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Abstract. There are many problems requiring a semantic account of a database
schema. At its best, such an account consists of mapping formulas between the
schema and a formal conceptual model or ontology (CM) of the domain. This
paper describes the underlying principles, algorithms, and a prototype of a tool
which infers such semantic mappings when given simple correspondences from
table columns in a relational schema and datatype properties of classes in an on-
tology. Although the algorithm presented is necessarily heuristic, we offer formal
results stating that the answers returned are “correct” for relational schemas de-
signed according to standard Entity-Relationship techniques. We also report on
experience in using the tool with public domain schemas and ontologies.

1 Introduction and Motivation

A number of important database problems have been shown to have improved solutions
by using a conceptual model or an ontology (CM) to provide he precise semantics
of the database schema. These include federated databases, data warehousing [[1], and
information integration through mediated schemas [7]]. (See survey [15]].) Since much
information on the web is generated from databases (the “deep web”), the recent call
for a Semantic Web, which requires a connection between web content and ontologies,
provides additional motivation for the problem of associating semantics with data (e.g.,
[6]). In almost all of these cases semantics of the data is captured by some kind of
semantic mapping between the database schema and the CM. Although sometimes the
mapping is just a simple association from terms to terms, in other cases what is required
is a complex formula, often expressed in logic or a query language.

For example, in both the Information Manifold data integration system presented in
[7] and the study of data integration in data warehousing presented in [1]], Horn formulas
in the form 7'(X) :- ¢(X,Y) are used to connect a relational data source to a CM
described by some Description Logic, where T'(X) is a single predicate representing
a table in the relational data source and ¢(X,Y) is a conjunctive formula over the
predicates representing the concepts and relationships in the CM. In the literature, such
a formalism is called local-as-view (LAV).

So far, it has been assumed that humans specify the mapping formulas — a difficult,
time-consuming and error-prone task. In this paper, we propose a tool that assists users
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Fig. 1. Relational table, Ontology, and Correspondences

in specifying LAV mapping formulas between relational databases and ontologies. Intu-
itively, it is much easier for users to draw the simple correspondences from the columns
of the tables in the database to datatype properties of classes in the ontology — manually
or through some existing schema matching tools (e.g., [3.[13]]) — than to compose the
logic formulas. Given the set of correspondences and following the LAV formalism, the
tool is expected to reason about the database schema and the ontology, and to generate
a ranked list of candidate Horn formulas for each table in the relational database. Ide-
ally, one of the formulas is the right one capturing the user’s intention underlying the
specified correspondences. The following example illustrates the input/out behavior of
the tool we seek.

Example 1. An ontology contains concepts (classes), attributes of concepts (datatype
properties of classes), and relationships between concepts (object properties of classes).
Graphically, we use the UML notations to represent the above information. Given the
ontology in Figure [I] and a relational table Employee(ssn, name, dept, proj) with key
ssn, a user could draw the simple correspondences as the arrowed dash-lines shown in
Figure[Il Using prefixes 7 and O to distinguish predicates in the relational schema and
the ontology, we represent the correspondences as follows:

T : Employee.ssne~QO : Employee.hasSsn

T : Employee.name«~Q : Employee.hasName

T : Employee.depte~QO : Department.hasDept Number
T . Employee.proje~QO : Worksite.hasNumber

Given the above input, we may expect the tool generate a mapping formula of the form

T :Employee(ssn, name, dept, proj) :-
O:Employee(z1), O:hasSsn(x1,ssn), O:hasName(z,name), O:Department(x2),
O:works for(x1,22), O:hasDeptNumber(x2,dept), O:Worksite(zs), O:works on(z1,x3),
O:hasNumber(x3,proj). U

An intuitive and naive solution (inspired by early work of Quillian in [12]) gives
rise to finding the minimum spanning trees or Steiner treed] among the classes that
have datatype properties corresponding to table columns and encoding the trees into
logic formulas. However, the problem is that a spanning/Steiner tree may not match

! A Steiner tree for set M of nodes in graph G' is a minimum spanning tree of M that contains
nodes of G which are not in M.
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the semantics of the given table due to their constraints. For example, consider the re-
lational table Project(name, supervisor), with name as its key and corresponding
to O:Worksite.hasName, plus supervisor corresponding to O: Employee.hasSsn
in Figure [Il The minimum spanning tree consisting of Worksite, Employee, and the
edge works_on does not match the semantics of table Project because there are
multiple Employees working on a Worksite. In this paper, we turn to a database de-
sign process to uncover the connections between the constraints in relational schemas
and ontologies. In contrast to the graph theoretic results which show that there might
be too many minimum spanning/Steiner trees between a fixed set of nodes (for ex-
ample, there are already 5 minimum spanning trees among Employee, Department,
and Worksite in the very simple graph in Figure [ considering each edge has the
same weight,) we propose to generate a limited number of “reasonable” trees and
formulas.

Our approach is directly inspired by the Clio project [10,/11], which developed a
successful tool that infers mappings from one set of relational tables and/or XML docu-
ments to another, given just a set of correspondences between their respective attributes.
Without going into further details at this point, we summarize the contributions which
we feel are being made here:

— The paper identifies a new version of the data mapping problem: that of inferring
complex formulas expressing the semantic mapping between relational database
schemas and ontologies from simple correspondences.

— We propose an algorithm to find a “reasonable” tree connection in the ontology
graph. The algorithm is enhanced to take into account information about the schema
(key and foreign key structure), the ontology (cardinality restrictions), and standard
database schema design guidelines.

