

Lecture Notes in Computer Science 3761
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Robert Meersman Zahir Tari
Mohand-Saïd Hacid John Mylopoulos
Barbara Pernici Ozalp Babaoglu
H.-Arno Jacobsen Joseph Loyall
Michael Kifer Stefano Spaccapietra (Eds.)

On the Move to Meaningful
Internet Systems 2005:
CoopIS, DOA, and ODBASE

OTM Confederated International Conferences
CoopIS, DOA, and ODBASE 2005
Agia Napa, Cyprus, October 31 – November 4, 2005
Proceedings, Part II

13

Volume Editors

Robert Meersman
Vrije Universiteit Brussel , STAR Lab
Pleinlaan 2, Bldg G/10, 1050 Brussels, Belgium
E-mail: meersman@vub.ac.be

Zahir Tari
RMIT University, School of Computer Science and Information Technology
City Campus, GPO Box 2476 V, Melbourne, Victoria 3001, Australia
E-mail: zahirt@cs.rmit.edu.au

Library of Congress Control Number: 2005934471

CR Subject Classification (1998): H.2, H.3, H.4, C.2, H.5, I.2, D.2.12, K.4

ISSN 0302-9743
ISBN-10 3-540-29738-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29738-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11575801 06/3142 5 4 3 2 1 0

CoopIS
Mohand-Saïd Hacid

John Mylopoulos
Barbara Pernici

DOA
Ozalp Babaoglu

H.-Arno Jacobsen
Joseph Loyall

ODBASE
Michael Kifer

Stefano Spaccapietra

OTM 2005 General Co-chairs’ Message

The General Chairs of OnTheMove 2005, Agia Napa, Cyprus, are happy to
observe that the conference series that was started in Irvine, California in 2002,
and continued in Catania, Sicily, in 2003, and in the same location in Cyprus last
year, clearly supports a scientific concept that attracts a representative selection
of today’s worldwide research in distributed, heterogeneous and autonomous yet
meaningfully collaborative computing, of which the Internet and the WWW are
its prime epitomes.

Indeed, as such large, complex and networked intelligent information systems
become the focus and norm for computing, it is clear that there is an acute
need to address and discuss in an integrated forum the implied software and
system issues as well as methodological, theoretical and application issues. As
we all know, email, the Internet, and even video conferences are not sufficient for
effective and efficient scientific exchange. This is why the OnTheMove (OTM)
Federated Conferences series has been created to cover the increasingly wide
yet closely connected range of fundamental technologies such as data and Web
Semantics, distributed objects, Web services, databases, information systems,
workflow, cooperation, ubiquity, interoperability, and mobility. OTM aspires to
be a primary scientific meeting place where all aspects for the development
of internet- and intranet-based systems in organizations and for e-business are
discussed in a scientifically motivated way. This fourth 2005 edition of the OTM
Federated Conferences therefore again provides an opportunity for researchers
and practitioners to understand and publish these developments within their
individual as well as within their broader contexts.

The backbone of OTM is formed by the co-location of three related, com-
plementary and successful main conference series: DOA (Distributed Objects
and Applications, since 1999), covering the relevant infrastructure-enabling tech-
nologies; ODBASE (Ontologies, DataBases and Applications of SEmantics, since
2002), covering Web semantics, XML databases and ontologies; and CoopIS (Co-
operative Information Systems, since 1993), covering the application of these
technologies in an enterprise context through, e.g., workflow systems and knowl-
edge management. Each of these three conferences encourages researchers to
treat their respective topics within a framework that incorporates jointly (a)
theory , (b) conceptual design and development, and (c) applications, in partic-
ular case studies and industrial solutions.

Following and expanding the model created in 2003, we again solicited and
selected quality workshop proposals to complement the more “archival” nature
of the main conferences with research results in a number of selected and more
“avant garde” areas related to the general topic of distributed computing. For
instance, the so-called Semantic Web has given rise to several novel research areas
combining linguistics, information systems technology, and artificial intelligence,

VIII Preface

such as the modeling of (legal) regulatory systems and the ubiquitous nature of
their usage. We were glad to see that in 2005 under the inspired leadership of Dr.
Pilar Herrero, several of earlier successful workshops re-emerged with a second
or even third edition (notably WOSE, MIOS-INTEROP and GADA), and that
5 new workshops could be hosted and successfully organized by their respective
proposers: AWeSOMe, SWWS, CAMS, ORM and SeBGIS. We know that as
before, their audiences will mutually productively mingle with those of the main
conferences, as is already visible from the overlap in authors!

A special mention for 2005 is again due for the second and enlarged edition
of the highly successful Doctoral Symposium Workshop. Its 2005 Chairs, Dr.
Antonia Albani, Dr. Peter Spyns, and Dr. Johannes Maria Zaha, three young and
active post-doc researchers defined an original set-up and interactive formula to
bring PhD students together: they call them to submit their research proposals
for selection; the resulting submissions and their approaches are presented by
the students in front of a wider audience at the conference, where they are
then independently analyzed and discussed by a panel of senior professors (this
year they were Domenico Beneventano, Jaime Delgado, Jan Dietz, and Werner
Nutt). These successful students also get free access to “all” other parts of the
OTM program, and only pay a minimal fee for the Doctoral Symposium itself
(in fact their attendance is largely sponsored by the other participants!). The
OTM organizers expect to further expand this model in future editions of the
conferences and so draw an audience of young researchers into the OTM forum.

All three main conferences and the associated workshops share the distributed
aspects of modern computing systems, and the resulting application-pull created
by the Internet and the so-called Semantic Web. For DOA 2005, the primary
emphasis stayed on the distributed object infrastructure; for ODBASE 2005, it
became the knowledge bases and methods required for enabling the use of formal
semantics, and for CoopIS 2005, the topic was the interaction of such technologies
and methods with management issues, such as occur in networked organizations.
These subject areas naturally overlap and many submissions in fact also treat an
envisaged mutual impact among them. As for the earlier editions, the organiz-
ers wanted to stimulate this cross-pollination by a “shared” program of famous
keynote speakers: this year we got no less than Erich Neuhold (Emeritus, Fraun-
hofer/IPSI), Stefano Ceri (Politecnico di Milano), Doug Schmidt (Vanderbilt
University), and V.S. Subrahmanian (University of Maryland)! We also encour-
aged multiple event attendance by providing “all” authors, also those of work-
shop papers, with free access or discounts to one other conference or workshop
of their choice.

We received a total of 360 submissions for the three main conferences and a
whopping 268 (compared to the 170 in 2004!) in total for the workshops. Not only
can we therefore again claim success in attracting an increasingly representative
volume of scientific papers, but such a harvest of course allows the program
committees to compose a higher quality cross-section of current research in the
areas covered by OTM. In fact, in spite of the larger number of submissions, the
Program Chairs of each of the three main conferences decided to accept only

Preface IX

approximately the same number of papers for presentation and publication as in
2003 and 2004 (i.e, average 1 paper out of 4 submitted, not counting posters).
For the workshops, the acceptance rate varies but was much stricter than before,
about 1 in 2-3, to almost 1 in 4 for GADA and MIOS. Also for this reason, we
continue to separate the proceedings in two books with their own titles, with
the main proceedings in two volumes, and we are grateful to Springer for their
suggestions and collaboration in producing these books and CD-ROMs. The re-
viewing process by the respective program committees as usual was performed
very professionally and each paper in the main conferences was reviewed by at
least three referees, with email discussions in the case of strongly diverging evalu-
ations. It may be worthwhile to emphasize that it is an explicit OTM policy that
all conference program committees and chairs make their selections completely
autonomously from the OTM organization itself. Continuing a costly but nice
tradition, the OTM Federated Event organizers decided again to make all pro-
ceedings available as books and/or CD-ROMs to all participants of conferences
and workshops, independently of one’s registration.

The General Chairs are once more especially grateful to all the many people
directly or indirectly involved in the set-up of these federated conferences and
in doing so made this a success. Few people realize what a large number of in-
dividuals have to be involved, and what a huge amount of work, and sometimes
risk, the organization of an event like OTM entails. Apart from the persons
in their roles mentioned above, we therefore in particular wish to thank our
8 main conference PC Co-chairs (DOA 2005: Ozalp Babaoglu, Arno Jacobsen,
Joe Loyall; ODBASE 2005: Michael Kifer, Stefano Spaccapietra; CoopIS 2005:
Mohand-Said Hacid, John Mylopoulos, Barbara Pernici), and our 26 workshop
PC Co-chairs (Antonia Albani, Lora Aroyo, George Buchanan, Lawrence Cave-
don, Jan Dietz, Tharam Dillon, Erik Duval, Ling Feng, Aldo Gangemi, Annika
Hinze, Mustafa Jarrar, Terry Halpin, Pilar Herrero, Jan Humble, David Martin,
Gonzalo Médez, Aldo de Moor, Hervé Panetto, Maŕıa S. Pérez, Vı́ctor Robles,
Monica Scannapieco, Peter Spyns, Emmanuel Stefanakis, Klaus Turowski, Es-
teban Zimányi). All, together with their many PCs, members did a superb and
professional job in selecting the best papers from the large harvest of submis-
sions. We also thank Laura Bright, our excellent Publicity Chair for the second
year in a row, our Conference Secretariat staff and Technical Support Daniel
Meersman and Jan Demey, and last but not least our hyperactive Publications
Chair and loyal collaborator of many years, Kwong Yuen Lai.

The General Chairs gratefully acknowledge the logistic support and facilities
they enjoy from their respective institutions, Vrije Universiteit Brussel (VUB)
and RMIT University, Melbourne.

We do hope that the results of this federated scientific enterprise contribute
to your research and your place in the scientific network... We look forward to
seeing you again at next year’s edition!

August 2005 Robert Meersman, Vrije Universiteit Brussel, Belgium
Zahir Tari, RMIT University, Australia
(General Co-chairs, OnTheMove 2005)

Organization Committee

The OTM (On The Move) 2005 Federated Conferences, which involve CoopIS
(Cooperative Information Systems), DOA (Distributed Objects and Applica-
tions) and ODBASE (Ontologies, Databases and Applications of Semantics),
are proudly supported by RMIT University (School of Computer Science, In-
formation Technology) and Vrije Universiteit Brussel (Department of Computer
Science) and Interop.

Executive Committee

OTM 2005 General Co-chairs Robert Meersman (Vrije Universiteit Brussel,
Belgium) and Zahir Tari (RMIT University,
Australia)

CoopIS 2005 PC Co-chairs Mohand-Said Hacid (Université Claude
Bernard Lyon I), John Mylopoulos (University
of Toronto), and Barbara Pernici (Politecnico
di Milano)

DOA 2005 PC Co-chairs Ozalp Babaoglu (University of Bologna), Arno
Jacobsen (University of Toronto), and Joe Loy-
all (BBN Technologies)

ODBASE 2005 PC Co-chairs Michael Kifer (Stony Brook University) and
Stefano Spaccapietra (Swiss Federal Institute of
Technology at Lausanne)

Publication Co-chairs Kwong Yuen Lai (RMIT University, Australia)
and Peter Dimopoulos (RMIT University,
Australia)

Organizing Chair Skevos Evripidou (University of Cyprus,
Cyprus)

Publicity Chair Laura Bright (Oregon Graduate Institute,
Oregon, USA)

CoopIS 2005 Program Committee

Wil van der Aalst
Bernd Amann
Lefteris Angelis
Naveen Ashish
Alistair Barros
Zohra Bellahsene
Boualem Benatallah

Salima Benbernou
Djamal Benslimane
Elisa Bertino
Athman Bouguettaya
Mokrane Bouzeghoub
Christoph Bussler
Barbara Carminati

XII Organization

Fabio Casati
Malu Castellanos
Barbara Catania
Henning Christiansen
Bin Cui
Umesh Dayal
Alex Delis
Drew Devereux
Susanna Donatelli
Marlon Dumas
Schahram Dustdar
Johann Eder
Rik Eshuis
Opher Etzion
Elena Ferrari
Avigdor Gal
Paul Grefen
Manfred Hauswirth
Geert-Jan Houben
Michael Huhns
Paul Johannesson
Latifur Khan
Manolis Koubarakis
Akhil Kumar
Winfried Lamersdorf
Steven Laufmann
Qing Li

Maristella Matera
Massimo Mecella
Michael zur Muehlen
Werner Nutt
Andreas Oberweis
Jean-Marc Petit
Evaggelia Pitoura
Alessandro Provetti
Zbigniew W. Ras
Manfred Reichert
Tore Risch
Marie-Christine Rousset
Kai-Uwe Sattler
Monica Scannapieco
Ralf Schenkel
Antonio Si
Farouk Toumani
Susan Urban
Athena Vakali
Mathias Weske
Kyu-Young Whang
Jian Yang
Ming Yung
Arkady Zaslavsky
Leon Zhao
Roger Zimmermann

CoopIS 2005 Additional Reviewers

Rong Liu
Jianrui Wang
Agnieszka Dardzinska
Samuil Angelov
Yigal Hoffner
Sven Till
Jochem Vonk
Stratos Idreos
Christos Tryfonopoulos
Harald Meyer
Hagen Overdick
Hilmar Schuschel
Guido Laures
Frank Puhlmann

Camelia Constantin
Florian Rosenberg
Benjamin Schmit
Wil van der Aalst
Ana Karla Alves de Medeiros
Christian Guenther
Eric Verbeek
Aviv Segev
Mati Golani
Ami Eyal
Daniela Berardi
Fabio De Rosa
Woong-Kee Loh
Jae-Gil Lee

Organization XIII

Horst Pichler
Marek Lehmann
Renate Motschnig
Diego Milano
Xumin Liu
Qi Yu
Zaki Malik
Xu Yang
George Zheng
Florian Daniel
Federico Michele Facca
Jialie Shen
Min Qin
Hong Zhu
Wei-Shinn Ku
Leslie S. Liu
Bart Orriens
James Pruyne
George Pallis
Vasiliki Koutsonikola
Konstantina Stoupa
Theodosios Theodosiiou
Sarita Bassil
Fabien DeMarchi

Etienne Canaud
Dickson Chiu
Xiang Li
Zhe Shan
Elvis Leung
Jing Chen
Jingshan Huang
Armin Haller
Kostas Stefanidis
Nikos Nikolaidis
Mick Kerrigan
Massimo Marchi
Brahmananda Sapkota
Hamid Reza Motahari
Julien Ponge
Halvard Skogsrud
Aixin Sun
Quan Zheng Sheng
Guy Gouardéres
Mar Roantree
Pierre Pompidor
Ela Hunt
Anna Cinzia Squicciarini

ODBASE 2005 Program Committee

Juergen Angele
Alessandro Artale
Mira Balaban
Denilson Barbosa
Daniela Berardi
Sonia Bergamaschi
Abraham Bernstein
Leo Bertossi
Harold Boley
Alex Borgida
Christoph Bussler
Jos de Bruijn
Gilberto Câmara
Marco Antonio Casanova
Kajal Claypool
Mariano Consens
Isabel Cruz
Rainer Eckstein

Johann Eder
Tim Finin
Enrico Franconi
Fausto Giunchiglia
Mohand Said Hacid
Jeff Heflin
Ian Horrocks
Arantza Illarramendi
Mustafa Jarrar
Christopher Jones
Vipul Kashyap
Larry Kerschberg
Roger (Buzz) King
Werner Kuhn
Georg Lausen
Bertram Ludaescher
Sanjay Madria
Murali Mani

XIV Organization

Leo Mark
Wolfgang May
Michele Missikoff
Boris Motik
Saikat Mukherjee
Moira Norrie
Maria Orlowska
Yue Pan
Christine Parent
Torben Bach Pedersen
Axel Polleres
Louiqa Raschid
Monica Scannapieco

Amit Sheth
Michael Sintek
Naveen Srinivasan
Steffen Staab
Jianwen Su
York Sure
David Toman
Christophides Vassilis
Holger Wache
Gerd Wagner
Guizhen Yang
Esteban Zimanyi

ODBASE 2005 Additional Reviewers

Alex Binun
David Boaz
Lior Limonad
Azzam Marii
Steffen Lamparter
Johanna Voelker
Peter Haase
Denny Vrandecic
Carsten Saathoff
Kalyan Ayloo
Huiyong Xiao
Jesús Bermúdez
Alfredo Goñi
Sergio Ilarri
Birte Glimm
Lei Li
Jeff Pan
Evgeny Zolin
Francesco Taglino
Antonio De Nicola
Federica Schiappelli
Fulvio D’Antonio

Karl Wiggisser
Christian Koncilia
Diego Milano
Dimitris Kotzinos
Ansgar Bernardi
Malte Kiesel
Ludger van Elst
Hans Trost
Adrian Giurca
Sergey Lukichev
Michael Lutz
Fabio Machado Porto
Aida Boukottaya
Matthew Moran
Roberta Benassi
Domenico Beneventano
Stefania Bruschi
Francesco Guerra
Mirko Orsini
James Scicluna
Cristina Feier

DOA 2005 Program Committee

Cristiana Amza
Matthias Anlauff
Mark Baker

Guruduth Banavar
Alberto Bartoli
Judith Bishop

Organization XV

Gordon Blair
Alex Buchmann
Harold Carr
Michel Chaudron
Shing-Chi Cheung
Geoff Coulson
Francisco “Paco” Curbera
Wolfgang Emmerich
Patrick Eugster
Pascal Felber
Kurt Geihs
Jeff Gray
Mohand-Said Hacid
Rebecca Isaacs
Mehdi Jazayeri
Bettina Kemme
Fabio Kon
Doug Lea
Peter Loehr
Frank Manola
Philip McKinley

Keith Moore
Francois Pacull
Simon Patarin
Joao Pereira
Rajendra Raj
Andry Rakotonirainy
Luis Rodrigues
Isabelle Rouvellou
Rick Schantz
Heinz-W. Schmidt
Douglas Schmidt
Richard Soley
Michael Stal
Jean-Bernard Stefani
Stefan Tai
Hong Va Leong
Maarten van Steen
Steve Vinoski
Norbert Voelker
Andrew Watson
Doug Wells

DOA 2005 Additional Reviewers

Jochen Fromm
Steffen Bleul
Roland Reichle
Thomas Weise
An Chunyan
Glenn Ammons
Norman Cohen
Thomas Mikalsen
Paul Grace
António Casimiro
Hugo Miranda
Yuehua Lin
Shih-hsi Liu
Jing Zhang
Marc Schiely
Jaksa Vuckovic
Partha Pal
Paul Rubel
Franklin Webber
Jianming Ye
John Zinky

Vinod Muthusamy
Arlindo Flávio da Conceião
Raphael Camargo
David Cyrluk
Klaus Havelund
Arnaud Venet
Asuman Suenbuel
S. Masoud Sadjadi
Eric Kasten
Zhinan Zhou
Farshad Samimi
David Knoester
Chunyang Ye
Chang Xu
Thomas Mikalsen
Norman Cohen
Glenn Ammons
Chi-yin Chow
Kei Shiu Ho
Hans P. Reiser

Table of Contents – Part II

Distributed Objects and Applications
(DOA) 2005 International Conference
(continued)

Security and Data Persistence

Evaluation of Three Approaches for CORBA Firewall/NAT Traversal
Antonio Theophilo Costa, Markus Endler, Renato Cerqueira 923

On the Design of Access Control to Prevent Sensitive Information
Leakage in Distributed Object Systems: A Colored Petri Net Based Model

Panagiotis Katsaros . 941

Offline Business Objects: Enabling Data Persistence for Distributed
Desktop Applications

Pawel Gruszczynski, Stanislaw Osinski, Andrzej Swedrzynski 960

Component Middleware

Middleware Support for Dynamic Component Updating
Jaiganesh Balasubramanian, Balachandran Natarajan,
Douglas C. Schmidt, Aniruddha Gokhale, Jeff Parsons,
Gan Deng . 978

Two Ways of Implementing Software Connections Among Distributed
Components

Selma Matougui, Antoine Beugnard . 997

On the Notion of Coupling in Communication Middleware
Lachlan Aldred, Wil M.P. van der Aalst, Marlon Dumas,
Arthur H.M. ter Hofstede . 1015

Java Environments

A Task-Type Aware Transaction Scheduling Algorithm in J2EE
Xiaoning Ding, Xin Zhang, Beihong Jin, Tao Huang 1034

Application Object Isolation in Cross-Platform Operating Environments
Stefan Paal, Reiner Kammüller, Bernd Freisleben 1046

XVIII Table of Contents – Part II

Garbage Collection in the Presence of Remote Objects: An Empirical
Study

Witawas Srisa-an, Mulyadi Oey, Sebastian Elbaum 1065

Peer-to-Peer Computing Architectures

Peer-to-Peer Distribution Architectures Providing Uniform Download
Rates

Marc Schiely, Pascal Felber . 1083

JXTA Messaging: Analysis of Feature-Performance Tradeoffs and
Implications for System Design

Emir Halepovic, Ralph Deters, Bernard Traversat 1097

Aspect Oriented Middleware

An Aspect-Oriented Communication Middleware System
Marco Tulio de Oliveira Valente, Fabio Tirelo, Diana Campos Leao,
Rodrigo Palhares Silva . 1115

Using AOP to Customize a Reflective Middleware
Nélio Cacho, Tháıs Batista . 1133

Ontologies, Databases and Applications of Semantics
(ODBASE) 2005 International Conference

ODBASE 2005 PC Co-Chairs’ Message. 1151

Information Integration and Modeling

Inferring Complex Semantic Mappings Between Relational Tables and
Ontologies from Simple Correspondences

Yuan An, Alex Borgida, John Mylopoulos . 1152

Ontology Transformation and Reasoning for Model-Driven Architecture
Claus Pahl . 1170

Multidimensional RDF
Manolis Gergatsoulis, Pantelis Lilis . 1188

GeRoMe: A Generic Role Based Metamodel for Model Management
David Kensche, Christoph Quix, Mohamed Amine Chatti,
Matthias Jarke . 1206

Table of Contents – Part II XIX

Query Processing

Probabilistic Iterative Duplicate Detection
Patrick Lehti, Peter Fankhauser . 1225

Efficient Processing of XPath Queries with Structured Overlay
Networks

Gleb Skobeltsyn, Manfred Hauswirth, Karl Aberer 1243

Community Based Ranking in Peer-to-Peer Networks
Christoph Tempich, Alexander Löser, Jörg Heizmann 1261

Ontology–Based Representation and Query of Colour Descriptions from
Botanical Documents

Shenghui Wang, Jeff Z. Pan . 1279

Ontology Construction

Creating Ontologies for Content Representation—The OntoSeed
Suite

Elena Paslaru Bontas, David Schlangen, Thomas Schrader 1296

Fully Automatic Construction of Enterprise Ontologies Using Design
Patterns: Initial Method and First Experiences

Eva Blomqvist . 1314

Automatic Ontology Extraction from Unstructured Texts
Khurshid Ahmad, Lee Gillam . 1330

Metadata

Metadata Management in a Multiversion Data Warehouse
Robert Wrembel, Bartosz B ↪ebel . 1347

Metadata Management for Ad-Hoc InfoWare - A Rescue and
Emergency Use Case for Mobile Ad-Hoc Scenarios

Norun Sanderson, Vera Goebel, Ellen Munthe-Kaas 1365

Managing Petri Nets in MOF Repositories
Hélio L. dos Santos, Paulo R.M. Maciel, Nelson S. Rosa,
Roberto S.M. Barros . 1381

A Meta-ontological Architecture for Foundational Ontologies
Heinrich Herre, Frank Loebe . 1398

XX Table of Contents – Part II

Information Retrieval and Classification

Web Image Semantic Clustering
Zhiguo Gong, Leong Hou U, Chan Wa Cheang . 1416

Biomedical Retrieval: How Can a Thesaurus Help?
Leonie IJzereef, Jaap Kamps, Maarten de Rijke 1432

Hybrid Model for Semantic Similarity Measurement
Angela Schwering . 1449

Ontology-Based Spatial Query Expansion in Information
Retrieval

Gaihua Fu, Christopher B. Jones, Alia I. Abdelmoty 1466

Security Ontology for Annotating Resources
Anya Kim, Jim Luo, Myong Kang . 1483

System Verification and Evaluation

An Ontology for Mobile Agents in the Context of Formal
Verification

Paulo Salem da Silva, Ana Cristina Vieira de Melo 1500

Evaluating Ontology Criteria for Requirements in a Geographic Travel
Domain

Jonathan Yu, James A. Thom, Audrey Tam . 1517

A Self-monitoring System to Satisfy Data Quality Requirements
Cinzia Cappiello, Chiara Francalanci, Barbara Pernici 1535

Active Rules and Web Services

An Ontology- and Resources-Based Approach to Evolution and
Reactivity in the Semantic Web

Wolfgang May, José Júlio Alferes, Ricardo Amador 1553

Automatic Web Service Composition Based on Graph Network Analysis
Metrics

John Gekas, Maria Fasli . 1571

Table of Contents – Part II XXI

ODBASE 2005 Short Papers

Two Reasoning Methods for Extended Fuzzy ALCH
Dazhou Kang, Jianjiang Lu, Baowen Xu, Yanhui Li,
Yanxiang He . 1588

Expressing Preferences in a Viewpoint Ontology
Rallou Thomopoulos . 1596

Architecting Ontology for Scalability and Versatility
Gang Zhao, Robert Meersman . 1605

OWL-Based User Preference and Behavior Routine Ontology for
Ubiquitous System

Kim Anh Pham Ngoc, Young-Koo Lee, Sung-Young Lee 1615

Reasoning on Dynamically Built Reasoning Space with Ontology
Modules

Fabio Porto . 1623

An Efficient Branch Query Rewriting Algorithm for XML Query
Optimization

Hyoseop Shin, Minsoo Lee . 1629

Automated Migration of Data-Intensive Web Pages into Ontology-Based
Semantic Web: A Reverse Engineering Approach

Sidi Mohamed Benslimane, Mimoun Malki,
Djamel Amar Bensaber . 1640

Author Index . 1651

Table of Contents – Part I

OTM 2005 Keynotes

Probabilistic Ontologies and Relational Databases
Octavian Udrea, Deng Yu, Edward Hung, V.S. Subrahmanian 1

Intelligent Web Service - From Web Services to .Plug&Play. Service
Integration

Erich Neuhold, Thomas Risse, Andreas Wombacher,
Claudia Niederée, Bendick Mahleko . 18

Process Modeling in Web Applications
Stefano Ceri . 20

Cooperative Information Systems (CoopIS)
2005 International Conference

CoopIS 2005 PC Co-chairs’ Message . 21

Workflow

Let’s Go All the Way: From Requirements Via Colored Workflow Nets
to a BPEL Implementation of a New Bank System

W.M.P. van der Aalst, J.B. Jørgensen, K.B. Lassen 22

A Service-Oriented Workflow Language for Robust Interacting
Applications

Surya Nepal, Alan Fekete, Paul Greenfield, Julian Jang, Dean Kuo,
Tony Shi . 40

Balancing Flexibility and Security in Adaptive Process Management
Systems

Barbara Weber, Manfred Reichert, Werner Wild,
Stefanie Rinderle . 59

Workflow and Business Processes

Enabling Business Process Interoperability Using Contract Workflow
Models

Jelena Zdravkovic, Vandana Kabilan . 77

XXIV Table of Contents – Part I

Resource-Centric Worklist Visualisation
Ross Brown, Hye-young Paik . 94

CoopFlow : A Framework for Inter-organizational Workflow Cooperation
Issam Chebbi, Samir Tata . 112

Mining and Filtering

Process Mining and Verification of Properties: An Approach Based on
Temporal Logic

W.M.P. van der Aalst, H.T. de Beer, B.F. van Dongen 130

A Detailed Investigation of Memory Requirements for Publish/Subscribe
Filtering Algorithms

Sven Bittner, Annika Hinze . 148

Mapping Discovery for XML Data Integration
Zoubida Kedad, Xiaohui Xue . 166

Petri Nets and Processs Management

Colored Petri Nets to Verify Extended Event-Driven Process Chains
Kees van Hee, Olivia Oanea, Natalia Sidorova . 183

Web Process Dynamic Stepped Extension: Pi-Calculus-Based Model
and Inference Experiments

Li Zhang, Zhiwei Yu . 202

Petri Net + Nested Relational Calculus = Dataflow
Jan Hidders, Natalia Kwasnikowska, Jacek Sroka, Jerzy Tyszkiewicz,
Jan Van den Bussche . 220

Information Access and Integrity

On the Controlled Evolution of Access Rules in Cooperative
Information Systems

Stefanie Rinderle, Manfred Reichert . 238

Towards a Tolerance-Based Technique for Cooperative Answering of
Fuzzy Queries Against Regular Databases

Patrick Bosc, Allel Hadjali, Olivier Pivert . 256

Filter Merging for Efficient Information Dissemination
Sasu Tarkoma, Jaakko Kangasharju . 274

Table of Contents – Part I XXV

Heterogeneity

Don’t Mind Your Vocabulary: Data Sharing Across Heterogeneous Peers
Md. Mehedi Masud, Iluju Kiringa,
Anastasios Kementsietsidis . 292

On the Usage of Global Document Occurrences in Peer-to-Peer
Information Systems

Odysseas Papapetrou, Sebastian Michel, Matthias Bender,
Gerhard Weikum . 310

An Approach for Clustering Semantically Heterogeneous XML Schemas
Pasquale De Meo, Giovanni Quattrone, Giorgio Terracina,
Domenico Ursino . 329

Semantics

Semantic Schema Matching
Fausto Giunchiglia, Pavel Shvaiko, Mikalai Yatskevich 347

Unified Semantics for Event Correlation over Time and Space in Hybrid
Network Environments

Eiko Yoneki, Jean Bacon . 366

Semantic-Based Matching and Personalization in FWEB, a
Publish/Subscribe-Based Web Infrastructure

Simon Courtenage, Steven Williams . 385

Querying and Content Delivery

A Cooperative Model for Wide Area Content Delivery Applications
Rami Rashkovits, Avigdor Gal . 402

A Data Stream Publish/Subscribe Architecture with Self-adapting
Queries

Alasdair J.G. Gray, Werner Nutt . 420

Containment of Conjunctive Queries with Arithmetic Expressions
Ali Kiani, Nematollaah Shiri . 439

Web Services, Agents

Multiagent Negotiation for Fair and Unbiased Resource Allocation
Karthik Iyer, Michael Huhns . 453

XXVI Table of Contents – Part I

QoS-Based Service Selection and Ranking with Trust and Reputation
Management

Le-Hung Vu, Manfred Hauswirth,
Karl Aberer . 466

An Integrated Alerting Service for Open Digital Libraries: Design and
Implementation

Annika Hinze, Andrea Schweer,
George Buchanan . 484

Security, Integrity and Consistency

Workflow Data Guards
Johann Eder, Marek Lehmann . 502

Consistency Between e3-value Models and Activity Diagrams in a
Multi-perspective Development Method

Zlatko Zlatev, Andreas Wombacher . 520

Maintaining Global Integrity in Federated Relational Databases Using
Interactive Component Systems

Christopher Popfinger, Stefan Conrad . 539

Chain and Collaboration Mangement

RFID Data Management and RFID Information Value Chain Support
with RFID Middleware Platform Implementation

Taesu Cheong, Youngil Kim . 557

A Collaborative Table Editing Technique Based on Transparent
Adaptation

Steven Xia, David Sun, Chengzheng Sun,
David Chen . 576

Inter-enterprise Collaboration Management in Dynamic Business
Networks

Lea Kutvonen, Janne Metso, Toni Ruokolainen 593

Distributed Objects and Applications
(DOA)2005 International Conference

DOA 2005 PC Co-chairs’ Message . 612

Table of Contents – Part I XXVII

Web Services and Service-Oriented Architectures

Developing a Web Service for Distributed Persistent Objects in the
Context of an XML Database Programming Language

Henrike Schuhart, Dominik Pietzsch,
Volker Linnemann . 613

Comparing Service-Oriented and Distributed Object Architectures
Seán Baker, Simon Dobson . 631

QoS-Aware Composition of Web Services: An Evaluation of Selection
Algorithms

Michael C. Jaeger, Gero Mühl, Sebastian Golze 646

Multicast and Fault Tolerance

Extending the UMIOP Specification for Reliable Multicast in CORBA
Alysson Neves Bessani, Joni da Silva Fraga,
Lau Cheuk Lung . 662

Integrating the ROMIOP and ETF Specifications for Atomic Multicast
in CORBA

Daniel Borusch, Lau Cheuk Lung, Alysson Neves Bessani,
Joni da Silva Fraga . 680

The Design of Real-Time Fault Detectors
Serge Midonnet . 698

Communication Services (Was Messaging and
Publish/Subscribe)

A CORBA Bidirectional-Event Service for Video and Multimedia
Applications

Felipe Garcia-Sanchez, Antonio-Javier Garcia-Sanchez,
P. Pavon-Mariño, J. Garcia-Haro . 715

GREEN: A Configurable and Re-configurable Publish-Subscribe
Middleware for Pervasive Computing

Thirunavukkarasu Sivaharan, Gordon Blair,
Geoff Coulson . 732

Transparency and Asynchronous Method Invocation
Pierre Vignéras . 750

XXVIII Table of Contents – Part I

Techniques for Application Hosting

COROB: A Controlled Resource Borrowing Framework for Overload
Handling in Cluster-Based Service Hosting Center

Yufeng Wang, Huaimin Wang, Dianxi Shi, Bixin Liu 763

Accessing X Applications over the World-Wide Web
Arno Puder, Siddharth Desai . 780

Exploiting Application Workload Characteristics to Accurately
Estimate Replica Server Response Time

Corina Ferdean, Mesaac Makpangou . 796

Mobility

Automatic Introduction of Mobility for Standard-Based Frameworks
Grègory Häık, Jean-Pierre Briot, Christian Queinnec 813

Empirical Evaluation of Dynamic Local Adaptation for Distributed
Mobile Applications

Pablo Rossi, Caspar Ryan . 828

Middleware for Distributed Context-Aware Systems
Karen Henricksen, Jadwiga Indulska, Ted McFadden,
Sasitharan Balasubramaniam . 846

Timely Provisioning of Mobile Services in Critical Pervasive
Environments

Filippos Papadopoulos, Apostolos Zarras, Evaggelia Pitoura,
Panos Vassiliadis . 864

Mobility Management and Communication Support for Nomadic
Applications

Marcello Cinque, Domenico Cotroneo, Stefano Russo 882

Platform-Independent Object Migration in CORBA
Rüdiger Kapitza, Holger Schmidt, Franz J. Hauck 900

Author Index . 919

Evaluation of Three Approaches for CORBA
Firewall/NAT Traversal�

Antonio Theophilo Costa, Markus Endler, and Renato Cerqueira

PUC-Rio - Catholic University of Rio de Janeiro
{theophilo, endler, rcerq}@inf.puc-rio.br

Abstract. Applications that use CORBA as communication layer often
have some restrictions for multi-domain deployment. This is particularly
true when they have to face firewall/NAT traversal. Furthermore, nowa-
days there isn’t a well-accepted unique or standardized solution adopted
by all ORBs, compelling applications using this middleware to use pro-
prietary solutions that sometimes do not address the environment re-
strictions in which they are deployed (e.g. impossibility to open firewall
ports). This work presents and compares three solutions for firewall/NAT
traversal by CORBA-based distributed applications, each one suitable
for a specific situation and exploring its advantages. Examples of such
situations are the possibility of opening firewall ports or the possibility
of starting a TCP connection to the outside network.

1 Introduction

From its beginning, the CORBA specification [Group, 2004a]
[Henning and Vinoski, 1999], [Bolton and Walshe, 2001] was designed aim-
ing to offer to developers a reduction of the complexity of developing distributed
object-oriented applications. However, in the meantime the Internet has seen a
vertiginous growth in the number of hosts and users, and unfortunately, also a
growth of misuse and attacks to networks and the need to protect them. One of
these countermeasures has been the extensive use of firewalls [Tanenbaum, 2003]
to control in-bound and out-bound traffic to/from a protected network.

So far, firewalls and CORBA applications have coexisted quite well since the
latter are usually deployed either in a single administrative domain, or only
among domains of partner institutions/companies. However, problems occur
when they are required to cross network barriers. The reason is that firewall/NAT
crossing conflicts with following two CORBA features: location transparency and
peer-based communication model [Group, 2004b].

The first feature allows clients to be unaware of the exact localization of a
server object when making a remote invocation to it. These server objects can
change their location without breaking existing references to them. Although
this feature can be seen as a simplification from the viewpoint of the application
developer, for firewall traversal this is a great problem since firewalls usually
� This work is supported by a grant from CNPq, Brazil, proc. # 550094/2005-9.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 923–940, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

924 A.T. Costa, M. Endler, and R. Cerqueira

control in-bound traffic through a set of rules controlling which address-port
pairs are allowed to be reached. To enable a change of server object location,
the firewalls rules would have to be updated, so that the permission to cross the
network boundaries would work.

The peer-communication model also conflicts with deployment of firewalls
because it incurs into a high number of servers that consequently would require
a great number of firewall rules. However, this turns out to be an unacceptable
administrative burden, and would also significantly reduce the communication
performance across the firewall. With CORBA this problem arises when there
are a high number of ORBs deployed in the internal network (objects inside a
single ORB often share a pair address/port).

Yet another problem related to inter-domain CORBA applications happens
when the internal network uses NAT 1 [Tanenbaum, 2003]. This service creates
an isolated IP address space inside the network and prohibits these addresses to
be used in the external network. When an internal host has to send messages
to the outside network, an element (usually the firewall) maps their local ad-
dresses to a few public addresses belonging to the administrative domain of the
organization. The problem arises when a CORBA object that resides in a NAT
network exports its IOR [Henning and Vinoski, 1999]. In the IOR the NAT ad-
dress specified at IIOP profile doesn’t make sense in the external network since
it is not a public address, and cannot be used for routing.

This paper describes our work attempting to address the problem of fire-
wall/NAT traversal by CORBA applications, which was driven by the following
implicit requirements of acceptable solutions:

– it must not burden the firewall administration (if possible even do not require
any configuration);

– as much as possible, it must be easy to configure and be transparent to the
application developer;

– it must not have significant negative impact on the application performance.

Thework is inserted in the scope of InteGradeProject [Goldchleger et al., 2003]
which is a middleware for grid computing. It usesCORBAasmiddleware and needs
the firewall/NAT traversal capability.

In our work we proposed, implemented and evaluated three possible solu-
tions to this problem, where each of them assumes specific situation (or de-
gree) of firewall configurability. The remainder of the paper is organized as
follows: Section 2 presents the three proposals and Section 3 discusses imple-
mentation details of each proposal. Section 4 contains our evaluation of the
three approaches and presents some results of our tests analyzed. In Section 5
we survey related work in this topic, and compare them with the proposals pre-
sented here. Finally, in Section 6 we draw some concluding remarks and future
work.

1 Network Address Translation.

Evaluation of Three Approaches for CORBA Firewall/NAT Traversal 925

2 Firewall/NAT Traversal Proposals

In networks protected by firewalls/NAT, distributed applications can face dif-
ferent scenarios of access permissions to the outside network. These can range
from the plain possibility of opening TCP connections to the outside network
to the total prohibition of establishing any kind of connection except HTTP
connections through a proxy.

Similarly, network security policies (and the negotiation willingness of network
administrators) vary a lot. In some cases, it is relatively easy to get a single port
at the firewall opened, but in many cases such concession is extremely difficult.

In the following we describe three approaches for CORBA firewall/NAT
traversal, each of them being suited to a different level of network access per-
mission. The idea is that the application deployer should be able to choose the
most appropriate alternative and configure her application accordingly using an
XML configuration file (described in Section 3.1).

2.1 OMG Approach

The first approach is based on the OMG specification for CORBA firewall traver-
sal [Group, 2004b] presented at Section 5.1. It addresses the situations where the
server object is not allowed to receive connections from the outside network, or
stated the other way round, the client ORB is disallowed to create connections
to any host in a foreign protected network.

This approach requires a single port to be opened at the firewall, which is
used to drain all the IIOP traffic crossing the network boundaries. Within the
protected network, all this in-bound traffic is directed to an application proxy
[Group, 2004b], which listens at the opened firewall port and is responsible for
forwarding these messages to the intended host. Similarly, all out-bound IIOP
traffic is first routed to the application proxy which will use the opened IIOP
port to send the messages to its final destination. Hence, a single port needs to be
opened at the firewalls, which can be shared by several applications (Figure 1).

When a server object is to be deployed, it must somehow advertise the exis-
tence of its application proxy. According to the specification, this is done through
a tagged component which is to be added to the IIOP profile of the object’s IOR
and which contains references to all intermediaries (i.e. proxies) between the
external network (e.g. Internet) and the object ORB, including itself. Thus, in
the simplest and more common case, it would include only a reference to one
application proxy and the ORB. When the client ORB receives this IOR it has
to identify this tagged component and create a GIOP NegotiateSession message
mentioning all the elements between itself and the server object ORB, includ-
ing the server object ORB and any other intermediary, excluding itself. This
message is then sent sequentially to all of the intermediaries mentioned in the
IIOP profile, from the first to the last before the server object (i.e. the server
application proxy). If the message succeeds in reaching this last element, it will
send a reply to the client ORB announcing that the client is allowed to send
normal GIOP messages (Request, Reply, . . .).

926 A.T. Costa, M. Endler, and R. Cerqueira

Fig. 1. OMG Approach

In addition, in this approach both the server and client must inform their
ORBs of the existence of an eventual application proxy. This is done through a
XML configuration file (see Section 3.1) which contains all information needed
to build the tagged component and the GIOP NegotiateSession message, by the
object ORB and the client ORB, respectively.

This solution has the advantage enabling the interoperability among different
ORBs that follow the OMG standard. However, the major drawbacks are the
need of a firewall configuration and that the client ORB must be able to properly
recognize and handle these new IIOP elements added by the specification.

2.2 TCP Proxy Approach

This approach is intended for server objects that cannot receive connections
from elements located outside network, but which may create TCP connections
with them.

The main idea is to deploy a proxy (from now called TCP proxy, due to the
specific transport protocol used) at the outside network and make the object
ORB within the protected network connect to it at startup and keep this con-
nection as long as it wishes to remain reachable from the outside network. The
object ORB sends a registration message to the TCP proxy for each CORBA ob-
ject exported, and receives an IOR to be published. This IOR contains a proxy’s
endpoint, and every client using this IOR contacts the proxy as if it were the ob-
ject ORB. The proxy then forwards the request to the destination ORB through
the TCP connection opened at ORB startup. Through this connection it also re-
ceives the replies for the requests, and forwards them to the intended client ORB
(see Figure 2). In this figure, the arrows labeled with 1 show the connections
opened by object ORBs at startup, while the arrow labeled with 2 represent the
connection made by a client ORB after it has received the object’s IOR.

Two kinds of connections to the proxy are made by the object ORB. The
first one is a short-lived connection created when the ORB needs to register an

Evaluation of Three Approaches for CORBA Firewall/NAT Traversal 927

Fig. 2. TCP Proxy Approach

object at the proxy. It is used only for sending the registration message and
receiving of the reply containing the IOR to be published.

Hence, during the ORB lifetime many such connections may be made. The
second type is a long-lived connection that is made after the first successful
object registration. It will be used to receive/send the requests/replies for the
objects that have already been or (will be) registered. After the initial hand-
shaking, normal GIOP messages are sent through this single connection shared
by all objects. In what follows, we will call them registration connection and data
connection, respectively.

Apart from the fact that a registration must be done at each CORBA object
creation, the remaining processing is transparent to the object ORBs: after the
the data connection is opened, all request processing is done as if this connec-
tion were a normal ORB listen connection with normal GIOP messages passing
through it. From the client ORB perspective this is also totally transparent, and
no modification whatsoever is required.

An important issue concerns the request IDs used in GIOP Request and Reply
messages. According to the CORBA specification [Group, 2004a] this field is used
to match requests and replies messages sent over the same connection, and it is
the client’s responsibility to assign ids correctly in order to avoid ambiguities, e.g.
ids for requests which have been canceled, or which have pending replies, must
not be reused. Since in this approach, the proxy plays the role of a client of the
object ORB and forwards requests, request ids sent by the original clients cannot
be considered. This is because these ids will be sent over the same data connection
(between the proxy and the object ORB) and may cause ambiguities both at the
server ORB and the proxy. Hence, the proxy must generate new request IDs and
keep a mapping between the original and the new IDs to replace the new ID with
the original ID in reply messages forwarded to the corresponding client ORB.

The main advantage of this approach is that it does not require any fire-
wall/NAT configuration, as long as a connection to the outside network can be
made and sustained. Other positive points are the transparency to clients and
the ease to modify the object ORB to support this approach (i.e. once the data

928 A.T. Costa, M. Endler, and R. Cerqueira

connection is open, it is treated as a trivial GIOP listen connection). The main
drawback is its lack of scalability at the proxy, as a connection must be kept
with each object ORB, but the number of connections are usually limited by the
underling operational system.

2.3 HTTP Proxy Approach

The third approach serves server objects in protected networks that can neither
get connections from elements at the outside network, nor create TCP connec-
tions with them, but where the only allowed connectivity to the external network
is by using HTTP protocol.

Similarly to the TCP Proxy (cf. Section 2.2) in this case a proxy (HTTP
Proxy2) is also deployed on the external network which will be contacted by the
client ORBs as if it were the CORBA object owner. Because the object ORBs
have the above mentioned access restriction, all its communication with the
proxy will use polling to the HTTP Proxy. Thus, in this approach object ORBs
send messages encapsulated in a HTTP request and receive the corresponding
HTTP reply containing the data requested by the encapsulated messages.

The first thing an object ORB must do is to register one or more CORBA
objects at the proxy by sending a HTTP request containing these registration
messages and receiving a HTTP reply with the object’s IORs to be exported.
The IOR created by the proxy will contain its (proxy) endpoint so that the
requests can be directed to it. When the proxy receives requests, it will store
them and wait for another HTTP request from the object ORB that registered
the CORBA object. Once this HTTP request arrives, the stored GIOP Requests
will be piggybacked on the HTTP reply sent to the ORB. In addition to object
registration request, the object ORB can also send three more types of message:
Remove, Reply and Polling. The first is a request to remove an object registry at
the proxy; the second is intended to carry a GIOP Reply of a previously received
GIOP Request. The third kind of message is used to ask the proxy whether it has
some GIOP Requests messages stored for the object. The Polling message thus
aims at implementing a periodic and continuous inspection of newly arrived
GIOP Requests. The polling periodicity (i.e. time interval) used by the ORB
must be set in the configuration file (cf. Section 3.1).

The proxy can send the following two types of messages to the object ORB:
RegisterReply and Request, where the former one acknowledges a previously
received register message, while the latter contains a GIOP Request received by
the proxy from a client ORB.

The HTTP messages can hold any number of encapsulated messages: a HTTP
request can have in its body any combination of the four previously described
message types, and the HTTP reply may have any combination of RegisterReply
and Request messages. This has the advantage of reducing the number of HTTP
messages exchanged between the proxy and the object ORB and of reducing the
latency of the GIOP request handling.

2 The name HTTP Proxy is due to the use of HTTP as transport protocol.

Evaluation of Three Approaches for CORBA Firewall/NAT Traversal 929

As with the TCP Proxy approach, the HTTP Proxy also cannot directly use
the request IDs sent by the client ORBs and will generate new request IDs and
map them to the original IDs in other to properly forward the replies.

The main advantages of this approach are that it neither requires firewall/NAT
configuration (only the “usual” HTTP connectivity), nor any specific client ORB
configuration. Of course, its main disadvantage is the HTTP polling. Depending
on its periodicity polling either causes waste of network bandwidth, or decreases
the applications’ responsiveness. Yet another disadvantage is that it requires
more adaptations than the TCP Proxy Approach at the object ORB level (see
Section 3.4).

3 Implementation

In this section we discuss some issues related to the implementation of the ap-
proaches described in Section 2. In our implementation we used a lightweight
ORB called OiL [Cerqueira et al., 2005] that is written in the scripting language
Lua [Ierusalimschy, 2003] [LUA, 2005]. Like OiL, all the proxies are written in
Lua. We start describing the XML configuration file, which is common to all ap-
proaches, and then explain the implementation of each approach in some detail.

3.1 Configuration File

In order to deploy a CORBA application that should be able to traverse fire-
wall/NAT, the application developer must write a configuration file in XML. The
ORB is informed about the configuration file path through the global variable
FIREWALL TRAVERSAL CONF FILE.

The XML file has a root element called firewall-traversal with a single
mandatory attribute called choice. This attribute indicates which approach is
to be used, and can assume the values omg or proxy, where the latter represents
both the TCP and the HTTP proxy approaches. If the OMG approach is chosen,
child elements inbound-path and outbound-path will indicate if an in-bound
or out-bound (or both) path need to be traversed, and their child elements
will describe each host of the corresponding path. If proxy has been selected,
a mandatory child element named proxy defines the kind of proxy (TCP or
HTTP) and other parameters, such as host address, port and pooling interval
(in case of a HTTP proxy), as shown in the following example of a HTTP proxy
configuration file.

<?xml version=’1.0’?>
<!DOCTYPE firewall-traversal PUBLIC "Firewall Traversal
- LAC PUC-Rio" "http://www.lac.inf.puc-rio.br/~theophilo/
firewallTraversal/firewallTraversal.dtd">
<firewall-traversal choice="proxy">
<proxy type="http" address="145.72.24.240"

port="10012" polling-interval="1"/>
</firewall-traversal>

930 A.T. Costa, M. Endler, and R. Cerqueira

3.2 OMG Approach

To implement the OMG Approach, (cf. Section 2.1), both the server and client
ORB required some modifications so that they were able to handle the new data
structures defined by OMG. Moreover, an application proxy had to be developed
in order to enable access to CORBA objects from the external network.

ORB. As explained in Section 2.1, the traversal information is carried in each
IOR through a tagged component in the IIOP profile. Since the tagged compo-
nent sequence (IOR field where the tagged components are stored) was defined
in IIOP version 1.1, the ORB must support it and also be able to handle the
elements defined in [Group, 2004b]. Since OiL didn’t have this support from the
beginning, we had to incorporate this feature in this ORB.

In the server-side ORB the only required modification was the creation of
the tagged component in the IIOP profile of the IOR. At each CORBA object
creation the ORB checks for any firewall traversal option and whether the OMG
Approach has been chosen. If this is the case, it reads some information from
the configuration file and uses it to create the tagged component. After that, all
the further processing is done as usual, and the server ORB will not be able to
distinguish if a request comes directly from a client or through the application
proxy.

The client-side ORB has to be modified as follows: before sending a remote
invocation message, it first has to check if the object’s IOR contains a tagged
component for firewall traversal, and if this is the case, a NegotiateSession mes-
sage has to be sent to the first element between the two. Only after a successful
reply, the normal request message can be sent. To avoid the building of the path
between the client and the server at each remote invocation, the client-side ORB
maintains a cache, saving the time of the IIOP profile and XML file configuration
analysis.

Application Proxy. The application proxy was developed with the purpose of
supporting multiple concurrent clients and not blocking on any I/O operation,
i.e. avoiding the blocking at any accept or receive operation [Stevens, 1998].
The concurrent handling of clients was implemented using Lua coroutines
[de Moura et al., 2004] [Ierusalimschy, 2003]. Figure 3 depicts the coroutines
within the proxy and their creation order: a main coroutine called dispatcher
is responsible for choosing the next coroutine to be executed, which also creates
and starts a second coroutine called listenClient which is responsible for listening
to new connections from client ORBs. Whenever a new connection is accepted
the listenClient coroutine creates and starts a new treatClient coroutine, which
will be responsible for handling all the communication between two ORBs, after
which it will be destroyed.

Both the listenClient and the treatClient coroutines return control to the dis-
patcher whenever they block at a network I/O operation. It is the dispatcher’s
responsibility to resume each such coroutine as soon as data arrives at the cor-
responding connection.

Evaluation of Three Approaches for CORBA Firewall/NAT Traversal 931

Fig. 3. Application Proxy Coroutines

Problems Encountered. When developing the OMG Approach we encoun-
tered some problems due to the omission of some points in the OMG standard.
The first problem is related to the GIOP NegotiateSession message. Although
the firewall traversal specification mentions its existence, its definition is a refer-
ence to a yet unpublished section at [Group, 2004a]. Since the IDL definition of
this message could not be found, we created our own simple one, shown below:

struct NegotiateSession_1_3 {
IOP::ServiceContextList service_context;

}

The other omission problem relates to the existence or not of the service
context entry FIREWALL PATH in the GIOP messages Request and Reply. The
existence of this entry (created and used at NegotiateSession message) in these
messages would permit the reutilization of already opened connections among
proxies.

3.3 TCP Proxy Approach

To implement TCP Proxy Approach (cf. Section 2.2) we had to modify the server
ORB and to develop a TCP proxy. As this approach is transparent to the client,
no changes in its ORB were necessary.

ORB. The only modification required on the server-side ORB was to make it
register newly created CORBA objects at the proxy. At the first time (i.e. first
object registration) a data connection is also initialized and inserted in the list of
connections used for GIOP message listening. Thereafter, all processing is done
as usual. In order to give the application developer access to the object’s IOR
exported and used at external network, a new method called get ior exported
was included to the servant returned by the ORB.

Proxy. Like the OMG Application Proxy (Section 3.2), the TCP Proxy was
also implemented to handle concurrent requests using Lua coroutines. Figure 4
shows the different types of coroutines and their creation order. Here there is also
a main coroutine called dispatcher which is responsible to schedule the execu-
tion of the other coroutines. Its first action is to create two auxiliary coroutines

932 A.T. Costa, M. Endler, and R. Cerqueira

Fig. 4. TCP Proxy Coroutines

called listenServer and listenClient, responsible for listening to new server and
client ORBs connections requests, respectively. Whenever a new connection is
established, it creates a new coroutine (treatServer and treatClient coroutines),
responsible for handling the communication with a server or a client ORB, re-
spectively.

The treatServer coroutine is in charge of handling either a server ORB request
to register an object at the proxy, or to open a data connection through which
GIOP messages will pass. In the first case, the coroutine is destroyed after the
registration is done. In the latter case, the coroutine remains during the lifetime
of the data connection, listening to new GIOP Reply messages and forwarding
them to the correct client.

On the other hand, the treatClient coroutine just waits for GIOP Request
messages, manipulates and forwards them to the correct server ORB. It is de-
stroyed when either the client closes the connection or sends a GIOP CloseCon-
nection message.

3.4 HTTP Proxy Approach

As the TCP Proxy Approach, in this one we have needed to modify the server
side ORB and to build the proxy to validate the solution.

ORB. The server side ORB modifications required in this approach are more
complex than the ones demanded in the TCP Proxy approach. At each CORBA
object creation, a registration must be done using HTTP protocol and the one
defined in the Section 2.3. The complexity comes out at the inspection for new re-
quests. In the TCP Proxy approach it suffices to add the data connection opened
to a list of connections that would go on a select operation [Stevens, 1998] due to
the fact that only GIOP messages are exchanged. Now a different approach must
be done because requests may arrive encapsulated in HTTP reply messages.

The original request listening process of OiL is very simple: the server appli-
cation calls a function called lo handleRequest that will listen for one GIOP
Request and reply it. If the application want to treat a infinite number of re-
quests it can put this call on an infinite loop. At ORB level, this function calls a
select operation on a list of connections to get a single request. This is the point
that must be modified: now the select operation on normal listening connections

Evaluation of Three Approaches for CORBA Firewall/NAT Traversal 933

must be interleaved with HTTP polling to the HTTP Proxy. The polling in-
terval specified at configuration file (Section 3.1) must be honored and because
of this the select operation must have a timeout based on it. Other important
point to be noticed is that this HTTP polling can bring more than one request,
which compels the ORB to store the additional requests in order to be used in
subsequent invocations of the lo handleRequest function.

Proxy. The HTTP Proxy built to validate the solution is very similar to the
one developed in the Section 3.3. The architecture presented in Figure 4 is the
same of the HTTP Proxy: there is a coroutine responsible for the scheduling
of the others (dispatcher); two coroutines responsible for server and client lis-
tening (listenServer and listenClient); and others coroutines responsible for the
treatment of a single server or client (treatServer and treatClient).

4 Validation

Once implemented, we evaluated and compared the three approaches by making
some performance and scalability tests. For those tests, we run the ORB clients
on PCs (Intel Pentium IV 2,80 GHz with 1 GB RAM and running Linux) hosted
in two of our Labs (i.e. university sub-networks), and where each client made
invocations to a different server object. The server objects were executed on 13
machines (Intel Pentium IV 1,70 GHz with 256 MB RAM and running Linux)
of our graduate student lab (LabPos), which is protected by a firewall blocking
in-bound connections. The two sets of machines are interconnected by 100 Mbps
network with three routers between them.

4.1 Delay

In the first test, we measured the round-trip-delay incurred by each approach
when invoking firewall-protected objects. We created five firewall traversal con-
figurations, one for testing both the OMG Approach and the TCP Proxy Ap-
proach, two for the HTTP Approach with polling intervals O and 1 second, and
finally, one with without a proxy, i.e. by configuring the ORB port manually
at the firewall. This fifth configuration, called Direct, was used as a reference
measure, to evaluate the delay introduced by each proxy approach. For each
configuration, we made approximately 5.000 invocations, and obtained the re-
sults shown in Table 1, where columns Lower, Higher and Mean show the lowest,
highest and the mean values (in seconds) of the invocations.

As can be seen from the data, the fastest approach was the TCP Proxy Ap-
proach, whose delay on average has only 0.0022 seconds (59%) higher, and in
some cases even lower delay than the Direct configuration. Compared to the
OMG Approach, the main advantage of the TCP Proxy is the smaller number
of TCP connections required, and the fewer number of messages exchanged at
each invocation. Regarding the number of connections, in the OMG Approach, a
connection between the server object ORB and the proxy has to be established

934 A.T. Costa, M. Endler, and R. Cerqueira

Table 1. Invocation Delay Tests Results

Measures
Approach Lower Higher Mean Std. Deviation
Direct 0.0023 0.0697 0.0037 0.0017
OMG 0.0083 0.3707 0.0351 0.0518
TCP Proxy 0.0036 0.0605 0.0059 0.0011
HTTP Proxy (0s) 0.0073 0.0384 0.0122 0.0024
HTTP Proxy (1s) 0.8762 1.0235 1.0127 0.0139

while in the TCP Proxy Approach such connection has already been opened
before at object registration (see Section 2.2). One can say that the TCP Proxy
Approach trades scalability (i.e. less number of simultaneous object handled by
the proxy due to a limited number of connections allowed) for a better per-
formance. Concerning the number of messages the OMG Approach is also less
efficient than the TCP Approach, since the GIOP protocol requires Negotiate-
Session messages to be sent and received between the client and the application
proxies. One should also notice the larger variation of the delay in the OMG
Approach, expressed by the standard deviation.

Even the HTTP Proxy Approach, using the 0s polling interval, has slightly
superior performance than OMG Approach, and presents less variation of delay.
However, one should not forget that the HTTP Approach has a greater impact
on network bandwidth due to the HTTP polling process.

In spite of the TCP Proxy Approach presenting up to 65% higher invocation
times, when compared with the Direct configuration, the absolute value is still
quite low. Moreover, for larger GIOP messages this overhead tends to become
even smaller, for example, if the remote method had more than just an integer
parameter and an integer result, as with our tests. Actually, we believe that more
tests would be necessary to evaluate how this overhead varies with the kind of
method being invoked.

4.2 Scalability

This test suite aimed at measuring the scalability of the approaches, i.e. how
the delay caused by the proxies varies with the number of simultaneous pairs
client/server interactions. The test scenario consisted of following configuration:
the server objects were deployed on the 13 machines (one object for each ma-
chine) of our graduate student lab sub-network (LabPos), which is protected
by a firewall and connected via one CISCO 7204 router to the network of our
other research lab, where the clients were deployed on a 54-node cluster (In-
tel Pentium IV 1,70 GHz with 256 MB RAM and running Linux). Each of the
clients executed on one cluster machine and made remote invocations to one of
the servers. We measured the mean round-trip delay for up to 54 simultaneous
client invocations (1 to 54 clients accessing 13 servers uniformly distributed) and
the results of this test are depicted in the Figure 5.

Evaluation of Three Approaches for CORBA Firewall/NAT Traversal 935

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

in
vo

ca
tio

n
tim

e
(s

)

number of clients

Application Proxy

Concurrent
Sequential

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60

in
vo

ca
tio

n
tim

e
(s

)

number of clients

TCP Proxy

Concurrent
Sequential

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50 60

in
vo

ca
tio

n
tim

e
(s

)

number of clients

Proxy HTTP

Concurrent
Sequential

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60

in
vo

ca
tio

n
tim

e
(s

)

number of clients

Comparision Among the Proxies

Applicattion Proxy
TCP Proxy

HTTP Proxy

Fig. 5. Scalability Tests Results

The graphics of Figures 5.a, 5.b and 5.c show the delay measurements for the
proxies of the OMG, TCP Proxy and HTTP Proxy Approach, respectively (the
latter using a polling interval of 1 seconds). Each graphic compares the results
obtained with a hypothetical sequential proxy, i.e. a proxy that handles client
requests one at a time. As expected, in all approaches the concurrent version
shows a better performance than the sequential processing. But it is interesting
to notice also the reduction of the invocation delay of the HTTP Proxy with
the increase of the number of clients (Figure 5.c). This starts when the client
number is 14, and can be explained by the piggyback feature used in HTTP:
once there is more than one client per server (at 14 clients) the client requests
starts to arrive at the servers not by a polling reply, but as piggybacked on a
GIOP Reply sent over HTTP (see Section 2.3). This seems to be the main cause
of the delay reduction. The small delay remains until the proxy starts to become
saturated with requests, which in our tests happened with approximately 32.
Since in our tests we had 13 servers and a variable number of clients, the curve
seems to indicate that the lowest delay is obtained when the client/server ratio
is between 2 and 2.5. However, also here we believe that more tests should be
made in order to obtain a better understanding of the HTTP proxy saturation
behavior.

936 A.T. Costa, M. Endler, and R. Cerqueira

The Figure 5.d compares the delays with the three proxies, showing that
the TCP proxy offers smallest increase of delay, albeit the usual server-side
connectivity limitations. However, the small difference between the delay increase
of the HTTP and the TCP approaches for large number of clients suggests
that the HTTP approach is a reasonable alternative when the server ORBs are
not allowed to open out-bound TCP connections. Moreover, the results suggest
that the HTTP Proxy is better already than the OMG Approach when the
client/server ratio is 1.9 or more.

5 Related Work

This section briefly describes related work on firewall traversal for CORBA ap-
plications, some of which inspired the present work.

5.1 OMG CORBA Firewall/NAT Traversal Specification

In 2004 the OMG published the CORBA Firewall Traversal Specifica-
tion [Group, 2004b], which was used as the basis for our OMG Approach (Sec-
tion 2.1).

The standard’s basic idea is to extend the GIOP/IIOP protocol with data
structures that enable server objects to provide information to clients and proxies
on how to open connections to reach them. According to the spec, server objects
that want to be reachable by external clients have to put a firewall traversal
component in their IOR’s tagged components sequence [Group, 2004a]. This
is a data structure that contains information about the endpoints of all hosts
between the server ORB (inclusive) and the external network (e.g. Internet)
which are be addressed in order to make the traversal. When a client gets such
an IOR it has to identify the firewall traversal component and build a GIOP
NegotiateSession message, which has a service context entry also holding the
information about all the hosts on the path between the client and server ORB.
The client then sends this message to the first element in the path, which then
gets forwarded by the hosts to the next ones on the path, until it reaches the last
proxy before the server ORB. If it arrives there, this last proxy positively replies
the NegotiateSession message to the previous proxy, which is then forwarded
back and all the way along reverse path. When this reply arrives at the client
the GIOP Requests/Reply messages can be exchanged normally.

This specification also provides others features, such as the support for secure
transport protocols, which so far we have not handled in our work.

5.2 JXTA

The JXTA Project [Brookshier et al., 2002] [Gradecki, 2002] [JXTA, 2005] is a
open source worldwide project created by Sun Microsystems intended to of-
fer an infrastructure for peer-to-peer application development. It consists of a
set of XML-based protocols that provide system and programming language

Evaluation of Three Approaches for CORBA Firewall/NAT Traversal 937

independence. The JXTA peers form an ad-hoc network and information is ex-
changed using some peers (Rendezvous and Relay peers [Brookshier et al., 2002])
as providers and routers of the network.

JXTA claims to offer firewall traversal to applications that use it as the
communication layer. The solution offered is a set of public peers (Relay Peers)
accessible through HTTP protocol. After the protected peer registers itself at
one Relay Peer, the JXTA advertisement and routing engine will route the mes-
sages addressed to the protected peer to the Relay Peer at which it registered.
This Relay Peer stores the messages until the protected peer contacts it through
HTTP, using the fact that out-bound connections using this protocol are gen-
erally allowed by firewalls. The protected peers have to periodically make such
inquiry (called HTTP polling) which is used both to check for messages at the
Relay Peer and to send messages to the JXTA network.

At first, we took into consideration the idea of replacing the ORB commu-
nication layer by JXTA in order to traverse firewalls. However, our preliminary
tests showed that the delay and high frequency of failures caused by the use of
JXTA network were unacceptable. In face of this, we decided to borrow its idea
of HTTP polling and provide it as an alternative for the scenarios in which no
firewall configuration is possible at all, and TCP connections cannot be estab-
lished without using the HTTP protocol (see Section 2.3).

5.3 JacORB

JacORB [JacORB, 2005] [Brose, 1997] is a full-featured Java implementation
ORB. It provides firewall traversal through a service called Appligator, which
is a GIOP proxy supposed to be deployed inside the protected network and to
have a firewall port opened to it. It is similar to the OMG Approach described
in our work, but the JacORB online manual doesn’t make clear if the external
client has to be configured in order to become aware of Appligator’s existence,
or if the latter modifies the server object’s IOR in order not to require the client
configuration. If the client has to be configured, then the OMG Approach is a
better option regarding to interoperability. Moreover, JacORB’s Appligator does
not provide a solution for the situation where the firewall configuration is not
possible.

NAT support is offered through an application called fixior that patches
the Appligator’s IOR, inserting the firewall endpoint.

5.4 ICE

The ICE - Internet Communication Engine [Henning, 2004] is a communication
middleware similar in concept with CORBA, but not CORBA-compliant. It
provides a solution for firewall/NAT traversal through a service called Glacier
[Henning and Spruiell, 2005] that may also be used as the firewall of a network.
Similarly to our work, ICE doesn’t require any application code modification,
but only a configuration file. The main idea is to configure both the client and
the server to use this service, which will work as a broker between both, acting

938 A.T. Costa, M. Endler, and R. Cerqueira

as a client to the server, and vice-versa. It also requires firewall configuration,
and the client has to be aware of the Glacier’s existence.

5.5 Xtradyne

Xtradyne is a company that has a commercial product called I-DBC (IIOP
Boundary Controller) [Technologies, 2005], that offers firewall/NAT traversal to
applications. In fact, it is a firewall, and its solution is to patch the IOR with
an endpoint opened for IIOP traffic so that client invocations are re-directed
to the firewall, which in turn contacts the server. Since there is few technical
information available, it is not clear how its protocol between the protected
application objects and the firewall works, in order to map the outside requests
to the intended recipients. An interesting feature of this firewall is its ability to
identify IORs sent as CORBA parameters and to modify them accordingly in
both directions.

This solution also requires firewall configuration, and does not require client
awareness of the firewall’s presence.

6 Conclusions and Future Work

This work has presented the design, implementation and evaluation of three
solutions for CORBA-based application firewall/NAT traversal. Through several
tests we have demonstrated their viability and also discussed the suitability of
each approach for specific degrees of firewall/NAT permeability.

In spite of being less efficient than the TCP Proxy Approach, and in some
scenarios also worse than the HTTP Approach, the solution based on the OMG
standard demonstrated to be a practicable approach, specially when the client
is not allowed to make an out-bound connection. An interesting future work on
this approach is to support secure transport protocols, as already defined by the
OMG.

The TCP Approach turned out to be the most efficient solution developed,
and also the easiest to implement since it required the smallest number of server
ORB modifications. Its premise - that out-bound connections are allowed - is
quite common, and as no firewall configuration is required, this approach repre-
sents a very good alternative. For the cases where high performance is a strong
requirement, this solution is definitely the best. However, its main drawback is
a possibly limited number of simultaneous connections at the proxy. A future
work on this approach could be to modify the protocol between the server ORB
and the proxy, allowing the latter to terminate unused data connections and
enabling the server ORB to recover from this action when desired.

The HTTP Approach gave the most interesting result. It was developed aim-
ing to work in the most restrictive scenario, i.e. where just out-bound connections
through HTTP are allowed. Its good performance, due to the extensive use of
the HTTP piggybacking feature, has proven this solution to be more efficient
than expected, and in some situations even better than the approach based in the

Evaluation of Three Approaches for CORBA Firewall/NAT Traversal 939

OMG specification. An interesting future work in this direction would be to make
it compatible with the presence of Web proxy caches (e.g. Squid [Squid, 2005])
and enable clients in a protected network to use the proxy to send/receive GIOP
Request/Reply messages.

As a final remark, it should be clear that more tests need to be done with
different message sizes, method parameter types and network configurations, so
that we are able to pinpoint the specific implications of each approach on the
invocation delay, the network overhead, and the scalability. However, we believe
that in any case a customizable, multi-solution, rather a one-fits-all approach
should be pursued.

References

[Bolton and Walshe, 2001] Bolton, F. and Walshe, E. (2001). Pure CORBA: A Code-
Intensive Premium Reference. Sams.

[Brookshier et al., 2002] Brookshier, D., Govoni, D., Krishnan, N., and Soto, J. C.
(2002). JXTA: Java P2P Programming. Sams.

[Brose, 1997] Brose, G. (1997). Jacorb: Implementation and design of a java orb. In
Procs. of DAIS’97, IFIP WG 6.1 International Working Conference on Distributed
Aplications and Interoperable Systems, Cottbus, Germany.

[Cerqueira et al., 2005] Cerqueira, R., Maia, R., Nogara, L., and Mello, R. (2005). Oil
- (orb in lua). http://luaforge.net/projects/o-two/ (Last Visited in 06/06/2005).

[de Moura et al., 2004] de Moura, A. L., Rodriguez, N., and Ierusalimschy, R. (2004).
Coroutines in lua. Journal of Universal Computer Science, 10(7):910–925.

[Goldchleger et al., 2003] Goldchleger, A., Kon, F., Goldman, A., and Finger, M.
(2003). Integrade: Object-oriented grid middleware leveraging idle computing power
of desktop machines. In ACM/IFIP/USENIX Middleware’2003 Workshop on Mid-
dleware for the Grid, Rio de Janeiro, Brazil.

[Gradecki, 2002] Gradecki, J. D. (2002). Mastering Jxta: Building Java Peer-to-Peer
Applications. John Wiley & Sons, Inc.

[Group, 2004a] Group, O. M. (2004a). Common object request broker architecture:
Core specification. http://www.omg.org/docs/formal/04-03-01.pdf - Version 3.0.3.

[Group, 2004b] Group, O. M. (2004b). Corba firewall traversal specification.
http://www.omg.org/docs/ptc/04-03-01.pdf - Final Adopted Specification.

[Henning, 2004] Henning, M. (2004). A new approach to object-oriented middleware.
IEEE Internet Computing, 8(1):66–75.

[Henning and Spruiell, 2005] Henning, M. and Spruiell, M. (2005). Distributed pro-
gramming with ice. http://www.zeroc.com/download/Ice/2.1/Ice-2.1.1.pdf (Last
Visited in 06/06/2005).

[Henning and Vinoski, 1999] Henning, M. and Vinoski, S. (1999). Advanced CORBA
programming with C++. Addison-Wesley Longman Publishing Co., Inc.

[Ierusalimschy, 2003] Ierusalimschy, R. (2003). Programming in Lua. Ingram (US) and
Bertram Books (UK).

[JacORB, 2005] JacORB (2005). Jacorb: The free java implementation of the omg’s
corba standard. http://www.jacorb.org (Last Visited in 06/06/2005).

[JXTA, 2005] JXTA (2005). jxta.org. http://www.jxta.org (Last Visited in
06/06/2005).

[LUA, 2005] LUA (2005). The programming language lua. http://www.lua.org (Last
Visited in 06/06/2005).

940 A.T. Costa, M. Endler, and R. Cerqueira

[Squid, 2005] Squid (2005). Squid web proxy cache. http://www.squid-cache.org/
(Last Visited in 06/06/2005).

[Stevens, 1998] Stevens, W. R. (1998). Unix Networking Programming, volume 1.
Prentice-Hall, 2 edition.

[Tanenbaum, 2003] Tanenbaum, A. S. (2003). Computer Networks. Prentice Hall, 4th
edition.

[Technologies, 2005] Technologies, X. S. I. (2005). Iiop domain boundary controller
- the corba an ejb firewall. http://www.xtradyne.com/documents/whitepapers/
Xtradyne-I-DBC-WhitePaper.pdf (Last Visited in 06/06/2005).

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 941 – 959, 2005.
© Springer-Verlag Berlin Heidelberg 2005

On the Design of Access Control to Prevent Sensitive
Information Leakage in Distributed Object Systems:

A Colored Petri Net Based Model

Panagiotis Katsaros

Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
katsaros@csd.auth.gr

http://delab.csd.auth.gr/~katsaros/index.html

Abstract. We introduce a Colored Petri Net model for simulating and verifying
information flow in distributed object systems. Access control is specified as
prescribed by the OMG CORBA security specification. An insecure flow arises
when information is transferred from one object to another in violation of the
applied security policy. We provide precise definitions, which determine how
discretionary access control is related to the secure or insecure transfer of in-
formation between objects. The model can be queried regarding the detected in-
formation flow paths and their dependencies. This is a valuable mean for the
design of multilevel mandatory access control that addresses the problem of en-
forcing object classification constraints to prevent undesirable leakage and in-
ference of sensitive information.

1 Introduction

For a secure application it is not enough to control access to objects, without taking
into account the information flow paths implied by a given, outstanding collection of
access rights. The problem is faced by the use of multilevel mandatory policies, where
users have no control and therefore they cannot be bypassed. Access to objects is
granted on the basis of classifications (taken from a partially ordered set) assigned to
objects and subjects requesting access to them.

The rigidity of these policies implies the need for a systematic design approach. In
the design of mandatory access control we aim to enforce object classification con-
straints to prevent undesirable leakage and inference of sensitive information, while
at the same time guaranteeing that objects will not be overclassified (to maximize
information visibility). The set of constraints is decided based on the restrictions of
the system’s enterprise environment and on a view of the potential information flow
paths. Our work aims to provide information regarding the system’s structure, to be
used in the design of appropriate mandatory access control.

In distributed object systems, objects interact by synchronous, asynchronous or de-
ferred synchronous messages and detection of information flow is complicated by the
presence of bi-directional information transfer between the senders and the receivers.
Information transfer from the sender to the receiver is accomplished through message
parameters, while the opposite, through message reply. An information flow does not

942 P. Katsaros

require direct message exchange between objects (indirect information flow paths).
An object acquires information only when writing to its attributes and this operation
results in one or more direct or indirect information flows.

We assume that access control is specified as prescribed by the OMG CORBA se-
curity specification. An insecure flow arises when information is transferred from one
object to another in violation of the applied security policy.

We introduce a Colored Petri Net model to detect information flow paths based on
system’s object method dependencies and the applied access control. The model was
implemented in CPN Tools ([7]), an advanced ML-based tool for editing, simulating
and analyzing Colored Petri Nets.

To detect the insecure flow paths we implement the definitions we provide to de-
termine how the applied discretionary access control is related to the secure or inse-
cure transfer of information between objects. If there is an insecure flow to an object,
we are often interested in enforcing an appropriate object classification constraint
over all (and not only the insecure) sources of information flow to that object. In that
case, we use the CPN Tools state space analysis functions to make queries regarding
the detected flow paths.

Thus, the proposed model is a static analysis tool that provides data for the system-
atic design of multilevel mandatory access control. We preferred to use Colored Petri
Net model checking and not to use Finite State Machine model checking because: (i)
Colored Petri Nets possess the expressiveness and the formal analysis capacity of a
Petri Net modeling language, (ii) they provide an explicit representation of both states
and actions and at the same time retain the modeling flexibility provided in a pro-
gramming language environment and (iii) Colored Petri Nets is a widespread model-
ing formalism with an easily accessible tool support that allows interactive simulation
in an advanced graphical environment.

Section 2 provides a detailed description of the problem under consideration. Sec-
tion 3 introduces the basic components of the information flow security model and
provides the implemented definitions that determine when an information flow path is
secure and when it is not secure. Section 4 focuses on the use of the CPN Tools state
space analysis functions to make queries regarding the detected flows. Section 5 sum-
marizes the latest related work reported in the bibliography and the paper concludes
with a discussion on the potential impact of our work.

2 Basic Definitions and Problem Statement

Distributed object systems are composed of a set of objects o1, o2, . . ., on, which in-

teract to accomplish common goals. An object’s methods io
lop , 1 ≤ l ≤ #(methods of

oi), 1 ≤ i ≤ n, are invoked by synchronous, asynchronous or deferred synchronous
method requests.

A message msg is defined as a pair (method, type), with

 type ∈ {s | synchronous invocation request}
 ∪ {drq | deferred synchronous invocation request}
 ∪ {a | asynchronous invocation request}
 ∪ {drp | deferred synchronous invocation reply}

 On the Design of Access Control to Prevent Sensitive Information Leakage 943

and

method ∈ { }U
i

i
o
l olop i) of methods(#1 | ≤≤ ∪ {read, write}

where read, write correspond to primitive synchronous messages (type = s) that are
sent by an object to itself to read or respectively update its state.

A message sequence specification MsgSeq(io
lop) for method io

lop , 1 ≤ l ≤

#(methods of oi) is a total order relation over the set

{msgs | 1 ≤ s ≤ #(messages in MsgSeq(io
lop))}

of nested method invocations, as well as read and/or write messages generated by
io

lop . For every two msgs, msgt ∈ MsgSeq(io
lop), msgs msgt if and only if msgs is

sent/received before msgt. We note that defines an invocation order that does not
necessarily coincide with the order in which method executions are completed.

To make it clear, if in MsgSeq(io
lop) holds that (jo

kop , drq) (write, s), this does

not mean that jo
kop is executed before write. However, if

(jo
kop , drq) (jo

kop , drp) (write, s)

i.e. if the reply of a deferred synchronous request to oj is received before write, then
jo

kop is executed before write. In that case, if read ∈ MsgSeq(jo
kop) and the used

credentials include the read access right for oj, then there is an information flow from
oj to oi. Moreover, oj may also be the source of additional indirect flows to other ob-

jects, if for example io
lop has been synchronously invoked by another object method.

An information flow is insecure, if the derived information is transferred to the tar-
get, in violation of the applied security policy. An information flow takes place even if
the information written to the target is not the same as the information read, but is
derived from it by executing computations.

We are primarily interested in detecting insecure flow paths and enforcing appro-
priate object classification constraints to prevent undesirable leakage of information.
However, this is not enough. It is also necessary to ensure compliance with potential
business constraints regarding undesirable inference of sensitive information. In a
service-outsourcing environment (e.g. web services) these are key concerns that have
to be satisfied. Thus, we also need to query the model about the detected “secure”
information flow paths to an object.

The design problem under consideration is addressed by the implementation of an
appropriate multilevel mandatory policy. This policy is based on the assignment of
access classes to objects and subjects and is used in conjunction with the applied
discretionary access control. Access classes in a set L are related by a partial order,
called dominance relation and denoted by ≥. The dominance relation governs the
visibility of information: a subject has read access only to the objects classified at the
subject’s level or below and is possible to perform write operations only to the objects
classified above the subject’s level. The expression x ≥ y is read as “x dominates y”.
The partially ordered set (L, ≥) is assumed to be a lattice. We refer to the maximum

and minimum elements of a lattice as (top) and (bottom). Figure 1 depicts an
example classification lattice.

944 P. Katsaros

Public

Financial
Protected
Personal

Admin

Confidential

Fig. 1. An example security lattice

In general, the security level to be assigned to an object depends on the sensitivity
of the data in its state. If an object’s state is related to publicly accessible customer
data this object might be labeled at a level such as Public. If an object’s state is
related to customer income data, this object might be labeled at a higher level, such as
Financial.

However, the design of multilevel mandatory policies can be done in a systematic
manner, based on a set of classification constraints. These constraints specify the
requirements that the security levels assigned to objects must satisfy. They are con-
straints on a mapping : {oi | 1 ≤ i ≤ n} → L that assigns to each object a security level
l ∈ L, where (L, ≥) is a classification lattice. Object classification constraints, like for
example when (i) ≥ Financial, are used to ensure that objects are assigned secu-
rity levels high enough to protect their state.

If our model detects an “insecure” information flow from oj to om, the flow will
take place only when the subjects clearance level dominates the classification of oj
and is dominated by the classification of om. In that case, the constraint (m) ≥ (j)
prevents sensitive information leakage in a low-classified object (the opposite pre-
vents the occurrence of the detected information flow in all cases). If there is also an
additional flow from os to om, both of them take place only when the subjects clear-
ance level dominates the least upper bound (lub) of the classifications of os and oj. In
that case, the constraint

lub{ (s), (j)} ≥ Financial

will ensure that both flows will take place only when the subjects clearance level
dominates a given ground level. In this way it is possible to prevent potential infer-
ence of high-classified data from low-classified objects.

The proposed model is queried regarding the “insecure” and the “secure” informa-
tion flow paths, in order to direct the specification of constraints, wherever there is a
need to prevent undesirable information leakage or information inference. This al-
lows to avoid overclassification and thus to maximize information visibility. It is then
possible to implement an appropriate mandatory policy after having solved the de-
rived set of constraints. A recently published algorithm is the one described in [3], but
it is not the only one published.

 On the Design of Access Control to Prevent Sensitive Information Leakage 945

3 The Colored Petri Net Based Model

Colored Petri Nets (CP-nets) provide us the primitives for the definition of diverse
data types (such as privilege attributes, method names, object ids and others) and the
manipulation of their data values, while retaining the expressiveness and the formal
analysis capacity of a Petri Net modeling language.

The formal semantics of CP-nets is outlined in Appendix. Model states are repre-
sented by means of places (which are drawn as ellipses). Each place has an associated
data type determining the kind of data, which the place may contain (by convention
the type information is written in italics, next to the place). The type declarations
implicitly specify the operations that can be performed on the values of the types. A
state of a CP-net is called a marking and consists of a number of tokens positioned on
the individual places. Each token carries a data value, which belongs to the type of the
corresponding place.

A marking of a CP-net is a function, which maps each place into a multi-set of to-
kens (see the Appendix) of the correct type. We refer to the token values as token
colors and to their data types as color sets. The types can be arbitrarily complex, e.g.,
a record where one field is a real, another field is a text string and a third field is a list
of integers.

CP-net actions are represented by means of transitions, which are drawn as rectan-
gles. An incoming arc indicates that the transition may remove tokens from the corre-
sponding place while an outgoing arc indicates that the transition may add tokens.
The exact number of tokens and their data values are determined by arc expressions,
which are positioned next to the arcs. Arc expressions may contain variables as well
as constants. To talk about the occurrence of a transition, we need to bind incoming
expressions to values from their corresponding types. Let us assume that we bind the
incoming variable v of some transition T to the value d. The pair (T, <v =d >) is called
binding element and this binding element is enabled in a marking M, when there are
enough tokens in its input places. In a marking M, it is possible to have enabled more
than one binding elements of T. If the binding element (T, <v =d >) occurs, it removes
tokens from its input places and adds tokens to its output places. In addition to the arc
expressions, it is possible to attach a boolean expression with variables to each transi-
tion. This expression is called guard and specifies that we only accept binding ele-
ments for which the expression evaluates to true.

The behavior of a CP-net is characterized by a set of dynamic properties:

• Bounds-related properties characterize the model in terms of the number of
tokens we may have at the places of interest.

• Home properties provide information about markings or sets of markings
to which it is always possible to return.

• Liveness properties examine whether a set of binding elements X remains
active: “For each reachable marking M , is it possible to find a finite se-
quence of markings starting in M that contain an element of X?”

• Fairness properties provide information about how often the different
binding elements occur.

946 P. Katsaros

CP-nets are analyzed, either by

• simulation,
• formal analysis methods such as the construction of occurrence graphs,

which represent all reachable markings,
• calculation and interpretation of system invariants (called place and transi-

tion invariants),
• performance of reductions which shrink the net without changing a certain

selected set of properties and
• the check of structural properties, which guarantee certain behavioral prop-

erties.

In CPN Tools, CP-nets are developed in a modern GUI-based environment that
provides interactive feedback for the model’s behavior through simulation. Colors,
variables, function declarations and net inscriptions are written in CPN ML, which is
an extension of Standard ML and for this reason employs a functional programming
style. In CPN Tools we employ simple as well as compound color sets such as prod-
uct, record, list and union color sets.

The toolset provides the necessary functionality for the analysis of simple and
timed CP-nets specified in a number of hierarchically related pages. Typical models
consist of 10-100 pages with varying complexity and programming requirements. The
companion state space tool allows the generation of the entire or a portion of the
model’s state space (occurrence graph) and the performance of standard as well as
non-standard analysis queries.

In our model, the CP-net structure depends on the system’s object method depend-
encies. These dependencies may be derived from the system’s source code with a
code-slicing tool ([11]). Taking into account that in CPN Tools the net is stored in an
XML-based format, we believe that models can be automatically generated using an
appropriate XML text generator.

3.1 The CORBA Security Model

Distributed object systems typically support a large number of objects. CORBA Secu-
rity ([13]) provides abstractions to reduce the size of access control information and at
the same time to allow fine-grained access to individual operations rather than to the
object as a whole. Access policies are defined based on privilege and control attrib-
utes and access decisions are made via the standard access decision interface that is
modeled by the CP-net we present here.

Principals are users or processes accountable for the actions associated with some
user. In a given security policy, each principal possesses certain privilege attributes that
are used in access control: such attributes may be access identities, roles, groups, secu-
rity clearance and so on. At any time, a principal may choose to use only a subset of the
privilege attributes it is permitted to use, in order to establish its rights to access objects.

Access control is defined at the level of individual object invocations. The access
decision function bases its result on the current privilege attributes of the principal,
the operation to be performed and the access control attributes of the target object.

A set of objects where we apply common security policies is called security policy
domain. Security domains provide leverage for dealing with the problem of scale in

 On the Design of Access Control to Prevent Sensitive Information Leakage 947

policy management. The CORBA Security specification allows objects to be mem-
bers of multiple domains: the policies that apply to an object are those of all its en-
closing domains. CORBA Security does not prescribe specific policy composition
rules. Such rules are the subject of the system’s security design and this allows for
potentially unlimited flexibility in combining complementary access control policies.

A domain access policy grants a set of subjects the specified set of rights to perform
operations on all objects in the domain. In Table 1 we provide a sample domain access
policy. As subject entries we use the privilege attributes possessed by the principals.
Thus, user identities can be considered to be a special case of privilege attributes. In
CORBA Security, rights are qualified into sets of “access control types”, known as
rights families. There is only one predefined rights family that is called corba and
contains the three rights g (for get or read), s (for set or write) and m (for manage).

Table 1. Domain access policy (granted rights)

Privilege Attribute Domain Granted Rights
access_id: a1 1 corba: gs-
access_id: a2 2 corba: g--
group: g1 1 corba: g--
group: g1 2 corba: gs-
group: g2 1 corba: gs-

Rights to privilege attributes are granted by an AccessPolicy object. An opera-
tion of a secure object can be invoked only when the principal possesses the set of
rights prescribed by the RequiredRights object. Table 2 shows an example Re-
quiredRights object that defines the rights required to gain access to each specific
method of an object. There is also a mechanism to specify whether a user needs all the
rights - in a method’s required rights entry - to execute that method (AND semantics)
or whether it is sufficient to match any right within the entry (OR semantics).

Table 2. Required rights

Required Rights Rights Combinator Operation Interface (class)
corba: g-- all M1
corba: g-- all M3

c1

corba: gs- all M4
corba: -s- all M0
corba: -s- all M2

c2

corba: gs- any M5 c3

Table 3. Domain membershiphs and object classes

Object Domain Objects Class
o1 , o2, o5, o12 d1 o1 , o8 c1
o8, o9 d2 o2 , o5, o9 c2
 o12 c3

Table 3 specifies the security domain memberships and the object classes, for the
case access control introduced in Tables 1 and 2.

948 P. Katsaros

The AccessDecision object determines the validity of invocation requests
based on the privilege and control attributes provided by the AccessPolicy and
RequiredRights objects. There are no explicit rules on how to calculate the ac-
cess decision: CORBA Security does not prescribe how an AccessPolicy object
combines rights granted by different privilege attribute entries (when a subject has
more than one privilege attribute to which the AccessPolicy grants rights). Tak-
ing into account the absence of policy composition rules for domain hierarchies, all
these make feasible the implementation of different access decision functions and thus
allow for potentially unlimited flexibility in security policy specification.

dom_access_policy

att_cdentials

[("A1",1,READ),
 ("A1",1,WRITE),
 ("A2",2,READ),
 ("G1",1,READ),
 ("G1",2,READ),
 ("G1",2,WRITE),
 ("G2",1,READ),
 ("G2",1,WRITE)]

obj_domains

obj_domains

[(1,1),(2,1),
(5,1),(8,2),
(9,2),(12,1)]

obj_classes

obj_classes

[(1,1),(2,2),(5,2),(8,1),(9,2),(12,3)]

objRef
INT

fclass

INT

required_rights

rights_methods

[[(1,"M1","&"),(1,"M3","&"),(2,"M4","&"),(3,"M5","|")],
 [(2,"M0","&"),(2,"M2","&"),(2,"M4","&"),(3,"M5","|")]]

rights_types

rights_type

[READ,WRITE]

findClass

findClass

tobj INT

findDomain

findDomain

domains

binfo

findRights

findRights

obtained_rights

rights

dispatchResultM

[mstring<>""]

method

STRING

""

valMethod

valMethod

resultM
rights

rgh

mstring

inPlace

MethodReply
In

recMethod

1‘METHOD(m)

""

#METHOD m

#OBJECT m

recObjRef
sn

""

dispatchResultO

[mstring=""]

rgh

mstring

sn

1‘OBJ_ONLY(sn)

results

rights
Out

rgh
rgh

synchFlag
INT0

1
0

1
0

1

0
1

0

Fig. 2. The access decision CP-net submodel

Figure 2 presents the top-layer of the CP-net submodel implementing the following
access decision function: “A method m can be executed if the requester’s rights match
the rights specified in the method’s entry in the RequiredRights table”. The
shown CP-net is used in the following ways:

• To obtain privilege attributes and access rights (output place results) to
proceed to the execution of the method specified in the union typed place
inPlace (if any).

 On the Design of Access Control to Prevent Sensitive Information Leakage 949

• To derive the access control list (list of privilege attribute and access right
pairs in output place results) for the object specified in place inPlace
(if any).

The domain access policy (bold place dom_access_policy) is specified as a
list of triads, which respectively represent privilege attribute, domain number and
right. The required rights table is given as lists of triads (bold place re-
quired_rights), which respectively represent class number, method name and
rights combinator and each ML list refers to the corresponding right of the ML list
shown in the rights_types bold place. The data shown in Table 3 determine the
initial markings of the bold places obj_domains and obj_classes.

Due to space limitations we omit the description of the low-level CP-nets imple-
menting the hierarchically related substitution transitions valMethod, find-
Class, findDomain and findRights.

3.2 The Information Flow Security Model

The CP-net of Figure 2 corresponds to the protSys substitution transition of Figure
3 that mimics a method execution: an object sends the messages of method’s se-
quence specification (given in the bold input/output place obj) to itself or to other
objects. Access to the object’s state is accomplished by dispatching primitive read and
write messages to itself: each of them is supposed to be executed synchronously.

In synchronous and deferred synchronous communication (hierarchically related
substitution transitions doSynchSend and doDSynchSend) a reply is eventually
returned, together with a list of all object identifiers (color binfo for the place
AOsL) where read operations were allowed by the used access control. This list is
termed as Accessed Objects List (AOsL). AOsL list is transmitted forward (requests)
and backward (replies) as prescribed by methods’ message sequence specifications, in
order to record the performed read operations in all accessed objects.

An information flow to an object takes place only when information is written to it
(substitution transition doWrite). In that case, there is an information flow from
each one of the objects contained in the transmitted AOsL list. However, not all of
them violate the applied access control:

Definition 3.1
An information flow from an object oi (source) to an object oj (target) is not secure
(may cause undesirable information leakage), if the privilege attributes that grant read
access to the target are not a subset of the set of attributes, which grant read access to
the source.

Definition 3.2
An information flow to an object oj is secure, if the privilege attributes that grant read
access to it are also contained in all sets of privilege attributes, which grant read ac-
cess to the objects contained in the transmitted AOsL list.

Figure 4 summarizes the color, variable and function declarations used for the tran-
sition and arc inscriptions of the CP-nets of Figures 3 and 5.

950 P. Katsaros

sender
exec

doSynchSend
doSynchSend

receiver

MethodReply

doRead

doRead

methodIn
MethodReply

I/O
doExec
doExec

obj

msg_queue
I/O

return
REPLY rep

methodType

mtype

mt

methodOut

MethodReply
I/O

doMethod

doMethod

doAsynchSend
doAsynchSend

doWrite

doWrite

if (mt=SYNCH)
then 1‘RESPONSE(#1 rep,mt,true,"",0)
++1‘BINFO(ie)
else empty

doDSynchSend
doDSynchSend

doOutpFail[#3 rep = false] RESPONSE rep

RESPONSE rep
1‘RESPONSE (#1 rep,
#2 rep,true,#4 rep,#5 rep)

AOsLbinfo

ie

in

1‘METHOD(m)
++1‘CRED[]

1‘METHOD(m)

protSys
protSys

IOPlace
MethodReply

1‘METHOD(m)

Out
results

rights
rgh

1‘CRED(rgh)
flagINT

1

1

il_flows
binfo

I/O

Fig. 3. The top layer of the method execution CP-net

 color mtype = with SYNCH | ASYNCH | DSYNCH | DREP;
 color crtype = with READ | WRITE;
 color rights_type = list crtype;
 color INT = int;
 color BOOL = bool;
 color STRING = string;
 color MSG_SNxSTATUS = product INT * STRING;
 color msg_rec = record NUMBER:INT * METHOD:STRING
 * TYPE:mtype * OBJECT:INT;
 color right = product STRING*crtype;
 color rights = list right;
 color binfo = list INT;
 color msg_queue = list msg_rec;
 color reply = product INT * mtype * BOOL * STRING * INT;
 color strLst = list STRING;
 color MethodReply = union RESPONSE:reply+
 METHOD:msg_rec+
 CRED:rights+
 ACL:strLst+
 BINFO:binfo+
 OBJ_ONLY:INT;
 color exec = union REPLY:reply +
 MSG_QUEUE:msg_queue +
 CREDENT:rights;

 var q,p, messages : msg_queue;
 var m : msg_rec;
 var sn,sm,k : INT;
 var mt : mtype;
 var rep : reply;
 var ie,ic : binfo;
 var rgh : rights;

 fun aux2 k l = if cf(k,l)>0 then nil else [k];
 fun unio (x::xl,yl) = (aux2 x yl)++unio(xl,yl)

 | unio (_,yl) = yl;

Fig. 4. Colors, variables and functions used in CP-net incriptions

 On the Design of Access Control to Prevent Sensitive Information Leakage 951

Figure 5 reveals the details of the doSynchSend substitution transition of Figure
3. Method execution is blocked (place RmvMessage) up to the reception of the ex-
pected reply - signaled by the token (sn,“REPLIED”) in place NextSend. AOsL
list is returned (arc inscription 1’BINFO(ic)) together with the method reply.
Then, AOsL list is updated as appropriate (function inscription unio(ie,ic) to
calculate the union of the existing list ie and the received list ic).

We omit the details of the doAsynchSend and doDSynchSend transitions
shown in Figure 3, but we stress the fact that AOsL list is never changed as a result of
an asynchronous method execution.

sender

exec
I/O

RmvMessage

msg_queue

NextSend

MSG_SNxSTATUS

Sending

msg_rec

receiver

MethodReply
I/O

BINFO
binfo

I/O

SynchSend

[#TYPE (hd messages)=SYNCH]

ReturnMSG_QUEUE

UpdateStatus

Reply

[sn=(#1 rep)
andalso (#3 rep=true)]

1‘MSG_QUEUE(messages)
++1‘CREDENT(rgh)

tl messages

q

if (length q>0)
then 1‘MSG_QUEUE(q)++1‘CREDENT(rgh)
else 1‘REPLY(sn,SYNCH,true,"",0)

(sn,"REPLIED")

hd messages

m

(#NUMBER m,"NOT_REPLIED")

(sn,"REPLIED")

(sn,"NOT_REPLIED")

1‘RESPONSE (rep)
++1‘BINFO (ic)

METHOD m

1‘CRED(rgh)

1‘CREDENT(rgh)

1‘CREDENT(rgh)
unio(ie,ic)

ie

ie

if (#METHOD (hd messages)<>"READ")
then 1‘BINFO(ie)
else empty

ie

Fig. 5. The CP-net for the doSynchSend substitution transition shown in Figure 3

A system model is composed of a number of interacting instances of the CP-net
shown in Figure 3 and each instance represents a particular method execution. For all
method executions their instance input places (obj, methodIn) are initialized as
imposed by the system’s object method dependencies. Insecure information flow
paths are detected at the doWrite substitution transition and for each object are
separately recorded at the il_flows output places.

Figure 6 reports the simulation results given for the access control of Figure 2 and
the case system model:

MsgSeq(20oM) = {(11oM , s) (92oM , s) (83oM , s) (write, s)}

MsgSeq(11oM) = {(read, s)}

MsgSeq(92oM) = {(54oM , s) (write, s)}

MsgSeq(83oM) = {(read, s)}

MsgSeq(54oM) = {(read, s) (write, s)}

952 P. Katsaros

inM0

MethodReply

1‘METHOD({NUMBER=1,
METHOD="M0",
TYPE=SYNCH,
OBJECT=2})
++1‘CRED[]++1‘BINFO[]

obj2

msg_queue

1‘[{NUMBER=0,METHOD="M1",TYPE=SYNCH,OBJECT=1},
{NUMBER=0,METHOD="M2",TYPE=SYNCH,OBJECT=9},
{NUMBER=0,METHOD="M3",TYPE=SYNCH,OBJECT=8},
{NUMBER=0,METHOD="WRITE",TYPE=SYNCH,OBJECT=2}]

outM0 MethodReply

doMethodM0
doMethodExec

il_flow_obj2 1 1‘[8]
binfo[]

M1request

[#METHOD m="M1"]

M1reply

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh) 1‘RESPONSE(rep)

++1‘BINFO(ic)

inM1

MethodReply

1‘RESPONSE(rep)
++1‘BINFO(ic)1‘METHOD(m)

++1‘BINFO(ic)
++1‘CRED(rgh)

obj1

msg_queue

1‘[{NUMBER=0,
METHOD="READ",
TYPE=SYNCH,
OBJECT=1}]

doMethodM1
doMethodExec

il_flow_obj1

1 1‘[]
binfo

[]
outM1

MethodReply

M2request

[#METHOD m="M2"]

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

inM2

MethodReply obj9

msg_queue

1‘[{NUMBER=0,METHOD="M4",
 TYPE=SYNCH,OBJECT=5},
{NUMBER=0,METHOD="WRITE",
TYPE=SYNCH,OBJECT=9}]

doMethodM2
doMethodExec

il_flow_obj9 1 1‘[5,1]

binfo

[]
outM2

MethodReply

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

M4request[#METHOD m="M4"] M4reply

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

inM4

MethodReply

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

1‘RESPONSE(rep)
++1‘BINFO(ic)

1‘RESPONSE(rep)
++1‘BINFO(ic)

obj5

msg_queue

1‘[{NUMBER=0,METHOD="READ",
TYPE=SYNCH,OBJECT=5},
{NUMBER=0,METHOD="WRITE",
TYPE=SYNCH,OBJECT=5}]

il_flow_obj5 1 1‘[]

binfo

[]
outM4

MethodReply

doMethodM4
doMethodExec

M3request

[#METHOD m="M3"]

M3reply

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

1‘RESPONSE(rep)
++1‘BINFO(ic)

inM3

MethodReply

1‘RESPONSE(rep)
++1‘BINFO(ic)

1‘METHOD(m)
++1‘BINFO(ic)
++1‘CRED(rgh)

obj8
msg_queue 1‘[{NUMBER=0,METHOD="READ",

TYPE=SYNCH,OBJECT=8}]

doMethodM3
doMethodExec

il_flow_obj8

1 1‘[]

binfo[]

outM3

MethodReply

M2reply

1‘RESPONSE(rep)
++1‘BINFO(ic)

1‘RESPONSE(rep)
++1‘BINFO(ic)

Fig. 6. A case system model and the detected insecure information flow paths

Insecure information flow paths are detected and recorded in il_flow_obj2
and il_flow_obj9 places. We observe the existence of flows from o1 and o5 to o9
and from o8 to o2. We note that method execution control flow, like for example con-
ditional execution, is not taken into account. We are interested for the detection of all
potential information flow paths and we want to take them into account, in order to
ensure compliance with business constraints regarding undesirable leakage or infer-
ence of sensitive information.

 On the Design of Access Control to Prevent Sensitive Information Leakage 953

The simulated model reports the verification results regarding the detection of in-
secure flow paths. However, this is not enough if we want to use it as a mean to guide
the specification of object classification constraints.

4 State Space Analysis

Analysis of the occurred information flow paths is performed after having generated
all possible states that the system can reach. This can be done, by exploiting the CPN
Tools state space analysis facilities ([7]).

Given the full state space, also known as occurrence or reachability graph, we can
check the standard properties mentioned in section 3, as well as the existence of an
occurrence sequence (reachability) to a particular marking (state). Figure 7 summa-
rizes the results for the standard checks mentioned in section 3. The full state space is
generated in 13 secs and consists of 2029 nodes (states) and 3282 arcs. There are no
live transition instances and infinite occurrence sequences and the single dead mark-
ing that reflects the completed execution of method “M0” corresponds to the node
number 2029.

Statistics
--
 Occurrence Graph
 Nodes: 2029
 Arcs: 3282
 Secs: 13
 Status: Full

 Boundedness Properties
--
 Best Integers Bounds Upper Lower
 NewPage'il_flow_obj1 1 1 1
 NewPage'il_flow_obj2 1 1 1
 NewPage'il_flow_obj5 1 1 1
 NewPage'il_flow_obj8 1 1 1
 NewPage'il_flow_obj9 1 1 1
 .
 .

 Home Properties
--
 Home Markings: [2029]

 Liveness Properties
--
 Dead Markings: [2029]
 Live Transitions Instances: None

 Fairness Properties
--

 No infinite occurrence sequences.

Fig. 7. The state space analysis standard report for the CP-net of Figure 6

Model querying regarding all detected information flow paths is performed through
evaluation of simple ML functions. The set of predefined ML functions used to ex-
plore the generated state space is summarized in Table 4.

Table 5 shows (in the result column) the information flow data derived for the case
system model.

954 P. Katsaros

Table 4. State space querying functions

function description use
Mark.<PageName>’<PlaceName> N M Returns the set of tokens positioned on place <PlaceName> on the

Nth instance of page <PageName> in the marking M
ListDeadMarkings () Returns a list with all those nodes that have no enabled binding

elements.
hd l Returns the head of l.
SearchNodes (
 <search area>,
 <predicate function>,
 <search limit>,
 <evaluation function>,
 <start value>,
 <combination function>)

Traverses the nodes of the part of the occurrence graph specified in
<search area>. At each node the calculation specified by <evalua-
tion function> is performed and the results of these calculations are
combined as specified by <combination function> to form the final
result. The <predicate function> maps each node into a boolean
value and selects only those nodes, which evaluate to true. We use
the value EntireGraph for <search area> to denote the set of all
nodes in the occurrence graph and the value 1 for <start value> to
continue the search until the first node, for which the predicate
function evaluates to true.

Table 5. Information flow security queries

1. Insecure information flow sources:
object

id
function result

o2 Mark.NewPage’il_flow_obj2 1 (hd (ListDeadMarkings())) val it = [[8]]: binfo ms
o1 Mark.NewPage’il_flow_obj1 1 (hd (ListDeadMarkings())) val it = [[]]: binfo ms
o8 Mark.NewPage’il_flow_obj8 1 (hd (ListDeadMarkings())) val it = [[]]: binfo ms
o9 Mark.NewPage’il_flow_obj9 1 (hd (ListDeadMarkings())) val it = [[5,1]]: binfo ms
o5 Mark.NewPage’il_flow_obj5 1 (hd (ListDeadMarkings())) val it = [[]]: binfo ms

2. All information flow paths to o2 (including the “secure” ones):
function result

Mark.doWrite’recBINFO 1 (hd (SearchNodes (EntireGraph,
 fn n =>
 (Mark.doWrite’recBINFO 1 n <> empty andalso
 (Mark.doWrite’rstrrights 1 n <> empty andalso
 Mark.doWrite’torrights 1 n <> empty)),
 1,
 fn n => n,
 [],
 op::)))

val it = [[1,5,8]]: binfo ms

3. Privilege attributes for read access to o2:
Mark.doWrite’torrights 1 (hd (SearchNodes (EntireGraph,

 fn n =>
 (Mark.doWrite’recBINFO 1 n <> empty andalso
 (Mark.doWrite’rstrrights 1 n <> empty andalso
 Mark.doWrite’torrights 1 n <> empty)),
 1,
 fn n => n,
 [],
 op::)))

val it = [[“A1”, “G1”, “G2”]]:
strLst ms

4. Privilege attributes for read access to insecure source o8:
Mark.doWrite’rstrrights 1 (hd (SearchNodes (EntireGraph,

 fn n =>
 (Mark.doWrite’recBINFO 1 n <> empty andalso
 (Mark.doWrite’rstrrights 1 n <> empty andalso
 Mark.doWrite’torrights 1 n <> empty)),
 3,
 fn n => n,
 [],
 op::)))

val it = [[“A2”, “G1”]]: strLst
ms

 On the Design of Access Control to Prevent Sensitive Information Leakage 955

The results of query 1 verify the simulation results of Figure 6 regarding the inse-
cure flow paths detected at the found dead marking. The query is based on inspection
of the marking of il_flow places on the first instance of page NewPage, for the
head of the list of dead markings, which in fact contains the single dead marking with
node number 2029.

In query 2 we use the function SearchNodes to explore the entire state space for
a marking that yields all flows (including the “secure” ones) to o2. Queries 3 and 4
reveal the details of the insecure flow (definition 3.1) sourced at o8.

Function SearchNodes is used as a tool of potentially unlimited flexibility in
querying the model regarding the “insecure” and the “secure” information flow
paths, in order to direct the specification of object classification constraints. Alterna-
tively, CPN Tools includes a library for defining queries in a CTL-like temporal
logic.

State spaces grow exponentially, with respect to the number of independent proc-
esses. In the proposed model, this problem becomes evident, when using asynchro-
nous and/or deferred synchronous method calls. From the alternative published
analyses our model fits to the modular state space analysis described in [2]. The
behavior of the entire system can be captured by the state spaces of the modules
corresponding to individual method executions (Figure 6), combined with an appro-
priate synchronization graph. Unfortunately, CPN Tools does not currently support
the generation of separate state space modules and the required synchronization
graph. Thus, the application of the forenamed analysis approach remains an open
research prospect.

5 Related Work

Information flow security is an active research problem that was first approached in
1973 ([10]) and that is still attracting the interest of researchers in a number of re-
cently published works ([12], [1], [6], [4], [5]).

Recent research works in the context of distributed object systems ([6], [16] and [14])

• are based on different and often not realistic assumptions on when an informa-
tion flow occurs,

• do not always take into account that in real systems, methods are invoked in a
nested manner,

• are bound to specific role-based or purpose-oriented access control models and
none employs the CORBA Security reference model or

• aim in the dynamic control of information flow by the use of an appropriate
run-time support that in most systems is not available.

Our work (i) takes into account the bi-directional nature in the direct or indirect in-
formation transfer between the senders and the receivers, (ii) allows for modeling
nested object invocations, (iii) employs the CORBA Security reference model and for
this reason is not bound to a specific access control model and (iv) aims in the static
verification of information flow security and for this reason does not assume proprie-

956 P. Katsaros

tary run-time support. Moreover, it is based on a widespread modeling formalism
with an easily accessible advanced tool support.

Other interesting sources of related work are the introduction into lattice-based ac-
cess control that was published in [15] and the mandatory access control that is speci-
fied in [9], by the use of the CORBA Security reference model.

6 Conclusion

In modern networked business information systems and in service-based business
activities, where different customers are concurrently using the provided services,
compliance with business constraints regarding undesirable inference of sensitive
information is a central design issue.

The problem under consideration is addressed by the implementation of an appro-
priate multilevel mandatory policy. However, the rigidity of these policies implies the
need for a systematic design approach. We introduced a Colored Petri Net model that
simulates and detects “insecure” information flow paths according to the given defini-
tions determining when a flow path is not secure The model can be queried regarding
the existing (“insecure” and “secure”) flows, in order to direct the specification of
object classification constraints, wherever there is a need of them. This allows to
avoid overclassification and thus to maximize information visibility.

Acknowledgments

We acknowledge the CPN Tools team at Aarhus University, Denmark for kindly providing us
the license of use of the valuable CP-net toolset.

References

1. Chou, S.-C.: Information flow control among objects: Taking foreign objects into control,
In: Proceedings of the 36th Hawaii International Conference on Systems Sciences
(HICSS’03), IEEE Computer Society (2003) 335a-344a

2. Christensen, S., Petrucci, L.: Modular state space analysis of Coloured Petri Nets, In: Pro-
ceedings of the 16th International Conference on Application and Theory of Petri Nets, Tu-
rin, Italy (1995) 201-217

3. Dawson, S., Vimercati, S., Lincoln, P., Samarati, P.: Maximizing sharing of protected in-
formation, Journal of Computer and System Sciences 64 (3), (2002) 496-541

4. Georgiadis, C., Mavridis, I., Pangalos, G.: Healthcare teams over the Internet: Program-
ming a certificate-based approach, International Journal of Medical Informatics 70 (2003)
161-171

5. Halkidis, S. T., Chatzigeorgiou, A., Stephanides, G.: A qualitative evaluation of security
patterns, In: Proceedings of ICICS 2004, LNCS 3269, Springer-Verlag (2004) 132-144

6. Izaki, K., Tanaka, K., Takizawa, M.: Information flow control in role-based model for
distributed objects, In: Proceedings of the 8th International Conference on Parallel and
Distributed Systems (ICPADS’01), Kyongju City, Korea, IEEE Computer Society
(2001) 363-370

 On the Design of Access Control to Prevent Sensitive Information Leakage 957

7. Jensen, K.: An introduction to the practical use of colored Petri Nets, In: Lectures on Petri
Nets II: Applications, LNCS, Vol. 1492 (1998) 237-292

8. Jensen, K.: An introduction to the theoretical aspects of colored Petri Nets, In: A Decade
of Concurrency, LNCS, Vol. 803 (1994) 230-272

9. Karjoth, G.: Authorization in CORBA security, In: ESORICS’98, LNCS, Vol. 1485
(1998) 143-158

10. Lampson, B. W.: A note on the confinement problem, Communication of the ACM 16
(10), (1973) 613-615

11. Larsen, L., Harrold, M.: Slicing object oriented software, In: Proceedings of the 18th In-
ternational Conference on Software Engineering (1996) 495–505

12. Masri, W., Podgurski, A., Leon, D.: Detecting and debugging insecure information
flows, In: Proceedings of the 15th International Symposium on Software Reliability En-
gineering (ISSRE’04), Saint-Malo, Bretagne, France, IEEE Computer Society (2004)
198-209

13. Object Management Group: Security service specification, version 1.7, OMG Document
99-12-02 (1999)

14. Samarati, P., Bertino, E., Ciampichetti, A., Jajodia, S.: Information flow control in object-
oriented systems, IEEE Transactions on Knowledge and Data Engineering 9 (4), (1997)
524-538

15. Sandhu, R. S.: Lattice-based access control models, IEEE Computer 26 (11), (1993) 9-19
16. Yasuda, M., Tachikawa, T., Takizawa, M.: Information flow in a purpose-oriented ac-

cess control model, In: Proceedings of the 1997 International Conference on Parallel
and Distributed Systems (ICPADS’97), Seoul, Korea, IEEE Computer Society (1997)
244-249

Appendix

In this section, we outline the formal semantics of CP-nets, as they are defined in [8].

Definition 1. A multi-set m, over a non-empty set S is a function S→ℵ represented
as a sum

∈Ss

ssm)`(

By SMS we denote the set of all multi-sets over S. The non-negative
integers {m(s)|s∈S} are the coefficients of the multi-set.

Definition 2. A Colored Petri Net (CP-net) is a tuple CPN=(, P, T, A, N, C, G, E,
I) where:

(i) is a finite set of non-empty types, also called color sets
(ii) P is a finite set of places (drawn as ellipses)
(iii) T is a finite set of transitions (drawn as rectangles)
(iv) A is a finite set of arcs
(v) N is a node function A → P×T ∪ T×P
(vi) C is a color function P →

958 P. Katsaros

(vii) G is a guard function that maps each transition t∈T into a
Boolean expression where all variables have types that be-
long to :

 ∀t∈T: Type(G(t))=B ∧ Type(Var(G(t)))⊆

(viii) E is an arc expression function that maps each arc a∈A into
an expression that is evaluated in multi-sets over the type of
the adjacent place p:

 ∀a∈A: Type(E(a))=C(p)MS ∧ Type(Var(E(a)))⊆ , with p=N(a)

(ix) I is an initialization function that maps each place p∈P into a
closed expression of type C(p)MS:

 ∀p∈P: Type(I(p))=C(p)MS

When we draw a CP-net we omit initialization expressions, which evaluate to ∅.

The set of arcs of transition t is

A(t) = {a∈A | N(a) ∈ P×{t} ∪ {t}×P}

and the variables of transition t is

Var(t) = {v | v∈Var(G(t)) ∨ ∃a∈A(t): v∈Var(E(a))}

Definition 3. A binding of a transition t is a function b defined on Var(t), such that:

(i) ∀v∈Var(t): b(v)∈Type(v)
(ii) The guard expression G(t) is satisfied in binding b, i.e. the

evaluation of the expression G(t) in binding b - denoted as
G(t) - results in true.

By B(t) we denote the set of all bindings for t.

Definition 4. A token element is a pair (p, c) where p∈P and c∈C(p). A binding
element is a pair (t, b) where t∈T and b∈B(t). The set of all token
elements is denoted by TE and the set of all binding elements is de-
noted by BE.
A marking is a multi-set over TE and a step is a non-empty and finite
multi-set over BE. The initial marking M0 is the marking, which is ob-
tained by evaluating the initialization expressions:

∀(p,c)∈TE: M0(p,c)=(I(p))(c)

The set of all markings and the set of all steps are denoted respectively
by M and Y.

For all t ∈ T and for all pairs of nodes (x1, x2)∈(P×T∪T×P) we define

A(x1, x2) = {a∈A | N(a) = (x1, x2)} and
∈

=
),(

21

21

)(),(
xxAa

aExxE

 On the Design of Access Control to Prevent Sensitive Information Leakage 959

Definition 5. A step Y is enabled in a marking M if and only if

∀p ∈ P:
∈

>≤<
Ybt

pMbtpE
),(

)(),(

We then say that (t,b) is enabled and we also say that t is enabled. The
elements of Y are concurrently enabled (if |Y|≥1).
When a step Y is enabled in a marking M1 it may occur, changing the
marking M1 to another marking M2, defined by:

∀p ∈ P:
∈∈

><+><−=
YbtYbt

bptEbtpEpMpM
),(),(

12),()),()(()(

M2 is directly reachable from M1.

Offline Business Objects: Enabling Data
Persistence for Distributed Desktop Applications

Pawel Gruszczynski, Stanislaw Osinski, and Andrzej Swedrzynski

Poznan Supercomputing and Networking Center,
Poznan Noskowskiego 10, 61-704, Poland

{grucha, stachoo, kokosz}@man.poznan.pl

Abstract. Despite the overwhelming popularity of web-based distri-
buted systems, in certain areas the traditional desktop applications still
seem to be a better choice. In this paper we examine the challenges in-
volved in developing a secure and fault-tolerant data persistence layer for
distributed desktop applications. We analyse the currently existing per-
sistence frameworks and show why they do not meet the requirements set
by certain distributed applications. The body of this paper concentrates
on the Offline Business Objects framework which aims to fill this gap.
The framework introduces the offline operation paradigm, whereby client
applications operate without a permanent server connection and only pe-
riodically synchronise their data with the central database. We success-
fully deployed a distributed information system based on this paradigm
and the Offline Business Objects for five major cities in Poland, which
confirmed the practical value of our approach.

1 Introduction

The increasing availability of broadband networking infrastructure is an attrac-
tive incentive for software architects to abandon the traditional desktop appli-
cation model of software delivery in favour of the thin client Application Service
Provision [7]. One reason for this is that a great majority of today’s distributed ap-
plication frameworks, e.g. data persistence frameworks, have been designed with
web-based systems in mind and cannot be directly used in desktop software.

In areas, however, where important are such factors as high security standards,
fault-tolerance or responsive user interfaces, the desktop application model is still
a viable approach [1]. Unfortunately, with the lack of adequate software frame-
works, the main challenge involved in developing a secure and fault-tolerant dis-
tributed desktop application becomes the implementation of a suitable data ac-
cess layer.

In this paper we describe the design and implementation of the Offline Busi-
ness Objects (OBO) framework, which aims to fill the gap in data persistence
for distributed desktop applications. In section 2 we briefly describe the High
School On-line Admission System called Nabor—an application that defined the
requirements for OBO. In section 3 we analyse the currently available data per-
sistence frameworks and explain why they cannot be directly integrated with

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 960–977, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

OBO: Enabling Data Persistence for Distributed Desktop Applications 961

distributed desktop applications. Section 4 presents the design and implementa-
tion of Offline Business Objects, emphasising problems that are not addressed in
the currently available frameworks, while section 5 briefly evaluates the frame-
work. Finally, section 6 concludes the paper and gives directions for future work.

2 Requirements

The requirements for Offline Business Objects framework were driven to a large
extent by the requirements for the High School On-line Admission System called
Nabor1, which we developed and deployed for five major Polish cities in 2003
and 2004 [13]. The main objective of Nabor was to provide high enough a level of
co-ordination between all high schools in a city as to reduce the time and effort
involved in the admissions process. The key idea was to gather all necessary data
(e.g. candidates’ marks, admission limits set by schools) in a central database
and design an algorithm that would automatically generate admission lists for
all schools in the city.

To comply with legal regulations governing high school admissions, the ar-
chitecture of Nabor had to meet a number of technical requirements:

High security standards. A great majority of data processed by Nabor (e.g.
candidates’ marks) was of a confidential character and had to be carefully
protected from unauthorised access and modification. Also, the system had
to be designed in such a way as to minimise the possibility of manipulating
the admission results and to enable tracing possible manipulation attempts.

Fault-tolerance. High school admissions procedures divide the whole process
into several phases and impose strict deadlines on each of them. For example,
one of the final phases is entering the candidates’ marks to the system, which
must be completed by all schools within a time span of two or three days.
Therefore, Nabor had to be able to operate even in case of a temporary
failure of the central database or the network infrastructure.

Varied user group. An important characteristic of Nabor was also the fact
that it required active involvement of all parties of the admissions process.
High school candidates used the system to find out about the offered schools,
fill in and print out the application form. School administration used Nabor
to enter the candidates’ data and download the admission lists once the
admissions had been closed. Finally, for the local education authorities the
system provided a range of analytical reports, which aided global planning.

Having analysed the possible architectural designs [13], we decided that in or-
der to fulfill all the requirements, Nabor should be implemented as a client-server
system, with client nodes running offline desktop applications. In this setting the
client application would normally stay disconnected from the central server and
perform all operations on locally cached data. Occasionally, a connection would
be established to synchronise the local data cache with the central database.
1 Nabor is the Polish word admissions.

962 P. Gruszczynski, S. Osinski, and A. Swedrzynski

We also made a decision to implement the Nabor system using Java tech-
nology. Employing Java Swing [18] on the client side would make the desktop
application platform-independent, while using non-proprietary Java technologies
on the server side would reduce the cost of the whole undertaking.

As a result of the above requirements and architectural decisions, the under-
lying data persistence layer would have the following responsibilities:

Object-relational mapping. Performing mapping between the relational and
object-oriented representation for all business objects in the system.

Offline operation. Supporting remote reading and editing of business objects
on client nodes in the absence of the server link.

Data synchronisation. Synchronising client’s local changes with the database
maintained on the server side.

Logging. Automatic logging of all client operations on the server side.
Security. Ensuring high standards of data security.

In section 3 we explain why none of the currently available Java frameworks
was suitable as a persistence layer for Nabor, and in section 4 we describe how
Offline Business Objects implements the desired mechanisms.

3 Existing Persistence Frameworks

3.1 Introduction to Object Relational Mapping

Contrary to earlier expectations and predictions, relational databases are still the
primary technology for data persistence. Although the alternative approaches,
such as object database systems, are gaining more and more popularity, it is still
relational or object-relational databases that prevail.

Implementing a large information system based on simple relational database
manipulation interfaces, such as JDBC [19] for Java, can prove a daunting and
error-prone task. This is especially true in case of object-oriented technologies,
where a significant amount of application code would deal not with implementing
business logic, but with object-relational conversions.

This is one of the reasons why Object Relational Mapping (ORM) technolo-
gies started to emerge [11]. ORM can be defined as a mechanism for automated
persistence of objects (e.g. Java objects) to the tables of a relational database.
Essentially, ORM can be thought of as a means of transforming data from the
object-oriented to the relational representation and vice versa [3, 10]. Most mod-
ern ORM tools perform the transformation fully transparently, i.e. any changes
made to a persistent business object, such as setting a new value for its instance
field, are automatically reflected in the database without a single persistence-
related line of code on the business object’s side.

The most popular Java ORM tools are currently Enterprise Java Beans (EJB)
[16], Java Data Objects (JDO) [17] and Hibernate [2]. In the remaining part of
this section we will use Hibernate as a representative example of an ORM tool.
The reason for this is that JDO is in essence very similar to Hibernate and the
recently released EJB 3.0 draft specification is also largely influenced by the
experiences with Hibernate.

OBO: Enabling Data Persistence for Distributed Desktop Applications 963

3.2 ORM and Desktop Applications

As we pointed out earlier, the majority of currently available data persistence
frameworks, including Hibernate, have been designed and implemented with
web-based applications in mind. For this reason integrating ORM tools with a
desktop application, such as a Java Swing application in case of Nabor, is not a
straightforward task.

A naive approach could be to use the ORM framework on the client side. This
would require that the database manipulation interface (e.g. JDBC in case of
Java) be directly exposed so that it can be accessed by client nodes. For obvious
reasons this approach introduces high security risks, as the database connection
could be used in a trivial way to read, modify or delete data. Although in many
scenarios, such as an intranet application with trusted users, the naive scheme
would be perfectly sufficient, it was not acceptable for the purposes of Nabor.

The alternative approach is to integrate the ORM framework into the server
software and create a special layer of communication between the client nodes
and the server. In this way, the direct database connection would not need to be
exposed. On the other hand, the introduction of an additional communication
layer would mean losing or re-implementing a number of useful features the ORM
tools can offer. In case of Hibernate these features would be e.g.:

Unambiguous representation. Hibernate guarantees that querying the
database for the same object many times within the same session will al-
ways return the same instance of a Java class.

Modification detection. Hibernate automatically detects which objects have
been modified and sends to the database only the data that needs updating.

Yet another possibility would be to use ORM on the client side with a lo-
cal off-line database and periodically synchronise the database with the central
server. One major difficulty with this approach is the lack of freely available soft-
ware frameworks for database synchronisation. Moreover, in some applications
each client should have access to only a small part of the system’s business ob-
jects, which can be enforced more flexibly by synchronising and authorising indi-
vidual operations rather than the whole database. Finally, as client workstations
are usually significantly less powerful than server machines, this approach may
not be feasible for systems managing large numbers of business object instances.

3.3 ORM and the Offline Operation Model

As we mentioned earlier, the key characteristic of an application implemented in
the offline operation model is that it does not maintain a permanent link to the
server. Instead, all client-side operations are performed on locally cached data
which is then periodically synchronised with the server. The possible advantages
of the offline model are better fault-tolerance and lower bandwidth usage. The
biggest problem with this model, on the other hand, is that none of today’s
ORM frameworks fully supports offline operation. Therefore, in order to achieve
the offline functionality, additional components must be built including a local
data cache and some data synchronisation layer.

964 P. Gruszczynski, S. Osinski, and A. Swedrzynski

The responsibility of the local data cache component would be to ensure read
and write access to business objects in the absence of the server link. Ideally, the
data cache wouldhave properties similar to those known from relational databases,
namely: atomicity, consistency, isolation and durability, together referred to as
ACID [12]. One way of achieving these properties is implementing the local cache
using a lightweight embedded relational database engine, such as the Java-based
HypersonicSQL [15]. An alternative approach would be based around the concept
of Prevayler [21], which implements persistence by keeping all data in memory, log-
ging every operation before it is executed, storing periodic snapshots of all data
and using these snapshots together with operation logs to recover system state.

The task of the data synchronisation component is to maintain consistency be-
tween the contents of the client’s local cache and the global database managed by
the the server [4]. The main problem here is to properly resolve conflicting modi-
fications of the same business object performed locally by disconnected clients. A
general solution would require taking into account the complex semantics of busi-
ness objects and thus might be quite costly to implement. Alternatively, specific
characteristics of a concrete application can be exploited in order to simplify the
problem. In case of Nabor, for example, for a large number of business objects there
would be only one client authorised to modify them. Later in this paper we show
how we took advantage of this property. Another important requirement for the
data synchronisation component is making the communication efficient in terms
of the volume of data transferred and guaranteeing that data consistency will not
be violated as a result of e.g. a communication layer failure.

Although Hibernate does not explicitly support the offline operation mode, it
offers a mechanism of detached objects which can prove helpful in implementing
the local cache and data synchronisation components. With this mechanism,
every persistent data object (i.e. a Java object stored in a database by Hibernate)
can be temporarily detached from Hibernate’s data persistence layer, serialised
and transmitted between different system layers, and then re-attached back to
Hibernate.

In late 2003, when the development of the Nabor system was already under-
way, a specification of a standard called Service Data Objects [6] was announced,
which aimed at simplifying and unifying the ways in which applications handled
data. Among others, SDO defines a disconnected programming model, which
seems to be the counterpart of the offline operation model required for Nabor.
Unfortunately, no implementations of SDO were available at that time, hence the
need for the Offline Business Objects we describe in detail in the next section.

4 Offline Business Objects

The purpose of Offline Business Objects is to provide a reliable and secure per-
sistence layer for offline desktop applications. Its main responsibilities are:

– object-relational mapping of business data
– offline access to business data
– client-server synchronisation

OBO: Enabling Data Persistence for Distributed Desktop Applications 965

Fig. 1. The architecture of Offline Business Objects

– authorisation of client operations
– logging of client operations
– ensuring high standards of data security

In the following subsections we describe how client- and server-side compo-
nents of OBO shown in Figure 1 cooperate to implement the required mecha-
nisms.

4.1 Object-Relational Mapping

The task of the object-relational mapping component is to translate business
data between the relational and object-oriented models. As this part of OBO
would reside on the server side, it’s implementation could almost entirely rely
on one of the existing ORM tools. We decided to implement the object-relational
mapping component using the Torque framework2 [8].

Torque is based on the idea of so-called Partial Class Generators [14], where
a declarative XML specification of object-relational mapping is used as an input
for automatic generation of base classes for business objects and data access
objects (DAO). Specific behaviour of business objects can be implemented by
subclassing the automatically generated classes.

For the following example specification:

<table name="PERSON">
<column name="PERSON_ID" required="true"

primaryKey="true" type="INTEGER"/>
<column name="FIRST_NAME" required="true"

size="50" type="VARCHAR"/>
<column name="LAST_NAME" required="true"

size="50" type="VARCHAR"/>
</table>

2 The alternative choice was Hibernate [2], but at the time of designing OBO (mid
2003) Hibernate was not as popular as it is now and we felt we should not yet use
it on production scale.

966 P. Gruszczynski, S. Osinski, and A. Swedrzynski

the following artifacts will be generated:

BasePerson. A business object base class with appropriate getter and setter
methods. Business-specific behaviour can be implemented by subclassing this
class.

BasePersonPeer. A class that handles reading and writing of the business
object’s data to a relational database.

SQL DDL statements. SQL Data Definition Language statements that can
be used to create all database structures (e.g. tables, sequencers) required
for persisting the business objects.

4.2 Offline Operation and Client-Server Synchronisation

The offline operation and client-server synchronisation component was by far the
most difficult to design and implement part of OBO. It involved both the client-
side local cache and the server-side synchronisation and persistence mechanisms.

Local Cache. The purpose of the local cache is to provide read and write
access to business objects in the absence of the server connection. To that end,
business data is stored on the client’s workstation in an encrypted form. The
storage mechanism is similar to this used in Prevayler [21]. All data is kept in
memory, with each client’s operation being logged before execution. Additionally,
the system takes periodic snapshots of all data and stores them on the local
disk. Local system state recovery is based on the freshest snapshot and the log
of operations performed after that snapshot was taken.

An interesting design problem related to the local cache was how and when
to assign unique identifiers to business objects. There are two possibilities here:

– a unique identifier is created on the client side at the time of creating or
storing of the business object in the local cache

– a unique identifier is assigned on the server side during client-server synchro-
nisation

In a naive implementation of the latter method, the client application could
transactionally synchronise its local changes with the server and as a result
receive the identifiers of newly created business objects. Such an approach, how-
ever, has a subtle flaw connected with fault-tolerance. Suppose a transaction
has been successfully committed on the server side, but due to a failure of the
client-server link, the client node did not receive the identifiers of newly created
objects. In this situation, the client application will have no way of knowing
that a number of its local business objects that do not yet have identifiers cor-
respond to some server-side objects for which unique identifiers have already
been assigned.

One way of solving this problem would be to extend the communication
protocol with additional acknowledgment messages, e.g. a ”ready to commit”
message sent by the client application after the identifiers have been received

OBO: Enabling Data Persistence for Distributed Desktop Applications 967

and applied to the locally cached data. However, in order to simplify the com-
munication, we have decided that the identifiers should be generated on the
client side. Global uniqueness of locally assigned identifiers is achieved by di-
viding the global pool of identifiers into extendable subsets used exclusively
by one client. If a client reports that it has used a certain number of identi-
fiers from its set (e.g. 80%), the server will extend the identifier set for that
client.

Business Object Lifecycle. Designing a data persistence framework requires
a decision as to how the lifecycle of business objects should look like, i.e. in what
states an individual object can be and how they relate to the client-server com-
munication. A starting point here can be the object lifecycle defined in one of
the existing persistence frameworks, such as Hibernate or JDO. With the addi-
tions required by the offline processing model, the list of states of an individual
business object can be the following (Figure 2):

Transient. An object is Transient right after it has been created, e.g. by a call
to a constructor method.

Persistent New. A Transient object becomes Persistent New when it gets
stored in the local cache, and has not yet been sent to the server database.

Persistent Clean. A business object becomes Persistent Clean after it has
been synchronised with the server.

Persistent Dirty. A Persistent Clean object becomes Persistent Dirty after it
has been locally modified.

Deleted. A business object that has been locally deleted.

Fig. 2. Offline Business Objects initial life cycle

The state of an individual business object determines the actions required to
synchronise this object with the central database. During data synchronisation
the client application sends to the server the contents of objects that are Per-
sistent New or Persistent Dirty, and also identifiers of objects that are Deleted.
On the server side, the object’s state can be used to choose the appropriate SQL

968 P. Gruszczynski, S. Osinski, and A. Swedrzynski

operation to perform: insert for Persistent New objects, update for Persistent
Dirty objects, and delete for Deleted objects.

It turns out, however, that for enhanced fault-tolerance we need to introduce
one more state to the lifecycle of a business object. To illustrate this, let us
assume that the client application has created a new business object and stored
it in the local data cache as Persistent New. During the next client-server syn-
chronisation, the new object should be sent to the server and its state should
become Persistent Clean. The major problem here is that committing changes
on the server side and changing object’s state on the client should be one atomic
operation. With the initially proposed lifecycle, the client could change the ob-
ject’s state to Persistent Clean either ”right before” it sends the changes to the
server, or ”right after” the server acknowledges that the data has been success-
fully committed to the database.

Neither of these variants, however, is perfect with respect to fault-tolerance.
If a communication layer failure occurs, the client’s information about the states
of locally cached business objects may become inconsistent with what is stored
on the server side. With the ”right before” strategy, the client application may
mark an object as Persistent Clean even though the server did not commit a
corresponding change to the database. With the ”right after” variant, on the
other hand, if the server acknowledgment is not received on the client side, the
state of some objects will not be changed to Persistent Clean even though it
should. As we can see, neither of the above strategies guarantees correct in-
formation about the objects’ state on the client side. Consequently, the server
cannot rely on this information received from the client during the subsequent
synchronisations either.

A solution to the above problem can be enhancing the business object’s lifecy-
cle with an additional intermediate state called Persistent Possibly New shown
in Figure 3. In this way, during the client-server synchronisation a Persistent
New object is sent to the server and then its local state is changed to Persistent
Possibly New. Only after the server acknowledges that the transaction has been
successfully committed, a Persistent Possibly New object becomes Persistent
Clean. Otherwise, if a communication failure occurs, the object remains Persis-
tent Possibly New and will be sent in that state to the server during the next
data synchronisation. On the receipt of a Persistent Possibly New object, the
server will need to do an additional select operation to check if corresponding
data is already present in the database.

A similar type of problem can arise with transitions between the Persistent
Dirty and Persistent Clean states. In this case, however, there is no need for
intermediate states and the transition can take place right after the server ac-
knowledges a successful completion of the transaction. If the client application
does not receive the acknowledgment because of a communication layer failure,
it will send the modified object to the server once again during the next syn-
chronisation.

Data Synchronisation. The purpose of data synchronisation is to ensure con-
sistency between the desktop application’s local cache and the global database

OBO: Enabling Data Persistence for Distributed Desktop Applications 969

Fig. 3. Offline Business Objects modified life cycle

on the server. While designing OBO we decided that data synchronisation should
be performed in two phases. Phase one is applying client’s local changes to the
global database while phase two is updating client’s local cache with modifica-
tions made by other clients.

In the first phase the client application sends to the server a log of locally
cached operations. Based on the current state of a business object, different
actions will be taken:

Create object. For a Persistent New object, the client application will send the
contents of that object (values of attributes, identifiers of collection mem-
bers) to the server. The server will add corresponding data to the database

Delete object. For a Deleted object, the client application will send the iden-
tifier of that object to the server. The server will delete the corresponding
data from the database.

Update attribute value. For a Persistent Dirty object with modified attri-
butes, the client application will send to the server the identifier of that
object and name/new value pairs for all modified attributes. The server will
modify the corresponding values in the database.

Update collection. For a Persistent Dirty object containing a modified collec-
tion of business objects, the client application will send identifiers of objects
added and removed from that collection. The server will make corresponding
changes to the database. Noteworthy is the fact that this operation modifies
the relationship between business objects, but not the objects themselves.

Crucial to the second phase of data synchronisation is versioning of business
objects [20]. OBO implements this mechanism by assigning an integer version
number to each of the business objects managed by the system. Every time
the server processes an attribute update operation, the version number of the
involved business object is incremented. For a collection update increased is only
the version number of the business object that contains the collection, version
numbers of collection members remain unchanged.

The client applications initialises the second phase of data synchronisation
by sending to the server the identifier/version number pairs of all locally cached

970 P. Gruszczynski, S. Osinski, and A. Swedrzynski

objects. Then, for each business object the server compares its version number
VS of that object with the corresponding version number VC sent by the client.
Based on that comparison, the server can take the following actions:

When VC < VS . The client’s version of the business object is older than the
server’s version. The up-to-date object needs to be sent to the client.

When no VC corresponds to VS. The client has not yet received any infor-
mation about the business object. The object needs to be sent to the client.

When no VS corresponds to VC . The client has an object that has been
deleted some time after the last synchronisation. Information that the object
has been deleted needs to be sent to the client.

When VC = VS . The client’s version of the business object is up-to-date. No
data needs to be sent. This is the case where versioning can bring a substan-
tial decrease in the volume of data transferred during synchronisation.

An interesting problem related to data synchronisation is how the system
should deal with concurrent modifications of business objects. Situations in
which the same version of an object is modified by two or more clients are
far more probable in an offline processing model. With Offline Business Objects
this problem can be solved in two different ways. One method is to accept the
first modification of a certain version of an object and reject all subsequent mod-
ification attempts related to that version. Users whose modifications have been
rejected will be notified of the fact, and will need to explicitly cancel either all
local operations performed since the last the synchronisation or only the conflict-
ing ones. In this way, the first accepted modification will effectively overwrite the
remaining concurrent modifications3. The alternative method is to execute all
modifications in the order they were received by the server. This method, on the
other hand, means that the last concurrent modification will overwrite the ear-
lier ones. In this case, no special interaction with the user is needed. The choice
as to which of these methods OBO should use can be made for each database
table separately.

Using the former conflict resolution strategy (first wins) in Nabor would
require the end users to make decisions related to the application’s underlying
communication protocols, which might be both misleading and frustrating for
them. On the other hand, due to the characteristics of Nabor, lost updates would
occur fairly rarely and would not result in any major inconsistencies. For this
reason, in our real-world application, we used the last wins strategy for all kinds
of business objects.

3 The exact sequence of operations would be the following: the server accepts the first
modification of an object and advances the object’s version number from VS = i
to VS = i + 1. On the receipt of another modification related to version VS = i,
the server rejects the modification and instructs users to cancel the corresponding
operations. Upon the next synchronisation, the client will receive the VS = i + 1
version of that object, which will effectively overwrite the (deleted) local change
made to version VC = i.

OBO: Enabling Data Persistence for Distributed Desktop Applications 971

4.3 Authorisation

One of the requirements for the Offline Business Objects framework was that
each modification of data attempted by the client’s desktop applications should
be authorised. OBO implements a model whereby the client’s credentials are
verified on the server side during data synchronisation. For maximum flexibility,
OBO performs authorisation on the level of Java code before business objects
are read or written to the database (see Figure 1).

The details of authorisation can be specified separately for each database
table managed by OBO in a declarative way, e.g.:

<table name="TEAM" authorizationMethod="hasCoachPrivileges"/>

With the above declaration, before a modification of a Team object is com-
mitted to the database, the hasCoachPrivilegesmethod (available in a globally
accessible credentials object) is called to verify if the client is allowed to perform
that modification.

More interesting is the problem of authorising operations involving interre-
lated tables, e.g. master-detail tables:

<table name="PLAYER" authorizationMethod="hasCoachPrivileges">
<references foreignTable="TEAM" authorizationPropagates="true"/>

</table>

In this case, before the server applies any modifications to the Player object,
it will check whether the client is allowed to modify the Player’s Team. Into
account will be taken both the current Team of the Player and also the Team
to which the Player is to be transferred. Moreover, OBO will group operations
involving different Players, so that the data of all required Teams can be fetched
with a single database query.

4.4 Data Security

The security model we implemented in Offline Business Objects is based on the
Public Key Infrastructure (PKI) and the RSA cryptography [22]. During the
design phase we decided that each client operation, such as creating or modifying
a business object (see section 4.2), should be transmitted to the server as a
separate encrypted packet.

Figure 4 schematically shows all cryptographic operations involved in trans-
mitting a single operation packet from the client’s desktop application to the
server. In the absence of the server connection, all application data is stored
in an encrypted form in the local data cache. For the purposes of local cache
protection OBO uses symmetric cryptography with a client-specific secret key
distributed together with the desktop application.

During data synchronisation, for each cached client operation a separate
packet is created. Each such packet is then encrypted with a dedicated symmetric
key generated only for that packet. The symmetric key itself is encrypted with

972 P. Gruszczynski, S. Osinski, and A. Swedrzynski

Fig. 4. Offline Business Objects security model

the server’s public key and appended at the beginning of the packet. Finally, the
packet is signed with the client’s private key and the signature along with the
client’s identifier is appended at the beginning of the packet.

Upon the receipt of a packet, the server verifies its signature. If the signature
is invalid, the packet is logged in the ”suspicious” packets log and removed
from further processing. Otherwise, the server uses its private key to decrypt
the packet’s symmetric key, which is then used to decrypt the contents of the
packet. Finally, the client operation encoded in the packet is applied to the
server’s database. Communication in the reverse direction is analogous, with
private/public keys swapped appropriately.

4.5 Operation Logging

The purpose of operation logging in the OBO framework is twofold: to provide
a reliable client operation history and to ensure a data recovery mechanism in
case of a database failure.

As we describe in section 4.4, each client operation, such as creating or mod-
ifying a business object (see section 4.2), is sent to the server as a separate
encrypted packet. Before the server executes the operation, it logs the corre-
sponding packet. Any such packet can be fetched from the log later on and
executed once again when needed. The packet log mechanism can therefore be
used to recreate a snapshot of the system’s business objects from any time in
the past.

OBO: Enabling Data Persistence for Distributed Desktop Applications 973

The primary purpose of packet logging, however, is to implement a reliable
client operation history mechanism. To this end, client packets are signed with
the client’s private key (see section 4.4), so that fraudulent operations can be
(probably with diligent manual analysis) detected on the server side.

4.6 Implementation Considerations

It is in the very nature of a distributed offline information system that a signif-
icant proportion of a business object’s implementation code deals with system-
level concerns, such as persistence, communication or security, and not the
business-specific behaviour. Moreover, most of the system-level functionality
would be very similar across different business objects. To avoid problems caused
by manual implementation of this functionality in every single business object4,
Offline Business Object employs a software development technique called active
source code generation.

At the heart of source code generation lies a declarative specification of busi-
ness objects created by the software developer. Based on that specification, the
generator can automatically produce different artifacts, such as source code of
Java classes or SQL-DDL statements. An important property of active code
generation is that the automatically generated code is not intended for the pro-
grammer to modify. Instead, all customisations should be implemented with the
use of e.g. subclassing or delegation. In this way, should the declarative specifi-
cation change, none of the customisations will be lost or overwritten.

In case of OBO, the declarative specification of a business object describes
such its elements as object-relational mapping information (i.e. which database
tables and columns the object maps to), authorisation methods, security lev-
els (e.g. whether the object’s data should be encrypted or not) or concurrent
modification resolution strategy. Given the following example specification of a
business object representing a school unit:

<table name="UNIT" concurrentModification="lastWins">
<references foreignTable="SCHOOL" authorizationPropagates="true"

primaryKey="false" onDelete="cascade"/>
<column name="UNIT_ID" primaryKey="true"/>
<column name="NAME" type="STRING"/>
<column name="DESCRIPTION" type="STRING"/>

</table>

Offline Business Objects will generate the following artifacts:

BaseUnit.java. A base class for implementing the business behaviour of a
school unit

BaseUnitPeer.java. A base class that handles the object-relational mapping
of the business object

BaseRightChecker.java. A base class for implementing access control
4 In case of the Nabor project, the number of business object classes exceeded 80.

974 P. Gruszczynski, S. Osinski, and A. Swedrzynski

Table 1. Size of the Offline Business Objects source code

Artifact Size
OBO code generator 2 750 LOC (Java)

938 lines (Velocity templates)
OBO security and utility classes 4 326 LOC (Java)

TOTAL 8 014 lines
Source code generated by OBO 53 059 LOC (Java)

Total number of business object instances about 500.000

Data synchronisation. Java classes supporting data synchronisation and
communication

Local cache. Java classes implementing the offline caching of the business
object

SQL-DDL. Table and sequencer definitions for the business object

In Table 1 we show the size of Offline Business Objects expressed as the
number of lines of Java source code. Included are also Java code templates in
the Velocity [9] format.

4.7 Limitations

Finishing our discussion of the Offline Business Objects framework, we need
to emphasise that the offline processing model is not suitable for all kinds of
distributed applications. In particular, OBO is not the best choice for systems
which perform large numbers of concurrent modifications of the same data. In
such cases, with too many concurrent modifications being rejected, the system
may become inconvenient or even impossible to use. Choosing the alternative
strategy, on the other hand, would increase the risk of losing data coherence.

The assumption of the Nabor system, however, was that for a great major-
ity of business objects there would be only one client with the rights to mod-
ify them.5 Consequently, the number of concurrent modifications would be low
enough for the offline processing model to be efficient. For the same reason we
did not consider implementing more complex conflict resolution mechanisms,
such as non-repudiable information sharing [5].

Another problem related to OBO, but also to the ORM frameworks in gen-
eral, is different operation semantics. To illustrate this, let us consider two con-
current transactions each of which increases the balance of a bank account by
10; the starting balance is 15. In a relational database, both transactions would
execute an SQL statement similar to update account set balance = balance + 10,
which would finally result in the balance being changed to 35. With an ORM
framework, however, a similar semantics is very difficult to achieve. Assuming
the ”last committer wins” strategy, both transactions would have to execute a
5 For example, only one of the schools a candidate is applying to has the right to enter

and further modify the candidates data.

OBO: Enabling Data Persistence for Distributed Desktop Applications 975

statement similar to account.setBalance(account.getBalance() + 10), which in
both transactions would effectively translate to account.setBalance(25) and an
incorrect final account balance. The only way of dealing with this problem is
rejecting concurrent modifications, which may prove inconvenient for the end
users.

5 Evaluation

In 2004 the Nabor system, which we built based on the Offline Business Ob-
jects framework, was deployed in five major cities in Poland on over 200 inde-
pendent client workstations and handled almost 30.000 high school candidates.
Throughout the operation period, the system performed smoothly and reliably.
No attempts to manipulate the admission results were reported, no major us-
ability issues were discovered. We therefore feel that this is the best proof that
the offline processing model is feasible and can be implemented in practice.

In Table 2 we summarise the size of the Nabor system source code. An
interesting observation is that the size of code generated by OBO is more than
six times bigger that the source code of OBO itself (see Table 1). This might be
considered as a sign that our investment in OBO was a profitable one. It must
be borne in mind, however, that programming a source code generator is far
more complex than writing regular code, which makes the accurate comparison
very difficult. The real benefit can come from reusing OBO in similar projects
in the future.

Table 2. Size of the Nabor system source code

Artifact Size
Hand-written source code 92 051 LOC (Java)

Source code generated by OBO 53 059 LOC (Java)
Source code generated by JAX-B and others 35 957 LOC (Java)

TOTAL 181 107 LOC (Java)

6 Conclusions and Future Work

Creating a secure distributed desktop application supporting offline operation
is a non-trivial task. Even more so is designing and implementing a general
framework that would facilitate the development of such applications.

In this paper we have presented the Offline Business Objects framework
whose aim is to enable data persistence for distributed desktop applications.
We identified the requirements for OBO and its main components. We also
discussed a number of specific design and implementation problems we faced.
Finally, we emphasised the limitations of the offline operation paradigm that
must be considered before adopting this approach in real world software.

976 P. Gruszczynski, S. Osinski, and A. Swedrzynski

Our future work on Offline Business Objects will concentrate on looking into
the possibilities of extending the existing Java-based persistence frameworks,
such as Hibernate, with offline processing capabilities. Service Data Objects
implementations can be used as a communication layer for OBO.

Although OBO has been successfully used as a building block for a real-world
application, we are aware that detailed performance analyses and benchmarks
are required. Another interesting research area is adapting the OBO framework
for mobile distributed applications.

References

1. IBM Workplace Client Technology: Delivering the Rich Client Experience. White
paper, IBM Corporation, 2004.

2. Christian Bauer and Gavin King. Hibernate in Action. Manning Publications,
2004.

3. Luca Cabibbo. Objects meet relations: On the transparent management of persis-
tent objects. In CAiSE, pages 429–445, 2004.

4. Paul Castro, Frederique Giraud, Ravi Konuru, Apratim Purakayastha, and Danny
Yeh. A programming framework for mobilizing enterprise applications. WMCSA,
pages 196–205, 2004.

5. Nick Cook, Paul Robinson, and Santosh K. Shrivastava. Component middleware to
support non-repudiable service interactions. In DSN, pages 605–. IEEE Computer
Society, 2004.

6. IBM Corporation and BEA Systems. Service Data Objects Specification v1.0.
2004.

7. Jens Dibbern, Tim Goles, Rudy Hirschheim, and Bandula Jayatilaka. Information
systems outsourcing: a survey and analysis of the literature. SIGMIS Database,
35(4):6–102, 2004.

8. Apache Software Foundation. Torque Persistence Layer.
http://db.apache.org/torque, 2004.

9. Apache Software Foundation. Velocity Template Engine.
http://jakarta.apache.org/velocity, 2004.

10. Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley
Professional, 2002.

11. Mark L. Fussell. Foundations of object-relational mapping. ChiMu Corporation,
1997.

12. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann, 1993.

13. Pawel Gruszczynski, Bernard Lange, Michal Maciejewski, Cezary Mazurek, Krys-
tian Nowak, Stanislaw Osinski, Maciej Stroinski, and Andrzej Swedrzynski. Build-
ing a Large-scale Information System for the Education Sector: A Project Ex-
perience. In Proceedings of the Seventh International Conference on Enterprise
Information Systems, volume IV, pages 145–150, Miami, USA, 2005.

14. Jack Herrington. Code Generation in Action. Manning Publications, 2003.
15. HypersonicSQL Lightweight Java SQL Database Engine.

http://hsqldb.sourceforge.net, 2005.
16. Sun Microsystems. Enterprise JavaBeans. http://java.sun.com/products/ejb, 2005.
17. Sun Microsystems. Java Data Objects Specification v1.0.1.

http://www.jdocentral.com, 2005.

OBO: Enabling Data Persistence for Distributed Desktop Applications 977

18. Sun Microsystems. Java Foundation Classes. http://java.sun.com/products/jfc,
2005.

19. Sun Microsystems. JDBC. http://java.sun.com/products/jdbc, 2005.
20. Panos A. Patsouris. A formal versioning approach for distributed objectbase. In

ICPADS ’97: Proceedings of the 1997 International Conference on Parallel and
Distributed Systems, pages 686–693, Washington, DC, USA, 1997. IEEE Computer
Society.

21. Prevayler: Free-software prevalence layer for Java. http://www.prevayler.org, 2004.
22. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

Middleware Support for Dynamic Component
Updating

Jaiganesh Balasubramanian1, Balachandran Natarajan2,�,
Douglas C. Schmidt1, Aniruddha Gokhale1, Jeff Parsons1, and Gan Deng1

1 Department of Electrical Engineering and Computer Science,
Vanderbilt University, Nashville, TN 37203, USA

(jai, schmidt, gokhale, parsons, dengg)@dre.vanderbilt.edu
2 Veritas Software India Ltd.,

Pune, India
bala.natarajan@veritas.com

Abstract. Component technologies are increasingly being used to de-
velop and deploy distributed real-time and embedded (DRE) systems.
To enhance flexibility and performance, developers of DRE systems need
middleware mechanisms that decouple component logic from the binding
of a component to an application, i.e., they need support for dynamic up-
dating of component implementations in response to changing modes and
operational contexts. This paper presents three contributions to R&D on
dynamic component updating. First, it describes an inventory tracking
system (ITS) as a representative DRE system case study to motivate the
challenges and requirements of updating component implementations dy-
namically. Second, it describes how our SwapCIAO middleware supports
dynamic updating of component implementations via extensions to the
server portion of the Lightweight CORBA Component Model. Third, it
presents the results of experiments that systematically evaluate the per-
formance of SwapCIAO in the context of our ITS case study. Our results
show that SwapCIAO improves the flexibility and performance of DRE
systems, without affecting the client programming model or client/server
interoperability.

1 Introduction

Component middleware is increasingly being used to develop and deploy next-
generation distributed real-time and embedded (DRE) systems, such as ship-
board computing environments [1], inventory tracking systems [2], avionics mis-
sion computing systems [3], and intelligence, surveillance and reconnaissance
systems [4]. These DRE systems must adapt to changing modes, operational
contexts, and resource availabilities to sustain the execution of critical missions.
However, conventional middleware platforms, such as J2EE, CCM, and .NET,
are not yet well-suited for these types of DRE systems since they do not facilitate

� Work performed while author at Vanderbilt University.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 978–996, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Middleware Support for Dynamic Component Updating 979

the separation of quality of service (QoS) policies from application functional-
ity [5].

To address limitations of conventional middleware, QoS-enabled component
middleware, such as CIAO [6], Qedo [7], and PRiSm [8], explicitly separates
QoS aspects from application functionality, thereby yielding systems that are
less brittle and costly to develop, maintain, and extend [6]. Our earlier work on
QoS-enabled component middleware has focused on (1) identifying patterns for
composing component-based middleware [9, 10], (2) applying reflective middle-
ware [11] techniques to enable mechanisms within the component-based middle-
ware to support different QoS aspects [12], (3) configuring real-time aspects [6]
within component middleware to support DRE systems, and (4) developing
domain-specific modeling languages that provide design-time capabilities to de-
ploy and configure component middleware applications [13]. This paper extends
our prior work by evaluating middleware techniques for updating component
implementations dynamically and transparently (i.e., without incurring system
downtime) to optimize system behavior under diverse operating contexts and
mode changes.

Our dynamic component updating techniques have been integrated into
SwapCIAO, which is a QoS-enabled component middleware framework that en-
ables application developers to create multiple implementations of a compo-
nent and update (i.e. “swap”) them dynamically. SwapCIAO extends CIAO,
which is an open-source1 implementation of the OMG Lightweight CCM [14],
Deployment and Configuration (D&C) [15], and Real-time CORBA [16] spec-
ifications. Sidebar 1 outlines the features of Lightweight CCM relevant to this
paper.

The key capabilities that SwapCIAO adds to CIAO include (1) mechanisms
for updating component implementations dynamically without incurring system
downtime and (2) mechanisms that transparently redirect clients of an exist-
ing component to the new updated component implementation. As discussed
in this paper, key technical challenges associated with providing these capabili-
ties involve updating component implementations without incurring significant
overhead or losing invocations that are waiting for or being processed by the
component.

The remainder of this paper is organized as follows: Section 2 describes
the structure and functionality of an inventory tracking system, which is a
DRE system case study that motivates the need for dynamic component im-
plementation updating; Section 2.2 describes the key design challenges in pro-
visioning the dynamic component implementation updating capability in QoS-
enabled component middleware systems; Section 3 describes the design of Swap-
CIAO, which provides dynamic component implementation updating capability
for Lightweight CCM; Section 4 analyzes the results from experiments that sys-
tematically evaluate the performance of SwapCIAO for various types of DRE
applications in our ITS case study; Section 5 compares SwapCIAO with related
work; and Section 6 presents concluding remarks.

1 SwapCIAO and CIAO are available from www.dre.vanderbilt.edu/CIAO.

980 J. Balasubramanian et al.

Sidebar 1: Overview of Lightweight CCM

The OMG Lightweight CCM [14] specification standardizes the development, con-
figuration, and deployment of component-based applications. Applications devel-
oped with Lightweight CCM are not tied to any particular language, platform,
or network. Components in Lightweight CCM are implemented by executors and
collaborate with other components via ports, including (1) facets, which define an
interface that accepts point-to-point method invocations from other components,
(2) receptacles, which indicate a dependency on point-to-point method interface
provided by another component, and (3) event sources/sinks, which indicate a will-
ingness to exchange typed messages with one or more components.

Assemblies of components in Lightweight CCM are deployed and configured via
the OMG D&C [15] specification, which manages the deployment of an application
on nodes in a target environment. The information about the component assemblies
and the target environment in which the components will be deployed are captured
in the form of XML descriptors defined by the D&C specification. A standard
deployment framework parses XML assembly descriptors and deployment plans,
extracts connection information from them, and establishes the connections between
component ports. In the context of this paper, a connection refers to the high-level
binding between an object reference and its target component, rather than a lower-
level transport connection.

2 Case Study to Motivate Dynamic Component Updating
Requirements

To examine SwapCIAO’s capabilities in the context of a representative DRE
system, we developed an inventory tracking system (ITS), which is a warehouse
management infrastructure that monitors and controls the flow of goods and
assets within a storage facility. Users of an ITS include couriers (such as UPS,
DHL, and Fedex), airport baggage handling systems, and retailers (such as Wal-
mart and Target). This section describes (1) the structure/functionality of our
ITS case study and (2) the key requirements that SwapCIAO dynamic compo-
nent updating framework had to address. Naturally, SwapCIAO’s capabilities
can be applied to many DRE systems – we focus on the ITS case study in this
paper to make our design discussions and performance experiments concrete.

2.1 Overview of ITS

An ITS provides mechanisms for managing the storage and movement of goods
in a timely and reliable manner. For example, an ITS should enable human
operators to configure warehouse storage organization criteria, maintain the in-
ventory throughout a highly distributed system (which may span organizational
and national boundaries), and track warehouse assets using decentralized oper-
ator consoles. In conjunction with colleagues at Siemens [17], we have developed
the ITS shown in Figure 1 using SwapCIAO. This figure shows how our ITS
consists of the following three subsystems:

Middleware Support for Dynamic Component Updating 981

Fig. 1. Key Components in ITS

– Warehouse management, whose high-level functionality and decision-
making components calculate the destination locations of goods and delegate
the remaining details to other ITS subsystems. In particular, the warehouse
management subsystem does not provide capabilities like route calculation
for transportation or reservation of intermediate storage units.

– Material flow control, which handles all the details (such as route cal-
culation, transportation facility reservation, and intermediate storage reser-
vation) needed to transport goods to their destinations. The primary task
of this subsystem is to execute the high-level decisions calculated by the
warehouse management subsystem.

– Warehouse hardware, which deals with physical devices (such as sensors)
and transportation units (such as conveyor belts, forklifts, and cranes).

2.2 Requirements for Dynamic Component Updates

Throughout the lifetime of an ITS, new physical devices may be added to support
the activities in the warehouse. Likewise, new models of existing physical devices
may be added to the warehouse, as shown in Figure 2. This figure shows the
addition of a new conveyor belt that handles heavier goods in a warehouse. The
ITS contains many software controllers, which collectively manage the entire
system. For example, a software controller component manages each physical
device controlled by the warehouse hardware subsystem. When a new device is
introduced, a new component implementation must be loaded dynamically into
the ITS. Likewise, when a new version of a physical device arrives, the component
that controls this device should be updated so the software can manage the new
version. ITS vendors are responsible for providing these new implementations.

As shown in Figure 2, a workflow manager component is connected to a
conveyor belt component using a facet/receptacle pair and an event source/sink
pair. To support this scenario, the ITS needs middleware that can satisfy the
following three requirements:

982 J. Balasubramanian et al.

Fig. 2. Component Updating Scenario in ITS

1. Consistent and uninterrupted updates to clients. As part of the dynamic
update process, a component’s implementation is deactivated, removed, and up-
dated. To ensure that the ITS remains consistent and uninterrupted during this
process, the middleware must ensure that (1) ongoing invocations between a
component and a client are completed and (2) new invocations from clients to
a component are blocked until its implementation has been updated. Figure 2
shows that when a conveyor belt’s component implementation is updated, pend-
ing requests from the workflow manager to the conveyor belt component to
move a new good to a storage system should be available for processing after
the implementation is updated. Section 3.1 explains how SwapCIAO supports
this requirement.

2. Efficient client-transparent dynamic component updates. After a component
is updated, the blocked invocations from clients should be redirected to the
new component implementation. This reconfiguration should be transparent to
clients, i.e., they should not need to know when the change occurred, nor should
they incur any programming effort or runtime overhead to communicate with the
new component implementation. Figure 2 shows how a client accessing an ITS
component should be redirected to the updated component transparently when
dynamic reconfiguration occurs. Section 3.2 explains how SwapCIAO supports
this requirement.

3. Efficient (re)connections of components. Components being updated may
have connections to other components through the ports they expose. The con-
nected components and the component being updated share a requires/provides
relationship by exchanging invocations through the ports. In Lightweight CCM,
these connections are established at deployment time using data provided to
the deployment framework in the form of XML descriptors. During dynamic re-
configuration, therefore, it is necessary to cache these connections so they can
be restored immediately after reconfiguration. Figure 2 shows how, during the
update of a conveyor belt component, its connections to the workflow manager

Middleware Support for Dynamic Component Updating 983

component must be restored immediately after the new updated conveyor belt
component implementation is started. Section 3.3 explains how SwapCIAO sup-
ports this requirement.

3 The SwapCIAO Dynamic Component Updating
Framework

This section describes the design of SwapCIAO, which is a C++ framework
that extends CIAO to support dynamic component updates. Figure 3 shows the
following key elements in the SwapCIAO framework:
– SwapCIAO’s component implementation language definition (CIDL) com-

piler supports the updatable option, which triggers generation of “glue code”
that (1) defines a factory interface to create new component implementa-
tions, (2) provides hooks for server application developers to choose which
component implementation to deploy, (3) creates, installs, and activates com-
ponents within a POA chosen by an application, and (4) manages the port
connections of an updatable component.

– The updatable container provides an execution environment in which compo-
nent implementations can be instantiated, removed, updated, and
(re)executed. An updatable container enhances the standard Lightweight
CCM session container [18] to support additional mechanisms through which
component creation and activation can be controlled by server application
developers.

– The updatable component factory creates components and implements a
wrapper facade [10] that provides a portable interface used to implement the
Component Configurator pattern [10], which SwapCIAO uses to open and
load dynamic link libraries (DLLs) on heterogeneous run-time platforms.

Fig. 3. Dynamic Interactions in the SwapCIAO framework

984 J. Balasubramanian et al.

– The repository manager stores component implementations. SwapCIAO’s
updatable component factory uses the repository manager to search DLLs
and locate component implementations that require updating.

The remainder of this section describes how the SwapCIAO components in Fig-
ure 3 address the requirements presented in Section 2.2.

3.1 Providing Consistent and Uninterrupted Updates to Clients

Problem. Dynamic updates of component implementations can occur while inter-
actions are ongoing between components and their clients. For example, during
the component update process, clients can initiate new invocations on a com-
ponent – there may also be ongoing interactions between components. If these
scenarios are not handled properly by the middleware some computations can
be lost, yielding state inconsistencies.

Solution → Reference counting operation invocations. In SwapCIAO, all oper-
ation invocations on a component are dispatched by the standard Lightweight
CCM portable object adapter (POA), which maintains a dispatching table that
tracks how many requests are being processed by each component in a thread.
SwapCIAO uses standard POA reference counting and deactivation mechanisms
[19] to keep track of the number of clients making invocations on a component.
After a server thread finishes processing the invocation, it decrements the refer-
ence count in the dispatching table.

When a component is about to be removed during a dynamic update, the
POA does not deactivate the component until its reference count becomes zero,
i.e., until the last invocation on the component is processed. To prevent new
invocations from arriving at the component while it is being updated, Swap-
CIAO’s updatable container blocks new invocations for this component in the
server ORB using standard CORBA portable interceptors [20].

Applying the solution to ITS. In the ITS case study, when the conveyor belt com-
ponent implementation is being updated, the warehouse hardware system could
be issuing requests to the conveyor belt component to move goods. The updat-
able container (which runs in the same host as the conveyor belt component)
instructs the SwapCIAO middleware to block those requests. After the requests
are blocked by SwapCIAO, the updatable container’s POA deactivates the con-
veyor belt component only when all requests it is processing are completed, i.e,
when its reference count drops to zero.

3.2 Ensuring Efficient Client-Transparent Dynamic Component
Updates

Problem. As shown in the Figure 3, many clients can access a component whose
implementation is undergoing updates during the dynamic reconfiguration pro-
cess. In Lightweight CCM, a client holds an object reference to a component.
After a component implementation is updated, old object references are no longer
valid. The dynamic reconfiguration of components needs to be transparent to

Middleware Support for Dynamic Component Updating 985

clients, however, so that clients using old references to access updated compo-
nent do not receive “invalid reference” exceptions. Such exceptions would compli-
cate client application programming and increase latency by incurring additional
round-trip messages, which could unduly perturb the QoS of component-based
DRE systems.

