �= 0 (otherwise O[i] = 0 and 0 ≤ maxm

j=1 |ti+j−1−pj| and
our proof is done). The fact that R[(2i−1)|Σ|+1+sm] �= 0 implies that for some
j′ ∈ {1, . . . , m}, k′ ∈ {0, . . . , 2|Σ|−1} we have ct(T)(2i−1)|Σ|+1+sm+2j′|Σ|+k′−1 =
ct(T)(2(i+j′)−1)|Σ|+sm+k′ = 1 and cp(P)2j′|Σ|+k′ = 1, which in turn implies that
for j′ it holds that |ti+j′−1 − pj′ | = sm. This complete our proof.

Time: The time needed to convolve 2 strings of size n|Σ| and m|Σ| is
O(n|Σ| log n). The computation of O[i] takes 2|Σ| steps , and i = 1, 2, . . . , n −
m+1 so this step takes O(n|Σ|).Both steps together take O(n|Σ| log n). We can
slightly improve the time by using the technique of cutting the text into n/m
overlapping segments, each of length 2m to a total time of O(n|Σ| log(m+ |Σ|)).

References

1. Amihood Amir, Ohad Lipsky, Ely Porat, and Julia Umanski. Approximate matching
in the l1 metric. In Apostolico et al. [2], pages 91–103.

2. Alberto Apostolico, Maxime Crochemore, and Kunsoo Park, editors. Combinato-
rial Pattern Matching, 16th Annual Symposium, CPM 2005, Jeju Island, Korea,
June 19-22, 2005, Proceedings, volume 3537 of Lecture Notes in Computer Science.
Springer, 2005.

3. Alberto Apostolico and Zvi Galil, editors. Combinatorial Algorithms on Words.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1985.

4. Peter Clifford, Raphaël Clifford, and Costas S. Iliopoulos. Faster algorithms for
delta, gamma-matching and related problems. In Apostolico et al. [2], pages 68–78.

5. Piotr Indyk, Moshe Lewenstein, Ohad Lipsky, and Ely Porat. Closest pair problems
in very high dimensions. In ICALP, volume 3142 of Lecture Notes in Computer
Science, pages 782–792. Springer, 2004.

6. Piotr Indyk, Ohad Lipsky, and Ely Porat. Approximate translation matching,
manuscript. 2004.

7. Ohad Lipsky. Efficient distance computations. Master’s thesis, Bar-Ilan University,
Department of Computer Science, 2003.

8. Ohad Lipsky and Ely Porat. Approximate l∞ matching. Technical report, Depart-
ment of Computer Science, 2003.

9. Ilya Shmulevich, O. Yli-Harja, E. Coyle, D. Povel, and K. Lemstrom. Perceptual
issues in music pattern recognition - complexity of rhythm and key fining. 1999.

An Edit Distance Between RNA Stem-Loops

Valentin Guignon1,�, Cedric Chauve2,��, and Sylvie Hamel3,��

1 Programme de Bioinformatique, Université de Montréal,
Pav. André-Aisenstadt, CP 6128 succ. Centre-ville, Montréal (QC), H3C 3J7, Canada

2 LaCIM, Département d’Informatique, Université du Québec à Montréal,
C.P. 8888 succ. Centre-Ville, Montréal (QC), H3C 3P8, Canada

3 LBIT, DIRO, Université de Montréal,
Pav. André-Aisenstadt, CP 6128 succ. Centre-ville, Montréal (QC), H3C 3J7, Canada

guignonv@yahoo.fr, chauve@lacim.uqam.ca, sylvie.hamel@umontreal.ca

Abstract. We introduce the notion of conservative edit distance and
mapping between two RNA stem-loops. We show that unlike the gen-
eral edit distance between RNA secondary structures, the conservative
edit distance can be computed in polynomial time and space, and we de-
scribe an algorithm for this problem. We show how this algorithm can be
used in the more general problem of complete RNA secondary structures
comparison.

1 Introduction

In this paper, we address a classical problem in bioinformatics, the compar-
ison of two RNA secondary structures, and we describe a new algorithm to
compute an edit distance and a mapping between two RNA secondary struc-
tures. The importance and functional variety of the several types of known RNA
molecules, especially non-coding RNAs like transfer RNAs (tRNAs), ribosomal
RNAs (rRNAs), untranslated regions (UTRs), small nuclear RNA (snRNAs) for
example, is a strong motivation for their study [4], in particular, in the compar-
ative approach that relates combinatorial similarity between molecules to func-
tional similarity. Several algorithms exist to compare RNA secondary structures,
most of them based on the encoding of RNA secondary structures by ordered
trees, followed by the computation of an edit distance and a mapping between
these trees. This approach was first used in [9,10], and is part of the popular
Vienna RNA Package [7]. However, the set of edit operations considered in these
works appears to be too limited, as it does not contain some edit operations that
correspond to natural evolutionary events for RNA structures, a problem that
is discussed in [1]. Recently, Jiang et al. introduced a new edit distance model
[8] that is more realistic, as it contains a broader set of edit operations, but also
less tractable algorithmically, as computing the edit distance between two RNA
secondary structures in this model is NP-hard [3].

� Supported by a scholarship of the Génome Québec program “Comparative and
integrative bioinformatics”.

�� Supported by grants from NSERC and FQRNT.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 335–347, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

336 V. Guignon, C. Chauve, and S. Hamel

In the present work, we consider the set of edit operations defined in [8]. Our
main result is that, when the compared RNA structures are simple enough and
the set of allowed mappings is restricted, the distance and mapping computation
becomes tractable, and even easy. More precisely, we consider the computation
of a conservative mapping between two stem-loops; a precise statement of the
problem is given in Section 2, but intuitively, a mapping is said to be conser-
vative if it describes only evolutionary events involving bases that are closely
located in terms of secondary structure. We show that such a computation can
be done efficiently with a dynamic programming algorithm that is an extension
of the classical algorithm computing an edit distance between strings. The mo-
tivations for considering such a restricted notion of distance and mapping are
the following. First, every RNA secondary structure can be decomposed into a
sequence of stem-loops and stem-loop-like substructures, that can be handled by
our algorithm. For example, several families of non-coding RNAs, like tRNAs,
snoRNAs H/ACA or miRNAs precursors, have a secondary structure mostly
composed of a few stem-loops. Second, two closely related, from the evolution-
ary point of view, RNA structures – not limited to stem-loops – should share
several stem-loops that are very similar and whose comparison will be well rep-
resented by a conservative mapping. Moreover, if two compared RNA structures
share only some similar motifs that contain stem-loops, our approach based on
the decomposition in stem-loop-like substructures and their pairwise compar-
isons can highlight such locally conserved motifs, a problem that received some
attention recently [2,6].

This paper is organized as follows. In Section 2, we state precisely the problem
we address, namely the computation of a conservative distance and mapping be-
tween stem-loops. In Section 3, we describe and analyze a dynamic programming
algorithm that solves this problem. In Section 4, we show how the stem-loops
comparison can be used in a very simple way to compare complete RNA sec-
ondary structures and we illustrate this approach with the comparison of two
RNAse P RNA.

2 Edit Distance Between Stem-Loops

Tree Representation of Stem-Loops. RNA primary structure is generally rep-
resented by a string over the four letters alphabet {A, C, G, U}. This primary
structure folds back onto itself to form the secondary structure, that is a planar
structure containing unpaired bases from {A, C, G, U} and base pairs, that are
ordered pairs of bases, the most common being AU, UA, CG, GC, GU, UG. This
secondary structure can be represented by an ordered tree1, where, for a given
RNA secondary structure, each base pair is represented by an internal node la-
beled by this base pair and each unpaired base by a leaf, labeled by this base
(see Figure 1). In such a representation, a multi-loop corresponds to an internal
node having several children that are internal nodes. We call stem-loop an RNA
1 Depending on the level of comparison, an RNA can be represented by different trees,

see Allali and Sagot [1] for example.

An Edit Distance Between RNA Stem-Loops 337

secondary structure without multi-loop, which implies that the tree representing
a stem-loop is linear: each internal node has at most one child that is also an
internal node. Note that linear trees are quite similar to strings, as a string can
be seen as a linear tree with only one leaf.

Fig. 1. A stem-loop and its tree representation

Given a linear tree representing a stem-loop, leaves can be of three kinds: left
leaves, right leaves and terminal leaves. The leaves representing unpaired bases
of the terminal loop are the terminal leaves, the leaves representing unpaired
bases located on the left (resp. right) of the stem-loop are the left leaves (resp.
right leaves). In Figure 1, the terminal leaves are G, U, C, G, A, the left leaves
are G, C, A, C and the right leaves U, A.

Edit Operations. Let T1 and T2 be two linear trees representing two stem-loops.
Edit operations represent evolutionary events acting on secondary structures.
The set of edit operations we describe now is the same that was described in
[8]2, augmented of additional constraints on some of these operations. These
operations are illustrated in Figure 2.

We define an edit operation between T1 and T2 as a couple (a, b), where a
(resp. b) can be an internal node or a leaf of T1 (resp. of T2), or a pair of leaves
of T1 (resp. of T2) that have the same parent, or the symbol − (but both a and
b can not be −).

If a and b are both internal nodes or both leaves, the operation (a, b) is a
relabeling: the node a changes its label to become b. If b = −, (a, b) is a deletion:
the node a is removed from T1. If a = −, (a, b) is an insertion, the symmetric
operation of a deletion. We add the following constraint on the relabeling oper-
ation: if a and b are both leaves, respectively of T1 and T2, then either one of
these two leaves is a terminal leaf, or both of them are left leaves, or both are
right leaves. We call these three operations the simple operations.

If a is an internal node and b a leaf, (a, b) is called an altering – the internal
node a is replaced by the leaf b in T1 –, and if a is a leaf and b an internal
node, it is called a completion, which is the symmetric operation of an altering.

2 Note that in [8] RNA secondary structures are represented by non-crossing arc-
annotated sequences, but such sequences are naturally equivalent to ordered trees.

338 V. Guignon, C. Chauve, and S. Hamel

Finally, (a, b) is called an arc-breaking if a is an internal node and b is a pair
of leaves, and an arc-creation if a is a pair of leaves and b is an internal node.
These last four operations, that represent evolutionary events that act on base
pairs, were introduced in [8]. We call them complex operations. The fact that
these operations represent evolutionary events on base pairs that transform a
stem-loop into another stem-loop impose some implicit conditions on the nodes
of a linear tree that are involved. In particular, an arc-creation can only involve
two leaves that have the same parent, and these two leaves can not be both left
leaves or right leaves.

Fig. 2. Illustration of edit operations: relabeling (1a and b), insertion (2a and b),

deletion (3a and b), altering and completion (4 and 5), arc-breaking and arc-creation

(6 and 7) on stem-loops and trees

Conservative Mapping and Edit Distance. Let T1 and T2 be two linear trees and
S = s1, . . . , sn a sequence of edit operations between T1 and T2 such that their
successive application transforms T1 into T2. Such a sequence of edit operations
is called a conservative edit sequence between T1 and T2. We shall here notice
that the definition of a conservative edit sequence is less general than the general
definition of edit sequence, used in [8], as we impose that all the operations of
this sequence have to be described on T1 and T2. This, for example, forbids that
a base that was unpaired by an arc-breaking could later be involved in a arc-
creation or a completion. This is why we call conservative such an edit sequence,
and we will justify later in this section why we consider such restrictions.

The edit operations of a conservative edit sequence between T1 and T2, other
than insertions and deletions, naturally induce, by their definition, a mapping
between nodes of T1 and T2, where a leaf of a tree can be mapped to a leaf or
an internal node of the other tree, and an internal node can be mapped to an
internal node, a leaf, or a pair of leaves. This mapping highlights the bases that
are common, up to relabeling, between the stem-loops represented by T1 and T2.
We call such a mapping a conservative mapping.

Finally, we associate to each edit operation (a, b) a cost denoted δ(a, b). If
(a, b) is a relabeling, where the nodes a of T1 and b of T2 have the same label,
then δ(a, b) = 0. Note that a complex operation (a, b), depending on the label of
the nodes in a and b, can also imply a relabeling. Hence, the cost of an operation
depends of its nature and of the labels of the involved nodes. The cost associated

An Edit Distance Between RNA Stem-Loops 339

Fig. 3. A conservative edit sequence between two linear trees

Fig. 4. The conservative mapping corresponding to the edit sequence of Figure 3

to an edit sequence between T1 and T2 is the sum of the individual cost of each
operations in the sequence. The conservative edit distance is the minimal cost
of a conservative edit sequence that transforms T1 into T2.

We describe in this work an algorithm that computes a conservative mapping
and the corresponding edit distance between two linear trees T1 and T2.

Discussion on Various Distances. Several RNA comparison algorithms have
been defined based on different subsets of the set of edit operations we defined
above. We illustrate now, through a simple example on real data, the influence
of the choice of the set of allowed edit operations on the comparison of two struc-
tures. Given the two micro-RNAs (miRNAs) precursors of Figure 5, we describe
two possible sequences of edit operations that transform the first structure into
the second one, based on different sets of edit operations.

Fig. 5. Two miRNAs (mouse and human)

If we consider only the simple operations of relabeling, insertion and deletion,
with cost 0.75 (resp. 1.25) for the insertion or deletion of an unpaired base

340 V. Guignon, C. Chauve, and S. Hamel

(resp. a base pair) and 0.25 for the relabeling of a base3, a possible optimal
scenario to transform the mouse miRNA precursor into the human one contains
4 operations, for a cost of 3: relabeling (UA, UG), deletion (U,−), insertion
(−, U) and insertion (−, UA). If we add to this set of possible edit operations
the operations of arc-creation and arc-breaking, each with a cost of 0.5, and the
altering and completion operations, with a cost of 1 each for example, then the
following scenario, that is conservative, has a better score of 2.25 and seems more
plausible, from the evolutionary point of view than the previous one: insertion
(−, U) (below), relabeling (UA, UG) and completion (U, UA).

This example is a good illustration of why we believe that the set of all edit
operations we described above should be considered when comparing RNA sec-
ondary structures. However, the problem of computing the general edit distance
between RNA secondary structures is NP-hard [3]. And even in the case of the
comparison of two stem-loops, it is not known if the general edit distance can
be computed in polynomial time. As we will see in the next section, in the case
of a conservative distance and mapping between stem-loops, the problem can be
solved in polynomial time, due to the similarity between this problem and the
problem of computing an edit distance between strings.

Finally, one can see that the restrictions that we impose to define a conserva-
tive mapping prevent the evolutionary scenarios corresponding to such mappings
to create a base pair between bases that are not closely located in the secondary
structure. Hence, if considering only conservative mapping is a strong combi-
natorial restriction, it should not prevent to obtain a pertinent distance and
mapping between stem-loops that are close from an evolutionary point of view,
which is our goal in this work. Our experiments on real data, miRNAs precursors
(not shown) and RNAse P RNA (Section 4) seem to confirm this intuition.

3 A Dynamic Programming Algorithm

We now describe a dynamic programming algorithm that computes the con-
servative distance between two stem-loops, by using a unique two-dimensional
dynamic programming table. Through all this section, we use distance and map-
ping respectively for conservative distance and conservative mapping. We recall
that a depth-first prefix traversal (DFP) of an ordered tree is a traversal of the
tree that visits recursively the children of the root from left to right.

Indexing Pairs, Predecessor and Successor of a Node. An ordered pair I = (x, y)
of nodes of a linear tree T is called an indexing pair if it satisfies one the five
following conditions: (1) x is an internal node and y = x, (2) x is an internal
node and y a right leaf of x, (3) y is an internal node and x a left leaf of y, (4) x
and y are respectively a left leaf and a right leaf and they have the same parent,
or (5) x and y are terminal leaves, and x is located to the left of y.

An indexing pair (x, y) of T defines a subtree of T , denoted by T(x,y), in
the following way: T(x,y) is the tree obtained from T by removing all the nodes

3 The scores we use here are the same we use in Section 4, where they are discussed.

An Edit Distance Between RNA Stem-Loops 341

visited between x and y during a DFP traversal of T (if x = y, this corresponds
to removing from T all the nodes other than x in the subtree rooted in x).

We define the predecessor of a node x, p(x), as its immediate left sibling if x
is not the leftmost child of its parent, and its parent otherwise. Symmetrically,
the successor of a node x, s(x), is its immediate right sibling if x is not the
rightmost child of its parent, and its parent otherwise. Note that for an internal
node x that is the only child of its parent y, p(x) = s(x) = y. According to the
previous definitions, the root r of a tree does not have a predecessor, neither a
successor, so we define them formally by p(r) = s(r) = ∅.

Finally, an indexing pair (x, y) is said to be terminal if x (resp. y) is a terminal
leaf and y = s(x) (resp. x = p(y)).

A Dynamic Programming Algorithm. We can now define the dynamic program-
ming table that we use to compute the edit distance between two stem-loops.
This table, denoted D, is a two-dimensional table indexed by pairs (I, J) such
that I is either an indexing pair of T1 or I = ∅, and J is either an indexing pair
of T2 or ∅. The cell D[I, J] of this table contains the edit distance between the
two linear trees TI and TJ .

It follows immediately from the definition of indexing pairs that we can define
the edit distance between T1 and T2 in terms of D[I, J]. Indeed, if we denote by
F1 and F2 the sets of terminal indexing pairs respectively of T1 and T2, we have:

d(T1, T2) = min
(x,y)∈F1,(u,v)∈F2

{D[(x, y), (u, v)]}. (1)

To compute the table D, we use a dynamic programming algorithm, based
on the following equations. First, we initialize the table⎧⎪⎨
⎪⎩

D[∅, ∅] = 0,
D[(x, y), ∅] =

∑
a node of T1(x,y)

δ(a,−), for all indexing pairs (x, y) of T1,

D[∅, (u, v)] =
∑

b node of T2(u,v)
δ(−, b), for all indexing pairs (u, v) of T2.

(2)
The general case is composed of 4 sub-cases. In the following equations, we
denote by (R) an equation corresponding to a relabeling event, (I) an insertion,
(D) a deletion, (AC) an arc-creation, (AB) an arc-breaking, (C) a completion
and (A) an altering.

1. If x = y and u = v (x and u are internal nodes),

D[(x, y), (u, v)] = min

⎧⎨
⎩

D[(p(x), s(y)), (p(u), s(v))] + δ(x, u), (R)
D[(p(x), s(y)), (u, v)] + δ(x,−), (D)
D[(x, y), (p(u), s(v))] + δ(−, u), (I)

⎫⎬
⎭ , (3)

where (p(x), s(y)) = ∅ if x is the root of T1 and (p(u), s(v)) = ∅ if u is the root
of T2.

342 V. Guignon, C. Chauve, and S. Hamel

2. If x �= y and u �= v,

D[(x, y), (u, v)] = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D[(p(x), y), (u, v)] + δ(x,−), (D)
D[(x, s(y)), (u, v)] + δ(y,−), (D)
D[(x, y), (p(u), v)] + δ(−, u), (I)
D[(x, y), (u, s(v))] + δ(−, v), (I)
D[(p(x), y), (p(u), v)] + δ(x, u), (R)
D[(x, s(y)), (u, s(v))] + δ(y, v), (R)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (4)

Note that in the above equation, some of the 6 terms of the form D[I, J]+ δ(. . .)
can be undefined. This can happen if I and/or J is neither ∅, nor an indexing
pair: for example if x is an internal node and y a right leaf of x, then (p(x), y)
is not an indexing pair of nodes of T1. In such a case, the function min will not
take into account these undefined terms.
3. If x = y, and u �= v

D[(x, y), (u, v)] = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D[(p(x), s(y)), (u, v)] + δ(x,−), (D)
D[(x, y), (p(u), v)] + δ(−, u), (I)
D[(x, y), (u, s(v))] + δ(−, v), (I)
D[(p(x), s(y)), (p(u), v)] + δ(x, u), (A)
D[(p(x), s(y)), (u, s(v))] + δ(x, v), (A)
D[(p(x), s(y)), (p(u), s(v))] + δ(x, (u, v)) (AB)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

(5)

where the same remark as in sub-case 2, about possibly undefined terms, applies.
4. If x �= y and u = v,

D[(x, y), (u, v)] = min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D[(x, y), (p(u), s(v))] + δ(−, u), (I)
D[(p(x), y), (u, v)] + δ(x,−), (D)
D[(x, s(y)), (u, v)] + δ(y,−), (D)
D[(p(x), y), (p(u), s(v))] + δ(x, u), (C)
D[(x, s(y)), (p(u), s(v))] + δ(y, u), (C)
D[(p(x), s(y)), (p(u), s(v))] + δ((x, y), u) (AC)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

(6)
where again the same remark as in sub-case 2, about possibly undefined terms,
applies.