— To gain theoretical confidence, we describe formal results which state that if the
schema was designed from a CM using techniques well-known in the Entity Rela-
tionship literature (which provide a natural semantic mapping for each table), then
the tool will report essentially all and only the appropriate semantics. This shows
that our heuristics are not just shots in the dark: in the case when the ontology has
no extraneous material, and when a table’s schema has not been denormalized, the
algorithm will produce good results.

— To test the effectiveness and usefulness of the algorithm in practice, we imple-
mented the algorithm in a prototype tool and applied it to a variety of database
schemas and ontologies. Our experience has shown that the user effort in specify-
ing complex mappings by using the tool is significantly less than that by manually
writing formulas from scratch.

The rest of the paper is structured as follows. Section2discusses related work, and Sec-
tion 3l presents the necessary background and notation. Section [4] describes an intuitive
progression of ideas underlying our approach, while Section [ provides the mapping
inference algorithm. In Section [6] we report on the prototype implementation of these
ideas and experience with the prototype. Finally, Section [/] concludes and discusses
future work.
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2 Related Work

As mentioned earlier, the Clio tool [[10,[11]] discovers formal queries describing how tar-
get schemas can be populated with data from source schemas. The present work could
be viewed as extending this to the case when the source schema is a relational database,
while the target is a ontology. For example, in Example 1, if one viewed the ontology as
a relational schema made of unary tables, e.g., Employee(x1), Department(x2), bi-
nary tables, e.g., hasSsn(z}, ssn), hasDept Number (x4, dept), works for(zY, z),
and foreign key constraints, e.g., ) and x{ referencing 1, 25, and x4 referencing o,
where x;, 2}, ! (i = 1, 2) are object identifiers available in the ontology, one could in
fact try to apply directly the Clio algorithm to it, pushing it beyond its intended appli-
cation domain. The desired mapping formula from Example 1 would not be produced
for several reasons: (i) Clio [11] does not make a so-called logical relation connecting
hasSsn(z}, ssn) and hasDept Number(xh, dept), since the chase algorithm of Clio
only follows foreign key references out of tables. Specifically, there would be three sep-
arate logical relations, i.e., Employee(z1) ™, —,1 hasSsn(z}, ssn), Department(z2)
Dy, =ay, hasDept Number(xy, dept), and works for(xy,xy) Mgy —,, Employee(w:)
Dy —z, Department(xa). (i) The fact that ssn is a key in the table 7:Employee,
leads us to prefer (see Section M) a many-to-one relationship, such as works for, over
some many-to-many relationship which could have been part of the ontology (e.g.,
O:previouslyWorkedFor); Clio does not differentiate the two. So the work to be pre-
sented here analyzes the key structure of the tables and the semantics of relationships
(cardinality, IsA) to eliminate unreasonable options that arise in mapping to ontologies.

The problem of data reverse engineering is to extract a CM, for example, an ER
diagram, from a database schema. Sophisticated algorithms and approaches to this have
appeared in the literature over the years (e.g., [8L15]]). The major difference between data
reverse engineering and our work is that we are given an existing ontology, and want
to interpret a legacy relational schema in terms of it, whereas data reverse engineering
aims to construct a new ontology.

Schema matching (e.g., [3L13]) identifies semantic relations between schema ele-
ments based on their names, data types, constraints, and schema structures. The primary
goal is to find the one-to-one simple correspondences which are part of the input for our
mapping inference algorithms.

3 Formal Preliminaries

For an ontology, we do not restrict ourselves to any particular ontology language in
this paper. Instead, we use a generic conceptual modeling language (CML), which
contains common aspects of most semantic data models, UML, ontology languages
such as OWL, and description logics. In the sequel, we use CM to denote an ontology
prescribed by the generic CML. Specifically, the language allows the representation
of classes/concepts (unary predicates over individuals), object properties/relationships
(binary predicates relating individuals), and datatype properties/attributes (binary pred-
icates relating individuals with values such as integers and strings); attributes are single
valued in this paper. Concepts are organized in the familiar is-a hierarchy. Object prop-
erties, and their inverses (which are always present), are subject to constraints such
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as specification of domain and range, plus the familiar cardinality constraints, which
here allow 1 as lower bounds (called toral relationships), and 1 as upper bounds (called
functional relationships). We shall represent a given CM using a directed and labeled
ontology graph, which has concept nodes labeled with concept names C, and edges
labeled with object properties p; for each such p, there is an edge for the inverse re-
lationship, referred to as p~. For each attribute f of concept C, we create a separate
attribute node denoted as N ¢, whose label is f, and with edge labeled f from node C'
to N f7CE For the sake of simplicity, we sometimes use UML notations, as in Figure[l]
to represent the ontology graph. Note that in such a diagram, instead drawing separate
attribute nodes, we place the attributes inside the rectangle nodes. Readers should not
be confused by this compact representation.

If p is a relationship between concepts C' and D (or object property having domain
C and range D), we propose to write in textas C ---p--- D (If the relationship p is
functional, we write C ---p->-- D .) For expressive CMLs such as OWL, we may
also connect C' to D by p if we find an existential restriction stating that each instance
of C is related to some or all instance of D by p.

For relational databases, we assume the reader is familiar with standard notions as
presented in [14], for example. We will use the notation T'[K, Y] to represent a rela-
tional table 7" with columns K'Y, and key K. If necessary, we will refer to the individual
columns in Y using Y'[1],Y[2],.. ., and use XY as concatenation. Our notational con-
vention is that single column names are either indexed or appear in lower-case. Given a
table such as T" above, we use the notation key(T), nonkey(T) and columns(T) to refer
to K, Y and K'Y respectively. (Note that we use the terms “table” and “column” when
talking about relational schemas, reserving “relation(ship)” and “attribute” for aspects
of the CM.) A foreign key (fk) in T is a set of columns F that references table T”, and
imposes a constraint that the projection of 7" on F' is a subset of the projection of 7”7 on
key(T").

