
R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1347 – 1364, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Metadata Management in a Multiversion Data
Warehouse*

Robert Wrembel and Bartosz Bębel

Institute of Computing Science, Poznań University of Technology, Poznań, Poland
{Robert.Wrembel, Bartosz.Bebel}@cs.put.poznan.pl

Abstract. A data warehouse (DW) is supplied with data that come from
external data sources (EDSs) that are production systems. EDSs, which are
usually autonomous, often change not only their contents but also their
structures. The evolution of external data sources has to be reflected in a DW
that uses the sources. Traditional DW systems offer a limited support for
handling dynamics in their structures and contents. A promising approach to
this problem is based on a multiversion data warehouse (MVDW). In such a
DW, every DW version includes a schema version and data consistent with its
schema version. A DW version may represent a real state at certain period of
time, after the evolution of EDSs or changed user requirements or the evolution
of the real world. A DW version may also represent a given business scenario
that is created for simulation purposes. In order to appropriately synchronize a
MVDW content and structure with EDSs as well as to analyze multiversion
data, a MVDW has to manage metadata. Metadata describing a MVDW are
much more complex than in traditional DWs. In our approach and prototype
MVDW system, a metaschema provides data structures that support: (1)
monitoring EDSs with respect to content and structural changes, (2) automatic
generation of processes monitoring EDSs, (3) applying the discovered EDS
changes to a selected, DW version, (4) describing the structure of every DW
version, (5) querying multiple DW versions of interest at the same time, (6)
presenting and comparing multiversion query results.

1 Introduction

A data warehouse (DW) is a large database (often of terabytes size) that integrates
data from various external data sources (EDSs). A DW content includes historical,
summarized, and current data. Data warehouses are important components of decision
support systems. Data integrated in a DW are analyzed by, so called, On-Line
Analytical Processing (OLAP) applications for the purpose of: discovering trends
(e.g. sale of products) patterns of behavior and anomalies (e.g. credit card usage) as
well as finding hidden dependencies between data (e.g. market basket analysis,
suggested buying).

* This work is partially supported by the grant no. 4 T11C 019 23 from the Polish State

Committee for Scientific Research (KBN), Poland.

1348 R. Wrembel and B. Bębel

The process of good decision making often requires forecasting future business
behavior, based on present and historical data as well as on assumptions made by
decision makers. This kind of data processing is called a what-if analysis. In this
analysis, a decision maker simulates in a DW changes in the real world, creates
virtual possible business scenarios, and explores them with OLAP queries. To this
end, a DW must provide means for creating and managing various DW alternatives,
that often requires changes to the DW structure.

An inherent feature of external data sources is their autonomy, i.e. they may evolve
in time independently of each other and independently of a DW that integrates them
[40, 41]. The changes have an impact on the structure and content of a DW. The
evolution of EDSs can be characterized by: content changes, i.e. insert/update/delete
data, and schema changes, i.e. add/modify/drop a data structure or its property.
Content changes result from user activities that perform their day-to-day work with
the support of information systems. On the contrary, schema changes in EDSs are
caused by: changes of the real world being represented in EDSs (e.g. changing
borders of countries, changing administrative structure of organizations, changing
legislations), new user requirements (e.g. storing new kinds of data), new versions of
software being installed, and system tuning activities.

The consequence of content and schema changes at EDSs is that a DW built on the
EDSs becomes obsolete and needs to be synchronized. Content changes are
monitored and propagated to a DW often by means of materialized views [20]. and
the history of data changes is supported by applying temporal extensions e.g. [12].
Whereas EDSs schema changes are often handled by applying schema evolution, e.g.
[10, 26] and temporal versioning techniques [17, 18, 33]. In schema evolution
approaches historical DW states are lost as there is only one DW schema that is being
modified. In temporal versioning approaches only historical versions of data are
maintained whereas schema modifications are difficult to handle.

In our approach, we propose a multiversion data warehouse (MVDW) as a
framework for: (1) handling content and schema changes in EDSs, (2) simulating and
managing alternative business scenarios, and predicting future business trends (a
what-if analysis). A MVDW is composed of persistent versions, each of which
describes a DW schema and content in a given time period.

In order to support the lifecycle of a DW, from its initial loading by ETL
processes, periodical refreshing, to OLAP processing and query optimization, a DW
has to provide metadata. Metadata are defined as data about a DW. They are used for
improving a DW management and exploitation. There are two basic types of
metadata, namely business and technical ones. Business metadata include among
others: dictionaries, thesauri, business concepts and terminology, predefined queries,
and report definitions. They are mainly used by end-users. Technical metadata
include among others: a DW schema description and the definitions of its elements,
physical storage information, access rights, statistics for a query optimizer, ETL
process descriptions, and data transformation rules [45].

In the case of a multiversion data warehouse, metadata are much more complex
than in traditional DWs and have to provide additional information. Industry standard
metamodels, i.e. Open Information Model [36] and Common Warehouse Metamodel
[15] as well as research contributions, e.g. [24, 37] have not yet considered the
incorporation of metadata supporting either schema and data evolution or schema and
data versioning.