We now describe the algorithm to fill all the cells of the table D. An indexing
pair (u, v) of a tree T is said to be ancestral for the indexing pair (w, z) of T
if (u, v) = ∅ or u (resp. v) is not visited after w (resp. before z) during a DFP
traversal of T . It follows from this definition and from the equations above that,
in order to compute the table D, we have to enumerate all the couples (I, J) of
indexing pairs of T1 and T2 in a way that preserves the ancestral order for I and
J : D[I, J] will be computed after all the cells D[I ′, J ′] where I ′ is ancestral for
I and J ′ is ancestral for J . Such an enumeration scheme is easy to design for a
given tree, based on parallel depth-first prefix and postfix traversals of this tree,
and can be performed in time that is linear in the number of indexing pairs for
this tree. Given D, a mapping is a path in this table computed with the classical
backtracking method used to compute the alignment of two strings.

An Edit Distance Between RNA Stem-Loops 343

Complexity Analysis. The space complexity of this algorithm is given by the size
of the table D, i.e the number of couples (I, J) where I is an indexing pair of T1
and J an indexing pair of T2. Let ind(T1) and ind(T2) denote respectively the
number of indexing pairs of T1 and T2: the table D contains Θ(ind(T1)×ind(T2))
cells.

As the enumeration of all indexing pairs of the trees T1 and T2 respecting
the ancestral relation can be performed in time linear in the number of such
pairs for each tree, the initialization of the table (equation (2)) can be computed
in O(ind(T1) × ind(T2)) time. Moreover, filling one cell of the table, using the
dynamic programming equations (3), (4), (5) and (6) can be done in constant
time, since testing if a pair of nodes is indexing takes a constant time. Note
also that the predecessor and successor of every node of a tree can easily be
computed, prior to the computation of the table D, in linear time during a DFP
traversal of this tree. Finally, once D has been filled, computing the edit distance
using equation (1) can be done by visiting the cells indexed by pairs of terminal
indexing pairs, and so in O(ind(T1) × ind(T2)) time. This leads to the result
that the time complexity for computing the conservative edit distance between
T1 and T2 is Θ(ind(T1) × ind(T2)) time. It follows from the similarity between
our algorithm and the string edit distance algorithm that computing a mapping
from D asks for the same time, that is Θ(ind(T1)× ind(T2)).

Let n1 be the number of nodes of T1, m1 be the number of internal nodes
of T1, {x1, . . . , xm1} these internal nodes, �i and ri the number of left and right
leaves of xi, for i = 1, . . . , m − 1, and t1 the number of terminal leaves. The
number ind(T1) of indexing pairs in T1 is exactly

m1 + (t1(t1 − 1)/2) + 2t1 +
m1−1∑
i=1

((�i + 1)× (ri + 1)− 1), (7)

where these four terms correspond respectively to the number of indexing pairs
formed by two occurrences of the same internal node, those formed by two ter-
minal leaves, those formed by a terminal leaf and xm1 and, finally, those formed
with at least one non terminal leaf.

Hence, ind(T1) ∈ O(n2
1), and, if we denote by n2 is the number of nodes in T2,

the overall distance and mapping algorithm has a worst-case time complexity in
O(n2

1×n2
2). However, it is interesting to remark that, if T1 is a tree representing

a stem-loop with few unpaired bases, or small loops (internal loops and the
terminal loop), then ind(T1) is closer to n1 than to n2

1. Hence, when comparing
stem-loops with such characteristics in terms of unpaired bases and loops, the
algorithm asks for a time that is, in practice, in only quadratic.

4 Comparison of Complete Secondary Structures

In this section, we describe a simple method that allows the comparison of two
complete RNA secondary structures R1 and R2, based on the stem-loops com-
parison algorithm of the previous section. This method has three phases: (1)

344 V. Guignon, C. Chauve, and S. Hamel

decomposition of the two RNA structures into two sequences of stem-loops sub-
structures, (2) independent pairwise comparisons between the stem-loops of R1
and the stem-loops of R2, and (3) finally, an alignment of these two sequences
of stem-loops using the distances computed during the phase (2).

Given an RNA secondary structure R, if one removes all the unpaired bases
belonging to multi-loops, one obtains a set of substructures with no multi-loops.
Even if these substructures are not all stem-loops under the classical definition
of the term, due to the fact that some of them do not have a terminal loop,
we call them stem-loops, as the algorithm we described in Section 3 does not
need any major modification to handle stem-loops that do not have a terminal
loop. This set of substructures is naturally ordered by the sequence of bases that
forms the primary structure of R, as illustrated in Figure 6.

Fig. 6. Decomposition of two RNase P RNA into stem loops. Numbers indicate the

order on each of the two sets of stem-loops.

Now, let R1
1, . . . , R

k
1 and R1

2, . . . , R
�
2 be the two sequences of stem-loops given

by the decompositions of two complete RNA secondary structures R1 and R2.
We use a table P , indexed by pairs of integers belonging to {0, . . . , k}×{0, . . . , �}
where P [i, j] is the distance between Ri

1 and Rj
2 – with R0

1 = R0
2 being the empty

stem-loop –, computed using the algorithm of Section 3. The table of Figure 7
corresponds to the pairwise comparisons of the stem-loops of Figure 6, with the
following costs: 0.25 for the relabeling of a single base, 0.4 for the relabeling of
the two bases of a base pair, 0.75 (resp. 1.25) for the deletion and the insertion of
a leaf (resp. an internal node), 0.5 for an arc-breaking and an arc-creation, and
1 for a completion and an altering. These costs were chosen in such a way that
no edit operation can be replaced, for a smaller cost, by a sequence of other edit
operations. Moreover, the results we present below did not differ when alternative
cost schemes, that had the same property, were used.

An Edit Distance Between RNA Stem-Loops 345

Fig. 7. Pairwise distances between the stem-loops of Figure 6

Finally, we apply the classical string global alignment algorithm (see [5] for
example) to these two sequences of stem-loops, using the table P to define
the cost of the insertion or deletion of a given stem-loop, and the score of a
matching between two stem-loops. The resulting dynamic programming table
is given in Figure 8, where marked cells describe the alignment of stem-loops
obtained by backtracking. To obtain from this table a mapping, one can use
the classical backtracking method, both in the table of the alignment of the
sequences of stem-loops and in the tables of the pairwise alignments of stem-
loops.

Fig. 8. Alignment of the two sequences of stem-loops of Figure 6 using the table of

Figure 7: marked cells indicate an optimal stem-loops alignment

As it appears on Figure 8, this algorithm, applied on the two quite similar
RNAse P RNAs of Figure 6 gives a good result, even if the stem-loops 8, 9 and
10 of the RNAse P RNA SM-A18(31) show that this method is sensitive to the
insertion of a stem-loop into another stem-loop. However, the comparisons of
the other stem-loops that were very similar compensated this problem.

346 V. Guignon, C. Chauve, and S. Hamel

If n1 is the number of bases of R1 and n2 the number of bases of R2, it
follows immediately from the complexity of comparing two stem-loops that the
comparison of R1 and R2 is performed in O(n2

1 × n2
2) in the worst-case time.

However, the low number of unpaired bases in the two sets of stem-loops of our
example makes that the effective time complexity was only quadratic.

It is also interesting to notice that all the different variants of the alignment
of strings can be used with our method. For example, if one wants to discover
clusters of close stem-loops that are similar in R1 and R2, that is local motifs,
one just has to use the algorithm for local alignment of strings instead of the
global string alignment algorithm.

5 Conclusion

We described in this paper an efficient algorithm for the comparison of stem-
loops, intended to give good results for stem-loops that are evolutionary close. By
imposing some restrictions on the set of possible mappings that are considered,
we were able to use the complete set of edit operations defined in [8]. Moreover,
we sketched a method that allows to use the stem-loops comparison algorithm as
a basis for the comparison of complete RNA secondary structures. Experimental
results suggest that this approach gives interesting results.

This work raises several interesting algorithmical questions. First, it would
be interesting to see at which point the fact to consider stem-loops makes eas-
ier the edit distance computation: is computing the general edit distance of [8]
between stem-loops NP-hard ? And if this is the case, are there definitions of
some mapping, less restrictive than conservative mappings, that allow a poly-
nomial time computation. From a preliminary work on this question, it seems
that it is possible to relax the locality of interactions between bases imposed in a
conservative mapping and that one can consider interactions between bases that
do not belong to the same internal loop. However, this makes the computation
more time-consuming, at least in practice.

It would also be important to understand more deeply the influence of the
cost scheme of edit operations on the final result, as it was done in string algo-
rithms. It is for example possible that some cost schemes allow to compute in
polynomial time the general edit distance.

The most interesting question concerns the way to use the comparison of
stem-loops in the comparison of complete secondary structures. We used here a
simple method based on the alignment of strings, that has the good property
to be efficient in terms of computing time. In [1], Allali and Sagot introduced
the notion of multilevel RNA structure comparison, that considers several levels
of representation of an RNA structure into trees. The method we described in
Section 4 follows this principle in fact, but does not consider the high level ar-
chitecture of this structure as it considers the stem-loops in a simple sequence.
It then would be interesting to combine our algorithm with the multi-level ap-
proach of [1].

An Edit Distance Between RNA Stem-Loops 347

References

1. J. Allali and M.-F. Sagot. A new distance for high level RNA secondary structure
comparison. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 2(1):4–14. 2005.

2. R. Backofen and S. Will. Local sequence-structure motifs in RNA. J. Bioinform.
Comput. Biol., 2(4):681–698. 2004.

3. G. Blin, G. Fertin and C. Sinoquet. RNA sequences and the EDIT(NESTED,
NESTED) problem. Report RR-IRIN-03.07, IRIN (Nantes, France). 2003.

4. J. Couzin. Breakthrough of the year: small RNAs make big splash. Science,
298:2296–2297. 2002.

5. D. Gusfield Algorithms on strings, trees and sequences. Cambridge University
Press. 1997.

6. M. Höchsmann, T. Töller, R. Giegerich and S. Kurtz. Local similarity in RNA
secondary structures. In 2nd IEEE Computer Society Bioinformatics Conference
(CSB 2003), pages 159–169, IEEE Computer Society. 2003.

7. I.L Hofacker. Vienna RNA secondary structure server. Nucleic Acids Res.,
31(13):3429–3431. 2003.

8. T. Jiang, G. Lin, B. Ma and K. Zhang. A general edit distance between RNA
structures. J. Comput. Biol., 9(2):371–388. 2002.

9. B.A. Shapiro and K. Zhang. Comparing multiple RNA secondary structures using
tree comparisons. Comput. Appl. Biosci., 6(4):309–318. 1988.

10. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput., 18(6):1245–1262. 1989.

A Multiple Graph Layers Model

with Application to RNA Secondary
Structures Comparison

Julien Allali1 and Marie-France Sagot2

1 Institut Gaspard-Monge, Université de Marne-la-Vallée, Cité Descartes,
Champs-sur-Marne, 77454 Marne-la-Vallée Cedex 2, France

allali@univ-mlv.fr
2 Inria Rhône-Alpes et LBBE, Université Claude Bernard, Lyon I, 43 Bd du 11

Novembre 1918, 69622 Villeurbanne cedex, France and King’s College, London, UK
Marie-France.Sagot@inria.fr

Abstract. We introduce a new data structure, called MiGaL for “Mul-
tiple Graph Layers”, that is composed of various graphs linked together
by relations of abstraction/refinement. The new structure is useful for
representing information that can be described at different levels of ab-
straction, each level corresponding to a graph. We then propose an al-
gorithm for comparing two MiGaLs. The algorithm performs a step-by-
step comparison starting with the most “abstract” level. The result of
the comparison at a given step is communicated to the next step using
a special colouring scheme. MiGaLs represent a very natural model for
comparing RNA secondary structures that may be seen at different levels
of detail, going from the sequence of nucleotides, single or paired with
another to participate in a helix, to the network of multiple loops that
is believed to represent the most conserved part of RNAs having simi-
lar function. We therefore show how to use MiGaLs to very efficiently
compare two RNAs of any size at different levels of detail simultaneously.

Keywords: Graph layers, graph comparison, edit distance,
RNA, secondary structure.

1 Introduction

We introduce in this paper a new data structure, called MiGaL for “Multiple
Graph Layers”, that is composed of various graphs linked together by relations of
abstraction/refinement. The new structure is useful for representing information
that can be described at different levels of abstraction, each level corresponding
to a graph. Similar structures have already been used for modelling a spatial
environment [4,5] or plant architectures [8,6]. It could also be used for analysing
web pages or source codes. MiGaL is a more general structure in that it can
model graphs besides trees, and edges can be added between the different layers.

After giving a formal presentation of the MiGaL structure, we propose an
algorithm for comparing two MiGaLs. The algorithm performs a step-by-step

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 348–359, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Multiple Graph Layers Model 349

comparison starting with the most “abstract” level. The result of the comparison
at a given step is communicated to the next step using a special colouring scheme.

We then present an application of MiGaL to the analysis of RNA secondary
structures. RNAs have different functions in a cell, these being strongly related
to the spatial fold adopted by the molecule. It is therefore meaningful to compare
such folds in order to infer or understand function. For RNAs, the comparison
is usually done by considering the secondary structure which, in the case of
RNAs, provides a planar view of the fold. A secondary structure may be seen at
different levels of detail, going from the sequence of nucleotides, single or paired
with another to participate in a helix, to the network of multiple loops that is
believed to correspond the most conserved part of RNAs having similar function.

MiGaLs represent therefore a natural way of modelling such secondary struc-
tures. To perform the comparison at each different level, an edit distance algo-
rithm is applied to trees that are rooted and ordered (reflecting the orientation
of the RNA molecule). We use for this the algorithm particularly adapted to
RNAs that was introduced in a recent work by Allali et al. [1]. In this paper, we
show how to optimise it using the colouring scheme of the algorithm for compar-
ing two MiGaLs introduced earlier in the paper in order to compare RNAs at
different levels of detail simultaneously. We show that our method leads to quite
satisfying results when applied to the analysis of RNA secondary structures.
Furthermore, we show that this new algorithm for comparing RNAs allows to
address the scattering effect problem mentioned in the literature [1]. Finally, the
divide strategy used as the different levels are considered in turn allows also to
very efficiently compare RNAs of any size.

2 Multiple Graph Layers

We present in this section the MiGaL data structure. After a formal definition,
we provide an algorithm to compare such structures.

2.1 Definition

From now on, we adopt the following notations. Given a set S, we denote by |S|
its cardinality. Let G(V, E) be a graph with vertex set V (G) = {v1, . . . , v|V (G)|}
and edge set E(G) = {e1, . . . , e|E(G)|}.

We start by defining the new data structure. It can be described as a layered
sequence of graphs, with each graph linked to its neighbours by two applica-
tions, one of which corresponds to an abstraction from the previous graph, the
other a refinement leading to the next graph. The formal definition of the MultI-
GrAphLayers data structure is as follows.

Definition 1 (Definition of a MiGaL). A MiGaL structure M(G, R) of size
|M | is defined as a layered sequence G = G1, . . . , G|M| of |M | graphs and a
sequence R = α1, . . . , α|M|−1 of |M | − 1 applications called refinements. Each
refinement αi is an application from V (Gi) to P(V (Gi+1)), that is, each vertex in
V (Gi) has a subset of V (Gi+1) as image. The inverse application of αi, denoted

350 J. Allali and M.-F. Sagot

Fig. 1. Example of a MiGaL structure of size three defined by three graphs and two

refinements

by βi, is a surjection called an abstraction that maps every vertex in V (Gi+1)
to a vertex of V (Gi). In addition, M(G, R) satisfies the three conditions:

1. For each vertex v ∈ V (Gi), the subgraph induced by αi(v) is connected and
not empty.

2. For each edge (u, v) ∈ E(Gi), there exists at least one vertex of αi(u) con-
nected to a vertex of αi(v).

3. For each pair of unconnected vertices u, v ∈ V (Gi), there is no edge between
a vertex of αi(u) and a vertex of αi(v).

Figure 1 illustrates this definition. From now on, we refer to the first graph
of a MiGaL as the top graph and to the last one as the bottom graph.

This structure is clearly useful to encode data at different levels of detail. A
comparable data structure called Multihierarchical Graph has been used in [4,5]
to represent the environment (towns, buildings, rooms, . . .) and drive robots in
space. Godin et al. in [8,6] use a similar structure, that they call quotiented trees,
to model and study plants. As compared to the latter, MiGaLs can represent
graphs and not just trees, and contrary to Multihierarchical Graphs, MiGaLs
can have edges between nodes belonging to different layers.

2.2 Top-Down Comparison Algorithm

In this section, we present an algorithm to compare two MiGaLs. The algorithm
performs a top-down traversal of the structure. We assume both MiGaLs have
the same number of layers, and compare them layer by layer starting with the
graph at the top. The result of the comparison at a given layer is transmitted
to the next layer by colouring vertices and edges of the graph and using the
refinement application. We then compare the two graphs of the next layer taking
into account such colouring. The process continues until the last layer is reached
(bottom graph).

This approach assumes the existence of an algorithm allowing to compare
two graphs of a same layer. This algorithm clearly depends on the data that
is modelled using a MiGaL. In what follows, we consider a black box that is

A Multiple Graph Layers Model 351

able to produce an extended mapping between two graphs where by an extended
mapping is meant the following:

Definition 2 (Extended mapping). Given two graphs G1 and G2, we define
an extended mapping M between them as a set of couples of vertex sets of the
two graphs: M = {(S1, S2)/S1 ⊂ V (G1) and S2 ⊂ V (G2)} such that for all
(S1, S2) ∈M:

– S1 is a connected component of G1
– S2 is a connected component of G2
– ∀(S′

1, S
′
2) ∈M, S1 ∩ S′

1 = ∅ or S2 ∩ S′
2 = ∅

We define a colour-partitioned graph G with vertex set V (G) as a graph
fitted with an application CG : S ⊂ V (G) → N

+ which gives a colour to each
vertex of S ⊂ V (G) such that subgraphs defined by vertices of the same colour
are connected. For convenience, uncoloured vertices are given the colour 0. The
vertices with colour 0 are therefore elements of V (G) \ S.

We now extend the definition of an extended mapping to colour-partitioned
graphs as follows.

Definition 3 (Colour-constrained extended mapping). Given two colour-
partitioned graphs G1 and G2, a colour constrained extended mapping M be-
tween them is defined as an extended mapping which further satisfies the follow-
ing conditions:

– ∀(S1, S2) ∈M, every vertex of S1 has the same colour c and every vertex of
S2 also has this colour c.

– There is no vertex of G1 or G2 coloured with 0 that is involved in M.

Now that we have defined a mapping on colour-partitioned graphs, we give a
general algorithm for comparing two MiGaLs, M(G, R) and M ′(G′, R′), having
the same number of layers. This number is denoted by |M | = |M ′|. The algorithm
assumes again that we have a black box B that computes a colour-constrained
mapping between two colour-partitioned graphs.

The initialisation step colours the vertices of G1 and G′
1 with 1.

The algorithm is then divided into |M | steps. For each layer i from 1 to |M |,
we compute the mapping Mi between Gi and G′

i using B and (except for the
last step) colour the vertices of Gi+1 and G′

i+1 such that vertices associated by
the mapping have the same colour and vertices absent from Mi are coloured
with 0. The result of the algorithm is the set of all mappings between each pair
of layers.

The pseudo-code of this algorithm is shown in Figure 2. Let b be the time
complexity of algorithm B; the time required to compare two MiGaLs of size n
is O(n ∗ b).

It is important to notice that the main idea of this algorithm is to compute
mappings from the top to the bottom layer. Each layer is compared using the
mapping of the previous one without reconsidering the choices implied by this
mapping.

352 J. Allali and M.-F. Sagot

Compare(M(G, R), M ′(G′, R′))
1. colour = 2
2. Set all vertices of G1 and G′

1 to 1.
3. for each layer i from 1 to |M |
4. M = B(Gi, G

′
i)

5. set the color of V (Gi+1) and V ′(G′
i+1) to 0

6. for each couple of sets (u, v) in M

7. for all nodes n in u
8. set the colour of nodes in α(n) to colour
9. for all nodes m in v
10. set the colour of nodes in α′(m) to colour
11. set colour to colour + 1
12. return M1...|M|

Fig. 2. Algorithm for the comparison of two MiGaL structures using an external algo-

rithm B that computes a colour-constrained mapping between two colour-partitioned

graphs

We now present a practical application of the MiGaL structure and of the
comparison algorithm to the study of RNA secondary structures. In particular,
we show, in this case, how to significantly improve the complexity of algorithm
B by taking advantage of the node-colouring.