In this paper, a correspondence T.c «~D.f will relate column ¢ of table T to at-
tribute f of concept D. Since our algorithms deal with ontology graphs, formally a
correspondence L will be a mathematical relation L(T', ¢, D, f, N¢,p), where the first
two arguments determine unique values for the last three.

Finally, we use Horn-clauses in the form 7(X) :- #(X,Y), as described in Intro-
duction, to represent semantic mappings, where T is a table with columns X (which
become arguments to its predicate), and @ is a conjunctive formula over predicates rep-
resenting the CM, with Y existentially quantified as usual.

4 Principles of Mapping Inference

We begin with the set of concept nodes, M, such that for each node in M some of the
attribute nodes connected to it are corresponded by some of the columns of a table, and
M contains all of the nodes singled out by all of the correspondences from the columns
of the table. We assume that the correspondences have been specified by users. To seek
LAV mapping, it is sufficient to only focus on the connections among nodes in M

2 Unless ambiguity arises, we will use “node C””, when we mean “concept node labeled C”.
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by stripping off the attribute noded]. Note that attribute nodes, which we can attach
them back at any time, are important when encoding trees into formulas for proving the
formal results. The primary principle of our mapping inference algorithm is to look for
shortest “reasonable” trees connecting nodes in M. In the sequel, we will call such a
tree semantic tree.

As mentioned before, the naive solution of finding min-spanning trees or Steiner
trees does not give us good results. The semantic tree we seek is not only shortest
but “reasonable”. Although the “reasonableness” is vague at this moment, we will lay
out some principles according to the semantics carried by the relational schemas and
ontologies; and we will show that our principles have a solid foundation that the “rea-
sonableness” can be formally proved in a very strict but useful setting.

Consider the case when T'[c, b] is a table with key ¢, corresponding to an attribute
f on concept C, and b is a foreign key corresponding to an attribute e on concept B.
Then for each value of ¢ (and hence instance of '), T' associates at most one value
of b (instance of B). Hence the semantic mapping for 7" should be some formula that
acts as a function from its first to its second argument. The semantic trees for such
formulas look like functional edges, and hence should be preferred. For example, given
table Dep[dept, ssn, .. .], and correspondences which link the two named columns to
hasDept Number and hasSsn in Figure [Tl respectively, the proper semantic tree uses
manages” (i.e., hasManager) rather than works_for~ (i.e., hasWorkers).

Conversely, for table T"[c, b], an edge that is functional from C to B, or from B
to C, is likely not to reflect a proper semantics since it would mean that the key cho-
sen for T is actually a super-key — an unlikely error. (In our example, consider a ta-
ble T'[ssn, dept, .. .], where both named columns are foreign keys.) To deal with such
problems, an algorithm should work in two stages: first connecting the concepts corre-
sponding to key columns into somehow a skeleton tree, then connecting the rest nodes
corresponding to other columns to the skeleton by, preferably, functional edges.

Most importantly, we must deal with the assumption that the relational schema
and the CM were developed independently, which implies that not all parts of the CM
are reflected in the database schema and vice versa. This complicates things, since in
building the semantic tree we may need to go through additional nodes, which end
up not being corresponded by any columns in the relational schema. For example,
Consider again the Project(name, supervisor) table and its correspondences men-
tioned in Introduction. Instead of the edge works_on, we prefer the functional path
controls .manages™ (i.e., controlledBy followed by hasManager), pass-
ing through node Department. Similar situations arise when the CM contains detailed
aggregation hierarchies (e.g., city part-of township part-of county part-of state), which
are abstracted in the database (e.g., a table with columns for city and state only).

We have chosen to flesh out the above principles in a systematic manner by con-
sidering the behavior of our proposed algorithm on relational schemas designed from
Entity Relationship diagrams — a topic widely covered in even undergraduate database
courses [[14]. (We call this er2rel schema design.) One benefit of this approach will be
to allow us to prove that our algorithm, though heuristic in general, is in some sense

3 In the sequel, we will say “a concept corresponded by some columns of a table” without
mentioning its attributes.
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“correct” for a certain class of schemas. Of course, in practice such schemas may be
“denormalized” in order to improve efficiency, and, as we mentioned, only parts of the
CM are realized in the database. We emphasize that our algorithm uses the general
principles enunciated above even in such cases, with relatively good results in practice.

To reduce the complexity of the algorithms which is inherently a tree enumeration,
and the size of the answer set, we modify the graph by collapsing multiple edges be-
tween nodes E and F, labeled p1, po, . . . say, into a single edge labeled 'p1; ps; . .. The
idea is that it will be up to the user to choose between the alternative labels after the
final results have been presented by the tool, though the system may offer suggestions,
based on additional information, such as heuristics concerning the identifiers labeling
tables and columns, and their relationship to property names.

5 Mapping Inference Algorithms

As stated before, the algorithm is based on the relational database design methodology
from ER models. We will introduce the details of the algorithm in a gradual manner, by
repeatedly adding features of an ER model that appear as part of the CM. We assume
that the reader is familiar with basics of ER modeling and database design [14], though
we summarize the ideas.

5.1 An Initial Subset of ER Notions

We start with a subset of ER that contains the notions such as entity set E (called
just “entity” here), with attributes referred as attribs(F), and binary relationship set.
In order to facilitate the statement of correspondences and theorems, we assume in
this section that attributes in the CM have globally unique names. (Our implemented
tool does not make this assumption.) An entity is represented as a concept/class in
our CM. A binary relationship set corresponds to two relationships in our CM, one
for each direction, though only one is mapped to a table. Such a relationship will be
called many-many if neither it nor its inverse is functional. A strong entity S has some
attributes that act as identifier. We shall refer to these using unique(.S) when describing
the rules of schema design. A weak entity W has instead localUnique(1¥) attributes,
plus a functional total binary relationship p (denoted as idRel(W)) to an identifying
owner entity (denoted as idOwn(W)).