Solution → Use servant activators to redirect clients to update components trans-
parently. Figure 4 shows how SwapCIAO redirects clients transparently to an
updated component implementation. During the component updating process,

‘

Fig. 4. Transparent Component Object Reference Update in SwapCIAO

the old component implementation is removed. When a client makes a request on
the old object reference after a component has been removed, the POA associ-
ated with the updatable container intercepts the request via a servant activator.
This activator is a special type of intercepter that can dynamically create a
component implementation if it is not yet available to handle the request. Since
the component has been removed, the POA’s active object map will have no
corresponding entry, so the servant activator will create a new component im-
plementation dynamically.

SwapCIAO stores information in the POA’s active object map to handle
client requests efficiently. It also uses CORBA-compliant mechanisms to activate
servants via unique user id’s that circumvent informing clients of the updated
implementation. This design prevents extra network round-trips to inform clients
about an updated component’s implementation.

Applying the solution to ITS. In the ITS case study, when the conveyor belt com-
ponent implementation is being updated, the warehouse hardware system could
be issuing requests to the conveyor belt component to move goods. After the cur-
rent conveyor belt component is removed, the servant activator in the updatable
container’s POA intercepts requests from the warehouse hardware subsystem
clients to the conveyor belt component. The servant activator then activates a
new conveyor belt component implementation and transparently redirects the
requests from the warehouse hardware subsystem to this updated implementa-
tion. SwapCIAO uses these standard CORBA mechanisms to enable different

986 J. Balasubramanian et al.

component implementations to handle the requests from warehouse hardware
subsystem clients transparently, without incurring extra round-trip overhead or
programming effort by the clients.

3.3 Enabling (Re)connections of Components

Problem. As discussed in Sidebar 1, Lightweight CCM applications use the stan-
dard OMG Deployment and Configuration (D&C) [15] framework to parse XML
assembly descriptors and deployment plans, extract connection information from
them, and establish connections between component ports. This connection pro-
cess typically occurs during DRE system initialization. When component imple-
mentations are updated, it is therefore necessary to record each component’s con-
nections to its peer components since their XML descriptors may not be available
to establish the connections again. Even if the XML is available, reestablishing
connections can incur extra round-trip message exchanges across the network.

Solution → Caching component connections Figure 5 shows how SwapCIAO
handles component connections during the component update process. During
the component updating process, SwapCIAO caches component connections to
any of its peer component ports. SwapCIAO automatically handles the case
where the updated component is a facet and the connected component is a
receptacle. Since the receptacle could make requests on the facet while the com-
ponent implementation is being updated, SwapCIAO uses the mechanisms de-
scribed in Section 3.1 to deactivate the facets properly, so that no invocations
are dispatched to the component. When the new component is activated, the
facets are reactivated using the SwapCIAO’s POA servant activator mechanism
discussed in Section 3.2. For event source and event sinks, if the component
being updated is the publisher, SwapCIAO caches the connections of all the
connected consumers. When the updated component implementation is reacti-
vated, its connections are restored from the cache. As a result, communication
can be started immediately, without requiring extra network overhead.

‘

Fig. 5. Enabling (Re)connections of Components in SwapCIAO

Middleware Support for Dynamic Component Updating 987

Applying the solution to ITS. In the ITS, a conveyor belt component in the
warehouse hardware subsystem is connected to many sensors that assist the con-
veyor belt in tracking goods until they reach a storage system. When a conveyor
belt component is updated, its connections to sensor components are cached be-
fore deactivation. When the updated conveyor belt component implementation
is reactivated, the cached connections are restored and communication with the
sensors can start immediately and all requests blocked during the update process
will then be handled.

4 Empirical Results

This section presents the design and results of experiments that empirically eval-
uate how well SwapCIAO’s dynamic component updating framework described
in Section 3 addresses the requirements discussed in Section 2.2. We focus on the
performance and predictability of SwapCIAO’s component updating mechanisms
provided by version 0.4.6 of SwapCIAO. All experiments used a single 850 MHz
CPU Intel Pentium III with 512MB RAM, running the RedHat Linux 7.1 distribu-
tion, which supports kernel-level multi-tasking, multi-threading, and symmetric
multiprocessing. The benchmarks ran in the POSIX real-time thread scheduling
class [21] to increase the consistency of our results by ensuring the threads created
during the experiment were not preempted arbitrarily during their execution.

Figure 6 shows key component interactions in the ITS case study shown in
Figure 1 that motivated the design of these benchmarks using SwapCIAO.

As shown in this figure, the workflow manager component of the material flow
control subsystem is connected to the conveyor belt and forklift transportation
units of the warehouse hardware subsystem. We focus on the scenario where the
workflow manager contacts the conveyor belt component using the move item()
operation to instruct the conveyor belt component to move an item from a source
(such as a loading dock) to a destination (such as a warehouse storage location).
The move item() operation takes source and destination locations as its input
arguments. When the item is moved to its destination successfully, the conveyor

‘

Fig. 6. Component Interaction in the ITS

988 J. Balasubramanian et al.

belt component informs the workflow manager using the finished moving()
event operation. The conveyor belt component is also connected to various sensor
components, which determine if items fall off the conveyor belt. It is essential that
the conveyor belt component not lose connections to these sensor components
when component implementation updates occur.

During the component updating process, workflow manager clients experi-
ence some delay. Our benchmarks reported below measure the delay and jitter
(which is the variation of the delay) that workflow manager clients experience
when invoking operations on conveyor belt component during the component
update process. They also measure how much of the total delay is incurred by
the various activities that SwapCIAO performs when updating a component
implementation. In our experiments, all components were deployed on the same
machine to alleviate the impact of network overhead in our experimental results.

The core CORBA benchmarking software is based on the single-threaded
version of the “TestSwapCIAO” performance test distributed with CIAO.2 This
benchmark creates a session for a single client to communicate with a single
component by invoking a configurable number of move item() operations. The
conveyor belt component is connected to the sensor components using event
source/sink ports.

Section 3.3 describes how caching and reestablishing connections to peer com-
ponents are important steps in the component updating process. We therefore
measured the scalability of SwapCIAO when an updated component has upto
16 peer components using event source/sink ports. The tests can be configured
to use either the standard Lightweight CCM session containers or SwapCIAO’s
updatable containers (described in Section 3). TestSwapCIAO uses the default
configuration of TAO, which uses a reactive concurrency model to collect replies.

4.1 Measuring SwapCIAO’s Updatable Container Overhead for
Normal Operations

Rationale. Section 3 described how SwapCIAO extends Lightweight CCM and
CIAO to support dynamic component updates. DRE systems do not always re-
quire dynamic component updating, however. It is therefore useful to compare the
overhead of SwapCIAO’s updatable container versus the standard Lightweight
CCM session container under normal operations (i.e., without any updates) to
evaluate the tradeoffs associated with this feature.

Methodology. This experiment was run with two variants: one using the Swap-
CIAO updatable container and the other using the standard CIAO session con-
tainer. In both experiemnts, we used high-resolution timer probes to measure the
latency of move item() operation from the workflow manager component to the
conveyor belt component. Since SwapCIAO caches and restores a component’s
connections to its peer components, we varied the number of sensor components
connected to the conveyor belt and then collected latency data with 2, 4, 8, and
2 The source code for TestSwapCIAO is available at www.dre.vanderbilt.edu/∼jai/
TAO/CIAO/performance-tests/SwapCIAO.

Middleware Support for Dynamic Component Updating 989

Fig. 7. Overhead of SwapCIAO’s Updatable Container

16 ports to determine whether SwapCIAO incurred any overhead with additional
ports during normal operating mode. The TestSwapCIAO client made 200,000 in-
vocations of move item() operation to collect the data shown in Figure 7.

Analysis of results. Figure 7 shows the comparitive latencies experienced by the
workflow manager client when making invocations on conveyor belt component
created with the session container versus the updatable container. These results
indicate that no appreciable overhead is incurred by SwapCIAO’s updatable
container for normal operations that do not involve dynamic swapping.

The remainder of this section uses the results in Figure 7 as the baseline
processing delay to evaluate the delay experienced by workflow manager clients
when dynamic updating of a conveyor belt component occurs.

4.2 Measuring SwapCIAO’s Updatable Container Overhead for
Updating Operations

Rationale. Evaluating the efficiency, scalability, and predictability of Swap-
CIAO’s component updating mechanisms described in Section 3.2 and Sec-
tion 3.3 is essential to understand the tradeoffs associated with updatable con-
tainers. SwapCIAO’s component update time includes (1) the removal time,
which is the time SwapCIAO needs to remove the existing component from
service, (2) the creation time, which is the time SwapCIAO needs to create and
install a new component, and (3) the reconnect time, which is the time Swap-
CIAO needs to restore a component’s port connections to its peer components.

Methodology. Since the number of port connections a component has affects how
quickly it can be removed and installed, we evaluated SwapCIAO’s component
update time by varying the number of ports and measuring the component’s:

– Removal time, which was measured by adding timer probes to SwapCIAO’s
CCM Object::remove()operation, which deactivates the component servant,
disassociates the executor from the servant, and calls ccm passivate() on
the component.

– Creation time, which was measured by adding timer probes to SwapCIAO’s
PortableServer::ServantActivator::incarnate() operation, which cre-
ates and installs a new component, as described in Section 3.2.

990 J. Balasubramanian et al.

Fig. 8. Latency Measurements for Com-
ponent Creation

Fig. 9. Latency Measurements for Recon-
necting Component Connections

– Reconnect time, which was measured by adding timer probes to CCM Object::
ccm activate(), which establishes connections to ports.

We measured the times outlined above whenever a component update occurs
during a move item() call for 200,000 iterations and then calculated the results
presented below.

Analysis of creation time. Figure 8 shows the minimum, average, and maximum
latencies, as well as the 99% latency percentile, incurred by SwapCIAO’s servant
activator to create a new component, as the number of ports vary from 2, 4, 8,
and 16. This figure shows that latency grows linearly as the number of ports ini-
tialized by PortableServer::ServantActivator::incarnate() increases. It
also shows that SwapCIAO’s servant activator spends a uniform amount of time
creating a component and does not incur significant overhead when this pro-
cess is repeated 200,000 times. SwapCIAO’s creation mechanisms described in
Section 3.2 are therefore efficient, predictable, and scalable in ensuring efficient
client-transparent dynamic component updates.

Analysis of reconnect time. Figure 9 shows the minimum, average, and maximum
latencies, as well as 99% latency percentile, incurred by SwapCIAO’s reconnect
mechanisms to restore a new component’s connections, as the number of ports
vary from 2, 4, 8, and 16. As shown in the figure, the reconnect time increases
linearly with the number of ports per component. These results indicate that
SwapCIAO’s reconnect mechanisms described in Section 3.3 provide efficient
(re)connection of components and do not incur any additional roundtrip delays
by propagating exceptions or sending GIOP locate forward messages to re-
store connections to components.

Analysis of removal time. Figure 10 shows the time used by SwapCIAO’s re-
moval mechanisms to cache a component’s connections and remove the com-
ponent from service, as a function of the number of its connected ports. This

Middleware Support for Dynamic Component Updating 991

Fig. 10. Latency Measurements for Com-
ponent Removal

Fig. 11. Client Experienced Incarnation
Delays during Transparent Component
Updates

removal time increases linearly with the number of ports, which indicates that
SwapCIAO performs a constant amount of work to manage the connection in-
formation for each port. SwapCIAO’s removal mechanisms described in Sec-
tion 3.1 are therefore able to provide consistent and uninterrupted updates to
clients.

4.3 Measuring the Update Latency Experienced by Clients

Rationale. Section 3.2 describes how SwapCIAO’s component creation mecha-
nisms are transparent to clients, efficient, and predictable in performing client-
transparent dynamic component updates. Section 4.2 showed that SwapCIAO’s
standard POA mechanisms and the servant activator create new component
implementations efficiently and predictably. We now determine whether Swap-
CIAO incurs any overhead – other than the work performed by the SwapCIAO’s
component creation mechanisms – that significantly affects client latency.

Methodology. The incarnation delay is defined as the period of time experi-
enced by a client when (1) its operation request arrives at a server ORB af-
ter SwapCIAO has removed the component and (2) it receives the reply after
SwapCIAO creates the component, restores the component’s connections to peer
components, and allows the updated component to process the client’s request.
The incarnation delay therefore includes the creation time, reconnect time, and
processing delay (which is the time a new component needs to process the op-
eration request and send a reply to the client). To measure incarnation delay,
we (1) removed a component and (2) started a high-resolution timer when the
client invokes a request on the component. We repeated the above experiment
for 200,000 invocations and measured the latency experienced by the client
for each invocation. We also varied the number of ports between 2, 4, 8, and

992 J. Balasubramanian et al.

16 as described in Section 4.2 to measure the extent to which SwapCIAO’s
component creation process is affected by the number of ports connected to a
component.

Analysis of results. Figure 11 shows the delay experienced by a client as Swap-
CIAO creates a component with a varying number of connections to process
client requests. By adding the delays in Figure 8, Figure 9, and Figure 7 and
comparing them with the delays in Figure 11, we show how the incarnation delay
is roughly equal to the sum of the creation time, reconnect time, and process-
ing delay, regardless of whether the client invokes an operation on a updating
component with ports ranging from 2, 4, 8, to 16.

These results validate our claim in Section 3.2 that SwapCIAO provides
component updates that are transparent to clients. In particular, if SwapCIAO’s
servant activator did not transparently create the component and process the
request, the client’s delay incurred obtaining a new object reference would be
larger than the sum of the creation time, reconnect time, and the processing
delay. We therefore conclude that SwapCIAO provides efficient and predictable
client transparent updates.

5 Related Work

This section compares our R&D efforts on SwapCIAO with related work ranging
from offline updates to hot standby and application-specific techniques.

Offline techniques. Component updating has often been done via offline tech-
niques, where applications are stopped to perform the update and restarted
with the new implementation. For example, in [22] when a node is reconfigured,
other nodes that require service from the target node are blocked completely,
unnecessarily delaying services that are not being reconfigured. To minimize
system interruption, [23] uses a centralized configuration manager, that over-
sees the interactions among components. The centralized configuration manager
becomes the single point of failure and also a bottleneck for communication
among components. Such techniques can be overly rigid and inefficient for cer-
tain types of DRE applications, such as online trading services and inventory
tracking systems, where downtime is costly. To address these limitations, Swap-
CIAO updates component implementations dynamically by (1) queuing requests
from other components during the component update and (2) transparently redi-
recting those requests to the updated implementation, thereby enabling uninter-
rupted online component updates.

Hot standby techniques. Another component updating technique uses online
backup implementations, called “hot standbys.” In this approach, when a com-
ponent needs updating, requests to it will be transferred to the backup, dur-
ing which the main implementation is updated [24]. Although this solution is
common, it can be complex and resource-intensive. In particular, when adding

Middleware Support for Dynamic Component Updating 993

backup implementations to resource-constrained DRE systems, such as satellite
and avionics mission computing systems, it can be unduly expensive and com-
plicated to keep the backup implementation updated and to reroute requests to
this standby when the main implementation is being updated. To address these
limitations, SwapCIAO does not run a backup implementation and instead up-
dates implementations dynamically. Although requests to the target component
are queued during the update, no round-trip overhead is incurred to redirect
client requests from one node to another. Moreover, queued requests in Swap-
CIAO are redirected transparently to the updated implementation once it is
activated.

Application-specific techniques. Another technique employs application-specific
modifications to handle component updates. For example, [25] introduces a com-
ponent configurator that performs reconfiguration at the application level. As
a result, application developers must implement a configurator for each com-
ponent. Moreover, handling connections among components is hard since there
is no central entity managing information about the overall DRE system struc-
ture. To address these issues, SwapCIAO leverages patterns (such as Reference
Counting and Dispatching [19], Wrapper Facade [10] and Component Config-
urator [10]) and frameworks (such as Portable Interceptors [20] and ACE Ser-
vice Configurator [26]) to implement the dynamic component updating capa-
bility in the middleware. Application developers are therefore able to focus on
their component implementations, rather than wrestling with complex mecha-
nisms needed to add dynamic component updating capabilities into their appli-
cations.

6 Concluding Remarks

This paper describes the design and implementation of SwapCIAO, which is
a QoS-enabled component middleware framework based on Lightweight CCM
that supports dynamic component updating. SwapCIAO is designed to handle
dynamic operating conditions by updating component implementations that are
optimized for particular run-time characteristics. The lessons learned while de-
veloping SwapCIAO and applying it to the ITS case study include:

– Standard Lightweight CCM interfaces can be extended slightly to develop
a scalable and flexible middleware infrastructure that supports dynamic
component updating. In particular, SwapCIAO’s extensions require mini-
mal changes to the standard Lightweight CCM server programming model.
Moreover, its client programming model and client/server interoperability
were unaffected by the server extensions. Developers of client applications
in our ITS case study were therefore shielded entirely from SwapCIAO’s
component updating extensions.

– By exporting component implementations as DLLs, SwapCIAO simplifies the
task of updating components by enabling their implementations to be linked

994 J. Balasubramanian et al.

into the address space of a server late in its lifecycle, i.e., during the deploy-
ment and reconfiguration phases. These capabilities enabled developers in the
ITS case study to create multiple component implementations rapidly and up-
date dynamically in response to changing modes and operational contexts.

– SwapCIAO adds insignificant overhead to each dynamic component updating
request. It can therefore be used even for normal operations in ITS appli-
cations that do not require dynamic component updating. Moreover, due to
the predictability and transparency provided by SwapCIAO, it can be used
efficiently when operating conditions trigger mode changes.

Our future work will focus on developing selection algorithms [27] that can
automatically choose the most suitable component implementation to update in
a particular operating condition. We will implement these selection algorithms
and validate them in the context of DRE systems, such as our ITS case study. To
enhance the autonomic properties of DRE systems, we are developing a moni-
toring framework within SwapCIAO that (1) observes the performance of differ-
ent components, (2) identifies when performance is not within the desired QoS
bounds, and (3) automatically updates component implementations using our
selection algorithms.

References

1. Schmidt, D.C., Schantz, R., Masters, M., Cross, J., Sharp, D., DiPalma, L.: To-
wards Adaptive and Reflective Middleware for Network-Centric Combat Systems.
CrossTalk (2001)

2. Nechypurenko, A., Schmidt, D.C., Lu, T., Deng, G., Gokhale, A., Turkay, E.:
Concern-based Composition and Reuse of Distributed Systems. In: Proceedings of
the 8th International Conference on Software Reuse, Madrid, Spain, ACM/IEEE
(2004)

3. Sharp, D.C., Roll, W.C.: Model-Based Integration of Reusable Component-Based
Avionics System. In: Proc. of the Workshop on Model-Driven Embedded Systems
in RTAS 2003. (2003)

4. Sharma, P., Loyall, J., Heineman, G., Schantz, R., Shapiro, R., Duzan, G.:
Component-Based Dynamic QoS Adaptations in Distributed Real-Time and Em-
bedded Systems. In: Proc. of the Intl. Symp. on Dist. Objects and Applications
(DOA’04), Agia Napa, Cyprus (2004)

5. Wang, N., Gill, C.: Improving Real-Time System Configuration via a QoS-aware
CORBA Component Model. In: Hawaii International Conference on System Sci-
ences, Software Technology Track, Distributed Object and Component-based Soft-
ware Systems Minitrack, HICSS 2003, Honolulu, HW, HICSS (2003)

6. Wang, N., Gill, C., Schmidt, D.C., Subramonian, V.: Configuring Real-time As-
pects in Component Middleware. In: Proc. of the International Symposium on
Distributed Objects and Applications (DOA’04), Agia Napa, Cyprus (2004)

7. Ritter, T., Born, M., Unterschütz, T., Weis, T.: A QoS Metamodel and its Realiza-
tion in a CORBA Component Infrastructure. In: Proceedings of the 36th Hawaii
International Conference on System Sciences, Software Technology Track, Dis-
tributed Object and Component-based Software Systems Minitrack, HICSS 2003,
Honolulu, HW, HICSS (2003)

Middleware Support for Dynamic Component Updating 995

8. Roll, W.: Towards Model-Based and CCM-Based Applications for Real-Time Sys-
tems. In: Proceedings of the International Symposium on Object-Oriented Real-
time Distributed Computing (ISORC), Hakodate, Hokkaido, Japan, IEEE/IFIP
(2003)

9. Balasubramanian, K., Schmidt, D.C., Wang, N., Gill, C.D.: Towards Composable
Distributed Real-time and Embedded Software. In: Proc. of the 8th Workshop
on Object-oriented Real-time Dependable Systems, Guadalajara, Mexico, IEEE
(2003)

10. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked Objects, Volume 2. Wiley
& Sons, New York (2000)

11. Wang, N., Schmidt, D.C., Kircher, M., Parameswaran, K.: Towards a Reflective
Middleware Framework for QoS-enabled CORBA Component Model Applications.
IEEE Distributed Systems Online 2 (2001)

12. Wang, N., Schmidt, D.C., Parameswaran, K., Kircher, M.: Applying Reflective
Middleware Techniques to Optimize a QoS-enabled CORBA Component Model
Implementation. In: 24th Computer Software and Applications Conference, Taipei,
Taiwan, IEEE (2000)

13. Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt,
D.C.: A Platform-Independent Component Modeling Language for Distributed
Real-time and Embedded Systems. In: Proc. of the 11th IEEE Real-Time and
Embedded Technology and Applications Sym., San Francisco, CA (2005)

14. Object Management Group: Light Weight CORBA Component Model Revised
Submission. OMG Document realtime/03-05-05 edn. (2003)

15. Object Management Group: Deployment and Configuration Adopted Submission.
OMG Document ptc/03-07-08 edn. (2003)

16. Object Management Group: Real-time CORBA Specification. OMG Document
formal/02-08-02 edn. (2002)

17. Nechypurenko, A., Schmidt, D.C., Lu, T., Deng, G., Gokhale, A.: Applying MDA
and Component Middleware to Large-scale Distributed Systems: a Case Study. In:
Proceedings of the 1st European Workshop on Model Driven Architecture with
Emphasis on Industrial Application, Enschede, Netherlands, IST (2004)

18. Schmidt, D.C., Vinoski, S.: The CORBA Component Model Part 3: The CCM
Container Architecture and Component Implementation Framework. The C/C++
Users Journal (2004)

19. Pyarali, I., O’Ryan, C., Schmidt, D.C.: A Pattern Language for Efficient, Pre-
dictable, Scalable, and Flexible Dispatching Mechanisms for Distributed Object
Computing Middleware. In: Proceedings of the International Symposium on
Object-Oriented Real-time Distributed Computing (ISORC), Newport Beach, CA,
IEEE/IFIP (2000)

20. Wang, N., Schmidt, D.C., Othman, O., Parameswaran, K.: Evaluating Meta-
Programming Mechanisms for ORB Middleware. IEEE Communication Magazine,
special issue on Evolving Communications Software: Techniques and Technologies
39 (2001) 102–113

21. Khanna, S., et al.: Realtime Scheduling in SunOS 5.0. In: Proceedings of the
USENIX Winter Conference, USENIX Association (1992) 375–390

22. Kramer, J., Magee, J.: The Evolving Philosophers Problem: Dynamic Change
Management. IEEE Transactions on Software Engineering SE-16 (1990)

23. Bidan, C., Issarny, V., Saridakis, T., Zarras, A.: A Dynamic Reconfiguration Ser-
vice for CORBA. In: International Conference on Configurable Distributed Systems
(ICCDS ’98). (1998)

996 J. Balasubramanian et al.

24. Tewksbury, L., Moser, L., Melliar-Smith, P.: Live upgrades of CORBA applica-
tions using object replication. In: International Conf. on Software Maintenance,
Florence, Italy (2001) 488–497

25. Kon, K., Campbell, R.: Dependence Management in Component-based Distributed
Systems. IEEE Concurrency 8 (2000)

26. Schmidt, D.C., Huston, S.D.: C++ Network Programming, Volume 2: Systematic
Reuse with ACE and Frameworks. Addison-Wesley, Reading, Massachusetts (2002)

27. Yellin, D.M.: Competitive algorithms for the dynamic selection of component
implementations. IBM Systems Journal 42 (2003)

Two Ways of Implementing Software
Connections Among Distributed Components

Selma Matougui and Antoine Beugnard

ENST-Bretagne, Technopôle Brest-Iroise,
CS 83 818, 29 238 Brest, France

{selma.matougui, antoine.beugnard}@enst-bretagne.fr

Abstract. Software architecture has emerged in the last decade. Appli-
cations are represented as set of interconnected components. The way to
realize components has reached a certain maturity in both industrial and
academic approaches; it has almost the same consideration or definition
in the two domains. The way to implement the interconnections between
components, however, is not as well understood as implementing com-
ponents. The experience of implementing the interconnections between
components is dispersed since interconnection models are integrated in
component models. Every component model defines its own intercon-
nection model without basing on any reference model. This makes the
realizations ad-hoc and non uniformed.

We propose to make more standard the realization of the connections
between components and to distinguish two different entities that differ
in nature. This difference of nature implies a different way in using them
and a different way in implementing them. We propose to distinguish be-
tween communication abstractions embodied in components with explicit
interfaces, and communication abstractions embodied in connectors with
implicit interfaces. This difference enables a better understanding of the
interactions and how to implement them. The realization of the load bal-
ancing communication abstraction is used to illustrate the two entities.

1 Introduction

Increasingly, software systems or applications are being described and specified in
a high level before being designed and implemented. Applications are described
as a software architecture which represents, henceforth, an upstream stage in the
software development process. Designing an application by adopting a “software
architecture” approach, in opposition of adopting a “software design” approach,
is a tendency being confirmed in software engineering. While the second ap-
proach refers to techniques or development methods leading to rapid realizations
of implementation, the first approach defines intermediary stages between the
requirements and the implementation, like abstractions, architecture styles, etc.
Examples of software design approaches are the Component Based Development
(CBD) and industrial approaches like CORBA Component Model (CCM) [1] and
Enterprise Java Beans (EJB) [2]. They go from a small description of the appli-
cation to implementation. Software architecture is rather concerned by academic

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 997–1014, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

998 S. Matougui and A. Beugnard

approach like Architecture Description Languages (ADL) [3]. These languages
make a large study about the structure of the application, study many models
in the middle and then pass to implementation.

A common entity between the two approaches is the notion of component.
Although there is no universal definition of a component, the two approaches
almost agree on its global features. There is a kind of consensus about what
a component is: it is a software entity that performs computation and defines
explicit offered or required services by hiding their implementation. However,
there is not the same consideration about connections between the components;
each approach defines them differently. On the one hand, CBD and industrial ap-
proaches define simple interactions at design level that are implemented; i.e. they
exist until deployment time. The inexistence of an entity for complex interac-
tions, however, makes their realization strongly hardwired with the components.
On the other hand, some ADL can define complex interactions with a connection
model but this latter depends strongly on the defined component model. Rare
are the approaches that decouple the two models, hence there is no reference
model for connections; each ADL defines its own connection model. Moreover,
when complex interactions are defined, they are not implemented. They can be
specified but their realization is ad-hoc and uses simple connections. They do
not stay as an entire entity until deployment, they are lost during the life cycle
of the development process.

Considering the connections as an entire entity from architecture level to
deployment level has several advantages and we support this idea. In addition
to interaction description, a connection model can participate in the description
and the realization of non functional properties like security, reliability, etc. It
favors separation of concerns and so software reuse, maintenance and evolution.
Therefore, it becomes a key determinant in software quality. As we have argued
above, current approaches either do not define a connection model and offer
implementation of simple connections, or stay at a high level definition and do
not offer implementation. This creates a gap between the two levels. In this pa-
per, we propose two different entities to hold the communication abstractions:
communication components and pure connectors. They are two different connec-
tion models that are independent from any component model. They represent
two different ways to go from communication specification to communication
implementation in order to fill the gap between these two levels.

In the reminder of this article, section 2 motivates the problem. Then sec-
tion 3 gives the definitions and details of the two proposed entities and a com-
parison of them. After that, section 4 illustrates the use of the communication
component and the connector in a load balancing example. Next, section 5 makes
relationships with other works, and finally section 6 concludes.

2 Motivation

As already recalled in the previous section, two main entities are handled in
software architecture, the components and their connections. The components

Two Ways of Implementing Software Connections 999

Component BComponent A

Fig. 1. Simple Connection

perform computation and functional properties. The connections are concerned
by the communication and the coordination between components. They can also
participate to ensure non functional properties. Application architectures are
typically expressed informally by box-and-line drawings indicating the global
organization of the application [4]. The components are represented by boxes
and the connections are represented by simple lines as illustrated in figure 1. In
such representations, there exist some architecture style conventions that give
indications about the nature of the represented components and help to put some
constraints. For example, if we are in an application context handling filters and
pipes, the filters are the components represented by boxes and the connections
are made by the pipes represented by the lines. In this architecture style, if one
box is related to several lines an error will be indicated because one filter can
not be attached to several pipes; the cardinality is a single sender and a single
receiver. Moreover, the pipe allows interaction via unformatted stream data,
it represents a unidirectional communication. A bidirectional communication
should be represented with two lines, one for transmitting data and the other
for receiving data. In another architecture style, client/server for example, the
client and the server are the components represented by the boxes. When the
client needs a service offered by the server, the communication represented by a
line refers, usually, to a Remote Procedure Call (RPC).

When examining closer these connections later in the life cycle we notice that
they are very different. At runtime, in the case of the pipe and filter application,
a filter A uses the interface write() of the pipe in order to transfer data. At the
other side, the filter B should use the interface read() of the pipe in order to
recover data. Hence, the two interacting components (filters) do not possess any
knowledge about one another. The components need to interact, but they ask
the connection to do it for them. They address their request explicitly to the
connection for doing it by using the explicit interfaces of the connection. This is
what we name a communication component. At architecture level it defines its
own interfaces that are preserved until deployment. This kind of connection is
assimilated to a component with explicit interfaces that has a functionality of
making communicating and interacting other components.

In the example of client/server architecture style, we can represent the con-
nection at deployment as in figure 2. The connection at this stage, i.e. the RPC,
is divided into three important elements1. It is elaborated with the TCP/IP
component, the stub and the skeleton. At this stage, they are all considered as
independent interacting components. Indeed, every component uses the offered

1 In fact, it is more complicated. We are reducing to these elements in order to make
the explanations simple.

1000 S. Matougui and A. Beugnard

R
(m

)

R
(m

)oo serverclient stub skel mm

R
(o)

R
(o)

frame B frame Bframe C

frame A

TCP/IP

Fig. 2. RPC connection at deployment time

or required interfaces of the other components that hide their implementation.
The RPC is then embodied in the component expliciting as interfaces those of
the stub and the skeleton (frame C in figure 2). These interfaces are concrete
(implemented) at this stage because they represent the first interfaces with which
the components actually interact in order to access the low level components,
like TCP/IP, and to simulate a local call. When going back in the life cycle
and corresponding this entity with the existing elements at architecture level,
by a reverse engineering method for example, we find that these interfaces are
identical to the interfaces of the interacting components, notably the client and
the server. Hence, the RPC does not have its own and concrete interfaces at
architecture level. It has just generic interfaces destined to be specified later in
the life cycle, by a so called stub compilation. They take their final form thanks
to a generation process. Being not a component at architecture level because
it depends on other components to have its own interfaces, we name this en-
tity the connector with implicit interfaces. The interacting components know
one another and do not explicitly require the connection services. This latter
adopts interacting components interfaces in order to satisfy the needs of each
component by ensuring the appropriate property. In this example, the property
to ensure is distribution.

These two kinds of connections exist and are simple. We want to generalize
the two processes for realizing more complex and rich communication abstrac-
tions. Therefore, we identify two types of entities to hold the connections between
components at architecture level that have different nature, different life cycle
and different process of development. Therefore, we say that every entity at
architecture and design level is not a component, and connectors are not com-
ponents. Their difference is not only a difference of functionality, as it is usually
expressed, but there is also a difference of nature. The components have explicit
interfaces and the connectors have implicit ones. In the next section we describe
in more details these two models of connection.

3 Two Types of Communication Abstraction

In order to make the implementation of the connections more uniform and to
preserve them from specification to implementation, i.e. to define a refinement
process, we propose two models representing two different communication ab-
stractions. In Figures 3 and 4, we propose to isolate the description of interac-
tions into two different entities which will allow a better organization. We have

Two Ways of Implementing Software Connections 1001

changed the notation of the connection, always represented by lines, into ellipses.
Hence, we change the boxes-and-lines model into the boxes-and-lines-and-ellipses
model, where the ellipses represent complex connections. By complex connec-
tions we mean connections that use protocols or that make interacting more
than two participants. The line, henceforth, represents a simple local communi-
cation. We distinguish two kinds of complex communication abstractions:

1. Communication components with explicit attachment points called ports,
represented as squares around the communication component (the ellipse)
in Figure 3. The ports implement component interfaces, and therefore the
signatures of offered and required methods are fully specified. In Figure 3,
the communication component requires the offered operation OO(x) of the
component C1 and offers two operations OO(m) and OO(n). These offered
operations are used by the required operations RO(m) and RO(n) of com-
ponents C2 and C3 respectively. The operations x, m and n of C1, C2 and
C3 are completely different; they do not know one another and, by using a
simple interaction, interact directly with the operations x, m and n of the
communication component.

RO
(n)

RO
(x)(x)

OO

RO

OO

OO

(m)

(n)

(m)

C1

C2

C3

Communication

component

Fig. 3. A communication component

2. Connectors with implicit attachment points called plugs, represented as cir-
cles around the connector (the ellipse) in Figure 4. The plugs define implicit
or generic interfaces, they do not directly specify any required or offered
operation. These interfaces are adaptable to the interfaces of components

OO
(x)

OR
(x)

C3

C2

C1 Connector

OR
(x)

(x)

(x)

(x)

OO

OO

RO

Fig. 4. A connector

1002 S. Matougui and A. Beugnard

connected at assembly time. An isolate connector is put on the shelf without
any interface, only generic holders and the property it has to ensure. When
connected with other components, like in figure 4, the plugs are specified and
adopt the interfaces of interacting components. The offered operation OO(x)
of component C1 is required by the RO(x) required operations of compo-
nents C2 and C3. The connector adopts the interface of the components C1
and offers it to the components C2 and C3 augmented with the property
it has to ensure. Hence, this interface is brought to the components by fol-
lowing a special property. In opposition to the communication component,
the interacting components know one another and do not see the connector.
They explicitly interact one with another through the connector.

This notation by ellipses keeps the difference of functionality between the
conventional components and the communication abstractions. Indeed, express-
ing an interaction entity as a component could make us representing it graphi-
cally as a box. As we will see in the next section, the conventional components
are different from communication components. We make a graphical difference
between the two distinguished communication abstractions by their interfaces,
represented by squares and circles, which are the explicit and implicit inter-
faces. The two notions and their differences are described in more detail in the
following.

3.1 Communication Components

A communication component, also called medium in [5], is a reification of an
interaction, a communication or a coordination system, a protocol or a service,
into a software component. These mediums are various in type and complex-
ity. An event broadcast, a consensus protocol, coordination through a shared
memory, a multimedia stream broadcast or a vote system, for instance, can be
considered as a communication component. A distributed application is then
built by interconnecting “conventional” components with mediums that manage
their communication and distribution. A communication component is first of all
a component. It satisfies the principle properties of the component paradigm [6]:

– It is an autonomous and deployable software entity.
– It clearly specifies the services it offers and those it requires. This allows the

use of a component without knowing how it works.
– It can be combined with other components.

Thus, a medium has all these properties and, moreover, is especially designed
to be used for communication. By nature, it is a component with distributed in-
terfaces, which distinguishes it from standard component models. Indeed, models
like EJB, .NET or CCM realize distributed components with co-localized inter-
faces, i.e. in spite the implementation can reside in different sites, the interfaces
should reside on the same site. Communication components, however, have both
interfaces an implementation parts on different sites.

Two Ways of Implementing Software Connections 1003

<MediumName>Medium

I<RoleName>ComponentServices
<< interface >> << interface >>

I<RoleName>MediumServices

/<RoleName>

?

Fig. 5. Generic UML model of a communication component

To specify a communication component, we rely on the UML language. Fig-
ure 5 shows a generic form of a specification that highlights the offered (IMedium-
Services) and required (IComponentServices) interfaces by the communication
component. The roles will be played, after assembly, by other components that
fit to the interfaces’ requirements.

The life cycle of a communication component is close to a conventional com-
ponent life cycle. It is specified, designed, implemented, assembled with other
components, and then deployed. Its particularity is that it relies on an underly-
ing protocol that offers the communication services it needs to work. The whole
process is detailed in [7].

3.2 Connectors

A connector is a reification of an interaction, communication or coordination
system and exists to serve the communication needs of the interacting compo-
nents. It describes all the interactions between components relying on their own
specification and abstraction. It also offers application-independent interaction
mechanisms like security and reliability for instance. Three points distinguish a
connector from a component:

– It is an autonomous entity at architecture level but neither deployable nor
compilable (it does not exist in conventional programming languages). The
connector must be connected in order to be compiled and deployed.

– It does not specify offered or required services but patterns of services. Hence,
the interfaces are abstract and generic. They become more concrete later in
the life cycle, on assembly with the components. This is done by adopting
the interfaces type of the interacting components.

– In order to distinguish services grouped in interfaces of component ports,
the word plug is introduced to name the description of connector ends. A
plug is typed with a name and can have a multiplicity.

To specify a connector we only precise the property it has to ensure, the
number of different participants that are in position to interact, their status and
their multiplicity. It is an architecture element that indicates the semantic of the
communication and that evolves and changes in time to be more specified. It
is designed, implemented and put on the shelf without any specified interfaces.

1004 S. Matougui and A. Beugnard

Table 1. Vocabulary by level of abstraction and refinement

Level Architecture Implementation
(abstract) (concrete)

On the shelf Connector Generators
Assembled Connection Binding components

These latter are specified at assembly with other component thanks to a gen-
eration process. After that, they are deployed all together. We introduce a new
vocabulary in order to designate each entity in this life cycle. We reduce the
use of the term connector to the architecture element and give different names
to the following entities in order to differentiate and to not use it to designate
every thing related to the interaction entities as it is commonly made. They are
different entities so they should be named differently. Table 1 summarizes this
vocabulary.

We identify three entities that designate the transformations of the connector
in its life cycle:

Generator: An isolated connector is concretized as a family of off-the-shelf
generators. These generators are in charge of implementing the connector
abstraction over different communication protocols or platforms. The plugs
are still abstract because the interacting component are not specified yet.
When activating a generator, the plugs are destined to be transformed into
proxies towards which the effective communication will take place.

Connection: At architecture level, the connector is linked with other com-
ponents and form all together the connection. At this stage, the generic
interfaces of the connector, the plugs, become concrete by adopting the ap-
plicative interfaces (APIs) of the interacting components. They form the
connection interfaces. Hence, we connect the components without worrying
about the underlying platform, only the semantic of the communication is
needed. A connection is different from a connector. The connector exists
alone. The connection appears when the components are specified, the con-
nector is chosen and the unit assembled.

Binding component: It is the result of the code generation. The connection
interfaces, obtained by the connector and the components assembly, are pro-
vided to the generator and fill its unspecified plugs. The generator generates
the proxies that are to be deployed and form the binding component2. They
represent the realization of a communication or a coordination property for
the connected components’ requirements (APIs) over the underlying system.

Hence, the life cycle of a connector is different from the one of the communi-
cation component and independent from the one of a conventional component.
Every entity in this life cycle has concrete and abstract elements [9] that become
all concrete at the end, at deployment time.
2 It is a refinement of the binding object defined in Open Distributed Processing

(ODP) [8].

Two Ways of Implementing Software Connections 1005

From an application developer’s point of view, the software architecture defi-
nition involves in selecting components and connectors on the shelf, assembling,
i.e. establishing connections, selecting the generators appropriate to the target
system, and generating the deployable application. From a connector developer’s
point of view, defining a connector involves in specifying the abstract properties
of the communication (load-balancing for instance), and developing the genera-
tors that use the interface definition of connected entities (IDL for instance) over
a target system (TCP/IP for instance). As we can see, a family of generators
could be developed for a single abstract connector.

An example of an existing generator as defined in this section is the CORBA
generator as an instance of the RPC connector. The properties it ensures are
distribution, language interoperability, and an RPC semantics. It can rely on
several communication protocols like TCP/IP or other low level protocol. The
proxies it generates are the stub and the skeleton. The binding component gath-
ers these proxies and the communication protocol.

These two forms of communication abstraction exist as simple ones. We pro-
pose to generalize these processes for more complicated properties. The following
section gives some differentiation elements between the two connection models.

3.3 Comparison

We have presented, in the two sections above, the two connection models that we
propose in order to reduce the distance between the definition of the connection
at an architecture level and its implementation; i.e. to define complex communi-
cations and to keep them as an entire entity until deployment. The two models
are the communication component and the connector. They are both architec-
ture elements that support the definition of complex interactions and define a
refinement process that avoids to the abstraction to be lost during the life cycle.
However, they have different natures and evolve differently in the life cycle.

The communication component represents a well known entity at architecture
and we know how to implement it. It is a component dedicated to communica-
tion that defines explicit interfaces. It has the same life cycle as conventional
components. It can be used to define coarse grained communications that are
fairly related to the application, since the interacting components deal explic-
itly and directly with the medium. An example of a newly built communication
component is the reservation medium detailed in [10].

The connector, as defined in this article, is a new concept and is detailed in [9].
It has implicit interfaces that become concrete during the life cycle. It changes
during the life cycle and we give for each entity a different name. It can be used for
fine grained communication abstractions that are not related to the application
functionality. It is destined to automate the integration of the semantic of the
communication and non functional properties transparently to the application
by the generation process, it is adaptable to the components’ needs.

This difference of nature implies differences in description, differences in the
nature of the entities to put on the shelf, and differences in using them at as-
sembly with other components. We give solutions to integrate these complex

1006 S. Matougui and A. Beugnard

interactions into industrial approaches to make them used and implemented by
two different ways.

The development of a connector can obviously be realized over a medium.
The generator is dedicated to generate the appropriate glue that is compatible
with the explicit interfaces the medium offers. In that case, the medium is the
target of the generator.

We encourage the development of such connectors with complex properties
since they have the advantage of automating the integration of complex and
repetitive properties. It is obvious that connections can be realized by today
available solutions. But these current solutions lack generality and rely on low
level solutions, which means difficulties for software maintenance and evolution.
Accumulating know-how in generators design makes the software evolution easier
than adapting complex and ad-hoc components implementations of connections.

4 Application to Load Balancing

The aim of this section is to illustrate throughout an example the advantages
and the limits of the two previous entities: the communication component and
the connector.

4.1 Load Balancing Features

Some applications, like e-commerce systems and online stock trading systems,
concurrently service many clients transmitting a large, often bursty, number of
requests. In order to improve the overall system responsiveness, an effective way
to deal with this great demand is to increase the number of servers — replicas
offering the same service — and to apply a load balancing technique. Load bal-
ancing mechanisms distribute client workload equitably among back-end servers
by indicating which server will execute each client’s request. These mechanisms
may follow either a non-adaptive or an adaptive policy. Non-adaptive policies do
not take the servers’ workload into account. The round robin is such a policy.
Adaptive policies, however, take the servers’ workload into consideration. The
policy of the least loaded server is an example. Many load metrics can be used;
the CPU’s idle cycles or the number of requests, for instance. In the following
example, we assume a distributed application where a client needs a defined
service offered by a server. As a client needs to send a huge number of requests,
these requests would be balanced among n replicas of servers following a special
load balancing policy.

Performing load balancing at an OS or a network level does not allow to
use application metrics or control the load balancing policy without modifying
the application itself. However, achieving load balancing at a high level (eg.
application level), with available communication abstractions, implies using a
complicated combination of simple and low level connectors like RPC. In order
to decouple the application from load balancing, we reify the connection ab-
straction as an independent entity. For instance, we consider load balancing as

Two Ways of Implementing Software Connections 1007

a complex interaction that involves many participants and is achieved with dif-
ferent protocols and policies. In the following, we are going to see the realization
of this communication abstraction with the two connection models.

4.2 Load Balancing with a Communication Component

The first method describes the realization of the load balancing service as a com-
munication component or medium, as described in section 3.1. The component
has explicit and well defined interfaces that are to be used by the client and the
servers. When knowing these interfaces, it is not necessary to know the internal
implementation of the component. Hence, we are not concerned by knowing how
it is implemented, and so how the load balancing policy is realized.

On the one hand, the Load Balancing Medium (LBMedium) offers the service
getReference() that gives the reference of the elected component that will serve
the request, by applying a specific load balancing policy. On the other hand,
it communicates permanently with the servers with the service load() (pull or
push) to recover their workload, in the case of an adaptive load balancing policy.

The sequence diagram in figure 6 shows the different interactions between the
conventional components, notably the client and the server, and the LBMedium.

1. The servers explicitly communicate with the LBMedium in order to subscribe
and to communicate their workload by a push or a pull mode,

2. The client explicitly calls the method getReference() offered by the commu-
nication component in order to recover the reference of the server that will
serve the client request,

3. Knowing all the servers participating in the interaction, the LBMedium
chooses the server reference to send to the client according to the used policy,

4. The client sends the effective requests to the concerned server, by establishing
a session.

This approach preserves the advantages of realizing load balancing at appli-
cation level. Il allows using application metrics. Moreover, it ensures separation

Client

2. getReference()

Serveur i

4. send_request()

LBMedium

1. bind() + load()

3. choose()

1. load()

Fig. 6. Load balancing with a communication component

1008 S. Matougui and A. Beugnard

of concerns and avoid the semantic of the communication to be hardwired with
the components of the application. This makes easier the programs reuse, main-
tenance and evolution. If the load balancing policy changes, it does not affect
the client and the server. However, there is some drawbacks. First, as the ser-
vices of the communication component are explicit, the load balancing service is
not transparent neither at the client side nor at the server one. The interaction
between the medium and the component is completely explicit. If the medium
is replaced with another medium expressing different interfaces, this affects the
client and the servers. Then, the service should be envisaged in advance and in-
tegrated to the application. Finally, this approach is efficient in a connection per
session, i.e. the client sends all his requests to the first chosen server. However,
it is not relevant in a connection per request, where the client can change the
server that serves his request when the workload changes.

4.3 Load Balancing with a Connector

The second example consists on realizing load balancing as a connector associ-
ated to a generator as described in section 3.2. This approach enables to ensure
transparency to the communication. The connector hides all the load balancing
mechanisms. It hides also the existence of this service.

The off-the-shelf connector specifies only the nature of the future interacting
components (the plugs) and their multiplicity. In this example, the connector
has two plugs: a client and a remote server; this latter has a multiplicity of n.
The connector is implemented as a generator that ensures the load balancing
property in addition to the distributed property, the RPC. Once the connector
assembled with the client and the servers, the connector adopts the interfaces
the these interacting components; the plug at the client side adopts server in-
terfaces and the plug at server side adopts client interfaces. These connection
interfaces are then transformed into proxies by the generator; the proxy PxC at

Server iClient

1. bind()

PxC

5a. choose()

5b.replace()

6.connection()

Registry

3. get()

4. send_request()

PxS

2. lookup()

Fig. 7. Load balancing with a connector

Two Ways of Implementing Software Connections 1009

client side and the proxy PxS at server side. These proxies have the responsibil-
ity of hiding the distribution details, choosing the server that will reply to the
request, and recovering the workload. Indeed, monitoring load is not any more
the responsibility of the servers but of their attached proxies. In figure 7, the
sequence diagram illustrates the the sequence of events at deployment time for
a round robin policy, after the generation of the proxies.

1. The servers register in the RMI Registry as usual by a bind() operation via
the proxy PxS,

2. The references of all the registered servers are recovered by the proxy PxC,
3. This latter handles the list of the servers participating to the interaction,
4. When the client sends a request by invoking (locally by a procedure call)

the server’s service, the proxy PxS intercepts the call,
5. The proxy applies the logic of the policy:

(a) It chooses the next component that will service the request,
(b) It replaces the current reference by the chosen server reference,

6. Finally, the stub continues its initial tasks, marshalling and unmarshalling
parameters, sending and receiving them towards and from the network, and
returning the result to the client.

So this new proxy will have the same role of marshalling and unmarshalling
parameters, the sole difference being that the internal reference of the remote
object is changed by following the chosen load balancing policy.

This later solution is more adapted for this load balancing example. As this
property is not related to the application functionality, it is recommended to
use a connector since it makes the load balancing property transparent. We can
use the same client and servers in an application with another communication
property, i.e. using another connector like consensus for example, by a simple
regeneration. The following section describes briefly the implementation of the
load balancing connector and some experimental results.

4.4 Implementation of the Load Balancing Connector

We have realized the load balancing connector by specifying its properties and
the associated generators to put on the shelf. The connector has to ensure both
the distributed and load balancing properties. The associated generators can be
implemented over different technologies. We can create them from an existing
connector, like RMI, or by using another component. In the following, we are
going to see two implementations of the load balancing connector, and the results
of an experimentation.

Implementation: The first implemented generator is for the Round Robin
policy. In this non adaptive policy, monitoring load is not necessary. We have
realized the generator as an extension of the RMI generator. The load balancing
code is injected in the generated proxy PxC. This latter is in charge of recovering
all the references of the servers participating to the application that are registered

1010 S. Matougui and A. Beugnard

in the RMI registry. The client sends its requests to a server and the proxy
intercepts them locally. When the proxy receives a request from the client, it
performs the same marshalling and unmarshalling operations already existing in
RMI. In addition, it has the responsibility of applying the load balancing policy.
It forwards every new request of the client to the next server in the list (registry).
This is done by replacing the current reference after each request.

The second implementation is for another load balancing connector, with
this time an adaptive load balancing policy of the least loaded. In this policy,
client requests are transmitted to servers according to their workload. In order
to implement and realize the associated generator, we have used a component
following the publish/subscribe model. This component receives the workloads
from the different servers (the future generated proxies have this responsibility).
It implements the algorithm of the policy to choose the least loaded server that
will provide the service, and assigns the reference of this server to the proxy
at client side that will establish the effective connection. We have combined
this component with the RMI generator in order to realize the load balancing
generator. The component publish/subscribe, the proxies, and the registry form
henceforth the binding component.

Load Balancing Connector Results: In order to evaluate the whole con-
nector life cycle, we have implemented a load balancing connector in the open
source project Jonathan [11]. This framework basically offers a RMI-like con-
nector. We have added generators to realize the load balancing connector with
2 variant strategies: the previously presented round-robin and the least loaded.

1 2 4 8 16 22
0

2500
5000
7500

10000
12500
15000
17500
20000
22500
25000
27500
30000

Performances

1
2
4
8

clients

load (req/s)

server

Fig. 8. Load Balancing performance (request per second)

We have evaluated performances of the new connector over a network of 32
machines with 1 to 8 servers and 1 to 22 clients3. The results The results obtained
from a latency test of figure 8 showed no overhead due to reference switchings
and demonstrated a good scalability. For example, the time needed to serve the
3 One machine was reserved for a registry and another one for the control on the

benchmark.

Two Ways of Implementing Software Connections 1011

22 clients with one server using the load balancing connector was 1.85 ms, and
the time needed to serve the same 22 clients with 8 servers was 0.75 ms. All the
results can be consulted in [12].

It is worth noticing that previous Jonathan’s generator can still be used to
implement point-to-point RMI connections. So, introducing load balancing, or
changing the load balancing strategy, requires a simple proxy regeneration from
the same interface description.

5 Related Work

There are three main areas of related work: connector classification, generating
implementation and the model of the Open Distributed Process (ODP).

The main work that has provided a significant classification of connectors is
[13]. The authors give a conceptual framework for classifying connectors in order
to make them easier to understand. The framework describes the connectors in
terms of functional layers. The topmost layer is the service category which spec-
ifies the interaction services that a connector provides. The services are then re-
fined into connector types, dimensions, subdimensions and values to help reason-
ing about their underlying, low level interaction mechanisms and to help create
such complex interactions. However, there is no indication about the nature of
these services. Are they explicit, in which case the communication or coordina-
tion abstraction would be implemented as a component, or implicit, in which case
realized as a connector with generators? Besides the purpose of the interaction
entities, our work proposes a reflection on the structure of these objects.

The second area is related to generating implementations of connectors.
In [14], Garlan and Spitznagel define operators to create new complex connectors
by composing simple ones. In our approach we can build complex connectors from
simple ones (extension of RMI). We can also build them from a combination of
a component with a generator (using a publish subscribe component [12]). Their
approach is simple to implement, because they just reuse existing connectors
without any modification. However, this involves several intermediate steps be-
cause of the combination of several connectors. Thanks to the generation process,
our approach enables us to change some interaction mechanisms that are not
appropriate to the interaction requirement. Moreover, Garlan and Spitznagel’s
implementation passes directly from the specification to the binding component
step through the connection—according to our life cycle. Their approach does
not have off-the-shelf generators for different technologies, so they have to make
the same transformations whenever a composition has to be created over a dif-
ferent platform. We argue that the two approaches are complementary. Owing
to the fact that our approach is more complex to realize, we believe it to be
more efficient, since the transformations they propose could be automated with
the development of generators.

In ODP [15] the connection between components is realized through binding
objects. At an abstract level, the Conceptual Model is defined and is mapped to
the implementation, i.e. the Engineering Model. But no distinction is made on the

1012 S. Matougui and A. Beugnard

nature of connections as we do. The ODP standard does not define any process
to derive the binding objects from the conceptual model. In [16], Blair and Ste-
fani said: ”There is a strong correspondence between a description of a system in
the conceptual model and the corresponding description in the engineering model
in ODP”. This is a strong assumption. In our work we propose to distinguish 2
ways of reusing and building connections. One through communication compo-
nents, and the other through connectors and their implemented form, generators.
The way the gap is filled is either through a refinement process (communication
component case) either through a generation process (connector case).

6 Conclusion

We argued in this paper that the well accepted architectural concept of connec-
tion needs a better model. If software architecture relies on both components
and connections, the latter have many forms and uses; they need to be studied
more precisely. On the one hand, software architecture is somehow so abstract
that it hides too many details and creates ambiguity and difficulty of reuse. On
the other hand, at implementation and deployment level everything appears as
components linked by procedure calls (PC) or remote procedure calls (RPC).

In order to fill the gap between the architecture level and implementation one,
we propose to distinguish two kinds of connections, both of them being respon-
sible for communication and coordination activities as architectural connectors
should, but with different development process.

The first one is called medium. They can be considered as components since
they possess explicit interfaces, but, are different from usual application compo-
nents since their interfaces are offered on different sites. The last point makes
them different from usual component implementations such as .NET, EJB or
CCM. They are developed with a classical refinement process but their deploy-
ment process is unusual and not necessarily atomic. Protocols, publish/subscribe
are examples of mediums.

The second kind, is called connector. It possesses implicit interfaces called
plugs that adopt the explicit interfaces they are linked to. A connector is im-
plemented as a code generator and is not refined. It has its own life cycle. The
reusable part of a connector is not a component that has to be deployed, but the
generator that generates the components that implement the connection and
are actually deployed. Load-balancing, consensus are examples of connectors.
Connectors are connection entities that affect communication properties such as
reliability, security, efficiency, precision for instance.

We argue that both kinds of connections are necessary at software architec-
ture level. And we claim that components are not the only way of developing
reusable parts of software architecture, but that a significant part of the effort
should be made in the development of connector generators in order to improve
the abstraction of software architecture connections. The choice of a medium
(explicit interfaces) or connector (implicit interfaces) is a design choice that af-
fects the whole architecture. For instance, if we choose to use a publish/subscribe

Two Ways of Implementing Software Connections 1013

medium, either the client component is compatible with the medium and the as-
sembly is immediate either the client is incompatible and an adapter (glue) need
to be generated or developed to realize the assembly.

There are two reuse ways: once that relies on (prefabricated) components and
one that relies on connectors implemented as generators that produce implemen-
tation components. For each connector, a set of generators may propose variants
for different system targets or with different qualities (security, reliability, etc.)
Hence, the shelves contain components and generators.

In order to change some properties of the system without changing the ab-
stract (or functional) architecture it is possible to change the connector and to
re-generate the connection. The interest to identify and implement high-level
connector is to simplify the substitution of their implementation by a simple re-
generation. We have implemented and tested the feasibility of such an approach
with the installation of load balancing in a client server architecture by a simple
substitution.

The limitation of our approach is that connections that do not appear at the
architecture level can not be generated. We support a limited kind of dynamicity
since component instances can be dynamically created or destroyed as long as
they satisfy the specified architecture. In order to reach a fully dynamic archi-
tecture, a solution would be to use some kind of reflection (or introspection) over
the architecture itself.

Until now, the deployment and the generator development are ad-hoc. Hence,
future work includes studies on the deployment process and its mechanisms and
on generator implementation from a connector specification.

References

1. OMG: CORBA Component Model RFP (1997)
http://www.omg.org/docs/ orbos/97-05-22.pdf.

2. Inc, S.M.: (Enterprise java beans technology)
http://java.sun.com/products/ejb/.

3. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-
ware architecture description languges. In: IEEE Transaction on Software Engi-
neering. (2000) 70–93

4. Abowd, G.D., Allen, R., Garlan, D.: Using style to understand descriptions of
software architectures. ACM Software Engineering Notes 18 (1993) 9–20

5. Cariou, E.: Contribution à un Processus de Réification d’Abstractions de Commu-
nication (in french). PhD thesis, Université de Rennes 1, école doctorale Matisse
(2003)

6. Szyperski, C.: Component Software. Addison-Wesley (1999)
7. Cariou, E., Beugnard, A.: The Specification of UML Collaborations as Interaction

Components. In: UML 2002 – The Unified Modeling Language. (2002)
8. Putman, J.: Architecting with RM-ODP. Prentice Hall (2001)
9. Matougui, S., Beugnard, A.: How to implement software connectors? a reusable,

abstract and adaptable connector. In: Distributed Applications and Interoperable
Systems (DAIS 2005), Athens, Greece (2005)

1014 S. Matougui and A. Beugnard

10. Cariou, E., Beugnard, A., Jézéquel, J.M.: An Architecture and a Process for Im-
plementing Distributed Collaborations. In: The 6th IEEE International Enterprise
Distributed Object Computing Conference (EDOC 2002). (2002)

11. Middleware, O.O.S.: (Jonathan: an Open Distributed Objects Platform)
http://jonathan.objectweb.org/.

12. Sanchez, F.J.I., Matougui, S., Beugnard, A.: Conception et implémentation de
connecteurs logiciels : Une expérimentation pour le calcul de performance sur une
application de répartition de charge. Technical report, ENST-Bretagne, Brest,
France (2004)

13. Mehta, N.R., Medvidovic, N., Phadke, S.: Towards a taxonomy of software connec-
tors. In: the 22nd International Conference on Software Engineering (ICSE 2000).
(2000) 178–187

14. Spitznagel, B., Garlan, D.: A compositional approach for constructing connectors.
In: The Working IEEE/IFIP Conference on Software Architecture (WICSA’01).
(2001) 148–157

15. IUT: Open Distributed Processing - Reference Model Part 1: Overview. Volume
ITU-T Rec. X.901 — ISO/IEC 10746-1. (1995)

16. Blair, G., Stefani, J.B.: Open Distributed Processing and Multimedia. Addison
Wesley (1997)

On the Notion of Coupling in Communication
Middleware

Lachlan Aldred1, Wil M.P. van der Aalst1,2,
Marlon Dumas1, and Arthur H.M. ter Hofstede1

1 Faculty of IT, Queensland University of Technology, Australia
{l.aldred, m.dumas, a.terhofstede}@qut.edu.au

2 Department of Technology Management,
Eindhoven University of Technology, The Netherlands

w.m.p.v.d.aalst@tm.tue.nl

Abstract. It is well accepted that different types of distributed archi-
tectures require different levels of coupling. For example, in client-server
and three-tier architectures the application components are generally
tightly coupled between them and with the underlying communication
middleware. Meanwhile, in off-line transaction processing, grid comput-
ing and mobile application architectures, the degree of coupling between
application components and with the underlying middleware needs to
be minimised along different dimensions. In the literature, terms such as
synchronous, asynchronous, blocking, non-blocking, directed, and non-
directed are generally used to refer to the degree of coupling required by
a given architecture or provided by a given middleware. However, these
terms are used with various connotations by different authors and mid-
dleware vendors. And while several informal definitions of these terms
have been provided, there is a lack of an overarching framework with a
formal grounding upon which software architects can rely to unambigu-
ously communicate architectural requirements with respect to coupling.
This paper addresses this gap by: (i) identifying and formally defining
three dimensions of coupling; (ii) relating these dimensions to existing
communication middleware; and (iii) proposing notational elements for
representing coupling configurations. The identified dimensions provide
the basis for a classification of middleware which can be used as a selec-
tion instrument.

1 Introduction

Distributed application integration has some longstanding problems. For in-
stance technology and standardization efforts supporting distributed interactions
(Web services [3], MOM [11], MPI [20], RPC/RMI [14]) have made it possible
to implement solutions to the difficult problems of distributed communication,
however a general framework/theory for integration remains elusive. The prob-
lem seems to be one of finding the right abstractions [2].

Researchers seems to agree that the problem of communicating autonomous
systems is not well understood [6, 2, 7, 13] and yet middleware vendors appear

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1015–1033, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1016 L. Aldred et al.

confident that the problem is well understood, at least with respect to their tools.
While there are incredibly complex problems yet to be solved in the area of mid-
dleware, perhaps those issues and aspects related to coupling/decoupling lie at
the very heart of the problem. In their paper about the semantics of blocking
and non-blocking send and receive primitives, Cypher & Leu state that “unfor-
tunately, the interactions between the different properties of the send and receive
primitives can be extremely complex, and as a result, the precise semantics of
these primitives are not well understood” [6].

Vendors and standards bodies offer many solutions and ideas within this do-
main, however each appears to be embroiled in the paradigm it emerged from. For
instance CORBA is founded and based on an RPC paradigm, whereas MOM1

platforms are based on a strongly decoupled paradigm involving a hub archi-
tecture, with a MOM service at the centre. Despite their different origins each
appears to have technical and conceptual limitations.

Due to the lack of a widely accepted formal theory for communication and
the fact that each type of solution is based on a totally different paradigm,
models and implementations of middleware based communication are disparate,
and not portable. Rephrased, the models over deployed distributed systems are
not portable in the implementation sense, and not even in the conceptual sense.
Due the lack of formality in this domain, solutions and tools for integration are
difficult to compare as well.

Objectives of the Paper. This paper aims at contributing to address the
lack of foundation for expressing architectural requirements and for assessing
middleware support in terms of decoupling. The main contributions are:

– A detailed analysis of the notion of (de-)coupling in communication middle-
ware.

– A collection of notational elements for expressing architectural requirements
in terms of (de-)coupling. These notational elements are given a visual syntax
extending that of Message Sequence Charts [18] and can thus be integrated
into UML sequence diagrams2. In addition, the notational elements are given
a formal semantics in terms of Coloured Petri Nets (CPNs) [12].

– An approach to classify existing middleware in terms of their support for var-
ious forms of (de-)coupling. This classification can be used as an instrument
for middleware selection.

Scope. A complete, formal analysis of communication middleware would be a
daunting task. The list of options and functionality of middleware is incredi-
bly long, particularly when one considers, for example privacy, non-repudiation,
transactions, reliability, and message sequence preservation. Therefore this work
chooses not to take too broad an analytical view of the domain. We have chosen
to focus in on the aspect of decoupling because it seems to lie at the very heart
1 Message Oriented Middleware: middleware systems capable of providing support for

decoupled interactions between distributed endpoints.
2 http://www.uml.org

On the Notion of Coupling in Communication Middleware 1017

of the problem of making two or more endpoints communicate effectively, and
is central to the design of distributed applications.

In a recent survey of publish/subscribe technologies Eugster et. al. [7] iden-
tified three primary dimensions of decoupling offered by MOM. These are:

– Time Decoupling - wherein the sender and receiver of a message do not need
to be involved in the interaction at the same time.

– Space Decoupling - wherein the address of a message is directed to a partic-
ular symbolic address (channel) and not the direct address of an endpoint.

– Synchronisation Decoupling - wherein the threads inside an endpoint do not
have to block (wait) for an external entity to reach an appropriate state
before message exchange may begin.

These three dimensions of decoupling by Eugster et. al. form the base of our
work. We believe, that they operate as a core middleware paradigm. Despite their
crucial role they are not well understood [6], and to the best of our knowledge
have not been the subject of a formal analysis.

Organisation of the Paper. The paper is structured as follows. Section 2
defines some basic concepts. Section 3 identifies a set of decoupling dimensions
and defines basic elements for expressing architectural requirements in terms of
these dimensions. Next, Section 4 shows how these elements, as well as their
formal definitions in terms of CPNs, can be composed in order to capture re-
quirements across multiple coupling dimensions. Section 5 concludes the paper
with a discussion, and it outlines related and further work.

2 Background

This section provides an overview of background knowledge related to the study
of decoupling in communicating middleware. It defines some essential terms used
throughout the paper.

An endpoint is an entity that is able to participate in interactions. It may
have the sole capability of sending/receiving messages and defer processing the
message to another entity, or it may be able to perform both.

An interaction is an action through which two endpoints exchange infor-
mation [17]. The most basic form of this occurs during a message exchange
(elementary interaction).

A channel is an abstraction of a message destination. Middleware solutions
such as JMS [10], WebsphereMQ [15], and MSMQ [16] use the term “queues” to
mean basically the same thing, but the crucial point here is that a channel is a
logical address, not a physical one, thus they introduce a space decoupling to tra-
ditional point-to-point messaging. Thus the sender is able to address a message
to a symbolic destination, and the receiver may register the intention to listen for
messages from the symbolic destination. Interestingly such a decoupling means
that a channel is not necessarily restricted to one message receiver - many end-
points, may share one channel, in which case they may either share/compete for

1018 L. Aldred et al.

each message, depending on whether or not the channel is a publish/subscribe.
Channels have been enhanced and extended with many functions (e.g. sequence
preservation [7, 6], authentication, and non-repudiation [11]).

A message is a block of data that gets transported between communicating
endpoints. Depending on the middleware it could contain header elements such
as an message ID, timestamp, and datatype definition; or it could just contain
data. The message may contain a command, a snapshot of state, a request, or an
event among other things. It may be transactional, reliable, realtime, or delayed,
and it often is transported over a “channel”. However, it could just as easily be
sent over sockets.

3 Decoupling Dimensions of an Interaction

In this section we will provide a Coloured Petri net (CPN) based analysis of
fundamental types of decoupling for interacting endpoints. These dimensions
of decoupling have relevance to all communication middleware we are familiar
with, including MOM, space-based middleware [8], and RPC-based paradigms.
Coloured Petri nets were chosen for their ability to explicitly model state, paral-
lelism, and data. Coloured Petri nets also have a strict formal semantics giving
the communication primitives a level of precision that would otherwise be diffi-
cult to attain.

3.1 Synchronisation

The critical concept behind synchronisation decoupling is that of “non-blocking
communication”, for either, or both of, the sender and receiver. Non-blocking
communication allows the endpoints to easily interleave processing with commu-
nication. In the following paragraphs we introduce some notational elements for
denoting various forms of synchronisation decoupling as well as a formalisation
of these notational elements in terms of CPNs.

Send
A message send can either be blocking or non-blocking. Blocking send implies
that the sending application must yield a thread until the message has truly left
it. Figure 1(b) is a CPN3 of a blocking send. The outer dashed line represents
the endpoint while the inner dashed line represents middleware code that is em-
bedded in the endpoint. When a message is ready (represented by a token inside
the place “msg-ready”) and the application is ready (represented by a token
inside the place “app-contrl”) the endpoint gives the message to the embedded
middleware. The endpoint in blocking send also yields its thread of control to
the embedded middleware, but it gets the thread back when the message has

3 Note: This paper presents a range of Coloured Petri nets (CPNs) [12] that model
important aspects of decoupled systems. All CPNs were fully implemented and tested
using CPN Tools [4].

On the Notion of Coupling in Communication Middleware 1019

(a) Notation. (b) CPN - Blocking send.

Fig. 1. Blocking send. After initialising send, the transition “process” cannot fire until
a thread is returned at the end of message transmission.

completely left the embedded middleware. Note that inside the embedded mid-
dleware the transitions “begin-x-port”, “in-progress”, and “fin-x-port” hang over
the edge of the embedded middleware. This was done to demonstrate that the
remote system (receiver endpoint or middleware service) will bind to the sender
by sharing these transitions and one state. This implies that hidden inside the
middleware, communicating systems exchange information in a time coupled,
synchronisation coupled manner, regardless of the behaviour that’s exposed to
the the endpoint applications. In CPN terminology certain nodes inside the em-
bedded middleware are “transition bounded”4.

In a blocking send there is a synchronisation coupling of the sender applica-
tion (endpoint) with something else - but not necessarily the receiver as we will
show in Section 3.2.

Synchronisation decoupling is achieved from the viewpoint of the sender only
if it is possible to perform a non-blocking send. A non-blocking send is observable
in a messaging interface if the message send operation can be initiated from the
application and then the middleware embedded inside the sender returns control
immediately, (i.e. before the message has left the application place). See Figure 2
for an illustration and CPN of the concept. Note that this Figure like that of
blocking send (Figure 1) is transition bounded with remote components through
the transitions in the embedded middleware of the application. Snir and Otto
provide a detailed description of non-blocking send [20].

Non-blocking send is a necessary condition, but not a sufficient condition
to achieve total synchronisation decoupling, which is to say that the receive
action must also be non-blocking. If both send and receive are blocking (non-
blocking) then a total synchronisation coupling (decoupling) occurs. A partial
synchronisation decoupling occurs when the send and the receive are not of the
same blocking mode (i.e. one is blocking with the other being non-blocking).

4 “Transition bounded”, in this context, means that two distributed components share
a transition (action), and must perform it at exactly the same moment.

1020 L. Aldred et al.

(a) Notation. (b) CPN - Non-blocking
send.

Fig. 2. Non-blocking send. The transition “process” can be interleaved with communi-
cation because a thread is not yielded to the embedded middleware.

Non-blocking send is a fairly uncommon feature of middleware solutions.
For instance all RPC-based implementations use blocking send, and many/most
MOM implementations use a blocking send as well. This is the case because
even though MOM decouples the sender from the receiver through time, the
senders are typically synchronisation coupled to the middleware service. This is
acceptable when the sender is permanently connected over a reliable network
to the provider, however mobile devices, for instance, typically need to inter-
operate on low availability networks, hence they require the ability to store the
message locally, until the network is available (i.e. store and forward) [13]. This
problem should obviously not be too great a burden on the mobile applications
developer, and should be part of the middleware functionality.

Receive
Like message send, message receipt can either be blocking or non-blocking [6].
The definition of blocking receive is that the application must yield a thread
into a waiting state in order to receive the message (the thread is usually re-
turned when the message is received). This means that the receiving application
is synchronisation coupled to either the message sender or the middleware ser-
vice (depending on the whether the middleware is peer-to-peer or server-client
oriented). Figure 3 presents a model of this concept.

On the other hand, non-blocking receive, is a messaging concept wherein
the application can receive a message, without being required to yield a thread
to achieve this. This concept is illustrated in Figure 2. A well known example
of non-blocking-receive is that of the event-based handler, as described in the
JMS [10]. A handler is registered with the middleware and is called-back when a
message arrives. MPI [20] provide an equally valid non blocking receive (without
callback) that is not event based5.

5 Essentially the receiver application polls its own embedded middleware.

On the Notion of Coupling in Communication Middleware 1021

(a) Notation. (b) CPN - Blocking receive.

Fig. 3. Blocking receive. A thread must be yielded to the embedded middleware until
the message has arrived.

(a) Notation. (b) CPN - non-blocking re-
ceive.

Fig. 4. Non-blocking receive. A thread need not be yielded to the middleware in order
to receive.

Non-blocking receive seems less frequently used than the blocking receive.
This is probably because blocking receives are simpler to program and debug [11].
One frequently observes statements in the developer community that MOM en-
ables asynchronous interactions (which is true in the it allows time decoupled
interaction), however this general usage of “asynchronous” for MOM is mislead-
ing because MOM usually connects endpoints with a blocking-send and blocking
receive (synchronisation coupled).

3.2 Time

The dimension of time decoupling is crucial to understanding the difference
between many peer-to-peer middleware paradigms and server oriented paradigms

1022 L. Aldred et al.

(a) Notation. (b) CPN - time coupled messaging.

Fig. 5. Time coupling is characterised by transition-bounded systems

(e.g. MPI versus MOM). In any elementary interaction time is either coupled or
decoupled.

Time coupled interactions are observable when communication cannot take
place unless both endpoints are operating at the same time. Hence peer-to-peer
systems are always time coupled. In time coupled systems the message begins by
being wholly contained at the sender endpoint. The transition boundedness of
endpoints can guarantee that the moment the sender begins sending the message,
the receiver begins receiving. The concept is presented in Figure 5 wherein the
endpoint applications are joined directly at the bounding transitions (“begin
x-port” and “fin x-port”).

Time decoupled interactions allow messages to be exchanged irrespective of
whether or not each endpoint is operating at the same time. Therefore simple
peer-to-peer architectures cannot provide true time decoupling - by definition.
What is required for time decoupling is a third participant in the interaction
where the sender can deposit the message, and the receiver can retrieve it. This
is why many MOM implementations use a client-server architecture. Servers may
be redundant, and even use “store and forward” semantics between servers [15],
in which case the term “peer-to-peer” is often used ambiguously. Though this
could be better described as a polygamous architecture where many machines
host both peer-endpoints, and a messaging server.

The concept of time decoupling is presented in Figure 6. Note that in the
CPN and the illustration the separate systems are transition bounded in the
same way as before, however this time there are three of them, with the middle
one being a middleware service that is able to buffer the message.

3.3 Space

Space is the third dimension describing the connectivity of distributed systems.
For an interaction to be space coupled the sender uses a direct address to

send the message to. Therefore the sender “knows” exactly where to address the

On the Notion of Coupling in Communication Middleware 1023

(a) Notation.

(b) CPN - time decoupled messaging.

Fig. 6. Time decoupling is characterised by systems that can be strictly non-concurrent
(endpoint to endpoint), and still communicate

(a) Notation. (b) CPN - space coupled messaging.

Fig. 7. Space coupling. The sender directly addresses the receiver.

receiver application. Figure 7 presents the concept of space coupling. This can
be seen in the CPN by introducing a new type of token (< appID, msg >), and
a new place (“id”) as input to the transition “begin x-port”. Only when two con-
joined systems match on the value of “appID” will the bounding transition fire.

Space decoupled interactions on the other hand allow for a sender to have no
explicit knowledge of the receiver’s address. This makes it possible for parts of
distributed systems to be extended, and replaced at runtime without shutting

1024 L. Aldred et al.

(a) Notation. (b) CPN - space decoupled messaging.

Fig. 8. Space decoupling. The sender does not directly address the receiver, but directs
the message along a channel.

everything down. Hence space decoupling is highly desirable from the viewpoint
of enterprise integration due to its support for maintenance and management.

Figure 8 introduces the concept of an abstract message destination - or chan-
nel for space decoupled point to point messaging6. This is the logical message
destination, but the actual message destination obtains its message off the same
channel. The CPN demonstrates this by linking the transition “begin x-port” to a
new input place (“my chans”) and a slightly different token containing the mes-
sage (< cID, msg >), of type BoundMessage (BndMsg). Hence, this transition
shall only fire when two systems are bound together that satisfy the transition
guard “[elt(cID,chs)]”.

3.4 Summary

The dimensions of decoupling include synchronisation-decoupling (with its four
options), time-decoupling, and space-decoupling. Each has its own precise be-
haviour and semantics. These were rendered using a reasonably intuitive graph-
ical notation and a more precise formal semantics as presented by the CPNs.

4 Combining Synchronisation, Time, and Space

The dimensions of decoupling presented in the previous section are orthogonal
to each other. Therefore designs for interactions can be composed from them
arbitrarily while preserving the innate semantics, as fully defined for each -
contributing to a precise overall behaviour. This set of configurations can then
be used as a palette of possible interaction behaviours and thus applied to an
integration problem or to the selection of an appropriate middleware product.
6 Note that this series of CPNs models point to point messaging (i.e. as opposed to

publish/subscribe). Extending the CPNs to describe publish/subscribe, while beyond
the scope of this paper, is straightforward.

On the Notion of Coupling in Communication Middleware 1025

4.1 Compositional Semantics

Any type of synchronisation-decoupling (for both send and receive) can be
combined with any type of time-decoupling, which in turn can be combined
with any type of space-decoupling. This means that for one directional mes-
saging there are sixteen possible interaction behaviours, definable according to
the decoupling properties (22 ∗ 2 ∗ 2 = 16), and we believe that these dimen-
sions are orthogonal. Meaning, for example, that you can have a time-coupled,
synchronisation-decoupled interaction, and it is equally possible to have a time-
decoupled synchronisation-coupled interaction.

Composing the Coloured Petri Nets
The CPNs for each coupling dimension from Section 3 can also be composed,
or overlayed to form a complete model of any of the sixteen possible interac-
tion behaviours. For example to create a CPN of a synchronisation-decoupled,

Fig. 9. CPN of a synchronisation-coupled, time-coupled, space-coupled interaction be-
tween endpoints

Fig. 10. CPN of a synchronisation decoupled (non-blocking send/receive), time-
decoupled, and space-decoupled interaction

1026 L. Aldred et al.

time-decoupled, and space-decoupled interaction one may use the CPNs from
Figures 2(b), 4(b), 6(b), and 8(b), and overlay them. Such a net is presented in
Figure 10. A CPN for a synchronisation-coupled, time-coupled, space-coupled
also shown (Figure 9), however, for space reasons we do not present the remain-
ing fourteen composed CPNs.

Graphical Notation of Compositions
The entire set of sixteen possible decoupling configurations possible are enumer-
ated in graphical form in Figures 11 and 12. These graphical illustrations of the

Fig. 11. Notations 1 - 8 of the coupling configurations for one way communication

On the Notion of Coupling in Communication Middleware 1027

Fig. 12. Notations 9 - 16 of the coupling configurations for one way communication

possibilities are essentially arrived at by overlaying the illustrative vignettes of
the dimensions of decoupling as presented in Section 3.

This graphical notation for the different types of coupling for elementary in-
teractions could prove to be useful in defining requirements, or system analysis
and design. The configurations are varied, and each one has its own specific be-
haviour. Furthermore they are sufficiently different that some will be more suit-
able to a given integration problem than other. Put another way not all possible
coupling configurations would be useful in any situation. For instance a multi-
player realtime strategy game would not have much use for a time-decoupled
configuration.

1028 L. Aldred et al.

4.2 Example of Capturing Coupling Requirements in an Integration
Project

Imagine that a hospital needs to integrate a new BPM system and a new proximity
sensor system to its existing IT services. Each doctor, and nurse is given a mobile
device which can inform a central system of the location of that person inside the
hospital. This is linked to the BPM system so that the nearest staff member with
the requisite skills can be notified of new work and notified during emergencies.

The challenge is to design a conceptually clean, integration model showing the
types of connectivity between the different endpoints in such a system. Clearly
the mobile devices will not always be connected to the central systems (due to
possible signal interference), and therefore non-blocking send is advisable, this
way messages from the device could be stored until the signal is restored. New
mobile devices might need to be added to the system, and device swapping may
occur, and shouldn’t break the system. Therefore space decoupling is required.
Finally, device batteries might go flat and therefore time decoupling between
mobile devices and the central system is necessary. Hence the architecture of this
endpoint interconnection should be either configuration ‘14’ (Non-blocking-send,
Blocking-receive, Time-decoupled, Space-decoupled) or ‘16’ (Non-blocking-send,
Non-blocking-receive, Time-decoupled, Space-decoupled). During requirements
analysis we can proceed through all communication endpoints this way.

4.3 Comparison of Middleware Systems

We postulate that any type of middleware could be plotted against the 16 cou-
pling configurations proposed in this Section with respect to whether they di-
rectly support the defined behaviour through their API or interface. As part of
this research we have plotted the coverage of middleware solutions and stan-
dards against the proposed coupling configurations. The set of solutions and
standards includes MPI7, Biztalk Server 2004 (Product Documentation), Web-
sphere MQ8, Java-NIO9, Java-RMI9, Java-Sockets9, Java-Mail10, JMS10, Java-
spaces11, CORBA [9], RPC12. In most cases the documentation (as opposed
to implementations) for these standards and solutions was used as a guide to
determine their coverage.

Table 1 represents our initial assessment of various well known middleware
solutions and assesses each one’s ability to directly support each coupling con-
figuration (hence that communication behaviour).

The hospital scenario previously introduced, requires either configurations 14
or 16, these are both empty in our tables, however MobileJMS [13] is a proposal
that will support them.
7 MPI Core: V. 2, [20].
8 Websphere MQ V 5.1, [15].
9 JDK V. 1.4, http://java.sun.com/j2se/1.4.2/docs/api, accessed June 2005.

10 J2EE-SDK V. 1.4, http://java.sun.com/j2ee/1.4/docs/api, accessed June 2005.
11 Java Spaces http://java.sun.com/products/jini, accessed June 2005.
12 DCE-RPC V 1.1, http://www.opengroup.org/onlinepubs/9629399/toc.htm, ac-

cessed June 2005.

On the Notion of Coupling in Communication Middleware 1029

Table 1. Support for coupling configurations by some well known middleware solutions
and standards

Space
coupling

Synch coupling Partial synch decoupling Synch decoupling
B-Send, B-Rcv NB-Snd, B-Rcv B-Snd, NB-Rcv NB-Snd, NB-Rcv

Time coupled MPI, Sockets MPI, RPC-Reply MPI, CORBA,
RPC-Request

MPI, Java-NIO

1 2 3 4
Time
decoupled

Java-Mail

5 6 7 8

Space
decoupling

Synch coupling Partial synch decoupling Synch decoupling
B-Send, B-Rcv NB-Snd, B-Rcv B-Snd, NB-Rcv NB-Snd, NB-Rcv

Time coupled Java-RMI-Reply CORBA, Java-
RMI-Request

9 10 11 12
Time
decoupled

JMS,
Websphere-MQ,
BizTalk-MSMQ,
JavaSpaces

JMS,
Websphere-MQ,
BizTalk-MSMQ,
JavaSpaces

13 14 15 16

4.4 The Case of Two-Way Interactions

This work, while presented in terms of one directional communication, has ap-
plication in compound interactions as well - for instance two-way communi-
cation. In RPC style interactions there are two roles being played. The role of
requestor performs a “solicit-response”, and the role of service provider performs
a “request-response” [1]. The requestor typically blocks for the response, hence
the interaction is generally considered synchronous. However, if such an inter-
action is modelled using the proposed notation it becomes clear that this broad
definition is not totally precise. In actual fact the interaction is partially syn-
chronisation decoupled, in each direction. The service provider uses non-blocking
receive and in the reply uses non-blocking send (B-send → NB-receive → NB-
send → B-receive). Therefore any model of such an interaction should capture
these subtleties.

Using the proposed notation there are 16 possibilities in each direction for
two way interactions. Hence if one enumerated all possible configurations of
decoupling, for two way interactions, there are 162 = 256 possibilities.

5 Conclusions

Discussion. This paper has presented a set of formally defined notational
elements to capture architectural requirements with respect to coupling. The
proposed notational elements are derived from an analysis of communication

1030 L. Aldred et al.

middleware in terms of three orthogonal dimensions: space time and synchroni-
sation. This analysis goes beyond previous middleware classifications by iden-
tifying certain subtleties with respect to time coupling. In previous communi-
cation middleware analyses, when two endpoints are coupled in time, they are
generally considered to be synchronous, and in the reverse case they are con-
sidered to be asynchronous (e.g. [11]). However, such an imprecise definition
does not provide any differentiation between sockets and RPC, which are both
time-coupled. Clearly there is more to the problem than the generally held be-
lief (that time-coupled implies synchronous). We consider that ‘synchronous’
and ‘asynchronous’ are too imprecise for using to create clear abstract models
of integrations. The framework that we provide is the first that we know of
that presents synchronisation coupling and time coupling as independent but
related concepts.

By their very nature publish/subscribe based paradigms fit into the realm
of space-decoupled systems. Space-decoupled system have publish/subscribe be-
haviour if their delivery semantics allow multiple copies of one message to be sent
to more than one subscriber. This is contrasted with space-decoupled point-to-
point systems, which restrict message delivery to one “subscriber”. We consider
space/time/synchronisation decoupling to be orthogonal to message multiplicity.
Therefore classical multiplicities (i.e. point-to-point, and multicast) are possible
irrespective of the chosen coupling configuration - provided that a middleware
platform supports them.

Currently the rating of tools against the coupling configurations are binary
(supported or not-supported), however an improvement to the rating system
would include partial support (where the tool directly supports a restricted ver-
sion of the concept; or the tool supports the concept, but requires some ex-
tra effort to implement it) would make the ratings more useable. The assess-
ment would also benefit from a more detailed explanation of why a rating was
given.

Related Work in Middleware Classification. Cross and Schmidt [5] dis-
cussed a pattern for standardizing quality of service control for long-lived, dis-
tributed real-time and embedded applications. This proposal briefly described a
technology that would be of assistance. They outlined the technology as “con-
figuration tools that assist system builders in selecting compatible sets of infras-
tructure components that implement required services”. In the context of that
paper no proposals or solutions were made for this, however the proposals of our
paper perhaps provide a fundamental basis for the selection of compatible sets
of infrastructure.

Tanenbaum and Van Steen [22] described the key principles of distributed
systems. Detailed issues were discussed such as (un-)marshalling, platform het-
erogeneity, and security. The work was grounded in selected middleware imple-
mentations including RPC, CORBA, and the World Wide Web. Our work is far
more focussed on coupling at the architectural level, and its formal basis allowed
the formation of a well defined set of coupling primitives.

On the Notion of Coupling in Communication Middleware 1031

Tai and Rouvallou [21] created a classification structure for middleware based
on a delivery model, a processing model, and a failure model. These models are
very relevant and provide a solid framework for middleware comparison at many
levels. Our work, on the other hand, is more of a conceptual aid in understanding
the different possibilities for connecting systems together, and helps put the
limitations of existing middleware solutions into perspective.

Schantz and Schmidt [19] described four classes of middleware: Host infras-
tructure middleware provides a consistent abstraction of an operating system’s
communication and concurrency mechanisms (e.g. sockets). Distribution mid-
dleware abstracts the distribution, and generally allows communication over
heterogenous systems as if they were running in one stand-alone application
(e.g. CORBA [9], and RMI [14]). Common Middleware Services group together
middleware that can provide higher level services such as transactions, and se-
curity (e.g. CORBA and EJB). Domain Specific Middleware Services classify
those that are tailored to the requirements of a specific real world domain, such
as telecom, finance etc. (e.g. EDI and SWIFT). This classification provides a
compelling high-level view on the space of available middleware, but it does not
give a precise indication of the subtle differences between alternatives in the light
of architectural requirements.

Thompson [23] described a technique for selecting middleware based on its
communication characteristics. Primary criteria include blocking versus non-
blocking transfer. In this work several categories of middleware are distinguished,
ranging from conversational, through request-reply, to messaging, and finally to
publish/subscribe. The work, while insightful and relevant, does not attempt
to provide a precise definition of the identified categories and fails to recognise
subtle differences with respect to non-blocking communication, as discussed later
in the paper.

Cypher and Leu [6] provided a formal semantics of blocking/non-blocking
send/receive which is strongly related to our work. These primitives were defined
in a formal manner explicitly connected with the primitives used in MPI [20].
This work does not deal with space decoupling. Our research adopts concepts
from this work and applies them to state of the art middleware systems. Our
research differs from the above, by exploiting the knowledge of this work in
terms of non-blocking interactions, and combining this with the principles of
time and space decoupling originating from Linda [8]. Our work is also unique in
its proposal for compositional dimensions of decoupling, and our communication
primitives may be used as a basis for middleware comparison.

Disclaimer. The assessments we made of middleware products and standards
with respect to the coupling configurations are based on the tool or standard
documentation. They are true and correct to the best of our knowledge.

Acknowledgement. This work is partly funded by an Australian Research
Council Discovery Grant “Expressiveness Comparison and Interchange Facil-
itation between Business Process Execution Languages”. The third author is
funded by a Queensland Government Smart State Fellowship.

1032 L. Aldred et al.

References

1. W. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72–76, Feb 2003.

2. A. Beugnard, L. Fiege, R. Filman, E. Jul, and S. Sadou. Communication Abstrac-
tions for Distributed Systems. In ECOOP 2003 Workshop Reader, volume LNCS
3013, pages 17 – 29. Springer-Verlag Berlin Heidelberg, 2004.

3. R. Chinnici, M. Gudgin, J. Moreau, J. Schlimmer, and S. Weerawarana. Web
Services Description Language (WSDL) Version 2.0. W3C Recommendation, 2004.
http://www.w3.org/TR/wsdl20 accessed June 2004.

4. CPN tools homepage. http://wiki.daimi.au.dk/cpntools/ home.wiki accessed
March 2005.

5. Joseph K. Cross and Douglas C. Schmidt. Applying the quality connector pat-
tern to optimise distributed real-time and embedded applications. Patterns and
skeletons for parallel and distributed computing, pages 209–235, 2003.

6. R. Cypher and E. Leu. The semantics of blocking and nonblocking send and receive
primitives. In H. Siegel, editor, Proceedings of 8th International parallel processing
symposium (IPPS), pages 729–735, April 1994.

7. P. Eugster, P. Felber, R. Guerraoui, and A. Kermarrec. The Many Faces of Pub-
lish/Subscribe. ACM Computing Surveys, 35(2):114–131, June 2003.

8. David Gelernter. Generative communication in Linda. ACM Trans. Program.
Lang. Syst., 7(1):80–112, 1985.

9. Object Management Group. Common Object Request Broker Architecture: Core
Specification, 3.0.3 edition, March 2004.
http://www.omg.org/docs/formal/04-03-01.pdf accessed June 2004.

10. M. Hapner, R. Burridge, R. Sharma, J. Fialli, and K. Haase. Java Messaging
Service API Tutorial and Reference. Addison-Wesley, 2002.

11. G. Hohpe and B. Woolf. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions. Addison-Wesley, Boston, MA, USA, 2003.

12. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Volume 1. EATCS monographs on Theoretical Computer Science. Springer-
Verlag, Berlin, 1997.

13. M. Kaddour and L. Pautet. Towards an adaptable message oriented middleware
for mobile environments. In Proceedings of the IEEE 3rd workshop on Applications
and Services in Wireless Networks, Bern, Switzerland, July 2003.

14. Sun Microsystems. Java remote method invocation specification.
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmi-title.html
accessed March 2005, 2003.

15. Websphere MQ family. http://www-306.ibm.com/software/integration/wmq/
accessed June 2005.

16. Microsoft Message Queue (MSMQ) Center. http://www.microsoft.com/
windows2000/technologies/communications/msmq accessed October 2004.

17. D. Quartel, L. Ferreira Pires, M. van Sinderen, H. Franken, and C. Vissers. On
the role of basic design concepts in behaviour structuring. Computer Networks and
ISDN Systems, 29(4):413 – 436, 1997.

18. E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message Sequence
Charts. Computer Networks and ISDN Systems, 28(12):1629–1641, 1996.

19. R. Schantz and D. Schmidt. Encyclopedia of Software Engineering, chapter Middle-
ware for Distributed Systems: Evolving the Common Structure for Network-centric
Applications. Wiley & Sons, New York, USA, 2002.

On the Notion of Coupling in Communication Middleware 1033

20. M. Snir, S. Otto, D. Walker S. Huss-Lederman, and J. Dongarra. MPI-The Com-
plete Reference: The MPI Core. MIT Press, second edition, 1998.

21. S. Tai and I. Rouvellou. Strategies for integrating messaging and distributed ob-
ject transactions. In Proceedings of Middleware 2000: IFIP/ACM International
Conference on Distributed Systems Platforms, New York, USA., pages 308–330.
Springer-Verlag, 2000.

22. A. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

23. J. Thompson. Toolbox: Avoiding a middleware muddle. IEEE Software, 14(6):92–
98, 1997.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1034 – 1045, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Task-Type Aware Transaction Scheduling
Algorithm in J2EE

Xiaoning Ding1,2, Xin Zhang1,2, Beihong Jin1, and Tao Huang1

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
{dxn, zhangxin, jbh, tao}@otcaix.iscas.ac.cn

2 Graduate School of Chinese Academy of Sciences, Beijing, China

Abstract. A large number of J2EE applications use entity beans as their
application persistence mechanism, while current J2EE scheduling to entity
beans is still a simple First-Come First-Served (FCFS) policy. Due to this simple
policy, the scheduling does not distinguish the key transactions from the trivial
ones. A task-type aware scheduling algorithm should be adopted to provide
better service for key transactions. However, some characteristics of J2EE
middleware transaction processing, such as the absence of necessary scheduling
information and the interactive executing model, made it impossible to apply the
traditional priority-driven scheduling algorithms. This paper puts forward a
scheduling algorithm named TMPBP, which offers a new dynamic priority
assignment algorithm HRS that can recognize the key tasks at runtime
heuristically. Additionally, TMPBP add some extra techniques to the traditional
concurrency control policies according to the features of J2EE. The algorithm is
proven to be safe and will not produce starvation or priority inversion. The
experimental evaluations indicated that TMPBP improves the Quality of Service
(QoS) of key tasks effectively, especially when the server is under a heavy load.

1 Introduction

J2EE[1] is a primary middleware platform for distributed object-oriented applications.
An increasingly large number of J2EE applications use entity beans as their persistence
mechanism, which is an object-style encapsulation to the relational data from the
underlying databases. The J2EE application server usually manages the concurrency
control of entity beans by way of a locking mechanism. Additionally, the application
server may adopt some extra techniques to improve the accessing performance, such as
caching.

Since the locality of references, lots of applications concentrate on a small group of
entity beans when the application server is under a heavy load. With the conflicts of
accessing, a considerable part time of transaction life cycle is consumed on waiting for
locks. However, the J2EE transaction scheduling nowadays is still a simple First-Come
First-Served (FCFS) algorithm. The FCFS algorithm cannot distinguish the key tasks
from the trivial ones and thus reduce the performance of key tasks.

The system should have a preference for key tasks when it is under a heavy load,
which suggests that a priority-driven scheduling policy should be adopted to provide a

 A Task-Type Aware Transaction Scheduling Algorithm in J2EE 1035

better Quality of Service (QoS) for key tasks. There is still no a commonly agreed
definition to the QoS of transaction service until now [2], but some necessary metrics
should be included in transaction QoS, such as average complete time, missed deadline
percentage, etc. In this paper, we do not intend to discuss the executing mechanism of
transaction QoS, and just define some QoS metrics to scale the scheduling in a
quantitative way.

Lots of priority-driven scheduling algorithms have been proposed, such as the
classical Least Slack First (LSF) [3,4] and Earliest Deadline First (EDF) [5,6].
However, the tasks submitted to J2EE middleware are not associated with some
necessary scheduling information, such as the estimated executing time, the value of
the task, etc. The absence of necessary scheduling information makes it impossible to
apply these existing algorithms to J2EE. Furthermore, the transactions in J2EE are
executed in an interactive way and the transaction manager cannot restart the
transaction directly, which also prevents the application of some existing algorithms.

To overcome the above obstacles, this paper puts forward a task-type aware
transaction scheduling algorithm, which can recognize the key tasks heuristically at
runtime and improve the QoS of key tasks effectively. The rest of this paper is
organized as following: the next section reviews the related work; section 3 presents the
scheduling algorithm TMPBP (Threaded Multi-Queue Priority-Based Protocol)
including the priority assignment algorithm HRS (Heuristic Resource Statistics);
section 4 proves some characteristics of the algorithm; section 5 presents the
performance experiments; and we conclude the paper in the last section.

2 Related Work

Most of the existing research on priority-driven scheduling comes from the area of
database and real-time system, while little is available in J2EE middleware.

The tasks submitted to J2EE middleware are not associated with some necessary
scheduling information, such as the estimated executing time, the value of the task, etc.
And we cannot expect the users to provide static priorities for every transaction
instances because: (1) The value of a task may change during its execution. (2) We
must support the numerous legacy application codes that did not involve priority. What
we need is a dynamic priority-driven scheduling algorithm.

There are many dynamic priority-driven scheduling algorithms have been proposed
in real-time system, such as Least Slack First (LSF) [3,4], Earliest Deadline First (EDF)
[5,6], Earliest Feasible Deadline First (EFDF) [7], Earliest Release First (ERF) [7],
Highest Value First (HVF) [8], Greatest Value Density First (GVDF) [8,9], and so on.

Some algorithms (such as LSF and EFDF) cannot adapt to the J2EE middleware
environment. For example, we cannot apply LSF without the estimated executing time.
Some other algorithms (such as EDF and ERF) are not appropriate for our situation. For
example, EDF does not consider the type of tasks and the key tasks cannot get a better
service.

Underlying the HVF algorithm is that every task is associated with a value function
of time t, and the scheduler should first schedule the task with highest value. However,
the difficulty is how to construct a reasonable value function under J2EE. The problem
also exists in GVDF.

1036 X. Ding et al.

As to concurrency control, usually a Two-Phased Locking (2PL) protocol is
employed. Some optimistic concurrency control protocols are also applied in J2EE
application servers such as JBoss [10,11]. However, when the server is under heavy load,
there are many failures in the validation phase and the performance decreases sharply.

Priority Inheritance (PI) [12] is a traditional approach to prevent priority inversion.
The basic idea of PI is that when a transaction blocks one or more higher-priority
transactions, it is executed at the highest priority of all the transactions it blocks.

A priority-driven scheduling algorithm may produce a starvation, i.e. a transaction
instance is lunched again and again, but every time it has timed-out before it completes.
Most of the existing approaches [13] are restarting the instance and limiting the times of
restarting. However, in J2EE middleware, the transaction is executing in a interactive
way and the transaction manager cannot restart the transaction directly. We have to
bind some scheduling information to the thread context so that we can recognize the
timed-out instance when it is launched again.

As to deadlocks, some advanced approaches can destroy the preconditions of
deadlocking. Data-Priority-Based Locking Protocol (DP) is such a deadlock-free
locking protocol based on prioritizing data items proposed in [13]. In DP, each data
item carries a priority which is equal to the highest priority of all transactions currently
in the system that includes the data item in their access lists. When a new transaction
arrives at the system, the priority of each data item to be accessed is updated if the item
has a priority lower than that of the transaction. When a transaction terminates, each
data item that carries the priority of that transaction has its priority adjusted to the
highest priority active transaction that is going to access that data item.

DP assumes that the list of data items that are going to be accessed is submitted to
the scheduler by the arriving transaction. However, as mentioned above, this
assumption is not satisfied in J2EE. Such other deadlock-free algorithms also include
Priority Ceiling Protocol [12,14]. But all of these approaches may decrease the
executing efficiency remarkably in reality. The traditional approach, detecting the
cycles in wait-for graph [15], may be more practical in reality.

3 Scheduling Algorithm

3.1 Notations

For the conveniences of discussing, we define some notations as following:

Definition 1(Notations on entity beans). All of the entity beans form the set BS. Each
entity bean has the property weight, denoted as wt(bean), and wt(bean) N∈ +,

where N + is the natural numbers set. All of the weight values in the system are marked
as set WT, and the max value of weights is marked as max(WT).

Definition 2(Notations on transaction). The arrival time of a transaction instance α
is marked as at(α), and the end time is marked as et(α). Each transaction instance has
property priority. The priority of instance α at time t is marked as priority(α ,t), and

priority(α ,t) N∈ +. All of the resources have been accessed by instance α until time

t is denoted as the set rh(α ,t), and rh(α ,t) BS⊆ .

 A Task-Type Aware Transaction Scheduling Algorithm in J2EE 1037

Definition 3(QoS Metrics). Suppose that M transaction instances are submitted
during a certain time, while finally N instances denoted as 1, 2,…,n committed
successfully and K instances rolled-back because of deadline missing or deadlock, then
some transaction QoS metrics are defined as following:

(1) Average Complete Time, ACT = ())()((
1=

−
n

i

iatiet) / N.

(2) Weighted Average Complete Time, WACT =

 ()))(,(*))()(((
1

ietipriorityiatiet
n

i=

−) / (
=

n

i

ietipriority
1

))(,().

(3) Missed Deadline Percentage, MDP = (K / M)*100%.

Definition 4(Blocker). If the transaction instance t1 is blocked
because of waiting for the lock of a bean, while another instance
t2 owns a lock of the bean conflict to the desired lock, we call
instance t2 as the blocker of instance t1. A transaction instance
may have several blockers and its blocker may have its own
blockers, too. If a transaction instance is represented by a node,
and the blocking relationship is represented by an arc, then we
get a Directed Acyclic Graph (DAG). A blocker chain of a node
is a path beginning from the node. As illustrated in figure 1, the
red node serial <t2, t4, t3, t5> is a blocker chain of instance t2.

3.2 Heuristic Priority Assignment

In this section we introduce a dynamic priority assignment algorithm. The algorithm
can distinguish the key tasks from the trivial ones at runtime and the users can also
assign the priority manually if they assure the value of the tasks.

The difficulty is determining the value of a task in the absence of explicit type
information. Different type tasks access different type resources. This fact suggests that
we can get some hints from the resource accessing history of task. In J2EE middleware,
the Enterprise JavaBeans (EJB) specification has defined how to store some extra
properties of beans in their descriptor files [16]. If we assign a weight value to each
bean, we are able to figure out the value of tasks from its accessed resource list
heuristically. Our HRS algorithm is based on this idea.

Definition 5(HRS). The priority of a transaction instance at time t is calculated by the
following formula:

Priority(α ,t) = StaticPriority(α ,t) + AgePriority(α ,t) + ResourcePriority(α ,t)

StaticPriority is a natural number in a finite set, such as [0, 1000]. It is optional on
transaction creating, with a default value 0. Being an initialization parameter, it can also
be adjusted at runtime. For example, if a session bean TransferMoney is invoked by a
transaction instance, we can ensure the type of the task at that time, and increase its
StaticPriority in the code body of TransferMoney.

AgePriority is a linear function of time, which expresses the age of a transaction
instance. AgePriority(α ,t) = k * (t – at(α)), k is the linear factor and k N∈ +. Many

t1

t2
t3

t4

t6

t5

Fig. 1. Blocker Chain

1038 X. Ding et al.

researches [17,18] indicate that a priority-driven scheduling algorithm should consider
two independent causes: task-critical and task-urgency. The factor k is a balance
between the above two causes.

ResourcePriority(α ,t) is defined as the sum of weight values of beans which have
been accessed by instance α until time t. If a bean has been accessed more than one
times, only one time is counted.

According to EJB specifications, every entity bean is associated with a deployment
descriptor file. We extend the descriptors set by adding the item BeanWeight to it,
which denotes the weight of the bean. The item is configured by the administrator
manually at deployment time, and its default value is 0.

3.3 Scheduling Algorithm

We put forward the scheduling algorithm TMPBP based on a basic 2PL policy. In
J2EE, each transaction instance is attached to a specific thread. TMPBP defines two
variables in the thread context, TimeoutTimes and LastPriority, respectively represents
the times of timed-out in history of the thread and its last priority. The waiting
transaction instances are put into multi queues according to the TimeoutTimes value
and the transaction manager schedules the queue with highest TimeoutTimes value first.

In TMPBP, each entity bean carries a property priority equals to the highest priority
of all instances in the waiting queue. Attention should be paid that the priority of a bean
is different to the weight of a bean. The weight is assigned during the deployment time
statically, while the priority is generated and updated at runtime dynamically.

TMPBP does not employ any advanced approaches to avoid deadlocks. It just
detects the possible cycle in a wait-for graph and aborts the instance with lowest
priority. As mentioned in section 2, the approach is practical and more efficient.

The complete description of TMPBP is listed as following. Among the description,
the attached thread of current transaction instance is denoted as self, and the current
time is denoted as now:

Table 1. The description of TMPBP

on schedule(tx, bean):// instance tx would like to visit bean
 lookup the bean’s lock table;
 if (tx is permitted to grant the lock)
 { // go ahead

if (bean∉rh(tx, now))
 tx.ResourcePriority = tx.ResourcePriority + wt(bean);
 grant tx the lock;
 }
 else
 { //blocked, waiting…
 if (tx.priority>bean.priority)
 {
 for all tx’s blocker chains, do
 { //update the blocker chain
 from the first node to the last node of the chain, do

 A Task-Type Aware Transaction Scheduling Algorithm in J2EE 1039

 {
 if (node’s blocker’s priority<node’s priority)
 node’s blocker’s priority = node’s priority;
 }
 }
 }
 put tx to corresponding waiting queue;
 waiting for bean’s lock;
 if (a deadlock is detected)
 abort the instance with lowest priority in the cycle.
 }

on release lock(bean): //pick a tx to run
select the queue Q with highest timeoutTimes;
select highest priority transaction instance tx from the Q, if there are several
instances with the same priority, select a random instance from them;
if (bean∉rh (tx, now))

tx.ResourcePriority = tx.ResourcePriority + wt(bean);
grant tx the lock;

 //refresh the bean’s priority
bean’s priority = max value of instances’ priority in bean’s waiting queues.

on transaction create(initPriority):
ResourcePriority = 0;
if (has no timeoutTimes defined in Thread Context) //init the Thread Context

 {
self.timeoutTimes = 0;
self.lastPriority = 0;

 }
StaticPriority = initPriority + self.lastPriority;

on transaction commit(tx):
 release tx’s all locks;

self.timeoutTimes = 0;
self.lastPriority = 0;

on transaction rollback(tx):
 release tx’s all locks;

if ((reason == TIMEOUT) || (reason == DEADLOCK))
{
 self.timeoutTimes = self.timeoutTimes + 1;
 self.lastPriority = priority(tx,now);
}
else
{
 self.timeoutTimes = 0;

self.lastPriority = 0;
}

on calculate priority(α ,t):
return StaticPriority(α ,t) + k*(t-at(α)) + ResourcePriority(α ,t);

1040 X. Ding et al.

4 Algorithm Analysis

Subsequent paragraphs analyze some important properties of the TMPBP algorithm,
including the time complexity and the characteristics of scheduling.

4.1 Time Complexity

As we can observe from table 1, most of the operations in TMPBP are linear, except the
operations of searching lock table, updating blocker chains and detecting deadlocks in
section “on schedule (tx, bean)”.

Cost of the above operations is depending on how the relevant data structures are
organized. Suppose we organize the lock table as a doubly linked list with Bean ID
hash value as its list header, and the number of active transaction instances in system
is n. In the worst case, all of the other instances are blockers of the current instance
(for example, current instance requires a write lock, while the other n-1 instances
hold the read lock) and the time complexity of the first two operations is O(n). As to
detecting deadlocks, we adopt the data structure and algorithm presented in JBoss
EJB container [11] and its time complexity is O(n2). Thus the overall time complexity
of TMPBP is O(n2).

4.2 Characteristics of Scheduling

Property 1. There is no starvation in TMPBP.

Proof: first we prove that TMPBP does not produce starvation if we do not take
timeout into account.

Suppose the finite set S {StaticPriority1, StaticPriority2,…, StaticPriorityn} contain
all of the possible static priorities. Let α be any given transaction instance, there must
exist a time t (t > at(α)) where

AgePriority(t-at(a)) = Max(S) + WT (1)

Since AgePriority(t) is a linear function, as we can learn from the formula (1), if any
transaction instance has a arrival time larger than t, its priority must be less than priority
of α .

Suppose set P {α , p1, p2, … , pn } include all of the active transaction instances at
time t, it is a finite set with a size of n+1. Any possible instance which priority is larger
than priority of α is in set P. When time is larger than t, if instance α is blocked in a
waiting queue of any bean, in the worst case, it will get the lock at the (n+1)th round
scheduling. So the instance α cannot be starving.

The above discussion does not consider the deadlocks. If a deadlock occurs, the
instance with lowest priority will be aborted. If the victim is another instance instead
ofα , the above conclusion is still true. If the victim isα , the conclusion is identical
with the following conclusion on timeout circumstance.

Now we take timeout into account. The instance α may time out before time t and
become starved, i.e. the transaction is lunched again and again, but every time it has
been timed out and is aborted before time t. (Of course the time-out value must be large
enough to complete its work, otherwise it is impossible to commit successfully).

 A Task-Type Aware Transaction Scheduling Algorithm in J2EE 1041

In TMPBP, we store the timeout history information in the context of client thread so
that we can recognize the timed-out transaction instance when it is launched again. The
instance inherits the final priority before its latest rollback. When the transaction is
submitted again, its priority increases continuously as if there is no timeout. And we
have proved that there is no starvation if there is no timeout. Thus the starvation is
prevented.

Property 2. There is no priority inversion in TMPBP.

Proof: In TMPBP, each blocked transaction instance calculates its priority before
entering the waiting queue. If the calculated result is larger than the priority of the bean,
the transaction manager updates the priority of the bean and the priority of all of the
blockers of current instance. After the updating of blocker tree, the priority sequence is
guaranteed to be monotonically non-decreasing when we travel follow any blocker
chain in the blocker tree; hence the priority inversion is prevented.

The priority of instances in waiting queue increases with time, but we do not update
the blocker tree when we schedule in a future time. Now we prove that it does not affect
the scheduling result and does not produce the priority inversion.

Suppose the transaction instance blocked is α .The StaticPriority and
ResourcePriority of α are not changed since α has been blocked, and the only cause
that changes its priority is AgePriority. But AgePriority is a linear function of time t, and
during the same period of time, the increase produced by AgePriority to α and any
instance in its blocker tree is identical. Hence the property sequence of blocker tree is
still maintained to be monotonically non-decreasing when we schedule in a future time.

Property 3. The scheduling produced by TMPBP is serializable.

Proof: In TMPBP, a transaction instance does not release its locks until it ends. In other
words, all of the locking operations are prior to any unlocking operations, i.e., the
TMPBP is compliant to Two Phased-Locking (2PL) protocol, and more specifically, is
compliant to a strict 2PL protocol. According to paper [19], the scheduling produced by
a scheduler compliant to 2PL is serializable.

5 Experimental Evaluations

In this section, we investigate the performance of TMPBP algorithm and discuss the
influence of factor k in HRS by some simulation experiments. The computer used in the
experiments consisted of a Pentium 4 2.4G CPU and a 512M DDR RAM, with an
operating system of Microsoft Windows 2000 Professional.

5.1 QoS Comparison

We simulated a concurrent execution with varied number of transaction instances. In
each round, the first five transaction instances carry different static priorities while the
rest carry zero. The first ten of thirty beans carry different weights, and the other twenty
beans carry zero. Each transaction accessed 5 beans during its life cycle and each
accessing consumed 0.5 seconds.

The experiment parameters are listed as following:

1042 X. Ding et al.

Table 2. Experiment Parameters List

 Parameter Value

Weights of Beans (50,50,100,100,150,150,200,200,300,300,0….0)

StaticPriority of transactions (200,200,300,300,300, 0…0)

Age Factor k 10

Time-out(seconds) 30

0

5

10

15

20

25

25 40 55 70 85 100 115 130 145 160 180 200

TX Concur r ency Rat e

WA
CT

(s
)

FCFS TMPBP

0

5

10

15

20

25

30

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

12
00

TX Pr i or i t y

AC
T(

s)

FCFS TMPBP

Fig. 2. WACT comparison on concurrency Fig. 3. ACT comparison on priority

Figure 2 shows the WACT comparison on different transaction concurrency rate. As
we can observe from the figure, the difference of WACT under two scheduling
algorithms increases with the increase of concurrency rate. When the server is under
heavy load, the waiting queue is long and the transactions cost a large part time on
waiting for locks. The TMPBP algorithm
schedules the transaction instance with
higher priority first, hence the waiting
time of key tasks is decreased and as a
result their WACT and MDP are
reduced.

Figure 3 and figure 4 shows the
advantage more clearly. Figure 3 gives
the ACT comparison on different
proprieties and figure 4 gives the MDP
comparison on different priorities. Both
experiments are under a concurrency of
200 transaction instances.

From the above three figures, we can conclude that the TMPBP improves the QoS of
higher-priority transaction instances remarkably, especially when the server is under
the heavy load.

Fig. 4. MDP comparison on priority

 A Task-Type Aware Transaction Scheduling Algorithm in J2EE 1043

5.2 Factor Adjustment

We did not give the exact value of factor k in HRS algorithm until now. As mentioned
in section 3.2, k is a balance between task-critical and task-urgency. In general, k
should be adjusted according to the distribution of completion time, timeout values and
the length of waiting queue.

We study the performance of TMPBP under two somewhat extreme values of k, 5
and 500. The other parameters are same to the ones used in the last experiment and the
transaction concurrent rate is 200.

0

5

10

15

20

25

30

10
0

30
0

50
0

70
0

90
0

11
00

TX Pr i or i t y

AC
T(

s)

FCFS TMPBP

 Fig. 5. ACT comparison on k=5 Fig. 6. ACT comparison on k=500

From the above two figures, we can draw the conclusion that there is a notable
difference on ACT under different values of k. In figure 5, the performance of TMPBP
is still better than the performance of FCFS, but is obviously worse than the
performance of TMPBP in figure 3, where k is set to 10. While in figure 6, the
performance of TMPBP is similar to the performance of common FCFS and it indicates
that TMPBP lose the ability to recognize the key tasks.

We can explain the two figures from the essence of k. When k 0, HRS does not
take the age of transaction into account. It is suitable for the situations where time-out
value is large and the possibility of time-out is low. In such situations, the age of
transaction is not sensitive. On the contrary, when k , the value information figured
from the resource accessing history of a transaction instance is submerged. The
TMPBP algorithm degenerates into a common EDF algorithm and the key tasks lose
their advantages. Furthermore, the time-out values are identical in the experiment, thus
the performance of TMPBP is similar to the performance of FCFS in figure 6.

6 Conclusion

In this paper, we import a priority-driven scheduling algorithm to provide a better
service for key tasks in J2EE. We face two problems: (1) How to recognize the key
tasks dynamically in the absence of some necessary scheduling information. (2) How to
produce a safe and efficient scheduling.

1044 X. Ding et al.

Our contributions are the solutions to the above two problems. First, we propose a
new dynamic priority assignment algorithm HRS which can recognize the key tasks at
runtime heuristically. The idea underlying HRS is assigning a weight to each resource
and figuring out the value of tasks through the resource accessing history of the
transaction instance. Second, we introduce some new techniques to the traditional
concurrency control policies according to the features of J2EE middleware, such as
binding scheduling information with client thread, and present the scheduling
algorithm TMPBP. It is proven to be safe and the experimental evaluations show that a
considerable improvement on QoS of key tasks was achieved.

Acknowledgements. This paper was supported by the National High-Tech Research
and Development Program of China (863 Program) under Grant No.2001AA113010,
2003AA115440, and the Major State Basic Research Development Program of China
(973 Program) under Grant No.2002CB312005.

References

1. Sun Microsystems Inc., Java™ 2 Platform Enterprise Edition (J2EE) specification, v1.4,
(2003)

2. Wanxia Xie, Shamkant B. Navathe, Sushil K. Prasad, Supporting QoS-Aware Transaction
in system on a mobile device, Proceedings of the 23 rd International Conference on
Distributed Computing Systems Workshops (ICDCSW’03), (2003)

3. Abbott R, Garcia-Molina H., Scheduling real-time transactions: A performance evaluation.
ACM Transactions on Database System, 17:513-560, (1992)

4. Dertouzos ML, Mok AK. Multiprocessor on-line scheduling of hard-real-time tasks. IEEE
Trans. on Software Engineering, 15(12):1497-1506, (1989)

5. Liu C, Layland J, Scheduling algorithms for multiprogramming in a hard real-time
environment. Journal of the ACM, 20(1): 46-61, (1973)

6. Haritsa JR, Livny M, Carey MJ. Earliest deadline scheduling for real-time database systems.
In: Proceedings of the 12th IEEE Real-Time Systems Symposium. Los Alamitos, CA: IEEE
Computer Society Press, 232-243, (1991)

7. Liu YS, He XG, Tang CJ, Li L. Special Type Database Technology. Beijing: Science Press,
(2000)

8. Jensen ED, Locke CD, Toduda H, A time-driven scheduling model for real-time operating
systems. In: Proceedings of the IEEE Real-Time Systems Symposium. Washington, DC:
IEEE Computer Society Press, 112-122, (1985)

9. Abbott R, Garcia-Molina H. Scheduling real-time transactions. ACM SIGMOD Record,
17(1):71-81, (1988)

10. JBoss Group, http://www.jboss.org
11. JBoss Group, JBoss Administration And Development (2004)
12. L.Sha, R.Rajkumar, J.Plehoczky, Priority Inheritance Protocols: An Approach to Real-Time

Synchronization. IEEE Transactions on Computers, 39:1175-1185, (1990)
13. Özgür Ulusoy, Geneva G. Belford Real-Time Transaction Scheduling In Database

Systems, Proceedings of ACM Computer Science Conference, (1992)
14. L.Sha, R.Rajkumar, J.Plehoczky., Concurrency Control for Distributed Real-Time

Databases. ACM SIGMOD Record , 17:82-98, (1988)
15. P.A.Bernstain, V.Hadzalacos, N.Goodman, Concurrency Control and Recovery in Database

Systems, Addison-Wesly, (1987)

 A Task-Type Aware Transaction Scheduling Algorithm in J2EE 1045

16. Sun Microsystems Inc., Enterprise JavaBeansTM specification, v2.1, (2003)
17. Buttazzo G, Spuri M, Sensini F., Value vs. deadline scheduling in overload conditions. In:

Proceedings of the 19th IEEE Real-Time Systems Symposium. Pisa: IEEE Computer
Society Press, (1995)

18. Huang JD, Stankovic JA, Towesly D, Ramamritham K. Experimental evaluation of
real-time transaction processing. In: Proceedings of the 10th Real-Time Systems
Symposium. Santa Monica: IEEE Computer Society Press, (1989)

19. K.P.Eswaran, J.N.Gray, R.A.Lorie, I.L.Traiger, The notations of consistency and predicate
locks in a database system, Comm.ACM 19(11):624-633, (1976)

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1046 – 1064, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Application Object Isolation in Cross-Platform Operating
Environments

Stefan Paal1, Reiner Kammüller2, and Bernd Freisleben3

1 Fraunhofer Institute for Media Communication,
Schloss Birlinghoven, D-53754 St. Augustin, Germany

stefan.paal@imk.fraunhofer.de
2 Department of Electrical Engineering and Computer Science, University of Siegen,

Hölderlinstr. 3, D-57068 Siegen, Germany
kammueller@pd.et-inf.uni-siegen.de

3 Department of Mathematics and Computer Science, University of Marburg,
Hans-Meerwein-Strasse, D-35032 Marburg, Germany
freisleb@informatik.uni-marburg.de

Abstract. Many efforts have been spent to overcome the single-application
hosting limitation of the regular Java Virtual Machine (JVM). A common ap-
proach is the introduction of custom class loaders to separate application
classes and to enable multi-application hosting. A yet unresolved problem is the
separation of application objects once the object references have been exposed
to other applications within the same and across different JVMs. In this paper,
we present a novel approach towards Java object isolation in cross-platform op-
erating environments. We introduce so called Java Object Spaces which control
the communication among particularly encapsulated object groups and enable
the custom separation of inbound object instances and outbound object refer-
ences. The realization of the approach is described and its application for ad-
hoc execution migration is illustrated.

1 Introduction

The Sun Java Virtual Machine (JVM) has been initially designed to host a single Java
application only [1]. Consequently, many efforts have been spent to overcome this
limitation, such as using custom class loaders [2]. They can be used to build a class
loader hierarchy for sharing common application classes and separating incompatible
class variants. This enables the concurrent hosting of multiple applications within the
same JVM. Custom class loaders represent a common approach to isolate application
classes. A yet unresolved problem is the isolation of application objects and the re-
lated object references once they have been exposed to other applications within the
same JVM [3].

In a cross-platform operating environment with several JVMs, local application ob-
jects may refer to remote application objects and pass returned object references to other
local objects, as shown in fig. 1. This makes it impossible to track each object reference
linked to an object instance. In fact, there is no way to update all existing object refer-
ences to a moved or replaced object instance. A remedy is the interception of object
communication by isolating object instances and tracking the passed object references.

 Application Object Isolation in Cross-Platform Operating Environments 1047

Common object-oriented middleware approaches, such as Java RMI, rely on the
stub/skeleton pattern to handle object communication with remote peers. On the one
hand, they track the passed object references between local and remote JVMs to seam-
lessly create new stub/skeletons pairs. On the other hand, there is typically no support to
track the passing of object references within the same JVM. In a multi-application host-
ing scenario, it is not possible to determine the object instances and object references
which belong to a running application. This makes it difficult to support online updates
and execution migration without affecting concurrently hosted applications.

Fig. 1. Unmanageable Tracking of Object References and Object Instances

In this paper, we present a novel approach towards Java application object isolation
in cross-platform operating environments. We introduce so called Java Object Spaces
[4] which encapsulate specific groups of application objects. They enable the separa-
tion of outbound object references and inbound object instances within the same and
across various JVMs. The realization of the proposed approach is based on Java Dy-
namic Proxies [5] and a particular tracking of serialized method calls by using custom
object streams. We show how this approach can be used to support multi-application
hosting, seamless implementation updates and transparent object migration in a cross-
platform operating environment.

The paper is organized as follows. In section 2, we define application object isola-
tion, discuss its objectives and challenges and examine related work. In section 3, we
introduce Java Object Spaces to support application object isolation in a legacy JVM.
The conceptual approach and its realization using Java Dynamic Proxies are de-
scribed. In section 4, we demonstrate the application of the approach for ad hoc exe-
cution migration in a cross-platform operating environment. Finally, section 5 con-
cludes the paper and outlines areas for future work.

2 Java Application Object Isolation

In this section, we introduce the definition of Java application object isolation used in
this paper and present the related objectives. Furthermore, the challenges imposed by
the use of multiple JVMs in a cross-platform operating environment are presented and
related work is discussed.

1048 S. Paal, R. Kammüller, and B. Freisleben

2.1 Definitions

In our understanding, a Java application object is an entity that can be accessed via a
regular Java object reference. It is typically referenced by other application objects in
a one-way direction and is not removed from the JVM as long as a corresponding ob-
ject reference is in use. While some application objects may be created from classes
loaded by the same class loader, others are associated with different class loaders. In
addition, application objects may have to be virtually grouped by their origin or use,
e.g. as part of a component or an application. From this point of view, we distinguish
various types of application object communication in a cross-platform operating envi-
ronment, as illustrated in fig. 2.

Fig. 2. Types of Application Object Communication

There are objects which are virtually grouped and tightly coupled. They use the
same class loader, and object communication will not leave the object group (A). An-
other scenario is formed by object groups which belong to different origins but still
use the same class loader. Object communication may pass group boundaries, e.g.
when accessing objects of an application plugin (B). In the next scenario, object
communication involves objects associated with classes that have been loaded by dif-
ferent class loaders, e.g. calling methods on a shared software component (C). This
could cause problems with colliding or missing classes depending on the class loader
hierarchy and thus requires particular treatment. In case application objects reside in
different JVMs, object communication has to cross process boundaries and use ob-
ject-oriented middleware approaches, such as RMI or CORBA (D). Finally, applica-
tion objects may be also hosted in JVMs started on different machines. Apart from
particular communication issues, such as establishing a suitable network link to the
remote host (E), the employed middleware approach has to dynamically resolve the
location of an object if objects migrate to another host while they are in use, e.g. by
means of an object registry.

 Application Object Isolation in Cross-Platform Operating Environments 1049

In summary, there are various types of application object communication which
have to be addressed when considering object updates, replacements or movements
without being able to modify related object references. A remedy is the transparent in-
terception of object communication which allows the use of regular object references
on the caller side but enables the dynamic relinking of objects by the callee. As a re-
sult, the overall goal of application object isolation is the custom separation of object
references from referenced object instances.

2.2 Objectives

There are different objectives of application object isolation. In this paper, we focus
on the seamless handling of object references and communication among replaced
and moved object instances within a cross-platform operating environment.

Application Object Groups. A basic issue of application object isolation is setting
up which object groups should be treated as atomic, e.g. if either all or none of the
objects of a shared library may have to be updated. It eases the handling of large
numbers of objects and helps to identify groups of objects which are not related
otherwise, e.g. by using the same class loader. In addition, there is no need to isolate
these objects from each other and to intercept the communication among them.

Online Implementation Update. Java supports the dynamic loading of classes, and
custom class loaders are often used to virtually replace already loaded classes. In fact,
objects may be created using the new class loader and classes. However, it is not
possible to update the implementation of an existing object once it has been created.
A particular objective of application object isolation is the support of online com-
ponent updates which replace the implementation of already created objects.

Transparent Object Migration. In a cross-platform operating environment, objects
may be moved from one host to another one while they are in use. Local and remote
object references are not implicitly updated, and it is also not feasible to notify each
object reference about the movement of referenced objects. A corresponding objective
of application object isolation is the support of transparent object migration without
invalidating fixed and moving object references.

Seamless Object Access. While objects in the same object group may refer to each
other using regular object references, the communication with objects located in
different object groups requires particular efforts to handle application object
isolation. Nevertheless, new objects should be seamlessly integrated into their object
group, and corresponding object references are supposed to be transparently trans-
formed and exchanged across various object groups without application intervention.

2.3 Challenges

There are several challenges for application object isolation in a cross-platform oper-
ating environment, as described below.

On-Demand Operation. Application objects may be dynamically replaced or moved
by request. A particular challenge is the on-demand object isolation without actually
knowing the involved object groups in advance. The encapsulated objects could

1050 S. Paal, R. Kammüller, and B. Freisleben

become unavailable at any time and related object references may be unexpectedly
blocked until the isolation is released. In turn, object groups and contained object
references must be prepared to be serialized in case they are moved to another host.

Custom Class Loaders. They are used to enable the concurrent loading of multiple
class variants. In this context, an object can use only classes which can be loaded via
its class loader or one of the parent class loaders, e.g. for casting an object reference.
This is typically achieved by configuring shared class loaders. However, some object
groups may have to use different class loaders. The challenge is how to pass objects
of compatible variants of the same class without sharing a custom class loader.

Distributed Object Communication. The possible separation of object references
and referenced objects into different JVMs results in distributed object
communication. The use of common object-oriented middleware approaches
introduces particular application objects, such as stubs and skeletons, to mask the
distributed object communication. This raises the challenge of how these objects can
be isolated in the same way as regular application objects, e.g. for updating a stub
implementation.

Legacy Runtime Environment. While a proprietary JVM could realize object iso-
lation without application modification, in practice it is not feasible to provide and
support suitable JVM implementations for different types of operating systems and
hardware platforms. The same is valid for applying programming tools which create
custom Java byte code. A particular challenge is the implementation of object iso-
lation for use in a legacy runtime environment and with regular Java byte code.

2.4 Related Work

The overall goal of object isolation is the separation of an object reference from the
related object instance. This leads to the custom handling of object communication
which has already been addressed by many Java object middleware approaches. In the
following review, we consider related work with respect to the objectives and chal-
lenges of Java application object isolation in a cross-platform operating environment.

The first approach considered is legacy Remote Method Invocation (RMI). It is the
proposed solution of Sun for binding distributed Java objects and calling methods
remotely. There is basic support to relink RMI object references on the fly, although
the custom separation of an RMI object reference from its corresponding remote
object is formally not supported. In addition, the grouping of tightly coupled objects
and the custom interception of object communication from and to this object group is
not supported. Another drawback of RMI is the explicit compilation of stubs/skele-
tons for each object implementation. This is not feasible for on-demand operation.
There are various approaches which rely on RMI and extend it with custom features
[6]. As an example, TRMI [7] uses Java dynamic proxies to wrap the RMI communi-
cation and to enable dynamic remote object linking without using the rmic compiler.
The same is valid for RMI in Sun J2SE 5. However, the RMI-based approaches do
not address multi-application hosting. There is no separate handling of different
object instances and custom tracking of object references within the same JVM.

A well-known middleware approach is the Common Object Request Broker Archi-
tecture (CORBA) [8]. In contrast to RMI, it readily supports the dynamic linking of

 Application Object Isolation in Cross-Platform Operating Environments 1051

yet unknown remote objects and the custom interception of object communication via
interceptors. It is part of the Sun J2SE and does not have to be installed manually.
From this point of view, CORBA represents a suitable approach to realize application
object isolation on top of it. On the other hand, the application of CORBA requires
some modification of legacy Java application code, such as using the narrowing
approach to cast a remote object reference. This may complicate the use in a cross-
platform operating environment with legacy application code migrating from one host
to another. The update of object implementations leads to a similar problem that
CORBA stubs and skeletons have to be exchanged whenever the target object
implementation is modified.

There are many custom approaches which are based on the introduction of custom
class loaders and the modification of how classes are selected, loaded and arranged in
the JVM. Popular examples include servlet engines, such as Jakarta Tomcat [9], and
J2EE application servers, such as JBOSS [10] which benefit from the ability to load
different class variants at the same time. Custom class loaders may also be used to
update already loaded classes and use new variants, e.g. for reloading and restarting a
Java servlet. A common drawback of custom class loaders is their focus on class sepa-
ration. Another one is the introduction of a specific programming model like Enter-
prise Java Beans (EJB) or OSGi. It is not possible to update the implementation of al-
ready linked objects. A custom class loader is not aware which object belongs to a
certain application, and there is no way to determine object groups of an application,
e.g. scheduled for migration.

Approaches based on a custom Java Virtual Machine, such as the Multi-Tasking
Virtual Machine (MVM) [1], NOMADS [11] and Camel [12], may offer particular fea-
tures, e.g. a multi-tasking runtime environment, code sharing and a mobile application
framework. On the other hand, they require additional effort to install the JVM and
suffer from the lack of portability in a heterogeneous cross-platform operating envi-
ronment. In a similar way, code rewriting approaches, such as JOrchestra [13] and J-
Seal2 [14], are able to incorporate extra features like automatic application partioning,
advanced resource control and protection domains. Due to byte code modification,
they inherit the problem that this cannot be performed on-demand during runtime, e.g.
when passing object references among uncertain and dynamically loaded components.
Furthermore, they relay on a different programming model which hinders the dy-
namic hosting of unmodified legacy Java applications.

In summary, there are various approaches which address and support application
object isolation to some extent. Native approaches, such as RMI, support the seamless
integration of the approach in a legacy runtime environment but lack support for cus-
tomizing the object communication. Standard object middleware approaches, such as
CORBA, can be used to dynamically link remote object instances and are able to
separate the tight coupling of object reference and object instance. However, they fail
for tracking the object references within the same JVM. Custom approaches, such as
the MVM and J-Seal2, provide particular features but often rely on a proprietary JVM
or a different programming model. They cannot be used easily in a cross-platform op-
erating environment with unknown applications. Consequently, an approach towards
legacy application object isolation that supports seamless integration, transparent mi-
gration, online update and virtual grouping of application objects on-demand is still
missing.

1052 S. Paal, R. Kammüller, and B. Freisleben

3 Java Object Spaces

Considering the particular challenges of a cross-platform operating environment, we
propose a new way to address Java application object isolation. We illustrate the con-
ceptual approach of so called Java Object Spaces and describe its realization based on
legacy Java features. In addition, performance issues are discussed.

3.1 Conceptual Approach

The basic element of application object isolation is the virtual object group; the over-
all goal is the interception of object communication from and to the contained objects.
Based on this idea, we introduce so called Java Object Spaces which represent a cus-
tom group of application objects and control the object communication via dynamic
stubs and skeletons, as shown in fig. 3.

Fig. 3. Java Object Spaces

The objects within the same object space can refer to each other using legacy Java
object references. Objects from another object space are not directly referenced but
bound by a stub/skeleton pair which is dynamically created whenever an object refer-
ence passes the boundary of an object space. In this context, a stub and a skeleton
form an invariant object binding which may be intercepted for object isolation. An
object manager is used to create an object space and to associate objects and a class
loader with it. An object may be referenced by any object from the same or a different
object space; in the same or another JVM.

3.2 Realization

The presented approach is part of ongoing work towards the development of an auto-
nomic cross-platform operating environment [15]. In particular, we use features of our
previous work towards method streaming [16] for the transparent handling of network
communication among distributed objects.

 Application Object Isolation in Cross-Platform Operating Environments 1053

Object Communication. A crucial problem we have already identified in our
previous work on method streaming is the transparent binding of local and remote
objects independent of the underlying middleware approach. We have introduced so
called method streams which can be used to call methods on local and remote objects
across different JVMs and distributed hosts. In effect, method streams establish an
abstract Java communication layer which can be used to dynamically switch from one
middleware approach to another, e.g. from CORBA to RMI, and to relink migrated
objects transparently [16]. We also benefit from its ability to dynamically resolve the
current location of the object in a cross-platform operating environment by using an
invariant binding identifier. An object reference to a remote object actually refers to a
Java Dynamic Proxy which masks itself to implement the interfaces of the target
object. It delegates all method calls to a single method invoke of a dynamic stub
implementing the Java standard InvocationHandler interface, shown in fig. 4.

public Object invoke(Object proxy, Method m, Object args[])
 throws Throwable {
 String[] arr = new String[args.length];
 for (int i=0;i<args.length;i++)
 arr[i] = m.getParameterTypes()[i].getName();

 IRequest req = new CRequest(m.getName(),bindingId,arr,args);
 IResponse resp = binding.invoke(req);
 if (resp instanceof Exception)
 throw (Throwable) resp.getReturnObject();

 return resp.getReturnObject(); }

Fig. 4. Separating the Method Call from Class Instances on the Caller Side

The argument proxy is passed by the delegating Java dynamic proxy but it is not
used in our method. Instead, the argument types of the method call are extracted and
the names of the related classes are encapsulated in a request object req along with
the name of the method, an identifying bindingId of the target object and the ar-
gument values. The dynamic stub does not contain a reference to the target object but
the bindingId is used to dynamically establish a communication link and pass the
method call to the right business logic object. When the method call has been per-
formed, the return value is extracted from the response object resp and passed back
to the caller. On the callee side, a dynamic skeleton receives the request object and
performs the method call on the linked business logic object blo, as shown in fig. 5.

public IResponse invoke(IRequest req) {

 int nArgs = req.getParameterTypes().length;
 Class[] arrCls = new Class[nArgs];
 for (int i = 0; i < nArgs; i++) {
 String tp = req.getParameterTypes()[i];
 Class cl = blo.getClass().getClassLoader().loadClass(tp);
 arrCls[i] = cl; }

 m = blo.getClass().getMethod(req.getMethodName(),arrCls);

 return new CResponse(m.invoke(blo, req.getParameters())); }

Fig. 5. Getting Class Instances for a Method Call on the Callee Side

1054 S. Paal, R. Kammüller, and B. Freisleben

First, the class names of the method arguments are extracted and the corresponding
classes are loaded using the class loader of the callee object space. Next, the corre-
sponding method m of the business logic object blo is determined by using Java re-
flection, and the method call is issued. Finally, the return value is encapsulated in a
response object and passed back to the caller.

While method streams can be easily used to connect remote objects in a cross-plat-
form operating environment, there is a particular problem when passing method calls
among objects instantiated by different class loaders in the same JVM. A method
stream can be bound to only one class loader and it is not aware of object spaces using
different class loaders. This imposes each object communication to be serialized even
if the caller and the callee use compatible class loaders. This decreases the overall
performance of the approach. A further development addresses this problem and is
used in the presented approach to connect objects across various object spaces while
using the appropriate class loaders on either sides, as illustrated below.

Binding Objects. When a method call leaves an object space and enters another one,
it is passed down a method stream and the corresponding request and response objects
are transparently serialized. At this point, we add particular binding streams which
take care of different class loaders of the involved object spaces, as shown in fig. 6.

public class CBindingOutputStream extends ObjectOutputStream {

 protected Object replaceObject(Object obj)throws IOException {

 if (obj instanceof Serializable)
 // do nothing;
 else if (obj != null) {
 CBindingId bindingId = bdgMgr.bind(space, obj);
 obj = bindingId; }
 return super.replaceObject(obj); }

Fig. 6. Binding Output Stream

The legacy Java class ObjectOutputStream is used to derive a custom binding
output stream which processes the serialized request objects passed from the caller to
the callee. In doing so, the overridden method replaceObject is called for each ob-
ject in the stream. While a legacy object output stream would throw an exception if a
non-serializable object is found, we take a non-serializable object out of the stream,
create a dynamic skeleton and bind it to the object space of the method stream. Then,
the globally unique binding id of the skeleton is put into the output stream in place of
the actual object. In effect, all leaving object references to non-serializable objects are
encapsulated with dynamic skeletons and the related binding ids are passed to the
callee. There, the binding ids are replaced with method streams to the remote objects
left on the caller side. The corresponding binding input stream is shown in fig. 7.

Similar to the binding output stream above, the overridden method resolveOb-
ject of the binding input stream is called for each deserialized object. The corre-
sponding Java class is evaluated to identify the binding ids which actually represent
remote object references. Next, the binding manager is used to connect the related
object. We want to point out that the binding manager evaluates the binding id and the

 Application Object Isolation in Cross-Platform Operating Environments 1055

public class CBindingInputStream extends ObjectInputStream {

 protected Object resolveObject(Object obj) throws IOException{

 if (obj instanceof CBindingId) {
 obj = bdgMgr.connect(((CBindingId)obj), space); }
 return super.resolveObject(obj); }

 protected Class resolveClass(ObjectStreamClass desc) throws
 IOException, ClassNotFoundException {
 return space.getClassLoader().loadClass(desc.getName());}}

Fig. 7. Binding Input Stream

object space where the new object reference should be created. If the target object re-
sides in the same object space, the binding manager returns an object reference which
directly refers to the target object, and no dynamic stub is introduced. In case of dif-
ferent object spaces, a dynamic stub is introduced; this is appropriately wrapped by a
Java dynamic proxy. If the object is located in a different JVM or on another host, a
method stream is established, and the dynamic stub is linked to the method streams.
Subsequent method calls will be serialized using the presented binding input and out-
put streams while they are passed through the method streams.

In addition, the method resolveClass is overridden to modify the class loading
required to appropriately deserialize received objects. The class loader is taken from
the object space that contains the callee object. As a result, all serialized objects and
dynamic stubs of an object space are created by the same class loader. This is impor-
tant for seamlessly casting object references, updating object implementations and se-
rializing application object spaces, as illustrated below.

Transparent Serialization. A challenging objective of application object isolation is
the serialization and deserialization of an entire object space. The Java Runtime
Environment already offers an easy-to-use serialization approach which is enabled by
the tagging interface Serializable. Each object can be decorated with this interface
without imposing the implementation of any particular method. It is actually a marker
for the Java compiler to create specific methods which are called by the JVM when
this object is serialized. Besides serializing primitive attributes, the built-in
serialization approach tracks each object reference and automatically serializes the
linked objects (persistence-by-reachability). Though an object reference to a Java
dynamic proxy can be generally used in place of the regular object reference, the Java
serialization approach still differs between a regular object and a proxy object. Instead
of transparently passing the serialization calls to the linked object, Java attempts to
serialize the dynamic stub.

While this approach eases the transparent serialization of regular Java objects, it
may cause problems for particular objects, such as dynamic stubs. Because of that,
Java allows to add custom methods writeObject and readObject to the object
implementation which are seamlessly called instead of the compiler-generated seriali-
zation methods. We exploit this particular feature and customize the serialization of
the stub by introducing a custom method writeObject, as shown in fig. 8.

1056 S. Paal, R. Kammüller, and B. Freisleben

public class CDynamicStub implements InvocationHandler,
 Serializable {
 IObjectSpace space; // the containing object space
 CBindingId bindingId; // unique id of the remote object
 String[] szInterfaces; // implemented interfaces
 IBinding binding; // the next binding in the stream

 private void writeObject(ObjectOutputStream out) throws
 IOException {
 out.writeObject(bindingId);
 out.writeObject(szInterfaces); }

Fig. 8. Serializing a Dynamic Stub

The method writeObject writes the unique binding id and the names of the re-
mote interfaces to the stream. They are used to recreate and relink the stub to the
method stream. For this purpose, a method readObject is introduced which is called
whenever a dynamic stub is deserialized, as shown in fig. 9.

 private void readObject(ObjectInputStream in) throws
 IOException, ClassNotFoundException {

 bindingId = (CBindingId) in.readObject();
 szInterfaces = (String[]) in.readObject();

 space = ((IObjectSpaceStream)in).getObjectSpace();
 binding = bdgMgr.connect(bindingId,space,szInterfaces); }

Fig. 9. Deserializing a Dynamic Stub

A custom object input stream IObjectSpaceStream is used to read in the se-
rialized objects. The basic reason is the association with the target object space
wherein the objects and stubs should be deserialized. On the one hand, all regular ob-
jects are reinstantiated using the class loader of the object space and the standard Java
deserialization approach. On the other hand, the custom method readObject is in-
voked whenever a dynamic stub is about to be deserialized. There, the binding id and
the interfaces of the remote object are read from the stream. Next, the stub is con-
nected to the remote object by calling connect on the binding manager. In addition
to the binding id and the names of the remote interfaces, a reference to the target ob-
ject space is passed whose class loader should be used to create the Java dynamic
proxy. This ensures that the returned object references can be seamlessly casted and
passed among objects within the object space wherein this stub resides.

3.3 Use

After having illustrated the realization, we describe the use of the presented approach
in various application scenarios.

Object Binding. The central element of the presented approach is the application
object space which manages the object communication from and to contained objects.
Consequently, an object must be associated with an object space before it can be
managed, as shown in fig. 10.

 Application Object Isolation in Cross-Platform Operating Environments 1057

IService aService = ...
ClassLoader cl1 = ...
IObjectSpace space1 = spaceManager.createSpace(cl1);
CBindingId bindingId = bdgMgr.bind(space1, aService);

Fig. 10. Object Binding

An object space manager is used to create a new object space space1 and to ini-
tialize it with the class loader cl1 to be used later by the object space. The binding
manager is requested to bind the object aService to the object space and returns the
unique bindingId appropriate for connections to the object, as shown below.

Object Connection. While object references passed back from method calls are
transparently connected to corresponding objects via the presented binding output
stream, the initial reference to an object can be retrieved using the related binding id,
as shown in fig. 11.

CBindingId bindingId = ...
CObjectSpaceId spaceId2 = ...
IService aService = null;
IObjectSpace space2 = spaceManager.openSpace(spaceId2);
 aService = (IService) bdgMgr.connect(space2, bindingId);
spaceManager.closeSpace(space2);

Fig. 11. Object Connection

Similar to the binding of an object to a specific object space, the binding manager
must know the object space in which a new object reference should be located. As-
suming that the object space has been already created, the object space manager is
used to get the related object reference space2 which is then passed to the method
connect of the binding manager. The location of the object is resolved by means of
the method stream approach, and a dynamic stub is created which is wrapped by a
Java dynamic proxy. The caller may cast down the reference without particular action
and use it like any other reference located in its object space.

Object Passivation. Once the object is bound to an object space or an object
reference is connected to an object in another object space, the further handling of the
objects is transparent to the application developer. Binding and connecting of objects
and object references is performed in the background when the method calls pass the
binding input and output stream. A different application scenario is the passivation of
an object space, as shown in fig. 12.

ObjectOutputStream os = ...
CObjectSpaceId spaceId3 = ...
IObjectSpace space3 = spaceManager.openSpace(spaceId3);
 space3.lock();
 space3.save(os);
spaceManager.deleteSpace(space3);

Fig. 12. Object Passivation

1058 S. Paal, R. Kammüller, and B. Freisleben

The object space is locked and written to an object output stream. The method
save writes all contained objects to the output stream by using legacy Java serializa-
tion. This implicitly calls the custom serialization methods of the stubs and skeletons
which disconnect remote objects and unregister local objects. At the end, the object
space is deleted and removed from the object space manager. It should be pointed out
that no remote object reference has been notified or has become invalid. As long as no
method call is issued on a passivated object, they are not aware of the passivation.

Object Migration. A passivated object space can be easily transferred from one JVM
to another. The use of method streams moreover enables the seamless relinking of
object references from and to objects migrated across distributed platforms. Similar to
the object binding scenario, an object space is created and associated with a class
loader, as shown in fig. 13. The method load reads the serialized objects of the
passivated object space and binds them to the current object space. Along with that,
serialized stubs are reconnected with their remote counterpart via a method stream,
and skeletons are bound to the new object space.

ClassLoader cl2 = ...
ObjectInputStream is = ...
IObjectSpace space4 = spaceManager.createSpace(cl2);
 space4.load(is);
 space4.unlock();
spaceManager.closeSpace(space4);

Fig. 13. Object Migration

It should be noted that the required classes of the serialized objects are loaded by a
new class loader, as described in the realization. This also enables the use of compati-
ble class variants as long as they are able to read in the serialized data. Instead of mi-
grating objects to another host, object passivation may be also used to update the ob-
ject implementation without invalidating existing object references.

3.4 Performance

An important issue is the performance of our realization in practice. We have carried
out various tests following the basic communication scenarios discussed in section 2,
namely a native method call (A), a proxy method call using the same class loader (B),
a serialized method call using different class loaders (C), a local method call across
different JVMs (D) and a remote method call across different hosts (E). The test pro-
gram performs various method calls to examine the performance for passing different
types of arguments, as presented in fig. 14.

 public String echo (String val) {return val.toUpperCase();}
 public long echo (long val) { return val + 1; }
 public long[] echo (long[] source) { return source; }
 public Object echo() { return this; }

Fig. 14. Test Program

 Application Object Isolation in Cross-Platform Operating Environments 1059

Each method is called 10000 times and the elapsed time in milliseconds is shown
in fig. 15.

 A B C D E
String echo(String) 20 40 4186 4436 4722
long echo(long) 10 60 5658 5879 6103
long[] echo(long[1000]) 10 30 4026 4176 4340
long[] echo(long[1000000]) 10 10 6499 6670 6832
Object echo() 10 20 4119 4947 5328

Fig. 15. Performance Results. Native Method Call (A), Proxy Method Call (B), Serialized
Method Call (C), Local Method Call (D), Remote Method Call (E).

The performance results exhibit a large difference between method calls that are
passed to objects with and without serialization. The values in columns A and B are
comparable and indicate that the use of Java dynamic proxies slows down the method
call somewhat. The other group, consisting of the columns C, D and E, uses object se-
rialization for various reasons and are in the same range although the method call in E
had to cross the network. Realizing that the values in C, D, and E differ less among
each other than in A and B shows the great impact of the serialization which almost
covers the different treatment of argument types. The size of the passed objects only
shows up when the difference is relatively high, such as between row long[1000]
and long[1000000]. Similar to serialized arguments, passing object references in
the same JVM is quite fast for A and B but slow when it is bound, transferred and
connected as in C, D and E. In contrast to local objects, the performance in E may fur-
ther decrease depending on the network link used to connect the remote object.

3.5 Discussion

Our Java realization addresses the objectives of application object isolation with re-
spect to the challenges of a cross-platform operating environment. It enables the sepa-
ration of object reference and object instance while the object communication is cus-
tomized to support appropriate serialization within the same JVM and across different
hosts as well. From this point of view, it supports multi-application hosting, object
implementation update and object migration. The application developer benefits from
the transparent handling and easy-to-use application. He or she does not have to deal
with various types of object communication, different object spaces and class loaders.
An autonomic application framework is able to transparently passivate object spaces
while the contained objects are in use. Subsequently, the serialized object space can
be moved to another host or be reloaded using an updated object implementation.
Moreover, the class loaders associated with the object spaces do not have to be
chained in a hierarchy. They can be organized in different ways as long as they are
able to read the serialized method calls passed to an object within the object space.
This particularly supports the independent and asynchronous class loader configura-
tion needed for on-demand application hosting.

1060 S. Paal, R. Kammüller, and B. Freisleben

The implementation is limited to Java objects which can either be serialized or
declare an interface containing the methods a caller wants to use. The latter is due to
the inherent use of Java dynamic proxies which can be casted to interfaces only. The
separation of object reference and object instance as well as the creation of object
duplicates during the serialization may cause problems concerning synchronization
and object identity. There are also object references which do not refer to an object
instance but to a class instance, e.g. for calling a static method. They cannot be
encapsulated in an object space and there is no way to intercept the access to a class
instance.

An outcome of the performance evaluation is that the presented approach is not
well suited as a common object communication approach. There is a great difference
between native and serialized method calls. In practice, the applicability of the reali-
zation will mainly depend on the business logic and the current application scenario.
In case of a distributed application scenario, e.g. a cross-platform operating environ-
ment, the effort to serialize the arguments will be less important than in a single-
platform scenario. In addition, the presented approach does not hinder objects in the
same object space to communicate via native object references and avoid the seriali-
zation. Finally, we want to point out that the performance is only affected for object
communication crossing different object spaces and class loaders. The realization
automatically determines if compatible class loaders are used on the caller and callee
side. Method calls are then passed directly and are not particularly serialized.

4 Application of the Approach

In this section, we describe the application of the approach for ad hoc migration in a
cross-platform operating environment. The idea of execution migration is based on
execution units that can be moved within a cross-platform operating environment and
across various computing devices. We have implemented this approach in Java with
so called Java Execution Units (JEU) that wrap the concerns of execution migration,
namely resource binding, object serialization, code fragments and execution state in a
self-managing cross-platform operating environment, as shown in fig. 16.

A key idea is the grouping of application objects into Java object spaces and the
ability to isolate objects before they are migrated. A migration manager is introduced
which controls migration issues of the execution units and uses the presented ap-
proach to control object interconnections among execution units. In this context, a
Java execution unit does not simply reveal its objects to a caller but uses the binding
manager of Java object spaces to create dynamic skeletons each time a reference to a
contained object is requested. In turn, the caller receives a dynamic stub from the
binding manager suitable to connect the formerly created skeleton as described above.
In contrast to a binding manager, the resource manager is responsible to allocate local
resources of the current host which cannot be migrated and have to be resolved on the
target host when the objects are deserialized, such as access to environment settings
or a graphical desktop system.

 Application Object Isolation in Cross-Platform Operating Environments 1061

Fig. 16. Java Execution Migration in a Self-Managing Cross-Platform Operating Environment

The code handling of a Java execution unit is based on Java Class Collections
(JCC) and Java Class Spaces as proposed in [17]. The basic idea is to separate the
configuration where to actually find a Java class from the specification which classes
are needed to run an application. Distributed code repositories are introduced which
can be remotely queried for required classes, and a platform administrator is no
longer specifying a static CLASSPATH but the locations of the remote repositories
[17]. An application developer provides a class space configuration for an applica-
tion which is then associated by the binding manager with the Java object space con-
taining the applications objects. Next, each serialized argument passed to the Java
object space is deserialized by loading the specific classes via the associated class
loader of the object space. The same is valid for casting the dynamic stubs to inter-
faces available in the current object space. In case an interface of the deserialized ob-
ject reference could not be loaded, the resulting Java dynamic proxy will at least
provide limited access to the remote object via the available interfaces. As a result,
migrating objects are always deserialized with the appropriate classes provided by
the target object space.

A Java Virtual Machine currently supports only the execution of multiple threads
which all reside in the same address space. The execution state of a Java execution
unit is made up of all local variables created within a method execution, thread locals
bound to a thread and the hierarchy of thread groups and threads. We associate a
thread group to each Java object space which binds subsequent thread objects to the
object space. They are serialized in the same way as data objects when the object
space is moved from one host to another. However, before the application objects are
isolated, the migration manager checks all skeletons if there are external threads cur-
rently processing methods of inbound objects and all stubs whether internal threads
have called methods from outbound objects. It then notifies the external threads to

1062 S. Paal, R. Kammüller, and B. Freisleben

leave the object space and internal threads to return to the object space. As a result,
the presented approach is also used to determine threads which have to be notified be-
fore the migration is actually performed.

5 Conclusions

In this paper, we have argued that Java application object isolation is a basic require-
ment to support multi-application hosting, seamless implementation updates and
transparent object migration. We have discussed various types of object communica-
tion with isolated objects and have deduced the overall goal of application object iso-
lation as the custom separation of object reference and object instance. An approach
towards application object isolation in a cross-platform operating environment has
been presented which is based on the idea of Java object spaces. It heavily depends on
the use of Java dynamic proxies and customized object input and output streams. It
transparently adjusts communication among objects located in different object spaces
and supports the custom separation of object reference and object instance.

The realization of the approach and the use of Java object spaces in a legacy Java
runtime environment have been described. The object spaces and the associated class
loaders do not have to be arranged in a particular way, e.g. sharing a common class
loader for passing method parameters or casting object references. Instead, the pre-
sented approach enables seamless access to any object instance as long as the passed
arguments of a method call can be properly serialized and deserialized. Performance
results have demonstrated the feasibility of the approach for use with distributed ob-
ject spaces in a cross-platform operating environment. Finally, we have demonstrated
the application of the approach for supporting ad hoc migration.

There are various areas for future research. The hosting of different applications in
the same JVM raises particular security concerns. We plan to investigate how to in-
troduce custom access control for Java object spaces. Another topic is the handling of
particular migration issues like locking an object space and the synchronized migra-
tion of multiple object spaces. The presented approach may be also used to transform
a running program and change its operation by reloading different classes. We will
examine the employment of Java class collections and Java class spaces which allow
determining compatible classes by custom properties, such as vendor and release ver-
sion. Finally, we are currently working on an Internet Application Workbench which
represents a graphical desktop interface for nomadic computing applications. The pre-
sented approach is supposed to migrate running applications from one workstation to
another while the user is on the move. We are currently revising the implementation
of the approach to include it into our Crossware Development Kit (XDK). Further in-
formation and demos of ongoing work can be obtained from [15].

Acknowledgements

The presented approach is based on a cross-platform operating environment which
has been evaluated and used in various projects, such as CAT [18], AWAKE [19] and

 Application Object Isolation in Cross-Platform Operating Environments 1063

CROSSWARE [20]. They are funded by the German Federal Ministry for Education
and Research and conducted by the research group MARS of the Fraunhofer Institute
for Media Communication, Sankt Augustin in cooperation with the University of
Siegen and the University of Marburg, Germany. Special thanks go to Monika
Fleischmann, Wolfgang Strauss, and Jasminko Novak.

References

1. Czajkowski, G. Daynes, L. Multitasking without Compromise: A Virtual Machine
Evolution. Proc. of the ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA). ACM 2001. pp. 125-138.

2. Liang, S., Bracha, G. Dynamic Class Loading in The Java Virtual Machine. Proc. of the
ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA 1998). ACM 1998, pp. 36-44.

3. Czajkowski, G. Application Isolation in the Java Virtual Machine. Proc. of the ACM
Conference on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2000). ACM 2000. pp. 354-366.

4. Paal, S. Kammüller, R., Freisleben, B. Java Class Separation for Multi-Application
Hosting, Proc. of the 3rd Intl. Conference on Internet Computing (IC 2002), CSREA
Press, 2002. pp. 259-266.

5. Venners, B. Inside The Java 2 Virtual Machine. McGraw-Hill 1999.
6. Avvenuti, M., Vecchio, A. Embedding Remote Object Mobility in Java RMI. Proc. of the

8th Intl. Workshop on Future Trends of Distributed Computing Systems (FTDCS 2001).
IEEE 2001. pp. 98-104.

7. Guy-Ari, G. Empower RMI with TRMI. JavaWorld. Nr. 9. IDG 2002.
http://www.javaworld.com/javaworld/jw-08-2002/jw-0809-trmi_p.html

8. Orfali, R., Harkey, D. Client/Server Programming with Java and Corba. John Wiley &
Sons, Inc. 1998.

9. Hunter, J., Crawford, W. Java Servlet Programming, O'Reilly & Associates.1998.
10. Fleury, M., Reverbel, F. The JBoss Extensible Server. Proc. of the ACM Intl. Middleware

Conference. LNCS 2672. Springer 2003. pp 344-373.
11. Suri, N., Bradshaw, J., Breedy, M., Groth, P., Hill, G., Jeffers, R., and Mitrovich, T. An

Overview of the NOMADS Mobile Agent System. Proc. of the 2nd Intl. Symposium on
Agent Systems and Applications. ACM 2000. pp. 94-100.

12. Al-Bar, A. Wakeman, I. Camel: A Mobile Applications Framework. Intl. Conference on
Computer Networks and Mobile Computing. IEEE 2003. pp. 214-223.

13. Tilevich, E., Smaragdakis, Y. J-Orchestra: Automatic Java Application Partitioning. Proc.
of the 16th European Conference on Object-Oriented Programming (ECOOP). LNCS
2374. Malaga, Spain. Springer 2002. pp. 178–204.

14. Binder, W, Hulaas, J., Villazón, A., Vidal, R. Portable Resource Control in Java: The J-
SEAL2 Approach. Proc. of the ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 2001). ACM 2001. pp. 139-155.

15. CROSSWARE - An Autonomic Cross-Platform Operating Environment for On Demand
Internet Applications. Marburg, Germany. 2005. http://crossware.org

16. Paal, S., Kammüller, R., Freisleben, B. Self-Managing Remote Object Interconnections.
Proc. of the 15th Intl. Conference on Database and Expert Systems (DEXA 2004).
Zaragoza, Spain. IEEE 2004. pp. 758-763.

1064 S. Paal, R. Kammüller, and B. Freisleben

17. Paal, S., Kammüller, R., Freisleben, B. Customizable Deployment, Composition and
Hosting of Distributed Java Applications. Proc. of the 4th Intl. Symposium on Distributed
Objects and Applications (DOA 2002). LNCS 2519. Springer 2002. pp. 845-865.

18. Fleischmann, M., Strauss, W., Novak, J., Paal, S., Müller, B., Blome, G., Peranovic, P.,
Seibert, C., Schneider, M. netzspannung.org. Proc. of the 1st Conf. on Artistic, Cultural
and Scientific Aspects of Experimental Media Spaces (CAST01). Germany 2001. pp.
121-129.

19. AWAKE - Networked Awareness for Knowledge Discovery. Fraunhofer Institute for
Media Communication. St. Augustin, Germany. 2003. http://awake.imk.fraunhofer.de

20. Paal, S., Kammüller, R., Freisleben, B. Crossware: Integration Middleware for Autonomic
Cross-Platform Internet Application Environments. International Journal on Computer
Aided Engineering. 2005 (to appear).

Garbage Collection in the Presence of Remote Objects:
An Empirical Study

Witawas Srisa-an, Mulyadi Oey, and Sebastian Elbaum

Computer Science and Engineering,
University of Nebraska-Lincoln,

Lincoln, NE 68588-0115
{witty, moey, elbaum}@cse.unl.edu

Abstract. Most virtual machine implementations employ generational garbage
collection to manage dynamically allocated memory. Studies have shown that
these generational schemes work efficiently in desktop-like applications where
most objects are short-lived. The performance of generational collectors, how-
ever, has been rarely studied in the context of distributed systems.

Given the increasing popularity of such systems, and the distinct type of ob-
jects they introduce to support the distributed paradigm, providing insights into
their memory allocation behavior could have a large impact on the design of fu-
ture garbage collection techniques, and in the implementation of such distributed
systems as well.

This work presents one of the first attempts to characterize the lifespan of ob-
jects in distributed systems. First, we empirically study the differences in lifespan
of remote and local objects. Second, we investigate the effects of ephemeral heap
size and workload on the lifespan or remote objects. Last, we utilize the insights
gained through the experiment to improve the efficiency of a generational collec-
tion scheme through the segregation of objects based on their locality.

1 Introduction

Garbage collection (GC) is an automatic process to reclaim unused dynamically allo-
cated memory. By using garbage collection, programmers are relieved from the task of
managing dynamic memory—a fault prone activity that is likely to impact software ro-
bustness (1; 2) and productivity (2; 3). As a result, many modern languages such as Java
and computing platforms such as .NET adopt garbage collection as a standard feature
to support dynamic memory management.

Generational garbage collection (2; 4) is the method of choice for most virtual ma-
chine implementations (5; 6; 7). With the generational schemes, objects are segregated
into two or more heap regions based on their “age” (2). Having separate generations en-
ables the utilization of different heap-collection rates (2; 4), which is likely to increase
collection efficiency. For example, by setting a small “ephemeral” heap for initial object
allocation and a larger “mature” heap for long lived objects, we can reduce the scope
of frequent collections to the small ephemeral heap and perform the more expensive
mature collection less often.

Several studies have been performed to assess the performance of generational col-
lection (8; 4). In most instances, shifting from approaches with long pauses such as

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1065–1082, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1066 W. Srisa-an, M. Oey, and S. Elbaum

mark-sweep to generational collectors has resulted in substantial performance gain.
A comparison between a mark-sweep-compact collector with a generational collec-
tor showed that generational collection can reduce the pause times by as much as 87%
(8). Studies have also found that generational collection performs very well when the
survival ratios of objects in the ephemeral generation are small. On the other hand,
in applications with a high percentage of long-lived objects, the pause times of gen-
erational scheme can exceed the pause times of mark-sweep-compact (8; 9). However,
applications with long-lived objects are not common in desktop environments (the basis
for many of these studies), and thus, the generational scheme has been widely adopted.

As garbage collection is used to support larger and distributed applications (e.g.,
J2EE web services, legacy distributed applications migrated to .NET (10; 11; 12)), using
features such as Remoting to invoke methods residing in various virtual machines, the
lessons learned through previous studies must be revisited to determine whether they are
still applicable, and whether new guidelines and heuristics to drive garbage collection
are needed.

In this work, we explore whether the rapidly growing body of programming infras-
tructure that takes advantage of remote resources may challenge what we know about
object lifespan and its corresponding impacts on garbage collection. In this type of in-
frastructure, a large number of objects are created to mainly serve remote requests.
We refer to these objects as remote objects. Given the growing pervasiveness of dis-
tributed applications utilizing remote objects, and the potential distinct behavior of these
objects, a re-characterization of what we know about object lifespan is likely to lead to
the development of more efficient garbage collection schemes for this type of context.

The contributions of this paper are three-fold. First, we characterize distributed ap-
plications through a controlled experiment that includes three distributed applications
written in C#. Our characterization, aimed to quantify the differences in the lifespan of
remote and local objects, revealed that local and remote objects may have distinct and
consistent lifespan traits.

Second, we investigate the factors that affect the lifespan of remote objects. These
factors include the number of service requests, the heap size, and the number of concur-
rent clients. Understanding these factors will eventually allow us to provide program-
mer’s guideline that can be used to assess the impact of these factors on the overall
performance of the systems, and concentrate our optimization efforts on the factors that
could yield the most positive impact.

Third, we utilize the lessons learned to explore variations of the generational collec-
tion that include pretenuring (13; 14; 15) and the addition of a separate generation for
remote objects (Gen-R). Based on the initial set results, the Gen-R scheme outperforms
default-generational and pretenuring approaches, and can dramatically reduce the num-
ber of mature garbage collection invocations by 75% and improve the memory usage
by 37%.

The remainder of this paper is organized as follows. Section 2 discusses the details
of our empirical study. Section 3 reports our findings. Section 4 details possible threats
to the validity of our work. Section 5 discusses proposed variations to the generational
garbage collection. Section 6 surveys related research efforts. Section 7 provides the
conclusions and avenues of future work.

Garbage Collection in the Presence of Remote Objects: An Empirical Study 1067

2 Empirical Study

Widely adopted virtual machines use generational garbage collection to manage both
local and remote objects (5; 16). This usage reflects the implicit assumption that the
lifespan of remote objects is as short as that of the local ones. If, however, remote objects
are long-lived, current generational garbage collection techniques are likely to perform
poorly in the presence of remote objects. Therefore, our first research question (RQ1)
is whether the lifespan of remote objects differs from the lifespan of local objects.

Independently of the differences in lifespan, we need to understand whether the fac-
tors affecting the lifespan of remote objects are the same (and similar in magnitude) as
of local objects. For example, we are currently able to estimate the lifespan of local ob-
jects for a certain application based on the scope of objects’ references (2). On the other
hand, we have yet to understand how such factor would affect remote objects. Further-
more, it is conceivable that other factors are more prevalent in determining the lifespan
of remote objects. Our second research question (RQ2) then attempts to identify
some of the factors influencing the lifespan of remote objects. In the next sections,
we provide details on the apparatus necessary to address these research questions.

2.1 Experimental Platform

We conduct our experiment on the Microsoft Shared Source Common Language In-
frastructure (SSCLI) (6). The SSCLI is shared source implementation of the Common
Language Infrastructure standard, which offers a compact code base to facilitate quick
build cycles and includes the Remoting framework that supports a growing body of
.NET distributed applications. Similar to many Java Virtual Machines (5; 16) and the
commercial CLR (17), the SSCLI utilizes generational garbage collection with two
generations, ephemeral and mature. It also has an additional storage space for large
objects. To conserve memory usage, the SSCLI provides a mechanism to quickly en-
large the mature heap space; thus, the initial size for the mature space is set to be very
conservative and enlarged automatically as needed (6).