3 RNA-MiGaL

RNAs are one of the most important molecules in the cell. They are composed
by a succession of nucleotides named A,C,G and U (also referred to as bases).
Inside a cell, RNAs do not keep a linear form but instead fold in space. The
fold is given by the set of interactions between nucleotides. An RNA can be
described at three different levels, respectively called its primary, secondary and
tertiary structures. The primary structure refers to the sequence of nucleotides.
The secondary structure is composed of the list of base pairs that participate in
an helix (see below). The tertiary structure corresponds to all interactions (base
pairings) in the RNA that is, to its 3D structure.

The function of an RNA (be it the well known ribosomal and transfert RNAs
or the more recently discovered snoRNAs, microRNAs, etc.) is strongly linked
to the shape adopted by the RNA in space. It is accepted that two RNAs that
have the same function will have closely similar secondary structures but not
necessarily similar primary structures. Considering this, it is fundamental to have
efficient algorithms to compare RNAs from the point of view of their secondary
structures.

Various structural elements can be distinguished in the secondary structure
of an RNA: helices which correspond to consecutive base pairs, hairpin-loops
which are unpaired bases at the end of an helix, internal-loops defined by the

A Multiple Graph Layers Model 353

Fig. 3. Edit operations, edit distance and alignment on rooted ordered labelled (on

nodes and edges) trees. On the first line, the first tree is edited by a substitution of

a−3 to d−5. Then the node 5 is deleted and after that the node 0 is inserted. From this

point, if operations have unit cost (1 for mismatch, deletion, insertion), the edit cost is

3 (the edit distance is 2 because the substitution is useless). The last two trees on the

first line give an example of edge fusion (edges ce and b, the new label is constructed

by concatenation) and node fusion (nodes 0 and 1, the new label is computed using

mean). The second line shows how to align the first tree of the first line with the fourth.

We see here that the alignment cost is four (two insertions and two deletions).

unpaired bases between two helices and called bulges when one side is empty,
multi-loops which are the meeting point of at least three helices and, finally,
stems that are series of helices, internal-loops and bulges.

Many approaches have been used for modelling secondary structures. Mainly,
three codings has been proposed to represent RNA secondary structures: rooted
ordered trees [16]; arc annotated sequences [3]; 2-intervals [14].

Here we focus on the tree model. We represent secondary structures by rooted
ordered trees because the root correspond to the beginning and the end of the
molecule and the order between the children of a node corresponds to the ori-
entation of the sequence. In fact, we can use different tree models depending on
the information we want to encode. In [16], Zuker and Sankoff use trees where
internal nodes code for base pairs and leaves for free nucleotides. This tree can be
compacted [7] into a homeomorphically irreductible tree where internal nodes
correspond to helices and leaves correspond to fragments of unpaired bases.
Shapiro in [12] uses a tree where edges code for helices and nodes are labelled
on {M, B, I, H, R} (multi-loop, budge, internal-loop, hairpin-loop and the root).
We can also use a more abstract tree where edges code for stems and nodes for
multi-loops and hairpin-loops, or just for multi-loops.

To compare rooted ordered trees, there exist essentially two methods. The
first is the edit distance [11,13,15] based on three edit operations. A substitution
changes the label of a node. A deletion removes a node of the tree, its children

354 J. Allali and M.-F. Sagot

are then re-attached to the node’s father preserving the relative order between
nodes. An insertion is the opposite operation of a deletion. If we assign a score
to each of these operations, we can define the edit distance between two trees
as the minimum of the score of a series of edit operations (sum of the score
of each operation) that transforms the first tree into the second one. Recently,
Allali et al. [1] extended this distance by introducing four new operations: node
fusion, edge fusion and the opposite operations of node split and edge split. These
operations allow to address some of the limitations of the classical edit distance
when comparing RNA secondary structures using high level trees (where nodes
and edges code for secondary structure elements only, not for nucleotides). The
complexity of the classical edit distance is O(n4) where n is the size of the trees
and O((2d)ln4) for the algorithm with node and edge fusions where d is the
degree of the trees and l the maximum number of consecutive fusions per node.

The second method for comparing rooted ordered trees is by performing a tree
alignment [10,9]. In this case, the goal is to insert blank labelled nodes in the two
trees such that they become isomorphic. The score of the alignment corresponds
to the sum of the scores of the association of node labels (the blank character
assumes the role of insertions and deletions in sequence alignment). The optimal
score, maximal or minimal depending on the scoring scheme adopted, is then
sought. A tree alignment can be expressed as an edit distance computation
where insertions must precede all deletions. We do not give further details here
on alignments as we only use edit distance later in the paper.

We now suggest a new modelling of RNA secondary structures based on the
MiGaL data structure introduced earlier in the paper. We thus call RNA-MiGaL
a MiGaL structure composed by four layers, each modelled by a rooted ordered
tree. The next section is dedicated to a description of RNA-MiGaL.

3.1 The Four Layers Definition

The four layers contained in an RNA-MiGaL correspond to the secondary struc-
ture of an RNA observed at different levels of detail. Thus, each layer is modelled
by a rooted ordered labelled tree. In the bottom layer, nodes and leaves code for
nucleotides while the top layer encodes the network of multi-loops of an RNA.
This choice has been dictated by two assumptions. The first, already mentioned,
is that structure is more important than sequence. Thus we introduce informa-
tion on nucleotides at the bottom layer only which will be treated last by the
comparison algorithm. The second is that the network of multi-loops can be
considered as the skeleton of the secondary structure of an RNA. RNAs of the
same family should thus have strongly conserved multi-loop networks. For this
reason, the top layer of an RNA-MiGaL is a tree that codes for the multi-loop
network. Intermediate layers correspond to the structure encoded using stems
or helices.

We provide below a summary of the layers and of the meaning of a node and
a leaf in each layer:

– The tree of layer 1 corresponds to the multi-loop network. The nodes encode
multi-loops and the edges encode stems. In the nodes, we store the number

A Multiple Graph Layers Model 355

of helices connected by the multi-loop. In the edges, we store the number of
nucleotides contained in the stem.

– Layer 2 consists in the structure defined by the stems. The internal nodes
represent multi-loops, leaves represent hairpin-loops and edges encode stems.
In the edges, we store the number of base pairs and the number of unpaired
bases contained in the stem. In the internal nodes and leaves, we store the
number of unpaired bases contained in the multi-loops and hairpin-loops.

– The tree of layer 3 encodes secondary structure elements: nodes encode
hairpin-loops, multi-loops, internal-loops and bulges and store the number
of unpaired bases of the corresponding element. The edges represent helices
and store the number of base pairs of the helices.

– The last tree models the RNA primary structure. The internal nodes thus
represent base pairs and leaves unpaired bases. Both store the names of the
corresponding bases.

3.2 RNA-MiGaL Comparison

The problem now is to compare two secondary structures using RNA-MiGaLs.
To do so, we use edit distance with fusions and the algorithm described in [1] to
compare the pairs of trees of layers 1, 2 and 3. To take into account the colour
of the nodes and edges, we just have to test if two nodes or edges have the
same colour to allow them to be fusioned (in a tree) or substituted (between
the trees). The trees of layer 4 are compared using the classical edit distance as
fusions make no sense for nucleotides.

Figures 4 and 5 show the result of the comparison using RNA-MiGaLs be-
tween two Group I Intron RNAs retrieved from [2]. The left RNA is found in
Acanthamoeba griffini and the right one in Chlorella sorokiniana.
The time complexity required to compare two trees of a same layer is O((2d)ln4)

for the first 3 layers and O(n4) for the last layer with n the size of the trees.
Since we colour nodes while we progress in the comparison, and, once trees are

Fig. 4. Result of the comparison of two Group I Introns. On the left, the result of the

comparison of the trees of layer 1; on the right, the result of the comparison of the

trees of layer 2.

356 J. Allali and M.-F. Sagot

Fig. 5. Result of the comparison of two Group I Introns. On the top, the comparison of

the trees of layer 3; on the bottom, the result of the comparison of the trees of layer 4.

coloured, substitutions and fusions can only be performed on nodes of same
colour, we may wonder if it is not possible to compare separately the subtrees
defined by each colour.

The response is positive but it requires some attention as is shown in the
following example. Figure 6 presents on the top left a colour-partitioned tree,
with white corresponding to colour 0. In the box, we have split each tree into
subtrees according to their colour and computed the edit distance between these
trees separately. The nodes associated by the mapping are linked with dashed
lines. We have then reported the result of the computations on the original trees.
The problem is pointed to by the bold dashed lines in the tree at the bottom.
We have two couples of nodes associated via two different computations. Inside
each computation, the relative order of the nodes is respected by the edition
(we work on ordered trees). However, on the final tree, the associations do not
respect the order between the nodes.

A Multiple Graph Layers Model 357

Fig. 6. Problem about splitting tree according to colour to optimize edition computa-

tion

Fig. 7. Splitting the left tree into subtrees according to the colours of the nodes and

addition of anchors (represented by triangles)

We therefore have to modify the algorithm such as to take into account the
presence of a subtree of a colour x hanging from an edge of a subtree of colour
y �= x. To do so, we introduce anchors during the splitting step. When we split
trees into subtrees according to their colour, we add anchors to the subtrees.
These anchors represent the subtrees of another colour that hang from an edge
of the subtree being considered as shown in Figure 7. The anchors have the same
colour as the subtrees they stand for. We then have to modify the edit distance
scoring scheme such that:

– deleting the anchor of colour c costs the deletion of the subtree corresponding
to the anchor;

– an anchor of colour c can only match with an anchor of the same colour.

Finally, we order the edit computations according to the dependence implied by
the colouring scheme, that is we consider the subtree from the leaves to the root.

The consequence on the complexity is important as the time required to
compare two trees of a given layer has a time (and space) complexity which

358 J. Allali and M.-F. Sagot

depends on the size of the biggest subtree and not on the size of the whole trees
anymore.

In the worst-case, the time complexity is 0((2d)l × n4) for each level but in
the case of RNAs, on average, the tree at each layer contains a number of subtree
that is proportional to the size of the tree, and the observed time complexity is
close to linear except for the first layer.

4 Conclusion

We introduced in this paper a new data structure and an algorithm for comparing
such structures. Both are generic and may be applied to very different types of
problems. They are particularly interesting for comparing objects that may be
described at different levels of abstraction.

RNA secondary structures are one example of such objects and we therefore
showed how to optimise the generic algorithm, in particular its special colouring
scheme for going from one level of abstraction to the next, to compare two RNA
secondary structures. The results obtained are very satisfying. In particular, the
algorithm addresses the so-called scattering effect described in the literature
[1]. The new algorithm allows to compare large sized structures in a fast way
while the multiple layer approach represents a biologically very natural way of
modelling and analysing with RNAs.

References

1. Julien Allali and Marie-France Sagot. A new distance for high level rna secondary
structure comparison. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 2(1):3–
14, 2005.

2. J. J Cannone, S. Subramanian, M. N. Schnare, J. R. Collett, L. M. D’Souza, Y. Du,
B . Feng, N. Lin, L. V. Madabusi, K. M. Muller, N. Pande, Z. Shang, N. Yu,
and R. R. Gutell. The comparative RNA web (CRW) site: an online database of
comparative sequence and structure infor mation for ribosomal, intron, and other
RNAs. BMC Bioinformatics, 3(1), 2002.

3. P. A. Evans. Finding common subsequence with arcs and pseudoknots. In Proceed-
ings of the 10th Annual Symposium on Combinatorial Pattern Matching (CPM’99),
number 1645 in LNCS, pages 270–280, 1999.

4. Juan A. Fernandez and Javier Gonzalez. Hierarchical graph search for mobile robot
path planning. In ICRA, pages 656–661, 1998.

5. Juan-Antonio Fernández-Madrigal and Javier González. Multihierarchical graph
search. IEEE Trans. Pattern Anal. Mach. Intell., 24(1):103–113, 2002.

6. P. Ferraro and C. Godin. An edit distance between quotiented trees. Algorithmica,
36:1–39, 2003.

7. W. Fontana, D. A. M. Konings, P. F. Stadler, and P. Schuster. Statistics of RNA
secondary structures. Biopolymers, 33:1389–1404, 1993.

8. C. Godin and Y. Caraglio. A multiscale model of plant topological structures.
Journal of theoretical biology, 191:1–46, 1998.

A Multiple Graph Layers Model 359

9. Matthias Höchsmann, Thomas Töller, Robert Giegerich, and Stefan Kurtz. Local
similarity in RNA secondary structures. In Proceedings of the IEEE Computer
Society Conference on Bioinformatics, page 159. IEEE Computer Society, 2003.

10. Tao Jiang, Lusheng Wang, and Kaizhong Zhang. Alignment of trees - an alternative
to tree edit. In Proceedings of the 5th Annual Symposium on Combinatorial Pattern
Matching, pages 75–86. Springer-Verlag, 1994.

11. S. M. Selkow. The tree-to-tree editing problem. Inform. Process. Lett., 6(6):184–
186, 1977.

12. B. Shapiro. An algorithm for multiple RNA secondary structures. Comput. Appl.
Biosci., 4(3):387–393, 1988.

13. Kuo-Chung Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433, 1979.
14. S. Vialette. Pattern matching problems over 2-interval sets. In Proceedings of

the 13th Annual Symposium on Combinatorial Pattern Matching, pages 53–63.
Springer-Verlag, 2002.

15. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comput., 18(6):1245–1262, 1989.

16. M. Zuker and D. Sankoff. RNA secondary structures and their prediction. Bull.
Math. Biol., 46:591–621, 1984.

Normalized Similarity of RNA Sequences

Rolf Backofen1, Danny Hermelin2, Gad M. Landau3, and Oren Weimann2

1 Institute of Computer Science, Friedrich-Schiller Universität Jena,
Jena Center for Bioinformatics, Germany

backofen@inf.uni-jena.de
2 Department of Computer Science, University of Haifa, Israel

danny@cri.haifa.ac.il, oweimann@cs.haifa.ac.il
3 Department of Computer Science, University of Haifa, Haifa - Israel and

Department of Computer and Information Science,
Polytechnic University, New York, USA

landau@cs.haifa.ac.il

Abstract. We introduce a normalized version of the LCS metric as a
new local similarity measure for comparing two RNAs. An O(n2m lg m)
time algorithm is presented for computing the maximum normalized
score of two RNA sequences, where n and m are the lengths of the
sequences and n ≤ m. This algorithm has the same time complexity as
the currently best known global LCS algorithm.

1 Introduction

Sequence comparison is an extensively studied topic with many applications,
especially in biology. One commonly used metric is longest common subsequence
(LCS) [2,10,11] which measures the longest subsequence of symbols that appears
in both input sequences. While the LCS metric is a suitable metric for global
comparison, in many real-life applications one is often interested in finding local
regions of high similarity [16]. One approach for transforming the global LCS
metric into a local version, is to calculate the normalized longest common sub-
sequence [3,7]. Here, one divides the LCS score of two substrings by the sum of
their lengths. This approach overcomes various weaknesses that are inherent in
the standard local similarity algorithm [16].

In RNA sequences, as in other biological applications, it is not sufficient
to perform pure sequence-based comparisons without respecting the underlying
semantics of the sequences. RNAs are polymers consisting of four nucleotides
A,C,G and U which are connected linearly via a backbone. In addition, the
complementary nucleotides A—U, G—C and G—U can form bonds, which define
the secondary structure of the RNA. In recent years, RNA sequences gained
increasing interest due to numerous discoveries of biological functions which are
associated with them. Consequently, research on small RNAs has been elected
as the scientific breakthrough of the year 2002 by the readers of Science [6].

One major challenge of this research is to find common patterns in RNAs,
since they suggest functional similarities. For this purpose, one has to investigate

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 360–369, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Normalized Similarity of RNA Sequences 361

not only sequential features, but also structural features for the following reasons.
First, a major fraction of the function of an RNA is determined by its secondary
structure [14]. Second, it is known that RNA structure is often more conserved
than the sequence during evolution [5].

One promising approach for comparing RNAs while considering their se-
quence and secondary structure is to use appropriate variants of LCS-like met-
rics. This has been widely studied in the literature. One variant which is known
under the term ”longest common subsequence for arc-annotated sequences”
(LAPCS), was first introduced by Evans [8], and then later extensively stud-
ied in [1,9,12]. However, the major downfall of this variant is that a base-pair,
i.e. hydrogen bond, is not regarded as a whole entity. For example, in compar-
ison of two RNAs, one nucleotide in a base-pair can be matched in the LCS,
while the other nucleotide unmatched. In this paper we adopt a different variant
introduced by Zhang [17] which treats base-pairs as a whole. This method is
closer to the spirit of the comparative analysis method currently being used in
the analysis of RNA secondary structures, either manually or automatically.

All known approaches for transferring the LCS metric to a metric of compar-
ing RNA sequences have been restricted to global comparisons so far. However, as
in almost all biological applications, global similarity is inferior to local similarity
when comparing RNA sequences. In this paper, we consider a local variant of the
LCS metric. Specifically, we consider the local normalized LCS metric for RNA
sequences which measures the highest LCS scoring consecutive subsequences di-
vided by their length. The advantages of the normalized approach in the context
of strings [3,7] also apply for RNAs. We present an O(n2m lg m) time algorithm
for this problem which is conceptually inspired by the algorithm given in [7].
Its time complexity origins in the global LCS algorithm presented in [13], which
is used as a preprocessing procedure in the algorithm. Therefore, our algorithm
can compute the local normalized LCS score at the cost of computing the global
LCS score.

This paper is organized as follows. In the following section we introduce def-
initions and terminology which will be used throughout the paper. In Section 3,
we describe methods which provide the basis of our algorithm. The algorithm
itself is later presented in Section 4.

2 Preliminaries

2.1 RNA Sequences

An RNA sequence R is an ordered pair (S, P), where S = s1 · · · s|S| is a string
over the alphabet Σ = {A, C, G, U}, and P ⊆ {1, . . . , |S|}×{1, . . . , |S|} is the set
of hydrogen bonds between bases of R (i.e. the secondary structure), such that
∀(i, i′) ∈ P : i < i′. Any base in R can bond with at most one other base, there-
fore we have ∀ (i1, i′1), (i2, i′2) ∈ P , i1 = i2 ⇔ i′1 = i′2. Furthermore, following
Zuker [18,19], we assume a model where the bonds in P are non crossing, i.e. for
any (i1, i′1), (i2, i′2) ∈ P , we cannot have i1 < i2 < i′1 < i′2 nor i2 < i1 < i′2 < i′1.
We refer to a bond (i, i′) ∈ P as an arc, where i (i′) is referred to as the left

362 R. Backofen et al.

(right) endpoint of the arc. Finally, we let |R| denote the number of nucleotides
in R, i.e. |R| = |S|.

We will require a notion similar to that of a substring for RNA sequences.
Therefore, for any 1 ≤ i < i′ ≤ |S|, we let R[i, i′], the consecutive subsequence of
R, be the RNA (S′, P ′) with S′ = Si · · ·Si′ and P ′ = P ∩{i, . . . , i′}×{i, . . . , i′}.
Note that arcs of R with one endpoint in R[i, i′] are absent in R[i, i′]. If there
are no such arcs, then R[i, i′] is said to be arc complete.

2.2 LCS Similarity

This paper deals with comparing two RNA sequences. We denote these two
RNAs by R1 = (S1, P1) and R2 = (S2, P2), and we set |R1| = |S1| = n and
|R2| = |S2| = m. Furthermore, we assume n ≤ m.

A base in one sequence can be matched to an identical base in the other
sequence if they are both non arc endpoints. In the case of arcs, given (i, i′) ∈ P1
and (j, j′) ∈ P2, we require that (i, j) be matched if and only if (i′, j′) is matched.
This captures the notion of arcs as single entities. A match between two left
(right) endpoints of arcs is called a left arc match (respectfully right arc match).
Note that for every left arc match (i, j) there exists exactly one corresponding
right arc match (i′, j′), such that (i, i′) ∈ P1 and (j, j′) ∈ P2. In this case we let
right(i, j) = (i′, j′) and left(i′, j′) = (i, j).

C C G U A G U A C C A C A G U G U G G

C G

C G

G C

U A

A U

C G

C

A G U A G U

(a) (c)

(b)

Fig. 1. Three different ways of viewing an RNA sequence. In (a), a schematic 2-

dimensional description of an RNA folding. In (b), a linear representation of the RNA.

In (c), the RNA as a rooted ordered tree.

Normalized Similarity of RNA Sequences 363

An RNA sequence R′ is a common subsequence of R1 and R2 if it can be
obtained by omitting unpaired bases and arcs (along with their endpoints) in
both R1 and R2. Alternatively, R′ is a set of matches M = (i1, j1), . . . , (ip, jp),
such that ik < ik+1, jk < jk+1 for all 1 ≤ k < p, and (i, j) ∈ M⇔ right(i, j) ∈
M for any left arc match (i, j). The longest common subsequence (LCS) of
R1 and R2, denoted LCS(R1,R2), is a common subsequence of R1 and R2 of
maximum cardinality.