Note that information about general identification cannot be represented in even
highly expressive languages such as OWL. So functions like unique are only used while
describing the er2rel mapping, and are not assumed to be available during semantic
inference. The er2rel design methodology (we follow mostly [8,[14]]) is defined by two
components: To begin with, Table [I] specifies a mapping 7(O) returning a relational
table schema for every CM component O, where O is either a concept/entity or a binary
relationship. In this subsection, we assume that no pair of concepts is related by more
than one relationship, and that there are no so-called “recursive” relationships relating
an entity to itself. (We deal with these in Section[5.3])

In addition to the schema (columns, key, fk’s), Table [l also associates with a rela-
tional table T'[V'] a number of additional notions:
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Table 1. er2rel Design Mapping

ER Model object O Relational Table 7(0)
Strong Entity S columns: X
primary key: K
Let X=attribs(S)  fk’s: none
Let K=unique(S)  anchor: S
semantics: T(X) - S(y).hasAttribs(y, X).
identifier: identify g (y, K) :- S(y),hasAttribs(y, K).
Weak Entity W columns: zZX
let primary key: UX
E =idOown(W) fk's: X
P = idrel(W) anchor: w
Z=attribs(W) semantics: T(X,U,V):- W(y), hasAttribs(y, Z), E(w),P(y,w),
X =key(T(E)) identify g (w, X).
U =localUnique(W) identifier: identifyyy, (y, UX) :- W (y),E(w), P(y, w), hasAttribs(y, U),
V=Z-U identify g (w, X).
Functional columns: X1X2
Relationship I primary key: X,
E{ --F->- E5 fk’s: X; references 7(E;),
let X; = key(7(E;)) anchor: Ey
fori =1,2 semantics: T(X1,X2) :-El(yl),identinyl(yl,Xl),F(yl,yQ),Ez(yQ),
identiny2 (y2, X2).
Many-many columns: X1 X2
Relationship M primary key: X1 Xo
E1 --M-- E5 fKs: X; references 7(E;),
let X; = key(7(E;)) semantics: T(X1,X2):- El(yl),identiny1 (y1, X1), M(y1,y2).E2(y2),
fori =1,2 identiny2 (y2, X2).

— an anchor, which is the central object in the CM from which T is derived, and
which is useful in explaining our algorithm (it will be the root of the semantic tree);

— a formula for the semantic mapping for the table, expressed as a Horn formula
with head T'(V') (this is what our algorithm should be recovering); in the body of
the Horn formula, the function hasAttribs(z, Y") returns conjuncts attr;(z, Y[j])
for the individual columns Y[1], Y[2],... in Y, where attr; is the attribute name
corresponded by column Y[5].

— the formula for a predicate identify . (z,Y"), showing how object z in (strong or
weak) entity C' can be identified by values in Y[.

Note that 7 is defined recursively, and will only terminate if there are no “cycles” in the
CM (see [8] for definition of cycles in ER).

The er2rel methodology also suggests that the schema generated using 7 can be
modified by (repeatedly) merging into the table Tj of an entity E the table 7} of some
functional relationship involving the same entity £/ (which has a foreign key refer-
ence to Tp). If the semantics of T is To(K, V) - ¢(K, V), and of T} is Ty (K, W)

* This is needed in addition to hasAttribs, because weak entities have identifying values spread
over several concepts.
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:- (K, W), then the semantics of table T=merge(Tp,T1) is, to a first approximation,
T(K,V,W):-¢(K,V),¥(K,W). And the anchor of T is the entity F.

Please note that one conceptual model may result in several different relational
schemas, since there are choices in which direction a one-to-one relationship is en-
coded (which entity acts as a key), and how tables are merged. Note also that the re-
sulting schema is in Boyce-Codd Normal Form, if we assume that the only functional
dependencies are those that can be deduced from the ER schema (as expressed in FOL).

Now we turn to the algorithm for finding the semantic trees between nodes in the
set M singled out by the correspondences from columns of a table. As mentioned in
the previous section, because the keys of a table functionally determine the rest of the
columns, the algorithm for finding the semantic trees works in several steps:

1. Determine a skeleton tree connecting the concepts corresponding to key columns;
also determine, if possible, a unique anchor for this tree.

2. Link the concepts corresponding to non-key columns using shortest functional
paths to the skeleton anchor.

3. Link any unaccounted-for concepts corresponding to some other columns by arbi-
trary shortest paths to the tree.

More specifically, the main function, getTree(7",L), will infer the semantics of table
T, given correspondence L, by returning an semantic tree S. Encoding S into formula
yields the conjunctive formula defining the semantics of table 7.

Function getTree(T,L)

input: table 7', correspondences L for columns(T")
output: set of semantic trees ]

steps:

1. Let Ly be the subset of L containing correspondences from key(7");
compute (S’, Anc')=getSkeleton(T,Ly).

2. If onc(nonkey(T') Y- onc(key(T')) is empty, then return (S”, Anc’). /*if all columns corre-
spond to the same set of concepts as the key does, then return the skeleton tree.*/

3. For each foreign key F; in nonkey(T") referencing 75 (K;):
let L = {T}.K;«~L(T, F;)}, and compute (Ss}, Anc})= getSkeleton(T;,L%). /*recall
that the function L(T, F;) is derived from a correspondence L(T, F;, D, f, Ny p) such that
it gives a concept D and its attribute f (N, p is the attribute node in the ontology graph.)*/
find ;=shortest functional path from Anc’ to Anc/; let S = combindl(S’, 7, {Ssi'}).