 Metadata Management in a Multiversion Data Warehouse 1349

This paper's focus and contribution includes the development of metaschemas for
the support of: (1) detecting structural and content changes in EDSs and propagating
them into a MVDW, (2) automatic generation of software monitoring EDSs, based on
metadata, (3) managing versions of schemas and data in a MVDW, (4) executing
queries that address several DW versions, (5) presenting and comparing multiversion
query results. Based on the developed metamodel, a prototype MVDW system was
implemented in Java and Oracle PL/SQL language, whereas data and metadata are
stored in an Oracle10g database. To the best of our knowledge, it is the first approach
and implemented system managing multiple, persistent, and separate DW versions as
well as supporting the analysis of multiversion data.

The rest of this paper is organized as follows. Section 2 presents basic definitions
in the field of DW technology. Section 3 discusses existing approaches to handling
changes in the structure and content of a DW as well as approaches to metadata
management. Section 4 overviews our concept of a multiversion DW and presents its
metaschema. Section 5 presents the mechanism of detecting changes in EDSs and its
underlying metamodel. Finally, Section 6 summarizes the paper.

2 Basic Definitions

A DW takes advantage of a multidimensional data model [21, 24, 29] with facts
representing elementary information being the subject of analysis. A fact contains
numerical features, called measures, that quantify the fact and allow to compare
different facts. Values of measures depend on a context set up by dimensions.
Examples of measures include: quantity, income, turnover, etc., whereas typical
examples of dimensions include Time, Location, Product, etc. (cf. Fig. 1). In a relational
implementation, a fact is implemented as a table, called a fact table, e.g. Sales in Fig. 1.

Dimensions usually form hierarchies. Examples of hierarchical dimensions are:
(1) Location, with Cities at the top and Shops at the bottom, (2) Product, with
Categories and Items (cf. Fig. 1). A schema object in a dimension hierarchy is called
a level, e.g. Shops, Cities, Categories, Items, and Time. In a relational
implementation, a level is implemented as a table, called a dimension level table.

Fig. 1. An example DW schema on sale of products

1350 R. Wrembel and B. Bębel

A dimension hierarchy specifies the way measures are aggregated. A lower level of
a dimension rolls-up to an upper level, yielding more aggregated data. Values in every
level are called level instances. Example instances of level Items may include: 't-
shirt' and 'shampoo', whereas instances of level Categories may include: 'clothes' and
'cosmetics'. The dimension instance of dimension Di is composed of hierarchically
assigned instances of levels in Di, where the hierarchy of level instances is set up by
the hierarchy of levels. Example instances of dimension Product include: {'t-shirt'
'clothes', 'shampoo' 'cosmetics'}, where is the hierarchical assignment of a
lower level instance to an upper level instance.

3 Related Work

The problem of schema changes appeared in mediated and federated database systems
that were used for interconnecting heterogeneous data sources, e.g. [8, 9, 13, 30, 43].
A lot of research have been carried out in order to handle schema changes and
propagate them into a global schema, e.g. [1, 6, 7, 31, 32]. Handling schema changes
in EDSs and propagating them into a DW is partially based on that solutions.
However, DW systems have different characteristics requiring new approaches to this
problem. First of all, a final DW schema is usually totally different form EDSs
schemas. Second of all, a DW stores persistent elementary data as well as data
aggregated at many levels that have to be transformed after a DW schema updates.

The approaches to the management of changes in a DW can be classified as:
(1) schema and data evolution: [10, 22, 23, 26, 27, 44], (2) temporal and versioning
extensions [3, 11, 12, 14, 17, 18, 25, 28, 29, 33, 41].

The approaches in the first category support only one DW schema and its instance.
In a consequence, many structural modifications require data conversions that results
in the loss of historical DW states, e.g. dropping an attribute, changing an attribute
data type, length or domain.

In the approaches from the second category, in [12, 17, 18, 33] changes to a DW
schema are time-stamped in order to create temporal versions. The approaches are
suitable for representing historical versions of data, but not schemas.

In [14, 41] data versions are used to avoid duplication anomaly during DW
refreshing process. The work also sketches the concept of handling changes in an
EDS structure. However, a clear solution was not presented on how to apply the
changes to DW fact and dimension tables. Moreover, changes to the structure of
dimensions as well as dimension instances were not taken into consideration.

In [25, 28, 38] implicit system created versions of data are used for avoiding
conflicts and mutual locking between OLAP queries and transactions refreshing a DW.

On the contrary, [11] supports explicit, time-stamped versions of data. The
proposed mechanism, however, uses one central fact table for storing all versions of
data. In a consequence, only changes to dimension and dimension instance structures
are supported. In [19] a DW schema versioning mechanism is presented. A new
persistent schema version is created for handling schema changes. The approach
supports only four basic schema modification operators, namely adding/deleting an
attribute as well as adding/deleting a functional dependency. A persistent schema
version requires a population with data. However, this issue is only mentioned in the
paper. [42] addresses the problem of handling changes only in the structure of a

 Metadata Management in a Multiversion Data Warehouse 1351

dimension instances. To this end, a time-stamped history of changes to dimension
instances is stored in an additional data structure. The paper by [29] addresses the
same problem and proposes consistency criteria that every dimension has to fulfill. It
gives an overview how the criteria can be applied to a temporal DW only.