The non crossing formation formed by the arcs in both R1 and R2 conve-
niently allows representing these RNAs as trees [17]. Each arc is represented
by an internal node in the tree, and each unpaired base by a leaf. The set
of ordered children of an internal node which is associated with the arc (i, i′)
is all unpaired bases i′′ such that i < i′′ < i′, and all arcs (l, l′) such that
i < l < l′ < i′ (see Fig. 1). In [15], an algorithm for tree editing was presented
which was later improved in [13]. This algorithm can be used to determine the
minimum number of unpaired base and arc deletions needed in order to obtain
a common subsequence of R1 and R2 in O(n2m lg m) time, and is currently the
fastest (worst-case) algorithm for computing the global LCS score of two RNA
sequences [4]. Furthermore, an important property of this algorithm is that it
computes the score between every pair of subtrees of the two given trees. In our
setting this means that LCS(R[i, i′],R[j, j′]) is computed between all pairs of
arcs (i, i′) ∈ P1 and (j, j′) ∈ P2 in a single execution of this algorithm. The
importance of this property will become apparent later on.

2.3 Normalized Similarity

We next present an extension of a local similarity metric for strings that uses
normalization [7], to a metric for RNA sequences. Following this, we define the
computational problem considered in this paper.

Definition 1 (Normalized LCS score). The normalized LCS score of two
RNA sequences R′

1 and R′
2 is given by

|LCS(R′
1,R′

2)|
|R′

1|+ |R′
2|

.

The above definition is of a global nature. We therefore define the local nor-
malized LCS score of two RNA sequences, R1 and R2, as the normalized LCS
score of the two highest scoring consecutive subsequences of R1 and R2. More
formally:

Definition 2 (Local normalized LCS score). The local normalized LCS
score of two RNA sequences, R1 and R2, is the maximal value of

|LCS(R1[i, j],R2[i′, j′])|
|R1[i, j]|+ |R2[i′, j′]|

where LCS(R1[i, j],R2[i′, j′]) is also a common subsequence of R1 and R2, and
1 ≤ i ≤ j ≤ n, 1 ≤ i′ ≤ j′ ≤ m.

364 R. Backofen et al.

Note the requirement of LCS(R1[i, j],R2[i′, j′]) being a common subse-
quence of R1 and R2 is crucial in case either R1[i, i′] or R2[j, j′] are not arc
complete. In this case, the above requirement prevents matching an endpoint of
an arc whose other endpoint is absent in the consecutive subsequence, thereby
ensuring that local solutions are valid also as global solutions.

Furthermore, notice that by the above definition, one single match gets the
optimal normalized LCS score (1/2). To solve this problem, we require that
|LCS(R1[i, j],R2[i′, j′])| ≥ I, where I is some integer (perhaps dependent of n)
predefined according to the application at hand.

Definition 3 (The local normalized LCS problem). Given two RNA se-
quences R1 = (S1, P1) and R2 = (S2, P2), and an integer I, the local normalized
LCS problem asks to compute the local normalized LCS score of R1 and R2.

3 Decomposing Common Subsequences

In the following section we present techniques for decomposing common sub-
sequences of our two RNA sequences R1 = (S1, P1) and R2 = (S2, P2). We
will be interested in a small fraction of such subsequences. These can intuitively
be thought of as locally optimal common subsequences which contain exactly k
matches, for all 1 ≤ k ≤ n. In [7], a k-Chain is defined as a common subsequence
of two given strings which consists of k matches. We adopt this terminology for
our case as follows.

Definition 4. k-Chain(i,j)
(i′,j′) is a common subsequence of R1[i, i′] and R2[j, j′]

which consists of k matches.

– k-Chain(i,j)
(i′,j′) starts at (i, j) and ends at (i′, j′).

– The head of k-Chain(i,j)
(i′,j′) is the first match in k-Chain(i,j)

(i′,j′).

– The tail of k-Chain(i,j)
(i′,j′) is the last match in k-Chain(i,j)

(i′,j′).

– The length of k-Chain(i,j)
(i′,j′) is the sum of |R1[i, i′]| and |R2[j, j′]|, i.e.

j′− j + i′− i.

– The normalized score of k-Chain(i,j)
(i′,j′) is given by k

j′−j+i′−i .

This definition differs from the definition in [7], since k-Chain(i,j)
(i′,j′) is defined

there only when (i, j) and (i′, j′) are matches. Next we define the best scoring
k-Chain that starts at (i, j).

Definition 5. k-Chain(i,j) is k-Chain(i,j)
(i′,j′) with the highest normalized score

(shortest length) over all i′ ≤ n and j′ ≤ m.

A major obstacle in constructing k-Chains, is that any attempt to construct
k-Chain(i,j) simply by tying another match to the tail of (k−1)-Chain(i,j) will

Normalized Similarity of RNA Sequences 365

not necessarily result in the optimal k-Chain. We therefore take the opposite
approach. From among all chains which start at (i′, j′), i ≤ i′, j ≤ j and (i, j) �=
(i′, j′), we choose the one that when concatenated to (i, j), creates k-Chain(i,j).

In order to construct k-Chain(i,j), we distinguish between four different cases
depending on (i, j). Indeed, (i, j) can either be a mismatch, a non arc match, a
right arc match, or a left arc match. Note that if (i, j) is a non arc match then
we can assume that it is the head of k-Chain(i,j), since otherwise by replacing
the head with (i, j), we obtain a k-Chain with the same score. Furthermore, if
(i, j) is a right arc match, then (i, j) cannot be the head of k-Chain(i,j), since
the left arc match corresponding to (i, j) is not in k-Chain(i,j), and by definition,
(i, j) cannot appear alone in any common subsequence.

In the following we give further details concerning each one of these four
cases. Later these will provide the basis for a dynamic programming procedure
which we design for solving the local normalized LCS problem.

For a pair of matches (i, j), (i′, j′) ∈ {1, . . . , n} × {1, . . . , m}, we refer to the
value |i′− i|+ |j′− j| as the distance between (i, j) and (i′, j′).

Definition 6 (k-closest). The k-closest chain to (i, j) is the k-Chain with min-
imum distance between its tail and (i, j) among all k-Chains starting at (i′, j′)
with i ≤ i′, j ≤ j′, and (i′, j′) �= (i, j).

tail

head

tail

A

U

C

G

C

G

GCU A G C C C

A

U

A

(1,2)

head

(1,2)

1-Chain(1,2)

head + tail

2-Chain(1,2) 3-Chain(1,2)

(1,2)

(b)

(a)

(3,3)

(5,2)

(7,7)

(3,3)

(8,7)

Fig. 2. Constructing k-Chains. (a) The matches of two RNA sequences. (b) The con-

struction of 3-Chain(1,2).

366 R. Backofen et al.

Case 1: (i, j) is a mismatch. In this case, by definition, k-Chain(i,j) consists of
the k matches of the k-closest chain to (i, j).

Case 2: (i, j) is a non arc match. In this case, (i, j) is the head of k-Chain(i,j).
Therefore, k-Chain(i,j) consists of (i, j) and the k−1 matches of the (k−1)-closest
chain to (i, j) starting at (i′, j′) such that i < i′ and j < j′.

Case 3: (i, j) is a right arc match. In this case, (i, j) cannot be the head of
k-Chain(i,j). Furthermore, any match (i, j′) or (i′, j) is also a right arc match.
Therefore, k-Chain(i,j) consists of the k matches of the k-closest chain to (i, j)
starting at (i′, j′) such that i < i′ and j < j′.

Case 4: (i, j) is a left arc match. This is the most delicate case. Indeed, k-
Chain(i,j) may or may not include (i, j). If (i, j) /∈ k-Chain(i,j), then the head of
k-Chain(i,j) can still be (i, j′) or (i′, j) for some i′ > i and j′ > j. Therefore, in
this case k-Chain(i,j) consists of the k matches of the k-closest chain to (i, j).

In case (i, j) ∈ k-Chain(i,j), then (i′, j′) = right(i, j) is also in k-Chain(i,j)

by definition. Therefore, k-Chain(i,j) is of length at least i′− i + j′− j. Let
M = LCS(R1[i, i′],R2[j, j′]). From the optimality of k-Chain(i,j), it follows that
in this case k > |M| − 2, since otherwise there exists a shorter k-Chain which
doesn’t include (i, j) nor (i′, j′). If k = |M|, then k-Chain(i,j) consists exactly
of the matches in M. If k ≥ |M|, then k-Chain(i,j) consists of all matches of
M and all matches of (k−|M|)-Chain(i′,j′). The case k = |M| − 1 is eccentric.
Here, k-Chain(i,j) consists of all but one match of M (which is neither (i, j) or
right(i, j)). In this case, (k + 1)-Chain(i,j) has a higher normalized score than
k-Chain(i,j), and so this case is mentioned only for completeness.

4 The Algorithm

We are now in position to describe our algorithm for computing the local nor-
malized similarity score of our two given RNA sequences R1 = (S1, P1) and
R2 = (S2, P2). Recall that we are looking for the highest normalized scoring
k-Chain such that k ≥ I.

Our algorithm begins in a preprocessing stage which consists of two phases. In
the first phase, for each (i, j) ∈ {1, . . . , n} × {1, . . . , m}, the algorithm classifies
(i, j) as one of the following four types: mismatch, non arc match, right arc
match, or left arc match. In the second phase, the algorithm computes and stores
the longest common subsequence of R1[i, i′] and R2[j, j′] for every (i, i′) ∈ P1
and (j, j′) ∈ P2. As mentioned in Section 2.2, this can be done by a single
execution of the algorithm given in [13].

The second phase is the bottleneck of our algorithm. Nevertheless, this com-
putation is necessary for efficiently constructing k-Chains which start at left
arc matches. According to the fourth case above, if (i, j) is a left arc match
and right(i, j) = (i′, j′), then the computation of k-Chain(i,j) is based on
M = LCS(R1[i, i′],R2[j, j′]). In the dynamic programming computation be-
low, M is computed for any pair of arcs (i, i′) ∈ P1 and (j, j′) ∈ P2. Using [13]

Normalized Similarity of RNA Sequences 367

allows us to compute this efficiently, in some cases at the cost of computing M
for a single pair. On the other hand, in cases where the number of nesting edges
is small, one can use standard LCS algorithms.

After the preprocessing stage is complete, the algorithm computes and stores
the score of k-Chain(i,j), for all (i, j) ∈ {1, . . . , n} × {1, . . . , m} and for all 1 ≤
k ≤ n. More precisely, the algorithm computes and stores the lengths of all these
k-Chains, since the score of a k-Chain can be derived from its length and vice
versa. Let DP k[i, j] denote the length of k-Chain(i,j). For k = 1, the recursion
of DP 1[i, j] is given by:

DP 1[i, j] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 (i, j) is a non arc match,

min

⎧⎨
⎩

DP 1[i+1, j+1] + 2
DP 1[i, j+1] + 1
DP 1[i+1, j] + 1

Otherwise.

For k > 1, we let (i′, j′) = right(i, j) and M = LCS(R1[i, i′],R2[j, j′]). The
recursion of DP k[i, j] is then given by:

DP k[i, j] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

⎧⎨
⎩

DP k[i+1, j+1] + 2
DP k[i, j+1] + 1
DP k[i+1, j] + 1

(i, j) is a mismatch.

DP k−1[i+1, j+1] + 2 (i, j) is a non arc match.

DP k[i+1, j+1] + 2 (i, j) is a right arc match.

min

⎧⎪⎪⎨
⎪⎪⎩

DP k[i+1, j+1] + 2
DP k[i, j+1] + 1
DP k[i+1, j] + 1
j′− j + i′− i + DP k−|M|[i′, j′]

(i, j) is a left arc match
and k > |M|.

min

⎧⎪⎪⎨
⎪⎪⎩

DP k[i+1, j+1] + 2
DP k[i, j+1] + 1
DP k[i+1, j] + 1
j′− j + i′− i

(i, j) is a left arc match
and k ≤ |M|.

The final stage of the algorithm consists of analyzing all DP tables and
reporting a solution. Here, the algorithm can either report the normalized score
of the highest scoring k-Chain such that k ≥ I, or the consecutive subsequences
R1[i, i′] and R2[j, j′] that correspond to this chain. Furthermore, if required, the
algorithm can be modified to report all chains with a score higher than some
given threshold, e.g. 80%.

Correctness of our algorithm follows from the discussion in Section 3.

Time complexity. The preprocessing stage can be done in O(n2m lg m) time
using the algorithm in [13]. Furthermore, computing all DP requires O(n2m)
time. Hence, the total time complexity of our algorithm is O(n2m lg m).

368 R. Backofen et al.

Acknowledgments

We would like to thank Dennis Shasha and Kaizhong Zhang for fruitful discus-
sions. Furthermore, we owe our gratitude to an anonymous referee for pointing
out an error in the preliminary version of this paper.

References

1. Alber J., J. Gramm, J. Guo and R. Niedermeier. Towards optimally solving the
longest common subsequence problem for sequences with nested arc annotations in
linear time. Proc. of the 13th Combinatorial Pattern Matching conference (CPM
2002), LNCS vol. 2373, 99-114, 2002.

2. Apostolico A. and C. Guerra. The longest common subsequence problem revisited.
Algorithmica, 2:315-336, 1987.

3. Arslan A.N., Ö. Eǧecioğlu and P.A. Pevzner. A new approach to sequence align-
ment: normalized sequence alignment. Bioinformatics, 17(4):327-337, 2001.

4. Bille P. A survey on tree edit distance and related problems. Theoretical Computer
Science, 337:217-239, 2005.

5. Chartrand P., X-H. Meng, R.H. Singer and R.M. Long. Structural elements re-
quired for the localization of ASH1 mRNA and of a green fluorescent protein
reporter particle in vivo. Current Biology, 9:333-336, 1999.

6. Couzin J. Breakthrough of the year. Small RNAs make big splash. Science,
298(5602):2296-2297, 2002.

7. Efraty N. and G.M. Landau. Sparse normalized local alignment. Proc. of the
15th Combinatorial Pattern Matching conference (CPM 2004), LNCS vol. 3109,
333-346, 2004.

8. Evans P.A. Algorithms and complexity for annotated sequence analysis. PhD
thesis, University of Alberta, 1999.

9. Gramm J., J. Guo and R. Niedermeier. Pattern matching for arc annotated se-
quences. Proc. of the 22nd Foundations of Software Technologies and Theoretical
Computer Science conference (FSTTSC 2002), LNCS vol. 2556, 182-193, 2002.

10. Hirschberg D.S. Algorithms for the longest common subsequence problem. Journal
of the ACM, 24(4):664-675, 1977.

11. Hunt J.W. and T.G. Szymanski. A fast algorithm for computing longest common
subsequences. Communications of the ACM, 20(5):350-353, 1977.

12. Jiang T., G-H. Lin, B. Ma and K. Zhang. The longest common subsequence
problem for arc-annotated sequences. Proc. of the 11th Combinatorial Pattern
Matching conference (CPM 2000), LNCS vol. 1848, 154-165, 2000.

13. Klein P.N. Computing the Edit-Distance between Unrooted Ordered Trees. Proc.
of the 6th European Symposium on Algorithms conference (ESA 1998), LNCS vol.
1461, 91-102, 1998.

14. Moore P.B. Structural motifs in RNA. Annual review of biochemistry, 68:287-300,
1999.

15. Shasha D. and K. Zhang. Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal on Computing, 18(6):1245-1262, 1989.

16. Smith T.F. and M.S. Waterman. The identification of common molecular subse-
quences. Journal of Molecular Biology , 147:195-197, 1981.

Normalized Similarity of RNA Sequences 369

17. Zhang K. Computing similarity between RNA secondary structures. Proc. of the
IEEE joint symposium on Intelligence and Systems conference, 126-132, 1998.

18. Zuker M. On finding all suboptimal foldings of an RNA molecule. Science,
244(4900):48-52, 1989.

19. Zuker M. and P. Stiegler. Optimal computer folding of large RNA sequences us-
ing thermodynamics and auxiliary information. Nucleic Acids Research, 9(1):133-
148, 1981.

A Fast Algorithmic Technique for Comparing

Large Phylogenetic Trees

Gabriel Valiente

Department of Software, Technical University of Catalonia, E-08034, Barcelona

Abstract. The comparison of rooted phylogenetic trees is essential to
querying phylogenetic databases such as TreeBASE. Current compari-
son methods are based on either tree edit distances or common subtrees.
However, a limitation of such methods is their inherent complexity. In
this paper, a new distance over fully resolved phylogenetic trees, the
transposition distance, is described which is based on a well-known bi-
jection between perfect matchings and phylogenetic trees, and simple
linear-time algorithms are presented for computing the new distance.

1 Introduction

The comparison of phylogenetic trees is essential to performing phylogenetic
queries on databases of phylogenetic trees [4]. The main repository of published
phylogenetic analyses, the TreeBASE [3] phylogenetic database, currently con-
tains over 2,500 phylogenies with over 36,000 taxa among them. Previous work
on phylogenetic tree comparison has focused on unrooted trees only, while the
phylogenies stored in TreeBASE are rooted trees. The tools currently used to
perform phylogenetic queries on TreeBASE are TreeSearch [5], to find trees that
share a specified subtree, and TreeRank [8], to compute tree dissimilarity scores.
Computation of a phylogenetic query by TreeRank takes time quadratic in the
size of the trees.

In this paper, a new distance between phylogenetic trees, the transposition
distance, is proposed which can be computed in time linear in the size of the trees,
much faster than previous tree dissimilarity measures. Phylogenetic trees with
polytomies can be fully resolved into a canonical representation, which is unique
up to isomorphism, in linear time. The transposition distance between fully
resolved phylogenetic trees over the same taxa is defined below as the minimum
number of transpositions needed to transform the matching representation of one
tree into the matching representation of the other. For fully resolved phylogenetic
trees with overlapping taxa, the transposition distance can also take the number
of non-common taxa and the number of contracted edges (in the topological
restriction of the trees to their common taxa) into account.

Throughout this paper, by a phylogenetic tree we mean a rooted phylogenetic
tree, that is, a directed finite graph T = (V, E) with V either empty or containing
a distinguished node r ∈ V , called the root, such that for every other node v ∈ V
there exists one, and only one, path from the root r to v. The children of a node

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 370–375, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Fast Algorithmic Technique for Comparing Large Phylogenetic Trees 371

v in a tree T are those nodes w such that (v, w) ∈ E(T). The nodes without
children are the leaves of the tree. The height of a node v in a tree T , denoted
by height(v), is the length of a longest path from v to any node in the subtree
of T rooted at v. The leaves of a phylogenetic tree, of height zero, are injectively
labeled in a fixed, but arbitrary, set.

Definition 1. A phylogenetic tree will be denoted by T = (V, E), where V is the
set of nodes and E ⊂ V × V is the set of edges. A phylogenetic tree is said to be
fully resolved if all nodes have either zero or two children. The taxon associated
with a leaf node v ∈ V will be denoted by �(v).

Phylogenetic analyses often produce phylogenies with polytomies, that is,
phylogenetic trees that are not fully resolved. As a matter of fact, TreeBASE
contains, at the time of this writing, 2,592 phylogenies over 36,593 taxa, 1,725
(66.55%) of which have polytomies and the remaining 867 (33.45%) are fully
resolved phylogenetic trees over 11,950 taxa.

A phylogenetic tree with polytomies can be turned into a fully resolved phy-
logenetic tree in a canonical way, such that two isomorphic phylogenetic trees
have exactly the same full resolution. The transformation of a phylogenetic tree
with polytomies into a fully resolved phylogenetic tree can be, for instance, based
on the natural correspondence between general trees and those binary trees that
have a root but no right subtree [2, Sect. 2.3.2], and also on the fact that phy-
logenetic trees have unique leaf labels. All phylogenetic trees are assumed to be
fully resolved in the rest of this paper.

2 Matching Representation of Phylogenetic Trees

Let us first recall the bijection between perfect matchings and fully resolved
phylogenetic trees, studied by [1]. A partition of {1, . . . , 2n} into 2-subsets is a
set of n pairwise disjoint unordered pairs. Let u ≺ v denote that node u is a
predecessor of node v in sorted bottom-up order [7], that is, either height(u) <
height(v) or height(u) = height(v) and �(u) < �(v).

Definition 2. The matching representation M(T) of a fully resolved phyloge-
netic tree T = (V, E) with n leaves labeled 1, . . . , n, is the partition of {1, . . . , 2n}
into 2-subsets defined as follows. Let the internal nodes of T be labeled as �(v) =
max{�(u) | u ≺ v}+1. Then, M(T) = {{�(v), �(w)} | (u, v), (u, w) ∈ E for some
u ∈ V }.