4. For each column c¢ in nonkey(T) that is not part of an fk, let N = onc(c); find w=shortest
functional path from Anc’ to N; update S := combine(S, ).

5. In all cases above asking for functional paths, use a shortest path if a functional one does not
exist.

6. Return S.

5 To make the description simpler, at times we will not explicitly account for the possibility of
multiple answers. Every function is extended to set arguments by element-wise application of
the function to set members.

6 onc(X) is the function which gets the set M of concepts corresponded by the columns X .

7 Function combine merges edges of trees into a larger tree.
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The function getTree(T, L) makes calls to function getSkeleton on T" and other
tables referenced by fks in 7', in order to get a set of (skeleton tree, anchor)-pairs, which
have the property that in the case of er2rel designs, if the anchor returned is concept C,
then the encoding of the skeleton tree is the formula for identify ..

Function getSkeleton(T,L)
input: table T', correspondences L for key(T')
output: a set of (skeleton tree, anchor) pairs
steps:
Suppose key(T") contains fks F1,...,F;, referencing tables 11 (K1),...T5 (Knr);
1. If n < 1 and onc(key(T)) is just a singleton set {C}, then return (C, {C})&/*Likely a
strong entity: the base case.*/
2. Else, let Li={T;.K;«~ L(T, F;) }/*translate corresp’s thru fk reference*/,

compute (S's;, Anc;) = getSkeleton(T;, L;).

(a) If key(T') = F1, then return (Ss1, Anci). /*functional relationship of weak entities.*/

(b) If key(T)=F1 A, where columns A are not in any foreign key of T' then /*possibly a
weak entity*/

i. if Anc; = {N1} and onc(A) = {N} such that there is a total functional path 7
from N to N1, then return (combine(r, Ss1), {N}). /%N is a weak entity.*/

(c) Else supposing key(7") has additional non-fk columns A[1],... A[m], (m > 0); let
Ns={Anc;} U {onc(A[j]),j = 1,..,m}, and find skeleton tree Ss’ connecting the
nodes in N's, where any pair of nodes in N's is connected by a many-many path; return
(combine(Ss’, {Ss;}), Ns). /*dealing with the many-to-many binary relationships;
also the default action for unaccounted-for tables, e.g., cannot find an identifying rela-
tion from a weak entity to the supposed owner entity. No unique anchor exists.*/

In order for getSkeleton to terminate, it is necessary that there be no cycles in fk
references in the schema. Such cycles (which may have been added to represent ad-
ditional integrity constraints, such as the the fact that an association is total) can be
eliminated from a schema by replacing the tables involved with their outer join over the
key. getSkeleton deals with strong entities and their functional relationships in step
(1), with weak entities in step (2.b.i), and so far, with functional relationships of weak
entities in (2.a). In addition to being a catch-all, step (2.c) deals with tables represent-
ing many-many relationships (which in this section have key K = F} F5), by finding
anchors for the ends of the relationship, and then connecting them with paths that are
not functional, even when every edge is reversed.

To get the logic formula from a tree based on correspondence L, we provide the
procedure encodeTree(S, L) below, which basically assigns variables to nodes, and
connects them using edge labels as predicates.

Function encodeTree(S,L)

input: subtree S of ontology graph, correspondences L from table columns to attributes
of concept nodes in .S.

output: variable name generated for root of .S, and conjunctive formula for the tree.
steps: Suppose N is the root of S. Let ¥ = {}.

8 Both here and elsewhere, when a concept C' is added to a tree, so are edges and nodes for C’s
attributes that appear in L.
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1. if N is an attribute node with label f, find d such that L( ,d, ,f, N) = true,
return(d, true). /*for leaves of the tree, which are attribute nodes, return the corresponding
column name as the variable and an empty formula.*/
2. if N is a concept node with label C, then introduce new variable x; add conjunct
C(z) to ¥
for each edge p; from N to N; /*recursively get the entire formula.®/

let .S; be the subtree rooted at NV,

let (vs, ¢;(Z;))=encodeTree(S;, L),

add conjuncts p;(z,v;) A ¢;(Z;) to &,
return (x,¥).

To specify the properties of the algorithm, we now suppose that the correspondences
L be the identity mappings from attribute names to table columns. The interesting prop-
erty of getSkeleton is that if 7' = 7(C') according to the er2rel rules in Table 1, where
C corresponds to a (strong or weak) entity, then getSkeleton returns (.5, Anc), where
Anc = C as anchor, and encodeTree(S, L) is logically equivalent to identify . Simi-
lar property exists for 7' = 7(p), where p is a functional relationship originating from
concept C, in which case its key looks just like an entity key. We now state the desirable
properties more formally. Since the precise statement of theorems (and algorithms) is
quite lengthy and requires a lot of minute details for which we do not have room here,
we express the results as “approximately phrased” propositions. First, getTree finds the
desired semantic mapping, in the sense that

Proposition 1. Let table T be part of a relational schema obtained by er2rel derivation
Sfrom conceptual model E. Then some tree S returned by getTree(T, L) has the property
that the formula returned by encodeTree (S, L) is logically equivalent to the semantics
assigned to T by the er2rel design.

Note that this “completeness” result is non-trivial, since, as explained earlier, it would
not be satisfied by the current Clio algorithm [[11]], if applied blindly to £ viewed as
a relational schema with unary and binary tables. Since getTree may return multiple
answers, the following converse “soundness” result is significant

Proposition 2. If S’ is any tree returned by getTree(T, L), with T as above, then the
formula returned by encodeTree(S’, L) represents the semantics of some fable T’
derivable by er2rel design from £, where T is isomorphicﬂ toT.