Table 1. Characterization of the Objects for Experimentation

Size
Program Line of Code Methods Compiled Activation Mode Initial Lease Time Message Transport

Calendar.NET 1,137 3,699 Singleton 5 minutes HTTP/Binary
eStore.NET 1,206 2,906 Hybrid 5 minutes HTTP/SOAP
P2P.NET (1:3 - server) 876 2,030 SingleCall N/A FTP/Binary
P2P.NET (1:1 - neutral) 876 2,035 SingleCall N/A FTP/Binary
P2P.NET (3:1 - client) 876 1,860 SingleCall N/A FTP/Binary

In this computing platform, the term “remotable object” refers to objects that can
cross or access through the .NET Remoting boundaries. Two activation processes can
be used to instantiate and initialize remotable objects: server activation and client acti-
vation. Under the server activation, remotable objects are managed by the server. There
are two server activation mode semantics: Singleton mode and SingleCall mode. Sin-
gleton mode ensures that there is only one instance of the Singleton-mode remotable

1068 W. Srisa-an, M. Oey, and S. Elbaum

type activated at any time. The lifespan of Singleton object is managed by a leasing
mechanism that can be set by the users (default lease time is five minutes). However,
this time can be extended if the object is still in use (the extension time is also user-
configurable1). The default lease time is used in our experiment. SingleCall mode on
the other hand, guarantees that the server will activate a new instance of the remotable
type for every client request, and this instance will be collected in the next garbage
collection after the method exits.

Under the client activation, each client request creates a client-activated object on
the server. Again, leasing is used to maintain liveness with the default lease time of five
minutes. Studies have shown that pure client activation mode can introduce a major se-
curity risk since compiled objects have to be sent to the client (18). Therefore, a Hybrid
mode, which is a combination of the Singleton and the pure client activation mode, is
introduced. In the Hybrid mode, a Singleton object is exposed to provide methods to
create client-activated objects. In effect, the Singleton object essentially acts as a man-
ager to set up client-activated objects to serve the requests. The Hybrid mode is the one
used in place of client activation mode in our experiments with the default lease time.

Users can also configure the communication channels and message formatters. The
.NET Remoting infrastructure provides two types of channels: TCP and HTTP. The
messages can be transmitted in either Binary or SOAP format. We use all possible
channels and formatters in our experimental objects.

2.2 Variables and Measures

We conjecture that the independent variables that can affect the lifespan of remote ob-
jects include program attributes, heap size, and workload. Program attributes include the
percentage of allocated local and remote objects, the activation mode, and the message
transport mechanisms. As it will be described in Section 2.4, we utilize three experi-
mental objects (one of them in multiple configurations). Each one of these objects has
a distinct activation mode and a transport mechanism, but all have more than 50% of
remote objects.

To address RQ1, we first experiment with different ephemeral heap sizes (ranging
from 800 KB to 8 MB). Since the SSCLI has a policy to enlarge the ephemeral heap if
GC is invoked too frequently, we monitor this mechanism and choose the size that all
applications can operate without excessive enlargement requests. We find that 4 MB is
a good ephemeral heap size for all applications. We then monitor the amount of objects
that survive ephemeral and mature collections in our experiment.

To address RQ2, we also manipulate the size of the ephemeral generation to un-
derstand its impact on the objects lifespan. We consider three levels of ephemeral heap
sizes to be defined in Section 3.

In addition, we manipulate the workload submitted to the experimental objects.
Given a fixed number of requests per client, we simulate different loads by modify-
ing the number of clients. Such load adjustments are expected to alter the allocation
and lifespan of local and remote objects as the level of services required from the ap-
plication varies. We consider three levels of workloads to be defined in Section 3.

1 We use all default values for the leasing mechanism.

Garbage Collection in the Presence of Remote Objects: An Empirical Study 1069

Our primary dependent variable is the object lifespan and we utilize two met-
rics for its characterization, the percentage of surviving objects in the ephemeral heap
(ephemeral survival ratio, es) and the percentage of surviving objects in the mature
generation area (mature survival ratio, ms).

es =
survived

allocated
(1)

ms = 1 − collected

matureObject
(2)

Notice that matureObject represents the accumulation of surviving objects in
the mature generation. These metrics are collected after every GC invocation and their
values are averaged over whole runs for posterior analysis.

Table 2. Runtime Characterization for the Baseline Settings

Allocated Objects (MB) Allocated Objects (%) GC Invocations Managed Threads
Program Local Remote Local Remote Ephemeral Full Created

Calendar.NET 68.28 246.18 21.71 78.29 79 39 58
eStore.NET 297.37 375.52 44.19 55.81 94 46 34
P2P.NET (1:3 - server) 64.79 227.85 22.14 77.86 43 21 35
P2P.NET (1:1 - neutral) 34.25 71.49 32.39 67.61 19 8 34
P2P.NET (3:1 - client) 25.12 24.80 50.32 49.68 10 4 27

2.3 Hypotheses

Having identified variables and measures, we can now restate our research questions
more specifically in terms of hypothesis, and supplement them with conjectures about
what we expect to observe when the experiment is performed.

Our first research question inquired whether the average lifespan of remote objects
is different from that of local objects. We conjecture that remote objects’ average lifes-
pan is longer than local objects’. Our conjecture is based on two observations. First, the
common Singleton and client-activated objects tend to be long-lived. Singleton objects
often live for the duration of the server program (19) and the lifespan of client-activated
objects are commonly controlled by a conservative leasing mechanism.

Second, most connected objects tend to die together (20). For example, if a Single-
ton object is the root of a cluster of tightly associated remote objects, then these remote
objects are likely to live as long as the Singleton object. On the other hand, a SingleCall
object only lives for the duration of a service, and therefore remote objects connected
to the SingleCall root should be shorter lived that those connected to a Singleton root.
This observation also leads to another conjecture that the long term survival of remote
objects depends on the activation mode. We would like to investigate the validity of
these conjectures empirically which lead us to the following set of hypotheses.

H1.1: The survival ratios of remote objects in the ephemeral heap are greater than
the ones for local objects.
H1.2: The collection ratios for remote objects in the mature heap are affected by
activation modes.

1070 W. Srisa-an, M. Oey, and S. Elbaum

Our second research question aims at identifying and characterizing the factors that
may influence the lifespan of remote objects. We have identified two potential factors.
First, we conjecture that application workload, as measured by the number of concurrent
clients and requests, is likely to affect the lifespan of remote objects. Our goal is to
investigate the impact of different workloads on the garbage collection performance
which leads to the following hypothesis:

H2.1: Variations in workload level affect the survival ratio of remote objects.

Second, the size of the ephemeral generation is likely to impact the survival ratio of
remote objects. In general, a larger heap is expected to lead to smaller survival ratios.
However, its impact when managing objects with two distinct lifespans is currently
not known. The result of our study can provide opportunities for different optimiza-
tion techniques discussed in Section 5. We explore this further through the following
hypothesis:

H2.2: Variations in heap size affect the survival ratio of remote objects.

2.4 Experimental Objects

To address our research questions we need a set of programs that are representative
of real-world applications employing remote objects to perform their activities. Since
these programs will be used for experimentation, we must be able to manipulate the
way they operate. This implies accessibility to their source code and control on their
execution context. We have invested a significant effort in assembling a first set of such
experimental objects. (Section 4 discusses the potential impact of this approach in the
validity of our findings and Section 7 provides a mechanism for other researchers to
have access to these objects.)

Our effort began with the identification of application areas that use Remoting. This
process consisted of surveying related books and articles (19; 1; 21; 22; 18; 23; 24),
and contacting our Microsoft collaborators for applications utilizing this feature. We
found that .NET Remoting, RMI, and Enterprise JavaBeans are most commonly used to
support generic client/server applications, Peer-to-Peer (P2P) transactions, middleware
for connecting web-based front ends with legacy database systems utilizing XML (25),
and to provide Web services in Microsoft COM+ (26). This process resulted in several
potential application areas. Given our expertise, the constraints of the platform (e.g.,
SSCLI does not provide all the features available in the commercial version), and the
long-term goal of collecting a representative set of experimental objects, we selected
the three applications listed in Table 1 to perform this study. Table 1 also describes the
configuration of each application.

The first application is a calendar program that keeps track of appointments for
different clients in multiple XML flat files. Calendar.NET is a three-tier application
with front-end Remoting clients, an application server, and an XML-based information
server. The application server exposes remotely-accessible methods that can be invoked
by the clients via Remoting. The connection between the application server and clients
depends on the chosen activation mode, whereas the connection between the application
server and the information server is done in a Singleton fashion. We choose an XML

Garbage Collection in the Presence of Remote Objects: An Empirical Study 1071

back-end to represent a common practice of converting data from a legacy repository to
XML (e.g. XDB gateway(25)).

The second application is eStore.NET, a basic Web Services application. Similar
to Calendar.NET, eStore.NET consists of three tiers, but it utilizes MySQL (27) as the
database server2. A client can query the store’s catalog, check for product availability,
place an order, or complete a transaction by providing payment information (28). The
database structure and content are adaptations from the Northwind sample database
provided by Access 2003 (29).

The third application is P2P.NET, a non-centralized peer-to-peer file sharing appli-
cation. The application represents a common peer-to-peer file sharing model where a
peer node acts as a service provider and as a customer. We configure our application to
continuously make sequential requests to other peers. At the same time, each node also
has the responsibility of servicing concurrent requests from other peers. Thus, when
the program acts as a customer, most objects created to fulfill this activity are local. On
the other hand, when the program takes the role of a server, most objects created for
this task are remote due to remote method invocations by other peers. It is worth noting
that during the experiment we monitor the workload of one node. Since we make the
workload of all nodes uniform, we can randomly pick any node to monitor. We experi-
ment with three configurations by changing the balance of requests versus services for
the observed node: 25% client/75% server, 50% client/50% server, and 75% client/25%
server.

Runtime Objects Characterization. In this study, our activities mainly focus on the
object behaviors of servers and peer-to-peer applications during the heaviest workload.
During this period, the garbage collector needs to be extremely efficient to minimize
pauses that can degrade response time. In our study, we configure our experimental
objects to accept continuous requests made by a large number of clients and to provide
a heavy workload to stress the garbage collection system. The workloads placed on our
experimental objects are representative of the server environment.

Table 2 illustrates the runtime behaviors of our experimental objects responding to
a heavy workload. We report the average allocation of remote and local objects be-
tween GC intervals. In most applications, the amount of allocated remote objects are
larger than the amount of allocated local objects. This is as expected since most of our
experimental objects are configured to provide various level of services.

For each experimental object, we experiment with different number of clients and
requests until a continuous workload is sustained. The configuration is then used as the
baseline to conduct more experiments (Section 3).

2.5 Instruments for Experimentation

We perform our experiments by running the experimental objects with the different
combinations of independent varibles on a modified SSCLI. The modified SSCLI gen-
erates information summarized in Table 3.

2 Notice that SSCLI does not have a ADO.NET library which limits its ability to connect to ex-
ternal database. We are able to modify an existing MySQL library written for the Commercial
CLR to work with the SSCLI.

1072 W. Srisa-an, M. Oey, and S. Elbaum

Table 3. Description of Generated Information

Context Collected Information

Object allocation Object id, size, class name, location, and allocator thread’s id.
Thread Id of created thread.

Id of destroyed thread.
Garbage collection Id of object that gets promoted.

Id of pinned object (in ephemeral generation).
Id of marked object (in mature generation).

Remote method Id of thread entering remote method.
Id of thread exiting remote method.

Survival Ratio
Analyzer

Modified
SSCLI

Experimental
Object

Trace
File

Analyzed
Result

Fig. 1. Overview of the Experimental Platform

In the SSCLI, there is a common function that is used to build a remote method
callstack. We instrument this function to identify all remote method calls. Each time a
remote method is entered, the modified SSCLI will generate information in the trace
file. The information includes the method name and a unique identification number
of a particular thread executing the method. The basic overview of our experimental
platform is provided in Figure 1.

We create a program that analyzes the trace to identify (i) the object type, (ii) effien-
cies of ephemeral and mature collections, and (iii) allocation ratios of local and remote
object to heap size during each collection. Essentially, the analyzer has to detect whether
an execution thread is currently executing a local or a remote method. If an object is
allocated while a remote method is in scope (i.e. there is at least one remote method on
the allocator thread’s invocation stack), then the object is considered as remote. On the
other hand, an object is classified as local if it is allocated when only local methods are
in scope (i.e. no remote method on the invocation stack). We identify each object’s type
(i.e. local or remote), calculate the garbage collection efficiency for both ephemeral and
mature regions, and compute the object size distribution.

3 Results

In the following sub-sections, we present the results from our experiments aimed at
answering the research questions proposed in Section 2.

3.1 Lifespan of Remote and Local Objects

To answer this research question, we conduct a series of experiments to monitor the
amount of objects that survive both ephemeral and full GC invocations. To validate our
hypotheses (H1 and H2), these surviving objects are segregated into two types: local
and remote.

Garbage Collection in the Presence of Remote Objects: An Empirical Study 1073

es_R es_L es_R es_L es_R es_L es_R es_L es_R es_L
0

10

20

30

40

50

60

70

80

90

100
(%

)

 Mean ±SD Min-Max

Calendar.NET eStore.NET P2P.NET (1:3) (1:1) (3:1)

ms_R ms_L ms_R ms_L ms_R ms_L ms_R ms_L ms_R ms_L
0

10

20

30

40

50

60

70

80

90

100

110

120

(%
)

 Mean ±SD Min-Max

Calendar.NET eStore.NET P2P.NET (1:3) (1:1) (3:1)

Fig. 2. Lifespan of Remote and Local Objects for Ephemeral (left) and Mature (right) Collections

Ephemeral Generation. The box plot in Figure 2 (left) summarizes the survival ratios
for remote and local objects in the ephemeral generation across all experimental objects.
The x-axis indicates the program name and object type (remote objects are represented
by es R and local objects are represented by es L). The y-axis represents the survival
ratio. The average survival ratios are represented by the horizontal line in the middle
of each box. The upper and lower edges of the box define the standard deviations. The
upward extending whiskers represent the maximum survival ratios in the observed data.
The downward whiskers represent the minimum survival ratios.

For all programs, more remote than local objects are migrated from the ephemeral to
mature generations. In Calendar.NET, we see the difference in survival ratio of approx-
imately 15%. In eStore.NET, the difference widens to 30%. P2P.NET has the greatest
differences in survival ratios with over 50%. We also find that when P2P.NET is con-
figured as a server—appeared as 1:3 in Figure 2 (left)— there is a very wide range of
survival ratios (from 18% to 77%. This wide variation may be caused at least partially
by the use of SingleCall activation mode which allows the server to complete the initial
requests very quickly, but struggles as the workload increases. Increases in the workload
queue up more requests that thus leads to extended lives for remote objects.

Mature Generation. Figure 2 (right) provides a box plot corresponding to the the
survival ratios for remote (ms R) and local (ms L) objects in the mature generation. For
eighty percent of the programs, the surviving remote objects seem mostly semi-long-
lived. That is, they are collected soon after they are copied into the mature generation.
The survival ratios for remote objects in the mature heap range from 13% to 32% lower
than those of local objects. This is not surprising since Calendar.NET and P2P.NET use
Singleton and SingleCall activation modes, respectively.

In Singleton mode, there is only one remotable object that acts as root to clients’
requests. However, there is a large number of objects created to synchronize accesses
to the Singleton object. The lifespan of these synchronization objects mainly depend
on the time taken to satisfy the clients’ requests. Therefore, a portion of remote objects
that survives ephemeral collection is for synchronization and is semi long-lived. On the
other hand, objects that are connected to the roots are truly long-lived. This explains
why we are able to collect a good amount of remote objects in each mature collec-
tion invocation. For SingleCall, remotable objects would die as soon as the requests are

1074 W. Srisa-an, M. Oey, and S. Elbaum

completed. Thus, we find that most remote objects are semi long-lived and can be re-
claimed by the mature collection. It is also interesting to note that the survival ratio for
Singleton mode is much higher than that for SingleCall mode. The difference is about
18% when comparing Calendar.NET with P2P.NET [1:3].

In the case of eStore.NET, we find the nature of the application requires for remote
objects to be truly long-lived (94% survival ratio). The three major sources for this
prolonged lifespan are: 1) the states for each client’s transactions are maintained thereby
“stateful” objects are kept as long as the client is alive, 2) each client’s initial remote
method call creates one database connection and these connections remain active until
the client disconnects, 3) the Hybrid activation creates one exclusive root for every
client. When compared to Singleton, there are more root objects in this activation mode.
Each of these roots is guaranteed to live for at least five minutes and therefore, many
remote objects become very long-lived.

The behaviors reported in this section have led us to two important observations:

1. Remote objects consistently outlive the local objects in the ephemeral generation.
2. The activation mode and the nature of the application can affect the lifespan of

remote objects in the mature generation.

3.2 Factors that Affect Lifespan of Remote Objects

In this section, we study two factors that can affect the survival ratio of remote objects.
These factors include ephemeral heap size (we double and halve the baseline heap size)
and workload (we lower and raise the number of simultaneous clients and number of
uploads/downloads). Our goal is to compare the survival ratios as these parameters
change.

Effect of Heap Size. The results of our experiments are reported in Figure 3 in which
the x-axis represents the average survival ratio and the y-axis represents all the program
and corresponding es L and es R.

A larger ephemeral generation results in a decreasing survival ratio for remote ob-
jects in all instances. However, the decrease is less noticeable in programs acting mainly
as servers. For example, P2P.NET [1:3] (server configuration) shows a 2% survival ratio
reduction while P2P.NET [3:1] (client) shows a 9% reduction.

On the other hand, the decrease in the survival ratios for local objects are not as
pronounced as those of remote objects. This is due to the fact that the baseline heap
size (4 MB) provides enough time for most of the short-lived objects to die. Providing
additional time through a larger heap only affects a small percentage of the remaining
objects. These behaviors have led to two additional observations:

1. Enlarging the ephemeral heap had a minor effect on the lifespan of local objects.
2. Enlarging the ephemeral heap caused minor reductions (2 - 7%) in the survival

ratios for remote objects in applications that have been configured to operate as
server (Calendar.NET, eStore.NET, and P2P.NET [1:3]).

Notice that when the heap size is reduced in half, the survival ratios in Calen-
dar.NET, eStore.NET, and P2P.NET (server and neutral configurations) for both local

Garbage Collection in the Presence of Remote Objects: An Empirical Study 1075

0 10 20 30 40 50 60 70

es
 R_

es
L_

es
R_

es
L_

es
R_

es
L_

es
R_

es
L_

es
R_

es
L_

)P
U:L

D(
1:

3
)P

U:L
D(

1:
1

)P
U:L

D(
3:

1

T
E

N.P
2P

T
E

N.erot
Se

T
E

N.ra
d

nela
C

(%)

Double Baseline Half

Fig. 3. Effect of Heap Size on the Survival Ratio

and remote objects are almost the same as the those of 4 MB ephemeral heap size. This
is because 2 MB is too small for these programs to operate. Therefore, the SSCLI in-
creases the ephemeral heap size to 4 MB after a few ephemeral GC invocations. For
P2P.NET (client configuration), the program can operate with 2 MB so we see signifi-
cant differences in the survival ratios when compared to 4 MB ephemeral size.

Effect of Workload. This experiment consists of manipulating the workload in all
applications by reducing and increasing the number of requests. For Calendar.NET and
eStore.NET, the task is accomplished by increasing the number of simultaneous clients.
For P2P.NET, we increase the number of peers, resulting in an increasing number of files
to be downloaded and uploaded. The detailed configurations used in our experiments
are shown in Table 4.

Table 4. Workload Configurations

Lower Baseline Higher
Program Workload Workload Workload

Calendar.NET (100 requests/client) 15 clients 30 clients 45 clients
eStore.NET (50 requests/client) 15 clients 30 clients 45 clients
P2P.NET (1:3) 40 peers (120:360) 80 peers (240:720) 160 peers (480:1440)
P2P.NET (1:1) 40 peers (120:120) 80 peers (240:240) 160 peers (480:480)
P2P.NET (3:1) 40 peers (120:40) 80 peers (240:80) 160 peers (480:160)

1076 W. Srisa-an, M. Oey, and S. Elbaum

0 10 20 30 40 50 60 70

es
R_

es
L_

es
R_

es
L_

es
R_

es
L_

es
R_

es
L_

es
R_

es
L_

)P
U:L

D(
1:

3
)P

U:L
D(

1:
1

)P
U:L

D(
3:

1

T
E

N.P
2P

T
E

N.erot
Se

T
E

N.ra
d

nela
C

(%)

Higher Workload Baseline Low Workload

Fig. 4. Effect of Workload on the Survival Ratio

The results are summarized in Figure 4. We see that Calendar.NET and eStore.NET
show consistent increases in the survival ratios of both remote and local objects when
the workload becomes heavier. This is expected as more workload would result in
longer time to complete a client request and prolonged object lifespan. Still, the in-
crements are observably more noticeable for remote objects. Furthermore, P2P.NET
presents similar tendencies for remote objects but not for local objects. We attribute
such variation to uncontrolled factors such as network latency.

Based on the experimental results, we observe that the amount of workload may
affect the lifespan of both local and remote objects in distributed applications, but its
effect seems more consistent on remote objects.

4 Threats to Validity

In this section we present a synthesis of the potential threats to validity of our study and
explain how we tried to reduce their impact on our findings.

As in any controlled experiment, external threats to the validity of our results are the
major source of concerns as they limit the generalization of our findings. First, our set
of programs only has three objects. However, the chosen objects are representative of a
wide variety of programs utilizing remoting. It is also necessary to consider that this is
the first group of programs prepared to perform this type of experiment. Second, the use
of the SSCLI also limits generalization since it provides only part of the functionality
available in Microsoft’s commercial Common Language Runtime (CLR) (6) and other

Garbage Collection in the Presence of Remote Objects: An Empirical Study 1077

distributed environments. We controlled this threat by extending the SSCLI functional-
ity by adapting openly available packages (e.g., since ADO.NET is not part of the SS-
CLI, we modified the connectivity features in the MySQL package to support database
access). Still, we realize there may be behavioral differences between infrastructure
supporting distributing systems that were not accounted in the experiment. Third, our
scenarios represented only the peak-load periods and our results should be analyzed in
such context; still these periods are very interesting because they are likely to expose the
system to worst case scenarios. The same limitation applies to our choices of memory
configuration and collection policies. Last, our distributed scenarios were performed on
a limited deployed hardware infrastructure. This was a conscious experimental decision
to help us control other sources of variation (e.g., network latency).

The second set of threats, to internal validity, has to do with influences that can af-
fect the independent variables with respect to causality without the researcher’s knowl-
edge. First, we had to modify the SSCLI to observe object behavior (the current built-in
profiler interface in the SSCLI offered many capabilities that are not yet fully imple-
mented), and to make the experimental objects operate under extreme loads (e.g., we
had to extend the default thread-pool size from 25 to 75). Second, we had to build
several tools to analyze and measure that could have faults, biasing the results. We ad-
dressed this threat by carefully inspecting these tools on small scenarios that could be
monitored and measured through other mechanisms to gain confidence in their correct-
ness. We are also aware of the threat posed by one of the authors being the primary
developer of the tools to capture the data and analyze the results. Frequent inspections
of random data points from the other authors were utilized to control this potential
threat, and we hope that by making the infrastructure available (see Acknowledge-
ments) other researchers can replicate the experiment to gain further confidence in our
results.

Threats to construct validity are raised when the measurement instruments fail to
capture the concepts they are supposed to capture. In our experiment, the metrics were
computed at the intervals defined by GC invocations, which may not be enough to notice
small differences in lifespan. Although several techniques could be used to mitigate
this problem (e.g. adjust the memory size to cause more frequent collections, further
instrument the SSCLI to obtain a more precise trace for analysis), our initial exploration
put in evidence that each technique brings associated tradeoffs and cannot be considered
in isolation.

5 Discussion

Earlier in the paper we conjectured that if remote objects have different lifespan than
local objects, then garbage collection techniques that segregate based on object local-
ity are likely to be more efficient. In this section we provide preliminary evidence to
support that conjecture.

We simulate three3 different garbage collection techniques on the Calender.NET
program: 1) bi-generational which is commonly used across virtual machines, 2) pre-

3 All three techniques maintain the same total initial heap size of 10 MB. This ensures that the
results are not due to variances other than the technique itself.

1078 W. Srisa-an, M. Oey, and S. Elbaum

tenuring which consists of moving remote objects directly to the mature heap (for more
details see Section 6), and 3) three-generational approach called Gen-R that includes
an intermediate generation for remote objects. Gen-R approach utilizes one ephemeral
heap for all objects, with any surviving local objects being promoted to the mature gen-
eration, while the surviving remote objects are promoted to an intermediate generation
(genR). Once the genR is full, copying collection is used to migrate objects to the mature
region.

To perform the simulation we collected lifespan information through the instru-
mented SSCLI at fixed allocation intervals of 20 KB and generated the following data:

1. Number of GC invocations in the ephemeral and, if applicable, genR spaces. In
Gen-R, collecting the genR space incurs an additional but inexpensive GC invoca-
tions.

2. Number of GC invocations in the mature space. A significant reduction in mature
collection can present a substantial performance gain.

3. Heap usage. Performing ephemeral and genR collection efficiently can result in
lower heap usage4.

4. Traversal of lived objects in the mature space. In the SSCLI and Sun’s HotSpot VM,
mark and sweep is used to collect objects in the mature generation. Marking phase
has been known to be the most time consuming part in the mark-sweep approach
(2). Thus, reduction in marking would also improve the performance of mature
collection.

Table 5. Simulation Results (Bi-generational, Pretenuring, and Gen-R Schemes)

Configuration Heap Usage Marked Objects Marked Objects /
Algorithm [eph:genR:mature] (MB) Minor Collection Full Collection (MB) (Million) Full GC (Million)

Bi-generational 4:0:5 57 4 19 20.1 5.0
Pretenuring 4:0:5 14 34 39 181.2 5.3
Gen-R 4:2:3 57 + 9 1 12 2.7 2.7

Table 5 lists the basic heap configuration and the results of each GC scheme. We
find that pretenuring all remote objects can cause a serious performance degradation.
For example, the system needs to invoke full collection nearly 8 times more than the
bi-generational scheme. It seems that simply pretenuring all remote objects is not a
suitable approach in this type of environment.

On the other hand, Gen-R scheme reduces the number of full GC invocations by
75% compared with the bi-generational scheme, and the application uses 38% less heap
space to operate. The average number of objects that have to be marked in each full GC
are also reduced by from 5 million to 2.7 million objects or 46% reduction. As expected,
Gen-R does invoke 16% more minor collections (i.e. 9 additional genR collections), but
the costs associated with these collections are known to be significantly smaller than
full collection.

4 In the SSCLI, there is a policy that allows the mature heap to grow if the current size is too
small. We also implement the same policy into our simulator.

Garbage Collection in the Presence of Remote Objects: An Empirical Study 1079

6 Related Work

This section describes efforts related to this work categorized into three areas: object
characterization, management of long-lived objects, and trace generation techniques.

In terms of object characterization, the extensive study of SPECjvm98 (30) bench-
marks by Dieckmann et al. (31) yielded many insights into the allocation and garbage
collection behaviors of Java programs. For example, their study was one of the first for
Java to confirm the weak hypothesis that most objects die young. However, the effect
were not as pronounced as functional languages such as SML/NJ (31; 32; 2).

In terms of lifetime management, there have been several studies in previous dis-
tributed computing platforms. For example, CORBA provides explicit means to manage
lifetime of an objects, and classifies lifetime into two categories, transient and persis-
tent (33). There have been many research efforts that study the implementations and
behaviors of persistent objects (34; 35). However, such results do not apply directly to
remote objects since remote objects are not persistent; they are long-lived transient ob-
jects. At the present time, we do not know of any efforts that have been done specifically
to study the effect of remote objects on the overall performance of generational garbage
collection. However, there have been a few efforts that use pretenuring technique to
manage long-lived objects in desktop-like applications (13; 15; 14).

Pretenuring is an approach to manage long-lived objects by placing them directly
in the mature region (13). The experiments often involve profiling the lifespan of each
object and then annotate the information as advices during object creations (13; 15).
Our preliminary simulation results lend some insights into the fact that distributed ap-
plications might not benefit from pretenuring alone but might otherwise benefit from
other variations of multi-generational approach.

To simulate different generational garbage collection schemes, we need to collect
lifespan information from our experimental objects. There are several ways to collect
this information. For example, we could call the garbage collector after every allocation
to ensure a “perfect” trace, or after certain allocation intervals to generate an approxi-
mate but more efficient trace collection (31), or after certain events occur such as the
reachable time (36). We plan to utilize these mechanisms as we develop new collection
techniques that discriminate between remote and local objects.

7 Conclusions

In this paper, we have performed a series of experiments to better understand the object
lifespan in distributed applications. As we have discussed, these experiments, like any
other, have several limitations to their validity. Keeping these limitations in mind, we
draw several observations from this work, with implications both for practitioners and
for researchers.

First, remote objects outlived local objects during ephemeral collection. In our ex-
periments, differences in the survival ratios ranged from 15% to over 50%. However,
most remote objects tend to be rapidly collected once reaching the mature heap. Hence,
they could be classified as semi-long-lived. Second, activation mode can affect the lifes-
pan of remote objects. We found that when SingleCall activation mode is used, ap-
proximately 32% of remote objects survived in the mature collection. However, when

1080 W. Srisa-an, M. Oey, and S. Elbaum

Singleton or Hybrid are used, the survival ratios in the mature heap for remote objects
become higher (from 45% to 95%). Third, enlarging the ephemeral heap size slightly
affect the survival ratios of local and remote objects. Fourth, workload may have minor
effects on the lifespan of local objects, but it is likely to greatly affect the lifespan of
remote objects in server applications.

From our findings, we conjectured that garbage collectors that apply distinct col-
lection strategies based on object locality (local or remote) could significantly enhance
the overall efficiency of distributed applications. Our initial exploration of a garbage
collection scheme that segregates the management of remote objects from local objects
seems to support that conjecture. When applied to one of the experimental objects, this
simple scheme reduced the heap usage by 38%, the full collection invocations by 75%,
and the the average marked objects per full collection by 46%.

Our results suggest several avenues for future work. First, to address questions of
whether these results can be generalized, further studies are necessary. We are gathering
additional programs for use in such studies. Second, we will develop a more comprehen-
sive set of collection techniques that can fully exploit the segregation of objects based
on their locality and measure their performance in real-scenarios. Last, we will explore
techniques for predicting and dynamically adjusting garbage collection and heap al-
location strategies to gain maximum efficiency tailored for different applications and
object distribution scenarios.

Acknowledgment

To gain access to our experimental infrastructure, please contact the first author of
the paper. We would like to thank Shiu-Beng Kooi for helping with the creation of
the experimental objects. This work was supported in part by the NSF programs un-
der award CNS-0411043, and a CAREER Award 0347518 to University of Nebraska,
Lincoln.

References

1. Conger, D.: Remoting with C# and .NET: Remote Objects for Distributed Applications. John
Wiley (2003)

2. Jones, R., Lins, R.: Garbage Collection: Algorithms for automatic Dynamic Memory Man-
agement. John Wiley and Sons (1998)

3. Rovner, P.: On Adding Garbage Collection and Runtime Types to a Strongly-Typed,
Statically-Checked, Concurrent Language. Technical Report CSL-84-7, Xerox PARC (1985)

4. Ungar, D.: The Design and Evaluation of a High Performance Smalltalk System. ACM
Distinguished Dissertations (1987)

5. IBM: Jikes research virtual machine.
http://www-124.ibm.com/developerworks/oss/jikesrvm/ (2004)

6. Stutz, D., Neward, T., Shilling, G.: Shared Source CLI Essentials. O’Reilly and Associates
(2003)

7. Sun Microsystems: Java Embedded Server. http://www.sun.com/software/embeddedserver
(2001)

Garbage Collection in the Presence of Remote Objects: An Empirical Study 1081

8. Dykstra, L., Srisa-an, W., Chang, J.M.: An Analysis of the Garbage Collection Performance
in Sun’s HotSpot JVM. In: Proceedings of 21th IEEE International Performance Computing
and Communications Conference (IPCCC), Phoenix, Arizona (April 3-5, 2002) 335–339

9. Yang, Q., Srisa-an, W., Skotiniotis, T., Chang, J.M.: Java Virtual Machine Timing Probes: A
Study of Object Lifespan and Garbage Collection. In: Proceedings of 21st IEEE International
Performance Computing and Communication Conference (IPCCC-2002), Phoenix Arizona
(April 3-5, 2001) 73–80

10. Abramson, D., Watson, G., Dung, L.: Guard: A Tool for Migrating Scientific Applications
to the .NET Framework. In: Proceedings of International Conference on Computational
Science (ICCS 2002), Amsterdam, The Netherlands (2002) 834–843

11. Buss, LTD.: SIMPLEPLOT.NET. http://www.buss.co.uk/buss/dnet.htm (2002)
12. Nutt, G.: Distributed Virtual Machines: Inside the Rotor CLI. Addison Wesley (2005)
13. Blackburn, S.M., Singhai, S., Hertz, M., McKinely, K.S., Moss, J.E.B.: Pretenuring for java.

In: Proceedings of the OOPSLA ’01 Conference on Object Oriented Programming Systems
Languages and Applications, Tampa Bay, FL (2001)

14. Huang, W., Srisa-an, W., Chang, J.: Dynamic Pretenuring Schemes for Generational Garbage
Collection. In: Proceedings of 2004 IEEE International Symposium on Performance Analy-
sis of Systems and Software, Austin, Texas (2001) 133–140

15. Jump, M., Blackburn, S.M., McKinley, K.S.: Dynamic Object Sampling for Pretenuring.
In: ISMM ’04: Proceedings of the 4th International Symposium on Memory Management,
ACM Press (2004) 152–162

16. Sun Microsystems: The java hotspot virtual machine, v1.4.1.
http://java.sun.com/products/hotspot/ (2003)

17. Richter, J.: Garbage Collection: Automatic Memory Management in the Microsoft .NET
Framework. http://msdn.microsoft.com/msdnmag/issues/1100/GCI/default.aspx (2000)

18. Rammer, I.: Advanced .NET Remoting. Apress (2002)
19. Browning, D.: Integrate .net remoting into the enterprise. In: .NET Magazine. (2002)
20. Hirzel, M., Henkel, J., Diwan, A., Hind, M.: Understanding the connectivity of heap objects.

In: ISMM, Berlin, Germany (2002)
21. McLean, S., Naftel, J., Williams, K.: Microsoft .NET Remoting. Microsoft Press (2003)
22. Obermeyer, P., Hawkins, J.: Microsoft .NET Remoting: A Technical Overview.

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dndotnet/html/hawkremoting.asp (2005)

23. Srinivasan, P.: An Introduction to Microsoft .NET Remoting Framework.
http://msdn.microsoft.com/library/en-us/dndotnet/html/introremoting.asp (2001)

24. Wiener, R.: Remoting in C# and .NET. Journal of Object Technology 3 (January 2004)
83–100

25. XML.com: XDB Gateway (Database-to-XML Gateway). http://www.xml.com/pub/p/760
(2003)

26. Long, J.: Remoting in microsoft product. Private e-mail correspondant (2004)
27. MySQL-AB: Mysql dbms. http://www.mysql.com (2004)
28. Pietrek, M.: Under the Hood, http://msdn.microsoft.com/msdnmag/issues/01/12/hood/.

(2005)
29. Microsoft: Microsoft office online. http://office.microsoft.com (2004)
30. SPEC: Standard performance evaluation corporation jvm98. http://www.spec.org/osg/jvm98

(1999)
31. Dieckmann, S., Hölzle, U.: A Study of the Allocation Behavior of the SPECjvm98 Java

Benchmarks. In: Proceedings of the European Conference on Object-Oriented Programming.
(1999)

1082 W. Srisa-an, M. Oey, and S. Elbaum

32. Stefanović, D., Moss, J.E.B.: Characterization of Object Behaviour in Standard ML of New
Jersey. In: LFP ’94: Proceedings of the 1994 ACM conference on LISP and functional
programming, ACM Press (1994) 43–54

33. Vinoski, S.: New Features for CORBA 3.0. Commun. ACM 41 (1998) 44–52
34. Kleindienst, J., Plasil, F., Tuma, P.: Lessons Learned from Implementing the CORBA Per-

sistent Object Service. In: Proceedings of the 11th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, ACM Press (1996) 150–167

35. Ryu, S.W., Neuman, B.C.: Garbage collection for distributed persistent objects.
http://www.objs.com/workshops/ws9801/papers/paper015.html (1998)

36. Hertz, M., Blackburn, S.M., Moss, J.E.B., McKinley, K.S., Stefanović, D.: Error-free garbage
collection traces: how to cheat and not get caught. In: SIGMETRICS ’02: Proceedings of
the 2002 ACM SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, ACM Press (2002) 140–151

Peer-to-Peer Distribution Architectures
Providing Uniform Download Rates

Marc Schiely and Pascal Felber

Computer Science Department, University of Neuchâtel,
CH-2007, Neuchâtel, Switzerland

marc.schiely@unine.ch, pascal.felber@unine.ch

Abstract. Peer-to-peer (P2P) networks have proved to be a powerful
and highly scalable alternative to traditional client-server architectures
for content distribution. They offer the technical means to efficiently
distribute data to millions of clients simultaneously with very low infras-
tructural cost. Previous studies of content distribution architectures have
primarily focused on homogeneous systems where the bandwidth capac-
ities of all peers are similar, or simple heterogeneous scenarios where dif-
ferent classes of peers with symmetric bandwidth try to minimize the av-
erage download duration. In this paper, we study the problem of content
distribution under the assumption that peers have heterogeneous and
asymmetric bandwidth (typical for ADSL connections), with the objec-
tive to provide uniform download rates to all peers—a desirable property
for distributing streaming content. We discuss architectures that fulfill
this goal and achieve optimal utilization of the aggregate uplink capacity
of the peers. We develop analytical models that provide insight on their
performance in various configurations, and we compare them to archi-
tectures with non-uniform rates. Our results indicate that heterogeneous
and asymmetric peers can achieve uniform download rates with little
additional complexity and no performance penalty.

1 Introduction

The distribution of large or streaming content remains a challenging problem in
today’s Internet. A single source quickly becomes saturated when the number
of clients requesting the content grows, which leads to degradation or loss of
service. Solutions based on content delivery networks (CDNs) are prohibitively
expensive and rather static in nature, while protocols like IP multicast suffer
from several flaws and are not widely deployed.

P2P systems, in which peer computers form a cooperative network and share
their resources, offer a promising alternative for content distribution. They re-
duce the load of the primary servers by leveraging the bandwidth of the peers,
those receiving part of the content providing it to others. Their low cost, in-
herent scalability, and resiliency to “flash crowds” (a huge and sudden surge of
request traffic that usually leads to the collapse of the affected server) make such
systems very attractive for large scale deployments.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1083–1096, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1084 M. Schiely and P. Felber

This work focuses on P2P architectures designed for distributing content
among large populations of clients. Unlike previous studies, we assume that
the peers have heterogeneous and asymmetric bandwidth (typical for ADSL
connections) and we aim at providing a uniform download rate to each of them.
This property is crucial for applications like media streaming, for which users
expect an uninterrupted stream of data at a constant rate.

We consider simple models with two classes of peers that differ in their uplink
capacities. We study several architectures that achieve optimal utilization of the
aggregate uplink capacity of the system and share it equally between all the
peers. It obviously follows that fast peers must share more bandwidth than they
receive, but we can balance this unfairness by placing them nearer to the source
for increased reliability and shorter latency.

We develop analytical models that provide interesting insight on the per-
formance of content distribution architectures with uniform download rates in
various configurations. We compare them with other architectures providing non-
uniform rates and we conclude that uniformity can be achieved with little addi-
tional complexity and no performance penalty.

The rest of the paper is organized as follows: We first discuss related work
in Section 2 and we present the system model in Section 3. Then, we analyze
three different architectures providing uniform download rates in Section 4 and
compare them in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

There exist two main approaches for dealing with differences in uplink bandwidth
in overlay multicast systems. Narada [1], CollectCast [2] and GnuStream [3]
use bandwidth measurements to improve the overlay structure by dynamically
replacing links. In contrast Scattercast [4], SplitStream [5], Overcast [6] and
ALMI [7] use degree-constraint structures to deal with heterogeneity. If a peer’s
degree is saturated when a new peer wants to connect, then some reorganization
needs to take place. CoopNet [8] uses both of these techniques. It deploys multiple
parallel trees and reorganizes them based on performance feedbacks.

All of these systems do not try to uniformly distribute the download rate to
all peers. Instead, they send distinct streams at different rates, or they consider
bounded streams and use buffers to deal with timing problems. Our goal is to
minimize these buffer requirements by evening out the download rate at all peers.

In [9], the authors investigate the impact of heterogeneous uplink bandwidth
capacities on Scribe [10]. Their experiments show that heterogeneity may create
distribution trees with high depths, which is not desirable. After proposing sev-
eral ways to address the problem they conclude that heterogeneity in DHT-based
multicast protocols remains a challenging open problem.

Analytical models have been proposed for peers with homogeneous band-
width capacities [11, 12], as well as and for heterogeneous peers but for non-
uniform download rates [13]. Different architectures for homogeneous and het-
erogeneous bandwidth constraints are analyzed. In contrast to this work, the

P2P Distribution Architectures Providing Uniform Download Rates 1085

authors make the assumption that the downlink and uplink capacities are sym-
metric and do not consider uniform download rates.

To the best of our knowledge, no analytical models have been proposed to
study P2P content distribution architectures providing uniform download rates
to heterogeneous peers with asymmetric bandwidths.

3 System Model and Definitions

For the rest of this paper we use the following model. We assume that nodes
in the network have different upload capacities. We analyze content distribution
architectures with two classes of nodes, referred to as fast and slow peers accord-
ing to their upload bandwidth. All nodes in a class have the same bandwidth.
The data stream is sent by a single source which has the same bandwidth as
fast nodes. To simplify the analysis, we assume that the source receives the data
at the same uniform rate as the other peers before distributing it within the
content distribution network. We shall ignore latency in our model.

As is the case for typical ADSL connection, we assume that the slow peers
are essentially limited by their uplink capacity and have sufficient download
bandwidth to receive the data at the same uniform rate as the other peers.1 We
consider Nf fast peers in class F with upload bandwidth Bf and Ns slow peers
in class S with upload bandwidth Bs (Bf > Bs). For the sake of simplicity, we
assume in our analysis that Bs = Bf

k with k being an integer value. The total
number of peers is N = Nf + Ns.

We analyze the behavior of different architectures when transmitting a large
content. We assume that the file being transmitted is split into C chunks that
can be sent independently: as soon as a peer has received a chunk, it can start
sending it to another peer. We consider one unit of time to be the time necessary
for transmitting the whole content at the uniform rate r that is provided to all
peers. Each chunk is thus received in 1

C unit of time. For clarity, we shall describe
the different architectures with the assumption that we transmit the whole file
at once and we shall introduce chunks later in the analysis. As total download
time is a function of the number of chunks, our main objective of supporting
streaming data corresponds to situations where C → ∞.

A peer may receive chunks from the source via different paths. For instance,
in the case of SplitStream [5], the source splits the content into several layers and
sends each of them along distinct trees spanning all the nodes. Two chunks sent
at the same time by the source may thus traverse a different number of peers and
be received at different times. This implies that each peer may have to buffer
some chunks until all of those sent at the same time have been received. We
compute δT as the maximal difference in distance between a peer and the closest
common node along the paths to the source via distinct incoming links. This
value indicates the buffer space needed at the peer. For instance, in Figure 1,
the first node of the right chain receives chunks from the source in 1 (directly),

1 As we shall see, this rate is no higher than the uplink capacity of the fast peers.

1086 M. Schiely and P. Felber

2 (via one peer), and 3 (via two peers) units of time and we have δT = 3−1 = 2.
Clearly, small values of δT are desirable and we shall also compare the different
architectures with respect to this property.

Uniform Rate. As previously mentioned, our goal is to provide the same down-
load rate to all peers in the network. Obviously, the maximal rate r that can be
achieved corresponds to the aggregate upload bandwidth of all nodes divided by
the number of peers (Bs < r < Bf). It is easy to see that a tree cannot be used
to fulfill this goal because a slow node does not have enough upload bandwidth
to serve even a single other peer at rate r > Bs.

A trivial approach is to form chains of peers, in which a combination of slow
and fast peers team up and share their bandwidths at each level of the chain.
Figure 1 shows such an architecture with 50% fast nodes and 50% slow nodes
(Nf = Ns = N

2), and slow nodes having half of the upload bandwidth of fast
nodes (Bs = Bf

2). The source is the topmost node and the numbers show the
transmission rate on the corresponding link, as a fraction of Bf . Fast nodes are
displayed in gray. The time units indicated in the figure do not explicitly take
chunks into account: at t = 1, the second peer in the left chain has received the
content at rate 3

4 ; at t = 3, the first peer in the right chain has received the
content via three links, each at rate 1

4 ; etc. All time units should be divided by
C when considering chunks. The download rate r is calculated as:

r =
1
N

(
N

2
Bf +

N

2
Bf

2
) =

3
4
Bf

We can observe that an unused upload bandwidth of 3
4Bf remains because

the source does not download any content. We shall ignore it in the rest of the
paper.

If we generalize the upload bandwidth of the slow peers to a fraction of the
upload bandwidth of the fast peers Bs = Bf

k and compute the download rate r

for a scenario where Nf = Ns = N
2 , we obtain:

r =
1
N

(
N

2
Bf +

N

2
Bf

k
) =

k + 1
2k

Bf

We now relax the assumptions on the distribution of fast and slow nodes. If
the number of fast peers is Nf , then the number of slow peers is Ns = N − Nf .
Again the upload bandwidth of the slow peers is a fraction k of the upload
bandwidth of the fast peers. The optimal download rate is then:

r =
1
N

(NfBf + (N − Nf)
Bf

k
)

= (
Nf

N
+

1
k

(1 − Nf

N
))Bf (1)

If slow peers do not serve any content, i.e., k → ∞, then Equation (1)
becomes:

lim
k→∞

(
Nf

N
+

1
k

(1 − Nf

N
))Bf = Bf

Nf

N

P2P Distribution Architectures Providing Uniform Download Rates 1087

In a scenario where Nf = Ns this leads to a binary tree where the slow nodes
are the leaves and the fast nodes are the inner nodes, each serving two other
nodes at rate r = Bf

2 (as studied in [11]).
In the rest of the paper, unless explicitly mentioned, we consider equal pop-

ulations of slow and fast peers (Ns = Nf).

4 A Study of Three Architectures

We now study and compare three different architectures that provide a uniform
download rate to all peers.

4.1 Linear Chain Architecture

The first architecture considered in this paper forks several independent chains
of peers that distribute content in parallel. The chains are constructed in three
phases.

Phase 1 - Growing phase. The objective of the growing phase is to serve several
peers (say m) in parallel starting from a single source. Obviously, such an ex-
pansion can only be achieved by fast peers, as they have more upload capacity
than the target download rate r. Using this free capacity allows us to build the
service capacity mr necessary to serve m peers in parallel.

Informally, the growing phase proceeds as follows. The first fast node (the
source) starts a chain by serving one other fast peer with rate r. The remaining
bandwidth Bf −r will be used further down the chain. The second fast peer again
serves another fast peer with rate r, which also leaves it with Bf − r remaining
bandwidth. This process continues until the sum of the remaining bandwidths
of the first p fast nodes is sufficient to serve another peer, i.e., p(Bf − r) ≥ r.
Given that Bs = 1

kBf , p can be computed as:

p =
⌈

k + 1
k − 1

⌉

In the formula above, depending on the value of k, some bandwidth may be
lost in the integer conversion. This can be avoided by expanding to k nodes at
once. The number of peers pk necessary for this expansion can be computed by
solving pk(Bf − r) = r(k − 1), which gives:

pk = k + 1

In the rest of the paper, we shall assume expansions to k chains using pk

peers (instead of 2 chains using p peers). Each fast peer can in turn fork another
k chains with the help of pk − 1 other fast peers. By repeating this process,
the number of chains can be multiplied by k every iteration. Each expansion
obviously requires pk units of time. Examples with k = 2 (r = 3

4Bf) and k = 4
(r = 5

8Bf) are shown in Figures 1, 2, and 3. It is important to note that the
peers are organized as a directed acyclic graph (DAG).

1088 M. Schiely and P. Felber

t=2

t=14

t=1

t=0

t=13

t=12

t=11

t=10

t=9

t=8

t=7

t=6

t=5

t=4

t=3

F

F

F

F

F

F

F

F

F

F

F

S

S

S

1/4

S

S

S

S

3/4

1/4

1/2
1/4

S

S

S

S

S

F

Fig. 1. Linear chains with
one expansion step and k =
2 (Bs = Bf

2)

t=0

t=13

t=14

S

SS F

F

F

S

S

S

S

S

S

S

SS

S

S

S

F

F

t=1

t=2

t=3

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=4

3/4

1/4

1/4 1/4

3/4

1/21/2

1/4

1/4
1/4

F

F

F

F

F

F

F

F

F

F

Fig. 2. Linear chains with
two expansion steps and k =
2 (Bs = Bf

2)

t=13

t=0

t=14

F F

F F

FF

t=1

t=2

t=3

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=4

5/8

2/8 2/8

1/8

3/8 3/8

F

F

F

F

F F

FF

S

S

S

S

S

S

S

2/81/8

2/8

2/8

1/8

S

S

S S

S

S

S

S

F

Fig. 3. Linear chains with
one expansion step and k =
4 (Bs = Bf

4)

Phase 2 - Parallel phase. The parallel phase starts when the growing phase has
finished its expansion to m peers. It constructs two sets of m

2 linear chains, com-
posed respectively of fast and slow peers. Each chain of slow peers is combined
with a chain of fast peers. A slow peer serves its successor at rate Bf/k. A fast
peer serves its successor at rate r and the next slow peer in the companion chain
at rate Bf − r. Thus, each peer is served at rate r. Phase 2 proceeds until all
fast peers are being served (see Figures 1, 2, and 3).

Phase 3 - Shrinking phase. In the last phase, we are left with a set of slow
peers to serve at rate r. As a slow peer cannot serve another peer by itself, the
bandwidth of several peers must be combined, which leads to shrinking down
the number of parallel chains. This phase is almost symmetrical to the growing
phase, in that we can serve pk slow peers from each set of k chains. We repeat
this process until all slow peers have been served (see Figures 1, 2, and 3).

Analysis. We can easily notice that delays of δT = k are encountered during
the growing phase. The case of the shrinking phase is more subtle, as δT grows
larger if we keep it perfectly symmetric to the growing phase. By allowing some
asymmetry, we can both bound the delays by the same value δT = k and reduce
the total length of the shrinking phase.

P2P Distribution Architectures Providing Uniform Download Rates 1089

We now compute the number of peers that can be served within a given time
interval. After pk steps, k peers can start again another chain. If we define s as
the number of expansion steps, we can calculate the number of peers in the first
phase N1 to be:

N1 =
s−1∑
i=0

kipk = pk
ks − 1
k − 1

The shrinking phase is built in a symmetric manner. Therefore the number
of nodes N3 in the third phase is the same as in the growing phase: N3 = N1.
Given the constraint that N1 + N3 ≤ N , the maximal value of s is:

smax = logk

(
N

k − 1
2pk

+ 1
)

The number of nodes N2 that can be served in phase 2 in a given time interval
T is:

N2 = ks(T − 2spk + 1)

Indeed, there are ks parallel nodes and phase 2 lasts for the given time interval
minus the duration of the growing and shrinking phases. The number of peers
served in a time interval T with s growing steps (1 ≤ s ≤ �smax�) is then:

N(T, s, k) = 2pk
ks − 1
k − 1

+ ks(T − 2spk + 1)

We observe that the number of peers served in a given time interval grows
with s, thus producing more efficient content distribution architectures (compare
N(14, 1, 2) = 24 in Figure 1 and N(14, 2, 2) = 30 in Figure 3).

Solving the equation for T gives the number of units of time necessary to
serve N peers:

T (N, s, k) =
N(k − 1) − 2pk(ks − 1)

ks(k − 1)
+ 2spk − 1 (2)

Assuming that the content is split into chunks, the total download time for
the complete file is then 1+ 1

C T (N, s, k), i.e., the time necessary to transmit the
whole file at rate r plus the propagation time of the chunks through the content
distribution network. Using Equation (2) leads to:

T (N, s, k, C) = 1 +
1
C

(
N(k − 1) − 2pk(ks − 1)

ks(k − 1)
+ 2spk − 1

)

Figure 4 shows the time necessary to complete the download with the linear
chain architecture for different values of k and C. We observe that performance
improves with larger numbers of chunks, because all peers can be active most
of the time. In contrast, with few chunks only a fraction of the peers will be
uploading at any point in time, while the others have either already forwarded
the entire file or not yet received a single chunk. Therefore, the value of k, which

1090 M. Schiely and P. Felber

100

101

102

103

104

105

106

103 104 105 106 107 108

N
um

be
r

of
 r

ou
nd

s

Number of clients N

C=102 k=2
k=4

C=104 k=2
k=4

C=106 k=2
k=4

Fig. 4. Download time of the linear chain
architecture for different values of k and C
(s = 4)

100

101

102

103

104

105

106

103 104 105 106 107 108

N
um

be
r

of
 r

ou
nd

s

Number of clients N

s=4
s=6
s=8

s=smax

Fig. 5. Download time of the linear chain
architecture for different values of s (k = 2,
C = 102)

influences the depth of the content distribution architecture, has more impact
on performance when the number of chunks is small. We notice indeed that the
download times start degrading earlier with small values of k because they yield
deeper architectures.

Figure 5 compares the download times for different values of s (the value smax

corresponds to the maximal number of expansion possible with the given peer
population). As expected, performance improves with higher values of s because
they produce flatter architectures. The optimal value smax exhibits extremely
good scalability.

4.2 Mesh Architecture

The linear chains architecture can be improved in several ways if we allow peers
to be organized as a directed graph with cycles. We can reduce the duration
of the growing phase and thus the length of the paths (and consequently the
latency); we can simplify network management by only using connections with
identical bandwidth capacities; and we can limit the size of buffers at each peer
to a constant value.

The resulting mesh architecture is shown in Figure 6 (for k = 2 and one
expansion step) and Figure 7 (for a general value of k and two expansion steps).
A node does not only receive data from its parent, but also from its siblings. The
source has 2k fast peers as children and sends data at rate Bf

2k to each of them;
the remaining bandwidth Bf

2 is provided by their siblings. The first-level fast
peers together serve k2 children with their remaining bandwidth of Bf

2 ; again,
the remaining bandwidth k−1

2k Bf is provided by the siblings. Second-level peers
have enough bandwidth to completely serve k2 children. Each third-level child
can in turn expand to k2 peers in three steps.

As in the previous architecture, one can build linear chains after the expan-
sion phase before reducing the architecture to one peer. The shrinking phase is
symmetric to the growing phase, as shown in Figure 6.

P2P Distribution Architectures Providing Uniform Download Rates 1091

t=6

t=7

t=8

t=9

t=10

t=11

t=12

F

S S

SS

F

F

F

F

S

SSSS

S S S S

SS

S S

SS

F

F

F

FS SF

FS SF

1/4
F F F

FFFF

F

F

F

t=0

t=1

t=2

t=3

t=4

t=5

1/4

F

Fig. 6. Mesh with one expansion step
and k = 2 (Bs = Bf

2)

t=5

t=9

t=8

t=10

t=11

t=12

t=7

t=6

1/(2k)

2 k2

k2 k2

k2 k2

t=0

t=1

t=2

t=3

t=4

k2 k2

k2 k2

k2 k2

k2

2k

k2

1/(2k)

(k−1)/(2k)
r

1/2

k2

k2

S

2k

r

2k 2k

1/k

r

2k2k

1/(2k)

1/k

k

2k 2k 2k2k

F

Fig. 7. Mesh with two expansion steps
and any k (Bs = Bf

k
)

Using only connections with identical rate Bf

2k simplifies significantly the man-
agement of the architecture. The throughput is controlled by the source and peers
only differ in their number of outgoing connections: the outdegree is always 2k
for fast nodes and 2 for slow nodes. All peers have an indegree of k + 1.

Analysis. One can note in Figure 6 that the first level fast peers receive chunks
from the source at t = 1 and from their sibling at t = 2; similarly, second level
peers receive chunks at t = 2 and t = 3; on the third level, all chunks are received
simultaneously at t = 3. A similar observation can be made with the shrinking
phase and it follows that constant delays of δT = 1 are encountered in this
content distribution architecture.

For computing the number of nodes which can be served in time T we again
analyze the three phases. As we have seen, a fast peer can expand to k2 peers
in three units of time with the help of 2k + k2 other fast peers. If we define s to
be the number of expansion steps, then the number of peers served in the first
phase is:

N1 = 1 + (2k + 2k2)
s−1∑
i=0

k2i = 1 + 2k
k2s − 1
k − 1

The shrinking phase again is symmetric in the number of nodes so the number
of nodes in the third phase N3 is equal to N1, thus N3 = N1. Given the constraint
that N1 + N3 ≤ N we can compute the maximal value of s:

1092 M. Schiely and P. Felber

smax =
1
2
logk

(
(N − 2)(k − 1)

4k
+ 1

)

In phase 2, k2k2(s−1) parallel nodes can be served in the remaining time
T −6s−1. In total the number of peers served within T units of time for a given
number of s expansion steps 1 ≤ s ≤ �smax� is then:

N(T, s, k) = 2 + 4k
k2s − 1
k − 1

+ k2s(T − 6s − 1)

Solving the equation for T and introducing the number of chunks C gives:

T (N, s, k, C) = 1 +
1
C

(
1

k2s

(
N − 2 − 4k

k2s − 1
k − 1

)
+ 6s + 1

)

100

101

102

103

104

105

106

103 104 105 106 107 108

N
um

be
r

of
 r

ou
nd

s

Number of clients N

C=102 k=2
k=4

C=104 k=2
k=4

C=106 k=2
k=4

Fig. 8. Download time of the mesh archi-
tecture for different values of C (k = 2,
s = 4)

100

101

102

103

104

105

106

103 104 105 106 107 108

N
um

be
r

of
 r

ou
nd

s

Number of clients N

s=4
s=6
s=8

s=smax

Fig. 9. Download time of the mesh archi-
tecture for different values of s (k = 2,
C = 102)

Figure 8 shows the time necessary to complete the download with the use of
the mesh architecture for different values of C and k. As expected, the download
times follow the same general shape as for the linear chains architecture in
Figure 4 but performance is significantly improved due to the faster expansion
of the mesh architecture. We can observe in Figure 9 that a higher number
of expansion steps s also produces flatter architectures and therefore reduces
the download time. The maximal expansion for a given peer population smax

yields the best download times, which is almost constant, independent of the
population size.

4.3 Parallel Trees

The third architecture studied in this paper consists in constructing multiple
trees spanning all the nodes and sending a separate part of the content in parallel
to each tree similarly to SplitStream [5] and PTreek [11] (as Nf = Ns, we shall

P2P Distribution Architectures Providing Uniform Download Rates 1093

2 2 3

1 2 3

4

6

7

5

76547654

1 1

3

t=0

t=1

t=2

t=3

1/4

1/4

1/4

1/4

1/4

S

Fig. 10. Parallel trees with N = 8 and k = 2 (Bs = Bf

2)

use binary trees). If we construct k + 1 trees that distribute content at rate Bf

2k ,
then every peer will receive data at the same uniform rate r.

We construct parallel trees by placing each fast peer (except the source) as
interior node in k trees. Fast nodes will thus serve 2k other peers at rate Bf

2k k (i.e.,
at aggregate rate Bf). The slow nodes are placed as interior nodes in a single
tree and must thus serve two other nodes at rate Bf

2k (i.e., at aggregate rate Bf

k).
As the number of leaves in a complete binary tree is equal to the number of
interior nodes plus one and the source is a fast node, the constraint Nf = Ns is
met. Figure 10 illustrates the parallel tree architecture (peers are numbered for
clarity). Note that every peer except the source appears in all trees.

Analysis. We first need to determine the depth d of the trees. At each level i
in the tree, we have 2i nodes (the root is at level 0). Thus, the number of nodes
in a binary tree of depth d is

∑d
i=0 2i = 2d+1 − 1. Considering the special role of

the source, the N − 1 remaining nodes can be placed in parallel trees of depth
d = �log2(N − 1)�.

It follows from the construction of the trees that delays of δT = �log2(N −1)�
are encountered in this content distribution architecture. Delays grow with the
number of peers, in contrast to the other architectures studied in this paper.

The number of nodes that can be served by the parallel tree architecture in
a given time interval T can be computed as follows (the first term represents the
source):

N(T) = 1 +
T−1∑
i=0

2i = 2T

Solving this equation to T and introducing the number of chunks C leads to
the time used to distribute a file to all nodes:

T (C, N) = 1 +
1
C

�log2N	

Figure 11 shows the time necessary to complete the download with the par-
allel tree architecture for two values of C (improvements become unnoticeable
when C grows larger). As the download time is a function of the depth of the
trees, which increases logarithmically with the number of peers, performance
degrades only slowly with the population size.

1094 M. Schiely and P. Felber

100

101

103 104 105 106 107 108 109

N
um

be
r

of
 r

ou
nd

s

Number of clients N

C=102

C=104

Fig. 11. Download time for the parallel trees architecture for different values of C

5 Comparative Analysis

In this section we compare the three architectures presented in this paper with
the linear chain architecture analyzed in [13] (referred to as Linear). In contrast
to our architectures, in Linear the peers have symmetric bandwidth capacities.
The peers are organized in separate chains according to their bandwidth capacity
and there is no cooperation between fast and slow nodes. Fast peers can therefore
finish the download faster.

As we can see in Figure 12, this difference leads to a stepwise function with the
fast nodes completing their download faster than the slownodes (Nf = Ns). In con-
trast, the uniform architectures all scale well and yield an almost constant down-
load rate independent of the population size.As expected, uniform linear chains are
less efficient than the mesh and parallel tree architectures due to the longer paths.

In Figure 13 we can observe that with a smaller difference between fast and
slow peers (lower value of k) the download time of Linear grows, whereas it

10-3

10-2

10-1

100

101

102

103

10*1088*1086*1084*1082*108

N
um

be
r

of
 r

ou
nd

s

Number of clients N

Linear
Linear Chains

Mesh Architecture
Trees Architecture

Fig. 12. Download time for different ar-
chitectures with k = 100, C = 100 and
s = smax. Linear shows the completion
times for a population of 109 peers with
symmetric bandwidth.

10-1

100

101

102

103

104

10*1088*1086*1084*1082*108

N
um

be
r

of
 r

ou
nd

s

Number of clients N

Linear
Linear Chains

Mesh Architecture
Trees Architecture

Fig. 13. Download time for different archi-
tectures with k = 4, C = 100 and s = smax.
Linear shows the completion times for a
population of 109 peers with symmetric
bandwidth.

P2P Distribution Architectures Providing Uniform Download Rates 1095

decreases for the linear chains and the mesh architecture (remember that a unit
of time is defined as a function of the uniform rate r). We can further see that
the mesh architecture performs slightly better than parallel trees in Figure 12,
unlike in Figure 13. This is due to the fact that the mesh architecture expands
as a function of k2s whereas the expansion of parallel trees does not depend on
k. Thus the mesh will grow faster when k is large. Higher values of C do not
produce interesting results as the difference between the various architectures
quickly becomes unnoticeable.

6 Conclusion

Content distribution is an important problem for many distributed applications
deployed in the Internet. Cooperative techniques based on peer-to-peer networks
offer the technical capabilities to quickly and efficiently distribute large or critical
content to huge populations of clients. When dealing with streaming or time-
sensitive data, the content must be provided at a rate which is sufficient for its
intended purpose (e.g., displaying a streaming movie).

In this paper, we have studied the problem of providing uniform download
rates to a population of peers with asymmetric and heterogeneous bandwidth
capacities. The architectures that best achieve this goal among those studied
in the paper are the mesh and the parallel tree, but the latter requires peers
to buffer data for a duration proportional to the depth of the trees. As the
number of chunks grows, i.e., when the stream duration becomes very long, the
differences between all the architectures become insignificant.

Although we only focused on analytical models for simple content distribution
architectures, we believe that our analysis provides some important insights as
how to set up peer-to-peer networks for distributing streaming data. It can also
guide the design of cooperative applications that organize the nodes in a more
dynamic manner than chains or trees. In particular, the system needs to build up
upload capacity as fast as possible (which corresponds to maximizing the number
of expansion steps) and the content should be partitioned into a large number
of chunks (but not too many chunks as each one adds some coordination and
connection overhead). By properly combining high and low capacity nodes, one
can provide a high quality of service to every peer and even out their differences
in a truly cooperative manner.

Acknowledgments. This work is supported in part by the Swiss National
Foundation Grant 102819.

References

1. Chu, Y., Rao, S., Zhang, H.: A case for end system multicast. In: Proceedings of
ACM Sigmetrics. (2000)

2. Hefeeda, M., Habib, A., Boyan, B., Xu, D., Bhargava, B.: PROMISE: peer-to-
peer media streaming using CollectCast. Technical Report CS-TR 03-016, Purdue
University (2003)

1096 M. Schiely and P. Felber

3. Jiang, X., Dong, Y., Xu, D., Bhargava, B.: Gnustream: A P2P media streaming
system prototype. In: Proceedings of the International Conference on Multimedia
and Expo (ICME),. (2003)

4. Chawathe, Y.: Scattercast: An adaptable broadcast distribution framework. Mul-
timedia Systems 9 (2003) 104–118

5. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: High-bandwidth multicast in a cooperative environment. In: Proceed-
ings of the ACM Symposium on Operating Systems Principles (SOSP). (2003)

6. Jannotti, J., Gifford, D., Johnson, K.L., Kaashoek, M.F., O’Toole, J.W.: Over-
cast: Reliable multicasting with an overlay network. In: Proceedings of the 4th
Symposium on Operating System Design and Implementation (OSDI). (2000)

7. Pendarakis, D., Shi, S., Verma, D., Waldvogel, M.: Almi: An application level
multicast infrastructure. In: Proceedings of USITS. (2001)

8. Padmanabhan, V., Wang, H., Chou, P.: Resilient peer-to-peer streaming. In:
Proceedings of IEEE ICNP. (2003)

9. Rao, S., Padmanabhan, V., Seshan, S., Zhang, H.: The impact of heterogeneous
bandwidth constraints on dht-based multicast protocols. In: Proceedings of the
4th International Workshop on P2P Systems (IPTPS). (2005)

10. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: Scribe: a large-scale and
decentralized application-level Multicast infrastructure. IEEE Journal on Selected
Areas in Communications 20 (2003) 1489–1499

11. Biersack, E., Rodriguez, P., Felber, P.: Performance analysis of peer-to-peer net-
works for file distribution. In: Proceedings of the 5th International Workshop on
Quality of future Internet Services (QofIS’04). (2004) 1–10

12. Yang, X., de Veciana, G.: Service capacity of peer-to-peer networks. In: Proceedings
of IEEE INFOCOM. (2004)

13. Carra, D., Cigno, R.L., Biersack, E.: Introducing heterogeneity in performance
analysis of p2p networks for file distribution. Technical Report DIT-04-113, Uni-
versity of Trento (2004)

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1097 – 1114, 2005.
© Springer-Verlag Berlin Heidelberg 2005

JXTA Messaging: Analysis of Feature-Performance
Tradeoffs and Implications for System Design*

Emir Halepovic1, Ralph Deters2, and Bernard Traversat3

1 Department of Computer Science, University of Calgary,
Calgary AB T2N 1N4, Canada
emirh@cpsc.ucalgary.ca

2 Department of Computer Science, University of Saskatchewan,
Saskatoon SK S7H 5L6, Canada
deters@cs.usask.ca

3 Project JXTA, Sun Microsystems Inc,
Menlo Park CA 94025, USA

bernard.traversat@sun.com

Abstract. With the rise of Peer-to-Peer and Grid infrastructures, there is a re-
newed interest in messaging systems. Among the numerous messaging solu-
tions for large loosely coupled distributed environments, the communication
and messaging system of the JXTA peer-to-peer platform is the richest in fea-
tures. This paper presents a comprehensive performance analysis of the JXTA
messaging system and its application to the system design scenarios. Several
application-layer messaging abstractions are analyzed and compared. The re-
sults reveal the limiting factors and behaviors with respect to workload, net-
work distance, peer group size, and message relays. The tradeoffs between fea-
tures and performance are observed and discussed in the form of
recommendations to developers dealing with common system design cases.

1 Introduction

Peer-to-peer (P2P) systems are commonly characterized by decentralized control,
high autonomy of participating nodes, shared hardware and software resources, poten-
tial to scale and ad-hoc connectivity. Most P2P applications have very specific ap-
proaches for dealing with peer and resource discovery, communication and resource
sharing and tend to focus on a single purpose. In addition, the majority of file-sharing,
collaboration, and computation P2P systems cannot interoperate.

The goal of Project JXTA is to formulate, develop and standardize the core P2P op-
erations and protocols [13]. The JXTA platform defines protocols for peer discovery,
messaging, identification, group organization, etc., which are necessary for all P2P ap-
plications, and provides the implementation in several programming languages. JXTA
aims to leverage and build upon the traditional communication protocols and to pro-
vide universal components for building any type of P2P applications [10, 16].

* This work was supported in part by the Natural Sciences and Engineering Research Council

of Canada (NSERC).

1098 E. Halepovic, R. Deters, and B. Traversat

JXTA provides several messaging abstractions with different features targeted to
satisfy specific requirements. The questions arising are whether the features, such as
reliability and security, introduce significant performance overhead that outweighs the
benefits for a particular system, and how to optimize performance once the messaging
components have been chosen.

This paper focuses on the messaging subsystem of the JXTA platform with the
goal of answering the aforementioned questions. We present the methodology and
analysis that can be used by developers during the system design, as well as meas-
urements that show the tradeoffs between features and performance of JXTA compo-
nents that can be directly applied to the most common P2P systems.

The presented work extends the earlier JXTA evaluations by analyzing the messag-
ing performance over a WAN, scalability with multiple senders/receivers and over-
head of indirect communication. New higher-level JXTA services are added to the
evaluation and compared to the core JXTA pipes. We evaluate JXTA versions 1.0, 2.0
and 2.2 and their implementations for Java 2 Standard Edition (J2SE). The evaluation
is based on benchmarking consistent with the proposed JXTA Performance Model
[2], which outlines methods, components and metrics of interest.

The key results include the identification of performance penalties introduced by
security, propagation and reliability features. Further, the scalability results show de-
pendency on the payload size and the metric observed, with throughput scaling well
for small payloads, and poorly for large payloads. The measured costs of indirect
messaging reveal the cases when messaging over HTTP is faster than over TCP, as
well as several other unintuitive results.

The most important implications of the findings are on the design of the messaging
subsystem for new JXTA applications. The observed performance results reveal the
ways to achieve optimal design for the specific messaging objectives, and we discuss
these issues for reliability, security and message propagation in a JXTA system.

The rest of the paper is organized as follows. Section 2 reviews related work. Sec-
tion 3 explains the JXTA messaging architecture and components. Experimental
methodology and environment are outlined in Section 4. Section 5 presents the analy-
sis of performance results for direct messaging, Section 6 for message propagation
and Section 7 for indirect relayed messaging. The discussion based on the results fol-
lows in Section 8. The conclusions and further work are outlined in Section 9.

2 Related Work

With the emergence of the Grid computing systems and multi-purpose P2P middle-
ware, such as JXTA, the messaging layer becomes a critical component. A generic
but efficient messaging layer allows for rich interaction between peers and provides a
powerful basis for design of application-specific and complex communication proto-
cols. Several proposed solutions indicate the importance of the communication layer
and the significant role the messaging subsystem will have in future P2P and Grid
systems. Message Oriented Middleware (MOM), such as the enterprise server-based
JMS [5] is intended for small-scale deployments and it leverages Java J2EE. Other so-
lutions, such as NaradaBroker [11] and PAWN [9] directly leverage or support JXTA.

 JXTA Messaging: Analysis of Feature-Performance Tradeoffs and Implications 1099

Alternative messaging solutions were compared to early versions of JXTA and
shown to be superior, such as the multi-ring based messaging [6] and TIBCO Ren-
dezvous [15]. Due to the complexity of the JXTA messaging abstractions [12] and the
provisions of security, reliability and propagation features, it is not surprising to find
simpler and more efficient messaging solutions. However, these efforts and results
additionally motivate the comprehensive study of the JXTA messaging subsystem and
its evolution and improvements through major versions.

 Performance measurements of JXTA are available in several forms. The targeted
evaluations of the JXTA messaging components are based on the JXTA community
Bench project [7]. The Bench project tracks progress through major and minor JXTA
releases, and guide developers in optimizing the implementation. The results are ob-
tained from a single controlled environment, an isolated LAN connecting several
high-performance computers. We use a non-dedicated LAN, WAN and mid- to high-
end personal computers as the more common P2P application environment.

More detailed evaluations show the JXTA pipe behavior constrained to LAN envi-
ronment and one-to-one (1-1) communication [2, 4]. The results indicate the message
round-trip time independence of the payload size up to 100 KB for non-secure pipes,
consistent with findings in [12]. A change in the effect of the message composition in
terms of number and size of XML elements is also noted between JXTA versions.
While more complex messages took longer time to parse in JXTA 1.0, improvements
in JXTA 2.0 included near-constant time to parse messages of different complexity
for unicast and propagate pipes, and even decreasing parsing time with increasing
number of elements for secure pipe for the same overall payload size. We expand the
evaluation to the multiple sender and receiver scenarios in peer groups and newer
JXTA version, as suggested in earlier works.

Additional important results show that JXTA performance can be tuned by swap-
ping XML parsers and that hardware configuration and CPU power can significantly
affect the performance of the JXTA message creation and processing [12]. It has also
been reported that JXTA performs comparably on different operating systems, e.g.
Linux vs. Windows, with the interesting trend of Linux performing worse for smaller
messages [14]. Lower-level endpoint service has been evaluated with unicast pipe and
JXTA socket on high-speed networks in 1-1 communication and compared to plain
sockets [1]. It is shown that both unicast pipe and JXTA socket have comparable
throughput to plain sockets that converges for large message sizes, but that the latency
of JXTA is 5 to 20 times higher than that of plain sockets. Our study focuses on the
comparison of the standard application-layer messaging services inside JXTA with the
goal of finding optimal configuration for different system requirements, rather than
measuring the direct effect of hardware or low-level implementation components.

The unintuitive results of the measurements obtained from the 1-1 communication
on a LAN further motivate the in-depth evaluation expanded to the WAN, multiple
sender and receiver scenarios, as well as addition of the new and feature-rich messag-
ing services in JXTA, as included in this study.

All of the available results, including this study, are obtained by benchmarking,
which is still the best method for evaluating the JXTA platform since the JXTA pro-
tocol specification [8] does not clearly specify any algorithms suitable for analysis or
simulation. The performance of JXTA is dependent on the details of its implementa-
tion, and the Java-based reference implementation is updated first with the latest de-

1100 E. Halepovic, R. Deters, and B. Traversat

sign decisions. Project JXTA features no public design documentation suitable for
performance evaluation either. Therefore, benchmarking of its reference implementa-
tion is presently the best way to learn about the performance of JXTA.

3 JXTA Messaging Architecture

JXTA pipes are a fundamental abstraction used for inter-peer communication. JXTA
peers pass messages through pipes, virtual channels that consist of input and output
ends. Peers bind to one end of the pipe, and when both ends are bound, messages can
be passed. Pipes are not tied to a physical location, IP address or port. Instead, a pipe
has a unique identifier (ID), so peers retain their pipes as their network location
changes. At runtime, a pipe end is resolved to the current endpoint IP address and port.

The JXTA core protocol specification [8] defines three kinds of pipes operating in
two modes, referred to as core pipes. The two operation modes are unicast and propa-
gate. Unicast and secure pipes serve for 1-1 communication, connecting two peers in
unicast mode. Propagate pipes connect one sender peer to many receiving peers and
they operate in propagate mode (1-M). Core pipes are asynchronous and unreliable.
The reliability of JXTA pipes refers to the message-level flow control. Messages can
be dropped from the overflowing queues at sender or receiver ends. Only JXTA sock-
ets in the analyzed JXTA versions handle this kind of message loss, making it a reli-
able messaging component. JXTA platform uses TCP and HTTP as lower-level pro-
tocols and their reliability between endpoints is still in effect.

Unicast pipes can be combined to achieve many-to-one (M-1) communication.
From the receiver’s perspective, a single operation is required to open the input end of
the pipe. Multiple senders can connect to the same pipe and open their output ends for
communication. Senders “see” the pipe as a one-to-one connection, and handling of
multiple connections at the receiver’s side is completely transparent to the program-
mer. A secure pipe also operates in unicast mode, with the additional security pro-
vided by the Transport Layer Security (TLS) layer [8].

A propagate pipe is used for one-to-many communication; leveraging either IP
multicast on the subnet or rendezvous peers [4] for message propagation. A sender
commonly opens the output end of the pipe first and starts sending, whereas receivers
connect to the propagate pipe by opening their input ends to receive any messages
transmitted by the sender.

Two new and useful messaging abstractions are added to JXTA, the bi-directional
pipe and the JXTA socket. Both are included in this performance evaluation as non-
core JXTA services that offer additional features on top of the core specification. The
goal of analyzing the non-core messaging services is to find if any tradeoffs exist be-
tween the features and performance, as compared to the core pipes.

The purpose of the bi-directional pipe is to provide two-way communication within
a single messaging object. A bi-directional pipe features an API that is similar to a
well-known Java socket API. Under the abstraction layer, the connection is opened
using a unicast pipe for one direction, and then the reverse direction link is established
using an internal endpoint service [8], which is normally not directly used at the ap-
plication layer. The usual pipe resolution is bypassed for the reverse direction. All
connection code is still hidden under the single method invocation.

 JXTA Messaging: Analysis of Feature-Performance Tradeoffs and Implications 1101

Similar to the core pipes, the use of bi-directional pipes assumes that one peer ini-
tially creates an input endpoint (server), to which another peer (client) will connect.
The difference in the API requires a programmer to implement a multi-threaded
server, unlike for core pipes that have a built-in handling of multiple connections.

A JXTA socket is an optimized bi-directional pipe. It uses a standard JXTA pipe
service for the initial connection and endpoint addressing for the reverse connection,
similarly to bi-directional pipe. The JXTA socket provides reliability directly and has
no limit on the transferred data size; it transmits in chunks of 16 KB by default. JXTA
socket provides the same API as the standard Java socket classes, and hides the under-
lying pipe implementation. This includes the methods for obtaining the input and out-
put streams as the primary communication API. The JXTA socket directly allows
byte-level access to the transmitted data, which offers the highest flexibility to the de-
veloper in designing a communication protocol. Therefore, JXTA messages are not
the intended unit of data transmission over JXTA sockets at the application layer.

JXTA messages are XML documents composed of ordered elements [8]. The ele-
ments are name-value pairs, and they can carry any type of payload. JXTA uses
source-based routing and each message carries its routing information as a sequence
of peers to traverse. The peers along the path may update this information.

A relay peer’s main purpose is to cache routes and pass messages between peers
that cannot establish a direct connection. As the usage of firewalls and NAT increases
in the Internet, connectivity becomes more challenging and the role of relays becomes
more important. Relays are potentially exposed to large amounts of traffic and their
performance is important for the entire peer group.

The messaging architecture of JXTA is fairly complex, involving the XML parser
and several layers of abstraction (services) that participate in the message construc-
tion, transmission and processing [12]. It is expected that the layers of abstraction and
indirect messaging add significant overhead and affect the efficiency and performance
of the whole messaging subsystem. Table 1 summarizes the main characteristics of
the JXTA messaging components.

Table 1. Summary of the main features of the JXTA messaging components

Pipe Ends Reliable Direction Other
Unicast 1-1 No 1-way Base pipe
Secure 1-1 No 1-way Encrypted messaging
Propagate 1-M No 1-way Can use UDP for multicast
Bi-directional 1-1 No 2-way Socket-like API
JXTA socket 1-1 Yes 2-way Byte-level socket API

4 Methodology

This study is conducted by setting up a JXTA test-bed consisting of personal com-
puters on and off campus of the University of Saskatchewan in Saskatoon, Canada.
The benchmark applications start up as peers that connect into a JXTA peer group. A

1102 E. Halepovic, R. Deters, and B. Traversat

series of experiments is then performed to evaluate the messaging components under
a range of conditions. The important details of the experimental setup are outlined in
this section and all evaluation parameters are summarized in Table 2.

The hardware environment is a pool of five computers equipped with 800 MHz
CPU and 512 MB of RAM each, used for sending and relay peers. The receiver peers
in a multiple sender scenarios run on two 2.5 GHz PCs with 1 GB of RAM. Most
other studies used only state of the art machines, but we believe that inclusion of
somewhat inferior hardware better reflects the typical user base of common P2P ap-
plications and allows for repeatable experiments.

Two network environments are used throughout this study, a LAN and a WAN. All
LAN measurements are taken with JXTA peers running on the campus 100 Mbps
LAN, inside a subnet. The ping tool measures the average transmission round-trip
time (RTT) at less than 1 ms on this LAN. The high-bandwidth WAN environment
includes peers inside the campus LAN and peers connected to the Internet through a
100 Mbps router and a cable modem. The ping RTT averages on a WAN were 34 to
39 ms at different times throughout the different benchmarking sessions.

The JXTA environment assumes the following settings and properties. The generic
JXTA peer group (NetPeerGroup) is tested, but it is constrained to the test peers by
disallowing external rendezvous or peer connections. The main underlying transport
is TCP. The peer group size of up to 8 edge peers is used due to the complexity of de-
ploying larger peer groups consisting of standalone independent peers. Nevertheless,
we believe that the used group sizes appropriately reflect the majority of P2P commu-
nication scenarios, such as the limits on active incoming and outgoing connections of
common file-sharing, chat and collaboration applications.

The analysis is based on two metrics commonly used in communication systems
performance evaluation, RTT and throughput. Since the unit of data transfer in JXTA
is a message, we use the message RTT as a bi-directional transfer metric, analogous
to the packet RTT in TCP.

We define message RTT as the time elapsed between the instant a message is sent
and the instant an acknowledgement message (ACK) is received by the sender. In this
paper, RTT refers to the message RTT as defined above. The JXTA socket bench-
marks use a pair of character strings in place of genuine JXTA messages, but they
will still be referred to as “messages”. The first string contains the message ID, and
the second stores the payload of desired size. The ACK is composed of the single
string containing the message ID. The message load a pipe can sustain is measured by
the message throughput. Message throughput refers to the maximum number of mes-
sages a pipe can reliably transmit in a unit of time.

Smooth traffic is used for throughput measurements, which assumes a uniform
message-sending rate throughout the test run. Peers use one TCP or HTTP connection
for the complete workload transfers over unicast, secure and propagate pipes and an-
other connection for the ACK delivery over a unicast pipe. The non-core services use
the reverse link of the same connection for ACK transfer. If any modifications to the
general testing environment or diversions from the stated constraints are made, they
are noted with the corresponding results in the following sections.

 JXTA Messaging: Analysis of Feature-Performance Tradeoffs and Implications 1103

Table 2. Experimental parameters and configurations

Hardware 5 (800 MHz, 512 MB) PCs, 2 (2.5 GHZ, 1 GB) PCs
Software MS Windows 2000 Professional, Java J2SE 1.4.1 JVM
Network 100 Mbps LAN, 4 Mbps/512 kbps WAN via cable modem
JXTA J2SE-JXTA versions 1.0, 2.0, 2.2
Peer groups 2-8 edge peers, 1-2 relays, 1 rendezvous peer
Workload 1, 10, 100 KB, 1 MB message sizes
Sample size 10,000 messages (1,000 warm-up)
Metrics Message RTT and Throughput

5 Direct Messaging

This section presents the direct messaging RTT and throughput results and analysis
with respect to the pipe or service type, message size, network distance and the num-
ber of senders and receivers.

The RTT is measured for four message sizes, 1 KB, 10 KB, 100 KB and 1 MB,
which cover most P2P application types, from simple chat applications to file sharing
and content storage, with the assumption that larger files will be broken down into
smaller pieces to enable faster and parallel transfers. The bi-directional pipe does not
have a measurement for 1 MB message size due to the imposed size limit by the
JXTA implementation. Furthermore, it is expected that the limit will be lowered to 64
KB for all pipes, except JXTA sockets, in the newer JXTA versions (2.3.x) to in-
crease fairness in resource usage among peers, especially relays [1]. JXTA core pipes
and services are evaluated in 1-1, 1-M and M-1 communication.

5.1 Message RTT in 1-1 Communication

The objective of this test is to understand how different messaging components be-
have over the range of message sizes, using a single payload element.

The evaluation of the core pipe performance on a LAN was conducted in [3] for
JXTA version 1.0 and 2.0. Fig. 1 shows the same measurements collected for JXTA
2.2 and includes the non-core services. It shows that non-secure pipes, now including
the bi-directional pipe, still exhibit a negligible increase in RTT for message sizes up
to 100 KB and then linearly slow down for larger messages. This indicates the
stronger effect of the underlying implementation, based on unicast pipe, rather than
payload size on RTT (up to 100 KB). It is also noted that secure pipe and JXTA
socket perform significantly better than unicast for smaller message sizes. They both
have a sharper RTT increase at 10 KB size with secure pipe finally performing the
worst of all for 1 MB messages.

The current evaluation of JXTA messaging on the WAN shows more results that
are interesting. The average RTT is shown in Fig. 2. The RTT follows the same gen-
eral patterns as on the LAN, with the expected shift due to the network distance and
bandwidth limits. What is more interesting is that all types of pipes have much closer
RTT than on the LAN, which converges as the message size increases. The unicast

1104 E. Halepovic, R. Deters, and B. Traversat

10

100

1000

10000

1 10 100 1000

Message size (KB)

M
es

sa
ge

 r
ou

nd
-t

rip
 ti

m
e

(m
s) Unicast

Secure
Propagate
Bi-directional
JXTA socket

Fig. 1. Scaling of message RTT on LAN (log-
log scale)

10

100

1000

10000

1 10 100 1000

Message size (KB)

M
es

sa
ge

 r
ou

nd
-t

rip
 ti

m
e

(m
s) Unicast

Secure
Propagate
Bi-directional
JXTA socket

Fig. 2. Scaling of message RTT on WAN
(log-log scale)

and propagate pipes have negligible difference in RTT due to the use of TCP, whereas
UDP-based propagate pipe outperforms the unicast on the LAN by a factor of ten [3].

Overall, the observed results mean that for wide area deployments there is a smaller
penalty in RTT performance with added features, such as security and transport reli-
ability (bi-directional TCP, JXTA sockets). A small overhead for an additional feature
is a desirable behavior for JXTA pipes. A pattern that emerges from the observed RTT
is that the new non-core services show similarity to different core pipes.

The bi-directional pipe has the same pattern of behavior as unicast pipe, which is
very favorable considering the added bi-directional feature. This is not surprising
since the implementation is based on the unicast pipe. On a LAN, the bi-directional
pipe yields results that are within 9%, and on a WAN within 15% of the unicast pipe.
The RTT performance difference between the unicast and bi-directional pipe is there-
fore negligible for practical purposes.

On the other hand, JXTA socket behaves more like secure pipe, with shift in RTT
due to the lack of security provisions. Higher sensitivity of the latter two pipes to the
message size is due to the window-based flow control provisions, on TLS layer for se-
cure pipe and on the service layer for JXTA socket. Finally, the newest JXTA socket
service has the lowest RTT of all messaging components, up to an order of magnitude
for small messages, with the added benefits of reliability and Java socket API.

5.2 Message Throughput in 1-1 Communication

It is already known that core pipes have limited message sending rates, which deter-
mines the 1-1 throughput as shown in [2] for LAN. This study expands the analysis to
cover the effects of both network distance and message size on the sending rates of all
messaging components.

Fig. 3 shows the throughput of the 1 and 10 KB smooth message streams on the
LAN and WAN side-by-side, from which we can quantify the performance penalty of
increased message size and network distance. It is also noticeable that the message
size and network distance have different effects on different pipes.

Message size affects only the secure pipe on the LAN (note the same effect on
RTT from 1 to 10 KB), whereas on the WAN it affects all except propagate pipe. In

 JXTA Messaging: Analysis of Feature-Performance Tradeoffs and Implications 1105

fact, the propagate pipe has poor, but almost equal throughput regardless of the net-
work distance or message size. We can also observe the relative penalty, expressed as
a ratio of throughputs on the WAN and LAN for the same message size. For example,
the relative penalty of WAN for JXTA socket is 2.29 for 1 KB message and 1.56 for
10 KB message. The bandwidth limit forces pipes to reduce the output rate over a
WAN, which is most noticeable for unicast and bi-directional pipes for 10 KB mes-
sages, whose throughput is reduced by factors of 1.78 and 3.92, respectively.

0
20
40
60
80

100
120
140
160
180
200

1 KB 10 KB 1 KB 10 KB

LAN WAN

Network environment and message size

M
es

sa
ge

 th
ro

ug
hp

ut
 (

m
sg

/s
)

Unicast
Secure
Propagate
Bi-directional
JXTA socket

Fig. 3. Effect of message size and network
distance on sending rates

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

Number of senders

M
es

sa
ge

 r
ou

nd
-t

rip
 ti

m
e

(m
s) Unicast

Secure
Secure (10 KB)
Bi-Directional
JXTASocket

Fig. 4. Scaling of RTT with number of senders
(1 KB, WAN)

The throughput observations on the LAN correspond to the RTT results. However,
the throughput behavior of the secure pipe is an anomaly due to the implementation,
which is to be updated in the future to allow the secure pipe to keep the same level of
throughput for 10 KB messages as well. The propagate pipe has a limited throughput
due to the rendezvous service implementation responsible for queuing and propagation
of messages. Bandwidth appearing as a factor in a WAN test is logical and expected.

5.3 Message RTT in M-1 Communication

All JXTA pipes and sockets, except propagate pipe, are designed to allow simultane-
ous connections from multiple sending peers. The following results show how the
pipes behave with up to 8 parallel senders.

Fig. 4 presents a comparison of the message RTT for pipes and JXTA socket trans-
mitting 1 KB messages across a WAN. An additional line for secure pipe at 10 KB
size is plotted to show the effect of the increased message size. All other pipes and
JXTA socket record nearly the same RTT for 10 KB messages. Secure pipe is the
only one noticeably affected by larger payload. The unicast and bi-directional pipes
again follow the same pattern, and they both show lower latency for 2 than for 1
sender, as well as secure pipe for 10 KB message size. For unicast pipe, this may be
an indication of thread management policy when parallel connections are active. For
the other two pipes, the difference is too close to the measurement clock granularity
of 10 ms to make any conclusion. Overall, the increasing number of senders has very
little effect on the message RTT, as long as the bandwidth is not saturated (4 Mbps on
the WAN).

1106 E. Halepovic, R. Deters, and B. Traversat

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Number of senders

M
es

sa
ge

 r
ou

nd
-t

rip
 ti

m
e

(m
s) Unicast

Secure
Bi-Directional
JXTASocket

Fig. 5. Scaling of RTT with number of senders
(100 KB, WAN)

0

100
200

300

400
500

600

700

800
900

1000

1 2 3 4 5 6 7 8

Number of senders

M
es

sa
ge

 th
ro

ug
hp

ut
 (

m
sg

/s
) Unicast

Secure
Bi-Directional
JXTASocket
Unicast max.
JXTA socket max.

Fig. 6. Scaling of throughput with number of
senders (1 KB)

Fig. 5 shows the RTT for 100 KB messages with an increasing number of senders
across a WAN. The linear slopes are higher for all pipes and the similarity between
unicast and bi-directional pipes is still visible. The effect of number of senders is pro-
nounced for this message size. Here we see that JXTA socket is getting slower than
unicast and bi-directional pipes with increasing number of senders.

5.4 Message Throughput in M-1 Communication

The throughput with multiple senders is investigated next for smooth streams of 1 and
10 KB messages across the WAN. The message throughput for 1 KB messages is
shown in Fig. 6. The upper and lower dotted lines represent the maximum through-
puts calculated by multiplying the single-sender rate with the number of senders for
unicast pipe and JXTA socket, respectively. All messaging components show similar
performance patterns on both LAN and WAN. Familiar pattern similarities are visible
for unicast and bi-directional pipes, as well for secure and JXTA socket.

The behavior patterns do not appear for 10 KB message transfers (Fig. 7), where
the secure pipe surprisingly shows the best throughput scaling with number of send-
ers. The bi-directional pipe achieves less than half the throughput of the unicast pipe
for 10 KB messages in 1-1 setup, but all other configurations yield more comparable
performance. However, the reliability of the bi-directional pipe across the WAN con-
nection is extremely low, reflected by high message loss (message queue overflows)
if the sending rate is higher than the maximal sustainable at the receiver.

JXTA socket, on the other hand, gets increasingly slower when bandwidth is near
saturation, to the point of shutting down the cable modem at 8 senders attempting 1
MB messages. Surprisingly, other pipes in most throughput test configurations out-
perform the newest and most optimized JXTA socket.

5.5 Summary of Direct Messaging Findings

The most important characteristic of the JXTA messaging components, in respect
to message size, is a very slow increase in the RTT with the increasing size of mes-
sage. The implication of this behavior is that it is more beneficial to send larger mes-
sages, considering the constant control overhead inside the messages. This would be

 JXTA Messaging: Analysis of Feature-Performance Tradeoffs and Implications 1107

0

10

20

30

40
50

60

70

80

90

100

1 2 3 4 5 6 7 8

Number of senders

M
es

sa
ge

 th
ro

ug
hp

ut
 (

m
sg

/s
) Unicast

Secure
Bi-Directional
JXTASocket

Fig. 7. Scaling of throughput with number of
senders (10 KB)

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Number of receivers

M
es

sa
ge

 r
ou

nd
-t

rip
 ti

m
e

(m
s) 1 KB LAN 10 KB LAN

100 KB LAN 1 MB LAN
1 KB WAN 10 KB WAN
100 KB WAN

Fig. 8. Scaling of RTT with number of receiv-
ers on LAN and WAN

an opposing goal to the fairness towards the network, peer group and especially relays
that queue messages irrespective of their size. In the newer JXTA versions, the reduc-
tion of message size limits favors the overall peer group and network.

The RTT scales well with the increasing number of senders for 1 and 10 KB mes-
sages and visibly worse for 100 KB messages, but still in overall slow linear fashion.

For all JXTA messaging components, the achieved throughput gradually departs
from the ideal, dropping to near half of the maximum when 8 senders are connected to
the unicast and bi-directional pipes, and 4 senders to the secure pipe and JXTA socket.
This issue is recognized and expected to be rectified in the future platform release.

All pipes have lower sending than receiving capacity, which has an interesting im-
plication for file-sharing applications. Peers can download more than they can upload,
making them net downloaders by implementation. Application-layer controls would
be necessary to balance the uploaded and downloaded volumes of data.

6 Message Propagation

The propagate pipe is already evaluated in a direct 1-1 communication, but its true
purpose is to pass messages from one sender to multiple receivers. This is accom-
plished via a rendezvous peer or by using multicast inside a subnet; therefore, the
messaging can be direct or indirect.

Several combinations of transport protocols can be used between the sender, re-
ceivers and a rendezvous peer. If the whole peer group is on the LAN, multicast can
be used for direct propagation. In case that multicast is not an option, peers communi-
cate using TCP or HTTP, such that the sender passes a message to the rendezvous
peer, which propagates it to all connected receivers. A combination of the two is also
possible, where the sender has a TCP or HTTP connection to the rendezvous, which
uses multicast to propagate messages to the receivers. This is required if the sender it-
self is unable to use multicast for any reason, e.g. when it is outside the subnet.

Fig. 8 shows the RTT for different message sizes and numbers of receivers in the
indirect propagation configuration with sender-rendezvous link using TCP and ren-
dezvous-receiver links using UDP multicast. The performance and scaling properties

1108 E. Halepovic, R. Deters, and B. Traversat

in this configuration are overall better than in all-TCP or all-UDP configurations (not
shown). The all-TCP configuration yields slower RTT in all combinations of message
sizes and number of receivers. The all-UDP (multicast) setup, on the other hand, per-
forms better for 1 and 10 KB messages, but noticeably slower for larger 100 KB and 1
MB messages, due to the fragmentation into multiple UDP packets for messages over
16 KB, including control overhead. The values for increasing number of senders ex-
hibit a slow linear increase, except for 1 MB message size that rises faster to 2 and 4
receivers but then stays almost constant for 8 receivers.

A similar characterization can be given to the WAN results (Fig. 8). The actual
RTT is higher due to the increased network distance between the sender and the ren-
dezvous. Larger relative difference is also noted between the values for different mes-
sage sizes, but very little difference when using increasing numbers of receivers, due
to the UDP-based propagation link. High RTT values and jumpiness for 100 KB mes-
sages are due to the saturation of the uplink bandwidth of 512 kbps that was used for
the direction of payload transmissions. The lower bandwidth is the reason for drop-
ping the 1 MB message size from this test.

The message throughput of the propagate pipe on both the LAN and WAN with
multiple receivers (2, 4 and 8) is almost the same as with a single receiver over a di-
rect connection (Fig. 3). The mean throughput of a smooth stream for 1, 2, 4 and 8 re-
ceivers shows a very high stability, even across all protocol configurations. The mean
throughput for 1 KB messages is 9.06 msg/s with the standard deviation of 0.09
msg/s. Overall, the propagate pipe has poor, but stable throughput on LAN and WAN
configurations. However, it is still questionable how well it will scale at higher loads.

7 Indirect Messaging Through Relays

Relays are necessary to connect the pipe ends between peers that are not directly ac-
cessible to each other. Relays potentially introduce an overhead by adding the proc-
essing cost and extending the pipe length. The RTT test measures the cost of the relay
for a two-way communication. The relay throughput test measures the receiving rate
of messages given some sending rate and the message path through the relay. Lower
receiving rates can quantify the overhead a relay imposes on a one-way pipe through-
put. The messages in this test contain one payload element 1 KB in size and edge
peers communicate in a 1-1 fashion. Four peer and relay configurations are tested: (1)
direct TCP without a relay, (2) single relay using TCP, (3) single relay using HTTP
and (4) two relays using at least two HTTP connections.

Since HTTP is a higher-level protocol that uses TCP, it should introduce additional
overhead. For JXTA 2.x configuration 4 uses two HTTP connections (between the
sender and its relay and between two relays) and one TCP connection (between the
receiver and its relay). The addition of TCP in configuration 4 is to prevent the edge
peers from optimizing the path by converging to the single relay, as provided by the
newer implementation.

The test-bed for this relay evaluation study is on a WAN and includes the JXTA
version 2.2 and new non-core messaging components: the bi-directional pipe and
JXTA socket. The shown results are representative of the impact that relays have on
messaging performance. The results for other JXTA versions and network environ-

 JXTA Messaging: Analysis of Feature-Performance Tradeoffs and Implications 1109

ments follow the same patterns, noting that JXTA 1.0 relays used only HTTP and
there was no path optimization in configuration 4. The results for JXTA 1.0 and 2.0
on a LAN are discussed in more detail in [4] (core pipes only).

7.1 Effect of Relays on Message RTT

In the direct TCP configuration, two peers connect without any rendezvous or relay.
This scenario is shown as a baseline for easier comparison with relayed configurations.

In all of the relayed configurations, the performance trends of the core pipes are
consistent, but more emphasized on a WAN. The most intriguing is the effect of the
relay and transport on the RTT of the unicast, propagate and bi-directional pipes
(Fig. 9). Their latency is lowest through an HTTP relay than in any other non-
multicast configuration. This is quite an unexpected but consistent behavior and the
reason is found in an implementation bug within TCP transport module that persisted
throughout the JXTA versions. This behavior is reportedly fixed in the next JXTA
release (2.3). Secure pipe and JXTA socket become uniformly slower through the
configurations with added relays, all JXTA versions and both LAN and WAN con-
figurations, as expected.

0

200

400

600

800

1000

1200

Direct TCP 1 Relay -
TCP

1 Relay -
HTTP

2 Relays -
TCP/HTTP

Relay conf iguration

M
es

sa
ge

 r
ou

nd
-t

rip
 ti

m
e

(m
s) Unicast

Secure
Propagate
Bi-directional
Jxta socket

Fig. 9. Effects of relay configurations on pipe
RTT

0

20

40

60

80

100

120

140

160

Direct TCP 1 Relay -
TCP

1 Relay -
HTTP

2 Relays -
TCP/HTTP

Relay configuration

M
es

sa
ge

 th
ro

ug
hp

ut
 (

m
sg

/s
)

Unicast
Secure
Propagate
Bi-directional
Jxta socket

Fig. 10. Effects of relay configurations on pipe
throughput

In the two-relay configuration, the relays pass messages between each other on be-
half of edge peers. The additional relay has the strongest effect on the propagate pipe
causing the RTT to reach the level that will likely be noticeable to the user.

Looking at the evolution through versions [4], an interesting result is that the RTT
performance of the relayed secure pipe over TCP improved between JXTA versions
1.0 and 2.x, relative to the unicast and propagate pipe. It is also surprising to see that
the secure pipe has lower RTT than the propagate pipe in the two-relay configuration,
regardless of the overhead of security provisions.

For JXTA 2.2 the bi-directional pipe and JXTA socket are added to the analysis
and they are both susceptible to the effects of relays. The bi-directional pipe continues
to exhibit the same patterns and similar RTT to the unicast pipe and JXTA socket be-
haves like the secure pipe.

1110 E. Halepovic, R. Deters, and B. Traversat

7.2 Effect of Relays on Message Throughput

Fig. 10 shows the achieved relay throughput for JXTA 2.2 on a WAN. The throughput
values follow the expected pattern due to the addition of relays and HTTP. The issues
with the TCP transport module do not affect the one-way throughput. All pipes, includ-
ing JXTA socket, show the effect of the transport protocol and number of relays.

The propagate pipe in JXTA 2.2 appears to be the least affected, as it has the most
stable, but poor throughput under different relay and network setups (close to 10
msg/s). The unicast and bi-directional pipes follow the similar patterns of behavior
and the throughput penalty is very high for both. Using an HTTP vs. TCP relay re-
duces the throughput of the unicast pipe by the penalty factor of 2.20 and of the bi-
directional pipe by 6.58. The penalty factor of an additional relay is 1.53 for the uni-
cast pipe and 2.81 for bi-directional pipe vs. 1 HTTP relay. These very high penalties
call for improvements in the relay implementations. The JXTA socket still follows the
secure pipe very closely, both being affected by relays, but to the smaller degree than
unicast and bi-directional pipes.

During the throughput tests of JXTA 1.0, relay peers consistently failed due to
overloading. The repeated runs resulted in failures at almost the same message counts
indicating a buffering issue. A similar problem occurred during the two-relay WAN
test for both 2.x versions (secure, propagate, bi-directional) and single HTTP relay for
version 2.2 (secure, propagate). Several test runs of over 1,000 successful message
transmissions were required to collect 10,000 samples. The low relay throughput val-
ues are traced to the default queue sizes, which can be tuned to produce better results.

8 Implications for System Design

The major lessons learned from the performance analysis are summarized in this sec-
tion and presented using sample decision paths that may be used by a developer. We
concentrate on the performance on a WAN as a more common P2P environment.

The first general recommendation is that the decision-making be prioritized by the
effect that the component under consideration has on the whole system. For example,
the limitations of the relay peers are likely to have stronger consequences rather than
pipe limitations, hence they should be considered first.

It is also recommended that the system designers use benchmarking in the early sys-
tem analysis and design phases, with parameters that best suit their prospective system.
The numerous tradeoffs between features and performance make it worthwhile to care-
fully pick the appropriate solution. The substantial improvements in JXTA 2.x make
the version 1.0 obsolete, and the use of the current version is strongly suggested.

8.1 General Design Case

Within the context of messaging, the choice of the components may start with regard
to the relay. If the system or its component require a relay, it is better to look at the
constraints early to avoid the potential problems. For JXTA 2.x, it is best to avoid
HTTP relay configurations, when using secure, propagate or bi-directional pipes, due
to the problems with pipe resolution and transmission reliability. Especially if one-
way communication is prevalent, the TCP relay is a better choice because of higher

 JXTA Messaging: Analysis of Feature-Performance Tradeoffs and Implications 1111

throughput and reliability. The unicast and bi-directional pipes distinctively perform
with highest throughput and stability over a TCP relay. Overall, the TCP relay offers
the best support for unidirectional data transfer, such as for file-sharing applications
or any case where larger amount of data is transmitted in one direction. On the other
hand, HTTP relay is better for bi-directional exchanges, such as instant messaging
and collaboration cases, due to lower RTT than TCP relay.

An additional consideration is that the lack of flow control will cause message
drops at the overloaded relay, so the safest approach is to deploy a relay on the dedi-
cated machine. The high cost of an additional relay on the message path proves that it
was the right decision to implement an optimization algorithm to converge to a single
relay accessible to both communicating peers.

Deciding on the messaging component or service is the next step and can be made
by looking at major performance advantages and disadvantages of each pipe. In the
general deployment case, we look at the unicast and bi-directional pipes. The unicast
pipe is suitable for environments of high message loads and bursty traffic. Its overall
performance scales well with the message size and number of senders, but its RTT
performance degraded since the version 2.0 for small message sizes.

The bi-directional pipe is better suited for peer groups where two-way messaging is
prevalent. Its API is also an advantage over the unicast pipe for a typical Java pro-
grammer. However, it may be better to stick with unicast pipe in WAN environments
of very high message load, where the bi-directional pipe suffers from high message
loss and has lower throughput through relays. From the programming perspective, the
single messaging object for bi-directional communication and the API similar to Java
sockets are traded off with the need to implement a custom multi-threaded server.

An alternative in the general deployment case is JXTA socket, with lowest latency
and best scalability for two-way small message exchanges (discussed further). This
analysis is continued with specific design cases where reliability, security and effi-
cient message propagation are the main development objectives.

8.2 Reliable Messaging Case

The only messaging component with explicit built-in reliability is the JXTA socket
for version 2.2. This messaging component is the best choice for systems that require
highest possible reliability. The configurations that maximize JXTA socket perform-
ance include messaging under 1 MB per element of transfer, and TCP relays for high-
est throughput and lowest RTT.

JXTA socket is a clear choice for two-way communication with message sizes up
to 100 KB. The API and reliability are the main advantages, but they come at the high
price of very low one-way throughput, compared to other pipes. Parallel sender sce-
narios should also be avoided by having a receiver open multiple input pipes for load
balancing. However, although the sustainable load is lower than for unicast and bi-
directional pipes, most of the systems would not put a single peer under the higher
pressure that it can sustain.

8.3 Secure Messaging Case

JXTA-based systems that require high security, in particular secure messaging, need
to be designed and deployed to maximize performance of secure pipes. The bench-

1112 E. Halepovic, R. Deters, and B. Traversat

marking results show that secure pipes perform better in JXTA 2.x versions than in
1.0. The RTT of secure pipes is excellent for message sizes of up to 10 KB, even on
the WAN. Only the RTT over WAN with message sizes of 100 KB and more tends to
scale slightly worse than other pipes with more senders. For JXTA 1.0, complex mes-
sages with many elements should be avoided, but in JXTA 2.0, more small elements
per message yields better RTT results. If the system requires the use of a relay, the
best way to increase performance and reliability is to use a single relay with TCP for
JXTA 2.2, HTTP for 2.0 and enable both TCP and HTTP for JXTA 1.0.

Secure pipe is therefore suitable for applications that require secure small message
exchange, such as instant messaging and collaboration in secure groups, or for secure
exchange of data and results in a distributed computing system.

8.4 Efficient Propagation Case

The propagate pipe has a special feature in transparently allowing messaging from
one sender to many receivers. This is an efficient way to propagate data, which is
likely to be a primary reason for its selection. Although the performance with respect
to the RTT and throughput lags after other pipes, this may be only a secondary factor
in the selection process, depending on the application. The results also show that the
efficiency and value of the propagation increase with the addition of receivers, espe-
cially if the multicast is available. There is an additional benefit when rendezvous
peers propagate messages. Receivers do not need to connect directly to the sender,
whose only contact is with the rendezvous. This reduces the processing load on the
sender, allowing it to run in a constrained environment, such as on a sensor that sends
the readings to many interested receivers.

The propagate pipes should be used for under 10 KB message size, usually up to
the local subnet multicast limit. The default setting in JXTA is 16 KB and should not
be increased arbitrarily. Since the intent is to use propagation for unidirectional data
transfer, the main objective is to optimize throughput. A single TCP relay is recom-
mended for indirect relayed communication. Most data dissemination applications can
exploit advantages of the propagate pipes, such as content delivery, file sharing, data
replication or 1-M group-based instant messaging or chat. However, the throughput
limits are still too low for real-time video streaming or similar uses.

9 Conclusion and Further Work

This paper discusses the performance issues of the JXTA platform messaging subsys-
tem. The performance results are collected in a variety of configurations, which are
chosen to cover common environments that P2P applications operate in. The ranges
of JXTA-specific parameters are chosen with an attempt to show the increasing cost
or latency with higher workload, such as peer group and message sizes. Most of the
parameter values produce logical and expected results and behaviors. However, a con-
siderable number of unexpected and unintuitive results are obtained as well. This
shows that JXTA is still a maturing P2P platform and that there are many opportuni-
ties to optimize a JXTA-based system and improve the platform implementation.

As new JXTA versions are released frequently, running a large suite of benchmarks
for each version is not feasible, so system designers are advised to incorporate bench-

 JXTA Messaging: Analysis of Feature-Performance Tradeoffs and Implications 1113

marking in the early project stages. The requirements of the system would normally
dictate the choice of the messaging service, e.g. with respect to its security and reliabil-
ity provisions, but the performance penalty for additional features may not be accept-
able. The presented results and discussion indicate the tradeoffs and it is foreseeable
that some systems would not operate under such compromise. However, JXTA offers
ample room for implementation of custom provisions such as reliability, as well as
tunable buffer and message sizes that can be used to improve performance [1].

The improvements in the JXTA socket and bi-directional pipe implementations
would clearly distinguish these two services as the primary messaging options for
most application scenarios. JXTA socket in particular needs better throughput for
large messages, high load and multiple sender environments, whereas bi-directional
pipe needs higher reliability.

During this study, several issues came up that could not be circumvented by chang-
ing configurations. The Project community has recognized all discovered issues as be-
ing caused by implementation problems and earlier design decisions. Improvements in
the secure pipe, propagation service, message queuing and relay implementations are
already in progress for the next version, which will bring even better JXTA platform.

There are three main benefits of the presented performance results: learning the
limitations of the JXTA platform, formulating the simulation parameters based on
empirical results and using the methodology and findings to optimize the design of
the messaging subsystem for a new application. This paper includes the discussion of
the design optimizations for messaging reliability, security and propagation.

Areas of future work relevant to messaging include primarily scalability evaluation
of large peer groups in direct and relayed communication. The next points of interest
are the behavior in sub-groups and the performance impact of HTTP in direct messag-
ing. The public JXTA network has grown to size that can be used for traffic tracing
and probing in search of the traffic and peer community characteristics. The JXTA
community has initiated a number of projects to provide alternate language imple-
mentations, most importantly C/C++, which now follows the updates of the J2SE im-
plementation. Further evaluation would show whether different implementations are
more appropriate for specific parts of a heterogeneous JXTA P2P system.

References

1. Antoniu, G., et al.: Performance Evaluation of JXTA Communication Layers. Proc. of
GP2PC'05, Cardiff, UK (2005)

2. Halepovic, E., et al.: The Costs of Using JXTA. Proc. of P2P '03, Linköping, Sweden
(2003) 160-167

3. Halepovic, E., et al.: JXTA Performance Study. Proc. of PACRIM '03, Victoria, BC,
Canada (2003) 149-154

4. Halepovic, E., et al.: The JXTA Performance Model and Evaluation. Future Generation
Computer Systems, Elsevier, Vol. 21, No. 3. (2005) 377-390

5. Java Message Service (JMS). Sun Microsystems, Inc. http://java.sun.com/products/jms/
6. Junginger, M., et al.: The Multi-Ring Topology - High-Performance Group

Communication in Peer-to-Peer Networks. Proc. of P2P '02, Linköping, Sweden (2002)
7. JXTA Bench Project. http://bench.jxta.org/

1114 E. Halepovic, R. Deters, and B. Traversat

8. JXTA v2.0 Protocols Specification.
http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html, 2003

9. Matossian, V., et al.: Enabling Peer-to-Peer Interactions for Scientific Applications on the
Grid. Proc. of Euro-Par '03, Klagenfurt, Austria (2003) 1240-1247

10. MyJXTA2 Enterprise Edition. http://myjxta2.jxta.org/servlets/ProjectHome, 2002
11. Pallickara, S., et al.: NaradaBrokering: A Middleware Framework and Architecture for

Enabling Durable Peer-to-Peer Grids. Proc. of Middleware '03, Rio de Janeiro, Brazil
(2003) 41-61

12. Parker, D.C., et al.: Building Near Real-Time Peer-to-Peer Applications with JXTA. Proc.
of GP2PC '04, Chicago, USA (2004)

13. Project JXTA Home Page. http://www.jxta.org/
14. Seigneur, J.-M., et al.: P2P with JXTA-Java pipes. Proc. of PPPJ '03, Kilkenny City,

Ireland (2003)
15. Tran, P., et al.: JXTA and TIBCO Rendezvous – An Architectural and Performance

Comparison. http://www.smartspaces.csiro.au/links.htm, 2003
16. Verbeke, J., et al.: Framework for Peer-to-Peer Distributed Computing in a

Heterogeneous, Decentralized Environment. Proc. of GRID'02, Baltimore, MD, USA
(2002) 1-12

An Aspect-Oriented Communication
Middleware System

Marco Tulio de Oliveira Valente, Fabio Tirelo,
Diana Campos Leao, and Rodrigo Palhares Silva

Department of Computer Science,
Catholic University of Minas Gerais, Brazil

{mtov, ftirelo}@pucminas.br

Abstract. This paper describes a Java-based communication middle-
ware, called AspectJRMI, that applies aspect-oriented programming con-
cepts to achieve the following requirements: (1) modular implementation
of its features, including those with a crosscutting behavior; (2) high de-
gree of configurability and adaptability; (3) performance similar to con-
ventional object-oriented communication middleware systems, such as
CORBA and Java RMI. In AspectJRMI, users may explicitly select the
features provided by the middleware infrastructure, according to their
needs. Most of these features have a crosscutting behavior, including in-
terceptors, oneway calls, asynchronous calls, value-result parameter pass-
ing, and collocation optimizations. In this case, they are implemented as
aspects. The design of AspectJRMI follows a set of principles, called hor-
izontal decomposition, to achieve pluggability of aspects to the core mid-
dleware implementation. This paper presents the programming interface
and the implementation of AspectJRMI. It also presents experimental
results of its performance.

1 Introduction

Middleware systems, such as CORBA [14] and Java RMI [24], encapsulate several
details inherent to distributed programming, including communication protocols,
data marshalling and unmarshalling, heterogeneity, service lookup, synchroniza-
tion, and failure handling. Although such systems have been proposed to make
distributed programming more simple and natural, they have evolved over the
years to become complex, monolithic, and heavyweight [7, 26, 28]. On the other
hand, a wide range of applications use only a reduced subset of middleware
features. In this case, the monolithic architecture of middleware contributes to
increase the complexity, size, and the resource requirements of such systems,
without providing proportional benefit.

This paper describes a Java-based communication middleware, called As-
pectJRMI, that applies aspect-oriented programming concepts to achieve the
following requirements:

– Modular and open implementation of features, including those having a
crosscutting behavior. In AspectJRMI, users can change and extend the
main components of the platform.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1115–1132, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1116 M.T. de Oliveira Valente et al.

– High degree of configurability and pluggability. At compile time, users may
explicitly select the features provided by the middleware infrastructure, ac-
cording to their needs.

– Performance similar to conventional object-oriented communication middle-
ware systems, such as CORBA and Java RMI.

In order to achieve such requirements, the design of AspectJRMI follows a set
of principles, called horizontal decomposition [28], that advocates the synergistic
combination of objects and aspects in order to modularize middleware concerns.
The components of AspectJRMI are divided in two categories: mandatory and
non-mandatory. Following the guidelines proposed by horizontal decomposition
method,mandatory (or core) components are those related to themainmiddleware
functionality, i.e., components that support the implementation of transparent re-
mote method invocations (using call-by-value, at-most-once, and synchronous se-
mantics). As examples of mandatory components, we can mention channels, stubs,
skeletons, and remote references. Moreover, in AspectJRMI users can extend or
adapt the default behavior of mandatory components. For example, they can de-
fine channels that use different transport protocols or add extra functions to chan-
nels (such as encryption or compression ofmessages). Mandatory components were
implemented using traditional techniques in object-oriented programming (such
as design patterns and vertical decomposition). Particularly, the core of the sys-
tem was implemented using components defined in Arcademis [17], a Java-based
framework that supports the implementation of middleware architectures.

Non-mandatory components implement features that are not required in ev-
ery distributed application. Most of these features have a crosscutting behavior,
such as interceptors, oneway calls, asynchronous calls, value-result parameter
passing, and collocation optimizations [26, 27]. For this reason, they are imple-
mented as aspects using AspectJ [11]. An aspect compiler is used to weave the
core and optional components. Moreover, the static nature of the weaving process
in AspectJ contributes to keep the performance and memory footprint overhead
of AspectJRMI at acceptable values.

The rest of the paper is structured as follows. Section 2 presents an overview
of the main principles advocated by horizontal decomposition. Section 3 de-
scribes the core of AspectJRMI. First, the section describes the overall architec-
ture of Arcademis and then describes the main components of the AspectJRMI
core. Section 4 presents the aspects that can be woven to the core in order to
support the following crosscutting features: oneway calls, asynchronous calls,
call by value-result, service combinators, remote reference decorators and collo-
cation optimizations. Section 5 describes an experimental evaluation of the size
and performance overhead of AspectJRMI. Section 5 describes related work and
Section 6 concludes the paper.

2 Horizontal Decomposition

Horizontal decomposition is a set of guidelines and principles that support the
implementation of middleware systems with high degrees of modularity and

An Aspect-Oriented Communication Middleware System 1117

adaptability [28]. The method proposes a solution to the feature convolution
phenomenon in traditional middleware systems, i.e., the fact that many mid-
dleware features can not be easily plugged in and plugged out of the platform,
since they crosscut the implementation of other features. Horizontal decomposi-
tion advocates the use of traditional modularization techniques, such as vertical
decomposition, to implement a minimal but well-modularized core middleware
system. Basically, this core should provide support to synchronous and statically
defined remote invocations, using call-by-value parameter passing. Horizontal
decomposition also advocates the use of aspect-oriented programming to super-
impose orthogonal features in this core. A feature is considered orthogonal if
both its semantics and implementation do not fit in a single component. Tradi-
tional weaving process is used to compose the core and the orthogonal features
that are requested in a particular application. The method supports fine-grained
customizations; particularly, features not used by an application do not impact
the generated middleware platform.

3 AspectJRMI Core

The core of the system is derived from components defined in Arcademis [17], a
Java-based framework that supports the implementation of customizable mid-
dleware architectures.

3.1 Arcademis Architecture

Arcademis predefines the overall architecture of middleware platforms, as de-
scribed in Figure 1. In object-oriented middleware platforms, clients tradition-
ally use intermediate components to invoke methods on remote objects. Two of
these components are the stub, which exists on the client side of a distributed

Activator

Remote
Object

Remote
Object

Representation

Scheduler

Chain of
Dispatchers

Client
Application

Chain of
Invokers

Request
Sender

Response
Receiver

Middleware
Protocol

Serialization
Protocol
Transport
Protocol

Connector Acceptor

Request
Receiver
Response

Sender

Skeleton

Discovery
Agency

Stub

Application Layer

M
id

dl
ew

ar
e

 L
ay

er

Fig. 1. Arcademis Architecture

1118 M.T. de Oliveira Valente et al.

application, and the skeleton, which is located on the server side. The stub acts
as a local proxy for the remote object, and its function is to forward to the server
remote calls made by the client. The skeleton represents the invoking client to
the remote object, acting as an adapter.

Besides stubs and skeletons, Arcademis defines several other components.
The invoker is responsible for emitting remote calls, whereas its server counter-
part, the dispatcher, is in charge of receiving and passing them to the skeleton.
The Scheduler is used whenever necessary to sort remote calls according to
their priorities. The communication layer in Arcademis is represented by a set
of components that constitute the transport protocol, the serialization protocol
and the middleware protocol. Connections are established by two components:
the Connector and the Acceptor. Request senders and receivers provide means
to assure the reliability level the middleware provides to distributed applications.
A lookup service allows clients to discover and access remote objects. Finally,
the Activator defines how an object is made ready for receiving remote calls.

3.2 AspectJRMI Core Components

The core of AspectJRMI is an instance of Arcademis that provides a basic remote
method invocation service. The components in the core implement interfaces and
abstract classes defined in Arcademis and reuse concrete classes from this sys-
tem. Including Arcademis components, the core is composed by 4 interfaces, 11
abstract classes, 89 concrete classes and almost 9000 lines of Java code. The core
also includes a stub/skeleton compiler.

Communication Components: The core uses TCP/IP for data transmission.
It also supports a middleware protocol with four different types of messages: call,
return, ping and ack. The call message describes a remote invocation, including its
arguments and identifiers. The return message holds the results of remote calls.
Messages ping and ack are used in order to verify if servers or clients are alive.

In the core, acceptor and connector components provide a synchronous ser-
vice, meaning that the client thread remains blocked during the execution of
remote calls. On the server side, a connector creates a new thread for each in-
coming connection. Service handler components (request sender/receiver and
response receiver/sender) implement an at-most-once invocation semantics.

Client and Server Configurations: We have implemented two versions of
the core of AspectJRMI. The first version has only client functionality, i.e., it
has only components in charge of dispatching remote method invocations, such
as connector, invoker, request sender and stub. In the current implementation
of the system the client core has 37 KB (size of all the .class files). The sec-
ond version supports client and server functionality, i.e., it has components in
charge of sending and receiving remote method invocations. Besides the client
components, this version includes the following elements: acceptor, activator,
connection server, dispatcher, skeleton and request response. The client/server
core has 68 KB.

An Aspect-Oriented Communication Middleware System 1119

Reconfiguration of Core Components: Following the Arcademis architec-
ture, the core of AspectJRMI has a singleton component called ORB. The ORB
contains a set of factories that eases changing the implementation of a compo-
nent without interfering in other modules of the system. In order to extend the
behavior of a component, users should only associate a new factory to the ORB.
The ORB has factories for the following components: channels, service handlers,
activators, connectors, messages, end-points, notifiers, acceptors, streams, sched-
ulers, connection servers, remote object identifiers and dispatchers.

4 Crosscutting Features

Besides offering a synchronous remote method invocation service, AspectJRMI
also provides modular implementations of the following crosscutting features:
oneway calls, asynchronous calls, call by value-result, service combinators, re-
mote reference decorators and collocation optimization.

4.1 Oneway Calls

In oneway calls, control returns to the client as soon as the middleware layer
receives the call. Thus, client and remote method executions are asynchronous.
Oneway calls neither return values nor throw remote exceptions. In AspectJRMI,
the abstract aspect OneWayAspect defines oneway calls. This aspect has the
abstract pointcut onewayCalls that defines the calls dispatched using oneway
semantics.

abstract aspect OneWayAspect {
protected abstract pointcut onewayCalls();

}

Example: Aspect MyOneWayAspectdefines that calls to void Hello.sayHello()
should be dispatched using oneway semantics.

aspect MyOneWayAspect extends OneWayAspect {
protected pointcut onewayCalls(): call(void Hello.sayHello());

}

4.2 Asynchronous Calls

In order to use asynchronous calls, the programmer has to define which meth-
ods are intended to be asynchronously called by means of intertype declarations
of AspectJ. AspectJRMI provides the aspect AsynchronousCallsAspect which
encapsulates almost all implementation details of this feature. This aspect re-
lies on pointcut asynchronousCalls() to specify asynchronous calls, which are
those whose names start with async , return Future, and are not performed
within Skeleton classes.

1120 M.T. de Oliveira Valente et al.

public aspect AsynchronousCallsAspect {
public pointcut asynchronousCalls():

call(Future *.async_*(..)) && !(within(*_Skeleton));
}

Method getResult in class Future returns the result of an asynchronous
remote call. If this call has not finished, getResult waits its conclusion. If this
call fails, getResult throws an exception of type RemoteException.

Example: Consider that the methods in interface Hello may be called asyn-
chronously.

interface Hello extends Remote {
String sayHello() throws ArcademisException;
String sayHello(String name) throws ArcademisException;
}

For this purpose, it is only necessary to define an aspect AsyncHello that
introduces in interface Hello an asynchronous version for each of its methods.
The asynchronous version must return Future, have a prefix async in its name
and a body that just returns null.

aspect AsyncHello {
public Future Hello.async_sayHello() { return null; }
public Future Hello.async_sayHello(String name) { return null; }

}

The following code fragment asynchronously calls method async sayHello
and later uses method getResult for synchronizing and getting its result.

Future ftr = server.async_sayHello("Bob");
...
String res = (String) ftr.getResult();

4.3 Call by Value-Result

Call by value-result is specified by defining formal parameters as having type
Holder. This class plays the role of a wrapper for the argument passed by value-
result. This argument must implement the interface Marshable, which denotes
serializable values in Arcademis. Class Holder has the following interface:

class Holder {
public Holder(Marshable o);
public Marshable getValue();
public void setValue(Marshable o);

}

An Aspect-Oriented Communication Middleware System 1121

On calling a remote method that has a parameter of type Holder, a client
must: (i) create an instance h of an object of type Holder enclosing the actual
parameter value; (ii) use h as an actual parameter; and (iii) on return of the
method, extract the result from holder h.

In order to use call by value-result, the programmer does not need to de-
fine any aspect. The implementation of AspectJRMI uses the following internal
aspect to intercept calls having parameters of type Holder:

pointcut callbyValueResult(): call(* *(..,Holder,..));

Example: The following code fragment defines a method with two value-result
parameters, as well as a client using this method.

void foo(Holder h1, Holder h2) {
Date d = (Date) h1.getValue();
d.setDate(12, d.getDay() + 1, 2004);
h2.setValue(new Date(2, 28, 2005));

}
........
Holder h1 = new Holder(new Date(2,17,2005));
Holder h2 = new Holder(new Date());
foo(h1,h2);
((Date) h1.getValue()).print(); // prints December 18th, 2004
((Date) h2.getValue()).print(); // prints February 28th, 2005

In addition, AspectJRMI supports call by result, in which parameters are
used to return values from methods. Call by result is specified in a way similar
to call by value-result, using type ResultHolder.

Restriction: Call by value-result and call by result are incompatible with asyn-
chronous and oneway calls. If this restriction is not followed, a run time error is
raised.

4.4 Service Combinators

Service combinators were originally proposed to handle failures and to customize
programs that need to retrieve web pages [4]. In AspectJRMI, we adapt this
mechanism in order to express that remote invocations should be dispatched
sequentially (to provide fault tolerance), concurrently (to decrease response time)
or non-deterministically (to provide load distribution).

Let C1 and C2 be two remote method calls. AspectJRMI allows the compo-
sition of these calls by means of the following service combinators:

– C1 > C2 (alternative execution): C1 is invoked; if its invocation fails then
C2 is invoked; if the invocation of C2 also fails then the combined call fails.
Thus, the combinator > provides fault tolerance.

1122 M.T. de Oliveira Valente et al.

– C1 ? C2 (non-deterministic choice): Either C1 or C2 is non-deterministically
chosen to be invoked. If the selected call fails, then the other one is invoked.
The combinator fails when both C1 and C2 fail. Thus, service combinator ?
provides load balancing.

– C1 | C2 (concurrent execution): Both C1 and C2 are concurrently started.
The combinator returns the result of the first call that succeeds first; the
other one is ignored. The combinator fails when both calls fail. Thus, service
combinator | optimizes the response time of an idempotent remote call by
concurrently invoking it in two servers.

Service combinators are associated with remote references using the following
classes:

class SimpleRemoteRef extends RemoteRef {
public SimpleRemoteRef(Remote endpoint);

}
class StructuredRemoteRef extends RemoteRef {
public StructuredRemoteRef(char op, RemoteRef r1, RemoteRef r2);

}

The abstract class RemoteRef represents a remote reference in the system.
SimpleRemoteRef denotes a standard remote reference, with no service combina-
tor, whereas StructuredRemoteRef denotes a remote reference associated with
a service combinator. Users can also provide their own subclasses of RemoteRef
in order to define new combinators.

The abstract aspect RemoteAspect associates service combinators with re-
mote references:

abstract aspect RemoteAspect {
protected abstract pointcut RemoteCalls();
protected abstract RemoteRef getRemoteRef();

}

Aspects extending RemoteAspect must define the calls with an associated
service combinator (pointcut RemoteCalls) and the RemoteRef used in the in-
vocation of such calls (method getRemoteRef).

Example: Suppose the following client of interface Hello (Section 4.2).

class HelloClient {
Hello server = RemoteRef.InitRemoteRef();
String s1 = server.sayHello();
String s2 = server.sayHello("Bob");

}

Suppose we want to use the following tactics in invocations of services of
type Hello: each call must be first dispatched to the server helloSrv in node

An Aspect-Oriented Communication Middleware System 1123

skank ; on failure, it must be dispatched to the server helloSrv in node patofu.
Moreover, this tactic must be associated with calls to Hello methods inside
class HelloClient. The aspect HelloClientAspect implements the proposed
invocation tactics:

1: aspect HelloClientAspect extends RemoteAspect {
2: private RemoteRef ref;
3: protected pointcut RemoteCalls(): within(HelloClient)
4: && call(* Hello.*(..));
5: public HelloClientAspect() {
6: String s1 = "skank.inf.pucminas.br/helloSrv";
7: String s2 = "patofu.inf.pucminas.br/helloSrv";
8: ref = new StructuredRemoteRef(’>’,
9: new SimpleRemoteRef(RmeNaming.lookup(s1)),
10: new SimpleRemoteRef(RmeNaming.lookup(s2)));
11: }
12: protected RemoteRef getRemoteRef() {
13: return ref;
14: }
15: }

Line 3 specifies that the invocation tactics supported by this aspect must be
associated with calls of methods of type Hello occurring inside class HelloClient.
Lines 8-10 create a structured remote reference using service combinator > for
failure recovery.

Restrictions: In order to be properly combined, C1 and C2 should represent
calls to methods sharing a common name (probably having different target ob-
jects). Moreover, the static type checking rules of Java prevents combining of
synchronous and asynchronous calls.

4.5 Remote Reference Decorators

Remote reference decorators (also known as interceptors in CORBA) are used to
insert additional behavior in the invocation path of remote calls. Decorators use
class composition to create a chain of tasks to be executed in the invocation flow
of a remote call. A decorator is defined by means of class RemoteRefDecorator:

abstract class RemoteRefDecorator extends RemoteRef {
public RemoteRefDecorator(RemoteRef ref);

}

The constructor of this class has a parameter ref which denotes the remote
reference to be decorated. A remote reference decorator should extend the class
RemoteRefDecorator. AspectJRMI provides the following standard decorators:
Cache (that implements a cache with the results of idempotent remote calls);
Log (that provides a log service for remote calls); and Timer (that specifies a
timeout for the execution of a remote call before throwing an exception).

1124 M.T. de Oliveira Valente et al.

Example: The following fragment of code associates a Log decorator with both
components of the structured remote reference of the previous example.

8: ref = new StructuredRemoteRef(’>’,
9: new Log(new SimpleRemoteRef(RmeNaming.lookup(s1))),
10: new Log(new SimpleRemoteRef(RmeNaming.lookup(s2))));

4.6 Collocation Optimizations

In distributed object-oriented systems, there are situations where servers and
clients are collocated in the same address space. In such cases, there is no need
to dispatch remote calls using the middleware infrastructure. Instead, remote
invocations may be directly forwarded to the server object. This strategy is
usually called direct collocation optimization[21].

In AspectJRMI, direct collocation does restrict or change the semantics of
other concerns associated to an invocations subjected to optimization. Particu-
larly, oneway calls and asynchronous calls can be forwarded to a local object.
Moreover, service combinators, remote reference decorators, and call by value-
result preserve their semantics in calls subjected to optimizations.

In order to activate collocation optimizations, we need to weave an aspect
named CollocationAspect with the component application. This aspect has
the following interface:

aspect CollocationAspect {
pointcut remoteObjectInit(RemoteObject r):

initialization(RemoteObject+.new(..)) && this(r);
pointcut remoteObjectAsResult():

call(RemoteObject+ *(..));
pointcut remoteObjectAsParam():

call(public object Stream.readObject() && within(*_Skeleton);
}

Pointcut remoteObjectInit captures the initialization of remote objects. An
advice associated to this pointcut inserts the identifier of this object in an in-
ternal collocation table. Pointcut remoteObjectAsResult captures all method
invocations that return a RemoteObject. An around advice associated with this
aspect checks whether or not the identifier of this remote object is in the collo-
cation table. If it is, a local reference is returned instead of a remote reference.
In the lexical scope of skeletons, pointcut remoteObjectAsParam captures the
deserialization of objects that are passed as parameters in remote calls. Similar
to the previous advice, an around advice checks whether or not the deserialized
object is local. If it is, a local reference for it is returned.

5 Experimental Results

This section presents results obtained from experiments performed with our
implementation of AspectJRMI. The experiments were used to evaluate the size
and performance overhead of AspectJRMI.

An Aspect-Oriented Communication Middleware System 1125

5.1 Size Overhead

We use the following tools in the experiments: javac (JDK 1.4 version), ajc
(version 1.5.0) and abc (version 1.0.2). The ajc tool is the default aspect com-
piler for AspectJ and abc is an aspect compiler that incorporates a series of
optimizations [1].

Table 1 summarizes the size of the AspectJRMI framework. As reported in
Section 3.2, the client version of the core has 37 KB and the client/server version
has 68 KB. The internal classes and aspects of AspectJRMI have 50 KB. There
are also 41 KB from the AspectJ run-time (package aspectjrt.jar). Thus, the
total size of the system is 128 KB (client only) and 159 KB (client/server), which
we consider a competitive value. For example, full implementations of CORBA,
such as the JacORB system [9], have approximately 10 MB. Implementations of
CORBA for mobile and embedded devices, such as ORBit2 [16], have at least
2 MB. On the other hand, some implementations of CORBA are smaller than
the ones mentioned. For example, the UIC-CORBA system has 48.5 KB in the
Windows CE platform and around 100 KB in Windows 2000 [19]. However,
UIC-CORBA supports only a basic remote method invocation service.

Table 1. Size (in KB) of AspectJRMI components

Component Client Server
Core 37 68
AspectJRMI 50 50
AspectJ 41 41
Total 128 159

Besides the size of the internal components of the framework, there is also the
cost of the weaving process. In order to evaluate such cost, we have implemented
the following programs:

– P1: A client that calls, using a oneway semantics, a remote method passing
as argument a string with 16 chars and an array with 16 integers.

– P2: A client that calls, using an asynchronous semantics, a remote method
that receives as argument two integers and returns a string.

– P3: A client that calls a remote method passing as argument two arrays of
integers, with size 128 and 32. The call uses as target a remote reference
with an associated ? service combinator (non-deterministic choice).

– P4: A client that calls a remote method passing as argument a string with
32 chars and two integers. The invocation uses call by value-result.

We have used the ajc and abc weavers to compile such applications. Fur-
thermore, in order to provide a lower bound for comparison we have changed
programs P1 and P2 to use a standard synchronous semantics. Program P3 was
changed in order to remove the ? service combinator. Program P4 was changed

1126 M.T. de Oliveira Valente et al.

Table 2. Size (in KB) of the experiments (for one call)

One call Weaving ajc abc javac abc-javac

P1 Oneway Client 4.99 2.46 0.84 1.62
P2 Asynchronous Client 11.00 5.76 2.84 2.92
P3 Combinator ? Client 5.76 3.21 0.81 2.40
P4 Value-result Client/Server 8.67 5.53 1.92 3.61

Table 3. Size (in KB) of the experiments (for 100 calls)

100 calls Weaving ajc abc javac (abc-javac)/100
P1 Oneway Client 47.9 11.5 2.07 0.09
P2 Asynchronous Client 11.0 5.76 2.84 0.03
P3 Combinator ? Client 48.9 12.2 2.05 0.10
P4 Value-Result Client/Server 8.67 5.53 1.92 0.03

to use call by value. The modified and simplified programs were compiled using
the standard javac compiler.

Table 2 summarizes the results. Column weaving describes the components
of the application that were instrumented by the weaver compiler (client or
client/server). Columns ajc and abc show the size of these components after
the weaving (using the ajc and abc compilers). The next column shows the size
of these components in the modified programs when compiled using the javac
compiler. Finally, column abc-javac presents the difference in size of the code
generated by the two compilers.

The results of the first experiment show that the ajc compiler introduces a
considerable size overhead. Certainly, the reason is that this compiler does not
support many optimizations that are possible in aspect-oriented languages [2].
On the other hand, the results using the abc are much more acceptable. When
compared to the javac programs, the overhead ranges from 1.62 KB (for pro-
gram P1) to 3.61 KB (for program P4). This overhead is for one remote call that
adds a new feature to both programs (oneway semantics in the case of program
P1 and a service combinator in program P3).

In the second group of experiments, we have changed programs P1 to P4
to make 100 remote calls sequentially (one call after the other, without the
use of loops). Table 3 presents the results. Considering only the abc compiler,
the overhead was significantly reduced, ranging from 30 bytes per remote call
(programs P2 and P4) to 100 bytes per remote call (program P3). We believe
this overhead is fully acceptable.

5.2 Performance Overhead

Oneway Calls, Asynchronous Calls and Call by Value-Result: In order to eval-
uate the performance of such features we have reused programs P1, P2, and P4

An Aspect-Oriented Communication Middleware System 1127

from the previous section. We run such programs (client and server processes)
on a Pentium 4 machine, with 2.00 GHZ, 512 KB RAM, Microsoft Windows
Service Pack 4, JDK 5.0 and abc aspect compiler (version 1.0.2). Each remote
invocation was executed 5000 times. In program P2, we measured the time to
dispatch the asynchronous calls, store the Future values in an array and retrieve
all results from this array (using the getResultmethod). To establish a compari-
son, we ported programs P1, P2, and P4 to JacORB, preserving their semantics.
Program P3 was excluded from the experiment since in JacORB there is no
support to service combinators. Table 4 presents the results in calls/second. As
showed in this table, the performance of AspectJRMI is very close to JacORB
performance.

Table 4. Throughput (in calls/sec)

AspectJRMI (A) JacORB (B) A / B

P1 Oneway 3595 3426 1.04
P2 Asynchronous 2028 2159 0.94
P4 Value-Result 2192 2153 1.02

Collocation Optimizations: A second experiment was conducted in order to mea-
sure the performance gains of collocation optimizations. The following program
was used in this experiment:

1: s.f1(b1); // remote call (b1 is a local object)
2: B b2= s.f2() // remote call that returns a reference to b1
3: b2.g(); // optimization: b2.g() ==> b1.g()

The same program has been compiled and executed with and without opti-
mizations. We execute each remote call (lines 1 to 3) 5000 times, with client and
server processes in the same machine. All methods have an empty body. Table 5
presents the results in calls/msec. When the collocation aspect was woven to the
application we observed a small reduction in the throughput of remote calls not
subjected to optimization (lines 1 and 2). This was due to the need to check if
the arguments or the results are local objects. On the other hand, calls subjected
to optimization (line 3) achieved a substantial performance gain. This result was
expected since all the middleware overhead was fully eliminated, including mar-
shalling, unmarshalling, and TCP/IP communication. Improvements in the same
order of magnitude were already reported for direct collocation optimization in
CORBA [13, 21].

6 Related Work

Customizable and Adaptive Middleware: Several software engineering techniques
have been applied in the construction of customizable, open and adaptive mid-
dleware platforms. Computational reflection, for example, is the central concept

1128 M.T. de Oliveira Valente et al.

Table 5. Calls/msec with collocation optimization enabled and disabled

Line Call Disabled (A) Enabled (B) B/A
1 s.f1(b) 3.36 3.31 0.98
2 s.f2() 3.51 3.50 0.99
3 b2.g() 3.40 833.33 245.09

of systems such as openORB [3], openCOM [5], UIC [19], and dynamicTAO [12].
However, reflective middleware systems often provide low level APIs and intro-
duce non-marginal performance and memory overheads. Systems such as Quar-
terware [22] and Arcademis [17] rely on the concept of frameworks. These sys-
tems provide semi-complete platforms that can be extended and personalized by
middleware users. Other systems, such as TAO [20], relies on design patterns.
However, frameworks and design patterns do not provide modularized implemen-
tation for crosscutting features, such as interceptors, oneway calls, asynchronous
calls, value-result parameter passing, and collocation optimizations. Therefore,
it is usually difficult to remove or add such features in the middleware plat-
form. Particularly, even if a crosscutting feature is not requested in a particular
application, the middleware carries code to support its implementation. This
increments the size of the system and may impact its performance.

AOP Refactorization of ORBacus: Using aspect mining techniques, Zhang and
Jacobsen have quantified the crosscutting nature of several features of CORBA
based middleware [26, 27]. They have measured the scattering degree of features
such as portable interceptors, dynamic programming invocations, collocation
optimizations, and asynchronous calls. They have also showed that such features
can be modularized using aspect-oriented programming. From this experience,
they proposed the horizontal decomposition method [28]. They have assessed
the effectiveness of their method by re-implementing as aspects crosscutting
features of the original implementation of ORBacus [15]. As expected, their
refactorization preserves the CORBA programming interface.

AspectJRMI design was not constrained by a predefined programming inter-
face. Similar to Java RMI [24], AspectJRMI does not extend the Java language
nor require a particular interface definition language. Instead, the system lever-
ages the pointcut mechanism of AspectJ to define features such as oneway calls,
service combinators, and decorators. Intertype declarations are used to define
asynchronous calls. This contributes to increase the degree of obliviousness pro-
vided by the middleware API.

Just-in-time Middleware and Abacus: Following horizontal decomposition guide-
lines, the Just-in-time Middleware (JiM) paradigm [25] advocates that mid-
dleware implementation should be pos-postulated, i.e., middleware components
should be selected and assembled after the user application is specified. Aba-
cus is a prototype implementation of JiM principles. The system relies on an
aspect-aware compiler, called Arachne, to generate just-in-time middleware con-
figurations. Arachne collects middleware functionalities from IDL declarations

An Aspect-Oriented Communication Middleware System 1129

and from a user interface. The synthesis process also depends on dependencies,
constraints and convolution descriptions. Dependencies define that the imple-
mentation of a certain feature is composed by other ones. Constraints specify
that some features must be included or excluded from the system depending
on external conditions. Convolutions descriptions specify that a feature cross-
cuts the implementation of other features. On the other hand, AspectJRMI
shows that a standard AOP language and weaver can be used to associate pos-
postulated features to a minimal core middleware system. From the list of as-
pects available in Abacus, AspectJRMI does not provide support only to server
data types (since the system relies on the Java type system) and some CORBA
advanced features (such as interface repository and dynamic invocation inter-
face). However, we believe that AspectJRMI can be extended to include such
missing aspects.

Other Applications of AOP to Middleware: JBossAOP [10] uses Java 1.5 an-
notations to support the implementation of several concerns, including oneway
calls, asynchronous calls, transactions and persistence. Basically, in JBossAOP
annotations provide syntactical hooks to insert aspectual code. However, one
can argue that in this case annotations introduce code scattering, since they can
be required in several elements of the system. Preferably, annotations should be
used to express functional behavior of the annotated element, for example, to
define that an operation is idempotent.

Alice [8] is a middleware that proposes the combination of aspects and an-
notations to implement container services, such as authentication and sessions.
AspectJ2EE [6] proposes the use of AOP to implement open, flexible and ex-
tensible container middleware. Soares, Laureano and Borba [23] have proposed
a set of guidelines to implement distribution, persistence and transactions as
aspects. The previous systems, however, consider the underlying communication
middleware as a monolithic block.

FACET [18] is an implementation of a CORBA event channel that relies on
AOP to provide a customizable event system. Similar to AspectJRMI, the system
has a core and a set of selectable features. Each feature adds a new functionality
to the core or to other feature. Examples of features include pulling events,
dispatching strategies, event payload types, event correlation and filtering, and
event profile. FACET also includes a test framework that automatically validates
combinations of features. Thus, FACET design follows many of the horizontal
decomposition principles.

7 Conclusion

In this paper we described an aspect-oriented communication middleware sys-
tem with high degree of modularization, configurability and customizability. The
design of the system has followed the horizontal decomposition principles, and
thus AspectJRMI has a set of mandatory components (middleware core) de-
signed using traditional vertical decomposition techniques. Furthermore, Aspec-
tJRMI uses aspects to encapsulate optional features so that users can select

1130 M.T. de Oliveira Valente et al.

only those features that are needed in a particular distributed application. An
aspect compiler is used to weave aspects and mandatory components at com-
pile time.

The core of the system is derived from components defined in Arcademis, a
Java-based framework that supports the implementation of customizable mid-
dleware architectures. Well-known design patterns, such as singletons, factories,
strategies, decorators and façades, are used to foster a non-monolithic and flexi-
ble middleware core. Users can change and extend almost all internal components
of the core, including channels, invokers, service handlers, streams, remote ref-
erences, dispatchers, and activators. Despite its open architecture, the core of
AspectJRMI has just 37 KB (client features only) or 68 KB (client and server
features). For example, we were able to successfully run the core in the CLDC
configuration of the J2ME platform. This configuration targets resource con-
strained devices, such as cell phones and low-end PDAs.

The core provides a primitive remote invocation service (synchronous, using
call by value and at-most-once semantics). Whenever crosscutting functionali-
ties are required, they can be introduced using aspects. AspectJRMI provides
aspects for the following features: oneway calls, asynchronous calls, service com-
binators, remote reference decorators, value-result and result parameter passing,
and direct collocation optimizations. All these aspects when packed have around
50 KB. When using the abc AspectJ compiler the cost of weaving aspects to
the base application ranges from 30 to 100 bytes per remote call. This makes
AspectJRMI a competitive solution when compared to other middleware imple-
mentations. For example, minimal CORBA implementations that are equivalent
to AspectJRMI core have around 50 to 100 KB [19]. On the other hand, full
implementations of CORBA have at least 2 MB [16]. Thus, AspectJRMI shows
that aspect-oriented programming is an effective solution to provide middleware
systems with size and functionalities between these bounds. Our experiments
have also shown that our static weaving approach has not significantly impacted
middleware performance. We were able to obtain performance results equivalent
to mature CORBA implementations.

Differently from CORBA, AspectJRMI is a solution to Java-based distributed
applications. For this reason, the proposed middleware does not require spe-
cific interface definition languages and type systems. The middleware also does
not require extensions to the Java object model or execution environment. The
same approach is followed by Java RMI, which provides just a basic invoca-
tion service, supported by a monolithic kernel. In AspectJRMI, aspect-oriented
abstractions, such as pointcuts and intertype declarations, are used to add ex-
tra features to an open and non-monolithic kernel. The only requirement is
that users should be familiar with an aspect-oriented language (AspectJ, in
the case).

As future work, we intend to support other non-functional requirements,
besides distribution. We plan to investigate support to aspects such as security,
load balancing, fault tolerance and persistence.

An Aspect-Oriented Communication Middleware System 1131

References

1. P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhotak, O. Lhotak,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc: An extensible AspectJ
compiler. In 4th International Conference on Aspect-Oriented Software Develop-
ment, pages 87–98. ACM Press, 2005.

2. P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, J. Lhotak, O. Lhotak,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Optimising AspectJ. In
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, pages 117–128. ACM Press, 2005.

3. G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. M. Costa, H. A.
Duran-Limon, T. Fitzpatrick, L. Johnston, R. S. Moreira, N. Parlavantzas, and
K. B. Saikoski. The design and implementation of Open ORB 2. IEEE Distributed
Systems Online, 2(6), 2001.

4. L. Cardelli and R. Davies. Service combinators for web computing. IEEE Trans-
actions on Software Engineering, 25(3):309–316, 1999.

5. M. Clarke, G. S. Blair, G. Coulson, and N. Parlavantzas. An efficient component
model for the construction of adaptive middleware. In Middleware: IFIP/ACM
International Conference on Distributed Systems Platforms, volume 2218 of LNCS,
pages 160–178. Springer-Verlag, 2001.

6. T. Cohen and J. Gil. AspectJ2EE = AOP + J2EE. In 18th European Conference
Object-Oriented Programming, volume 3086 of LNCS, pages 219–243. Springer-
Verlag, 2004.

7. A. Colyer and A. Clement. Large-scale AOSD for middleware. In 3rd International
Conference on Aspect-Oriented Software Development, pages 56–65. ACM Press,
2004.

8. M. Eichberg and M. Mezini. Alice: Modularization of middleware using aspect-
oriented programming. In 4th International Workshop on Software Engineering
and Middleware, volume 3437 of LNCS, pages 47–63. Springer-Verlag, 2005.

9. JacORB. http://www.jacorb.org.
10. JBossAOP. http://www.jboss.org/developers/projects/jboss/aop.
11. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.

An overview of AspectJ. In 15th European Conference on Object-Oriented Pro-
gramming, volume 2072 of LNCS, pages 327–355. Springer Verlag, 2001.

12. F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. Magalhes, and R. Campbell.
Monitoring, security, and dynamic configuration with the dynamicTAO reflective
ORB. In IFIP/ACM International Conference on Distributed Systems Platforms,
volume 1795 of LNCS, pages 121–143. Springer-Verlag, 2000.

13. A. S. Krishna, D. C. Schmidt, K. Raman, and R. Klefstad. Enhancing real-time
CORBA predictability and performance. In International Symposium on Dis-
tributed Objects and Applications, volume 2888 of LNCS, pages 1092–1109, 2003.

14. Object Management Group. The common object request broker: Architecture and
specification revision 3.0.2, Dec. 2002.

15. Orbacus. http://www.orbacus.com.
16. ORBit2. http://orbit-resource.sourceforge.net.
17. F. M. Pereira, M. T. Valente, R. Bigonha, and M. Bigonha. Arcademis: A frame-

work for object oriented communication middleware development. Software Prac-
tice and Experience, 2005. to appear.

18. R. Pratap. Efficient customizable middleware. Master’s thesis, Department of
Computer Science and Engineering, Washington University, 2003.

1132 M.T. de Oliveira Valente et al.

19. M. Román, F. Kon, and R. Campbell. Reflective middleware: From your desk to
your hand. Distributed Systems Online, 2(5), July 2001.

20. D. C. Schmidt and C. Cleeland. Applying patterns to develop extensible and
maintainable ORB middleware. IEEE Communications, 37(4):54 – 63, 1999.

21. D. C. Schmidt, N. Wang, and S. Vinoski. Object interconnections collocation
optimizations for CORBA. SIGS C++ Report, 10(9), 1999.

22. A. Singhai, A. Sane, and R. H. Campbell. Quarterware for middleware. In 18th
International Conference on Distributed Computing Systems (ICDCS), pages 192–
201. IEEE Computer Society, 1998.

23. S. Soares, E. Laureano, and P. Borba. Implementing distribution and persistence
aspects with AspectJ. In 17th ACM Conference on Object-Oriented programming
systems, languages, and applications, pages 174–190. ACM Press, 2002.

24. A. Wollrath, R. Riggs, and J. Waldo. A distributed object model for the Java
system. In 2nd Conference on Object-Oriented Technologies & Systems, pages
219–232. USENIX, 1996.

25. C. Zhang, D. Gao, and H.-A. Jacobsen. Towards just-in-time middleware architec-
tures. In 4th International Conference on Aspect-Oriented Software Development,
pages 63–74. ACM Press, 2005.

26. C. Zhang and H.-A. Jacobsen. Quantifying aspects in middleware platforms. In 2nd
International Conference on Aspect-Oriented Software Development, pages 130–
139. ACM Press, 2003.

27. C. Zhang and H.-A. Jacobsen. Refactoring middleware with aspects. IEEE Trans-
actions Parallel and Distributed Systems, 14(11):1058–1073, 2003.

28. C. Zhang and H.-A. Jacobsen. Resolving feature convolution in middleware sys-
tems. In 19th ACM SIGPLAN Conference on Object-oriented Programming, Sys-
tems, Languages, and Applications, pages 188–205. ACM Press, 2004.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1133 – 1150, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Using AOP to Customize a Reflective Middleware

Nélio Cacho and Thaís Batista

Federal University of Rio Grande do Norte,
Informatics Department (DIMAp),

Campus Universitário – Lagoa Nova – 59.072-970 - Natal – RN- Brazil
cacho@consiste.dimap.ufrn.br, thais@ufrnet.br

Abstract. In this paper we present Aspect Open-Orb, an aspect-oriented reflec-
tive middleware platform that is synthesized according to the application re-
quirements. It is based on the Open-ORB component model and follows the
idea that the middleware functionalities must be driven by the application code
and needs. The synthesis process is supported by a reflective middleware im-
plementation and by an aspect-oriented infrastructure composed of AspectLua,
a Lua extension that handles AOP. We also present a comparison between the
performance of Open-ORB and Aspect Open-Orb.

1 Introduction

Middleware platforms have been widely used as an underlying infrastructure to the
development of distributed applications. They provide distribution and heterogeneity
transparency and a set of common services such as names, security and fault toler-
ance. Typically, they are structured as a monolithic architecture that includes a lot of
features in order to satisfy a wide range of applications. Traditional middleware such
as CORBA[1], COM+��2] and Java RMI[3] are examples of monolithic architectures.
They were designed and implemented to provide a wide range of functionalities to
different kind of application domains. This broad range of functionalities has in-
creased the popularity of such platforms but, on the other hand, it has increased the
size and complexity of the middleware.

Customization mechanisms can be used to overcome this problem by composing a
middleware platform according to the requirements of the applications. Among the
techniques commonly used to customize middleware platforms, two are becoming
very popular: aspect-oriented programming (AOP) and computational reflection.
AOP [15] applies the principle of separation of concerns [4] in order to simplify the
complexity of large systems. Using this approach to compose middleware platforms,
the middleware core contains only the basic functionalities. Other functionalities that
implement specific requirements of the applications are inserted in the middleware by
the weaver process, when they are required. Computational reflection [18] is the abil-
ity of a system to inspect and to manipulate its internal implementation. It divides a
system into the meta-level and the base-level. The middleware core is represented by
base-objects and new functionality is inserted by meta-objects. Meta-object protocols
[20] provide an interface to support the base/meta objects communication.

1134 N. Cacho and T. Batista

In this paper we combine these two approaches in order to customize a middleware
platform. We combine a reflective middleware, Open-ORB [11], and a dynamic
weaving process in order to dynamically customize an aspect-oriented middleware
platform: Aspect Open-Orb. This middleware is customized according to the applica-
tion requirements.

Aspect Open-Orb was implemented using a dynamically typed language with re-
flective facilities, the Lua [5] language, and an extension of this language, AspectLua
[6], that handles AOP. Lua was chosen because it is interpreted and dynamically
typed and due to its reflective facilities that provide flexibility for dynamic adaptation
[7, 8]. In addition, the availability of AspectLua and LOpenOrb[9], a Lua implemen-
tation of the reflective middleware Open-ORB, has facilitated the implementation of
Aspect Open-Orb.

This paper is structured as follows. Section 2 presents background on middleware
customization. Section 3 presents Aspect Open-Orb including its architecture and an
example that illustrates its customization. Section 4 discusses about the performance
evaluation of this new architecture. Section 5 contains the related work. Section 6 pre-
sents the final remarks.

2 Middleware Customization

The customization of a middleware platform consists of composing it according to the
functionalities required by the applications that run on top of the platform. This is a
dynamic process that consists of adding new functionalities as well as of removing
unnecessary functionalities. We distinguish decreased and increased customization.
Decreased customization is a strategy applied to remove functionalities of the mid-
dleware in order to customize it. In this case the original middleware provides a broad
range of functionalities that are removed in order to tailor the middleware to a given
application or environment. On the other hand, increased customization is applied
when the customization is grounded via the insertion of new functionalities.

Decreased customization is commonly used in traditional middleware platforms
such as CORBA, COM+ and Java RMI. The original implementation of such mid-
dleware provides a set of functionalities to multiple application domains. In order to
reduce the size of the middleware or to tailor it to a given application, it is necessary
to remove unessential functionalities.

Increased Customization is commonly used by the next generation middleware
platforms [10, 11, 12]. These middleware platforms were designed to overcome the
limitations of monolithic architectures. Their goal is to offer a small core and to use
computational reflection to insert new functionalities. Increased customization is also
used by the traditional middleware when new functionalities are needed.

We also distinguish customization according to the moment that it is implemented:
pre-postulated and Just-in-time [32]. Pre-postulated customization tailors the mid-
dleware before knowing its applications. This process tries to identify the general re-
quirements of possible future applications and defines the middleware configuration
that will be used by the applications. On the other hand, Just-in-time customization
occurs at runtime by identifying the requirements of the running application and cus-
tomizing the middleware according to the application needs.

 Using AOP to Customize a Reflective Middleware 1135

The different customization types (decreased/increased and pre-postulated/Just-in-
time) are implemented using a diverse number of techniques such as composition fil-
ters [13], hyper-spaces [14], AOP and computational reflection. These techniques share
the idea of separating the middleware basic functionalities and the additional function-
alities such as non-functional aspects. However, the crosscutting concerns [15] repre-
sent a puzzling problem in this context. They are elements that are spread around the
basic functionalities but that in many cases represent non-functional requirements that
must not compose the main middleware core. In order to address this problem, it is
necessary to apply a separation of concerns [16] strategy that deals with the modulari-
zation of crosscutting concerns and separate them from the middleware core.

The next subsections give detail about the use of AOP and computational reflection
in the customization of a middleware platform.

2.1 Customization Using Reflective Middleware

The next generation middleware [11, 17] exploits computational reflection [18] to
customize the middleware architecture. Reflection is used to monitor the middleware
internal (re)configuration [19]. The middleware is divided in two levels: base-level
and meta-level. The base-level represents the core. The meta-level contains the build-
ing blocks responsible for supporting reflection. These levels are connected to allow
that modifications at the meta-level to be reflected into corresponding modifications
at the base-level. Thus, modifications at the core should be reflected at the meta-level.
The elements of the base-level and of the meta-level are respectively represented by
base-level objects and meta-level objects.

Fig. 1 shows that the meta-level is orthogonal to the middleware and to the applica-
tion. This separation allows the customization of the middleware via the extension of
the meta-level. A causal connection associates the base-objects with the meta-objects
and guarantees that changes to the meta-level are reflected into corresponding
changes to the base-level and vice-versa.

In order to illustrate the use of reflection in the customization of a middleware, we
have implemented a case study that introduces security communication in a standard
binding. The middleware system we used is LOpenOrb [9], a Lua implementation of
the Open-ORB component model [21]. Fig. 2 illustrates the elements that compose
the LOpenOrb architecture. They are organized in a layered style where the upper
layers depend on the lower layers and each element provides an API.

Fig. 1. Reflective Model

1136 N. Cacho and T. Batista

Fig. 2. LOpenORB Architecture

1 require "LOpenOrb"
2 LOpenOrb.init(arg)
3 local_bank = LOpenOrb.IRef({},

 {},{"deposit"})
4 remote_bank = LOpenOrb.localcapsule:
 getRemoteInterfaceByFile("./bank_int.ref")

5 LOpenOrb.localBind({local_bank},{remote_bank})
6 local_bank:deposit(50)

Fig. 3. Using LOpenOrb

The functionality of some methods provided by the LOpenOrb API is illustrated in
Fig. 3. This figure shows the steps to invoke the deposit method implemented in a re-
mote server. The two first lines load and start LOpenOrb. On the next two lines lo-
cal_bank and remote_bank interfaces are defined. Interfaces are access points of
components. Each interface can export and/or import methods. Exported methods cor-
respond to the provided services. Imported methods are required services. In Fig. 3
the local_bank interface imports the deposit method while the remote_bank interface
use the local container (local Capsule in Open-ORB terminology) to get the remote
reference of the bank interface. This reference is stored in the bank_int.ref. file. After
obtaining the reference, a local binding is defined between the two interfaces. The
role of the local binding is to associate compatible interfaces. Finally, the example il-
lustrates the remote invocation of the deposit method.

Fig. 4. Invocations details in the LOpenOrb

 Using AOP to Customize a Reflective Middleware 1137

The internal invocation of the deposit method is illustrated in Fig. 4. The lo-
cal_Bank interface invokes the deposit method of the remote_Bank interface that acts
as a proxy that forwards this invocation to the invoke method provided by the Invoker
element. This element marshals the parameters, via the Protocol component, and
sends the data to the remote interface by using the send method offered by the End-
point component. The receive method is used to receive replies. The results are sent
to the Protocol component to unmarshal the data. Then the results of the deposit invo-
cation are sent to the remote and local interfaces.

1 local cryptProtocol = {}
2 function cryptProtocol:encrypt(stream) ... end
3 function cryptProtocol:decrypt(stream) ... end
4 cryptProtocol.intProtocol = LOpenOrb.IRef({},{},
 {"marshall","unmarshal"})
5 function cryptProtocol:marshall(...)
6 local result = self.intProtocol:marshall(arg)
7 return self:encrypt(result)
8 end
9 function cryptProtocol:unmarshal(...)
10 local result = self:decrypt(arg)
11 return self.intProtocol:unmarshal(result)
12 end
13 cryptProtocol.intCryptProtocol = LOpenOrb.IRef(cryptProtocol,

 {"marshall","unmarshal"},{})
14 local metaobj = LOpenOrb.metamodel:composition(local_bank)
15 local graph = metaobj:inspect()
16 metaobj:break(“use_protocol”, “provide_protocol”)
17 metaobj:addIIF(“use_crypt_protocol”, cryptProtocol.intProtocol)
18 metaobj:addIIF(“prov_crypt_protocol”, cryptProtocol.intCryptProtocol)
19 metaobj:bind(“provide_protocol”, “use_crypt_protocol”)
20 metaobj:bind(“use_protocol”, “prov_crypt_protocol”)

Fig. 5. LOpenOrb customization

An example of a customization that includes a cryptograph protocol to encrypt the
messages sent to the remote interface is illustrated in Fig. 5. Initially there is the defi-
nition of the methods to encrypt and decrypt the messages. On line 4 the intProtocol
interface is created to use the marshal and unmarshal methods provided by the origi-
nal Protocol component. Lines 6 and 11 illustrate the use of these two methods. The
result of the marshal process is encrypted (line 7). The result of the decrypt process
(shown on line 10) is unmarshaled and sent back to the Invoker component. In order
to provide the marshal and unmarshal methods with support for cryptograph, the int-
CryptProtocol interface exports these two methods. After the definitions, the insertion
of this new functionality in the middleware starts. Initially it is necessary to obtain the
meta-object that represents the link between the local_bank interface and the other in-
terfaces. In order to make the meta-level easier to use, Open-ORB provides four dif-
ferent meta-models: encapsulation, composition, environment and resource. Each
meta-model is accessed via a meta-object that supports specific aspects of the base-
level elements. In this customization, the composition meta-object is used. It is re-
sponsible for representing the links between interfaces and components. On line 14

1138 N. Cacho and T. Batista

the meta-object is obtained and on the next line the inspect method is invoked. It re-
turns all components and interfaces connected to the local_bank interface. The goal of
this method is to provide transparency to the programmer. He/She can include new
functionalities without the need of knowing the source code of the middleware. Based
on the component graph, the programmer can identify the insertion point and deter-
mine the proper procedure, as illustrated on Line 16 where links are broken (between
the use_protocol interface of the Invoker component and the provide_protocol of the
Protocol component). use_crypt_protocol and prov_crypt_protocol interfaces are in-
serted in the component graph to allow the establishment of a link with the pro-
vide_protocol and use_protocol interfaces. With these new links the customization
process ends and the customized middleware supports cryptography.