Operationally, the matching representation of a fully resolved phylogenetic
tree T = (V, E) with n leaves labeled 1, . . . , n, can be obtained as follows. First,
the internal nodes of T are labeled according to the following scheme: the parent
in T of the labeled nodes v, w ∈ V with smallest �(v) or �(w) is assigned label
n + 1, the one with next-smallest child label is assigned label n + 2, and so on.
Then, M(T) = {{�(v), �(w)} | (u, v), (u, w) ∈ E for some u ∈ V }.

The matching representation of a fully resolved phylogenetic tree can be
obtained in time linear in the size of the trees by bottom-up tree traversal tech-
niques [7]. The detailed pseudocode is given in Algorithm 1.

372 G. Valiente

begin
foreach node v of T do

if v is a leaf node of T then
set �(v) to the index of �(v) in L

else
�(v) := 0

i := |L|
foreach level h of T from the leaves up to the root do

let S be the set of nodes of T at level h, ordered by label
foreach v ∈ S do

let w be the parent of v in T
if �(w) = 0 and height(w) = h + 1 then

i := i + 1
�(w) := i

M := ∅
foreach non-leaf node v of T do

let x and y be the children of v in T
M := M ∪ {{�(x), �(y)}}

return M
end

Algorithm 1: Matching representation. Given a set L and a fully resolved
phylogenetic tree T with leaves labeled in L, the algorithm computes the match-
ing representation M of T .

Corollary 1. Let T = (V, E) be a fully resolved phylogenetic tree. Then, {i, j} ∈
M(T) if and only if there are sibling nodes v, w ∈ V such that �(v) = i and
�(w) = j.

3 Transposition Distance Between Phylogenetic Trees

The transformation of a phylogenetic tree into another one by means of trans-
positions in the matching representation is studied next. This operation is just
a generalization of transposition in permutations to partitions into 2-subsets.

Definition 3. Let M be a partition of {1, . . . , 2n} into 2-subsets, and let {i, j},
{k, �} ∈ M . The transposition of M at j and k is the replacement of {i, j} by
{i, k} and {k, �} by {j, �} in M .

It is easy to see that transpositions are sufficient to transform any two par-
titions of {1, . . . , 2n} into 2-subsets to each other.

Proposition 1. Let M1 and M2 be partitions of {1, . . . , 2n} into 2-subsets.
Then, there exists a set of transpositions that transform M1 into M2.

Proof. M1 and M2 already agree on M1 ∩M2. Let M ′
1 = M1 \M1 ∩M2 and

M ′
2 = M2\M1∩M2. Now, 0 � |M ′

1| = |M ′
2| � n = |M1| = |M2|. If |M ′

1| = 0, then

A Fast Algorithmic Technique for Comparing Large Phylogenetic Trees 373

the empty set of transpositions suffices to transform M1 into M2. Otherwise,
let {i, j} ∈ M ′

1 and {i, k} ∈ M ′
2. Since {i, j} /∈ M1 ∩ M2, it must be j �= k.

Let also {k, �} ∈ M ′
1. The transposition of M ′

1 at j and k, makes M ′
1 and M ′

2
agree on {i, k}, so that the transformation of M ′

1 into M ′
2 can proceed with

M ′′
1 = M ′

1 \ {i, k} and M ′′
2 = M ′

2 \ {i, k}. Thus, it can be shown by induction
on |M ′

1| that M ′
1 can be transformed into M ′

2 by means of transpositions and
therefore, M1 can also be transformed into M2 by means of transpositions. ��

The previous result entails that transpositions are sufficient to transform the
matching representations of any two fully resolved phylogenetic trees over the
same taxa to each other.

Corollary 2. Let T1 and T2 be fully resolved phylogenetic trees over the same
taxa. Then, there exists a set of transpositions that transform M(T1) into M(T2).

The matching distance MD(T1, T2) between two fully resolved phylogenetic
trees T1 and T2 over the same taxa, is the minimum number of transpositions
needed to transform M(T1) into M(T2).

Definition 4. Let T1 and T2 be fully resolved phylogenetic trees over the same
taxa. The matching distance between T1 and T2, denoted by MD(T1, T2), is the
minimum number of transpositions needed to transform M(T1) into M(T2).

The following result establishes a simple procedure for computing the match-
ing distance between fully resolved phylogenetic trees over the same taxa.

Theorem 1. Let M1 and M2 be partitions of {1, . . . , 2n} into 2-subsets, and let
G = (V, E) be the undirected graph with vertex set V = {1, . . . , 2n} and edge
set E = M1 ∪M2. Let also C be the set of connected components of G. Then,
MD(M1, M2) = |E|/2− |C|.

Proof. Each connected component of G consists of either a single 2-subset, that
is, a trivial component A ⊆ M1 ∩M2, or an alternating cycle of 2-subsets A ⊆
M1 ∪M2 \M1 ∩M2 coming in turn from M1 and M2, because {i, j}∩ {k, �} = ∅
for all {i, j}, {k, �} ∈ M1 with {i, j} �= {k, �}, and similarly for M2. Now, each
trivial component A ⊆ M1 ∩ M2 represents the agreement of M1 and M2 on
a 2-subset and thus, contributes 0 = |A| − 1 to MD(M1, M2). Each non-trivial

M1 M2

{i, j} {j, k}
{k, �}

i

j

k

�

M1

M2 M1

→
i

j

k

�

M1

M2

M1 M1 M2

{i, �} {j, k}
{j, k}

Fig. 1. Illustration for the proof of Theorem 1. The transposition of M1 at i and k

separates a 2-subset from the alternating cycle.

374 G. Valiente

begin
MD := 0
foreach pair {i1, j1} of M1 do

let {i2, j2} be the pair of M2 with i1 = i2
if j1 �= j2 then

let {k1, �1} be the pair of M1 with k1 = j2
replace {i1, j1} by {i1, k1} in M1

replace {k1, �1} by {j1, �1} in M1

MD := MD + 1

return MD
end

Algorithm 2: Matching distance. Given an integer n and two partitions
M1 and M2 of {1, . . . , 2n} into 2-subsets, the algorithm computes the matching
distance MD between M1 and M2.

component A ⊆ M1∪M2\M1∩M2, on the other hand, represents an alternating
cycle of 2-subsets upon which each transposition separates a single 2-subset from
A and thus, also contributes |A|/2− 1 to MD(M1, M2). As a matter of fact, for
each 2-subset {i, j} ∈ A ∩M1, {j, k} ∈ A ∩M2, and {k, �} ∈ A ∩M1, the only
possible transposition of M1 is at i and k, which separates the 2-subset {j, k}
from A and decreases |A| by 2, and similarly for a transposition of M2. (See
Fig. 1.) Therefore, MD(M1, M2) =

∑
A∈C(|A|/2 − 1) = (

∑
A∈C |A|)/2 − |C| =

|E|/2− |C|. ��

The matching distance can thus be obtained in time linear in the size of
the trees. An alternative linear-time algorithm computes the matching distance
between two partitions M1 and M2 of {1, . . . , 2n} into 2-subsets while performing
the actual transpositions that transform M1 into M2. The detailed pseudocode
is given in Algorithm 2.

The transposition distance between two fully resolved phylogenetic trees, on
the other hand, is the matching distance between the topological restriction of
the trees to their common taxa.

Definition 5. Let T1 and T2 be fully resolved phylogenetic trees, let L1 = {�(v1) |
v1 ∈ V1}, let L2 = {�(v2) | v2 ∈ V2}, and let L = L1 ∩ L2. Let also T ′

1 = T1|L
and T ′

2 = T2|L be the topological restriction of T1 and T2, respectively, to their
common taxa L. The transposition distance between T1 and T2, denoted by
TD(T1, T2), is TD(T1, T2) = MD(M(T ′

1), M(T ′
2)).

The transposition distance between two fully resolved phylogenetic trees can
thus be obtained in time linear in the size of the trees. The detailed pseudocode
is given in Algorithm 3.

For phylogenetic trees with overlapping taxa, the transposition distance can
be extended by also taking non-common taxa and contracted edges (in the topo-
logical restriction of the trees to their common taxa) into account. The transpo-
sition distance can be normalized to a value between zero and one by dividing

A Fast Algorithmic Technique for Comparing Large Phylogenetic Trees 375

begin
L1 := {�(v1) | v1 ∈ V1}
L2 := {�(v2) | v2 ∈ V2}
L := L1 ∩ L2

T ′
1 := T1|L

T ′
2 := T2|L

relabel the leaves of T ′
1 and T ′

2 with integers {1, . . . , |L|}
TD := MD(M(T ′

1, L), M(T ′
2, L))

return TD
end

Algorithm 3: Transposition distance. Given two fully resolved phylogenetic
trees T1 and T2, the algorithm computes the transposition distance TD between
T1 and T2.

by the total size of the trees, which is an upper bound on the transposition dis-
tance. Further work is needed to establish additional properties of the transpo-
sition distance, as done for instance in [6] for dissimilarity metrics over unrooted
phylogenetic trees.

Acknowledgment

The research described in this paper was partially supported by the Spanish CI-
CYT, project GRAMMARS (TIN2004-07925-C03-01), and by the Japan Society
for the Promotion of Science through Long-term Invitation Fellowship L05511
for visiting JAIST (Japan Advanced Institute of Science and Technology).

References

1. Diaconisa, P.W., Holmes, S.P.: Matchings and phylogenetic trees. Proc. Natl. Acad.
Sci. USA 95 (1998) 14600–14602

2. Knuth, D.E.: Fundamental Algorithms. 3rd edn. Volume 1 of The Art of Computer
Programming. Addison-Wesley (1997)

3. Morell, V.: TreeBASE: The roots of phylogeny. Science 273 (1996) 569–570
http://www.treebase.org.

4. Page, R.D.M.: Phyloinformatics: Towards a phylogenetic database. In Wang,
J.T.L., Zaki, M.J., Toivonen, H., Shasha, D.E., eds.: Data Mining in Bioinformatics.
Springer-Verlag (2005) 219–241

5. Shan, H., Herbert, K.G., Piel, W.H., Shasha, D., Wang, J.T.L.: A structure-based
search engine for phylogenetic databases. In: Proc. 14th Int. Conf. Scientific and
Statistical Database Management, IEEE Computer Society (2002) 7–10

6. Steel, M.A., Penny, D.: Distributions of tree comparison metrics—some new results.
Syst. Biol. 42 (1993) 126–141

7. Valiente, G.: Algorithms on Trees and Graphs. Springer-Verlag (2002)
8. Wang, J.T.L., Shan, H., Shasha, D., Piel, W.H.: TreeRank: A similarity measure

for nearest neighbor searching in phylogenetic databases. In: Proc. 15th Int. Conf.
Scientific and Statistical Database Management, IEEE Computer Society (2003)
171–180

Practical and Optimal String Matching

Kimmo Fredriksson1,� and Szymon Grabowski2

1 Department of Computer Science, University of Joensuu,
PO Box 111, FIN–80101 Joensuu, Finland

kfredrik@cs.joensuu.fi
2 Technical University of �Lódź, Computer Engineering Department,

Al. Politechniki 11, 90–924 �Lódź, Poland
sgrabow@kis.p.lodz.pl

Abstract. We develop a new exact bit-parallel string matching algo-
rithm, based on the Shift-Or algorithm (Baeza-Yates & Gonnet, 1992).
Assuming that the pattern representation fits into a single computer
word, this algorithm has optimal O(n logσ m/m) average running time,
as well as optimal O(n) worst case running time, where n, m and σ
are the sizes of the text, the pattern, and the alphabet, respectively.
We also study several implementation details. The experimental results
show that our algorithm is the fastest in most of the cases where it can
be applied, displacing even the long-standing BNDM (Navarro & Raf-
finot, 2000) family of algorithms. Finally, we show how to adapt our
techniques for the Shift-Add algorithm (Baeza-Yates & Gonnet, 1992),
obtaining optimal time for searching under Hamming distance.

1 Introduction

We address the well known exact string matching problem. The problem is to
search the occurrences of the pattern P [0 . . .m− 1] from the text T [0 . . . n− 1],
where the symbols of P and T are taken from some finite alphabet Σ, of size σ.
Numerous efficient algorithms solving the problem have been obtained. The first
linear time algorithm (KMP) was given in [8], and the first sublinear average
time algorithm (BM) in [2]. Many practical variants of BM family have been
suggested, see e.g. [7,13]. An average optimal O(n logσ m/m) time algorithm
(BDM) is obtained e.g. in [4].

Recently bit-parallelism has been shown to lead to the most efficient algo-
rithms for relatively short patterns, in practice. The first algorithm in this class
was Shift-Or [1,16], which runs in time O(n�m/w�) time, where w is the number
of bits in computer word (typically 32 or 64). Shift-Or is extremely simple to im-
plement, and can be easily adapted to more complex search problems; common
properties for most of the bit-parallel algorithms.

Currently, among the fastest algorithms in practice (for m ≤ w) are BNDM
[11] and SBNDM [10,12]. BNDM is bit-parallel version of BDM, and SBNDM is a
simplified version of BNDM. Their common feature is combining bit-parallelism
� Supported by the Academy of Finland, grant 202281.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 376–387, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Practical and Optimal String Matching 377

with skipping characters, in the manner of the BM family of algorithms [2]. In
SBNDM the shift over the text is reduced, but nevertheless the algorithm is
shown to be a bit faster than BNDM in practice. BNDM is optimal on average,
but has quadratic worst case complexity. LNDM algorithm [5], which is based
on BNDM, has also optimal linear worst case time.

The goal of this paper is to develop an algorithm that has optimal worst and
average case complexities (assuming m = O(w)), and that in practice performs
well on modern CPU architectures. Experimental results show that our algorithm
is clearly the fastest in the majority of the cases it can be applied. The same
techniques can be adapted to some other algorithms as well, an explicit example
being the Shift-Add algorithm [1] for searching under Hamming distance.

2 Optimal Shift-Or

We use the following notation. The pattern is P [0 . . .m − 1] and the text is
T [0 . . . n− 1]. The symbols of P and T are taken from some finite alphabet Σ,
of size σ. A machine word has w bits, numbered from the least significant bit
to the most significant bit. We use C–like notation for the bit-wise operations
of words; & is bit-wise and, | is or, ∧ is xor, ∼ negates all bits, << is shift
to left, and >> shift to right, both with zero padding. For brevity, we make the
assumption that m ≤ w, unless explicitly stated otherwise.

2.1 Standard Shift-Or

The standard Shift-Or automaton is constructed as follows. The automaton has
states 0, 1, . . . , m. The state 0 is the initial state, state m is the final (accepting)
state, and for i = 0, . . . , m− 1 there is a transition from the state i to the state
i + 1 for character P [i]. In addition, there is a transition for every c ∈ Σ from
and to the initial state, which makes the automaton nondeterministic.

The preprocessing algorithm builds a table B, having one bit-mask entry for
each c ∈ Σ. For 0 ≤ i ≤ m − 1, the mask B[c] has ith bit set to 0, iff P [i] = c.
These correspond to the transitions of the implicit automaton. That is, if the bit
i in B[c] is 0, then there is a transition from the state i to the state i + 1 with
character c.

We also need a bit-vector D for the states of the automaton. The ith bit
of the state vector is set to 0, iff the state i is active. Initially each bit is set
to 1. For each text symbol c the vector is updated by D ← (D << 1) | B[c].
This simulates all the possible transitions of the nondeterministic automaton
in a single step. If after the update the mth bit of d is zero, then there is an
occurrence of P . Alg. 1 gives the code. If m ≤ w, then the algorithm runs in
time O(n).

2.2 Average Optimal Shift-Or

We now show how to skip text characters with Shift-Or. Our algorithm takes a
parameter q, and from the original pattern we generate a set P of q new patterns
P = {P 0, . . . , P q−1}, each of length m′ = "m/q#, as follows:

378 K. Fredriksson and S. Grabowski

Alg. 1. Shift-Or(T, n, P, m).
1 for i ← 0 to σ − 1 do B[i] ← ∼0
2 for i ← 0 to m − 1 do B[P [i]] ← B[P [i]] & ∼(1 << i)
3 D ← ∼0; mm ← 1 << (m − 1); i ← 0
4 while i < n do
5 D ← (D << 1) | B[T [i]]
6 if (D & mm) �= mm then report match
7 i ← i + 1

P j [i] = P [j + iq], j = 0 . . . q − 1, i = 0 . . . "m/q# − 1.

In other words, we generate q different alignments of the original pattern P , each
alignment containing only every qth character. The total length of the patterns
P j is q"m/q# ≤ m. For example, if P = abcdef and q = 3, then P 0 = ad,
P 1 = be and P 2 = cf.

Assume now that P occurs at T [i..i + m − 1]. From the definition of P j it
directly follows that

P j [h] = T [i + j + hq], j = i mod q, h = 0 . . .m′ − 1.

This means that we can use the set P as a filter for the pattern P , and that the
filter needs only to scan every qth character of T . Fig. 1 illustrates.

The set of patterns can be searched simultaneously using the Shift-Or al-
gorithm, as long as qm′ ≤ w. All the patterns are preprocessed together, as
if they were concatenated. For our example pattern, P = abcdef, we effec-
tively preprocess a pattern P ′ = P 0 P 1 P 2 = adbecf. Alg. 2 gives the code
for preprocessing and filtering algorithms. If the pattern P j matches, then the
(j + 1)m′-th bit in D is zero. This is detected with (D & mm) �= mm, where
mm has every (j + 1)m′-th bit set to 1. These bits have also to be cleared in
D before the shift operation (D & ∼mm), to correctly initialize the first bit
corresponding to each of the successive patterns.

c f

x f xx a b c d e x xT
fa b c d eP

a d

P

0

1

P
b eP

fa d b e cP

2

’

pi

Fig. 1. An example. Assume that P = abcdef occurs at text position T [i . . . i+m−1],

and that q = 3. The current text position is p = 10, and T [p] = b. The next character

the algorithm reads is T [p + q] = T [13] = e. This triggers a match of P p mod q = P 1,

and the text area T [p − 1..p − 1 + m − 1] = T [i . . . i + m − 1] is verified.

Practical and Optimal String Matching 379

Alg. 2. Average-Optimal-Shift-Or(T, n, P, m, q).
1 for i ← 0 to σ − 1 do B[i] ← ∼0
2 h ← 0; mm ← 0
3 for j ← 0 to q − 1 do
4 for i ← 0 to �m/q� − 1 do
5 B[P [iq + j]] ← B[P [iq + j]] & ∼(1 << h)
6 h ← h + 1
7 mm ← mm | (1 << (h − 1))
8 D ← ∼0; i ← 0
9 while i < n do
10 D ← ((D & ∼mm) << 1) | B[T [i]]
11 if (D & mm) �= mm then Verify(T, i, n, P, m, q, D, mm)
12 i ← i + q

Alg. 3. Verify(T, i, n, P, m, q, D, mm).
1 D ← (D & mm) ∧ mm
2 while D �= 0 do
3 s ← �log2(D)�
4 c ← −(�m/q� − 1) q − �s/�m/q��
5 if P [0 . . . m − 1] = T [i + c . . . i + c + m − 1] then report match
6 D ← D & ∼(1 << s)

Whenever an occurrence of P j is found in the text, we must verify if P also
occurs, with the corresponding alignment. To efficiently detect which patterns
in P match, we first set D ← (D & mm) ∧ mm, i.e. the (j + 1)m′-th bit in
D is now one if P j matches, and all other bits are zero. Now s ← "log2(D)#
gives the index of the highest bit set in D, and therefore j is "s/m′#, which is
our alignment offset, see Fig. 1. The corresponding text position is then verified.
Finally, we clear the bit s in D. This is repeated until D becomes zero, indicating
that there are no more matches. Note that computing "log2(x)# can be done very
efficiently in modern computers, e.g. by casting x to real number, and extracting
the exponent from the standardized floating point representation. Alg. 3 gives
the verification code.

The filtering time of Alg. 2 is O(n/q). The filter searches the exact matches of
q patterns, each of length "m/q#. Assuming that each character occurs with prob-
ability 1/σ, the probability that P j occurs in a given text position is (1/σ)�m/q�.
A brute force verification cost is in the worst case O(m) (but only O(1) on av-
erage). To keep the total time at most O(n/q) on average, we select q so that
n/q = mn/σm/q, i.e. q = O(m/ logσ m). The total average time is therefore
O(n logσ m/m), which is optimal [17].

Note: As a historical remark we note that the approximate string matching
algorithms in [15,14] have some resemblance to our algorithm. These techniques
can be used for exact matching as well, but even for this special case they still
differ significantly from our method.

380 K. Fredriksson and S. Grabowski

2.3 Handling Longer Patterns

If qm′ > w, we must use more computer words, and the running time must
be multiplied by O(�qm′/w�) = O(�m/w�), i.e. the average time becomes
O(n logσ m/w).