In [3] a virtual versioning mechanism was presented. A virtual DW structure is
constructed for hypothetical queries simulating business scenarios. As this technique
computes new values of data for every hypothetical query based on virtual structures,
performance problems will appear for large DWs.

In order to handle schema and data evolution as well as versioning and in order to
allow querying such evolving DW systems, the set of well defined metadata is
required. From the approaches discussed above, only [18] presents a metamodel for a
temporal DW. Additionally, [37] discusses and presents high level metamodel for
handling and assuring data quality in a DW. The author only mentions the need for a
metamodel supporting DW evolution, without giving any solutions.

The need for metadata describing multiple areas of a DW system design,
development, deployment, and usage as well as the need for data exchange between
different heterogeneous systems resulted in two industrial metadata standards, namely
the Open Information Model (OIM) [24, 36, 45] and the Common Warehouse
Metadata (CWM) [15, 24, 45], developed by multiple industry vendors and software
providers. OIM was developed by the Meta Data Coalition (MDC) for the support
of all phases of an information system development. OIM is based on UML, XML,
and SQL92. It includes the following models: (1) object-oriented analysis and design,
(2) object and component development life-cycles, (3) business engineering, (4)
knowledge management tool, and (5) database and data warehousing model,
including: database and multidimensional schema elements, data transformations,
non-relational source elements, report definitions. OIM is supported among others by
Microsoft, Brio Technologies, Informatica, and SAS Institute.

On the contrary, CWM was developed by the Object Management Group
(OMG) for the support of integrating DW systems and business intelligence tools.
The standard is based on XML, CORBA IDL, MOF, and SQL99. It includes the
following models: (1) foundation of concepts and structures, (2) warehouse
deployment, (3) relational interface to data, (4) record-oriented structures, (5)
multidimensional database representation, (6) XML types and associations, (7) type
transformations, (8) OLAP constructs, (9) warehouse process flows, (10) warehouse
day-to-day operations. CWM is supported among others by IBM, Oracle, and
Hyperion.

In 2000, the standard developed by MDC was integrated into the standard developed
by OMG. Since then, the integrated standard is developed under OMG [46, 47].

None of the discussed standards, however, includes models supporting detection
and propagation of changes from an EDS to a DW, or models supporting schema and
data evolution in a DW. Consequently, they do not provide support for temporal or
cross-version queries. Whereas our approach and implemented prototype system
supports handling the evolution of DW schema and data by applying versioning
mechanism. Moreover, a user can query multiple DW version, analyze, and compare
the query results. In order to support these functionalities the system has to manage
various metadata that are described by the metaschema that we have developed.

1352 R. Wrembel and B. Bębel

4 Multiversion Data Warehouse

This section informally overviews our concept of a multiversion DW, presents its
metaschema, and outlines the approach to querying multiple DW versions. Formal
description of a MVDW was presented in [34].

4.1 Basic Concepts

A multiversion data warehouse (MVDW) is composed of the set of its versions. A
DW version is in turn composed of a schema version and an instance version. A
schema version describes the structure of a DW within a given time period, whereas
an instance version represents the set of data described by its schema version.

We distinguish two types of DW versions, namely real and alternative ones. Real
versions are created in order to keep up with changes in a real business environment,
like for example: changing organizational structure of a company, changing
geographical borders of regions, changing prices/taxes of products. Real versions are
linearly ordered by the time they are valid within. Alternative versions are created
for simulation purposes, as part of the what-if analysis. Such versions represent
virtual business scenarios. All DW versions are connected by version derivation
relationships, forming a version derivation graph. The root of this tree is the first
real version. Fig. 2 schematically shows real and alternative versions. R1 is an initial
real version of a DW. Based on R1, new real version R2 was created. Similarly, R3
was derived from R2, etc. A2.1 and A2.2 are alternative versions derived from R2, and
A4.1 is an alternative version derived from R4.

Fig. 2. An example real and alternative versions derivation graph and version validity times

Every DW version is valid within certain period of time represented by two
timestamps, i.e. begin validity time (BVT) and end validity time (EVT) [5]. For
example, real version R1 (from Fig. 2) is valid within time t1 (BVT) and t2 (EVT), R2
is valid within t2 and t3, whereas R4 is valid from t4 until present. Alternative
versions A2.1, A2.2, and A4.1 are valid within the same time period as the real
versions they were derived from.

A schema version, after being derived, is modified by means of operations that
have an impact on a DW schema - further called schema change operations, as well as
by operations that have an impact on the structure of a dimension instance - further

 Metadata Management in a Multiversion Data Warehouse 1353

called dimension instance structure change operations. Schema change operations
include among others: adding a new attribute to a level, dropping an attribute from a
level, creating a new fact table, associating a given fact table with a given dimension,
renaming a table, creating a new level table with a given structure, including a super-
level table into its sub-level table, and creating a super-level table based on its sub-
level table. The last three operations are applicable to snowflake schemas.