The customization illustrated by this example can be classified as increased and
pre-postulated customization, since it inserts new functionalities specified by a con-
figuration file. It does not implement an automatic recognition process. Although the
new functionality is dynamically inserted, this issue was not identified by the mid-
dleware platform. It was determined by the user by invoking the configuration file.

LOpenOrb, as well as other reflective middleware [30], supports decreased cus-
tomization. For instance, the metaobj:remove method is used to remove a component.
A limitation of this customization type is that it is not applied to all basic elements of
the middleware. It is not applied to the elements that support reflection.

2.2 Customization Using AOP

Aspect-Oriented Programming (AOP) implements separation of concerns by decoup-
ling concerns related to components from those related to aspects that crosscut com-
ponents. The composition of the two concerns is implemented by a weaving process.

The advantage of this approach is to separate the non-functional requirements and
to make their manipulation easier and with no impact to the basic code. The two types
of code are not tangled and spread. Thus, AOP supports aspect isolation, composition
and reuse. The two codes are combined via a weaving process that, depending on the
implementation, can take place at compile time or at runtime. In AspectJ [22] and As-
pectC++ [23] this process occurs at compile time and the aspect are defined via new
statements that are included in the language syntax. The weaver is a compiler that re-
ceives the system source code and the aspect code and generates an integrated version
of the system.

Another strategy includes the insertion of aspects at runtime. AspectLua [5], AOPy
[24] and AspectR [25] are languages that follow this approach. They handle AOP us-
ing the orignal syntax of the language - Lua, Python [26] and Ruby[27], respectively.
No new elements are needed.

Although there is no consensus about the terminology of the elements that make
part of AOP, we refer in this work the terminology used in AspectJ because it is the
most traditional aspect-oriented language. Aspects are the elements designed to en-
capsulate crosscutting concerns and take them out of the functional code. Join Points
are well-defined points in the execution of a program. An advice defines code that
runs at join points. It can run at the moment a joint point is reached and before the
method begins running (before), at the moment control returns (after) and during the
execution of the joint point (around).

 Using AOP to Customize a Reflective Middleware 1139

In the context of customizing middleware platforms, AOP is used to implement
both increased and decrease customization. For these two processes, it is necessary to
know the structure and functioning of the architecture. This knowledge is used to de-
fine the join points and the advice. In case of decreased customization, the study of
the target architecture goes beyond the limits of the join points and advice definitions.
The definition of these elements is preceded by aspect mining [31] and re-factoring
[29] of the architecture.

According to [31], aspect mining consists of capturing and analyzing tangled code
in legacy implementations. Thus, aspect mining tries to identify the crosscutting con-
cerns and to define the separation between the middleware core and the aspect part.
In general the separation between the basic functionalities and the aspects is done by a
re-factoring process that defines three groups of files: basic functionalies, aspects and
weaving. In order to compose the information of the two first files the weaving file
defines a set of rules to perform the composition.

In order to exemplify the use of AOP to implement decreased customization we
apply aspect mining and re-factoring strategies in LOpenOrb. The aspect mining
process identified different aspects:

• Invocation Types: in addition to the traditional invocation/return, LOpe-
nOrb also implements an oneway invocation that uses a best-effort strat-
egy and avoids blocking the client application. The asynchronous invoca-
tion is also a non-blocking invocation that returns an object that can be
used to capture the values returned by the invoked method.

• Bindings Types: three types of bindings are provided [28]: Operational,
Stream and Signal. Each binding has specific features and are commonly
used by specific applications that need to send and to control remote invo-
cations, data streams and signals, respectively. Each one implements spe-
cific protocols to manage buffer size, synchronism, etc.

• Reflection: although the reflection model promotes the separation of con-
cerns through the use of base and meta objects, it also introduces cross-
cutting concerns that act on the implementation of the causal connection.

The identification of aspects is followed by a re-factoring process that separates the
basic functionalities of LOpenOrb from the elements identified as crosscutting con-
cerns. Based on these elements, we demonstrate the re-factoring process via the re-
moval of the code related to the reflective mechanisms illustrated in Fig. 6. In this fig-
ure, interface A invokes the deposit method of interface B via the execute_method of
the local binding represented by the BindCtrl class. The goal of execute_method is to
forward each invocation to the target interface. In addition, this method also contains
code responsible for maintaining the causal connection.

Fig. 6. Crosscutting concerns in BindCtrl

1140 N. Cacho and T. Batista

To perform the re-factoring we separate the code related to reflection. Later, it is
composed using AspectLua [6], an extension of the Lua language for definition of as-
pects, pointcuts and advice. The AspectLua elements are defined in a weaving file us-
ing the Lua features and no special commands are needed. AspectLua defines an As-
pect object that handles all aspect issues. To use AspectLua, it is necessary to create
an instance of the Aspect class by invoking the new function. After creating a new in-
stance, it is necessary to define a Lua table containing the aspect elements (name,
pointcuts, and advice) divided in the follow parameters:

• The first parameter of the aspect method is the aspect name;
• The second parameter is a Lua table that defines the pointcut elements: its name,

its designator and the functions or variables that must be intercepted. The designa-
tor defines the pointcut type. AspectLua supports the following types: call for
function calls; callone for those aspects that must be executed only once; introduc-
tion for introducing functions in tables (objects in Lua); and get and set applied
upon variables. The list field defines functions or variables that will be intercepted.
It is not necessary that the elements to be intercepted have been already declared.
This list can use wildcards. For instance, Bank.* means that the aspect should be
applied for all methods of the Bank class;

• Finally, the third parameter is a Lua table that defines the advice elements: the type
(after, before, and around) and the action to be taken when reaching the pointcut.

An example of this process is illustrated in Fig. 7, where the separation of the re-
sulting re-factoring is divided in: (1) primary program file, containing the basic func-
tionalities of the ORB; (2) aspect implementation file that defines the reflective func-
tionality; (3) weaving file that defines how the aspect regarding reflection is inserted
in the primary program. With this separation, the aspect relative to reflection is main-
tained out of the middleware basic code and also out of the weaving file code. When
needed, they are dynamically inserted. This is an example of decreased customiza-
tion, where a tangled code is separated and composed via AOP.

Primary Program File
BindCtrl ={}
 . . .
function BindCtrl:execute_method(method, parameters)
 return call(method, parameters)
end

Aspect Implementation File
function keeping_causal_connection(arg) . . . end

Weave File
asp = Aspect:new()
asp:aspect({name = 'reflect'},

{pointcutname = 'pre', designator = 'call',
list = {'BindCtrl.execute_method'}},{type = 'before',
action = keeping_causal_connection})

Fig. 7. Removing a crosscutting concern: reflection

 Using AOP to Customize a Reflective Middleware 1141

1 function Ad_encrypt(...)
2 local result = proceed(arg)
3 return encrypt(result)
4 end
5 function Ad_decrypt(stream)
6 local result = decrypt(arg)
7 return proceed(result)
8 end
9 asp = Aspect:new()
10 asp:aspect({name = 'cryptaspect'},

 {pointcutname = 'crypt', designator = 'call',
 list ={'Protocol.marshall'}},{type = 'around', action = Ad_encrypt})

11 asp:aspect({name = 'decryptaspect'},
 {pointcutname = 'decrypt', designator = 'call',
 list={'Protocol.unmarshal'}},{type = 'around', action = Ad_decrypt})

Fig. 8. Decreased AOP customization

The use of AOP in the customization of a middleware platform includes the
insertion of services not originally provided by the standard implementation. To dem-
onstrate this issue, we use AOP to introduce the cryptograph service represented in
Fig. 5. In a different way of the customization illustrated in the previous section,
where the meta-object protocol is the mechanism used and where the functionality
was inserted in an interface, in this one, the user must know the components and their
classes in order to insert the Ad_encrypt and Ad_decrypt as advice. The join points
are represented by the marshall and unmarshal methods of Protocol class.

Fig. 8 shows the definition of these two functions and their join points. These func-
tions act in a similar way of those defined in Fig. 5. The difference is in the way they
invoke the marshall and unmarshal functions. In this case they are invoked by the pro-
ceed function. This function is provided by AspectLua. On lines 10 and 11, the as-
pects are defined to act in the join points Protocol.marshall and Protocol.unmarshal.
In this example of customization, Fig. 8 mixes the code of the aspect file (line 1 to 8)
and of the weaving file (lines 9 to 11). In this work we prefer to use the approach il-
lustrated in Fig. 7, where the aspect code and the weaving code are separated in dif-
ferent files. We consider that this separation facilitates the implementation of an
automatic weaving process (described in the next section).

3 Combining AOP and Reflection to Middleware Customization

According to the examples illustrated in the previous section, computational reflection
is an efficient and simple way of inserting new functionalities in a reflective middle-
ware. It uses a meta-object protocol to abstract away the implementation details. Thus,
it is necessary only to know components and interfaces. On the other hand, decreased
customization is limited to some elements of the application itself. The other approach,
using AOP, requires a broader knowledge of the structures and the application func-
tionality. However, it supports the decreased customization in a broader sense and as a
consequence, it allows the removal of more crosscutting concerns. The two approaches
share the limitation of requiring the specification of the middleware functionality. They

1142 N. Cacho and T. Batista

do not support the runtime identification of the application needs and the dynamic cus-
tomization of the middleware according to the application requirements.

In order to address this lack of customizability support we use AOP to make it
possible to customize the reflective middleware LOpenOrb. The goal is to avoid re-
source wasting and to improve dynamic adaptation. This approach targets two com-
mon problems of middleware platforms. The first one is related to the complexity of
providing customized middleware implementations by separating basic code and
croscutting concerns. The second one is related to the dynamic evolution of middle-
ware platforms. The insertion of new functionalities must be controlled in order to
avoid tangled code.

In this work we consider that the application needs can be represented in two
ways: (1) in the application code, such as asynchronous invocations; (2) in configu-
ration files, such as security policies. To handle the needs expressed in the applica-
tion code we use AOP that supports fine-grained identification, insertion and re-
moval of crosscutting concerns. Aspects that are not in the application code can be
dynamically inserted using the meta-object protocol. The aspect-oriented middle-
ware we propose, named Aspect Open-Orb, allows the customization of the middle-
ware according to the application requirements. This infra-structure is based on the
idea that the middleware functionalities are defined by the application code. Fig. 9 il-
lustrates the architecture of Aspect Open-Orb infrastructure. LOpenOrb Aspects De-
pendencies defines the dependencies between aspects and types of method invoca-
tions. Each application is composed by its base code (core) and its aspects (Security,
Fault Tolerance, etc). At runtime, AspectLua loads LOpenOrb and weaves files ac-
cording to the application needs. These dynamically loaded elements compose As-
pect Open-Orb. Thus, the Aspect Open-Orb internal architecture is dynamically
composed according to the application needs.

Fig. 9. Aspect Open-Orb infrastructure

The LOpenOrb Aspects Dependencies were defined by an aspect mining process
applied to LOpenOrb. This process has identified the crosscutting concerns and the
methods provided by the LOpenOrb API used to activate each crosscutting concern.

 Using AOP to Customize a Reflective Middleware 1143

Table 1. Dependence relationships between invocation types and LOpenOrb aspects

Designator Aspects

R
ef

le
ct

io
n

O
ne

-w
ay

A
sy

nc
hr

on
ou

s

B
in

di
ng

A
cc

ep
to

rs

In
vo

ke
rs

LOpenORB.metamodel.composition X

LOpenORB.remoteBind X

LOpenORB.localcapsule.sendMethod X

LOpenORB.localcapsule.announceMethod X

LOpenORB.localcapsule.getRemoteInterface X

LOpenORB.metamodel.encapsulation X

LOpenORB.localcapsule.server X

LOpenORB.streamBind X X

Table 1 defines some dependencies. For instance, the invocation of LOpe-
nORB.localcapsule.sendMethod is associated with the aspect responsible for asyn-
chronous invocations.

After that, the re-factoring process has defined the different files and assigned a
number to the aspects shown in Table 1. Note that we consider that different methods
can activate a given aspect and that some aspects have common dependencies.

The dependencies relationship between the invoked methods and the loaded files is
illustrated in Fig. 10. For each method or set of methods is specified a join point that
when reached, an advice is invoked to handle it. This advice queries a dependency ta-
ble that lists all files to be loaded for the execution of the join point. The files are
numbered and stored in two folders: the first one contains the basic code of LOpe-
nOrb; the second one contains the weaving files responsible for the insertion of as-
pects. The purpose of numbering the files is to define which files must be loaded by
the loading file process. We avoid the use of long strings for this purpose.

Fig. 10. LOpenOrb Aspects Dependences

1144 N. Cacho and T. Batista

1 asp = Aspect:new()
2
3 function myInit(arg)
4 LOpenOrb.hostname = arg[2]
5 LOpenOrb.port = arg[3]
6 end
7 asp:aspect({name = 'skipInit'} , {name = 'skip',
 designator='call', list = {'LOpenOrb.init'}},
 {type ='around', action = myInit})
8
9 tblfiles = {}
10 tblfiles[1] = "\core\lopenorb_interface_and_bidinglocal.lua"
11 tblfiles[2] = "\core\lopenorb_component.lua"
12 tblfiles[3] = "\core\lopenorb_composiste.lua"
13 . . .
14
15 tblconf = {}
16 table.insert(tblconf,{key = "LOpenOrb.*IRef", dep = {1} }
17 table.insert(tblconf,{key = "LOpenOrb.localBind*", dep = {1} }
18 . . .
19 table.insert(tblconf,{key = "LOpenOrb.streamBind",
 dep = {4,7,8,30,31,32,39,40} }
20 table.insert(tblconf,{key = "LOpenOrb.localcapsule.sendMethod",
 dep= {3,8,28,29,30,31,45,46} }
21 table.insert(tblconf,{key = "LOpenORB.metamodel.composition",
 dep = {1,2,3,4,23,24,32,33} }
22 . . .
23
24 function loadfiles(...)
25 local funcname = table.remove(arg,table.getn(arg))
26 loca contload = 0
27 for k,idxfile in ipairs(searchKey(funcname)) do
28 local namefile = rawget(tblfiles,idxfile)
29 if (namefile ~= nil)then
30 dofile(namefile)
31 deletefile(idxfile)
32 contload = contload + 1
33 end
34 end
35
36 if contload > 0 then
37 metafunc = LuaMOP:getInstance(funcname)
38 func = metafunc:getFunction()
39 return func(unpack(arg))
40 end
41 end
42
43 for k,conf in ipairs(tblconf) do
44 asp:aspect({name = 'ConfORB'} ,
 {name = 'loadfiles', designator = 'callone',
 list = {conf.key}},
 {type ='around', action = loadfiles})
45 end

Fig. 11. Middleware aspects configuration

 Using AOP to Customize a Reflective Middleware 1145

Fig. 10 is implemented by using two sets of aspects. The first set is responsible for
intercepting the invocation of the LOpenORB.init method. The second one supports
the elements defined in Table 1. To illustrate this issue, Fig. 11 shows the code that
implements the middleware customization. Lines 3 to 6 contain the definition of my-
Init function. This function, via the aspect defined on line 7, acts on LOpenORB.init.
All invocations to the init function are redirected to the myInit function. This avoids
the loading of all LOpenOrb library, which is done by the init method. As the library
is not loaded, the API of the elements is not available.

To maintain the availability of the LOpenOrb API it is necessary to define a second
set of aspects that act as anticipated join points to the invocations to the LOpenOrb
API. Anticipated join points are interception points for elements that have not yet
been declared in the application program. The use of anticipated join points makes it
possible to intercept an invocation to an undeclared method and to apply to it a spe-
cific action, such as, lazy loading a code. Table 1 shows the elements that are defined
as anticipated join points. This definition starts on lines 9 to 12 (Fig. 11), which con-
tain the code that creates the list of files - tblfiles – indexed by one unique number ID.
The next lines insert in tblconf some of elements defined in Table 1. This insertion in-
cludes two fields: the Key field, which contains the aspect name, and the dep field,
which stores the files needed to invoke the method. Lines 43 to 45 shows the defini-
tion of each element in the tblconf list as an aspect including an anticipated join point.
Each aspect invokes only once (callone) the loadfiles method when the pointcut de-
fined by tblconf.Key is reached. The goal of the loadfiles function is to load, accord-
ing to the function name obtained in Line 25, a loop that returns in the idxfile variable
each layer needed to support the invocation of the method.

The dofile method loads the code of each file. To maintain the loaded methods un-
der control, the deletefile function is invoked after loading a method. This function
removes the file name from the tblfiles list. The contload variable is a counter that in-
dicates the number of files already loaded. This is important to avoid a double invoca-
tion of the desired method in the case of the following pointcuts: LOpe-
nOrb.localcapsule.getRemoteInterface and LOpenOrb. getRemoteInterfaceByFile.
LuaMOP [33] is used to obtain the desired method that, at this moment, is already de-
fined. Finally, the desired method is invoked on Line 39 and receives as a parameter
the arguments of the original invocation (arg).

In order to use Aspect Open-Orb it is necessary to load the file described in Fig. 11
and after that, to load the application code. Fig. 3 shows a simple example of an ap-
plication code. At runtime, the invocation of the LOpenOrb.init method is replaced by
the invocation of the MyInit method. This method defines the initialization parameters
but does not load the LOpenOrb implementation files. According to this situation, the
next invocations in Fig. 3 would return an error of missing method. However, as we
are using anticipated join points to handle invocations to methods provided by the
API, invocations to LOpenOrb.IRef or to any other method are forwarded to the
proper advice that loads the implementation and invokes the target method.

4 Performance Evaluation

In this section we evaluate the performance of Aspect Open-Orb comparing to
LOpenOrb in order to identify the impacts of using a dynamic weaving process in the

1146 N. Cacho and T. Batista

customization of a middleware specified by a re-factoring process. We performed the
experiments on a PC Duron 1.6MHz with 256MB of RAM, and running Linux-
Mandrake 9.2.

Table 2 compares the execution time of LOpenOrb and Aspect Open-Orb. For
each test type three results are shown: the first one uses the original LOpenOrb; the
second and third use Aspect Open-Orb without reflection and with reflection, respec-
tively. As reflection can be seen as a widely spread aspect in Aspect Open-Orb to
handle the causal connection, it can be used as a parameter to verify the efficiency of
the re-factoring process and how the dynamic weaving of AspectLua can affect the
performance of the middleware platform. The efficiency of the re-factoring process is
represented in the third row where the comparison with LOpenOrb, the re-factored
solution of the Aspect Open-Orb has a superior performance. Thus, as in Aspect
Open-Orb, just the code responsible for the functionality is executed, the invocation
time is inferior to LOpenOrb, where it is necessary to manage the tangled code.

Table 2. Comparing execution time of LOpenOrb and Aspect Open-Orb

Tests type LOpenOrb Aspect Open-Orb Aspect Open-Orb with reflection

Creating local binding 25.03 µs 23.55 µs 26.20 µs

Execution through
local binding

90.12µs 75.43 µs 92.81 µs

Creating Op. Binding 24.49ms 20.17 ms 24.81ms

Execution through Op.
Binding

1.312ms 1.157 ms 1.319ms

0 200 400 600 800 1000 1200 1400 1600 1800 2000

LOpenOrb

Component Model

Asynchronous communication

Reflection

Operation Binding

Signal Binding

One-w ay invocations

Memory size(Kbytes)

Fig. 12. Memory size usage

Regarding the impact of using AspectLua, the time is slightly superior to those of
LOpenOrb. We conclude that the use of a dynamic weaving approach does not impact
the performance.

Another key factor of the middleware customization is the reduction of memory us-
age for some configurations. Fig 12 shows, for six types of different configurations,

 Using AOP to Customize a Reflective Middleware 1147

the memory usage. The minimal configuration of Aspect Open-Orb corresponds to
the Component Model. In this configuration the component model (Interfaces, local
binding, Component) is the only element that composes the middleware. No remote
communication is handled. Based on this initial configuration other configurations
are defined: one-way invocation, Signal Binding, Operational Binding, Reflection
and Asynchronous communication. Comparing these configurations with the memory
obtained by the use of LOpenOrb, it is clear the reduction of memory obtained by the
customization of Aspect Open-Orb.

5 Related Work

In section 2 we discussed examples involving LOpenOrb and AspectLua, how the dif-
ferent types of customization can be applied using AOP or computational reflection.
In this section we comment different works that support middleware customization.

DynamicTAO [30] and Open-ORB [11] are the most popular examples of mid-
dleware platforms that use computational reflection. DynamicTAO is a reflective
middleware based on CORBA that supports dynamic reconfiguration. Each Orb in-
stance contains a component configurator named TAOConfigurator. This component
contains hooks that implement the ORB customization. The Open-ORB architecture,
as discussed in section 2, defines four distinct meta-object protocols that reify spe-
cific aspects of a middleware platform. The customization of these two middleware
is pre-postulated and does not affect the internal elements of the middleware such as
the TAOConfigurator and the elements that maintain the causal connection in Open-
ORB. Thus, the customization is determined by configuration files that specify the
insertion/removal of hooks or invocations to the MOP, as illustrated in Fig. 5.

Component Frameworks [35, 36] are used to build customized middleware archi-
tectures that abstract away, via the use of components, the basic functionalities and al-
low the specialization and extension according to application requirements. The main
drawback of Component Frameworks is to restrict the customization to the introduc-
tion/removal of pluggable aspects specified by configuration files.

AOP is used in some works to support increased customization as discussed in,
[33, 34]. In these works AOP is used to introduce event, transaction and fault toler-
ance services that implement non-functional requirements specific to some applica-
tions. On the other hand, decreased customization is supported in [29,31] that use as-
pect mining and re-factoring techniques to identify and separate the basic
functionalities from the non-functional aspects. The combination of these two parts is
statically implemented using AspectJ.

Another approach is described in [32]. It applies just-in-time customization. Ini-
tially, the acquisition process analyses the application source code and the user pref-
erences in order to obtain the application requirements. Then, the result of the acquisi-
tion phase is verified by using dependencies rules and composition constraints. After
that the middleware is customized using a compiled approach. This static customiza-
tion is different from our dynamic approach that allows the runtime customization of
the middleware platform according to the application requirements.

1148 N. Cacho and T. Batista

6 Final Remarks

In this work we presented Aspect Open-Orb, a highly customized middleware plat-
form that supports just-in-time customization as well as increased and decreased cus-
tomization.

In order to support the high degree of customization we combined two approaches
commonly used separately: AOP and computational reflection. Most of the custom-
ized middleware platforms use one of these techniques. We discussed how customiza-
tion is implemented using each technique separately. Then, we presented our ap-
proach to combine the two techniques to customize Aspect Open-Orb.

We also presented the performance evaluation of Open-ORB and of Aspect Open-
Orb. The comparisons of their performance evaluation lead us to conclude that the
two paradigms work well together without major performance degradation.

We discussed about related work including researches that exploit AOP to custom-
ize middleware platforms. While these researches rely on static approaches, our dy-
namic approach supports the runtime customization of Aspect Open-Orb according to
the application requirements.

References

1. OMG Common Object Request Broker Architecture: Core Specification Technical Report
Revision 3.0.3. (2004)

2. Morgenthal, J. P.: Microsoft COM+ Will Challenge Application Server Market. (1999).
Available at: <http://www.microsoft.com/com/wpaper/complus-appserv.asp>.

3. Wollrath, A., Riggs, R. and Waldo, J.: A distributed object model for the Java system. In:
2nd Conference on Object-Oriented Technologies & Systems (COOTS). USENIX Asso-
ciation, (1996). p.219–232.

4. Parnas, D. L.: On the criteria to be used in decomposing systems into modules. Commun.
ACM, v. 15, n. 12, (1972), p.1053–1058.,.

5. Ierusalimsky, R., Figueiredo, L. H., and Celes, W.: Lua – an extensible extension lan-
guage. Software: Practice and Experience, 26(6), (1996), p.635-652..

6. Cacho, N. and Batista, T. and Fernandes, F. A.: AspectLua – A Dynamic AOP Approach.
To appear in a Special Issue of the Journal of Universal Computer Science (J.UCS), 2005.

7. Batista, T. V.; Cerqueira, R.; Rodriguez, N.: Enabling reflection and reconfiguration in
CORBA. In: In Workshop Proceedings of the International Middleware Conference.
(2003). p. 125–129.

8. Batista, T. V.; Rodriguez, N.: Dynamic reconfiguration of component-based applications.
In: Proceedings of the International Symposium on Software Engineering for Parallel and
Distributed Systems (PDSE). (2000), p. 32-39.

9. Cacho, N, Batista, T.: Adaptação Dinâmica no Open-Orb: detalhes de implementação
Proceedings of the 23th Brazilian Symposium on Computer Networks (SBRC'2005), (v.1),
SBC, Fortaleza, CE, Brazil, May (2005), p. 495-508.

10. Agha, G. A.: Adaptive middleware. Commun. ACM, ACM Press, v. 45, n. 6, , (2002), p.
31–32

11. Blair, G. et al.: An architecture for next generation middleware. In: Proceedings of the
IFIP International Conference on Distributed Systems Platforms and Open Distributed
Processing. London: Springer-Verlag, (1998).

 Using AOP to Customize a Reflective Middleware 1149

12. Tripathi, A.: Challenges designing next-generation middleware systems. Commun. ACM,
ACM Press, v. 45, n. 6, (2002), p. 39–42.

13. Bergmans, L. and Aksit, M.: Aspects & crosscutting in layered middleware systems. In:
International Middleware Conference, Workshop Proceedings. New York, USA, (2000).

14. Ossher, H. and Tarr, P.: “Multi-dimensional separation of concerns and the hyperspace ap-
proach,” in Symposium on Software Architectures and Component Technology: The State
of the Art in Software Development, Kluwer Academic Publishers, April (2000).

15. Kiczales, G. et al.: Aspect-oriented programming. In: Proceedings European Conference
on Object-Oriented Programming. Berlin, Heidelberg, and New York: Springer-Verlag,
(1997). v. 1241, p. 220–242.

16. Dijkstra, E. A: Discipline of Programming. Prentice-Hall, (1976).
17. Kon, F. et al. The case for reflective middleware. Commun. ACM, ACM Press, v. 45, n. 6,

(2002), p. 33–38.
18. Smith, B. C.: Procedural Reflection in Programming Languages. These (Phd) —

Massachusetts Institute of Technology, (1982).
19. Roman, M., F. Kon, and R.H. Campbell.: Reflective Middleware: From Your Desk to

Your Hand. IEEE Distributed Systems Online Journal, 2(5), (2001).
20. Kiczales, G.; Rivières, J. and Bobrow, D.: The Art of the Metaobject Protocol. MIT Press,

(1991).
21. Andersen, A.; Blair, G. S.; Eliassen, F.: A reflective component-based middleware with

quality of service management. In: PROMS 2000, Protocols for Multimedia Systems. Cra-
cow, Poland, (2000).

22. Kiczales, G., Hilsdale, E., Hugunin, J. et al.: An Overview of AspectJ. In: Lecture Notes in
Computer Science (LNCS), Vol. 2072, (2001), p. 327-355.

23. Gal, A.; Schroder-Preikschat, W.; Spinczyk, O.: AspectC++: Language Proposal and Pro-
totype Implementation. University of Magdeburg, (2001).

24. Dechow, D. R.: Advanced separation of concerns for dynamic, lightweight languages. In:
Generative Programming and Component Engineering. (2003).

25. Bryant, A.; Feldt, R.: AspectR - Simple aspect-oriented programming in Ruby. 2002.
Available at: <http://aspectr.sourceforge.net/>.

26. Drake, F. L.: Python Reference Manual. 2003. Available at:
<http://www.python.org/doc/current/ref/ref.html>.

27. Thomas, D.; Fowler, C.; Hunt, A.: Programming Ruby: A Pragmatic Programmer’s Guide.
2000. Available at: <http://www.rubycentral.com/book/>.

28. Fitzpatrick, T. et al.: Supporting adaptive multimedia applications through open bindings.
In: Proceedings of the International Conference on Configurable Distributed Systems.
[S.l.]: IEEE Computer Society, (1998). p. 128.

29. Zhang, C. and Jacobsen, H.: Re-factoring Middleware with Aspects. IEEE Transactions on
Parallel and Distributed Systems, Vol. 14, (2003), p. 1243-1262.

30. Kon, F. et al.: Monitoring, security, and dynamic configuration with the dynamic Tao re-
flective orb. In: IFIP/ACM International Conference on Distributed systems platforms.
Springer-Verlag New York, Inc., (2000), p. 121–143.

31. Zhang, C. and Jacobsen, H. A.: Quantifying aspects in middleware platforms. In: Proceed-
ings of the 2nd international conference on Aspect-oriented software development. [S.l.]:
ACM Press, (2003), p. 130–139.

32. Zhang, C.; Gao, D. and Jacobsen, H. A.: Towards just-in-time middleware architectures.
In: Proceedings of the 4th international conference on Aspect-oriented software develop-
ment. ACM Press, (2005). p. 63–74.

1150 N. Cacho and T. Batista

33. Fernandes, F.; Batista, T. and Cacho, N.: Exploring Reflection to Dynamically Aspectizing
CORBA-based Applications. In: Proceedings of the 3nd Workshop on Reflective and
Adaptative Middleware. ACM Press, (2004). p. 220-225 .

34. Herrero, J.L., Sánchez, F., Toro, M. Fault tolerance AOP approach. In: Workshop on As-
pect-Oriented Programming and Separation of Concerns, Lancaster, (2001).

35. Singhai A., Sane A. and Campbell R. Quarterware for middleware. In Proceedings of the
18th IEEE International Conference on Distributed Computing Systems (ICDCS), May,
(1998).

36. Truyen E. et al, Aspects for Run-Time Component Integration. Workshop on Aspects and
Dimensions of Concern at ECOOP'2000, Cannes, France, June (2000).

ODBASE 2005 PC Co-Chairs’ Message

Welcome to the Fifth International Conference on Ontologies, Databases, and
Applications of Semantics (ODBASE 2005). This year’s ODBASE conference is
being held in Agia Napa, Cyprus, from October 31 till November 4, 2005.

The ODBASE conferences provide a forum for exchanging the latest research
results on ontologies, data semantics, and other areas of computing related to
the Semantic Web. We encourage participation of both researchers and prac-
titioners in order to facilitate exchange of ideas and results on semantic issues
in Web information systems. Towards this goal, we accepted both research and
experience papers.

This high-quality program would not have been possible without the authors
who chose ODBASE as a venue for their publications. Out of 114 submitted
papers, we selected 25 full papers, 7 short papers, and 8 posters. To round up
this excellent program, V.S. Subrahmanian has agreed to be our keynote speaker.

We are grateful for the dedicated work of the 65 top experts in the field who
served on the program committee. Special thanks goes to the external referees
who volunteered their time to provide additional reviews. Finally, we are in-
debted to Kwong Yuen Lai who was immensely helpful in facilitating the review
process and making sure that everything stayed on track.

August 2005 Michael Kifer,
University at Stony Brook

Stefano Spaccapietra,
Swiss Federal Institute of Technology at Lausanne
(ODBASE 2005 Program Committee Co-Chairs)

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, p. 1151, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Inferring Complex Semantic Mappings Between
Relational Tables and Ontologies from Simple

Correspondences

Yuan An1, Alex Borgida2, and John Mylopoulos1

1 University of Toronto, Canada
{yuana,jm}@cs.toronto.edu

2 Rutgers University, USA
borgida@cs.rutgers.edu

Abstract. There are many problems requiring a semantic account of a database
schema. At its best, such an account consists of mapping formulas between the
schema and a formal conceptual model or ontology (CM) of the domain. This
paper describes the underlying principles, algorithms, and a prototype of a tool
which infers such semantic mappings when given simple correspondences from
table columns in a relational schema and datatype properties of classes in an on-
tology. Although the algorithm presented is necessarily heuristic, we offer formal
results stating that the answers returned are “correct” for relational schemas de-
signed according to standard Entity-Relationship techniques. We also report on
experience in using the tool with public domain schemas and ontologies.

1 Introduction and Motivation

A number of important database problems have been shown to have improved solutions
by using a conceptual model or an ontology (CM) to provide he precise semantics
of the database schema. These include federated databases, data warehousing [1], and
information integration through mediated schemas [7]. (See survey [15].) Since much
information on the web is generated from databases (the “deep web”), the recent call
for a Semantic Web, which requires a connection between web content and ontologies,
provides additional motivation for the problem of associating semantics with data (e.g.,
[6]). In almost all of these cases semantics of the data is captured by some kind of
semantic mapping between the database schema and the CM. Although sometimes the
mapping is just a simple association from terms to terms, in other cases what is required
is a complex formula, often expressed in logic or a query language.

For example, in both the Information Manifold data integration system presented in
[7] and the study of data integration in data warehousing presented in [1], Horn formulas
in the form T (X) :- Φ(X, Y) are used to connect a relational data source to a CM
described by some Description Logic, where T (X) is a single predicate representing
a table in the relational data source and Φ(X, Y) is a conjunctive formula over the
predicates representing the concepts and relationships in the CM. In the literature, such
a formalism is called local-as-view (LAV).

So far, it has been assumed that humans specify the mapping formulas – a difficult,
time-consuming and error-prone task. In this paper, we propose a tool that assists users

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1152–1169, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Inferring Complex Semantic Mappings Between Relational Tables and Ontologies 1153

-hasSsn
-hasName
-hasAddress
-hasAge

Employee

-hasDeptNumber
-hasName
-.
-.

Department

works_for

controls

supervision
4..* 1..1

1..1

0..1

1..1 0..*

1..*

0..1

0..*

0..1

-hasNumber
-hasName
-.
-.

Worksite

manages

works_on 0..1

Employee(ssn, name, dept, proj)

Fig. 1. Relational table, Ontology, and Correspondences

in specifying LAV mapping formulas between relational databases and ontologies. Intu-
itively, it is much easier for users to draw the simple correspondences from the columns
of the tables in the database to datatype properties of classes in the ontology – manually
or through some existing schema matching tools (e.g., [3, 13]) – than to compose the
logic formulas. Given the set of correspondences and following the LAV formalism, the
tool is expected to reason about the database schema and the ontology, and to generate
a ranked list of candidate Horn formulas for each table in the relational database. Ide-
ally, one of the formulas is the right one capturing the user’s intention underlying the
specified correspondences. The following example illustrates the input/out behavior of
the tool we seek.

Example 1. An ontology contains concepts (classes), attributes of concepts (datatype
properties of classes), and relationships between concepts (object properties of classes).
Graphically, we use the UML notations to represent the above information. Given the
ontology in Figure 1 and a relational table Employee(ssn, name, dept, proj) with key
ssn, a user could draw the simple correspondences as the arrowed dash-lines shown in
Figure 1. Using prefixes T and O to distinguish predicates in the relational schema and
the ontology, we represent the correspondences as follows:

T : Employee.ssn�O : Employee.hasSsn

T : Employee.name�O : Employee.hasName

T : Employee.dept�O : Department.hasDeptNumber

T : Employee.proj�O : Worksite.hasNumber

Given the above input, we may expect the tool generate a mapping formula of the form

T :Employee(ssn, name, dept, proj) :-
O:Employee(x1), O:hasSsn(x1,ssn), O:hasName(x1,name), O:Department(x2),
O:works for(x1,x2), O:hasDeptNumber(x2,dept), O:Worksite(x3), O:works on(x1,x3),
O:hasNumber(x3,proj). �

An intuitive and naive solution (inspired by early work of Quillian in [12]) gives
rise to finding the minimum spanning trees or Steiner trees1 among the classes that
have datatype properties corresponding to table columns and encoding the trees into
logic formulas. However, the problem is that a spanning/Steiner tree may not match

1 A Steiner tree for set M of nodes in graph G is a minimum spanning tree of M that contains
nodes of G which are not in M .

1154 Y. An, A. Borgida, and J. Mylopoulos

the semantics of the given table due to their constraints. For example, consider the re-
lational table Project(name, supervisor), with name as its key and corresponding
to O:Worksite.hasName, plus supervisor corresponding to O:Employee.hasSsn
in Figure 1. The minimum spanning tree consisting of Worksite, Employee, and the
edge works_on does not match the semantics of table Project because there are
multiple Employees working on a Worksite. In this paper, we turn to a database de-
sign process to uncover the connections between the constraints in relational schemas
and ontologies. In contrast to the graph theoretic results which show that there might
be too many minimum spanning/Steiner trees between a fixed set of nodes (for ex-
ample, there are already 5 minimum spanning trees among Employee, Department,
and Worksite in the very simple graph in Figure 1, considering each edge has the
same weight,) we propose to generate a limited number of “reasonable” trees and
formulas.

Our approach is directly inspired by the Clio project [10, 11], which developed a
successful tool that infers mappings from one set of relational tables and/or XML docu-
ments to another, given just a set of correspondences between their respective attributes.
Without going into further details at this point, we summarize the contributions which
we feel are being made here:

– The paper identifies a new version of the data mapping problem: that of inferring
complex formulas expressing the semantic mapping between relational database
schemas and ontologies from simple correspondences.

– We propose an algorithm to find a “reasonable” tree connection in the ontology
graph. The algorithm is enhanced to take into account information about the schema
(key and foreign key structure), the ontology (cardinality restrictions), and standard
database schema design guidelines.

– To gain theoretical confidence, we describe formal results which state that if the
schema was designed from a CM using techniques well-known in the Entity Rela-
tionship literature (which provide a natural semantic mapping for each table), then
the tool will report essentially all and only the appropriate semantics. This shows
that our heuristics are not just shots in the dark: in the case when the ontology has
no extraneous material, and when a table’s schema has not been denormalized, the
algorithm will produce good results.

– To test the effectiveness and usefulness of the algorithm in practice, we imple-
mented the algorithm in a prototype tool and applied it to a variety of database
schemas and ontologies. Our experience has shown that the user effort in specify-
ing complex mappings by using the tool is significantly less than that by manually
writing formulas from scratch.

The rest of the paper is structured as follows. Section 2 discusses related work, and Sec-
tion 3 presents the necessary background and notation. Section 4 describes an intuitive
progression of ideas underlying our approach, while Section 5 provides the mapping
inference algorithm. In Section 6 we report on the prototype implementation of these
ideas and experience with the prototype. Finally, Section 7 concludes and discusses
future work.

Inferring Complex Semantic Mappings Between Relational Tables and Ontologies 1155

2 Related Work

As mentioned earlier, the Clio tool [10, 11] discovers formal queries describing how tar-
get schemas can be populated with data from source schemas. The present work could
be viewed as extending this to the case when the source schema is a relational database,
while the target is a ontology. For example, in Example 1, if one viewed the ontology as
a relational schema made of unary tables, e.g., Employee(x1), Department(x2), bi-
nary tables, e.g., hasSsn(x′

1, ssn), hasDeptNumber(x′
2, dept), works for(x′′

1 , x′′
2),

and foreign key constraints, e.g., x′
1 and x′′

1 referencing x1, x′
2 and x′′

2 referencing x2,
where xi, x′

i, x′′
i (i = 1, 2) are object identifiers available in the ontology, one could in

fact try to apply directly the Clio algorithm to it, pushing it beyond its intended appli-
cation domain. The desired mapping formula from Example 1 would not be produced
for several reasons: (i) Clio [11] does not make a so-called logical relation connecting
hasSsn(x′

1, ssn) and hasDeptNumber(x′
2, dept), since the chase algorithm of Clio

only follows foreign key references out of tables. Specifically, there would be three sep-
arate logical relations, i.e., Employee(x1) ��x1=x′

1
hasSsn(x′

1, ssn), Department(x2)
��x2=x′

2
hasDeptNumber(x′

2, dept), and works for(x′′
1 , x′′

2) ��x′′
1 =x1 Employee(x1)

��x′′
2 =x2 Department(x2). (ii) The fact that ssn is a key in the table T :Employee,

leads us to prefer (see Section 4) a many-to-one relationship, such as works for, over
some many-to-many relationship which could have been part of the ontology (e.g.,
O:previouslyWorkedFor); Clio does not differentiate the two. So the work to be pre-
sented here analyzes the key structure of the tables and the semantics of relationships
(cardinality, IsA) to eliminate unreasonable options that arise in mapping to ontologies.

The problem of data reverse engineering is to extract a CM, for example, an ER
diagram, from a database schema. Sophisticated algorithms and approaches to this have
appeared in the literature over the years (e.g., [8, 5]). The major difference between data
reverse engineering and our work is that we are given an existing ontology, and want
to interpret a legacy relational schema in terms of it, whereas data reverse engineering
aims to construct a new ontology.

Schema matching (e.g., [3, 13]) identifies semantic relations between schema ele-
ments based on their names, data types, constraints, and schema structures. The primary
goal is to find the one-to-one simple correspondences which are part of the input for our
mapping inference algorithms.

3 Formal Preliminaries

For an ontology, we do not restrict ourselves to any particular ontology language in
this paper. Instead, we use a generic conceptual modeling language (CML), which
contains common aspects of most semantic data models, UML, ontology languages
such as OWL, and description logics. In the sequel, we use CM to denote an ontology
prescribed by the generic CML. Specifically, the language allows the representation
of classes/concepts (unary predicates over individuals), object properties/relationships
(binary predicates relating individuals), and datatype properties/attributes (binary pred-
icates relating individuals with values such as integers and strings); attributes are single
valued in this paper. Concepts are organized in the familiar is-a hierarchy. Object prop-
erties, and their inverses (which are always present), are subject to constraints such

1156 Y. An, A. Borgida, and J. Mylopoulos

as specification of domain and range, plus the familiar cardinality constraints, which
here allow 1 as lower bounds (called total relationships), and 1 as upper bounds (called
functional relationships). We shall represent a given CM using a directed and labeled
ontology graph, which has concept nodes labeled with concept names C, and edges
labeled with object properties p; for each such p, there is an edge for the inverse re-
lationship, referred to as p−. For each attribute f of concept C, we create a separate
attribute node denoted as Nf,C , whose label is f , and with edge labeled f from node C
to Nf,C .2 For the sake of simplicity, we sometimes use UML notations, as in Figure 1,
to represent the ontology graph. Note that in such a diagram, instead drawing separate
attribute nodes, we place the attributes inside the rectangle nodes. Readers should not
be confused by this compact representation.

If p is a relationship between concepts C and D (or object property having domain
C and range D), we propose to write in text as C ---p--- D (If the relationship p is
functional, we write C ---p->-- D .) For expressive CMLs such as OWL, we may
also connect C to D by p if we find an existential restriction stating that each instance
of C is related to some or all instance of D by p.

For relational databases, we assume the reader is familiar with standard notions as
presented in [14], for example. We will use the notation T [K, Y] to represent a rela-
tional table T with columns KY , and key K . If necessary, we will refer to the individual
columns in Y using Y [1], Y [2], . . ., and use XY as concatenation. Our notational con-
vention is that single column names are either indexed or appear in lower-case. Given a
table such as T above, we use the notation key(T), nonkey(T) and columns(T) to refer
to K , Y and KY respectively. (Note that we use the terms “table” and “column” when
talking about relational schemas, reserving “relation(ship)” and “attribute” for aspects
of the CM.) A foreign key (fk) in T is a set of columns F that references table T ′, and
imposes a constraint that the projection of T on F is a subset of the projection of T ′ on
key(T ′).

In this paper, a correspondence T.c �D.f will relate column c of table T to at-
tribute f of concept D. Since our algorithms deal with ontology graphs, formally a
correspondence L will be a mathematical relation L(T, c, D, f, Nf,D), where the first
two arguments determine unique values for the last three.

Finally, we use Horn-clauses in the form T (X) :- Φ(X, Y), as described in Intro-
duction, to represent semantic mappings, where T is a table with columns X (which
become arguments to its predicate), and Φ is a conjunctive formula over predicates rep-
resenting the CM, with Y existentially quantified as usual.

4 Principles of Mapping Inference

We begin with the set of concept nodes, M , such that for each node in M some of the
attribute nodes connected to it are corresponded by some of the columns of a table, and
M contains all of the nodes singled out by all of the correspondences from the columns
of the table. We assume that the correspondences have been specified by users. To seek
LAV mapping, it is sufficient to only focus on the connections among nodes in M

2 Unless ambiguity arises, we will use “node C”, when we mean “concept node labeled C”.

Inferring Complex Semantic Mappings Between Relational Tables and Ontologies 1157

by stripping off the attribute nodes3. Note that attribute nodes, which we can attach
them back at any time, are important when encoding trees into formulas for proving the
formal results. The primary principle of our mapping inference algorithm is to look for
shortest “reasonable” trees connecting nodes in M . In the sequel, we will call such a
tree semantic tree.

As mentioned before, the naive solution of finding min-spanning trees or Steiner
trees does not give us good results. The semantic tree we seek is not only shortest
but “reasonable”. Although the “reasonableness” is vague at this moment, we will lay
out some principles according to the semantics carried by the relational schemas and
ontologies; and we will show that our principles have a solid foundation that the “rea-
sonableness” can be formally proved in a very strict but useful setting.

Consider the case when T [c, b] is a table with key c, corresponding to an attribute
f on concept C, and b is a foreign key corresponding to an attribute e on concept B.
Then for each value of c (and hence instance of C), T associates at most one value
of b (instance of B). Hence the semantic mapping for T should be some formula that
acts as a function from its first to its second argument. The semantic trees for such
formulas look like functional edges, and hence should be preferred. For example, given
table Dep[dept, ssn, . . .], and correspondences which link the two named columns to
hasDeptNumber and hasSsn in Figure 1, respectively, the proper semantic tree uses
manages− (i.e., hasManager) rather than works_for− (i.e., hasWorkers).

Conversely, for table T ′[c, b], an edge that is functional from C to B, or from B
to C, is likely not to reflect a proper semantics since it would mean that the key cho-
sen for T ′ is actually a super-key – an unlikely error. (In our example, consider a ta-
ble T [ssn, dept, . . .], where both named columns are foreign keys.) To deal with such
problems, an algorithm should work in two stages: first connecting the concepts corre-
sponding to key columns into somehow a skeleton tree, then connecting the rest nodes
corresponding to other columns to the skeleton by, preferably, functional edges.

Most importantly, we must deal with the assumption that the relational schema
and the CM were developed independently, which implies that not all parts of the CM
are reflected in the database schema and vice versa. This complicates things, since in
building the semantic tree we may need to go through additional nodes, which end
up not being corresponded by any columns in the relational schema. For example,
Consider again the Project(name, supervisor) table and its correspondences men-
tioned in Introduction. Instead of the edge works_on, we prefer the functional path
controls−.manages− (i.e., controlledBy followed by hasManager), pass-
ing through node Department. Similar situations arise when the CM contains detailed
aggregation hierarchies (e.g., city part-of township part-of county part-of state), which
are abstracted in the database (e.g., a table with columns for city and state only).

We have chosen to flesh out the above principles in a systematic manner by con-
sidering the behavior of our proposed algorithm on relational schemas designed from
Entity Relationship diagrams — a topic widely covered in even undergraduate database
courses [14]. (We call this er2rel schema design.) One benefit of this approach will be
to allow us to prove that our algorithm, though heuristic in general, is in some sense

3 In the sequel, we will say “a concept corresponded by some columns of a table” without
mentioning its attributes.

1158 Y. An, A. Borgida, and J. Mylopoulos

“correct” for a certain class of schemas. Of course, in practice such schemas may be
“denormalized” in order to improve efficiency, and, as we mentioned, only parts of the
CM are realized in the database. We emphasize that our algorithm uses the general
principles enunciated above even in such cases, with relatively good results in practice.

To reduce the complexity of the algorithms which is inherently a tree enumeration,
and the size of the answer set, we modify the graph by collapsing multiple edges be-
tween nodes E and F , labeled p1, p2, . . . say, into a single edge labeled ′p1; p2; . . .′ The
idea is that it will be up to the user to choose between the alternative labels after the
final results have been presented by the tool, though the system may offer suggestions,
based on additional information, such as heuristics concerning the identifiers labeling
tables and columns, and their relationship to property names.

5 Mapping Inference Algorithms

As stated before, the algorithm is based on the relational database design methodology
from ER models. We will introduce the details of the algorithm in a gradual manner, by
repeatedly adding features of an ER model that appear as part of the CM. We assume
that the reader is familiar with basics of ER modeling and database design [14], though
we summarize the ideas.

5.1 An Initial Subset of ER Notions

We start with a subset of ER that contains the notions such as entity set E (called
just “entity” here), with attributes referred as attribs(E), and binary relationship set.
In order to facilitate the statement of correspondences and theorems, we assume in
this section that attributes in the CM have globally unique names. (Our implemented
tool does not make this assumption.) An entity is represented as a concept/class in
our CM. A binary relationship set corresponds to two relationships in our CM, one
for each direction, though only one is mapped to a table. Such a relationship will be
called many-many if neither it nor its inverse is functional. A strong entity S has some
attributes that act as identifier. We shall refer to these using unique(S) when describing
the rules of schema design. A weak entity W has instead localUnique(W) attributes,
plus a functional total binary relationship p (denoted as idRel(W)) to an identifying
owner entity (denoted as idOwn(W)).

Note that information about general identification cannot be represented in even
highly expressive languages such as OWL. So functions like unique are only used while
describing the er2rel mapping, and are not assumed to be available during semantic
inference. The er2rel design methodology (we follow mostly [8, 14]) is defined by two
components: To begin with, Table 1 specifies a mapping τ(O) returning a relational
table schema for every CM component O, where O is either a concept/entity or a binary
relationship. In this subsection, we assume that no pair of concepts is related by more
than one relationship, and that there are no so-called “recursive” relationships relating
an entity to itself. (We deal with these in Section 5.3.)

In addition to the schema (columns, key, fk’s), Table 1 also associates with a rela-
tional table T [V] a number of additional notions:

Inferring Complex Semantic Mappings Between Relational Tables and Ontologies 1159

Table 1. er2rel Design Mapping

ER Model object O Relational Table τ (O)

Strong Entity S columns: X

primary key: K

Let X=attribs(S) fk’s: none

Let K=unique(S) anchor: S

semantics: T (X) :- S(y),hasAttribs(y, X).

identifier: identifyS(y, K) :- S(y),hasAttribs(y, K).

Weak Entity W columns: ZX

let primary key: UX

E = idOwn(W) fk’s: X

P = idrel(W) anchor: W

Z=attribs(W) semantics: T (X, U, V) :- W (y), hasAttribs(y, Z), E(w),P (y, w),

X = key(τ(E)) identifyE(w, X).

U =localUnique(W) identifier: identifyW (y, UX) :- W (y),E(w), P (y, w), hasAttribs(y, U),

V = Z − U identifyE(w, X).

Functional columns: X1X2

Relationship F primary key: X1

E1 --F->- E2 fk’s: Xi references τ(Ei),

let Xi = key(τ(Ei)) anchor: E1

for i = 1, 2 semantics: T (X1, X2) :- E1(y1),identifyE1
(y1, X1), F (y1, y2), E2(y2),

identifyE2
(y2, X2).

Many-many columns: X1X2

Relationship M primary key: X1X2

E1 --M-- E2 fk’s: Xi references τ(Ei),

let Xi = key(τ(Ei)) semantics: T (X1, X2) :- E1(y1),identifyE1
(y1, X1), M(y1, y2),E2(y2),

for i = 1, 2 identifyE2
(y2, X2).

– an anchor, which is the central object in the CM from which T is derived, and
which is useful in explaining our algorithm (it will be the root of the semantic tree);

– a formula for the semantic mapping for the table, expressed as a Horn formula
with head T (V) (this is what our algorithm should be recovering); in the body of
the Horn formula, the function hasAttribs(x, Y) returns conjuncts attrj(x, Y [j])
for the individual columns Y[1], Y[2],... in Y, where attrj is the attribute name
corresponded by column Y [j].

– the formula for a predicate identifyC(x, Y), showing how object x in (strong or
weak) entity C can be identified by values in Y 4.

Note that τ is defined recursively, and will only terminate if there are no “cycles” in the
CM (see [8] for definition of cycles in ER).

The er2rel methodology also suggests that the schema generated using τ can be
modified by (repeatedly) merging into the table T0 of an entity E the table T1 of some
functional relationship involving the same entity E (which has a foreign key refer-
ence to T0). If the semantics of T0 is T0(K, V) :- φ(K, V), and of T1 is T1(K, W)

4 This is needed in addition to hasAttribs, because weak entities have identifying values spread
over several concepts.

1160 Y. An, A. Borgida, and J. Mylopoulos

:- ψ(K, W), then the semantics of table T=merge(T0,T1) is, to a first approximation,
T (K, V, W) :- φ(K, V), ψ(K, W). And the anchor of T is the entity E.

Please note that one conceptual model may result in several different relational
schemas, since there are choices in which direction a one-to-one relationship is en-
coded (which entity acts as a key), and how tables are merged. Note also that the re-
sulting schema is in Boyce-Codd Normal Form, if we assume that the only functional
dependencies are those that can be deduced from the ER schema (as expressed in FOL).

Now we turn to the algorithm for finding the semantic trees between nodes in the
set M singled out by the correspondences from columns of a table. As mentioned in
the previous section, because the keys of a table functionally determine the rest of the
columns, the algorithm for finding the semantic trees works in several steps:

1. Determine a skeleton tree connecting the concepts corresponding to key columns;
also determine, if possible, a unique anchor for this tree.

2. Link the concepts corresponding to non-key columns using shortest functional
paths to the skeleton anchor.

3. Link any unaccounted-for concepts corresponding to some other columns by arbi-
trary shortest paths to the tree.

More specifically, the main function, getTree(T ,L), will infer the semantics of table
T , given correspondence L, by returning an semantic tree S. Encoding S into formula
yields the conjunctive formula defining the semantics of table T .

Function getTree(T,L)
input: table T , correspondences L for columns(T)
output: set of semantic trees 5

steps:

1. Let Lk be the subset of L containing correspondences from key(T);
compute (S′, Anc′)=getSkeleton(T ,Lk).

2. If onc(nonkey(T))6- onc(key(T)) is empty, then return (S′, Anc′). /*if all columns corre-
spond to the same set of concepts as the key does, then return the skeleton tree.*/

3. For each foreign key Fi in nonkey(T) referencing Ti(Ki):
let Li

k = {Ti.Ki�L(T, Fi)}, and compute (Ss′′
i , Anc′′

i)= getSkeleton(Ti,Li
k). /*recall

that the function L(T, Fi) is derived from a correspondence L(T, Fi, D, f, Nf,D) such that
it gives a concept D and its attribute f (Nf,D is the attribute node in the ontology graph.)*/
find πi=shortest functional path from Anc′ to Anc′′

i ; let S = combine7(S′, πi, {Ss′′
i }).

4. For each column c in nonkey(T) that is not part of an fk, let N = onc(c); find π=shortest
functional path from Anc′ to N ; update S := combine(S, π).

5. In all cases above asking for functional paths, use a shortest path if a functional one does not
exist.

6. Return S.

5 To make the description simpler, at times we will not explicitly account for the possibility of
multiple answers. Every function is extended to set arguments by element-wise application of
the function to set members.

6 onc(X) is the function which gets the set M of concepts corresponded by the columns X.
7 Function combine merges edges of trees into a larger tree.

Inferring Complex Semantic Mappings Between Relational Tables and Ontologies 1161

The function getTree(T, L) makes calls to function getSkeleton on T and other
tables referenced by fks in T , in order to get a set of (skeleton tree, anchor)-pairs, which
have the property that in the case of er2rel designs, if the anchor returned is concept C,
then the encoding of the skeleton tree is the formula for identifyC .

Function getSkeleton(T,L)
input: table T , correspondences L for key(T)
output: a set of (skeleton tree, anchor) pairs
steps:
Suppose key(T) contains fks F1,. . . ,Fn referencing tables T1(K1),..,Tn(Kn);

1. If n ≤ 1 and onc(key(T)) is just a singleton set {C}, then return (C, {C}).8/*Likely a
strong entity: the base case.*/

2. Else, let Li={Ti.Ki�L(T, Fi)}/*translate corresp’s thru fk reference*/;
compute (Ssi, Anci) = getSkeleton(Ti, Li).

(a) If key(T) = F1, then return (Ss1, Anc1). /*functional relationship of weak entities.*/
(b) If key(T)=F1A, where columns A are not in any foreign key of T then /*possibly a

weak entity*/
i. if Anc1 = {N1} and onc(A) = {N} such that there is a total functional path π

from N to N1, then return (combine(π, Ss1), {N}). /*N is a weak entity.*/
(c) Else supposing key(T) has additional non-fk columns A[1], . . . A[m], (m ≥ 0); let

Ns={Anci} ∪ {onc(A[j]), j = 1, .., m}, and find skeleton tree Ss′ connecting the
nodes in Ns, where any pair of nodes in Ns is connected by a many-many path; return
(combine(Ss′, {Ssj}), Ns). /*dealing with the many-to-many binary relationships;
also the default action for unaccounted-for tables, e.g., cannot find an identifying rela-
tion from a weak entity to the supposed owner entity. No unique anchor exists.*/

In order for getSkeleton to terminate, it is necessary that there be no cycles in fk
references in the schema. Such cycles (which may have been added to represent ad-
ditional integrity constraints, such as the the fact that an association is total) can be
eliminated from a schema by replacing the tables involved with their outer join over the
key. getSkeleton deals with strong entities and their functional relationships in step
(1), with weak entities in step (2.b.i), and so far, with functional relationships of weak
entities in (2.a). In addition to being a catch-all, step (2.c) deals with tables represent-
ing many-many relationships (which in this section have key K = F1F2), by finding
anchors for the ends of the relationship, and then connecting them with paths that are
not functional, even when every edge is reversed.

To get the logic formula from a tree based on correspondence L, we provide the
procedure encodeTree(S, L) below, which basically assigns variables to nodes, and
connects them using edge labels as predicates.

Function encodeTree(S,L)
input: subtree S of ontology graph, correspondences L from table columns to attributes
of concept nodes in S.
output: variable name generated for root of S, and conjunctive formula for the tree.
steps: Suppose N is the root of S. Let Ψ = {}.

8 Both here and elsewhere, when a concept C is added to a tree, so are edges and nodes for C’s
attributes that appear in L.

1162 Y. An, A. Borgida, and J. Mylopoulos

1. if N is an attribute node with label f , find d such that L(, d, , f, N) = true,
return(d, true). /*for leaves of the tree, which are attribute nodes, return the corresponding
column name as the variable and an empty formula.*/
2. if N is a concept node with label C, then introduce new variable x; add conjunct
C(x) to Ψ ;

for each edge pi from N to Ni /*recursively get the entire formula.*/
let Si be the subtree rooted at Ni,
let (vi, φi(Zi))=encodeTree(Si, L),
add conjuncts pi(x, vi) ∧ φi(Zi) to Ψ ;

return (x, Ψ).

To specify the properties of the algorithm, we now suppose that the correspondences
L be the identity mappings from attribute names to table columns. The interesting prop-
erty of getSkeleton is that if T = τ(C) according to the er2rel rules in Table 1, where
C corresponds to a (strong or weak) entity, then getSkeleton returns (S, Anc), where
Anc = C as anchor, and encodeTree(S, L) is logically equivalent to identifyC . Simi-
lar property exists for T = τ(p), where p is a functional relationship originating from
concept C, in which case its key looks just like an entity key. We now state the desirable
properties more formally. Since the precise statement of theorems (and algorithms) is
quite lengthy and requires a lot of minute details for which we do not have room here,
we express the results as “approximately phrased” propositions. First, getTree finds the
desired semantic mapping, in the sense that

Proposition 1. Let table T be part of a relational schema obtained by er2rel derivation
from conceptual model E . Then some tree S returned by getTree(T, L) has the property
that the formula returned by encodeTree(S, L) is logically equivalent to the semantics
assigned to T by the er2rel design.

Note that this “completeness” result is non-trivial, since, as explained earlier, it would
not be satisfied by the current Clio algorithm [11], if applied blindly to E viewed as
a relational schema with unary and binary tables. Since getTree may return multiple
answers, the following converse “soundness” result is significant

Proposition 2. If S′ is any tree returned by getTree(T, L), with T as above, then the
formula returned by encodeTree(S′, L) represents the semantics of some table T ′

derivable by er2rel design from E , where T ′ is isomorphic9 to T .

Such a result would not hold of an algorithm which returns only minimal spanning
trees, for example.

We would like to point out that the above algorithm performs reasonably on some
non-standard designs as well. For example, consider the relational table T (personName,
cityName, countryName), where the columns correspond to, respectively, attributes
pname, cname, and crname of concepts Person, City and Country in a CM. If the
CM contains a path such that Person -- bornIn ->- City -- locatedIn

->- Country , then the above table, which is not in 3NF and was not obtained using

9 Informally, two tables are isomorphic if there is a bijection between their columns which
preserves key and foreign key structure.

Inferring Complex Semantic Mappings Between Relational Tables and Ontologies 1163

er2rel design (which would have required a table for City), would still get the proper
semantics:

T(personName,cityName,countryName) :-
Person(x1), City(x2),Country(x3), bornIn(x1,x2), locatedIn(x2,x3),
pname(x1,personName), cname(x2,cityName),crname(x3,countryName).

If on the other hand, there was a shorter functional path from Person to Country,
say an edge labeled citizenOf, then the mapping suggested would have been:

T(personName, cityName, countryName) :-
Person(x1), City(x2), Country(x3), bornIn (x1,x2),citizenOf(x1,x3), ...

which corresponds to the er2rel design. Moreover, had citizenOf not been func-
tional, then once again the semantics produced by the algorithm would correspond to the
non-3NF interpretation, which is reasonable since the table, having only personName
as key, could not store multiple country names for a person.

5.2 Reified Relationships

It is desirable to also have n-ary relationship sets connecting entities, and to allow re-
lationship sets to have attributes (called “association classes” in UML). Unfortunately,
these features are not directly supported in most CMLs, such as OWL, which only have
binary relationships. Such notions must instead be represented by “reified relation-
ships” [2] (we use an annotation * to indicate the reified relationships in a diagram):
concepts whose instances represent tuples, connected by so-called “roles” to the tuple
elements. So, if Buys relates Person, Shop and Product, through roles buyer, source and
object, then these are explicitly represented as (functional) binary associations, as in
Figure 2. And a relationship attribute, such as when the buying occurred, becomes an
attribute of the Buys concept, such as whenBought.

Unfortunately, reified relationships
Person

-whenBought

Buys* Shop

product

1..1 * * 1..1

*

buyer source

object
1..1

Fig. 2. N-ary Relationship Reified

cannot be distinguished reliably from or-
dinary entities in normal CMLs on purely
formal, syntactic grounds, yet they need
to be treated in special ways during re-
covery. For this reason we assume that
they can be distinguished on ontologi-
cal grounds. For example, in Dolce [4],
they are subclasses of top-level concepts
Quality and Perdurant/Event. For a rei-
fied relationship R, we use functions roles(R) and attribs(R) to retrieve the appropriate
(binary) properties.

The design τ of relational tables for reified relationships is shown in Table 2. To
discover the correct anchor for reified relationships and get the proper tree, we need to
modify getSkeleton, by adding the following case between steps 2(b) and 2(c):

– If key(T)=F1F2 . . . Fn and there exist reified relationship R with n roles r1, . . . , rn

pointing at the singleton nodes in Anc1, . . . , Ancn respectively,
then let S = combine({rj}, {Ssj}), and return (S, {R}).

1164 Y. An, A. Borgida, and J. Mylopoulos

Table 2. er2rel Design for Reified Relationship

ER model object O Relational Table τ (O)

Reified Relationship R columns: ZX1 . . . Xn

if r1, . . . , rn are roles of R primary key: X1 . . . Xn

let Z=attribs(R) fk’s: X1, . . . , Xn

Xi=key(τ(Ei)) anchor: R

where Ei fills role ri semantics: T (ZX1 . . . Xn) :- R(y),Ei(wi), hasAttribs(y, Z), ri(y, wi),

identifyEi
(wi, Xi), . . .

identifier: identifyR(y, . . . Xi . . .) :- R(y), . . . Ei(wi), ri(y, wi),

identifyEi
(wi, Xi),...

The main change to getTree is to compensate for the fact that if getSkeleton finds a
reified version of a many-many binary relationship, it will no longer look for an unrei-
fied one. So after step 1. we add

– if key(T) is the concatenation of two foreign keys F1F2, and nonkey(T) is empty,
compute (Ss1,Anc1) and (Ss2, Anc2) as in step 2. of getSkeleton; then find
ρ=shortest many-many path connecting Anc1 to Anc2;
return (S′) ∪ (combine(ρ, Ss1, Ss2))

The previous version of getTree was set up so that with these modifications, attributes
to reified relationships will be found properly, and the previous propositions continue
to hold.

5.3 Replication

If we allow recursive relationships, or allow the merger of tables for different functional
relationships connecting the same pair of concepts (e.g., works_for and manages),
the mapping in Table 1 is incorrect because column names will be repeated in the multi-
ple occurrences of the foreign keys. We will distinguish these (again, for ease of presen-
tation) by adding superscripts as needed. For example, if Person is connected to itself
by the likes property, then the table for likes will have schema T [ssn1, ssn2].

During mapping discovery, such situations are signaled by the presence of multiple
columns c and d of table T corresponding to the same attribute f of concept C. In such
situations, the algorithm will first make a copy Ccopy of node C in the ontology graph,
as well as its attributes. Ccopy participates in all the object relations C did, so edges must
be added. After replication, we can set onc(c) = C and onc(d) = Ccopy, or onc(d) =
C and onc(c) = Ccopy (recall that onc(c) gets the concept corresponded by column c in
the algorithm). This ambiguity is actually required: given a CM with Person and likes as
above, a table T [ssn1, ssn2] could have alternate semantics corresponding to likes, and
its inverse, likedBy. (A different example would involve a table T [ssn, addr1, addr2],
where Person is connected by two relationships, home and office, to concept Building,
which has an address attribute.

The main modification needed to the getSkeleton and getTree algorithms is that
no tree should contain both a functional edge D --- p ->-- C and its replicate

Inferring Complex Semantic Mappings Between Relational Tables and Ontologies 1165

D --- p ->-- Ccopy , (or several replicates), since a function has a single value,

and hence the different columns of a tuple will end up having identical values: a clearly
poor schema.

5.4 Addressing Class Specialization

The ability to represent subclass hierarchies, such as the one in Figure 3 is a hallmark
of CMLs and modern so-called Extended ER (EER) modeling.

Almost all textbooks (e.g., [14]) describe two techniques for designing relational
schemas in the presence of class hierarchies

1. Map each concept/class into a separate table following the standard er2rel rules.
This approach requires two adjustments: First, subclasses must inherit identifier
attributes from a single super-class, in order to be able to generate keys for their
tables. Second, in the table created for an immediate subclass C′ of class C, its
key key(τ(C′)) should also be set to reference as a foreign key τ(C), as a way of
maintaining inclusion constraints dictated by the is-a relationship.

2. Expand inheritance, so that all attributes and relations involving a class C appear on
all its subclasses C′. Then generate tables as usual for the subclasses C′, though not
for C itself. This approach is used only when the subclasses cover the superclass.
some researchers also suggest a third possibility:

3. “Collapse up” the information about subclasses into the table for the superclass. This
can be viewed as the result of merge(TC , TC′), where TC [K, A] and TC′ [K, B]
are the tables generated for C and its subclass C′ according to technique (1.) above.
In order for this design to be “correct”, [8] requires that TC′ not be the target of any
foreign key references (hence not have any relationships mapped to tables), and that
B be non-null (so that instances of C′ can be distinguished from those of C).

The use of the key for the root class,

-ss#

Person

-college

Faculty

Lecturer

-crsId

Course
teach

coord

0..1

0..1

1..*

1..*

Professor Assist. Professor

Fig. 3. Specialization Hierarchy

together with inheritance and the use of
foreign keys to also check inclusion con-
straints, make many tables highly ambigu-
ous. For example, according to the above,
table T (ss#, crsId), with ss# as the key
and a foreign key referencing T ′, could
represent at least

(a) Faculty teach Course
(b) Lecturer teach Course
(c) Lecturer coord Course.

This is made combinatorially worse by
the presence of multiple and deep hierarchies (e.g., imagine a parallel Course hierar-
chy), and the fact that not all ontology concepts are realized in the database schema,
according to our scenario. For this reason, we have chosen to try to deal with some of
the ambiguity relying on users, during the establishment of correspondences. Specifi-
cally, the user is supposed to provide a correspondence from column c to attribute f on
the lowest class whose instances provide data appearing in the column. Therefore, in

1166 Y. An, A. Borgida, and J. Mylopoulos

the above example of table T (ss#, crsId), ss# is made to correspond to ssn on Fac-
ulty in case (a), while in cases (b) and (c) it is made to correspond to ss# on Lecturer.
This decision was also prompted by the CM manipulation tool that we are using, which
automatically expands inheritance, so that ss# appears on all subclasses.

Under these circumstances, in order to capture designs (1.) and (2.) above, we do
not need to modify our earlier algorithm in any way, if we first expand inheritance
in the graph. So the graph would show Lecturer -- teaches;coord ->-

Course in the above example, and Lecturer would have all the attributes of Faculty.
To handle design (3.), we can add to the graph an actual edge for the inverse of the is-

a relation: a functional edge labeled alsoA, with lower-bound 0: C --- alsoA ->--

C’ , connecting superclass C to each of its subclasses C’. It is then sufficient to allow
functional paths between concepts to consist of alsoA edges, in addition to the normal
kind, in getTree.

5.5 Outer Joins

The observant reader has probably noticed that the definition of the semantic mapping
for T = merge(TE , Tp) was not quite correct: T (K, V, W) : −φ(K, V), ψ(K, W)
describes a join on K , rather than a left-outer join, which is what is required if p is a
non-total relationship. In order to specify the equivalent of outer joins in a perspicuous
manner, we will use conjuncts of the form �µ(X, Y)	Y , which will stand for the for-
mula µ(X, Y) ∨ (Y = null∧¬∃Z.µ(X, Z)), indicating that null should be used if there
are no satisfying values for the variables Y . With this notation, the proper semantics for
merge is T (K, V, W) : −φ(K, V), �ψ(K, W)	W .

In order to obtain the correct formulas from trees, encodeTree needs to be modified
so that when traversing a non-total edge pi that is not part of the skeleton, in the second-
to-last line of the algorithm we must allow for the possibility of vi not existing.

Our formal results still hold under the replication, the treatment of specialization
hierarchy, and the encoding of the merging of non-total functional relationships into
outer joins.

6 Experience

So far, we have developed the mapping inference algorithm by investigating the con-
nections between the semantic constraints in both relational models and ontologies.
The theoretical results show that our algorithm will report the “right” semantics for
schemas designed following the widely accepted design methodology. Nonetheless, it
is crucial to test the algorithm in real-world schemas and ontologies to see its overall
performance. To do this, we have implemented the mapping inference algorithm in our
prototype system MAPONTO, and have applied it on a set of schemas and ontologies.
In this section, we provide some evidence for the effectiveness and usefulness of the
prototype tool by discussing the set of experiments and our experience.

Our test data were obtained from various sources, and we have ensured that the
databases and ontologies were developed independently. The test data are listed in
Table 3. They include the following databases: the Department of Computer Science

Inferring Complex Semantic Mappings Between Relational Tables and Ontologies 1167

Table 3. Characteristics of Schemas and ontologies for the Experiments

Database Schema Number of Number of Ontology Number of Number of

Tables Columns Nodes Links

UTCS Department 8 32 Academic Department 62 1913

VLDB Conference 9 38 Academic Conference 27 143

DBLP Bibliography 5 27 Bibliographic Data 75 1178

OBSERVER Project 8 115 Bibliographic Data 75 1178

Country 6 18 CIA factbook 52 125

database in University of Toronto; the VLDB conference database; the DBLP computer
science bibliography database; the COUNTRY database appearing in one of reverse
engineering papers; and the test schemas in OBSERVER [9] project. For the ontolo-
gies, our test data include: the academic department ontology in the DAML library; the
academic conference ontology from the SchemaWeb ontology repository; the bibliog-
raphy ontology in the library of the Stanford’s Ontolingua server; and the CIA factbook
ontology. Ontologies are described in OWL. For each ontology, the number of links in-
dicates the number of edges in the multi-graph resulted from object properties. We have
made all these schemas and ontologies available on our web page: www.cs.toronto.edu/
˜yuana/research /maponto/relational/testData.html.

To evaluate our tool, we sought to understand whether the tool could produce the in-
tended mapping formula if the simple correspondences were given. We were concerned
about the number of formulas presented by the tool for users to sift through. Further,
we wanted to know whether the tool was still useful if the correct formula was not gen-
erated. In this case, we expected that a user could easily debug a generated formula to
reach the correct one instead of creating it from scratch. A summary of the experimen-
tal results are listed in Table 4 which shows the average size of each relational table
schema in each database, the average number of candidates generated, and the average
time for generating the candidates. Notice that the number of candidates is the number
of semantic trees obtained by the algorithm. Also, a single edge of an semantic tree may
represent the multiple edges between two nodes, collapsed using our p; q abbreviation.
If there are m edges in a semantic tree and each edge has ni i = 1, .., m original edges
collapsed, then there are

∏m
i ni original semantic trees. We show below a formula gen-

erated from such a collapsed semantic tree:

TaAssignment(courseName, studentName) :-
Course(x1), GraduateStudent(x2), [hasTAs;takenBy](x1,x2),
workTitle(x1,courseName), personName(x2,studentName).

where, in the semantic tree, the node Course and the node GraduateStudent are con-
nected by a single edge with label hasTAs;takenBy which represents two separate
edges, hasTAs and takenBy.

Table 4 shows that the tool only present a few mapping formulas for users to ex-
amine. This is due in part to our compact representation of parallel edges between two
nodes shown above. To measure the overall performance, we manually created the map-
ping formulas for all the 28 tables and compared them to the formulas generated by the
tool. We observed that the tool produced correct formulas for 24 tables. It demonstrated

1168 Y. An, A. Borgida, and J. Mylopoulos

Table 4. Performance Summary for Generating Mappings from Relational Tables to Ontologies

Database Schema Avg. Number of Avg. Number of Avg. Execution

Cols/per table Candidates generated time(ms)

UTCS Department 4 4 279

VLDB Conference 5 1 54

DBLP Bibliography 6 3 113

OBSERVER Project 15 2 183

Country 3 1 36

that the tool is able to understand the semantics of many practical relational tables in
terms of an independently developed ontology.

However, we wanted to know the usefulness of the tool. To evaluate this, we exam-
ined the generated formulas which were not the intended ones. For each such formula,
we compared it to the manually created and correct one, and we used a very coarse mea-
surement to record how much effort we had to spend to debug the generated formula in
order to make it correct. Such a measurement only recorded the changes of predicate
names in a formula. For example, the tool generated the following formula for the table
Student(name, office, position, email, phone, supervisor):

Student(X1), emailAddress(X1,email), personName(X1 ,name), Professor(X2),
Institute(X3), head(X3,X2), affiliatedOf(X3,X1), personName(X2 , supervisor)... (1)

If the intended semantics for the above table columns is:

Student(X1), emailAddress(X1,email), personName(X1 ,name), Professor(X2),
GraduateStudent(X3), hasAdvisor(X3 ,X2), isA(X3,X1), personName(X2 , supervisor)... (2)

then, one can change the three predicates Institute(X3), head(X3,X2), affiliatedOf(X3,X1)
in formula (1) to GraduateStudent(X3), hasAdvisor(X3 ,X2), isA(X3,X1) instead of writing
the entire formula (2) from scratch. Our experience working with the tool has shown
that significant effort have been saved when building semantic mappings from tables to
ontologies, because in most cases one only needed to change a relatively small number
of predicates in an existing formula.

Tables 4 indicate that execution times were not significant, since, as predicted, the
search for subtrees and paths took place in a relatively small neighborhood.

7 Conclusion and Future Work

Semantic mappings between relational database schemas and ontologies in the form of
logic formulas play a critical role in realizing the semantic web as well as in many data
sharing problems. We have proposed a solution to infer the LAV mapping formulas
from simple correspondences, relying on information from the database schema (key
and foreign key structure) and the ontology (cardinality restrictions, is-a hierarchies).
Theoretically, our algorithm infers all and only the semantics implied by the ER-to-
relational design if a table’s schema follows ER design principles. In practice, our ex-

Inferring Complex Semantic Mappings Between Relational Tables and Ontologies 1169

perience working with independently developed schemas and ontologies has shown that
significant effort has been saved in specifying the LAV mapping formulas.

We are working towards disambiguation between multiple possible semantics by
exploiting the following sources of information: first, a richer modeling language, sup-
porting at least disjointness/coverage in is-a hierarchies, but also more complex axioms
as in OWL ontologies; second, the use of the data stored in the relational tables whose
semantics we are investigating. For example, queries may be used to check whether
complex integrity constraints implied by the semantics of a concept/relationship fail to
hold, thereby eliminating some candidate semantics.

Acknowledgments. We are most grateful to Renée Miller and Yannis Velegrakis for
their clarifications concerning Clio, comments on our results, and encouragement. Re-
maining errors are, of course, our own.

References

1. D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati. Data Integration in
Data Warehousing. J. of Coop. Info. Sys., 10(3):237–271, 2001.

2. M. Dahchour and A. Pirotte. The Semantics of Reifying n-ary Relationships as Classes. In
ICEIS’02, pages 580–586, 2002.

3. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering Complex
Semantic Matches between Database Schemas. In SIGMOD’04, pages 383–394, 2004.

4. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider. Sweetening Ontologies
with DOLCE. In EKAW’02, pages 166–181, 2002.

5. J.-L. Hainaut. Database Reverse Engineering. http:// citeseer.ist.psu.edu/ article/ hain-
aut98database.html, 1998.

6. S. Handschuh, S. Staab, and R. Volz. On Deep Annotation. In Proc. WWW’03, 2003.
7. A. Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in Global Infor-

mation Systems. J. of Intelligent Info. Sys., 5(2):121–143, Dec 1996.
8. V. M. Markowitz and J. A. Makowsky. Identifying Extended Entity-Relationship Object

Structures in Relational Schemas. IEEE TSE, 16(8):777–790, August 1990.
9. E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: An Approach for Query

Processing in Global Information Systems Based on Interoperation Across Preexisting On-
tologies. In CoopIS’96, pages 14–25, 1996.

10. R. Miller, L. M. Haas, and M. A. Hernandez. Schema Mapping as Query Discovery. In
VLDB’00, pages 77–88, 2000.

11. L. Popa, Y. Velegrakis, R. J. Miller, M. Hernandes, and R. Fagin. Translating Web Data. In
VLDB’02, pages 598–609, 2002.

12. M. R. Quillian. Semantic Memory. In Semantic Information Processing. Marvin Minsky
(editor). 227-270. The MIT Press. 1968.

13. E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema Matching.
VLDB Journal, 10:334–350, 2001.

14. R. Ramakrishnan and M. Gehrke. Database Management Systems (3rd ed.). McGraw Hill,
2002.

15. H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster, H. Neumann, and S. Hub-
ner. Ontology-Based Integration of Information - A Survey of Existing Approaches. In
IJCAI’01 Workshop. on Ontologies and Information Sharing, 2001.

Ontology Transformation and Reasoning for
Model-Driven Architecture

Claus Pahl

Dublin City University, School of Computing, Dublin 9, Ireland
cpahl@computing.dcu.ie

Abstract. Model-driven Architecture (MDA) is a software architecture
framework proposed by the Object Management Group OMG. MDA
emphasises the importance of modelling in the architectural design of
service-based software systems. Ontologies can enhance the modelling
aspects here. We present ontology-based transformation and reasoning
techniques for a layered, MDA-based modelling approach. Different on-
tological frameworks shall support domain modelling, architectural mod-
elling and interoperability. Ontologies are beneficial due to their potential
to formally define and automate transformations and to allow reasoning
about models at all stages. Ontologies are suitable in particular for the
Web Services platform due to their ubiquity within the Semantic Web
and their application to support semantic Web services.

1 Introduction

The recognition of the importance of modelling in the context of software ar-
chitecture has over the past years led to model-driven architecture (MDA) –
a software engineering approach promoted by the Object Management Group
(OMG) [1]. MDA combines service-oriented architecture (SOA) with modelling
techniques based on notations such as the Unified Modelling Language (UML).
Recently, ontologies and ontology-based modelling have been investigated as
modelling frameworks that enhance the classical UML-based approaches. While
formal modelling and reasoning is, to some extent, available in the UML context
in form of OCL, ontologies offer typically full reasoning support, for instance
based on description logic. A second benefit of ontologies is the potential to
easily reuse and share models.

Modelling and developing software systems as service-based architectures is
gaining increasing momentum. Modelling and describing services is central for
both providers and clients of services. Providers need to provide an accurate
description or model for a service that can be inspected by potential clients.
In particular the attention that the Web Services Framework (WSF) [2, 3] has
received recently emphasises the importance of service-orientation as the ar-
chitectural paradigm. Service-oriented architecture (SOA) [4, 5] is becoming a
central software engineering discipline that aims at supporting the development
of distributed systems based on reusable services.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1170–1187, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Ontology Transformation and Reasoning for Model-Driven Architecture 1171

MDA has been developed within the context supported and standardised by
the OMG, i.e. UML as the modelling notation and CORBA as the implementation
platform. It is based on a layered architecture of models at different abstraction
levels. Our focus is the Web Services platform based on techniques supported by
the World-Wide Web Committee (W3C) [2], such as WSDL and SOAP, but also
extensions like WS-BPEL for service processes [6, 7, 8]. This specific area is par-
ticularly suitable to demonstrate the benefits of ontology-based modelling due the
distributed nature of service-based software developmentwith its emphasis on pro-
visionanddiscoveryofdescriptions andonsharing and reuseofmodels and services.

While the OMG has started a process towards the development of an On-
tology Definition Metamodel (ODM) [9] that can support ontological modelling
for particular MDA model layers, we take a more comprehensive approach here
with ontologies for all layers. Our approach will also be more concrete, i.e. based
on concrete ontologies. Other authors, e.g. [10], have already explored OWL
– the Web Ontology Language – for MDA frameworks. We will extend these
approaches by presenting here a layered, ontology transformation-based mod-
elling approach for software services. We will introduce ontology-based mod-
elling approaches for three MDA layers – computation-independent, platform-
independent, and platform-specific. Ontologies will turn out to support a number
of modelling tasks – from domain modelling to architectural configuration and
also service and process interoperability. We will put an emphasis on processes,
which will play an important role in modelling domain activities but also in
modelling interaction processes in software architecture configurations.

Our contribution is a layered ontological transformation framework with dif-
ferent ontologies focussing on the needs of modelling at particular abstraction
layers. We will indicate how such a framework can be formally defined – a full
formalisation is beyond the scope of this paper. We will present our approach
here in terms of an abstract notation, avoiding the verbosity of XML-based
representations for services and ontologies.

We will start with an overview of service-oriented architecture and ontology-
based modelling in Section 2. Service modelling with ontologies is introduced
in Section 3. We will address the transformations between ontological layers in
Section 4. We discuss our efforts in the context of OMG adoption and standard-
isation in Section 5. Related Work is discussed in Section 6. We end with some
conclusions in Section 7.

2 Service Architectures and Models

The context of our work is model-driven architecture (MDA). Our platform is
service-based; our modelling approach is ontology-based. These aspects shall now
be introduced.

2.1 Services and the Web Services Framework

A service provides a coherent set of operations at a certain location [3]. The ser-
vice provider makes an abstract service interface description available that can

1172 C. Pahl

be used by potential service users to locate and invoke the service. Services have
so far usually been used ’as is’ in single request-response interactions [11]. How-
ever, the configuration and coordination of services in service-based architectures
and the composition of services to processes is becoming equally important in
the second generation of service technology. Existing services can be reused and
composed to form business or workflow processes. The principle of architectural
composition is process assembly.

The discovery and invocation infrastructure of the Web Services Framework
(WSF) [2] – a registry or marketplace where potential users can search for suit-
able services and an invocation protocol – with the services and their clients form
our platform, i.e. a service-oriented architecture. Languages for description are
central elements of a service-oriented architecture. With the second generation
of service technology and efforts such as MDA, the emphasis has shifted from
description to the wider and more comprehensive activity of modelling.

Behaviour and interaction processes are essential parts of modelling and un-
derstanding software system architectures [12, 13, 14, 15]. However, the support
that architectural description languages offer with regard to behavioural pro-
cesses in architectures is sometimes limited. MDA focuses on UML modelling to
support architectural designs. In [16], scenarios, i.e. descriptions of interactions
of a user with a system, are used to operationalise requirements and map these
to a system architecture.

2.2 Ontologies and the Semantic Web

Making the Web more meaningful and open to manipulation by software appli-
cations is the objective of the Semantic Web initiative. Knowledge representation
and logical inference techniques form its backbone [17, 18]. Ontologies – the key
to a semantic Web – express terminologies and precisely defined semantical prop-
erties and a create shared understanding of annotations of Web resources such
as Web pages or services. Ontologies usually consist of hierarchical definitions
of important concepts in a domain and descriptions of the properties of each
concept, supported by logics for knowledge representation and reasoning.

Ontologies are, however, important beyond sharable and processable annota-
tions of Web resources. Some effort has already been made to exploit Semantic
Web and ontology technology for the software engineering domain in general
and modelling in particular [19]. OWL-S [20] for instance is a service ontology,
i.e. it is a language that provides a specific vocabulary for describing properties
and capabilities of Web services, which shows the potential of this technology
for software engineering.

An ontology is defined in terms of concepts and relationships. An ontology
is a model of a domain made available through the vocabulary of concepts and
relationships. Concepts capture the entities of the domain under consideration.
Instances are concrete objects of a particular concept. Relationships capture
the relationships between concepts and their properties. In this respect, ontolo-
gies are similar to modelling notations such as UML. Ontologies, however, com-
bine modelling with logic-based reasoning. Properties of concepts are specified

Ontology Transformation and Reasoning for Model-Driven Architecture 1173

in terms of (universal or existential) quantifications over relationships to other
concepts.

Formality in the Semantic Web framework facilitates machine understanding
and automated reasoning. OWL (the Web Ontology Language), in particular
OWL-DL, is equivalent to a very expressive description logic [21]. This fruitful
connection provides well-defined semantics and reasoning systems. Description
logic is particularly interesting for the software engineering context due to a
correspondence between description logic and dynamic logic (a modal logic of
programs).

2.3 Model-Driven Architecture

Model-driven architecture (MDA) is a software architecture approach emphasis-
ing the importance of modelling for the architectural design of software systems
[1]. The platform targeted by MDA are service-based architectures. MDA sug-
gests a three-layered approach:

– The Computation Independent Model (CIM) describes a system from the
computation-independent viewpoint, addressing structural aspects of the
system. A CIM is often called a domain model.

– The Platform Independent Model (PIM) can be seen as defining a system in
terms of a technology-neutral virtual machine or a computational abstraction.

– The Platform Specific Model (PSM) usually consists of a platform model
that captures the technical concepts and services that make up the platform
and an implementation-specific model geared towards the concrete imple-
mentation technique.

The archetypical OMG MDA is based on UML for platform independent
modelling and CORBA as the platform with its languages such as IDL as the
platform-specific notation. In our context, the platform is a service-based infras-
tructure. Different platform types can be distinguished. The generic platform is
SOA here, the technology-specific platform is the WSF, and vendor-specific plat-
form technologies are for instance the Apache Axis or Collaxa service engines.

3 Modelling with Ontologies

MDA proposes three modelling layers – each with a distinct focus that, as we
aim to demonstrate, can be supported ontologically.

– The computation-independent layer focuses on domain capture.
– The platform-independent layer focuses on architecture configuration and

service process composition.
– The platform-specific layer focuses on interoperability and discovery support.

A case study from the banking domain will accompany our investigations.

1174 C. Pahl

3.1 CIM – Computation Independent Model

The purpose of the Computation Independent Model (CIM) is to capture a
domain with its concepts and properties. Typically, two viewpoints of domain
modelling can be distinguished. Concepts are represented in form of hierarchies –
called the information viewpoint in MDA. Behaviour is represented in a process-
based form – called the enterprise viewpoint in MDA, based on open distributed
processing (ODP) concepts. Our aim is to provide a single ontological notation
that can capture both viewpoints. A process-oriented ontology shall capture both
types of domain entities, see Fig. 1.

– Two types of concepts shall be distinguished: objects, which are static enti-
ties, and processes, which are dynamic entities.

Domain ontology (OWL-style) – CIM layer

model ::= relationship∗ | constraint∗

concept ::= object | process
relationship type ::= is a | has part | depends
relationship ::= concept relationship type concept
constraint ::= conceptConstraint | relationshipConstraint

Service process ontology (WSPO) – PIM layer

model ::= pre process post
process ::= preState procExpr postState
pre ::= preState preCond condition |

preState inObj syntax
post ::= postState postCond condition |

postState outObj syntax
procExpr ::= process | ! procExpr | procExpr ; procExpr |

procExpr + procExpr | procExpr || procExpr

Service ontology (WSMO) – PSM layer

model ::= service
service ::= interface capabilities
interface ::= messageExchange nonFunctProp
capabilities ::= preCond postCond assumption effect nonFunctProp

Fig. 1. Abstract Syntax of Ontologies

Ontology Transformation and Reasoning for Model-Driven Architecture 1175

Information Viewpoint
(using is_a relationships)

balance

account

user

sum of
money

transfer

open

enquire

object

balance
sum of
money

account

monetary
object

bank object

...

Enterprise (Process) Viewpoint
(using dependency relationships)

Fig. 2. CIM-level Excerpts from a Banking Domain Ontology

– Three relationship types shall be distinguished: is a (the subclass relation-
ship), has part (the component relationship), and depends (the dependency
relationship).

– Constraints, or properties, on concepts and relationships can be expressed.

The subclass relationship is the classical form of relating concepts in ontologies.
For domain-specific software systems, the composition of objects and processes
from a component perspective is an additional, but also essential information.
Dependencies are useful to describe input-output relationships between objects
and activities that process them. Specific ordering requirements on composed
processes can be expressed through constraints. The abstract syntax of this
ontology language is summarised in Fig. 1, upper part. We will discuss the
semantics at the end of this section.

We need to define or identify an ontology language that can provide the nec-
essary notational framework. An OWL-based ontology with support for the com-
ponent and dependency relationships can form the notational framework here.

Example 1. The example that we will use to illustrate the modelling and trans-
formation techniques throughout the paper is taken from the banking domain.
We can identify:

– objects such as account and sum (of money),
– activities such as account create, close, lodge, transfer, and balance and

processes such as for instance create; !(balance + lodge + transfer); close
which describes sequencing, iteration, and choice of activities1,

– constraints such as a precondition balance ≥ sum on the transfer activity.
1 The process combinators are ’;’ (sequential composition), ’ !’ (iteration), ’+’ (choice),

and ’||’ (parallel composition).

1176 C. Pahl

The example in Fig. 2 shows a simplified domain ontology for the bank account
example.

Reasoning facilities of an ontological framework can be deployed to check the
consistency of ontologically defined domain models.

Example 2. With instances attached to the entities, an inference engine can, for
example, determine all bank account instances with a negative account balance.
Another example is the satisfaction of a precondition for a money transfer on a
particular account.

3.2 PIM – Platform Independent Model

The Platform Independent Model (PIM) changes the focus from the computation-
independent capture of the domain to a focus on constraints imposed on the knowl-
edge representation by the computational environment. Architectures and pro-
cesses are here the key aspects at this modelling level. The architectural focus is on
services, their architectural configuration, and interaction processes [13, 22]. Ar-
chitectural configuration addresses the interaction processes (remote invocation
and service activation) between different agents in a software system. Again, we
will use an ontology to express these aspects.

Services are the components of the system architecture. They form the start-
ing point of architecture modelling. Different approaches for service ontologies
have been proposed. These differ in the way service and processes are represented
in the ontologies – see Section 6 for a more detailed review. Since representing not
only services, but also their configuration and assembly into processes is impor-
tant here, we use the Web Service Process Ontology (WSPO), whose foundations
were developed in [23, 24]. This ontology will bring us closer to the architectural
perspective than more abstract service ontologies such as OWL-S [20], which
however also provides support for service composition. Services (and processes)
in WSPO are not represented as concepts, but as relationships denoting acces-
sibility relations between states of the system. A PIM service process template,
see Fig. 3, defines the basic structure of states and service processes.

The abstract syntax of this ontology is presented in Fig. 1, middle part.

account

postpre

postcondition
semantics

precondition
semantics

in-object
syntax

transfer

sum of
money

balance =
balance@pre - sum

balance >
account

account
out-object

syntax

Fig. 3. Ontological Service Process Template (WSPO)

Ontology Transformation and Reasoning for Model-Driven Architecture 1177

– Concepts in this approach are states (pre- and poststates), parameters (in-
and outparameters), and conditions (pre- and postconditions).

– Two forms of relationships are provided. The processes themselves are called
transitional relationships. Syntactical and semantical descriptions – here pa-
rameter objects (syntax) and conditions (semantics) – are associated through
descriptional relationships.

This ontological representation in WSPO is actually an encoding of a simple
dynamic logic (a logic of programs) in a description logic format [23, 24], allowing
us to avail of modal logic reasoning in this framework.

WSPO provides a standard template for service or service process descrip-
tion. Syntactical parameter information in relation to the individual activities –
to be implemented through service operations – and also semantical information
such as pre-conditions like are attached to each activity as defined in the PIM
template. Example 4 will illustrate this. WSPO can be distinguished from other
service ontologies by two specific properties. Firstly, although based on descrip-
tion logics, it adds a relationship-based process sublanguage enabling process
expressions based on iteration, sequential and parallel composition, and choice
operators. Secondly, it adds data to processes in form of parameters that are
introduced as constant process elements into the process sublanguage.

Example 3. The architecture- and process-oriented PIM model of the bank ac-
count focuses on the activities and how they are combined to processes. The
process create; !(balance + lodge + transfer); close, which describes a sequence
of account creation, an iteration of a choice of balance enquiry, lodgment, and
transfer activities, and a final account closing activity, can be represented in
WSPO as a composed relationship expression:

create ◦ acc;
! (balance ◦ acc; lodge ◦ (acc, sum); transfer ◦ (from, to, sum));
close ◦ acc

Ontologies enable reasoning about specifications. WSPO enables reasoning
about the composition of services in architectures. In [23], we have presented an
ontological matching notion that can be applied to determine whether a service
provider can be connected to a service user based on their individual service and
process requirements.

Example 4. Assume that in order to implement an account process, a transfer
service needs to be integrated. For any given state, the process developer might
require2

∀preCond . (balance > amount)
∀transfer . ∀postCond .

(balance() = balance()@pre − amount)

2 The @-construct refers to the attribute in the prestate.

1178 C. Pahl

transfer
service

nonFctProp

preCond

effect

assumption

postCond

message-
Exchange

nonFctProp

security:
SSL-encrypt

Interface Capabilities

balance > sum

balance =
balance@pre -sum

exists(account)

transfered(sum)

in: acc x acc x sum
out: void

location “address”

Fig. 4. Ontological Service Template (WSMO)

which would be satisfied by a provided service

∀preCond . true
∀transfer . ∀postCond .

(balance() = balance()@pre − amount) ∧
(lastActivity = ’transfer’)

based on a refinement condition (weakening the precondition and strengthening
the postcondition).

The refinement notion used in the example above is based on the consequence
inference rule from dynamic logic integrated into WSPO.

While architecture is the focus of this model layer, the approach we discussed
does not qualify as an architecture description language (ADL) [26], although the
aim is also the separation of computation (within services) and communication
(interaction processes between services). ADLs usually provide notational means
to describe components (here services), connectors (channels between services),
and configurations (the assembly of instantiations of components and connec-
tors). Our approach comes close to this aim by allowing services as components
and process expressions as configurations to be represented.

3.3 PSM – Platform Specific Model

Our platform is the Web Service Framework (WSF) – consisting of languages,
protocols, and software tools. Models for the platform specific layer (PSM) need
to address two aspects: a platform model and implementation specific mod-
els. The platform model is here defined by the Web Services Framework and
its service-oriented architecture principles. The implementation specific models
characterise the underlying models of the predominant languages of the platform.

Ontology Transformation and Reasoning for Model-Driven Architecture 1179

Interoperability of services is the key objective of the WSF. Two concerns
determine the techniques used at this layer: the abstract description of services to
support their discovery and the standardised assembly of services to processes.
Two different models capturing executable and tool-supported languages are
therefore relevant here:

– Description and Discovery. Abstract syntactical and semantical service inter-
faces shall be supported. The Web Services Description Language (WSDL)
supports syntactical information. WSDL specifications can be created by
converting syntactical information from the WSPO into abstract WSDL el-
ements. We will, however, focus here on semantically enhanced descriptions
enabled through service ontologies specific to the platform.
Services as the basic components of processes can be represented as con-
cepts in ontologies [27]. This approach is followed by widely used service
ontologies such as OWL-S [20] and WSMO [25]. WSMO defines a template
for the representation of service-related knowledge, see Figs. 1 and 4. The
WSMO concepts are the central services concept and auxiliary domains for
descriptional entities, i.e. expressions of different kinds. Relationships in the
template represent service properties of two kinds. Properties such as pre-
Cond, postCond, assumption, and effects are called capabilities relating to
the service semantics. Properties such as messageExchange are syntactically
oriented interface aspects. In addition to these functional aspects, a range of
non-functional aspects is supported.

– Processes and Composition. The Business Process Execution Language for
Web Services (WS-BPEL) is one of the proposed service coordination lan-
guages [6]. WS-BPEL specifications can be created by converting process
expressions from WSPO. We do not discuss this further here as the seman-
tical support required here is already available at the PIM-level.

The benefit of using an ontology for description and discovery can easily
be seen when the discovery and matching of OWL-S or WSMO-based service
descriptions is compared with syntax-oriented WSDL descriptions.

Example 5. WSMO descriptions capture syntactical and semantical descriptions
as WSPO does, see Examples 3 and 4. It adds, however, various non-functional
aspects that can be included into the discovery and matching task. Standardised
description and invocation formats enable interoperability. Required functional-
ity can be retrieved from other locations. An example are authentication features
for an online banking system.

3.4 Semantics of the Ontology Layers

The abstract syntax of the ontologies we discussed has already been presented
in Fig. 1. Now, we focus on the semantics of the individual ontology layers.
Ontologies are based on ontology languages, which in turn are defined in terms of
logics. Here, we can exploit the description logic foundation of ontology languages
such as OWL [21]. While a full treatment is beyond the scope of this paper,

1180 C. Pahl

we address the central ideas due to the definition of ontology transformations
requires underlying formal semantical models.

Ontology languages are logics defined by interpretations and satisfaction re-
lations on semantical structures such as algebras (sets and relations) and state-
based labelled transitions systems (e.g. Kripke transition systems). A semantical
metamodel for each of the layers can be formulated based on standard approaches
in this context [21]:

– A domain ontology can be defined in terms of sets (for concepts) and relations
(for relationships).

– The architectural and process aspects can be defined in terms of labelled
transition systems, such as Kripke transition systems (KTS), where sets
represent states and relations represent transitions between states.

– The interoperability aspects can be split into interface (defined in terms of
sets and relations) and configuration and process behaviour (defined in terms
of state transition mechanisms).

This shall form the basis for the approach presented here. In the future, we plan
to map our semantics to the OMG-supported Ontology Definition Metamodel
(ODM). This can be expected to be straightforward due to an ODM-OWL map-
ping as part of ODM. We will address this aspect in Section 5.

4 Ontology-Based Model Transformations

Without explicitly defined transformations, a layered modelling approach will
not be feasible. The transformations play consequently a central role. Transfor-
mations between the model layers need to be automated to provide required tool
support and to enable the success of the approach. Following the OMG-style of
defining transformation, we define transformation rules based on patterns and
templates.

4.1 Transformation Principles

While it is evident that the transformations we require here are about adding new
structures, for instance notions of state and state transition for the architectural
PIM layer, the original model should be recoverable and additional information
on that layer should not be added. What we aim at is therefore not a refinement
or simulation notion in the classical sense – although these notions will help us
to define the transformations.

Refinements where additional application-specific model specifications are
added can occur within a given layer. Refinement within a model layer can be
based on subsumption, the central reasoning construct of ontology languages
that is based on the subclass relation between concepts or relationship classes,
respectively. In [23], we have developed a constructive refinement and simulation
framework for service processes based on refinement and simulation relations as
special forms of subsumption.

Ontology Transformation and Reasoning for Model-Driven Architecture 1181

RuleAspect Description
CP0 template For each process element in the CIM, create a PIM template.
CP1 process elementThe PIM process element is the process element of CIM.
CP2 states Create default concepts for pre- and post-states.
CP3 syntax For each in- and out-parameter of processes, create a separate

syntax (object) element.
CP4 semantics Create pre- and postconditions depending on availability of

external additional information in form of constraints.
CP5 process If process expressions available in form of constraints, then

expressions create complex process using relationship expressions in WSPO.

Fig. 5. Transformation Rules for the CIM-to-PIM Mapping

Our focus in this paper is the illustration of the different modelling capa-
bilities of ontology languages and ontologies on the different model layers. Our
objective is to motivate the need for and the benefits of a layered ontological
modelling and transformation approach. A formal model of transformations is
beyond the scope of this paper. Graph transformation and graph grammars pro-
vide suitable frameworks for this task [28, 29].

4.2 CIM-to-PIM Mapping

The CIM-layer supports abstract, computation-independent domain modelling.
This model is mapped to a computation-oriented, but still platform-independent
service-based model. The PIM-layer supports analysis and reasoning for archi-
tecture and process aspects, such as configuration and composition, on an ab-
stract level. Consequently, information needs to be added to a CIM to provide
a sufficient level of structure for the PIM-level. A process-specific PIM tem-
plate, see Fig. 3 for a template application to the banking context, guides the
transformation process. We have defined the rules for the CIM-to-PIM transfor-
mation in Fig. 5.

In MDA, the transformation steps are defined in terms of model markings
and applications of templates. Marks are annotations (or metadata) of entities in
the original model to support the mapping that indicates how these entities are
used in the target model. Marks can support the determination of the mapping
template to be deployed. The CIM-to-PIM transformation rule, that defines the
creation of a PIM-template for CIM-concepts marked as ’process’, is an example
of this.

Example 6. Fig. 3 represents the result of the transformation of the ’transfer’
process from Fig. 2 using the rules defined in Fig. 5. The ’transfer’ concept in
Fig. 2 is marked as a process, which based on rule CP0 creates a PIM process
template with explicit states (rule CP2). The CIM concept ’transfer’ becomes
the transitional relationship element at the centre of the PIM template (rule

1182 C. Pahl

CP1). The input and output elements, associated to ’transfer’ using dependencies
(see Fig. 2), are mapped to syntax descriptions (rule CP2). Equally, additional
constraints in the CIM are mapped to the PIM semantical descriptions (rule
CP4).

Proposals for a mapping language are, similar to the ontology metamodel
proposals, currently being requested by the OMG. Graph transformations and
graph grammars [28, 29] would suit the need here to formalise the transformation
rules. We have used graphs as the visualisation mechanism for ontological mod-
els. Graph-based models and CIM-to-PIM transformation semantics are there-
fore a natural combination. The semantics of a CIM can be seen as a directed
labelled graph with nodes (objects and processes) and edges (relationships). The
semantics of a PIM can be seen directed labelled graph, where descriptional and
transitional roles are distinguished. This is equivalent to a KTS, see Section 3.4.
This can be implemented as a graph expansion, where essentially state concepts
are introduced. The original CIM can be retrieved by projecting on individual
PIMs and then merging all process PIMs into one CIM.

4.3 PIM-to-PSM Mapping

The platform specific model (PSM) is defined in our approach by two separate
models: service ontology descriptions to address service discovery and process
orchestration and choreography descriptions to address service composition. The
corresponding transformation rules for these two aspects – we chose WSMO for

Rule Aspect Description
PP1 WSMO From the WSPO-based PIM, map process relationships to

WSMO service concept and fill messageExchange and pre/
postCond properties accordingly, see WSMO-template in
Fig. 4.

PP1.1 WSMO Map the WSPO in and out objects onto WSMO message-
messageExchange Exchange descriptions.

PP1.2 WSMO Map the WSPO pre- and postconditions onto WSMO pre-
pre-/postconditions and postconditions.

PP2 WS-BPEL The complex WSPO process relationships can be mapped to
BPEL processes.

PP2.1 WS-BPEL For each process create a BPEL partner process.
process partners

PP2.2 WS-BPEL Convert each process expression into BPEL-invoke activities
orchestration and the client side BPEL-receive and -reply activities at the

server side.
PP2.3 WS-BPEL Convert the process combinators ’;’, ’+’, ’ !’, and ’||’ to the

process activities BPEL combinators sequence, pick, while, and flow, resp.

Fig. 6. Transformation Rules for the PIM-to-PSM Mapping

Ontology Transformation and Reasoning for Model-Driven Architecture 1183

ontology-based description and WS-BPEL for service orchestration to illustrate
this mapping – are presented in Fig. 6.

The WSPO-to-WSMO mapping copies functional properties – both syntax
and semantics – to the PSM. Similar to states that are added to CIMs to provide
the structure to express process behaviour, here we add structure in form of non-
functional aspects to PIMs to add further descriptions for service discovery.

Example 7. The WSMO example in Fig. 4 is the result of mapping the PIM,
presented in Fig. 3, to the WSF platform layer according to rule PP1 defined
in Fig. 6. Syntactical elements for the interface and semantical capabilities such
as pre- and postconditions are directly mapped from the corresponding WSPO
elements according to the transformation rules PP1.1 and PP1.2.

The WSPO-to-WS-BPEL mapping converts process expressions into a BPEL
business process skeleton, see Fig. 6. WS-BPEL is an implementation language.
Process specifications in form of process orchestrations is supported by service
engines available from various providers.

5 OMG-Adopted Technologies

Our efforts have to be seen in the context of the OMG approach to MDA. The
OMG supports selected modelling notations and platforms through an adoption
process. Example of OMG-adopted techniques are UML as the modelling no-
tation and CORBA as the platform [1]. While Web technologies are not (yet)
adopted, the need for a specific MDA solution for the Web context is, due to

CIM

PIM

PSM

OWL-DL
domain model

WSPO
architectural configuration

service composition

WSMO/OWL-S
service discovery

WS-BPEL
service interoperability

and coordination

UML2 Profile
CORBA

OWL-DL
mapping

UML2 Profile
ontologies

ODM

MDA with Ontologies MDA Models MDA Metamodels

Fig. 7. Overview of MDA and Ontologies – with transformations between the layers
and the influence of ODM for the ontology layers

1184 C. Pahl

the Web’s ubiquity and the existence of standardised and accepted platform and
modelling technology, a primary concern.

The current effort of defining and standardising an ontology metamodel
(ODM) will allow us to integrate our technique further with OMG standards
[9]. ODM will provide mappings to OWL-DL and also a UML profile for ontolo-
gies to make UML’s graphical notation available. This might lead to a ’Unified
Ontology Language’ in the future, i.e. OWL in a UML-style notation [30]. A
UML profile is about the use of the UML notation, which would allow ontologies
to be transformed into UML notation. MOF compliancy for ODM is requested
to facilitate tool support. XMI, i.e. production rules using XSLT, can be used
to export model representations to XML, e.g. to generate XML Schemas from
models using the production rules. We have summarised the MDA framework
and compared it with our proposed extension in Fig. 7.

6 Related Work

Service ontologies are ontologies to describe Web services, essentially to support
their semantics-based discovery in Web service registries. WSMO [25] and OWL-
S [20] are the two predominant examples. WSMO is not an ontology, as OWL-S
is, but rather a framework in which ontologies can be created. The Web Service
Process Ontology WSPO [23, 24] is also a service ontology, but the focus has
shifted here to the support of description and reasoning about service composi-
tion and service-based architectural configuration. Both OWL-S and WSPO are
or can be written in OWL-DL. WSMO is similar to our endeavour here, since
it is a framework of what can be seen as layered ontology descriptions. We have
already looked at the technical aspects of WSMO descriptions. WSMO supports
the description of services in terms more abstract assumptions and goals and
more concrete pre- and postconditions.

We have already discussed the OMG efforts to develop an ontology definition
metamodel (ODM) in the previous section, which due to its support of OWL would
allow an integration with UML-style modelling. ODM, however, is a standard ad-
dressing ontology description, but not reasoning. The reasoning component, which
is important here, would need to be addressed in addition to the standard.

Some developments have started exploiting the connection between OWL and
MDA. In [31], OWL and MDA are integrated. An MDA-based ontology archi-
tecture is defined, which includes aspects of an ontology metamodel and a UML
profile for ontologies – corresponding to OMG’s ODM. A transformation of the
UML ontology to OWL is implemented. The work by [10, 31] and the OMG [1, 9],
however, needs to be carried further to address the ontology-based modelling and
reasoning of service-based architectures. In particular, the Web Services Frame-
work needs to be addressed in the context of Web-based ontology technology.

7 Conclusions

We have presented a layered ontological modelling and transformation frame-
work for model-driven architecture (MDA). The effort leading towards model-

Ontology Transformation and Reasoning for Model-Driven Architecture 1185

driven architecture acknowledges the importance of modelling for the architec-
tural design of software systems. We have focused on two aspects:

– Firstly, ontologies are a natural choice to enhance modelling capabilities.
While this is recognised in the community, we have exploited the new degree
of sharing and ubiquity enabled through Web ontology languages and the
reasoning capabilities of logic-based ontology languages.

– Secondly, ontology-based transformations allow the seamless transition from
one development focus to another. These omtology transformations allow
the integration of domain modelling, architectural design, the description
and discovery of services.

Our approach addresses a Web-specific solution, reflecting the current devel-
opment of the Web Services Framework and the Semantic Web. The primary
platform we aim to support is the Web platform with the second Web services
generation focusing on processes, utilising the Semantic Web with its ontology
technology support. A platform of the expected importance in the future, such
as the Web, requires an adequate and platform-specific MDA solution.

A critical problem that has emerged from this investigation is the need for
conformity and interoperability. As MDA and the Web as a platform are devel-
oped and standardised by two different organisations (the OMG and the W3C,
respectively), this can potentially cause problems. The current OMG develop-
ments, such as the Ontology Definition Metamodel (ODM), however, aim to
reconciliate some of these problems. With ODM soon to be available, our pro-
posed ontologies can, due to their grounding in OWL, be expected to fit into
the ODM.

Our aims here were to demonstrate the benefits and the feasibility of lay-
ered ontological modelling and transformation for service-oriented architecture,
but a number of issues have remained open. We have developed a conceptual
modelling and transformation framework. The automation of the transforma-
tion processes – central for the success of the technology – needs to be fully
implemented. While we have developed some basic reasoning support specific
to the architectural modelling activities, more techniques are also possible that
exploit the full range of modal reasoning for service description, discovery, and
composition and architectural configuration.

References

1. Object Management Group. MDA Guide V1.0.1. OMG, 2003.
2. World Wide Web Consortium. Web Services Framework.

http://www.w3.org/2002/ws, 2004. (visited 08/07/2005).
3. World Wide Web Consortium. Web Services Architecture Definition Document.

http://www.w3.org/2002/ws/arch, 2003.
4. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts,

Architectures and Applications. Springer-Verlag, 2004.
5. E. Newcomer and G. Lomow. Understanding SOA with Web Services. Addison-

Wesley, 2005.

1186 C. Pahl

6. The WS-BPEL Coalition. WS-BPEL Business Process Execution Language
for Web Services – Specification Version 1.1. http://www-106.ibm.com/
developerworks/webservices/library/ws-bpel, 2004. (visited 08/07/2005).

7. C. Peltz. Web Service orchestration and choreography: a look at WSCI and
BPEL4WS. Web Services Journal, 3(7), 2003.

8. D.J. Mandell and S.A. McIllraith. Adapting BPEL4WS for the Semantic Web:
The Bottom-Up Approach to Web Service Interoperation. In D. Fensel, K.P.
Sycara, and J. Mylopoulos, editors, Proc. International Semantic Web Conference
ISWC’2003, pages 227–226. Springer-Verlag, LNCS 2870, 2003.

9. Object Management Group. Ontology Definition Metamodel - Request For Proposal
(OMG Document: as/2003-03-40). OMG, 2003.

10. D. Gašević, V. Devedžić, and D. Djurić. MDA Standards for Ontology Development
– Tutorial. In International Conference on Web Engineering ICWE2004, 2004.

11. J. Williams and J. Baty. Building a Loosely Coupled Infrastructure for Web Ser-
vices. In Proc. International Conference on Web Services ICWS’2003. 2003.

12. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transacions on Software Engineering and Methodology, 6(3):213–249, 1997.

13. F. Plasil and S. Visnovsky. Behavior Protocols for Software Components. ACM
Transactions on Software Engineering, 28(11):1056–1075, 2002.

14. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice (2nd
Edition). SEI Series in Software Engineering. Addison-Wesley, 2003.

15. N. Desai and M. Singh. Protocol-Based Business Process Modeling and Enactment.
In International Conference on Web Services ICWS 2004, pages 124–133. IEEE
Press, 2004.

16. R. Kazman, S.J. Carriere, and S.G. Woods. Toward a Discipline of Scenario-based
Architectural Evolution. Annals of Software Engineering, 9(1-4):5–33, 2000.

17. W3C Semantic Web Activity. Semantic Web Activity Statement, 2004.
http://www.w3.org/2001/sw. (visited 06/07/2005).

18. M.C. Daconta, L.J. Obrst, and K.T. Klein. The Semantic Web. Wiley, 2003.
19. M. Paolucci, T. Kawamura, T.R. Payne, and K. Sycara. Semantic Matching of

Web Services Capabilities. In I. Horrocks and J. Hendler, editors, Proc. First
International Semantic Web Conference ISWC 2002, LNCS 2342, pages 279–291.
Springer-Verlag, 2002.

20. DAML-S Coalition. DAML-S: Web Services Description for the Semantic Web.
In I. Horrocks and J. Hendler, editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291. Springer-Verlag, 2002.

21. F. Baader, D. McGuiness, D. Nardi, and P.P. Schneider, editors. The Description
Logic Handbook. Cambridge University Press, 2003.

22. J. Rao, P. Küngas, and M. Matskin. Logic-Based Web Services Composition: From
Service Description to Process Model. In International Conference on Web Services
ICWS 2004, pages 446–453. IEEE Press, 2004.

23. C. Pahl. An Ontology for Software Component Matching. In M. Pezzè, editor,
Proc. Fundamental Approaches to Software Engineering FASE’2003, pages 6–21.
Springer-Verlag, LNCS 2621, 2003.

24. C. Pahl and M. Casey. Ontology Support for Web Service Processes. In Proc. Eu-
ropean Software Engineering Conference and Foundations of Software Engineering
ESEC/FSE’03. ACM Press, 2003.

25. R. Lara, D. Roman, A. Polleres, and D. Fensel. A Conceptual Comparison of
WSMO and OWL-S. In L.-J. Zhang and M. Jeckle, editors, European Conference
on Web Services ECOWS 2004, pages 254–269. Springer-Verlag. LNCS 3250, 2004.

Ontology Transformation and Reasoning for Model-Driven Architecture 1187

26. N. Medvidovic and R.N. Taylor. A Classification and Comparison framework for
Software Architecture Description Languages. In Proceedings European Conference
on Software Engineering / International Symposium on Foundations of Software
Engineering ESEC/FSE’97, pages 60–76. Springer-Verlag, 1997.

27. T. Payne and O. Lassila. Semantic Web Services. IEEE Intelligent Systems, 19(4),
2004.

28. J. Kong, K. Zhang, J. Dong, and G. Song. A Graph Grammar Approach to Soft-
ware Architecture Verification and Transformation. In 27th Annual International
Computer Software and Applications Conference COMPSAC’03. 2003.

29. L. Baresi and R. Heckel. Tutorial Introduction of Graph Transformation: A Soft-
ware Engineering Perspective. In A. Corradini, H. Ehrig, H.-J. Kreowski, and
G. Rozenberg, editors, Proc. 1st Int. Conference on Graph Transformation ICGT
02. Springer-Verlag, LNCS 2505, 2002.

30. D. Gašević, V. Devedžić, and V. Damjanović. Analysis of MDA Support for On-
tological Engineering. In Proceedings of the 4th International Workshop on Com-
putational Intelligence and Information Technologies, pages 55–58, 2003.

31. D. Djurić. MDA-based Ontology Infrastructure. Computer Science and Informa-
tion Systems (ComSIS), 1(1):91–116, 2004.

Multidimensional RDF�

Manolis Gergatsoulis and Pantelis Lilis

Department of Archive and Library Sciences, Ionian University,
Palea Anaktora, Plateia Eleftherias, 49100 Corfu, Greece

mgerg@otenet.gr, manolis@ionio.gr, pantelis@ionio.gr.gr

Abstract. RDF has been proposed by W3C as a metadata model and
language for representing information about resources in WWW. In this
paper we introduce Multidimensional RDF (or MRDF), as an exten-
sion of RDF, suitable for representing context-dependent RDF data. In
MRDF we have a set of dimensions whose values define different contexts
(or worlds) under which different parts of an RDF graph may hold. We
define the semantics of MRDF in terms of the semantics of RDF. Ad-
ditionally, we propose appropriate extensions, suitable for representing
MRDF graphs in triples notation and RDF/XML syntax. Finally, we
demonstrate how an MRDF graph, embodying a single time dimension,
can be used to model the history of a conventional RDF graph.

Keywords: RDF databases, RDF model, Semantic Web, versioning.

1 Introduction

The success of the Internet and the Web during the last few years led to an
explosion of the amount of data available. Managing and processing such a huge
collection of interconnected data proved to be difficult due to the fact that the
Web lacks semantic information. The Semantic Web is a proposal to build an
infrastructure of machine-readable metadata (expressing semantic information)
for the data on the Web.

In 1998, W3C proposed Resource Description Framework (RDF) [5], a meta-
data model and language which can serve as the basis for such infrastructure.
Apart from being a metadata model and language, RDF can also express seman-
tics, empowering the vision of semantic Web. However, RDF falls short when
it comes to represent multidimensional information; that is, information that
presents different facets under different contexts. Actually, there are many cases
where variants of the same information do exist. As a simple example imagine
a report that needs to be represented at various degrees of detail and in various
languages. A solution would be to create a different document for every possible
combination. Such an approach is certainly not practical, since it involves ex-
cessive duplication of information. What is more, the different variants are not
� This research was partially co-funded by the European Social Fund (75%) and Na-

tional Resources (25%) - Operational Program for Educational and Vocational Train-
ing (EPEAEK II) and particularly by the Research Program “PYTHAGORAS II”.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1188–1205, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Multidimensional RDF 1189

associated as being parts of the same entity. A similar problem arises when we
want to represent the history of a changing RDF graph. In this case, we want
to retain information about the past states of the graph as well as about the
sequence of changes applied to this graph. Querying on and reasoning about
context dependent information is also important.

To the best of our knowledge there is a limited number of papers [19, 14] on this
subject. Quite recently, in [14], a temporal extension of RDF, based on the idea
of assigning timestamps to RDF triples, is proposed. The same idea is employed
in [19] where a technique to track changes of RDF repositories is presented.

In this paper we demonstrate how RDF can be extended so as to be suitable
for expressing context-dependent information. The extension that we propose,
called Multidimensional RDF (or MRDF in short), is capable of representing in
a compact way multiple facets of information related to the same RDF triple.
MRDF employs a set of parameters, called dimensions, that are used to deter-
mine specific environments, called worlds, under which specific pieces of infor-
mation hold. Conventional RDF graphs, holding under specific worlds, called
snapshots, can be easily extracted from MRDF graphs. As we demonstrate,
MRDF is suitable for representing the history of conventional RDF graphs. Our
approach is general enough to be used with more rich formalisms such as RDFS
or OWL based ontologies which may also change over time.

The work presented in this paper is based on previous results on providing
multidimensional extensions to OEM and XML [20, 11, 21]. The main contribu-
tions of this paper can be summarized as follows:

1. A multidimensional extension of RDF, called MRDF, is proposed and its
semantics is defined in terms of the semantics of RDF.

2. The notions of snapshots, canonical forms, and projections of MRDF-graphs
are defined and some useful properties are discussed.

3. Reification is extended so as to apply to MRDF statements.
4. It is demonstrated that MRDF graphs can be used to represent the history

of (conventional) RDF graphs. Basic change operations on RDF graphs are
proposed, and it is shown how their effect on RDF triples, can be represented
in MRDF-graphs.

5. Extensions of the Triples Notation and the XML/RDF syntax suitable for
representing MRDF graphs are proposed.

The rest of the paper is organized as follows: In Section 2, some preliminar-
ies are given. In Section 3, Multidimensional RDF is introduced and some of
its properties are discussed. In Section 4, the notions of snapshots, projections
and canonical forms of MRDF graphs are introduced. In Section 5, it is illus-
trated how reification can be extended to MRDF statements. In Section 6, the
semantics of MRDF are discussed. In Section 7, extensions of Triples Notation
and XML/RDF syntax suitable for representing MRDF graphs are proposed. In
Section 8, it is demonstrated how an MRDF graph with a single time dimension
can be used to represent the history of conventional RDF graphs. In Section 9,
it is shown how history graphs can be stored in RDBMS. In Section 10, related
work is discussed. Finally, in Section 11 some hints for future work are given.

1190 M. Gergatsoulis and P. Lilis

2 Preliminaries

Resource Description Framework (RDF) [1, 5] has been proposed by W3C as a
language for representing information about resources in the World Wide Web.
It is particularly intended for representing metadata about Web resources. RDF
is based on the idea of identifying resources using Web identifiers (called Uniform
Resource Identifiers, or URIs), and describing them in terms of simple properties
and property values. This enables RDF to represent simple statements about
resources as a graph of nodes and arcs representing the resources, with their
properties and values.

2.1 RDF Graph

In this subsection we give an abstract representation of the RDF model as graphs,
based on some definitions borrowed from [13]. This model consists of an infinite
set U (called the RDF URI references); an infinite set B = {Nj : j ∈ N}
(called the blank nodes); and an infinite set L (called the RDF literals). A triple
(v1, v2, v3) ∈ (U ∪B)×U × (U ∪B ∪L) is called an RDF triple. In such a triple,
v1 is called the subject, v2 the predicate (also called property), and v3 the object.
Each triple represents a statement of a relationship between the things denoted
by the nodes that it links.

Definition 1. An RDF graph is a set of RDF triples. An RDF-subgraph is a
subset of an RDF-graph. The universe of an RDF-graph G, universe(G), is the
set of elements of (U ∪ B ∪ L) that occur in the triples of G. The vocabulary of
G is the set universe(G) ∩ (U ∪ L). An RDF-graph is ground if it has no blank
nodes.

Graphically, RDF graphs are represented as follows: each triple (a, b, c) is
represented by a

b−→ c. Note that the set of arc labels may have non-empty
intersection with the set of node labels. The direction of the arc is significant: it
always points toward the object.

A map is a function µ : (U ∪ B ∪ L) → (U ∪ B ∪ L) such that µ(u) = u and
µ(l) = l for all u ∈ U and l ∈ L. If G is a graph then µ(G) is defined as follows:
µ(G) = {(µ(s), µ(p), µ(o)) | (s, p, o) ∈ G}. A map µ is consistent with an RDF-
graph G if µ(G) is also an RDF-graph, i.e. if (s, p, o) ∈ G then µ(s) ∈ (U ∪ B),
and µ(p) ∈ U . In this case we say that µ(G) is an instance of G. An instance
µ(G) is a proper instance of G if µ(G) has less blank nodes that G.

Two graphs G1, G2 are said to be isomorphic, denoted by G1 ∼= G2, if there
are maps µ1, µ2 such that µ1(G1) = G2, and µ2(G2) = G1.

Let G1, G2 be RDF-graphs. Then, the union of G1, G2, denoted by G1 ∪G2,
is the set theoretical union of their sets of triples. The merge of G1, G2, denoted
by G1 + G2, is the union G1 ∪ G′

2, where G′
2 is an isomorphic copy of G2 whose

set of blank nodes is disjoint with the set of blank nodes of G1.
The assertion of an RDF triple says that some relationship, indicated by the

predicate, holds between the things denoted by the subject and the object of

Multidimensional RDF 1191

the triple. The assertion of an RDF graph amounts to asserting all the triples
in it, so the meaning of an RDF graph is the conjunction (logical AND) of the
statements corresponding to all the triples it contains. A formal account of the
meaning of RDF graphs is given in [2].

Example 1. A fragment of an RDF-graph representing information about a book
is shown in Figure 1.

Fig. 1. An RDF-graph

2.2 RDF Triples Notation

Sometimes it is convenient instead of drawing RDF graphs, to have an alternative
way of writing down their statements. In the triples notation, each statement in
the graph is written as a simple triple of the order, subject, predicate, and object.

Example 2. The statements in the RDF-graph of Figure 1 would be written in
the triples notation as:

LP_book title "Logic Programming"
LP_book price "15 EURO"
LP_book author _:abc
_:abc email "manolis@ionio.gr"
_:abc name "Manolis Gergatsoulis"
_:abc telephone _:def
_:def type "mobile"
_:def value "+30 9999999999"

2.3 RDF/XML Syntax

RDF also provides an XML-based syntax (called RDF/XML) for encoding and
exchanging RDF graphs [1, 4].

1192 M. Gergatsoulis and P. Lilis

Example 3. The RDF-graph of Figure 1 is written in RDF/XML as follows:

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://www.ionio.gr/LP_book">
<title>Logic Programming</title>
<price>15 EURO</price>
<author rdf:nodeID="abc"/>

</rdf:Description>
<rdf:Description rdf:nodeID="abc"/>

<email>manolis@ionio.gr</email>
<name>Manolis Gergatsoulis</name>
<telephone rdf:nodeID="def"/>

</rdf:Description>
<rdf:Description rdf:nodeID="def"/>

<type>mobile</type>
<value>+30 9999999999</value>

</rdf:Description>
</rdf:RDF>

3 Adding Dimensions to RDF-Graphs

In this section we introduce the notion of Multidimensional RDF graph (MRDF
graph in short). In a Multidimensional RDF graph, contexts may be used to
determine the circumstances under which RDF triples are present or not in a
graph. RDF triples whose existence depends on a number of dimensions are
called multidimensional RDF triples.

3.1 Dimensions and Worlds

The notion of world is fundamental in our approach (see also [11, 20]). A world
represents an environment under which RDF data obtain a substance. A world
is determined by assigning values to a set S of dimensions.

Definition 2. Let S be a set of dimension names and for each d ∈ S, let Dd,
with Dd �= ∅, be the domain of d. A world w is a set of pairs (d, u), where d ∈ S
and u ∈ Dd such that for every dimension name in S there is exactly one element
in w. The set of all possible worlds is denoted by U .

In Multidimensional RDF, a triple may have different objects under different
worlds. To specify sets of worlds under which a specific node plays the role of the
object of a triple we use syntactic constructs called context specifiers. Context
specifiers qualify the so called context arcs which determine the resource that
plays the role of the object of a specific property and the worlds under which
this holds. The different resources that may be objects of the same property
under different worlds are called the facets of that object. In the rest of this
paper, by W(c) we denote the set of worlds specified by a context specifier c.

Multidimensional RDF 1193

Two context specifies c1 and c2 are said to be equivalent if they represent the
same set of worlds i.e. W(c1) = W(c2). Two context specifiers c1 and c2 are said
to be mutually exclusive if and only if W(c1) ∩ W(c2) = ∅.

In this paper we consider the following syntax for context specifiers: A context
specifier consists of one or more context specifier clauses separated by “|”. Each
context specifier clause consists of one or more dimension specifiers separated
by comma. Thus a context specifier clause is of the form:

dimension 1 specifier, ..., dimension m specifier

where dimension i specifier, 1 ≤ i ≤ m, is a dimension specifier of the form:
dimension name specifier operator dimension value expression

A specifier operator is one of =, ! =, in, not in. If the specifier operator is
either = or ! =, the dimension value expression consists of a single dimension
value. Otherwise, if the specifier operator is either in or not in, the dimension
value expression is a set of values of the form {value1, . . . , valuek}. For linear
and discrete domains we will also use the notation {a..b} for dimension value
expressions to denote the set of all values x such that a ≤ x ≤ b.

Example 4. The following are context specifiers:

1) [time=7:45]
2) [lang=Greek, detail in {low,medium} | lang=French, detail=high]
3) [currency in {EURO,USD}, customer_type = student]
4) [season != summer, weekday not in {Saturday,Sunday}]

Notice that the set of worlds represented by the second context specifier is
{(lang = greek, detail = low), (lang = greek, detail = medium),
(lang = French, detail = high)}, while the set of worlds represented by the
third context specifier is: {(currency = EURO, customer type = student),
(currency = USD, customer type = student)}. Concerning the fourth context
specifier we have to take into account the domains of the dimensions season
and weekday in order to find the set of worlds that it represents.

Context specifiers impose constraints that restrict the set of worlds under
which an entity holds. In this sense, if a context specifier does not contain a
dimension specifier for a specific dimension then no constraint is imposed on the
values of this dimension. Thus, the context specifier [] represents the set of all
possible worlds U .

3.2 Multidimensional RDF-Graphs

In Multidimensional RDF-graphs we will use the following sets of symbols: a set
U of RDF URI references, a set B of blank nodes, a set L of RDF literals, a set
M of multidimensional nodes, and a set C of context specifiers.

A triple (v1, v2, v3) ∈ (U ∪ B) × U × (M ∪ U ∪ B ∪ L) is called statement
triple, while a triple (v1, c, v3) ∈ M × C × (U ∪ B ∪ L) is called a context triple.

Definition 3. A Multidimensional RDF-graph (MRDF-graph) is a set St ∪Ct,
where St is a set of statement triples and Ct is a set of context triples, such that:

1194 M. Gergatsoulis and P. Lilis

1. For every context triple (v3, c, v4) ∈ Ct there exist a node v1 ∈ (U ∪ B) and
a node v2 ∈ U such that (v1, v2, v3) ∈ St.

2. For every statement triple (v1, v2, v3) ∈ St for which v3 is a multidimensional
node, there exist a context specifier c ∈ C and a node v4 ∈ (U ∪ B ∪ L) such
that (v3, c, v4) ∈ Ct.

Example 5. A Multidimensional RDF-graph is shown in Figure 2. This graph is
a variant of the RDF graph in Figure 1. Some parts of this graph are context-
dependent. In particular, we have two dimensions; the dimension time (abbre-
viated as t) and the dimension customer type (abbreviated as ct). The value
of the property price of the book is 15 EURO for all worlds in which the value
of the dimension ct is student while the value of the same property is 20 EURO
for all worlds in which the value ct is library. The value of the property email
is time-dependent. This value is manolis@ionio.gr for the time points in the
interval {start..t1-1}, where the reserved words start represents the begin-
ning of time, while the value of the property is mgerg@otenet.gr for the time
points in the interval {t1..now}, where now represents the current time. Finally,
notice that the property telephone has meaning only under the worlds in which
the value of the dimension ct is library and the value of the dimension t is
in the interval {t2..now}. This means that from the time point t2 the mobile
telephone of the author is available only for customers that are libraries.

Notice that in an MRDF-graph statement triples are represented by thin
lines while context triples are represented by thick lines.

An MRDF graph G is said to be deterministic, if for every multidimensional
node m in G, the context specifiers of all context triples departing from m
are mutually exclusive each other. Although non-deterministic MRDF-graphs
may have interesting properties, in this paper we focuss mainly on deterministic
MRDF-graphs.

Fig. 2. A Multidimensional RDF-graph

Multidimensional RDF 1195

4 Snapshots, Projections and Canonical Forms of MRDF
Graphs

4.1 RDF Snapshots of MRDF-Graphs

A Multidimensional RDF-graph G can be seen as a compact representation of a
set of conventional RDF-graphs called the snapshots of G:

Definition 4. Let G = (St∪Ct) be an MRDF-graph and w be a world. We define
the snapshot of G under w, denoted by Snap(G, w), as follows: Snap(G, w) =
{(r1, p, r2) | r2 ∈ U ∪ B ∪ L and (r1, p, r2) ∈ St} ∪ {(r1, p, r2) | ∃m ∈ M, ∃c ∈
C such that (r1, p, m) ∈ St and (m, c, r2) ∈ Ct and w ∈ W(c)}.

Notice that to each multidimensional node of a deterministic MRDF-graph
corresponds at most one RDF triple at each world. In non-deterministic MRDF-
graphs, multiple RDF triples may correspond to every multidimensional node.

According to the above definition, a multidimensional RDF-graph G can be
seen as a compact representation of the set Snap(G,U) = {Snap(G, w) | w ∈ U},
where U is the set of all possible worlds, that is, Snap(G,U) represents the set
of all (conventional) RDF-graphs each of them holding under a specific world.

Example 6. Consider the world w = {t = t2+, ct = library}, where t2+ is
a time point such that t1 < t2 < t2+. Then the snapshot of the MRDF-graph
in Figure 2 under the world w, is the RDF-graph shown in Figure 3.

Fig. 3. A snapshot of the Multidimensional RDF-graph in Figure 5

Based on the notion of snapshots we define equivalence of MRDF-graphs:

Definition 5. Let G1 and G2 be MRDF graphs. We say that G1 is equivalent
with G2 if and only if for every world w, Snap(G1, w) ∼= Snap(G2, w).

1196 M. Gergatsoulis and P. Lilis

4.2 Projections of MRDF Graphs

Another useful operation on MRDF-graphs is projection with respect to a set
of dimensions. Let S be a set of dimensions and c a context specifier. Then
the projection of a context specifier c with respect to S is a context specifier
c′ obtained from c by eliminating all dimension specifiers of c whose dimension
name does not belong to S.

Definition 6. Let G = (St ∪ Ct) be a multidimensional RDF-graph and S be
a set of dimensions. Then the projection of G with respect to S, denoted by
Proj(G, S), is defined as follows:

Proj(G, S) = St ∪ {(m, c′, r2) | (m, c, r2) ∈ Ct and
c′ is the projection of c with respect to S}.

Projecting an MRDF-graph means that we remove all constraints concerning
the values of the dimensions not belonging to S. Notice that the projection of a
deterministic MRDF-graph G, may be a non-deterministic MRDF-graph.

4.3 Canonical Form of MRDF Graphs

In this section we define the notion of canonical form of an MRDF graph. In a
canonical MRDF graph all statement arcs point to multidimensional nodes.

Definition 7. An MRDF-graph G = (St ∪ Ct) is said to be in canonical form if
for every statement triple (v1, v2, v3) ∈ St, v3 is a multidimensional node.

Definition 8. Let G = (St ∪Ct) be an MRDF-graph. The canonical representa-
tion Can(G) of G is an MRDF-graph obtained from G by replacing each state-
ment triple (v1, v2, v3) ∈ St for which v3 �∈ M , by a pair of a statement triple
and a context triple of the form (v1, v2, m) and (m, [], v3) respectively, where m
is a fresh multidimensional node in M .

This construction of the canonical representation of an MRDF-graph accord-
ing to the above definition is shown in Figure 4. Recall that the context specifier
[] represents the set of all possible worlds U .

Fig. 4. Transforming an MRDF-graph in canonical form

Example 7. The canonical representation of the graph in Figure 2 is shown in
Figure 5. This graph is obtained by replacing each statement triple in the graph of
Figure 2 leading to a non-multidimensional node, by a pair of a statement triple
followed by a context triple as described above (and is depicted in Figure 4).

Multidimensional RDF 1197

Fig. 5. The canonical representation of the MRDF-graph in Figure 2

The following lemma demonstrates that an MRDF-graph and its canonical
representation are equivalent graphs.

Lemma 1. Let G be an MRDF-graph and Can(G) be its canonical representa-
tion. Then G and Can(G) are equivalent.

Proof. It is easy to prove that for every world w, Snap(G, w) ∼= Snap(Can(G), w).

5 Reification in Multidimensional RDF-Graphs

RDF applications often need to describe other RDF statements or, in general, to
express statements about other statements. It is useful, for instance, to record in
RDF, information about when statements were made, or who made them. RDF
embodies [1] a built-in vocabulary intended for describing RDF statements. A
statement description using this vocabulary is called a reification of the state-
ment. The RDF reification vocabulary consists of the type rdf:Statement, and
the properties rdf:subject, rdf:predicate, and rdf:object. The use of this
vocabulary to describe RDF statements is shown in Figure 6 where the triple
(R1, P, R2) shown in Figure 6(a) is represented by the RDF graph in Figure 6(b).
This graph says that the anonymous resource is an RDF statement, the subject
of the statement is R1, its predicate is P , and its object is R2.

For MRDF an extension of the RDF reification mechanism is needed. Such
an extension is shown in Figure 7. Since in MRDF we may have multiple facets
of an object of a triple, corresponding to different sets of worlds, the property

1198 M. Gergatsoulis and P. Lilis

Fig. 6. Reification in RDF

rdf:object is now represented by a statement triple whose arc points to a mul-
tidimensional node. From this multidimensional node depart different context
triples each of them leading to a different facet of the statement’s object. No-
tice also that we now use a type mrdf:Statement which states that the reified
statement is not a conventional but a multidimensional one.

Fig. 7. Reification in Multidimensional RDF

It is important to note that the definition of snapshots has to be slightly
modified so as to take into account the presence of reification. However, we will
not discuss it further here due to space limits.

6 Semantics of MRDF

In this section we define the semantics of MRDF in terms of the semantics of
RDF.

Multidimensional RDF 1199

Definition 9. Let F be an MRDF-graph, G be an RDF-graph, w be a world,
and W be a set of worlds. We say that F entails G in the world w, denoted
by F |=w G, if and only if Snap(F, w) |= G. We say that F entails G in a
set of worlds W , denoted by F |=W G, if and only if for every world w ∈ W ,
Snap(F, w) |= G.

The following lemma can be easily proved.

Lemma 2. Let F be an MRDF-graph and Can(F) be its canonical form. Then
for every RDF graph G and every world w, F |=w G if and only if Can(F) |=w G.

7 Triples Notation and RDF/XML Syntax for MRDF

Syntactic constructs suitable for representing MRDF-graphs are presented in
this section.

7.1 Extended Triple Notation

In order to express MRDF graphs in triples notation it is necessary to extent this
notation in order to be capable of representing context triples. The extension
that we propose retains the basic structure of the triples but allows their third
component to be a list, called object list. Object list is used when the object of
a statement triple is a multidimensional node. In this case the third component
contains pairs of values. The first value of each pair is a context specifier while
the second value is the object (resource/literal) corresponding to that specifier.

Example 8. The representation in the extended triple notation of the MRDF
graph in Figure 2 is as follows:

LP_book title "Logic Programming"
LP_book price [([ct = student],"15 EURO"), ([ct = library],"20 EURO")]
LP_book author _:abc
_:abc email [([t in {start..t1-1})],"manolis@ionio.gr"),

([t in {t1..now}],"mgerg@otenet.gr")]
_:abc name "Manolis Gergatsoulis"
:abc telephone [([t in {t2..now},ct = library],:def)]
_:def type "mobile"
_:def value "+30 9999999999"

7.2 RDF/XML Syntax for MRDF

In order to express MRDF in RDF/XML syntax we need an extension of XML
capable of expressing contexts. Such an extension of XML is Multidimensional
XML (or MXML), which has been proposed in [11]. In Example 9 below we
illustrate how MRDF can be expressed in MXML/RDF syntax.

Example 9. The following RDF/MXML document represents the MRDF graph
in Figure 2:

1200 M. Gergatsoulis and P. Lilis

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://www.ionio.gr/LP_book">
<title>Logic Programming</title>
<@price>

[ct=student]<price>15 EURO</price>[/]
[ct=library]<price>20 EURO</price>[/]

</@price>
<author rdf:nodeID="abc"/>

</rdf:Description>
<rdf:Description rdf:nodeID="abc"/>

<@email>
[t in {start..t1-1}]<email>manolis@ionio.gr</email>[/]
[t in {t1..now}]<email>mgerg@otenet.gr</email>[/]

</@email>
<name>Manolis Gergatsoulis</name>
<@telephone>

[t in {t2..now},ct=library]<telephone rdf:nodeID="def"/>[/]
</@telephone>

</rdf:Description>
<rdf:Description rdf:nodeID="def"/>

<type>mobile</type>
<value>+30 9999999999</value>

</rdf:Description>
</rdf:RDF>

It should be noted that instead of using MXML we can use conventional (but
more verbose) XML syntax for representing MRDF-graphs (see [10]).

8 Representing Changes in RDF Graphs Using MRDF

As described previously, MRDF is a general formalism and powerful enough
to represent context-dependent RDF data that may occur in real world RDF
applications. In this section we demonstrate that MRDF graphs can be used as
a formalism for tracking the history of conventional RDF-graphs. We assume the
following scenario: the user manipulates an RDF graph and applies changes to
it, at specific time points. The changes are described through specific primitives
called basic change operations. In order to keep track of the sequence of changes
and in particular of the sequence of the (conventional) RDF graphs obtained
by applying these changes, the system keeps a Multidimensional RDF graph,
called the History Graph, which encodes all these changes applied by the user to
the conventional RDF graph. The History Graph employs a single dimension t
representing time. For this dimension, we assume a time domain T which is linear
and discrete. We also assume a reserved value start, such that start < t for
every t ∈ T , representing the beginning of time, and a reserved value now, such
that t < now for every t ∈ T , representing the current time. Notice that, in our
scenario, the user is only capable to apply change operations on a conventional
RDF graph being unaware of the History Graph that lies beneath.

Multidimensional RDF 1201

8.1 Basic Change Operations on RDF triples

We consider three primitive change operations on RDF graphs, namely up-
date, delete, and insert, and demonstrate how their effect on RDF-graph can
be mapped into changes on the underlying History Graph:

a) Update: Update operation can be used to change the value of a property (i.e.
the object of a triple). Updating a triple can be seen (at the level of the RDF
graph being updated) as the replacement of the triple with another triple which
has the same subject and predicate but different object. The way that update
operation affects the underlying History Graph is depicted in Figure 8(a). The
value of the property P in the triple on the left part of the figure is updated at
time t1 from R2 to the new value R3. The MRDF representation of this operation
is shown on the right side of the figure. The multidimensional node has now two
facets. The first one is valid in all time points of the interval {start..t1-1},
while the second is valid for all time points in the interval {t1..now}.

Fig. 8. Representation of the basic change operations in the History Graph

Note that a subsequent update of the same statement at a time point t2
will be represented in the History Graph as follows: a) by simply adding a new
context triple departing from the same multidimensional node and holding in the
interval {t2..now} and b) by changing the value of the time dimension t of the
most recent context triple from {t1..now} to {t1..t2-1}. Note also that the
resource R3 may be a new resource which is introduced by the update operation
or it may be a resource that already exists in the graph. In both cases the update
operation results in adding a context arc from the multidimensional node to R3.

1202 M. Gergatsoulis and P. Lilis

b) Delete: The deletion of a triple (R1, P, R3) from the RDF graph at time t2,
is represented in the History Graph by simply changing the end time point of
the most recent interval from now to t2-1, as shown in Figure 8(b). Note that,
if the deleted triple is a conventional triple in the History Graph, then deletion
is modeled by first obtaining the canonical form of the triple and then applying
the process described above to the caninical triple as described above.
c) Insert: As depicted in Figure 8(c), the new triple (R1, P, R2) inserted at the
time point t1, is modeled in the History Graph by adding a new statement triple
followed by a single context triple holding during the interval {t1..now}.

Notice that the triple being inserted on the RDF graph may refer either to
resources (subject and/or object) that already exist in the RDF-graph or to new
resources that are added by the insert operation.

9 Storing the History Graphs in RDBMS

A simple relational database schema can be easily designed for storing the His-
tory Graphs using an RDBMS. For this we assume that the graph is in its
canonical form. Such a graph can be stored in a database which has two rela-
tions, namely statement and context to store the statement and the context
triples respectively. The schema of these relations is as follows:

statement(Subject,Predicate,MultidimensionalNode): where Subject is
the subject, Predicate is the predicate and MultidimensionalNode is the mul-
tidimensional node identifier.
context(MultidimensionalNode,Object,S,E):where MultidimensionalNode
is the multidimensional node identifier from which the arc departs, Object is the
object, S is the start time point and E is the end time point of the time interval.

Notice that this schema is appropriate only for MRDF which has only one
dimension which takes as values time intervals.

Concerning the RDF/XML syntax it is important to note that in the case of
the History Graph, where we have only a single time dimension, we could use
(instead of MXML), a temporal extension of XML. Such a temporal extension
of XML can be found in [22, 23], where two extra attributes are added to XML
elements, namely vstart and vend, representing the end points of the time
interval in which this elements version is valid.

10 Related Work

The Multidimensional extension to RDF proposed in this paper is based on
similar ideas to that on which Multidimensional OEM [20] and the Multidimen-
sional XML [11] are based. However, to the best of our knowledge, there is no
other research work in the direction of incorporating dimensions in RDF. Quite
recently [14], Temporal RDF, a transaction time extension of RDF has been
proposed. However, our approach is more general than Temporal RDF which
may be considered as a special case of Multidimensional RDF, since we allow
multiple dimensions (and even multiple time dimensions).

Multidimensional RDF 1203

To the best of our knowledge, only a few papers refer to the problem of
representing changes in RDF databases. One approach to this problem has been
proposed in [19]. Their model is based on the admission that an RDF statement is
the smallest manageable piece of knowledge in an RDF repository. They propose
only two basic operations, addition and removal, since they argue that an RDF
statement cannot be changed, it can only be added or removed. In their approach,
they used versions as the labeled states of the repository. However, our approach
is more general and flexible than the approach in [19] as besides addition and
deletion we also introduce an update operation. In this way different resources
that are in fact different versions of an object of a property are grouped together
and its relationship is recorded. Besides, our representation formalism is more
general as it allows multiple dimensions (which might be multiple times such as
valid time or transaction time). Consequently, in our approach one can encode
multiple versioning information not only with respect to time but also to other
context parameters such as language, degree of detail, geographic region etc.

Some related research to the problem of RDF versioning has also been done
in the field of ontology versioning. In [16, 15], Ontoview, a web-based manage-
ment system for evolving ontologies in the Web, is used. Ontoview has the abil-
ity to compare ontologies at a structural level. It finds changes in ontologies
and it visualizes them, helping the user to specify the conceptual implication of
the differences. In [17] a component-based framework for ontology evolution is
proposed. This framework integrates a description of different representations
about change information. Thus, they present an ontology of change operations,
which is the kernel of their framework. The problem of managing (storing, re-
trieving and querying) multiple versions of XML documents is also examined
in [8, 9]. Recently, an approach of representing XML document versions was pro-
posed [22, 23]. The basic idea is to add two extra attributes, namely vstart and
vend, that represent the time interval in which the corresponding version of the
element is valid. Temporal extensions of XML have also been proposed in [6, 12].

The problem of representing and querying changes in semistructured data
has also been studied in [7], where Delta OEM (DOEM in short), a graph
model that extends OEM with annotations containing temporal information,
was proposed. Four basic change operations on OEM graphs, namely creNode,
updNode, addArc, and remArc are considered. Those operations are mapped to
annotations, which are tags attached to nodes or edges, containing information
that encodes the history of changes for these nodes or edges. Recently [21], Mul-
tidimensional OEM [20], has been proposed as a formalism for representing the
history of time-evolving semistructured data. Finally, in [10], the authors pro-
pose the use of Multidimensional XML [11] for the representation of the history
of XML documents.

11 Discussion and Future Work

Investigation of other real application domains to demonstrate usefulness of mul-
tidimensional RDF is between our plans for future work. An attempt to explore

1204 M. Gergatsoulis and P. Lilis

such applications is described in [18], where the problem of representing and
manipulating time-dependent information in collection-level cultural metadata
is investigated. In that paper, MRDF employing two independent time dimen-
sions is used as a formalism to enriches a metadata application profile for the
collection-level description of cultural collections, with the ability of time repre-
sentation and manipulation.

Investigation of query languages and inference systems for MRDF repositories
when RDFS vocabulary is used [3], are important problems for future work. The
study of the semantics of non-deterministic MRDF-graphs and their applications
are also interesting problems.

References

1. RDF Primer (W3C Recommendation, 10 February 2004).
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/, 2004.

2. RDF Semantics (W3C Recommendation, 10 February 2004).
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/, 2004.

3. RDF Vocabulary Description Language 1.0: RDF Schema (W3C Recommendation,
10 February 2004). http://www.w3.org/TR/2004/REC-rdf-schema-20040210,
2004.

4. RDF/XML Syntax Specification (Revised), (W3C Recommendation 10 February
2004). http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/, 2004.

5. Resource Description Framework (RDF): Concepts and Abstract Syntax (W3C
Recommendation, 10 February 2004). http://www.w3.org/TR/2004/REC-rdf-
concepts-20040210/, 2004.

6. T. Amagasa, M. Yoshikawa, and S. Uemura. A Data Model for Temporal XML
Documents. In M. T. Ibrahim, J. Kung, and N. Revell, editors, Database and Expert
Systems Applications, 11th International Conference (DEXA 2000), London, UK,
Sept. 4-8, Proceedings, Lecture Notes in Computer Science (LNCS) 1873, pages
334–344. Springer-Verlag, Sept. 2000.

7. S. S. Chawathe, S. Abiteboul, and J. Widom. Managing Historical Semistructured
Data. Theory and Practice of Object Systems, 24(4):1–20, 1999.

8. S.-Y. Chien, V. Tsotras, and C. Zaniolo. Efficient Schemes for Managing Multi-
version XML Documents. The VLDB Journal, 11(4):332–353, 2002.

9. S.-Y. Chien, V. J. Tsotras, C. Zaniolo, and D. Zhang. Efficient Complex Query
Support for Multiversion XML Documents. In Advances in Database Technology -
EDBT 2002, Proceedings of the 8th Conference on Extending Database Technology,
Lecture Notes in Computer Science (LNCS) Vol 2287, pages 161–178. Springer-
Verlag, 2002.

10. M. Gergatsoulis and Y. Stavrakas. Representing Changes in XML Documents using
Dimensions. In Z. Bellahsene, A. B. Chaudhri, E. Rahm, M. Rys, and R. Unland,
editors, Database and XML Technologies, 1st International XML Database Sym-
posium, XSym’ 03, Berlin, Germany, September 2003, Proceedings, Lecture Notes
in Computer Science (LNCS), Vol. 2824, pages 208–222. Springer-Verlag, 2003.

11. M. Gergatsoulis, Y. Stavrakas, and D. Karteris. Incorporating Dimensions to
XML and DTD. In H. C. Mayr, J. Lanzanski, G. Quirchmayr, and P. Vogel,
editors, Database and Expert Systems Applications (DEXA’ 01), Munich, Ger-
many, September 2001, Proceedings, Lecture Notes in Computer Science (LNCS),
Vol. 2113, pages 646–656. Springer-Verlag, 2001.

Multidimensional RDF 1205

12. F. Grandi and F. Mandreoli. The Valid Web: an XML/XSL Infrastructure for
Temporal Management of Web Documents. In T. M. Yakhno, editor, Advances in
Information Systems. First International Conference (ADVIS’02), Izmir, Turkey,
25-27 October, pages 294–303, 2000.

13. C. Gutiérrez, C. Hurtado, and A. O. Mendelzon. Foundations of Semantic Web
Databases. In Proceedings of the 23rd ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of DataBase Systems, pages 95–106. ACM Press, 2004.

14. C. Gutiérrez, C. Hurtado, and A. Vaisman. Temporal RDF. In Asunción Gómez-
Pérez and Jérôme Euzenat, editors, The Semantic Web: Research and Applica-
tions, Second European Semantic Web Conference, ESWC 2005, Heraklion, Crete,
Greece, May 29 - June 1, 2005, Proceedings,, volume 3532 of Lecture Notes in
Computer Science, pages 93–107. Springer, 2005.

15. M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Finding and characterizing
changes in ontologies. In Proceedings of the 21st International Conference on Con-
ceptual Modelling (ER’02), volume 2503 of Lecture Notes in Computer Science,
pages 79–89. Springer-Verlag, Heidelberg, 2002.

16. M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov. Ontology versioning and
change detection on the web. In Proceedings of the 13th International Confer-
ence on Knowledge Engineering and Knowledge Management. Ontologies and the
Semantic Web (EKAW’02), volume 2473 of Lecture Notes in Computer Science,
pages 197–212. Springer-Verlag, Heidelberg, 2002.

17. M. Klein and N.F. Noy. A component-based framework for ontology evolution.
Technical Report IR-504, Department of Computer Science, Vrije Universiteit, Am-
sterdam, March 2003.

18. P. Lilis, E. Lourdi, C. Papatheodorou, and M. Gergatsoulis. A metadata model
for representing time-dependent information in cultural collections. Submitted for
publication, 2005.

19. D. Ognyanov and A. Kiryakov. Tracking Changes in RDF(S) Repositories. In
A. Gomez-Perez and V. Richard Benjamins, editors, Knowledge Engineering and
Knowledge Management. Ontologies and the Semantic Web, 13th International
Conference, EKAW 2002, Siguenza, Spain, October 1-4, 2002, Proceedings. Lecture
Notes in Computer Science (LNCS) 2473, pages 373–378. Springer-Verlag, 2002.

20. Y. Stavrakas and M. Gergatsoulis. Multidimensional Semistructured Data: Rep-
resenting Context-Dependent Information on the Web. In A. B. Pidduck, J. My-
lopoulos, C. Woo, and T. Oszu, editors, Advanced Information Systems Engineer-
ing, 14th International Conference (CAiSE’02), Toronto, Ontario, Canada, May
2002. Proceedings., Lecture Notes in Computer Science (LNCS), Vol. 2348, pages
183–199. Springer-Verlag, 2002.

21. Y. Stavrakas, M. Gergatsoulis, C. Doulkeridis, and V. Zafeiris. Representing and
Querying Histories of Semistructured Databases Using Multidimensional OEM.
Information Systems, 29(6):461–482, 2004.

22. F. Wang and C. Zaniolo. Temporal Queries in XML Document Archives and Web
Warehouses. In Peoceedings of the 10th International Symposium on Temporal
Representation and Reasoning / 4th International Conference on Temporal Logic
(TIME-ICTL 2003), 8-10 July 2003, Cairns, Queensland, Australia, pages 47–55.
IEEE Computer Society, 2003.

23. Fusheng Wang. Efficient Support for Queries and Revisions in XML Document
Archives. PhD thesis, Computer Science Department, University of California, Los
Angeles (UCLA), August 2004.

GeRoMe: A Generic Role Based Metamodel
for Model Management

David Kensche1, Christoph Quix1, Mohamed Amine Chatti1, and Matthias Jarke1,2

1 RWTH Aachen University, Informatik V (Information Systems), 52056 Aachen, Germany
2 Fraunhofer FIT, Schloss Birlinghoven, 53574 St. Augustin, Germany
{kensche, quix, chatti, jarke}@cs.rwth-aachen.de

Abstract. The goal of Model Management is the development of new technolo-
gies and mechanisms to support the integration, evolution and matching of mod-
els. Such tasks are to be performed by means of a set of model management
operators which work on models and their elements, without being restricted to
a particular metamodel (e.g. the relational or UML metamodel).

We propose that generic model management should employ a generic meta-
model (GMM) which serves as an abstraction of the features of particular meta-
models while preserving the semantics of its different elements. A naive gener-
alization of the elements of concrete metamodels in generic metaclasses would
loose some of the specific features of the metamodels, or yield a prohibitive num-
ber of metaclasses in the GMM. To avoid these problems, we propose the Generic
Role Based Metamodel GeRoMe in which each model element is decorated with
a set of role objects that represent specific properties of the model element. Roles
may be added to or removed from elements at any time, which enables a very
flexible and dynamic yet accurate definition of models.

Roles constitute to operators different views on the same model element. Thus,
operators concentrate on features which affect their functionality but may remain
agnostic about other features. Consequently, these operators can use polymor-
phism and have to be implemented only once using GeRoMe, and not for each
specific metamodel. We verified our results by implementing GeRoMe and a se-
lection of model management operators using our metadata system ConceptBase.

1 Introduction

Design and maintenance of information systems require the management of complex
models. Research in model management aims at developing technologies and mecha-
nisms to support the integration, merging, evolution, and matching of models. These
problems have been addressed for specific modeling languages for a long time. Model
management has become an active research area recently, as researchers now address
the problem of generic model management, i.e. supporting the aforementioned tasks
without being restricted to a particular modeling language [3, 4]. To achieve this goal,
the definition of a set of generic structures representing models and the definition of
generic operations on these structures are required.

According to the IRDS standard [10], metamodels are languages to define models.
Examples for metamodels are XML Schema or the UML Metamodel. Models are the

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1206–1224, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

GeRoMe: A Generic Role Based Metamodel for Model Management 1207

description of a concrete application domain. Within an (integrated) information sys-
tem, several metamodels are used, a specific one for each subsystem (e.g. DB system,
application). Thus, the management of models in a generic way is necessary.

1.1 The Challenge: A Generic Mechanism for Representing Models

This paper addresses the first challenge mentioned in [4], the development of a mecha-
nism for representing models. Since the goal is the support of generic model manage-
ment, this has to be done in some generic way. Currently, model management appli-
cations often use a generic graph representation but operators have to be aware of the
employed metamodel [5, 8, 13]. While a graph representation is often sufficient for the
purpose of finding correspondences between schemas, it is not suitable for more com-
plex operations (such as merging of models) as it does not contain detailed semantic
information about relationships and constraints. For example, in [15] a generic (but yet
simple) metamodel is used that distinguishes between different types of associations in
order to merge two models. A more detailed discussion about the related work on the
representation of models is given in section 2.

The intuitive approach to develop a truly generic metamodel (GMM) identifies ab-
stractions of the metaclasses of different metamodels. Its goal is to define a comprehen-
sive set of generic metaclasses organized in an inheritance lattice. Each metaclass in a
given concrete metamodel then has to be mapped to a unique metaclass of the GMM.

The sketched approach exhibits a prohibitive weak point: elements of particular
metamodels often have semantics that overlap but is neither completely different nor
equivalent. For example, a generic Merge operator has to merge elements such as
classes, relations, entity types and relationship types. All of these model elements can
have attributes and should therefore be processed by the same implementation of an op-
erator. In this setting, such polymorphism is only possible if the given model elements
are represented by instances of the same metaclass in the GMM, or at least by instances
of metaclasses with a common superclass. Thus, one has to choose the features of model
elements which are combined in one metaclass.

Actually, in each metamodel there may be elements incorporating an entirely new
combination of such aspects. One approach to cope with this problem is to focus on the
“most important” features of model elements while omitting such properties which are
regarded as less important. But to decide which properties are important and which are
not results in loss of information about the model.

All properties of model elements could be retained if the GMM introduced a set of
metaclasses as comprehensive as possible and combined them with multiple inheritance
such that any combination of features is represented by a distinct metaclass. Despite the
modeling accuracy of such a GMM, it will suffer from another drawback, namely that
it leads to a combinatorial explosion in the number of sparsely populated intersection
classes which add no new state.

1.2 Our Solution: Role Based Modeling

In such cases, a role based modeling approach is much more promising. In role based
modeling, an object is regarded as playing roles in collaborations with other objects.

1208 D. Kensche et al.

Applied to generic metadata modeling this approach allows to decorate a model
element with a combination of multiple predefined aspects, thereby describing the ele-
ment’s properties as accurately as possible while using only metaclasses and roles from
a relatively small set. In such a GMM, the different features of a model element (e.g. it is
not only an Aggregate but also an Association) are only different views on the same ele-
ment. During model transformations, an element may gain or lose roles, thereby adding
and revoking features. Thus, the combinatorial explosion in the number of metaclasses
is avoided but nevertheless most accurate metadata modeling is possible.

Therefore, the GMM proposed in this work retains these characteristics by employ-
ing the role based modeling approach, resulting in the Generic Role Based Metamodel
GeRoMe. Implementations of model management operators can assure that model ele-
ments have certain properties by checking whether they play the necessary roles. At the
same time the operator remains agnostic about any roles which do not affect its func-
tionality. Thus, while role based metamodeling allows to formulate accurate models, the
models appear to operators only as complex as necessary. GeRoMe will be used only
by model management applications; users will use their favorite modeling language.

The definition of the GMM requires a careful analysis and comparison of existing
metamodels. Since it has to be possible to represent schemata in various metamodels in
order to allow generic model management, we analyzed five popular yet quite different
metamodels (Relational, EER, UML, OWL DL, and XML Schema). We identified the
common structures, properties, and constraint mechanisms of these metamodels. This
part of our work can be seen as an update to the work in [9], in which several semantic
database modeling languages have been compared.

The paper is structured as follows. Section 2 provides some background information
on model management and role based modeling, and presents a motivating scenario. In
section 3, we analyze and compare existing metamodels and derive the Generic Role
Based Metamodel GeRoMe. Section 4 shows several examples of models in different
metamodels represented in GeRoMe. Section 5 explains how model management op-
erations can be performed using GeRoMe. As an example, we describe some atomic
operations necessary for the transformation of an EER model into a a relational model.
The implementation of our model management prototype is discussed in section 6. Fi-
nally, section 7 summarizes our work and points out future work.

2 Background and Motivation

2.1 Model Management

Model management aims at providing a formalization for the definition and modifi-
cation of complex models [4]. To achieve this goal, a model management system has
to provide definitions for models (i.e. schemas represented in some metamodel), map-
pings (i.e. relationships between different models), and operators (i.e. operations that
manipulate models and mappings). There have been earlier approaches to model man-
agement [1, 12], which did address especially the transformation of models between
different metamodels. Model management has become more important recently, as the
integration of information systems requires the management of complex models. The
most important operations in model management are Merge (integration of two models),

GeRoMe: A Generic Role Based Metamodel for Model Management 1209

Match (creating a mapping between two models), Diff (finding the differences between
two models), and ModelGen (generating a model from another model in a different
metamodel representation).

Rondo [13] is the first complete prototype of model management. It represents mod-
els as directed labeled graphs. Each node of such a graph denotes one model element,
e.g. an XML complex type or relational table. A model is represented by a set of edges
between these nodes. A model element’s type (Table, Column, Class, . . .) is also spec-
ified by such an edge with the label type. Furthermore, types of attributes are specified
by other dedicated edges, e.g. SQLtype. For each of the supported metamodels a dif-
ferent set of types is available. Although the models are represented in a generic graph
structure, the implementation of the operators is not truly generic. For example, the im-
plementation of the match operator requires two models of the same type as input, and
some operators (such as Extract) have specific implementations for each metamodel.

Clio [8] is a tool for creating schema mappings. Whereas schema matching algo-
rithms just discover correspondences between schemas, Clio goes one step further and
derives a mapping from a set of correspondences. The mapping is a query that trans-
forms the data from one schema into another schema. However, Clio supports only
XML and relational schemas.

More sophisticated model management operators such as Merge (integration of two
models according to a given mapping, resulting in a new model) require even more
semantic information about the models involved. For example, in [15] a meta model
with several association types (e.g. has-a, is-a) is used.

The various approaches to model management show that each operator requires a
different view on a model. Schema matching focuses on labels and structure of schema
elements, whereas merging and transformation of models require more detailed infor-
mation about the semantics of a model (e.g. association types, constraints). These dif-
ferent views are supported by our role based approach, as operators will see only those
roles which are relevant in their context.

2.2 Scenario

Complex information systems undergo regular changes due to changes of the require-
ments, of the real world represented by the information system, or of other systems
connected to the information system. As an example, we consider the following eBusi-
ness scenario: a supplier of an automotive manufacturer receives orders from a business
partner in some XML format. The orders are entered into the ERP system of the sup-
plier by a transformation program, which uses a mapping between the XML schema
and the relational DB of the ERP system.

In order to generate this mapping, the two models are represented as models in a
generic metamodel (GM1 and GM2). A Match operator can then be used to create a
mapping GM1 GM2 between the two models, which can be further translated into a
mapping XS1 RM2 between the original models.

Due to a change in the system of the manufacturer, the schema of the orders has
changed. Then, this change has to be applied to the mapping between the XML schema
and relational DB. Focusing on the models, this scenario can be seen as an example of
schema evolution (Fig. 1). The original XML schema XS1 is mapped to the relational

1210 D. Kensche et al.

XS1 RM2

GM1 GM2

Import Import

XS1’

GM1’

Import
Schema
Evolution

GM1_GM2

Compose

Match

XS1_RM2

GM1’_GM2

Export

Fig. 1. Schema evolution using GeRoMe and Model Management

model (RM2) of the DB using the mapping XS1 RM2. The schema evolution generates
a new version of the XML schema, namely XS1’.