However, the trick used in [12] to make BNDM work with m > w can be
applied to our algorithms too. The idea is to partition the pattern into r = "m/h#
consecutive parts. The length of each part is now h = "(m− 1)/w#+ 1. All the
h characters of each part are then superimposed into a single ’supercharacter’.
The resulting r supercharacters are then concatenated to form a single pattern of
length r. This pattern fits into a single computer word, and it can be searched by
reading only every hth character of the text. This turns any algorithm, where it
is applied to, into a filter, so the potential matches must be verified. See [12] for
more details. This technique permits long patterns for the average optimal Shift-
Or as well. The result is an algorithm with O(n logσ/h m/m) time on average.
This is not optimal any more, but for σ � h should work quite well.

2.4 Linear Worst Case Time

The worst case running time of Alg. 2 is O(mn). However, the verification algo-
rithm is easy to combine with standard Shift-Or, so that the verifications take
at most O(n) total time. This is done as follows. Whenever we must verify a
pattern occurrence, we do it with Shift-Or. The last text position verified is
saved in a variable, as well as the state vector D (for plain Shift-Or). If the next
verification area overlaps with the previous, we restore the Shift-Or search state
from the previous verification. Otherwise, if the next verification area starts af-
ter the previous ended, we reinitialize the Shift-Or search state. The verification
algorithm then reads every text character at most once, and therefore the time
is at most O(n) (or O(n�m/w�) for long patterns). However, if the verification
time becomes an issue, the filter does not work well, and one could use plain
Shift-Or just as well.

2.5 Implementation

In modern pipelined CPUs branching is costly. In Alg. 1 there are two condi-
tionals in the search code; first to detect the matches, and the second to check
the end of the input. A simple way to avoid these to some degree is to unroll the
line 5, i.e. repeat the code

D ← (D << 1) | B[T [i]]

inline several, say U , times (with increasing offsets for the variable i). This
means that the bit m − 1 of D, indicating on occurrence, will be overflowed
due to the repeated shifts, and hence in line 6 we must detect if any of the bits
m − 1..m + U − 1 is zero. This means that we need U − 1 extra bits, and the
pattern length is therefore limited to m ≤ w − U + 1.

The second optimization involves detecting the matches. Line 6 in Alg. 1
involves a variable mm. This can be avoided if the bit vectors are aligned so

Practical and Optimal String Matching 381

Alg. 4. Fast-Shift-Or(T, n, P, m).
1 for i ← 0 to σ − 1 do B[i] ← ((1 << m) − 1) << (w − U − m)
2 for i ← 0 to m − 1 do B[P [i]] ← B[P [i]] & ∼(1 << (w − U − m + i))
3 D ← ∼0; mm ← 1 << (m − 1); i ← 0
4 while i < n do
5 for r ← 0 to U − 1 do D ← (D << 1) | B[T [i + r]]
6 if ∼D >> (w − U) �= 0 then report matches
7 i ← i + U

Alg. 5. Fast-Average-Optimal-Shift-Or(T, n, P, m, q).
1 for i ← 0 to σ − 1 do B[i] ← ∼0
2 h ← 0; mm ← 0
3 for j ← 0 to q − 1 do
4 for i ← 0 to �m/q� − 1 do
5 B[P [iq + j]] ← B[P [iq + j]] & ∼(1 << h)
6 h ← h + 1
7 for r ← 0 to U − 1 do
8 mm ← mm | (1 << (h − 1))
9 h ← h + 1
10 h ← h − 1
11 D ← ∼mm; i ← 0
12 while i < n do
13 for r ← 0 to U − 1 do D ← (D << 1) | B[T [i + rq]]
14 if (D & mm) �= mm then verify(T, i, n, P, m, q, U,D)
15 D ← D & ∼mm
16 i ← i + Uq

that the highest bit is in position w − U + 1, instead of in position m + U − 1.
This means that the matches can be detected with ∼D >> (w − U) �= 0, which
is efficient if U is constant.

These two simple optimizations (shown in Alg. 4) give about 2 − 5× speed-
up for standard Shift-Or (Alg. 1), depending on the architecture. The line 5 in
Alg. 4 is automatically inlined by compilers, for small constant U . Altough the
speed-up is considerable, note that this can depend on the architecture.

Unrolling speeds-up also the Optimal Shift-Or, but the second optimization
cannot be applied in this case, since the bit positions indicating the matches are
not consecutive. The unrolling technique uses U − 1 extra bits per pattern, so
we need q(U −1+ "m/q#) bits in total, which is O(m(U +logσ m)/ logσ m) with
the optimal q. Alg. 5 gives the code.

Finally, observe that while unrolling is well suited to Shift-Or, the benefits
are negligible e.g. for BNDM algorithm, since the more complex control logic
cannot be avoided.

382 K. Fredriksson and S. Grabowski

3 Optimal Shift-Add

Shift-Add [1] is a bit-parallel algorithm for approximate searching under Ham-
ming distance, i.e. it allows at most k mismatches of pattern characters in the
occurrences. Shift-Add is very similar to Shift-Or. Shift-Or reserves only one
bit per pattern character in the state vector D. If some bit is 0 in the vector,
it means that the corresponding pattern prefix matches with 0 mismatches the
current text position, while bit 1 means that the prefix matches with one or
more mismatches. This is possible to extend to allow k mismatches by reserving
� = �log2(k + 1)� + 1 bits for each character, and replacing the or operation
with addition operation [1].

More precisely, the ith �-bit field in B[c] is � bit binary number 0, if the ith
character of P matches the character c, and 1 otherwise. Then we can accumulate
the mismatches as

D ← (D << �) + B[T [i]].

If the mth field of D has a value less than k + 1, the pattern matches with
at most k mismatches. Note that since the pattern length is m, the number
of mismatches can also be m, but we have allocated only � = O(log2 k) bits
for the counters. This means that the counters can overflow. The solution is to
store the highest bits of the fields in a separate computer word o, and keep the
corresponding bits cleared in D:

D ← (D << �) + B[T [i]]
o ← (o << �) | (D & om)

D ← D & ∼om

The bit mask om has bit one in the highest bit position of each �-bit field,
and zeros elsewhere. Note that if o has bit one in some field, the corresponding
counter has reached at least value k+1, and hence clearing this bit from D does
not cause any problems. There is an occurrence of the pattern whenever

(D + o) & mm < (k + 1) << ((m− 1)�),

i.e. when the highest field is less than k + 1. The bit mask mm selects the mth
field. Shift-Add clearly works in O(n) time, if m(�log2(k + 1)�+ 1) ≤ w.

Our method of skipping text characters with Shift-Or clearly works with
Shift-Add as well. The pattern is again splitted to q partitions. If some of our q
patterns occur with at most k mismatches, then we verify if the whole pattern
occurs with at most k mismatches. Note that this is different from most of the
other pattern partitioning based approaches, that partition the pattern into q
pieces, and then search the pieces with "k/q# errors. This latter approach leads
to O(nk logσ m/m) average time in general, and works for k = O(m/ logσ m).
This time is not optimal, whereas our approach leads to O(n(k + logσ m)/m)
optimal average time, see below.

Adapting the Shift-Add algorithm to multiple patterns requires some modi-
fications on the preprocessing and searching algorithms. The problem is how to

Practical and Optimal String Matching 383

detect the matches of several patterns in parallel. This is solved by initializing
the counters to 2�−1−(k+1), instead of to zero. This trick has been used before,
e.g. in [3]. This ensures that the overflow bit is activated immediately when the
counter reaches a value k + 1, and is therefore easy to detect for all patterns in
parallel. This could be implemented explicitly, by setting the first field in D of
each pattern to this value after the shift operation. Instead, we add 2�−1−(k+1)
to all fields of the B[c] vectors that correspond to the first character of each of the
patterns. This ensures that the counters in D get correctly initialized, assuming
the first counters of each pattern were zero before the addition. This zeroing is
done explicitly with a bit mask. Alg. 6 gives the code.

Alg. 6. Average-Optimal-Shift-Add(T, n, P, m, q, k).
1 � ← �log2(k + 1)� + 1
2 iv ← 0
3 for i ← 0 to m − 1 do iv ← iv | (1 << (i�))
4 for i ← 0 to σ − 1 do B[i] ← iv
5 iv ← (1 << (� − 1)) − (k + 1)
6 h ← 0; mm ← 0; hm ← 0; om ← 0
7 for j ← 0 to q − 1 do
8 for i ← 0 to �m/q� − 1 do
9 B[P [iq + j]] ← B[P [iq + j]] ∧ (1 << h)
10 h ← h + �
11 hm ← hm | (((1 << �) − 1) << (h − �))
12 mm ← mm | (1 << (h − 1))
13 iv ← iv | (iv << h)
14 for i ← 0 to σ − 1 do B[i] ← B[i] + iv
15 for i ← 0 to �m/q�q − 1 do om ← om | (1 << (((i + 1)�) − 1))
16 D ← 0; o ← om; i ← 0
17 while i < n do
18 D ← (D << �) + B[T [i]]
19 o ← (o << �) | (D & om)
20 D ← D & ∼hm & ∼om
21 if (o & mm) �= mm then Verify(T, i, n, P, m, q, k, o, mm)
22 o ← o & ∼hm
23 i ← i + q

The probability of a match of our "m/q# length pattern piece with at most
k mismatches is exponentially decreasing if k/"m/q# < 1 − e/σ [9]. For our
q = O(m/ logσ m), this becomes k/ logσ m < 1−e/σ. This condition ensures that
the probability of a verification is γ�m/q�, where γ < 1, and hence the number of
verifications is negligible, and the total average time is O(n logσ m/m), which is
again optimal. This is good only for reasonably large alphabets and very small
k, at most O(logσ m). For larger k one can choose q = O(m/(k + logσ m)), to
get again an optimal O(n(k + logσ m)/m) average time. Linear worst case time
(for short patterns) can be obtained in similar way as in the case of Shift-Or.
For long patterns all the bounds must be multiplied by O(m log2(k)/w).

384 K. Fredriksson and S. Grabowski

4 Experimental Results (Preliminary)

We have implemented all the algorithms in C, and compiled with icc 8.1. We
ran the experiments in 2.4GHz Pentium4 with 512 Mb RAM, 512 Kb cache,
running GNU/Linux 2.4.20-8. We also repeated some experiments with 1.28
GHz UltraSPARC IIIi with 16 Gb RAM, 1 Mb cache, running SunOS 5.9. In
this case we compiled with the Sun ONE Studio 8 C compiler.

We performed the experiments using random ASCII (σ = 96, n = 10Mb),
and several real texts. These are: the E.coli DNA sequence (4,638,690 characters)
from Canterbury Corpus1, real protein data (5,050,292 characters) from TIGR
Database (TDB)2, and natural language text (the collected works of Charles
Dickens, 10,192,446 characters), from Silesia Corpus3. The patterns were ran-
domly extracted from the texts, and each test was repeated 100 times. We report
the average speed in megabytes per second.

4.1 Shift-Or Experiments

We compared our algorithms against BNDM [11] and SBNDM [12], implemented
by ourselves. These are in practice the fastest general purpose exact string match-
ing algorithms for m ≤ w. We also compared against the Boyer-Moore-Horspool
algorithm [7], and Boyer-Moore-Horspool-Sunday algorithm [13], but these were
not competitive, so we do not report the speeds here.

Table 1 gives the speeds in megabyes per second for all the texts. AOSO
denotes our Average-Optimal Shift-Or algorithm, and FAOSO the fast variant
of it, using the unrolling trick. Note that the speeds for the plain Shift-Or do
not depend on the pattern length. For the fast variants, we used unrolling factor
U = 4, when the representation fitted into a single computer word, otherwise we
were forced to use values 1 . . . 3.

As it can be seen, our algorithms are clearly the fastest on DNA in all the
cases. Interestingly, the fast variant of the plain Shift-Or algorithm beats our
average optimal Shift-Or for m ≤ 8. The results are quite similar for proteins,
but for long patterns BNDM variants have equal performance to our algorithms.
Note also that for all cases SBNDM is consistently slightly faster than BNDM.
Our approach is faster also in natural language text, while on random ASCII
the differences are considerably smaller.

Table 2 repeats the experiments on UltraSPARC IIIi for DNA and natural
language. FAOSO is again clearly the fastest alternative, but contrary to the
results on Pentium4 the plain AOSO is not competitive.

Note: Just before submitting this paper we found a recent work [6] that presents
several efficient variants of the BNDM algorithm. We ran some preliminary ex-
periments, comparing the best variants against our algorithms. The variants in
[6] are in many case faster than SBNDM, but are competitive against us only
1 http://corpus.canterbury.ac.nz/descriptions/
2 http://www.tigr.org/tdb
3 http://sun.iinf.polsl.gliwice.pl/~sdeor/corpus.htm

Practical and Optimal String Matching 385

Table 1. Searching speed in megabytes per second for different algorithms on Pen-

tium4. Top left: DNA; Top right: proteins. Bottom left: natural language; Bottom

right: random ASCII. Shift-Or processes 131 MB/s, 128 MB/s, 128 MB/s and 132

MB/s, and the fast Shift-Or 776 MB/s, 764 MB/s, 817 MB/s and 820 MB/s for DNA,

proteins, natural language and random ASCII, respectively.

m, q AOSO FAOSO BNDM SBNDM m, q AOSO FAOSO BNDM SBNDM
4, 2 321 503 181 210 4, 2 580 909 415 512
8, 2 539 763 312 357 8, 4 944 1267 642 678
12, 3 702 941 438 492 12, 4 1120 1376 816 926
16, 3 1029 1229 567 598 16, 4 1120 1459 963 1025
20, 4 1079 1341 750 804 20, 4 1235 1376 1175 1204
24, 4 1229 1525 1106 1164 24, 5 1267 1338 1235 1302
28, 5 1427 1638 1106 1164 28, 6 1302 1302 1302 1302

m, q AOSO FAOSO BNDM SBNDM m, q AOSO FAOSO BNDM SBNDM
4, 2 579 884 368 476 4, 2 599 952 633 1053
8, 4 1034 1262 685 778 8, 4 1124 1333 1064 1220
12, 4 1144 1279 797 845 12, 4 1250 1389 1299 1282
16, 5 1200 1389 831 944 16, 4 1351 1389 1351 1389
20, 6 1279 1389 1013 1092 20, 6 1449 1471 1370 1429

Table 2. Searching speed in megabytes per second for different algorithms on Ultra-

SPARC IIIi. Left: DNA; right: natural language. Shift-Or processes 91 MB/s and 90

MB/s, and the fast Shift-Or 168 MB/s and 165 MB/s for DNA and natural language,

respectively.

m, q AOSO FAOSO BNDM SBNDM m, q AOSO FAOSO BNDM SBNDM
4, 2 70 109 103 92 4, 2 104 198 142 147
8, 2 104 193 146 141 8, 4 157 250 193 192
12, 3 132 227 171 164 12, 4 160 256 217 220
16, 3 135 234 194 192 16, 4 175 267 232 233
20, 4 161 256 207 207 20, 6 189 275 244 247

Table 3. Searching speed in megabytes per second for Average-Optimal Shift-Add on

Pentium4. Plain Shift-Add processes 203 NB/s for DNA, 197 MB/s for proteins, 204

MB/s for Natural Language and 208 MB/s for random ASCII.

Alg AOSA AOSA AOSA AOSA

m m = 8 m = 12 m = 16 m = 8
k k = 1 k = 1 k = 1 k = 2

DNA 173 318 333 172

Proteins 342 468 634 259

NL (ASCII) 347 552 600 291

Rnd (ASCII) 413 633 741 347

386 K. Fredriksson and S. Grabowski

for large alphabets and reasonably long patterns, while our algorithms still seem
to dominate the cases for small alphabets for small to moderate pattern lengths.
Their algorithms are entirely different from ours, except that they also apply a
form of loop unrolling, but the method is less useful as applied in BNDM (and
variants). The reason is that, assuming that they unroll U times, they can shift
only after reading U characters, and the maximum shift is reduced to m−U +1.
Our algorithms do not have such limitations.

4.2 Shift-Add Experiments

Table 3 gives the speeds for the average-optimal Shift-Add. Our character skip-
ping technique clearly speeds-up Shift-Add as well, the exception being short
patterns or large k on DNA alphabet. For the lack of time, we compared only
against the plain Shift-Add algorithm.

5 Conclusions and Future Work

We have presented new bit-parallel filtering algorithms for exact and approx-
imate (under Hamming distance) string matching algorithms. The algorithms
have optimal running times on average, and have extremely simple implemen-
tations. This makes the algorithms very fast in practice. The simplicity comes
from a novel forward matching technique (as opposed to backward matching as
in most competing algorithms) and from the fact that the pattern shifts are con-
stant. This also leads to simple unrolling trick that boosts the search in modern
hardware. This trick cannot be applied so successfully to more complex backward
matching algorithms.

Finally, we note that the techniques presented in this article can be adapted
for some other algorithms as well. An example is the (δ, γ)-matching algorithm in
[3], which runs in O(n�m(1 + log2(γ + 1))/w�) time. Using our techniques gives
us an O(n�m(1 + log2(γ + 1))/w�/q) time filtering algorithm. Assuming uniform
random distribution of characters, we can obtain O(n log2(γ) logσ/δ(m)/w) as-
ymptotic average time by selecting q = O(m/ logσ/δ(m)).

Acknowledgements

We thank the anonymous reviewers for many helpful comments.

References

1. R. A. Baeza-Yates and G. H. Gonnet. A new approach to text searching. Commun.
ACM, 35(10):74–82, 1992.

2. R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commun. ACM,
20(10):762–772, 1977.

Practical and Optimal String Matching 387

3. M. Crochemore, C. Iliopoulos, G. Navarro, Y. Pinzon, and A. Salinger. Bit-
parallel (δ, γ)-matching suffix automata. Journal of Discrete Algorithms (JDA),
3(2–4):198–214, 2005.

4. M. Crochemore and W. Rytter. Text algorithms. Oxford University Press, 1994.
5. L. He and B. Fang. Linear nondeterministic dawg string matching algorithm. In

Proceedings of the 11th International Symposium on String Processing and Infor-
mation Retrieval (SPIRE’2004), LNCS 3246, pages 70–71. Springer–Verlag, 2004.

6. J. Holub and B. Durian. Fast variants of bit parallel approach to suf-
fix automata. Talk given in The Second Haifa Annual International
Stringology Research Workshop of the Israeli Science Foundation, 2005.
http://www.cri.haifa.ac.il/events/2005/string/presentations/Holub.pdf.

7. R. N. Horspool. Practical fast searching in strings. Softw. Pract. Exp., 10(6):501–
506, 1980.

8. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in strings.
SIAM J. Comput., 6(1):323–350, 1977.

9. G. Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001.

10. G. Navarro. NR-grep: a fast and flexible pattern matching tool. Softw. Pract. Exp.,
31:1265–1312, 2001.

11. G. Navarro and M. Raffinot. Fast and flexible string matching by combining
bit-parallelism and suffix automata. ACM Journal of Experimental Algorithmics
(JEA), 5(4), 2000. http://www.jea.acm.org/2000/NavarroString.

12. H. Peltola and J. Tarhio. Alternative algorithms for bit-parallel string match-
ing. In Proceedings of the 10th International Symposium on String Processing and
Information Retrieval (SPIRE2003), LNCS 2857, pages 80–94. Springer–Verlag,
2003.

13. D. M. Sunday. A very fast substring search algorithm. Commun. ACM, 33(8):132–
142, 1990.

14. E. Sutinen and J. Tarhio. On using q-gram locations in approximate string match-
ing. In P. G. Spirakis, editor, Proceedings 3rd Annual European Symposium, number
979 in Lecture Notes in Computer Science, pages 327–340, Corfu, Greece, 1995.
Springer-Verlag, Berlin.

15. T. Takaoka. Approximate pattern matching with samples. In Ding-Zhu Du and
Xiang sun Zhang, editors, Proceedings of the 5th International Symposium on Al-
gorithms and Computation, number 834 in Lecture Notes in Computer Science,
pages 236–242, Beijing, P.R. China, 1994. Springer-Verlag, Berlin.

16. S. Wu and U. Manber. Fast text searching allowing errors. Commun. ACM,
35(10):83–91, 1992.

17. A. C. Yao. The complexity of pattern matching for a random string. SIAM J.
Comput., 8(3):368–387, 1979.

A Bit-Parallel Tree Matching Algorithm

for Patterns with Horizontal VLDC’s

Hisashi Tsuji1, Akira Ishino1, and Masayuki Takeda1,2

1 Department of Informatics, Kyushu University 33, Fukuoka 812-8581, Japan
2 SORST, Japan Science and Technology Agency (JST)

{h-tsuji, ishino, takeda}@i.kyushu-u.ac.jp

Abstract. The tree pattern matching problem is, given two labeled
trees P and T , respectively called pattern tree and target tree, to find
all occurrences of P within T . Many studies have been undertaken on
this problem for both the cases of ordered and unordered trees. To re-
alize flexible matching, a kind of variable-length-don’t-care’s (VLDC’s)
have been introduced. In particular, the path-VLDC’s appear in XPath,
a language for addressing parts of an XML document. In this paper, we
introduce horizontal VLDC’s, each matches a sequence of trees whose
root nodes are consecutive siblings in ordered trees. We address the tree
pattern matching problem for patterns with horizontal VLDC’s. In our
setting, the target tree is given as a tagged sequence such as XML data
stream. We present an algorithm that solves the problem in O(mn) time
using O(mh) space, where m and n are the sizes of P and T , respectively,
and h is the height of T . We adopt the bit-parallel technique to obtain
a practically fast algorithm.