Such a result would not hold of an algorithm which returns only minimal spanning
trees, for example.

We would like to point out that the above algorithm performs reasonably on some
non-standard designs as well. For example, consider the relational table T'(personN ame,
city N ame, countryN ame), where the columns correspond to, respectively, attributes
pname, cname, and crname of concepts Person, City and Country in a CM. If the
CM contains a path such that Person -- bornIn ->- City -- locatedIn

->- Country , then the above table, which is not in 3NF and was not obtained using

® Informally, two tables are isomorphic if there is a bijection between their columns which
preserves key and foreign key structure.



Inferring Complex Semantic Mappings Between Relational Tables and Ontologies 1163

er2rel design (which would have required a table for City), would still get the proper
semantics:

T(personName,cityName,countryName) :-
Person(z1), City(x2),Country(zs), bornln(x1,x2), locatedIn(z2,z3),
pname(x1,personName), cname(x2,cityName),crname(xs,countryName).
If on the other hand, there was a shorter functional path from Person to Country,
say an edge labeled citizenOf, then the mapping suggested would have been:

T(personName, cityName, countryName) :-

Person(z1), City(x2), Country(zs), bornln (21,2 ),citizenOf(z1,z3), ...
which corresponds to the er2rel design. Moreover, had citizenOf not been func-
tional, then once again the semantics produced by the algorithm would correspond to the
non-3NF interpretation, which is reasonable since the table, having only personName
as key, could not store multiple country names for a person.

5.2 Reified Relationships

It is desirable to also have n-ary relationship sets connecting entities, and to allow re-
lationship sets to have attributes (called “association classes” in UML). Unfortunately,
these features are not directly supported in most CMLs, such as OWL, which only have
binary relationships. Such notions must instead be represented by “reified relation-
ships” [2] (we use an annotation * to indicate the reified relationships in a diagram):
concepts whose instances represent tuples, connected by so-called “roles” to the tuple
elements. So, if Buys relates Person, Shop and Product, through roles buyer, source and
object, then these are explicitly represented as (functional) binary associations, as in
Figure 2l And a relationship attribute, such as when the buying occurred, becomes an
attribute of the Buys concept, such as whenBought.
Unfortunately, reified relationships

cannot be distinguished reliably from or- Person ouger Buys” e Shop
dinary entities in normal CMLs on purely . .
formal, syntactic grounds, yet they need oo

to be treated in special ways during re- P

covery. For this reason we assume that

they can be distinguished on ontologi-
cal grounds. For example, in Dolce [4]],
they are subclasses of top-level concepts Fig. 2. N-ary Relationship Reified
Quality and Perdurant/Event. For a rei-
fied relationship R, we use functions roles(R) and attribs(R) to retrieve the appropriate
(binary) properties.

The design 7 of relational tables for reified relationships is shown in Table 2l To
discover the correct anchor for reified relationships and get the proper tree, we need to
modify getSkeleton, by adding the following case between steps 2(b) and 2(c):

- Ifkey(T)=F1 F; ... F, and there exist reified relationship R with nroles r1, ..., 7,
pointing at the singleton nodes in Ancy, ..., Anc,, respectively,
then let S = combine({r;}, {Ss;}), and return (S, { R}).
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Table 2. er2rel Design for Reified Relationship

ER model object O Relational Table 7(O)
Reified Relationship R columns: 7X1...Xn
ifri,..., 7y, areroles of R primary key: X1...Xn
let Z=attribs(R) fk’s: X1,...,Xn
X;=key(7(E;)) anchor: R

where E; fillsrole 7;  semantics: T(ZX1...Xn):- R(y).Ei(w;), hasAttribs(y, Z), ri (v, ws),
identinyl (wi, X3), ...

identifier: identify p (v, ... Xi...) - R(Y),... Ei(wi), ri(y, ws),

identinyi (wiy Xi),en

The main change to getTree is to compensate for the fact that if getSkeleton finds a
reified version of a many-many binary relationship, it will no longer look for an unrei-
fied one. So after step 1. we add

— if key(T) is the concatenation of two foreign keys F} F5, and nonkey(T) is empty,
compute (Ss1,Ancy) and (Ss2, Ancs) as in step 2. of getSkeleton; then find
p=shortest many-many path connecting Ancy to Anco;
return (S”) U (combine(p, Ss1, Ss2))

The previous version of getTree was set up so that with these modifications, attributes
to reified relationships will be found properly, and the previous propositions continue
to hold.

5.3 Replication

If we allow recursive relationships, or allow the merger of tables for different functional
relationships connecting the same pair of concepts (e.g., works_for and manages),
the mapping in Table 1 is incorrect because column names will be repeated in the multi-
ple occurrences of the foreign keys. We will distinguish these (again, for ease of presen-
tation) by adding superscripts as needed. For example, if Person is connected to itself
by the likes property, then the table for likes will have schema T/[ssn!, ssn?].

During mapping discovery, such situations are signaled by the presence of multiple
columns ¢ and d of table T" corresponding to the same attribute f of concept C. In such
situations, the algorithm will first make a copy C.opy 0f node C' in the ontology graph,
as well as its attributes. C.,p, participates in all the object relations C' did, so edges must
be added. After replication, we can set onc(c) = C and onc(d) = Clopy, Or ONC(d) =
C and onc(c) = Ceopy (recall that onc(c) gets the concept corresponded by column ¢ in
the algorithm). This ambiguity is actually required: given a CM with Person and likes as
above, a table T’ [ssnl7 san] could have alternate semantics corresponding to likes, and
its inverse, liked By. (A different example would involve a table T'[ssn, addr!, addr?],
where Person is connected by two relationships, home and office, to concept Building,
which has an address attribute.