Dimension instance structure change operations include among others: inserting
a new level instance into a given level, deleting an instance of a level, changing the
association of a sub-level instance to another super-level instance, merging several
instances of a given level into one instance of the same level, and splitting a given
level instance into multiple instances of the same level. The full list of schema and
dimension instance structure change operations with their formal semantics, their
application to a MVDW, and their outcomes can be found in [4]. Their presentation is
out of scope of this paper.

4.2 MVDW Metaschema

The model of a MVDW is composed of multiversion dimensions and multiversion
facts. A multiversion dimension is composed of dimension versions. A dimension
version is in turn composed of level versions that form hierarchies. A multiversion
fact is composed of fact versions. A fact version is associated with several dimension
versions. This association represents a cube version. A fact version and a dimension
version can be shared by several DW versions.

The overall metaschema of our prototype MVDW is shown in Fig. 3. It is designed
in the Oracle notation [2] where: a dashed line means a not mandatory foreign key, a
solid line means a mandatory foreign key, a line end split into three means a
relationship of cardinality many, whereas a simple line end means a relationship of
cardinality one.

The Versions dictionary table stores the information about all existing DW
versions, i.e. version identifier, name, begin and end validity times, status (whether a
version is committed or under development), type (a real or an alternative one),
parent-child (derivation) dependencies between versions. The meta information about
fact versions is stored in the Fact_Versions dictionary table, i.e. fact identifier, name,
an identifier of a multiversion fact a given fact belongs to, fact implementation name,
DW version identifier a given fact belongs to, the identifier of a transaction that
created a given fact. The meta information about dimension versions is stored in
Dim_Versions, i.e. dimension version identifier, name, an identifier of a multiversion
dimension a given dimension belongs to, DW version identifier a given dimension
belongs to, the identifier of a transaction that created a given dimension.

The description of versions of hierarchies and their assignments to a given
dimension version are stored in Hier_Versions and Dim_Hier_Versions, respectively.
Versions of hierarchies are composed of level versions, whose descriptions are stored
in Lev_Versions, i.e. level identifier, name, an identifier of a multiversion level a
given level belongs to, implementation name, DW version identifier a given level
belongs to, the identifier of a transaction that created a given level. Level versions are
components of versions of level hierarchies. These associations are stored in
Hier_Elements.

1354 R. Wrembel and B. Bębel

Fig. 3. The metaschema of our prototype MVDW

 Metadata Management in a Multiversion Data Warehouse 1355

Fact versions are associated with dimension versions via level versions. The
associations are stored in FHE_Associations. Every record in this metatable contains an
identifier of a fact version, and identifier of the version of a hierarchy element (an
association with the lowest level in a level hierarchy), an identifier of a DW version this
association is valid in, and an identifier of a transaction that created this association.

Every fact version and level version includes the set of its attributes, that are stored
in the Attributes dictionary table. Notice that attributes are not versioned in order to
simplify the model. In a consequence, a single attribute can't be shared by multiple
DW versions. Integrity constraints defined for attributes as well as for fact and level
tables are stored in Att_Constraints and Int_Constraints. Functional dependencies
between attributes in level versions are stored in F_Dependencies.

Table Att_Map is used for storing mappings between an attribute existing in DW
version Vo and a corresponding attribute in a child version Vp. This kind of mappings
are necessary in order to track attribute definition changes between versions, i.e.
changing attribute name, data type, length, and integrity constraints. Some changes in
attribute domain between two consecutive DW versions, say Vo and Vp (e.g. changing
university grading scale from the Austrian one to the Polish one) will require data
transformations, if the data stored in Vo and Vp are to be comparable. To this end,
forward and backward conversion methods have to be provided. Their names are
registered in Att_Map as the values of Att_Forw_Mname and Att_Back_Mname,
respectively. In our prototype system, conversion methods are implemented as Oracle
PL/SQL functions. The input argument of such a function is the name of an attribute
whose value is being converted and the output is the converted value. Conversion
methods are implemented by a DW administrator and they are registered in the
metaschema by a dedicated application.

The Fact_Ver_Map dictionary table is used for storing mappings between a given
fact table in DW version Vo and a corresponding fact table in version Vp, directly
derived from Vo. This kind of mappings are necessary in order to track fact table
definition changes between versions, i.e. changing table name or splitting a table.

The purpose of Lev_Ver_Map is to track changes of level tables between versions,
i.e. changing table name, including a super-level table into its sub-level table, creating
a super-level table based on its sub-level table, cf. [4].

As outlined in Section 4.1, the instances of level versions can be modified by
changing associations to super-level instances as well as by merging and splitting
them. Operations of this type result in new dimension instance structures. In order to
allow querying multiple DW versions under such modifications, the system has to
map level instances in version Vo into their corresponding instances that were
modified in version Vp. To this end, the Lev_Inst_Map data dictionary table is used.