1 Introduction

Semistructured data, in particular XML documents, has emerged recently and
has been widely spread. Tree pattern matching plays a central role in querying
such semistructured data.

Let N and Σ be disjoint finite sets of symbols. One abstraction of XML doc-
uments would be ordered labeled trees such that the internal nodes are labeled
with elements from N and the leaves are labeled with elements from Σ.

The problem we addressed in this paper is to find all occurrences of a pattern
tree in a target tree, where the target tree is an ordered labeled tree having two
kinds of labels as described above, and the pattern tree is almost the same as
the target tree except that the labels of leaves are either constant symbols in Σ
or variable symbols in V = {x1, x2, . . .}. Examples of pattern and target trees
are displayed in Fig. 1. The pentagons labeled with variables in the pattern tree
are “meta” nodes, each of which is replaced with a (possibly empty) sequence
of trees.

Since the general case of this problem is NP-hard, we restrict our attention
to the class of regular pattern trees such that every variable occurs at most once
in a pattern tree. We note that the variables in a regular pattern tree act as

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 388–398, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Bit-Parallel Tree Matching Algorithm 389

f

g h

b

g a
x1

x2

x3

x4

h

c

f

g h a

b c

b

fa

c

f

c

g

a b

Fig. 1. A pattern tree is displayed on the left and a target tree is displayed on the

right, where the symbols f, g, h are from N , and the symbols a, b, c are from Σ. The

symbols x1, x2, x3, x4 in the pattern tree are variables from V. The target tree has

one occurrence of the pattern tree, the root of which is indicated by an arrow. The

variables x1, x2, x3, x4 are respectively replaced with the sequences of trees surrounded

with broken lines.

variable-length-don’t cares (VLDC’s in short), similarly to the string matching
case. Zhang, et al. introduced in [20] the notions of path-VLDC’s and umbrella-
VLDC’s, and the former appears in XPath, a language for addressing parts of an
XML document. The path-VLDC’s act as VLDC’s in the vertical direction, from
the root to a leaf. On the contrary, the variables of our problem act as VLDC’s
in the horizontal direction, from the left to the right. To our best knowledge,
this is the first research dealing with the horizontal VLDC’s in tree matching.

It should be stated that Kilpeläinen allowed “logical variables” to be labels of
leaves in pattern trees in Chapter 6 of [9]. We note that only a tree is substituted
for a variable in his setting, while a sequence of trees is substituted for a variable
in our setting. The notion of internal variables was introduced by Shoudai, et
al. in [18], which are replaced with arbitrary trees.

In this paper we present an online algorithm solving the problem in O(mn)
time using O(mh) space, where m and n are the sizes of P and T , respectively,
and h is the height of T . We then adopt the bit-parallel technique to obtain a
practically fast algorithm.

2 An Overview of Tree Pattern Matching

2.1 Various Notions of Occurrence of Pattern Tree

The ancestor relation on the nodes of a tree is the reflexive transitive closure of
the parent relation. The left-to-right order in an ordered tree T , denoted by .T ,
is a partial order on the nodes of T defined as follows: u .T v if u = v or the
lowest common ancestor of u and v has two children u′ and v′ such that u′ and
v′ are ancestors of u and v, respectively, and u′ is a left sibling of v′.

Proposition 1. For any two distinct nodes u, v of an ordered tree T , either of
the following statements holds: (1) u is an ancestor of v or vice versa; and (2)
u .T v or vice versa.

390 H. Tsuji, A. Ishino, and M. Takeda

Definition 1 (occurrence of pattern tree). An ordered labeled tree P is said
to occur in an ordered labeled tree T if there exists an injection ϕ from the nodes
of P to the nodes of T which satisfies the following conditions.

(C1) ϕ preserves labels : For any node u in P , the label of u is identical to the
label of ϕ(u).

(C2) ϕ preserves the ancestor relation : For any nodes u, v in P , u is an ancestor
of v in P if and only if ϕ(u) is an ancestor of ϕ(v) in T .

(C3) ϕ preserves the left-to-right order : For any nodes u, v in P , u .P v in P
if and only if ϕ(u) .T ϕ(v) in T .

Kilpeläinen and Mannila [10] addresses the tree pattern matching problem
with the above notion of pattern occurrence (referred to as the ordered tree in-
clusion problem) and presents an O(|P ||T |) time and space algorithm, basing on
the dynamic programming technique. The notion might be too general. Replac-
ing the conditions (C2) and/or (C3) with stronger conditions gives restricted
notion of occurrence. For example, the condition (C2) can be strengthened as
follows.

(C2’) ϕ preserves the parent relation : For any nodes u, v in P , u is the parent
of v in P if and only if ϕ(u) is the parent of ϕ(v) in T .

It is easy to see that (C2’) implies (C2). If ϕ satisfies both (C2’) and (C3), then
siblings in P are mapped to siblings in T , and the order of siblings is preserved.
That is:

(C3’) ϕ preserves the order of siblings: For any nodes u, v in P , u is a left sibling
of v in P if and only if ϕ(u) is a left sibling of ϕ(v) in T .

We note that (C2’) and (C3) hold if and only if (C2’) and (C3’) hold. In [3] the
tree pattern matching for the combination of (C1), (C2’), and (C3’) is discussed,
and an algorithm is given that runs in O(|T |�(P)) time after O(|T | + |P ||Σ|)
time and space preprocessing and with O(|T |+ |P ||Σ|) extra space, where �(P)
denotes the number of leaves in P .

The condition (C3’) can be strengthened as follows.

(C3”) ϕ preserves the order and adjacency of siblings : For any nodes u, v in P ,
u is an immediate left sibling of v in P if and only if ϕ(u) is an immediate
left sibling of ϕ(v) in T .

(C3”’) ϕ preserves the numbering of siblings : For any node u of P , u is the i-th
child of its parent in P if and only if ϕ(u) is the i-th child of its parent in T .

The notion of occurrence implied by (C1), (C2’), and (C3”’) is called compact
occurrence [3]. In Fig. 2, the pattern occurrence on the left is compact, while the
pattern occurrence on the right is not compact. The works [8,11,6,4,5,12,13] are
devoted to searching for compact occurrences. Fig. 2 illustrates tree occurrences.

A Bit-Parallel Tree Matching Algorithm 391

a

b c

b

c

b

a

c c

a

b c c

c b ca

acb a

c b b a b

Fig. 2. The pattern tree on the left has two occurrences within the target tree on the

right, which are indicated by arrows. The left occurrence is compact while the right

one is not compact.

2.2 VLDC’s in Strings and in Trees

For a while we turn to the case of string matching, not tree matching. Let �
be a VLDC that matches any string over an alphabet Σ. A VLDC pattern is
a string over Σ ∪ {�}. For instance, a�ba�c is a VLDC pattern that matches
any string of the form aubavc with u, v ∈ Σ∗. The substring pattern matching
and the subsequence pattern matching are special cases of the VLDC pattern
matching in which the patterns are restricted to the form �a1a2 · · · ak� and to
the form �a1�a2�· · ·�ak�, respectively, where ai ∈ Σ for i = 1, . . . , k (k > 0).

In the case of tree pattern matching, there can be seen two types of “strings”:
One is a string of labels spelled out by a path from the root to a leaf (ver-
tical strings), and the other is a string of labels spelled out by a left-to-right
sequence of siblings (horizontal strings). The conditions (C2) and (C2’), respec-
tively, can be regarded as the subsequence matching and the substring matching
for “the vertical strings”. The conditions (C3’), (C3”), and (C3”’), respectively,
can be viewed as the subsequence matching, the substring matching, and the
prefix matching for “the horizontal strings”. Thus, introducing VLDC’s into
tree pattern matching in the vertical and in the horizontal directions gener-
alize our problem. As VLDC’s for vertical strings, the notion of path-VLDC’s
was introduced in [20]. The path-VLDC’s appear in XPath, a language for ad-
dressing parts of XML documents, where they are denoted by “//”. However,
VLDC’s for horizontal strings has been not discussed to our best knowledge.
In the following section, we introduce horizontal VLDC’s into the tree pattern
matching.

3 Pattern with Horizontal VLDC’s

It would be most suitable to define the patterns with horizontal VLDC’s as a
special case of the hedges [17]. The expressions f(xayg(bc)z) and f(ag(x)y)g(xb)
zh(aa) are examples of the hedges, where a, b, c are constant symbols, and x, y, z
are variable symbols. The hedges resemble the first order terms, but the arities
of function symbols are free. The hedges are also called forests [19] and ordered
forests [1] and regarded as data structures suited for representing semistructured
data such as XML documents [7,14,15].

392 H. Tsuji, A. Ishino, and M. Takeda

From now on, we express hedge f(axg(b)) as [f x [g b]g]f . The definition of
hedges follows. Let Σ be a finite set of constant symbols, and let V = {x1, x2, . . .}
be a countable set of variable symbols. Let N be a set of names, and let BL =
{ [f | f ∈ N} and BR = {]f | f ∈ N}, respectively. The elements in BL (resp.
BR) are called the left brackets (resp. the right brackets). We assume Σ∩N = ∅.

Definition 2. The hedges are recursively defined as follows.

– The empty string ε is a hedge.
– A constant symbol c ∈ Σ is a hedge.
– A variable symbol x ∈ V is a hedge.
– If f ∈ N and h is a hedge, then [f h]f is a hedge.
– If h1 and h2 are hedges, then the concatenation h1h2 is a hedge.

A hedge is said to be ground if it contains no variables. We denote by H and
by HG the sets of hedges and ground hedges, respectively. A substitution is a
mapping from V to H specified by

x1 := h1, . . . , xk := hk (h1, . . . , hk ∈ H).

Note that the empty substitution is allowed here. A substitution is naturally
extended to the domain H.

Definition 3 (HedgeMatching). Given a hedge p and a ground hedge t, de-
termine whether there exists a substitution θ with pθ = t.

The string version of HedgeMatching in which the input hedges contain no
bracket symbols is identical to the membership problem for pattern languages [2],
which is known to be NP-complete. Thus HedgeMatching is NP-hard.

A hedge h is regular if every variable occurs at most once within h. One in-
teresting restriction of HedgeMatching would be RegularHedgeMatching
defined as follows.

Definition 4 (RegularHedgeMatching). Given a regular hedge p and a
ground hedge t, determine whether there exists a substitution θ with pθ = t.

The string version of the above problem is known as the VLDC pattern matching
and is solvable in linear time.

We shall consider a variant of the above problem. A hedge p is said to be a
subhedge of another hedge t if there exist a variable x and a hedge h with x such
that t = hθ for substitution θ = {x := p}.

Definition 5 (RegularHedgeSearching). Given a regular hedge p and a
ground hedge t, find all subhedges t′ of t such that pθ = t′ for some substitution θ.

We concentrate on RegularHedgeSearching. In the next section we present
an algorithm for solving this problem.

A Bit-Parallel Tree Matching Algorithm 393

4 Algorithm for RegularHedgeSearching

4.1 Basic Idea

Consider the regular hedge P = [f a x [g b]g]f . If only the strings over Σ can be
substituted for x, the language of P is

L = [f a Σ∗ [g b]g]f .

The language L is regular. Fig. 3 shows an NFA accepting the language Σ∗ ·L,
where the arcs labeled with “∀” denote a state transition by an arbitrary symbol
c ∈ Σ. We note that in the state-transition diagram the arcs labeled with left
brackets are depicted going to the lower-right direction and the arcs labeled with
right brackets are depicted going to the upper-right direction. Such hierarchical
illustration will be needed in describing our algorithm.

Fig. 3. NFA built from the pattern hedge P = [f a x [g b]g]f

In reality, arbitrary ground hedges are substituted for variables. We need a
mechanism for skipping not only a symbol in Σ but also a ground hedge in the
form

[n h]n (n ∈ N , h ∈ HG)

at a self-loop labeled with “∀” of the NFA.

Example 1. Consider the move of the NFA in Fig. 3 running on the ground hedge
T1 = [f a [g a]g [g b]g]f . We want to skip at state 2 the hedge [g a]g, which is a
substring beginning at position 3 of T1, so that the NFA accepts T1 after reading
the last symbol]f .

Example 2. Consider the move of the NFA in Fig. 3 for T2 = [f a [f [g b]g]f]f . If
we allow the NFA to skip the third symbol [f of T2 at state 2, then the NFA is
in final state 6 just after reading the second symbol]f from the last. This leads
a false detection of the pattern.

4.2 The Algorithm

Denote the NFA for a pattern hedge P as mentioned above by

MP = (Q, Σ ∪BL ∪BR, δ, Q0, F)

where:

Q = {0, 1, . . . , m} is the set of states;
δ : Q× (Σ ∪BL ∪BR) → 2Q is the state transition function;

394 H. Tsuji, A. Ishino, and M. Takeda

Fig. 4. Copies of NFA MP , each finding occurrences of P = [f a x [g b]g]f at nodes of

the corresponding depth in a target tree

Q0 = {0} is the set of initial states; and
F = {m} is the set of final states.

Here, m is the number of symbols in the ground hedge obtained from P by
removing all variables. For any subset S of Q and any symbol in Σ ∪BL ∪BR,
let

δ(S, c) =
⋃
q∈S

δ(q, c).

We want to find occurrences of P at any position of any depth in a target
hedge. We create copies of MP for all possible depths in the target hedge, and
simulate the moves of all the copies. See Fig. 4. Naive method would be, for
every copy of MP , to store the active states as a set variable and simulate the
nondeterministic state transitions by updating the value of the set variable. Since
we have to update the set variables for all possible depths for each of the symbols
in the target hedge, the simulation is time consuming.

The key idea in overcoming this problem is to parallelize the state transitions
of multiple copies of MP in a depthwise manner. Namely, all the states of the
copies of MP are classified into groups according to their depths, and the active
states in each group are stored into the corresponding set variable. We use as a
stack an array S of sets so that S[d] stores the active states of depth d. Initially,
set the variable depth to 0. The algorithm reads the symbols of the target hedge
from the left to the right, and alters the value of depth accordingly. That is, it
increments depth by one when reading a left bracket [n, decrements depth by
one when reading a right bracket, and do nothing when reading a symbol of Σ.
From the active states in S[depth] for old value of depth and from the input
symbol, we compute the set of active states for the new value of depth by using
the state transition function δ and store them into S[depth] for the new value of
depth.

A Bit-Parallel Tree Matching Algorithm 395

Input: A ground hedge T = T [1..n] (T [i] ∈ Σ ∪ BL ∪ BR)Cand
the NFA MP for a regular hedge P .

Output: All occurrences of P within T .
Method:
begin

Let LoopStates be the set of states having self-loops in MP ;
depth := 0; S[depth] := ∅;
for j := 1 to n do

c := T [j];
if c ∈ BL then

S[depth + 1] := δ(S[depth], c) ∪ {0}; · · · (1)
depth := depth + 1;

else if c ∈ Σ then
S[depth] := δ(S[depth], c); · · · (2)

else // c ∈ BR

S[depth − 1] := δ(S[depth], c) ∪ (S[depth − 1] ∩ LoopStates); · · · (3)
depth := depth − 1;

if S[depth] contains a final state then
Report an occurrence of P at position j of T ;

end.

Fig. 5. Algorithm for RegularHedgeSearching

A mechanism for skipping hedges at the states with loops can be realized as
follows. Suppose that the current value of depth is d, and state s has a loop and
is active, i.e. s ∈ S[d]. If the next input symbol is a left bracket [n, then the
value of S[d] remains without alternation and the algorithm goes to the lower
direction with incrementing depth by one. The value of S[d] is never changed
(and therefore contains s) until it returns to the same depth d by reading the
corresponding right bracket]n. Among the active states stored in S[d], the ones
with loops should remain active.

The algorithm is summarized as in Fig. 5. The move of the algorithm search-
ing T = [h [f a [g a]g [g b]g]f]h for P = [f a x [g b]g]f is displayed in Fig. 6. The
trees corresponding to P and T are, respectively, shown on the left and on the
right of Fig. 7.

Theorem 1. RegularHedgeSearching is solved in O(mn) time using
O(mh) space, where m and n are the sizes of the pattern hedge and the tar-
get hedge, respectively, and h is the height of the target hedge.

4.3 Efficient Implementation by Bit-Parallel Technique

Now we exploit the bit-parallel technique [16] to obtain an efficient implemen-
tation of our algorithm. The set S[depth] ⊆ Q = {0, 1, . . . , m} for every depth is

396 H. Tsuji, A. Ishino, and M. Takeda

Fig. 6. Move of the algorithm, where the pattern hedge is [f a x [g b]g]f and the target

hedge is [h [f a [g a]g [g b]g]f]h. The filled and empty circles mean the active and inac-

tive states, respectively. The rectangle indicates S[depth], the set of active states at the

current depth. The states upper than the current depth are sleeping in the stack S.

represented with (m + 1)-bit integer. The state transition function δ is realized
as follows. For each symbol c in Σ ∪BL ∪BR, the mask vector

Mask(c) = {i | 1 ≤ i ≤ m, P [i] = c}

is built, where P denotes the ground hedge obtained by removing variables from
the given pattern P . The set LoopStates is also represented as an (m + 1)-bit

A Bit-Parallel Tree Matching Algorithm 397

f

a g

b

g
x

f

a g

b

g

h

a

Fig. 7. Trees described by the regular hedge P = [f ax [g b]g]f (on the left) and by

the ground hedge T = [h [f a [g a]g [g b]g]f]h (on the right). An occurrence of P in T

is emphasized with thick lines.

integer. Then, for any S ⊆ Q and for any c ∈ Σ ∪BL ∪BR, The set of the next
states δ(S, c) can be obtained as

((S << 1)&Mask(c))|(S&LoopStates),

where <<C&C|, respectively, means the bit-shift, the bitwise AND, and the
bitwise OR operations. The computation of δ(S[depth], c) at lines (1),(2),(3)
of the algorithm of Fig. 5 can be replaced with a combination of the bit-shift
and the bitwise logical operations as mentioned above. The running time of the
algorithm is then O(�m/w�n), and is O(n) if m + 1 is at most the length w of
computer word.

5 Conclusion

We addressed the problem of finding a regular hedge P within a ground hedge T ,
and presented an efficient algorithm basing on the bit-parallelism. The regular
hedges can be regarded as tree patterns with horizontal VLDC’s. We note that
Chauve [3] deals with tree pattern matching with a notion of occurrences in
which the parent relation and the order and adjacency of siblings are preserved.
The problem addressed in this paper is a generalization of the one addressed
in [3].

References

1. P. C. Amoth, T. R. and P. Tadepalli. Exact learning of tree patterns from queries
and counterexamples. In Proceedings of COLT ’98, pages 175–186, 1998.

2. D. Angluin. Finding patterns common to a set of strings. J. Comput. Sys. Sci.,
21:46–62, 1980.

3. C. Chauve. Tree pattern matching with a more general notion of occurrence of the
pattern. Inform. Process. Lett., 82:197–201, 2002.

4. R. Cole and R. Hariharan. Tree pattern matching and subset matching in random-
ized O(n log3 n)-time. In STOC’97, pages 66–75, 1997.

5. R. Cole, R. Hariharan, and P. Indyk. Tree pattern matching and subset matching
in deterministic O(n log n)-time. In SODA’99, pages 245–254, 1999.

398 H. Tsuji, A. Ishino, and M. Takeda

6. M. Dubliner, Z. Galil, and E. Magen. Faster tree pattern matching. J. ACM,
41(2):205–213, 1994.

7. F. N. Geert Jan Bex, Sebastian Maneth. A formal model for an expressive fragment
of xslt. In Proceedings of CL 2000 (LNAI 1861), pages 1137–1151, 2000.

8. C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. J. ACM,
29(1):68–95, 1982.

9. P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, Dept. of Computer Science, University of Helsinki, 1992.

10. P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. SIAM J.
Comput., 24(2):340–356, 1995.

11. S. R. Kosaraju. Efficient tree pattern matching. In FOCS’89, pages 178–183. IEEE
Comput. Soc. Press, 1989.

12. F. Luccio and L. Pagli. An efficient algorithm for some tree matching problems.
Inform. Process. Lett., 39(1):51–57, 1991.

13. F. Luccio and L. Pagli. Approximate matching for two families of trees. Information
and Computation, 123(1):111–120, 1995.