The main modification needed to the getSkeleton and getTree algorithms is that
no tree should contain both a functional edge D --- p ->-- C and its replicate
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D --- p ->-- Ccopy , (or several replicates), since a function has a single value,

and hence the different columns of a tuple will end up having identical values: a clearly
poor schema.

5.4 Addressing Class Specialization

The ability to represent subclass hierarchies, such as the one in Figure 3lis a hallmark
of CMLs and modern so-called Extended ER (EER) modeling.

Almost all textbooks (e.g., [14]]) describe two techniques for designing relational
schemas in the presence of class hierarchies

1. Map each concept/class into a separate table following the standard er2rel rules.
This approach requires two adjustments: First, subclasses must inherit identifier
attributes from a single super-class, in order to be able to generate keys for their
tables. Second, in the table created for an immediate subclass C’ of class C, its
key key(7(C")) should also be set to reference as a foreign key 7(C'), as a way of
maintaining inclusion constraints dictated by the is-a relationship.

2. Expand inheritance, so that all attributes and relations involving a class C' appear on
all its subclasses C’. Then generate tables as usual for the subclasses C”, though not
for C itself. This approach is used only when the subclasses cover the superclass.
some researchers also suggest a third possibility:

3. “Collapse up” the information about subclasses into the table for the superclass. This
can be viewed as the result of merge(T¢,T¢/), where T¢[K, A] and T [K, B]
are the tables generated for C and its subclass C” according to technique (1.) above.
In order for this design to be “correct”, [8] requires that Ti-» not be the target of any
foreign key references (hence not have any relationships mapped to tables), and that
B be non-null (so that instances of C” can be distinguished from those of C).

The use of the key for the root class,

together with inheritance and the use of Person

foreign keys to also check inclusion con- [

straints, make many tables highly ambigu- =

ous. For example, according to the above, Faculty e Course
table T'(ss##, crsId), with ss## as the key e {5 oo

and a foreign key referencing 7", could AN o1
repr esent at least Professor Assist. Prlolessor Lec,u:e,'
(a) Faculty teach Course

(b) Lecturer teach Course

(c) Lecturer coord Course. Fig. 3. Specialization Hierarchy

This is made combinatorially worse by

the presence of multiple and deep hierarchies (e.g., imagine a parallel Course hierar-
chy), and the fact that not all ontology concepts are realized in the database schema,
according to our scenario. For this reason, we have chosen to try to deal with some of
the ambiguity relying on users, during the establishment of correspondences. Specifi-
cally, the user is supposed to provide a correspondence from column c to attribute f on
the lowest class whose instances provide data appearing in the column. Therefore, in
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the above example of table T'(ss#, crsld), ss# is made to correspond to ssn on Fac-
ulty in case (a), while in cases (b) and (c) it is made to correspond to ss# on Lecturer.
This decision was also prompted by the CM manipulation tool that we are using, which
automatically expands inheritance, so that ss# appears on all subclasses.
Under these circumstances, in order to capture designs (1.) and (2.) above, we do
not need to modify our earlier algorithm in any way, if we first expand inheritance
in the graph. So the graph would show Lecturer -- teaches;coord ->-
Course in the above example, and Lecturer would have all the attributes of Faculty.
To handle design (3.), we can add to the graph an actual edge for the inverse of the is-
a relation: a functional edge labeled alsoA, with lower-bound0: C --- alsoA ->--
C’ , connecting superclass C to each of its subclasses C’. It is then sufficient to allow
functional paths between concepts to consist of alsoA edges, in addition to the normal
kind, in getTree.

5.5 Outer Joins

The observant reader has probably noticed that the definition of the semantic mapping
for T = merge(Tr,T,) was not quite correct: T'(K,V,W) : —¢(K,V), (K, W)
describes a join on K, rather than a left-outer join, which is what is required if p is a
non-total relationship. In order to specify the equivalent of outer joins in a perspicuous
manner, we will use conjuncts of the form [1(X,Y)]Y, which will stand for the for-
mula u(X,Y) V(Y = nuliN-3Z.4(X, Z)), indicating that null should be used if there
are no satisfying values for the variables Y. With this notation, the proper semantics for
merge is T(K,V,W) : —o(K, V), [v(K, W)]W.

In order to obtain the correct formulas from trees, encodeTree needs to be modified
so that when traversing a non-total edge p; that is not part of the skeleton, in the second-
to-last line of the algorithm we must allow for the possibility of v; not existing.

Our formal results still hold under the replication, the treatment of specialization
hierarchy, and the encoding of the merging of non-total functional relationships into
outer joins.

6 Experience

So far, we have developed the mapping inference algorithm by investigating the con-
nections between the semantic constraints in both relational models and ontologies.
The theoretical results show that our algorithm will report the “right” semantics for
schemas designed following the widely accepted design methodology. Nonetheless, it
is crucial to test the algorithm in real-world schemas and ontologies to see its overall
performance. To do this, we have implemented the mapping inference algorithm in our
prototype system MAPONTO, and have applied it on a set of schemas and ontologies.
In this section, we provide some evidence for the effectiveness and usefulness of the
prototype tool by discussing the set of experiments and our experience.