Example 1. In order to illustrate the idea and usage of mapping tables, let us consider
a DW schema from Fig. 1 and let us assume that initially, in a real version from
February (RFEB) to March (RMAR) there existed 3 shops, namely ShopA, ShopB, and
ShopC that were represented by appropriate instances of the Location dimension. In
April, a new DW version was created, namely RAPR in order to represent a new reality
where ShopA and ShopB were merged into one shop - ShopAB. This change was
reflected in the Location dimension instances. To this end, two following records
were inserted to the Lev_Inst_Map dictionary table:

1356 R. Wrembel and B. Bębel

<id_ShopA,id_ShopAB,id_ShopsRMAR,id_ShopsRAPR,
 100,null,null,id_tr>

<id_ShopB,id_ShopAB,id_ShopsRMAR,id_ShopsRAPR,
 100,null,null,id_tr>

The first and the second value in the above records represents an identifier of
ShopA and ShopAB, respectively. The third and fourth value represents the Shops
level table identifier in version RMAR and RAPR, respectively. The fifth value stores the
merging/splitting ratio. In our example, the ratio equals to 100, meaning that the
whole ShopA and ShopB constitute ShopAB.

For more advanced splitting or merging operations it will be necessary to provide a
backward and forward transformation methods for converting facts from an old to a
new DW version. If such methods are explicitly implemented and provided by a DW
administrator, then their names are registered as the values of the sixth and seventh
attribute. The last attribute stores transaction identifier of a transaction that carried out
the modifications.

The prototype MVDW is managed in a transactional manner and the Transactions
dictionary table stores the information about transactions used for creating DW
versions and modifying them.

4.3 Metadata Visualization - MVDW User Interface

A MVDW administrator manages the structure and content of a MVDW via a
graphical application, implemented in Java. Its main management window is shown in
Fig. 4. It is composed of the version navigator, located at the left hand side and the
schema viewer, located at the right hand side. Both visualize the content of the
MVDW metaschema.

The main functionality of the application includes:

• the derivation of a new (real or alternative) version of a data warehouse schema
and its instance;

• the modification of a schema version and dimension instance structures, by means
of operations outlined in Section 4.1;

• loading data from EDSs into a selected DW version (any ODBC data sources,
sources accessible via a gateway, or text files can be used);

• visualizing the schema of a selected DW version;
• visualizing a schema version derivation graph;
• querying multiple DW versions and presenting query results.

4.4 Metadata in Multi-version Queries

The content of a MVDW can be queried either by a query that addresses a single
version - further called a single-version query (SVQ) or by addressing multiple
versions - further called a multi-version query (MVQ).

In a MVDW, data of user interest are usually distributed among several versions and
a user may not be aware of the location of particular data. Moreover, DW versions being
addressed in multi-version queries may differ with respect to their schemas. For these
reasons, querying a MVDW is challenging and requires intensive usage of metadata.

 Metadata Management in a Multiversion Data Warehouse 1357

Fig. 4. The application for managing a MVDW

For the purpose of querying a MVDW, a traditional SQL select command has
to be extended. To this end, we proposed clauses that allow querying: (1) a single DW
version, that can be either a real or an alternative one, (2) the set of real DW versions,
(3) the set of alternative DW versions. By including clauses (2) and (3) in one query,
a user can query real and alternative versions at once. The detail description of the
clauses as well as a user interface for specifying multi-version queries and visualizing
their results is discussed in [35].

A user's multi-version query is processed by the MVQ parser and executor in the
following steps.

1. Constructing the set of DW versions
The set SV of versions that is to be addressed in a MVQ is constructed by the parser
by using version begin validity time and end validity time (cf. Section 4.1), which
are stored in the Versions dictionary table.

2. Decomposing MVQ
Next, for every DW version in SV, the parser constructs an appropriate single-
version query. In this process, the differences in version schemas are taken into
consideration. If some tables and attributes changed names between versions, then

1358 R. Wrembel and B. Bębel

appropriate names are found in data dictionary tables and are used in SVQs. If an
attribute is missing in DW versions Vi, Vj, Vk, then the attribute is excluded from
single-version queries addressing Vi, Vj, Vk. The data dictionary tables used in this
step include among others: Fact_Versions, Dim_Versions, Hier_Verisions,
Dim_Hier_Versions, Hier_Elements, FHE_Associations, Lev_Versions, Fact_Ver_
Map, Lev_Ver_Map, Attributes, Att_Map.

3. Executing SVQs
Every single version query constructed in step 2) is next executed in its own DW
version. Then, the result set of every SVQs is returned to a user and presented
separately. Additionally, every result set is annotated with:
− an information about a DW version the result was obtained from,
− a meta information about schema and dimension instance changes between

adjacent DW versions being addressed by a MVQ. The metadata information
attached to SVQ result allows to analyze and interpret the obtained data
appropriately.

4. Integrating SVQ results
Result sets of single-version queries, obtained in step 3), may be in some cases
integrated into one common data set. This set is represented in a DW version
specified by a user (the current real version by default). This integration will be
possible if a MVQ addresses attributes that are present in all versions of interest
and if there exist transformation methods between adjacent DW versions (if
needed). For example, it will not be possible to integrate the results of a MVQ
addressing DW version Vo and Vp, computing the sum of products sold (select
sum(amount) ...), if in version Vo attribute amount exists and in version Vp the
attribute was dropped.
While integrating result sets the following dictionary tables are used among others:
Fact_Versions, Fact_Ver_Map, Lev_Versions, Lev_Ver_Map, Attributes, Att_Map,
Lev_Inst_Map.