Again, instead of applying the model management operators to the level of specific
schemas, we will first generate a corresponding representation of the specific model in
our GMM (GM1’). Then, we have to apply the Match operator to GM1 and GM1’, re-
sulting in a mapping GM1’ GM1 between these models. This match operation should be
simpler than matching the new version GM1’ with GM2 directly, as two versions of the
same model should be quite similar. Then, we can compose the mappings GM1’ GM1
and GM1 GM2 to a new mapping GM1’ GM2. Note, that this operation has just to con-
sider mappings between models represented in GeRoMe, which should simplify the
implementation of such an operator. The result of this step is a mapping from GM1’ to
GM2 of those elements which are also present in GM1.

In order to map elements which have been added during the schema evolution a
Diff operator has to be used on GM1’ and GM1 which takes into account the mapping
GM1’ GM1. The difference then has to be mapped individually.

The important difference to other approaches is that the operations in GeRoMe are
truly generic, they do not have to take into account different representations of models.
Therefore, the operators have to be implemented only once, namely for the GeRoMe
representation.

2.3 Role Based Modeling

The concept of role (or aspect) based modeling has first been described in detail in
the context of the network model [2] and later on in several works on object-oriented
development and object-oriented databases [6, 16, 17].

Different formalizations have been proposed, which exhibit significant differences,
but all have in common that a role or aspect extends the features of an existing object
while being a view on the object and not an object in its own right. In [6] multiple direct
class membership is considered as a solution to the problem of artificial intersection
classes. That is, instead of defining an intersection class, the combination of state and
behavior is achieved by defining an object to be instance of several classes at the same
time, which are not necessarily on the same specialization path.

In [16] the notion of aspects of objects is discussed. It is stated that at any given mo-
ment an entity may have many different types that are not necessarily related. Often this
issue cannot be handled by multiple inheritance since this would lead to a large number
of sparsely populated “intersection classes” which add no new state. This approach is
different from multiple direct class membership in that each object can have multiple

GeRoMe: A Generic Role Based Metamodel for Model Management 1211

aspects of the same type, e.g. a person can at the same time be a student at more than
one university while still being the same individual.

Other approaches, such as the one considered in [17], treat the different features of
an object as roles, which are themselves instances of so called role classes and have
identity by state. This representation also allows model elements to play directly or
implicitly more than one instance of the same role. In addition, [17] introduces the
concept of role player qualification which means that not every object may play every
role but that certain conditions have to hold.

3 The Generic Role Based Metamodel GeRoMe

In this section, we will first explain the role model which we have employed to define
GeRoMe. Based on our analysis of existing metamodels (section 3.2), we have derived
the generic role based metamodel, which is described in detail in section 3.3.

3.1 Description of the Role Model

GeRoMe employs the following role model. A model element is represented by an
object which has no characteristics in its own right. Roles can be combined to make
up a model element encompassing several properties. Therefore, the model element is
decorated with its features by letting it play roles. A role maintains its own identity and
may be player of other roles itself. Every model element has to play at least one role and
every role object has exactly one player. In our model, some role classes may be used
more than once by a model element, e.g. an Attribute may play the role of a Reference
to more than one other Attribute. Thus, the complete representation of a model element
and its roles forms a tree with the model element as its root.

We used three different relationships between role classes, namely inheritance, play,
and precondition. The play relationship defines which objects may be player of certain
roles. In addition, a role may be a precondition of another role. Thus, in order to be
qualified to play a role of a certain class, the player must be already the player of another
role of a certain other class. Except for namespaces, all links between model elements
are modeled as links between roles played by the elements.

To tap the full power of role modeling, we have to define role classes in such a way
that each of them represents an “atomic” property of a model element. Then roles can
be combined to yield the most accurate representation of an element.

3.2 Role Based Analysis of Concrete Metamodels

A generic metamodel should be able to represent both the structures and constraints ex-
pressible in any metamodel. Thus, to define such a metamodel it is necessary to analyze
and compare the elements of a set of metamodels. Our choice of metamodels comprises
the relational model (RM) [7] and the enhanced entity relationship model (EERM) [7]
because these two models are rather simple and are in widespread use. The metamodel
of the Unified Modeling Language (UML, version 1.5) has been analyzed as an exam-
ple for object-oriented languages. The description logics species of the Web Ontology

1212 D. Kensche et al.

Table 1. Roles played by concrete metaclasses

Role EER Relational OWL DL XML Schema
Domain domain domain xsd datatype any simple type
Aggregate entity/rel.-ship type,

composed attribute
relation class complex type

Association relationship type - a pair of inverse ob-
ject properties

element

Identified entity/rel.-ship type - class complex type, schema
BaseElement base of anon. domain,

supertype in isA,
comp. type in Union

base of anonymous
domain

superclass, super-
property

base simple / complex
type

DerivedElement subtype in isA or
union type

anonymous domain
constraint

subclass, subprop-
erty

derived simple / com-
plex type

Union derivation link of
union type

- derivation link of
union class

derivation link of
union type

IsA isA derivation link - subclassing deriva-
tion link

restriction / extension
derivation link

Enumeration enumerated domain
restriction

enumerated domain
restriction

enumeration enumeration

Attribute (composite / multival-
ued) attribute

column data type property attribute, element with
simple type

AssociationEnd link between relation-
ship type and its par-
ticipator

- object property links between two ele-
ments one of which is
element of the other’s
complex type

Value any instance domain value, tuple data type value, indi-
vidual

xsd value, valid XML

Visible entity type, relation-
ship type, attribute

relation, column named class, prop-
erty

named type, attribute
element

Reference - foreign key - keyref
Disjointness constraint on subtypes - constraint on classes -
Injective primary/partial key unique, primary key inverse functional unique, key
Identifier primary/partial key primary key - key
Universal anonymous domain of

attribute
anonymous domain
constraint of column

allValuesFrom restriction of complex
type

Existential - - someValuesFrom -
Default - default value - default value

Language (OWL DL, http://www.w3.org/2004/OWL/) has been included since it
follows different description paradigms due to its purpose. For example, properties of
concepts are not defined within the concepts themselves but separately. Finally, XML
Schema (http://www.w3.org/XML/Schema) has been analyzed as it is the most im-
portant metamodel for semistructured data.

We analyzed the elements and constraints available in these five metamodels and
made out their differences and similarities. In doing so, we identified the role classes,
which make up our role based metamodel. In total, we compared about seventy struc-
tural properties and elements and twenty types of constraints. Some of them are very
easily abstracted, such as data types or aggregates. Others, such as the XML Schema
element or OWL object properties, are rather intricate and need closer inspection. The
XML Schema element is an association (associating a parent element with its children).
The root element of a document is a special element which does not have a parent. Fur-
thermore, an XML Schema may allow different types of root elements for a document.

GeRoMe: A Generic Role Based Metamodel for Model Management 1213

Another problematic example are object properties in OWL DL: the Association role
is played by a “pair of properties” and the AssociationEnd role is played by object
properties. Thus, it is difficult to represent such specific model elements in a GMM.

In section 4, we describe some of the representation problems in more detail. Fur-
thermore, some metamodels provide redundant options for representing the same se-
mantics, e.g. there is no semantic difference between an XML Schema attribute and a
simple-typed XML Schema element with a maximum cardinality of 1.

Table 1 shows a selection of role classes and states the related model elements in
the considered metamodels. The table contains roles which are used to define structural
model elements (e.g. relation, class) and roles to define relationships and constraints
(e.g. association, disjointness). Due to space constraints, the table does not embody all
metamodel elements and correspondences in the different metamodels. Furthermore,
we omitted the UML metamodel for the same reason.

3.3 Description of GeRoMe

Figure 2 presents the Generic Role Based Model GeRoMe at its current state, based on
the analysis of the previous section. Below, we will describe the elements of GeRoMe
according to their basic characteristics: structural elements, derivations, and constraints.

Structural Elements. Every model element representing a primitive data type plays
the role of a Domain. GeRoMe contains a collection of predefined domains such as int

Fig. 2. The Generic Role Based Metamodel (GeRoMe)

1214 D. Kensche et al.

and string. In contrast, model elements which may have attributes play an Aggregate
role (e.g. entity and relationship types, composite attributes in EER; relations, classes
and structs in other metamodels).

Thus, the Aggregate role is connected to a set of Attribute roles. Each of these
Attribute roles is part of another tree-structured model element description. An Attribute
role is a special kind of Property and has therefore the min and max attributes which
can be used to define cardinality constraints. Every attribute has a Type, which may be a
primitive type or an Aggregate for composite attributes. Furthermore, an Attribute role
may itself play the role of a Reference, which defines a referential constraint to another
Attribute of the same type.

The Aggregate role and the Domain role are specializations of Type. Type is a spe-
cialization of DerivableElement which is the abstract class of roles to be played by
all model elements which may be specialized. Another kind of DerivableElement is
the Association role. Properties of associations are AssociationEnd roles. For example,
association roles are played by EER relationship types, UML associations, or UML as-
sociation classes. A model element which provides object identity to its instances may
participate in one or more associations. This is modeled by specifying the element’s
Identified role to be the participator of one or more AssociationEnd roles. Thus, an as-
sociation end is a model element in its own right, and the association is a relationship
between objects with identity. In addition, the roles AggregationEnd and Composition-
End can be used to model the special types of associations available in UML.

The Association and Aggregate roles are an intuitive example of two role classes
that can be used in combination to represent similar concepts of different metamodels.
If the represented schema is in a concrete metamodel which allows relationship types
to have attributes, such as the EER metamodel, then every model element playing an
Association role may play additionally an Aggregate role. If associations may not have
attributes, which is the case in OWL, a model element may only play either of both
roles. On the other hand, the representation of a relational schema may not contain
Association roles at all. Thus, these two roles can be combined to represent the precise
semantics of different metamodel elements. Of course any of these combinations can
be further combined with other roles, such as the Identified role, to yield even more
description choices.

Finally, model elements can be Visible, i.e. they can be identified by a name. The
name attribute of a Visible role has to be unique within the Namespace it is defined in.
A model’s root node is represented by a model element which plays a Namespace role.

Derivation of New Elements. A BaseElement role is played by any model element
used in the definition of a derived element. Thus, a DerivedElement can have more than
one BaseElement and vice versa. The type of base element determines the properties of
the derived element. A Subtrahend is an element whose instances are never instances
of the derived element (e.g. a complementOf definition in OWL).

BaseElement and DerivedElement roles are connected via dedicated model ele-
ments representing the DerivationLink. Each DerivationLink connects one or more
BaseElements to one DerivedElement. For example, new types can be defined by Enu-
meration, IsA, or Union definitions. The IsA role can be used to define specialization
relationships. It extends the definition of a superclass by adding new properties (e.g.

GeRoMe: A Generic Role Based Metamodel for Model Management 1215

inheritance in UML). A DerivedElement role which is connected to an isA role with
more than one BaseElement role can be used to define a type to be the intersection of
its base elements.

We identified two different kinds of isA relationships which are often not distin-
guished from each other. All metamodels allow extension (i.e. the subtype defines addi-
tional attributes and associations) if they allow specialization at all. In EER and OWL,
model elements can specialize base elements also by constraining the ranges of inher-
ited properties. In EER, this is called predicate defined specialization [7–p.80], whereas
in OWL it is called restriction and comprises a very important description facility for
inheritance. Such derivations can be expressed in our metamodel by connecting a Uni-
versal or Existential role played by the restricted range to the DerivedElement role. This
Restriction role has to define a property, which it constrains.

Furthermore, there are several different ways to define new domains based on exist-
ing ones. In XML Schema, named domains can be derived from others whereas in the
relational metamodel derived domains occur only as an anonymous type of attributes
with enumeration or interval domains.

Constraints. Constraints are represented by separate model elements. For example,
a disjointness constraint on a set of derived elements (or any other types) has to be
defined by a model element representing this constraint. The element has to play a
Disjointness role which references the types to be disjoint. In the case of OWL or UML,
any collection of classes can be defined to be disjoint; in EER this constraint can be used
to define a disjoint isA relationship by referencing at least all of the derived elements.

Another constraint is the Injective constraint which can be defined on a set of prop-
erties. Such an Injective role is equivalent to a uniqueness constraint. It can also define a
composite key by being connected to multiple properties. An injective constraint play-
ing an Identifier role defines a primary key. This reflects the fact that a primary key is
only a selected uniqueness constraint, and thereby one of multiple candidate keys.

The XOr constraint is a modeling feature that is available in UML metamodels. It
can be defined on association ends and states that an object may participate only in
one of these associations. Thus, in GeRoMe an XOr constraint is related to at least two
properties. GeRoMe can be extended with new role classes representing other features
of constraints and structures while existing models and operators still remain correct.

4 Representation Examples

This section presents some example models based on a small airport database in [7–
p.109] (see fig. 3). We represented EER, XML Schema and OWL DL models for this
example. The model contains simple entity types composed of attributes as well as
some advanced features, which are not supported by all metamodels (e.g. composite
attributes, isA relationship).

4.1 Representation of an EER Schema

Fig. 4 shows a part of the representation of the airport model in GeRoMe. For the sake
of readability, we refrain here from showing the whole model and omitted repeating

1216 D. Kensche et al.

PlaneType

Pilot

Employee

Person

WorksOn

Flies

isA

Capacity WeightModel

SSn

Name

Lic_Num

Restr

p

partial,
overlapping

1,n

1,n

0,n

0,n

LNameFName
Hours

Fig. 3. Part of an airport EER schema

AirportSchema

Person
Constraint1

Name

SSn

Lic_Num Restr

Inj

Id3 Id2 Id1

BE

OId

Ag

NS

Vis

NS

Vis

Vis

Vis

Vis

Att

AttAtt

Att

Employee

DEOId

Vis

Pilot

DE

OId Ag

NS

Vis

DerivPilot IsA
DerivEmp IsA

Ag

Namespace.owned

Aggregate.property

Visible.name

Attribute.type

Injective.component

Identifier.identified

DerivationLink.base/derived

Association.associationend

AssociationEnd.participator

Flies

As

OId

Ag

NS

VisHours

Vis

Att

min,max: (1, n)

PlaneTypeAE

Vis

AE PilotAE

Vis

AE

....

NameType
string

FName LName
min,max: (1, 1)

Vis

Vis

Vis

D

AttAtt

NS

Ag

„Name“

Fig. 4. GeRoMe representation of an EER schema

structures with the same semantics such as literal values or links from namespaces
to their owned elements. The GeRoMe representation shows each model element as a
ModelElement object (gray rectangle) which plays a number of roles (white squares)
directly or by virtue of its roles playing roles themselves. Each such role object may
be connected to other roles or literals, respectively. Thus, the roles act as interfaces or
views of a model element. The links between role objects connect the model element
descriptions according to the semantics of the represented schema.

The root model element of the airport schema is a model element representing the
schema itself (AirportSchema). It plays a Namespace role (NS) referencing all model
elements directly contained in this model.

The Name attribute is a visible model element and therefore its model element ob-
ject plays the Visible role (Vis). The role defines a name of the element as it could

GeRoMe: A Generic Role Based Metamodel for Model Management 1217

be seen in a graphical EER editor (note that we omitted the names for other Visi-
ble roles).

Since entity types are composed of attributes, every object representing an entity
type plays an Aggregate role (Ag). Furthermore, instances of entity types have ob-
ject identity. Consequently, representations of entity types also play an Identified role
(OId). The Aggregate role is again connected to the descriptions of the entity type’s
attributes.

The EER model defines a primary key constraint on the SSn attribute. Therefore, a
model element representing the constraint (Constraint1) and playing an Injective role
(Inj) is connected to this attribute. This is a uniqueness constraint which is special in
the sense that it has been chosen to be a primary key for the entity type Person. This
fact is represented by the constraint playing an Identifier role (Id1) connected to the
identified aggregate. Since Person’s subtypes must have the same identifier, the injec-
tiveness constraint plays also Identifier roles (Id2, Id3) with respect to these model
elements.

Specification of domain constraints is usually not possible in the EER model, but
the addition of default domains does not hurt. Therefore, attributes always have a type
in GeRoMe. Domains are themselves represented as model elements playing domain
roles (D) (e.g. string). It is also possible to derive new types from existing ones as this
is also possible in most concrete metamodels.

In addition, note that the composite attribute Name has not a domain but another
Aggregate as type. Unlike the representation of an entity type, Name Type is not player
of an Identified role. Consequently, this element cannot be connected to an Association-
End, which means that it cannot participate in associations. Furthermore, Name Type
is not visible as it is an anonymous type. However, the representation is very similar
to that of entity types and this eases handling both concepts similarly. For example, in
another schema the composite attribute could be modeled by a weak entity type. If these
two schemata have to be matched, a generic Match operator would ignore the Identified
role. The similarity of both elements would nevertheless be recognized as both elements
play an Aggregate role and have the same attributes.

Furthermore, the figure shows the representation of the isA relationship. Since ev-
ery instance of Pilot and Employee is also an instance of Person, the Person model
element plays a BaseElement role (BE) referenced by two IsA roles (IsA). These roles
define two children, namely the DerivedElement roles (DE) which are played by the re-
spective subtypes Employee and Pilot. Any attribute attached to the Aggregate roles of
the subtypes defines an extension to the supertype. The children could also be defined
as predicate-defined subtypes by associating to the DerivedElement roles a number of
Restriction roles.

The subtype Pilot participates in the relationship type Flies. The representation of
this relationship contains an Association role (As) which is attached to two Association-
Ends (AE) (i.e. a binary relationship). Furthermore, the relationship has an attribute, and
consequently, it plays the role of an Aggregate. The representations of the two associ-
ation ends define cardinality constraints and are linked to the Identified roles (OId) of
their respective participators. They also may play a Visible role which assigns a name
to the association end.

1218 D. Kensche et al.

4.2 Representation of an XML Schema

Fig. 5 shows the XML Schema representation of the example model in GeRoMe. The
XML Schema element is a relationship between the type defined for the element and the
complex type of the nested element. But it is always a 1:n relationship since an XML
document is always tree structured. Cross links between elements in different subtrees
have to be modeled by references. But what about root elements in a schema? These
elements are related to the schema itself which in our role based model is represented
by the AirportSchema model element. This is just one example of a concrete model
element which is not obviously mapped to a generic metamodel.

An XML document conforming to an XML Schema can have any element as root
element which is defined in the schema file as a direct son of the schema element.
Consequently, any such element is represented in GeRoMe as a model element playing
an association role with its complex type as one participator and the schema node as
the other participator. In the example, Airport is the only such element. This element
is visible and its name is “airport”. AssociationEnds of XML elements have no names
attached and therefore are anonymous. Complex types may be anonymously nested into
an element definition. In the example, this is the case for AirportType. Since definitions
of keys have labels in XML Schema, the identifier of Person plays a Visible role with
its label “personKey” assigned to it.

Model elements defined within other model elements such as attributes and XML
elements are referenced by the Namespace role of the containing element. For example,

AirportSchema

PersonType
personKey

SSn

string

Inj

Id2 Id3 Id4

BE

OId

AgNS

Vis

NS

Vis

Vis

D

Att

OId

PilotType

DE OId

Vis EmpType

DE OId

VisPilotEmpType

DE OId

Ag NS

Vis

Lic_Num
Restr

Vis
Vis

Att
Att

AgNS

DerivPIsA DerivEIsADerivPEIsA

Lic_Num Restr

VisVis

AttAtt

Ag NS

....

Id1

Airport

AsNS

Vis

AirportType

AnonAE2

AE
NS

AnonAE1

AE
OId

Person Vis

AsNS

AnonAE1

AE

AnonAE1

AE

Pilot Vis

AsNS

....

Vis

„personKey“

Flies

As

NS Vis

min,max: (1, 1)

„airport“

Fig. 5. Representation of a similar XML Schema

GeRoMe: A Generic Role Based Metamodel for Model Management 1219

the element Flies is owned by the Namespace role of PilotType. Another consequence
of the structure of semistructured data is that the AssociationEnd of the nested type
always has cardinality (1,1), i.e. it has exactly one parent. Finally, the model element
PilotEmpType has been introduced as it is not possible to represent overlapping types
in XML Schema.

4.3 Representation of an OWL DL Ontology

In table 1, we stated that OWL DL object properties are represented by model elements
playing AssociationEnd roles and that a pair of these model elements is connected by an
Association. This is another good example for the problems which occur when integrat-
ing heterogenous metamodels to a GMM. The reasons for the sketched representation
can be explained with the semantics of the relationship type WorksOn in fig. 3.

Intuitively and correctly, one represents WorksOn as a model element playing an
Association role. WorksOn has two AssociationEnds: one with cardinality (0,n) pointing
on PlaneType and one with cardinality (1,n) pointing on Employee. This is represented
analogous to Flies in fig. 4. Now what are the problems if you would regard an object
property WorksOn as corresponding to the given relationship type?

Firstly, an object property always has domain and range. Thus, it has a direction. But
the direction of a relationship type is only suggested by its name. On the other hand, an
association end has a direction. The role name describes the role which the participator
plays in the relationship type w.r.t. the participator at the opposite end. Furthermore,
these role names are often phrasal verbs as are the names of object properties in OWL.
Actually, in description logics object properties are often called roles. Thus, “WorksOn”
should be the role name assigned to the link between the relationship type and the entitiy
type PlaneType.

Secondly, an object property may have one cardinality restriction, whereas a re-
lationship type has at least two (one for each participating entity). This shows that an
object property corresponds to an association end, and that a pair of object properties (of
which one is the inverse of the other) is a correct representation of a binary association.
Note that OWL DL allows only binary relationships.

In order to allow other constraints, such as Symmetric, new roles can be added to
GeRoMe. Adding a new role to the metamodel will render existing models and operator
implementations valid and correct. Thus, it is also easy to extend GeRoMe if this is
necessary in order to include new modeling constructs.

5 Model Management Using GeRoMe Models

In this section, we show how model management operators can make use of GeRoMe.
Transformation of models is a typical task for model management applications. We
will explain the transformation of the EER model of fig. 4 into a relational schema.
Therefore, the original representation has to undergo several transformations in order
to become a representation of a relational schema. Fig. 6 shows the final result of the
transformation steps which will be discussed in detail in the following paragraphs.

1220 D. Kensche et al.

Person

Constraint1

LName
SSn

Lic_Num

Restr

Inj

Id1

Ag NS

Vis

Vis

Vis

Vis

Vis

Att

Att

Att

Att

isEmployee

Vis
isPilotAtt

Vis

Att

Flies

OId

Ag

NS

VisHoursVis Att

PlaneType VisAttPilot VisAttRef Ref

FALSE

Val

Df1Df2

FName

VisAtt

AirportSchema

NS

Default.defaultFor

Reference.referenced

....

Fig. 6. Representation of the resulting relational schema

In model management, transformation of models is performed by a ModelGen op-
erator, i.e. the operator generates a model from another existing model. We have im-
plemented the transformation of constructs such as composite attributes or inheritance
from an EER schema by several ModelGen X operators. Each operator transforms the
modeling constructs not allowed in the relational model into equivalent modeling ele-
ments of the relational model. The decomposition of the operators into several “atomic”
operators has the advantage that they can be reused in combination with other opera-
tors to form new operators. Note that the following operators are not aware about the
original representation of the models, i.e. the operators just use the GeRoMe represen-
tation. Thus, these operators could also be used to transform a UML model into XML
Schema if similar transformation tasks are required (e.g. transformation of associations
to references).

It has to be emphasized that mapping of models from one metamodel to another is
just one popular example application of model management. The goal of our generic
metamodel is not only to provide a platform for schema translation but to provide a
generic model representation that serves as a foundation for the polymorphic usage of
any model management operator. Thereby, other applications of model management,
such as schema evolution, are also supported in a generic way.

Transformation of Relationship Types. Relationship types are not allowed in the re-
lational metamodel. According to properties such as cardinality constraints, they have
to be transformed to relations by executing the operator ModelGen AssocToRef for each
Association role. First, it looks for attached AssociationEnd roles, the arity of the as-
sociation, and cardinality constraints. Depending on these constraints the transforma-
tion is either performed automatically or the user is asked for a decision before the
operator can proceed. Copies of all attributes in the participators’ identifiers are at-

GeRoMe: A Generic Role Based Metamodel for Model Management 1221

tached to the relationship’s Aggregate role. An Aggregate role has to be created first,
if not yet available. Furthermore, these copies play Reference roles (Ref) referencing
the original attributes, and thereby defining referential constraints. After performing all
these transformations, the association ends and the relationship’s Association role are
deleted.

This yields an intermediate result which cannot be interpreted as a valid schema in
the EER or relational metamodel, since it now contains constructs disallowed in both
metamodels. An Export operator to the Relational or EER metamodel would have to
recognize this invalidity and reject to export.

Transformation of IsA Relationships. The isA relationships also have to be removed
depending on their characteristics (partial and overlapping), the attributes of the exten-
sions Pilot and Employee thereby become attributes of the supertype.

The operator ModelGen FlattenIsA fulfills this task by receiving a BaseElement
role as input. It first checks for disjointness of connected isA relationships and whether
they are total or not. Depending on these properties, the user is presented a number of
choices on how to flatten the selected isA relationships. In the example, the base type
Person and its subtypes Pilot and Employee have been selected to be transformed to
one single aggregate due to the fact that the isA relationship is neither total nor disjoint.
The resulting aggregate contains all attributes of the supertype and of the subtypes.
Additionally, the boolean attributes isPilot and isEmployee (including Default roles Df1
and Df2 related to these attributes) have been introduced.

Transformation of Composite Attributes. The result yet contains a composite at-
tribute and Identified roles (OId), which are not allowed in a relational model. The
Identified roles can be removed directly, as the associations have been transformed to
attribute references (earlier by the operator ModelGen AssocToRef). The transformation
of composite attributes is done by another atomic operator. First, it collects recursively
all “atomic” attributes of a nested structure. Then, it adds all these attributes to the
original Aggregate and removes all the structures describing the composite attribute(s)
(including the anonymous type). This operator also needs to consider cardinality con-
straints on attributes, since set-valued attributes have to be transformed into a separate
relation.

In this way, the whole EER schema has been transformed to a corresponding rela-
tional schema. Of course, more operators are needed to handle other EER features, such
as Union derivations of new types.

Please note that the differences in the representations stem from the constraints and
semantics of the concrete metamodels. Nevertheless the representations use the same
role classes in all models, while accurately representing the features of the constructs
in the concrete modeling languages. For example, the XML Schema PersonType plays
the same roles as the EER Person, since entity types have the same semantics as XML
Schema complex types. Furthermore, the relational Person does not play the Identified
and BaseElement roles since these are not allowed in the relational model. On the other
hand, all these roles play an Aggregate role, and therefore they look the same to an
operator which is only interested in this role.

1222 D. Kensche et al.

6 Implementation

Our implementation of a model management platform is based on a multi-layered archi-
tecture. The lowest layer provides facilities to store and retrieve models in the GeRoMe
representation and is implemented using the deductive metadatabase system Concept-
Base [11]. ConceptBase uses Telos as modeling language [14], which allows to repre-
sent multiple abstraction levels and to formulate queries, rules and constraints. Objects
are represented using a frame-like or graphical notation on the user side, and a logical
representation (triples similar to RDF) based on Datalog¬ internally. Using a logical
foundation for the implementation of GeRoMe gives the advantage that some of the
operators can be implemented in a declarative way. Furthermore, the semantics of the
concrete metamodels can also be encoded in logical rules (e.g. inheritance of attributes).

Models represented in GeRoMe can also be stored as XMI documents (XML Meta-
data Interchange) to ease the exchange of metadata. Import and export operators to the
native format of the various modeling languages are currently being implemented. The
implementation of import and export operators is also a validation of GeRoMe since it
proves that the modeling constructs from various metamodels can be represented. Be-
fore a model can be exported to a concrete metamodel, the export operator has to check
whether all roles used can be represented in the target metamodel. If not, the problem-
atic roles have to be transformed into different elements as described, for example, in
the previous section. Note that an import to and an export from GeRoMe will result in
a different model than at the beginning, as there are redundant ways to represent the
same modeling construct in specific metamodels. For example, consider a simple typed
XML Schema element with a maximum occurrence of one; this could also be modeled
as an attribute.

On top of the storage layer, an abstract object model corresponding to the model in
fig. 2 has been implemented as a Java library. It uses ConceptBase as storage mecha-
nism and to evaluate rules and queries over a GeRoMe representation. The next layer is
formed by atomic operators. Operators have to be implemented “as atomically as pos-
sible” in order to allow maximum reuse. These atomic operators are not aware of the
original metamodel, i.e. their implementations should use only roles and structures in
GeRoMe.

The operator layer is used by a scripting engine which enables the definition of
more complex operators as scripts. A ModelGen RM operator for transformation of
schemata to the relational model could then be defined as a script which reuses operators
as described in section 5. This scripting facility is analogous to the scripts which can be
defined in the model management application Rondo [13].

7 Conclusion

Generic model management requires a generic metamodel to represent models defined
in different modeling languages (or metamodels). The definition of a generic metamodel
is not straightforward and requires the careful analysis of existing metamodels. In this
paper, we have presented the generic role based metamodel GeRoMe, which is based
on our analysis and comparison of five popular metamodels (Relational, EER, UML,
OWL, and XML Schema).

GeRoMe: A Generic Role Based Metamodel for Model Management 1223

We recognized that the intuitive approach of identifying generic metaclasses and
one-to-one correspondences between these metaclasses and the elements of concrete
metamodels is not appropriate for generic metamodeling. Although classes of model
elements in known metamodels are often similar, they also inhibit significant differ-
ences which have to be taken into account. We have shown that role based metamod-
eling can be utilized to capture both, similarities and differences, in an accurate way
while avoiding sparsely populated intersection classes. In addition, the role based ap-
proach enables easy extensibility and flexibility as new modeling features can be added
easily. Implementations of operators access all roles they need for their functionality
but remain agnostic about any other roles. This reduces the complexity of models from
an operator’s point of view significantly. Furthermore, the detailed representation of
GeRoMe models is used only by a model management application, users will still use
their favorite modeling language.

Whereas role based modeling has yet only been applied to the model level, we have
shown that a generic metamodel can benefit from roles. In particular, GeRoMe enables
generic model management. As far as we know, the role based approach to the problem
of generic metadata modeling is new.

Using GeRoMe, model management operators can be implemented polymorphi-
cally, i.e. they just have to be implemented only once using the GMM. The role based
approach has been validated by representing several models from different metamod-
els in GeRoMe. We are implementing automatic import/export operators in order to
verify that the model elements of different metamodels can be represented accurately
and completely in GeRoMe. Furthermore, we have implemented GeRoMe and some
ModelGen operators using our metadatabase system ConceptBase.

Future work will concentrate on evaluating and refining GeRoMe. The approach has
to be further validated by implementing model management operators that make use of
the GMM. While it might be necessary to integrate new modeling features of other
languages, or features which we did not take into account so far, we are confident that
our work is a basis for a generic solution for model management.

Acknowledgements. This work is supported in part by the EU-IST project SEWASIE
(www.sewasie.org) and the EU Network of Excellence ProLearn (www.prolearn-
project.org).

References

1. P. Atzeni, R. Torlone. Management of Multiple Models in an Extensible Database Design
Tool. Proc. EDBT’96, pp. 79–95. Springer, Avignon, 1996.

2. C. W. Bachman, M. Daya. The Role Concept in Data Models. Proc. VLDB Conf., pp.
464–476. Tokyo, 1977.

3. P. A. Bernstein. Applying Model Management to Classical Meta Data Problems. 1st Biennial
Conf. on Innovative Data Systems Research (CIDR2003). Asilomar, CA, 2003.

4. P. A. Bernstein, A. Y. Halevy, R. Pottinger. A Vision for Management of Complex Models.
SIGMOD Record, 29(4):55–63, 2000.

5. P. A. Bernstein, S. Melnik, M. Petropoulos, C. Quix. Industrial-Strength Schema Matching.
SIGMOD Record, 33(4):38–43, 2004.

6. E. Bertino, G. Guerrini. Objects with Multiple Most Specific Classes. Proc. European
Conference on Object-Oriented Programming (ECOOP), pp. 102–126. Springer, 1995.

1224 D. Kensche et al.

7. R. A. Elmasri, S. B. Navathe. Fundamentals of Database Systems. Addison-Wesley, Read-
ing, MA, 3rd edn., 1999.

8. M. A. Hernández, R. J. Miller, L. M. Haas. Clio: A Semi-Automatic Tool For Schema
Mapping. Proc. ACM SIGMOD Conf. Santa Barbara, CA, 2001.

9. R. Hull, R. King. Semantic Database Modeling: Survey, Applications, and Research Issues.
ACM Computing Surveys, 19(3):201–260, 1987.

10. ISO/IEC. Information technology – Information Resource Dictionary System (IRDS) Frame-
work. Tech. Rep. ISO/IEC 10027:1990, 1990.

11. M. A. Jeusfeld, M. Jarke, H. W. Nissen, M. Staudt. ConceptBase – Managing Conceptual
Models about Information Systems. P. Bernus, K. Mertins, G. Schmidt (eds.), Handbook on
Architectures of Information Systems, pp. 265–285. Springer, 1998.

12. M. A. Jeusfeld, U. A. Johnen. An Executable Meta Model for Re-Engineering of Database
Schemas. Proc. ER94, pp. 533–547. Springer, Manchester, 1994.

13. S. Melnik, E. Rahm, P. A. Bernstein. Rondo: A Programming Platform for Generic Model
Management. Proc. ACM SIGMOD Conf., pp. 193–204. San Diego, 2003.

14. J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis. Telos: Representing Knowledge About
Information Systems. ACM Transactions on Information Systems, 8(4):325–362, 1990.

15. R. Pottinger, P. A. Bernstein. Merging Models Based on Given Correspondences. Proc.
VLDB, pp. 862–873. Berlin, 2003.

16. J. Richardson, P. Schwarz. Aspects: extending objects to support multiple, independent roles.
Proc. ACM SIGMOD Conf., pp. 298–307. Denver, 1991.

17. R. K. Wong, H. L. Chau, F. H. Lochovsky. A Data Model and Semantics of Objects with
Dynamic Roles. Proc. ICDE, pp. 402–411. Birmingham, UK, 1997.

Probabilistic Iterative Duplicate Detection

Patrick Lehti and Peter Fankhauser

Fraunhofer IPSI, Dolivostr. 15, Darmstadt, Germany
{Patrick.Lehti, Peter.Fankhauser}@ipsi.fraunhofer.de

Abstract. The problem of identifying approximately duplicate records
between databases is known, among others, as duplicate detection or
record linkage. To this end, typically either rules or a weighted aggre-
gation of distances between the individual attributes of potential dupli-
cates is used. However, choosing the appropriate rules, distance func-
tions, weights, and thresholds requires deep understanding of the ap-
plication domain or a good representative training set for supervised
learning approaches. In this paper we present an unsupervised, domain
independent approach that starts with a broad alignment of potential
duplicates, and analyses the distribution of observed distances among
potential duplicates and among non-duplicates to iteratively refine the
initial alignment. Evaluations show that this approach supersedes other
unsupervised approaches and reaches almost the same accuracy as even
fully supervised, domain dependent approaches.

1 Introduction

The goal of data integration is to provide uniform, non-redundant access to a
set of typically heterogeneous data sources. If the sources contain overlapping
data, not only their schemas need to be integrated, but also their instances,
i.e., duplicate instances that refer to the same real world object need to be to
detected and merged.

Traditional scenarios for duplicate detection are data warehouses, which are
populated by several data sources. Analyses on the data warehouse influences
business decisions, therefore a high data quality resulting from the data cleansing
process is of high importance. Reaching such a high data quality is currently
very costly.

More recently duplicate detection is also arising in ad-hoc integration over the
internet, e.g. in P2P, web service or grid settings, where datasets and services
are virtually integrated for temporary applications. In such scenarios no long
and expensive data cleansing process can be carried out, but good duplicate
estimations must be available directly.

Several communities have addressed the problem of duplicate detection. The
database community came up with knowledge-intensive approaches that deploy
domain dependent rules [1] or keys [2], possibly combined with distance func-
tions [3–5] to take into account errors in the instances. Designing such domain
dependent rules, keys and distance functions requires significant manual effort
and a good understanding of the instances and their errors.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1225–1242, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1226 P. Lehti and P. Fankhauser

The AI community has focused on learning such rules and distance functions
supervised from a set of example duplicates [6–9].

More recently, object identification methods have been adopted to detect
duplicate objects in graph data models. In this context the knowledge of aligned
related objects can be taken into account for duplicate detection [10–13].

The statistics community has conducted a long line of research in probabilis-
tic duplicate detection, largely based on the seminal theory for record linkage of
Fellegi and Sunter [14].

This paper describes a refinement of the Fellegi-Sunter model and presents an
efficient method of unsupervised learning of the required parameters in combina-
tion with continuous distance measures and taking attribute dependencies into
account. The approach starts with the set of potential duplicates identified in
a preprocessing phase and iteratively determines their matching probability by
analyzing the distribution of observed distances among the potential duplicates
and among the non-duplicates.

In more detail, the contributions of this paper are the following:

– a new probabilistic model for duplicate detection, which is related to the
Fellegi-Sunter model

– the handling of continuous distance measures in the Fellegi-Sunter and our
model, as opposed to thresholded boolean values

– an iterative algorithm for determining the required parameters for the
Fellegi-Sunter and our model

– the consideration of attribute dependencies in the required parameters for
the Fellegi-Sunter and our model

– an evaluation of our approach on two test data sets

The remainder of this paper is organized as follows. Section 2 defines the gen-
eral duplicate detection problem and shortly introduces into the Fellegi-Sunter
model. Section 3 presents our approach to duplicate detection. Section 4 presents
the results of the evaluation of our approach compared to other approaches. Sec-
tion 5 summarizes related work and Section 6 concludes.

2 Detecting Duplicates

2.1 Preliminaries

The problem of detecting duplicates can be defined as, given two lists of records
A and B divide the set of all record-pairs (a, b) ∈ A × B into a set of matching
record-pairs M and unmatching record-pairs U . A record is basically a vector of
attributes (or fields), thus, a record-pair is a vector of attribute-pairs.

In general the overall duplicate detection process consists of several phases.
The first phase, often called blocking, tries to efficiently find a candidate set of
duplicates, then a second phase, sometimes called matching, is doing the actual
duplicate decision.

The matching phase in general involves an in-depth comparison of the can-
didate duplicate pairs, i.e. comparing the individual attribute-pairs, resulting in

Probabilistic Iterative Duplicate Detection 1227

what is known as comparison vector γ[a, b] for every candidate pair. The individ-
ual components of the comparison vector (γi) represent the comparison results
between the individual attribute-pairs. These individual comparison results can
be boolean (attribute matches or does not match), discrete (e.g., matches, pos-
sibly matches or does not match) or continuous (e.g., attribute values have a
similarity of 0.2).

The task for duplicate detection is now to classify such a given comparison
vector γ into the sets M or U . Therefore the components of the comparison
vector must be combined to an overall result. It can be easily seen that the
individual attributes do not have the same relevance for this overall result. E.g.
a matching ”person name” is a much stronger indication for a duplicate record
than a matching ”year of birth”, because of the higher uniqueness of ”person
name” in contrast to ”year of birth”. However, a non-matching ”year of birth” is
a strong indication for a non-duplicate, may be even higher as a slightly different
”person name”, under the assumption of a high reliability for ”year of birth”.

Some existing approaches either ignore the different relevance of individual
attributes and concatenate all attributes [10, 4] or leave the user with the task
to define this relevance, e.g. in [2] this is done by a manual and knowledge-
intensive declaration of logic rules. In our evaluation one baseline experiment
uses an unweighted mean of the results of individual attribute comparisons,
which ignores the different relevance of individual attributes.

2.2 The Fellegi-Sunter Model for Record Linkage

Based on the initial ideas and problem description of Newcombe [15], Fellegi-
Sunter [14] defined a theory for record linkage including relevance for individual
attributes. To this end they define the following probabilities on γ:

m(γ) = P (γ|(a, b) ∈ M)
u(γ) = P (γ|(a, b) ∈ U) (1)

Here m(γ) is the conditional probability of γ, given that a and b are elements
of M and u(γ) is the conditional probability of γ, given that a and b are elements
of U . They have shown that the ratio w(γ) = m(γ)/u(γ) can then be used to
decide for a duplicate, non-duplicate or potential duplicate. To this end they
define how to set the appropriate thresholds on w(γ) given acceptable error
rates for false misses and false matches.

In order to determine the parameters u(γ) and m(γ) often a conditional
independence assumption between the individual components of the comparison
vector is made. Under this assumption the parameters u(γ) and m(γ) can be
computed using mi and ui for the individual probabilities for the comparison
vector component γi:

m(γ) = m1(γ1) ∗ m2(γ2)...mk(γk)
u(γ) = u1(γ1) ∗ u2(γ2)...uk(γk) (2)

This simplification only produces good results if the conditional independence
assumption really holds, which is often not the case for real data. E.g. in the

1228 P. Lehti and P. Fankhauser

address domain the attributes street and city are not independent, as a particular
street is only present in one or a few cities.

Fellegi-Sunter propose two methods for calculating m(γ) using the condi-
tional independence assumption, one relies on additional knowledge of error rates
in the values, the second is limited on comparison vectors of size 3.

Winkler [16] showed that the EM algorithm can be used for unsupervised
learning of the m(γ) and u(γ) parameters under the independence assumption.
Using the independence assumption is the second baseline experiment for our
approach.

Several work e.g. from Winkler [17] and Larsen and Rubin [18] tried to de-
termine the m(γ) and u(γ) values in cases where the conditional independence
assumption does not hold. All these approaches try to explicitly model the de-
pendencies, which only works for boolean variables.

2.3 Using Continuous Distance Measures

The use of edit distance functions for attribute-pair comparison have shown to be
very effective to detect matching errorneous values. However, the result of such
a distance function is a continuous distance measure, which makes it difficult
to determine a corresponding probability mi(γi) and ui(γi) and it precludes
the normal multinomial probability model for a Bayesian network for taking
dependencies into account.

There are two basic approaches to handle continuous measures. One is to
discretize the values e.g. into binary values (”match”, ”does not match”) using a
threshold [19]. This also enables to model dependencies with a Bayesian network,
but it has the problem that discretization into a small number of values leads
to a poor approximation of the continuous distribution. The other method is to
use specific parametric families such as the Gaussian distribution, with the same
problem of loss of accuracy.

Cohen et al. [20] use an unsupervised learning approach based on the Fellegi-
Sunter model that takes attribute dependencies into account and use continuous
distance measures. They use a hierarchical latent variable graphical model to
model dependencies between the continuous valued individual attributes. Such
an hierarchical graphical model (HGM) show better results than the two basic
models.

The HGM approach serves as the third baseline experiment we compare our
method to.

3 Probabilistic Theory for Duplicate Detection

The ratio w(γ) in the Fellegi-Sunter model is difficult to interpret and requires
the calibration of a threshold. A slightly different view on it using probability
theory makes the interpretation much easier. If we can calculate the conditional
probability of a and b being duplicates (element of M), given the comparison
vector γ, then a threshold on this probability can guide our duplicate decision,

Probabilistic Iterative Duplicate Detection 1229

e.g. if the probability of a and b being a duplicate is greater than 50% then
they are declared as duplicates. This conditional probability can be calculated
as follows:

P ((a, b) ∈ M | γ) =
m(γ) ∗ P (M)

m(γ) ∗ P (M) + u(γ) ∗ P (U)
(3)

This formula follows directly from the Bayes rule and the total probability
theorem:

P ((a, b) ∈ M | γ) =
m(γ) ∗ P (M)

P (γ)
(4)

P (γ) = m(γ) ∗ P (M) + u(γ) ∗ P (U) (5)

u(γ) and m(γ) are defined in the same way as in Fellegi-Sunter. The probabil-
ity P (M) is the prior probability that two records are duplicates and is defined
as the ratio between the set of duplicates and the set of all pairs:

P (M) =
|M |

|M | + |U | (6)

P (U) is simply the complement of P (M); P (U) = 1−P (M). It can be easily
seen that P (M) is always very small and P (U) always nearly 1. In particular for
duplicate free individual data sets (A and B), P(M) is between 0 (no overlap)
and min(|A|,|B|)

|A|∗|B| = 1
max(|A|,|B|) (one data set is a subset of the other).

The main differences to the original Fellegi-Sunter ratio is that the result is
a probability and therefore the value range is {0,1}, whereas in Fellegi-Sunter
the value range of w(γ) is {0,infinite}. This allows to use a fixed threshold for
duplicate decision, instead of the problem to find an appropriate threshold for
every duplicate detection application. Additionally our ratio introduces the term
P (M). If there are only few duplicates expected, P (M) will be very small and
accordingly the matching probability for potential duplicates will be small as
well. However, it can be easily shown that the resulting order of the records with
formula (3) is identical to the order of the Fellegi-Sunter ratio.

3.1 Determination of u(γ)

For the determination of the u(γ) parameter a set of non-duplicates is needed,
which is representative for U . Under the assumption that the individual data
sets are duplicate free, all pairs within these individual data sets can be used as
such a set further called U ′.

Our evaluations showed that U ′ is really representative for U and this method
therefore a valid approximation. This method comparing all pairs in the indi-
vidual data sets is not practical for large data sets, in this case the complexity
must be reduced by sampling (see also Section 3.5).

Without any independence assumptions between the attributes, the proba-
bility u(γ) is then the ratio between the number of all pairs (a, b) in U ′ whose

1230 P. Lehti and P. Fankhauser

comparison vector γ[a, b] is equal to γ (equal for boolean valued comparison
vector components) to the size of U ′.

u(γ) =
|{(a, b) ∈ U ′ | ∀γi[a, b] = γi}|

|U ′| (7)

For the calculation of this ratio, the problem can be alternatively described
as query issue. Therefore we assume that U ′ is a relation that contains the
comparison vectors for every pair as tuples. These queries can be efficiently
answered using standard query optimization techniques, e.g. indices on the in-
dividual attributes. Reducing the size of U ′ by sampling, further increases the
query performance.

3.2 Iterative Determination of m(γ) and P (M)

For the determination of the m(γ) parameter a set of duplicates, which is repre-
sentative for M is also required. As we found no way to identify a representative
subset of M , we use the set of potential duplicates (call it M ′

0) from the blocking
phase as a superset of M for a first determination of m(γ) (m0(γ)) and P (M)
(P (M ′

0)). Without any independence assumptions between the attributes, the
probability m0(γ) is then the ratio between the number of all pairs (a, b) in M ′

0
whose comparison vector γ[a, b] is equal to γ (equal for boolean valued compar-
ison vector components) to the size of M ′

0. P (M ′
0) is the ratio between the size

of M ′
0 to the number of all possible pairs.

m0(γ) =
|{(a, b) ∈ M ′

0 | ∀γi[a, b] = γi}|
|M ′

0|
(8)

P (M ′
0) =

|M ′
0|

|A| ∗ |B| (9)

This approach will result in an overestimation of m(γ) and P (M), as they
are determined on a set, which still contains non-duplicates. With these values
we then calculate the duplicate probability P0((a, b) ∈ M | γ), which will also
be higher as the true value, because of the larger m(γ) value. This means all
pairs that are ranked very low (below a threshold Θ) after this first estimation,
will be even lower ranked with the true values, which allows us to easily declare
such pairs as definite non-duplicates.

Removing these non-duplicates from M ′
0 results in a new and better potential

duplicate set M ′
1. On this set we can now recalculate the values for m(γ) and

P (M) based on M ′
1 and repeat the process. This can be done iteratively until

no more definite non-duplicates are detected.

M ′
t+1 = {(a, b) ∈ M ′

t | Pt((a, b) ∈ M | γ) > Θ} (10)

Pt((a, b) ∈ M | γ) =
mt(γ) ∗ P (M ′

t)
mt(γ) ∗ P (M ′

t) + u(γ) ∗ P (U)
(11)

Probabilistic Iterative Duplicate Detection 1231

This iterative process relies on a few assumptions. Definite non-duplicates
can only be detected if the probability for a non-duplicate (u(γ)) is signifi-
cantly higher than the probability for a duplicate (m(γ)). This must obviously
hold for the true values, as otherwise also humans would not be able to distin-
guish between duplicates and non-duplicates, but it does not necessarily hold
for the estimated values from M ′

0. Therefore the ratio of actual duplicates to
non-duplicates in M ′

0 must be sufficiently high, which demands for a low false
match rate in the blocking phase, like the method introduced in [21].

3.3 Using Continuous Random Variables

Existing approaches for the Fellegi-Sunter model either use boolean values for
the γi variables (”match” or ”does not match”) or they use discrete values,
like ”does not match” or ”matches with a particular value”. However, these
approaches ignore the fact that values are not always clearly categorizable as
definite match or not match, but there are often a few clear matches, a few
clear not matches and a whole range of similarity. The degree of similarity can
be defined with distance functions such as edit-distance. Our approach can be
applied to arbitrary distance functions.

When using continuous distance measures in our model, we define the u(γ)
probability to be the ratio between the number of all pairs in U ′ whose compar-
ison vector is absolutely smaller than γ to the number of all pairs in U ′. This
relies on the assumption that the probability for a non-duplicate is monotonically
decreasing with the increase of the similarity.

u(γ) =
|{(a, b) ∈ U ′ | ∀γi[a, b] <= γi}|

|U ′| (12)

The probability m(γ) is defined accordingly to be the ratio between the
number of all pairs in M ′

t whose comparison vector is absolutely greater than
γ to the number of all pairs in M ′

t. This relies on the assumption that the
probability for a duplicate is monotonically decreasing with the decrease of the
similarity.

mt(γ) =
|{(a, b) ∈ M ′

t | ∀γi[a, b] >= γi}|
|M ′

t|
(13)

The calculation of these probabilities is equivalent to the method described
in Section 3.1 and Section 3.2 by replacing the ”=” operator with a ”<=” and
”>=” operator respectively.

3.4 Handling Null Values

Datasets often contain optional attributes, i.e. attributes may contain null values.
As such null values cannot be used in distance functions, it is also difficult to
define a distance value for the comparison vector, when null values are involved.
Therefore we extend the definition of a comparison vector component to be
either a continuous distance value, or one of the following three discrete values:

1232 P. Lehti and P. Fankhauser

”a=null”, ”b=null”, ”a=b=null”. For the calculation of the m(γ) and u(γ) we
assume that null values only match other null values, i.e. a null value never
matches a continuous distance value.

3.5 Sampling

For larger data sets the calculation of the full U ′ is not practical as its size
is quadratic with the size of the individual data sets. In this case sampling
methods must be used to find a subset U ′

s. However, sampling only approximates
the distribution of γ, which reduces the accuracy of us(γ) from the sample in
opposite to the true u(γ). Here especially two cases that happen more often for
smaller samples, have an enormous negative impact on us(γ):

– us(γ) = 0: In a small sample it may happen that a rarely occurring γ can
not be observed. This results in us(γ) to be 0 and P ((a, b) ∈ M | γ) to be 1
independent of the value of m(γ).

– us(γ) > u(γ): It may also happen that a particular γ is observed more often
than usual within the sample. This results in an overestimation of us(γ)
and may then also result in an underestimation of Pt((a, b) ∈ M | γ). The
iteration described in Section 3.2 relies on the assumption that Pt((a, b) ∈
M | γ) is always an overestimation and fails if this assumption does not hold.

We address the us(γ) = 0 problem by approximation, i.e. observing this
case we try to find a good approximation for us(γ), which is slightly higher
than 0. The approximation that shows the best results is simply the fallback
to the independence assumption. We also experimented with other candidates
like multi-dimensional linear interpolation and statistic error bounds, but these
performed worse and are computationally more costly.

For the us(γ) > u(γ) problem, we need to find a lower bound of us(γ) that
is guaranteed to be smaller than u(γ). Here we use statistic error bounds on the
value of us(γ). Therefore every occurrence of a specific γ in U ′

s is seen as the
observation of a specific random event. The ratio π = x/n between the number
of all occurrences of such an event (x) to the number of all observations (n)
corresponds to the probability us(γ). The lower bound πl and the upper bound
πu for the ratio π are given in statistics literature [22] via the following formulas:

πl =
x

x + (n − x + 1) ∗ Fl
(14)

πu =
(x + 1) ∗ Fu

n − x + (x + 1) ∗ Fu
(15)

with:
Fl{df1=2∗(n−x+1),df2=2∗x}(λ/2)

Fu{df1=2∗(x+1),df2=2∗(n−x)}(λ/2)

Where F denotes the F-distribution, df1 and df2 denote the two degrees of
freedom for the F-distribution and λ is the probability of error for these bounds,
e.g. for a 95% confidence interval λ is 5%.

Probabilistic Iterative Duplicate Detection 1233

We use this lower bound on us(γ) during iteration to guarantee the overes-
timation of Pt((a, b) ∈ M | γ). However, for the final matching estimation of a
pair always the truly observed us(γ) is used.

As even the full U ′ is only a sample on the set of all possible non-duplicates,
these two fallback strategies can also be used without explicit sampling.

4 Evaluation

4.1 Datasets

For an evaluation we have chosen a Restaurant and a Census data set, which
were previously used as benchmarks for duplicate detection, e.g. in [6, 20]. The
restaurant dataset contains 864 restaurant names and addresses with 112 dupli-
cates, composed of 533 and 331 restaurants assembled from Fodor’s and Zagat’s
restaurant guides. These individual datasets are duplicate free. The attributes
being restaurant name, street address, city and cuisine. Table 1 shows a sample
duplicate record from this dataset.

The census data set is a synthetic dataset containing 824 census-like records
with 327 duplicates, composed of two duplicate free sets with 449 and 375
records. The attributes being last name, first name, house number and street.
Table 2 shows a sample duplicate record from this data set.

Table 1. Sample duplicate records from the Restaurant data set

name address city cuisine
uncle nick’s 747 ninth ave. new york city greek
uncle nick’s 747 9th ave. between 50th and 51st sts. new york mediterranean

Table 2. Sample duplicate records from the Census data set

last name first name house number street
JIMENCZ WILLPAMINA S 214 BANK
JIMENEZ WILHEMENIA 214 BANKS

4.2 Experimental Methodology

The data sets were transformed into an XML format and stored into an XML
database. Indices on every single attribute were created inside the database,
which corresponds to a sorting on every attribute.

For the blocking phase the multi-pass algorithm as described in [21] is used,
which is an optimization of the classical sorted-neighborhood method of Her-
nandez and Stolfo [2]. It is used with a window distance size of 0.25. On the
restaurant dataset the blocking was done on the name and address attribute
resulting in 251 potential duplicate pairs with 100% recall and 45% precision,
on the census dataset the blocking was done on the last name and first name

1234 P. Lehti and P. Fankhauser

attribute resulting in 1524 potential duplicate pairs with 90% recall and 19% pre-
cision. These potential duplicates are used as the initial set M ′

0 for evaluating
our approach.

For comparison of the experimental results precision, recall and F-measures
are calculated. These are defined as usual in information retrieval [23]:

Precision =
|CorrectlyIdentifiedDuplicates|

|IdentifiedDuplicates|

Recall =
|CorrectlyIdentifiedDuplicates|

|TrueDuplicates|

F − measure =
2 ∗ Precision ∗ Recall

Precision + Recall

The precision-recall curves in the figures use interpolated precision values
at 20 standard recall levels following the traditional procedure in information
retrieval [23]. However, the figures show only the interesting area between the
recall levels 0.6 and 1.

All experiments using the bayes formula use a precalculated set of non-
duplicates for the determination of u(γ). This set either contains all pairs of
the individual datasets, which are 196393 pairs for the restaurant and 170701
pairs for the census examples, or a randomly chosen sample of these full sets.
These pairs are compared, stored and indexed in advance as described in Sec-
tion 3.1.

The iteration as described in Section 3.2 uses a threshold of 50%, i.e. all pairs
that have a matching probability of less than 50% are removed.

4.3 Comparison of the Approach

We compare our approach (further referred to as the Bayes classifier) on both
datasets to a number of baseline experiments:

– Mean: this baseline simply takes the arithmetic unweighted mean of the
individual distances as overall result - ignoring attribute relevance.

– Independence: this uses the Bayes formula, but calculating the m(γ) and u(γ)
values under the independence assumption - ignoring attribute dependencies.

– HGM (Hierarchical Graphical Model): this is the unsupervised approach
presented in [20] that uses the same datasets for their evaluation. Therefore
we simply copied their results for comparison, although they used a different
blocking algorithm.

– SVM Jaccard (supervised): this is the best of the fully supervised approaches
presented in [6] that uses the same restaurant dataset for their evaluation.
We copied their results for the restaurant dataset.

We use the Jaro-distance [3] as distance function in our experiments, HGM
uses the SoftTFIDF-distance, SVM uses the Jaccard-distance. A comparison of

Probabilistic Iterative Duplicate Detection 1235

these distance functions is presented in [5]. The impact of different distance
functions is shortly evaluated in Section 4.4.

The maximum F-measures of these methods on both data sets are shown in
table 3. Figure 1 shows the precision and recall curves for the restaurant dataset,
Figure 2 the curves for the census dataset.

Table 3. Maximum F-measures for detecting duplicates

Method Restaurant Census
HGM (SoftTFIDF) 0.844 0.759
Mean 0.874 0.853
Bayes independent 0.951 0.575
Bayes dependent 0.955 0.853
SVM (supervised) 0.971 -

These results show that the Bayes dependent classifier is always one of the
best classifiers, although the Bayes independent classifier for the restaurant and
the simple mean classifier for the census dataset perform nearly as good. This can
be explained by the observation that the attributes in the restaurant dataset are
only little dependent from each other, but have varying relevance, whereas the
attributes in the census dataset have higher dependencies, but similar relevance.

The maximum F-measure with our approach is not far away from the best
results in [6] (0.971), with the difference that our approach uses unsupervised
instead of supervised learning techniques. When using the true U set with our

Fig. 1. Precision-Recall for the restaurant dataset

1236 P. Lehti and P. Fankhauser

Fig. 2. Precision-Recall for the census dataset

approach, which can be seen as supervised learning, we even reach a maximum
F-measure of 0.978.

The higher precision of the HGM method for the census dataset at the 100%
recall level is caused by the different blocking algorithm. Ours reaches only
around 90% recall, therefore the precision for the 95% and 100% recall levels
are 0.

4.4 Impact of Distance Functions

The previous experiments used the Jaro distance for comparison. In order to
verify that our approach is working with arbitrary distance functions, we also
carried out the experiments with a simple Levenshtein distance [24]. The maxi-
mum F-measures can be found in Table 4.

The experiment shows that the selection of a good distance function matters,
but still our approach performs better than the baseline experiments. A possible

Table 4. Maximum F-measures using Levenshtein distance

Method Restaurant Census
HGM (SoftTFIDF) 0.844 0.759
Mean 0.885 0.778
Bayes independent 0.925 0.565
Bayes dependent 0.922 0.806
SVM (supervised) 0.971 -

Probabilistic Iterative Duplicate Detection 1237

interpretation of this impact is that good distance functions are able to more
sharply separate the distributions of U and M and give therefore more accu-
rately overall results. This suggest further work in unsupervised finding ideal
distance functions.

4.5 Sampling

One disadvantage of our approach is the required set of non-duplicates for deter-
mination of u(γ). The previous experiments always used the full set of all pairs of
the individual datasets. We also experiment with samples of this set, containing
50% or just 10% of the pairs. The small samples show the problem of us(γ) = 0
or us(γ) > u(γ), which are addressed by the approximation fallback and error
bounds as described in Section 3.5. The experiment with a 50% sample was done
on two randomly chosen seeds, the experiments with a 10% sample was done on
three randomly chosen seeds. The maximum F-measures for these experiments
can be found in Table 5.

Table 5. Maximum F-measures for sampling

Sampling Method Restaurant Census
Full:
Bayes dependent 0.955 (100%) 0.853 (100%)
50%-1:
Bayes dependent 0.943 (-1.3%) 0.894 (+4.8%)
+approximation 0.946 (-0.9%) 0.894 (+4.8%)
+error bounds 0.939 (-1.7%) 0.892 (+4.6%)
+both 0.946 (-0.9%) 0.892 (+4.6%)

50%-2:
Bayes dependent 0.924 (-3.3%) 0.867 (+1.6%)
+approximation 0.932 (-2.4%) 0.867 (+1.6%)
+error bounds 0.929 (-2.7%) 0.877 (+2.8%)
+both 0.936 (-2.0%) 0.877 (+2.8%)

10%-1:
Bayes dependent 0.912 (-4.5%) 0.743 (-12.9%)
+approximation 0.940 (-1.6%) 0.865 (+1.4%)
+error bounds 0.917 (-4.0%) 0.743 (-12.9%)
+both 0.939 (-1.7%) 0.848 (-0.6%)

10%-2:
Bayes dependent 0.871 (-8.8%) 0.337 (-60.5%)
+approximation 0.942 (-1.4%) 0.337 (-60.5%)
+error bounds 0.871 (-8.8%) 0.844 (-1.1%)
+both 0.934 (-2.2%) 0.844 (-1.1%)

10%-3:
Bayes dependent 0.932 (-2.4%) 0.722 (-15.4%)
+approximation 0.960 (+0.5%) 0.722 (-15.4%)
+error bounds 0.932 (-2.4%) 0.850 (-0.4%)
+both 0.960 (+0.5%) 0.850 (-0.4%)

1238 P. Lehti and P. Fankhauser

Fig. 3. Precision-Recall for sampling on the restaurant dataset

Fig. 4. Precision-Recall for sampling on the census dataset

Figure 3 and Figure 4 show the precision and recall curves for the full set in
comparison to the 50% and the 10% sample with the worst F-measures, i.e. for
both datasets the 50%-2 and 10%-2 sample.

Probabilistic Iterative Duplicate Detection 1239

These results show that even for a 10% sample the minimum F-measure is not
more than 2.2%/1.1% less than for the result using the full set, the maximum F-
measure might even be higher by accident. It further shows the necessity of both
fallback strategies especially for small samples, where often one of it significantly
increases the accuracy, thereby the effectiveness of either of them depends on the
sample set. Conditions for finding a minimal sample set of U ′ that still results
in a high accuracy is future work.

5 Related Work

In the database community a few knowledge-intensive approaches have been
developed. Hernandez and Stolfo [2] present a two phase data cleansing approach
based on key expressions for blocking and logic rules for the second phase. The
selection of appropriate keys as well as the logic rules are both very knowledge-
intensive tasks. Galhardas et al. [1] present a framework for data cleansing based
on a set of rules. This framework is very flexible, but requires intensive human
interaction and knowledge in order to provide good rules. Monge and Elkan
[4] compare instances based on a concatenation of all attributes with the help
of distance functions and present a blocking algorithm. A concatenation of all
attributes only produces reasonable results if all data sources are complete, i.e.
have no null values for attributes and all attributes show the same relevance for
duplicate detection.

Fellegi and Sunter [14] from the statistics community present a formal math-
ematical model for record linkage already in 1969. Their pioneering results are
still valid today and our approach is largely based on or related to their re-
sults. An introduction to their model is found in Section 2.2. Several work from
Winkler and others summarized in [19] show how to use the EM algorithm for
unsupervised learning of the Fellegi-Sunter parameters under the independence
assumption and generalized for taking dependencies into account, but discretized
to boolean random variables (”match”, ”does not match”) or categorical values
(”match”, ”possibly matches”, ”does not match”).

Elfeky et al. [25] claim that probabilistic record linkage models always have
the disadvantage to handle only boolean or categorical values and require a
training set, which we showed to be wrong. Therefore they propose to use ma-
chine learning techniques either based on supervised training of a classifier (e.g.
some kind of decision model) or using unsupervised clustering methods like k-
means. However, building an appropriate training set is a manual and knowledge-
intensive task and simple clustering methods like k-means are only able to iden-
tify clusters that are linear separable, which is in general not the case for real
world data.

The AI community has proposed various other approaches using supervised
learning. Cohen and Richman [8] learn to combine multiple similarity metrics
to identify duplicates. Bilenko and Mooney [6] learn in a first step distance
metrics for individual fields, and in a second step they learn a combining metric
for similarity between records using Support Vector Machines (SVM). Their

1240 P. Lehti and P. Fankhauser

results are compared to ours in section 4. Sarawagi and Bhamidipaty [9] present
an approach of active learning that reduces the user-overhead for selecting an
appropriate learning set.

Ravikumar and Cohen [20] present an unsupervised learning approach based
on the Fellegi-Sunter model that takes attribute dependencies into account and
use continuous distance measures. We compare our results to them in Section 4.
They use a hierarchical latent variable graphical model to model dependencies
between the continuous valued individual attributes. They showed that their
approach helps reducing overfitting of dependency models. However, overfitting
is not an issue in our approach as we always work on the full joint distribution.

A few more recent approaches try to take similarities between related ob-
jects in a graph data model into account, which is orthogonal to our approach.
Ananthakrishna et al. [10] also compare instances based on the concatenation of
all attributes with the same disadvantages as in [4]. Additionally they use a co-
occurrence similarity. This co-occurrence similarity checks for co-occurrences in
the children sets of the entities. Domingos [13] take similarities between related
objects into account by setting up a network with a node for each record pair.
This allows to propagate duplicate detection results to related objects. Bhat-
tacharya and Getoor [12] introduce new distance measures that take entity rela-
tionships into account. They showed that this can be used for the duplicate de-
tection task. Pasula et al. [11] introduce a generative probability model for the re-
lated problem of identity uncertainty based on probabilistic relational networks.

6 Conclusion and Future Work

This paper presented a new probabilistic model for duplicate detection and an
iterative approach for determining appropriate parameter values using contin-
uous distance measures and taking attribute dependencies into account. The
proposed approach is based on unsupervised learning and domain independent,
i.e. it is completely free from user interaction, which makes classical approaches
very expensive. The evaluations on two test datasets showed that the approach
reaches very high accuracy, outperforms existing unsupervised approaches and
is nearly competitive with fully supervised and domain dependent approaches.

The problem of finding a minimal representative sample set for U ′, might be
solved by using a blocking algorithm against U , which would directly select only
representative non-duplicates instead of the here presented random selection.

It also showed that the importance of the used distance function is high,
therefore we want to further investigate in unsupervised finding ideal distance
functions.

An important future work is to extend the approach to object identification,
i.e. detecting duplicate objects in a graph data model as opposed to flat record
lists. This involves extending the considered 1:1 relationships to 1:n (multi-valued
attributes) and n:m relationships. As there exists several related and recent work
[10, 11, 12, 13], we hope to be able to incorporate such existing methods into our
approach. Another future work is the evaluation of the approach on a large real
world dataset.

Probabilistic Iterative Duplicate Detection 1241

Acknowledgments

This work is supported by the bmb+f in the SemIPort project.

References

1. Galhardas, H., Florescu, D., Shasha, D., Simon, E.: An extensible framework
for data cleaning. In: Proceddings of the 16th International Conference on Data
Engineering (ICDE ’00). (2000) 312

2. Hernandez, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the
merge/purge problem. Data Mining and Knowledge Discovery 2 (1998) 9–37

3. Jaro, M.: Advances in record linkage methodology as applied to matching the 1985
census of tampa. Journal of the American Statistical Society 84 (1989) 414–420

4. Monge, A., Elkan, C.: An efficient domain independent algorithm for detecting
approximately duplicate database records. In: In Proceedings of the SIGMOD
Workshop on Data Mining and Knowledge Discovery. (1997)

5. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string metrics for
matching names and records. In: Proceedings of the KDD-2003 Workshop on Data
Cleaning, Record Linkage, and Object Consolidation, Washington, DC (2003) 13–18

6. Bilenko, M., Mooney, R.J.: Learning to combine trained distance metrics for du-
plicate detection in databases. Technical Report AI 02-296, Artificial Intelligence
Laboratory, University of Texas at Austin, Austin, TX (2002)

7. Ristad, E.S., Yianilos, P.N.: Learning string-edit distance. IEEE Transactions on
Pattern Analysis and Machine Intelligence 20 (1998) 522–532

8. Cohen, W.W., Richman, J.: Learning to match and cluster large high-dimensional
data sets for data integration. In: Proceedings of the Eighth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD-2002),
Edmonton, Alberta (2002)

9. Sarawagi, S., Bhamidipaty, A.: Interactive deduplication using active learning. In:
Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2002), Edmonton, Alberta (2002)

10. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in
data warehouses. In: Proceedings of the 28th International Conference on Very
Large Data Bases(VLDB ’02). (2002)

11. Pasula, H., Marthi, B., Milch, B., Russell, S., Shpitser, I.: Identity uncertainty
and citation matching. In: Advances in Neural Information Processing Systems
15, MIT Press (2003)

12. Bhattacharya, I., Getoor, L.: Deduplication and group detection using links. In:
Proceedings of the KDD-2004 Workshop on Link Analysis and Group Detection.
(2004)

13. Domingos, P., Domingos, P.: Multi-relational record linkage. In: Proceedings of
the KDD-2004 Workshop on Multi-Relational Data Mining. (2004) 31–48

14. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American
Statistical Association 64 (1969) 1183–1210

15. Newcombe, H.B., Kennedy, J.M., Axford, S.J., James, A.P.: Automatic linkage of
vital records. Science 130 (1959) 954–959

16. Winkler, W.E.: Using the em algorithm for weight computation in the fellegi-
sunter model of record linkage. In: Proceedings of the Section on Survey Research
Methods, American Statistical Association. (1988) 667–671

1242 P. Lehti and P. Fankhauser

17. Winkler, W.E.: Improved decision rules in the fellegi-sunter model of record linkage.
In: Proceedings of the Section on Survey Research Methods, American Statistical
Association. (1993) 274–279

18. Larsen, M.D., Rubin, D.B.: Alternative automated record linkage using mixture
models. Journal of the American Statistical Association 79 (2001) 32–41

19. Winkler, W.E.: The state of record linkage and current research problems. Tech-
nical report, Statistical Research Division, U.S. Census Bureau, Washington, DC
(1999)

20. Ravikumar, P., Cohen, W.W.: A hierarchical graphical model for record linkage.
In: AUAI ’04: Proceedings of the 20th conference on Uncertainty in artificial intel-
ligence, AUAI Press (2004) 454–461

21. Lehti, P., Fankhauser, P.: A precise blocking method for record linkage. In: Pro-
ceedings of the 7th International Conference on Data Warehousing and Knowledge
Discovery (DaWaK’05). (2005)

22. Sachs, L. In: Angewandte Statistik. Springer, Berlin (2004) 434–435
23. Baeza-Yates, R., Ribiero-Neto, B. In: Modern Information Retrieval. Addison

Wesley (1999) 74–79
24. Levenshtein, V.I.: Binary codes capable of correcting insertions and reversals.

Soviet Physics Doklady 10 (1966) 707–710
25. Elfeky, M.G., Verykios, V.S., Elmargarid, A.K.: Tailor: A record linkage tool-

box. In: Proceedings of the 18th International Conference on Data Engineering
(ICDE’02). (2002)

Efficient Processing of XPath Queries
with Structured Overlay Networks�

Gleb Skobeltsyn, Manfred Hauswirth, and Karl Aberer

Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland
{gleb.skobeltsyn, manfred.hauswirth, karl.aberer}@epfl.ch

Abstract. Non-trivial search predicates beyond mere equality are at
the current focus of P2P research. Structured queries, as an important
type of non-trivial search, have been studied extensively mainly for un-
structured P2P systems so far. As unstructured P2P systems do not use
indexing, structured queries are very easy to implement since they can
be treated equally to any other type of query. However, this comes at the
expense of very high bandwidth consumption and limitations in terms of
guarantees and expressiveness that can be provided. Structured P2P sys-
tems are an efficient alternative as they typically offer logarithmic search
complexity in the number of peers. Though the use of a distributed index
(typically a distributed hash table) makes the implementation of struc-
tured queries more efficient, it also introduces considerable complexity,
and thus only a few approaches exist so far. In this paper we present a
first solution for efficiently supporting structured queries, more specif-
ically, XPath queries, in structured P2P systems. For the moment we
focus on supporting queries with descendant axes (“//”) and wildcards
(“*”) and do not address joins. The results presented in this paper pro-
vide foundational basic functionalities to be used by higher-level query
engines for more efficient, complex query support.

1 Introduction

P2P systems have been very successful as global-scale file-sharing systems. Typ-
ically these systems support simple exact and substring queries which suffice in
this application domain. To make P2P systems a viable architectural alternative
for more technical and database-oriented applications, support for more power-
ful and expressive queries is required, though. A couple of approaches have been
suggested already on top of unstructured P2P systems and are being applied
successfully in practice, for example, Edutella [21]. Unstructured P2P systems
do not use indexing, but typically some form of constrained flooding, and thus
structured queries are very easy to implement, since each peer receiving the
query, which can be arbitrarily complex, can locally evaluate it and return its
contribution to the overall result set. However, this comes at the expense of very
� The work presented in this paper was (partly) carried out in the framework of the

EPFL Center for Global Computing and supported by the Swiss National Funding
Agency OFES as part of the European project BRICKS No 507457.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1243–1260, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1244 G. Skobeltsyn, M. Hauswirth, and K. Aberer

high bandwidth consumption and some intrinsic limitations. For example, com-
pleteness of results cannot be guaranteed, query planning is not possible, and
joins are nearly impossible to implement efficiently in large-scale settings.

The efficient alternative are structured P2P systems, as they typically offer
logarithmic search complexity in the number of participating nodes. Though the
use of a distributed index (typically a distributed hash table) makes the imple-
mentation of structured queries more efficient, it also introduces considerable
complexity in an environment that is as instable and error-prone as large-scale
P2P systems. Thus, so far only a few approaches exist, for example the PIER
project [14].

In this paper we present a first solution for the efficient support of structured
queries, more specifically, XPath queries, in large-scale structured P2P systems.
We assume such a P2P system processing queries expressed in a complex XML
query language such as XQuery. XQuery uses XPath expressions to locate data
fragments by navigating structure trees of XML documents stored in the net-
work. We refer to this functionality as processing of structured queries. In this
paper we provide an efficient solution for processing XPath queries in struc-
tured P2P networks. We do not address query plans or joins, but focus on a
foundational indexing strategy that facilitates efficient answering of structured
queries, which we refer to as structural indexing in the following. We restrict
the supported queries to a subset of the XPath language including node tests,
the child axes (“/”), the descendant axes (“//”) and wildcards (“*”) which we
will denote as XPath{∗,//} in the following. Thus, in this paper we describe an
indexing strategy for efficient XPath{∗,//} query answering in a structured P2P
network. Our goal was to provide a basic functional building block which can be
exploited by a higher-level query engine to efficiently answer structural parts of
complex queries in large-scale structured P2P systems. However, we think that
the work presented in this paper provides generally applicable concepts which
can be generalized to more complete support of XPath predicates and joins.

The paper is organized as follows: Section 2 gives a brief introduction to
our P-Grid structured overlay network which we use to evaluate our approach.
Our basic indexing strategy is described in Section 3 whose efficiency is then
improved through caching as described in Section 4. The complete approach is
then evaluated in Section 5 through simulations. Following that, we position our
approach in respect to related work in Section 6 and present our conclusions in
Section 7.

2 The P-Grid Overlay Network

We use the P-Grid overlay network [1, 3] to evaluate the approach presented in
this paper. P-Grid is a structured overlay network based on the so-called dis-
tributed hash table (DHT) approach. In DHTs peer identifications and resource
keys are hashed into one key space. By this mapping responsibilities for parti-
tions of the key space can be assigned to peers, i.e., which peer is responsible
for answering queries for what partition. To ensure that each partition of the

Efficient Processing of XPath Queries with Structured Overlay Networks 1245

key space is reachable from any peer, each peer maintains a routing table. The
routing table of a peer is constructed such that it holds peers with exponen-
tially increasing distance in the key space from its own position in the key space.
This technique basically builds a small-world graph [16], which enables search in
O(log N) steps. Basically all systems referred to as DHTs are based on variants
of this approach and only differ in respect to fixed (e.g., P-Grid, Pastry [25])
vs. variable key space partitioning (e.g., Chord [27]), the topology of the key
space (ring, interval, torus, etc.), and how routing information is maintained
(redundant entries, dealing with network dynamics and failures, etc.).

Without constraining general applicability we use binary keys in P-Grid. This
is not a fundamental limitation as a generalization of the P-Grid system to k-
ary structures is natural, and exists. P-Grid peers refer to a common underlying
binary trie structure in order to organize their routing tables as opposed to
other topologies, such as rings (Chord), multi-dimensional spaces (CAN [24]), or
hypercubes (HyperCuP). Tries are a generalization of trees. A trie is a tree for
storing strings in which there is one node for every common prefix. The strings
are stored in extra leaf nodes. In the following we will use the terms trie and
tree conterminously.

In P-Grid each peer p ∈ P is associated with a leaf of the binary tree. Each
leaf corresponds to a binary string π ∈ Π , also called the key space partition.
Thus each peer p is associated with a path π(p). For search, the peer stores
for each prefix π(p, l) of π(p) of length l a set of references ρ(p, l) to peers q
with property π(p, l) = π(q, l), where π is the binary string π with the last bit
inverted. This means that at each level of the tree the peer has references to some
other peers that do not pertain to the peer’s subtree at that level which enables
the implementation of prefix routing for efficient search. The cost for storing the
references and the associated maintenance cost scale as they are bounded by the
depth of the underlying binary tree.

Each peer stores a set of data items δ(p). For d ∈ δ(p) the binary key key(d)
is calculated using an order-preserving hash function, i.e., ∀s1, s2 : s1 < s2 ⇒
h(s1) < h(s2), which is pre-requisite for efficient range querying as information is
being clustered. key(d) has π(p) as prefix but it is not excluded that temporarily
also other data items are stored at a peer, that is, the set δ(p, π(p)) of data
items whose key matches π(p) can be a proper subset of δ(p). Moreover, for
fault-tolerance, query load-balancing and hot-spot handling, multiple peers are
associated with the same key-space partition (structural replication), and peers
additionally also maintain references σ(p) to peers with the same path, i.e., their
replicas, and use epidemic algorithms to maintain replica consistency. Figure 1
shows a simple example of a P-Grid tree. Note that, while the network uses a
tree/trie abstraction, the system is in fact hierarchy-less, and all peers reside at
the leaf nodes. This avoids hot-spots and single-points-of-failures.

P-Grid supports a set of basic operations: Retrieve(key) for searching a cer-
tain key and retrieving the associated data item, Insert(key, value) for storing
new data items, Update(key, value) for updating a data item, and Delete(key)
for deleting a data item. Since P-Grid uses a binary tree, Retrieve(key) is of

1246 G. Skobeltsyn, M. Hauswirth, and K. Aberer

01 : 2
1 : 5

00 : 6
1 : 4

11 : 5
0 : 2 0 : 6

11 : 5 10 : 4
0 : 6

Routing table
(route keys with prefix P to peer X)

00 01 10 10 1100

0

00 01 10 11

1

query(5, 100)

query(4, 100), found!

query(6, 100)

01 : 2
1 : 3

Legend:

Peer X

Data store
(keys have prefix P)

3 4 521

P

6

X

P:X

Fig. 1. P-Grid overlay network

complexity O(log |Π |), measured in messages required for resolving a search re-
quest, in a balanced tree, i.e., all paths associated with peers are of equal length.
Skewed data distributions may imbalance the tree, so that it may seem that
search cost may become non-logarithmic in the number of messages. However,
in [2] it is shown that due to the randomized choice of routing references from the
complimentary subtree, the expected search cost remains logarithmic (0.5 log N),
independently of how the P-Grid is structured. The intuition why this works is
that in search operations keys are not resolved bit-wise but in larger blocks thus
the search costs remain logarithmic in terms of messages. This is important as
P-Grid’s order-preserving hashing may lead to non-uniform key distributions.

The basic search algorithm is shown in Algorithm 1.

Algorithm 1. Search in P-Grid: Retrieve(key, p)
1: if π(p) ⊆ key or π(p) ⊃ key then
2: return(d ∈ δ(p)|key(d) = key);
3: else
4: determine l such that π(key, l) = π(p, l);
5: r = randomly selected element from ρ(p, l);
6: Retrieve(key, r);
7: end if

p in the algorithm denotes the peer that currently processes the request. The
algorithm always terminates successfully, if the P-Grid is complete (ensured by
the construction algorithm) and at least one peer in each partition is reachable
(ensured through redundant routing table entries and replication). Due to the
definition of ρ and Retrieve(key, p) it will always find the location of a peer at
which the search can continue (use of completeness). With each invocation of
Retrieve(key, p) the length of the common prefix of π(p) and key increases at
least by one and therefore the algorithm always terminates.

Efficient Processing of XPath Queries with Structured Overlay Networks 1247

Insert(key, value) and Delete(key) are based on P-Grid’s more general update
functionality [10], Update(key, value), which provides probabilistic guarantees for
consistency and is efficient even in highly unreliable, replicated environments,
i.e., O(log |Π |+ replication factor). An insert operation is executed in two log-
ical phases: First an arbitrary peer responsible for the key-space to which the
key belongs is located (Retrieve(key)) and then the found peer notifies its repli-
cas about the inserted key using a light-weight hybrid push-and-pull gossiping
mechanism. Deleting and updating a data item works alike.

3 Basic Index

The goal of structural indexing is to provide efficient means to find a peer or a
set of peers, that store pointers to XML documents or fragments containing the
path(s) matching the queried expression. As we target large-scale distributed
XML repositories, we try to minimize the messaging costs, measured in overlay
hops, required to answer the query. The intuition of our approach is to use stan-
dard database techniques for suffix indexing applied to XML path expressions.
Instead of symbols, the set of XML element tags is used as the alphabet.

Given an XML path P consisting of m element tags, P = l1/l2/l3/ . . . /lm, we
store m data items in the P-Grid network using the following subpaths (suffixes)
as application keys:

– sp1 = l1/l2/ . . . /lm
– sp2 = l2/ . . . /lm

...
– spm = lm

The key of each data item is generated using P-Grid’s prefix-preserving hash
function: keyi = h(spi). The insertion of the m data items requires O(m log N)
overlay hops. Each data item stores the original XML path to enable local pro-
cessing and a URI to the XML source document/fragment. We refer to this index
as basic index in the following.

For example, for the path “store/book/title”, the following data items (we
represent them in a form of {key,data} pairs) will be created:

– {h(“store/book/title”), (“store/book/title/”, URI)}
– {h(“book/title”), (“store/book/title/”, URI)}
– {h(“title”), (“store/book/title/”, URI)}

Any peer in the overlay network can submit an XPath{∗,//} query. To sup-
port wildcards (“*”) we consider them as a particular case of descendant axes
(“//”). They are converted into “//” and are used only at the local lookup stage
as a filtering condition. I.e., our strategy is to preprocess a query replacing all
“*” by “//”, for example, “A/*/B” → “A//B”, answer the transformed query
using our distributed index and filter the result set by applying the original

1248 G. Skobeltsyn, M. Hauswirth, and K. Aberer

query to it, thus we obtain the intended semantics of “*”. In this paper we con-
centrate on general indexing strategy and do not address possible optimizations
on this issue.

Let qB denote the longest sequence of element tags divided by child axes
(“/”) only, which we will call the longest subpath of a query in the following. For
example, for the query “A//C/D//F”, qB = “C/D”.

When a query is submitted to a peer, the peer generates a query message
that contains the path expression and the address of the originating peer and
starts the basic structural querying algorithm as shown in Algorithm 2.

Algorithm 2. Querying using basic index: AnswerQuery(query, p)
1: compute qB of query;
2: key = h(qB)
3: if π(p) ⊆ key then
4: return(d ∈ δ(p) | isAnswer(d, query) = true);
5: else if π(p) ⊃ key then
6: ShowerBroadcast(query, length(key), p);
7: else
8: determine l such that π(key, l) = π(p, l);
9: r = randomly selected element from ρ(p, l);

10: AnswerQuery(query, r);
11: end if

The function AnswerQuery(query, p) extends Retrieve(key, p) described in
Algorithm 1 for answering the XPath{∗,//} query using the basic index. First
the search key is computed by hashing the query’s longest subpath qB. Then we
check whether the currently processing peer is the only one responsible for key.
If yes, the routing is finished and the result set is returned (line 4). Function
isAnswer(d, query) examines if the data item d is a correct answer for query.
Alternatively, if routing is finished at one of the peers from the sub-trie defined
by key (line 5) 1, all peers from this sub-trie could store relevant data items and
have to be queried. To do this, we use a variant of the broadcasting algorithm
(line 6) for answering range queries described in [11] as shown in Algorithm 3,
where the range is defined by key prefix. I.e., we query all peers for which
key ⊂ π(p).

The algorithm starts at an arbitrary peer from the sub-trie, and the query
is forwarded to the other partitions in the trie using this peer’s routing table.
The process is recursive, and since the query is split in multiple queries which
appear to trickle down to all the key-space partitions in the range, we call it the
shower algorithm.

1 I.e., the key is a proper substring of the peer’s path (π(p) ⊃ key), which means that
all bits of the key have been resolved and the query has reached a sub-trie, in which
several peers may store data belonging to the query’s answer set, and all have to be
checked for possible answers (this is ensured by P-Grid’s clustering property).

Efficient Processing of XPath Queries with Structured Overlay Networks 1249

Algorithm 3. ShowerBroadcast(query, lcurrent, p)
1: for l = lcurrent to length(π(p)) do
2: r = randomly selected element from ρ(p, l);
3: ShowerBroadcast(query, l + 1, r);
4: end for
5: return(d ∈ δ(p) | isAnswer(d, query) = true);

With basic indexing the expected cost (in terms of messages) of answering
a single query is O(L) + O(S) − 1, where L is the cost of locating any peer
in the sub-trie and S is the shower algorithm’s messaging cost. The expected
value of L is a length of the sub-trie’s prefix. The intuition for this value is that
it is analogous to the search cost in a tree-structured overlay of size 2L. The
expected value of L is N/2L, which refers to the number of peers in the sub-trie.
The latency remains O(log N) because the shower algorithm works in a parallel
fashion.

To illustrate how a query is answered using the basic index, assume the
query = “A//C/D//E” is submitted at some peer p. Following Algorithm 2
the peer responsible for h(“C/D”) is located. Assume there is a sub-trie defined
by the prefix h(“C/D”) as it is depicted in Figure 2. The shower broadcast is
executed and every peer in the sub-trie performs a local lookup for query and
sends the result to the originating peer p.

4 Caching Strategy

The basic index is efficient in finding all documents matching an XPath{∗,//}
query expression based on the longest sequence of element tags (qB). It performs
well with queries containing a relatively long h(qB), such that the number and
the size of shower broadcasts is not excessive. However, the search cost might
be substantially higher for queries, which require large broadcasts, i.e., h(qB) is
short. For example, queries like “A//B” are answered by looking up the peer
responsible for h(“A”) and then a relatively expensive broadcast depending on
the data in the overlay may have to follow. The search would be more efficient
if knowledge about the second element tag “B” would be employed as well. In
this section we introduce a caching strategy to address this issue, which allows
us to reduce the number of broadcasts, and thus, decrease the average cost of
answering a query.

Each peer which receives a query determines if it belongs to one of the fol-
lowing types:

1. Queries that can be answered locally, i.e., π(p) ⊆ h(qB). For example the
path “A/B/C//E” at the peer responsible for h(“A/B”).

2. Queries that require additional broadcasts, i.e., π(p) ⊃ h(qB), but contain
only one subpath, query = qB. For example, the path “A” at the peer
responsible for h(“A/B”). In this case matching index items are stored on

1250 G. Skobeltsyn, M. Hauswirth, and K. Aberer

all the peers responsible for h(“A”). As queries of this type may be very
expensive, for example “//”, they could be disabled in the configuration or
only return part of the overall answer set to constrain costs.

3. Queries that require an additional broadcast, π(p) ⊃ h(qB), but include at
least one descendant axis (“//”) or wildcard (“*”), i.e. qB �= q. For example
the query “A//C//E” at the peer responsible for h(“A/C”). The result set
for such queries can be cached locally and accessed later without performing
a shower broadcast.

Type 1 queries are inexpensive and thus work well with basic indexing. Type
2 queries are so general that they return undesirably large result sets and the
system may want to block or constrain them. The most relevant type of queries
whose costs should be minimized are thus type 3 queries which we will address in
the following. For simplifying the presentation we assume that only one peer is
responsible for a given query and have resources to cache results. We can assume
that storage space is relatively cheap as the “expensive” resource in overlay
networks is network bandwidth. However, each peer is entitled to arbitrarily
limit the size of its cache at will.

4.1 Answering a Query

As a first step Algorithm 2 is modified by changing the routing and adding cache
handling. If we sort the subpaths of an XPath{∗,//} query by their length in
descending order, we can “rewrite” the original query as qC = concat(Pl1 , Pl2 , ...,
Plk), where Pli is the i-st longest subpath. We will use qC for routing purposes
instead of qB, which gives us the benefit that we use the whole query for gener-
ating the routing key. The modified querying algorithm is shown in Algorithm 4.

Algorithm 4. Querying using basic index extended with cache:
AnswerQueryWithCache(query, p)
1: compute qC of the query;
2: keyC = h(qC)
3: compute qB of the query;
4: keyB = h(qB)
5: if π(p) ⊆ keyB then
6: return(d ∈ δ(p) | isAnswer(d, query) = true);
7: else if (π(p) ⊃ keyB) and (ifCached(query) = false) then
8: ShowerBroadcast(query, length(keyB), p);
9: else if π(p) ⊆ keyC then

10: return(d ∈ cache(p) | isAnswer(d, query) = true);
11: else
12: determine l such that π(keyC , l) = π(p, l);
13: r = randomly selected element from ρ(p, l);
14: AnswerQueryWithCache(query, r);
15: end if

Efficient Processing of XPath Queries with Structured Overlay Networks 1251

In line 1 we compute qC which is used for routing (line 12) to the peer
(probably) storing a cached result set. Since P-Grid uses a prefix-preserving
hash function and qB ⊆ qC (qB is always the first subpath of qC), this peer is
located in the keyB = h(qB) sub-trie.

Similarly to the basic index’s search algorithm we check whether the currently
processing peer is the only one responsible for keyB (line 5). If yes, the result
set is returned (line 6). If the routing reached one of the peers from the sub-trie
defined by keyB, we execute the shower broadcast (line 8) to answer the query
as introduced in the previous section, but only if the query has not already been
cached (line 7). Section 4.2 explains how the function ifCached(query) works.
If the query is cached, the routing proceeds until the peer responsible for keyC is
reached. This peer answers the query by looking up a cached result set (line 10).

4.2 Cache Maintenance

Each peer runs a cache manager, which is responsible for cache maintenance.
Two functions createCache(query) and deleteCache(query) are available, where
query is any query the peer is responsible for. In the following we explain how
these functions work. How the cache manager decides if a query is worth caching
or not will be described in 4.3.

To cache a query a peer determines a sub-trie’s prefix by hashing qB and col-
lects a result set for the query by executing a special version of the shower broad-
cast algorithm. The only difference with regard to the ShowerBroadcast listed
in Algorithm 3 is that for cache consistency reasons all the peers in the broadcast
sub-trie add the query expression to their lists of cached queries LCQ. Thus, in
case the P-Grid is updated, i.e. data items are inserted, modified or deleted, any
peer from the sub-trie can contact the peer(s) that cache relevant queries, to in-
form them of the change so they can keep their cache consistent. This operation
needs O(log N) messages per cache entry. The function ifCached(query) (line
7, Algorithm 4) looks up the (locally maintained) LCQ list to determine if the
query is cached. This solution requires additional storage space which can be
significantly decreased by the use of Bloom filters. Similarly, the cache deletion
operation requires updates of all LCQ lists.

When a data item is inserted, updated or deleted, all relevant cache entries
are updated respectively. A peer looks up the cached queries list and sends
update messages to all the peers caching the relevant queries. Each cache update
requires a message to be routed with an expected cost of 0.5 logN . If we denote
as C(path) the number of cached queries that have path as an answer, the update
cost can be estimated as O(log N) + O(C(path) ∗ 0.5 logN).

4.3 What to Cache?

The cache manager analyzes the benefits of caching for each candidate query
the peer is responsible for. To do so, it estimates the overall messaging cost for
the query with and without caching. The decision to cache the query result or
to delete the existing cache entries is based on comparing these two values.

1252 G. Skobeltsyn, M. Hauswirth, and K. Aberer

If the query is cached, each search operation for that query saves a shower
broadcast (the shower broadcast requires s − 1 messages where s is the number
of peers in the trie). On the other hand each update operation for any data
item related to the query will cost additional O(log N) messages to update the
cache. Knowing the approximate ratio of search/update operations (obtained
by local monitoring) the peer can make an adaptive decision on caching of a
particular query.

The query is considered to be profitable to cache if:

UpdateCost∗UpdateRate(subtrie) < SearchCost(subtrie)∗SearchRate(query)

where

– subtrie is the prefix of the qB sub-trie, i.e., the basic index’s shower broadcast
sub-trie;

– UpdateCost is the cost of one update, which is equal to the routing cost,
i.e., O(log N);

– UpdateRate(subtrie) is the average update rate in the given sub-trie;
– SearchCost(subtrie) is the number of peers in the sub-trie to be contacted

to answer the shower broadcast; and
– SearchRate(query) is the search rate for the given query.

To estimate these values each peer collects statistics. For SearchRate the
peer’s local knowledge is sufficient, whereas UpdateCost and SearchCost values
have to be gathered from the neighbors. To do so, we can periodically flood
the network or better employ the much more efficient algorithm described in
[4]. This algorithm gossips the information about the tree structure among all
the peers in the network. Each peer maintains an approximate number of peers
in each sub-trie it belongs to (as many values as the peer’s prefix length). The
values are exchanged via local interactions between peers and a piggyback mech-
anism avoids sending additional messages. The same idea is used to gossip the
UpdateRate in every sub-trie a peer belongs to.

4.4 Example

An example illustrating the application of caching is shown in Figure 2.
Note, that in Figure 2 each element tag is represented by one capital letter

and we omit child axes (“/”) to simplify the presentation. The numbers 1–4
written in brackets next to the arrows correspond to the following steps:

1. The cache manager at the peer II decides to cache a result set for the query
Q = “A//C/D//E”. The shower broadcast to the peers responsible for
h(“C/D”) is initiated to fill up the cache with all data items matching the
query. It reaches the peers I, III and IV. They add Q to their lists of cached
queries.

2. Peers III and IV send back the matching items. The shower broadcast reaches
peer V, which also adds Q to its list of cached queries. 4 messages were sent
to execute the shower broadcast in sub-trie h(“C/D”).

Efficient Processing of XPath Queries with Structured Overlay Networks 1253

Search for a key h(CDAE)

(3)

(1)

(1)

(1)

Result: ACDZE, ABCDE

(4)

LCQ

011 10 0

011 10 00

011 10 1

0
10

10

011 10

1

0

1

0

h(CD)

h(CDA)

h(CDE) h(CDF)

I II III IV V

...

011 10 11011 10 01 011 10 00 0 011 10 10

P
eers

Query originator Q=A//C/D//E

key path
h(CD) CD

...

key path
h(C) YC

...

key path
h(CDZE) ACDZE

...

key path
h(CDE) ABCDE

...

key path
h(CDF) ACDF

...

D
ata

item
s

011 10 00 1

URI
...

URI
...

URI
...

URI
...

URI
...

path
Cash

...

......

URI
...
...

List of cached
queries

LCQ LCQ LCQ

+A//C/D//E +A//C/D//E +A//C/D//E

(1) (1) (1)

(2)

+A//C/D//E

(2)
ACDZE
ABCDEC

D
A

E ...
...

(1+) (1+)

Fig. 2. Caching strategy example

3. Assume, the query Q = “A//C/D//E” is submitted at the originating peer.
The search message is routed to the peer II (O(log N)), which can answer
a query locally by looking up its cache. The broadcast has to be executed
every time to answer the query Q if it is not cached.

4. The answer is sent back to the originating peer.

Assume now, a new path “A/C/D/E” is indexed. One of the four (see Section
3) generated data items with the key h(“C/D/E”) is added to the peer V. It
checks the list of cached queries and finds query Q = “A//C/D//E” to be
concerned by this change. Peer V sends a cache update message to the peer
responsible for Q, i.e., to Peer II, which ensures cache consistency.

5 Simulations

To justify our approach and its efficiency, we implemented a simulator of a
distributed XML storage, based on the P-Grid overlay network. The simulator
is written in Java and stores all data locally in a relational database. As the
simulation results in this section meet our theoretical expectations we will in a
next step implement our approach on top of our P-Grid implementation [22] and
test it on PlanetLab.

As input data for our experiments, we use about 50 XML documents (mainly
from [28]) from which we extracted a path collection of more than 1000 unique
paths. Based on each path in the collection we generated four additional paths by
randomly distorting the element tags. Using the resulted path collection (about

1254 G. Skobeltsyn, M. Hauswirth, and K. Aberer

5000 paths) we generate a P-Grid network by inserting a corresponding number
of data items per each path (about 20000 data items overall). P-Grid networks
of different sizes can be obtained by limiting the maximum number of data items
a peer can store.

For our experiments we generated different query collections by randomly
removing some element tags from the paths in the path collection. A parameter
t specifies query construction and ensures percentage of type 3 (“cachable”)
queries in the collection.

To emulate the querying process we generated a query load of 10000 queries
by applying different distributions on the query collection. In the following ex-
periments an average search cost value for given parameters is computed by
processing all queries in the query load.

In the first experiment we assume that all possibly “cacheable” queries are
in fact being cached. We vary the network size and measure the average cost
of answering one query. The query load is uniformly distributed and different t
parameters are used. In Figure 3 the first four curves show the average search
cost for t = 0, 0.5, 0.75 and 1 respectively. Obviously, the more queries are being
cached, the lower the search cost becomes. The fifth curve shows the cost of
locating at least one peer responsible for the query, i.e., the search cost without
shower broadcasts. Evidently, the two last curves coincide because if all queries
are cached no shower broadcasts are required.

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

Number of peers

A
ve

ra
g

e
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

t=0

t=0.5
t=0.75

t=1
no broadcasts

Fig. 3. Average number of messages required to answer a query depending on the
network size, t denotes the fraction of “cacheable” queries

However, query load does not necessary follow a uniform distribution. In-
stead, a Zipfian distribution is more realistic as shown in Figure 4. In the exper-
iment we fixed the network size to 1000 peers, t = 0.5 and vary the cache size.
The first curve shows the constant search cost if caching is disabled. The other
three curves correspond to the different parameters of the Zipf distribution of
the query load and show how our approach performs under these conditions.

Efficient Processing of XPath Queries with Structured Overlay Networks 1255

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

Number of peers

A
ve

ra
g

e
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

t=0

t=0.5
t=0.75

t=1
no broadcasts

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

Number of peers

A
vg

.
u

p
d

at
e

co
st

 (

m
sg

)

~1 cached query per path

~0.5 cached queries per path

basic index
12

13

14

15

16

17

18

19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Percentage of cached queries (%)

A
vg

.
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

No caching
Zipf s=0
Zipf s=0.8
Zipf s=1.2

Fig. 4. Average number of messages required to answer a query in the network of 1000
peers depending on the fraction of cached queries

However, the benefits we gain from caching for querying, come at the price
of increasing the update costs. To perform one update operation, for example,
to insert a new path containing m element tags, we have to contact all the
peers responsible for all the subpaths (O(m log N)). We also have to update all
relevant cache entries (O(log N) per cache entry). Figure 5 shows the average
update costs depending on size of the network.

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

Number of peers

A
ve

ra
g

e
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

t=0

t=0.5
t=0.75

t=1
no broadcasts

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

Number of peers

A
vg

.
u

p
d

at
e

co
st

 (

m
sg

)

~1 cached query per path

~0.5 cached queries per path

basic index

Fig. 5. Average update cost depending on the network size, t denotes the percentage
of “cacheable” queries

In Section 4.3 we described the strategy for minimizing the overall messaging
costs. In the last experiment we show that for a given state of the system this
minimum can be achieved by choosing what queries to cache. In Figure 6 we
show that for the given fixed parameters (1000 peers, t = 0.5, Zipf s = 1.2,

1256 G. Skobeltsyn, M. Hauswirth, and K. Aberer

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

Number of peers

A
ve

ra
g

e
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

t=0

t=0.5
t=0.75

t=1
no broadcasts

0

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

Number of peers

A
vg

.
u

p
d

at
e

co
st

 (

m
sg

)

~1 cached query per path

~0.5 cached queries per path

basic index
12

13

14

15

16

17

18

19

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Percentage of cached queries (%)

A
vg

.
co

st
 o

f
an

sw
er

in
g

 a
 q

u
er

y
(#

 m
sg

)

No caching
Zipf s=0
Zipf s=0.8
Zipf s=1.2

14

15

16

17

0 0.5 1 1.5 2 2.5 3 3.5 4

Percentage of cached queries (%)

A
vg

.
co

st
 o

f
o

n
e

q
u

er
y/

u
p

d
at

e
o

p
er

at
io

n

(#
 m

sg
)

search/update ratio = 1:2

search/update ratio = 2:1

Fig. 6. Average number of messages (query + update) depending on the fraction of
cached queries

average number of element tags in the path = 2.5) the overall messaging cost
can be minimized. We show two curves for search/update ratios of 1:2 and 2:1.
In these cases the minimal messaging costs are achieved if about 0.5% and 1.0%
of the queries are being cached.

Evidently, if the search/update ratio is high (more searches than updates) the
minimum moves to the right (more queries are to be cached). In contrast, if the
update ratio is relatively high, the minimum moves to the left (up to 0, where
caching is not profitable anymore). Hence, (1) the higher the search/update
ratio is, the more queries should be cached and (2) our solution is adaptive to
the current system state and minimizes the overall messaging costs.

The simulations show that the basic index strategy is sufficient for building a
P2P XML storage with support for answering structured queries. The introduc-
tion of caching decreases the messaging costs. Depending on the characteristics
of the query load the benefits from caching vary.

6 Related Work

Many approaches exist that deal with querying of XML data in a local setting.
Most of them try to improve the query-answering performance by designing
an indexing structure with respect to local data processing. Examples of such
index structures include DataGuides [13], T-indexes [20], the Index Fabric [7],
the Apex approach [6] and others. However, these approaches are not designed
to support a large-scale distributed XML storage.

On the other hand, peer-to-peer networks yield a practical solution for storing
huge amounts of data. Thus, a number of approaches exist that try to leverage a
P2P network for building a large-scale distributed data warehouse. The impor-
tant properties of such systems are:

Efficient Processing of XPath Queries with Structured Overlay Networks 1257

– The flexibility of the querying mechanism (e.g. query language).
– The messaging and maintenance costs.

The use of routing indices [8] facilitates the construction of a P2P network
based on content. In such content-based overlay networks peers are linked, if
they keep similar data, i.e., each peer maintains summaries of the information
stored at its neighbors. While searching, a peer uses the summaries to determine
whom to forward a query to. The idea of clustering peers with semantically
close content is exploited in [9]. The approach presented in [17] proposes using
multi-level bloom filters to summarize hierarchical data, i.e., similarity of peers’
content is based on the similarity of their filters. In [23] the authors use his-
tograms as routing indexes. A decentralized procedure for clustering of peers
based on their histogram distances is proposed. The content-based approaches
could efficiently solve the problem of answering structured queries, though lack
of structure affects the result set quality and significantly increases the search
cost for large-scale networks.

The Edutella project [21] is a P2P system based on a super-peer architec-
ture, where super-peers are arranged in a hypercube topology. This topology
guarantees that each node is queried exactly once for each query, which pre-
sumes powerful querying facilities including structured queries, but does not
scale well.

Leveraging DHTs to support structured queries decreases the communication
costs and improves scalability, but requires more complicated query mechanisms.
The approach presented in [12] indexes XML paths in a Chord-based DHT by
using tag names as keys. A peer responsible for an XML tag stores and maintains
a data summary with all possible unique paths leading to the tag. Thus, only
one tag of a query is used to locate the responsible peer. Although ensuring high
search speed, the approach introduces considerable overhead for popular tags,
when the data summary is large. Our solution for this case is to distribute the
processing among the peers in a subtrie. The paper also addresses answering
branching XQuery expressions by joining the result sets obtained from different
peers. A similar mechanism can be employed for our approach.

[5] also uses a Chord network, but follows a different technique. Path frag-
ments are stored with the information about the super- and child-fragments.
Having located a peer responsible for a path fragment, it resolves the query
by navigating to the peers responsible for the descendant fragments. Additional
information has to be stored and maintained to enable this navigation, which
causes additional maintenance costs. For some types of queries the search oper-
ation may be rather expensive due to the additional navigation.

Some approaches also employ caching of query results in a P2P network to
improve the search efficiency. For example, [18] proposes a new Range Address-
able Network architecture that facilitates range query lookups by storing the
query results in a cache. In [26] the authors leverage the CAN P2P network to
address a similar problem. In both cases queries are limited to integer intervals.
The ranges themselves are hashed, which makes simple key search operation
highly inefficient.

1258 G. Skobeltsyn, M. Hauswirth, and K. Aberer

The PIER project [14, 15] utilizes a DHT to implement a distributed re-
lational query engine bringing database query processing facilities into a P2P
environment. In contrast, our approach solves the particular problem of answer-
ing structured XPath queries, which is not addressed by PIER. However, many
of query processing mechanisms (join, aggregation, etc.) proposed in PIER can
be also employed for building a DHT-based large-scale distributed XML storage
with powerful query capabilities. The paper [19] leverages the PIER for build-
ing a file-sharing P2P system for answering multi-keyword queries. The authors
suggest using flooding mechanisms to answer popular queries, and use DHT’s
indexing techniques for rare queries.

7 Conclusions

In this paper we presented the efficient solution for indexing structural informa-
tion in a structured overlay network used as distributed P2P storage of XML
documents. We based the approach on the P-Grid structured overlay network,
however, the solution can be ported to similar tree-based DHTs. We demon-
strated the efficiency (low search latency and low bandwidth consumption) of
our approach via simulations and also showed that our proposed caching strategy
chooses the optimal strategy for minimizing messaging costs.

We envision that the presented solution can be used in a P2P XML querying
engine for answering structural (sub)queries. Such a system could be an alter-
native to the solutions based on the unstructured P2P networks (e.g., Edutella
[21]), but more scalable due to the considerably reduced messaging costs. As a
next step, we plan to extend the system to support more general XPath queries.

References

1. Karl Aberer. P-grid: A self-organizing access structure for p2p information sys-
tems. In CoopIS’01: Proceedings of the 9th International Conference on Cooperative
Information Systems, pages 179–194, London, UK, 2001. Springer-Verlag.

2. Karl Aberer. Scalable Data Access in P2P Systems Using Unbalanced Search Trees.
In WDAS’02: Proceedings of the 4th Workshop on Distributed Data and Structures,
2002.

3. Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta, Zoran Despotovic,
Manfred Hauswirth, Magdalena Punceva, and Roman Schmidt. P-Grid: A Self-
organizing Structured P2P System. SIGMOD Record, 32(3), 2003.

4. Keno Albrecht, Ruedi Arnold, Michael Gahwiler, and Roger Wattenhofer. Join
and Leave in Peer-to-Peer Systems: The Steady State Statistics Service Approach.
Technical Report 411, ETH Zurich, 2003.

5. Angela Bonifati, Ugo Matrangolo, Alfredo Cuzzocrea, and Mayank Jain. Xpath
lookup queries in p2p networks. In WIDM’04: Proceedings of the 6th annual ACM
international workshop on Web information and data management, pages 48–55,
New York, NY, USA, 2004. ACM Press.

6. Chin-Wan Chung, Jun-Ki Min, and Kyuseok Shim. Apex: an adaptive path index
for xml data. In SIGMOD’02: Proceedings of the ACM SIGMOD 2002 Interna-
tional Conference on Management of Data, pages 121–132, New York, NY, USA,
2002. ACM Press.

Efficient Processing of XPath Queries with Structured Overlay Networks 1259

7. Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and Moshe
Shadmon. A fast index for semistructured data. In VLDB’01: Proceedings of
the 27th International Conference on Very Large Data Bases, pages 341–350, San
Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

8. Arturo Crespo and Hector Garcia-Molina. Routing indices for peer-to-peer systems.
In ICDCS’02: Proceedings of the 28th Int. Conference on Distributed Computing
Systems, July 2002.

9. Arturo Crespo and Hector Garcia-Molina. Semantic overlay networks for p2p
systems. Technical report, Computer Science Department, Stanford University,
2002.

10. Anwitaman Datta, Manfred Hauswirth, and Karl Aberer. Updates in Highly Un-
reliable, Replicated Peer-to-Peer Systems. In ICDCS’03: Proceedings of the Inter-
national Conference on Distributed Computing Systems, 2003.

11. Anwitaman Datta, Manfred Hauswirth, Roman Schmidt, Renault John, and
Karl Aberer. Range queries in trie-structured overlays. In P2P’05: Proceedings
of the 5th International Conference on Peer-to-Peer Computing, August 2005.
http://lsirpeople.epfl.ch/rschmidt/papers/Datta05RangeQueries.pdf.

12. Leonidas Galanis, Yuan Wang, Shawn R. Jeffery, and David J. DeWitt. Locating
data sources in large distributed systems. In VLDB’03: Proceedings of the 29th
International Conference on Very Large Data Bases, pages 874–885, 2003.

13. Roy Goldman and Jennifer Widom. Dataguides: Enabling query formulation and
optimization in semistructured databases. In VLDB’97: Proceedings of the 23th
International Conference on Very Large Data Bases, pages 436–445, 1997.

14. M. Harren, J. Hellerstein, R. Huebsch, B. Loo, S. Shenker, and I. Stoica. Complex
queries in dht-based peer-to-peer networks. In IPTPS’02: Proceedings for the 1st
International Workshop on Peer-to-Peer Systems, 2002.

15. Ryan Huebsch, Brent Chun, Joseph M. Hellerstein, Boon Thau Loo, Petros Mani-
atis, Timothy Roscoe, Scott Shenker, Ion Stoica, and Aydan R. Yumerefendi. The
architecture of pier: An internet-scale query processor. In CIDR’05: Proceedings
of the 2nd Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, January 2005.

16. Jon Kleinberg. The Small-World Phenomenon: An Algorithmic Perspective. In
STOC’00: Proceedings of the 32nd ACM Symposium on Theory of Computing,
2000.

17. Georgia Koloniari and Evaggelia Pitoura. Content-based routing of path queries
in peer-to-peer systems. In EDBT’04: Proceedings of 9th International Conference
on Extending Database Technology, pages 29–47, 2004.

18. Anshul Kothari, Divyakant Agrawal, Abhishek Gupta, and Subhash Suri. Range
addressable network: A p2p cache architecture for data ranges. In P2P’03: Proceed-
ings of the 3rd International Conference on Peer-to-Peer Computing, pages 14–22,
2003.

19. Boon Thau Loo, Ryan Huebsch, Joseph M. Hellerstein, Scott Shenker, and Ion
Stoica. Enhancing p2p file-sharing with an internet-scale query processor. In
VLDB’04: Proceedings of the 30th International Conference on Very Large Data
Bases, August 2004.

20. Tova Milo and Dan Suciu. Index structures for path expressions. In ICDT’99:
Proceeding of the 7th International Conference on Database Theory, pages 277–
295, London, UK, 1999. Springer-Verlag.

1260 G. Skobeltsyn, M. Hauswirth, and K. Aberer

21. Wolfgang Nejdl, Boris Wolf, Changtao Qu, Stefan Decker, Michael Sintek, Ambjörn
Naeve, Mikael Nilsson, Matthias Palmér, and Tore Risch. Edutella: a p2p network-
ing infrastructure based on rdf. In WWW’02: Proceedings of the eleventh interna-
tional conference on World Wide Web, pages 604–615, New York, NY, USA, 2002.
ACM Press.

22. http://www.p-grid.org.
23. Yannis Petrakis, Georgia Koloniari, and Evaggelia Pitoura. On using histograms

as routing indexes in peer-to-peer systems. In DBISP2P’04: Proceedings of the
Second International Workshop on Databases, Information Systems, and Peer-to-
Peer Computing, pages 16–30, 2004.

24. Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard M. Karp, and Scott
Shenker. A scalable content-addressable network. In SIGCOMM’01: Proceedings
of the ACM SIGCOMM 2001 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, pages 161–172, 2001.

25. Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. In IFIP/ACM’01: Proceed-
ings of the 18th International Conference on Distributed Systems Platforms, pages
329–350, 2001.

26. Ozgur D. Sahin, Abhishek Gupta, Divyakant Agrawal, and Amr El Abbadi. A
peer-to-peer framework for caching range queries. In ICDE’04: Proceedings of the
20th International Conference on Data Engineering, pages 165–176, 2004.

27. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM’01: Proceedings of the ACM SIGCOMM 2001 Conference on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication,
pages 149–160. ACM Press, 2001.

28. http://www.cs.washington.edu/research/xmldatasets/.

Community Based Ranking in Peer-to-Peer Networks

Christoph Tempich1, Alexander Löser2, and Jörg Heizmann1

1 AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
{tempich, johi}@aifb.uni-karlsruhe.de

2 CIS, University of Technology Berlin, Einsteinufer 17, 10587 Berlin, Germany
aloeser@cs.tu-berlin.de

Abstract. We address the problem of efficiently ranking the best peers w.r.t. a
query with multiple, equally weighted predicates – conjunctive queries – in short-
cut overlay networks. This problem occurs when routing queries in unstructured
peer-to-peer networks, such as in peer-to-peer information retrieval applications.
Requirements for this task include, e.g., full autonomy of peers as well as full con-
trol over own resources. Therefore prominent resource location and query routing
schemes such as distributed hash tables can not be applied in this setting. In or-
der to tackle these requirements we combine a new resource location and query
routing approach that exploits social metaphors of topical experts and experts’
experts with standard IR measures for ranking peers based on collection-wide
information. The approach has been fully tested in simulation runs for skewed
data distributions and network churn and has been partially implemented in the
Bibster system 1.

1 Introduction

Finding relevant information from a heterogeneous and distributed set of information
resources is a longstanding problem in computer science. Requirements for this task in-
clude, for example full autonomy of peers as well as full control over own resources. For
this reason prominent resource location and query routing solutions such as distributed
hash tables can not be applied in this setting.

Studies of social networks show that the challenge of finding relevant information
may be reduced to asking the ‘right’ people. ‘The right people’ generally are the ones
who either have the desired piece of information and can directly provide the relevant
content or the ones who can recommend ‘the right people’. Milgram’s [20] and Klein-
berg’s [17] experiments illustrated that people with only local knowledge of the network
(i.e. their immediate acquaintances) are quite successful in constructing acquaintance
chains of short length leading to ‘small world’ networks. We observe that such mecha-
nisms in social networks work although

– people may not always be available to respond to requests
– people may shift their interests and attention
– people may not have exactly the ‘right’ knowledge w.r.t. a particular information

request, but only knowledge which is semantically close to it.

1 http://bibster.semanticweb.org

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1261–1278, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1262 C. Tempich, A. Löser, and J. Heizmann

This means that the real-world social networks, as opposed to theoretical network mod-
els, are highly dynamic w.r.t. peer availability and topic expertise. Therefore real world
peer-to-peer scenarios need a concept of semantic similarity in order to efficiently an-
swer the information needs of the peers, i.e. to realistically determine ‘the right person’.
Starting from requirements of semantic search in the setting of distributed, autonomous
information sources, in which documents are annotated using Thesaurus-like or De-
scription Logic-like ontologies, we have applied these observations and conceived the
INGA algorithm. In this novel peer-to-peer algorithm each peer plays the role of a per-
son in a social network. The novel design principle of INGA lies in the dynamic adapta-
tion of the network topology, adaptation which is driven by the history of successful or
semantically similar queries. We realize this in that we bound the local shortcut indices
storing semantically labeled shortcuts, and a dynamic shortcut selection strategy. It for-
wards queries to a community of peers that are likely to best answer them. Shortcuts
connect peers that share similar interests and thus spontaneously form semantic com-
munities. Based on local shortcut indexes we select the k-best peers for each query to
forward it depending exclusively on collection wide information (CWI).

Contributions and Paper Organisation: Former techniques used gossiping to dissemi-
nate a summary of the documents to update local indexes of a peer, an approach with
severe scalability short comings. To avoid such drawbacks we create local shortcut in-
dices by observing query and answers. We present new shortcut creation and deletion
strategies that cluster peers within semantic communities. Rather than disseminating a
query across the network we route queries within such communities to only the best
matching peers. Our peer selection is bases on an IR-ranking strategy [9]. We modify
this strategy so that it is able to select the top-k peers from a local shortcut index for
conjunctive queries. Our extensive simulations using ontologies for Description Logics
and thesaurus information show that our approach selects peers and forwards queries
with high efficiency even in a highly dynamic setting and with bounded indices.

Our paper is organized as follows: In the next section we review related work,
mainly information retrieval techniques and work on shortcut networks. We describe
the social metaphors, our infrastructure to maintain the index and our query and results
model in Section 3. Section 4 shows the index structure and update strategy for each
type of shortcut. Section 5 presents our dynamic routing model. Section 6 describes our
simulation methodology and the results of our simulations. Section 7 summarizes the
results and points to future work.

2 Related Work

Our approach combines information retrieval (IR) techniques with central indices and
work on shortcut networks. We provide a brief overview of both areas in order to situ-
ate our contribution. Prior research on distributed information retrieval and meta search
engines has addressed the ranking of data sources and the reconciliation of search re-
sults from different sources. GlOSS [13] and CORI [4] are among the most prominent
distributed IR systems, but neither of them aimed at very large-scale, highly dynamic,
self-organizing P2P environments, which were not an issue at the time these systems
were developed.

Community Based Ranking in Peer-to-Peer Networks 1263

Top-k queries [10] delivering a well-defined set of k best answers according to a
user-provided, probably weighted compensation function, have shown their broad ap-
plicability, e.g. in content-based retrieval in multimedia collections or digital libraries.
Algorithms for top-k retrieval [19, 11] in databases generally try to minimize the num-
ber of database objects that have to be accessed before being able to return a correct
result set of the k best matching objects. Previous work in distributed top-k retrieval,
however does not cover all the issues of high dynamics and autonomy which are un-
avoidable in a P2P network. Feasible information retrieval solutions need to cope with
the following problems:

– Ranked Retrieval Model: In this setting the ranked retrieval models should be
adopted in such a way that the models avoid flooding the entire network when
selecting the top-k peers for a query with a conjunction of multiple predicates.

– Network Churn: Local index structures should provide all necessary information
about what documents are available and should adapt to changing local documents
of remote peers or peers joining or leaving the network.

– Collection-Wide Information: Queries should be answered only using collection-
wide information, e.g. stored in local shortcut indices. Without constantly dissem-
inating this information a peer should ideally restrict collecting information it is
interested in in its index.

In the context of peer-to-peer networks only very few authors have explored retrieval
algorithms which are based on collection-wide information for ranking peers in volatile
networks. PlanetP [9] concentrates on peer-to-peer communities in unstructured net-
works with sizes up to ten thousand peers. They introduce two data structures for search-
ing and ranking which create a replicated global index using gossiping algorithms. Each
peer maintains an inverted index of its documents and spreads the term-to-peer index
across the network. Inspired by the simple TFxIDF metric and based on the replicated
index a simple ranking algorithm using the inverse peer frequency is implemented.
However, by using gossiping to disseminate Bloom filters the system’s scalability is
severely limited. In section 5 we show how to apply the ranking strategy to our local
shortcut indices to reduce the communication overhead for the dissemination of a peer’s
summary .

Local index information was first introduced by [7] to improve the efficiency of
Gnutella routing indices. This indexing strategy locally stores information about spe-
cific queries and about peers which were successfully queried in the past. [22] first
considers the semantics of the query to exploit interest-based locality in a static net-
work. They use shortcuts that are generated after each successful query and are used
to further requests, hence they are comparable to content provider shortcuts, which we
introduce next. Their search strategy differs from ours, since they only follow a short-
cut if it exactly matches a query, else they use a flooding approach. To update the index
they use a LRU strategy, while we utilize also semantic similarity. In a similar way,
[3] uses a local routing index for content provider shortcuts for the specific scenario
of top k retrieval in P2P networks. Local indices are maintained in a static super-peer
network. Their index policy considers temporal locality, each index entry has a certain
time to live after which the shortcut has to be re-established for the next query on that
topic. However, the emphasis in the approach is on appropriate topologies for overlay

1264 C. Tempich, A. Löser, and J. Heizmann

networks. The paper develops efficient routing methods among static super-peers in a
hypercube topology, while we consider dynamic networks without super-peers.

3 System Architecture

Our peer selection strategies described in section 4 can be integrated into any unstruc-
tured P2P network system. However, for evaluation purposes we used the SWAP infras-
tructure [15], which provides all standard peer-to-peer functionality such as information
sharing, searching and publishing of resources.

3.1 Social Metaphors

In INGA, facts are stored and managed locally on each peer, thus constituting the ‘topi-
cal knowledge’ of the peer. A peer responds to a query by providing an answer matching
the query or by forwarding it to whom it deems to be the most appropriate peers for this
task. For the purpose of determining the most appropriate peers, each peer maintains a
personal semantic shortcut index. The index is created and maintained in our highly dy-
namic setting in a lazy manner, i.e. by analyzing the queries that are initiated by users of
the peer-to-peer network and that happen to pass through the peer. The personal seman-
tic shortcut index maintained at each peer reflects that a peer may play the following
four different roles for the other peers in the network (roles are listed in decreasing
order of utility):

– The best peers to query are always those that already have answered it or a seman-
tically similar one in the past successfully. We call such peers content providers.

– If no content providers are known, peers that have issued semantically similar
queries in the past are queried. The assumption is that this peer has been successful
in getting matching answers and now we can directly learn from it about suitable
content providers. We call such peers recommenders.

– If we do not know either of the aforementioned items we query peers that have
established a good social network to other ones over a variety of general domains.
Such peers form a bootstrapping network.

– If we fail to discover any of the above we return to the default layer of neighboring
peers. To avoid over-fitting to peers already known we occasionally select random
peers for a query. We call this the default network.

From a local perspective, each peer maintains in its index information about some peers,
about what roles these peers play for which topic and how useful they were in the past.
From a global perspective, each of the four roles results in a network layer of peers that
is independent from the other layers.

3.2 Building Blocks

We assume that each peer provides a unique peer identifier (PID). Similar to file sharing
networks each peer may publish all resources from its local content database, so that

Community Based Ranking in Peer-to-Peer Networks 1265

other peers can discover them by their requests (this also applies to resources down-
loaded from other peers). Information is wrapped as RDF statements and stored in an
RDF repository2. Additionally to local meta data (e.g. Robert Meersman isOrganizerOf
ODBASE2005) each resource is assigned one or more topics (such as ODBASE2005
isTypeOf OTMConference) and hierarchical information about the topics is stored (OTM
subTopicOf Conference). The topics a peer stores resources for are subsequently re-
ferred to as the peers own topics. Note, that our algorithm does not require a shared
topic hierarchy, though this restriction provides certain advantages. In particular the
ranking of shortcuts depends partly on the availability of a shared hierarchy. Therefore
we use in all our experiments a shared hierarchy. For successful queries (own queries
or those of other peers), which returned at least one match, the shortcut management
extracts information about answering and forwarding peers to create, update or remove
shortcuts in the local shortcut index. The routing logic selects ‘most suitable’ peers to
forward a query to, for all own queries or queries forwarded from remote peers. The
selection depends on the knowledge a peer has already acquired for the specific query
and the similarity between the query and locally stored shortcuts.

3.3 Query and Result Messages

We use a simple query message model which is similar to the structure of a Gnutella
query message[12]. Each query message is a quadruple: QM(q, b, mp, qid) where q is
a SERQL query. In this paper we present ranking techniques for queries with multi-
ple predicates such as: Select all resources that belong to the topic semantic web and
to the topic p2p. In the Semantic Web context we formalize this query using common
topic hierarchies, such as the Open Directory: Find any resource with the topics /com-
puter/web/semanticweb ∧ /computer/distributed/p2p . More generally: q is a set of n
predicates q = (p1...pn). where each predicate is defined in a common ontology, b is
the bootstrapping capability of the querying peer to allow the creation of bootstrapping
shortcuts, mp the message path for each query message containing the unique PIDs of
all peers, which have already received the query, to avoid duplicated query messages,
and qid a unique query ID to ensure that a peer does not respond to a query it has al-
ready answered. Unique query IDs in INGA are computed by using a random number
generator that has sufficiently high probability of generating unique numbers. A result
message is a tuple: RM(r, mp, qid) where r represents the answer to the query. We just
consider results which exactly match the query. Besides, the message path mp is copied
to the answer message to allow the creation of recommender and content provider
shortcuts.

4 Building and Maintenance of the Index

Each peer is connected to a set of other peers in the network via uni-directional short-
cuts. Hence, each peer can locally select all other peers it wants to be linked to. Follow-
ing the social metaphors in section 1, we generally distinguish between the following
types of shortcuts:

2 http://www.openrdf.org/

1266 C. Tempich, A. Löser, and J. Heizmann

2

5

?

Route by
Flooding

Content Provider
Shortcut

(a) Content provider shortcut creation

2

4

8

?

Route by
Flooding

Recommender
Shortcut

Content Provider
Shortcut

(b) Recommender shortcut creation

Fig. 1. Topic specific shortcut creation

4.1 Content Provider and Recommender Shortcuts

Content Provider Layer: The design of the content provider shortcut overlay departs
from existing work as published by [22, 23] and exploits the simple, yet powerful prin-
ciple of interest-based locality. When a peer joins the system, it may not have any in-
formation about the interest of other peers. It first attempts to receive answers for its
queries by exploiting lower layers of the INGA peer network, e.g. by flooding. The
lookup returns a set of peers that store documents for the topic of the query. These
peers are potential candidates to be added to the content provider shortcut list. Each
time the querying peer receives an answer from a remote peer, content provider short-
cuts sc for each query topic to new remote peers are added to the list in the form:
sc(topici, pid, query hits,’c’, update), where topici is one of the topics taken from the
query message and pid is the unique identifier of the answering peer. Query hits total
the number of returned statements from a remote peer for a particular topic. ’c’ is the
type of content provider shortcuts and update is the time, when the shortcut was cre-
ated or the last time, when the shortcut was used successfully. Subsequent queries of
the local peer or of a remote peer are matched against the topic column of the con-
tent provider shortcut list. If a peer cannot find suitable shortcuts in the list, it issues
a lookup through lower layers, and repeats the process for adding new shortcuts. For
example consider Figure 1(a) and Table 1: Peer 2 discovers shortcuts for the conjunc-
tive query /computer/web/semanticweb∧/computer/distributed/p2pby flooding
the default network with a maximum number of three hops (TTL) and creates content
provider shortcuts to peer 5.

Recommender Layer: To foster the learning process of recommender shortcuts, espe-
cially for new peers in the network, we consider the incoming queries that are routed
through a peer. Similar to a content provider shortcut a recommender shortcut
sc(topici,pid,query hits maxsim,rp, update) is created for each topic in the query. The

Table 1. Content Provider Creation

PID Topic Query Hits Type Update
5 /computer/web/semanticweb 300 C 2005:31:05:16:37:34
5 /computer/distributed/p2p 300 C 2005:31:05:16:37:34

Community Based Ranking in Peer-to-Peer Networks 1267

Table 2. Recommender Shortcut Creation

PID Topic Query Hits Type Update
2 /computer/web/semanticweb 1 R 2005:31:05:16:37:34
2 /computer/distributed/p2p 1 R 2005:31:05:16:37:34

PID of a shortcut is extracted from the query message as the PID of the querying peer.
Since we will not get any information about the number of results retrieved for the
query, we set the number of query hits to 1. Finally, r indicates the type of short-
cut for passive recommender shortcut and update is the time, when the shortcut was
created or the last time, when the shortcut was used successfully. For example con-
sider again Figure 1(b). Peer 2 issues the query /computer/web/semanticweb ∧
/computer/distributed/p2p. Peer 8 creates a shortcut to peer 2 since this query was
routed through peer 8 as shown in table 2.

Content Provider and Recommender Index: We assume that each peer may only store a
limited amount of shortcuts, hence it only knows a limited set of topic specific neighbors
it can route a query to. If the local index size is reached a peer has to decide which
shortcut should be deleted from the index. For each shortcut in the index we compute a
rank based on the following types of localities:

Semantic locality. We measure the maximum semantic similarity maxsim between
the topic of a shortcut and the topics represented by the local content of a peer
according to equation 1. Hence, we retain a shortcut about topic t to a remote peer,
if t is close to our own interests. We define the similarity function sim : t1 × t2 →
[0; 1] between two terms in the same topic hierarchy, according to [18]:

simTopic(t1, t2) =

{
e−αl · eβh−e−βh

eβh+e−βh if t1 �= t2
1 otherwise

(1)

where l is the length of the shortest path between t1 and t2 in the graph spanned by
the sub-topic relation and h is the minimum level in the topic hierarchy of either
t1 or t2. α and β are parameters scaling the contribution of shortest path length l
and depth h, respectively. Based on the benchmark data set given in [18], we chose
α = 0.2 and β = 0.6 as optimal values.

LRU locality. To adapt content and interests changes we use the LRU replacement
policy [2]. Shortcuts that have been used recently receive a higher rank. Each local
shortcut is marked with a timestamp indicating when it was created. The timestamp
will be updated, if the shortcut will be used successfully by the local peer. There is
thus an ‘oldest’ and ‘latest’ shortcut. The value update ∈ [0..1] is normalized by
difference between the shortcut’s timestamp and the ’oldest’ time stamp divided by
the difference between the ‘latest’ and the ‘oldest’.

Community locality. We measure how close a shortcut leads us to a document. Con-
tent provider shortcuts, marked with a c, provide a one hop distance, therefore we
set type = 1. Recommender shortcuts, marked with a r require at least two hops to
reach a peer with relevant documents. In this case we set type = 0.5.

1268 C. Tempich, A. Löser, and J. Heizmann

We weight the localities using a weighted moving average and compute the index rele-
vance according to equation 2.

relevance =
a ∗ maxsim + b ∗ type + c ∗ update

a + b + c
(2)

Shortcuts with the highest relevance are ranked at the top of the index, while peers with
a lower relevance are deleted from the index.

4.2 Bootstrapping Shortcuts

Bootstrapping shortcuts link to peers that have established many shortcuts for differ-
ent query topics to many remote peers. We determine the bootstrapping capability by
analyzing the in-degree and out-degree of a peer. We use the out-degree as a measure
of how successful a peer discovers other peers by querying. To weigh the out-degree
we measure the amount of distinct sources a peer receives queries from. We use the
in-degree as a measure, that such a peer may share prestigious shortcuts with a high
availability. By routing a query along bootstrapping shortcuts, we foster the probability
to find a matching shortcut for a query and avoid the drawbacks of having to select peers
randomly, e.g., by flooding.

Discovery and Update: Each incoming query that is stored in our index includes the
bootstrapping information of the querying peer. While a peer is online it continuously
updates its content/recommender index based on incoming queries and stores additional
bootstrapping shortcuts in the form sc(pid, bo), where pid is the PID of the querying
peer and bo its bootstrapping capability. Once an initial set of bootstrapping nodes is
found, a peer may route its queries to the nodes with the highest bo value. The bo value
is calculated using equation 3

Bo = (1 + |outdegree|) × (1 + |indegree|) (3)

where out-degree is the number of distinct remote peers one knows. To compute an
approximation of the in-degree without any central server we count the number of dis-
tinct peers that send a query via one’s peer. To do this from the message path of indexed
recommender shortcuts we examine the pen-ultimate peers. The number of distinct pen-
ultimate peers denotes one’s in-degree. To avoid zero values we limited the minimum
for both values to 1.

4.3 Default Network Shortcuts

When a new peer enters the network, it has not yet stored any specific shortcuts in its
index. Default network shortcuts connect each peer p to a set of other peers (p’s neigh-
bors) chosen at random, as in typical Gnutella-like networks (e.g., using rendezvous
techniques).

5 Dynamic Shortcut Selection

The basic principle of shortcuts consists of dynamically adapting the topology of the
P2P network so that the peers that share common interests spontaneously form well-

Community Based Ranking in Peer-to-Peer Networks 1269

connected semantic communities. It has been shown that users are generally interested
in only some specific types of content[8]. Therefore being part of a community that
shares common interests is likely to increase search efficiency and query success rate.
To build semantic communities, for each query INGA executes the following steps:

Across the network: Selecting top-k peers: Whenever a peer receives a query mes-
sage, it first extracts meta-information about the querying peer and updates its index if
needed. Then our forwarding strategy is invoked to select a set of k peers which appear
most promising to answer the query successfully. Finally, the original query message is
forwarded to these k peers.
Across the network: Answering Queries: When a peer receives a query, it will try to
answer the query using local content. We only return non-empty, exact results and send
them directly to the querying peer. If the maximum number of hops is not yet reached,
the query is forwarded to a set of peers selected as above.
Locally: Receiving Results: A querying peer analyzes the message path of result item
and the number of results to create or update local content provider and recommender
shortcuts.

Community based top-k rank: A naive approach would route a query only to a peer
that matches all predicates of the query using a simple exact match paradigm. Too
specific query predicates under the exact match paradigm often lead to empty result
sets. Therefore the notion of best matches and relative importance of predicates can be
a good alternative to satisfy a user’s information needs independently of the individual
peer instances. To rank peers we use a measure called the inverse peer frequency (IPF),
based on TFxIDF, a popular method for assigning term weights. This measure was first
introduced by [9] in the PlanetP system to rank peers efficiently for multiple query
terms and local indices that are built via gossiping bloom filter summaries. However to
create local indices we use social metaphors and interest based locality. We calculate
the rank R for a peer p for a query q using formula 4, where N represents the number
of distinct peers in one’s shortcut index, Ni represents the number of peers providing
documents for topic t and qp

i the query hits q per topic t of each peer Ni.

Rp(q) =
t∑

i=1

qp
i ∗ log(1 +

N

Ni
) (4)

Intuitively, this scheme gives peers that contain all terms in a query the highest ranking.

Dynamic peer selection algorithm: The task of the INGA shortcut selection algorithm
Dynamic is to determine best matching candidates to which a query should be for-
warded. We rely on forwarding strategies, depending on the local knowledge for the
topic of the query a peer has acquired yet in its index:

– We only forward a query via its k best matching shortcuts.
– We try to select content and recommender shortcuts before selecting bootstrapping

and default network shortcuts.
– To avoid overfitting queries are also randomly forwarded to selected remote peers.

1270 C. Tempich, A. Löser, and J. Heizmann

Algorithm 1. Dynamic
Require: Query q, int k,
Ensure: TTLq < maxTTL
1: s← TopIPF(q,Content/RecommenderShortcuts,(k))
2: if (|s| < k) then
3: s ← s + TopBoot(BootstrappingShortcuts,(k − |s|))
4: end if
5: s ← RandomFill(s,defaultNetworkShortcuts,f,k)
6: Return s.

In step 1 of algorithm Dynamic method TopIPF browses through the index of all
content and recommender shortcuts and identifies the k peers with the highest Rp(q). If
less then k peers are found we select peers from the top bootstrapping shortcuts (step 3)
in subroutine TopBoot. It works similarly to TopIPF, but selects the peers with highest
bootstrapping capability from the index. It also avoids overlapping peers within the set
of selected shortcuts. Finally, in subroutine RandomFill we fill up the remaining peers
randomly from the default network and return the set of selected peers. The algorithm’s
task is twofold: if the other subroutines fail to discover k peers for a query, it fills up
remaining peers until k is reached. The second task of the algorithm is to contribute
with some randomly chosen peers to the selected set of k peers to avoid overfitting of
the selection process as known from simulated annealing techniques [16]. The Dynamic
algorithm terminates if the query has reached its maximum number of hops.

6 Experimental Evaluation

Our approach is partially implemented in the Bibster system, which was evaluated in a
real world case study [14]. During the case study a maximum of 50 researchers were
simultaneously online. This number is too small to evaluate the scalability of a peer-to-
peer routing algorithm. Although we have collected information about the content and
the queries the peers have shared and submitted, again the amount of available informa-
tion was too small to test our algorithm for a larger number of peers. Therefore, we have
opted for simulating a peer-to-peer network with more than 1.000 peers and to generate
data sets considering different types of ontologies and content distributions.3In particu-
lar, we have created two synthetic data sets to evaluate our approach. The data sets are
distributed among the peers. From the data set we further generated candidate queries
which can be submitted by the peers. Before we present the results of our evaluation
the distribution parameters to generate the data sets are described.

6.1 Simulation Setup

Content: We have generated two ontologies with instances. The generation of the on-
tologies is based on the observation in [24] and [5]. In [24] it was observed that on-

3 According to our knowledge this is the first approach to create a synthetic data set for semantics
based peer-to-peer systems. To create the data set we combined results from different analysis
regarding distribution parameters for ontologies, content, content distribution and queries. The
data set is available online at http://ontoware.org/projects/swapsim/.

Community Based Ranking in Peer-to-Peer Networks 1271

Table 3. Parameter setting for ontology types

Thesaurus-like Description logic-like
No. Distribution No. Distribution

NoOfClasses 1.000 100
NoSubClasses ln(1000) = 7 Zipf(1.1) ln(100) = 5 Zipf(1.1)
TotalNoProperties 357 213
NoProperties 0–5 Zipf(2.5) 0–7 Zipf(0.9)
NoOfInstances 200.000 Zipf(1) 200.000 Zipf(1)
TotalNoPropertyInstances 35.700 Zipf(1) 21.300 Zipf(1)

tologies publicly available4 follow broadly three different design characteristics while
the distinguishing factors are the number of subclasses of a class, the number of re-
strictions and the number of properties. The three types of ontologies can be described
as (1) Thesaurus-like, (2) Database-like and (3) Description Logic-like structures. The
first one defines a large hierarchy with many classes and few restrictions and properties
per class. Database-like ontologies are characterized by defining a medium number of
primitive classes and equal number of restrictions per class. Finally, Description Logic-
like ontologies have a high number of restrictions and properties per class and only a
small number of primitive classes.

We have created two synthetic ontologies representing the two extreme types of
ontologies namely a Thesaurus-like and a Description Logic-like ontology. The pa-
rameters to create the ontologies were set according to the observations made in [24].
Unfortunately, in [24] no information about instance data is available. Therefore, we
use the content distribution model of [5] to generate instances of the ontology. The dis-
tribution of content in our Bibster case study is comparable to the generated content
distribution.

For the Thesaurus-like ontology we generated NoOfClasses = 1.000 classes5.
Each class was assigned a popularity following a Zipf distribution with parameter set to
1. The popularity index is later used to generate the ranges of properties and instances.
The classes were then arranged in a sub-class of hierarchy. The maximum depth of the
hierarchy was set to MaxDepth = ln(NoOfClasses). Each class could have a maxi-
mum of NoSubClasses = ln(NoOfClasses) and a minimum of NoSubClasses =
0. The number of sub-classes for each class follows a Zipf distribution with parameter
set to 1.1. The sub-classes are chosen randomly from the classes not already modelled
in the hierarchy.

Similar to the hierarchy generation each class can have a maximum of
NoProperties = 5 and a minimum of NoProperties = 0 number of properties.
The number of properties per class, or the number of properties a class is domain for,
follows a Zipf distribution with a skew parameter set to 1.1. The ranges of the proper-
ties were selected from all classes according to their popularity. In total, the ontology
contains TotalNoProperties = 357 properties.

4 The analysis was based on the ontologies available in the DAML ontology library.
5 Our algorithm was first conceived for topics organized in a topic hierarchy. In order to apply

it to the generated ontologies we interpret classes as topics and instances as documents.

1272 C. Tempich, A. Löser, and J. Heizmann

We have instantiated the classes with NoOfInstances = 200.000 instances tak-
ing into account the popularity of the classes. We have further instantiated the properties
with TotalNoPropertyInstances = 100 ∗ TotalNoProperties properties. Equally
to the instantiation of the classes a property carries a popularity rank following a Zipf
distribution with parameter set to 1. After selecting a property according to its popu-
larity, we instantiated it using the instances of its domain and range. We selected the
instances according to a Zipf distribution with parameter set to 1.

The parameters used for the Thesaurus-like and Description Logic-like ontologies
are summarized in Table 3.

Content Distribution: In order to distribute the content over the peers we adopt the
model presented in [8]. Generally, users are interested in a subset of the content avail-
able in a peer-to-peer network. Furthermore, they are only interested in a limited num-
ber of topics (e.g., databases, Description Logic). Moreover, they are more interested
in some classes while less in others. A peer can be interested in and have content for
ClassesOfInterest = lnNoOfClasses ∗ 2 classes. The number of classes a peer
is interested in is chosen randomly from a uniform distribution. The classes it is in-
terested in are selected randomly from the available classes taking into account their
popularity. As observed in [1] not all users share the same amount of data. Most of
them do not contribute anything to the available knowledge while a small proportion
makes two thirds of the knowledge available. Based on the study in [1] we assigned the
following storage capacity to the peers in the network: 70% of the peers do not share
any instances (free-riders); 20% share 100 instances or less; 7% share between 101 and
1000 instances; finally, 3% of the peers share between 1001 and 2000 instances (actual
storage capacities are chosen uniformly at random). A peer sharing an instance knows
all its properties and the type of the range instance.

Query Set: In order to test our algorithm we have generated two different types of queries.
All queries ask for instances satisfying a varying number of constraints. The first query
type instantiates the blueprint (instance; isT ypeOf ; class) ∧ (instance; property;
instance2) ∧ (instance2; isT ypeOf ; class2). We thus query for all instances of a
certain class with the constraint that the instance has one particular property pointing
to another instance. The range of the property determines the type of instance2. The
second query type extends the first by adding a constraint on the properties and instanti-
ates the blueprint (instance; isT ypeOf ; class)∧ (instance; property; instance2) ∧
(instance2; isT ypeOf ; class2) ∧ (instance; property2; instance3)∧ (instance3;
isT ypeOf ; class3). We have summarized the number of distinct queries for the two
ontology types in table 4. We have only generated queries to which at least one answer
exists.

Table 4. Number of queries for the ontology types

Query Type Description Ontology Type
Thesaurus-like Description logic-like

QT1 1 class and 1 property 2194 8493
QT2 1 class and 2 properties 1087 8502

Community Based Ranking in Peer-to-Peer Networks 1273

Queries are chosen randomly from all available queries. We choose a uniform query
distribution instead of a ZIPF-distribution, which is typically observed in file sharing
networks [21]. This simulates the worst case scenario, in which we do not take advan-
tage of frequent queries for popular topics.

Gnutella style network: The simulation is initialized with a network topology which re-
sembles the small world properties of file sharing networks6. We simulated 1024 peers.
In the simulation, peers were chosen randomly and they were given a randomly se-
lected query to question the remote peers in the network. The peers decide on the basis
of their local shortcut which remote peers to send the query to. Each peer uses INGA to
select up to pmax = 2 peers to send the query to. Each query was forwarded until the
maximum number of hops hmax = 6 was reached.

Volatile network and interest shifts: We implemented the dynamic network model ob-
served for Gnutella networks of [21]: 60% of the peers have a availability of less then
20%, while 20% of the peers are available between 20 and 60% and 20 % are available
more then 60%. Hence, only a small fraction of peers is available more than half of the
simulation time, while the majority of the peers is only online for a fraction of the sim-
ulation time. Users’ interest may change over time, e.g. to account for different search
goals. To simulate changing interests, after 15 queries, equal to approx. 15.000 queries
over all peers, each peer queries a complete different set of topics.

Evaluation Measures: We measure the search efficiency using the following metrics:

– Recall is a standard measure in information retrieval. In our setting, it describes the
proportion between all relevant documents in peer network and the retrieved ones.

– Messages represent the required search costs per query that can be used to indi-
rectly justify the system scalability.

– Message Gain To compare the recall per message we introduce the message gain,
i.e. the proportion of messages with respect to the achieved recall. We define the
message gain formally as

messagegain =
Recall

|Messages| (5)

6.2 Evaluation Results

We have evaluated our approach with several parameter settings. To analyze the in-
fluencing variables. If not stated otherwise all simulations were performed using the
Thesaurus-like ontology with the second Query Type. We used the Bootstrapping layer
and the TfxIPF metric to combine the query hits for the shortcuts. Each peer can main-
tain a shortcut index with 40 shortcuts.

6 We used the Colt library http://nicewww.cern.ch/∼hoschek/colt/

1274 C. Tempich, A. Löser, and J. Heizmann

Shortcut indices enable efficient peer selection: It was already shown in [23] that short-
cuts enable efficient query routing in unstructured peer-to-peer networks for single class
queries. In figure 2(a) we have plotted the results comparing the recall for different se-
lection strategies. We refer to the ranking based on equation 4 as TfxIPF. After a warm
up phase of 2.000 queries, or approximately two queries per peer, we constantly reach
around 75% of the available content. Not all peers are always online, thus we have
plotted the maximum available content as Online Available in the graph. We compare
our selection strategy to other available combination functions known in the database
community and the naive approach. The naive approach represents the baseline for all
algorithms likewise. In this approach we use only the default layer to select peers as in
Gnutella. From the known peers on the default layer, we randomly select two remote
peers to send and forward a query to.

The selection function described in [6] uses an equation similar to 6 to combine
query hits in a distributed document retrieval scenario. We refer to this strategy as Mul-
tiply.

Rp(q) =
t∏

i=1

qp
i (6)

However, besides the query terms contained in the queries [6] also uses the most fre-
quent words contained in the retrieved documents to create the index. This is not pos-
sible in our application. Furthermore, the total number of queries and total number of
query hits are considered in the ranking function. These are optimizations which we
have not considered so far, in order to be able to compare the different combination
functions.

Additionally, we have evaluated equation 7 to select remote peers. The Max evalu-
ation function selects the peer which has delivered the most statements for one of the
query terms contained in the query.

Rp(q) = max(qp
i) (7)

Intriguingly, all three evaluation functions result in almost the same recall values. This
is due to the high proportion of content delivered by a relatively small number of peers
in typical peer-to-peer systems. We thus can conclude that shortcuts deliver an efficient
yet simple way to boost peer selection quality.

So far we have only considered the recall to evaluate our approach. In figure 2(b)
we have plotted the number of messages produced to achieve this recall. The number of
messages produced by the Naive approach slightly increases over time. Due to the high
network churn the peers have to discover new remote peers since the available ones
assigned in the setup phase are offline. Thus, the chances to send a query to a remote
peer which has not received the query yet increase over time.

In contrast to the observation made for the Naive approaches the number of mes-
sages produced based on the shortcut selection decreases significantly. The number of
messages decreases because different remote peers forward a query to the same peers.
Each peer treats a query only once, thus double postings decrease the number of mes-
sages used. In figure 3(a) we have combined the two measurers for recall and messages
and plotted the message gain. As expected the message gain increases because the recall
stays at the same level and the number of messages decreases.

Community Based Ranking in Peer-to-Peer Networks 1275

Comparison of Query Routing Algorithms (Recall)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0 5000 10000 15000 20000 25000 30000

No. of Queries

R
ec

al
l (

S
ta

te
m

en
ts

)

TFxIPF

Multiply

Naive algorithm

Max

Online Available

(a) Recall

Comparison of Query Routing Algorithms (Messages)

0

20

40

60

80

100

120

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

es
 p

er
 Q

u
er

y

TFxIPF

Multiply

Naive algorithm

Max

(b) Messages

Fig. 2. Comparison Related Approaches: Dynamic Network 1024 Peers, 6 Hops, k=2

Comparison of Query Routing Algorithms (Message gain)

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

e
G

ai
n

 (
R

ec
al

l /
 M

es
sa

g
es

)

TFxIPF

Multiply

Naive algorithm

Max

(a) Related Approaches

Contribution of the Bootstrapping Layer to the Message Reduction (Message Gain)

0

0,002

0,004

0,006

0,008

0,01

0,012

0 5000 10000 15000 20000 25000 30000

No. of Queries

M
es

sa
g

e
G

ai
n

 (
R

ec
al

l /
 M

es
sa

g
es

)

TFxIPF

TFxIPF without Bootstrapping

TFxIPF with lazy gossiping

(b) Layer Contribution

Fig. 3. Comparison of Message Gain: Dynamic Network 1024 Peers, 6 Hops, k=2

Bootstrapping decreases messages: In figure 3(b) we compare the performance of our
algorithm with and without the bootstrapping layer. The bootstrapping metric favors
remote peers which are well-connected and receive a high number of queries. In case a
peer has no information about any of the classes used in the query it will forward the
query to the best bootstrapping peers or - in case bootstrapping is not used - to randomly
selected peers found on the network layer. As the bootstrapping capabilities of the peers
are disseminated across the network, more peers select the same remote peers and thus
the number of messages decreases. The recall is almost not affected by this decrease
and thus the message gain increases.

Gossiping does not increase the message gain: Gossiping is an established method
to boost peer selection performance. We have implemented a lazy gossiping algorithm
for comparison reasons. Each time a peer does not receive an answer to a query it
sends around a discovery message to its neighbors on the network layer. The discovery
message returns all classes a remote peer has content for. The result is treated like an
incoming query, thus we create a number of recommender shortcuts for the returned

1276 C. Tempich, A. Löser, and J. Heizmann

Comparison of Ontology Types and Query Types (Recall)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 5000 10000 15000 20000 25000 30000

No. of Queries

R
ec

al
l (

S
ta

te
m

en
ts

)

OT1_Query2

OT1_Query1

OT2_Query1

OT2_Query2

(a) Ontology Types

ShortCut Index Size Comparison

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 5000 10000 15000 20000 25000 30000

No. of Queries

R
ec

al
l (

S
ta

te
m

en
ts

)

TFxIPF with Indexsize 40

TFxIPF with Indexsize 20

TFxIPF with Indexsize 100

(b) Index Size

Fig. 4. Influencing variables: Dynamic Network 1024 Peers, 6 Hops, k=2

classes. We observe in figure 3(b) that gossiping is not advantageous in comparison to
our standard selection algorithm.

Performance of INGA is independent from the underlying ontology type: In figure
4(a) we compare the recall of INGA in case of changing Ontology Types and varying
queries. We observe that the recall increases quickly using our approach independent
of the underlying ontology and query type. However, when the queries change after
15.000 queries the recall for Query Type 1 and the Thesaurus-like ontology decrease
strongly. We conclude that the high number of properties for the Description-logic style
ontologies facilitates the quick emergence of an efficient shortcut network.

Performance of INGA is robust against varying index sizes: In figure 4(b) we have
compared the recall of INGA with a varying index size. The size of the index determines
the required resource allocation for routing purposes at the local peer. We have varied
the index size starting from 20 shortcuts, to 40 and finally 100 shortcuts per peer. The
examination of the results reveals, that INGA is very robust against the change of the
index size.

7 Summary and Outlook

In this paper we present the first semantic query routing algorithm for a completely dis-
tributed, dynamic and unstructured peer-to-peer system. Our routing algorithm is based
on the creation of local shortcuts and the maintenance of a small shortcut index. The
shortcuts memorize the number of instances a remote peer has answered for a con-
junctive query. While the local maintenance of the shortcut index allows for complete
control over the usage of the shortcuts, no summary of the peers’ content must be dis-
seminated to other peers. In our extensive evaluations we show that our shortcut indices
are efficient for peer selection in dynamic peer-to-peer networks.

We have introduced a novel metric to characterize well-connected peers, viz. boot-
strapping peers. They maintain a high number of shortcuts and have many incoming

Community Based Ranking in Peer-to-Peer Networks 1277

connections. We provide evidence that bootstrapping is a good metric to reduce the
number of messages. We have compared different metrics to combine local shortcuts
and shown that the right index strategy and shortcut creation strategy are more impor-
tant for efficient routing than right combination metrics. A small index size is sufficient
to guarantee a high performance. Intriguingly, our comparisons show that routing based
on shortcuts is as efficient as gossiping algorithms.

Our evaluations are based on the first available synthetic data set to setup the knowl-
edge base of the peers. We were able to demonstrate that our approach is equally suit-
able for Description Logic-like ontologies as well as Thesaurus-like ontologies.

With the full support of conjunctive queries our algorithms are perfectly suitable for
application around the social semantic desktop and other applications in which local
control about available information is important. Current research in keyword based
distributed document retrieval suggests that our shortcut update strategies can be further
improved in the future. As more instantiated ontologies become available an evaluation
of our approach with a real data set is desirable. An interesting additional problem is
the generalization of our approach for a network with individual semantics on each
peer. Peers within the same community may share their facts and possibly agree on a
common set of semantics. Such a community search engine would enable flexible and
efficient wide area knowledge sharing applications without the maintenance of central
indexing servers or a static semantic structure.

Acknowledgement. Research reported in this paper has been partially financed by EU in
the IST project SEKT (IST-2003-506826). Alexander Löser was generously funded by
the German Research Society, Berlin-Brandenburg School in Distributed Information
Systems (DFG grant GRK 316/3).

References

1. E. Adar and B. Huberman. Free riding on gnutella. First Monday, 5(10), Oktober 2000.
2. A. V. Aho, P. J. Denning, and J. D. Ullman. Principles of optimal page replacement. J. ACM,

18(1):80–93, 1971.
3. W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progressive distributed top-k retrieval

in peer-to-peer networks. In 21st International Conference on Data Engineering (ICDE),
Tokyo, Japan, 2005.

4. J. P. Callan, Z. Lu, and W. B. Croft. Searching distributed collections with inference net-
works. In SIGIR ’95: Proceedings of the 18th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 21–28, New York, NY, USA,
1995. ACM Press.

5. V. Cholvi, P. Felber, and E. Biersack. Efficient search in unstructured peer-to-peer networks.
European Transactions on Telecommunications: Special Issue on P2P Networking and P2P
Services, 15(6):535–548, November 2004.

6. B. Cooper. Guiding queries to information sources with InfoBeacons. In ACM/IFIP/USENIX
5th International Middleware Conference, Toronto, 2004.

7. A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer systems. In International
Conference on Distributed Computing Systems, july 2002.

8. A. Crespo and H. Garcia-Molina. Semantic Overlay Networks for P2P Systems. Technical
report, Computer Science Department, Stanford University, 2002.

1278 C. Tempich, A. Löser, and J. Heizmann

9. F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. PlanetP: Using Gossiping to
Build Content Addressable Peer-to-Peer Information Sharing Communities. In Intern. Symp.
on High-Performance Distributed Computing, Seattle, USA, 2003.

10. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In
Symposium on Principles of Database Systems, 2001.

11. U. Güntzer, W.-T. Balke, and W. Kießling. Optimizing multi-feature queries for image
databases. In Intern. Conf. on Very Large Databases, Cairo, Egypt, 2000.

12. The gnutella developer forum, http://rfc-gnutella.sourceforge.net, 2004.
13. L. Gravano and H. Garcı́a-Molina. Generalizing GlOSS to vector-space databases and broker

hierarchies. In International Conference on Very Large Databases, VLDB, pages 78–89,
1995.

14. P. Haase, J. Broekstra, M. Ehrig, M. Menken, P. Mika, M. Plechawski, P. Pyszlak, B. Schni-
zler, R. Siebes, S. Staab, and C. Tempich. Bibster - a semantics-based bibliographic peer-to-
peer system. In S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, Proceedings
of the Third International Semantic Web Conference, Hiroshima, Japan, 2004, volume 3298
of LNCS, pages 122–136. Springer, NOV 2004.

15. P. Haase et al. Bibster - a semantics-based bibliographic peer-to-peer system. In Proc. of the
3rd International Semantic Web Conference, Japan. Springer, 2004.

16. S. Kirkpatrick, J. C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. pages
606–615, 1987.

17. J. Kleinberg. Navigation in a small world. Nature, 406, 2000.
18. Y. Li, Z. Bandar, and D. McLean. An Approach for messuring semantic similarity between

words using semantic multiple information sources. In IEEE Transactions on Knowledge
and Data Engineering, volume 15, 2003.

19. A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over web-accessible
databases. ACM Trans. Database Syst., 29(2):319–362, 2004.

20. S. Milgram. The small world problem. Psychology Today, 67(1), 1967.
21. S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-to-peer file

sharing systems. Multimedia Systems, 9(2), 2003.
22. K. Sripanidkulchai, B. Maggs, and H. Zhang. Efficient Content Location Using Interest

Based Locality in Peer-to-Peer System. In Infocom. IEEE, 2003.
23. C. Tempich, S. Staab, and A. Wranik. REMINDIN:Semantic Query Routing in Peer-to-Peer

Networks based on Social Metaphers. In Proceedings of the 13th WWW Conference New
York. ACM, 2004.

24. C. Tempich and R. Volz. Towards a benchmark for Semantic Web reasoners - an analysis of
the DAML ontology library. In Y. Sure, editor, Proceedings of Evaluation of Ontology-based
Tools (EON2003) at 2nd International Semantic Web Conference (ISWC 2003), pages 4–15,
OCT 2003.

Ontology–Based Representation and Query
of Colour Descriptions from Botanical Documents

Shenghui Wang and Jeff Z. Pan(∗)

School of Computer Science, University of Manchester,UK
{wangs, pan}@cs.man.ac.uk

Abstract. A proper representation of the semantics of colour descrip-
tions is necessary when colour information needs to be processed seman-
tically, such as in the area of information integration. Semantics–based
methods can help information from different sources to be integrated
more easily and make final results more accurate and understandable
among different sources. This paper introduces an ontology–based rep-
resentation of the semantics of colour descriptions. By using a quantita-
tive colour model and a Description Logic (DL) with datatype support,
the semantics of a single colour term can be represented. Multiple such
terms are then combined to generate the semantics of a complex colour
description, which is interpreted by using morpho–syntactic rules de-
rived from the analysis of colour descriptions in botanical documents. A
colour reasoner, interacting with the FaCT-DG DL reasoner, can support
colour–related queries and give domain–oriented results.

1 Introduction

Ontologies are currently perceived as an appropriate modelling structure for rep-
resenting such knowledge as taxonomic knowledge in botany or zoology. Ideally,
an ontology captures a shared understanding of certain aspects of a domain. More
specifically, an ontology provides a common vocabulary, including important con-
cepts, properties and their definitions, and constraints regarding the intended
meaning of the vocabulary, sometimes referred to as background assumptions.
In this paper, we use a multi–parameter ontology to capture the semantics of
colour descriptions from botanical documents and to represent them in a plant
ontology using the OWL-Eu [1] ontology language. OWL-Eu is an ontology lan-
guage which extends the W3C standard OWL DL [2] with customised datatypes.
A colour reasoner is proposed that interacts with the FaCT-DG DL reasoner [3]
to answer colour–related queries which are useful in botanical practice.

Colours play an important role in the identification of plant species. A com-
plete list of species containing those plants that have flowers of the requested
colour, can be very helpful to botanists in identifying a plant sample in nature.
Colour descriptions of the same species are found in many different floras,1 and

(∗) This work is partially supported by the FP6 Network of Excellence EU project
Knowledge Web (IST-2004-507842).

1 A flora is a treatise describing the plants of a region or time.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1279–1295, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1280 S. Wang and J.Z. Pan

are therefore treated as parallel sources. For instance, the species Origanum vul-
gare (Marjoram) has at least four colour descriptions of its flowers from four
floras:

– “violet–purple”, in Flora of the British Isles [4],
– “white or purplish–red”, in Flora Europaea [5],
– “purple–red to pale pink”, in Gray’s Manual of Botany [6],
– “reddish–purple, rarely white”, in New Flora of the British Isles [7].

It has been demonstrated in [8] that extracting and integrating parallel infor-
mation from different sources can produce more accurate and complete results.
Some current projects [9, 10] attempt to store knowledge extracted from natural
language documents in electronic forms. These projects generally allow keyword-
based queries but do not support a formal representation of the semantics.

In this paper, we present an ontology-based approach [11, 12] to tackle this
problem. Information extraction techniques are used to get proper colour de-
scriptions from botanical documents. In order to decompose the semantics of
colour descriptions, we propose a quantitative model based on the HSL (Hue
Saturation Lightness) colour model. By using a parser based on our BNF syn-
tax, we can quantify complex colour descriptions more precisely; for instance,
we support adjective modifiers, ranges, conjunction or disjunction relations in-
dicated by natural language constructions. Based on the semantics of colour
descriptions, we can generate an ontology to model such complex colour infor-
mation in our project. Such an ontology provides a foundation for information
integration and domain-oriented query answering.

The semantics of information are important for both extraction and inte-
gration. However, existing information integration systems [13] do not process
information directly based on their semantics. One obvious reason for this is that
there is a deep gap between linguistic and logical semantics [14]. As we will show
later in the paper, customised datatypes are crucial to capture the semantics of
the quantitative model. This suggests that we can not use the Semantic Web
standard ontology language OWL DL for our purpose, since OWL DL does not
support customised datatypes. Instead, we use the OWL-Eu ontology language,
which is a datatype extension of OWL DL. In our ontology, we can represent
complex colour descriptions as OWL-Eu class descriptions. Therefore, we can
make use of the subsumption checking reasoning service provided by the FaCT-
DG DL reasoner to check if a colour description is more general than another
one. A colour reasoner, interacting with the FaCT-DG reasoner, is implemented
to answer colour-related species identification queries and return more useful
results for practical botanical purposes.

The rest of the paper is structured as follows. Section 2 introduces some tech-
nical background knowledge of multi–parameter colour models and the OWL–
Eu ontology language. Section 3 provides the morpho–syntactic rules of building
complex colour descriptions and their influences in generating final semantics.
Section 4 describes how the semantics of colour descriptions are represented in
the OWL-Eu language. Section 5 introduces a domain–oriented usage of such a

Ontology–Based Representation and Query of Colour Descriptions 1281

multi–parameter representation, i.e. colour–related species query. Section 6 gives
primary experimental results of representation and several queries based on it.
Finally, Section 8 concludes this paper and discusses some of our future work.

2 Technical Background

2.1 The Colour Model

Several colour representations using a multi–parameter colour space (CIE XYZ,
L*a*b*, L*u*v*, RGB, CMYK, YIQ, HSV, HSL, etc.) are used in computer
graphics and image processing. Colours are quantified as points (or regions) in
those spaces. Linguistically naming the physically represented colours has been
thoroughly investigated [15].

The psychologically based HSL (Hue Saturation Lightness) model is more
accurate than machine–oriented colour models, such as the RGB (Red Green
Blue) model, in colour notation, and is second only to natural language [16]. The
HSL model was therefore chosen to model basic colour terms parametrically. Its
colour space is a double cone, as shown in Figure 1.

Fig. 1. HSL Colour Model

In the HSL model, a colour is represented by the following three parameters:

– Hue is a measure of the colour tint. In fact, it is a circle ranging from 0 (red)
to 100 (red again), passing through 16 (yellow), 33 (green), 50 (cyan), 66
(blue) and 83 (magenta).

– Saturation is a measure of the amount of colour present. A saturation of 0
is a total absence of colour (i.e. black, grey or white), a saturation of 100 is
a pure colour tint.

– Lightness (also Luminance or Luminosity) is the brightness of a colour. A
lightness of 0 is black, and 100 is white, between 0 and 100 are shades of
grey. A lightness of 50 is used for generating a pure colour.

Each basic colour term corresponds to a small space in the double cone
whose centre is the particular point representing its HSL value, that is, instead
of a point, a colour term is represented by a cuboid space, defined by a range

1282 S. Wang and J.Z. Pan

triplet (hueRange, saturationRange, lightnessRange). For instance, “purple” is
normally defined as the HSL point (83, 50, 25), but is represented in our ontology
as the region (78–88, 45–55, 20–30), adding a certain range to each parameter.2

2.2 OWL DL and Its Datatype Extension OWL-Eu

The OWL Web Ontology Language [2] is a W3C recommendation for express-
ing ontologies in the Semantic Web. OWL DL is a key sub–language of OWL.
Datatype support [18, 19] is one of the most useful features that OWL is ex-
pected to provide, and has brought extensive discussions in the RDF–Logic
mailing list [20] and Semantic Web Best Practices mailing list [21]. Although
OWL provides considerable expressive power to the Semantic Web, the OWL
datatype formalism (or simply OWL datatyping) is much too weak for many ap-
plications. In particular, OWL datatyping does not provide a general framework
for customised datatypes, such as XML Schema user–defined datatypes.

To solve the problem, Pan and Horrocks [1] proposed OWL-Eu, a small
but necessary extension to OWL DL. OWL-Eu supports customised datatypes
through unary datatype expressions (or simply datatype expressions) based on
unary datatype groups. OWL-Eu extends OWL DL by extending datatype ex-
pressions with OWL data ranges.3 Let G be a unary datatype group. The set of
G–datatype expressions, Dexp(G), is inductively defined in abstract syntax as
follows [1]:

1. atomic expressions: if u is a datatype URIref, then u ∈ Dexp(G);
2. relativised negated expressions: if u is a datatype URIref, then not(u) ∈ Dexp(G);
3. enumerated datatypes: if l1, . . . , ln are literals, then oneOf(l1, . . . , ln) ∈ Dexp(G);
4. conjunctive expressions: if {E1, . . . , En} ⊆ Dexp(G), then and(E1, . . . , En) ∈

Dexp(G);
5. disjunctive expressions: if {E1, . . . , En} ⊆ Dexp(G), then or(E1, . . . , En) ∈ Dexp(G).