14. M. Murata. Transformation of documents and schemas by patterns and contextual
conditions. In Proceedings of Document Processing ’96 (LNCS 1293), pages 153–
169, 1997.

15. M. Murata. Data model for document transformation and assembly (extended
abstract). pages 140–152, 1998.

16. G. Navarro and M. Raffinot. Flexible pattern matching in strings: Practical on-line
search algorithms for texts and biological sequences. Cambridge University Press,
Cambridge, 2002.

17. M. Nivat and H. Ait-Kaci. On recognizable sets and tree automata. In Resolution
of Equations in Algebraic Structres. 1989.

18. T. Shoudai, T. Uchida, and T. Miyahara. Polynomial time algorithms for finding
unordered tree patterns with internal variables. In FCT’01, pages 335–346, 2001.

19. M. Takahashi. Generalizations of regular sets and their application to a study of
context-free languages. Information and Control, 27:1–36, 1975.

20. K. Zhang, D. Shasha, and J. T. L. Wang. Approximate tree matching in the
presence of variable length don’t cares. J. Algorithms, 16(1):33–66, 1994.

A Partition-Based Efficient Algorithm

for Large Scale Multiple-Strings Matching

Ping Liu, Yan-bing Liu, and Jian-long Tan�

Software Division, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing 100080

{liuping, tjl}@ict.ac.cn, liuyanbing@software.ict.ac.cn

Abstract. Filtering plays an important role in the Internet security and
information retrieval fields, and usually employs multiple-strings match-
ing algorithm as its key part. All the classical matching algorithms, how-
ever, perform badly when the number of the keywords exceeds a critical
point, which made large scale multiple-strings matching problem a great
challenge. Based on the observation that the speed of the classical algo-
rithms depends mainly on the length of the shortest keyword, a partition
strategy was proposed to decompose the keywords set into a series of sub-
sets on which the classical algorithms was performed. For the optimal
partition, it was proved that the keywords with same length locate in one
subset, and length of keywords in different subsets would not interlace
each other. In this paper, we proposed a shortest-path model for the op-
timal partition finding problem. Experiments on both random and real
data demonstrate that our algorithms generally has about a 100-300%
speed-up compared with the classical ones.

1 Introduction

With the development of Internet, more and more information, including bad
along with good, emerged and congested the network. To secure Internet and
retrieve useful information, filtering systems were designed and deployed on the
gateways to filter out bad things. A filtering system usually employs a string
matching procedure as its key part, and always contains a large scale keywords
set to suit to various focuses. Hence, it is really a great challenge to design an
efficient multi-strings matching algorithm for a large scale keywords set.

String matching problem has been received extensive research, most of which
follow a common procedure, i.e., compare keywords with substring of text within
a fixed length window, and then shift the window from left to right as far as
possible. In [1],according to the way that patterns are compared with the text
in the window, string matching algorithms were categorized into three classes:
prefix searching[2][3][4], suffix searching[5][6][7] and factor searching[8][9][10][11].

The performance of the classical multi-strings matching algorithms are de-
termined mainly by the following three factors: the number of the keywords, the

� Corresponding Author.

M. Consens and G. Navarro (Eds.): SPIRE 2005, LNCS 3772, pp. 399–404, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

400 P. Liu, Y.-b. Liu, and J.-l. Tan

minimal length of the keywords and the size of the alphabet[1]. In addition, the
distribution of keywords in the text would also affect the performance.

However, all of the classical algorithms are inapplicable for a large scale key-
words set. Experiment on real data demonstrated that these algorithms perform
badly when the number of patterns exceeds a critical point, e.g, 5,000 on a Pen-
tium III CPU (the minimum length of the patterns is 4 bytes). In this paper,
we proposed a partition-based strategy to bound the influence of the shortest
keywords on the performance, and designed a shortest-path model to work out
the optimal partition.

2 Properties About Speed of Classical Algorithms

In this section, we analyze the average-case time complexity of three representa-
tive multi-strings matching algorithms: SBOM, WuManber and Advanced Aho
Corasick. Let use Σ to denote the alphabet, n to denote the length of the text, r
to denote the number of the pattern, and b to denote the block size in WuManber
algorithm. Let us denote the minimum length of a keywords set S as m(S) or
m, and the maximal one M(S) or M .

In [13], the lower bound is given for the average time complexity of the exact
multiple strings matching. Assuming that the text and keywords are uniformly
and independently chosen from the alphabet Σ, and n is large enough, a rough
estimation of the average-case time complexity of these algorithms is given as fol-
lows: Advanced Aho Corasick algorithm is O(n), WuManber algorithm
is O

(
n

(m−b+1)∗(1− (m−b+1)∗r

2∗|Σ|b
)

)
, and SBOM algorithm is O

(n∗log|Σ| mr

m−log|Σ| mr

)
.

The above analysis implies the following properties about the speed of the
classical algorithms, which are confirmed by experimental result on random data:

Property 1. The main factors affecting the speed of multi-strings matching
algorithms are the size of alphabet, the number of the patterns and the minimum
length of the patterns. Hence, the matching time can be denoted as T (m, r) if
the size of alphabet is fixed.

Property 2. The matching time of a multi-strings matching algorithm increases
monotonously when the number of the patterns increase, i.e., ∂

∂r T (m, r) > 0.

Property 3. The matching time of a multi-strings matching algorithms de-
creases monotonously when the minimum length increase, i.e., ∂

∂mT (m, r) < 0.

Property 4. The increase rate of the matching time with the number of patterns
is independent of the number of the patterns, and decrease when the minimum
length increase, i.e., ∂

∂rT (m, r) = H(m) > 0 and d
dmH(m) < 0.

3 A Partition-Based Matching Algorithm

The shortest keywords, though very small in quantity, have a great negative
influence on the matching time. To bound their influence, an intuitional idea is

A Partition-Based Efficient Algorithm 401

to decompose the keywords set into a series of smaller subsets. According to [1],
the most efficient algorithm varies with the pattern number, the minimal length
and the size of the alphabet, choosing the most efficient algorithm for each subset
would gain another benefit compared with running only the same algorithm on
them. Since the influence of the shortest keywords is bounded in smaller subsets
rather than the entire one, the sum of matching time on individual subsets is
even smaller than the time costed to run on an entire set directly.

For a given keywords set P = {p1, p2, · · · , pn}, there are many kinds of feasible
partitions, among which the optimal one achieves the minimal matching time.
Here, we assumed that the keywords were already sorted according to its length,
i.e.,|p1| ≤ |p2| ≤ · · · ≤ |pn|. Then the optimal partition finding problem can be
defined as follows:

Optimal Partition Finding Problem. Given a sorted keywords multiset

P = {p1, p2, · · · , pn}, to construct a partition S1, S2, · · · , Sk, so that
k⋃

i=1
Si = P ,

Si

⋂
Sj = ∅ (∀i, j, 1 ≤ i, j ≤ k and i �= j), and

k∑
i=1

T (m(Si), |Si|) is minimized.

3.1 Properties About Optimal Partition

In the following, two properties about the optimal partition are proved, forming
a solid foundation to find it.

Theorem 1. There exists an optimal partition, S1, S2, · · · , Sk, of the sorted key-
words set P = {p1, p2, · · · , pn}, and for ∀i �= j, either ∀a ∈ Si, b ∈ Sj, |a| ≤ |b|;
or ∀a ∈ Si, b ∈ Sj, |a| ≥ |b|.

(Proof is omitted for limited space.)

Theorem 2. In the optimal partition of the sorted keywords set P = {p1, p2, · · ·
pn}, keywords with the same length would not locate in different subsets.

(Proof is omitted for limited space.)
The above two properties imply that the keywords with same length work

as a block, that is, they would not separate in an optimal partition. Moreover,
a subset Si of an optimal partition contains all the blocks with length in the
interval [m(Si), M(Si)].

3.2 Algorithm to Find the Optimal Partition

In this section, we model the optimal partition problem into finding the shortest-
path problem in a weighted graph. Given a sorted keywords set P = {p1, p2, · · · ,
pn}, we create a partition graph G as follows. For each a block with length i in P ,
a node Ni is created to represent it, and an auxiliary node NM(P)+1 is created to
represent the end of P . Let V = {Nm(P), Nm(P)+1, · · · , NM(P), NM(P)+1}. The
edges of G is specified as follows. For Ni and Nj ∈ V , there is an edge from Ni to
Nj , denoted as (Ni, Nj) if i < j. In fact, an edge (Ni, Nj) is used to represent a

402 P. Liu, Y.-b. Liu, and J.-l. Tan

Fig. 1. A sketch of finding the optimal partition using the shortest path method

set of blocks with length greater than or equal with i, but less than j. We define
Nm(P) as the source, and NM(P)+1 the sink.

For each edge (Ni, Nj), a weight W (Ni, Nj) was assigned to measure the
benefit of setting the corresponding blocks set as a subset. The minimal time of
the three classical algorithms matching a training text with the subset was used
as an estimation of W (Ni, Nj). Therefore, the optimal partition correspond to
the shortest path from source to sink in the partition graph G.

An example is shown in Fig.1. The shortest path in the graph is “2 → 6 → 8”,
hence the optimal partition has two subset, one containing keywords with length
2,3,4,5, and the other having keywords with length 6,7.

The partition-based multi-strings matching algorithm is given as follows:

PBM: Partition-Based Matching Algorithm

Input: A sorted keywords set P , a training text T , a text to be matched
J ;
Output: The occurrence of each keyword in J ;
1. Construct the partition graph G =< V, E >, here,

V = {Nm(P), Nm(P)+1, · · · , NM(P), NM(P)+1};
E = {(Ni, Nj)|Ni, Nj ∈ V, i < j}. W (Ni, Nj) is set as above;

2. Finding the shortest path (ei1 , ei2 , · · · , eik
) from Nm(P) to NM(P)+1.

Here, eij is an edge in G;
3. For each eij , output a subset containing the corresponding blocks,

together with the fastest algorithm for this subset.
4. For each subset, running the chosen algorithm in step 3 on it to filter
text J .

4 Experimental Result

We implemented the partition-based algorithm, PBM, into a C++ program, and
tested it on both random and real data. Here, only experimental studies on real
data set are reported.

A Partition-Based Efficient Algorithm 403

Fig. 2. Distribution of pattern lengths

in Snort dataset. (pattern number :

2086, pattern length range: 2-40)

Fig. 3. Distribution of pattern length

in CLAMAV dataset. (pattern number :

26,653, pattern length range : 3-210).

Fig. 4. Comparision of matching speed

on SNORT dataset

Fig. 5. Comparision of matching speed

on CLAMAV dataset

Two real data sets were acquired from Internet security field for test, one
from Snort, an Intrusion Detection System, the other from the signatures of
ClamAV, an antivirus system. The Snort data contains 2,086 keywords, while
ClamAV has 26,653.

A group in MIT published a dataset for evaluating the performance of IDS.
(Downloadable from http://www.ll.mit.edu/IST/ideval/) We extract part of the
dataset, i.e., mit 1999 training week1 Friday inside.dat as the training text in
PBM, and use the full 64MB text as the testing text.

Fig.2 and Fig.3 show the distribution of the length of keywords, and matching
time are showed in Fig.4 and Fig.5, respectively.

On Snort keywords set, only one partition was generated with Wumanber as
its most suitable algorithm, which means that PBM would not be faster than
the classical algorithms on some special pattern sets, and meanwhile, would not
be slower than others.

The advantage of PBM is much more obvious on the ClamAV keywords set.
When the length range of keywords is larger and the length distribution is not
uniform, partition strategy would be more advantageous, showing its advantage
in large scale multi-strings matching.

404 P. Liu, Y.-b. Liu, and J.-l. Tan

5 Future Work and Acknowledgment

We will survey the critical point deeply in future work.
This work was supported by the National High Technology Development Pro-

gram of China under Grant No. 2005AA142110, National Key Basic Research &
Development Program under Grant No. 2004CB318109. We thank Shen Xingx-
ing, Zhang Ji, Wang Ying for valuable discussion. We also express our deep
appreciation to Dr. Dongbo BU for his great help.

References

1. Gonzalo Navarro and Mathieu Raffinot , “Flexible Pattern Matching in
StringsPractical on-line search algorithms for texts and biological sequences”,
Camedge University Press,2002,ISBN 0–521–81307–7. pp15-17,74–76

2. D.E.Knuth,J.H.Morris,V.R.Pratt, “Fast Pattern Matching in Strings”,SIAM Jour-
nal on Computing,Page 323–350,1977

3. A.V. Aho and M.J.Corasick, “Efficient string matching:an aid to bibliographic
search”, Communication of the ACM,18(6):333–340 ,1975

4. S. Wu, U. Manber, “Fast text searching allowing errors”,Communications of the
ACM, 35(10): 83–91 ,1992

5. R.S.Boyer, J.S.Moore, “A fast string searching algorithm”,Communications of the
ACM,20(10):762–772 ,1977

6. B.Commentz-Walter, “A string matching algorithm fast on the average”, In Pro-
ceeding s of the 6th International Colloquium on Automata, Language and Pro-
gramming , number 71 in Lecture Notes in Computer Science,pages 118–132,1979

7. S.Wu, U.Manber, “A fast algorithm for multi-pattern searching”, Report TR–94–17
, Department of Computer Science , University of Arizona,Tucson, AZ ,1994

8. M.Crochemore, A.Czumaj, L.Gasienniec, S.Jarominek, T.Lecroq,
W.Plandowski, W.Rytter, “Speeding up two string matching algorithms”,
Algorithmica,12(4/5):247–267,1994

9. C.Allauzen, M.Crochemore, M.Raffinot, “Efficient experimental string matching
by weak factor recognition”, In proceedings of the 12th Annual Symposium on
Combinatorial Pattern Matching, number 2089 in Lecture Notes in Computer
Science,pages51–72. Springer-Verlag,2001

10. A.Blumer, J.Blumer, A.Ehrenfeucht, D.Haussler, R.McConnel. “Complete inverted
files for efficient text retrieval and analysis”, Jonual of the ACM,34(3):578–595,1987

11. C.Allauzen, M.Raffinot “Factor oracle of a set of words”,Technical report 99–11,
Institute Gaspard-Monge, University de Marne-la-vallee, 1999

12. Xiaodong Wang “The Design and Analysis of Computer Algorithms”Publishing
House of Electronic Industry, Beijing. 2001 ISBN7–5053–6391–3P38–81

13. Gonzalo Navarro, Kimmo Fredriksson. “Average Complexity of Exact and Ap-
proximate Multiple String Matching”,Theoretical Computer Science (TCS) 321(2-
3):283-290, 2004

Author Index

Allali, Julien 348
Amir, Amihood 67, 315
Angelov, Stanislav 167
Askitis, Nikolas 91

Backofen, Rolf 360
Baeza-Yates, Ricardo 13
Bergroth, Lasse 301
Bialynicka-Birula, Iwona 79
Boldi, Paolo 25
Boughanem, Mohand 271
Boyer, Frederic 179
Brini, Asma H. 271

Camacho-Guerrero, José Antonio 45
Chauve, Cedric 335
Chávez, Edgar 127
Cigarran, Juan M. 49
Clifford, Raphaël 234
Culpepper, J. Shane 1

de Moura, Edleno Silva 202
Dubois, Didier 271
Dupret, Georges 41

Elkan, Charles 295

Feng, Yi 155
Fernández del Castillo, José Raúl 228
Fredriksson, Kimmo 267, 376

Geva, Shlomo 29
Gonzalo, Julio 49
Grabowski, Szymon 376
Grossi, Roberto 79
Guignon, Valentin 335

Hamel, Sylvie 335
Hermelin, Danny 360
Hilera, José Ramón 228
Hyyrö, Heikki 256

Imafouo, Amélie 224
Inenaga, Shunsuke 167
Ishino, Akira 388

Joy, Mike 267

Karlgren, Jussi 151
Kechagias, Dimitrios 161
Kim, Jin Wook 315
Kondrak, Grzegorz 115
Kong, Zhigang 218
Kopelowitz, Tsvi 67

Lalmas, Mounia 218
Landau, Gad M. 315, 360
Lee, Inbok 191
Lewenstein, Moshe 67
Lewenstein, Noa 67
Lipsky, Ohad 327, 331
Liu, Ping 399
Liu, Yan-bing 399
Lloyd, Levon 161

Macedo, Alessandra Alaniz 45
Mendoza, Marcelo 41
Moffat, Alistair 1
Mohamed, Manal 234
Mollá, Diego 139
Mozgovoy, Maxim 267

Nwesri, Abdusalam F.A. 206

Oliveira, Arlindo L. 246
Oliveira, Luciene C. 283

Paredes, Rodrigo 127
Park, Kunsoo 315
Peñas, Anselmo 49
Peres, Patŕıcia Silva 202
Peterlongo, Pierre 179
Pimentel, Maria da Graça Campos 45
Pinzón Ardila, Yoan José 191, 234
Pisanti, Nadia 179
Pizzato, Luiz Augusto 139
Porat, Ely 327, 331

Russo, Lúıs M.S. 246

Sagot, Marie-France 179, 348
Sahlgren, Magnus 151
Salinger, Alejandro 13
Sánchez de Madariaga, Ricardo 228

406 Author Index

Scholer, Falk 206
Schürmann, Klaus-Bernd 55
Silva, Ilmério R. 283
Skala, Matthew 103
Skiena, Steven 161
Souza, João N. 283
Stoye, Jens 55
Sutinen, Erkki 267

Tahaghoghi, S.M.M. 206
Takeda, Masayuki 388
Tan, Jian-long 399
Tannier, Xavier 29, 224

Tsuji, Hisashi 388

Valiente, Gabriel 370
van Zaanen, Menno 139
Verdejo, Felisa 49
Vigna, Sebastiano 25

Weimann, Oren 360
White, Daniel 267
Wu, Zhaohui 155

Zhou, Zhongmei 155
Zobel, Justin 91

	Frontmatter
	String Processing and Information Retrieval 2005
	Enhanced Byte Codes with Restricted Prefix Properties
	Experimental Analysis of a Fast Intersection Algorithm for Sorted Sequences
	Compressed Perfect Embedded Skip Lists for Quick Inverted-Index Lookups
	XML Retrieval with a Natural Language Interface
	Recommending Better Queries from Click-Through Data
	A Bilingual Linking Service for the Web
	Evaluating Hierarchical Clustering of Search Results
	Counting Suffix Arrays and Strings
	Towards Real-Time Suffix Tree Construction
	Rank-Sensitive Data Structures
	Cache-Conscious Collision Resolution in String Hash Tables
	Measuring the Difficulty of Distance-Based Indexing
	{\itshape N}-Gram Similarity and Distance
	Using the {\itshape k}-Nearest Neighbor Graph for Proximity Searching in Metric Spaces
	Classifying Sentences Using Induced Structure
	Counting Lumps in Word Space: Density as a Measure of Corpus Homogeneity
	Multi-label Text Categorization Using K-Nearest Neighbor Approach with M-Similarity
	Lydia: A System for Large-Scale News Analysis
	Composite Pattern Discovery for PCR Application
	Lossless Filter for Finding Long Multiple Approximate Repetitions Using a New Data Structure, the Bi-factor Array
	Linear Time Algorithm for the Generalised Longest Common Repeat Problem
	Application of Clustering Technique in Multiple Sequence Alignment
	Stemming Arabic Conjunctions and Prepositions
	XML Multimedia Retrieval
	Retrieval Status Values in Information Retrieval Evaluation
	A Generalization of the Method for Evaluation of Stemming Algorithms Based on Error Counting
	Necklace Swap Problem for Rhythmic Similarity Measures
	Faster Generation of Super Condensed Neighbourhoods Using Finite Automata
	Restricted Transposition Invariant Approximate String Matching Under Edit Distance
	Fast Plagiarism Detection System
	A Model for Information Retrieval Based on Possibilistic Networks
	Comparison of Representations of Multiple Evidence Using a Functional Framework for IR
	Deriving TF-IDF as a Fisher Kernel
	Utilizing Dynamically Updated Estimates in Solving the Longest Common Subsequence Problem
	Computing Similarity of Run-Length Encoded Strings with Affine Gap Penalty
	{\itshape L}<Subscript>1</Subscript> Pattern Matching Lower Bound
	Approximate Matching in the {\itshape L}<Subscript> ∞ </Subscript> Metric
	An Edit Distance Between RNA Stem-Loops
	A Multiple Graph Layers Model with Application to RNA Secondary Structures Comparison
	Normalized Similarity of RNA Sequences
	A Fast Algorithmic Technique for Comparing Large Phylogenetic Trees
	Practical and Optimal String Matching
	A Bit-Parallel Tree Matching Algorithm for Patterns with Horizontal VLDC's
	A Partition-Based Efficient Algorithm for Large Scale Multiple-Strings Matching

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