Our test data were obtained from various sources, and we have ensured that the
databases and ontologies were developed independently. The test data are listed in
Table Bl They include the following databases: the Department of Computer Science
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Table 3. Characteristics of Schemas and ontologies for the Experiments

Database Schema Number of Number of Ontology Number of Number of
Tables Columns Nodes Links
UTCS Department 8 32 Academic Department 62 1913
VLDB Conference 9 38 Academic Conference 27 143
DBLP Bibliography 5 27 Bibliographic Data 75 1178
OBSERVER Project 8 115 Bibliographic Data 75 1178
Country 6 18 CIA factbook 52 125

database in University of Toronto; the VLDB conference database; the DBLP computer
science bibliography database; the COUNTRY database appearing in one of reverse
engineering papers; and the test schemas in OBSERVER [9] project. For the ontolo-
gies, our test data include: the academic department ontology in the DAML library; the
academic conference ontology from the SchemaWeb ontology repository; the bibliog-
raphy ontology in the library of the Stanford’s Ontolingua server; and the CIA factbook
ontology. Ontologies are described in OWL. For each ontology, the number of links in-
dicates the number of edges in the multi-graph resulted from object properties. We have
made all these schemas and ontologies available on our web page: www.cs.toronto.edu/
“yuana/research /maponto/relational/testData.html.

To evaluate our tool, we sought to understand whether the tool could produce the in-
tended mapping formula if the simple correspondences were given. We were concerned
about the number of formulas presented by the tool for users to sift through. Further,
we wanted to know whether the tool was still useful if the correct formula was not gen-
erated. In this case, we expected that a user could easily debug a generated formula to
reach the correct one instead of creating it from scratch. A summary of the experimen-
tal results are listed in Table F] which shows the average size of each relational table
schema in each database, the average number of candidates generated, and the average
time for generating the candidates. Notice that the number of candidates is the number
of semantic trees obtained by the algorithm. Also, a single edge of an semantic tree may
represent the multiple edges between two nodes, collapsed using our p; ¢ abbreviation.
If there are m edges in a semantic tree and each edge has n; ¢ = 1, .., m original edges
collapsed, then there are [[" n; original semantic trees. We show below a formula gen-
erated from such a collapsed semantic tree:

TaAssignment(courseName, studentName) :-
Course(z1), GraduateStudent(z2 ), [hasTAs;takenBy](z1,22),
workTitle(x1,courseName), personName(z2,studentName).
where, in the semantic tree, the node Course and the node GraduateStudent are con-
nected by a single edge with label hasTAs;takenBy which represents two separate
edges, hasTAs and takenBy.

Table 4l shows that the tool only present a few mapping formulas for users to ex-
amine. This is due in part to our compact representation of parallel edges between two
nodes shown above. To measure the overall performance, we manually created the map-
ping formulas for all the 28 tables and compared them to the formulas generated by the
tool. We observed that the tool produced correct formulas for 24 tables. It demonstrated
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Table 4. Performance Summary for Generating Mappings from Relational Tables to Ontologies

Database Schema Avg. Number of  Avg. Number of  Avg. Execution

Cols/per table Candidates generated time(ms)

UTCS Department 4 4 279
VLDB Conference 5 1 54
DBLP Bibliography 6 3 113
OBSERVER Project 15 2 183

Country 3 1 36

that the tool is able to understand the semantics of many practical relational tables in
terms of an independently developed ontology.

However, we wanted to know the usefulness of the tool. To evaluate this, we exam-
ined the generated formulas which were not the intended ones. For each such formula,
we compared it to the manually created and correct one, and we used a very coarse mea-
surement to record how much effort we had to spend to debug the generated formula in
order to make it correct. Such a measurement only recorded the changes of predicate
names in a formula. For example, the tool generated the following formula for the table
Student(name, office, position, email, phone, supervisor):

Student( X1 ), emailAddress(X1,email), personName( X1,name), Professor(X2),
Institute(X3), head(X3,X5), affiliatedOf( X3, X1), personName( X2, supervisor)... (D)

If the intended semantics for the above table columns is:

Student(X1), emailAddress(X1,email), personName( X1,name), Professor(X2),
GraduateStudent(Xs), hasAdvisor(Xs, X2), isA(X3,X1), personName( X, supervisor)...  (2)

then, one can change the three predicates Institute( X3), head(Xs,X2), affiliatedOf{ X3, X1)
in formula (1) to GraduateStudent(Xs), hasAdvisor(Xs, X2), isA(X3,X1) instead of writing
the entire formula (2) from scratch. Our experience working with the tool has shown
that significant effort have been saved when building semantic mappings from tables to
ontologies, because in most cases one only needed to change a relatively small number
of predicates in an existing formula.

Tables [ indicate that execution times were not significant, since, as predicted, the
search for subtrees and paths took place in a relatively small neighborhood.

7 Conclusion and Future Work

Semantic mappings between relational database schemas and ontologies in the form of
logic formulas play a critical role in realizing the semantic web as well as in many data
sharing problems. We have proposed a solution to infer the LAV mapping formulas
from simple correspondences, relying on information from the database schema (key
and foreign key structure) and the ontology (cardinality restrictions, is-a hierarchies).
Theoretically, our algorithm infers all and only the semantics implied by the ER-to-
relational design if a table’s schema follows ER design principles. In practice, our ex-
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perience working with independently developed schemas and ontologies has shown that
significant effort has been saved in specifying the LAV mapping formulas.

We are working towards disambiguation between multiple possible semantics by
exploiting the following sources of information: first, a richer modeling language, sup-
porting at least disjointness/coverage in is-a hierarchies, but also more complex axioms
as in OWL ontologies; second, the use of the data stored in the relational tables whose
semantics we are investigating. For example, queries may be used to check whether
complex integrity constraints implied by the semantics of a concept/relationship fail to
hold, thereby eliminating some candidate semantics.

Acknowledgments. We are most grateful to Renée Miller and Yannis Velegrakis for
their clarifications concerning Clio, comments on our results, and encouragement. Re-
maining errors are, of course, our own.
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