Example 2. In order to illustrate annotating result sets of SVQs with meta
information let us consider a DW schema from Fig. 1 and let us assume that initially,
in a real version from February RFEB, there existed 3 shops, namely ShopA, ShopB,
and ShopC. These shops were selling Ytong bricks with 7% of VAT. Let us assume
that in March, Ytong bricks were reclassified to 22% VAT category (which is a real
case of Poland after joining the European Union). This reclassification was reflected
in a new real DW version RMAR.

Now we may consider a user’s MVQ that addresses DW versions from February
till March and computes gross total sale of products. The query is decomposed into
two partial queries: one for RFEB and one for RMAR. After executing the corresponding
SVQs in their proper versions, the result set of SVQ addressing version RMAR is
augmented and returned to a user with meta information describing changes in the
structure of the Product dimension instance between RFEB and RMAR, as follows:

Dimension PRODUCT: Level PRODUCTS:
 change association:
 Ytong bricks(vat 7% vat 22%)

This way a sale analyst will know that a gross sale increase form February to
March was at least partially caused by VAT increase.

 Metadata Management in a Multiversion Data Warehouse 1359

5 Detecting Changes in EDSs

For each external data source supplying a MVDW we define the set of events being
monitored and the set of actions associated with every event.

5.1 Events and Actions

We distinguish two types of events, namely: structure events and data events. A
structure event signalizes changes in an EDS's structure, that include: adding an
attribute, modifying the name or domain of an attribute, dropping an attribute, adding
a new data structure (table, class), dropping a data structure, changing the name of a
data structure. A data event signalizes changes in an EDS's content, that include:
adding, deleting, or modifying a data item. The set of events being monitored at EDSs
is explicitly defined by a DW administrator and stored in so called mapping
metaschema, cf. Section 5.2.

For every event in the set, a DW administrator explicitly defines one or more
ordered actions to be performed in a particular DW version. We distinguish two kinds
of actions, namely messages and operations. Messages represent actions that can not
be automatically applied to a DW version, e.g. adding an attribute to an existing data
structure at an EDS, creating a new data structure. These events may not necessarily
require DW version modification if a new object is not going to store any information
of user's interest. Messages are used for notifying a DW administrator about certain
source events. Being notified by a message, an administrator can manually define and
apply appropriate actions into a selected DW version. Operations are generated for
events whose outcomes can be automatically applied to a DW version, e.g. the
insertion, update, and deletion of a record, the modification of an attribute domain or
name, the change of a data structure name. The associations between events and
actions is stored in the mapping metaschema.

From the implementation point of view, operations are represented by SQL DML
and DDL statements or stored procedures addressing an indicated DW version. The
executable codes of operations and bodies of messages are automatically generated by
monitors, cf. Section 5.3.

5.2 Mapping Metaschema

The structure of the mapping metaschema is shown in Fig. 5 (represented in the
Oracle notation). The SRC_SOURCES dictionary table stores descriptions of external
data sources. Information about EDSs data structures whose changes are to be
monitored, are registered in two dictionary tables: SRC_OBJECTS and SRC_
ATTRIBUTES. All monitored events at EDSs are stored in SRC_EVENTS.

DW_AC_SRC_EV_MAPPINGS stores mappings between events detected at EDSs
and their associated actions that are to be executed in a given DW version. Action
definitions, i.e. an action type and a data warehouse object an action is to be
performed on, are stored in DW_ACTIONS. Data warehouse object descriptions (i.e.
fact and dimension level tables, dimensions and hierarchies) are stored in the
DW_OBJECTS and DW_ATTRIBUTES dictionary tables. Values taken from EDSs
may need transformations before being loaded into a DW version (e.g. conversion of

1360 R. Wrembel and B. Bębel

GBP into Euro). Expressions that transform/compute values of attributes are stored in
the DW_ATTR_EXPRESSIONS.

A DW administrator defines the content of the mapping metaschema (i.e.
mappings between events and actions) by means of a graphical application, called the
metaschema manager written in Java. The mapping metaschema in stored in an
Oracle10g database.

Fig. 5. The structure of the mapping metaschema

5.3 Automatic Generation of Monitors

External data sources are connected to a MVDW in a standard way via software
called monitors. Each EDS has its own dedicated monitor that is responsible for
detecting the occurrences of predefined events at that source. For every EDS, the code
of its monitor is automatically generated by a software module called the monitor
generator, based on the content of the mapping metaschema. In the current prototype
system, monitors are implemented in the Oracle PL/SQL language as stored packages
and triggers detecting defined events.

 Metadata Management in a Multiversion Data Warehouse 1361

After installing monitors at EDSs, they generate executable codes of operations
and bodies of messages in response to EDS events. Generated actions are stored in a
special data structure called the DW update register. Every action is described by its
type (message or DML statement), its content (e.g. SQL statement or stored
procedure) addressing particular objects in a particular DW version, and its sequence
that represents the order of action executions. When an administrator decides to
refresh a DW version, he/she selects actions for execution and runs a dedicated
process, called the warehouse refresher, that reads actions stored in the DW update
register and applies them to a specified DW version.