Uniform Resource Identifiers (URIs) are short strings that identify Web re-
sources [22]. A URI reference (or URIref) is a URI, together with an optional
fragment identifier at the end. In OWL, URIrefs are used as symbols for classes,
properties and datatypes, etc.

For example, the following XML Schema user–defined datatype

<simpleType name = “HueRange”>
<restriction base = “xsd:integer”>

<minInclusive value = “0”/>
<maxInclusive value = “100”/>

</restriction>
</simpleType>

can be represented by the following conjunctive datatype expression:

and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100),

2 Referring to the NBS/ISCC Color System [17], giving a 100-point hue scale, each
major hue places at the middle of its 10–point spread, or at division 5.

3 This is the only extension OWL-Eu brings to OWL DL.

Ontology–Based Representation and Query of Colour Descriptions 1283

Table 1. Colour description patterns and their relative frequencies of occurrence, where
X, Y and Z each represent a single colour term or a simpler colour phrase, A is a degree
adjective and P is a probability adverb

Colour description
pattern

Frequency of
occurrence

Example

X 25.5% “orange”
A X 36.5% “pale blue”
X to Y (to Z. . .) 25.9% “white to pink to red to purple”
X–Y 19.9% “rose–pink”
X+ish(–)Y 13.2% “reddish–purple”
X(, Y) or Z 6.5% “white or violet
X(, Y), P Z 6.4% “reddish–purple, rarely white”
X/Y 4.6% “pink/white”
X, Y 2.8% “lavender, white–pink
X(, Y), and Z 2.3% “white and green”

where xsdx:integerLessThanOrEqualTo100 is the URIrefs for the user–defined
datatype ≤100. Readers are referred to [23] for more details of OWL abstract
syntax and semantics.

Similarly to an OWL DL ontology, an OWL-Eu ontology typically contains
a set of class axioms, property axioms and individual axioms. FaCT-DG, a
datatype group extension of the FaCT DL reasoner, supports TBox reasoning
on OWL-Eu ontologies without nominals.

3 NL Processing

From a closer observation of the real data in floras, we find that colour de-
scriptions are mostly compound phrases so that they can cover the variations
of plant individuals in the field, such as the example shown in Section 1. Com-
plex colour descriptions are built from multiple basic colour terms by certain
morpho–syntactic rules. In order to be represented correctly, a complex colour
description has to be analysed using the same rules.

We carry out a morpho–syntactic analysis on 227 colour descriptions of 170
species from five floras.4 Different types of phrases and their relative frequencies
of occurrence in the data set are summarised in Table 1 (page 1283). Table
2 (page 1284) gives the corresponding BNF syntax of these phrases for colour
description. As shown in Table 1, most patterns describe colour ranges that
are built from several atomic colour phrases, such as “blue”, “blue–purple” or
“bright yellow”.

There are two steps in our text processing. Firstly, we construct the following
atomic colour phrases as basic colour spaces.
4 They are Flora of the British Isles [4], Flora Europaea [5], The New Britton and

Brown Illustrated Flora of the Northeastern United States and Adjacent Canada [6],
New Flora of the British Isles [7] and Gray’s Manual of Botany [24].

1284 S. Wang and J.Z. Pan

Table 2. BNF syntax of colour descriptions

< Cterm >::=red|yellow|green| . . .
< Dmodifier >::=strong|pale|bright|deep|dull|light|dark| . . .
< Pmodifier >::=usually|often|sometimes|occasionally|rarely|never| . . .

< Cphrase >::=< Cterm >
| < Cterm > [ish][−|] < Cterm >
| < Cphrase > − < Cphrase >
| < Dmodifier > < Cterm >

< Cdescription >::=< Cphrase >
| < Cphrase > { to < Cphrase >}
| < Cphrase >, < Cphrase >
| < Cphrase > / < Cphrase >
| < Cphrase > {, < Cphrase >} or < Cphrase >
| < Cphrase > {, < Cphrase >} and < Cphrase >
| < Cphrase > {, < Cphrase >}, < Pmodifier > < Cphrase >

Table 3. Meanings of adjective modifiers and their corresponding operations on a
colour space

Adjective Meaninga Operationb

strong high in chroma satRange + 20
pale deficient in chroma satRange - 20, ligRange + 20
bright of high saturation or brilliance satRange + 20, ligRange + 20
deep high in saturation and low in lightness satRange + 20, ligRange - 20
dull low in saturation and low in lightness satRange - 20, ligRange - 20
light medium in saturation and high in lightness satRange - 20, ligRange + 20
dark of low or very low lightness ligRange - 20

a referring to Merriam–Webster online dictionary.
b Referring to the specifications from Colour Naming System (CNS) [25], saturation

and lightness are each divided into 5 levels, which causes a range/ranges to change
by 20 (100/5).

X : This is a single colour space, i.e. (hueRange, satRange, ligRange).
A X : We need to modify the space of X according to the meaning of A, as

shown in Table 3 (page 1284). For example, “light blue” is represented as
(61–71, 70–80, 65–75) where “blue” is (61–71, 90–100, 45–55).

X–Y : This represents an intermediate colour between the two colours X and
Y [25]. For example, “blue–purple” is generated from the halfway colour
between “blue” (66, 100, 50) and “purple” (83, 50, 25), that is, the colour
with HSL value of (75, 75, 38), the hue, saturation and lightness of which are
calculated by the following formulae (similar calculation for saturation and
lightness) and finally represented by the range triple (70–80, 70–80, 33–43).

HueX−Y =
HueX + HueY

2

Ontology–Based Representation and Query of Colour Descriptions 1285

Xish–Y : This denotes a quarterway value between the two colours [25], closer
to the latter colour term. For instance, “reddish–purple” means it is basically
purple (83, 50, 25) but reflecting a quarterway deviation to red (100, 100,
50), so the final hue range for “reddish–purple” is (87, 63, 34) calculated by
the following formula (similar formulas for saturation and lightness), which
is finally (82–92, 58–68, 29–39).

HueXish−Y = HueY +
HueX − HueY

4

Secondly, we build up combined colour spaces based on basic ones. Specifi-
cally, combined colour spaces are built up by a colour reasoner, according to the
following morpho–syntactic rules:

1. If basic colour terms are connected by one or more “to”s, the final colour
space should be the whole range from the first colour to the last one. For
instance, if light blue is (66, 100, 70) and purple is (83, 50, 25), “light blue to
purple” should be the whole range (66–83, 50–100, 25–70), which contains
any colour in between.
Note that special care is needed for ranges starting or ending with a grey
colour, such as “white to purple”. In the HSL model, colours ranging from
white, through different levels of grey, to black have no hue and saturation
values. For instance, the HSL value of “white” is (0, 0, 100), while “red”
also has a hue value of 0. A special rule for building such kind of ranges has
to be followed; that is, a range from colour A (0, 0, la) to colour B (hb, sb,
lb) should be (hb − 5–hb + 5, 0–sb, la–lb). For example, “white to purple”
should be represented by the triple (78–88, 0–50, 25–100).

2. If basic colour terms are connected by any of these symbols: “or”, “and”,
comma (“,”) or slash (“/”), they are treated as separate colour spaces; that
is, they are disjoint from each other. For instance, “white, lilac or yellow”
means that the colour of this flower could be either white or lilac or yellow,
not a colour in between.
Notice that “and” is treated as a disjunction symbol because, in floras, it
normally means several colours can be found in the same species, instead
of indicating a range by normal logical conjunction. For instance, flowers
of species Rumex crispus (Curled Dock) are described as “red and green”,
which means flowers that either red or green may occur in the same plant,
but it does not mean that one flower is both red and green.

By using a parser based on our BNF syntax, we can generate an OWL-Eu
ontology to model complex colour information.

4 Representation of Colour Descriptions in OWL–Eu

Based on the morpho–syntactic rules introduced in Section 3, we can decompose
the semantics of colour descriptions into several quantifiable components, which

1286 S. Wang and J.Z. Pan

can be represented as DL datatype expressions. In this section, we will show how
to use the OWL-Eu ontology language to represent the semantics of a colour
description.

The fragment of our plant ontology OC contains Colour as a primitive class.
Important primitive classes in OC include

Class(Species), Class(Flower), Class(Colour);

important object properties in OC include

ObjectProperty(hasPart), ObjectProperty(hasColour);

important datatype properties in OC include

DatatypeProperty(hasHue Functional

range(and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100))),
DatatypeProperty(hasSaturation Functional

range(and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100))),
DatatypeProperty(hasLightness Functional

range(and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100))),

which are all functional properties. A functional datatype property relates an
object with at most one data value. Note that the datatype expression

and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100)

is used as the range of the above datatype properties.
Based on the above primitive classes and properties, we can define specific

colours, such as Purple, as OWL-Eu defined classes (indicated by the keyword
“complete”) .

Class(Purple complete Colour
restriction(hasHue someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo78,
xsdx:integerLessThanOrEqualTo88)))

restriction(hasSaturation someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo47,
xsdx:integerLessThanOrEqualTo52)))

restriction(hasLightness someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo20,
xsdx:integerLessThanOrEqualTo30))))

In the above class definition, datatype expressions are used to restrict the values
of the datatype properties hasHue, hasSaturation and hasLightness. Note that
not only colour terms but also complex colour descriptions can be represented in
OWL-Eu classes, as long as they can be transformed into proper colour subspaces
with constraints on their hue, saturation and lightness.

As colour descriptions are represented by OWL-Eu classes, we can use the
subsumption checking service provided by the FaCT-DG reasoner to check if one
colour description is more general than another. Namely, if ColourA is subsumed

Ontology–Based Representation and Query of Colour Descriptions 1287

by ColourB, we say that ColourB is more general than ColourA. The formal rep-
resentation of colour descriptions makes it possible to express a query about a
range of colours, such as to retrieve all species which have “bright rose–pink” or
“light blue to purple” flowers, with the help of the FaCT-DG DL reasoner.

5 Domain-Oriented Queries

The flower colour of an individual plant is an important distinguishing feature for
identifying which species it belongs to. The species identification that botanists
are interested in can be written as a query: “Given a certain colour, tell me all
the possible species whose flowers have such a colour.” We would like to point
out that, from a botanical point of view, one has to take the variations between
individuals in nature into account. In other words, botanists rarely use colour
as a strict criterion. It is more appropriate to answer such species identification
queries in an fuzzy manner, that is, returning a list which contains all species
that could match the query. This kind of query, which is particularly suitable
for domain interests, is called domain-oriented queries.

We can answer species identification queries based on subsumption queries
that are supported by the FaCT-DG DL reasoner. For example, if our plant
ontology contains the following class axioms:

Class(SpeciesA restriction(hasPart someValueFrom(FlowerA)))

Class(FlowerA restriction(hasColour someValueFrom(ColourA)))

Class(SpeciesB restriction(hasPart someValueFrom(FlowerB))

Class(FlowerB restriction(hasColour someValueFrom(ColourB)))

and if from the definitions of ColourA and ColourB we can conclude that ColourA
is subsumed by ColourB, when we ask our DL reasoner whether the above ontol-
ogy entails that SpeciesA is subsumed by SpeciesB, the reasoner will return “yes”.
By using this kind of subsumption query, we can, for example, conclude that a
species having “golden–yellow” flowers is subsumed by a more general species
which has “yellow” flowers, which again is subsumed by another species which
has “red to orange to yellow” flowers. Therefore, if one asks “Which species might
have yellow flowers?”, our colour reasoner will return all these three species.

For species identification, this hierarchical subsumption matching is very use-
ful for shortening the possible species list. After classification reasoning, we have
already had three different levels of matchings: Exact matching (ClassRealSpecies ≡
ClassQuerySpecies), PlugIn matching (ClassRealSpecies � ClassQuerySpecies) and Sub-
sume matching (ClassRealSpecies � ClassQuerySpecies) [26, 3]. Actually there is an-
other possible species list, which is not covered by the above three kinds of match-
ings, that is, Intersecting matching (¬(ClassRealSpecies�ClassQuerySpecies �⊥)). For
example, if a species has “greenish–yellow” flowers, it would also be possible to
find in the field an individual which has “yellow” flowers. Although this latter
list has a lower probability to contain the correct answers, it is still helpful from
botanical point of view.

We have implemented a colour reasoner to reduce our domain problems into
standard Description Logics reasoning problems. In fact, it interacts with the

1288 S. Wang and J.Z. Pan

Table 4. Query results of species having “yellow” flowers (partial)

Species Flower colour Matching type
Amsinckia menziessi yellow Exact matching
Ranunculus acris golden–yellow PlugIn matching
Barbarea vulgaris yellow to pale yellow Subsume matching
Eucalyptus globulus creamy–white to yellow Subsume matching
Anaphalis margaritacea white, yellow to red Subsume matching
Castilleja wightii yellow–orange–apricot–red Subsume matching
Tropaeolum majus yellow to orange to red Subsume matching
Myrica californica green to red to brown Subsume matching
Trillium chloropetalum dark red to greenish–white Subsume matching
Artemesia californica whiteish–yellow Intersection matching
Rumex acetosella reddish–yellow Intersection matching
Rhodiola sherriffii greenish–yellow Intersection matching
Lasthenia californica yellow–orange Intersection matching
Mimulas aurantiacus orange Intersection matching
Artemesia douglasiana whiteish–green to whiteish–yellow Intersection matching
Eschscholzia californica deep orange to pale yellow Intersection matching

FaCT-DG reasoner, in order to answer domain-oriented queries. First of all, the
colour in a query is represented by an OWL-Eu class Q with datatype constraints
about its hue, saturation and lightness. Secondly, the colour reasoner calculates
the complete set of colours completeQ which satisfies the above four levels of
matching. Specifically, completeQ consists of the following four sets.

– equivQ: all elements are equivalent to the class Q, such as “yellow”;
– subQ: all elements are subsumed by the class Q, such as “golden–yellow”;
– superQ: all elements subsume the class Q, such as “yellow to orange to red”;
– intersectionQ: all elements intersect with the class Q, such as “greenish–

yellow”.

Note that the first two contain answers with 100% confidence, while the latter
two contain those with less confidence. Thirdly, in order to find all species that
have flowers whose colour satisfies the query, the colour reasoner interacts with
the Fact-DG reasoner to return those species which have flowers whose colour is
contained in completeQ set.

6 Experiments and Discussions

In this section, we will present some of the experiments, in terms of species
identification queries, we did with our plant ontology.

We chose 100 colour terms, which are commonly used in floras, as basic colour
terms. For each basic term, we obtained its RGB value by referring to the X11
Colour Names,5 converted it into the corresponding HSL value and finally de-
fined it as ranges in hue, saturation and lightness (as described in Section 4).
5 http://en.wikipedia.org/wiki/X11 Color Names

Ontology–Based Representation and Query of Colour Descriptions 1289

Table 5. Query results of species having “light blue” flowers (partial)

Species Flower colour Matching type
Aster chilensis light blue Exact matching
Ceanothus thyrsiflorus pale blue to bright blue Subsume matching
Heliotropium curassavicum white to bluish Subsume matching
Linum bienne pale blue to lavender Subsume matching
Phacelia ramosissima white, sometimes pale blue Subsume matching
Viola adunca light blue to purple Subsume matching
Triteleia laxa blue to violet Intersection matching
Vinca major light–to–dark blue–violet Intersection matching
Dichelostemma congestum pink to blue Intersection matching

By using the method described in Section 3 on the same data set we used for
linguistical analysis, each colour description was transformed into a small colour
space. A simple plant ontology, mentioned in Section 4, was constructed using
the OWL-Eu language. This ontology contains 170 species classes, each species
has a flower part which has a colour property. The colour property is represented
by a datatype expression. For example, species Viola adunca has “light blue to
purple” flowers.

Class(Viola adunca complete Species
restriction(hasPart someValuesFrom(Viola adunca flower))),

Class(Viola adunca flower complete Flower
restriction(hasColour someValuesFrom(Viola adunca flower colour))),

Class(Viola adunca flower colour complete Colour
restriction(hasHue someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo66,
xsdx:integerLessThanOrEqualTo83)))

restriction(hasSaturation someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo50,
xsdx:integerLessThanOrEqualTo100)))

restriction(hasLightness someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo25,
xsdx:integerLessThanOrEqualTo70))))

In the species identification queries, we used colour descriptions with different
levels of complexity (as shown in Table 1 on page 1283). Some of the results are
presented in Tables 4, 5 and 6, in the order of complexity of colours: “yellow”,
“light blue”, “light blue to purple”.

From Table 4, all species which could have “yellow” flowers have been queried
out. In the result, we can find the species whose flowers are explicitly described
as “yellow” or some variation thereof. We also find that those species which have
“orange”, “green to red to brown” or “dark red to greenish–white” flowers are
also returned by our colour reasoner, as the results of subsumption or intersection

1290 S. Wang and J.Z. Pan

Table 6. Query results of species having “light blue to purple” flowers (partial)

Species Flower colour Matching type
Viola adunca light blue to purple Exact matching
Aster chilensis pale blue PlugIn matching
Scoliopus bigelovii purple PlugIn matching
Linum bienne pale blue to lavender PlugIn matching
Myosotis latifolia blue PlugIn matching
Eriodictyon californicum light purple/lavender PlugIn matching
Ceanothus thyrsiflorus pale blue to bright blue PlugIn matching
Iris douglasiana pale lavender to blue to purple PlugIn matching
Delphinium variegatum royal blue to purple PlugIn matching
Verbena lasiostachys blue–purple PlugIn matching
Cirsium occidentale red–purple Intersection matching
Cirsium vulgare reddish–purple Intersection matching
Epilobium cilatum white to pink to red to purple Intersection matching
Heliotropium curassavicum white to bluish Intersection matching
Lupinus eximus blue to purple, sometimes lavender Intersection matching
Polygala californica rose–pink/purple Intersection matching
Solanum white to white–lavender to pink/blue Intersection matching
Vinca major light–to–dark blue–violet Intersection matching
Dichelostemma congestum pink to blue Intersection matching
Sisyrinchium bellum strong blue–purple Intersection matching
Stachys bullata light purple to pink to white Intersection matching
Triteleia laxa blue to violet Intersection matching

matching. This is consistent with their real meanings, because in our colour
model “yellow” is contained by or intersects with them.

We can query in a specific manner, such as to find species which have “light
blue” flowers but excluding those with “dark blue” flowers (see Table 5); or in a
more general style, such as to query all species which could have flowers ranging
from “light blue to purple” (see Table 6). All of these owe to our quantitative model
which makes it possible to compare and reason with classes at a semantic level.

As stated in Section 5, the resulting list is from four different levels of match-
ing, which gives a complete list for species identification. We can also specify to
stop at certain levels of matching to get results with different confidences, such
as only return those species which fully satisfy the query.

The semantics of a colour term or a complex colour description is decomposed
and represented by a group of ranges in multiple numerical parameters, which is
a small subspace in a multi–dimensional space. Numerical representation makes
it easy to build ranges between colours, but a further observation shows that
this is not as obvious as we thought. For example, there could be different ways
of interpreting the meaning of “light blue to purple” (see Fig. 2):

– light blue to purple directly (area B),
– light blue to blue then to purple,
– light blue to light purple then to purple,
– the whole rectangle.

Ontology–Based Representation and Query of Colour Descriptions 1291

Lavender

Blue

Light Purple

Purple

A B

Light Blue

Light Purple to Pink
 to WhiteLi

gh
tn

es
s

Hue

Fig. 2. Range between “light blue” and “purple”

In our experiment (see Table 6), we used the last option (the whole rectangle).
We plan to extend our work and to allow the users to pick up one of the above
options when they query with the keyword “to”.

7 Related Work

Automatically integrating information from a variety of sources has become a
necessary feature for many information systems [13]. Compared to structured
or semi-structured data sources, information in natural language documents is
more cumbersome to access [27]. Our work focuses mainly on parallel information
extraction and integration from homogeneous monolingual (English) documents.

Information Extraction (IE) [28] is a common Natural Language Processing
(NLP) technique which can extract information or knowledge from documents.
Ontologies, containing various semantical expressions of domain knowledge, have
recently been adopted in many IE systems [29, 30, 31]. Semantics embedded in
ontologies can boost the performance of IE in terms of precision and recall [32].
Since they can be shared by different sources, ontologies also play an important
role in the area of information integration [13, 33, 27]. Logic reasoning, as sup-
ported by ontology languages, is also introduced naturally into the extraction
and integration process [34, 35, 32].

The work in this paper is similar to some research in computational linguis-
tics, such as Lexical Decomposition [36], which attempts to break the meanings
of words down to more basic categories. Instead of certain qualitative criteria,
our method attempts to give precise semantics to the classes in an ontology by
using multiple basic and quantifiable classes. This makes comparing and reason-
ing with classes easier.

The quantitative semantic model can produce more useful results for real do-
main purposes. Specifically, in botanical domain, many current plant databases

1292 S. Wang and J.Z. Pan

can only support keyword-based query, such as the ActKey [9] provided by the
floras project,6 ePIC project [10], etc. They rely heavily on the occurrence of
keywords, which are normally very general and therefore less robust. As demon-
strated in Section 6, our method can compute on their real semantics instead
of pure keyword matching, which supports more flexible-styled queries and gets
more useful results.

8 Conclusion and Outlook

This paper introduces an ontology–based approach to capture the semantics of
colour descriptions and to support colour-related species identification queries.
It turns out that, even in a limited domain, representing the semantics of colour
descriptions is not a trivial problem. Based on a multi–parameter semantic model
for colour descriptions and certain morpho–syntactic rules, we have implemented
an NLP parser which translates complex colour descriptions into quantifiable
logic representations. More importantly, a colour reasoner is implemented to
carry out queries for real botanical applications by interacting with the FaCT-
DG DL reasoner.

We have shown that our approach outperforms text–based approaches by
providing more precise integration results. Firstly, our quantifiable model makes
it possible to reason and query on a semantic level. Relations between colour
descriptions are more tractable. For example, yellow is between red and green
in terms of hue, lilac is lighter than purple although they have the same hue.
Furthermore, based on the support of adjective modifiers and ranges, we can
query in a detailed manner, such as “light blue”, which excludes pure blue and
dark blue. We can also query on a fuzzy manner, such as “light blue to purple”,
as required for particular domain purposes.

Interestingly, our work also provides a use case for the OWL-Eu ontology
language. OWL-Eu extends OWL DL with user-defined datatypes, which are
needed to represent the ranges for hue, saturation and lightness used in colour
descriptions, not to mention the degree adjective described in Table 3.

Encouraged by the existing results, we plan to further extend our work on
ontology-based species identification queries. Firstly, as suggested in Section 6,
a future version of our colour reasoner should provide several options so as to al-
low users to decide their intended meaning of the ‘to” keyword. Technically, this
requires the use of not only unary but also n-ary datatype expressions as con-
strains on datatype properties hasHue, hasSaturation and hasLightness. To
capture these constraints, we need to use the OWL-E [37, 3] ontology language,
which is the n-ary extension of OWL-Eu.

Taking advantage of the quantitative representation, similarities between dif-
ferent descriptions from different authors can be measured as the distances be-
tween their corresponding colour subspaces. As long as an appropriate distance
measurement is chosen, such distances can easily tell us how different two de-
scriptions are and to what extend they overlap with each other. How to define
6 http://www.efloras.org/

Ontology–Based Representation and Query of Colour Descriptions 1293

the distance and how to use it for integration is an interesting work to explore
in the future.

Another future work is to represent the probabilistic information in the ontol-
ogy. There are many descriptions with adverbs of quantification, such as “some-
times”, “rarely”, “often”, etc., which also indicate the probability of certain
colours. Because current ontology languages do not support the annotation of
classes with probabilities, the probability aspect is ignored in the text processing
which affects the precision of integration. However, there are several attempts
to extend DL languages with fuzzy expressions [38, 39, 40], which, in the future,
may be used to enable our logic representation to capture more of the original
semantics implied by natural language.

Furthermore, our approach is applicable in other similar areas, such as the
representation of leaf shapes, which is another key feature of identifying species.
We have started to experiment with a quantitative model generated by a Super-
Shape formula [41]. We expect that our method can also produce similar results
in this case.

References

1. Pan, J.Z., Horrocks, I.: OWL-Eu: Adding Customised Datatypes into OWL. In:
Proc. of Second European Semantic Web Conference (ESWC 2005). (2005)

2. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,
Patel-Schneider, P.F., eds., L.A.S.: OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/ (2004)

3. Pan, J.Z.: Description Logics: Reasoning Support for the Semantic Web. PhD
thesis, School of Computer Science, The University of Manchester (2004)

4. Clapham, A., Tutin, T., Moore., D.: Flora of the British Isles. Cambridge Univer-
sity Press (1987)

5. Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Moore(eds), D.M.:
Flora Europaea. Cambridge University Press (1993)

6. Gleason, H.: The New Britton and Brown Illustrated Flora of the Northeast-
ern United States and Adjacent Canada. Hafner Publishing Company, New York
(1963)

7. Stace, C.: New Flora of the British Isles. Cambridge University Press (1997)
8. Wood, M.M., Lydon, S.J., Tablan, V., Maynard, D., Cunningham, H.: Using par-

allel texts to improve recall in ie. In: Proceedings of Recent Advances in Natural
Language Processing (RANLP-2003), Borovetz, Bulgaria (2003) 505–512

9. : Actkey. (Web Page http://flora.huh.harvard.edu:8080/actkey)
10. Royal Botanic Gardens, K.: electronic plant information centre. (Published on the

Internet http://www.kew.org/epic/)
11. Wood, M., Lydon, S., Tablan, V., Maynard, D., Cunningham, H.: Populating

a database from parallel texts using ontology-based information extraction. In
Meziane, F., Métais, E., eds.: Proceedings of Natural Language Processing and In-
formation Systems, 9th International Conference on Applications of Natural Lan-
guages to Information Systems, Springer (2004) 254–264

12. Wood, M., Wang, S.: Motivation for “ontology” in parallel-text information ex-
traction. In: Proceedings of ECAI-2004 Workshop on Ontology Learning and Pop-
ulation (ECAI-OLP), Poster, Valencia, Spain (2004)

1294 S. Wang and J.Z. Pan

13. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Huebner, S.: Ontology-based integration of information - a survey of existing ap-
proaches. In: Proceedings of the IJCAI-01 Workshop: Ontologies and Information
Sharing, Seattle, WA (2001) 108–117

14. Dik, S.C.: Coordination: Its implications for the theory of general linguistics.
North-Holland, Amsterdam (1968)

15. Lammens, J.M.: A computational model of color perception and color naming.
Ph.D. thesis, State University of New York (1994)

16. Berk, T., Brownston, L., Kaufman, A.: A human factors study of color notation
systems for computer graphics. Communications of the ACM 25 (1982) 547–550

17. U.S. Department of Commerce, National Bureau of Standards: Color: Universal
Language and Dictionary of Names. NBS Special Publication 440. U.S. Govern-
ment Printing Office, Washington D.C. (1976) (S.D. Catalog No. C13.10:440).

18. Pan, J.Z., Horrocks, I.: Extending Datatype Support in Web Ontology Reasoning.
In: Proc. of the 2002 Int. Conference on Ontologies, Databases and Applications
of SEmantics (ODBASE 2002). (2002) 1067–1081

19. Pan, J.Z., Horrocks, I.: Web Ontology Reasoning with Datatype Groups. In: Proc.
of the 2nd International Semantic Web Conference (ISWC2003). (2003)

20. : http://lists.w3.org/archives/public/www-rdf-logic/. W3C Mailing List (starts
from 2001)

21. : http://lists.w3.org/archives/public/public-swbp-wg/. W3C Mailing List (starts
from 2004)

22. Group, J.W.U.P.I.: URIs, URLs, and URNs: Clarifications and Recommendations
1.0. URL http://www.w3.org/TR/uri-clarification/ (2001) W3C Note.

23. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Se-
mantics and Abstract Syntax. Technical report, W3C (2004) W3C Recommenda-
tion.

24. Fernald, M.: Gray’s Manual of Botany. American Book Company, New York (1950)
25. Berk, T., Brownston, L., Kaufman, A.: A new color-naming system for graphics

languages. IEEE Computer Graphics and Applications 2 (1982) 37–44
26. Li, L., Horrocks, I.: A Software Framework For Matchmaking Based on Semantic

Web Technology. In: Proc. of the Twelfth International World Wide Web Confer-
ence (WWW 2003), ACM (2003) 331–339

27. Williams, D., Poulovassilis, A.: Combining data integration with natural language
technology for the semantic web. In: Proc. Workshop on Human Language Tech-
nology for the Semantic Web and Web Services, at ISWC’03. (2003)

28. Gaizauskas, R., Wilks, Y.: Information Extraction: Beyond Document Retrieval.
In: Computational Linguistics and Chinese Language Processing. Number 2 (1998)
17–60

29. Embley, D., Campbell, D., Liddle, S., Smith, R.: Ontology-based extraction and
structuring of information from data-rich unstructured documents. In: Proceed-
ings of International Conference On Information And Knowledge Management, 7,
Bethesda, Maryland, USA. (1998)

30. Maedche, A., Neumann, G., Staab, S.: Bootstrapping an ontology-based informa-
tion extraction system. studies in fuzziness and soft computing. In Szczepaniak,
P., Segovia, J., Kacprzyk, J., Zadeh, L.A., eds.: Intelligent Exploration of the Web.
Springer, Berlin (2002)

31. Alani, H., Kim, S., Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H., Shadbolt,
N.R.: Automatic ontology-based knowledge extraction from web documents. IEEE
Intelligent Systems (2003) 14–21

Ontology–Based Representation and Query of Colour Descriptions 1295

32. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured informa-
tion processing in the corporate research environment. Journal of Natural Language
Engineering 10 (2004) 327–348

33. Goble, C., Stevens, R., Ng, G., Bechhofer, S., Paton, N., Baker, P., Peim, M.,
Brass, A.: Transparent access to multiple bioinformatics information sources. IBM
Systems Journal Special issue on deep computing for the life sciences 40 (2001)
532 – 552

34. Calvanese, D., Giuseppe, D.G., Lenzerini, M.: Description logics for information
integration. In Kakas, A., Sadri, F., eds.: Computational Logic: Logic Programming
and Beyond, Essays in Honour of Robert A. Kowalski. Volume 2408 of Lecture
Notes in Computer Science. Springer (2002) 41–60

35. Maier, A., Schnurr, H.P., Sure, Y.: Ontology-based information integration in the
automotive industry. In: Proceedings of the 2nd International Semantic Web Con-
ference (ISWC2003), 20-23 October 2003, Sundial Resort, Sanibel Island, Florida,
USA, Springer (2003) 897–912 None.

36. Dowty, D.R.: Word Meaning and Montague Grammar. D. Reidel Publishing Co.,
Dordrecht, Holland (1979)

37. Pan, J.Z.: Reasoning Support for OWL-E (Extended Abstract). In: Proc. of
Doctoral Programme in the 2004 International Joint Conference of Automated
Reasoning (IJCAR2004). (2004)

38. Tresp, C., Molitor, R.: A description logic for vague knowledge. In: Proceedings
of the 13th biennial European Conference on Artificial Intelligence (ECAI’98),
Brighton, UK, J. Wiley and Sons (1998) 361–365

39. Straccia, U.: Transforming fuzzy description logics into classical description logics.
In: Proceedings of the 9th European Conference on Logics in Artificial Intelligence
(JELIA-04). Number 3229 in Lecture Notes in Computer Science, Lisbon, Portugal,
Springer Verlag (2004) 385–399

40. Giorgos Stoilos, Giorgos Stamou, V.T.J.Z.P., Horrock, I.: A Fuzzy Description
Logic for Multimedia Knowledge Representation. In: Proc. of the International
Workshop on Multimedia and the Semantic Web. (2005) To appear.

41. Gielis, J.: A generic geometric transformation that unifies a wide range of natural
and abstract shapes. American Journal of Botany 90 (2003) 333–338

Creating Ontologies for Content
Representation—The OntoSeed Suite

Elena Paslaru Bontas1, David Schlangen2, and Thomas Schrader3

1 Freie Universität Berlin, Institut für Informatik,
AG Netzbasierte Informationssysteme, Takustr. 9, 14195 Berlin, Germany

paslaru@inf.fu-berlin.de
2 Universität Potsdam, Institut für Linguistik,

Angewandte Computerlinguistik, P.O. Box 601553, 14415 Potsdam, Germany
das@ling.uni-potsdam.de

3 Institute for Pathology Charitè, Rudolf-Virchow-Haus,
Schumannstr. 20-21, D-10117 Berlin, Germany

thomas.schrader@charite.de

Abstract. Due to the inherent difficulties associated with manual ontol-
ogy building, knowledge acquisition and reuse are often seen as methods
that can make this tedious process easier. In this paper we present an
NLP-based method to aid ontology design in a specific setting, namely
that of semantic annotation of text. The method uses the World Wide
Web in its analysis of the domain-specific documents, eliminating the
need for linguistic knowledge and resources, and suggests ways to specify
domain ontologies in a “linguistics-friendly” format in order to improve
further ontology-based natural language processing tasks such as seman-
tic annotation. We evaluate the method on a corpora in a real-world
setting in the medical domain and compare the costs and the benefits
of the NLP-based ontology engineering approach against a similar reuse-
oriented experiment.

1 Introduction

Ontologies are widely recognized as a key technology to realize the vision of
the Semantic Web and Semantic Web applications. In this context, ontology
engineering is rapidly becoming a mature discipline which has produced var-
ious tools and methodologies for building and managing ontologies. However,
even with a clearly defined engineering methodology, building a large ontology
remains a challenging, time-consuming and error-prone task, since it forces ontol-
ogy builders to conceptualize their expert knowledge explicitly and to re-organize
it in typical ontological categories such as concepts, properties and axioms. For
this reason, knowledge acquisition and reuse are often seen as ways to make
this tedious process more efficient: though both methods cannot currently be
used to automatically generate a domain ontology satisfying a specific set of
requirements, they can be used to guide or accelerate the modeling process.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1296–1313, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Creating Ontologies for Content Representation—The OntoSeed Suite 1297

Natural language processing techniques have proven to be particularly useful
for these purposes [3, 8, 6, 13, 18, 24]. However, existing systems are still knowl-
edge or resource intensive: they may not require much prior knowledge about
the domain that is to be modeled, but they require linguistic knowledge or re-
sources. In this paper we present a method to aid ontology building—within
a certain setting, namely that of semantic annotation of texts—by using NLP
techniques to analyze texts from the target domain. These techniques are com-
parably “knowledge-lean”, since as a novel feature they make use of the WWW
as a text collection against which the domain texts are compared during anal-
ysis; this makes them easy to employ even if no linguistic expertise is available
and reduces the engineering costs since it avoids building an application-specific
lexicon.

The techniques not only aid the ontology engineer in deciding which concepts
to model, but they also suggest ways to specify the ontology in such a way
that it fits ideally into further NLP-based processing steps, e.g. the extraction
of information from domain-specific texts. Describing these specification issues
and giving an example use case of ontologies thus created is the second aim of
this paper.

The remainder of this paper is organized as follows: we motivate our approach
and discuss previous work in Section 2. Section 3 gives details about our approach
to using NLP to aid ontology design, which is evaluated from a technical and
application perspective in Section 4. We close with a discussion of the results
and an outline of future work in Section 5.

2 Motivation

2.1 Ontology Engineering

Due to the difficulties and costs involved in building an ontology from scratch,
ontology engineering methodologies [9] often recommend to rely on available
domain-related ontologies or unstructured data like text documents in conjunc-
tion with knowledge acquisition techniques, in order to simplify the domain
analysis and the conceptualization of the domain knowledge.

In our own experience in a Semantic Web project in the medical domain (see
[22, 30] for a longer discussion of this issue, and Section 4.2 below for the project
setting), we found that just selecting and extracting relevant sub-ontologies (e.g.
from a comprehensive medical ontology like UMLS1) was a very time-consuming
process. Besides, this approach still resulted in a rather poor domain coverage
as determined by the semantic annotation task. The ontology generated in this
way could not be involved optimally in NLP-based processes and its acceptance
w.r.t. its users was extremely low because of their difficulties in comprehending
and evaluating it; this was our motivation to develop the techniques described
here.

1 http://www.nlm.nih.gov/research/umls

1298 E.P. Bontas, D. Schlangen, and T. Schrader

An alternative to reusing available ontologies or related knowledge sources
(e.g. classifications, thesauri) is to employ text documents as an input for the
conceptualization process. The most basic way to use texts is to extract terms
from them, i.e. to determine words that denote domain-specific concepts (e.g.
“lymphocyte” in a medical text) as opposed to general concepts (e.g. “telephone”
in the same text). While this is often seen as a problem that is more or less
solved ([7]; see [15] for a review of methods), the methods employed still rely
on the presence of linguistic resources (e.g. corpora of non-domain-specific texts,
lexicons; our approach differs in this respect, see below), and in any case are only
the first step in a text-based analysis: ideally, the goal is to get a collection of
terms that is further structured according to semantic relationships between the
terms. There are several systems that go in this direction [3, 8, 6, 13, 18, 24], which
however still require the availability of linguistic knowledge and resources, and
moreover do not seem to work on all kinds of texts.2 In general, there is a trade-
off between the cost of getting or producing these resources and the simplification
these methods offer. Hence our aim was a more modest, but at the present state
of the art of the Semantic Web and in the given application scenario [22, 30] a
more realistic one: to aid the ontology engineer as far as possible, requiring as
little additional resources as possible. Before we come to a description of our
approach, however, we briefly review the use of ontologies in NLP, and derive
some requirements for “NLP-friendly” ontologies. These requirements are crucial
for the development of high quality domain ontologies, which should combine a
precise and expressive domain conceptualization with a feasible fitness of use
(i.e. in our case, fitness of use in language-related tasks).

2.2 Ontologies in NLP

Ontologies have been used for a long time in many NLP applications, be that
machine translation [20], text understanding [14], or dialogue systems (some
recent examples are [12, 29]), and are of course central to information-extraction
or Semantic Web-related NLP applications [2].

Despite all differences in purpose, a common requirement for an ontology to
be considered “linguistics-friendly” (or “NLP-friendly”) is that the path from
lexical items (e.g. words) to ontology concepts should be as simple as possi-
ble.3 On a more technical level, this requires that access to ontology concepts
is given in a standardized form—if access is via names, then they should be in
a predictable linguistic form. To give an example of this not being the case,
the medical ontology UMLS contains concept names in the form “noun, adjec-
tive” (e.g. “Asthma, allergic”) as well as “adjective noun” (e.g. “Diaphragmatic
pleura”), and also concept names that are full phrases or even clauses (e.g. “Id-
iopathic fibrosing alveolitis chronic form”). Below we describe a method to avoid

2 These methods rely on relational information implicitly encoded in the use of verbs;
one of the domains we tested our approach is marked by a reduced, “telegram”-like
text style with an almost complete absence of verbs.

3 See [1] for a still relevant discussion of these interface issues.

Creating Ontologies for Content Representation—The OntoSeed Suite 1299

these problems during the ontology engineering process, by making the engineer-
ing team aware of the requirements of NLP applications; we also describe the
concrete use of an ontology in the task of semantic annotation of text documents.

3 Using the OntoSeed Suite in Ontology Engineering

This section describes the suite of tools we have developed to aid the design
of ontologies used in language-related tasks such as semantic annotation.4We
begin by giving a high-level description of the NLP-aided ontology engineering
process, illustrating this with examples from the medical domain and explain
the technical realization of the tools.

3.1 Overview and Examples

The OntoSeed suite consists of a number of programs that produce various sta-
tistical reports (as described below) given a collection of texts from a certain
domain, with the aim to provide guidance for the ontology engineer on which
concepts are important in this domain, and on the semantic relationships among
these concepts. More specifically, it compiles five lists for each given collection
of texts, as follows:

1. a list of nouns (or noun sequences in English texts; we will only write “noun”
in the following) occurring in the collection, ranked by their “termhood” (i.e.
their relevance for the text domain; see below);

2. nouns grouped by common prefixes and
3. suffixes, thereby automatically detecting compound nouns; and
4. adjectives together with all nouns they modify; and
5. nouns with all adjectives that modify them.

Figures 1 to 3 show excerpts of these files for a collection of German texts
from the medical domain of lung pathology (the LungPath-Corpus (see [25]),
consisting of 750 reports of around 300 words each; during ontology construction
we used a “training-subset” of 400 documents).

As illustrated in Figure 1, terms like “Tumorzelle/tumor cell” or “Lun-
gengewebe/lung tissue” get assigned a relatively high weight by our analysis
methods (the highest weight is 112.666), which suggests that these terms denote
relevant domain concepts that need to be modeled. Terms related to domain-
independent concepts (e.g. terms like “System/system” or “Zeit/time” in Fig-
ure 1) tend to be ranked with significantly lower value. Having made the decision
to model them, we then look up clusters in which these terms occur, as shown
in Figure 2. The overview of the data afforded by ordering phrases in prefix and
suffix clusters can be very useful in deciding how to model complex concepts,
since there is no general, established way to model them. For example, a noun

4 The OntoSeed tools are available at http://nbi.inf.fu-berlin.de/research/
swpatho/ontoseed.html.

1300 E.P. Bontas, D. Schlangen, and T. Schrader

Lungenparenchym 96.515
Schnittfläche 90.993
Tumorzelle 90.951
Pleuraerguß 89.234
Entzündung 88.476
Bronchialsekret 87.711
Lungengewebe 84.918
Entzündungsbefund 83.631
…. ….
Wert 1.825
System 1.761
Neuß 1.448
Bitte 1.296
Zeit 1.085
Seite 1.018

Fig. 1. Excerpt of the weighted term list (step 1)

phrase like “Tumorzelle/tumor cell” can be modeled as a single concept sub-
class of Zelle (cell), while in other settings it can be advantageous to introduce
a property like Zelle infectedBy Tumor . The suffix clustering offers valuable
information about subclasses or types of a certain concept (in our example in
Figure 2 several types of cells). The prefix clustering can be utilized to iden-
tify concept parts or properties (e.g. in Figure 2 Lungengewebe (lung tissue) or
Lungengefaess (lung vessel) as parts of the Lunge (lung)).

Finally, we look at ways in which the relevant terms are modified by adjec-
tives in the texts, by inspecting the lists shown in Figure 3. These lists give us

B-Zellen Lunge
Carcinom-Zellen Lungen-PE
Schleimhautlamellen Lungenabszeß
Plasmazellen Lungenarterienembolie
Epitheloidzellen Lungenbereich
Rundzellen Lungenbezug
Alveolardeckzellen Lungenbiopsat
Epithelzellen Lungenblutung
Plattenepithelzellen Lungenembolie
Karzinomzellen Lungenemphysem
Schaumzellen Lungenerkrankung
Riesenzellen Lungenfibrose
Tumorzellen Lungengefäße
Alveolarzellen Lungengewebe
Zylinderzellen Lungengewebsareal
Becherzellen Lungengewebsprobe
Herzfehlerzellen Lungengewebsstücke
Bindegewebszellen Lungeninfarkt
Entzündungszellen Lungenkarzinom
Pilzzellen Lungenlappen

Fig. 2. Excerpt of the prefix (left, step 2) and suffix lists (right, step 3)

Creating Ontologies for Content Representation—The OntoSeed Suite 1301

Tumorzelle: 92 gross:
beschrieben 1 1% 10 10% Absetzungsrand 1
einzeln 1 1% 60 1% Abtragungsfläche 1
epithelialer 1 1% 1 100% Biopsate 1
gelegen 1 1% 16 6% Bronchus 2
gross 4 4% 129 3% Lungengewebsprobe 3
klein 1 1% 88 1% Lungenlappen 3
mittelgross 1 1% 6 16% Lungenteilresektat 1
pas-positive 1 1% 6 16% Lungenunterlappen 5
spindeligen 2 2% 2 100% Lymphknoten 1
vergroessert 1 1% 9 11% Nekroseherde 13
zahlreich 1 1% 47 2% Oberlappenresektat 1

Ossifikationen 1
PE 1
Pleuraerguß 4
Raumforderung 1
Rippe 15
Rundherd 1
Stelle 5
Tumor 1
Tumorknoten 10
Tumorzelle 4
Vene 4

link:
Lunge: 85 Bronchus 7

link 9 10% 53 16% Hauptbronchus 6
recht 7 8% 66 10% Lunge 9
tumorferne 2 2% 2 100% Lungenlappen 1

Lungenoberlappens 1
Lungenunterlappen 4
Mittellappen 2
Oberlappen 9
Oberlappenbronchus 3
Seite 1
Thoraxseite 3
Unterlappen 4
Unterlappenbronchus 2
Unterlappensegment 1
Unterschenkels 1

Fig. 3. Excerpt of modifier list (steps 4 and 5)

information that can be used in making a decision for one of two ways of mod-
eling the meaning of modifiers: as properties of a concept (e.g. “gross/large”
as in “grosse Tumorzelle/large tumor cell”), or as part of a single concept (e.g.
“link/left” in linke Lunge (left lung)). The decision for either of the modeling
alternatives cannot be made automatically, since it depends strongly on the con-
text of the application. However, analyzing a text corpus can support the decision
process: modifiers which occur mostly together with particular noun phrases or
categories of concepts, respectively, could be candidates for the single concept
variant, while those used with a broad range of nouns should usually be modeled
as a property. As Figure 3 shows, in our corpus the noun “Tumorzelle/tumor
cell” occurs 92 times, 4 times modified with “gross/large” (i.e. approximately
4% of all modifiers). The modifier, on the other hand, occurs 129 times, so the
co-occurrences of the two terms are 3% of all its occurrences, which indicates
that “gross/large” is a property that is ascribed to many different concepts in the

1302 E.P. Bontas, D. Schlangen, and T. Schrader

nouns

domain corpus

search engine(s)

WWW corpus

POS tagging

adjectives

relevant
nouns

nouns
(clustered by

suffix)

nouns
(grouped by
adjectives)

adjectives
(grouped by

nouns)

nouns
(clustered by

prefix)

select concepts

create taxonomy

select properties

Fig. 4. The OntoSeed process

corpus. In contrast, the modifier “link/left” (the normalized form of “links/left”)
seems to be specific in the corpus to concepts denoting body organs like Lunge

(lung) and its parts.5

To summarize, the classifications of the noun phrases and their modifiers are
used as input to the conceptualization phase of the ontology building process,
which is ultimately still performed manually (Figure 4). Nevertheless, compared
to a fully manual process, preparing the text information in the mentioned form
offers important advantages in the following ontology engineering sub-tasks:

– selecting relevant concepts: the ontology engineer uses the list of nouns that
are ranked according to their domain specificity as described above and
selects relevant concepts and relevant concept names. Domain-specific and
therefore potentially ontology-relevant terms are assigned higher rankings
in the noun list (see Section 4.1 for the evaluation of the ranking function).
First simple concept names from the noun list are identified as being relevant
for the ontology scope. Then the ontology engineer uses the prefix and suffix

5 A possible next step in specifying possible ontology properties could be to consider
verbs in correlation with noun phrases. Our tool does not yet include this feature,
but see discussion below in Section 5.

Creating Ontologies for Content Representation—The OntoSeed Suite 1303

clusters to decide which compound concept names should be as well included
to the target ontology.

– creating taxonomy: suffix clusters can be used to identify potential sub-
classes.

– creating properties/relationship: the ontology engineer uses the modifier clas-
sification and the generated taxonomy to decide about relevant properties
(denoted by adjectives) and about the taxonomy level the corresponding
property could be defined. For example in Figure 3 most of the concepts mod-
ified by “link/left” are subsumed by RespiratorySystem —therefore if the on-
tology engineer decides to define a property corresponding to this adjective,
this property will be assigned the domain RespiratorySystem . However since
“link/left” occurs in the corpus mostly in correlation with “Lunge/lung” an
alternative conceptualization is to introduce the concept LinkeLunge (left
lung) as a subclass of Lunge (lung). Further relationships are induced by
the decision to conceptualize relevant compound nouns as two or more re-
lated concepts in the ontology. For example if “Tumorzelle/tumor cell” is
to be conceptualized in the ontology as Zelle locationOf Tumor the rela-
tionship locationOf should also be included to the ontology. Relationships
between concepts (e.g. locationOf) are not suggested explicitly; however on
the basis of taxonomy which was specified in the previous step OntoSeed
is able to identify clusters of compound terms implying a similar relational
semantics. For example given the fact that Lunge (lung) and Herz (heart)
are both subsumed by BodyPart , the system suggests that the relationship
correlating Lunge (lung) and Infarkt (attack) in the compound noun “Lun-
geninfarkt/lung attack” is the same as the one in the case of the compound
“Herzinfarkt/heart attack”, thus simplifying this conceptualization step even
when no linguistic knowledge w.r.t. verbs is available.

3.2 OntoSeed and NLP-Friendly Ontologies

It is well accepted that NLP-driven knowledge acquisition on the basis of domain-
specific text corpora is a useful approach in aiding ontology building [3, 8, 6, 13,
18, 24]. On the other hand, if the resulting ontology is targeted to language-
related tasks such as semantic annotation, these tasks can be performed more
efficiently by means of an ontology which is built in a “linguistics-friendly” man-
ner. On the basis of our previous experiences in applying ontologies to medical
information systems [30, 22] we identified the following set of operations which
can be useful in this context and therefore should be taken into account while
conceptualizing the ontology:

– logging modeling decisions: the relationship between extracted terms (result-
ing from the knowledge acquisition process) and the final modeled concepts
should be recorded. For example the term Klatskin tumor will be probably
modeled as a single concept, while lung tumor might be formalized as tumor

hasLocation lung . These decisions should be encoded in a predefined form
for subsequent NLP tasks, so that the lexicon that has to be built for these
tasks knows about potential compound noun suffixes.

1304 E.P. Bontas, D. Schlangen, and T. Schrader

– naming conventions for ontology primitives: since semantic annotation re-
quires matching text to concept names, it is necessary that the concept
names are specified in a uniform, predictable manner.6 Typically concept
names are concatenated expressions—where the first letter of every new word
is capitalized— or lists of words separated by delimiters (e.g. KlatskinTumor
or Klatskin Tumor). Furthermore it is often recommended to denominate
relationships in terms of verbs (e.g. diagnosedBy , part of) and attributes /
properties in terms of adjectives (e.g left). If the names become more
complex, they should be stored in a format that is easily reproducible,
and allows for variations. E.g., should there be a need to have a concept
name that contains modifiers (“untypical, outsized lung tumor with heavy
side sequences”), the name should be stored in a format where the or-
der of modifiers is predictable (e.g. sorted alphabetically), and the modifi-
cation is disambiguated (((lung tumor (with ((side sequences), heavy))),

(untypical, outsized))). NLP-tools (chunk parsers) can help the ontol-
ogy designer to create these normalized names in addition to the human-
readable ones.

We now turn to a description of the technical details of OntoSeed.

3.3 Technical Details

In the first processing step, the only kind of linguistic analysis proper that we em-
ploy is performed: determining the part of speech (e.g., “noun”, “adjective”, etc.)
of each word token in the collection. Reliable systems for performing this task
are readily available; we use the TreeTagger [26] developed at IMS in Stuttgart,
Germany,7 but other systems could be used as well.

This enables us to extract a list of all occurring nouns (or, for English, noun
sequences, i.e., compound nouns; German compound nouns are, as is well known,
written as one orthographic word). The “termhood” of each noun is determined
by the usual inverted document frequency measure (tf.idf), as shown in the for-
mula below—with the added twist, however, of using a WWW-search engine to
determine the document frequency in the comparison corpus.8,9 In the formula,
tf (w) stands for the frequency of word w in our collection of texts; wf (w) is
the number of documents in the corpus used for comparison, i.e., the number
of hits for query w reported by the search engine used— in our experiments,
both www.google.com (through the API made available by Google inc.) and
www.yahoo.com. N is the size of the collection, determined in an indirect way
6 This requirement, for example, is not fulfilled in UMLS and other medical ontologies.
7 Freely available for academic research purposes from http://www.ims.
uni-stuttgart.de/projekte/corplex/TreeTagger/DecisionTreeTagger.html .

8 See [19] for a textbook description of the family of tf.idf measures.
9 Using the Web as a corpus in linguistic analysis has become a hot topic recently in

computational linguistics (see e.g. a current special issue of Computational Linguis-
tics [16]); to our knowledge, the system presented here is the first to use the web in
this kind of application.

Creating Ontologies for Content Representation—The OntoSeed Suite 1305

(as the search engines used do not report the number of pages indexed) by mak-
ing a query for a high-frequency word such as “the” for English or “der” for
German.10

weight(w) = (1 + log tf (w)) ∗ (log
N

wf (w)
)

Sorting by this weight results in lists like those shown partially in Figure 1
above; a quantitative description of the effect of this weighing procedure is given
in Section 4.1.

In the next step, nouns are clustered, to find common pre- and suffixes. We
use a linguistically näıve (since it only looks at strings and ignores morphol-
ogy), but efficient method for grouping together compound nouns by common
parts. This step is performed in two stages: first, preliminary clusters are formed
based on a pre- or suffix similarity of three or more letters (i.e., “lung” and
“lung pathology” would be grouped into one cluster, but also “prerogative” and
“prevention”). These preliminary clusters are then clustered again using a hier-
archical clustering algorithm [19], which determines clusters based on maximized
pre- or suffix length (see Figure 2 above). The accuracy of the suffix clustering
procedure is anew improved by using the Web to eliminate suffixes that do not
denominate concepts in the real world, but are simply common endings of the
clustered nouns (such as the ending “ight” in “light” or “night” in English or
the German ending “tion” in “Reaktion/reaction”, “Infektion/infection”).

The compilation of the adjective lists (Figure 3) from the tokenized and
POS-tagged text collection is straightforward and need not be explained here.

4 Evaluation

This section is dedicated to the evaluation of our approach from a technical and
an application-oriented perspective. We first compare the results of our analysis
procedure on two different corpora against a näıve baseline assumption (Section
4.1). The whole suite of tools is then evaluated within a real-world application
setting in the medical domain. For this purpose we will compare two engineering
experiments aiming at developing the same ontology—a OntoSeed-aided engi-
neering approach and reuse-oriented one—in terms of costs and suitability of
the outcomes in the target application context (Section 4.2).

4.1 Technical Evaluation

For the technical evaluation of our methods we examined the weighing function
described above and the results of the prefix and suffix clustering against human
expertise.

10 This of course is just an approximation, and also the hits reported for normal queries
get progressively less exact the more frequent a term is; for our purposes, this is
precise enough, since for “web-frequent” terms (where wf ranges from 103 to 106)
rough approximations already have the desired effect of pushing the weight down.

1306 E.P. Bontas, D. Schlangen, and T. Schrader

Fig. 5. Rank (x-axis) vs. frequency (left), and rank vs. weight (right); doubly logarith-
mically

A simple concept of the importance of a term would just treat its position
in a frequency list compiled from the corpus as an indication of its “termhood”.
This ranking, however, is of little discriminatory value, since it does not separate
frequent domain-specific terms from other frequent terms, and moreover, it does
not bring any structure to the data: Figure 5 (left) shows a doubly logarithmic
plot of frequency-rank vs. frequency for the LungPath data set; the distribution
follows closely the predictions of Zipf’s law [31], which roughly says that in a
balanced collection of texts there will be a low number of very frequent terms
and a high number of very rare terms.

In comparison, after weighing the terms as described above, the distribution
looks like Figure 5 (right), again doubly logarithmically rank (this time: rank
in weight-distribution) vs. weight. There is a much higher number of roughly
similarly weighted terms, a relatively clear cut-off point, and a lower number
of low-weight terms. A closer inspection of the weighed list showed that it dis-
tributed the terms from the corpus roughly as desired: the percentage of general
terms within each 10% chunk of the list (sorted by weight) changed progres-
sively from 5% in the first chunk (i.e., 95% of the terms in the highest ranked
10% denoted domain-specific terms) to 95% in the last chunk (with the lowest
weights). We repeated this process (weighing, and manually classifying terms as
domain-specific or general) with another corpus, a collection of 244 texts (ap-
proximately 80500 word tokens altogether) describing environmental aspects of

Fig. 6. The ratio of general terms per 10% chunk of weighted term list (highest weight
to the left); LungPath corpus (dashed lines) and travel corpus (solid lines)

Creating Ontologies for Content Representation—The OntoSeed Suite 1307

world countries, and found a similar correlation between weight and “termhood”
(the results for both corpora are shown in Figure 6).

In both corpora, however, there was one interesting exception to this trend:
a higher than expected number of terms in one 10% chunk in the middle of
the weight distribution which were classified as irrelevant by the experts. These
turned out to mostly be misspellings of names for general concepts—a kind of
“noise” in the data to which the termhood measure is vulnerable (since in the
misspelled form they will be both rare in the analyzed collection as well as the
comparison corpus, the web, pushing them into the middle ground in terms of
their weights). While this is not a dramatic problem, we are working on ways of
dealing with it in a principled manner.

Further on, the comparison of the clusters generated as described in Section
3.3 with the results of the human classification revealed an average percentage
of approximately 14% of irrelevant suffix/prefix clusters — a satisfactory result
given the linguistically näıve algorithms employed.

We now turn to a qualitative evaluation of the usefulness of OntoSeed within a
real-world Semantic Web application we are developing for the medical
domain.

4.2 Application-Based Evaluation

In order to evaluate the costs and the benefits of the OntoSeed approach, we ex-
amined two subsequent semi-automatic ontology engineering experiments which
aimed at building an ontology for a Semantic Web application in the domain
of lung pathology [30, 22]. The application operates upon an archive of medical
reports (the LungPath-Corpus mentioned above) consisting of both textual and
image-based data, which are semantically annotated in order to transform them
into a valuable resource for diagnosis and teaching, which can be searched in
a fast, content-based manner [22, 30]. The semantic annotation of the data is
realized by linguistically extracting semantic information from medical reports
and lists of keywords associated with each of the digital images (both reports
and keyword lists are available in textual form). The search is content-based
in that it can make use of semantic relationships between search concepts and
those occurring in the text. In the same time the medical information system can
provide quality assurance mechanisms on the basis of the semantic annotations
of the patient records. The annotated patient records are analyzed on-the-fly by
the quality assurance component, and potential inconsistencies w.r.t. the back-
ground domain ontology are spotted.

Extracting semantic information from the medical text data is realized auto-
matically using lupus—Lung Pathology System [25]. lupus consists of a NLP
component (a robust parser) and a Semantic Web component (a domain ontol-
ogy represented in OWL, and a Description Logic reasoner), which work closely
together, with the domain ontology guiding the information extraction process.
The result of the linguistic analysis is a (partial) semantic representation of the
content of the textual data in form of an OWL semantic network of instances

1308 E.P. Bontas, D. Schlangen, and T. Schrader

of concepts and properties from the domain ontology. This ontology is used in
three processing stages in lupus, all of which can profit from a good cover-
age (as ensured by building the ontology bottom-up, supported by OntoSeed)
and a “linguistics-friendly” specification (as described above). The most obvi-
ous step where NLP and ontology interface is concept lookup: the ontology de-
fines the vocabulary of the semantic representation. Since lupus cannot “know”
whether a phrase encountered (e.g. “anthrakotischer Lymphknoten/anthracotic
lymph node”) is modelled as a simple or complex concept (i.e., as a concept
AnthrakotischerLymphknoten or as a concept Lymphknoten having the property
anthrakotisch) it has to first try the “longest match”. For this to work, the sys-
tem has to be able to construct a form that would be the one contained in the
ontology. To stay with this example, an inflected occurrence of these terms, e.g.
in “die Form des anthrakotischen Lymphknotens” (“the form of the anthracotic
lymph node”), would have to be mapped to a canonical form, which then can be
looked up. As mentioned above, in ontologies like UMLS there is no guarantee
that a concept name would be in a particular form, if present at all. In a sec-
ond step, the ontology is used to resolve the meaning of compound nouns and
prepositions [25].

During this project we examined two alternatives for the semi-automatic
generation of an ontology for lung pathology which suits the application func-
tionality mentioned above. The two experiments were similar in terms of engi-
neering team (and of course application context). In the first one the ontology
was compiled on the basis of UMLS, as the largest medical ontology available.
The engineering process was focused on the customization of pre-selected UMLS
libraries w.r.t. the application requirements and resulted in an ontology of ap-
proximately 1200 concepts modeling the anatomy of the lung and lung diseases
[22, 21]. Pathology-specific knowledge was found to not be covered by available
ontologies to a satisfactory extent and hence was formalized manually. In the
second experiment the ontology was generated with the help of the OntoSeed
tools as described in Section 3.1.11

We compared the efforts invested in the corresponding engineering processes
and analyzed the fitness of use of the resulting ontologies, in our case the results
these ontologies achieved in semantic annotation tasks. The main advantages
of the OntoSeed-aided experiment compared to the UMLS-based one are the
significant cost savings in conjunction with the improved fitness of use of the
generated ontology.

From a resource point of view, building the first ontology involved four times
as many resources than the second approach (5 person-months for the UMLS-
based ontology with 1200 concepts vs. 1.25 person-months for the “text-close”
ontology of a similar size). We note that the customization of UMLS12required

11 The knowledge-intensive nature and the complexity of the application domain con-
vinced us to not pursue the third possible alternative, building the ontology from
scratch.

12 Customization includes getting familiar with, evaluating and extracting relevant
parts of the source ontologies.

Creating Ontologies for Content Representation—The OntoSeed Suite 1309

over 45% of the overall effort necessary to build the target ontology in the first
experiment. Further 15% of the resources were spent on translating the input
representation formalisms to OWL. The reuse-oriented approach gave rise to
considerable efforts to evaluate and extend the outcomes: approximately 40% of
the total engineering effort were necessary for the refinement of the preliminary
ontology. The effort distribution for the second experiment was as follows: 7%
of the overall effort was invested in the selection of the relevant concepts. Their
taxonomical classification required 25% of the resources, while a significant pro-
portion of 52% was spent on the definition of additional semantic relationships.
Due to the high degree of familiarity w.r.t. the resulting ontology, the evalu-
ation and refinement phase in the second experiment was performed straight
forward with 5% of the total efforts. The OWL implementation necessitated the
remaining 11%.

In comparison with a fully manual process the major benefit of OntoSeed
according to our experiences would be the pre-compilation of potential domain-
specific terms and semantic relationships. The efforts invested in the taxonomical
classification of the concepts are comparable to building from scratch, because
in both cases the domain experts still needed to align the domain-relevant con-
cepts to a pre-defined upper-level ontology (in our case the Semantic Network
core medical ontology from UMLS). The selection of domain-relevant terms was
accelerated by the usage of the termhood measure as described above since
this avoids the manual processing of the entire domain corpus or the complete
evaluation of the corpus vocabulary. The efforts necessary to conceptualize the
semantical relationships among domain concepts were reduced by the clustering
methods employed to suggest potential subClass and domain-specific relation-
ships. However the OntoSeed approach assumes the availability of domain-narrow
text sources and the quality of its results depends on the quality/domain rele-
vance of the corpus.

In order to evaluate the quality of the outcomes (i.e. the ontologies resulted
from the experiments mentioned above) we compared their usability within the
LUPUS system by setting aside a subset (370 texts) of the LungPath corpus
and comparing the number of nouns matched to a concept. Using the ontol-
ogy created by using OntoSeed (on a different subset of the corpus) as com-
pared to the ontology derived from UMLS resulted in a 10 fold increase in the
number of nouns that were matched to an ontology concept—very encouraging
results indeed, which indicate that our weighting method indeed captures con-
cepts that are important for the whole domain, i.e. that the results generalize
to unseen data. However, this evaluation method does of course not tell us how
good the recall is w.r.t. all potentially relevant information, i.e., whether we
not still miss relevant concepts—this we could only find out using a manually
annotated test corpus, a task which is currently performed. In a preliminary
evaluation, domain experts selected the most significant (w.r.t their information
content) concepts from an arbitrary set of 50 patient reports. These concepts
are most likely to be used as search terms in the envisioned system because of

1310 E.P. Bontas, D. Schlangen, and T. Schrader

their high domain relevance (as assigned by human experts). The ontology de-
rived from UMLS contained 40% of these concepts. However, only 8% of them
were directly found in the ontology,13 while the usage of the remaining 32%
in the automatic annotation task was practically impossible because of the ar-
bitrary concept terminology used in UMLS. As underlined before UMLS con-
tains concept names in various forms (“noun, adjective”, “adjective noun”, full
phrases—to name only a few). In comparison, the OntoSeed-generated ontol-
ogy was able to deliver 80% of the selected concepts with an overall rate of
61% directly extracted concepts. In contrast to the UMLS-oriented case, the
19% of the remaining, indirectly recognized concepts could be de facto used
in automatic annotation tasks, due to the NLP-friendly nature of the ontol-
ogy. In the second ontology the concepts were denominated in an homogeneous
way and critical modeling decisions were available in a machine-processable
format.

The results of the evaluation can of course not be entirely generalized to ar-
bitrary settings. Still, due to the knowledge-intensive character of its processes,
medicine is considered a representative use case for Semantic Web technologies
[17]. Medicine ontologies have already been developed and used in different appli-
cation settings: GeneOntology [5], NCI-Ontology [11], LinKBase [4] and finally
UMLS. Though their modeling principles or ontological commitments have often
been subject of research [28, 23, 27, 10], there is no generally accepted method-
ology for how these knowledge sources could be efficiently embedded in real
Semantic Web applications. At the same time, the OntoSeed results could be
easily understood by domain experts, enabled a rapid conceptualization of the
application domain whose quality could be efficiently evaluated by the ontol-
ogy users. Though OntoSeed was evaluated in a particular application setting,
that of semantically annotating domain-narrow texts using NLP techniques, we
strongly believe that the tools and the underlying approach are applicable to
various domains and domain specific corpora with similar results. This assump-
tion was in fact confirmed by the technical evaluation of the tools on a second
English corpus from the domain of tourism.

5 Conclusions and Future Work

In this paper we presented methods to aid the ontology building process. Starting
from a typical setting—the semantic annotation of text documents—we intro-
duced a method that can aid ontology engineers and domain experts in the
ontology conceptualization process. We evaluated the analysis method itself on
two corpora, with good results, and the whole method within a specific appli-
cation setting, where it resulted in a significant reduction of effort as compared

13 Directly extracted concepts are the result of simple string matching on concept
names or their synonyms. The indirect extraction procedure assumes that a specific
concept available in the text corpus is formalized “indirect” in the ontology i.e. as a
set of concepts and semantical relationships; see Section 3.

Creating Ontologies for Content Representation—The OntoSeed Suite 1311

to adaptation of existing resources. Additionally, the method suggests guidelines
for building “linguistics-friendly” ontologies, which perform better in ontology-
based NLP tasks like semantic annotation.

As future work, we are investigating to what extent analyzing verbs in domain
specific texts can be used to aid ontology building, and ways to extract more
taxonomic information from this source (e.g. information about hypnoym (is-a)
relations, via the use of the copula (x is a y)), while still being as linguistically
knowledge-lean as possible. Second, we are currently implementing a graphical
user interface to simplify the usage of the presented tools in ontology engineering
processes and in the same time to extend the automatic support provided by the
OntoSeed approach. Lastly we will complete the evaluation of the LUPUS system
and the benefits of using “NLP-friendly” ontologies for the semantic annotation
task in more detail.

Acknowledgements

This work has been partially supported by the EU Network of Excellence
“KnowledgeWeb” (FP6-507482). The project “A Semantic Web for Pathology”
is funded by the DFG (German Research Foundation). We are also grateful to
Google Inc. for making available their API to the public. Thanks to Manfred
Stede for valuable comments on a draft of this paper.

References

1. J. A. Bateman. The Theoretical Status of Ontologies in Natural Language Pro-
cessing. KIT-Report 97, Technische Universität Berlin, May 1992.

2. K. Bontcheva, H. Cunnigham, V. Tablan, D. Maynard, and H. Saggion. Develop-
ing Reusable and Robust Language Processing Components for Information Sys-
tems using GATE. In Proceedings of the 3rd International Workshop on Natu-
ral Language and Information Systems NLIS02. IEEE Computer Society Press,
2002.

3. P. Buitelaar, D. Olejnik, and M. Sintek. A Protege Plug-In for Ontology Extraction
from Text Based on Linguisitc Analysis. In Proceedings of the European Semantic
Web Symposium ESWS-2004, 2004.

4. W. Ceusters, B. Smith, and J. Flanagan. Ontology and Medical Terminology:
Why Description Logics are Not Enough. In Proc. Towards An Electronic Patient
Record, TEPR2003, 2003.

5. The Gene Ontology Consortium. Gene Ontology: Tool for the Unification of Biol-
ogy. Nature Genetics, 25:25–30, 2000.

6. M. Dittenbach, H. Berger, and D. Merll. Improving Domain Ontologies by
Mining Semantics from Text. In Proceedings of the first Asian-Pacific confer-
ence on Conceptual modelling, pages 91–100. Australian Computer Society, Inc.,
2004.

7. P. Drouin. Detection of Domain Specific Terminology Using Corpora Compari-
son. In Proceedings of the International Language Resources Conference LREC04,
Lisbon, Portugal, May 2004.

1312 E.P. Bontas, D. Schlangen, and T. Schrader

8. D. Faure and Poibeau T. First Experiments of Using Semantic Knowledge Learned
by ASIUM for Information Extraction Task Using INTEX. In Ontology Learning
ECAI-2000 Workshop, 2000.

9. M. Fernández-López and A. Gómez-Pérez. Overview and Analysis of Method-
ologies for Building Ontologies. Knowledge Engineering Review, 17(2):129–156,
2002.

10. A. Gangemi, D. M. Pisanelli, and G. Steve. An Overview of the ONIONS Project:
Applying Ontologies to the Integration of Medical Terminologies. Data Knowledge
Engineering, 31(2):183–220, 1999.

11. J. Golbeck, G. Fragoso, F. Hartel, J. Hendler, B. Parsia, and J. Oberthaler. The
National Cancer Institute’s Thesaurus and Ontology. Journal of Web Semantics,
1(1), 2003.

12. I. Gurevych, R. Porzel, E. Slinko, N. Pfleger, J. Alexandersson, and S. Merten.
Less is More: Using a Single Knowledge Representation in Dialogue Systems. In
Proceedings of the HLT-NAACL Workshop on Text Meaning, 2003.

13. U. Hahn and K. Schnattinger. Towards Text Knowledge Engineering. In Proceed-
ings of the AAAI/IAAI, pages 524–531, 1998.

14. J. R. Hobbs, W. Croft, T. Davies, D. Edwards, and K. Laws. Commonsense
metaphysics and lexical semantics. Compuational Linguistics, 13(3–4), 1987.

15. K. Kageura and B. Umino. Methods of Automatic Term Recognition. Terminology,
3(2):259–289, 1996.

16. A. Kilgarriff and G. Grefenstette. Introduction to the Special Issue on the Web as
Corpus. Computational Linguistics, 29(3):333–348, September 2003.

17. KnowledgeWeb European Project. Prototypical Business Use Cases (Deliverable
D1.1.2 KnoweldgeWeb FP6-507482), 2004.

18. A. Maedche and S. Staab. Semi-automatic Engineering of Ontologies from Text.
In Proceedings of the 12th International Conference on Software Engineering and
Knowledge Engineering SEKE2000, 2000.

19. C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge, Massachusetts, USA, 1999.

20. S. Nirenburg and V. Raskin. The Subworld Concept Lexicon and the Lexicon
Management System. Computational Linguistics, 13(3–4), 1987.

21. E. Paslaru Bontas, M. Mochol, and R. Tolksdorf. Case Studies in Ontology Reuse.
In Proceedings of the 5th International Conference on Knowledge Management
IKNOW05, 2005.

22. E. Paslaru Bontas, S. Tietz, R. Tolksdorf, and T. Schrader. Generation and
Management of a Medical Ontology in a Semantic Web Retrieval System. In
CoopIS/DOA/ODBASE (1), pages 637–653, 2004.

23. D.M. Pisanelli, A. Gangemi, and G. Steve. Ontological Analysis of the UMLS
Metathesaurus. JAMIA, 5:810 – 814, 1998.

24. M. L. Reinberger and P. Spyns. Discovering Knowledge in Texts for the Learning of
DOGMA-inspired Ontologies. In Proceedings of the Workshop Ontology Learning
and Population, ECAI04, pages 19–24, Valencia, Spain, August 2004.

25. D. Schlangen, M. Stede, and E. Paslaru Bontas. Feeding OWL: Extracting and
Representing the Content of Pathology Reports. In Proceedings of the NLPXML
Workshop 2004, 2004.

26. H. Schmid. Probabilistic part-of-speech tagging using decision trees. In Proceed-
ings of the International Conference on New Methods in Language Processing,
1994.

Creating Ontologies for Content Representation—The OntoSeed Suite 1313

27. S. Schulze-Kremer, B. Smith, and A. Kumar. Revising the UMLS Semantic Net-
work. In Proceedings of the Medinfo 2004, 2004.

28. B. Smith, J. Williams, and S. Schulze-Kremer. The Ontology of GeneOntology. In
Proceedings of the AMIA, 2003.

29. M. Stede and D. Schlangen. Information-Seeking Chat: Dialogues Driven by Topic-
Structure. In Proceedings of Catalog (the 8th Workshop on the Semantics and
Pragmatics of Dialogue SemDial04), pages 117–124, 2004.

30. R. Tolksdorf and E. Paslaru Bontas. Organizing Knowledge in a Semantic Web for
Pathology. In Proceedings of the NetObjectDays Conference, 2004.

31. G. K. Zipf. Human Behaviour and the Principle of Least Effort. Addison-Wesley,
Cambridge, MA, USA, 1949.

Fully Automatic Construction of Enterprise
Ontologies Using Design Patterns:

Initial Method and First Experiences

Eva Blomqvist

School of Engineering, Jönköping University, P.O. Box 1026, SE-551 11 Sweden
eva.blomqvist@ing.hj.se

Abstract. The main contribution of this paper is an initial method
for automatically exploiting ontology design patterns with the aim of
further automating the creation of enterprise ontologies in small-scale
application contexts. The focus is so far on developing a fully automated
construction method, thereby somewhat reducing the requirements on
ontology customization and level of detail. In this paper we present an
approach how to use knowledge (patterns) from other areas, like data
modeling, knowledge reuse, software analysis and software design, to
create ontology patterns. These design patterns are then used within our
method for automatically matching and pruning them, in accordance
with information extracted from existing knowledge sources within the
company in question. Though the method still needs some fine-tuning, it
has already been used when creating an enterprise ontology for a supplier-
company within the automotive industry.

1 Introduction

The area of ontology engineering is developing fast, new methods and tools are
introduced continuously. Recent developments involve semi-automatic ontology
construction to reduce the time and effort of constructing an ontology, but also
to reduce the need of expert ”ontology engineers”. Especially when considering
small-scale application cases the need for reducing the effort and expert require-
ments is obvious.

One way of reducing this effort is by further facilitating semi-automatic con-
struction of ontologies, but also by introducing reuse in ontology engineering.
Patterns have proved to be a fruitful way to handle the problem of reuse in a
construction setting. In software engineering it is already the commonly accepted
way to build software, by using for example design and architecture patterns.
This could also become true in ontology engineering.

Some might question this by stating that reuse of ontologies, and knowledge
in general, is a much more complex task and the result needs to be precisely
adapted to the users’ context. This is true, but it has been proven, for example
considering data model patterns and reuse of problem-solving methods, that
knowledge reuse is actually possible. The focus of this paper is the use of a specific

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1314–1329, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Fully Automatic Construction of Enterprise Ontologies 1315

kind of patterns, ontology design patterns, for knowledge reuse and automatic
ontology construction.

In the next section some definitions are given, e.g. what is meant by ontology,
pattern, and ontology patterns, together with a presentation of related work. In
Sect. 3 patterns are discussed in more detail, and our reuse approach towards
patterns is introduced. The section continues by presenting the method for using
ontology design patterns in automatic ontology creation. The approach was val-
idated and used for creating a real-world ontology within a research project in
the automotive suppliers domain. The results and experiences from this project
are presented in Sect. 4. Finally in Sect. 5 some conclusions are drawn and future
research possibilities are presented.

2 Background and Related Work

This section presents some background and definitions together with other re-
search approaches which are related to our own approach.

2.1 Ontologies

Ontology is a popular term today, used in many areas and defined in many
different ways. In this paper ontology is defined as:

An ontology is a hierarchically structured set of concepts describing a specific
domain of knowledge, that can be used to create a knowledge base. An ontology
contains concepts, a subsumption hierarchy, arbitrary relations between concepts,
and axioms. It may also contain other constraints and functions.

The definition is a reformulation of what is contained in the most common
ontology definitions today. It sets constraints on what can be denoted by ”on-
tology” but even using this definition, ontologies can be used for many different
purposes and applications, and they can be constructed and structured in many
different ways. One of the most common ways to describe the level of generality
of an ontology is by using the structure in Fig. 1 [1].This shows how a general
top-level ontology can be specialised into a domain ontology (describing some
knowledge domain) or a task ontology (describing a generic task applicable to
several domains). Domain and task ontologies can in turn be specialised, and
combined, into application ontologies. An application ontology describes a cer-
tain task (or tasks) specialised for a specific domain. As will be shown this paper
is mostly concerned with domain ontologies within enterprises.

Another categorisation of ontologies can be obtained by classifying them by
their intended use [2]. There are three main levels, terminological ontologies, in-
formation ontologies and knowledge modelling ontologies, where each level adds
further complexity to the ontology structure. Terminological ontologies are used
to structure terminology, information ontologies to structure information in gen-
eral and knowledge modelling ontologies to perform more advanced knowledge
management tasks. For example, in a terminological ontology often a simple

1316 E. Blomqvist

Top-level Ontology

Task OntologyDomain Ontology

Application Ontology

Fig. 1. Different kinds of ontologies according to their level of generality [1]

taxonomy of terms is enough. In an information ontology general relations and
simple axioms may also be needed, while in a knowledge modelling ontology more
advanced axioms and constraints are very often required, in order to perform
reasoning tasks. Our focus is mainly on information ontologies.

A final dimension to be considered when discussing ontologies today is the
construction, maintenance and evolution strategy used. Here it is important
to distinguish between purely manual methods and semi-automatic (or even
fully automatic) methods. It is important to note that most management of
ontologies is in some way semi-automatic, since the use of tools for tasks in
this area is common practice. The extent of automation, from purely manual
to fully automatic, of the different tasks in an ontology life-cycle has an impact
on both the type of ontology and the possible patterns needed for its creation
and evolution. As stated at the beginning of this paper our aim is to further
automate the ontology construction process.

2.2 Patterns in Computer Science

The idea of using patterns in computer science came from the architecture field
already in the 70’s and 80’s. Generally patterns can assist on the following is-
sues [3]:

– Patterns address a recurring design problem that arises in specific design
situations, and presents a solution to it.

– Patterns document existing, well-proven design experience.
– Patterns identify and specify abstractions that are above the level of single

classes and instances of components.
– Patterns provide a common vocabulary and understanding for design prin-

ciples.
– Patterns are a means of documenting an architecture.
– Patterns help in constructing complex and heterogeneous architectures.
– Patterns help in managing complexity.

Fully Automatic Construction of Enterprise Ontologies 1317

The probably most well-known book in the software pattern community
is the book on design patterns [4], but there exist many other kinds of pat-
terns on different levels of abstraction and intended for different usage areas.
There are patterns to help data modellers in describing a company’s informa-
tion structures, either for constructing a database or a model used by an ap-
plication [5]. Further, there exist semantic patterns, used as meta-structures in
knowledge engineering, and knowledge patterns for describing implementation
independent constructs used in the knowledge base development of artificial in-
telligence. Also, complete libraries of generic problem-solving methods [6] are
present, object system models for reuse in software engineering [7], and many
other approaches.

Ontology Patterns. As has been described above, patterns are widely used
in many areas of computer science today. The ontology community has not yet
adopted the pattern idea on a broader scale. There exist a few patterns for
ontologies, and all of them are specialised for some specific kind of ontology
(with respect to both level of generality, usage area, and construction method
as defined in section 2.1).

For specific ontology languages, patterns are being developed to help engi-
neers construct useful and well-structured ontologies. An example is the OWL-
patterns created by the W3C Ontology Engineering Patterns Task Force, within
the Semantic Web Best Practices and Deployment Working Group [8]. These
patterns describe how to implement certain features in OWL, like the notion of
n-ary relations and how to represent classes as property values.

Examples of meta-structures for ontologies, which can be denoted patterns,
are semantic patterns, for describing implementation independent logical con-
structs [9] [10]. These patterns can for example describe notions like locally
inverse relations and composition of relations. The implementation of the pat-
terns (as axioms in an ontology) depends very much on which logical formalism
is used to construct the ontology. By first using the semantic patterns to de-
scribe the meaning of the constructs, the language specific implementation can
be postponed.

Similar to software design patterns are the ontology design patterns devel-
oped by the Laboratory of Applied Ontology [11] and the design patterns devel-
oped for ontologies in molecular biology [12]. These patterns are intended to be
used when constructing ontologies, as a good way to structure and implement
smaller parts of the ontology. The patterns are quite general and describe for
example how to keep track of updates between different partitions of an on-
tology, or how to structure a terminological hierarchy. That is, they are often
application and domain independent.

In our research we have previously attempted to structure the area of ontol-
ogy patterns [13]. Five levels of patterns can be identified, from the application-
level where patterns deal with the usage and interaction of different ontologies
within an application down to the syntactic level where patterns are language
specific. The other levels are architecture patterns, describing how to arrange the
overall structure of the ontology, design patterns, describing how to structure

1318 E. Blomqvist

and implement smaller parts (perhaps modules) of the ontology, and semantic
patterns describing the primitives of an ontology in a language independent way.

On all these levels there can be patterns for constructing ontologies for dif-
ferent usages and with different levels of generality, as well as for different con-
struction methods (manual or automatic), as presented in Sec. 2.1. Patterns are
not yet developed at all of these levels and with all these aspects in mind. As
can be noted when studying the related work presented above, the focus has
mainly been on the lower levels (syntactic and semantic patterns). Also some
design patterns are present, but mainly for manual use. The focus of this paper
will be on design patterns for automatic use. This means that the patterns have
to be more specific and formalised than patterns intended to be used manually.

2.3 Semi-automatic Ontology Construction

There are a number of existing semi-automatic approaches when it comes to on-
tology construction. Semi-automatic ontology construction, sometimes denoted
ontology learning, is a quite new field in ontology research. Many researchers
have realized that building ontologies from scratch, and by hand so to speak,
is too resource demanding and too time consuming. In most cases there are al-
ready different knowledge sources that can be incorporated in the ontology engi-
neering process. Such existing knowledge sources can be documents, databases,
taxonomies, web sites, applications and other things. The question is how to
extract the knowledge incorporated in these sources automatically, or at least
semi-automatically, and reformulate it into an ontology.

To solve this problem the researchers in the field have come up with varying
solutions. The name ”ontology learning” refers to that many solutions build
on some learning mechanism originating in the area of machine learning. The
approaches have some differences in choice of solutions and both in choice of
input and output, but the main differences lie in the aim of the methods. Some
are aimed at terminological ontologies only, while others are more aimed at
information ontologies on the domain ontology level. It is the latter kind that is
most interesting in the scope of this paper.

Many of the semi-automatic approaches rely on basic techniques that were
developed for other purposes. The techniques often originated in data or text
mining, or in machine learning. Some of the parts present in most systems are
term extraction by linguistical analysis and relations extraction by co-occurrence
theory (or association rules). Some systems also try to automatically build a
concept taxonomy by using some form of concept clustering. This clustering can
be based on purely linguistic information and linguistic patterns [14] [15] or on
details of the already extracted concepts [16](like instances or attribute values).
These systems are the ones that come closest to being fully automatic. Still
there is no way to include for example arbitrary relations in these clustering
algorithms. The approach suggested in this paper tries instead to start with the
demand of a fully automatic system, and realize it by using patterns to construct
the ontology from single concepts and relations extracted from texts.

Fully Automatic Construction of Enterprise Ontologies 1319

3 Automatic Ontology Construction

In this section we present our approach, first how to create ontology design pat-
terns and then how to use them in an automatic ontology construction process.

3.1 Approach to Creation of Ontology Patterns

One can imagine two general approaches when addressing the problem of creat-
ing (or extracting) ontology design patterns. The first one is to take all existing
ontologies and derive patterns from them. The other one is to develop criteria
of ”good design” and construct patterns that reflect these principles. Unfortu-
nately, to derive criteria of how to design ontologies for all situations is almost
impossible, so the second approach is not practically feasible.

The first approach is the common way, in for example software engineering, to
”discover” patterns using existing structures and experiences. Unfortunately en-
terprise ontologies are so far quite scarce and often sparsely documented, which
makes it hard to extract patterns from them. It would be like extracting software
design patterns from actual running systems, instead of from design specifica-
tions. This can be done but it is a very complex task.

One ”middle course” is to try to draw from knowledge already accumulated
in other areas. Many patterns in computer science also describe some kind of
knowledge, although they might have a different purpose than constructing on-
tologies. Our approach is to study patterns from other areas in order to develop
ontology patterns, since the focus in many cases is still on enterprises. For our
first experiments in the area some sources of pattern-like constructs where cho-
sen, among others sources from data modelling, software engineering, knowledge
and software reuse (for example reuse of problem-solving methods).

One of the areas most similar to ontology engineering is the database domain.
Database structures are modelled to describe a domain, of course with the intent
of storing data efficiently, but they share many properties with ontologies. Es-
pecially when, as in our case, ontologies are restricted to information ontologies
within enterprises, since one of the largest application areas of databases is of
course storing enterprise data. The greatest differences lie in the aim and usage
of the structures. While databases are intended to store data and their rela-
tions, ontologies are intended to bring meaning and structure to the enterprise’s
content.

Since we expected to gain from reusing this knowledge, our first attempt was
to ”translate” the knowledge stored in for example data model patterns into
ontology design patterns. Some parts of the data model patterns were left out
for these first tests, like for example cardinality constraints. The aspects that
were taken into consideration and their chosen mappings to ontologies are shown
in Table 1.

To illustrate this mapping Fig. 2 shows a very simple data model pattern
describing organisations of different types (the pattern can be found in [17]).
This pattern has then been translated into an ontology design pattern, which is
depicted (using the tool KAON [18]) in Fig. 3.

1320 E. Blomqvist

Table 1. Chosen mappings between data models and ontologies

Data Model Ontology

Entity Concept
Attribute Relation to ”attribute”-concept
Subtypes/Supertypes Subsumption hierarchy
Relationships Relations
Mutually exclusive sets Disjoint concepts

ORGANISATION

* NAME

LEGAL ORGANISATION
o ID NUMBER

CORPORATION
GOVERNMENT
AGENCY

INFORMAL ORGANISATION

TEAM FAMILY
OTHER INFORMAL
ORGANISATION

Fig. 2. Data model pattern describing organisations [17]

Fig. 3. Resulting ontology design pattern

Another source of patterns is the goal structures of the object system models,
presented in [7]. These constructs can be viewed as representing processes within
a company, consisting of a set of goals and choices for how to accomplish them.
Table 2 shows the mappings chosen to adapt a goal structure for use as an
ontology design pattern. Other similar mappings were then determined for the
remaining sources but will not be displayed in this paper.

Fully Automatic Construction of Enterprise Ontologies 1321

Table 2. Chosen mappings between goal structures and ontologies

Goal Structure Ontology

Node (goal or method) Concept
AND-relations Part-of relations
OR-relations Choice relation (related to

a new concept representing the
category of possible choices)

Iterations Part-of relations

Since the naming of terms in the source areas might not be adequate for
ontologies, and ontologies aim at describing a concept and not mainly a term,
the resulting ontology design patterns were enriched with label synonyms. The
synonyms used were WordNet synsets [19]. This gives the patterns a certain level
of abstraction, since the concepts do not simply represent a linguistic term but
actually a concept with an option of choosing the concept representation out of
all possible synonyms.

At this stage quite simple parts of the ontologies have been considered, for
example only very simple axioms have been incorporated in the patterns (like
disjointness of concepts). In future experiments more complex axioms should
also be developed for the patterns, in order to make the resulting ontology more
useful and precise. The level of detail of the patterns is also to be more carefully
considered in the future. The instance level is not present since instances can be
viewed as a specialisation for a specific case, and this would not be appropriate
in an abstract pattern, but where to draw the line between classes and instances
is always an open question.

3.2 Method for Automatic Ontology Construction

Since the focus of our research is mainly on patterns, and the more basic parts
of semi-automatic ontology creation have already been well researched, our ap-
proach uses existing tools to extract concepts and relations. So far very few of
these approaches go further than extraction of single terms or relations so this
is where our approach is needed.

The method that we propose in this paper is still under refinement but the
general idea can be viewed in Fig. 4. The idea is to take the extracted terms
and relations, match them against the patterns and depending on the result use
parts of the patterns to build the ontology. As a preprocessing step a text corpus
is analysed by some term extraction software, which renders a list of possibly
relevant terms. This list of terms is the input to our method.

The first step is then to match the list of terms against all the patterns in
the library. The method used for this matching is not fixed at this stage of our
methodology development. There exist many matching approaches for lexical
matching to choose from, and for each such method it also has to be decided

1322 E. Blomqvist

Amount of relations matched

Input text corpus

Extract terms
from texts using some
automatic extraction

mechanism

Match extracted
concepts to

concepts in pattern

Compute score based
on the two inputs

Extract associations
from texts using the
matched terms for

each pattern

Accept
patterns above
certain score

Compile ontology
of the accepted

patterns

Discard pattern

Term list

Score for each pattern

Accepted patterns

Match extracted
relations to relations

in pattern

Pattern catalogue

Set of matched terms

Amount of terms
matched

Association list

Fig. 4. The basic steps of the proposed method

Fully Automatic Construction of Enterprise Ontologies 1323

on what grounds to register an accepted match. In Sect. 4 we show one possible
realisation of this matching process, using a string matching tool.

This first step results in two things. First, a score for each pattern represent-
ing the amount of terms in the pattern that matches the term-list. Second, a
list of the terms in the extracted term-list that were considered to have been a
match to the pattern at hand. The list of correctly matched terms is used (for
each pattern) to extract possible relations in the pattern also present in the text
corpus. This relation extraction is also outside the scope of our research, since
tools for this already exist. The output of this should be a list of connected
concepts together with their relations. These connected concepts are then com-
pared to the pattern currently in question and a score is computed based on the
amount of relations in the pattern that also exist among the extracted relations.
The exact nature of the matching is not fixed at this stage of our research, an
example procedure is presented in Sect. 4.

Next, the two scores obtained (matched concepts and matched relations) are
weighted together to form a ”total matching-score” for each pattern. Then a
decision is made according to some threshold value, which patterns will be kept
and included in the resulting ontology and which will be discarded. Finally, an
ontology is built from the accepted patterns. This construction is based on the
lists generated at the beginning of the process, the lists of matched concepts
and relations. The basic method for building the ontology, by considering one
pattern at a time, is depicted in Fig. 5.

Concept already
in ontology?

Add new
synonyms

Add concept to
ontology

Add relations connected to
concept according to

heuristics

Yes

NoList of matched
terms Untreated concepts?

Yes

No

List of matched
relations

Fig. 5. The basic steps of the ontology building, for each accepted pattern

For each pattern the lists of matches are used as input. Then there is an
iterative step which considers all concepts and relations of the pattern. If the
concept at hand is already in the ontology (no conflicting synonyms) the concept
in the ontology is only enriched with all new synonyms that have been found for
the new concept. If the concept is not in the ontology already, it is added along
with all matched synonyms.

Relations between concepts are added according to some heuristics. Rela-
tions to and from concepts already present in the ontology and matched in the
matching process previously are added. Other heuristics, like adding hierarchi-
cal relations directly between concepts which in the pattern are separated only

1324 E. Blomqvist

by an intermediate node, or adding a node if more than a certain number of
relations lead to it could be possible. The iterative process continues until there
are no more concepts or relations of the pattern to consider.

A criticism one might propose is that the patterns might not perfectly reflect
what the enterprise actually means by the terms they use, depending on how the
matching is done. This is certainly a concern to be evaluated in the future but
so far our focus is on creating a fully automatic process. Also if a concept has
been matched to the wrong sense intended by the enterprise, this will not have
a great impact on the resulting ontology since other parts of the pattern will
not be matched and thereby pruned in the later stages of the process. After the
process is finished there is also nothing which opposes a manual validation or
refinement of the resulting ontology, but this is outside the scope of this paper.
If instances are needed in the ontology then a post-processing step is certainly
needed.

4 Experiment: Creating an Enterprise Ontology for an
Automotive Supplier

In order to validate the approach introduced in Sect. 3, we performed an exper-
iment, which was part of the research project SEMCO. SEMCO aims at intro-
ducing semantic technologies into the development process of software-intensive
electronic systems in order to improve efficiency when managing variants and
versions of software artifacts. The scope of the experiment was to fully automat-
ically construct a selected part of the enterprise ontology for one of the SEMCO
project partners, based on a collection of documents from product development.
The purpose of the ontology is to support capturing of relations between de-
velopment processes, organisation structures, product structures and artifacts
within the development process.

The ontology is so far limited to describing the requirements engineering
process, requirements and specifications with connections to products and parts,
organisational concepts and project artifacts. This is due to the limited amount
of patterns used in this initial experiment. 25 ontology patterns were developed
based on the approach presented in Sect. 3.1. The sources of the 25 patterns
used are specified in Table 3.

The text corpus used in the process consisted of software development plans,
software development process descriptions, and other similar documents. The
extraction of relevant terms and relations from these texts were performed using
the tool Text-To-Onto [24] within the KAON tool-suite [18]. This choice was
made mainly out of convenience, since this is one of the most mature tools and
it is freely available on the KAON website. Any evaluation of the methodology
will be conducted with the same prerequisite extraction method, so this is not
considered important at this early stage of validation.

In order to keep the experiment on a reasonable scale, to be able to validate
the accuracy and efficiency of the method manually, the concepts and patterns
were restricted to a relatively low number. Therefore, a frequency threshold of 25

Fully Automatic Construction of Enterprise Ontologies 1325

Table 3. Patterns used in the experiment and their original sources

Pattern name Source

Actions Analysis pattern [20]
Analysis and modeling Goal structure [7]
Communication event Data model [17]
DOLCE Descriptions and Situations Top-level ontology [21]
Employee and department Data model [17]
Engineering change Data model [22]
Information acquisition Goal structure [7]
Organisation Data model [17]
Parts Data model [22]
Party Data model [17]
Party relationships Data model [17]
Party roles Data model [17]
Person Data model [17]
Planning and scheduling Goal structure [7]
Positions Data model [17]
Product Analysis pattern [20]
Product associations Data model [17]
Product categories Data model [17]
Product features Data model [17]
Requirements Data model [17]
Requirements analysis Goal structure [7]
System Cognitive pattern taxonomy [23]
System analysis Cognitive pattern taxonomy [23]
System synthesis Cognitive pattern taxonomy [23]
Validate and test Goal structure [7]
Work effort Data model [17]

was set at the concept extraction and used during the experiment. This rendered
190 concepts as the initial input of the construction process.

The matching of the pattern-concepts and their synonyms against the ex-
tracted concepts was done using a lexical matching tool. In order to be able
to test different matching algorithms and metrics, an existing string matching
comparison tool [25] was selected for this task (Secondstring, available at [26]).
For simplicity a Jaccard string similarity metric was selected for this initial ex-
periment and the threshold for a match was set to a similarity level of 0.5. When
this matching was completed for each pattern a score was computed according
to the number of matched concepts. There was also a list of correctly matched
concepts which were again used with the Text-To-Onto tool in order to extract
relations between those concepts.

When matching relations, all arbitrary relations were assumed to be transi-
tive, since this simplified the matching task when an intermediate concept did
not exist in the matched concepts. The score representing the number of cor-
rectly matched relations then was weighted together with the score of matched
concepts into a total score for each pattern. Since the relations were deemed
more important than the lexical matching of concept names, the relation scores
were in this experiment given a higher weight than the concept-matching scores.

Most patterns received a quite low score. This was mainly due to the diffi-
culty of extracting relations and thereby also matching relations to the patterns.
A quite low threshold score was set after some considerations and manual eval-
uations of relevancy of the patterns, and also because by accepting quite a few

1326 E. Blomqvist

patterns the properties of the pruning algorithm could be studied more thor-
oughly. This resulted in 14 accepted pattern out of the original 25.

The 14 accepted patterns were then compiled into an ontology using the
method specified in Sec. 3.2. Each pattern was treated separately, one at a time.
For each pattern each of its concepts was considered. If a matched concept
was not already in the ontology it was included, together with all its matched
synonyms. Otherwise only the missing synonyms were added. Then all relations
leading to and from the concept were considered. Using a set of heuristics some
of the relations were added to the resulting ontology.

Basic descriptions of some heuristics used are for example:

– Include all relations between added concepts, even if they were not matched.
– Use the transitive property of hierarchical relations, if an intermediate con-

cept is missing add the child directly at the level of the missing concept.
– An associative relation which originally relates two concepts is added even

if one of the concepts is missing, if and only if there is a child concept of the
missing concept present in the ontology...

The resulting ontology contains 35 concepts directly beneath the root concept
and in total a set of 85 concepts. Figure 6 shows a part of the resulting ontology
as a screenshot from the visualisation tool in KAON. This shows for example
concepts concerning products, their features, and their connection to the product
requirements.

Fig. 6. A part of the resulting ontology

Fully Automatic Construction of Enterprise Ontologies 1327

4.1 Remaining Issues

This first test of the method and the patterns by creating a real-world ontology
has resulted in a useful and well-structured ontology. Still there remains sev-
eral issues which should be subject of improvement in the future. The measures
for matching patterns against extracted terms and relations need considerable
improvement. The Jaccard string similarity measure and the simple scores of
matched concepts and relations are too crude measures for making an accu-
rate and reliable decision. There exist much research into the appropriateness of
different methods, which will be taken more into consideration in future devel-
opments of the methodology. Today for example, small patterns are favoured by
the metrics used, as well as short concept names. The effect of this were min-
imised in this experiment by using patterns of comparable size and reasonably
short concept names, but it should be solved in other ways in the future.

Also a refinement of the ontology building phase is needed, especially when it
comes to the heuristics used for inclusion or exclusion of concepts and relations.
For this first experiment the heuristics were chosen without proper evaluation,
simply on intuition. Also the resulting ontology needs to be more formally evalu-
ated and validated. For the resulting ontology to be more useful there also needs
to be a way of matching and including pattern axioms into the final ontology (in
this first experiment all axioms applying to included concepts or relations were
also included). Axioms are a very important part of an ontology so this should
be a focus of future research.

A problem that could arise in the future is that some areas of enterprises
that need to be present in an enterprise ontology cannot be found in any existing
knowledge structure suitable for reuse as an ontology design pattern. Patterns
could therefore also be created by experts and not only extracted from existing
sources. The coverage of the resulting ontology needs to be considered and the
possibility of finding patterns for all relevant aspects (both dependent and in-
dependent of the domain) need to be explored further. This is also true for the
level of detail of the ontology. Perhaps a manual post-processing step is suitable
for adding for example instances to the ontology, but this is outside the scope of
our current research.

5 Conclusion and Future Work

In this paper we have shown how patterns (and other knowledge constructs) from
other areas of computer science can be used as ”templates” for creating ontology
design patterns for automatic construction of enterprise ontologies. The resulting
patterns are domain specific, in the sense that they are chosen with the intent
of creating an enterprise ontology, but not domain specific when it comes to the
business domain. This indicates that, much like in the database community, the
ontology community could benefit greatly from reusing knowledge. The main
aim is to reduce the time and effort of creating an enterprise ontology together
with reducing the need for expert ”ontology engineers” in small-scale application
contexts.

1328 E. Blomqvist

For using the patterns, we propose an automatic construction method which
matches the patterns to a set of extracted terms and relations. Patterns with
enough matching concepts and relations are included in the resulting ontology,
but first pruned of irrelevant or inappropriate concepts, synonyms and relations.
This method is purely automatic but builds of course on the appropriate patterns
being provided. The resulting ontology could be manually verified and refined
as a post-processing step, if for example another level of detail (perhaps more
domain dependent) is required, but this is not within the scope of our approach.

The main contribution so far by our research is the development of a method
that continues where most semi-automatic ontology construction tools leave-off,
namely constructing the entire ontology from the extracted concepts and rela-
tions. The resulting ontology will not be as tailored for the company in question
as might a manual one, but it will be useful and mainly it will be fast and easy
to create. This all fits to the requirements of a small-scale application context.

Still, there remains a great deal of refinement of the method in order for it
to be used in a general case. The pattern catalogue needs to be broadened and
enriched, the metrics and matching methods need to be evaluated and refined
and the resulting ontologies need also to be subject of expert evaluations and
validated more formally.

Acknowledgements. This work is part of the research project Semantic Struc-
turing of Components for Model-based Software Engineering of Dependable
Systems (SEMCO) based on a grant from the Swedish KK-Foundation (grant
2003/0241). Special thanks to Annika Öhgren and Kurt Sandkuhl for ideas and
input during this work and also to three anonymous reviewers for valuable com-
ments on how to improve this paper.

References

1. Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of
FOIS’98. (1998) 3–15

2. van Heijst, G., Schreiber, A.T., Wielinga, B.J.: Using explicit ontologies for KBS
development. International Journal of Human-Computer Studies 46 (1997) 183–
292

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented Software Architecture - A System of Patterns. John Wiley & Sons, Chich-
ester (1996)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns - Elements of
Reusable Object-Oriented Software. Addison-Wesley (1995)

5. Hay, D.C.: Data Model Patterns - Conventions of Thought. Dorset House Pub-
lishing (1996)

6. Puppe, F.: Knowledge Formalization Patterns. In: Proceedings of PKAW 2000,
Sydney, Australia, 2000. (2000)

7. Sutcliffe, A.: The Domain Theory - Patterns for Knowledge and Software Reuse.
Lawrence Erlbaum Associates (2002)

8. W3C-SWBPD: Semantic Web Best Practices and Deployment Working Group.
Available at: http://www.w3.org/2001/sw/BestPractices/ (2004)

Fully Automatic Construction of Enterprise Ontologies 1329

9. Stuckenschmidt, H., Euzenat, J.: Ontology Language Integration: A Constructive
Approach. In: Proceedings of the Workshop on Application of Description Logics at
the Joint German and Austrian Conference on AI, CEUR-Workshop Proceedings.
Volume 44. (2001)

10. Staab, S., Erdmann, M., Maedche, A.: Engineering Ontologies using Semantic
Patterns. In O’Leary, D., Preece, A., eds.: Proceedings of the IJCAI-01 Workshop
on E-business & The Intelligent Web, Seattle (2001)

11. Gangemi, A.: Some design patterns for domain ontology building and analysis.
Available at: http://www.loa-cnr.it/Tutorials/OntologyDesign Patterns.zip, down-
loaded 2004-10-04. (2004)

12. Reich, J.R.: Ontological Design Patterns for the Integration of Molecular Biological
Information. In: Proceedings of the German Conference on Bioinformatics GCB’99.
(1999) 156–166

13. Blomqvist, E., Sandkuhl, K.: Patterns in Ontology Engineering: Classification
of Ontology Patterns. In: Proc. of ICEIS2005 7th International Conference on
Enterprise Information systems, Miami Beach, Florida (2005)

14. de Chalendar, G., Grau, B.: How to Classify Words Using their Context. In:
Proceedings of the 12th International Conference on Knowledge Engineering
and Knowledge Management, EKAW2000, Juan-les-Pins, France, October 2000,
Springer (2000) 203–216

15. Gamallo, P., Gonzalez, M., Augustinin, A., Lopes, G., de Lima, V.S.: Mapping
Syntactic Dependencies onto Semantic Relations. In: 15th European Conference
on Artificial Intelligence (ECAI’02): Workshop on Machine Learning and Natural
Language Processing for Ontology Engineering, Lyon, France. (2002)

16. Sporleder, C.: A Galois Lattice based Approach to Lexical Inheritance Hierar-
chy Learning. In: 15th European Conference on Artificial Intelligence (ECAI’02):
Workshop on Machine Learning and Natural Language Processing for Ontology
Engineering, Lyon, France. (2002)

17. Silverston, L.: The Data Model Resource Book, Revised Edition, Volume 1. John
Wiley & Sons (2001)

18. KAON: available at http://kaon.semanticweb.org/ (2005)
19. WordNet: available at http://wordnet.princeton.edu/ (2005) , downloaded 2005-

04-14.
20. Fowler, M.: Analysis Patterns - Reusable Object Models. Addison-Wesley (1997)
21. Gangemi, A., Mika, P.: Understanding the Semantic Web through Descriptions

and Situations. In: Proc. of the International Conference on Ontologies, Databases
and Applications of SEmantics (ODBASE 2003), Catania, Italy (2003)

22. Silverston, L.: The Data Model Resource Book, Revised Edition, Volume 2. John
Wiley & Sons Inc. (2001)

23. Gardner, K., Rush, A., Crist, M., Konitzer, R., Teegarden, B.: Cognitive Patterns
- Problem-solving Frameworks for Object Technology. Cambridge University Press
(1998)

24. Maedche, A., Volz, R.: The ontology Extraction & Maintenance Framework Text-
To-Onto. In: ICDM’01: The 2001 IEEE International Conference on Data Mining
Workshop on Integrating Data Mining and Knowledge Management. (2001)

25. Cohen, W., Ravikumar, P., Fienberg, S.: A Comparison of String Distance Met-
rics for Name-Matching Tasks. In: Proc. of IJCAI-03 Workshop on Information
Integration on the Web (IIWeb-03), August 9-10, 2003, Acapulco, Mexico. (2003)

26. SecondString: available at http://secondstring.sourceforge.net/ (2005)

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1330 – 1346, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Ontology Extraction from Unstructured Texts

Khurshid Ahmad and Lee Gillam

Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK
{k.ahmad, l.gillam}@surrey.ac.uk

Abstract. Construction of the ontology of a specific domain currently relies on
the intuition of a knowledge engineer, and the typical output is a thesaurus of
terms, each of which is expected to denote a concept. Ontological ‘engineers’
tend to hand-craft these thesauri on an ad-hoc basis and on a relatively small-
scale. Workers in the specific domain create their own special language, and
one device for this creation is the repetition of select keywords for consolidat-
ing or rejecting one or more concepts. A more scalable, systematic and auto-
matic approach to ontology construction is possible through the automatic iden-
tification of these keywords. An approach for the study and extraction of key-
words is outlined where a corpus of randomly collected unstructured, i.e. not
containing any kind of mark-up, texts in a specific domain is analysed with ref-
erence to the lexical preferences of the workers in the domain. An approxima-
tion about the role of frequently used single words within multiword expres-
sions leads us to the creation of a semantic network. The network can be as-
serted into a terminology database or knowledge representation formalism, and
the relationship between the nodes of the network helps in the visualisation of,
and automatic inference over, the frequently used words denoting important
concepts in the domain. We illustrate our approach with a case study using
corpora from three time periods on the emergence and consolidation of nuclear
physics. The text-based approach appears to be less subjective and more suit-
able for introspection, and is perhaps useful in ontology evolution.

1 Introduction

Literature on intelligent systems invariably refers to a thesaurus of domain objects in
the construction of knowledge bases. A ‘thesaurus’ suggests the existence of a range
of words and phrases associated with a concept. The names of the objects form the
terminology of the domain. The organisation of terminology is discussed under the
rubric of ontology. Ontology is a branch of philosophy, and some philosophers be-
lieve that to understand what is in every area of reality one should look into the theo-
ries of sciences [1]. Quine, one of the proponents of modern ontology, has asked two
key questions related to ‘philosophy within science’ [2]: (i) What are the conditions
that lead to talking scientifically? (ii) How is scientific discourse possible? The an-
swer in Quine, by no means exhaustive, is in the ontological commitment on the part
of a scientist or group of scientists: the scientists observe physical phenomena and
articulate them for others in linguistic entities (the controversial observation sen-
tences). This sharing of common roots of reference – physical and linguistic – are, for

 Automatic Ontology Extraction from Unstructured Texts 1331

us, signs of being committed to the same set, or system, of concepts, and this is the
basis of Quinian ontological commitment.

Researchers working on ontological ‘engineering’ tend to hand-craft thesauri on an
ad-hoc basis and on a relatively small-scale. Laresgoiti et al discuss the ontology of
an intelligent network control system in which the ‘concepts’ appear to be derived
from an existing data dictionary [3]; Gómez-Pèrez, Fernández-López, and Corcho
compose a travel ontology without reference to the source of knowledge that com-
prises ‘concepts’ such as “American Airlines Flight”, “Iberia Flight”, “Hotel” and
“Japan Location”, and a list of relations like “departurePlace” and “placed in” [4].

In this paper we argue that a more scalable, systematic and automatic approach to
ontology construction is possible using methods and techniques of information extrac-
tion, corpus linguistics, and terminology science to examine archives of a specialist
domain of knowledge. The methods and techniques enable the identification of the
objects, processes, and concepts that describe an application area, a domain of spe-
cialist knowledge, or indeed a whole discipline. We describe a method to automati-
cally extract key terms, and relationships between the key terms, from relatively-large
corpora of unstructured, i.e. not markup up, text in particular specialisms, and how
international standards (ISO) that have emerged from terminology science can facili-
tate construction of terminology databases and of the domain ontology. Our system
generates hierarchically arranged terms from the text corpora that indicate the onto-
logical commitment of researchers and practitioners of the domain. When repre-
sented in one kind of markup, the hierarchically arranged terms can be used as a basis
for an ISO-standards conformant terminology, and when represented in an ontology
interchange language they can be inspected and refined in an ontological engineering
tool like Protégé [5]. The hierarchy can be augmented by linguistic pattern analysis
to confirm, contract or expand elements of the hierarchy [6]. The method uses the
frequency contrast between the general language of everyday use and the special
language of the domain to identify key domain words [7], and expands the analysis to
the discovery of consistently used patterns in the neighbourhood of these domain
words. Our work relates to the emergence of new domains of knowledge and how
scientists and philosophers construct an edifice of a new(er) branch of knowledge [8].

Our method identifies and extracts (candidate) terms and (candidate) ontologies
from a set of written texts. The candidate nature of these results should suggest that
we make no claims to treat subjective differences within ontology: on discovering red
wine, we would, simply, present this as a class of wine, assuming this to be what has
been discovered. We would leave it to the subject experts, and connossieurs, to de-
bate whether red is the value of the attribute of colour of wine, and how dry white
wine would now fit into this system. Such distinctions are essentially creative and
mental tasks carried out with flair by human beings that is hitherto unmatched: even
the most ambitious of ontology project does not attempt such a subjective qualifica-
tion. Our work is no exception.

The results of our extraction – the terms and ontologies - can be validated by sub-
ject experts: the present case study is in Nuclear Physics and this subject has been
studied by one of the authors (KA). Within the parameters of author-subjectivity, the
results identified are in accord with current findings within the subject. Thesaurus

1332 K. Ahmad and L. Gillam

building systems can benefit from automated identification of terms and their inter-
relationships within a specific domain of knowledge. The frequency of use of the
terms, and the neighbourhood of the terms, is an indication of how knowledge in the
specialism is organised by researchers and practitioners of that domain.

2 A Method for Extracting Ontology

By examining archives of a specialist domain of knowledge, we contend that one can
find objects, processes, and concepts that describe an application area, a domain of
specialist knowledge, or indeed a whole discipline. Approaches to the identification of
domain-specific keywords – the terminology of the domain – generally rely on exten-
sive prior linguistic knowledge and linguistic extraction techniques [9], [10], [11], [12],
[13]: use of part-of-speech (POS) taggers predominates. Our treatment differs from
these approaches in taking an initially statistical approach, which is suitable for subse-
quent augmentation using linguistic techniques. It uses the difference between the
general language of everyday use and the special language of, for example, physics or
philosophy or sewer engineering as its basis. This difference can be determined by
comparing the relative frequency of words in texts with their relative frequency in the
general language [14]. A special language is a subset, and sometimes an extension, of
the natural language of a specialist. Scientists, amongst others, have to convince yet
others of the value of their work: repetition is one of the rhetorical devices used in
almost all enterprises for informing, exhorting or convincing others of the value of
your own view. Evidence of the use of repetition can be found in repositories of spe-
cialist documents written in a natural language and adorned by images and tables of
numbers. Authors of these specialist documents use a small vocabulary very produc-
tively: names of objects are used in singular and plural; a smaller number of words are
used to make many of the compound terms and phrases. For example, in a research
paper about modern nuclear physics one will find that the term nucleus is used 600
times more frequently in the subject than, say, in the 100 million-word British National
Corpus – a representative sample of English language [15]. Gillam has refined and
extended this contrast, and created a system that generates hierarchically arranged
terms indicating ontological commitment within a domain [5].

The method is based on Quirk’s notion that frequency of use of words correlates
with acceptability of those words as part of the vocabulary [16]:33. The BNC is used
as a reference collection of general language and we use the weirdness index [14] that
has been adapted by smoothing [17], to seed a collocation extraction technique [18].
This analysis produces a hierarchy of terms/concepts via semantic inclusion. The
hierarchy can be augmented by a linguistic pattern analysis that may confirm, contract
or expand elements of the hierarchy (see [6] for details). By reference to interna-
tional standards (ISO) for terminology, we can facilitate the construction of termino-
logical resources that have a potentially wider scope of use as thesauri or ontologies:
the hierarchy can be exported to an ontological engineering system like Protégé.
Such a terminology/thesaurus/ontology is then suitable for validation by experts. The
algorithm for this is shown in Fig.1.

 Automatic Ontology Extraction from Unstructured Texts 1333

1. COLLATE Text Corpora:
a. Obtain a general language corpus SGeneral comprising NGeneral tokens
b. Create a text corpus of documents in a specialist domain Sspecial with NSpecial tokens

2. COMPUTE distribution of all ‘words’
FOR i=1 to NSpecial /* Compute frequencies of use of single words */

w = tokeni;
IF w ∉words
THEN words:= words ∪w & frequency(w)=1
ELSE frequency(w) = frequency(w)+1

NEXT i
FOR i=1 to #words /* Extract frequency f(w) of single word wj from SGeneral and
SSpecial */

weirdness(wj) := (fSpecial (wj)* NGeneral)/(fGeneral (wi)+1) * NSpecial)
NEXT i

avgf:=(fSpecial(wi))/ NSpecial; σfrequency:=((fSpecial (wi)- avgf)2/ (NSpecial*(NSpecial-1))
avgweird:= (weirdness(wi))/NSpecial; σweird:=((weirdness(wi)-avgweird)2/ (NSpecial*(NSpecial-1))

3. EXTRACT ‘keywords’
FOR i=1 to #words /* Compute z-scores*/

zfrequency(wi) := (fSpecial (wi)- avgf)/ σfrequency
zweird(wi) := (weirdness(wi)-avgweird)/ σweird

IF zfrequency(wi) > τfrequency & zweird(wi)> τweird
THEN keywords:= keywords∪wi

NEXT i
4. EXTRACT significant collocates of keyword

FOR i=1 to #keywords /* Build hierarchy */
 FIND keywordsm in Sspecial
 FOR j=-5 to +5, j 0; fcoll(keywordi, wi+j):= fcoll(keywordi, wi+j)+1;NEXT j
 IF y(fcoll(keywordm, wm+k))> τcollocation

THEN collocations:= collocations∪(keywordm, wm+k)
 NEXT i

Fig. 1. An algorithm for extracting ‘keywords’ and collocates using given threshold values
(τ);y is a collocation statistic due to Smadja [17]. Iterative application of step 4 using sets of
collocations results are used to produce the hierarchy.

Elsewhere, we have used Zipf’s Law [19] to demonstrate similarities in the pat-
terns of frequency of words used in different specialisms: the approach may be gener-
alisable to other specialisms as although the words differ the patterns of use are simi-
lar. In this paper, we apply the method to three sub-corpora of nuclear physics to
identify changes in the ontology over time, or perhaps ontology evolution [20].

3 Text-Based Ontology: A Nuclear Physics Case Study

3.1 A Note on the Domain: Nuclear Physics

The evolution of nuclear physics in the 1900’s provides an example of how concepts
are re-defined (semantic shift) and terms re-lexicalised. Papers start to emerge early
in the 20th century describing that the ‘indivisible’ atom was ‘divisible’ after all and
contained a positive nucleus surrounded by negatively charged electrons. Ernst Ruth-
erford conducted the first of the pioneering experiments in the emerging field of nu-
cleus physics (sic.) and published a number of papers in this emergent field. Ruther-

1334 K. Ahmad and L. Gillam

ford was concerned about the deflection of alpha-particles when scattered on selected
targets and he noted the deflexions using scintillation counters. In his later years, he
worked to artificially transmutate one element into (many) others by bombarding the
element with a beam of particles and thus found artificial radio-activity. Niels Bohr
is regarded as one of the pioneers of modern quantum theory and he produced a
model of a stable atom in which the negatively charged particles (electrons) precess
around the positive nucleus in a stable orbit – that is, despite traversing in an electro-
magnetic field, due to the nucleus, the electrons do not radiate energy. Subsequently,
Bohr was involved in nuclear fission and produced a model of how a Uranium nu-
cleus, when bombarded by neutrons, will split into two fragments, releasing massive
amounts of energy. Rutherford and Bohr’s work led us to the modern conception of a
nucleus comprising the positively charged protons and the neutral neutron together
very compactly by exchanging elementary particles called mesons. A system of con-
cepts related to the ‘new’ structure of matter, in many ways analogous to the planetary
system, was established through the frequent use of words (terms) in physics then,
especially atom, but with a changed meaning, and the adoption of terms from other
disciplines, including nucleus from botany. The frequent use of these two keywords
on their own and in compound terms reflects the ontological commitment of the then
modern physicist.

The term nuclear physics was first used after the 2nd World War, and due both to
its peaceful uses and destructive potential it has received substantive funding and a
number of researchers are involved in this field. As time has passed, the subject has
focussed on deeper and deeper studies of nuclear matter, and one of the current excit-
ing developments is in the field of exotic nuclei: nuclear physicists can create highly
unstable nuclei and extremely short-lived nuclei in laboratory conditions, and study
the behaviour of such nuclei to measure nuclear forces and determine the structure of
nuclei. Amongst the more recent discoveries are the halo nuclei – where neutrons
and protons are loosely bound to a nucleus much like a halo surrounds our Moon.
New structures have been discovered that have been explained by referring to a knot-
like structure – the so-called Borromean rings. Here, physicists are introducing a new
method of studying the structure, redefining the concept of nucleus as a stable entity,
and then describing newer forms of highly unstable matter – a highly transient ele-
ment comprising a halo around an otherwise stable core.

Our task is to investigate whether such key concepts, that would be articulated
through frequently used keywords, are automatically extracted from a diachronic
study of the texts produced in the three periods in the development of nuclear physics.
To this end we have analysed three sets of texts: one written by Rutherford and his
co-authors, another by Bohr, and a third that is a random sample of texts published
between 1994 and 2004. Rutherford’s texts are exclusively from journals; for Bohr
we have also included letters he had written to his brother (another physicist) and his
wife (non-physicist). The modern nuclear physics texts comprise journal papers,
popular science articles and conference announcements. For our comparisons, we use
the BNC as a common reference point (reference corpus). See Table 1 for details of
these 4 corpora.

 Automatic Ontology Extraction from Unstructured Texts 1335

Table 1. Composition of the 4 text corpora

Subject No. of
texts

Time Pe-
riod

No. of
Tokens

Text Types

1. Nuclear Physics
(Rutherford)

17 1908-1932 61,035 Journal Papers (JP)

2. Nuclear Physics
(Bohr)

16 1920-1950 101,201 JP; Letters (LT)

3. Nuclear Physics
(modern)

157 1994-2004 564,415 JP, Conference Announcements,
Popular Science, Academic Course
Details

4. British National
Corpus

4124 1960-1993 100,106,029 Various including extracts from
newspapers, specialist periodicals,
journals and popular fiction in sub-
jects including natural science, social
science, commerce and leisure.

3.2 Automatic Extraction of Single-Word Terms and Diachronic Variance

The statistic we use extensively is the weirdness index (eqn. 1), a measure of the use
of a word in special language compared to its use in a representative corpus of general
language texts:

SLGL

SLGL

Nf

fN
weirdness

)1(+
= (1)

where fSL is the frequency of word in the specialist corpus, fGL is its frequency in
BNC, and NSL and NGL are the token counts of the specialist corpus and the BNC
respectively. The disproportionately used words are more likely to be terms of a
specialist domain and terms are used to denote concepts [7].

Consider the distribution of 10 most frequently used words in each of the three cor-
pora, excluding the so-called closed class or stop words (e.g. the, a, an, but, if….) as
shown in Table 2. The most frequent words in Rutherford include particle(s), atoms
and nucleus. These words are ‘disproportionately’ used by Rutherford when compared
with typical text in English – he uses particle 629 times more frequently than is used in
the British National Corpus, atom 896 times more frequently and nucleus 841 times
more frequently. There are clues here of the famous scattering experiments – where
Rutherford measured the range (22 times more frequent) of alpha (485 times more
frequent) particles emitted by a radioactive source (in centimetres or cm). The empha-
sis in Bohr is on the electrons (1652 times more frequent), and (the electron) orbits
(1204 times more frequent); nucleus is used less disproportionately in Bohr (652 times)
than in Rutherford (841 times). Bohr’s more frequent use of electrons in an orbit
should not detract from the fact that the orbit was around the nucleus. The word nu-
cleon (a hyponym for proton and neutron) is amongst the most disproportionately used
– over 36410 times more frequent in our corpus than in the BNC; energy (and its unit
mev –million electron volts) is amongst the most frequently used. The frequency of
cross, section and scattering, reflects the use of the term cross-section in nuclear phys-
ics where it is used to refer to a measure of the probability of a nuclear reaction; scat-
tering cross-section is used in determining the determining the structure of nuclei.

The lexical choice of modern nuclear physicist has changed over time and is
principally shown by the more proportionate use of the words atom, atoms and atomic

1336 K. Ahmad and L. Gillam

Table 2. Distribution of 10 most frequent single words (terms) in our three corpora – with
number in parentheses indicating the rank of the word in a complete wordlist of the corpus

Rutherford Bohr Modern
Token Rel. freq Weirdness Token Rel. freq Weirdness Token Rel. freq Weirdness
particles (10) 1.05% 629 electrons (11) 1.03% 1652 energy (21) 0.48% 39
atoms (18) 0.73% 691 atom (20) 0.60% 1084 neutron (30) 0.34% 1390
number (21) 0.61% 12 electron (25) 0.46% 488 nuclei (36) 0.30% 972
particle (22) 0.59% 847 nucleus (27) 0.44% 652 nuclear (38) 0.29% 36
nucleus (23) 0.56% 841 energy (28) 0.42% 34 cross (42) 0.28% 38
alpha (25) 0.54% 485 theory (31) 0.38% 29 mev (46) 0.27% 7193
atom (27) 0.49% 896 number (32) 0.36% 7 state (47) 0.27% 7
cm (28) 0.48% 231 orbits (33) 0.34% 1204 body (50) 0.26% 10
range (30) 0.45% 22 elements (35) 0.33% 52 nucleon (51) 0.25% 36410
hydrogen (32) 0.42% 348 atomic (39) 0.29% 264 scattering (52) 0.25% 497

– used around 30 times more in the Modern corpus compared to 800 times or more as
was the case for Rutherford and Bohr.

Frequency varies considerably across a corpus of words. Some words are used
very frequently and others very infrequently: neutron is used 1944 times in the
564115 word Modern nuclear physics corpus; neutrons 549 times; dineutron 44
times; multineutron 5 times; and tetraneutron, trineutron, and neutronization only
once. The average frequency in the Modern corpus is 29.18 with a standard deviation
of 445. Much the same can be said about the variation in weirdness across the corpus
– the average weirdness is 226.5 with a standard deviation of 1307. The standard
deviation of frequency in the British National Corpus is 11,000. Instead of using
frequency and weirdness as a measure of disproportionate use, we calculate the z-
scores (eqn. 2) for both frequency (f) and weirdness (w):

x

i
i

xx
xz

σ
)(

)(
−= (2)

We can now specify a minimum value of z-scores for frequency and weirdness and
use this to automatically select only those words that are above this value, removing the
subjective treatment of importance of these words. For a threshold of 0.25, that is all
words with a frequency that is above the average frequency (and weirdness) by a margin
of a quarter of a standard deviation, we find: Rutherford’s corpus has only 8 words that
satisfy that criteria in 3446 unique words; Bohr’s corpus has 17 amongst 4145 words;
and the Modern corpus has 27 words amongst 19341 unique words. Table 3 shows the
‘new’ selection together with words that were selected on the use of statistical criteria.

Table 3 shows a trace of the ontological commitment of workers in nuclear physics
over a 100 year period. This is portrayed also in Fig. 2. The commitment to study
energy – one of the three concepts physicists study, the other two are force and mass –
and the nucleus remains the same over the century. What changes over the period is
the enthusiasm for the study of unstable systems, hence the word/term halo, by way of
laboratory created nuclei – and we have the word/term projectile and a related word
breakup (referring to the break up of nuclei). This conclusion is all the more gratifying
as our system has no domain knowledge per se. Note that the single words (and the
related concepts) denote generic concepts and it is in the specialisation of these poten-
tial terms that one can see ontologically motivated hierarchies. This we discuss next.

 Automatic Ontology Extraction from Unstructured Texts 1337

Table 3. Distribution of (8 or 10) most frequent words that satisfy the 0.25*standard deviation
criteria across the three corpora. Words in bold are those that were identified manually in
Table 2 – the combination removes from consideration those words with low weirdness.
Underlining denotes words shared across these topmost – nuclei across all 3 with varying
importance, nucleus and atom across Rutherford and Bohr.

Rutherford Bohr Modern

 z (f) z (w) z (f) z (w) z (f) z (w)

particle 2.45 0.29 electrons 4.37 3.18 neutron 4.30 0.89

nucleus 2.35 0.29 atom 2.50 2.02 nuclei 3.71 0.57

atom 2.04 0.32 electron 1.90 0.81 mev 3.39 5.33

scintillations 1.12 36.9 nucleus 1.80 1.15 nucleon 3.16 27.68

nuclei 0.92 0.26 orbits 1.37 2.27 halo 2.52 0.78

helium 0.89 0.40 atomic 1.17 0.36 projectile 1.47 2.27

radium 0.88 3.07 hydrogen 1.05 0.27 proton 1.46 0.27

deflexion 0.30 25.4 nuclei 0.87 1.31 6he 1.39 21.80

 quantum 0.87 0.36 coulomb 1.17 5.17

 stationary 0.80 0.86 breakup 1.12 1.42

Radium

Electrons

Neutron

Atom

Nucleus

Nuclei

Rutherford

Modern

Bohr

Scintillations

Particle

Helium

Deflexion

Electron

Orbits

Atomic

Hydrogen

Quantum

Stationary

Projectile

6HeHalo

Nucleon

Coulomb

Proton

Mev

Breakup

Fig. 2. Lexical sharing amongst the topmost automatically selected words from the three corpora

3.3 Automatic Extraction of Compound Words and Diachronic Variation

What is more important, perhaps, than these frequent words alone is the manner in
which the frequent words produce expressions comprising multiple words. The mul-

1338 K. Ahmad and L. Gillam

tiword terms help to specify a, perhaps more complex, generic concept – nuclear
energy is a form of energy and is different from electrical or heat energy; nuclear
reaction is a kind of reaction and direct nuclear reaction is a nuclear reaction that is
different from compound nuclear reaction.

Returning to the application of the method outlined in Section 2, for each collec-
tion we use a z-score value, manually assigned or automatically derived, to systemati-
cally determine the number of keywords for further analysis. Collocation analysis is
commonly used in corpus linguistics to identify words that occur frequently within a
given neighbourhood of each other, and that are used to convey specific meanings.
Corpus linguists make frequent use of mutual information and t-score statistics to
determine the significance of bigrams – two words within the neighbourhood. We
have found these metrics to provide limited information with regard to the importance
of the individual positions within the neighbourhood. Hence, we have applied the
analysis due to Smadja who has argued that significant collocates of a word are within
a neighbourhood of five words either side of the word (the nucleate) denoted as L1-
L5 (left) and R1-R5 (right); Smadja has outlined metrices for quantifying the strength
of the collocation including one that isolates peakedness (U) of the collocation in the
various positions of the neighbourhood together with a z-score: significant collocates
have a U-score >10 and z-score > 1. We have implemented Smadja’s method and are
able to automatically extract collocation patterns. Consider five of the 7 significant
collocates of nucleus (Table 4a) and the dominant positions of collocates (Fig. 3.).

Table 4a. Selected collocates of nucleus in Rutherford using {U, k}= {10,1}

Collocate L5 L4 L3 L2 L1 R1 R2 R3 R4 R5 U k

charge 1 0 19 0 0 17 1 1 2 3 47.2 11.8

helium 1 0 0 0 19 0 0 0 4 0 32.0 6.1

hydrogen 2 0 1 0 14 0 1 3 0 1 16.4 5.6

atom 1 5 1 0 0 0 0 3 13 1 14.8 6.1

theory 1 0 1 0 0 13 0 0 1 0 14.6 3.9

0

2

4

6

8

10

12

14

16

18

20

L5 L4 L3 L2 L1 R1 R2 R3 R4 R5

charge

0

2

4

6

8

10

12

14

16

18

20

L5 L4 L3 L2 L1 R1 R2 R3 R4 R5

helium

Fig. 3. Collocations in Rutherford with nucleus of charge and helium. Note that dominant
positions for charge collocating with nucleus are L3 (charge [] [] nucleus) and R1 (nucleus
charge), while the dominant position for helium collocating with nucleus is L1 (helium nu-
cleus). Smadja’s “z-score k” [18] would select these three patterns for further analysis.

 Automatic Ontology Extraction from Unstructured Texts 1339

The focus in Rutherford is on the term nucleus charge (44 collocates) and there is
an enumeration of the nucleus of different elements (hydrogen and helium nucleus)
and a reference to nucleus theory. The focus in Bohr is rather different (Table 4b,
Fig. 4.) as shown by five (of the 7) collocates where we have positive nucleus and
electron(s) +X (+Y) nucleus are amongst the more common collocates:

Table 4b. Selected collocates of nucleus in Bohr using {U, k}= {10,1}

 L5 L4 L3 L2 L1 R1 R2 R3 R4 R5 U k

round 0 0 5 38 0 0 0 0 0 2 127.1 7.4

electron 9 19 23 0 0 0 0 4 0 0 68.5 9.2

rotating 0 4 23 0 0 0 0 0 2 0 46.5 4.6

electrons 7 17 15 1 0 0 5 5 5 6 30.3 10.3

positive 0 5 0 0 17 0 2 2 2 0 24.8 4.4

0

5

10

15

20

25

30

35

40

L5 L4 L3 L2 L1 R1 R2 R3 R4 R5

round

0

2

4

6

8

10

12

14

16

18

L5 L4 L3 L2 L1 R1 R2 R3 R4 R5

positive

Fig. 4. Collocations in Bohr with nucleus of round and positive. Note that dominant position
for round collocating with nucleus is L2 (round [] nucleus), while the dominant position for
positive collocating with nucleus is L1 (positive nucleus). Smadja’s “z-score k” would again
select these two patterns for further analysis.

The collocation patterns in modern nuclear physics are somewhat different – we
are in a period where the concept of a nuclear atom is established, and atom itself
goes unmentioned – the collocate atomic nucleus only occurs 16 times in the 564,115
word modern nuclear physics corpus and atomic nuclei 52 times. What we find in-
stead (Table 4c, Fig. 5.) is the phraseology of reacting nuclei (target and residual) and
unstable nuclei Helium-6 and Lithium-11 nuclei, natural Helium has 4 nucleons and
Lithium has 8.

This kind of analysis is of interest for discovering increasingly more complex
concepts within specialist text collections. For example, the halo was found, as fifth
most important keyword, in the modern collection; collocations (Step 4 in the Algo-
rithm) around halo include: halo nuclei; halo nucleus; neutron halo; and halo

1340 K. Ahmad and L. Gillam

neutrons. We further discover the weakly bound neutron halo (f=2), but the most
expanded tree forms under the halo nuclei.

Table 4c. Selected collocates of nucleus in Modern Nuclear Physics Corpus using {U, k}= {10,1}

Collocate L5 L4 L3 L2 L1 R1 R2 R3 R4 R5 U k

target 3 2 0 1 114 1 0 5 11 5 1117 22.4

halo 4 4 2 1 90 0 2 5 4 5 684 18.4

compound 0 1 0 0 41 0 1 0 1 2 148 7.0

residual 0 0 1 0 25 0 0 1 0 0 55.4 3.9

borromean 0 1 0 2 22 0 0 0 0 0 42.7 3.6

0

20

40

60

80

100

120

L5 L4 L3 L2 L1 R1 R2 R3 R4 R5

target

0

10

20

30

40

50

60

70

80

90

100

L5 L4 L3 L2 L1 R1 R2 R3 R4 R5

halo

Fig. 5. Collocations in Modern corpus with nucleus of target and halo. Note that dominant
positions both collocations is L1 (target nucleus, halo nucleus), both of which the z-score
would select for further analysis.

The various patterns identified can be used to produce collocational networks
[21]. Since we believe that many of these networks may provide evidence of seman-
tic inclusion, we assert isa relationships between the words and their collocates and
produce hierarchies from these collocational networks (see, for example, [6]). The
hierarchies can be used in combination with international standards for the produc-
tion of terminology interchange formats (using ISO 12620 and ISO 16642) that can
be used to populate terminology databases [22]. These formats express concepts,
conceptual relations, and provide for items of administrative information, including
versioning, and for items of documentary information including sources and contexts
of use. There is some degree of overlap with these formats and the so-called ontol-
ogy exchange languages, and hence the results can also be exported to an ontological
engineering tool (Protégé), using a semantic schema such as the Web Ontology Lan-
guage (OWL), to facilitate knowledge base development and visual inspection and
refinement: a domain expert can quickly make on-line corrections to the hierarchy in
collaboration with a knowledge engineer using the ontology tool. The role of the
knowledge engineer in our method relates exclusively to the construction of the

 Automatic Ontology Extraction from Unstructured Texts 1341

knowledge base and avoids any intuitive input on their part. The (partly-pruned)
ontological commitment of modern nuclear physicists in relation to halo nuclei,
alluded to above, can be seen in Fig. 6, as drawn using the Protégé component
(“Tab”) OntoViz.

Fig. 6. A candidate hierarchy showing different types of halo nuclei

3.4 Ontology Evolution

Ontology Evolution has been discussed with reference to a wine ontology [20], [23].
The creation of a log of the evolution is emphasised using a differencing operation
between ontologies. Without reference to the sources of the original knowledge that
went into the production of the ontology, the reasons for the different ontologies may
not be easy to discover. The importance of some terms at one time versus other terms
at another would result in quite a large log file of changes. Whether such approaches
are able to capture, for example, the atom changing semantically from being indivisi-
ble to divisible is not clear with from such small examples.

We use the term ontology evolution to refer to a change in a specialism’s existing
repertoire of concepts over a period of time. As the subject of nuclear physics has
evolved over time, so the record of the ontological commitment of the workers has
evolved. Over a short period of time (c. 25 years from 1900), the concept of a unitary
atom was rejected, its constituents were identified experimentally and elaborated
theoretically, and by the late 1930s a new field of physics – nuclear physics – had
emerged. Researchers now seldom use the term atom and are careful in the use of the
now generic headword nucleus. : nuclear physicists invariably use a qualificatory
adjective or another noun when using nucleus and its derivatives nuclear and in-
flected form nuclei.

We can measure changes in ontological commitment over time, particularly with
reference to the changes in importance attributed to these commitments by the au-
thors, by calculating the weirdness index again, this time within the sub-corpora of the
specialism. Words that were automatically identified as important for Bohr and that
were almost irrelevant for Rutherford, are indicative of changes in the subject and can
be identified, again, by high frequency and weirdness values (Table 5a).

1342 K. Ahmad and L. Gillam

Table 5a. Frequency and weirdness values for words of importance in the Bohr corpus, but of
low importance in the Rutherford corpus

Word f (Bohr) f (Ruth) Weirdness
states 231 0 139
stationary 210 0 127
ring 173 0 104
rings 104 0 63
configuration 174 1 52
configurations 79 0 48
quanta 143 2 43
fission 63 0 38
bound 155 2 31
Orbits 342 6 29

The ‘ideas’ that are either common-place within the subject, or have become ‘sup-
pressed’ for other reasons, will occur with somewhat lower frequency and weirdness
values (Table 5b): for Bohr, the atom is slightly more important (> 1) than for Ruther-
ford. The remainder of these words are of lesser importance (< 1), with radium, de-
flexion and scintillations finding little or no interest at all. Those items that were of
importance in Rutherford’s work are not the subject of study for Bohr, although the
field of study effectively remains the same. However, if they are so common-place
that they no longer necessitate description, they may not be in the newer version of
the ontology because that which is understood does not to be discussed.

Table 5b. Frequency and weirdness values for words of importance in the Rutherford corpus,
but that have low importance in the Bohr corpus

Word f (Rutherford) f (Bohr) Weirdness
particles 640 147 0.14
atoms 445 223 0.30
particle 358 91 0.15
nucleus 344 442 0.77
atom 302 606 1.21
scintillations 174 0 0
nuclei 146 227 0.93
helium 142 102 0.43
radium 140 3 0.01
deflexion 60 1 0.01

The same comparison can be made for the Modern Physics corpus, where we find
that notions of stationary, ring, rings, quanta, fission and orbits have either become
fundamental to the subject, or are suppressed for other reasons (Table 5c).

Since the most significant terms, according to our method, are changing in their
importance over time, the challenge and need for managing ontology evolution, and
for managing the input documents that form a part of this process, becomes signifi-
cant. Terminology interchange formats, defined according to the International Stan-
dards, make provsision for the management of such reference material.

 Automatic Ontology Extraction from Unstructured Texts 1343

Table 5c. Frequency and weirdness values for words of importance in the Bohr corpus, but that
have low importance in the Modern corpus

Word f (Bohr) f (Modern) Weirdness
states 231 202 0.87
stationary 210 0 0
ring 173 0 0
rings 104 0 0
configuration 174 11 0.06
configurations 79 30 0.37
quanta 143 0 0
fission 63 0 0
bound 155 117 0.75
orbits 342 0 0

4 Discussion

We have automatically extracted hierarchical trees of terms from collections of natu-
ral language texts that demonstrate evidence of, and change in, the ontological com-
mitment in physics over a period of time. We have demonstrated the efficacy of the
automatic extraction method in a number of domains including nano-technology,
forensic science, philosophy of science, financial investment, and epidemiology (for
example, see: [24], [25], [26]). The principal inputs to our system are the collection
of texts in an arbitrary domain and the list of general language words. Both the ter-
minology and ontology have a reference point – the text collection: this contrasts with
the rather ad-hoc work usually reported in ontological engineering.

Advocates of part-of-speech (POS) tagging might suggest that we ignore POS in-
formation at our peril. We have analysed the Rutherford corpus using the Brill tagger
in its default (untrained) state. Rutherford’s 8 keywords from Table 1 occur as either
a kind of noun (NN, NNS or NNP), or as an unknown (UNK). At this level, there
would appear to be negligible gain from POS tags per se.

Table 6. Part-of-speech information for the 8 keywords selected from the Rutherford corpus
(Table 1)

Word NN NNS NNP UNK
atom 298 4
deflexion 60
helium 141 1
nuclei 139 7
nucleus 339 3
particle 323 35
radium 140
scintillations 173 1

1344 K. Ahmad and L. Gillam

If we consider the nucleus in Rutherford, the three patterns we find with POS in-
formation are: hydrogen nucleus = NN NN; helium nucleus = NN NN, nucleus theory
= NN NN. While this again imparts little additional information and, indeed, one may
argue about meronymy since the nucleus is a part of hydrogen, this may provide some
limited evidence useful for mutual validation of our results. Where the expansion is
adjectival (for example, swift atoms = JJ NNS) determination of whether the relation-
ship is hierarchical, or whether this should be considered as an attribute or value
remains subjective: again, is red wine a kind of wine, or is red a value of the colour of
wine? Such judgements need to be subjectively made, and our objective method does
not make provsision for such decisions.

We have explored Hearst’s work [27] for augmenting our ontologies, combining
phrases including such as with our extracted terms and with POS information to en-
able the bootstrapping of ontologies from unstructured texts [6]. The prior identifica-
tion of terminological data may circumvent the need for training the POS taggers,
which can now be used against the more grammatical elements of the texts. Consid-
eration of the expansions of phrase patterns, for example: properties of [] such as ….,
or characteristics of [] such as…., where [] denotes a term, may provide for further
population of the ontology. There are question marks over the scalability of ap-
proaches that use POS tagging since the taggers generally require training in new
specialisations. The quality of the results is, then, a function of the training plus the
coverage of the rules used for identification. Using our expanded method it may be
possible to reduce the dependency on the POS tagger.

In other analysis, we have discovered phrases such as conventional horizontal-type
metalorganic chemical vapor deposition reactor, ridge-type ingaas quantum-wire
field-effect transistors and trench-type narrow ingaas quantum-wire field effect tran-
sistor. We are detecting these phrases without the need for the prior linguistic knowl-
edge that goes into the expectation of existence of specific combinations of POS tags.
It may be possible, however, to use statistical validity as a means to generate POS
patterns that could be used to identify further elements of the ontology, and may be
worth considering in further work. In addition, since we are in a particular special-
ism, we do not make consideration of different senses (concepts) being indicated by
the same term. Indeed, in coining terms and retrofitting new exclusive sense to extant
terms, scientists restrict the terms to a single sense. For example, although nucleus
was, most likely, adopted from biology, it is highly unlikely that it would be used in a
biological sense within these corpora. Such considerations may be of value where
interdiciplinarity is evident – e.g. biochemistry, although we suspect that the disci-
pline would soon try to remove such ambiguity to ensure good science.

We distinguish between ontology – as the essence of being – and ontological com-
mitment – an extant commitment of a group of workers in a specialism as to what that
essence is and how the essence manifests itself. The commitment shows changes
over a period of time, and the change is recorded, howsoever incompletely, in the
texts produced by the specialists. What we produce is candidate terminology and
ontological commitment, and the statistical metrics we have used, weirdness and
collocation strength metrics – candidate has to be verified and validated by domain
experts. Our inputs and outputs are different from other reported systems dedicated to
the identification and visualisation of ontology in a specific domain: as compared to

 Automatic Ontology Extraction from Unstructured Texts 1345

other workers in ontology and terminology engineering, we rely far less on our intui-
tion and significantly more on the evidence produced by the domain community. We
have presented an algorithm that encompasses the whole life cycle: from the auto-
matic extraction of terms in free texts and onto systems’ asserted knowledge represen-
tation for automatically populating knowledge bases. The above work will be boosted
further by our current efforts in metadata standardisation [28].

Acknowledgements. This work was supported in part by research projects sponsored
by the EU (LIRICS: eContent-22236) and by UK research councils: EPSRC (REVEAL:
GR/S98450/01). We would like to thank the anonymous reviewers for their comments
which we have taken into account in producing this version of the paper.

References

1. Quine, Willard, van Omran.: Theories and Things. Cambridge (Mass) & London: The
Belknap Press of Harvard University Press (1981).

2. Orenstein, A.: Willard Van Orman Quine. Twayne, Boston: G. K. Hall. (1977).
3. Laresgoiti, I., Anjewierden, A., Bernaras,A., Corera, J., Schreiber, A. Th., and Wielinga,

B. J.: Ontologies as Vehicles for reuse: a mini-experiment. KAW.
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/laresgoiti/k.html. (1996).

4. Gómez-Pèrez, Asunción, Fernández-López, Mariano., & Corcho, Oscar.: Ontological En-
gineering. London: Springer-Verlag. 2004.

5. Gillam, L.: Systems of concepts and their extraction from text. Unpublished PhD thesis,
University of Surrey. (2004).
http://portal.surrey.ac.uk/pls/portal/docs/PAGE/COMPUTING/PEOPLE/RESEARCHERS/
GILLAM/PUBLICATIONS/PHD.PUBLISH.PDF

6. Gillam, L., Tariq, M. and Ahmad, K.: Terminology and the Construction of Ontology.
Terminology. John Benjamins, Amsterdam. Terminology 11:1 (2005), 55–81.

7. Ahmad K.: Pragmatics of Specialist Terms and Terminology Management. In (Ed.) P.
Steffens. Machine Translation and the Lexicon. Heidelberg (Germany): Springer. (1995),
pp.51-76

8. Ahmad K. and Mussachio, M.T.: Enrico Fermi and the making of the language of nuclear
physics. Fachsprache 25 (3-4). (2003), pp120-140.

9. Maedche, A. and Volz, R.: The Ontology Extraction and Maintenance Framework Text-
To-Onto. Workshop on Integrating Data Mining and Knowledge Management. California,
USA (2001)

10. Maedche, A. and Staab, S: Ontology Learning. In S. Staab & R. Studer (eds.): Handbook
on Ontologies in Information Systems. Heidelberg: Springer (2003).

11. Faure, D. and Nédellec, C.: Knowledge Acquisition of Predicate Argument Structures
from Technical Texts Using Machine Learning: The System ASIUM. LNCS 1621.
Springer-Verlag, Heidelberg. (1999) 329-334.

12. Faure, D. and Nédellec, C.: ASIUM: Learning subcategorization frames and restrictions of
selection. In Y. Kodratoff, (Ed.), 10th Conference on Machine Learning (ECML 98),
Workshop on Text Mining, Chemnitz, Germany. (1998).

13. Mikheev, A. and Finch, S.: A Workbench for Acquisition of Ontological Knowledge from
Natural Text. In Proc. of the 7th conference of the European Chapter for Computational
Linguistics (EACL'95), Dublin, Ireland. (1995) 194-201.

1346 K. Ahmad and L. Gillam

14. Ahmad, K. and Davies, A.E.: Weirdness in Special-language Text: Welsh Radioactive
Chemicals Texts as an Exemplar. Internationales Institut får Terminologieforschung Jour-
nal 5(2). (1994) 22-52.

15. Aston, G. and Burnard, L.: The BNC Handbook: Exploring the British National Corpus.
Edinburgh University Press (1998).

16. Quirk, R.: Grammatical and Lexical Variance in English. Longman, London & New York
(1995)

17. Gale, W. and Church, K. W.: What's wrong with adding one? In Oostdijk, N. and de Haan,
P. (eds.): Corpus-Based Research into Languge: In honour of Jan Aarts. Rodopi, Amster-
dam (1994), 189-200

18. Smadja, F.: Retrieving collocations from text: Xtract. Computational Linguistics, 19(1).
Oxford University Press. (1993), 143-178

19. Zipf, G.K.: Human Behavior and the Principle of Least Effort. Hafner, New York. (1949).
20. Noy, N.F.; Musen, M.A.: Ontology versioning in an ontology management framework. In-

telligent Systems 19 (4). IEEE Press (2004), 6-13
21. Magnusson, C. and Vanharanta, H.: Visualizing Sequences of Texts Using Collocational

Networks. In Perner, P. and Rosenfeld, A. (Eds): MLDM 2003, LNAI 2734 Springer-
Verlag, Heidelberg. (2003) 276-283

22. Gillam, L., Ahmad, L., Dalby, D. and Cox, C.: Knowledge Exchange and Terminology In-
terchange: The role of standards. In Proceedings of Translating and the Computer 24.
ISBN 0 85142 476 7 (2002).

23. Noy, N. F., Klein, M.: Ontology evolution: Not the Same as Schema Evolution. Knowl-
edge and Information Systems, 5 (2003).

24. Ahmad, K., Tariq, M., Vrusias, B. and Handy, C.:. Corpus-Based Thesaurus Construction
for Image Retrieval in Specialist Domains. ECIR 2003, LNCS 2633. Springer Verlag,
Heidelberg (2003), 502-510.

25. Gillam, L. and Ahmad, K.: Sharing the knowledge of experts. Fachsprache 24(1-2).
(2002), 2-19.

26. Gillam, L. (Ed): Terminology and Knowledge Engineering: making money in the financial
services industry. Proceedings of workshop at 2002 conference on Terminology and
Knowledge Engineering. (2002).

27. Hearst, M.: Automatic acquisition of hyponyms from large text corpora. Proceedings of
the Fourteenth International Conference on Computational Linguistics. Nantes, France.
(1992), 539–545

28. Gillam, L.: Metadata descriptors: ISO standards for terminology and other language re-
sources. Proc. of 1st International e-Social Science Conference. (2005).

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1347 – 1364, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Metadata Management in a Multiversion Data
Warehouse*

Robert Wrembel and Bartosz B bel

Institute of Computing Science, Pozna University of Technology, Pozna , Poland
{Robert.Wrembel, Bartosz.Bebel}@cs.put.poznan.pl

Abstract. A data warehouse (DW) is supplied with data that come from
external data sources (EDSs) that are production systems. EDSs, which are
usually autonomous, often change not only their contents but also their
structures. The evolution of external data sources has to be reflected in a DW
that uses the sources. Traditional DW systems offer a limited support for
handling dynamics in their structures and contents. A promising approach to
this problem is based on a multiversion data warehouse (MVDW). In such a
DW, every DW version includes a schema version and data consistent with its
schema version. A DW version may represent a real state at certain period of
time, after the evolution of EDSs or changed user requirements or the evolution
of the real world. A DW version may also represent a given business scenario
that is created for simulation purposes. In order to appropriately synchronize a
MVDW content and structure with EDSs as well as to analyze multiversion
data, a MVDW has to manage metadata. Metadata describing a MVDW are
much more complex than in traditional DWs. In our approach and prototype
MVDW system, a metaschema provides data structures that support: (1)
monitoring EDSs with respect to content and structural changes, (2) automatic
generation of processes monitoring EDSs, (3) applying the discovered EDS
changes to a selected, DW version, (4) describing the structure of every DW
version, (5) querying multiple DW versions of interest at the same time, (6)
presenting and comparing multiversion query results.

1 Introduction

A data warehouse (DW) is a large database (often of terabytes size) that integrates
data from various external data sources (EDSs). A DW content includes historical,
summarized, and current data. Data warehouses are important components of decision
support systems. Data integrated in a DW are analyzed by, so called, On-Line
Analytical Processing (OLAP) applications for the purpose of: discovering trends
(e.g. sale of products) patterns of behavior and anomalies (e.g. credit card usage) as
well as finding hidden dependencies between data (e.g. market basket analysis,
suggested buying).

* This work is partially supported by the grant no. 4 T11C 019 23 from the Polish State

Committee for Scientific Research (KBN), Poland.

1348 R. Wrembel and B. B bel

The process of good decision making often requires forecasting future business
behavior, based on present and historical data as well as on assumptions made by
decision makers. This kind of data processing is called a what-if analysis. In this
analysis, a decision maker simulates in a DW changes in the real world, creates
virtual possible business scenarios, and explores them with OLAP queries. To this
end, a DW must provide means for creating and managing various DW alternatives,
that often requires changes to the DW structure.

An inherent feature of external data sources is their autonomy, i.e. they may evolve
in time independently of each other and independently of a DW that integrates them
[40, 41]. The changes have an impact on the structure and content of a DW. The
evolution of EDSs can be characterized by: content changes, i.e. insert/update/delete
data, and schema changes, i.e. add/modify/drop a data structure or its property.
Content changes result from user activities that perform their day-to-day work with
the support of information systems. On the contrary, schema changes in EDSs are
caused by: changes of the real world being represented in EDSs (e.g. changing
borders of countries, changing administrative structure of organizations, changing
legislations), new user requirements (e.g. storing new kinds of data), new versions of
software being installed, and system tuning activities.

The consequence of content and schema changes at EDSs is that a DW built on the
EDSs becomes obsolete and needs to be synchronized. Content changes are
monitored and propagated to a DW often by means of materialized views [20]. and
the history of data changes is supported by applying temporal extensions e.g. [12].
Whereas EDSs schema changes are often handled by applying schema evolution, e.g.
[10, 26] and temporal versioning techniques [17, 18, 33]. In schema evolution
approaches historical DW states are lost as there is only one DW schema that is being
modified. In temporal versioning approaches only historical versions of data are
maintained whereas schema modifications are difficult to handle.

In our approach, we propose a multiversion data warehouse (MVDW) as a
framework for: (1) handling content and schema changes in EDSs, (2) simulating and
managing alternative business scenarios, and predicting future business trends (a
what-if analysis). A MVDW is composed of persistent versions, each of which
describes a DW schema and content in a given time period.

In order to support the lifecycle of a DW, from its initial loading by ETL
processes, periodical refreshing, to OLAP processing and query optimization, a DW
has to provide metadata. Metadata are defined as data about a DW. They are used for
improving a DW management and exploitation. There are two basic types of
metadata, namely business and technical ones. Business metadata include among
others: dictionaries, thesauri, business concepts and terminology, predefined queries,
and report definitions. They are mainly used by end-users. Technical metadata
include among others: a DW schema description and the definitions of its elements,
physical storage information, access rights, statistics for a query optimizer, ETL
process descriptions, and data transformation rules [45].

In the case of a multiversion data warehouse, metadata are much more complex
than in traditional DWs and have to provide additional information. Industry standard
metamodels, i.e. Open Information Model [36] and Common Warehouse Metamodel
[15] as well as research contributions, e.g. [24, 37] have not yet considered the
incorporation of metadata supporting either schema and data evolution or schema and
data versioning.

 Metadata Management in a Multiversion Data Warehouse 1349

This paper's focus and contribution includes the development of metaschemas for
the support of: (1) detecting structural and content changes in EDSs and propagating
them into a MVDW, (2) automatic generation of software monitoring EDSs, based on
metadata, (3) managing versions of schemas and data in a MVDW, (4) executing
queries that address several DW versions, (5) presenting and comparing multiversion
query results. Based on the developed metamodel, a prototype MVDW system was
implemented in Java and Oracle PL/SQL language, whereas data and metadata are
stored in an Oracle10g database. To the best of our knowledge, it is the first approach
and implemented system managing multiple, persistent, and separate DW versions as
well as supporting the analysis of multiversion data.

The rest of this paper is organized as follows. Section 2 presents basic definitions
in the field of DW technology. Section 3 discusses existing approaches to handling
changes in the structure and content of a DW as well as approaches to metadata
management. Section 4 overviews our concept of a multiversion DW and presents its
metaschema. Section 5 presents the mechanism of detecting changes in EDSs and its
underlying metamodel. Finally, Section 6 summarizes the paper.

2 Basic Definitions

A DW takes advantage of a multidimensional data model [21, 24, 29] with facts
representing elementary information being the subject of analysis. A fact contains
numerical features, called measures, that quantify the fact and allow to compare
different facts. Values of measures depend on a context set up by dimensions.
Examples of measures include: quantity, income, turnover, etc., whereas typical
examples of dimensions include Time, Location, Product, etc. (cf. Fig. 1). In a relational
implementation, a fact is implemented as a table, called a fact table, e.g. Sales in Fig. 1.

Dimensions usually form hierarchies. Examples of hierarchical dimensions are:
(1) Location, with Cities at the top and Shops at the bottom, (2) Product, with
Categories and Items (cf. Fig. 1). A schema object in a dimension hierarchy is called
a level, e.g. Shops, Cities, Categories, Items, and Time. In a relational
implementation, a level is implemented as a table, called a dimension level table.

Fig. 1. An example DW schema on sale of products

1350 R. Wrembel and B. B bel

A dimension hierarchy specifies the way measures are aggregated. A lower level of
a dimension rolls-up to an upper level, yielding more aggregated data. Values in every
level are called level instances. Example instances of level Items may include: 't-
shirt' and 'shampoo', whereas instances of level Categories may include: 'clothes' and
'cosmetics'. The dimension instance of dimension Di is composed of hierarchically
assigned instances of levels in Di, where the hierarchy of level instances is set up by
the hierarchy of levels. Example instances of dimension Product include: {'t-shirt'
'clothes', 'shampoo' 'cosmetics'}, where is the hierarchical assignment of a
lower level instance to an upper level instance.

3 Related Work

The problem of schema changes appeared in mediated and federated database systems
that were used for interconnecting heterogeneous data sources, e.g. [8, 9, 13, 30, 43].
A lot of research have been carried out in order to handle schema changes and
propagate them into a global schema, e.g. [1, 6, 7, 31, 32]. Handling schema changes
in EDSs and propagating them into a DW is partially based on that solutions.
However, DW systems have different characteristics requiring new approaches to this
problem. First of all, a final DW schema is usually totally different form EDSs
schemas. Second of all, a DW stores persistent elementary data as well as data
aggregated at many levels that have to be transformed after a DW schema updates.

The approaches to the management of changes in a DW can be classified as:
(1) schema and data evolution: [10, 22, 23, 26, 27, 44], (2) temporal and versioning
extensions [3, 11, 12, 14, 17, 18, 25, 28, 29, 33, 41].

The approaches in the first category support only one DW schema and its instance.
In a consequence, many structural modifications require data conversions that results
in the loss of historical DW states, e.g. dropping an attribute, changing an attribute
data type, length or domain.

In the approaches from the second category, in [12, 17, 18, 33] changes to a DW
schema are time-stamped in order to create temporal versions. The approaches are
suitable for representing historical versions of data, but not schemas.

In [14, 41] data versions are used to avoid duplication anomaly during DW
refreshing process. The work also sketches the concept of handling changes in an
EDS structure. However, a clear solution was not presented on how to apply the
changes to DW fact and dimension tables. Moreover, changes to the structure of
dimensions as well as dimension instances were not taken into consideration.

In [25, 28, 38] implicit system created versions of data are used for avoiding
conflicts and mutual locking between OLAP queries and transactions refreshing a DW.

On the contrary, [11] supports explicit, time-stamped versions of data. The
proposed mechanism, however, uses one central fact table for storing all versions of
data. In a consequence, only changes to dimension and dimension instance structures
are supported. In [19] a DW schema versioning mechanism is presented. A new
persistent schema version is created for handling schema changes. The approach
supports only four basic schema modification operators, namely adding/deleting an
attribute as well as adding/deleting a functional dependency. A persistent schema
version requires a population with data. However, this issue is only mentioned in the
paper. [42] addresses the problem of handling changes only in the structure of a

 Metadata Management in a Multiversion Data Warehouse 1351

dimension instances. To this end, a time-stamped history of changes to dimension
instances is stored in an additional data structure. The paper by [29] addresses the
same problem and proposes consistency criteria that every dimension has to fulfill. It
gives an overview how the criteria can be applied to a temporal DW only.

In [3] a virtual versioning mechanism was presented. A virtual DW structure is
constructed for hypothetical queries simulating business scenarios. As this technique
computes new values of data for every hypothetical query based on virtual structures,
performance problems will appear for large DWs.

In order to handle schema and data evolution as well as versioning and in order to
allow querying such evolving DW systems, the set of well defined metadata is
required. From the approaches discussed above, only [18] presents a metamodel for a
temporal DW. Additionally, [37] discusses and presents high level metamodel for
handling and assuring data quality in a DW. The author only mentions the need for a
metamodel supporting DW evolution, without giving any solutions.

The need for metadata describing multiple areas of a DW system design,
development, deployment, and usage as well as the need for data exchange between
different heterogeneous systems resulted in two industrial metadata standards, namely
the Open Information Model (OIM) [24, 36, 45] and the Common Warehouse
Metadata (CWM) [15, 24, 45], developed by multiple industry vendors and software
providers. OIM was developed by the Meta Data Coalition (MDC) for the support
of all phases of an information system development. OIM is based on UML, XML,
and SQL92. It includes the following models: (1) object-oriented analysis and design,
(2) object and component development life-cycles, (3) business engineering, (4)
knowledge management tool, and (5) database and data warehousing model,
including: database and multidimensional schema elements, data transformations,
non-relational source elements, report definitions. OIM is supported among others by
Microsoft, Brio Technologies, Informatica, and SAS Institute.

On the contrary, CWM was developed by the Object Management Group
(OMG) for the support of integrating DW systems and business intelligence tools.
The standard is based on XML, CORBA IDL, MOF, and SQL99. It includes the
following models: (1) foundation of concepts and structures, (2) warehouse
deployment, (3) relational interface to data, (4) record-oriented structures, (5)
multidimensional database representation, (6) XML types and associations, (7) type
transformations, (8) OLAP constructs, (9) warehouse process flows, (10) warehouse
day-to-day operations. CWM is supported among others by IBM, Oracle, and
Hyperion.

In 2000, the standard developed by MDC was integrated into the standard developed
by OMG. Since then, the integrated standard is developed under OMG [46, 47].

None of the discussed standards, however, includes models supporting detection
and propagation of changes from an EDS to a DW, or models supporting schema and
data evolution in a DW. Consequently, they do not provide support for temporal or
cross-version queries. Whereas our approach and implemented prototype system
supports handling the evolution of DW schema and data by applying versioning
mechanism. Moreover, a user can query multiple DW version, analyze, and compare
the query results. In order to support these functionalities the system has to manage
various metadata that are described by the metaschema that we have developed.

1352 R. Wrembel and B. B bel

4 Multiversion Data Warehouse

This section informally overviews our concept of a multiversion DW, presents its
metaschema, and outlines the approach to querying multiple DW versions. Formal
description of a MVDW was presented in [34].

4.1 Basic Concepts

A multiversion data warehouse (MVDW) is composed of the set of its versions. A
DW version is in turn composed of a schema version and an instance version. A
schema version describes the structure of a DW within a given time period, whereas
an instance version represents the set of data described by its schema version.

We distinguish two types of DW versions, namely real and alternative ones. Real
versions are created in order to keep up with changes in a real business environment,
like for example: changing organizational structure of a company, changing
geographical borders of regions, changing prices/taxes of products. Real versions are
linearly ordered by the time they are valid within. Alternative versions are created
for simulation purposes, as part of the what-if analysis. Such versions represent
virtual business scenarios. All DW versions are connected by version derivation
relationships, forming a version derivation graph. The root of this tree is the first
real version. Fig. 2 schematically shows real and alternative versions. R1 is an initial
real version of a DW. Based on R1, new real version R2 was created. Similarly, R3
was derived from R2, etc. A2.1 and A2.2 are alternative versions derived from R2, and
A4.1 is an alternative version derived from R4.

Fig. 2. An example real and alternative versions derivation graph and version validity times

Every DW version is valid within certain period of time represented by two
timestamps, i.e. begin validity time (BVT) and end validity time (EVT) [5]. For
example, real version R1 (from Fig. 2) is valid within time t1 (BVT) and t2 (EVT), R2
is valid within t2 and t3, whereas R4 is valid from t4 until present. Alternative
versions A2.1, A2.2, and A4.1 are valid within the same time period as the real
versions they were derived from.

A schema version, after being derived, is modified by means of operations that
have an impact on a DW schema - further called schema change operations, as well as
by operations that have an impact on the structure of a dimension instance - further

 Metadata Management in a Multiversion Data Warehouse 1353

called dimension instance structure change operations. Schema change operations
include among others: adding a new attribute to a level, dropping an attribute from a
level, creating a new fact table, associating a given fact table with a given dimension,
renaming a table, creating a new level table with a given structure, including a super-
level table into its sub-level table, and creating a super-level table based on its sub-
level table. The last three operations are applicable to snowflake schemas.

Dimension instance structure change operations include among others: inserting
a new level instance into a given level, deleting an instance of a level, changing the
association of a sub-level instance to another super-level instance, merging several
instances of a given level into one instance of the same level, and splitting a given
level instance into multiple instances of the same level. The full list of schema and
dimension instance structure change operations with their formal semantics, their
application to a MVDW, and their outcomes can be found in [4]. Their presentation is
out of scope of this paper.

4.2 MVDW Metaschema

The model of a MVDW is composed of multiversion dimensions and multiversion
facts. A multiversion dimension is composed of dimension versions. A dimension
version is in turn composed of level versions that form hierarchies. A multiversion
fact is composed of fact versions. A fact version is associated with several dimension
versions. This association represents a cube version. A fact version and a dimension
version can be shared by several DW versions.