6 Summary and Conclusions

Handling changes in external data sources and applying them appropriately into a DW
became one of the important research and technological issues [16, 39]. Structural
changes applied inappropriately to a DW schema may result in wrong analytical
results. Research prototypes and solutions to this problem are mainly based on
temporal extensions that limit their use. Commercial DW systems existing on the
market (e.g. Oracle10g, Oracle Express Server, IBM DB2, SybaseIQ, Ingres
DecisionBase OLAP Server, NCR Teradata, Hyperion Essbase OLAP Server, SAP
Business Warehouse, MS SQL Server2000) do not offer mechanisms for managing
multiple DW states.

Our approach to this problem is based on a multiversion data warehouse, where a
DW version represents the structure and content of a DW within a certain time period.
Managing multiple persistent versions of a DW allows to:

• store history of real world changes without loss of any information,
• create alternative business scenarios for simulation purposes,
• query multiple DW states and compare query results.

A fully functional DW system needs managing metadata in order to support the
full lifecycle of a system. In the case of a multiversion data warehouse, metadata are
much more complex than in traditional DWs and have to provide additional
information, among others on: the structure and content of every DW version, a trace
of schema and dimension instance changes applied to every DW version. Industry
standard metamodels, i.e. Open Information Model and Common Warehouse
Metamodel as well as research contributions have not yet considered the
incorporation of metadata supporting either schema and data evolution or schema and
data versioning.
In this paper we contributed by:

1. The development of a MVDW metamodel that is capable of: (1) managing
versions of schemas and data in a MVDW, (2) executing queries that address
several DW versions, and (3) presenting, comparing, and interpreting multiversion
query results.

2. The framework for detecting changes in external data sources and propagating
them into a MVDW, with the functionality of: (1) automatic generation of software
monitoring EDSs, based on metadata, (2) automatic generation of actions in
response to EDSs events.

1362 R. Wrembel and B. Bębel

Based on the developed metamodels, a prototype MVDW system was
implemented in Java and Oracle PL/SQL language, whereas data and metadata are
stored in an Oracle10g database.

In the current implementation, monitors are automatically generated for data
sources implemented on Oracle databases. In future we plan to extend automatic
generation of monitors for other database systems including: IBM DB2, Sybase
Adaptive Server Enterprise, and MS SQL Server as well as for non-database sources
including: text and XML files. Future work will also focus on extending our
metamodels in order to handle data quality issues in a MVDW. Another interesting
task is to extend the accepted industry standard CWM so that it is suitable for
describing a multiversion DW.

References

1. Andany J., Leonard M., Palisser C.: Management of schema evolution in databases. Prof.
of VLDB, 1991

2. Barker R.: Case*Method: Entity Relationship Modelling Addison-Wesley, 1990, ISBN
0201416964

3. Balmin, A., Papadimitriou, T., Papakonstanitnou, Y.: Hypothetical Queries in an OLAP
Environment. Proc. of VLDB, Egypt, 2000

4. Bębel B.: Transactional Refreshing of Data Warehouses. PhD thesis, Poznań University of
Technology, Institute of Computing Science, 2005

5. Bębel B., Eder J., Konicilia C., Morzy T., Wrembel R.: Creation and Management of
Versions in Multiversion Data Warehouse. Proc. of ACM SAC, Cyprus, 2004

6. Bellahsene Z.: View Mechanism for Schema Evolution in Object-Oriented DBMS. Proc.
of BNCOD, 1996

7. Benatallah B.: A Unified Framework for Supporting Dynamic Schema Evolution in Object
Databases. Proc. of ER, 1999

8. Bouguettaya A., Benatallah B., Elmargamid A.: Interconnecting Heterogeneous
Information Systems, Kluwer Academic Publishers, 1998

9. Elmagarmid A., Rusinkiewicz M., Sheth A.: Management of Heterogeneous and
Autonomous Database Systems. Morgan Kaufmann Publishers, 1999

10. Blaschka, M. Sapia, C., Hofling, G.: On Schema Evolution in Multidimensional
Databases. Proc. of DaWak99, Italy, 1999

11. Body, M., Miquel, M., Bédard, Y., Tchounikine A.: A Multidimensional and Multiversion
Structure for OLAP Applications. Proc. of DOLAP, USA, 2002

12. Chamoni, P., Stock, S.: Temporal Structures in Data Warehousing. Proc. of DaWaK99,
Italy, 1999

13. Chawathe S.S., Garcia-Molina H., Hammer J., Ireland K., Papakonstantinou Y., Ullman
J.D., Widom J.: The TSIMMIS project: Integration of heterogeneous information sources.
Proc. of IPS, Japan, 1994

14. Chen J., Chen S., Rundensteiner E.: A Transactional Model for Data Warehouse
Maintenance, Proc of ER, Finland, 2002

15. Object Management Group. Common Warehouse Metamodel Specification, v1.1.
http://www.omg.org/cgi-bin/doc?formal/03-03-02

16. Panel discussion on "Future trends in Data Warehousing and OLAP" at DOLAP2004,
ACM DOLAP, USA, 2004

 Metadata Management in a Multiversion Data Warehouse 1363

17. Eder, J., Koncilia, C.: Changes of Dimension Data in Temporal Data Warehouses. Proc. of
DaWaK, Germany, 2001

18. Eder, J., Koncilia, C., Morzy, T.: The COMET Metamodel for Temporal Data
Warehouses. Proc. of CAISE, Canada, 2002

19. Golfarelli M., Lechtenbörger J., Rizzi S., Vossen G.: Schema Versioning in Data
Warehouses. ER Workshops 2004, LNCS 3289

20. Gupta A., Mumick I.S. (eds.): Materialized Views: Techniques, Implementations, and
Applications. The MIT Press, 1999, ISBN 0-262-57122-6

21. Gyssens M., Lakshmanan L.V.S.: A Foundation for Multi-Dimensional Databases. Proc.
of the 23rd VLDB Conference, Grece, 1997

22. Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.: Maintaining Data Cubes under
Dimension Updates. Proc. of ICDE, Australia, 1999

23. Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.: Updating OLAP Dimensions. Proc. of
DOLAP, 1999

24. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses.
Springer-Verlag, 2003, ISBN 3-540-42089-4

25. Kang, H.G., Chung, C.W.: Exploiting Versions for On–line Data Warehouse Maintenance
in MOLAP Servers. Proc. of VLDB, China, 2002

26. Kaas Ch.K., Pedersen T.B., Rasmussen B.D.: Schema Evolution for Stars and Snowflakes.
Proc. of ICEIS, Portugal, 2004

27. Koeller, A., Rundensteiner, E.A., Hachem, N.: Integrating the Rewriting and Ranking
Phases of View Synchronization. Proc. of DOLAP, USA, 1998

28. Kulkarni, S., Mohania, M.: Concurrent Maintenance of Views Using Multiple Versions.
Proc. of IDEAS, 1999

29. Letz C., Henn E.T., Vossen G.: Consistency in Data Warehouse Dimensions. Proc. of
IDEAS, 2002

30. Levy A., Rajaraman A., Ordille J.: Querying heterogeneous information sources using
source descriptions. Proc. of VLDB, 1996

31. McBrien P., Poulovassilis A.: Automatic Migration and Wrapping of Database
Applications - a Schema Transformation Approach. Proc. of ER, 1999

32. McBrien P., Poulovassilis A.: Schema Evolution in Heterogeneous Database
Architectures, A Schema Transformation Approach. Proc. of CAiSE, 2002

33. Mendelzon, A.O., Vaisman, A.A.: Temporal Queries in OLAP. Proc. of VLDB, Egypt,
2000

34. Morzy, T., Wrembel, R.: Modeling a Multiversion Data Warehouse: A Formal Approach.
Proc. of ICEIS, France, 2003

35. Morzy T., Wrembel R.: On Querying Versions of Multiversion Data Warehouse. Proc.
ACM DOLAP, USA, 2004

36. Meta Data Coalition. Open Information Model. http://www.MDCinfo.com
37. Quix C.: Repository Support for Data Warehouse Evolution. Proc. of DMDW'99
38. Quass, D., Widom, J.: On–Line Warehouse View Maintenance. Proc. of SIGMOD, 1997
39. Rizzi S.: Open Problems in Data Warehousing: 8 Years Later. Keynote speech at

DOLAP2003, ACM DOLAP, USA, 2003
40. Roddick J.: A Survey of Schema Versioning Issues for Database Systems. In Information

and Software Technology, volume 37(7):383-393, 1996
41. Rundensteiner E., Koeller A., and Zhang X.: Maintaining Data Warehouses over Changing

Information Sources. Communications of the ACM, vol. 43, No. 6, 2000
42. Schlesinger L., Bauer A., Lehner W., Ediberidze G., Gutzman M.: Efficienlty

Synchronizing Multidimensional Schema Data. Proc. of DOLAP, Atlanta, USA, 2001

1364 R. Wrembel and B. Bębel

43. Templeton M., Henley H., Maros E., van Buer D.J.: InterVisio: Dealing with the
complexity of federated database access. The VLDB Journal, 4(2), 1995

44. Vaisman A.A., Mendelzon A.O., Ruaro W., Cymerman S.G.: Supporting Dimension
Updates in an OLAP Server. Proc. of CAISE02 Conference, Canada, 2002

45. Vetterli T., Vaduva A., Staudt M.: Metadata Standards for Data Warehousing: Open
Information Model vs. Common Warehouse Metadata. SIGMOD Record, vol. 29, No. 3,
Sept. 2000

46. http://xml.coverpages.org/OMG-MDC-20000925.html
47. http://www.omg.org/news/releases/pr2000/2000-09-25a.htm

	Introduction
	Basic Definitions
	Related Work
	Multiversion Data Warehouse
	Basic Concepts
	MVDW Metaschema
	Metadata Visualization - MVDW User Interface
	Metadata in Multi-version Queries

	Detecting Changes in EDSs
	Events and Actions
	Mapping Metaschema
	Automatic Generation of Monitors

	Summary and Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