The overall metaschema of our prototype MVDW is shown in Fig. 3. It is designed
in the Oracle notation [2] where: a dashed line means a not mandatory foreign key, a
solid line means a mandatory foreign key, a line end split into three means a
relationship of cardinality many, whereas a simple line end means a relationship of
cardinality one.

The Versions dictionary table stores the information about all existing DW
versions, i.e. version identifier, name, begin and end validity times, status (whether a
version is committed or under development), type (a real or an alternative one),
parent-child (derivation) dependencies between versions. The meta information about
fact versions is stored in the Fact_Versions dictionary table, i.e. fact identifier, name,
an identifier of a multiversion fact a given fact belongs to, fact implementation name,
DW version identifier a given fact belongs to, the identifier of a transaction that
created a given fact. The meta information about dimension versions is stored in
Dim_Versions, i.e. dimension version identifier, name, an identifier of a multiversion
dimension a given dimension belongs to, DW version identifier a given dimension
belongs to, the identifier of a transaction that created a given dimension.

The description of versions of hierarchies and their assignments to a given
dimension version are stored in Hier_Versions and Dim_Hier_Versions, respectively.
Versions of hierarchies are composed of level versions, whose descriptions are stored
in Lev_Versions, i.e. level identifier, name, an identifier of a multiversion level a
given level belongs to, implementation name, DW version identifier a given level
belongs to, the identifier of a transaction that created a given level. Level versions are
components of versions of level hierarchies. These associations are stored in
Hier_Elements.

1354 R. Wrembel and B. B bel

Fig. 3. The metaschema of our prototype MVDW

 Metadata Management in a Multiversion Data Warehouse 1355

Fact versions are associated with dimension versions via level versions. The
associations are stored in FHE_Associations. Every record in this metatable contains an
identifier of a fact version, and identifier of the version of a hierarchy element (an
association with the lowest level in a level hierarchy), an identifier of a DW version this
association is valid in, and an identifier of a transaction that created this association.

Every fact version and level version includes the set of its attributes, that are stored
in the Attributes dictionary table. Notice that attributes are not versioned in order to
simplify the model. In a consequence, a single attribute can't be shared by multiple
DW versions. Integrity constraints defined for attributes as well as for fact and level
tables are stored in Att_Constraints and Int_Constraints. Functional dependencies
between attributes in level versions are stored in F_Dependencies.

Table Att_Map is used for storing mappings between an attribute existing in DW
version Vo and a corresponding attribute in a child version Vp. This kind of mappings
are necessary in order to track attribute definition changes between versions, i.e.
changing attribute name, data type, length, and integrity constraints. Some changes in
attribute domain between two consecutive DW versions, say Vo and Vp (e.g. changing
university grading scale from the Austrian one to the Polish one) will require data
transformations, if the data stored in Vo and Vp are to be comparable. To this end,
forward and backward conversion methods have to be provided. Their names are
registered in Att_Map as the values of Att_Forw_Mname and Att_Back_Mname,
respectively. In our prototype system, conversion methods are implemented as Oracle
PL/SQL functions. The input argument of such a function is the name of an attribute
whose value is being converted and the output is the converted value. Conversion
methods are implemented by a DW administrator and they are registered in the
metaschema by a dedicated application.

The Fact_Ver_Map dictionary table is used for storing mappings between a given
fact table in DW version Vo and a corresponding fact table in version Vp, directly
derived from Vo. This kind of mappings are necessary in order to track fact table
definition changes between versions, i.e. changing table name or splitting a table.

The purpose of Lev_Ver_Map is to track changes of level tables between versions,
i.e. changing table name, including a super-level table into its sub-level table, creating
a super-level table based on its sub-level table, cf. [4].

As outlined in Section 4.1, the instances of level versions can be modified by
changing associations to super-level instances as well as by merging and splitting
them. Operations of this type result in new dimension instance structures. In order to
allow querying multiple DW versions under such modifications, the system has to
map level instances in version Vo into their corresponding instances that were
modified in version Vp. To this end, the Lev_Inst_Map data dictionary table is used.

Example 1. In order to illustrate the idea and usage of mapping tables, let us consider
a DW schema from Fig. 1 and let us assume that initially, in a real version from
February (RFEB) to March (RMAR) there existed 3 shops, namely ShopA, ShopB, and
ShopC that were represented by appropriate instances of the Location dimension. In
April, a new DW version was created, namely RAPR in order to represent a new reality
where ShopA and ShopB were merged into one shop - ShopAB. This change was
reflected in the Location dimension instances. To this end, two following records
were inserted to the Lev_Inst_Map dictionary table:

1356 R. Wrembel and B. B bel

<id_ShopA,id_ShopAB,id_ShopsRMAR,id_ShopsRAPR,
 100,null,null,id_tr>

<id_ShopB,id_ShopAB,id_ShopsRMAR,id_ShopsRAPR,
 100,null,null,id_tr>

The first and the second value in the above records represents an identifier of
ShopA and ShopAB, respectively. The third and fourth value represents the Shops
level table identifier in version RMAR and RAPR, respectively. The fifth value stores the
merging/splitting ratio. In our example, the ratio equals to 100, meaning that the
whole ShopA and ShopB constitute ShopAB.

For more advanced splitting or merging operations it will be necessary to provide a
backward and forward transformation methods for converting facts from an old to a
new DW version. If such methods are explicitly implemented and provided by a DW
administrator, then their names are registered as the values of the sixth and seventh
attribute. The last attribute stores transaction identifier of a transaction that carried out
the modifications.

The prototype MVDW is managed in a transactional manner and the Transactions
dictionary table stores the information about transactions used for creating DW
versions and modifying them.

4.3 Metadata Visualization - MVDW User Interface

A MVDW administrator manages the structure and content of a MVDW via a
graphical application, implemented in Java. Its main management window is shown in
Fig. 4. It is composed of the version navigator, located at the left hand side and the
schema viewer, located at the right hand side. Both visualize the content of the
MVDW metaschema.

The main functionality of the application includes:

• the derivation of a new (real or alternative) version of a data warehouse schema
and its instance;

• the modification of a schema version and dimension instance structures, by means
of operations outlined in Section 4.1;

• loading data from EDSs into a selected DW version (any ODBC data sources,
sources accessible via a gateway, or text files can be used);

• visualizing the schema of a selected DW version;
• visualizing a schema version derivation graph;
• querying multiple DW versions and presenting query results.

4.4 Metadata in Multi-version Queries

The content of a MVDW can be queried either by a query that addresses a single
version - further called a single-version query (SVQ) or by addressing multiple
versions - further called a multi-version query (MVQ).

In a MVDW, data of user interest are usually distributed among several versions and
a user may not be aware of the location of particular data. Moreover, DW versions being
addressed in multi-version queries may differ with respect to their schemas. For these
reasons, querying a MVDW is challenging and requires intensive usage of metadata.

 Metadata Management in a Multiversion Data Warehouse 1357

Fig. 4. The application for managing a MVDW

For the purpose of querying a MVDW, a traditional SQL select command has
to be extended. To this end, we proposed clauses that allow querying: (1) a single DW
version, that can be either a real or an alternative one, (2) the set of real DW versions,
(3) the set of alternative DW versions. By including clauses (2) and (3) in one query,
a user can query real and alternative versions at once. The detail description of the
clauses as well as a user interface for specifying multi-version queries and visualizing
their results is discussed in [35].

A user's multi-version query is processed by the MVQ parser and executor in the
following steps.

1. Constructing the set of DW versions
The set SV of versions that is to be addressed in a MVQ is constructed by the parser
by using version begin validity time and end validity time (cf. Section 4.1), which
are stored in the Versions dictionary table.

2. Decomposing MVQ
Next, for every DW version in SV, the parser constructs an appropriate single-
version query. In this process, the differences in version schemas are taken into
consideration. If some tables and attributes changed names between versions, then

1358 R. Wrembel and B. B bel

appropriate names are found in data dictionary tables and are used in SVQs. If an
attribute is missing in DW versions Vi, Vj, Vk, then the attribute is excluded from
single-version queries addressing Vi, Vj, Vk. The data dictionary tables used in this
step include among others: Fact_Versions, Dim_Versions, Hier_Verisions,
Dim_Hier_Versions, Hier_Elements, FHE_Associations, Lev_Versions, Fact_Ver_
Map, Lev_Ver_Map, Attributes, Att_Map.

3. Executing SVQs
Every single version query constructed in step 2) is next executed in its own DW
version. Then, the result set of every SVQs is returned to a user and presented
separately. Additionally, every result set is annotated with:
− an information about a DW version the result was obtained from,
− a meta information about schema and dimension instance changes between

adjacent DW versions being addressed by a MVQ. The metadata information
attached to SVQ result allows to analyze and interpret the obtained data
appropriately.

4. Integrating SVQ results
Result sets of single-version queries, obtained in step 3), may be in some cases
integrated into one common data set. This set is represented in a DW version
specified by a user (the current real version by default). This integration will be
possible if a MVQ addresses attributes that are present in all versions of interest
and if there exist transformation methods between adjacent DW versions (if
needed). For example, it will not be possible to integrate the results of a MVQ
addressing DW version Vo and Vp, computing the sum of products sold (select
sum(amount) ...), if in version Vo attribute amount exists and in version Vp the
attribute was dropped.
While integrating result sets the following dictionary tables are used among others:
Fact_Versions, Fact_Ver_Map, Lev_Versions, Lev_Ver_Map, Attributes, Att_Map,
Lev_Inst_Map.

Example 2. In order to illustrate annotating result sets of SVQs with meta
information let us consider a DW schema from Fig. 1 and let us assume that initially,
in a real version from February RFEB, there existed 3 shops, namely ShopA, ShopB,
and ShopC. These shops were selling Ytong bricks with 7% of VAT. Let us assume
that in March, Ytong bricks were reclassified to 22% VAT category (which is a real
case of Poland after joining the European Union). This reclassification was reflected
in a new real DW version RMAR.

Now we may consider a user’s MVQ that addresses DW versions from February
till March and computes gross total sale of products. The query is decomposed into
two partial queries: one for RFEB and one for RMAR. After executing the corresponding
SVQs in their proper versions, the result set of SVQ addressing version RMAR is
augmented and returned to a user with meta information describing changes in the
structure of the Product dimension instance between RFEB and RMAR, as follows:

Dimension PRODUCT: Level PRODUCTS:
 change association:
 Ytong bricks(vat 7% vat 22%)

This way a sale analyst will know that a gross sale increase form February to
March was at least partially caused by VAT increase.

 Metadata Management in a Multiversion Data Warehouse 1359

5 Detecting Changes in EDSs

For each external data source supplying a MVDW we define the set of events being
monitored and the set of actions associated with every event.

5.1 Events and Actions

We distinguish two types of events, namely: structure events and data events. A
structure event signalizes changes in an EDS's structure, that include: adding an
attribute, modifying the name or domain of an attribute, dropping an attribute, adding
a new data structure (table, class), dropping a data structure, changing the name of a
data structure. A data event signalizes changes in an EDS's content, that include:
adding, deleting, or modifying a data item. The set of events being monitored at EDSs
is explicitly defined by a DW administrator and stored in so called mapping
metaschema, cf. Section 5.2.

For every event in the set, a DW administrator explicitly defines one or more
ordered actions to be performed in a particular DW version. We distinguish two kinds
of actions, namely messages and operations. Messages represent actions that can not
be automatically applied to a DW version, e.g. adding an attribute to an existing data
structure at an EDS, creating a new data structure. These events may not necessarily
require DW version modification if a new object is not going to store any information
of user's interest. Messages are used for notifying a DW administrator about certain
source events. Being notified by a message, an administrator can manually define and
apply appropriate actions into a selected DW version. Operations are generated for
events whose outcomes can be automatically applied to a DW version, e.g. the
insertion, update, and deletion of a record, the modification of an attribute domain or
name, the change of a data structure name. The associations between events and
actions is stored in the mapping metaschema.

From the implementation point of view, operations are represented by SQL DML
and DDL statements or stored procedures addressing an indicated DW version. The
executable codes of operations and bodies of messages are automatically generated by
monitors, cf. Section 5.3.

5.2 Mapping Metaschema

The structure of the mapping metaschema is shown in Fig. 5 (represented in the
Oracle notation). The SRC_SOURCES dictionary table stores descriptions of external
data sources. Information about EDSs data structures whose changes are to be
monitored, are registered in two dictionary tables: SRC_OBJECTS and SRC_
ATTRIBUTES. All monitored events at EDSs are stored in SRC_EVENTS.

DW_AC_SRC_EV_MAPPINGS stores mappings between events detected at EDSs
and their associated actions that are to be executed in a given DW version. Action
definitions, i.e. an action type and a data warehouse object an action is to be
performed on, are stored in DW_ACTIONS. Data warehouse object descriptions (i.e.
fact and dimension level tables, dimensions and hierarchies) are stored in the
DW_OBJECTS and DW_ATTRIBUTES dictionary tables. Values taken from EDSs
may need transformations before being loaded into a DW version (e.g. conversion of

1360 R. Wrembel and B. B bel

GBP into Euro). Expressions that transform/compute values of attributes are stored in
the DW_ATTR_EXPRESSIONS.

A DW administrator defines the content of the mapping metaschema (i.e.
mappings between events and actions) by means of a graphical application, called the
metaschema manager written in Java. The mapping metaschema in stored in an
Oracle10g database.

Fig. 5. The structure of the mapping metaschema

5.3 Automatic Generation of Monitors

External data sources are connected to a MVDW in a standard way via software
called monitors. Each EDS has its own dedicated monitor that is responsible for
detecting the occurrences of predefined events at that source. For every EDS, the code
of its monitor is automatically generated by a software module called the monitor
generator, based on the content of the mapping metaschema. In the current prototype
system, monitors are implemented in the Oracle PL/SQL language as stored packages
and triggers detecting defined events.

 Metadata Management in a Multiversion Data Warehouse 1361

After installing monitors at EDSs, they generate executable codes of operations
and bodies of messages in response to EDS events. Generated actions are stored in a
special data structure called the DW update register. Every action is described by its
type (message or DML statement), its content (e.g. SQL statement or stored
procedure) addressing particular objects in a particular DW version, and its sequence
that represents the order of action executions. When an administrator decides to
refresh a DW version, he/she selects actions for execution and runs a dedicated
process, called the warehouse refresher, that reads actions stored in the DW update
register and applies them to a specified DW version.

6 Summary and Conclusions

Handling changes in external data sources and applying them appropriately into a DW
became one of the important research and technological issues [16, 39]. Structural
changes applied inappropriately to a DW schema may result in wrong analytical
results. Research prototypes and solutions to this problem are mainly based on
temporal extensions that limit their use. Commercial DW systems existing on the
market (e.g. Oracle10g, Oracle Express Server, IBM DB2, SybaseIQ, Ingres
DecisionBase OLAP Server, NCR Teradata, Hyperion Essbase OLAP Server, SAP
Business Warehouse, MS SQL Server2000) do not offer mechanisms for managing
multiple DW states.

Our approach to this problem is based on a multiversion data warehouse, where a
DW version represents the structure and content of a DW within a certain time period.
Managing multiple persistent versions of a DW allows to:

• store history of real world changes without loss of any information,
• create alternative business scenarios for simulation purposes,
• query multiple DW states and compare query results.

A fully functional DW system needs managing metadata in order to support the
full lifecycle of a system. In the case of a multiversion data warehouse, metadata are
much more complex than in traditional DWs and have to provide additional
information, among others on: the structure and content of every DW version, a trace
of schema and dimension instance changes applied to every DW version. Industry
standard metamodels, i.e. Open Information Model and Common Warehouse
Metamodel as well as research contributions have not yet considered the
incorporation of metadata supporting either schema and data evolution or schema and
data versioning.
In this paper we contributed by:

1. The development of a MVDW metamodel that is capable of: (1) managing
versions of schemas and data in a MVDW, (2) executing queries that address
several DW versions, and (3) presenting, comparing, and interpreting multiversion
query results.

2. The framework for detecting changes in external data sources and propagating
them into a MVDW, with the functionality of: (1) automatic generation of software
monitoring EDSs, based on metadata, (2) automatic generation of actions in
response to EDSs events.

1362 R. Wrembel and B. B bel

Based on the developed metamodels, a prototype MVDW system was
implemented in Java and Oracle PL/SQL language, whereas data and metadata are
stored in an Oracle10g database.

In the current implementation, monitors are automatically generated for data
sources implemented on Oracle databases. In future we plan to extend automatic
generation of monitors for other database systems including: IBM DB2, Sybase
Adaptive Server Enterprise, and MS SQL Server as well as for non-database sources
including: text and XML files. Future work will also focus on extending our
metamodels in order to handle data quality issues in a MVDW. Another interesting
task is to extend the accepted industry standard CWM so that it is suitable for
describing a multiversion DW.

References

1. Andany J., Leonard M., Palisser C.: Management of schema evolution in databases. Prof.
of VLDB, 1991

2. Barker R.: Case*Method: Entity Relationship Modelling Addison-Wesley, 1990, ISBN
0201416964

3. Balmin, A., Papadimitriou, T., Papakonstanitnou, Y.: Hypothetical Queries in an OLAP
Environment. Proc. of VLDB, Egypt, 2000

4. B bel B.: Transactional Refreshing of Data Warehouses. PhD thesis, Pozna University of
Technology, Institute of Computing Science, 2005

5. B bel B., Eder J., Konicilia C., Morzy T., Wrembel R.: Creation and Management of
Versions in Multiversion Data Warehouse. Proc. of ACM SAC, Cyprus, 2004

6. Bellahsene Z.: View Mechanism for Schema Evolution in Object-Oriented DBMS. Proc.
of BNCOD, 1996

7. Benatallah B.: A Unified Framework for Supporting Dynamic Schema Evolution in Object
Databases. Proc. of ER, 1999

8. Bouguettaya A., Benatallah B., Elmargamid A.: Interconnecting Heterogeneous
Information Systems, Kluwer Academic Publishers, 1998

9. Elmagarmid A., Rusinkiewicz M., Sheth A.: Management of Heterogeneous and
Autonomous Database Systems. Morgan Kaufmann Publishers, 1999

10. Blaschka, M. Sapia, C., Hofling, G.: On Schema Evolution in Multidimensional
Databases. Proc. of DaWak99, Italy, 1999

11. Body, M., Miquel, M., Bédard, Y., Tchounikine A.: A Multidimensional and Multiversion
Structure for OLAP Applications. Proc. of DOLAP, USA, 2002

12. Chamoni, P., Stock, S.: Temporal Structures in Data Warehousing. Proc. of DaWaK99,
Italy, 1999

13. Chawathe S.S., Garcia-Molina H., Hammer J., Ireland K., Papakonstantinou Y., Ullman
J.D., Widom J.: The TSIMMIS project: Integration of heterogeneous information sources.
Proc. of IPS, Japan, 1994

14. Chen J., Chen S., Rundensteiner E.: A Transactional Model for Data Warehouse
Maintenance, Proc of ER, Finland, 2002

15. Object Management Group. Common Warehouse Metamodel Specification, v1.1.
http://www.omg.org/cgi-bin/doc?formal/03-03-02

16. Panel discussion on "Future trends in Data Warehousing and OLAP" at DOLAP2004,
ACM DOLAP, USA, 2004

 Metadata Management in a Multiversion Data Warehouse 1363

17. Eder, J., Koncilia, C.: Changes of Dimension Data in Temporal Data Warehouses. Proc. of
DaWaK, Germany, 2001

18. Eder, J., Koncilia, C., Morzy, T.: The COMET Metamodel for Temporal Data
Warehouses. Proc. of CAISE, Canada, 2002

19. Golfarelli M., Lechtenbörger J., Rizzi S., Vossen G.: Schema Versioning in Data
Warehouses. ER Workshops 2004, LNCS 3289

20. Gupta A., Mumick I.S. (eds.): Materialized Views: Techniques, Implementations, and
Applications. The MIT Press, 1999, ISBN 0-262-57122-6

21. Gyssens M., Lakshmanan L.V.S.: A Foundation for Multi-Dimensional Databases. Proc.
of the 23rd VLDB Conference, Grece, 1997

22. Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.: Maintaining Data Cubes under
Dimension Updates. Proc. of ICDE, Australia, 1999

23. Hurtado, C.A., Mendelzon, A.O.: Vaisman, A.A.: Updating OLAP Dimensions. Proc. of
DOLAP, 1999

24. Jarke, M., Lenzerini, M., Vassiliou, Y., Vassiliadis, P.: Fundamentals of Data Warehouses.
Springer-Verlag, 2003, ISBN 3-540-42089-4

25. Kang, H.G., Chung, C.W.: Exploiting Versions for On–line Data Warehouse Maintenance
in MOLAP Servers. Proc. of VLDB, China, 2002

26. Kaas Ch.K., Pedersen T.B., Rasmussen B.D.: Schema Evolution for Stars and Snowflakes.
Proc. of ICEIS, Portugal, 2004

27. Koeller, A., Rundensteiner, E.A., Hachem, N.: Integrating the Rewriting and Ranking
Phases of View Synchronization. Proc. of DOLAP, USA, 1998

28. Kulkarni, S., Mohania, M.: Concurrent Maintenance of Views Using Multiple Versions.
Proc. of IDEAS, 1999

29. Letz C., Henn E.T., Vossen G.: Consistency in Data Warehouse Dimensions. Proc. of
IDEAS, 2002

30. Levy A., Rajaraman A., Ordille J.: Querying heterogeneous information sources using
source descriptions. Proc. of VLDB, 1996

31. McBrien P., Poulovassilis A.: Automatic Migration and Wrapping of Database
Applications - a Schema Transformation Approach. Proc. of ER, 1999

32. McBrien P., Poulovassilis A.: Schema Evolution in Heterogeneous Database
Architectures, A Schema Transformation Approach. Proc. of CAiSE, 2002

33. Mendelzon, A.O., Vaisman, A.A.: Temporal Queries in OLAP. Proc. of VLDB, Egypt,
2000

34. Morzy, T., Wrembel, R.: Modeling a Multiversion Data Warehouse: A Formal Approach.
Proc. of ICEIS, France, 2003

35. Morzy T., Wrembel R.: On Querying Versions of Multiversion Data Warehouse. Proc.
ACM DOLAP, USA, 2004

36. Meta Data Coalition. Open Information Model. http://www.MDCinfo.com
37. Quix C.: Repository Support for Data Warehouse Evolution. Proc. of DMDW'99
38. Quass, D., Widom, J.: On–Line Warehouse View Maintenance. Proc. of SIGMOD, 1997
39. Rizzi S.: Open Problems in Data Warehousing: 8 Years Later. Keynote speech at

DOLAP2003, ACM DOLAP, USA, 2003
40. Roddick J.: A Survey of Schema Versioning Issues for Database Systems. In Information

and Software Technology, volume 37(7):383-393, 1996
41. Rundensteiner E., Koeller A., and Zhang X.: Maintaining Data Warehouses over Changing

Information Sources. Communications of the ACM, vol. 43, No. 6, 2000
42. Schlesinger L., Bauer A., Lehner W., Ediberidze G., Gutzman M.: Efficienlty

Synchronizing Multidimensional Schema Data. Proc. of DOLAP, Atlanta, USA, 2001

1364 R. Wrembel and B. B bel

43. Templeton M., Henley H., Maros E., van Buer D.J.: InterVisio: Dealing with the
complexity of federated database access. The VLDB Journal, 4(2), 1995

44. Vaisman A.A., Mendelzon A.O., Ruaro W., Cymerman S.G.: Supporting Dimension
Updates in an OLAP Server. Proc. of CAISE02 Conference, Canada, 2002

45. Vetterli T., Vaduva A., Staudt M.: Metadata Standards for Data Warehousing: Open
Information Model vs. Common Warehouse Metadata. SIGMOD Record, vol. 29, No. 3,
Sept. 2000

46. http://xml.coverpages.org/OMG-MDC-20000925.html
47. http://www.omg.org/news/releases/pr2000/2000-09-25a.htm

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1365 – 1380, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Metadata Management for Ad-Hoc InfoWare - A Rescue
and Emergency Use Case for Mobile Ad-Hoc Scenarios

Norun Sanderson, Vera Goebel, and Ellen Munthe-Kaas

Department of Informatics, University of Oslo
{noruns, goebel, ellenmk}@ifi.uio.no

Abstract. In this paper we present a multi-tier data dictionary approach
to metadata management in mobile ad-hoc networks (MANETs). Our
work is part of the Ad-Hoc InfoWare project, aiming to find
middleware solutions to information sharing in MANETs used in rescue
and emergency scenarios. Such scenarios are characterised by highly
dynamic and time critical issues, and pose new challenges to solutions
for information sharing and integration. We present the rescue and
emergency scenario, the results of the requirements analysis, and some
use cases resulting from this analysis. We describe the design of a
knowledge manager component and how it may provide solutions, the
main focus being on metadata management and the use of global and
local data dictionaries. We present the status of our work, including
detailed design and ongoing implementation of a data dictionary
manager.

1 Introduction and Motivation

The aim of the Ad-Hoc InfoWare project1 [1] is to develop middleware services to
facilitate information sharing in a mobile ad-hoc network (MANET) for rescue
scenarios. MANETs are typically composed of heterogeneous devices of various
resources and capabilities. The devices can range from cell phones and PDAs to
laptops equipped with wireless network interfaces. Devices can join and leave the
network range at all times, which make MANETs very dynamic. Such an
infrastructure could be very helpful for information sharing in rescue and emergency
operations where the personnel are carrying wireless devices. Sharing information
between these wireless devices aids gathering and distribution of information, and
may in addition ease coordination and cooperation of rescue personnel, which in
rescue and emergency operations typically belong to different organisations. This
means that the problems faced by supporting middleware include exchange of
information both within and across organisations. To facilitate this, it is necessary that
applications running on devices from different organisations are supported in
understanding the descriptions of the information available for sharing, i.e., the

1 This work has been funded by the Norwegian Research Council under the IKT-2010

program, Project no. 152929/431.

1366 N. Sanderson, V. Goebel, and E. Munthe-Kaas

symbolic languages and data models used. Thus, metadata management is essential in
enabling effective and efficient sharing of information and resources in a MANET.
Our proposed solution for how this may be achieved is the focus of this paper.

Issues of semantic heterogeneity and interoperability relevant for information
sharing have been addressed in the distributed database domain, and solutions to some
of the challenges may be found here, but our solutions have to take into consideration
the added challenges of MANETs, e.g., that information (periodically) may become
unavailable, that the devices used are often small and resource-weak, and that the
network topology is dynamic.

In this paper we introduce a multi-tier data dictionary approach for metadata
management targeted at the challenges to information sharing posed by MANETs and
rescue and emergency scenarios. Conceptually, our approach is a three layer approach
of increasing levels of knowledge abstraction, realised through Local Data
Dictionaries and Semantic Linked Distributed Data Dictionaries. Two-way links
connect context and information items, and may also function as a semantic overlay
network of semantically related nodes. A requirements analysis based on interviews
and accident reports of rescue organisations and monitoring of real-life emergency
exercises, has been conducted. Results from this analysis include a six phase scenario
for MANETs in rescue and emergency operations, as well as issues and requirements
that have guided the design of a Knowledge Manager component. Our multi-tier data
dictionary solution is realised as a Data Dictionary Manager, which is the main
metadata handling component in the Knowledge Manager.

We believe that solutions from the information and knowledge management
domain can contribute to solutions for information sharing and integration in
MANETs for rescue and emergency scenarios. More specifically, we claim that
metadata management is essential in such a solution, and that our multi-tiered data
dictionary approach using semantic linked distributed data dictionaries can be a
contribution in solving many of the challenges of information sharing and integration
in using MANETs as an infrastructure for rescue and emergency use cases.

The rest of the paper is organised as follows. In Section 2 we present the results
from our requirements analysis and introduce our six phase scenario for a rescue and
emergency operation. Issues and challenges related to knowledge management for
MANETs are presented in Section 3, together with the Knowledge Manager design.
In Section 4 we describe our multi-tiered data dictionary approach for metadata
management, including design of our Data Dictionary Manager, example and use
cases. Finally, in Section 5 we give some conclusions and describe future work.

2 Requirements Analysis and Scenario Description

Rescue and emergency scenarios are characterised by involving cooperation of
personnel from different organisations; policemen, firemen, physicians, and
paramedics. The dimension of heterogeneity imposed on the network by such inter-
organisational cooperation makes it essential to find ways to present information so
that it can be understood by all participating organisations. This implies supporting
functionality akin to high-level distributed database system functionality, keeping
track of what information is available in the network, and supporting querying of
available information. Ontologies can be used to enable sharing and reuse of
knowledge within and across communities. An agreed-upon vocabulary can be shared

 Metadata Management for Ad-Hoc InfoWare - A Rescue and Emergency Use Case 1367

and used for querying and assertions, independently of any representations used
internally in the organisations.

Each organisation has its own set of rescue operation procedures and guidelines. In
addition there are cross-organisational procedures involving governmental and other
authorities, and these can be expected to include a command structure. This means
that some level of (inter- and intra-) organisational structure should be supported by
the middleware, as well as some contextual support for reflecting the type of rescue
operation in question. Other valuable uses of context include support for user role and
device profiling, personalisation, and providing temporal and spatial information.

In our scenario, we have identified six different phases:

• Phase 1 – A priori: This phase is actually before the accident, when the relevant
organisations - in cooperation with the authorities - will exchange information on
data formats and any shared vocabularies, and make agreements on procedures and
working methods.

• Phase 2 – Briefing: This phase starts once an accident has been reported. The
briefing involves gathering of information about the disaster, e.g., weather,
location, number of people involved, and facilities in the area. Some preliminary
decisions about rescue procedures and working methods are made, according to the
nature of the accident.

• Phase 3 – Bootstrapping the network: This phase takes place at the rescue site, and
involves devices joining and registering as nodes in the network on arrival. The
appointing of rescue leaders also takes place in this phase.

• Phase 4 – Running of the network: This is the main phase during the rescue
operation. Events that may affect the middleware services, include nodes joining
and leaving the network and network partitions and merges. Information is
collected, exchanged and distributed. There may be changes in the roles different
personnel have in the rescue operation, e.g., change of rescue site leader. New
organisations and personnel may arrive and leave the rescue site, and ad-hoc, task-
oriented groups involving people from different organisations may form.

• Phase 5 – Closing of the network: At the end of the rescue operation all services
must be terminated.

• Phase 6 – Post processing: After the rescue operation it could be useful to analyze
resource use, user movements, and how and what type of information was shared,
to gain knowledge for future situations.

Although fixed networks cannot be relied on during the rescue operation itself, the
opening phases (phases 1-2) have no such restrictions, and thus give possibilities for
preparations that can compensate somewhat for a lack of resources during the rescue
operation.

In addition to the possible lack of a fixed network, MANETs pose other challenges
that have to be reflected in non-functional requirements, e.g., node movement; different
types of devices; scarcity of resources; dynamic network topology etc. It is desirable to
keep communication (number of messages) and storage space consumption as low as
possible. The dynamic environment and lack of routing table for query routing, implies
that query results may depend on the specific location and time of placing the query
even though the query itself does not address spatio-temporal data; it is all a question of
which nodes are within reach, and which information they contain.

1368 N. Sanderson, V. Goebel, and E. Munthe-Kaas

The added challenges of a dynamic and partly unpredictable environment are not
met by traditional (distributed) database management systems (DBMS) or systems for
information sharing. For instance, DBMSs rely on a stable network topology; a
node/server being unavailable is seen as a state of node failure, while in a MANET
such a state has to be handled as a normal state, which implies that new solutions for
e.g., metadata management, query execution, and transaction management are needed.

The overall requirements resulting from the above analysis, include support for
intra- and inter-organisational information flow and knowledge exchange, as well as
means to announce and discover information sources. Contextual support enables
applications to adapt better to particular scenarios and allow them to fine-tune
according to spatial and temporal data. Profiling and personalisation can assist in
filtering and presenting information in accordance with the user’s and device’s needs,
as well as display their capabilities.

Other important issues for information sharing in rescue and emergency scenarios
include access control and security, management of scarce resources, and
asynchronous communication. In the Ad-Hoc InfoWare project, these issues have
been addressed by designing an architecture consisting of five components:
distributed event notification system (DENS), decoupling subscribers and publishers
through mediator nodes; resource management keeping track of nodes and their
resources; watchdogs monitoring changes and issuing notifications on change;
security and privacy management, assuring secure communication and access control,
and finally knowledge management for handling and integrating ontologies, metadata
and information. In this paper, we have limited ourselves to include only issues
relevant to knowledge management and metadata management. We refer to [3] for a
more general discussion of the scenario and requirements analysis.

Examples of possible applications in our scenario include applications for
registering casualties, with identification (if known), photo, degree of urgency (e.g.,
green, yellow, red), treatment, and data from patient journals if available; and
applications for supervising and tracking of personnel. For instance, firemen in a
burning building could be given route instructions by their supervisor or team leader,
their body temperature measured etc. Another example could be on-site identification
of passengers and gathering of information relevant to the investigation of the accident.

3 Knowledge Management Issues and Challenges

From the requirements analysis we have a set of main issues that needs considering in
relation to knowledge management. Due to the dynamic environment in both
MANETs and in rescue and emergency scenarios, information may become
unavailable in an unpredictable fashion. Thus we have to keep track of the
availability of shared information. Another issue is that the sharing of information is
both within and across the participating organisations, so it is essential to aid
understanding in relation to the data models, standards, languages and vocabularies
used in the different organisations. Time and resources are critical factors in rescue
operations; this means that issues of information overload have to be handled
through filtering, personalisation and context awareness. As the purpose is sharing
information, the means to query for relevant information, search in available topics,
and retrieval of relevant information is a major issue. Information exchange has to
be conducted in agreed-upon standardised formats.

 Metadata Management for Ad-Hoc InfoWare - A Rescue and Emergency Use Case 1369

Data management, which is mainly targeted towards the management of storage
and distribution of data, does not provide adequate solutions. We have to look
towards metadata management and knowledge management, as we here can find
solutions for many of the issues regarding sharing knowledge in heterogeneous
environments, for instance by the use of ontologies in sharing vocabularies and
semantic contexts, and (metadata) models to describe the information items/resources
that are to be shared.

3.1 Knowledge Manager Design

The main objective of the Knowledge Manager (KM) is to manage knowledge
sharing and integration in the MANET. It adds a layer of knowledge to the
information shared in the network. The KM should provide services that allow
relating metadata descriptions of information items to a semantic context. The
services should be offered both internally to the system as well as to the application
level. It should only give the tools, the means for information sharing, not decide
usage and content. It is a goal to keep the KM as flexible as possible.

The requirements for the KM include support of the use and sharing of existing
domain ontologies (from organisations); enable querying and retrieval of relevant
information items, and storage and management of metadata (data structures, content
descriptions) and ontologies (vocabularies). The latter includes the classification of,
e.g., events, resource types, access levels etc., for use internally in the system, and
domain ontologies and different metadata standards for external use. Another highly
relevant requirement is to keep track of the availability of information items in the
current MANET. Personalisation and filtering of information is also required; by
using profiles, e.g., user and device profiles, and contexts, like location time, and
situation. As devices of differing size and capability may be used, a scalable
configuration is necessary.

We have found that in our scenario there are three kinds of metadata that needs
handling, and these metadata categories are reflected in the KM design. The first
category is information structure and content description metadata; this kind addresses
information item contents, structure and localisation. The component focusing on this
class of metadata is the Data Dictionary Manager. The second kind, semantic metadata,
covers concepts and relations in a domain, providing a semantic context. The Semantic
Metadata and Ontology Framework component deals with this kind of metadata. The
third class of metadata is profile and context metadata, handled by the Profile and
Context Management component. This class of metadata includes profiles for users
and devices, and context-related information, typically including location, time, and
situation (e.g., the current rescue operation). A user can have different roles in different
contexts, and use different devices. A device is of a particular type, and has a set of
resources, capabilities, an owner (e.g., organisation) etc. The use for this kind of
metadata is filtering and ranking to avoid information overload.

The KM is composed of five components working together to fulfil the KM
requirements. Each component is addressing one of the main issues, as illustrated in
Figure 1. In the following, each of the KM components will be briefly described.

The Data Dictionary Manager (DDM) is the main component for metadata
management, designed to manage metadata storage through multi-tiered data
dictionaries, and to support tracking of availability. The design of the DDM is more

1370 N. Sanderson, V. Goebel, and E. Munthe-Kaas

thoroughly presented in Section 4. Each DDM has a Local Data Dictionary (LDD),
containing metadata descriptions of information items to be shared in the MANET,
and a Semantic Linked Distributed Data Dictionary (SDDD), keeping a global view
of sharable information.

Fig. 1. The Knowledge Manager

The purpose of the Semantic Metadata and Ontology Framework is to aid use and
sharing of ontologies and semantic metadata. The requirements include supporting
information integration through the use of ontologies for solving problems of semantic
heterogeneity, and to offer functionality related to concept matching, traversal,
consistency and validity checking, and simple reasoning. It should also handle
problems of partially available metadata and ontologies – which is particularly relevant
in a MANET given the dynamic network topology – as well as dealing with run-time
changes in semantic metadata. A set of language and model standards for semantic
metadata and ontologies may also have to be supported. In addition there may be need
for some automatic or semi-automatic dynamic gathering of metadata. Internally in the
system, ontologies are useful for describing categories of devices; events; resources;
access levels etc. Externally, i.e., to the application level, the focus is on use and
sharing of existing domain ontologies from the participating organisations. We assume
that ontology creation is handled a priori in the organisations.

The main objective for Profile and Context Management is to support
personalisation, ranking and filtering of information through profiling and context. A
profile gives the “what” and “who” of an entity, and contains fairly static information.
Examples are device type and resources, user identification, roles and preferences.
Contexts on the other hand, contain information concerning the “where”, “when” and
“why” of an entity, for instance the location, time, and situation. This is a more
dynamic kind of information, changing along with shifts in situations and locations
(e.g., node movement).

Distributed
Event
Notification
System

Watchdogs

Resource
Management

Security and Privacy Management

Data Dictionary Mgnt.

Semantic Metadata &
Ontology Framework XML

Parser

Profile & Context Mgnt

Query
Mgnt

Knowledge Manager

LDD SDDD

UNDERSTANDING

INFORMATION
OVERLOAD

EXCHANGE

RETRIEVAL

AVAILABILITY

 Metadata Management for Ad-Hoc InfoWare - A Rescue and Emergency Use Case 1371

In addition to the three metadata handling components, the KM has two tool
components, providing functionality related to searching/querying and parsing. The
Query Manager should support different approaches to querying, and the dispatching
of queries. It should also allow creation of simple queries, and support filtering and
ranking of results. Given that XML is becoming a de facto standard for information
exchange, e.g. in health and medical domains [20] [21], we will need an XML Parser,
offering services related to parsing of XML documents. In addition, if RDF and RDF-
based ontology languages are used, an RDF parser will also be needed.

3.2 Related Work

Approaches for solving syntactic and structural heterogeneity have been addressed in
standardisation work [20] [21] [23] and in the distributed database domain.

Approaches for information and ontology integration, and the use of ontologies for
solving semantic heterogeneity, can be found in [9] [12]. In information integration,
ontologies can be used as a solution to solve semantic heterogeneity, both to explicitly
describe the semantics of information sources, and as a language for translation.
There are several approaches to information integration, Wache et al [9] describe
three general approaches: Single ontology approach – having one global ontology
with shared semantics, that all users have to conform to; Multiple ontology approach
– where mapping between (each pair of) ontologies is required; and Hybrid ontology
approach – where multiple ontologies are built on top of or linked to a shared
vocabulary of basic terms which may function like a bridge or translation between
ontologies. We believe a variety of the hybrid approach will be the most
advantageous in relation to our Knowledge Manager.

Ontology-based solutions for information sharing and Semantic Web are described
in [10] [11]. Different XML parsing paradigms are presented in [16] [17], and the use
of XML as standard for information exchange in rescue organisations is addressed by
[18] [20] [22] [23] [24].

Shark [8] [13] is an approach where topic-based knowledge ports are used to
handle knowledge management tasks. This is a three-layer approach similar to ours.
The knowledge ports are defined as topic types and declare topics for knowledge
exchange. The (mobile) users form groups, and both intra- and inter-group knowledge
sharing and exchange is possible. The architecture relies on stationary server nodes
for knowledge and synchronisation management, which is a drawback in MANET
scenarios. Topic Maps is introduced in [19].

The approach in MoGATU [5] is relevant to knowledge and context management
in their use of profiles and ontologies for filtering and prioritisation of data. In this
approach, information managers (InforMa) functioning as local metadata repositories
are used for metadata handling, enabling semantic-based caching. DAML is used as a
common language for metadata representation. There is no global view of knowledge
available in the network.

A service oriented and data-centric approach is DBGlobe [7][14], where devices
form data sharing communities that together make up an ad-hoc database of the
collection of data on devices that exist around a specific context (e.g., location or
user). Profile and metadata describing each mobile device, including context and
which resources are offered, is stored on fixed network servers. The servers are also
used to keep track of the movement of mobile units. Service location and query
routing is realised through the use of distributed indexes based on Bloom filters.

1372 N. Sanderson, V. Goebel, and E. Munthe-Kaas

Relying on a fixed network is a drawback both in relation to emergency and rescue
scenarios and MANETs.

By providing a global database abstraction over a MANET, AmbientDB [6] [15]
adds high-level data management functionalities to a distributed middleware layer.
This is a non-centralised, ad-hoc/dynamic approach using structured queries. Indexing
is realised through Distributed Hash Tables (DHT). This approach constitutes a full-
fledged distributed database system for MANETs, but does not support use of
ontologies or methods from knowledge management.

4 Design and Implementation of the Data Dictionary Manager

In this part, we first present our three-layered approach, and then go on to describe the
Data Dictionary Manager, which is the main component for metadata management in
the KM. Every node has a DDM, each containing a Local Data Dictionary (LDD) and
a (global) Semantic Linked Distributed Data Dictionary (SDDD). The DDM uses
services from the Semantic Metadata and Ontology Framework for discovering
concept structure and relationships. Alternative approaches that we have considered
for storage and distribution of a global data dictionary, are described in [2].

4.1 Three-Layered Approach

Conceptually, our approach consists of three layers of increasing abstraction levels:
information layer, semantic context layer, and knowledge layer. At the lowest
abstraction level, the information layer concerns the information to be shared on the
nodes, represented by metadata descriptions of information item structure and
content. The semantic context provides meaning through relating the metadata
descriptions to vocabularies/ontologies defining the domain in question. These
ontologies constitute the highest level of abstraction – the knowledge layer. Topic
Maps or RDF can be used to realise links from semantic context layer to information
layer; our solution differs in that we have (indirect) links from the information layer
to the semantic context layer, i.e., we support two-way links.

The main reason why we believe two-way links are useful in a MANET is that it
will contribute to keeping communication needed for query and search related to
information retrieval as low as possible, which is highly desirable in mobile wireless
networks. The semantic context layer can function like a (semantic) index structure –
indicating which nodes to send queries to (assuming semantically related nodes have
a higher probability of having relevant information). Through functioning similarly to
a semantic overlay network, having two-way links will enable traversal among
(semantically) related nodes, allowing query/search to be limited to these, e.g., using
partly local query/searches, or query on a cluster of related nodes. By the merging of
the semantic contexts of information resources on mobile nodes when forming a
network, each node’s global view of what knowledge is available for sharing in the
MANET is gradually expanded and updated. Thus nodes (information items on
nodes) can be said to be related semantically both “vertically” to semantic context and
domain ontologies, and “horizontally” to other related nodes. Neither Topic Maps nor
RDF have links from (metadata descriptions of) resources to concept/topic (although
this may possibly be achieved by extension).

 Metadata Management for Ad-Hoc InfoWare - A Rescue and Emergency Use Case 1373

At the time of network bootstrap, and before a node has discovered any other
nodes in network range, the “world” and the network available as known to the node
consists only of the node itself and what is stored locally (metadata registered in the
LDD for sharing). So initially, the global view of the knowledge in the MANET is
only what exists locally on the single node. When the node comes into network range
with other nodes, the contents of its global view will be exchanged and merged with
the global views of its neighbouring nodes, i.e., each node exchanges the contents of
its SDDD with the SDDD of the neighbouring node. Keeping an SDDD on all nodes
at all times, solves many of the problems encountered at bootstrap time (e.g., where to
find vocabulary terms/concepts for describing and linking resources, and where the
Distributed Event Notification System (DENS) can look for initial subscriptions).

In Figure 2 a conceptual view of this layered solution can be seen. The figure also
indicates that our solution will be realised through metadata management, using local
and semantically linked distributed data dictionaries (LDDs and SDDDs) on the
mobile nodes.

Fig. 2. Layered solution

4.2 Data Dictionary Manager

The DDM is responsible for storage and management of metadata for items registered
to be shared, as well as responsibility for structure and content description metadata.
The main requirements of the DDM are listed below:

• Manage organisation and update of data dictionaries:
− Add/update/delete content of LDD and SDDD
− Manage merging of SDDD

• Keep track of data availability
• Support request for information from data dictionaries (search and traversal)
• Link validity checking.

SDDD
– linking level

(Instance)

(Link)

LDD
– metadata

Virtual layer - SDDD:
Semantic/topical
Context

Information

Conceptual
Implementation

Ontology layer

1374 N. Sanderson, V. Goebel, and E. Munthe-Kaas

The DDM offers APIs to the application layer; e.g., adding and updating items to
LDD, and requesting (querying) information globally (through SDDDs). It should
also have APIs for services offered internally in the system to the other (middleware)
components as well as other KM components. It has protocols for communicating
with DDMs on other nodes, e.g., for traversal of semantic net (in querying), and
exchanging SDDD contents at merge. In addition, an interface towards the data layer
is needed for lookups (e.g., a file storage system, or a DBMS) locally on the node.

4.3 Local Data Dictionary

The metadata contained in the LDD includes metadata for ontologies/vocabularies,
metadata models, and system related data, all kinds of data that also are stored on a
node, described by metadata and shared in the network. Metadata is added at the
application level, using appropriate concepts and terms from vocabularies
(/ontologies) and metadata standards agreed upon in the a priori phase. These
vocabularies are also described, and their metadata registered, in the LDD.
Vocabulary mapping of shared and local vocabularies is achieved through employing
services offered by the Semantic Metadata and Ontology Framework. Some kind of
consistency check and cleanup of the LDD to remove outdated information should be
conducted periodically. How the registering of items is done by the DDM is described
in more detail in the section on LDD and SDDD life cycle.

For the purpose of illustration, we here introduce a small and very simple
vocabulary consisting of these few concepts and relations:

concept(CasualtyReg), concept(CasualtyID), concept(CasualtyCode),
concept(CodeRed), concept(CodeYellow), concept(CodeGreen),
relation(isPartOf), relation(isKindOf),
isPartOf(CasualtyID, CasualtyReg), isPartOf(CasualtyCode, CasualtyReg),
isKindOf(CodeGreen, CasualtyCode), isKindOf(CodeRed, CasualtyCode),
isKindOf(CodeYellow, CasualtyCode)

By using concepts from a vocabulary in the metadata descriptions, the information
items are indirectly linked to the semantic context level – realised by the SDDD – and
to related information (on other nodes). The concepts are used as (property) values in
the metadata descriptions. For instance, say we have a data item for registration of a
casualty – an instance of ‘CasualtyReg’. The metadata description of the item would
contain some properties characterising the item, e.g., it having CasualtyCode
‘CodeRed’. By simple reasoning, we can follow a link from entry CodeRed in the
metadata description, to its corresponding ontology individual ‘CodeRed’, and further
find the kind of concept it is (‘CasualtyCode’), and that this is in turn part of a
‘CasualtyReg’. Thus we have an indirect link via property values used in metadata
descriptions to the semantic context level. The semantic network of concepts and
relations can be further traversed, and nodes containing information items belonging
to a concept, can be reached. Thus we can find related information through finding
semantically related nodes in a MANET.

The LDD can be realised in many ways, for instance as XML structures or as tables
in a database. Below is the terminology we use to describe LDD items and structure.

 Metadata Management for Ad-Hoc InfoWare - A Rescue and Emergency Use Case 1375

Dictionary Item. This is an ”envelope” or container containing the metadata about
some information item. The purpose of having a Dictionary Item is to have a
homogeneous “outer shell” common for all entries in the LDD, independent of what
kind of information item or metadata it contains. The Dictionary Item provides
information regarding identification (a dictionary item id); which type of item it
contains metadata about (Info-Item-Type); and the metadata model used.

Info-Item-Type. There are many different kinds of information objects that need
describing, e.g., an image, a device profile, component specific information etc.
Different types of information items may need different structure of the metadata
descriptions. Therefore, we need to have defined Info-Item-Types for all the different
kinds.

Info-Item. All Info-Items are of a given Info-Item-Type, and all Info-Items have
some common metadata content: item structure (e.g., format), item content
(intellectual), semantic context information, and administrative metadata (e.g., access,
distribution, number of copies, localisation etc). It will also most likely have
something specific to its Info-Item-Type.

Data-Item. This denotes what the metadata is describing – e.g., a document file,
sensor data, or a video clip.

4.4 Semantic Linked Distributed Data Dictionary

The main task of the SDDD is to provide linking tables for linking LDD items to a
semantic context through concepts used in metadata descriptions. The concepts and
relations between them make a semantic network, and the SDDD should allow
traversal of this semantic net. The SDDD keeps an overview of sharable items that are
known by the node to be available in the MANET, and keeps tables linking concepts
and nodes. The SDDD should also do some “self administration”, i.e., distribution and
replication of the SDDD itself (the linking tables). In our approach of having an
SDDD on every node, the contents of the SDDD is distributed and replicated at merge
time when SDDD content of two nodes is exchanged and merged with existing SDDD
content on each node. This means full replication and distribution of SDDD content
(depending on whether enough resources exist on all nodes).

The SDDD can be said to be a ‘virtual’ data dictionary in the sense that it does not
store any copy, abstract, or summary of LDD contents, but is realised as a set of linking
tables linking concepts to where the resource is found (the node). It also includes tables
for relations between concepts. An important issue in this context is the level of
granularity for linking. We have chosen to use two levels of granularity, depending on
whether the link points to items in a local LDD, or to items found at a different node.
Pointing to the node will be sufficient in the latter case, the rest of the link being
resolved locally on the node where the item is, while when linking to the LDD on the
same node, the link points to the Dictionary Item (in the LDD). How the merging and
linking is done by the DDM is described in more detail in the next section.

4.5 LDD and SDDD Life Cycle

At bootstrap time, the DDM first creates the LDD, or restores it from permanent
storage. There will always be some initial content to be registered in LDD, e.g.,

1376 N. Sanderson, V. Goebel, and E. Munthe-Kaas

metadata of vocabularies and standards to be used, and other information from the a
priori phase. The application should be able to decide whether the LDD should keep
the previous content. If the previous content belonged to the same rescue context, e.g.,
due to a temporary shut down, we assume that the DDM persisted the LDD and thus
can restore the LDD content. At re-startup, pointers to resources in the LDD should
always be checked and confirmed so that the content is as accurate as possible.

Next, the SDDD is created. The LDD content is scanned for concepts, and these
are added to the SDDD tables together with the Dictionary Item ID of resources
related to the concept. As long as the resource pointed to by a link is registered in the
LDD on the node, the link points to the Dictionary Item (DI) in the LDD. After a
merge, links can point to items registered for sharing on a different node. In this case,
the link points to the other node as such, and not to a DI in the LDD of that node. The
link is then resolved locally on the node. This means that a higher level of granularity
is used when links are pointing locally on a node, while a lower granularity is used
when pointing to a different node.

Items are registered in the LDD the following way: The application requests the
DDM to add an item to the LDD, providing the metadata to be stored. A new DI entry
is created, and the LDD tables are updated with the new information. The DDM then
initiates update of the SDDD.

When two nodes come into network range, they will exchange SDDD content, and
depending on available resources, each node will merge the received content with its
own SDDD. This merge can be viewed as an expansion of each node’s worldview.
The merge is completed in the following steps: 1) concepts are matched with existing
concepts in the SDDD. 2) If there is a concept match, the SDDD linking table will be
updated with node-IDs (node links). In the case of new concepts, the DDM adds the
concepts and node-IDs to the SDDD linking table providing there are enough
resources. Otherwise it adds no concepts, only a link to the node that expands its
global view. 3) The DDM updates the availability table in the SDDD.

When there are changes in the LDD-related information resources, the LDD has to
be updated to reflect these changes. The possible ways this is realised, will depend on
the LDD implementation as well as the underlying system for storage used on the
node. If the underlying storage system is a database system, triggers can be used. The
availability information in the SDDD is updated in a lazy fashion, i.e., updating node
availability when a node is discovered to be out of reach instead of polling for changes.
In addition, both LDD and SDDD will have some periodical clean-up of links.

On shut-down, the DDM should store the contents of both LDD and SDDD in
permanent storage. For the LDD, pointers to resources will be checked and updated
on next start-up. In the case of SDDD, if there is limited storage space on a node, the
SDDD may be discharged and then rebuilt on start-up. Some clean-up of links may be
conducted at start-up, but through the combination of lazy update and periodical
clean-up, the SDDD will gradually become updated. Prioritizing metadata of different
types and importance should also be considered.

4.6 Example and Use Cases

In our mini-scenario, two doctors at a rescue site carry devices running an application
for casualty registration and middleware for information sharing in MANETs. Each of
the doctors registers one or more casualties before coming into network range and
forming a network.

 Metadata Management for Ad-Hoc InfoWare - A Rescue and Emergency Use Case 1377

Below is a brief walk-through of the mini-scenario.

− At starting point (after bootstrap): Both the LDD and SDDD have been created on all
nodes. Some a priori info (e.g., metadata describing the used vocabulary) has been
added to the LDD. The SDDD contains concepts and links to DIs in its local LDD.

− The two (doctor-) nodes, Node1 and Node2, are not in range.
− On each node, metadata of casualty registration information is added to the LDD,

and the SDDD is updated with appropriate concepts and links (and availability
information).

− The nodes come into range and form a network, exchange SDDD contents, and
update their SDDDs.

The above mini-scenario is split into two use cases presented below.

Use case 1: Registering metadata of information to be shared.

1. A doctor uses the casualty registration application to register casualty data about an
injured passenger

2. The application creates a metadata description using concepts from a vocabulary
3. The application requests the DDM to add the metadata description to the LDD for

sharing
4. DDM adds received metadata to LDD
5. DDM initiates that the SDDD is updated with the new information

The result of this use case is that the casualty registration data is registered with its
describing metadata in LDD, and is available for sharing in the network.

Use case 2: Merging global view of sharable information.

1. Node1 comes into network range with Node2; the nodes perform necessary
procedures of security and recognition (not elaborated here)

2. The DDM on each node requests exchange of metadata to expand the global view
(the SDDD)

3. The DDMs exchange metadata
4. The DDM initiates merging of received content to its global view (the SDDD)

The result of this use case is that the nodes share a common view of what
information is available for sharing globally in the network.

4.7 Implementation and Testing

Some of the factors we considered when choosing a DBMS to build on include it
having a data dictionary/directory, code availability, that it be lightweight and can run
on several platforms, and that it is standards based. Ideally, we would have liked to
use a distributed DBMS for MANETs, but have not found any suitable existing
systems that are available. Therefore, to test our ideas, we have chosen to build on
Derby [25], which is an open-source, light footprint DBMS. It is standards based
(SQL-99), and can run on different platforms and in different environments, in
embedded mode or in client/server mode. In our case, it will be part of a DDM
module for testing. Building on (parts of) an existing DBMS will save time and allow
us to focus on our metadata management solution.

1378 N. Sanderson, V. Goebel, and E. Munthe-Kaas

A small example to show how the LDD and SDDD can be realised using database
tables, and to demonstrate merging of SDDDs, is given below. The basis for this
example is the use cases presented in the previous section. We assume that a common
vocabulary (introduced in 4.3) and metadata model is used. To give an indication of a
possible LDD and SDDD structure, we show examples of LDD and SDDD schemas
related to our working example below. Only some example attributes are shown in the
schema.

LDD_Dict_Item (DI-id, InfoItem-Type, Metadata_model_DI, InfoItem-ID)
InfoItem_DataStructure (InfoItem-id, Metadata_model_InfoItem, Format)
InfoItem_Content(InfoItem-id, Description, Owner)
InfoItem_Context(InfoItem-id, Vocabulary_Used, TypeOfRescueOperation,
NameOfRescueSite)
InfoItem_Admin(InfoItem-id, Location, Resource_Owner, Access_level)
InfoItem_TypeSpecific(InfoItem-id, InfoItem-Type)

The SDDD schema is for linking tables, availability tracking, and concept names.
The attribute MetaResID (metadata resource id) in the tables ‘SDDD_Linking’ and
‘SDDD_Availability’ denotes node ID or Dictionary Item ID depending on whether
the link points to metadata descriptions in the local LDD or on another node (using
different levels of granularity).

SDDD_Linking(ConceptID, MetaResID)
SDDD_Availability(MetaResID, Available)
SDDD_Concept(ConceptID, ConceptName)
SDDD_Relation(RelationID, RelationName)
SDDD_RelatedConcept(ConceptID1, ConceptID2, RelationID)

Fig. 3. Illustrating SDDD contents after merge

LDD

Node1

SDDD

CodeGreen

ConceptID

CodeRed

MetaResID

DI-id 1

SDDD_Linking

Node2

… NodeX

Node2

MetaResID

DI-id 1

Available

1

SDDD_Availability

1

NodeX 0

Node2

 Metadata Management for Ad-Hoc InfoWare - A Rescue and Emergency Use Case 1379

Figure 3 illustrates what the contents of SDDD linking and availability tables will
be after a merge. The illustration shows a case where both nodes have enough
resources to add concepts to their SDDD tables. The tables show the contents of (two
of) the SDDD tables for linking concept to resource (node) and for tracking
availability on Node1 after a merge between Node1 and Node2. The ConceptID
‘CodeRed’ points to a Dictionary Item in the local LDD on Node1, and the
ConceptID ‘CodeGreen’ points to Node2. When Node1 wants to find the linked-to
metadata for the resource on Node2, the DDM on Node1 will query Node 2 DDM for
the item. Node2 DDM will query its SDDD for the item’s DI-id, then ask its local
LDD for the information and return this to Node1.

5 Conclusions and Future Work

In this paper we have shown that knowledge management and particularly metadata
management is essential to solving many of the challenges related to information
sharing and integration in MANETs for rescue and emergency scenarios. We believe
that the presented multi-layer data dictionary approach is a step in the right direction,
offering possible solutions towards global views of available knowledge and keeping
communication for query and search at a low level.

We are currently continuing our work on the detailed design and implementation of
the DDM module to test our ideas. In time, we would like to incorporate the DDM in
the network emulator testbed, NEMAN [4], which has been developed in the Ad-Hoc
InfoWare project. Some of the issues we think may be interesting to explore include
different eager/lazy propagation policies for metadata of different types, how to
handle priority of metadata in different situations, measurements of how fast the
dissemination of metadata is achieved in different situations, and possibly also
measurements of how much SDDD deviates from a genuine global data dictionary
over time. In the future, we may also consider expanding our solution to use
Distributed Hash Tables for optimisation.

References

1. Plagemann, T., et al: Middleware Services for Information Sharing in Mobile Ad-hoc
Networks - Challenges and Approach. Workshop on Challenges of Mobility, IFIP TC6
World Computer Congress, Toulouse, France, August 2004

2. Sanderson, N., Goebel, V., Munthe-Kaas, E.: Knowledge Management in Mobile Ad-hoc
Networks for Rescue Scenarios. Workshop on Semantic Web Technology for Mobile and
Ubiquitous Applications, The 3rd International Semantic Web Conference (ISWC 2004),
Hiroshima, Japan, November 2004

3. Munthe-Kaas, E., Drugan, O., Goebel, V., Plagemann, T., Pužar, M., Sanderson, N.,
Skjelsvik, K. S.: Mobile Middleware for Rescue and Emergency Scenarios, Mobile
Middleware, Paolo Bellavista and Antonio Corradi, ed., CRC Press, 2006 (to appear)

4. Puzar, M., Plagemann, T.: NEMAN: A Network Emulator for Mobile Ad-Hoc Networks,
8th International Conference on Telecommunications (ConTEL 2005), Zagreb, Croatia,
June 2005

1380 N. Sanderson, V. Goebel, and E. Munthe-Kaas

5. Perich, F., Avancha, S., Chakraborty, D., Joshi, A., Yesha, Y.: Profile Driven Data
Management for Pervasive Environments, Proceedings 13th International Conference on
Database and Expert Systems Applications (DEXA 2002), Aix-en-Provence, France,
September 2002

6. Fontijn, W., Boncz, P.: AmbientDB: - P2P Data Management Middleware for Ambient
Intelligence, Middleware for Pervasive Computing Environment I (PERWARE04)
Workshop at the 2nd Conference on Pervasive Computing (PERCOM 2004), Orlando,
Florida, USA, March, 2004.

7. Pfoser, D., Pitoura, E., and Tryfona, N.: Metadata Modeling in a Global Computing
Environment, Proc. of the 10th ACM International Symposium on Advances in
Geographic Information Systems, pp 68-73, McLean, VA November 8-9, 2002.

8. Schwotzer, T., Geihs, K.: Shark - a System for Management, Synchronization and
Exchange of Knowledge in Mobile User Groups, Proceedings 2nd International Conference
on Knowledge Management (I-KNOW ‘02), Graz, Austria, July 2002, pp. 149-156

9. Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., and
Hubner, S.: Ontology-based integration of information - a survey of existing approaches.
In Stuckenschmidt, H., ed., IJCAI-01 Workshop: Ontologies and Information Sharing,
Seattle, Washington, USA, August 2001, pp.108--117.

10. Davies, J., Fensel, D., Van Harmelen, F. (eds.): Towards the Semantic Web: ontology-
driven knowledge management, John Wiley & Sons Ltd 2003. ISBN 0-470-84867-7

11. Fensel, D. et.al: Ontology-Based Knowledge Management, IEEE Computer, November
2002, pp.56-59.

12. Stuckenschmidt, H. and van Harmelen, F.: Information Sharing on the Semantic Web,
ISBN 3-54-20594-2, Springer 2005

13. Schwotzer, T., Geihs, K.: Mobiles verteiltes Wissen: Modellierung, Speicherung und
Austausch, Datenbank-Spektrum 5/2003, pp.30-39.

14. Pitoura, D. et.al: DBGlobe: A Service-Oriented P2P System for Global Computing, ACM
SIGMOD Record, pp 77-82, vol.32/3, Sept. 2003.

15. Boncz, P. A. , Treijtel, C.: AmbientDB: relational query processing in a P2P network.
Technical Report INS-R0306, CWI, Amsterdam, The Netherlands, June 2003.,
http://www.cwi.nl/ftp/CWIreports/INS/INS-R0306.pdf

16. A Survey of APIs and Tecniques for Processing XML,
http://www.xml.com/pub/a/2003/07/09/xmlapis.html

17. XML and Perl: Now Lets's Start Digging,
http://www.informit.com/articles/article.asp?p=30010

18. KITH rapport nr R25/02, http://www.kith.no/arkiv/rapporter/rammeverk-v09-testing-
2.pdf, ISBN 82-7846-151-1.

19. Pepper, S.: The TAO of Topic Maps, http://www.ontopia.net/topicmaps/materials/tao.html
20. http://www.kith.no/
21. http://www.centc251.org/
22. http://www.ebxml.org/
23. http://www.oasis-open.org/news/oasis_news_03_29_04.php
24. http://www.oasis-open.org/
25. http://incubator.apache.org/derby/index.html

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1381 – 1397, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Managing Petri Nets in MOF Repositories

Hélio L. dos Santos, Paulo R.M. Maciel, Nelson S. Rosa, and Roberto S.M. Barros

Universidade Federal de Pernambuco - UFPE
{hls, prmm, nsr, roberto}@cin.ufpe.br

The necessity of interoperability among Petri net tools has led to the
development of the PNML (Petri Net Markup Language) standard. By adopting
PNML, tools mainly concentrated on modeling activities should generate
PNML files to be analyzed by analysis-specific Petri net tools. In this context,
we propose an extension to the PNML based on MOF (Meta Object Facility).
The implementation of the MOF metamodel enables us to manager Petri net
specifications within MOF repositories. In order to illustrate our approach, we
present a case study.

1 Introduction

Over the last three decades a myriads of Petri nets tools have been developed for
supporting modeling, analysis and verification of such models. Since mid 1990’s
demands for interoperability among these tools turned to be an important concern in
Petri net community. The interoperability makes it easier for the users to get the
benefit of using several tools. However, some factors such as different types of Petri
nets and absence of a standard make this process hand to cope with [JKW2000].

Nevertheless, PNML (Petri Net Markup Language) proposed in the Petri Net
Kernel Project [KIWE1999] is emerging as a standard for the interchange and storage
of Petri nets. PNML is based on XML (Extensible Markup Language) [ABK2000]
and introduces the major characteristics of Petri nets [BILL2003]. Specifics aspects of
each type of Petri nets are to be defined as extensions using PNTD (Petri Net Type
Definition), expressed as a DTD or XML Schema [AHAY2001].

Because it is based on XML, PNML presents some advantages as a standard for
interchange and storage of data [AHAY2001]: XML is an open standard, established
by an international organization (W3C - Word Wide Web Consortiun), platform and
vendor independent; it supports the ISO Unicode Standard to represent characters of
any dialects; it has a textual syntax; it is supported by a large number of tools and; it
is flexible enough to store all the types of Petri nets.

This paper proposes an extension to PNML for MOF repositories (Meta Object
Facility). A metamodel is a set of inter-related metadata used to define models
[MAIN2000, TANN2002]. The metamodel formally describes the elements of the
model, its syntax and semantics. Concepts defined in the PNML metamodel include
“Place, “Transition” and “arc”.

MOF [MOF1999] is a standard created by the OMG (Object Management Group)
to support the construction of metamodels. One of its aims is to permit interoperability
among tools in order to produce and share metadata (instance of metamodels).

1382 H.L. dos Santos et al.

This approach makes it possible for tools which implement the MOF specification
to manage (create, query, change and delete) Petri nets in MOF repositories and use a
unique set of interfaces. At this point, MOF specification defines a mapping for IDL
(Interface Definition Language) CORBA [MOF1999] and JMI (Java Metadata
Interface) [JMI2002]. Some tools that support MOF are MDR (Metadata Repository)
[MDR2002], dMOF [DMOF2001] and UREP (Universal Repostiory). Some of them
map objects to CORBA (dMOF) and others to JMI (MDR); some store objects in
DBMS.

Another advantage is the usage of XMI, as the standard for metadata
representation. XMI is supported by several tools aimed at different areas, such as
software development (Netbeans); system modeling specification (Rational Rose and
Argo UML); Data warehousing (DB2 Warehouse Manager and Oracle Warehouse
Builder); metadata repositories (UREP, MDR and dMOF).

The following sections present related work, MOF standard and its architecture and
the standard for mapping it to Java and CORBA interfaces. Then, we present the
metamodel for Petri net systems, the interfaces generated from this metamodel, the
mapping from PNML metamodel to PNML and vice-versa, and a case study that
depicts the interface generated for PNML metamodel. Finally we present our
conclusions and proposed future works.

2 Related Work

MOF metamodel proposed in this paper is based on PNML, which was initially
proposed as the standard for storage in the PNK (Petri Net Kernel) project. This
project provides infrastructure to support development of Petri nets tools. It is
currently implemented in Java and Python [KIWE1999].

Breton [BRBE2001] proposed a MOF metamodel to Petri nets. However, his work
is conceptual and does not present an approach to implement and use Petri nets.
Moreover, it does not use PNML, a standard used by several Petri net tools.

Other MOF metamodels include UML [UML2001], which is a language for
software specification, visualization, implementation and documentation, and CWM
(Common Warehouse Metamodel) [PCTM2001], which is the OMG standard for Data
Warehousing tools integration. This integration is based on metadata sharing. CWM
defines a set of metamodels to the several phases of Data Warehousing.

Santos et al present two MOF metamodels to manage XML and DTD metadata
[SBF2003a] as well as the integration of the W3C metadata standards RDF (Resource
Description Framework) and RDF Schema and MOF.

Another important work by Sun Microsystems is a metamodel to Java
[DEMA2002], which proposes a mean of managing Java Code in MOF repositories.

3 Petri Net Systems

Petri net is collective term used to describe a family of graphical formalism based on
specific assumptions about the world of information processing. The most basic
notions are the concepts of local states (places), local actions (transitions) and their
mutual relationships [ROZ1998a].

 Managing Petri Nets in MOF Repositories 1383

One of main attractions of Petri nets is the way in which the basic aspects of
concurrent systems are dealt with both conceptually and mathematically. The Petri net
family of formalisms can be divided into three layers: the most fundamental layer
suits for basic research on concurrent system foundations. The intermediate level
includes models that provide a more compact representation of systems by folding
repetitive structures of basic models. The third level includes the so called high-level
nets, more adequate for real applications, use algebraic and logical mechanism for
allowing compact representations [ROZ1998b].

With respect to the concurrency interpretation, at least four possibilities have been
described: transition semantics, single step semantics, step semantics and Process nets
[PET1981, REIS1985, ROZ1998b]. Transition semantics describes concurrency by
the interleaving of individual transition firings (action execution). Step semantics, on
the other hand, are true concurrent interpretations. Single step semantics considers the
simultaneous firing of concurrent transitions (step), but it does not allow the
simultaneous firing of same transition as the step semantics does. (Single) Step
semantics may be viewed as a formalization of simultaneity, but in general actions do
not occur simultaneously, they indeed may arbitrarily overlap in time. Therefore, one
system’s component may execute a given number of actions and another independent
component may execute a distinct number of actions. Process nets aims to formalize
the notion of concurrent runs [ROZ1998b].

Several extensions have been proposed to the autonomous Petri net models.
Among them, nets with inhibitor arcs, net with priorities and several interpretations of
time have been considered. Time has been associated to actions and local states under
deterministic and stochastic views [RAMCHA, MERL1976, MOL1981, MAR1985,
ZUBE1991].

The multitude of distinct Petri net types, tools and file formats motivated the
creation of a XML-based interchange format for Petri Nets. The starting point of this
standardization effort was the International Conference on Application and Theroy of
Petri Nets 2000, when several proposals for XML-based interchanged formats were
presented. Amongst them, Petri Net Markup Language (PNML) [JKW2000] is the
most prominent.

The following principles governed the design of PNML:

• Readability: the format should be readable and editable with conventional text
editor;

• Universality: the format should be able to represent any version of Petri nets with
any extensions.

• Mutuality: the user should be able to extract as much information as possible from
a Petri net - even if the Petri net type is unknown.

Readability is guaranteed by using XML. Universality is achieved by attaching
information required by a particular Petri net type to the objects of the net.

PNML uses the Petri Net Type Definition (PNTD) to express the additional
information attached to the net objects. Finally, mutuality is guaranteed by defining a
document called conventions. It contains a set of standardized labels, along with their
semantics description and typical use.

The graphical net representation is very useful since it allows for process
visualization and its communication. A Petri net graph is composed of two kinds of

1384 H.L. dos Santos et al.

vertices: places represented by circles, and transitions represented by boxes,
rectangles or lines. Directed arcs interconnect these vertices. According to the
multiset theory, Place-Transition nets may be defined as a 6-tuple: set of places (local
states and resources), set of transitions (actions), input multi-set (pre-conditions),
output multi-set (post-conditions) , a mapping called place capacities and a mapping
called marking (global state.

The Figure 1 presents an example of Petri nets which models the Producer
Consumer Problem. In this example, two processes share a buffer of fix length. The
producer process includes information in the buffer, while the consumer process
removes one. If the buffer is full, the producer process is blocked, i.e. it cannot
produce. Likewise, if the buffer is empty, the process consumer is blocked and it
cannot consume information.

In this example, only transition t1 is enabled, since place p1 is marked. If t1 is
fired, then one token is removed from place p1 and one token stored in place p2. The
number of removed and stored tokens in such places is one1 due to the weight of arcs
interconnecting these places to fired transition. When t1 is fired, the system is ready
to deliver information by the transition (action) t2.

Fig. 1. ProducerCosumer Petri Net

4 MOF – Meta Object Facility

MOF is an abstract language and a framework to specify, build and manage platform
independent metamodels. Examples include the UML, CWM and MOF metamodels.
MOF also supports a set of rules to implement repositories, which deal with metadata
described by the metamodels. Theses rules define a standard mapping between the
MOF metamodels and a set of APIs to manage metadata, instances of the
metamodels. For instance, the MOF -> IDL CORBA mapping is applied to MOF
metamodels (UML, CWM) to generate CORBA interfaces that manage the
corresponding metadata, instance of metamodel. The MOF -> Java mapping is
similar and generates Java interfaces using the JMI standard. This work uses JMI.

1 When the value of the arc is greater one, this is subscribed around the arc.

Ready to produce

Ready to deliver

produce deliver

Ready to remove

remove consume

Ready to consume

Buffer filled

Buffer empty

p1

p2

p3

p4

p5

p6

t1 t2 t4 t5

 Managing Petri Nets in MOF Repositories 1385

The MOF specification is composed of:

• A formal definition of the MOF meta-metamodel, an abstract language to define
metamodels;

• Rules to map MOF metamodels to an implementation technology such as CORBA
or Java; and

• The XMI standard to interchanging metadata and metamodels among tools using
XML. XMI defines rules to map MOF metamodels and metadata to XML
documents.

4.1 OMG Metadata Architecture

MOF is an extensible framework, i.e., new metadata standards may be added to it. It
is based on a four-layer architecture, called the OMG Metadata Architecture
[MOF1999], which is presented in Table 1.

The instance of one layer is modeled by an instance of the next layer. So, M0 layer,
where there are data, is modeled using UML models (such as class diagrams), which
are stored in layer M1. Accordingly, M1 is modeled by the UML metamodel, layer 2,
and uses constructors such as classes and relationships. This metamodel is an instance
of the MOF model (also called meta-metamodel). Another example, a CWM model in
layer M1 is an instance of the CWM metamodel of M2. Extensibility is achieved
through the possibility of adding classes that are instances of classes of the
immediately superior layer.

Table 1. OMG Metadata Architecture

MOF Level Used terms Examples
M3 Meta-Metamodel MOF Model
M2 Metamodel, Meta-Metadata UML and CWM Metamodel
M1 Models, Metadata UML Models – class diagrams, Relation

schemas, instance of CWM Metamodel of
the M2 layer

M0 Data, Objects Data warehouse data

4.2 The MOF Model

MOF model, which is in the M3 layer, is presented in this subsection. MOF model is
its own metamodel, i.e., MOF is described in terms of itself. MOF specification
describes itself using natural language and using UML (Unified Modeling Language)
[UML2001], tables and OCL (Object Constraint Language) expressions. UML is
used because of its graphical representation of the models, which makes it easier to
read. It does not define the semantics of the MOF model, which is completely defined
in the MOF specification and does not depend on any other model. MOF does not
specify which language is to be used to define constraints of the metamodels, even
though it uses OCL as standard.

MOF is an object oriented model and includes a set of modeling elements that are
used to build the metamodels and rules to use them. Examples of these elements are
classes, associations, packages, data types, etc.

1386 H.L. dos Santos et al.

4.3 Meta-Objects

Interfaces created by the mapping MOF-> Specific platform share a common set of
four kinds of meta-objects: instance, class proxy, association and package.
Package – An instance of the Package class. A meta-object package represents a
container of other kinds of meta-objects.
Class proxy – Each class in layer M2 has a corresponding class proxy. There is a
proxy object to each class of layer M2. This kind of meta-object produces meta-
objects of type instance.
Instance – Instances of classes in layer M2, i.e., of the metamodels, are represented
by meta-objects of type instance. A meta-object instance manipulates the states of the
attributes and references of the classes in layer M2.
Association – Theses objects manipulate the collection of links corresponding to the
associations of layer M2. They are static objects and its containers are meta-objects
package. The interfaces of the association objects are operations to retrieve a link in
the set of links, to add, change, and remove links in the set of links, and to retrieve the
set of links.

4.3.1 The MOF -> CORBA IDL/Java Mapping
The MOF -> CORBA IDL mapping is part of the MOF specification. The MOF-
>Java mapping was defined by the Java Community and was called JMI [JMI2002].
The general rules of the mapping are basically the same for any platform.

The output of these mappings is a set of interfaces to support creating, changing and
querying metadata, instances of the MOF metamodels. For examples, should the
interfaces be created using the MOF->CORBA IDL mapping, the user may use
CORBA clients to access the interface; should it be JMI, the user may use Java clients.

Fig. 2. Example of a MOF metamodel

This subsection describes the inheritance standard of the interfaces mapped from the
MOF metamodels. The Figure 2 shows an example of MOF metamodel written in
UML, which has two packages P1 and P2. P1 has the C1 and C2 classes, C2 is
subclass of C1, and A is an association between C1 and C2. P2 is a sub-package of P1.

The Figure 3 presents the UML diagram that shows the inheritance graph
generated from the MOF->Java mapping. The root of the graph is a set of interfaces,
which are part of the MOF reflexive package. The interfaces generated from the
metamodels inherit, directly or indirectly, from the reflexive interfaces.

 Managing Petri Nets in MOF Repositories 1387

The mapping rules say that, for each package and each association of the
metamodel, a package interface and an association interface are created, respectively.
For each class of the metamodel, a proxy interface and an instance interface are
created. The inheritance standard is based on the following rules:

• A meta-object instance without a super type inherits from RefObject; all other
meta-object instances extend their super types;

• A meta-object package without a super type inherits from RefPackage; all other
meta-object packages extend their super types;

• The meta-object class proxies extend RefClass; and
• The meta-object associations extend RefAssociation.

Fig. 3. Example of a MOF Metamodel mapped to Java interfaces

In the examples of Figure 3, two package interfaces were created from P1 and P2.
The P1 package, which does not have a super type, inherited from RefPackage,
whereas P2, which does, inherited from P1. The interface for the association between
the C1 and C2 classes of the metamodel was created as well. For each class of the
metamodel the mapping created two classes: one for the instance and another for the
proxy class. The C1Class and C2Class interfaces represent the proxy interfaces created
from the classes C1 and C2 of the metamodel, respectively: they inherit from RefClass
directly. The C1 and C2 interfaces are the interfaces to the meta-objects instance. Only
the C1 interface inherited from RefObject, because it does not have a super type.

5 The Petri Net Metamodel

Modeling and implementation of this metamodel used a set of tools and a sequence of
steps, which are described below and presented in Figure 4:

1388 H.L. dos Santos et al.

• Definition of the metamodel using UML -> because there are no tools to support
MOF modeling, we use UML as the standard to represent the metamodel.

• Generation of XMI document from the metamodel. We used a Plug-in2 of the
Rational Rose tool, which exports a model of classes to XMI MOF.

• Changing manually the XMI document. This is necessary because we cannot
represent in UML everything that is expressed in MOF. These changes allow for a
more adequate XMI representation of the metamodel.

• The XMI document is imported to the MOF repository. This was implemented
using the MDR3 (Metadata Repository) tool.

• The Java interfaces referring to the metamodel are then created and compiled,
following the JMI mapping of MOF metamodels to Java interfaces.

• Implementation of classes to transform Petri net described in the PNML to MOF
metamodel and vice-versa.

Fig. 4. Steps to model and implement MOF metamodels using MDR

Any tool that implements the MOF specification may be used in the
implementation of the metamodel. We chose the MDR tool because it is open-source
and generates JMI interfaces. Moreover it has a browser that shows all objects of the
MOF repository using a graphical interface. Besides, Java is a popular programming
language in academic institutions.

Figure 5 presents the UML diagram of the PNML metamodel. Every component of
a MOF metamodel (classes, attributes and associations) must be placed within a
package. At this particular case, the PNMLMetamodel package has been created. The
shadow classes are abstract ones, i.e., they do not directly instantiate objects.

The PNDocument and PetriNet classes represent a PNML document and a Petri
net, respectively. A document may contain many Petri nets through the
DocumentContains. A Petri net is made up of objects that are instances of the
PNObject class. The Petri net is made up of arcs, nodes and pages, which are modeled
by the PNArc, PNNode and PNPage classes, respectively. A page is a container of
pages, arcs and nodes objects. The nodes may be either places (PNPlace) or
transitions (PNTransition). In addition to places and transitions, a node may also be a
reference to either node or transitions. This point is modeled through the PNRefPlace

2 http://www.rational.com/download/
3 http://mdr.netbeans.org

MDR MOF
Server

Java interfaces are
Created and

Compiled

Metamodel
definition using

UML

Complete
Metamodel written

in XMI

MDR
MOF Server

New Metamodel

 Managing Petri Nets in MOF Repositories 1389

Fig. 5. UML diagram of the PNMLMetamodel

and PNRefTransition classes. Both of them are used to define places and transitions in
other pages. A PNML page is a container of PNObject objects.

Each object (instance of the PNObject class) has a set of labels that are modeled by
the PNLabel class. These labels define some characteristics of PNObject objects, .e.g,
the weight assigned to the arcs, the initial mark of the initial state and so on. They
may be attributes or notation and are modeled by the PNAttribute and PNAnnotation
classes, respectively. An attribute differentiates from a notation as the last one
includes a set of coordinates that enables its exhibition on the screen.

5.1 The Interfaces Created from Petri Net Metamodel

As mentioned before, the MOF has a set of rules to map a MOF metamodel into a set
of interfaces that enables the management of medatada. In this case, the metadata
represent Petri nets and are stored in the repository.

The developer may store the Petri nets in the repository in two different ways. In
the first way, he/she imports the metadata described through XMI. In the second one,
the developer may generate interfaces from the metamodels. These interfaces enable
the developer to create, update and access the instances of metamodels through Java.

By following the steps mentioned in the precious section, the XMI document is
generated and then stored in the MOF repository. Next, the set of interfaces for
managing metadata interfaces is also generated.

A basic rule of MOF defines that each class of the metamodel generates two
interfaces: the first interface represents instances of the class (the instance metaobjects)
and the second one represents a proxy class (the class proxy metaobjects).

Report 1 presents the PetriNet interface generated from the PNML metamodel.
This interface contains the methods for accessing and manipulating both the state of
attributes and the class references of the metamodel.

1390 H.L. dos Santos et al.

Report 1 – The PetriNet Interface of the PNML Metamodel
public interface PetriNet extends javax.jmi.reflect.RefObject {
 public java.lang.String getId();
 public void setId(java.lang.String newValue);
 public java.lang.String getName();
 public void setName(java.lang.String newValue);
 public java.lang.String getType();
 public void setType(java.lang.String newValue);
 public Pndocument getDocument();
 public void setDocument(Pndocument newValue);
 public java.util.List getObjects();}

Report 2 presents two proxy interfaces, namely PetriNet and PNObject. The proxy
interfaces contains operations that create instances of their classes if the class is not an
abstract one. The PNObject class of the PNML metamodel is abstract. Hence, the
PNOjbectClass interface has no operations for creating PNObject objects.

Report 2 – PetriNetClass and PNObjectClass Interfaces of the PNML Metamodel
public interface PetriNetClass extends
 javax.jmi.reflect.RefClass {
 public PetriNet createPetriNet();
 public PetriNet createPetriNet(java.lang.String id,
 java.lang.String name, java.lang.String type);
}
public interface PnobjectClass extends
 javax.jmi.reflect.RefClass { }

An interface and a set of methods are generated for each association of the
metamodel, which allows to access, update and insert the instances of associations.
Each instance represents a binding between two objects that are instances of the
metamodel classes. The PNML metamodel has a PNContains association that defines
a Petri net as a set of objects (arcs, places and pages objects). Figure XX presents the
PNContains interface.

Report 3 – PNContains Interface of the PNML Metamodel
public interface Pncontains extends
 javax.jmi.reflect.RefAssociation {
 public boolean exists(Pnobject objects, PetriNet petrinet);
 public java.util.List getObjects(PetriNet petrinet);
 public pnmlmetamodel.PetriNet getPetrinet(Pnobject objects);
 public boolean add(Pnobject objects, PetriNet petrinet);
 public boolean remove(Pnobject objects, PetriNet petrinet);
 }

An interface is generated for each package of the metamodel. The interface
includes methods for accessing the proxys objects that refers to classes and
association of the metamodel. Report 4 presents the interface for the
PNMLMetamodelPackage package.

 Managing Petri Nets in MOF Repositories 1391

Report 4 – PNMLMetamodelPackage Interface of the PNML Metamodel
public interface PnmlmetamodelPackage extends
 javax.jmi.reflect.RefPackage {
 public PndocumentClass getPndocument();
 public PetriNetClass getPetriNet();
 public PnobjectClass getPnobject();
 public PnlabelClass getPnlabel();
 public PnattributeClass getPnattribute();
 public DocumentContains getDocumentContains();
 public Pncontains getPncontains();
 public Target getTarget();
 public Source getSource();
 …
 }

As the interfaces have been generated, they must be compiled. Next section
illustrates how to use the metamodels through the interfaces that have been generated.

6 PNML to MOF and Vice-Versa

In addition to importing metadata as XMI documents and using the interfaces
generated from the metamodels, users might need to import or export metadata as
PNML documents. This is important because users might uses tools which produce
metadata written in PNML.

To import theses documents to the MOF repository, it was necessary to implement
a piece of software to map PNML metadata to the corresponding MOF metamodel.
This constitutes another way interchanging PNML metadata.

Figure 6 presents the architecture of the modules implemented to import/export
PNML documents to/from the MOF repositories. It is important to notice that
importing and exporting documents is already supported by MOF tools. However, to
import and export PNML documents it was necessary to implement a set of methods to
transform and object in the MOF repository in PNML documents and vice-versa. The
users might also use Java programs to access the repository and manage Petri nets.

Fig. 6. Architecture of PNML and XMI documents Import/Export Modules

MOF Repository
PNML

Metamodel

PNML
Document

XMI
Document

PNML
Import/Export

XMI
Import/Export

Java Tools

1392 H.L. dos Santos et al.

6.1 PNML Import

Importing a PNML document, mean the submitting a document to an XML parser
which processes the document and writes it to the repository, as an instance of the
PNML metamodel. The import model executes the following tasks:

1. Process the PNML document, checking whether it is a valid PNML document.
2. Start the MOF repository and search PNML repository, represented by the PNML

metamodel. This means finding an instance of the MOFPackage class of the
MOF metamodel named PNMLMetamodel.

3. Create an instance of PNDocument which will be the new document imported to
the repository.

4. For each Petri net in the PNML document, create an instance of class PetriNet.
5. For each place, transition and arc of the Petri net, create an instance of the

corresponding class in the metamodel. For example, for each place of the Petri
net, create an instance of class PNPlace.

6. Create labels for each object created in the metamodel. These labels may be
attributes or annotations. Labes presented in the screen of the tools are created as
annotations; the others are created as attributes.

7. Create the arcs among objects using the associations of the PNML metamodel.

Report 5 – Subset of the Java Code used to generate instances of the PNML
metamodel from PNML Documents
public static Pndocument
 pnml2mof(PnmlmetamodelPackage pkg, Node node, String docname){
 Pndocument d=null;
 DocumentContains dc;
 Node childNode;
 if (node!=null){
 d = pkg.getPndocument().createPndocument(docname);
 dc = pkg.getDocumentContains();
 NodeList l = node.getChildNodes();
 for(int i=0; i<l.getLength();i++){
 childNode = l.item(i);
 if (childNode.getNodeName().equals("net")){
 PetriNet p =
 pnml2mof(pkg, childNode);
 dc.add(p,d);
 }
 } }
 return d;}

Report 5 presents a subset of the Java Code used to implement the mapping. The
parser used to process the documents was Xerces, using DOM (Document Object
Model). This code shows the mapping of a PNML document to the MOF repository.

6.2 PNML Export

Exporting a PNML document means to generate the PNML document from the
information stored on the MOF repository. To do that, it is necessary to start the MOF
repository and search the PNML subrepository, i.e. the PNMLMetamodel package.

 Managing Petri Nets in MOF Repositories 1393

Then, access the instance of class PNDocument (inside the package) which represents
the PNML document to be exported. This instance is a parameter to method
mof2pnml of class PNDocumentFactory. This method will create the PNML
document based on the object received.

Report 6 – Subset of Java Code to Search a PNML Document
1 - if (pkg !=null){
2 - javax.jmi.reflect.RefClass refclass =
 pkg.refClass("PNDocument");
3 - java.util.Collection c = refclass.refAllOfClass();
4 - java.util.Iterator iter = c.iterator();
5 - while(iter.hasNext()) {
6 - Pndocument pndoc = (Pndocument)iter.next();
7 - if (pndoc.getName().equals(docname)){
8 - Node node = mof2pnml(xmldoc,pndoc,pkg);
9 - xmldoc.appendChild(node);
10- savePNML(xmldoc); }
 }
 }

Report 6 presents a subset of the Java code used to search an object (instance of
class PNDocument) in the MOF repository. Method refClass (line 2) of reflexive
interface RefPackage returns the proxy interface of a specific class of the metamodel
(passed as a parameter). In this case, the class is PNDocument, and the interface
returned is PNDocumentClass. The method refAllOfClass returns a list of all
instances (objects) of a given class of the metamodel, PNDocument in the example.
The next task is to search (using the name attribute) the object in the list of objects
and to pass it to method mof2pnml (line 8), which returns an XML node containing
the PNML document.

6.3 Access by Java Tools

In addition to using the structure provided to import and export PNML and XMI
documents, users can write client programs to directly connect to the MOF repository,
obtain a package, which refers to a metamodel, and use it to build new metadata as
instance of this metamodel.

Report 7 presents a subset of the Java code written to access the PNML repository,
represented as package PNMLMetamodel. In line 1 of the Report 7,
MDRManager.getDefault().getDefaultRepository() returns the standard repository. It
is always de MOF metamodel. Then, it is necessary to search the repository to obtain
the proxy package referring to the PNML metamodel. Method
repository.getExtent("pnmlmetamodel”) (line 2) looks for a specific proxy package
inside the repository. It receives the name of the package as parameter and returns an
object of type RefPackage, which is part of the reflexive package of JMI. If the search
is successful, the package will be used to manage PNML metadata.

To create an object in the metamodel, it is necessary to obtain a reference to the
proxy interface of the object to be created. For example, to create a new PNML
document, it is necessary a reference to PndocumentClass, which is obtained by
method getPndocument() of the PnmlmetamodelPackage. The PndocumentClass has

1394 H.L. dos Santos et al.

a method to create a new PNML document, instance of Pndocument. Likewise, to
create an object as instance of any class of the metamodel, it is necessary to obtain the
reference to its proxy interface.

Report 7 – Java Code to Create Petri Nets in the MOF Repository
1 - MDRepository repository =
 MDRManager.getDefault().getDefaultRepository();
2 – PnmlmetamodelPackage extent =
 (PnmlmetamodelPackage)repository.getExtent("pnmlmetamodel");
3 - if (extent !=null) {
4 - repository.beginTrans(true);
5 - Pndocument d = pkg.getPndocument().createPndocument("Doc1");
6 - PetriNet p = pkg.getPetriNet().createPetriNet("n1",
 "Example","timedNet");
7 - Pnplace p1 = pkg.getPnplace().createPnplace("p1");
8 - Pnplace p2 = pkg.getPnplace().createPnplace("p2");
9 - Pntransition t1 =
 pkg.getPntransition().createPntransition("t1");
10- Pnarc a1 = pkg.getPnarc().createPnarc("a1");
11- Pnarc a2 = pkg.getPnarc().createPnarc("a2");
12- pkg.getDocumentContains().add(p,d);//add PN to doc.
13- pkg.getPncontains().add(p1, p);//add p1 to PN
14- Pnannotation p1_a1 =
 pkg.getPnannotation().createPnannotation("marking","1");
15- Pnannotation t1_a1 =
 pkg.getPnannotation().createPnannotation("delay","5");
16- pkg.getSource().add(a1, p1);//add source of a1
17- pkg.getSource().add(a2, t1);//add source of a2
18- pkg.getTarget().add(a1, t1);//add target of a1
19- pkg.getTarget().add(a2, p2);//add source of a2
20- repository.endTrans();
}

Executing the program presented in Report 7 creates a PNML document with a
timed Petri net [ZUBE1991]. This net has two places, one transition and two arcs. The
code in Report 7 makes the associations among the several objects created. For
instance, PNContains makes associations among every place, arc and transitions to an
object, instance of class PetriNet. In addition, labels are created for every place,
transition and arcs objects. Line 14 shows a piece of code to create a label to place p1.

Figure 8 presents the Petri net created by the execution of the code presented in
Report 7.

This Petri net can be exported from repository as PNML or XMI document. Figure
9 presents the corresponding PNML document.

Fig. 8. Timed Petri Net Created

p1 p2 t1
a1 a2

d=5

 Managing Petri Nets in MOF Repositories 1395

Fig. 9. PNML Document Created from the Petri Net of Figure 8

7 Case Study

We implemented the interchange of Petri nets amongs the MDR and dMOF MOF
Repositories as well as the Petri Net Kernel tool.

The net presented in Figure 10 was modelled in the Petri Net Kernel tool and saved
as a PNML document. This document was then imported to the MDR repository.
After that, this document was exported from MDR as an XMI document, which was
then imported to the dMOF repository.

From the dMOF repository, this document could then be exported as a PNML
document which was then read and processed by the Petri Net Kernel tool without
any problems. Figure 10 shows the steps adopted in the case study.

Fig. 10. Case Study Steps

8 Conclusion and Future Work

This paper described the design and implementation of a MOF metamodel based on
PNML, which is a standard for storing and interchanging Petri nets. This extension
makes it possible to use MOF tools to manage Petri nets.

Petri Net
Kernel tool

ProducerConsumer
PNML Document

ProducerConsumer
XMI Document

MOF Repository
(MDR)

MOF Repository
(dMOF)

1

2

3

4

5

6

1396 H.L. dos Santos et al.

As part of this work, an XMI document was created from proposed metamodel.
Any MOF repository can import this document and, so, they can support management
of Petri net metadata.

Besides the metamodel, Petri net metadata, instances of the metamodel, can also be
imported and exported by any MOF repository as PNML documents. The
implementation of these conversion facilities was also carried out as part of this work.

We have also presented a case study which shows how interfaces of the metamodel
can be used to interchange metadata among different MOF repository, as well as Petri
net tools.

A work that could follow from here is to add support to modules [JKW2000]. A
module is a Petri net that has two kinds of objects: a) internal objects, which are part
of the implementation and cannot be accessed by other nets and; b) interface objects,
which can be accessed by other nets. Modules allow for a better reuse of Petri net
components.

Another possible work regards the integration of this metamodel with the DTD
Metamodel [SBF2003a]. This would make it possible to specify the Petri nets
Schemas using a DTD.

References

[ABK2000] ANDERSON, R.; BIRBECK, M.; KAY, M.; et all. “Professional XML”. Wrox
Press Ltda. 2000.

[AHAY2001] AHMED, Kal; AYERS, Danny; et al. “Professional XML Metadata”. UK.
Wrox Press Ltda. 2001.

[BILL2003] BILLINGTON, Jonathan; et all. “The Petri Net Markup Language: Concepts,
Technology, and Tools”. Proc. 24th Int. Conf. Application and Theory of Petri
Nets (ICATPN’2003), Eindhoven, The Netherlands, June 2003. Lecture Notes
in Computer Science. Springer, 2003.

[BRBE2001] BRETON, Erwan; BÉZIVIN, Jean. “Towards an understanding of a model
executability” In FOIS’01 – Formal Ontology in Information Systems,
Ogunquit, Maine, USA October 2001

[DEMA2002] DEDIC, Svata; MATULA, Martin. “Metamodel for the Java language”. In:
http://java.netbeans.org/models/java/java-model.html. 2002.

[DMOF2001] “DMof – An OMG Meta Object Facility Implementation”. In
http://www.dstc.edu.au/Products/CORBA/MOF/. June, 2001.

[JKW2000] JUNGEL, M.; KINDLER, E.; WEBER, M. “The Petri Net Markup Language”.
In S. Philippi, editor, Proceedings of AWPN 2000 - 7thWorkshop Algorithmen
und Werkzeuge für Petrinetze, pages 47–52. Research Report 7/2000, Institute
for Computer Science, University of Koblenz, Germany, 2000.

[JMI2002] Java Metadata Interface, JSR-40 Home Page:
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_040_jolap.html.
March, 2002.

[KIWE1999] KINDLER, E.; WEBER, M. “The Petri Net Kernel: An infrastructure for
building Petri Net tools” In 20th International Conference on Application and
Theory of Petri Nets. Petri Net Tool Presentations, Williamsburgs, USA, June,
1999.

[MAIN2000] MARCO, David; INMON, W. H. “Building and Managing the Metadata
Repository”. New York. John Wiley & Sons, Inc. 2000.

 Managing Petri Nets in MOF Repositories 1397

[MAR1985] MARSAN, A. M; GALBO, G; BOBBIO, A; CHIOLA, G; CONTE G;
CUMANI, A. “On the Petri Nets with Stochastic Timing”. Internation
Workshop on Timed Petri Nets. IEEE press. Torino, Italy, 1985.

[MDR2002] Sun Microsystems. “Metadata Repository Home” http://mdr.netbeans.org/.
2002.

[MERL1976] MERLIN, P. M; FABER, D. J. “Recoverability of Communication Protocol
Implications of Theoretical Study”. IEEE Transaction Communication, vol
COM-24, September, 1976.

[MOF1999] OMG Meta Object Facility Specification, Version 1.3.
http://www.dstc.edu.au/Research/Projects/MOF/rtf/. http://www.omg.org/.
September, 1999.

[MOL1981] MOLOY, M. K. “On the Integration of Delay and Throughput Measures in
Distributed Processing Models”. PhD thesis. UCLA, USA, 1981.

[PCTM2001] POOLE,John; CHANG,Dan; TOLBERT, Douglas; MELLOR, David.
“Common Warehouse Metamodel: An Introduction to the Standard for Data
Warehouse Integration”. New York. John Willey & Sons, Inc. 2001.

[PET1981] PETERSON, James L. “Petri Net Theory and the Modeling of Systems”.
Prentice-Hall, Englewood Cli s, NJ, USA. 1981.

[REIS1985] REISIG, W. “Petri Nets. An Introduction”. Volume 4 of Monographs on
Theoretical Computer Science. Springer-Verlag, 1985.

[RAMCHA] RAMCHANDANI. “Analysis of Asynchronous Concurrent Systems by Timed
Petri Net”. Techinical Report n 120, Laboratory of Computer Science, MIT,
Cambridge, MA, USA.

[ROZ1998a] ROZENBERG, G; REISIG, W. “Informal Introduction to Petri Nets”. Lecture
Notes on Petri Nets I: Basic Models. Springer Verlag, 1998.

[ROZ1998b] ROZENBERG, G; ENGELFRIET, J. “Elementary Net Systems”. Lecture Notes
on Petri Nets I: Basic Models. Springer Verlag, 1998.

[SAN2003] SANTOS, Hélio. “A metadata solution based on MOF and XML”. M.Sc.
Dissertation - Centro de Informática/UFPE. March, 2003. In Portuguese.

[SBF2003a] SANTOS, Hélio; BARROS, Roberto; FONSECA, Décio. “A Proposal for
Management of XML and DTD Metadata in MOF”. Proc. 18th Brazilian
Symposium on Database, Manaus, Brazil, October, 2003. In Portuguese.

[SBF2003b] SANTOS, Hélio; BARROS, Roberto; FONSECA, Decio. “A Proposal for
Management of RDF and RDF Schema Metadata in MOF”. Proc. Int. Conf. on
Ontologies, Databases and Applications of SEmantics (ODBASE’2003), Sicily,
Italy, November, 2003. Lecture Notes in Computer Science. Springer, 2003.

[TANN2002] TANNENBAUM, Adrienne. “Metadata Solutions: Using Metamodels,
Repositories, XML and Enterprise Portals to Generate Information on
Demand”. New York. Addison Wesley. 2002.

[UML2001] OMG Unified Modeling Language Specification, Version 1.4.
http://cgi.omg.org/docs/formal/01-09-67.pdf. September, 2001.

[XMI2000] Object Management Group, XML Metadata Interchange Specification, Version
1.1, http://www.omg.org/. June, 2000.

[ZUBE1991] ZUBEREK, W. M. “Timed Petri Nets: Definitions, Properties and
Applications”. Microeletronic and Reliability, vol 31, n 4, 1991.

A Meta-ontological Architecture
for Foundational Ontologies

Heinrich Herre and Frank Loebe

Research Group Ontologies in Medicine (Onto-Med),
Institute of Medical Informatics, Statistics, and Epidemiology (IMISE) and

Institute of Informatics (IfI), Leipzig University, Germany
{herre,loebe}@informatik.uni-leipzig.de

http://www.onto-med.de

Abstract. In this paper we present and discuss a meta-ontological archi-
tecture for ontologies which centers on abstract core ontologies (ACOs).
An ACO is the most abstract part of a foundational ontology. It is useful
for an ontologically founded description of ontologies themselves, there-
fore ACOs are lifted to the meta-level. We propose a three-layered meta-
ontological architecture which distinguishes an object level comprising
foundational, generic or domain-specific ontologies, a meta-level with
abstract core ontologies, and a meta-meta-level employing abstract top
ontologies for the formalization of the underlying levels. Moreover, two
axiomatic fragments for ACOs are provided, one of which is applied to
formal concept lattices [1]. This demonstrates the use of ACOs for the
ontological foundation of representation formalisms and illustrates ad-
vantages in comparison to the usual direct formal reduction to set theory.
Finally, related work with respect to the architecture is briefly discussed.

1 Introduction

There is a rapidly growing body of work on ontologies in information systems
over the last 10 to 15 years, which has been boosted by the vision of the Seman-
tic Web. Likewise, research in formal tools and techniques related to ontology
development (or ontological engineering) is very active. By Grubers definition
of ontologies as sharable conceptual specifications [2], their development is an
issue closely related to the field of conceptual modeling.

From the very beginning, ontologies were distinguished according to their
intended range of applicability. In particular, foundational ontologies1 were con-
sidered to provide the most general kinds of entities as a basis for more specific
ontologies. However, work on foundational ontologies has resulted in rather large
and complex systems. This is problematic if foundational ontologies are to be
applied to identify and express ontological commitments of representation for-
malisms.
1 Also referred to as top-level ontologies in the literature; examples are: DOLCE [3],

GFO [4], SUMO [5], and Seibt’s [6], Sowa’s [7] and West’s [8] ontologies.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1398–1415, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

A Meta-ontological Architecture for Foundational Ontologies 1399

Furthermore, like conceptual models ontologies face the problem of meta-
modeling, i.e., the question of which basic vocabulary should be used to define
and explain ontologies, especially their entities as well as constraints and logi-
cal interdependences among them. Of course, there are already efforts like [9],
many of which are inspired by meta-modeling experience in conceptual model-
ing. Nevertheless, we intend to contribute to a clear and comprehensible meta-
architecture for ontologies. This is largely due to the fact that most ontology
languages are directly reduced to an underlying set-theoretical model in order
to provide a formal semantics, which especially holds for logic-based formalisms
like the Web Ontology Language (OWL, [10]).

The aim of this paper is to provide a clear analysis of meta-language aspects
of ontologies and ontology languages in order to develop a comprehensible, yet
comprehensive meta-ontological architecture. In particular, a clearly arranged
core of entity types is to be extracted from current foundational ontologies,
which will be called an abstract core ontology (ACO). On the one hand, ACOs
are to be used as a meta-level for ontologies. On the other hand, they can be
employed for the ontological foundation of representation formalisms in an easier
way compared to rich foundational ontologies.

According to these aims, the organization of the paper is as follows. In section
2 we analyze the use of meta-languages in general as well as the role of set
theory for modeling and modeling formalisms. On this basis our meta-ontological
architecture is presented. Section 3 introduces the central notion of ACOs in
detail. First, a number of entities and relations for ACOs are identified and
informally described. Following an approach which admits variants of ACOs,
two particular ACOs are presented as formal fragments. The first of these is
applied to Formal Concept Analysis (FCA) [1] in section 4. The final section 5
concludes the paper with a summary, a brief comparison with related work, and
future directions.

2 Meta-ontological Analysis and Architecture

For every formalism there is the need to explain the relationship between its syn-
tax and semantics. In particular, this task comprises the determination of the
ontological commitments of the formalism itself or in conjunction with its appli-
cation to a certain task. Thus, we start with considerations of meta-languages.

2.1 Meta-languages

Let W be a world of objects. A formal language L whose expressions refer to
the objects in W is called an object-level language for W . In order to specify
and communicate the meaning of these expressions, a meta-language M for the
pair (L, W) is required. That means, M is a language whose expressions refer
to the items included in L or in both, L and W , but which also refer to relations
between L and W . A formal language L has a semantics if there is a class Sem of
objects and a relation den(x, y) relating expressions of L to the objects of Sem.

1400 H. Herre and F. Loebe

The denotation relation den(x, y) stipulates a connection between a symbol x
and a semantic object y.

The first point to note is that the notions of symbol and denotation are
at the heart of the transition from informal to formal languages, but equally
relevant for the explanation of natural language semantics. These notions have
been puzzling philosophers of logic and language ever since (cf. [11]–[14]), but
herein we restrict to a simplified view.

According to this, one may assume a basic relation which associates the
symbols of a language to the objects of the real world. For example, we may say
that the phrase “the moon” denotes a certain real object in the sky. We take
denotation as an interface between the informal and the formal treatment of
an ontology. Therefore, the notions around denotation are used in informal ex-
planations of meta-language aspects, but in the formal treatment of meta-levels
these entities are not taken into account. Further, it is assumed that only natural
language can be used as a meta-language for any kind of language, including it-
self. However, an infinite regress arises if every expression is to be defined within
language. For instance, if one claims that the word “moon” denotes a certain
real thing in the sky, then the phrase “a certain real thing in the sky” is another
expression which requires a certain meaning. This regress can only be avoided
if we assume that there is an original anchoring relation relating symbols to ob-
jects, which has to be assumed as a basic intuition without further specification
in language, neither formal nor informal.

2.2 The Role of Set Theory

Set theory is a convenient mathematical tool to describe and model things and
structures. One may speak about sets (collections) of things, about graphs, alge-
bras, operations etc. Sets are abstract atemporal entities; for example, consider-
ing a set {a} of an apple a does not change anything on that apple. Mathematical
objects may be founded on set theory, and hence, in describing parts of the world
we may construct a set-theoretical structure which is associated to these parts
of the world and which models them. For describing the language of set the-
ory we need an appropriate meta-language; to simplify the matter we assume
that in any case natural language is available as a (non-formal) meta-language.
As is well-known, the meta-account of set theory includes the notions of sets,
urelements, and the membership relation.

Moreover, set theory is intimately tied to logical languages due to the fact
that the commonly accepted approach of Tarski-style model-theoretic semantics
(cf. [15]) is based on set-theoretical constructions. The relationship between such
languages and their meta-theoretical treatment is well established. At present
many ontology languages are logical languages with model-theoretic semantics
(cf. [10, 16, 17, 18]). Therefore, a sufficiently rich fragment of set theory should
provide an appropriate basis for a formal account of a meta-language, i.e., set
theory then serves as a meta-meta-language for object-level ontologies.

On the other hand, we do not intend to restrict ourselves to set theory alone,
of which distinct variants exist. Instead, a more generic route is taken in the next

A Meta-ontological Architecture for Foundational Ontologies 1401

section, generalizing the role of set theory as a meta-meta-language for ontologies
to the notion of an abstract top ontology. This allows for other formalisms to be
used as the meta-meta-account. For example, a minor deviation from set theory
would be to consider variants of it, like hypersets [19]. But more radical choices
are conceivable, for instance in favor of mathematical category theory [20]. In
every case, any of these have to be chosen with great care as they lay the formal
foundation for analyses of ontologies.

2.3 Meta-ontological Architecture

In our work on the General Formal Ontology (GFO, cf. [4]), which is a founda-
tional ontology, the need for a meta-ontological level arose, which is not already
a set-theoretical reduction. In striving towards such an approach we emphasize
generality and comprehensibility as requirements. Note that herein we focus on
a basic vocabulary for entities within ontologies, whereas ontologies as a whole
or complex components of ontologies are not discussed.

In figure 1 a three-layered meta-ontological architecture is proposed. As in-
troduced in section 2.1, natural languages form a universally applicable, but
informal approach to every level. The three layers on the right-hand side of
figure 1 provide a well-founded formal approach.

Object Level
Foundational, Generic, or
Domain-specific Ontology

Meta-Level
Abstract Core Ontology

Meta-Meta-Level
Abstract Top Ontology

(Set Theory)

G
en

er
al

 I
nf

or
m

al
 L

ev
el

N
at

ur
al

 L
an

gu
ag

e
(S

ym
bo

ls
, D

en
ot

at
io

n) formal
reduction

(meta-level)
instantiation

Fig. 1. Meta-ontological Architecture

The lowest level refers to the objects of the meta-architecture, viz. to ontolo-
gies with varying degrees of their range of applicability. The meta-level provides
the notions to work with object-level ontologies. In section 3.1 the most gen-
eral basic entities are specified which can be included in the meta-level. Based

1402 H. Herre and F. Loebe

on these notions several abstract core ontologies may be constituted, which are
determined by a selection of basic notions and by axioms stated about them.
Hence we admit different variants of ACOs, two of which are presented in sec-
tions 3.2 and 3.3. In this respect our work is inspired by conceptual modeling,
cognitive linguistics, philosophy, and by our work on the foundational ontology
GFO, expounded in [4].

In order to be able to treat ACOs in a formal manner, there is a need for a
formal meta-account of them. This leads to the introduction of the notion of an
abstract top ontology (ATO), which generalizes the role of set theory as described
in section 2.2.

Often set theory itself is viewed to take the role of an ACO instead of an
ATO. However, our experience shows that in many cases representation lan-
guages are ontologically richer than set theory (cf. [21]). Hence the introduction
of an intermediate layer appears reasonable. Looking at ACOs from the opposite
side, namely from the object level, formerly the notion of foundational ontolo-
gies was considered to fill this role already. However, the growing body of work
on foundational ontologies shows that these are too rich already to integrate
all their features into formalisms directly. Thus, we introduce the distinction
between ACOs and foundational ontologies.

Some remarks on the relationships between object, meta- and meta-meta-
level need to be made. Frequently, the relations between these levels are con-
sidered to be of the same character, often a vague notion of instantiation (cf.
section 5.2). This is not the case for the levels above. From our point of view,
the ontological notion of instantiation is preserved only between the object and
the meta-level, since they provide ontological content. However, the transition
from the ACO level to the ATO level is different. For example, in the case of
set theory as an ATO one may speak of a set-theoretical reduction of the en-
tities on the meta-level. Again, the mere intention behind the ATO level is to
provide a rigorous mathematical framework in order to study formal properties
of ontologies on the lower levels.

These issues may become clearer by example. In section 3.1 several entities
and relations will be introduced, among them the notion of category and (object-
level) instantiation. These belong to the meta-level, i.e., they are ontological
entities whose interconnections to other entity types need to be clarified. Later
then, when it comes to formalizing these interconnections, these notions are
expressed in the vocabulary of the meta-meta-level. More precisely, category will
be modeled as a set Cat whose elements are set-theoretical urelements, whereas
instantiation is modeled as a set denoted by :: with pairs of urelements as
its elements. In contrast to this reduction on the meta-meta-level, the relation
between meta- and object level is different. Categories and instantiation are not
merely “implementation devices” for ontologies. In fact, it is debatable whether
some or even all of the meta-entities should be reflected on the object level.
However, in contrast to a fully self-reflective ontology and for the sake of clarity
and simplicity, the separation into meta- and object level is preferred herein (cf.
also [22]).

A Meta-ontological Architecture for Foundational Ontologies 1403

3 Abstract Core Ontologies (ACOs)

This section elaborates the meta-level of the architecture which is formed by
abstract core ontologies. Let us first introduce and discuss the pragmatic and
functional aspects of ACOs. An abstract core ontology captures such entities
which are built – implicitly or explicitly – into the semantics of a wide number
of general representation formalisms and which commonly occur in foundational
ontologies. Examples for foundational ontologies are given in section 1, hence
it remains to clarify the term “general representation formalism”. It refers to
such formalisms which are not adapted to particular domains of discourse, but
which can be applied to a broad scope of modeling and representation problems.
Examples range from first-order logic over Semantic Web languages like the Web
Ontology Language (OWL, [10]), frame-based approaches as in [23], to modeling
languages like UML [24].

Apart from pragmatic aspects, ACOs need to be determined firstly by their
main entity types and relations among them, for which a certain vocabulary
is proposed below. Secondly, logical interdependences of those entities and re-
lations need to be specified. After an informal description of these connections
formal accounts are elaborated in sections 3.2 and 3.3. The latter exemplify the
formalization of several types of interdependences by axioms of first-order logic.
Note that this approach relies on the meta-meta level, where in our case set
theory is employed as the abstract top ontology.

3.1 Entities for ACOs

In identifying entities for ACOs we pursue a pragmatic approach which is further
based on philosophical considerations, in particular on the work of J. Gracia
[25, 26]. We will not insist on a single ACO, but we specify a set of entities (cf.
table 1), of which certain subsets may suffice for a particular ACO.

Before we go into details of this vocabulary, let us once more mention the
strict separation between the levels introduced in section 2.3. We stipulate that
none of the meta-level relations are available as objects on the object level.
This requirement implies that infinite regresses like Bradley’s infinite regress of
instantiation (cf. [27]) can be avoided. The same requirement is assumed for
most of the meta-level entities, although reflections of them on the object level
may be less complicated. For example, one could include the meta-level entity
“Individual” also as an entity of the object level.

Our starting point is that the entities of the world may be divided into cate-
gories and individuals, i.e., everything in an ontology is either a category or an
individual. Categories are entities which may be predicated of or instantiated by
other entities; in the opposite, individuals essentially cannot be instantiated or
predicated of other entities [26]. Note, however, that there are also categories
which cannot have instances, e.g. due to their logical structure, like a “round
square”. Nevertheless, such categories are distinct from individuals. The most
natural individuals are related to time and space, whereas categories are atem-
poral, abstract entities.

1404 H. Herre and F. Loebe

Table 1. Basic Entity Types and Relations

Meta-Level Entity Types (Sets of urelements)
Name Symbol Name Symbol
Category Cat Individual Ind
Object Category OCat Object Obj
Property P Attribute Att
Role Category RCat Role Rol
Relation R Relator Rel

Meta-Level Relations (Sets of pairs of urelements)
Name Symbol Argument Restrictions
identity x = y –
instantiation x :: y Cat(y)
inherence inh(x, y) Att(x) or Rol(x)
role-of role(x, y) Rol(x), Rel(y)
categorial part-of catp(x, y) Cat(x), Cat(y)

Moreover, among individuals we distinguish objects, attributes, roles and re-
lators. Objects are “complex” entities which have attributes and which play
certain roles in respect to other entities. Objects are to be understood as simi-
larly general as the notion of “object” in object-oriented analysis. In particular,
objects comprise animate and inanimate things like humans, trees or cars as well
as processes like this morning’s sunrise2. Examples of attributes are particular
weights, forms, colors, etc. A sentence like “This rose is red.” refers to a partic-
ular object which is a rose, and to a particular attribute which is a red. Another
basic relation is needed to connect objects and attributes. The phrases “having
attributes” and “playing a role” above are captured by the basic relation of in-
herence, which is such that an attribute or a role inheres in some object. This
relation expresses the dependence of attributes and roles on entities in which
they can inhere.3

The difference between attributes and roles consists in the fact that roles
are interdependent with other roles [28]. Examples of roles are available through
terms like parent, child or neighbor. Here, parent and child would be considered
as a pair of interdependent roles. Apparently, these examples easily remind one
of relations like “is-child-of”. Indeed, a composition of interdependent roles is
a relator, i.e., an entity which connects several other entities. The formation of
relators from roles further involves the basic relation of role-of.

Thus far we have explained the right-hand side of the upper part of table 1,
i.e., the subdivision of individuals and the interrelations among them. However,
in explaining roles by reference to terms like parent and child, there was already

2 More fine-grained distinctions among objects do not belong to the ACO level, but
appear as object-level instances of ACO notions, e.g. within some foundational on-
tology.

3 This commonality allows one to generalize attributes and roles to qualities. Note
that this notion of quality differs from the term as used in [4].

A Meta-ontological Architecture for Foundational Ontologies 1405

a transition to the realm of categories. Actually, parent and child refer to role
categories. As is obvious from the table, for all specializations of individuals
introduced above there are categorial counterparts.

Two basic relations have not been discussed thus far: identity and categorial
part-of. We will not dwell on the intricacies of identity, only to mention that we
refer to it as a notion in the interface between natural and formal languages. We
expect a full account of identity to involve denotation, possibly along the lines of
the Peircean notion of co-reference (cf. [7]). Categorial part-of is more in the focus
of the present work. Its arguments are categories; it directly reflects dependencies
among categories and uncovers how one category may be constructed out of
others. For example, the property of being round may be a categorial part of the
category of round glasses. Another example is the category apple, of which one
may consider categorial parts like a certain form or color and the like. There are
two intricate issues regarding categorial part-of. Firstly, a categorial part must
not be misinterpreted to apply to a category directly. For example, a category
with the property red as categorial part is not red itself. This problem is easily
avoided in the formalization. Secondly, it should be noted that inherence and
categorial part-of are irreducible with respect to each other. Section 4 will provide
further applications of categorial part-of.

3.2 Categories, Properties, and Objects

In this section we consider an abstract core ontology, denoted by CPO, which
is based on categories and properties only, together with their individual coun-
terparts and the corresponding meta-level relations. Object-level relations and
role categories as well as relators and roles are not included. Formally this cor-
responds to the following signature:

ΣCPO = (Cat, OCat, P, Ind, Obj, Att, =, :: , inh, catp) (1)

Several languages can be used to formalize such systems. In the following, a
type-free first-order language is assumed, although others may be appropriate
as well (e.g. typed languages). We present axiomatic fragments pertaining to the
signature introduced above.

First of all, implicit assumptions need to be explicated, which are often taken
for granted by human readers on the basis of natural language descriptions, like
the one given in section 3.1. First, there are disjointness and coverage conditions
for entities. Concerning (4), remember that CPO omits relators and roles.

¬∃x (Cat(x) ∧ Ind(x)) (2)
∀x (Cat(x) ∨ Ind(x)) (3)
∀x (Ind(x) → Obj(x) ∨ Att(x)) (4)

Meta-level subsumption relations need to be expressed, which are indicated in
table 1 by indentation.

∀x (Obj(x) → Ind(x)) (5)
∀x (P(x) → Cat(x)) (6)

1406 H. Herre and F. Loebe

Regarding the meta-level relations, similar axioms have to be stated (7). In
addition, an account of the argument restrictions from table 1 is needed (8). In
an opposite manner, claims of existence can be expressed (9).

¬(∃xy (x :: y ∧ inh(x, y))) (7)
∀xy (inh(x, y) → Att(x) ∧ Obj(y)) (8)
∀x (Obj(x) → ∃y(Att(y) ∧ inh(y, x))) (9)

Moreover, definitions may reveal “reducible” entities or new, definable notions
which are also interesting from an ontological point of view. In the case of CPO,
categories can be used to define their individual counterparts (10-11), but not
vice versa due to the possibility of categories without instances.

∀x(Ind(x) ↔ ¬Cat(x)) (10)
∀x(Obj(x) ↔ ∃y(OCat(y) ∧ x :: y)) (11)
∀x(Att(x) ↔ ∃y(P(y) ∧ x :: y)) (12)

∀x(PrimCat(x) ↔ Cat(x) ∧ ∃y(y :: x) ∧ ∀z(z :: x → Ind(z))) (13)
∀x(AttCat(x) ↔ Cat(x) ∧ ∃y(y :: x) ∧ ∀z(catp(z, x) → P(z))) (14)

Note that (10) already follows from (3) and (2). The newly defined notions of
a primitive category (13) and an attributive category (14) are relevant for sec-
tion 4. They reveal branching points for the ACO. For instance, the question
arises whether one should assume that all categories are primitive. On the other
hand, categories of higher types may be admitted. Similarly, attributive cate-
gories allow for new constraints: the equality of attributive categories may be
defined (15), and, as we decided for CPO, attributive categories may be the only
admissable categories (16). From the latter follows that catp is constrained to
properties in its first argument.

∀xy (AttCat(x) ∧ AttCat(y) → (x = y ↔ ∀z(catp(z, x) ↔ catp(z, y)))) (15)
∀x (Cat(x) → AttCat(x)) (16)

3.3 Categories, Relations, and Objects

The second abstract core ontology herein is denoted by CRO, and it comprises
all notions which were introduced in table 1, in particular roles and object-level
relations. This yields the following signature:

ΣCRO = (Cat, OCat, P, RCat, R, Ind, Obj, Att, Rol, Rel, =, :: , inh, role, catp) (17)

To make our approach to relations clear, we insert an example that illustrates
the formalization of an object-level relation. On the object level, let John be
a parent of Mary. According to the framework described, John and Mary are
objects, and there is a relator which instantiates the parent-of relationship and
which connects John and Mary. This connection is established via two roles, one

A Meta-ontological Architecture for Foundational Ontologies 1407

of which being a role of John, the other being a role of Mary. Let j, m, po, p, c
be constants for John, Mary, the parent-of relationship, and the parent and the
child role categories, respectively. Then, the following formalizes the example:

Obj(j) ∧ Obj(m) ∧ R(po) ∧ RCat(p) ∧ RCat(c) (18)

∃q1q2r(r :: po ∧ q1 :: p ∧ q2 :: c ∧

inh(q1, j) ∧ inh(q2, m) ∧ role(q1, r) ∧ role(q2, r)) (19)

Of course, similar axioms as those presented for CPO belong to the axioma-
tization of CRO, where not all of those specified for CPO can be reused directly.
For instance, (4) and (8) need to be modified to include roles. We will not specify
these modifications as they are easily found. Rather, we introduce some further
axioms pointing to advantages and problems with this role-based account of re-
lations. A discussion of these issues beyond that is available in [28], including an
analysis of the advantages of this approach in comparison to viewing relations
as having tuples of entities as instances.

∀x (Rel(x) → ∃yz(y �= z ∧ Rol(y) ∧ Rol(z) ∧ role(y, x) ∧ role(z, x))) (20)
∀xyz (inh(x, y) ∧ inh(x, z) → y = z) (21)

Axiom (20) enforces that relators are really mediating entities, i.e., more than
one role is involved, which is even the case if an object is related to itself. (21) is
known for attributes as the non-migration principle. However, note that in CRO
it also refers to roles which can inhere in a single entity only. This is not to be
confused with an entity in which several roles of the same role category inhere.
For example, John can be a parent of Mary as well as of Fred. Another question
concerns the arguments of relations, i.e., whether one should restrict the second
argument of inherence. For the sake of simplicity one would often restrict it to
objects (22).

∀xy(inh(x, y) → Obj(y)) (22)

However, in a more expressive system, relators between other entity types may
be required. In that case, it would be a common approach to classify relators
according to the types of entities their roles inhere in. An equivalent classification
could be done for the corresponding relations. Before we can give an example,
we need to enforce that every relation is bound to certain role categories (23-
24), (cf. also [28], sect. 3.3.3). Then, for example the parent-of relation can be
claimed to satisfy (26).

∀xy (R(y) ∧ catp(x, y) → RCat(x)) (23)
∀x (R(x) → ∃y(catp(y, x))) (24)
∀x (ObjRCat(x) ↔ ∀yz(y :: x ∧ inh(y, z) → Obj(z))) (25)

∀xy (ObjR(x) ↔ ∀y(catp(y, x) → ObjRCat(y))) (26)

1408 H. Herre and F. Loebe

The introduction of axiomatic fragments for two ACOs, CPO and CRO,
shows that there are many branching points even for these fairly small ontolo-
gies. In connection with a formal account of ACOs, these subtleties need to be
explicated and related to each other. This is one of the reasons why we expect
that it is more appropriate to start with a restricted number of primitives on
the ACO level of our meta-ontological architecture.

Apart from the use of ACOs as meta-ontology for object-level ontologies,
their application to general representation formalisms has been mentioned. In
the next section we show by example how CPO is employed for the ontological
foundation of one such formalism, namely formal concept lattices. A stronger
evaluation of the work presented here in quantifiable terms remains as future
work.

4 Formal Concept Lattices

Formal Concept Analysis (FCA, [1]) is a mathematical formalism with a central
notion of concept lattices which can be used for conceptual data analysis and
knowledge processing.4 It has gained wide spread from its earliest beginnings in
the late 1970s. We show that the theory of concept lattices can be interpreted
in our framework of abstract core ontologies, thus giving them an ontological
foundation. Moreover, concept lattices can be applied in diverse ways which can
be clarified by explicit reference to ACOs. Accordingly, we believe that each use
of formal concept analysis should be coupled with an appropriate ontological
analysis in order to gain clarity and to use the results of these formal techniques
adequately.

The following are the basic definitions of FCA [1] to which we refer herein.

Definition (Formal Context and Concept)
A formal context K = (G, M, I) consists of two sets G and M and a relation I
between G and M . The elements of G are called the objects, and elements of M
are called the attributes of the context. I(g, m) means that the object g has the
attribute m.
For a set A ⊆ G of objects and a set B ⊆ M of attributes, the set of attributes
common to A is Attr(A), the set of objects with all attributes in B is Objt(B):

Attr(A) = {m | m ∈ M and I(g, m) for all g ∈ A} (27)
Objt(B) = {g | g ∈ G and I(g, m) for all m ∈ B} (28)

A formal concept of K is a pair (C, D) with C ⊆ G, D ⊆ M , and C = Objt(D),
D = Attr(C). C is called the extent and D the intent of the concept (C, D).

This definition is an example for the specification of a formalism by direct
reference to the meta-meta-level of our approach, where set theory serves as ab-
stract top ontology in this case. However, the use of terms like attribute, object,
4 See also http://www.math.tu-dresden.de/∼ganter/fba.html

A Meta-ontological Architecture for Foundational Ontologies 1409

intent and extent exemplifies hidden ontological assumptions. As examples in [1]
indicate, there are several possibilities of interpreting the formalism on the ACO
level. That means, it can be used with different ACO level readings which we will
now analyze. In the sequel it is assumed that CPO is sufficiently expressive for
every of these interpretations. The adequacy of this assumption is reconsidered
at the end of this section.

In the first interpretation, G is a set of objects (in the sense of section 3.1, i.e.,
understood as individuals with attributes), M is a set of properties (categories
whose instances are attributes). Then the relation I is interpreted by a relation
I1 defined in terms of inherence and instantiation as follows:

I1(g, m) ↔ ∃x(x :: m ∧ inh(x, g)) (29)

However, in most examples in the applications of concept lattices the objects
are not individuals, but themselves categories. For instance, one example states
“A frog needs water to live” for an object “frog” and an attribute “need water
to live”. Then frog is an object category whose instances are individual frogs,
where every individual frog needs water to live. “Needs water to live” has to be
understood as a property in the terms of CPO. Hence, in the second interpre-
tation of I, denoted by I2, the expression “A frog needs water to live” reads as
“For every instance of the ‘category frog’ (g ∈ G) there is an instance of the
property ‘to need water to live’ (m ∈ M) which inheres in that individual frog.”
This ontologically correct reading of that sentence can be formalized as:

I2(g, m) ↔ ∀y(y :: g → ∃x(x :: m ∧ inh(x, y))) (30)

A third interpretation of I is given by I3, which in the example corresponds to
“the category frog has as a categorial part the property ‘to need water to live’ ”:

I3(g, m) ↔ catp(m, g) (31)

Apparently, it is not the category frog which needs water to live but the indi-
vidual frogs. Thus, the right-hand side of (31) may entail the right-hand side of
(30). In order to achieve this, a suitable ACO should include to following axiom:

∀xy(catp(x, y) → ∀u(u :: y → ∃w(w :: x ∧ inh(w, u)))) (32)

Moreover, if the third reading (I3) is assumed, one may claim that for concept
lattices all expressable categories are attributive categories, i.e., axiom (16) of
CPO applies. Altogether, CPO provides at least three exact and ontologically
adequate interpretations of the relation I defined for concept lattices.

The analysis continues with the question for the nature of the notion of a
formal concept (C, D), which depends on the relation between formal objects and
attributes. Assuming the third reading (I3) from above, the extent C of (C, D) is
a set of attributive categories, whereas the intent D is a set of properties. More
precisely and following the definition of a formal concept, every property in D
is a categorial part of each category in C. Ontologically, it seems that (C, D) is

1410 H. Herre and F. Loebe

best understood as a category ĉ with all properties in D as its categorial parts
and subsuming all categories in C:

x ∈ C → AttCat(x) ∧ ∀y(y :: x → y :: ĉ) (33)
x ∈ D ↔ P(x) ∧ catp(x, ĉ) (34)

Notice here that the membership relation between the set C and its elements
requires an ontological interpretation which differs from the one required for D
and its elements, and either differs from the naive view of membership. The latter
would assume instantiation as its ontological counterpart (∀xy(x ∈ y ↔ x :: y)),
but then (C, D) would refer to a higher-order category. Instead, we propose to
understand the set C as reflecting a category ĉ which subsumes C’s elements
without C being exhaustive regarding all subcategories of ĉ (hence the impli-
cation in (33)). D may either be viewed as a property d̃ which subsumes D’s
elements, or as an object category d̂ determined by D’s elements as categorial
parts. Looking at formal concepts, the way in which these are ordered to form
concept lattices seems to suggest the latter interpretation (d̂). In this case, the
duality of formal concepts by extent and intent can be explained by the require-
ment that ĉ and d̂ are two categories with the same extension. Furthermore, this
explains the Duality Principle for Concept Lattices [1, p. 22] which states that
an exchange of formal objects and attributes induces the dual concept lattice.
In the ACO reading this could mean that object categories may be categorial
parts of properties, or that a reinterpretation of formal objects and attributes
as one type of category is needed.

Discontinuing the analysis, we need to return to the initial assumption that
CPO is sufficiently expressive for every ontological interpretation of formal con-
cept lattices. Even considering the examples in [1], this does not appear to be
adequate for all of these. For instance, one example introduces countries as for-
mal objects and organizations of countries as formal attributes. Another deals
with business services as formal objects and types of business machines to which
such services apply as formal attributes. Here, we admit that the ontological in-
terpretations can be much more specialized. Moreover, the assignment to object
categories and properties alone may not be suitable for all cases. Nevertheless,
analyses like those above should be worthwhile for at least two reasons. Firstly,
abstract core ontologies are more widely applicable, and one may refer to an
existing ontological scheme when using a formalism, such as one of those above.
Secondly, in the future one may expect that the small size and the applicability
of abstract core ontologies leads to more extensively formalized and implemented
versions than those which are available for very specialized domains. Then ACOs
may be used in the very best sense of an ontology: to contribute to the interop-
erability of distinct formalisms.

Finally, one may ask whether an understanding of such precision is needed in
applications. In our opinion, hidden imprecisions or ambiguities may cause prob-
lems or unexpected “behavior” of a formalism. For instance, the consequences of
mixing the three initial interpretations I1 (29), I2 (30), and I3 (31) from above
remain unclear if they are not analyzed in terms of the underlying ACOs.

A Meta-ontological Architecture for Foundational Ontologies 1411

5 Conclusion

5.1 Summary and Discussion

Based on an analysis of meta-language issues we have provided a three-layered
meta-ontological architecture which can be supported on every level by means
of natural language. The architecture centers on the notion of an abstract core
ontology (ACO), which has been discussed in detail, comprising a selection of
entities and including some axiomatic fragments for two ACO variants. Roughly
speaking, the CPO variant is based on objects and attributes only, whereas the
CRO ontology in addition includes relations.

The last part of the paper uses CPO for the ontological foundation of basic
notions of Formal Concept Analysis [1] and thus demonstrates an application
of the framework apart from meta-ontological considerations. In particular, due
to their limited number of selected categories ACOs are well suited for the on-
tological foundation of general representation formalisms, whereas rich founda-
tional ontologies may provide too many or too special distinctions for this task.
Nevertheless, the main application of the presented framework is to provide a
meta-account for ontologies, including foundational ontologies.

Three important aspects of our proposal should be emphasized. Firstly, our
architecture provides a clear border between ontological and formal contents.
This border is situated in the transition from the meta-level to the meta-meta-
level, due to which the relations between the three levels are different. In many
approaches this distinction is not made, leaving it unspecified to which extent
ontology plays a role on each level.

Secondly, the overall architecture is laid out with a strong interest in clar-
ity and, in some sense, minimality in the number of notions. It is our hope
that this will be beneficial in two respects. On the one hand, conceptual trans-
parency may promote the use of the architecture in its intended areas of ap-
plication. On the other hand, this shall allow for an extensive formal treat-
ment, where experience suggests that many overlooked subtleties appear in the
process of the formalization of natural language specifications. For the latter
reason the formalization itself is considered valuable, as yet independent of
computational applications or automated reasoning with ACOs as a primary
concern.

Thirdly, during the formalization various branching points become explicit
which give rise to different ACOs (with differences beyond their underlying entity
types). Thus far it is not intended to promote exactly one of these ACOs. Instead,
for distinct cases we expect several ACO variants to be appropriate, which can
be formally related within the architecture, however.

5.2 Related Work

Two meta-level architectures shall be compared with ours. We start with the
SUO Information Flow Framework (SUO IFF; formerly known as IFF Founda-

1412 H. Herre and F. Loebe

tion Ontology) which appears closest in its motivation, viz. the provision of a
meta-architecture for the Standard Upper Ontology (SUO) initiative:5

The IFF Foundation Ontology represents metalogic. It provides a prin-
cipled foundation for the metalevel (structural level) of the Standard
Upper Ontology (SUO). The SUO metalevel can be used as a logical
framework for manipulating collections of object level ontologies.

This quote from [29] already shows some rather strong differences between the
SUO IFF and our work. First, SUO IFF pursues a meta-logical approach rather
than a meta-ontological. The objects it refers to and which are manipulated on
the meta-level are theories and logics, rather than single categories.6

SUO IFF offers a sophisticated structure which is divided into three interior
levels, called lower, upper and top metalevel. It integrates a large number of
mathematical concepts and appears to be based on category theory. Though
this may be a powerful approach, it is fairly hard to comprehend. Overall, the
SUO IFF is rather a deeply elaborated ATO than an ACO. We are not aware of
a level between the SUO IFF and the proposals for SUO itself, i.e., there is no
ACO level in the SUO framework.

The second meta-modeling approach to be discussed is the Meta Object Facility
(MOF, [31]) which provides the meta-modeling architecture for UML [24]. The
MOF meta-modeling architecture is derived from the “classical framework for
metamodeling” [31, p. 2-2], based on four layers:

1. The information layer comprises data which are to be described.
2. The model layer describes the data which may occur in the information

layer in terms of meta-data, i.e., it defines a language for some information
domain. Specific UML models belong to this layer.

3. The meta-model layer provides descriptions of meta-data, i.e., the structure
and the semantics of meta-data on the model layer. The specification of UML
itself belongs to this layer.

4. The meta-meta-model layer describes meta-models and relates to the meta-
model layer just as the meta-model layer relates to the model layer. This
layer is commonly used to close by convention the regress of meta-levels.

Assuming these layers7, the MOF approach appears fairly similar to ours, at
least from an architectural point of view. In this connection it is relevant that
the lowest level of our approach is concerned with ontologies, which comprise
entities of both the model and the information layer of MOF. This is due to the

5 Cf. http://suo.ieee.org/IFF/ and http://suo.ieee.org, respectively.
6 With this focus, it reminds one on other works using category theory for relating

different logics, in particular the institutions of Goguen [30].
7 Note that in MOF these layers are considered as conventions for understanding

rather than being of any definitive character, i.e., the interpretation of the MOF
architecture (e.g. the number of levels) may vary in dependence of the environment
in which it is applied.

A Meta-ontological Architecture for Foundational Ontologies 1413

understanding of ontologies as specifications of conceptualizations [2], and it is
also apparent from works discussing UML and ontology languages (cf. [32] and
section 6 of [9]). Accordingly, the ACO level corresponds to the MOF meta-model
layer, whereas the ATO level matches the MOF meta-meta-model layer.

However, there are also a number of differences compared to our approach.
First, the relationships between the levels are different in the two approaches. In
particular, in MOF the relations between the levels appear to be equal, namely
some form of “instantiation”, in contrast to the relationships between the lev-
els as described in section 2.3. Secondly, differences originate from the object-
oriented approach taken in MOF, which assumes objects with object identity,
state and behavior. As far as we are aware of ontologies, in particular the dy-
namic aspects in the sense of software systems are not yet integrated in ontolo-
gies. A third source of differences are the details with respect to static aspects,
i.e., entities and their characteristics in the formalism. For instance, MOF only
allows for binary relations and has a built-in inheritance mechanism for MOF
classes, whereas we have a more flexible approach regarding relations (sect. 3.1),
but no inheritance. Moreover, there is a greater number of MOF entities (cf.
[31, p. 3-12]), but a less formal approach is taken as regards logical formal-
izations. A detailed technical comparison with MOF remains to be elaborated
elsewhere.

In summary, there appear to be more commonalities between our architecture
and MOF than compared to the SUO IFF. Nevertheless, a closer analysis reveals
rather strong differences to either of the approaches discussed, some of which
seem to be justified regarding differences in scope and historical development.

5.3 Future Work

The paper concludes with indicating various ways of extending the present work.
From a theoretical and philosophical point of view, further analysis of the in-
terface between the informal and the formal levels of the architecture is needed,
for which one may draw on the existing body of philosophical literature. Fur-
ther, the comparison to other meta-modeling approaches as started in section
5.2 should be extended. Within the ACO level, the axiomatic fragments are to
be enlarged and put into relation to each other, for which purpose the SUO IFF
[33] may be used.

A major field of application which is not discussed herein are ontology lan-
guages for the Semantic Web, primarily RDF and OWL [16, 10]. For these lan-
guages one would first choose an appropriate set of ACO entities, where CRO
seems to provide sufficient expressiveness8. However, concerning the axiomati-
zation modifications are expected. In this connection it will be crucial to find
an interpretation of the feature of RDF to allow for a self-application of RDF
properties. Another important issue is the integration of datatypes. From an
ontological point of view one may assume that datatypes do not require fur-
ther entity types in an ACO. Rather, their treatment is expected to involve the

8 Possibly one could even omit attributes.

1414 H. Herre and F. Loebe

denotation relation, possibly within the meta-level. Besides interpreting single
features of RDF and OWL, different forms of their usage may demand different
ACO interpretations. The reification of RDF properties to overcome the lack
of expressiveness of these languages with respect to n-ary relations9 is a good
example in this respect.

Finally, machine-processable versions of ACOs need to be implemented. First-
order theorem provers may be used to support formal investigations of estab-
lished ACOs, whereas implementations, e.g. in OWL, would allow for a direct
use in connection with ontologies in the Semantic Web.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin (1999)

2. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl-
edge Acquisition 5 (1993) 199–220

3. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Wonderweb
Deliverable D18: Ontology library (final). Technical report, Laboratory for Applied
Ontology – ISTC-CNR, Trento (2003)

4. Heller, B., Herre, H.: Ontological categories in GOL. Axiomathes 14 (2004) 57–76
5. Pease, A., Niles, I.: IEEE Standard Upper Ontology: A progress report. Knowledge

Engineering Review 17 (2002) 65–70
6. Seibt, J.: Free Process Theory: Towards a typology of processes. Axiomathes 14

(2003) 23–55
7. Sowa, J.F.: Knowledge Representation: Logical, Philosophical and Computational

Foundations. Brooks/Cole, Pacific Grove (2000)
8. West, M., Sullivan, J., Teijgeler, H.: ISO/FDIS 15926-2: Lifecycle integration

of process plant data including oil and gas production facilities. (Data Model),
ISO TC184/SC4/WG3N1328 (2003) Available from: http://www.tc184-sc4.org/
wg3ndocs/wg3n1328/lifecycle integration schema.html.

9. DSTC, Gentleware, IBM, Sandpiper Software: Ontology Definition MetaModel:
Preliminary revised submission to OMG RFP ad/2003-03-40. Technical report,
Object Management Group (OMG) (2004)

10. W3C: Web Ontology Language (OWL) Specifications. W3C Recommendation,
World Wide Web Consortium (W3C), Cambridge (Massachusetts) (2004) Available
from: http://www.w3.org/2004/OWL/.

11. Frege, G.: Die Grundlagen der Arithmetik. Felix Meiner Verlag, Hamburg (1988)
edited by C. Thiel.

12. Wittgenstein, L.: Tractatus logico-philosophicus. Routledge & Kegan Paul, London
(1922) transl. by Ogden, C. K.

13. Wittgenstein, L.: Philosophische Untersuchungen. Suhrkamp, Frankfurt/Main
(1967)

14. Russell, B.: On denoting. Mind 14 (1905) 479–493
15. Tarski, A.: Logic, Semantics, Metamathematics: Papers from 1923 to 1938. 2. edn.

Hackett, Indianapolis (1983) ed. by Corcoran, John.

9 Cf. http://www.w3.org/TR/swbp-n-aryRelations

A Meta-ontological Architecture for Foundational Ontologies 1415

16. W3C: RDF Semantics. W3C Recommendation, World Wide Web Consortium
(W3C), Cambridge (Massachusetts) (2004) Available from: http://www.w3.org/
TR/rdf-mt/.

17. Hayes, P., Menzel, C.: A semantics for the Knowledge Interchange Format. In:
Workshop on the IEEE Standard Upper Ontology at IJCAI, Aug 6, 2001. (2001)

18. Menzel, C.: Common Logic. Available from: http://philebus.tamu.edu/cl/ (2005)
19. Devlin, K.: The Joy of Sets: Fundamentals of Contemporary Set Theory. 2. edn.

Springer, Berlin (1993)
20. Barr, M., Wells, C.: Category Theory for Computing Science. 2. edn. Prentice-Hall

International Series in Computer Science. Prentice-Hall, London (1995)
21. Guizzardi, G., Herre, H., Wagner, G.: On the general ontological foundations

of conceptual modeling. In Spaccapietra, S., March, S.T., Kambayashi, Y., eds.:
Conceptual Modeling – ER 2002, Proceedings of the 21st International Conference
on Conceptual Modeling. Volume 2503 of Lecture Notes in Computer Science.,
Berlin, Springer (2002) 65–78

22. Pan, J.Z., Horrocks, I.: Metamodeling architecture of web ontology languages.
In Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L., eds.: Proceedings of
SWWS’01, The first Semantic Web Working Symposium, Stanford University, Cal-
ifornia, USA, Jul 30 - Aug 1,2001. (2001) 131–149

23. Chaudhri, V.K., Farquhar, A., Fikes, R., Karp, P.D., Rice, J.P.: Open Knowledge
Base Connectivity 2.0.3. Specification, Artificial Intelligence Center, SRI Interna-
tional and Knowledge Systems Laboratory, Stanford University (1998)

24. OMG: Unified Modeling Language Specification. Version 1.5, Object Management
Group (OMG), Needham (Massachusetts) (2003)

25. Gracia, J.J.E.: Metaphysics and Its Tasks: The Search for the Categorial Foun-
dation of Knowledge. SUNY series in Philosophy. State University of New York
Press, Albany (1999)

26. Gracia, J.J.E.: Individuality: An Essay on the Foundations of Metaphysics. SUNY
Series in Philosophy. State University of New York Press, Albany (1988)

27. Swoyer, C.: Properties. In Zalta, E.N., ed.: The Stanford Encyclopedia of Philoso-
phy. Winter 2000 edn. Stanford University, Center for the Study of Language and
Information (2000) Available from: http://plato.stanford.edu/archives/win2000/
entries/properties/.

28. Loebe, F.: An analysis of roles: Towards ontology-based modelling. Onto-Med
Report 7, Research Group Ontologies in Medicine, University of Leipzig (2003)

29. Kent, R.: Distributed conceptual structures. In de Swart, H.C.M., ed.: Relational
Methods in Computer Science: 6th International Conference, RelMiCS 2001 and
1st Workshop of COST Action 274 TARSKI, Oisterwijk, The Netherlands, October
16-21, 2001, Revised Papers. Volume 2561 of Lecture Notes in Computer Science.,
Berlin, Springer (2002) 104–123

30. Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and
programming. Journal of the ACM 39 (1992) 95–146

31. OMG: Meta Object Facility (MOF) Specification. Version 1.4, Object Management
Group (OMG), Needham (Massachusetts) (2002)

32. Kogut, P., Cranefield, S., Hart, L., Dutra, M., Baclawski, K., Mieczyslaw, K.,
Smith, J.: UML for ontology development. The Knowledge Engineering Review
17 (2002) 61–64

33. Kent, R.: The IFF foundation for ontological knowledge organization. In
Williamson, N.J., Beghtol, C., eds.: Knowledge Organization and Classification
in International Information Retrieval. Volume 37 of Cataloging & Classification
Quarterly. Haworth Press, New York (2004) 187–203

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1416 – 1431, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Web Image Semantic Clustering

Zhiguo Gong, Leong Hou U, and Chan Wa Cheang

Faculty of Science and Technology, University of Macau, Macao, PRC
{zggong, ma36575, ma36600}@umac.mo

Abstract. This paper provides a novel Web image clustering methodology
based on their associated texts. In our approach, the semantics of Web images
are firstly represented into vectors of term-weight pairs. In order to correctly
correlate terms to a Web image, the associated text of the Web image is
partitioned into semantic blocks according to the semantic structure of the text
with respect to the Web images. The weight of a term in the vector of an
embedded Web image is calculated with respect to both its local occurrence in
semantic blocks and the distances of the blocks to the image. With this method,
‘Web image clustering’ is transformed into ‘term vector clustering’. And a
feature based solution is employed in our solution. To reach this objective, we
define the associate relations between two terms based on their co-occurrence in
the associated text of the Web images. Thus, a term semantic network (TSN) is
constructed with terms as the nodes and associate relationships as the edges. To
cluster terms in TSN, CHAMELEON algorithm is utilized. In order to determine
the significances of terms in each cluster, HITS algorithm is applied. Finally,
web images are assigned to different clusters based on the similarity between
image term vectors and the term vector of the clusters.

1 Introduction

Currently, Web images have been becoming one of the most important information
types on the Web. Thus, how to effectively gather, manage and reuse this valuable
resource are among the most attractive research topics in the area of Web information
retrievals. However, many differences exist in comparison with traditional images in
their creation purposes, amount, and semantic coherence. Firstly, Web images are
generally created or selected by Web authors as visually supports for their Web page
presentations, and no standard exists for the image size and visual qualities. Some
images are highly qualified and much valuable for reuse while many others may not
have any reuse values. Secondly, the amount of Web images is huge, therefore,
manually semantic annotations for Web images, as for many traditional image
management systems, is too hard or even impossible. Thirdly, the traditional image
management systems are usually dedicated for specific domains which have limited
scopes of users and image topics. And domain-based image processing techniques can
be exploited for automatic feature extracting and indexing of the images. Web
images, however, are produced by authors from different domains. And domain-
independent algorithms for feature extracting and indexing of Web images can only
be limited to some special features, such as color histogram or textures. As a result, it

 Web Image Semantic Clustering 1417

is hard to couple such lower features with higher semantic descriptions of the Web
images. In order to overcome such shortages caused by the heterogeneous and
semantic diverse intrinsic of Web images, an effective and efficient algorithm for
Web image automatic clustering or classification is definitely desirable.

In [2], we have addressed our techniques on Web image indexing and searching.
The semantic extraction of Web images in [2] is based on the HTML structure (DOM
tree), the user feedback and Web page segmentations. In this paper, we provide our
categorization method of web images based on the term clustering techniques.

In general, topic directory system suffers from lower performance of manual
classification of newly collected documents. For example, Yahoo, the largest
directory system on the Internet, has more than 1.5 million links in its topic hierarchy
and needs as more as 100 editors in its classifying work of the Web documents. Up to
now, most commercial categorization work of directory systems is performed
manually. Therefore, to find an effectively automatic solution for Web document
classification is much desirable and draws many attentions from both academic and
industrial communities.

There are two ways for automatic document categorization. One is called
supervised learning techniques--classification. Such kind of techniques consists of
two steps. First, categories are predefined and described by experts. Then, all images
are assigned to corresponding categories based on automatic similarity measurements
between Web images’ subject and the predefined category descriptions. The obvious
weakness of such classification methods lies in that large percentage of the
heterogeneous Web documents may not be fit to any given predefined category. In
classification models, a training set should be manually defined at first, and the size of
it may directly affect the precision of the classification result. So it is not suitable for
huge amount of Web documents. The other method for categorization is called
unsupervised learning techniques – Clustering. The main difference between the two
is that clustering does not need to predefine the category beforehand, thus reduce
manual labors dramatically. With such methods, subject experts can only need to
define the label for categorization.

In this paper, we provide a solution for Web image clustering based on the
associated text. The semantics of Web images are extracted by partitioning the textual
parts of the Web pages with respect to the images. Then, Web images are represented
into vectors of term-weight pairs. We suppose that each cluster of Web images can be
described with a feature set of term-weight pairs too. The principle behind our
approach is based on the observation that co--occurrence words or terms are often
closely related to each other in describing the same topics for the Web images. To
formalize our discussions, for any term pair t1 and t2, we define term relations with
Sup(t1, t2) (Support) and Conf(t1, t2) (Confidence) which are extracted from our Web
document/image database [2]. Sup(t1, t2) indicates the absolute co-occurrence of term
t1 and t2 in the collection, and Conf(t1, t2) reflects their co-occurrence relative to t1’s
appearances in the collection. Then, a term semantic network (TSN) is created with
the terms as the nodes and Sup(ti, tj)*Conf(ti, tj) as the directed edges(ti, tj). With this
definition for TSN, it is obvious that the more value of edges(ti, tj), the more possible
for ti and tj in the same cluster. In our approach, we suppose that terms with strong
edges connected in TSN are likely to be used together in describing the same topics.
In order to cluster Web image topics, we then partition TSN into several subgraphs

1418 Z. Gong, L.H. U, and C.W. Cheang

using algorithm CHAMELEON [1]. And we consider each subgraph of TSN as one
feature cluster for one subject. As a matter of the fact, terms in each cluster are
weighed differently in support the cluster topic. For example, the more edges linked
to term t, the more significance of term t as one of the clustering features. We assign
weights to terms by using algorithm HITS [21]. Finally, we assign Web images to
corresponding clusters by the similarity between term vectors of the images and the
feature vectors of the clustering. Our experimental results show that retrieval
precisions can be improved in comparison with the methodology without using HITS
or K-Mean partitioning approach.

The reminder of the paper is organized as follows: Section 2 provides a review on
related works. Section 3 gives Web image representations. Section 4 addresses our
techniques in constructing the term semantic network (TSN). And we provide our
approaches for Web image clustering in section 5. In section 6, we show our
experimental result. Finally in section 7, we conclude this paper.

2 Related Work

In this section, we introduce some past works on general clustering methodologies, as
well as on document clustering.

2.1 Works on Fundamental Clustering Techniques

Clustering, which is the process of grouping the data into classes or clusters so that
objects within a cluster have high similarity in comparison to one another, is one kind
of method in data mining technology. The idea of clustering is that the intra-cluster
similarity is maximized and the inter-cluster similarity is minimized. Typical pattern
clustering activity involves the following steps [5]:

 pattern representation (optionally including feature extraction and/or selection),
 definition of a pattern proximity measure appropriate to the data domain,
 clustering or grouping,

Feature selection is the process of identifying the most effective subset of the
original features to use in clustering. And Feature extraction is the use of one or more
transformations of the input features to produce new salient features. Either or both of
these techniques can be used to obtain an appropriate set of features to use in
clustering. In this paper, we consider all terms, which appear in the associated text of
the Web image, as the semantic features of the image.

Pattern proximity is usually measured by a distance function defined on pairs of
patterns. A variety of distance measures can be found in use in the different
communities [5][6][7]. And a simple distance measure like Euclidean distance can
always be effective to reflect dissimilarity between two patterns.

The grouping step can be performed in a number of ways. The output clustering
(or clusterings) can be hard (a partition of the data into groups) or fuzzy (where each
pattern has a variable degree of membership in each of the output clusters).
Hierarchical clustering algorithms produce a nested series of partitions based on a
criterion for merging or splitting clusters by similarity. In general, a partitional
clustering algorithm is trying to find one partition that optimizes (usually locally) a
clustering criterion.

 Web Image Semantic Clustering 1419

Actually, based on these three fundamental steps, clustering can be implemented
in different models, such as Single Link, Complete Link, Minimal spanning tree, and
K-means. In the following, we will introduce some typical methods.

2.1.1 Single Link
Single Link is a simple one of the Hierarchical clustering algorithms. In the single-
link method, the distance between two clusters is the minimum of the distances
between all pairs of patterns drawn from the two clusters respectively (one pattern
from the first cluster, the other from the second). The single-link algorithm suffers
from a chaining effect [8]. It has a tendency to produce clusters that are straggly or
elongated.

2.1.2 Complete Link
In the complete-link algorithm, the distance between two clusters is the maximum of
all pairwise distances between patterns in the two clusters. And two clusters are
merged to form a large cluster if the distance below some predefined threshold. The
complete-link algorithm often produces tightly bound or compact cluster [9].

2.1.3 Minimal Spanning Tree (MST)
Most clustering models make all object link together such that it looks like a graph.
So graph-theories can be used to solve the clustering problem. One typical technique
in graph-theoretic is called Minimal spanning tree (MST). To cluster the nodes in the
graph, MST is firstly obtained from the original graph, then, edges with the largest
lengths are deleted recursively until ideal clusters are reached. The problem of MST is
that the clusters may be quite unbalanced since the algorithm always chose the most
weakness edge to cut. It often finds the large cluster group only.

2.1.4 K-Means
K-means is one kind of important partitional clustering algorithms which obtain a
single partition of the data instead of a clustering structure. K-means uses the
following step to get the cluster:

I. Choose k cluster centers to coincide with k randomly-chosen patterns or k
randomly defined points.

II. Assign each pattern (object) to the closest cluster center
III. Re-compute the cluster centers using the new cluster membership
IV. If a convergence criterion is not met, go to step II. Typical convergence

criteria are: no (or minimal) reassignment of patterns to new cluster centers,
or minimal decrease in squared error.

The weakness of K-means is that it just cut the cluster into simple shape. It is not
suitable for many situations.

2.1.5 CHAMELEON
CHAMELEON belongs to the kinds of hierarchical clustering algorithm. It modeling
data items as graph and its sparse graph representation of the data items is based on
the commonly used k-nearest neighbor graph approach. (Figure 1)

1420 Z. Gong, L.H. U, and C.W. Cheang

Original data in 2D 1-nearest
neighbor graph

2-nearest
neighbor graph

Fig. 1. k-nearest graphs from an original data in 2D

It measures the similarity of two clusters based on a dynamic model. In the
clustering process, two clusters are merged only if the inter-connectivity and
closeness (proximity) between two clusters are high enough relatively to the internal
ones of these two individual clusters. The methodology of dynamic cluster modeling
used in CHAMELEON is applicable to all types of data as long as a similarity metric
can be defined. CHAMELEON is a successful algorithm to overcome many
limitations of the existing hierarchical schemes [14][15][16].

On the other hand, CHAMELEON can also be carried out reversely to partition a
data set or graph. In fact, CHAMELEON utilizes multilevel graph partitioning
algorithms to find the initial sub-clusters. In particular, it uses the graph partitioning
algorithm which is provided as programming API called hMETIS library [17]. hMETIS
has been shown to quickly produce highly-qualified partitions for a wide range of
unstructured graphs and hypergraphs [18][19][20]. CHAMELEON uses hMETIS to
split a cluster Ci into two sub-clusters CA

i and CB
i such that the edge-cut between CA

i

and CB
i is minimized and each one of these sub-clusters contains at least 25% of the

nodes in Ci. This requirement is often referred to as the balance constraint 1.

2.2 Some Works on Document Clustering Model

Document clustering can be implemented either with object cluster model or word
cluster model.

In the former model, documents are represented into vectors of term-weight pairs.
Therefore, document clustering is transformed into vector clustering in the multi-
dimension space. And many research works existed in this model. For example, [11]
provided a clustering algorithm called CBC (Clustering By Committee). This work
initially discovers a set of tight clusters (high intra-group similarity), called
committees, which are well scattered in the similarity space (low inter-group
similarity). The union of the committees is however a subset of all elements. The
algorithm proceeds by assigning elements to their most similar committee.

In the latter model, features (words) of the cluster are firstly extracted with respect
to their semantic relationships. Then, documents are assigned to the corresponding
clusters based on the similarity between features of the cluster and the document. In
this respect, the documents clustering is actually topic oriented other than document
oriented. That mean, if a document contains multiple topics, it will probably be
assigned into several clusters. Work [10], for instance, use the information bottleneck
method to obtain a better result by using word cluster model. It first finds word-
clusters that capture most of the mutual information about the set of documents, and
then find document clusters, that reserve the information. It is much less sparse and
noisy than the object cluster model.

 Web Image Semantic Clustering 1421

Besides, document clustering, there are also many works on document
classification. ACIRD: Intelligent Internet Document Organization and Retrieval 3 is
a typical work in this model. Term Semantic Network (TSN) is one of the main
concepts used in ACIRD system. It builds the TSN based on the term association rule
and supports the data representation model.

3 Web Image Semantic Representation

In our system, Web pages are gathered and converted into Document object model
(DOM) trees by the system crawler. Then, Web images are filtered out by removing
meaningless images (or stop images, such as Web site logo, button) before further
processing. In order to extract the semantics of a Web image, we partition the Web
page of the image into a sequence of semantic blocks with respect to the distances to
the image. And we suppose that different blocks have different semantic relevance to
the Web image [2]. A term’s semantic relevance to an embedded image is calculated
both based on its local occurrences in the individual semantic blocks and the semantic
distances of the corresponding blocks to the image.

In our approach, we firstly partition the whole associated text of a Web image into
three parts, which include TM (the texts from <TITLE> and <META> element), LT
(the text attached to the image display command), and BT (the text of <BODY>
element), based on their functions in the text. TM is often used as the summary of the
page content, and it may provide valuable semantic implications to the images
especially in an image containers; LT is the closest part of the associated text to the
image, and often highlight the semantics of the local Web image; BT is big in size, but
can provide explanations for the contents of the image in most of cases.

o1

SB2

SB1 SB2

SB1 SB1SB0 SB1 SB2

SB3

SB4

SB4

SB4 SB2

SB2 SB1

SB2 SB2 SB2 SB2 SB0

SB3

SB4

SB4

SB4N010

N0100 N0101

N01000 N01003 N01001 N01002 N01010

N01

N0

N00

N000

o2

(a) (b) (c)

Fig. 2. Semantic Fragmentation

Since the big size of BT, it may contain diverse semantics. Therefore, we further
partition it into a sequence of semantic blocks with respect to the nested structure of
tag elements. Figure 2 is an example for partitioning BT blocks. Figure 2(a) represents
the original tree structure of a Web page which contains two images o1 and o2 in
nodes N01001 and N01010 respectively. Then, Figure 2(b) and (c) shows the semantic
fragmentations for image o1 and o2 respectively. Formally, for any image o, there
exist a sequence of nested nodes E0, E1, …EN of BT, and EN EN-1 E0 such that

1422 Z. Gong, L.H. U, and C.W. Cheang

EN=<Body> (the root node) and E0 o And furthermore, no other HTML element
exists between Ej+1 and Ej for any j. Obviously, value N (the number of the nested
elements) may be different for different web pages. To simplify our notations, we set
N big enough. And if Ej=BT, then En=BT for any N n j. Therefore, semantic blocks
are defined as SBj=Ej+1-Ej for N-1 j 0 (Figure 2 (b), (c)). Then, we have BT=
SBj with SBk Bl= for any k l. Figure 2 illustrates the principle of our Web page

fragmentation. In this example, we suppose Web page p has been partitioned into 4
layers of SB0, SB1, SB2, and SB3, with SB0 containing Web image o. Then, the
semantic relevance of SBk to o reduces with k increasing from 0 to 3. That is, ti is
more relevant to image o than tj because of their locations relative to image o.
Actually, a term t may appear in several semantic blocks (other than only one). In
such a case, t’s overall relevance to o should be taken into account of both its
importance degrees in all blocks and block’s relevances to image o.

SB3

tj

SB2

SB1

SB0

ti

Fig. 3. Semantic Fragmentation for a Web Image

In general, we suppose SBj ,0 are semantic blocks with respect to Web image
o, the local occurrence of a term t in block SBj is calculated as

||

|)(
|)(

j

SB

SB SB

ttf
tntf j

j
= (1)

where
jSBtntf |)(is called normalized frequency of term t over SBj,

jSBttf |)(is the

frequency of term t in SBj, and |SBj| is the size of SBj. Thus, term t’s overall semantic
relevance to image o through page p is obtained as

−≤≤

∗=
11

|)(|)(
Ni

SBjp j
tntfwtttf (2)

where N is the total number of the semantic blocks, and wj is the weight of SBj‘s
semantic relevant to the embedded image o. Without loss of generality, we suppose
wj’s are normalized, such that

−≤≤
=

11

1
Ni

jw . In order to determine the values of those

wj‘s, a greedy algorithm, called Two-Way-Merging, is used. In our approach, a binary
tree is constructed bottom upward, with SBj’s as all the leaves (Figure 4). Then,
merging is carried out recursively, from bottom to top. For each step, a pair of factors

 Web Image Semantic Clustering 1423

(l
i,

l
i) is obtained, where l stands for the level of merging, l

i and l
i are merging

factors from left and right sub-branches of the processing node respectively, and they
are normalized as l

i+
l
i =1. In the calculation, we choose average precision of

retrievals [9] as the objective function for determining (l
i,

l
i). In other words, the

values should maximize retrieval precisions of Web images on average. Then, wj is
finally gotten by multiplying all corresponding level factors of SBj in the tree. For
example, in Figure 4, w1 = l

i* 2
1, w2 = l

1*
2

1, w3 = l
2* 2

1, w2 = l
2*

2
1.

With above processing, in our approach, a Web image o, which is embedded in
page p, can be semantically represented as a vector

o= <(t1, ttf|p(t1)), (t2, ttf|p(t2)), …., (tn,ttf|p(tn))>. (1)

Therefore, the problem of Web image clustering is transformed into that of term
vector clustering.

SB1 SB2 SB3 SB4

SB12 SB34

SB1234

l
1 l

1 l
2 l

2

2
1 2

1

Fig. 4. Two-Way Merging Processing

4 Building Term Semantic Network

To extract topics of Web images, term co-occurrences with respect to Web images are
important resource to use. Semantic relationships between terms can be described by
the co-occurrences of terms. For example, if two terms often appear together in
association with images, they are most likely to be related to the same topics. Term
Semantic Network is often used in representing the overall semantic relevances
among terms. According to [12], the association rule is formally defined as follows:

Let I = {i1, i2, …, im} be a set of items. T is a database of transactions. Each
transaction t in T is a set of items such that t ⊆ 1. An association rule is an

implication of the form X Y, where X ⊂ I, Y ⊂ I, and X Y = . The rule X
 Y holds in the transaction set T with confidence c if c percent of transactions

that contain X also contain Y. The rule X Y has support s in the transaction set
T if s percent of transactions contain X ∪ Y.

In this paper, we use a simple mining association algorithm – Apriori [13] -- to
mine out the association rules of the words. And we only consider one-to-one term
relationship. We define confidence (conf) and support (sup) of term association ti tj
as follows: let

())()(, jiji tDtDttD ∩= (2)

1424 Z. Gong, L.H. U, and C.W. Cheang

where D(ti) stands for the documents include term ti, ())(ji tDtD ∩ stands for the

documents that include both ti and tj, then, confidence from ti to tj is:

||)(||

||),(||
),(

i

ji
ji tD

ttD
ttConf = (3)

where ||),(|| ji ttD stands for the total number Web documents which contain both ti

and tj, and ||)(|| itD is the total number of Web documents containing term ti . And

||||

||),(||
),(

D

ttD
ttSup ji

ji = (4)

where D stands for the number of document in our Web document database. Above

definitions for Confidence and Support between two words reflect their co-
occurrences in the collection. In detail, Conf(ti,tj) indicates ti and tj’s co-occurrence
relative to ti, and Sup(ti,tj) indicates their absolute co-occurrences in the collection. In
other words, these two functions can get higher values if ti and tj are often used
together in Web documents. Therefore, in this paper we suppose that two terms are
likely to be features for the same topic if they have higher values of Confidence and
Support. And a term semantic network (TSN) is created with terms as nodes and
Sup(ti,tj)*Conf(ti,tj)as the weighted edge from ti to tj.

The initial TSN is quite complex because of the huge amount of edges. In order to
simplify the graph, we set the minimum value of support and confidence and try to
remove the edges whose support and confidence values below the thresholds.
Currently, in this paper, we empirically set the minimum support to 0.05 and minimum
confidence to 0.1. With this filtering, the edges of TSN reduce to 4 millions in number.

T1

T2

T3

Con = 0.5

Sup = 0.1

Con = 0.8

Sup = 0.2 Con = 0.3

Sup = 0.2

T4

Con = 0.23

Sup = 0.08

Con = 0.2

Sup = 0.1

Fig. 5. TSN: Con and Sup Annotated to the edges

Figure 5 shows our TSN. In this figure, each node represents a term, and each edge
is annotated with two values (support and confidence) to represent its weight. In our
implementation, we use a single value Rank = support * confidence to represent the
edge weight. We will discuss how to use this graph for term clustering in following
section.

 Web Image Semantic Clustering 1425

5 Web Image Clustering

To cluster Web images, we firstly mine out term clusters using TSN. And in our
system, we suppose each term cluster is on the same topics. And we split terms of
TSN into sub-graphs using CHAMLEON algorithm [1] and extract the weights of
terms in each cluster by using HITS algorithm [21]. And finally we assign Web
images to corresponding topic clusters by calculating the similarities between Web
image features and topic features.

5.1 Term Clustering

CHAMELEON is an attractive algorithm due to its adaptivity to different clustering
applications. And the algorithm includes two steps- splitting and merging.

In splitting phase, TSN is partitioned into a set of sub-graphs. Actually, it splits the
graph based on the hMETIS algorithm. hMETIS can split a cluster into two sub-
clusters such that the edge-cut between these two clusters is minimized and each one
of these sub-clusters contains at least 25% of the nodes in the original cluster (balance
constraint) [17]. This balance constraint in CHAMELEON algorithm is critical to
prevent outliers when splitting TSN and generate natural clusters.

And the second phase recursively merge some sub-clusters with respect to two
indicators RI (Relative Inter-connectivity) and RC (Relative Closeness). Two clusters
are merged if the RI and RC are over some thresholds. The relative inter-connectivity
between a pair of clusters Ci and Cj is given by

() { }

2

,
,

j
i

CC

CjCi
ji

ECEC

EC
CCRI

+
=

(5)

Where { }CjCiEC , is the set of edges crossing cluster Ci and Cj. And ECCi and ECCj

are the size of its min-cut bisector (i.e., the weighted sum of edges that partition the
graph into two roughly equal parts) in Ci and Cj respectively.

() { }

CjCi

CjCi

EC
ji

j

EC
ji

i

EC
ji

S
CC

C
S

CC

C

S
CCRC

+
+

+

= ,,
(6)

T1

T2

T3

Rank = 0.05

Rank = 0.16

Rank =0.06

T4

Rank = 0.0184

Rank = 0.02

T7

T6

T5

Rank = 0.02

Rank = 0.08

Rank =0.13
Rank = 0.05

Rank =0.02

Rank =0.01

Rank =0.03

T1

T2

T3

Rank = 0.05

Rank = 0.16

Rank =0.06

T4

Rank = 0.0184

Rank = 0.02

T7

T6

T5

Rank = 0.02

Rank = 0.08

Rank =0.13
Rank = 0.05

Rank =0.02

Rank =0.01

Rank =0.03

Weakness
edges

Weakness
edges

Weakness
edges

Fig. 6. TSN: Choosing Weak Edges to Split

1426 Z. Gong, L.H. U, and C.W. Cheang

where
CiECS and

CjECS are the average weights of the edges that belong in the min-

cut bisector of clusters Ci and Cj , respectively, and
{ }CjCiECS

,
 is the average weight of

the edges that connect vertices in Ci to vertices in Cj .
Figure 6 shows an example of how to calculate the RI and RC.
In splitting phase, CHAMELEON utilizes hMETIS algorithm to split TSN based on

the weight of each edge. In this example, it chooses to cut the edge ET1 T6, ET2 T7 and
ET5 T3 due to their weaknesses comparing with others. After this process, terms of
TSN are categorized into two clusters: Term Cluster 1 (T1, T2, T3, T4) and Term
Cluster 2 (T5, T6, T7) (Figure 7).

T1

T2

T3

Rank = 0.05

Rank = 0.16

Rank =0.06

T4

Rank = 0.0184

Rank = 0.02

T7

T6

T5

Rank = 0.02

Rank = 0.08

Rank =0.13
Rank = 0.05

Rank =0.02

Rank =0.01

Rank =0.03

Term Cluster 1Term Cluster 1 Term Cluster 2Term Cluster 2

Fig. 7. TSN: EC{Ci,Cj} and
{ }CjCiECS

,
Calculation

Figure 7 provides an illustration on how to calculate equation (4) and (5) in
CHAMELEON algorithm. In above figure, we represent edges with different line
types. And lines of () represents edges between two terms from the same
cluster, lines of () represent edges between two terms across different clusters,
and lines of () stand for edges between two terms from the cluster’s min-cut
bisector. Table 1 shows the calculations and corresponding values.

Table 1. Paramiter Calculations in CHAMELEON Algorithm

EC{Ci,Cj}

| ET1 T6|+|ET2 T7|+|ET5 T3| 0.06

ECCi | ET1 T4|+|ET3 T4| 0.0384

ECCj | ET7 T6|+|ET5 T7| 0.07

{ }CjCiECS
,

 (| ET1 T6|+|ET2 T7|+|ET5 T3|)/3 (0.03+0.02+0.01)/3=0.02

CiECS (| ET1 T4|+|ET3 T4|)/2 (0.0184+0.02)/2=0.0192

CjECS (| ET7 T6|+|ET5 T7|)/2 (0.05+0.02)/2=0.035

iC Number of terms in Ci 4

jC Number of terms in Cj 3

 Web Image Semantic Clustering 1427

With all the values in table 1, we can easily calculate out the values of RI and RC as
1.107 and 0.488 respectively. With these two functions, two different merging schemes
can be implemented in CHAMELEON. The first scheme merges only those pairs of
clusters whose relative inter-connectivity and relative closeness are both above some
user specified thresholds. CHAMELEON visits each cluster Ci , and checks to see if
any one of its adjacent clusters C j satisfy the following two conditions:

() () RCjiRIji TCCRCTCCRI ≥≥ ,, I (7)

where TRI and TRC are the user specified thresholds.
In the second scheme, CHAMELEON uses one function as the objective indicator

which is actually a combination of RI and RC as

() ()α
jiji CCRCCCRI ,, ∗ (8)

where is a user specified parameter which can be tailored with respect to different
applications. If > 1, then CHAMELEON gives a higher importance to the relative
closeness, and when < 1, it gives a higher importance on the relative inter-
connectivity. In this paper, we use the second scheme with =1. And the term set C
of TSN is partitioned into several clusters C0, C1, …, Cn, such that

U ni iCC
≤≤

=
0

 (9)

And each term cluster Ci is assumed to dedicate on one topic.

5.2 Extracting Semantic Significances of Terms

For each cluster Ci, all terms in Ci is taken as its features which well reflect the topic of
the cluster. However, their significances to the cluster may not be the same in general.
In this paper, we also want to determine term’s weights based on TSN. To reach this
objective, we calculate the weights of terms in cluster (Ci) by using HITS algorithm
[21]. Actually, HITS is a popularly used link analytic algorithm, it extracts the degrees
of node importance from the link structure of hyperlinked environment (Web). In this
paper, we use it to extract the significances of terms with respect to the semantic links
among them. In our context, terms in each cluster Ci are linked with direct edges. The
ideas behind HITS algorithm is that a node is important in the directed graph if more
links are either from or to this node. In fact, for each node HITS uses two concepts—
Authority and Hub—in its analysis. Authority indicates the degree of links coming to the
node, while Hub indicates the degree of links going from this node. A good Authority
means it is pointed by many good nodes and a good Hub means it point to many good
nodes. The relationship between these two factors is shown in Figure 8.

Hubs Authorities

Fig. 8. A densely linked set of hubs and authorities

1428 Z. Gong, L.H. U, and C.W. Cheang

Because we have already obtained the values of support and confidence between
different terms, we define the relationship between term ti and term tj as follows:

),(),(),(jtitConfjtitSupjtitR ×= (10)

We initially assign values for Authority and Hub as follows:

∈
=

Ettt iji
ijj

ttRtAuthority
),(:

),()((11)

∈
=

Ettt jii
jij

ttRtHub
),(:

),()((12)

Then, HITS uses an Interative Algorithm to get the final values for them with:

∈
=

Ettt ji
ijj

tHubtAuthority
),(:

)()((13)

∈
=

Ettt ji
jij

tAuthoritytHub
),(:

)()((14)

Because HITS has already shown that the nodes with higher values of Authority
and Hubs are important in the semantic network, we define the weight of each term in
cluster C by the following formula:

)()()(iiic tHubtAuthoritytRank += (15)

Then, cluster C can be described with vector as

C= <RankC(t1), RankC(t2), …, RankC(tn)>. (16)

5.3 Assigning Web Images to Corresponding Clusters

In the previous discussions, both Web images and topic clusters are represented into
vectors of term-weigh pairs (equation 1 and 16). Then, Web image assignments to the
clusters are based on similarity measurement between the image vectors and the
cluster vectors. The following equation shows our similarity measurement:

()
22

)()(
),(

co

tttftRank
coSim

iic

+

×
= (17)

where o= <(t1, ttf|p(t1)), (t2, ttf|p(t2)), …., (tn,ttf|p(tn))> is a Web image and c is a

cluster,
2

o is the norm of the image object, and 2c is the norm of the cluster

feature. These two values are defined as:

22
2

2
1))((...))(())((2

nccc tranktranktrankc +++= (18)

22
2

2
1)(...)()(2

ntttftttftttfo +++= (19)

With this method, a Web image may be conceptually related to several clusters. So
if the Sim(o,c) > , we assign the object o to cluster C.

 Web Image Semantic Clustering 1429

6 Experiments

In this section, we compare our proposed approach with other two feature based
clustering methods: (1) CHAMELEON algorithm without using HITS and, (2) a
variant of K-Means feature clustering algorithm.

The web crawler in our system crawled more than 1000000 web pages from
internet and only about 50000 pages are filtered out for the experiment. Here, all
useful pages are the ones which contain image link(s). Our crawler guarantees that
Web page are fully crawled (all child links from the page are crawled) in order to
support our semantic extractor’s [2]. To carry out the experiment, we defined labels
for each testing image. And Recall/Precision is used as the objective function.

K-Means is one of the most popularly used clustering algorithms. The basic idea
of traditional K-Means algorithm is to recursively re-compute the cluster centers
using new cluster membership until no more change. The distance between two
objects is symmetric. However, this traditional method can not be directly used to slit
our TSN. In our situation, firstly, TSN is a directed graph. Therefore, the distance
implied in TSN between two terms is asymmetric. We modify TSN into an undirected
graph by simply defining the distance between two terms as:

),(),(),(itjtRjtitRjtitDist += (18)

Where R(ti,tj) and R(tj,ti) are as in equation (10). Secondly, if ti does not have a direct
edge to tj, we need to use Prefect Term Support (PTS) algorithm to uniquely define
the distance between them [3]. After above two preprocessing steps, we apply K-
Means algorithm to split all terms into clusters. Then, we use the same similarity
measurement function to assign all images to corresponding clusters. We call this
clustering method as ‘Variant of K-Means’.

In Section 5.2, we used CHAMELEON algorithm to split the TSN. Then, HITS
algorithm is employed to extract the weights of terms in the clusters. In our experiment,
we try to compare it with the one without using HITS algorithm processing.

In this experiment, we start with 32 seed points for Variant of K-Means algorithm
and use CHAMELEON to split the TSN network into 32 clusters too. As a result, we
find only 17 out of 32 of the clusters are meaningful. The other 15 clusters are hard to
be identified as coherence clusters. Then we manually combine some clusters that
have the same meaning together, after this adjustment, we got 13 meaningful clusters
from the K-Means algorithm (table 2).

With CHAMELEON algorithm, we can get about 23 meaningful (coherence)
clusters. After manually merging clusters which have the same semantics, we got 17
meaningful clusters. This result reveals that CHAMELEON algorithm can always
produce much finer clusters that the Variant of K-Means.

Table 2. The meaningful clusters number for each method

Meaningful Clusters Num Method Name
After running the algorithm After human adjust

K-Means 17 13
Without HITS 23 17

With HITS 23 17

1430 Z. Gong, L.H. U, and C.W. Cheang

Alternative K-Means

With HITS

Without HITS

Fig. 9. The statistical result of our system

In Figure 9, we show performances of all the three methods. As we see in the
figure, K-Means has the lowest performance in these three methods.

When we used CHAMELEON algorithm to split the TSN, the result is better than
K-Means. If we used HITS to weigh cluster features, the query performance is better
within the first 17.64% of recall rate than that of the one without running HITS.
Although the improvement is not very high, we still think it is very useful since the
large amount of the Web query result. As a matter of the fact, most Web users can
only browse the result within top 10% of the query result. Therefore, it is worth of
running HITS for weighing terms in clusters.

7 Conclusions and Future Work

In this paper, we have addressed our approach for Web image clustering. Our model
is feature based (other than object based). Therefore, one image may be assigned into
multiple clusters if it semantically related to more topics. This property is more
effective in the Web information retrieval systems since the topic comprehensive of
the Web information. Our model is based on the combination of several existing
machine learning and data mining techniques with some necessary modifications.

We firstly represent Web images with vectors of term-weight pairs. Then a term
semantic network (TSN) is constructed by using semantic associations between terms.
The semantic associations in our system is described with two functions—Confidence
and Support. Thirdly, we cluster terms by using CHAMELEON algorithm. Finally, in
order to extract the weights of terms in each cluster, HITS algorithm is used. We
assign Web images into clusters with respect to the similarity measurements between
image vectors and cluster features. Our experimental result shows that our approach
can rank relevant result earlier in the query result. That is necessary in the Web query
environment.

 Web Image Semantic Clustering 1431

References

1. George Karypis, Eui-Hong (Sam) Han, Vipin Kumar, CHAMELEON: A Hierarchical
Clustering Algorithm Using Dynamic Modeling, computer, Volume 32 , Issue 8 (August
1999) 68-75

2. Zhiguo Gong, Leong Hou U and Chan Wa Cheang, An Implementation of Web Image
Search Engine, In Proceedings of the 7th International Conference on Asian Digital
Libraries, ICADL, (2004)

3. Lin, S. H., Chen, M. C., Ho, J. M., and Huang, Y. M., ACIRD: Intelligent Internet
Documents Organization and Retrieval, IEEE Transactions on Knowledge and Data
Engineering (2002)

4. K.S. Jones and D.M. Jackson, The Use of Automatically-Obtained Classifications for
Information Retrieval, Information Processing and Management (IP&M), vol. 5, (1970)
175-201

5. JAIN, A. K. AND DUBES, R. C. Algorithms for Clustering Data. Prentice-Hall advanced
reference series. Prentice-Hall, Inc., Upper Saddle River, NJ. (1988)

6. ANDERBERG, M. R. Cluster Analysis for Applications. Academic Press, Inc., New York,
NY. (1973)

7. DIDAY, E. AND SIMON, J. C. Clustering analysis. In Digital Pattern Recognition, K.S.
Fu, Ed. Springer-Verlag, Secaucus, NJ, (1976) 47–94

8. NAGY, G. State of the art in pattern recognition. Proc. IEEE 56, (1968) 836–862
9. BAEZA-YATES, R. A. Introduction to data structures and algorithms related to information

retrieval. In Information Retrieval: Data Structures and Algorithms, W. B. Frakes and R.
Baeza-Yates, Eds. Prentice-Hall, Inc., Upper Saddle River, NJ, (1992) 13–27

10. N Slonim, N Tishby, Document Clustering using Word Clusters via the Information
Bottleneck Method, SIGIR, (2000)

11. P Pantel, D Lin, Efficiently Clustering Documents with Committees, PRICAI, 2002
12. R. Agrawal, T. Imielinski, and A. Swami, Mining Association Rules between Sets of Items

in Large Databaseds, Proc. ACM SIGMOD Int’l Conf. Management of Data, (May 1993)
13. R. Agrawaland R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. 20th Int’l

Conf. Very Large Data Bases, (VLDB), (Sept. 1994)
14. A.K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice Hall, (1988)
15. Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: a robust clustering algorithm

for categorical attributes. In Proc. of the 15th Int’l Conf. on Data Eng., (1999)
16. Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An efficient clustering

algorithm for large databases. In Proc. of 1998 ACM-SIGMOD Int. Conf. on Management
of Data, (1998)

17. G. Karypis and V. Kumar. hMETIS 1.5: A hypergraph partitioning package. Technical
report, Department of Computer Science, University of Minnesota, (1998)

18. G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.
Journal of Parallel and Distributed Computing, 48(1) (1998) 96–129

19. G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proceedings of
the Design and Automation Conference, (1999)

20. C. J. Alpert. The ISPD98 circuit benchmark suite. In Proc. of the Intl. Symposium of
Physical Design, (1998) 80–85

21. J.M. Kleinberg. Authorative sources in a Hyperlinked Environment. J. ACM 46:5, (1999)
604-632

Biomedical Retrieval:
How Can a Thesaurus Help?

Leonie IJzereef1, Jaap Kamps1,2, and Maarten de Rijke1

1 Informatics Institute, University of Amsterdam
2 Archives and Information Studies, Faculty of Humanities, University of Amsterdam

Abstract. Searching specialized collections, such as biomedical liter-
ature, typically requires intimate knowledge of a specialized terminol-
ogy. Hence, it can be a disappointing experience: not knowing the right
terms to use and being unaware of synonyms or variations in terminology
might result in low recall scores. We study the role of a thesaurus in the
biomedical information retrieval process. We start by giving a description
of vocabulary mismatch problems between natural language queries and
relevant documents in biomedical literature search; we provide a detailed
case study and observe the impact of vocabulary mismatch problems on
retrieval effectiveness. Additionally, we analyze the associated MeSH the-
saurus terms used to index the documents in the collection. Based on our
observations, we propose a method for exploiting the MeSH thesaurus
to improve retrieval effectiveness and, more specifically, to increase re-
call. We carry out a series of thesaurus-based retrieval experiments that
show substantial performance improvements. We conclude with a de-
tailed analysis of the retrieval results.

1 Introduction

In the rapidly growing domain of biomedicine, large numbers of papers are pub-
lished every day. The resulting information overload makes it hard for scientists
to stay up-to-date on the latest findings. Therefore, researchers resort to online
databases to identify only that part of the literature that is relevant to their own
research focus.

To be able to effectively use a bibliographic search engine, a good and detailed
understanding of the topic is necessary to choose the right query terms that
retrieve all and only the relevant literature. If a scientist lacks domain knowledge
when looking for literature on a specific topic, the retrieval process can be a real
challenge: not knowing the right terms to use and being unaware of synonyms
or variations in terminology might result in low recall scores.

The classic approach to overcome the mismatch between natural language
queries and documents relevant to the user’s information need is to use controlled
vocabularies. Since the early 1960s, controlled vocabularies such as thesauri have
been used to improve the retrieval process [13]. A controlled vocabulary dictates
what are the preferred terms to use; selected terms are assigned to each publi-
cation by a human indexer, and since search requests are also formulated using

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1432–1448, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Biomedical Retrieval: How Can a Thesaurus Help? 1433

the controlled terminology, there is no vocabulary mismatch. This method is
often called manual indexing, to contrast it with automatic indexing that uses
(selected terms in) the free-text of publications as indexing terms. The task of
a searcher boils down to locating the appropriate controlled terms, a task that
turns out to be highly non-trivial in practice [18, 10]. Perhaps professional search
intermediaries or experienced users are well equipped to select the right search
term, but the effectiveness of average end-users varies greatly.

The effectiveness of controlled vocabularies for information retrieval has been
extensively studied in the literature, dating back to the seminal work at Cran-
field [3, 4]. Intuitively, it seems obvious that thesauri can overcome vocabulary
mismatch problems; however, previous experimental studies have shown that
it’s highly non-trivial [21]. Below, we discuss some of the relevant research; an
encyclopedic overview is beyond the scope of this paper, however. All in all, the
literature gives, at best, mixed results on the effectiveness of controlled vocabu-
laries for information retrieval.

Our aim is to better grasp how a thesaurus can help improve the retrieval
effectiveness of ordinary, natural language queries. Our strategy is the following.
First, we focus on the potential vocabulary gap in biomedical literature retrieval:
we provide a detailed study of vocabulary mismatch problems between natural
language queries and relevant documents and show its impact on retrieval per-
formance. In addition, we analyze the thesaurus terms manually assigned to the
documents in the collection. Based on our observations, we carry out retrieval
experiments and discuss how a thesaurus can be used to improve retrieval effec-
tiveness.

The main contributions of this paper are two-fold:

– A detailed analysis of retrieval queries and relevant documents showing that
vocabulary mismatch problems have a negative impact on retrieval effective-
ness. This analysis together with the analysis of the assigned thesaurus terms
suggests that the semantic knowledge provided by a thesaurus can be useful
for biomedical retrieval in two ways: its lexical information can be used as a
controlled vocabulary to overcome problems with synonymy and lexical vari-
ance and its relational knowledge is potentially useful for identifying relevant
related terms.

– We demonstrate the use of thesaurus terms assigned to documents for blind
and relevance feedback and provide an analysis of the results. We find that
using thesaurus-based feedback can improve both precision and recall. How-
ever, for the relevance feedback methods to be successful some effort on the
part of the user is needed. Nevertheless, for a scientist interest in high recall
values, e.g., looking for all relevant literature on a topic, this investment may
be worthwhile.

The remainder of this paper is organized as follows. In Section 2 we describe the
thesaurus and evaluation data we use. In Section 3 we provide a detailed case
studies of the queries, relevant documents and assigned thesaurus terms of four
actual retrieval topics. Section 4 presents the results and an in-depth analysis

1434 L. IJzereef, J. Kamps, and M. de Rijke

of some thesaurus-based retrieval experiments. Finally, in Section 5, we draw
conclusions and present directions for further research.

1.1 Related Work

For the open domain, it has been shown that it’s hard to use controlled vocab-
ularies due to ambiguity of query words [23]. For more restricted domains, such
as biomedicine, there is renewed interest in using controlled vocabularies and se-
mantic knowledge sources due to expanding domains and increasing information
needs. In the field of biomedicine, more than 100 different controlled vocabularies
(including thesauri and ontologies) are available [16]. Moreover, these vocabu-
laries are already being used for cataloging, classifying, and indexing literature.

Srinivasan [20] compares query expansion based on a statistical thesaurus
with expansion via retrieval feedback. She concludes that combining both term
selection methods gives the best results, but that the improvement is relatively
small in comparison with standard free-text based blind feedback methods.

The term selection method used by French et al. [6] is comparable to the
method of Srinivasan: for every word/phrase a list of associated thesaurus terms
is computed based on co-occurrences in a training set. However, query augmen-
tation is done by selecting those terms of the list that have been assigned to
the greatest number of documents relevant to the query. This gold standard
experiment showed that adding one or more suggested terms to the query can
potentially improve retrieval effectiveness significantly. Nevertheless, the auto-
matic term selection procedure still has to be defined.

Kostial and Paralic [17] describe a thesaurus-based document boosting pro-
cedure (using MeSH and a medical document collection). They combine a basic
retrieval procedure with a simple formula based on overlap between thesaurus
terms assigned to the query and the documents. The results are promising, but
they also circumvent the term selection procedure by assuming that terms rele-
vant to the query are known.

There are also more recent, and more positive, results. Kraaij et al. [12]
use thesaurus based relevance feedback for their TREC Genomics 2004 ad hoc
task [22] experiments. After a first basic retrieval run, the MeSH thesaurus head-
ings of the top 3 documents are used for a second MeSH retrieval run. They show
that a combination of the results of both runs outperforms the basic run, but
that the added value of the MeSH run is not convincing. Shallow analysis showed
that it only seems to improve precision.

Using a bibliographic database, Savoy [19] evaluates and compares the re-
trieval effectiveness of various free-text and (human controlled) controlled vo-
cabulary search models. He concludes that the best mean average precision is
obtained when both free-text and controlled vocabulary retrieval are combined.

Another feedback technique is described by Kamps [11]: he suggests re-
ranking of the set of initially retrieved documents based on controlled vocab-
ulary terms assigned to documents. He reports a significantly improved retrieval
effectiveness based on evaluation on two different domain-specific bibliographic
collections, above and beyond the use of standard Rocchio blind feedback.

Biomedical Retrieval: How Can a Thesaurus Help? 1435

2 Thesaurus and Data Collection

For our detailed case study and experiments we use the National Library of
Medicine’s MeSH [15]. This choice is based on the features of our data collec-
tion: the MEDLINE [14] bibliographic database we use contains citations that
are indexed with controlled vocabulary terms from the MeSH thesaurus. Before
giving a more detailed description of our data collection, we recall the main
features of the MeSH thesaurus.

2.1 The MeSH Thesaurus

The MeSH thesaurus is used by the National Library of Medicine for indexing
biomedical journals and cataloging books, documents and audiovisuals. The core
of the MeSH thesaurus is a hierarchical structure that consists of sets of terms
naming descriptors. At the top level we find 15 general category headings, such
as Diseases and Chemicals and Drugs. At deeper levels we find more specific
headings such as Brain infarction (sixth level of Diseases branch) or Dissociative
Anesthetics (ninth level of Chemicals and Drugs).

The hierarchy is an eleven-level tree structure that contains over 22,500 head-
ings. Besides the hierarchical structure there are many cross-references that map
headings to each other. The main cross-reference fields that can be included in
a descriptor’s record are the following.

Scope Note Provides additional information about the MeSH heading, which
can include related MeSH terms.

See also Contains related terms that may be of interest.
Previous Indexing Contains the MeSH term used before the current descrip-

tor became available.

Together with a descriptor, one or more qualifiers (83 in total) can be used to
specify a particular aspect of the descriptor. For example: the qualifier compli-
cations can be used with diseases to indicate conditions that co-exist or follow.

In addition to the hierarchical structure, there is a separate database with
over 139,000 Supplementary Concept Records that consists of chemicals mainly.
These supplementary headings are mapped to one or more headings in the main
MeSH tree.

It is well known that any thesaurus of the size of MeSH has problems with
completeness and consistency [1, 2]. Therefore, it would be useful to analyze
MeSH to determine its strengths and weaknesses, and their influence on retrieval.
However, for our experiments we take the MeSH thesaurus at ‘face value.’

2.2 TREC Genomics Data Collection

To be able to study vocabulary mismatch problems between queries and docu-
ments and to look into the potential role of a thesaurus, we use the TREC 2004
Genomics Track ad hoc task [22] data collection. This collection consists of a

1436 L. IJzereef, J. Kamps, and M. de Rijke

selection of 10 years (1994–2003) of MEDLINE citations containing over 4.5M
abstracts, 50 retrieval topics and accessory gold-standard data.

Every document in the collection is manually indexed with one or more MeSH
headings (from the main tree) and additional qualifiers. For our document col-
lection, this results in 2.6 million unique descriptor-qualifier(s) combinations.
In our study, we only take the descriptors into consideration and therefore we
ignore the qualifiers. Furthermore, we excluded some frequent but in this con-
text not content-bearing headings such as Support, Non-U.S. Government and
Comparative Study, treeless headings such as Male and Female and headings
with low discriminating values such as Human and Animals. This leaves us with
a total of 21,930 unique headings assigned to the documents in our collection.
There is some variation in the number of MeSH headings assigned to each docu-
ment. Figure 1(Left) shows the distribution of the number of headings assigned
to documents. For every document, one or more headings can be marked as
main topic of the document. Every heading is placed at one or more nodes in
the thesaurus. Figure 1(Right) shows the distribution of unique headings, as well
as the distribution of heading occurrences, over the number of nodes at which

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 55 50 45 40 35 30 25 20 15 10 5 0

D
o
c
u
m

e
n
ts

MeSH headings

 0

 5000

 10000

 15000

 20000

 25000

 30000

 11 10 9 8 7 6 5 4 3 2 1 0

M
e
S

H
 h

e
a
d
in

g
s

Nodes

Unique MeSH headings
Total MeSH headings (x1000)

Fig. 1. (Left): Number of MeSH headings assigned to the documents. (Right): Nodes
per MeSH heading.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 11 10 9 8 7 6 5 4 3 2 1

N
um

be
r

of
 h

ea
di

ng
s

Node depth in thesaurus

Node depth of unique headings

Lowest node
Average node
Highest node

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 11 10 9 8 7 6 5 4 3 2 1

N
u
m

b
e
r

o
f

h
e
a
d
in

g
s
 (

x
1
0
0
0
)

Node depth in thesaurus

Node depth of total headings

Lowest node
Average node
Highest node

Fig. 2. Node depth of MeSH headings. (Left): for every unique heading (types). (Right):
for all headings in collection (tokens).

Biomedical Retrieval: How Can a Thesaurus Help? 1437

they are placed in the thesaurus. The depth of the nodes in the thesaurus is
related to the specificity of the heading; the deeper the heading is placed in
the thesaurus, the more specific it is. Since a heading may be placed on multiple
nodes, we can define the depth of a heading by the minimal, maximal, or average
depth of its placements in the thesaurus. Figure 2 shows (Left) the distribution
of unique MeSH headings and (Right) all heading occurrences over their depth
in the thesaurus.

2.3 Evaluation Topics

We selected four topics for our study of vocabulary gaps between the query (the
topic’s title) and the document collection. The selection is based on the outcome
of a retrieval run (with the topic title as the query) with a baseline vector space-
based retrieval system. Many other, possibly better performing approaches could
have been chosen here [8]. For the TREC 2004 Genomics track ad hoc task systems
using stemming and feedback methods turned out to be the most effective. Sys-
tems attempting to map controlled vocabulary terms did not fare as well. Given
that we are focusing on the role of the thesaurus in the retrieval process, we de-
cided to use a rather basic retrieval system. With a mean average precision (MAP)
score of 0.1716 over all 50 topics, our retrieval score is somewhat lower than the
mean MAP of the TREC Genomics 2004 ad hoc task participants. However, recall
that we only use the short topic statement of the title field, whereas most other
participants use the given additional information about the information need too.

We selected one well performing topic (Topic 9 requesting “mutY”), one
average performing topic (Topic 21 asking for “Role of p63 and p73 in relation
to DNA damage”) and two poorly performing topics (Topic 1 and 14 targeting
“Ferroportin-1 in humans” and “Expression or Regulation of TGFB in HNSCC
cancers,” respectively). The four selected topics can be found in Table 1; we
include the MAP and recall at 1,000 documents for the title only-based run.

3 Case Studies

In this section, we compare the vocabulary used in natural language queries, the
textual content of relevant documents and the MeSH headings assigned to these
documents.

3.1 Queries and Relevant Documents

For every topic we take the topic title as our query. We realize that these queries
might not perfectly reflect the information need, but since these titles have been
formulated by real biologists, we assume that they closely approximate genuine
search queries. In this section, we compare the queries and the textual content
of the relevant documents.

As can be seen in Table 1, the topic with the shortest title (topic 1) achieves
the highest mean average precision of the four. In the relevant documents for this

1438 L. IJzereef, J. Kamps, and M. de Rijke

Table 1. Selected topics with mean average precision and number of retrieved relevant
documents (max. 1000 docs retrieved). For the topics 1, . . . , 4 listed below, the original
TREC topic IDs are 9, 21, 1, and 14, respectively.

MAP
Topic rel ret
1. Title: mutY

Need: Find articles about the function of mutY in humans 0.8676
Context: mutY is particularly challenging, because it is also known as 113/115

hMYH. This is further complicated by the fact that myoglobin
genes are also typically located in search results.

2. Title: Role of p63 and p73 in relation to DNA damage
Need: Do p63 and p73 cause cell cycle arrest or apoptosis related to 0.1910

DNA damage? 40/80
Context: DNA damage may cause cell cycle arrest or apoptosis.

p63 and p73 may play a role in mediating these sequelae of
DNA damage.

3. Title: Ferroportin-1 in humans
Need: Find articles about Ferroportin-1, an iron transporter, in 0.0000

humans. 1/79
Context: Ferroportin1 (also known as SLC40A1; Ferroportin 1; FPN1;

HFE4; IREG1; Iron regulated gene 1; Iron-regulated
transporter 1; MTP1; SLC11A3; and Solute carrier family 11
(proton-coupled divalent metal ion transporters), member 3)
may play a role in iron transport.

4. Title: Expression or Regulation of TGFB in HNSCC cancers
Need: Documents regarding TGFB expression or regulation in 0.0000

HNSCC cancers 0/21
Context: The laboratory wants to identify components of the TGFB

signaling pathway in HNSCC, and determine new targets
to study HNSCC.

query we find that the query word mutY occurs in almost every relevant docu-
ment. As that there are only 168 documents in the corpus that contain mutY,
this single word query gives very good results. However, if a less frequent syn-
onym such as hMYH had been chosen as keyword, scores would have decreased
dramatically. An example of this can be seen in topic 3: The main keyword
ferroportin-1 has many synonyms (e.g. IREG1 and SLC11A3) and these can all
be found in the relevant documents. By using only ferroportin-1 together with
the very frequently occurring term human, only a single relevant document is
retrieved. A similar problem occurs in topic 4. Here, two acronyms are used:
TGFB for Transforming Growth Factor beta and HNSCC for Head and Neck
Squamous Cell Carcinoma. Since both terms occur only as spelled out terms,
this effects the retrieval score dramatically.

However, choosing ‘wrong’ synonyms or acronyms is not the only reason for
poor retrieval scores. For all four topics we see that besides the keywords (or their
synonyms/acronyms) one or more semantically related words occur frequently
in the relevant documents. As we can see in the description of topic 3, iron

Biomedical Retrieval: How Can a Thesaurus Help? 1439

transport plays a central role in this topic. If we look at the most frequently
occurring words/phrases in the relevant documents, we find many closely related
terms that are not directly expressed in the query. Some examples: iron overload,
iron metabolism, transferrin, iron deficiency, ferritin, iron homeostasis. This is
also the case for topic 2, where we see various terms that are closely related
to the query, such as p53, cell death, tumors, transcription and transactivation.
Now, it comes as no surprise that we find synonyms and semantically related
terms of the keywords in the text of the relevant documents. The key question is
how to identify these important terms and how to use them to improve retrieval
performance. We hope that detailed analyses such as done in this paper will give
us answers to these questions.

3.2 Relevant Documents and Thesaurus Terms

All documents in our collection are indexed with MeSH headings, hence we can
use this meta-data in our retrieval process. To gain more insight in the role these
thesaurus terms and the thesaurus itself could play in the retrieval process,
we studied the relation between textual content of the documents and MeSH
headings. Before describing this, we show how the MeSH headings assigned to
the documents are related to each other.

For all four topics, we created frequency lists for MeSH headings assigned
to the relevant documents. Next, we took all MeSH headings that occur in at
least 10% of the relevant documents for a topic. This resulted in 19 to 27 MeSH
headings per topic. For every heading on the list, we identified its relations with
other headings based on the thesaurus.

Among all relations present in the thesaurus, we focus only on direct rela-
tions between two headings. These come in two kinds: hierarchical parent-child
relations and cross-referential relations. Cross-references are relations to headings
mentioned in the Scope, Previous Indexing or See also field of a descriptor’s record.

For three of the four topics we find many direct relations (approximately
20) between the frequent MeSH headings for that topic. These direct relations
are both hierarchical and cross-reference relations. The cross-reference relations
are most often not bidirectional: a heading such as DNA is often referred to
in the Scope Note or Previous Indexing field of other headings, but only has
five See Also references itself. If we look at the information need of topic 2, for
example, we find that it can be divided into three aspects: Certain proteins,
DNA damage and the relation between these two. These three aspects can be
seen in the relations between the MeSH headings. One group of seven related
headings is focused on the type of proteins and genes involved (e.g., DNA-binding
proteins and Tumor suppressor genes). Another small group of headings contains
relations between DNA damage related headings (e.g., Mutation and Apoptosis).
The last group of nine related headings is related to interactions and processes
(e.g., Gene expression regulation, Trans-activation and Genetic transcription).

Topic 4, however, shows a different pattern than the other three topics: al-
though most of its 19 main MeSH terms seem to be related, only a few direct re-
lations can be found based on the thesaurus. For example, Transforming Growth

1440 L. IJzereef, J. Kamps, and M. de Rijke

Factor Beta and TGFB receptors do not have a direct relation in the thesaurus.
The same holds for Head and Neck Neoplasms and Squamous Cell Carcinoma.
This can either mean that the thesaurus is not really consistent when it comes to
cross-references or these relations are relatively ‘new’ or quite uncommon, and
hence they do not appear in the thesaurus.

All four topics express a quite general information need that does not ask for
very specific characteristics likely to be found in only one or a few articles. For
these general topics, both the text of the relevant documents and as well as their
assigned MeSH-headings have a sufficient level of specificity. This is confirmed
when looking at the topics: if we compare frequently occurring words/phrases
in the text with frequently occurring MeSH headings, we find a clear relation
between text and MeSH headings for all four topics. Almost all frequently oc-
curring nouns and compounds in the text are lexical variants or synonyms of
one or more frequent MeSH headings. For example, IREG1, ferroportin-1, and
SLC11A3 all refer to the MeSH heading metal transporting protein 1.

For nouns or phrases that are instances of a heading that is on the Supple-
mentary Concept Headings list, which are not used for indexing documents, we
see something interesting. In most cases we find one of the frequently assigned
headings in the Heading Mapped to or Previous Indexing field of the Supplemen-
tary Concept heading: for MutY, we find the two most frequent headings for topic
1, DNA Glycosylases and N-Glycosyl Hydrolases, in the two mentioned fields of
the Supplementary Concept record of heading MutY adenine glycosylase.

The last issue to discuss here is the role of the MeSH headings marked as
main topic of a document. For topic 1 there are two MeSH headings (DNA
Glycosylases and DNA Repair) that occur in respectively 87 and 43 of the 115
documents as main topic. For the other three topics the main focus is less clear.
If we look at the headings marked as main topic with respect to the relations
with the other frequently occurring headings, we see that they are not necessarily
headings that have many relations or headings that are at the ‘center’ of a group
of related headings.

3.3 Queries and Thesaurus Terms

Besides examining the relation between the text and the MeSH headings, we
can study the relations between the queries and the relevant documents. As said
before, we use the title of the topics as our search query, assuming that most
scientists will start their search process by entering just a few keywords. When
we manually identify the MeSH headings that are most closely related to the
keywords of our queries, we find that many of these headings are part of the
Supplementary Concept Headings list. Note that the documents have only the
preferred MeSH terms (i.e., descriptors) assigned to them. Non-preferred terms
such as synonyms (i.e., non-descriptors) can be found in the Supplementary
Concepts list. Again we find that in most cases the Heading Mapped to and the
Previous Indexing field refer to MeSH headings frequently used to index the
relevant documents. All other content-bearing keywords used in the four queries
are instances of MeSH headings that occur frequently in the relevant documents.

Biomedical Retrieval: How Can a Thesaurus Help? 1441

3.4 Summary of Our Observations

We conclude this section by summarizing our main observations:

– Low or average retrieval scores are likely to be caused by vocabulary mis-
match problems between the query and the relevant documents. This vocab-
ulary gap is often caused by using low frequent synonyms or related terms
as keywords.

– MeSH headings that are frequently assigned to the relevant documents of a
topic are likely to be directly related to each other in the thesaurus; these
relations can either be hierarchical or cross-referential.

– MeSH headings tend to have the same specificity as the frequently occurring
words/phrases in the titles and abstracts of the relevant documents.

– Query keywords and frequently occurring words/phrases in the title and
abstract of relevant documents can often be mapped to headings on the
Supplementary Concept Headings list. The Heading Mapped to and the Pre-
vious Indexing fields on the record of these headings often refer to MeSH
headings that occur frequently in the relevant documents.

– MeSH headings frequently marked as main topic that are assigned to the
relevant documents do not necessarily play a central role in the information
need of the topic.

These observations suggest that the semantic knowledge provided by a thesaurus
can be useful for biomedical retrieval in two ways: its lexical information can be
used as a controlled vocabulary to overcome problems with synonymy and lexical
variance, and its relational knowledge is potentially useful for identifying relevant
related terms.

4 Retrieval Experiments

In the previous section we provided a detailed comparison of queries, textual
content and MeSH headings assigned to the relevant documents of our four
TREC Genomics topics. In this section we take a closer look at the potential of a
thesaurus for biomedical retrieval; to this end, we carry out a number of retrieval
experiments. Besides comparing precision and recall scores averaged over all 50
TREC Genomics 2004 topics, we zoom in on the four selected topics to gain
further insight in the retrieval features that cause retrieval (in)effectiveness.

4.1 Baseline Results

Our baseline run is based on the TREC Genomics 2004 ad hoc task. We use the
topic titles as queries and the title, abstract and MeSH-heading fields as retrieval
fields. Documents and queries are not stemmed, but stop-words are removed. Our
vector space-based retrieval system achieves a mean average precision (MAP) of
0.1716 measured over a maximum of 1000 retrieved documents per topic. Of the
total of 8268 relevant documents, 2762 were retrieved.

1442 L. IJzereef, J. Kamps, and M. de Rijke

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

M
A

P

Topic

Fig. 3. Average precision per topic for the baseline run

Figure 3 shows the average precision per topic for our baseline run. As can be
seen, there is a huge variety in average precision per topic. This same variety can
be found in the average scores per topic of the TREC Genomics participants [8].

4.2 Thesaurus-Based Experiments

In our experiments, we will try to reverse engineer the role a thesaurus can play
to improve retrieval using a natural language query. Recall from our analysis
above that the relevant documents typically have closely related MeSH terms
assigned to them. Hence, these MeSH terms provide useful retrieval cues. So if
we select MeSH terms frequently assigned to relevant documents, we can use
them to improve retrieval effectiveness.

In reality the set of relevant documents is unknown. So how should we select
the relevant MeSH terms? We could ask the user to select the relevant documents
in the set of initially retrieved documents. That is, we could use relevance feed-
back to obtain a set of relevant documents and, again, select the most frequently
assigned MeSH terms. Finally, since relevance feedback still requires interaction
with a user, we could simply assume that the first few, initially retrieved docu-
ments are relevant. That is, we could use pseudo-relevance feedback to obtain a
set of pseudo-relevant documents and, again, select the most frequently assigned
MeSH terms.

Methods. We carried out several feedback experiments. Based on the output
of the baseline run, we used the following documents as input for the feedback
algorithm:

1. First 10 retrieved documents (this amounts to blind feedback)
2. All relevant documents within the first 10 documents

Biomedical Retrieval: How Can a Thesaurus Help? 1443

Table 2. Retrieval results based on a maximum of 1000 retrieved documents

Run MAP Precision@30 Recall@1000
0 Baseline run 0.1716 0.3220 2762/8268
1 Baseline + blind feedback (top 10) 0.1801 0.3127 2896/8268
2 Baseline + relevance feedback (top 10) 0.1876 0.3267 2888/8268
3 Baseline + relevance feedback (top 100) 0.1996 0.3667 2933/8268
4 Baseline + 10 relevant docs 0.2011 0.3453 2971/8268

3. Relevant documents within the first 100 documents, with a maximum of 10
4. 10 random chosen relevant documents

In a real life retrieval situation, information about relevance can be provided by
real users: they can be asked to judge initial retrieval results on their relevance,
and based on this selection a new retrieval run can be done. Since we do not
have access to real users to give this feedback, we simulate them by using the
gold-standard data of the TREC Genomics ad hoc task for feedback.

Our first retrieval method does not involve this feedback and works with
completely blind feedback. For the second and third method the first 10 and
100 retrieved documents were compared with the gold-standard data. The last
method is completely artificial: to be able to get an idea of the potential of
thesaurus-based relevance feedback, we choose ten relevant documents from the
gold-standard collection.

For all document sets selected for feedback, we created frequency lists for
MeSH headings assigned to the documents. Experiments showed that selecting
the 35 headings that are most frequently assigned to the selection was optimal
for feedback purposes.1

The lists of selected MeSH headings were used as queries for a new retrieval
run on the MeSH heading fields of the collection. Combining this run with the
baseline run resulted in a new ranked list of retrieved documents. Experiments
showed that using the CombMNZ method [5] for combining both runs with a
relative weight of 0.9 on the baseline run gives the best results. Evaluation of the
results is based on the TREC Genomics 2004 ad hoc task gold-standard data.

Results. Table 2 shows the results of our feedback experiments. All four feed-
back runs show a significant improvement in MAP compared to the baseline run.2

The most important reason for this improvement is the large increase in recall:
for all four feedback runs, over a 100 more relevant documents are retrieved.
Although runs 2 and 3 were set to a maximum of 10 feedback documents, the
average number of documents was respectively 3.86 and 7. For run 2, no relevant
feedback documents were found for 10 topics.

1 MeSH headings occurring very frequently (more than 100,000 times) or infrequently
(less than 5 times) in the total collection were not taken into consideration.

2 For all runs, significance was proved with over 98% confidence. To determine sta-
tistical significance we used the bootstrapping method, a non-parametric inference
test that has previously been applied to retrieval evaluation by, e.g., Wilkinson [24].

1444 L. IJzereef, J. Kamps, and M. de Rijke

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

M
A

P

Topics

Baseline run
Run 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

M
A

P

Topics

Baseline run
Run 3

Fig. 4. (Left): Average precision scores for the baseline run vs. run 1. (Right): Average
precision scores for the baseline run vs. run 3. In both plots, topics are ordered by
increasing average precision score, not by topic ID.

In run 3 the top 100 retrieved documents could be used for feedback; however,
for 19 of the 50 topics the 10 relevant documents were found in the top 30. For 6
topics, no relevant documents were found. The degree of improvement seems to
be strongly related to the quality of the feedback documents: the more relevant
documents are used, the better the MAP score is.

We compared the average precision score per topic for the baseline run, run 1
and run 3 (Figure 4(Left) and (Right), respectively). For both non-baseline runs,
we see a big variety in the change of average precision scores. Although the MAP
score increases when blind feedback is used (run 1), the graph shows that for a
majority of the topics average precision does not improve (Figure 4(Left)). In
run 3, when relevant documents are used for feedback, MAP increases for most
topics. Especially topics with low initial MAP scores benefit. This is likely due to
the fact that for most of these topics, most documents used for feedback in run 1
were irrelevant, whereas in run 3 only relevant documents, if available, are used.

In general we can conclude that thesaurus-based feedback improves mean
average precision and especially recall. In real retrieval scenarios, asking a user
for feedback is needed to identify relevant documents. While this may seem a
time consuming job, for a scientist searching for all available literature on a
certain topic, i.e., interested in boosting recall, this might be a good investment.

Case Studies. For two of the four selected topics, topic 3 and 4, no relevant
documents can be found in the top 100 results of our baseline run. As a conse-
quence, their retrieval scores do not improve by the first 3 feedback methods.
For poorly performing topics, feedback is only useful if a user takes the time to
find some relevant documents to use in the feedback procedure. Nevertheless,
we hope to be able to define a method for the automatic assignment of MeSH
headings to queries (such as [6] or [7]) in future research.

A comparison of the effectiveness of the feedback methods for the other two
topics can be found in Table 3. For topic 2, recall is improved for all feedback
runs. However, for this topic blind feedback (run 1) works better than the other

Biomedical Retrieval: How Can a Thesaurus Help? 1445

two relevance feedback runs. Topic 1, which already has a very good retrieval
score, is not hurt by adding feedback to the retrieval process. To conclude our
feedback analysis, we take a closer look at the results of topic 2 (“Role of p63
and p73 in relation to DNA Damage”). We see that for this topic, feedback does
improve MAP and recall, but that the different feedback approaches do not show
big differences in scores.

Let us take a look at MeSH headings used for the feedback runs. When we
compare the 35 feedback headings for every run with the 10 most frequently
occurring MeSH headings of the gold-standard relevant documents, we find that
there is an overlap of at least 6 (see Table 4). Only run 4, whose feedback headings
are created based on gold-standard data only, shows less overlap. However, this
has no effect on the retrieval results, since MAP and recall stay relatively stable
for all feedback runs.

When comparing the 35 feedback headings with the list of MeSH headings
that occur in at least 10% of all relevant documents (24 headings in total), we
find an overlap of 11 for run 1, 15 for run 2, 11 for run 3, and 7 for run 4.
For all four runs, most other MeSH headings on the feedback lists are closely
related to the 24 frequent headings of the relevant documents. For many of these
headings a direct relation, either hierarchical or cross-referential, can be found
in the thesaurus.

Hence, this suggests that using a larger number of relevant MeSH headings
for feedback does not necessarily improve retrieval. Yet all improvements are
obtained by feedback lists containing at least six MeSH headings frequently

Table 3. Retrieval scores for topic 1 and 2

Topic Measure Baseline run Run 1 Run 2 Run 3 Run 4
1 MAP 0.8676 0.8638 0.8908 0.8910 0.8989

Recall 113/115 113/115 113/115 113/115 115/115
2 MAP 0.1944 0.2145 0.2209 0.2255 0.2302

Recall 40/80 45/80 44/80 44/80 44/80

Table 4. Occurrence of top 10 MeSH headings of relevant documents in feedback
heading lists

MeSH headings Run 1 Run 2 Run 3 Run 4
DNA-Binding Proteins X X X X
Nuclear Proteins X X X X
Apoptosis X X X
Protein p53 X X X X
DNA Damage X X X
Phosphoproteins X X X X
Trans-Activators X X X
Cultured Tumor Cells X
p53 genes X X X X
Tumor Suppressor Genes X X X X

1446 L. IJzereef, J. Kamps, and M. de Rijke

occurring in the relevant documents. In future research, we will look deeper into
our feedback mechanisms and feedback results to see what the optimal settings
for thesaurus-based feedback are.

5 Conclusion and Discussion

We studied the role of a thesaurus in biomedical retrieval. The relative effective-
ness of controlled and natural languages is one of the longest standing debates
in information retrieval, dating back to the original Cranfield experiments [4].
In particular, the use of controlled vocabularies to better articulate natural lan-
guage queries, usually through some form of query expansion, has received a
great deal of attention. For example, for automatic query expansion with the-
saurus terms, Srinivasan [20] reports moderate improvement, but the improve-
ment is overshadowed by the improvement due to standard text-based blind
feedback. Based on the manual assignment of controlled terms to natural lan-
guage queries, Hersh et al. [9] report a drop in retrieval effectiveness for a wide
range of query expansion methods. A recurring pattern in the literature is that
expanding natural language queries with controlled terms pays off for some frac-
tion of the queries, but is detrimental for a larger fraction of the queries.

In light of the inconclusive evidence in the literature, we opted for a some-
what different approach to the question of how to select controlled terms to be
added to a natural language query. Traditionally, the selection is based on the
topic statement and the goal is to select those terms that are topically relevant
for the information need. Our hypothesis is that this selection process should
also be based on the role that the controlled terms play in the retrieval process,
i.e., whether they are good retrieval cues for the search engine. Hence, to better
grasp how a thesaurus can help improve the retrieval process, we performed a
detailed analysis of a number of queries. In particular, we tried to analyse vo-
cabulary mismatch problems, the related thesaurus terms, and their influence on
retrieval. Our detailed analysis of four retrieval topics showed that vocabulary
mismatch problems between queries and relevant documents have a negative im-
pact on retrieval effectiveness. That is, there is a range of queries for which the
natural language statement fails to be effective. In our thesaurus-based exper-
iments, we found that using thesaurus terms for blind and relevance feedback
can improve precision as well as recall. In general, the improvements increase
with the amount of true relevance feedback provided to the system. However, the
fully automatic runs using only pseudo-relevance feedback also led to improved
retrieval effectiveness. The inherent shortcoming of feedback-based techniques,
as highlighted by our success/failure analysis, is the failure to improve topics for
which no relevant document is initially retrieved. To minimize the detrimental
effect of query expansion on the fraction of queries for which the natural lan-
guage query is effective, we use a combination of runs based on the original and
on the expanded query.

Our results may contribute to a better understanding of the role of controlled
vocabularies in information retrieval [21]. Our study is still limited and we plan

Biomedical Retrieval: How Can a Thesaurus Help? 1447

to extend it in a number of ways. First, a similar analysis should be performed
for a larger set of queries. Second, we plan to experiment with other methods
of selecting thesaurus terms based on initially retrieved documents. Third, we
want to study different ways of incorporating controlled terms in the retrieval
model, and the relation to models of text-based blind feedback. Fourth, we plan
to analyse the intrinsic properties of the MeSH thesaurus, including its com-
pleteness, coherence, and consistency, and test the robustness of our approaches
against imperfect resources. A better understanding of the effectiveness of the-
saurus terms as retrieval cues is crucial for the selection of controlled terms. This
may also influence our view of the goal of thesaurus-based expansion in the first
place. If the natural language queries provide excellent retrieval cues for a large
fraction of the queries, we can only hope to improve when the original query
fails. That is, we could envision offering thesaurus-based query expansion as a
query refinement option: in case a user is unsatisfied with the set of documents
returned, she may choose to use the expanded query.

Acknowledgments. Leonie IJzereef’s work was carried out in the context of the
Virtual Laboratory for e-Science project (www.vl-e.nl). This project is sup-
ported by a BSIK grant from the Dutch Ministry of Education, Culture and
Science (OC&W) and is part of the ICT innovation program of the Ministry
of Economic Affairs (EZ). Jaap Kamps was supported by a grant from the
Netherlands Organization for Scientific Research (NWO) under project numbers
612.066.302 and 640.001.501. Maarten de Rijke was supported by grants from
NWO, under project numbers 017.001.190, 220-80-001, 264-70-050, 365-20-005,
612.000.106, 612.000.207, 612.069.006, and 612.066.302.

References

[1] W. Ceusters, B. Smith, and L. Goldberg. A terminological and ontological analysis
of the NCI thesaurus. Methods of Information in Medicine, 2005, in press.

[2] W. Ceusters, B. Smith, A. Kuman, and C. Dhaen. Mistakes in medical ontolo-
gies: Where do they come from and how can they be detected? In Ontologies in
Medicine: Proceedings of the Workshop on Medical Ontologies. IOS Press, Ams-
terdam, 2003.

[3] C. W. Cleverdon. Report on the testing and analysis of an investigation into the
comparative efficiency of indexing systems. Technical report, College of Aeronau-
tics, Cranfield UK, 1962.

[4] C. W. Cleverdon. The Cranfield tests on index language devices. Aslib, 19:173–
192, 1967.

[5] E. A. Fox and J. A. Shaw. Combination of multiple searches. In D. K. Harman,
editor, The Second Text REtrieval Conference (TREC-2), pages 243–252. National
Institute for Standards and Technology. NIST Special Publication 500-215, 1994.

[6] J. C. French, A. L. Powell, F. Gey, and N. Perelman. Exploiting a controlled vo-
cabulary to improve collection selection and retrieval effectiveness. In CIKM ’01:
Proceedings of the tenth international conference on Information and knowledge
management, pages 199–206, New York, NY, USA, 2001. ACM Press.

1448 L. IJzereef, J. Kamps, and M. de Rijke

[7] N. Grabar, P. Zweigenbaum, L. Soualmia, and S. Darmoni. Matching controlled
vocabulary words. In G. Surjan, R. Engelbrecht, and P. McNair, editors, Proceed-
ings of MIE 2003, Eighteenth International Congress of the European Federation
for Medical Informatics. IOS Press Publisher, 2003.

[8] W. Hersh, R. T. Bhuptiraju, L. Ross, P. Johnson, A. Cohen, and D. Kraemer.
Trec 2004 genomics track overview. In The Thirteenth Text Retrieval Confer-
ence: TREC 2004, Gaithersburg, MD, 2004. National Institute of Standards and
Technology.

[9] W. Hersh, S. Price, and L. Donohoe. Assessing thesaurus-based query expan-
sion using the UMLS metathesaurus. In Proc. of the 2000 American Medical
Informatics Association (AMIA) Symposium, pages 344–348, 2000.

[10] M. Iivonen. Consistency in the selection of search concepts and search terms.
Information Processing and Management, 31:173–190, 1995.

[11] J. Kamps. Improving retrieval effectiveness by reranking documents based on con-
trolled vocabulary. In S. McDonald and J. Tait, editors, Advances in Information
Retrieval: 26th European Conference on IR Research (ECIR 2004), volume 2997 of
Lecture Notes in Computer Science, pages 283–295. Springer-Verlag, Heidelberg,
2004.

[12] W. Kraaij, M. Weeber, S. Raaijmakers, and R. Jelier. MeSH based feedback,
concept recognition and stacked classification for curation tasks. In Proceedings
of TREC 2004. NIST, 2005.

[13] F. Lancaster. Vocabulary Control for Information Retrieval. Information Re-
sources Press, Arlington, Virginia, second edition, 1986.

[14] National Library of Medicine. Medical Literature
Analysis and Retrieval System Online (MEDLINE).
http://www.nlm.nih.gov/pubs/factsheets/medline.html, May 2005.

[15] National Library of Medicine. Medical Subject Headings (MeSH).
http://www.nlm.nih.gov/mesh/, May 2005.

[16] National Library of Medicine. Unified Medical Language System (UMLS).
http://www.nlm.nih.gov/pubs/factsheets/umlsmeta.html, May 2005.

[17] J. Paralic and I. Kostial. Ontology-based information retrieval. In Proceedings of
the 14th Int. Conference on Information and Intelligent Systems - iis2003, pages
23–28, 2003.

[18] T. Saracevic and P. B. Kantor. A study of information seeking and retrieving.
III. searchers, searches, overlap. Journal of the American Society for Information
Science and Technology, 39:197–216, 1988.

[19] J. Savoy. Bibliographic database access using free-text and controlled vocabulary:
an evaluation. Information Processing and Management, 41:873–890, 2005.

[20] P. Srinivasan. Query expansion and MEDLINE. Information Processing and
Management, 32(4):431–443, 1996.

[21] E. Svenonius. Unanswered questions in the design of controlled vocabularies.
Journals of the American Society for Information Science, 37:331–340, 1986.

[22] TREC Genomics Track. TREC Genomics Track.
http://ir.ohsu.edu/genomics/, May 2005.

[23] E. M. Voorhees. Using WordNet to disambiguate word senses for text retrieval. In
SIGIR ’93: Proceedings of the 16th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 171–180, New York,
NY, USA, 1993. ACM Press.

[24] J. Wilbur. Non-parametric significance tests of retrieval performance comparisons.
Journal of Information Science, 20:270–284, 1994.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1449 – 1465, 2005.
© Crown copyright 2005. Reproduced by permission of Ordnance Survey.

Hybrid Model for Semantic Similarity Measurement

Angela Schwering

Ordnance Survey of Great Britain, United Kingdom, Institute for Geoinformatics,
University of Muenster, Germany

angela.schwering@uni-muenster.de

Abstract. Expressive knowledge representations with flexible semantic
similarity measures are central for the functioning of semantic information
retrieval, information integration, matchmaking etc. Existing knowledge
representations provide no or not sufficient support to model the scope of
properties. While properties in feature- and geometric models always refer to
the whole concept, structured representations such as the alignment model
provide a limited support for scope by assigning properties to objects which are
part of the whole entity. Network models do not support properties at all.
In this paper we propose a hybrid model: a structured knowledge representation
combining the relational structure of semantic nets with property-based
description of feature- or geometric models. It supports to model properties—
features or dimensions—and their scope by taxonomic or non-taxonomic
relations between a concept and its properties. The similarity measure computes
the similarity in consideration of the scope of each property.

1 Introduction

In this paper we aim to develop a measure to assess the semantic similarity between
concepts. According to E. Smith, a concept is "a mental representation of a class or
individual and deals with what is being represented and how that information is
typically used during the categorization" (Smith 1989, p. 502). To assess similarity
between concepts with formal measures, these "mental" concepts must be represented
in a computer-readable form: we investigate different knowledge representations
based on features, dimensions and relations and propose a new, hybrid model for
structured representation of concepts.

The knowledge representations under investigation in this paper all have a
cognitive foundation. They are contrary to formal ontologies used in the semantic
web: These formal ontologies are based on first order logic and define semantics by
stating necessary and sufficient conditions for something to be an instance of a class.
Individuals and classes of formal ontologies are processed by syllogistic reasoning
(see also (Gärdenfors 1999; 2004) for detailed discussion). These ontologies do not
reflect very well the way humans form and process concepts and cognize the world.
Here, we investigate knowledge representations which arose from theories about
human knowledge structure and human similarity judgment.

Structured knowledge representations are essential for similarity measurement,
because they "make explicit the relations between elements in a situation, and allow

1450 A. Schwering

complex representation to be constructed through the combination of simpler
elements" (Markman 1999, p. 124). Reviewing conventional knowledge
representations we conclude that they provide no or not sufficient structure to represent
the complexity of a concept's semantic, neither include this information in the
similarity measure. To specify concepts we require a model that is able to represent
relations between concepts, between its elements and the scope of these elements.

The scope of representational elements such as properties is what a property refers
to. While some refer to the whole concept, others describe only parts or some specific
aspect of the concept. This scope must be reflected not only in the knowledge
representation model, but also included in the similarity measure.

Section 2 gives an overview of existing knowledge representations and their
similarity measures and evaluates them regarding to their ability to represent relations
and scope. In section 3 we define different types of scope and explain how different
elements of the hybrid model are combined to represent scope of properties. Section 4
describes the similarity measure and section 5 evaluates the approach in a case study
and discusses the results. The final section provides conclusions and directions for
future work.

2 Related Work

This section gives an overview of different knowledge representations and their
similarity measures.

2.1 Feature Model

The most prominent feature models are Tversky's contrast and ratio model (Tversky
1977; Tversky and Gati 1978; 1982; Sattath and Tversky 1987). Objects (or stimuli)1
are represented via an unstructured list of features which may correspond to
components, concrete or abstract properties of the object. A sunflower may be
described by the features 'stalk', 'bloom' and 'root' reflecting the components, 'yellow'
for the colour of the bloom and 'tall' for its height.

The contrast model (equation 1) and the ratio model (equation 2) are set theoretic
models assessing the similarity of two objects via their ratio of common (BA∩) and
distinct features (BA − or AB −). While common features increase the similarity,
distinct features decrease it. This similarity measure underlies the assumption that
similarity is asymmetric and neither minimality nor triangle inequality hold (obtained
by parameters α and β in the formulas).

)(*)(*)(*),(ABfBAfBAfbaS −+−+∩= βαθ (1)

)(*)(*)(

)(
),(

ABfBAfBAf

BAf
baS

−+−+∩
∩=

βα
 (2)

1 Tversky applies the feature model only to objects or stimuli. Rodriguez (Rodriguez 2000;

Rodriguez and Egenhofer 2003, 2004) used Tversky's feature model to measure similarity
between entity classes which are concepts about the real world (see also footnote 4).

 Hybrid Model for Semantic Similarity Measurement 1451

As illustrated in the example before features refer always to whole object.
Although the colour 'yellow' only describes the bloom of the flower, it is assigned to
the whole object. The scope of features can only be represented by combining the
feature and its scope in one compound feature such as 'yellowBloom'. Compound
features are themselves features which either match features of the other object or not.
Due to the large set of possible compound features ('yellowBloom' or
'yellowBloomLeaves' etc.) these kinds of features do not lead to good measurements.
Feature models assess only entire feature matches and no partial match is detected
between 'yellowBloom' and 'yellowBloomLeaves'.

Another disadvantage is the inability of feature models to relate two objects in a
structured way, e.g. the fact that a bloom is connected to the stalk of a flower can
again only be expressed by the compound feature 'bloomConnectedToStalk'. No
partial match would be detected between 'bloomConnectedToStalk' and
'leaveConnectedToStalk'. A relational representation of these features—e.g.
connectedTo(bloom,stalk) and connectedTo(leave,stalk)—could detect similarity via
an alignment of arguments.

2.2 Geometric Model

Geometric models use the notion of multidimensional vector spaces to represent
objects and concepts. Gärdenfors introduced conceptual spaces, a geometric model
for representing information at a conceptual level (Gärdenfors 2000). Conceptual
spaces are a set of metric quality dimensions where one single or several dimensions
form one domain2. All dimensions belonging to one domain are integral. In analogy to
features, each domain in the conceptual space represents one property. Concepts3 are
represented by an n-dimensional region in the vector space and objects by a point.

Geometric similarity models measure the semantic distance in analogy to the
spatial distance: The most prominent distance measure in vector spaces is the
Minkowski metric (equation 3). It is a generic formula: For r = 1 the result is the city-
block distance and for r = 2 it is the Euclidian distance (Suppes, Krantz et al. 1989).

rn

i

r

ii cqcqd
/1

1

),(−=
=

 (3)

The similarity is a linear decaying function of distance d(q,c) (Attneave 1950; Melara,
Marks et al. 1992) and the absolute identification confusability—often taken as

2 We use the word dimension to refer to the mathematical structure. The values for a property

are specified in a domain (modelled by a dimension).
3 Gärdenfors defines concepts by comparing them to properties: a property "is defined with the

aid of a single dimension or a small number or integral dimensions forming one domain"
(Gärdenfors 2000, p. 60). A concept is a more general case of a property and is defined by a
set of dimensions or domains. Therefore a concept is represented by a region in a conceptual
space. His notion of concepts is based on the definition by Sloman, Love, and Ahn: A
"concept is an idea that characterizes a set or category of objects" (Gärdenfors 2000, p. 60).
Objects, in the philosophical sense also called individuals, are specified by a set of internally
consistent properties. One object cannot have two disjoint properties. An object is represented
by a point in the conceptual space (Gärdenfors 2002).

1452 A. Schwering

indirect measure for similarity—is an exponentially decaying function of distance
d(q,c) (Shepard 1957; Shepard 1958 a; Shepard 1958 b).

3m

2m

1m

hue
saturation

brightness

has stalk

no

yes

sun
flower

height

Fig. 1. A geometric model represents concepts in vector spaces. The concept 'sunflower' is
modelled in a conceptual space with the domains 'height', 'has stalk' and 'colour'.

Like features, it is not possible to specify the scope of domains in a conceptual
space. They always refer to the whole concept: The whole concept 'sunflower' is
represented as yellow, although only its bloom is yellow. Properties describing the
components of the concept can be represented by Boolean dimensions such as the
'has stalk' dimension, but the components themselves cannot be further described.

Conceptual spaces as introduced by Gärdenfors can represent relationships
between concepts only as "compound dimensions", which resemble the notion of
compound features in the feature model. Schwering and Raubal (Schwering and
Raubal 2005 forthcoming) proposed an extension to conceptual spaces to model
relations as dimensions to overcome this disadvantage. However, these "compound
dimensions" suffer of the same problem that the relational structure is lost and cannot
be used for similarity judgement.

2.3 Network Model

Network models are built upon semantic nets. Rodriguez and Egenhofer (Rodríguez
2000; 2003) proposed a semantic similarity measure between concepts4 based on
semantic neighbourhoods. Subclass-superclass relations and partOf relations between
concepts are represented by directed arcs in a semantic net. A semantic
neighbourhood of a concept oa is defined as the set of concepts }{ o

ic whose distances

to oa is equal or less than r which is the radius of the neighbourhood. The distance
between concepts represented by nodes is the length of the shortest path between two

4 Rodriguez uses the notion of entity classes which are concepts about the real world in the

way Dahlgren defines concepts: "These concepts about the real world are cognitive
representations that people use to recognize and categorize entities or events in the real
world." (Rodriguez 2000, p. 4).

 Hybrid Model for Semantic Similarity Measurement 1453

nodes in a semantic net. Rodriguez does not consider the direction of arcs neither
distinguishes between types of relations. Equation 4 (Rodríguez 2000) gives the
formal definition of a neighbourhood N.

rcadicraN o
i

o
i

o ≤∀=),(}{),(0 (4)

Rodriguez uses the distances in the semantic net only for defining the neighbourhood.
Once a neighbourhood is set, the similarity is computed based on word matching or a
slightly modified version of Tversky's feature matching (for further information see
(Rodríguez and Egenhofer 2003)).

Other approaches compute the semantic similarity based on the shortest path in a
network. Rada et. al propose a function to compute the distance between concepts in a
semantic net for similarity measurement based on spreading activation (Rada, Mili et
al. 1989).

The representation of relations between concepts is the strength of the network
approach. Rodriguez restricts relationships to hierarchic and partonomic relations, but
it can be extended by other non-taxonomic relations such as spatial relations
(Schwering 2004). Network models do not describe concepts any further (e.g. by
features or dimensions) though for the similarity measurement it can be combined
with the feature model like Rodriguez did.

The main disadvantage of network models is their failure of modelling scope. Pure
network models do not include properties at all; Rodriguez allows for features, but
does not include their scope in the similarity measurement. Like Tversky, she simply
compares sets of features.

2.4 Alignment Model

While the feature model, the geometric model and the network model are unstructured
knowledge representations, alignment models are the first to represent knowledge in a
structured way by adopting the structural alignment framework (Gentner and
Markman 1997). Goldstone (Goldstone 1994; Goldstone and Medin 1994; Goldstone
and Son 2004) introduced the Similarity, Interactive Activation, and Mapping (SIAM)
model, an alignment model for similarity measurement. It is used for similarity
measurement of spatial scenes, though the notion of structural alignment can be
applied to concept similarity measurement as well.

The entities—spatial scenes—are described by roles, objects and features: Roles
are two-ary relations with objects as arguments, which themselves contain feature
slots filled in with particular values. Figure 2 shows a spatial scene and a description
of this scene as it could be found in SIAM. Relations describe hierarchical (partOf
and isA relations) or propositional representations of objects, such as the spatial
relation in the example below (Goldstone 1994).

The similarity measurement is two-step process: at first the correspondences
between features, objects and roles are analyzed. All correspondences must be
structural consistent which involves two constraints: one-to-one mapping and parallel
connectivity (Markman 1999). One-to-one mapping states that each element—feature,
object or role—is mapped to exactly one element of the compared entity. Mappings to
multiple elements inhibit themselves mutually. Parallel connectivity means that the
arguments of corresponding roles must also correspond. The second step of the

1454 A. Schwering

similarity measurement is the interactive process to compute the similarity between
spatial scenes: aligned matches increase the similarity more than non-aligned matches
(for a detailed description of the interactive process see (Goldstone 1994; Goldstone
and Medin 1994)).

Representation:

above and left [
 (Sunflower: bloom yellow, height tall),
 (Rose: bloom red, height medium)]

Fig. 2. The alignment model proposed by Goldstone describes spatial scenes in a structured
way with roles, objects and features

SIAM structures scenes into components called objects which are described by the
roles they play and the features they have. Since this similarity model measures the
perceived similarity by humans, objects are limited to the scene's component and
features are limited to perceptual features only. By assigning each feature to one
object of the scene, SIAM enables to model the scope of features in the sense that a
feature belongs only to one part of the scene (compare different types of scope in
section 3). It is not possible to state that a feature refers to one specific aspect of the
object, e.g. it is not possible to describe the smell of the rose by features 'strong' and
'sweet'. In alignment models both features are assigned directly to the object rose.

One constraint for setting the correspondences is the one-to-one mapping of
elements. With spatial scenes having more or less an identical structure (same objects
with corresponding features) it is possible to align analogous objects and features, but
this does not work for concept similarity: two properties describing one concept may
align to one, more generic property describing another concept. A more flexible
model allowing for property hierarchies and n:m matches is required to compute
concept similarity.

Features in SIAM are atomic and cannot be described any further. There exists no
partial match between features (Feature 'bloom yellow' is as dissimilar to the feature
'bloom orange' as to 'bloom black'. Modelling properties as dimensions enables
measuring degree of similarity between properties.).

3 Hybrid Model for Structured Knowledge Representation

The hybrid model for structured knowledge representation includes properties
(features or dimensions) such as the feature model and the geometric model, but as
well relations such as the network model. The main advantages of its flexible

 Hybrid Model for Semantic Similarity Measurement 1455

architecture are the ability to explicitly model the scope of properties. This section
explains different types of scope (section 3.1) and introduces the elements and
structure of the hybrid model (section 3.2).

3.1 Scope of Properties

Structured knowledge representations provide mechanisms to specify explicitly the
scope of properties—the perspective or the aspect the property focuses on. In natural
language we express the scope of properties for example by genitive constructs (green
leaves of a rose) or participles presence (strong smelling flowers), but also by whole
sentences (ivy is located in shadowy areas). Sometimes also the scope is not
expressed explicitly, e.g. in 'red roses' the property red refers to the rose's bloom, but
not to the whole rose).

We distinguish four types of scope:

• Scope 1: The property refers to the whole concept. In this case the property is
assigned to the concept just as it is done in the feature- or the geometric model: For
example the feature 'tall' of a concept 'sunflower' describes the whole sunflower
and is therefore one feature of the set of features describing sunflowers. In
geometric models the property 'height' with values ranging form 100 to 250 cm is
used to describe the concept 'sunflower'. As property referring to the whole concept
it is modelled as one domain of the conceptual space describing 'sunflower'. No
relational structure is needed to model scope type 1.

• Scope 2: The property refers to a part of a concept. In this case the concept and its
part are modelled as two separate concepts related via a partOf relation. The
property is assigned to the part and can be included in the similarity measurement
via the relation to the main concept.
For example the feature 'red' describing a rose's bloom would not be part of the
feature set describing roses. Instead, two feature sets—one describing the concept
'rose' and one describing 'rose's bloom'—are created. The feature 'red' is part of the
'rose's bloom' feature set. The same goes for geometric models: Two separate
conceptual spaces are created. The colour domain of the 'rose's bloom' conceptual
space has the value 'red'. Both feature sets or both conceptual spaces are related via
a partOf relation.

• Scope 3: The property refers to a concept which is a superconcept S of the
considered concept. In this case the super- and the subconcept are modelled as two
separate concepts related via an isA relation. The property is assigned to concept S,
but can be included in the similarity measurement via the relation to the subconcept.
The property 'photosynthesis' is not describing the metabolism of flowering plants
in particular, but is a property that all organisms containing chlorophyll, i.e. all
plants (except for some parasitic plants), have. This property is assigned to the
feature set or conceptual space of the concept 'plant'.

• Scope 4: The property refers to a specific aspect, e.g. it describes the spatial
environment where instances of a concept are usually located in. In this case the
aspect is modelled as a separate concept (e.g. location) and related to the original
concept via a non-taxonomic relation (e.g. contained within). By this non-
taxonomic relation any scope can be represented explicitly.

1456 A. Schwering

In the running example the property 'sunny' is assigned to the feature set or
conceptual space describing the location, because it is not the sunflower which is
sunny, but its preferred location.

The hybrid model uses relations to model the scope of properties. These relations
are typically binary, but can be n-ary with n ≥ 2.

3.2 Elements and Structure of the Hybrid Model

A hybrid model consists of concepts, properties and relations. Concepts are modelled
as nodes in a semantic net. They are described by properties modelled as domains in a
conceptual space or as features in a feature set. Each node contains a conceptual space
respectively a feature set (figure 3). In the following explanations we focus only on
concepts described in conceptual spaces, but the similarity measure can be applied to
concepts described with feature sets as well.

A B C
D E

F G H

a) b)property concept conceptproperty

Fig. 3. Hybrid models describe properties of concepts either in a conceptual space (figure a) or
with a set of features (figure b)

Relations between concepts are represented as directed arcs between nodes. If a
property has a specific scope (which does not equal the whole concept like scope
type 1) it is modelled as property of a separate concept with a relation specifying the
scope (figure 4).

Properties describing a superconcept of a concept X are represented in the
conceptual space of the superconcept (scope type 3). The hierarchic relation between
X and its superconcept are used in the similarity measurement to identify inheritance
of properties. Properties describing parts of concept X are represented as properties of
concept 'part of X' (scope type 2), which is related to X with a partonomic relation.
Properties referring to the location of X are assigned to concept 'location of X', which
is related to X with a spatial relation such as contained within (scope type 4).
Properties referring to the function of X are analogous assigned to a concept 'function
of X'. All concepts themselves can be described by properties and again by relations
to other concepts.

A hybrid model combines the idea of semantic nets with feature or dimensional
approaches to model properties. This structured representation allows for modelling
complex semantics and explicitly the scope of properties.

 Hybrid Model for Semantic Similarity Measurement 1457

concept

X

hierarchic
 relation

super

concept
of X

 part of X

partonomic
relation

location

of X
non-taxonomic rel.

(spatial relation)
non-taxonomic rel.
(function relation)

function

of X

concept containing properties
describing parts of concept X

(scope 2)

concept containing properties of a
superconcept of concept X

(scope 3)

concept containing properties
describing the location of X

(scope 4)

concept containing properties
describing the function of X

(scope 4)

properties describing concept X
(scope 1)

Fig. 4. The elements of a hybrid model are concepts and its properties, relations, the related
concepts and their properties. Different types of relations are used to model different types of
scope.

4 Semantic Similarity Measurement with a Hybrid Model

Similarity in hybrid models gets calculated in a two step process. At first all
properties are identified: for properties modelled as related concepts (scope type 2-4)
we compute separate similarity values and in the second step include these values in
the overall similarity measure. In this section we outline the particular requirements of
a similarity measurement for structured knowledge representation and explain the
measurement steps in detail.

4.1 Requirements for the Similarity Measure

A semantic similarity measure of a structured knowledge representation must be
sensitive to the argument structure of the representation. This similarity measure must
be able to account for properties modelled as features or dimensions and properties
modelled in related concepts. If properties are connected via relations between two
concepts, the type of relation must be considered in the similarity measure:

• Properties belonging to concepts related with isA relations are inherited by the
concept. If the concept already contains this property, it is not inherited, e.g. a
concept 'flowering plant' is described by the property 'photosynthesis' and height
with the values 0 to 300 cm. While the concept 'sunflower' being a subconcept of
'flowering plant' inherits the property 'photosynthesis', it contains more specific
information on the height and retains its own height description.

• Properties of concepts related by partOf- or other non-taxonomic relations have to
be considered separately. Their domains must not be included directly in the

1458 A. Schwering

conceptual space of concept C, because they describe only a part or a specific
aspect of C. Parts or aspects of concept C should be compared to corresponding
parts or aspects of the other concept Q.
 It is not possible to include domains of the conceptual space of parts or aspects
in the conceptual space of C, because there may exist domains with the same label
in the conceptual space of C, but with different meaning due to their different
scope, e.g. the domain colour describing the part 'bloom' of a rose has the value
'red' and the domain colour describing the part 'stalk' of a rose has the value 'green'.

4.2 The Similarity Measure

The similarity measure for hybrid models comprises several steps. The following
detailed description refers to a dimensional representation of properties and an
Euclidian measure. Other distance measures of conceptual spaces such as the city-
block metric can be applied without any problems (as long as the measure is based on
property-wise comparison of vectors). If properties are modelled as features,
Tversky's feature model is used for similarity measurement.

In the explanation below we refer to a directed similarity measurement task as it
occurs in the information retrieval: concept Q denotes the query concept. The
similarity value indicates how similar a concept C is to the query concept Q.

(5)

According to the Euclidian metric (equation 5 is equation 3 with r = 2) the distance
between two vectors C and Q in a multidimensional space is computed as the square
root of the sum of the dimension-wise squared differences. At first we describe how
to compute the dimension-wise difference.

Figure 5 and 6 illustrates the steps of the similarity measurement:

1. Identify all common and corresponding properties of query concept Q and the
compared concept C, as well those modelled as concept related to C and Q5. Step
1.a in figure 5 illustrates the alignment of domains in the conceptual space of C and
Q. Inherited domains are treated as ordinary domains of a conceptual space. Steps
1.b.1 and 1.b.2 in figure 5 show the alignment of related concepts. In the example
there are no correspondences for the properties D5 and D6 and for the relation 2.
All additional properties and relations of concept C that the query concept Q does
not contain—i.e. the user does not search for something having these additional
properties or relations—are simply deleted and left out for the similarity
measurement.

2. For each related concept Crel and Qrel we compute a semantic distance value
analogous to the similarity measure of conceptual spaces, e.g. a semantic distance

5 For the sake of simplicity we consider only same or comparable properties of C and Q.

Properties that do not have a counterpart in the conceptual space of the other concept are not
considered in the similarity measurement.

 Hybrid Model for Semantic Similarity Measurement 1459

query concept Q:

concept C:

1.b.1) aligned
relation

1.b.2) aligned
properties1.a) aligned dimensions

D1
D2

D3

D4

D1
D3

D4

D2

concept Qrel_1

relation R1

(scope 2,4)

relation R1

(scope 2,4)

concept Crel_1

inherited domain from isA relation

additional property / relation of concept C in the data source

D5

D6

relation R2

(scope 2-,4) concept Crel_2

Da
Db

Dc

Dd

Da
Db

Dc

Dd

Fig. 5. Step 1 of the similarity measure between query concept Q and concept C

value for the part 'bloom' of a rose to the part 'bloom' of the query concept. The
resulting distance value is the Euclidian distance between the bloom of C and the
bloom of Q (step 2.a in figure 6).
In the conceptual space of C and Q we introduce a new temporary dimension for
each related concept, e.g. a dimension 'partOfBloom' (step 2.b in figure 6). Since
the related concept consists of a set of several dimensions we cannot assign a value
on a single dimension to C or Q, but we do know the semantic distance of Crel and
Qrel. This semantic distance is fed in the formula as shown in equation 6.

3. Compute the difference between C and Q for each domain belonging to their
conceptual space (step 3 in figure 6).

The result is an n-dimensional vector (equation 6); n is the sum of the domains of
the conceptual space of C and Q plus the domains of its related properties—in this
example n = 5: four domains of C and Q and one related for the related concept. Each
dimension of this vector represents the dimension-wise distance:

• either it is the difference between concept's C value on this dimension and the
query concept's value on this dimension

• or it is the Euclidian distance between the related concept Crel and the related
concept Qrel.

1460 A. Schwering

dimension-wise
distance

semantic distance−
−
−
−
−

relrel

DD

DD

DD

DD

QC

QC

QC

QC

QC

44

33

22

11

(6)

These values are fed into the Euclidian distance formula: each dimension is squared,
summed up and the square-root is computed of the sum.

In the query concept each domain may be weighted by a weighting factor. By this
can be specified the importance of each domain in the similarity measurement. These
weighting factors are included in the similarity measure by a dimension-wise
multiplication factor (Raubal 2004).

Step 2 of the similarity measure is the calculation of the Euclidian distance
between related concepts. To determine the semantic distance of these related
concepts, one can again include the related concepts. To determine this recursive

query concept Q: concept Qrel

relation R1

(scope 2,4)

concept C:

relation R1

(scope 2,4)

si
m

ila
ri

ty 2.a) semantic
distance between

Crel and Qrel in their
conceptual space

3) compute dimension-
wise difference in
conceptual space

2.b) including the similarity between
related concepts as temprorary dimension

D1
D2

D3

D4

D1
D2

D3

D4

concept Crel

2.b) including the similarity between
related concepts as temprorary dimension

Fig. 6. Steps 2 and 3 of the similarity measure between query concept Q and concept C

 Hybrid Model for Semantic Similarity Measurement 1461

process we need to decide on a neighbourhood size—analogous to the radius
determining the neighbourhood size in the similarity approach by Rodriguez and
Egenhofer (see also section 2.3).

5 Case Study and Evaluation

The case study shows how the hybrid model and its similarity measure can be applied
to an information retrieval task. Then we evaluate advantages and disadvantages of
this approach.

5.1 Case Study

The following case study is about an information retrieval task searching for
appropriate plants to grow in one particular place. Rebecca is a landscape gardener
planning the planting of a garden. She wants to replant a flower bed with plants that
complement the existing planting. Since there should be plants blooming all over the
year in different colours, Rebecca wants to choose a selection of plants with different
properties concerning the season of anthesis, the colour of the bloom, the height etc.
The flower bed is located in the sun.

Rebecca specifies her query in the information retrieval system by choosing the
relevant properties (figure 7) and specifying their scope. In this example she describes
the plant she is searching for by restricting the properties of its part bloom and the
location where the plant should grow.

 plant
containded

within
 location

 bloom

part of

part of leaf

 fruit

part of

category

is a

concepts to
describe the query

Fig. 7. The information retrieval system contains several concepts and properties to describe
plants. To specify the query in the information retrieval system the user chooses the properties
relevant to describe the plant she is searching for.

For each property—the related ones and the domains in the conceptual space of
plant—she selects the relevant domains in the conceptual space provided by the
information retrieval system and specifies the values on these domains. Figure 8
shows the existing domains and the specified values by Rebecca. She leaves out
domains such as 'lifetime' of the plant or 'form' of the bloom, because they are
irrelevant for her task.

1462 A. Schwering

Depending on the importance, Rebecca sets a weighting factor for each domain and
each related property6. The weighting factors for the domains of 'bloom' and 'location'
are included in the calculation of the semantic distance between the blooms and the
locations (step 2.a in figure 6). The weighting factors for the whole related properties
'bloom', 'leaf' and 'location' and the weighting factors for the domains of 'plant' are
included in the semantic distance calculation in step 3 in figure 6.

 plant

 bloom

 sunlight

conceptual space domains:
lifetime: values {0,1,2, ...} unit: year
height: values {0,1,2, …} unit: cm
form: values {narrow, … , broad} (grounding in cm² possible)

conceptual space domains:
colour: dimensions hue, saturation, brightness
size: values {small, … , big} (grounding in cm³ possible)
form: values {flat, … , ball-shaped}
anthesis season: values {Jan, Feb, … , Dec}

conceptual space domains:
sunlight: values {umbra, pen-umbra, sunny, blazing sun}

query concept:
height: 40-60 cm

query concept:
colour: red
anthesis season:
April-June

query concept:
sunlight: sunny

Fig. 8. The user specifies the values of the query concept's dimensions and domains, which are
a subset of the dimensions and domains that are provided by the information retrieval system

In order to calculate semantic distances between concepts it is required that all
dimensions of the conceptual space are represented in the same relative unit of
measurement. This is ensured by calculating the z scores for these values, also called
z-transformation (for more information about the z-transformation please see (Devore
and Peck 2001)).

Once specified the query concept, the information retrieval system measures the
similarity between query concept and all concepts of plants in the system according to
the above described similarity measure. Table 1 shows the description of a subset of
flowers and their semantic distance to the query concept. The semantic distance
values are transformed into a similarity value according to a linear decaying function
of the semantic distance. The exact function must be determined by human subject
testing. The complete list of flowers and their semantic distances can be found at
http://ifgi.uni-muenster.de/~eidueidu/odbase05.zip.

The information retrieval system does not contain information about a flower that
satisfies all restrictions of Rebecca. The most suitable flower is the Begonia: it fits the
colour and anthesis restrictions, though it is slightly too little and more appropriate to
pen-umbra than to sunny locations. Papaver orientale, achillea millefolium and
centaurea dealbata match the height and the location requirements, but the anthesis
season does not completely overlap with the query concept. The bloom colour of
papaver orientale and the one of centaurea dealbata are similar to red. Rebecca can
look at the ranking and chooses one of the best ranked flowers.

6 To keep the calculation simple we assume a weighting factor of 1 for every domain.

 Hybrid Model for Semantic Similarity Measurement 1463

Table 1. The semantic distance from all flower concepts to the query concept is computed. The
most similar flowers are recommended to Rebecca.

Flower
(short names)

Sem.
Dist.

Flower:
Height cm

Bloom:
Colour

Bloom:
Anthesis
Season

Location:
Sunlight

Begonia 1,37 20-35 red Mar-Oct pen-umbra
Papaver orientale 1,97 40-70 light red May-Jun sunny
Achillea millefolium 2,54 40-60 red Jun-Sep sunny
Centaurea dealbata 2,57 40-70 rose Jun-Jul sunny
Campanula
glomerata

2,78 40-60
blue-
violet

May-Jun pen-umbra

Doronicum orientale 2,93 40-50 yellow Apr-May
pen-umbra,
umbra

Iris 'blue' 3,04 40-60 blue May-Jun sunny
Chrysanthemum
(red)

3,11 90 red Sep-Nov sunny

Chrysanthemum (yel) 3,33 90 yellow Sep-Nov sunny
Helianthus Annuus 3,38 100-250 yellow Jul-Oct sunny
… … … … … …

Malus sylvéstris 5,58 500-1000
reddish-
white

Apr
pen-umbra,
umbra

Pýrus commúnis 6,58 500-2000 white Apr-May
pen-umbra,
umbra

Malus sylvéstris (apple tree) and Pýrus commúnis (pear tree) have the highest
semantic distance to the query concept and are therefore the least similar concepts.
The system has classified them as "least suitable" to plant on a flower bed.

Comparing the hybrid model with unstructured models such as the feature model
or the geometric models the main advantage is the higher accuracy due to greater
expressiveness. Using non-structured knowledge representations the concept 'rose'
may be described as follows: Instead of being able to explicitly state that the bloom of
a rose is red, the user adds this property to the whole concept 'rose'. In the data source
though the colour of a rose is specified as green, since the data engineer described the
stalk of a rose. The limited expressiveness of non-structured approaches leads to
inaccurate similarity results.

6 Summary and Future Work

This paper develops a model to describe concepts in a structured way. It is built
on existing approaches to represent concepts—either a feature- or a geometric
model—and combines them with semantic nets which allow for modelling relations
between concepts. These relations—hierarchic, partonomic or any other kind of
non-taxonomic relation—enable also an explicit representation of the scope of
properties.

1464 A. Schwering

Based on this flexible model we extended conventional similarity measures to
include the scope of properties in the similarity assessment. The original idea
underlying the measures—similarity based on the ratio of common and distinct
features for feature models or similarity based on the spatial distance in conceptual
spaces—is retained.

Geometric similarity measures compare values in same domains (e.g. two colours
in the colour domain) and feature-based similarity measures compare corresponding
features (e.g. 'apple tree' and 'cherry tree' have the common feature 'has_fruit', but 'fir'
has not fruit, i.e. has the distinct feature '¬has_fruit'). Like the geometric and the
feature-based approach, the hybrid model also measures similarity based on
comparing corresponding properties. Properties without counterpart in the other
concept do not influence the similarity.

Future research needs to investigate whether this missing information is also some
information or not. We assume that missing counterparts for properties have negative
effect on the similarity. The importance can easily be shown by an example: Rebecca
is planning a fruit and vegetable garden and specifies a query concept for fruit trees
with the property 'has_fruit'. The information retrieval system measures similarity to
all other trees and finds a tree X which has identical properties like the query concept
'fruit tree', except it does not have any information on its fruits. There is no
counterpart for the property 'has_fruit' in concept X (we do not know whether it
'has_fruit' or ¬'has_fruit'!). Since this property is essential for the query concept, this
missing value should have negative impact on the similarity. But neither the feature
nor the geometric model take into account missing counterpart properties.

Acknowledgement

We like to thank the members of the Iridium team at Ordnance Survey, the members
of MUSIL and the 3 anonymous reviewers for their valuable comments.

References

Attneave, F. (1950). "Dimensions of Similarity." American Journal of Psychology 63: 516-556.
Devore, J. and R. Peck (2001). Statistics - The Exploration and Analysis of Data. Pacific

Grove, CA, Duxbury.
Gärdenfors, P. (1999). Some tenets of Cognitive Semantics. Cognitive Semantics: Meaning and

Cognition. J. Allwood and P. Gärdenfors. Amsterdam, John Benjamins: 19-36.
Gärdenfors, P. (2000). Conceptual Spaces: The Geometry of Thought. Cambridge, MA, MIT

Press.
Gärdenfors, P. (2004). How to Make the Semantic Web More Semantic. Formal Ontology in

Information Systems, Torino, Italy, IOS Press.
Gentner, D. and A. B. Markman (1997). "Structure Mapping in Analogy and Similarity."

American Psychologist 52(1): 45-56.
Goldstone, R. L. (1994). "Similarity, Interactive Activation, and Mapping." Journal of

Experimental Psychology: Learning, Memory, and Cognition 20(1): 3-28.
Goldstone, R. L. and D. L. Medin (1994). Similarity, Interactive Activation and Mapping: An

Overview. Advances in Connectionist and Neural Computation Theory. J. Barnden and H.
K. New Jersey, Ablex. Vol. 2: Analogical Connections: 321-362.

 Hybrid Model for Semantic Similarity Measurement 1465

Goldstone, R. L. and J. Son (2004). Similarity. Cambridge Handbook of Thinking and
Reasoning. R. Morrison. Cambridge, Cambridge University Press.

Markman, A. B. (1999). Knowledge Representation. Mahwah, New Jersey, Lawrence Erlbaum
Associates.

Melara, R. D., L. E. Marks, et al. (1992). "Optional processes in similarity judgments."
Perception & Psychophysics 51(2): 123-133.

Rada, R., H. Mili, et al. (1989). "Development and application of a metric on semantic nets."
IEEE Transactions on systems, man, and cybernetics 19(1): 17-30.

Raubal, M. (2004). Formalizing Conceptual Spaces. Formal Ontology in Information Systems,
Proceedings of the Third International Conference (FOIS 2004). A. Varzi and L. Vieu.
Amsterdam, NL, IOS Press. 114: 153-164.

Rodríguez, A. (2000). Assessing Semantic Similarity Among Spatial Entity Classes. Spatial
Information Science and Engineering. Maine, PhD Thesis. University of Maine: 168.

Rodríguez, A. and M. Egenhofer (2003). "Determining Semantic Similarity Among Entity
Classes from Different Ontologies." IEEE Transactions on Knowledge and Data
Engineering 15(2): 442-456.

Sattath, S. and A. Tversky (1987). "On the Relation Between Common and Distinctive Feature
Models." Psychological Review 94(1): 16-22.

Schwering, A. (2004). Semantic Neighbourhoods for Spatial Relations (Extended Abstract).
Third International Conference on Geographic Information Science (GIScience), Maryland,
USA, Regents of the University of California.

Schwering, A. and M. Raubal (2005 forthcoming). Spatial Relations for Semantic Similarity
Measurement. 2nd International Workshop on Conceptual Modeling for Geographic
Information Systems (CoMoGIS2005), Klagenfurt, Austria., Springer.

Shepard, R. N. (1957). "Stimulus and Response Generalization: A Stochastic Model Relating
Generalization to Distance in Psychological Space." Psychometrika 22(4): 325-345.

Shepard, R. N. (1958 a). "Stimulus and Response Generalization: Deduction of the
Generalization Gradient from a Trace Model." Psychological Review 65(4): 242-256.

Shepard, R. N. (1958 b). "Stimulus and Response Generalization: Tests of a Model Relating
Generalization to Distance in Psychological Space." Journal of Experimental Psychology
55(6): 509-523.

Smith, E. E. (1989). Concepts and Induction. Foundations of cognitive science. M. I. Posner.
Cambridge, MA, MIT Press: 501-526.

Suppes, P., D. M. Krantz, et al. (1989). Foundations of Measurement - Geometrical, Threshold,
and Probabilistic Representations. San Diego, California, USA, Academic Press, Inc.

Tversky, A. (1977). "Features of Similarity." Psychological Review 84(4): 327-352.
Tversky, A. and I. Gati (1978). Studies of Similarity. Cognition and Categorization. E. Rosch

and B. Lloyd. Hillsdale, NJ, Lawrence Erlbaum: 79-98.
Tversky, A. and I. Gati (1982). "Similarity, Separability, and the Triangle Inequality."

Psychological Review 89(2): 123-154.

This article has been prepared for information purposes only. It is not designed to constitute
definitive advice on the topics covered and any reliance placed on the contents of this article is
at the sole risk of the reader.

Ontology-Based Spatial Query Expansion in
Information Retrieval

Gaihua Fu, Christopher B. Jones, and Alia I. Abdelmoty

School of Computer Science, Cardiff University, Cardiff, UK
{Gaihua.Fu, C.B.Jones, A.I.Abdelmoty}@cs.cf.ac.uk

Abstract. Ontologies play a key role in Semantic Web research. A
common use of ontologies in Semantic Web is to enrich the current
Web resources with some well-defined meaning to enhance the search
capabilities of existing web searching systems. This paper reports on
how ontologies developed in the EU Semantic Web project SPIRIT
are used to support retrieval of documents that are considered to be
spatially relevant to users’ queries. The query expansion techniques
presented in this paper are based on both a domain and a geographical
ontology. The proposed techniques are distinguished from conventional
ones in that a query is expanded by derivation of its geographical query
footprint. The techniques are specially designed to resolve a query (such
as castles near Edinburgh) that involves spatial terms (e.g. Edinburgh)
and fuzzy spatial relationships (e.g. near) that qualify the spatial
terms. Various factors are taken into account to support intelligent
expansion of a spatial query, including, spatial terms as encoded in
the geographical ontology, non-spatial terms as encoded in the domain
ontology, as well as the semantics of the spatial relationships and their
context of use. Some experiments have been carried out to evaluate the
performance of the proposed techniques using sample realistic ontologies.

Keywords: Ontology, Semantic Web, Spatial Search, Query Ex-
pansion.

1 Introduction

The WWW holds vast amounts of information. However, users do not always get
information they expect when searching the Web. One main reason for this is
that existing web documents are rarely augmented with semantic annotation
that describe their content, which would make them more easily accessible to
automated search facilities. The Semantic Web is one of several proposed solu-
tions to resolve this problem [29]. One aim of the Semantic Web is to enrich the
current web documents with some well-defined meaning (meta-data), so that the
existing web searching systems can be extended to have more advanced capabil-
ities to find these resources more effectively. It has long been recognized in the
Semantic Web research that ontologies play a key role as they can be used as a
source of shared and precisely defined terms for such meta-data [14, 19].

Apart from annotating web documents with semantic information, ontologies
have also been employed to resolve the mismatch problems between queries and

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1466–1482, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Ontology-Based Spatial Query Expansion in Information Retrieval 1467

documents, i.e. a query may not be expressed in terms that match the ones
contained in some of the relevant documents. Traditionally this is dealt with
using query expansion techniques which expand a query with the terms (as
encoded in ontologies or other knowledge resources) that are considered to be
related to the ones in the query, so that the relevant documents can be retrieved.
Most of these studies use a term-based method [25, 1, 10, 30, 7]. For example, a
query expansion method is introduced in [28] which extends a query with the
words that are lexically related to the original query words using WordNet. A
method is introduced in [15] to expand a query term with the ones that can
be reached transitively in a concept network that is built up according to a
thesaurus.

While these studies are useful for processing a general query, they provide
inadequate support for processing a spatial query. A spatial query is different
from a generic one in that it usually includes one or more spatial terms. It is often
used by a user when he/she wishes to find Web resources that are related to a
place. An example of such a query is castles near Edinburgh. Support for this type
of query is necessary as most human activities are rooted in geographical space in
some aspect, and therefore many documents include references to geographical
context, typically by means of place names. Conventional search engines treat
spatial terms involved in a query in the same way as other terms and can not
always ensure good search results due to the lack of spatial awareness. This has
led to research interests in developing spatial search techniques to help users find
resources in which the subject matter is related to a place [13, 12, 22].

As with a generic query, there is also a need to expand a spatial query. While
query expansion has been studied extensively in the literature, the interest here
is how to expand a spatial query so that documents that are considered to be
spatially relevant can be retrieved. A document can be spatially relevant to a
query in different ways. It may be spatially relevant to a query by involving
a geographical term that is considered to be an alternative name for the one
appearing in the query. A document may also be spatially relevant to a query
by involving places which satisfy the specified spatial relationship with the one
appearing in the query. An example of this is a query looking for castles near
Edinburgh. The relevant documents may not only include the ones that describe
castles in Edinburgh, but also the ones that describe castles in places such as
West Lothian and Midlothian, which are geographically near to Edinburgh.

Conventional term-based query expansion techniques can be utilised to re-
solve a spatial query. However, the danger is that they may introduce too many
query terms in spatial context, perhaps many thousands, and may therefore be-
come intractable for the query processing facilities. Another challenge in dealing
with spatial query expansion is that a spatial relationship involved in a query can
be vague. Its interpretation can vary with respect to different users’ intentions,
as well as depending on the types of spatial and non-spatial terms involved in
a query. For example, one user may use near to refer to places that are either
inside of or adjacent to a place presented in a query, and another user may use
it to refer to places that are only adjacent to the specified place. Also, a spatial

1468 G. Fu, C.B. Jones, and A.I. Abdelmoty

relationship may need to be interpreted differently due to different subject mat-
ters involved. For example, near in the query lakes near Edinburgh may need to
be treated differently from near in hotels near Edinburgh.

In this paper we report the spatial query expansion techniques developed in
the EU Semantic Web project SPIRIT. The query expansion techniques pre-
sented in this paper are based on both a domain and a geographical ontology.
Different from term-based query expansion techniques, the proposed techniques
expand a query by trying to derive its geographical query footprint, and it is
specially designed to resolve a spatial query. Various factors, such as types of
spatial terms as encoded in the geographical ontology, types of non-spatial terms
as encoded in the domain ontology, the semantics of the spatial relationships,
their context of use, and satisfiability of initial search result, are taken into ac-
count to support expansion of a spatial query. The proposed techniques support
the intelligent, flexible treatment of a spatial query when a fuzzy spatial rela-
tionship is involved. Some experiments have been carried out to evaluate the
performance of the proposed techniques using sample realistic ontologies.

The remaining part of the paper is organized as following. Section 2 studies
related work. Section 3 introduces the background knowledge of this research,
discusses various factors that affect spatial query expansion, and presents how
SPIRIT ontologies are designed to support spatial query expansion. Section 4
presents our method that supports spatial query expansion. Section 5 reports our
experimental results. Section 6 concludes the paper and points out the possible
future research.

2 Related Work

Query expansion is traditionally considered as a process of supplementing a
query with additional terms as the assumption is that the initial query as pro-
vided by the user may be an inadequate representation of the user’s information
needs [28, 30, 15, 5, 7]. Query expansion techniques can broadly be classified in
two categories: those based on the search results and those that are based on
some forms of knowledge structure. The former group of techniques depends on
the search process and uses relevance feedback in an earlier iteration of search
as the resource to identify the query expansion terms [1, 4, 7]. The latter group
of techniques is independent of the search process and additional query terms
are derived by traversing a semantic network built up according to a knowledge
structure. Knowledge structures used by this group of techniques can either be
a general-purpose ontology (or thesaurus) [28], or an ontology built for a specific
domain [15], or an ontology constructed from document collection based on the
term clustering [20]. Work that combines the two approaches is reported in [30],
where authors apply term clustering techniques to the local set of documents.

The work reported in this paper belongs to the second group of research,
i.e., both a domain ontology and a geographical ontology are utilised to support
query expansion. In the literature, there are several search engines that employ
ontologies to support spatial query expansion [22, 18]. For example, Mirago has

Ontology-Based Spatial Query Expansion in Information Retrieval 1469

developed a regional web search facility that provides spatial search services for
several European countries including UK, Germany, France and Spain [22]. A
user can issue a spatial query by typing a domain term and selecting from avail-
able place names (as encoded in a geographical ontology) the one that he/she
would like his/her search to focus on, and documents that employ both the do-
main term and the spatial term in their text are retrieved. Mirago supports some
limited spatial expansion by using the spatial containment relationship existing
between places (as encoded in the geographical ontology). That is, if no or few
documents are found according to a spatial query term, the term is replaced
with a place name whose region immediately contains it.

In addition to term-based spatial query expansion research, recently some ge-
ographical search systems employ footprint-based spatial query expansion tech-
niques to assist with retrieval of spatially relevant documents (the footprint of a
query refers to the spatial search space of a query). For example, the geograph-
ical search engine developed by Vicinity [27] allows the user to enter part or all
of an address in the USA or Canada, along with a category of interest and a
search radius in miles. Google has recently introduced a locational web search
system based in the USA [13]. Like the Vicinity search tools it allows the user
to specify the name of a place of interest using an address or zip code, which is
then matched against relevant documents. Other research which considers the
spatial search is that of [8, 2, 9, 3, 21]. All these spatial search engines support
the inside spatial relationship, and a few of them support the distance relation-
ship as well. Though relatively little has been published on the technology that
underlies spatial query expansion by these systems, according to authors’ inves-
tigation of some search results of these systems, it appears they perform query
expansion by simply translating a place name into its corresponding coordinate
footprint.

The main advantage of footprint-based query expansion is that it avoids in-
troducing too many query terms, which, as discussed in [28], is not as effective
as supposed to be. Furthermore, footprint-based query expansion can effectively
avoids retrieval of irrelevant documents due to name sharing (according to [24],
about 16.6 percent of European place names have multiple uses), which is usually
inevitable in term-based query expansion. Finally, footprint-based expansion al-
lows us to perform more accurate spatial relevance calculation by analysing the
query footprint and the document footprint, which is not possible with term-
based expansion.

The work reported in this paper studies footprint-based spatial query ex-
pansion techniques. It is distinguished from previous research in several aspects.
First, it supports spatial query expansion especially when a fuzzy spatial rela-
tionship term such as near is presented in a query, which is largely not considered
in other research. A wide range of spatial fuzzy spatial relationship terms are
supported by the techniques proposed in this paper. Secondly, the proposed tech-
niques support intelligent and flexible spatial query expansion. This is achieved
by taking into account of various factors, e.g. spatial query term, non-spatial
query terms, the use context of a spatial relationship etc., when computing a

1470 G. Fu, C.B. Jones, and A.I. Abdelmoty

query footprint. Thirdly, we support iterative spatial query expansion, i.e. a
query footprint will be progressively extended when initial search results are not
sufficient. This in one aspect ensures search satisfactory. On the other hand,
it ensures the most spatially relevant documents will be retrieved first, which
is difficult to be achieved with traditional query expansion techniques if not
impossible.

3 SPIRIT Queries, Query Expansion and Ontologies

The work reported in this paper is part of the SPIRIT project (Spatially-Aware
Information Retrieval on the Internet) [6]. The aim of SPIRIT is to develop Web
search technology that is specialised for access to documents relating to places
or regions referred to in a query. A primitive spatial query in SPIRIT can be
formalised as a triple:

〈what, rel, where〉

where the what term is used to specify a general non-spatial object, which may
correspond to a physical or an abstract subject or activity; where is used to
specify a spatially referenced term; the rel term is a spatial relationship which
relates what and where.

The following concepts are used throughout the paper to illustrate our tech-
niques. A spatial term is the one which has a footprint P-footprint.

Definition 1. The footprint P-footprint of a spatial term indicates the geograph-
ical location of the intended place, and is specified in terms of map coordinates
with a selected reference system.

A document may have footprint D-footprint if it involves one/more spatial
terms.

Definition 2. A document footprint D-footprint defines the geographical cover-
age of a specified document, and it may consist of multiple P-footprints if more
than one place name appears in the document.

Given a spatial query 〈what, rel, where〉, the purpose of spatial query expan-
sion in this research is to generate a query footprint (denoted as Q-footprint).
Ideally, Q-footprint should be computed in such a way so that spatially rele-
vant documents of 〈what, rel, where〉 are those whose document footprints fall
in Q-footprint.

Definition 3. A query footprint Q-footprint defines a geographical space that
covers the intended spatial search extent of 〈what, rel, where〉, and it is specified
in the form of map coordinates.

Given 〈what, rel, where〉, deriving Q-footprint will start with the P-footprint
of where. The most important information that influences Q-footprint is the rel
term, and it determines what geographical area should be covered by Q-footprint.

Ontology-Based Spatial Query Expansion in Information Retrieval 1471

For example, if rel is near, the query footprint may be assumed to be the area
surrounding where. If rel is north, the geographical area that covers north of
where should be returned.

Most spatial relationships are fuzzy, and their semantics can vary when
used with different combinations of what and where. Consequently, Q-footprint
may be different when the same rel is used in different contexts. Given
〈what, rel, where〉, we consider that the interpretation of rel is mainly deter-
mined by the following factors:

– the type of where. This is because the search extent is usually assumed differ-
ently where different types of where are presented in queries. For example,
given near, we tend to assume a bigger search space when where is of type
city than when it is of type village.

– the P-footprint of where. Some places are of the same type, but the areas
they cover can vary. For example, both London and Cardiff are type of city,
but the area of London is much bigger than that of Cardiff . Therefore it
is reasonable to assume a larger neighbourhood region of London than that
of Cardiff.

– the what term. Given a geographical area, the distribution densities of dif-
ferent what subjects may vary, and therefore some subjects may have more
documents describing them than others. For example, there are more hotels
than airports for most places. For a subject which has a sparse distribution
density in an area, it tends to require a bigger search space in order to find
some relevant documents.

– the user’s intention of using a rel term. Different users may employ a same
rel with different meanings in mind. For example, one user may use near
to refer to a region that covers both the where and its surrounding areas,
while another user would use near only to refer to the neighbouring regions
of where. Therefore it is desirable that rel can be interpreted by taking into
account of the user’s intention in mind.

We are aware that other factors may also affect the interpretation of a rel
term, for example, the population of where if it is an inhabited area. However,
most of these factors apply to the specific type of queries (e.g. population only
needs to be considered for a query whose where term represents an inhabited
place), whereas the factors considered in this research apply to generic spatial
queries. Therefore our techniques support spatial query expansion by mainly con-
sidering the generic factors. However, when a query footprint does not produce
good search results, our techniques support iterative spatial query expansion
(see Section 4 for details).

To support spatial query expansion, the SPIRIT system has incorporated
into its architecture an ontology component, of which the primary parts are a
domain ontology and a geographical ontology (or geo-ontology)1. The domain
1 SPIRIT ontology design was also driven by other spatial search requirements, e.g.

spatial query disambiguation, spatial relevance ranking, spatial index and annotation
of web resources, as discussed in [11, 16].

1472 G. Fu, C.B. Jones, and A.I. Abdelmoty

ontology models the terminologies of one application area or domain, and is
used to resolve the what aspect of a SPIRIT query. Modelling of domain-specific
terminology is accomplished using conventional thesauri methods. Equivalent
terms or synonyms are represented via USE and USE-FOR relations. Hierarchical
relations whether generic (is-a) or metronymic (part-of) are represented with
Broader Term (BT) and Narrower Term (NT) relations. For each term, the do-
main ontology maintains a coefficient that indicates the influence of it on the
interpretation of a spatial relationship, and this is derived by carrying out some
document density studies.

The where aspect of the SPIRIT query is dealt with the SPIRIT geo-ontology,
which is constructed to provide a knowledge structure of the interested geo-
graphic space. Several types of information are encoded in the geo-ontology,
including the various names that a place is known by, the place types with
which it can be categorised, its topological relationships (such as partof and
containing) with other places, and its geographical footprints (P-footprint). For
each category of place, the geographical ontology maintains a coefficient that
indicates the influence of it on the interpretation of a spatial relationship, and
this is derived by carriying out some user studies.

4 A Method for Deriving Spatial Query Footprint

This section describes how spatial query expansion is performed by employing
the SPIRIT ontologies. The proposed techniques are mainly designed to han-
dle spatial queries with fuzzy spatial relationships presented, and the group of
spatial relationships that can be handled by using techniques proposed in this
paper includes in, near, outside, north-of, south-of, east-of, west-of and within
a specified distance2.

Apart from a domain ontology and a geographical ontology, we assume the
availability of the alternative interpretation of a spatial relationship rel. For
example, for near, three options may be available for its interpretation: an area
covers only where, an area covers both where and its surrounding regions and
an area covering neighbouring regions of where. The statistical data of a spatial
relationship in search needs to be maintained to record the option that a user
may choose in search processes, and the frequency that an option is chosen for
interpreting a spatial relationship 3.

The proposed techniques support iterative spatial query expansion. This is
necessary for several reasons. First, for some topics, inadequate documents may
exist on Web to describe them. Secondly, some information encoded in the on-
tologies, such as coefficient data which indicates the influence of a domain term
on the interpretation of a rel term, may not be as valid as they are supposed
to be, especially when experiments for obtaining these parameter values are too
expensive to perform exhaustively. Finally, query footprint will be derived by
2 Other spatial relationships need to be treated differently and our follow up paper

will elaborate on this.
3 This is achieved by maintaining a log file.

Ontology-Based Spatial Query Expansion in Information Retrieval 1473

taking some generic factors into accounts, while some specific types of query
may need to consider other factors, as stated in Section 3. Therefore it is desir-
able that that spatial query expansion can be performed iteratively when initial
search results are not satisfactory.

In what follows, we will use Q-footprinti to denote the query footprint gen-
erated at the i-th iteration of query expansion. We first describe how the initial
query footprint Q-footprint1 is computed, and then describe how query footprint
can be incrementally expanded when initial search results are inadequate. We
will use the geographical space (which covers the UK county “Oxfordshire” and
its surrounding area) shown in Figure 1 to illustrate the techniques proposed.

Fig. 1. Oxfordshire and its Surrounding Area

4.1 Initial Spatial Query Expansion

The following steps describe how Q-footprint1 is generated.

1. Though P-footprint of the where term is the starting point from which
Q-footprint1 is generated, the type of geometric operation that is performed
over P-footprint for generating Q-footprint1 is determined by rel. For ex-
ample, if rel is near, then a buffer operation needs to be performed over
P-footprint for generating Q-footprint1. Therefore the first step of computing
Q-footprint is to determine the type of geometric function required according
to rel. This is shown by using following function:

GeoOp = β(rel) (1)

where the function β maps a spatial relationship rel to a corresponding geo-
metric function name. For example, if rel is near, the function β will generate
value Buffer for GeoOp. Different rel terms result in query footprints of dif-
ferent orientation and geometries. Figure 2 shows some example query foot-
prints (polygons plotted with bold lines), when rel stands for near, outside-
of and north-of. When a query is in the form of 〈what, near, Oxfordshire〉,

1474 G. Fu, C.B. Jones, and A.I. Abdelmoty

Fig. 2. Different rel Terms Resulting in Different Query Footprints

Q-footprint is the space that covers both Oxfordshire and its surrounding
areas. Q-footprint for 〈what, outside-of, Oxfordshire〉 is quite similar to the
one for 〈what, near, Oxfordshire〉, but it only covers surrounding regions
of Oxfordshire. If a query is in the form of 〈what,north-of, Oxfordshire〉,
then the area that covers the north and northern part of Oxfordshire is
returned as Q-footprint.

2. To derive exact geographical coverage of Q-footprint1, a geometric function
GeoOp requires the following parameters:
(a) the P-footprint of the where term, and it can be retrieved from the

SPIRIT geo-ontology. This gives us the initial geometry from which
Q-footprint1 is to be generated;

(b) a geometric distance d that is required for extending P-footprint to gener-
ate Q-footprint1. The group of fuzzy rel terms studied in this paper deter-
mines that Q-footprint1 is generated by extending P-footprint at a spec-
ified distance in a certain way. For example, if rel is near, Q-footprint1
may be generated to cover areas extended from P-footprint at a specified
distance. If rel is north, Q-footprint1 may be generated to cove areas ex-
tended from the north part of P-footprint at a specified distance. The
exact distance d for geometric expansion is determined by the following:
i. the area size of P-footprint, and it is used to determine the initial

extension distance using the formula shown below:4

id =

√
area(P-footprint)

π
(2)

That is, the initial extension distance is assigned the approximate
radius of P-footprint;

ii. a coefficient p1 which determines the influence of the what term, this
can be retrieved from the SPIRIT domain ontology;

iii. a coefficient p2 which determines the influence of the where term,
that can be retrieved from the SPIRIT geo-ontology;

The exact expansion distance is therefore determined by the following:

d = id ∗ p1 ∗ p2 (3)
4 This formula is used in our preliminary study, and some more user and performance

experiments need to be carried out to validate it.

Ontology-Based Spatial Query Expansion in Information Retrieval 1475

Fig. 3. Different Interpretation of Spatial Relationship near

(c) As we mentioned earlier, each rel may have different interpretations. This
can either be chosen by a user or be derived from the SPIRIT log file
which encodes the most frequently used option for a specified rel. This is
assigned to parameter p3

5. For example, Figure 3 shows query footprints
when near is interpreted differently – one covers both the where and its
surrounding areas and another just covers the neighbouring regions of
where.

3. The parameters derived in step 2(a), 2(b) and 2(c) are passed on to the
geometric function GeoOp generated in Step 1 to derive Q-footprint1.

Q-footprint1 = GeoOp(P-footprint, d, p3) (4)

4.2 Iterative Spatial Query Expansion

When an initial search results fail to satisfy the user’s query need, our method re-
generates Q-footprint to cover some regions beyond that of Q-footprint1. This sec-
tion shows how this is achieved. Given 〈what, rel, where〉, we derive Q-footprinti
if the search results of Q-footprint1, . . . ,Q-footprinti−1 are not satisfactory6. The
procedure below describes how iterative spatial query expansion is performed:

1. derive Q-footprinti if the iteration criterion is satisfied (e.g. when search
result is not satisfactory after i-1 rounds of iteration). Q-footprinti can be
derived largely using spatial query expansion procedure described in Sec-
tion 4.1. The difference is that we further enlarge the geometric distance d
generated in the formula (3) according to:

d = d ∗ i (5)

5 That is, the most frequently used interpretation of rel is used by the system by
default. However, the SPIRIT user interface allows a user to choose other options as
well.

6 Various factors can control iterative query expansion process, e.g. a new iteration can
be triggered when no or few documents are retrieved in initial search, and iteration
can be interrupted if the allocated search time runs out. This is beyond the topic of
this paper and therefore will not be discussed further here.

1476 G. Fu, C.B. Jones, and A.I. Abdelmoty

2. subtract from Q-footprinti the area covered by Q-footprint1, . . . ,
Q-footprinti−1 so that to avoid spatial search redundancy:

Q-footprinti = Q-footprinti −
i−1∑
1

Q-footprintk (6)

Figure 4 shows query footprints that are progressively generated in order to
find documents for the query 〈airports, near, Oxfordshire〉, and we can see that
it has been spatially expanded three times in its effort to find spatially relevant
documents.

Fig. 4. Iterative Spatial Query Expansion

5 Implementation and Evaluation

To verify the spatial query techniques proposed, we have carried out some ex-
periments. In this section, we will demonstrate how query expansion techniques
are used in SPIRIT to improve search results, we also report on the experiments
which were carried out to study the time cost for performing spatial query ex-
pansion using SPIRIT ontologies.

Query expansion techniques are implemented using Java, and they interact
with SPIRIT ontology databases (composed of a domain ontology and a geo-
ontology) to compute query footprints. The domain ontology contains the terms
that are used in tourism area, and 2223 terms are encoded. The geo-ontology
contains geographical places of several European countries, including United
Kingdom, France, Germany and Switzerland, and 125,812 places are encoded.
Both domain and geo-ontology are stored in Oracle 9.2.0. Once a query foot-
print is generated, it is feed to SPIRIT search component to retrieve the relevant
documents. All experiments were carried out on a Pentium 4 PC with a 2.00
GHz processor and 516 MB of memory, running Microsoft Windows/XP. The
SPIRIT adopts a distributed architecture (see [17] for details), and query expan-
sion services talks to other components of the system through Apache SOAP.

Ontology-Based Spatial Query Expansion in Information Retrieval 1477

5.1 Precision Study

This section demonstrates the effectiveness of the spatial query expansion tech-
niques proposed. This is achieved by comparing the search results obtained by
the SPIRIT system when spatial query expansion option is either switched on
and off. When spatial query expansion is on, the SPIRIT system performs query
expansion using techniques proposed, search is carried out basing on both the
spatial and the textual index of web collection, and relevant ranking is performed
using techniques proposed in [26]. When spatial query expansion is off, all query
terms (including spatial and non-spatial ones) are send to the search component
to perform a textual based search, and BM25 proposed in [23] is used to rank the
search results.

Table 1. Search Topics

query 1 〈castles, inside, Cardiff〉
query 2 〈castles, near, Cardiff〉
query 3 〈castles, north-of, Cardiff〉
query 4 〈castles, outside-of, Cardiff〉

The experiments were carried out using a set of queries (shown in Table 1).
The queries involve rel terms inside, near, north-of and outside-of. Since other
rel terms such as south-of and east-of are treated similarly with north-of using
our techniques, we consider the set of rel terms are sufficient for evaluation pur-
poses. The results produced from running these queries were analysed for P10
(precision at 10) accuracy. The top ten results were examined by human users to
judge their spatial relevance to the given queries. To help with judging spatial rel-
evance of the retrieved documents, the UK city Cardiff and its surrounding areas,
which are familiar to the intended users, were chosen for the queries to focus on.

A retrieved document was classified as three types in our experiments: rel-
evant, irrelevant, and partially relevant. The first two types are easy to under-
stand. A document is classified as partially relevant it is not designed to describe
the search topic but it contains a link that points to a relevant page, e.g. a di-
rectory page. We note that a rel term can be interpreted differently using our
system, however due to human effort required, we were only able to perform ex-
periments for a fixed number of settings. Table 2 shows the experiment results,
where columns 3, 4, 5 display the numbers of relevant, partially relevant and
irrelevant documents retrieved.

When rel term is inside, the query footprint Q-footprint is P-footprint of
where. It is not obvious that the search system performed better when spatial
query expansion option was switched on. However, with query expansion op-
tion switched on, we observed that documents, which describe castles in terms
of subareas of Cardiff, or alternative names of Cardiff, i.e. Caerdydd, were re-
trieved. This did not happen when query expansion option was switched off.
The main reason for this is that our spatial query expansion is footprint-based,
and retrieved documents are the ones whose documents footprints fall in query

1478 G. Fu, C.B. Jones, and A.I. Abdelmoty

Table 2. Experimental Results

query spatial query expansion relevant partially relevant irrelevant
1 off 3 6 1

on 2 6 2
2 off 1 3 6

on 5 5 0
3 off 2 3 5

on 4 6 0
4 off 0 4 6

on 5 4 1

footprint. Different documents may have different geographical terms in their
text, but if these geographical terms refer to same places, these documents have
the same document footprints, which all fall in Q-footprint. Documents specified
in term of subareas of where have footprints which are subsets of Q-footprint,
therefore are retrieved as well.

When rel term is near, Q-footprint were generated covering P-footprint of
where plus its surrounding areas. The search system performed better with
spatial query expansion switched on – the top 10 retrieved documents are either
relevant or partially relevant. The footprint-based query expansion enabled us to
retrieve documents which describes castles not only in Cardiff but also in places
like Caerphilly, Newport, Dinas Powys, Abergavenny and Swansea. Since these
places are geographically close to Cardiff, the retrieved documents are spatially
relevant to the query. When spatial query expansion was off, it appeared that all
retrieved documents involve the terms castles, near and Cardiff. Unfortunately,
many of these documents do not actually describe castles in or near to Cardiff .

When rel term is north-of, Q-footprint were generated covering northern part
of where plus areas that are north of where. From Table 2, we can see that the sys-
tem performed considerably better when spatial query expansion was switched
on. The reason is the same with near – the footprint-based query expansion
enables us to retrieved documents whose footprints satisfy specified geometric
relationship with query footprint. However, when spatial query expansion was
off, many documents retrieved are the ones which happen to have the terms
castles, north-of and Cardiff presented, but do not actually describe castles in
the northern or north of Cardiff.

When rel term is ouside-of, Q-footprint were generated covering only sur-
rounding area of where. Same with near and north-of, the system presented its
inability to deal this type queries when spatial query expansion was off, whereas
it performed considerably better when spatial query expansion option was on.

5.2 Time Cost Study

Due to the complexity of the original geometric footprint of a place, only two
approximation representations of a footprint, MBR and convex hull polygon,

Ontology-Based Spatial Query Expansion in Information Retrieval 1479

were utilised to deal with spatial query expansion in SPIRIT. An MBR is the
minimum bounding rectangle of a geometry object, and a convex hull polygon
is the smallest convex polygon that completely encloses a geometry object.

We first compared the time costs of query expansion by using MBRs and
convex polygons, and the mean response time of using two types of footprint for
query expansion is shown in Figure 5.

Fig. 5. Response Time of Query Expansion by using MBRs and Convex Polygons

From Figure 5, we can observe that it requires more CPU time to derive
query footprint using convex polygon than using MBR. This is mostly due to
the complex nature of convex polygons. A MBR is composed of two coordinate
points, while a convex polygon can have more coordinate points, ranging from 7
to 38 according to our geographical ontology. However, the CPU time required
for deriving query footprints using both MBR and convex polygon are in a range
that is acceptable in a SOAP-based distributed search environment, i.e. about
60 milliseconds for MBR and about 210 milliseconds for convex polygon.

We then studied the time cost of query expansion using convex polygons with
different complexity, i.e. convex polygons composed of different numbers of coor-

Fig. 6. Impact of Coordidnate Point Number

1480 G. Fu, C.B. Jones, and A.I. Abdelmoty

dinate points, and the result is shown in Figure 6. As we can see, that response
time increases with number of coordinate points – the more coordinate points
a convex polygon has, the more CPU time is required for deriving the query
footprint. This increase is obvious when dealing with spatial relationships north,
south, east and west. However, for all spatial relationship terms, the increase
displays a linear tendency.

6 Conclusions

In this paper we have introduced an ontology-based spatial query expansion
method that supports retrieval of documents that are considered to be spatially
relevant. The proposed method expands a spatial query by trying to derive
its geographical query footprint, and it is specially designed to resolve a query
that involves a fuzzy spatial relationship. Both a domain and a geographical
ontology are employed to support spatial query expansion. Various factors are
taken into consideration for supporting intelligent expansion of a spatial query,
and proposed method also supports iterative spatial query expansion when initial
spatial searches are not satisfactory. Our experiments show that the proposed
method can considerably improve search results when a query involves a fuzzy
spatial relationship, and experiments also show that proposed method works
efficiently using realistic ontologies in a distributed spatial search environment.
The method reported in this paper is proposed to deal with a group of spatial
relationships that frequently appear in spatial search, and how to resolve other
spatial relationships, e.g. between, still requires further investigation.

Acknowledgement

This work is funded by Grant IST-2001-35047 from EC Fifth Framework Pro-
gramme.

References

1. R. Attar and A. S. Fraenkel. Local Feedback in Full-Text Retrieval Systems.
Journal of the ACM, 24(3):397–417, July 1977.

2. S. Bressan, B. Ooi, and F. Lee. Global Atlas: Calibrating and Indexing Documents
from the Internet in the Cartographic Paradigm. In Proceedings of the 1st Inter-
national Conference on Web Information Systems Engineering, volume 1, pages
117–124, 2000.

3. O. Buyukokkten, J. Cho, H. Garcia-Molina, L. Gravano, and N. Shivakumar. Ex-
ploiting Geographical Location Information of Web Pages. In Proceedings of Work-
shop on Web Databases (WebDB’99) held in conjunction with ACM SIGMOD’99.
ACM press, 1999.

4. D. Cai, C. J. Rijsbergen, and J. M. Jose. Automatic Query Expansion based
on Divergence. In H. Paques, L. Liu, and D. Grossman, editors, Proceedings of
the Tenth International Conference on Information and Knowledge Management
(CIKM-01), pages 419–426, New York, Nov. 5–10 2001. ACM Press.

Ontology-Based Spatial Query Expansion in Information Retrieval 1481

5. C. Carpineto, R. de Mori, G. Romano, and B. Bigi. An Information-Theoretic
Approach to Automatic Query Expansion. ACM Transactions on Information
Systems, 19(1):1–27, 2001.

6. C.B. Jones and R. Purves and A. Ruas and M. Sanderson and M. Sester and
M.J. van Kreveld and R. Weibel. Spatial Information Retrieval and Geograph-
ical ontologies: an Overview of the SPIRIT Project. In Proceedings of the 25th
Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 387–388, 2002.

7. H. Cui, J. Wen, and M. Li. A Statistical Query Expansion Model Based on Query
Logs. Journal of Software, 14(9):1593–1599, 2003.

8. D. Egnor. http://www.google.com/programming-contest/winner.html.
9. J. Ding, L. Gravano, and N. Shivakumar. Computing Geographical Scopes of Web

Resources. In Proceedings of the 26th Very-Large Database (VLDB) Conference,
pages 546–556. Morgan Kaufmann, 2000.

10. E. N. Efthimiadis. Query Expansion. In M. E. Williams, editor, Annual Review of
Information Science and Technology, volume 31, pages 121–187. American Society
for Information Science, 1996.

11. G. Fu, C. Jones, and A. I. Abdelmoty. Building a Geographical Ontology for
Intelligent Spatial Search on the Web. In Proceedings of IASTED International
Conference on Databases and Applications, pages 167–172. Spriner Verlag, 2005.

12. GBdirect Ltd. SomeWhere Near. http://somewherenear.com/.
13. Google. Google Location Search. http://local.google.com/lochp.
14. I. Horrocks and P. F. Patel-Schneider. Reducing OWL entailment to description

logic satisfiability. In D. Fensel, K. Sycara, and J. Mylopoulos, editors, Proc. of
the 2003 International Semantic Web Conference (ISWC 2003), number 2870 in
Lecture Notes in Computer Science, pages 17–29. Springer, 2003.

15. K. Järvelin, J. Kekäläinen, and T. Niemi. ExpansionTool: Concept-Based Query
Expansion and Construction. Information Retrieval, 4(3/4):231–255, 2001.

16. C. Jones, A. Abdelmoty, and G. Fu. Maintaining Ontologies for Geographical Infor-
mation Retrieval on the Web. In Proceedings of OTM Confederated International
Conferences CoopIS, DOA, and OOBASE, pages 934–951. Spriner Verlag, 2003.

17. C. Jones, A. I. Abdelmoty, D. Finch, G. Fu, and S. Vaid. The SPIRIT Spatial
Search Engine: Architecture, Ontologies and Spatial Indexing. In Proceedings of
the 3rd International Conference on Geographic Information Science, pages 125–
139.

18. C. Jones, D. Tudhope, and H. Alani. Augmenting Thesaurus Relationships: Pos-
sibilities for Retrieval. Journal of Digital Information, 1(8), Jan. 15 2001.

19. O. Lassila and R. R. Swick. Resource description framework (rdf)
model and syntax specification. W3C Recommendation, 1999. Available at
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

20. R. Mandala, T. Tokunaga, and H. Tanaka. Combining General Hand-Made and Au-
tomatically Constructed Thesauri for Query Expansion in Information Retrieval.
In D. Thomas, editor, Proceedings of the 16th International Joint Conference on
Artificial Intelligence (IJCAI-99-Vol2), pages 920–925, S.F., July 31–Aug. 6 1999.
Morgan Kaufmann Publishers.

21. K. McCurley. Geospatial Mapping and Navigation of the Web. In Proceedings of
Tenth International World Wide Web Conference, page Session P7. ACM press,
2001.

22. Mirago: Mirago the UK Search Engine. http://www.mirago.co.uk/.
23. S. E. Robertson, S. Walker, M. Hancock-Beaulieu, and M. Gatford. Okapi at

TREC-3. In Proceedings of the 3rd Text REtrieval Conference (TREC3).

1482 G. Fu, C.B. Jones, and A.I. Abdelmoty

24. D. A. Smith and G. S. Mann. Bootstrapping Toponym Classifiers. In Proceedings
of the HLT-NAACL 2003 Workshop on Analysis of Geographic References, pages
45–49.

25. K. Sparck Jones. Automatic Keyword Classification and Information Retrieval.
Butterworths, London, 1971.

26. M. van Kreveld, I. Reinbacher, A. Arampatzis, and R. van Zwol. Distributed
Ranking Methods for Geographic Information Retrieval. In Proceedings of 11th
Int. Sympos. on Spatial Data Handling: Developments in Spatial Data Handling,
pages 231–243.

27. Vicinity.com. http://home.vicinity.com/us/mappoint.htm.
28. E. M. Voorhees. Query Expansion Using Lexical-Semantic Relations. In W. B.

Croft and C. J. van Rijsbergen, editors, Proceedings of the 17th Annual Interna-
tional ACM-SIGIR Conference on Research and Development in Information Re-
trieval. Dublin, Ireland, 3-6 July 1994 (Special Issue of the SIGIR Forum), pages
61–69. ACM/Springer, 1994.

29. W3C. Semantic Web. http://www.w3.org/2001/sw/, 2004.
30. J. Xu and W. B. Croft. Query expansion using local and global document anal-

ysis. In Proceedings of the 19th annual international ACM SIGIR conference on
Research and development in information retrieval, pages 4–11. ACM Press, 1996.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1483 – 1499, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Security Ontology for Annotating Resources

Anya Kim, Jim Luo, and Myong Kang

Center for High Assurance Computer Systems,
Naval Research Laboratory, Washington, DC 20375
{kim, luo, mkang}@itd.nrl.navy.mil

Abstract. Annotation with security-related metadata enables discovery of
resources that meet security requirements. This paper presents the NRL
Security Ontology, which complements existing ontologies in other domains
that focus on annotation of functional aspects of resources. Types of security
information that could be described include mechanisms, protocols, objectives,
algorithms, and credentials in various levels of detail and specificity. The NRL
Security Ontology is more comprehensive and better organized than existing
security ontologies. It is capable of representing more types of security
statements and can be applied to any electronic resource. The class hierarchy of
the ontology makes it both easy to use and intuitive to extend. We applied this
ontology to a Service Oriented Architecture to annotate security aspects of Web
service descriptions and queries. A refined matching algorithm was developed
to perform requirement-capability matchmaking that takes into account not only
the ontology concepts, but also the properties of the concepts.

1 Introduction

In today’s network-centric computing environment, automatic discovery of resources
and the ability to share information and services across different domains are important
capabilities [1]. The first step in providing these capabilities is to markup these
resources with various metadata in a well-understood and consistent manner. Such
annotation will enable resources to be machine-readable and machine-understandable.

Using metadata to find distributed resources that meet one’s functional
requirements is only the first step. Resource requestors may have additional
requirements such as security, survivability, or quality of service (QoS) specifications.
For example, they may require resources to possess a certain military classification
level, to originate from trusted sources, or to be handled according to a specified
privacy policy. Therefore, resources need to be sufficiently annotated with security-
related metadata so that they can be correctly discovered, compared, and invoked
according to security as well as functional requirements of the requestor.

In this paper, we introduce a set of security-related ontologies collectively referred
to as the NRL Security Ontology. The NRL Security Ontology provides the ability for
precisely describing security concepts at various levels of detail. This ontology
complements existing ontologies that mainly focus on functional aspects of capability,
content, and parameters. Marking up security aspects of resources is a crucial step
toward deploying a secure Service Oriented Architecture (SOA) system.

1484 A. Kim, J. Luo, and M. Kang

Other groups have recognized the need for security annotation of services and
proposed a set of security-related ontologies [2-4]. However, these ontologies possess
certain limitations discussed in Section 2. The NRL Security Ontology was created to
address these limitations. We expect this work to serve as a catalyst in the
development of standardized security-related ontologies with contributions from both
the security community and the semantic Web community.

The rest of the paper is organized as follows. Section 2 examines previous work in
security ontology and discusses the need for improvements. Section 3 presents the
NRL security ontology, including design objectives, domain and scope, and detailed
descriptions. Section 4 gives examples of how to use these ontologies to annotate and
query for resources particularly in a Web service context. It also discusses our
algorithm for matchmaking between queries and resource descriptions. Section 5
presents future work and our conclusion.

2 Existing Security-Related Ontologies

Realization of the need for security ontologies is not new. Denker et al. have created
several ontologies for specifying security-related information in Web services [2] using
Daml+OIL [5] and later OWL [6]. We refer to this set of ontologies as the DAML
Security Ontology for the rest of the paper. The authors state that the goal of these
ontologies is to enable high-level markup of Web resources, services, and agents, while
providing a layer of abstraction on top of various Web service security standards such as
XML-Enc [7], XML-Dsig [8], and SAML (Security Assertion Markup Language) [9].

Of the set of ontologies that make up the DAML security ontology, the two main
ontologies are the Security Mechanisms ontology and the Credential ontology. They
describe security mechanisms and authentication credentials respectively. While we
realize that these ontologies are works-in-progress and provide a great foundation for
describing security-related concepts, we found two issues with them. First, they are
not intuitive to understand especially in terms of the organization of subclass
relationships. Second, they cannot express all the security information that we want to
describe or be easily extended to do so.

The intuitiveness issue is particularly true for the main Security Mechanisms
ontology. Figure 1 depicts this ontology in a simplified form where circles denote
classes, solid lines represent instances of the classes and dotted lines represent
properties1. The top class in this ontology is ‘SecurityMechanism’ with subclasses of
‘SecurityNotation’, ‘Signature’, ‘Protocol’, ‘KeyFormat’, ‘Encryption’, and ‘Syntax’.
Making these unrelated concepts sibling classes does not make sense from either a
security perspective or an ontology perspective. Furthermore, some instances are not
properly assigned to the correct subclass. For example, Kerberos and SSH are both
declared as instances of ‘KeyProtocol’, however these are not key protocols.
Additionally, all properties are defined for the top class. However, those properties do
not apply to most of the subclasses. For example, no instance under the ‘Syntax’
subclass would have a need for the relSecNotation (Relative Security Notation), enc
(Encryption), sig (Signature), or reqCredential (Required Credential) properties, yet
they are all inherited because these properties are defined at the top class.

1 Some complex concepts they use such as restriction classes are not depicted here.

 Security Ontology for Annotating Resources 1485

Security
Mechanism

SecurityNotation Signature Keyformat EncryptionProtocol Syntax

Key
Protocol

DataTransfer
Protocol

KeyRegistration
Protocol

KeyInformation
Protocol

Authentication

Authorization

AccessControl

DataIntegrity

Confidentiality

Privacy

ExposureControl

Anonymity

Negotiation

Policy

PolicyLanguage

KeyDistribution

documentation (range:&Bibtex_entry)

syntax (range: Syntax)

relSecNotation (range: SecurityNotation)

enc (range: Encryption)

sig (range: Signature)

reqCredentials (&ComposedCredential)

(properties)

ASCII

DAMLOIL

OWL

DER

XML

Binary

Radix-64_ASCII

ASN.1

MIME

XML_DigSig

SMIME_DigSig

OPENPGP_DigSig XML_Enc

OPENPGP_Enc

SMIME_Enc

SAML
X.509

Kerberos
OPENPGP
SSH
XKISS

HTTP
SOAP

X_KISSX_KRSS

Fig. 1. Simplified DAML Security Mechanisms Ontology

The second issue we mentioned is the lack of expressiveness. The DAML security
ontology includes many classes and instances that are not directly relevant for
security annotation while lacking others that are necessary. For example, syntax and
data transfer protocols are useful concepts in another domain, but are not particularly
relevant for describing security-related information. Furthermore, the only encryption
instances defined in the ontology are S/MIME, OpenPGP, and XML encryption. We
do realize that more instances could be added as the need arises. However, the
organization of the class hierarchy should be well developed. For example, there
should be classes to represent military as well as commercial security devices and
security policies. Currently, there is no appropriate place in the DAML Security
Ontology to create a firewall or military security policy instance. There is also a lack
of appropriately placed properties that could allow for more detailed refinement of
security concepts. For example, it would be useful to define the algorithms supported
by a protocol, or the certification status of a mechanism.

Although the authors of the DAML Security Ontology did a great job in
recognizing the need for security ontologies and beginning work in security
ontologies, we feel that there is still room for improvement. The next section
describes the NRL Security Ontology in detail.

3 NRL Security Ontology

The DAML Security Ontology focuses on annotation of Web services rather than
resources in general. This is evident not only from their documentation [2], but also

1486 A. Kim, J. Luo, and M. Kang

by examining the types of classes and instances in the ontology. We want ontologies
that can be used to annotate generic resources from simple documents to interactive
services with security-related metadata. We also want to improve upon the limitations
of the DAML Security Ontology outlined in the previous section. The NRL Security
Ontology was designed with the following objectives in mind:

1. Describe security related information applicable to all types of resources
2. Provide the ability to annotate security related information in various levels

of detail for various environments (both commercial and military)
3. Create ontologies that are easy to extend and provide reusability
4. Facilitate mapping of higher-level (mission-level) security requirements to

lower-level (resource-level) capabilities

3.1 Domain and Scope of the Ontology

When creating an ontology, one of the most important factors is the domain and scope
in which it will be used [10]. While our objectives outlined above are a good starting
point, in order to create ontologies that will be truly useful, we need to understand the
types of questions that the ontology will be expected to answer.

These ontologies will be used by both the resource provider and the requestor to
express their security requirements and capabilities. We must consider the various ways
that the same statement can be expressed. Furthermore, we need to consider statements
that are unlikely in order to limit the scope of the ontology. Statements that are either
too broad or too specific are unlikely to be used and provide no useful information.

Noy et al. [10] state that one of the best ways to determine the scope of the
ontology is to list a set of competency questions that can be answered using the
ontology. For our purposes we did the same by composing a list of security
requirements and capabilities for both the resource requestor and the provider. From
the requestor’s perspective, security requirements can be stated in terms of specific
mechanisms or in terms of abstract security objectives. From the resource provider’s
perspective, security requirements are similar to the notion of policy and can express
concepts such as authentication and access control. The provider’s capabilities include
protocols and mechanisms that the provider possesses and security policies it adheres
to. The actual list of the requirements and capabilities statements we created can be
found in the extended version of this paper [11].

3.2 Organizational Structure of NRL Security Ontology

We chose OWL to create our ontologies because it provides a rich vocabulary for
describing classes and properties [6, 12]. It is widely used in many communities that
have begun to develop ontologies of their own knowledge domains [13].

There are seven separate ontologies that make up the NRL Security Ontology:

1. Main Security ontology: an ontology to describe security concepts
2. Credentials ontology: an ontology to specify authentication credentials
3. Security Algorithms ontology: an ontology to describe various security algorithms
4. Security Assurance ontology: an ontology to specify different assurance standards
5. Service Security ontology: an ontology to facilitate security annotation of semantic

Web services

 Security Ontology for Annotating Resources 1487

6. Agent Security ontology: an ontology to enable querying of security information
7. Information Object ontology: an ontology to describe security of input and output

parameters of Web services

The Service Security, Agent Security, and Information Object ontologies are based
on some existing DAML Security ontologies while the others are new. The
Credentials, Security Algorithms, and Security Assurance ontologies provide values
for properties defined for concepts in the Main Security ontology. They enable those
concepts to be described in more detail with respect to types of credentials used,
supported algorithms, and associated levels of assurance. The Service Security
ontology provides the means to use security concepts from the Main Security
ontology in the Web services framework. The Agent Service ontology enables
creation of security-related queries using security concepts from the Main Security
ontology. The Information Object ontology allows for annotation of Web service
inputs and outputs using the Security Algorithms ontology. The relationship among
these ontologies is represented in Figure 2. The ontology depicted in gray represents
OWL-S, a set of core ontologies used to describe Web services.

Main Security
Ontology

Credentials
Ontology

Security
Algorithms
Ontology

Property to specify
type of credential

Property to specify
security algorithm

Information
Object
Ontology

Link to OWL-S
Ontology by
subclass

Service
Security
Ontology

Link to OWL-S
Ontology by
subclass

Property to specify
security algorithms

Security
Assurance
Ontology

Property to specify
assurance level

Agent
Security
Ontology

Allows for
querying

Property to specify
assurance level

OWL-S
Ontology
OWL-S
Ontology

Property to specify
security concepts as
requirements and
capabilities

Property to specify security
concepts as requirements
and capabilities

Fig. 2. Graphical Representation of Security-Related Ontologies and Their Relationships

1488 A. Kim, J. Luo, and M. Kang

Next, we present a brief explanation of classes, properties and relationships in each
ontology. Due to space limitations we do not show all ontologies here. A complete
graphical depiction of these ontologies and the OWL files can be found in [11].

Main Security Ontology (securityMain.owl). The core ontology in the NRL
security ontology set is the Main Security ontology (Figure 3). It imports the
Credentials ontology, Security Algorithms ontology, and Security Assurance ontology
as object properties. The top class, ‘SecurityConcept’ possesses three subclasses:
‘SecurityProtocol’, ‘SecurityMechanism’ and ‘SecurityPolicy’.

While some may argue that the distinction between security protocols and security
mechanisms is blurred, we define security protocols as an agreed upon series of steps
to accomplish a task while security mechanisms are implementations of protocols
[14]. We specifically differentiate them here to provide the ability to describe security
in both manners. Security policies are the set of rules that regulate how information is
protected and secured .

SecurityConceptSecurityObjective

SecurityPolicySecurityMechanism

Confidentiality

UserAuthentication

MessageIntegrity

Availability

Authorization

Trust

HostTrust

SecurityProtocol

CommercialPolicy MilitaryPolicy

BLPClarkWilson

ChineseWall

supportsSecurityObjective
Range:SecurityObjective class (multiple)

HostMechanism NetworkMechanism
Application
Mechanism

RBAC

Safehost VPN

MLSPump

OnionRouter

ReplayPrevention

Restriction Class
{supportsSecurityObjective
= “Authorization”}

KeyManagement

MessageAuthentication

CovertChannelPrevention

hasAlgorithm
Range: &SecurityAlgorithms;
Algorithm

Separation
ServiceMechanism

hasAssurance
Range: &SecurityAssurance;
Assurance

SoapFirewall
VMM

hasAssurance
Range: &SecurityAssurance;
Assurance

TrafficHiding

reqCredential
Range: &Credentials;SimpleCredential

Anonymity

Fig. 3. A Part of the Main Security Ontology

The Main Security ontology also has a separate class called ‘SecurityObjective’ that
enables users to specify security objectives for the ‘SecurityConcept’ class using the
suppotsSecurityObjective property. For example, IPSec is declared to have
Confidentiality, MessageAuthentication, and TrafficHiding as its
supportsSecurityObjective property values. Security objectives also enable users to
search for protocols, mechanisms, or policies based on the security objective they
require. For example, users can query, “find all instances that provide confidentiality”
and receive a list of all the security concepts that have a value of Confidentiality in
their supportsSecurityObjective property.

 Security Ontology for Annotating Resources 1489

Another way we can use ‘SecurityObjective’ is to map high-level mission
requirements to low-level service requirements. For instance, assume that a security
requirement is specified at the mission level such that Mission 1 and Mission 2 must
have separation between them. At this level, the mission planner can use the ontology
to specify the security objective of Separation. The mission designer can then search
for instances in the ‘SecurityConcept’ class that provide Separation. In this case, the
only one that does is VPN, so he can select VPN as a security requirement at the
service level.

Credentials Ontology (credentials.owl). Authentication is one of the most
fundamental security requirements in a networked environment. The Credentials
ontology allows for specification of credentials used for authentication purposes
(Figure 4). Concepts in the Security Main ontology can refer to a specific credential
through their reqCredential property. While we adopted some of the notations in the
DAML Credential ontology, we improved upon it by reorganizing classes to be more
intuitive, including more properties and adding more classes to define additional types
of credentials. Our Credentials ontology categorizes credentials into physical token,
electronic token, and biometric token.

Credential

ElectronicToken

Debit
Card

OnetimePasswdCookiePassword Certificate

BiometricToken

Passport Badge
Drivers
License

Credit
Card

Military
ID Voice Fingerprint

X.509Certificate

name
value
path

version
serialNumber
issuer
notBefore
notAfter

RBACCertificate

role

PhysicalToken

CACCard

Smart
Card

expDate

minLength

Address

atAddress

IPAddress Domain

CryptographicKey

PrivateKey DigitalSignature

MultifactorCredential

withCredential (minCardinality=2)

MultifactorCredential

withCredential (minCardinality=2)

Fig. 4. Credentials Ontology

Under the ‘PhysicalToken’ class, we kept many of the classes from the DAML
Credential ontology under their ‘IDCard’ class. In addition, we created a class to
describe military IDs and an instance to represent CAC (Common Access Card) cards
used in the military. The ontology can be extended to add properties such as issuing
agency, expiration date, issue date, etc. Under the ‘ElectronicToken’ class, we

1490 A. Kim, J. Luo, and M. Kang

provide subclasses that enable authentication based on host address, certificates,
passwords, and cryptographic keys to name a few. Additional properties were added
to describe certificates including the issuer, version and serial number under the
Certificate class. In order to support role-based (RBAC) certificates [15], an
‘RBACCertificate’ class was created as a subclass of the Certificate class with a role
property. The ‘BiometricToken’ class represents credentials that pertain to human
traits. For now, only ‘Voice’ and ‘Fingerprint’ subclasses are defined here.

In addition to the three categories of simple credentials, the ‘MultifactorCredential”
class can be used to describe composed credentials made up of two or more individual
credentials. For example, it can describe requirements where both a smart card as
well as a password is needed.

Security Algorithms Ontology (securityAlgorithms.owl). The Security Algorithms
ontology was created to enable description of various security algorithms (Figure 5).

EncryptionAlgorithm

Algorithm

SignatureAlgorithmKeyExchangeAlgorithm

SymmetricAlgorithm AsymmetricAlgorithm

DES (keylength = 64)

AES

Blowfish

TripleDES (hasNSALevel = &assurance;type3)

RSA

ECC

HashAlgorithm MACAlgorithm

SHA-1

MD4

Diffie_Hellman
Oakley

modeofOperation

CAST

keyLength

ChecksumAlgorithm

isNISTStandard

hasNSALevel

CRC-16

CRC-8

CRC-32
KEA

RIPEMD

MD5

HMAC

SHA-256 CBC-MAC

Skipjack (hasNSALevel = &assurance;type2)

CRAYON (hasNSALevel = &assurance;type1)

Fig. 5. Security Algorithms Ontology

Security Assurance Ontology (securityAssurance.owl). The Security Assurance
ontology provides a way to describe standardized assurance methods for security
protocols, mechanisms, and algorithms. They can be described in terms of their
assurance level using the hasAssurance property from the Main Security ontology.
The ‘Assurance’ class is classified according to different assurance methods:
‘Standard’, ‘Accreditation’, ‘Evaluation’, and ‘Certification’. This ontology is the
least compete of all our ontologies. However, we have added classes to describe the
Common Criteria and TCSEC evaluations, and the FIPS and NSA standards [16].

 Security Ontology for Annotating Resources 1491

Service Security and Agent Security Ontologies (serviceSecurity.owl and
agentSecurity.owl). OWL-S [17] is an OWL-based semantic markup description
language that provides a core set of constructs for describing Web services specifically.
It provides a set of ontologies called Profile, Process, and Grounding to describe Web
services. The Profile describes services in terms of what the service does, the Process
describes how to use it, and the Grounding specifies how to interact with it.

&profile:ServiceParameter

&SecurityMain;SecurityConcept

securityRequirement (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

securityCapability (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

&SecurityMain;SecurityObjective

&profile;Profile

serviceParameter (range: ServiceParameter)

Fig. 6. Service Security Ontology

In order for the NRL Security Ontology to be used in the Web service context, a link
must be made to the OWL-S ontologies. The Service Security ontology was developed
for such a purpose. In the Service Security Ontology, ‘SecurityConcept’ and
‘SecurityObjective’ from the Main Security ontology are defined to be subclasses of the
‘ServiceParameter’ class in the OWL-S Profile ontology (Figure 6). The OWL-S Profile
also contains a serviceParameter property that can have ServiceParameter as its value2.
Declaring two subproperties of the serviceParameter property, securityRequirement and
securityCapability enables the OWL-S Profile to include security requirements and
security capabilities in its service description. Furthermore, we defined the range for
these subproperties as either the ‘SecurityConcept’ or ‘SecurityObjective’ classes. This
allows security requirements and capabilities to be stated in terms of either a particular
security objective, or a specific security mechanism.

The Agent Security ontology allows for querying of resources, in particular Web
services with requestor requirements and capabilities. It defines an ‘Agent’ class to
represent the service requestor with the properties securityCapability and
securityRequirement that can hold values from the ‘SecurityConcept’ and
‘SecurityObjective’ classes.

Information Object Ontology (InfObj.owl). The Information Object ontology is
based on a DAML ontology created to capture encrypted or signed input/output data

2 Note that the OWL-S Profile ontology has a property and class of the same name, service

parameter. However, the property starts with a lowercase letter, while the class starts with an
uppercase letter. Thus, serviceParameter refers to a property while ServiceParameter refers to
a class.

1492 A. Kim, J. Luo, and M. Kang

of Web services. It has an ‘InfObj’ class and two subclasses, ‘EncInfObj’ (Encrypted
Information Object) and ‘SigInfObj’ (Signed Information Object). The ‘InfObj’ class
is used as the range for input and output parameters of services described with OWL-
S. The ontology has the cryptoAlgUsed property to specify the algorithm used to
encrypt or sign the object. In the original DAML ontology, the cryptoAlgUsed
property pointed to a set of algorithms defined within the DAML Information Object
ontology. However, we felt that the two concepts of information object and security
algorithms were so dissimilar that they did not belong within the same ontology file.
Hence, in the NRL Information Object ontology, the cryptoAlgUsed property points
to classes in the Security Algorithms ontology.

3.3 Design Objectives Revisited

At the beginning of Section 3 we outlined a set of objectives expected to be achieved
by the NRL Security Ontology. This subsection discusses whether those design
objectives were met and to what degree.

1. Describe security related information not only for Web services, but for all
types of resources: The NRL Security Ontology enables us to describe security
information of various types of resources. We can describe security protocols that
are specific to Web services such as XML-enc and SAML, but also include many
protocols and mechanisms such as IPSec, Kerberos and SSH that are generally
applied to any resource.

2. Provide the ability to annotate security related information in various levels of
detail for various environments: The ontology can provide specific details of
security mechanisms through properties such as the types of algorithms supported,
required key length, types of credentials used, and expiration dates. Classes and
instances were created that enable description of resources relevant to a military
environment as well as for commercial use.

3. Create ontologies that are easy to extend and provide reusability: The
ontologies are created with a class hierarchy that makes sense from a security
perspective. New instances when necessary can be added to the ontology in an
intuitive manner with out having to alter the class hierarchy.

4. Facilitate mapping of higher-level (mission-level) security requirements to
lower-level (resource-level) capabilities using the ontology: resources can be
described in terms of either security objectives at the abstract level, or security
concepts at the concrete level. A mapping was established so that moving between
the two methods of specification is possible.

In the next section, we will provide some examples of how to apply these
ontologies to annotate resources with security information.

4 Application of NRL Security Ontology to a Service Oriented
Architecture

While the NRL Security Ontology can be used to describe security-related
information of resources in general, in this section we discuss how to annotate Web
services in a Service Oriented Architecture. In particular, we focus on:

 Security Ontology for Annotating Resources 1493

• How to annotate Web service descriptions with security requirements and
capabilities

• How to create queries for finding Web services with given security requirements
and capabilities

• How to perform matchmaking between queries and service descriptions in the
SOA context.

4.1 Reasoning and Matching Algorithm

We have stated that both resource requestors and providers have security requirements
and capabilities. Matchmaking looks for a two-way correspondence between these
requirements and capabilities. In other words, service requirements are compared to
requestor capabilities and service capabilities are compared to requestor requirements.
In order for a match of security concepts to occur between a service provider and a
service requestor, two conditions should be met. First, the provider’s security
capabilities should satisfy the requestor’s security requirements. Second, the provider’s
security requirements should be satisfied by the requestor’s security capabilities. This
implies that the requirements should subsume the capabilities (Table 1).

Table 1. The Matching between Requestor and Provider Requirements and Capabilities

Requestor Provider
Requirements ⊆ Capabilities
Capabilities ⊇ Requirements

Every single requestor requirement must have a corresponding capability on the
provider side to satisfy it, and vice versa. Hence the matchmaker must be able to
perform two tasks. First, it must be able to determine the level of match for each
specific requirement and a specific capability. Second, it must use those levels of
match to determine if the set of requirements is matched by the set of capabilities. In
other words, the matchmaker must determine the level at which each requirement is
matched to a capability, and then the overall level of match between the requester and
the provider. This will be explained in detail later in the section.

Several semantic matching algorithms have been proposed [2, 18, 19]. Two of these
[18, 19] support only one-way matching of functional service descriptions to
requestor queries as opposed to requirement-capability matching. They do not need to
consider two-way matching since their focus is on matching functional aspects; when
discussing purely functional requirements there is no functional requirement from the
provider-side and no functional capabilities on the requestor-side. The third proposed
matchmaking algorithm [2] performs requirement-capability matching for both sides.
However, it does not take into account property attributes. Consequently, it will not
support cases where both the requirement and capability point to the same concept but
the concepts are annotated with different properties. For example, the requestor and
provider may both use SSH (stated as a requirement on one side and a capability on
the other), but if the requestor requires SSH using TripleDES and the provider is only
capable of SSH with AES then these two should not match. Our matchmaker will
perform requirement-capability matching, taking into account property annotations.

1494 A. Kim, J. Luo, and M. Kang

Specifically, when describing security information of resources, the ability to
include properties in the matching algorithm is very important. This is due to the fact
that security information, more so than functionality-related information can require
detailed descriptions that make extensive use of properties. Complex statements can
be made with multiple layers of properties. For example, there could be a security
requirement that requires the use of XML-enc (securityRequirement property) with a
symmetric encryption algorithm (hasAlgorithm property) that has been declared a
type 3 algorithm from the NSA (hasNSALevel property).

For the first task of the matchmaker, there are four possible levels of match for each
requirement-capability pair: perfect match, close match, possible match, and no match
in decreasing order of matching.

Perfect Match cases. Perfect matches occur when both one’s capability and the
other’s requirement point to the same concept. The same concept can mean the exact
same concept, or two concepts declared as equivalent in the ontology. There are two
ways this can occur:

• Case 1. Both the requirement and capability specify the exact same ontology
concept. The instances and property values specified by both sides are identical.
This is the trivial case. For example, if a requestor query states that it requires the
service to possess a VPN (Virtual Private Network) that possesses a Common
Criteria EAL4 rating and a service describes its capability as possessing a VPN
with a Common Criteria rating of EAL 4 then these two are a perfect match.

• Case 2. The requirement and capability refer to equivalent concepts, and if
properties are specified, the properties are identical or equivalent. For example, a
requestor’s requirement specifies SSL and the provider’s capability is listed as
TLS. In the Main Security ontology, these two concepts are listed as equivalent
classes; hence they are identical and will produce a perfect match. We sometimes
call this an equivalence match to differentiate from the first case.

Close Match cases. A close match occurs when one’s requirement is more general (i.e.,
described in less detail) than the other’s capability. There are three ways this can occur:

• Case 1. The requirement specifies a more general concept at a higher level in the
ontological hierarchy. For example, the requestor’s capability is stated as DES
while the provider’s requirement asks for a symmetric encryption algorithm. DES
is an instance of the ‘SymmetricAlgorithm’ class and thus lower in the hierarchy.
We assume that the provider specified its requirement as a higher level concept
because it does not care which specific algorithm is used as long as it is a
symmetric encryption algorithm. Therefore, we can assume a match.

• Case 2. The requirement and capability have the same concept, but the capability is
specified in more detail (i.e., property). For example, the requestor’s capability is
specified as AES with 256 bit keys while the provider’s requirement asks for AES
(with no properties). AES with 256 bit keys is a more specific instance of AES so
we can assume that there is a match.

• Case 3. The requirement is stated in terms of a security objective while the
capability is stated in terms of a security concept that supports that specific
objective. For example, the requestor’s requirement is stated as the objective of

 Security Ontology for Annotating Resources 1495

Confidentiality and the provider’s capability is given as XML-Enc which has the
supportsSecurityObjective value of Confidentiality. Since the requirement is
looking for anything that supports Confidentiality and XML-Enc does support it,
we view this as a match.

Possible Match cases. A possible match occurs when one’s requirement is more
specific (i.e., defined in more detail) than the other’s capability. This is the opposite
of a close match. A possible match does not rule out the possibility of a match, but the
information available cannot ensure the capability can match the requirement. There
are three ways this can occur:

• Case 1. The requirement specifies a more specific concept (lower in the
hierarchy). For example, the requestor’s capability is stated as symmetric
encryption algorithm while the provider’s requirement asks for DES. The
symmetric encryption algorithm that the requestor is capable of could be DES, but
it is not certain. Therefore, it is only a partial match.

• Case 2. The requirement and capability refer to the same concept, but the
requirement specifies a more refined concept (i.e. property). For example, the
capability is stated as AES while the requirement asks for AES with 256-bit keys.
The AES specified in the capability could be possible of 256-bit key encryption,
but it is not certain. Therefore, it is only a partial match.

• Case 3. The requirement is stated in terms of a security concept while the capability
is stated in terms of a security objective that is supported by the security concept. For
example, the requestor’s requirement is stated as confidentiality while the provider’s
capability is stated as XML-Enc which supports confidentiality. The requestor may
be capable of using XML-Enc, but it is not certain. All we can deduce is that the
requestor is capable of confidentiality. Therefore, it is only a partial match.

No Match cases. No match occurs when one’s capability and the other’s requirement
are disparate without the possibility of matching. There are two ways this can occur:

• Case 1. The requirement and capability point to two unrelated concepts. For
example, the requirement states it requires DES and the capability states its
capability as RSA. These concepts have no hierarchical relationship to each other
and so are unrelated. There can be no match.

• Case 2. The requirement and capability point to the same concept but have
different specifics (i.e. properties) with respect to that concept. For example, the
requirement points to AES in CBC mode while the capability states AES in CFB
mode. The capability and requirement can both use AES, but they require modes of
operation; one is a block cipher the other is a stream cipher so they are not
compatible.

For the second task of the matchmaker, it must attempt to match every requirement
on one side against every capability on the other side. The degree of match for a
single requirement is its highest level of match it has against all of the possible
capabilities. The overall level of match between the requester and the provider is the
same as the lowest degree of match of any of the requirement-capability pairs. There
are four possibilities:

1496 A. Kim, J. Luo, and M. Kang

• If at least one of the requirements is not matched, then the requestor is not matched
to the provider. The requestor will not be able to use the resource.

• If all the requirement-capability pairs are at least possible matches, then there is a
possible match between the requester and the provider. This means there is not
enough information to determine one way or the other whether the requester can
use the resource. Additional information or negotiation will be needed to make that
determination.

• If all the requirement-capability pairs are at least close matches, then the requestor
can indeed use the resource.

• If all the requirement-capability pairs are perfect matches, then obviously the
requestor can use the resource.

In the following section, we will provide an example of the matching process
between a service description and a query.

4.2 Application of the Matching Algorithm

In this section we examine how to actually describe services and create queries using
the security ontologies, and how to find services using the matching algorithm. In our
example, we have a service requestor looking for a book selling service. The service
requestor would create queries to find services that match not only the desired
functionality, but also the security capabilities and requirements of the requestor.

The following is an example of the requestor’s security capabilities and
requirements along with the part of their query that pertains to the security capability
and requirements:

Requestor’s Security Capability
1. Authentication via SAML with an X.509 Certificate signed by VeriSign
Requestor’s Security Requirement
1. Authorization
2. SSH with the DES algorithm in CBC mode

<credential:X.509Certificate rdf:ID=“X.509”>
<credential:issuer rdf:resource=”VeriSign”/>

</credential:X.509Certificate>
<securityMain:SAML rdf:ID="Capability1">

<securityMain:reqCredentials
rdf:resource="&credential;X.509"/>

</securityMain:SAML>
<securityMain:Authorization rdf:ID=”Requirement1”/>
<securityAlgorithms:DES rdf:ID= “Alg”>

<securityAlgorithms:modesOfOperation rdf:resource=”CBC”/>
</securityAlgorithms:DES>
<securityMain:SSH rdf:ID="Requirement2">

<securityMain:hasEncryptionAlgorithm
rdf:resource="&securityAlgorithms;Alg1"/>

</securityMain:SSH>
<agent:Agent rdf:about=”#BookRequest”>

<securityCapability rdf:resource=”#Capability1”/>
<securityRequirement rdf:resource=”#Requirement1”/>
<securityRequirement rdf:resource=”#Requirement2”/>

</agent>

 Security Ontology for Annotating Resources 1497

On the other hand, a book selling service would create an OWL-S profile that
includes its functional capabilities, as well as security requirements and capabilities.
The following is the example security capability and requirement statements of the
book selling service (BookSeller), along with the part of its OWL-Profile that would
contain these statements.

BookSeller’s Security Capability
1. SOAP Firewall with a Common Criteria level of EAL4
2. SSH with DES
BookSeller’s Security Requirement
1. Authenticate via SAML with an X.509 Certificate

<securityMain:SOAPFirewall rdf:ID=”Capability1”>
<securityMain:hasAssurance rdf:resource=”&assurance;EAL4”/>

</securityMain:SOAPFirewall>
<securityMain:SSH rdf:ID="Capability2">

<securityMain:hasEncryptionAlgorithm
rdf:resource="&securityAlgorithms;DES"/>

</securityMain:SSH>
<credential:X.509Certificate rdf:ID=“X.509”/>
<securityMain:SAML rdf:ID="Requirement1">

<securityMain:reqCredentials
rdf:resource="&credential;X.509"/>

</securityMain:SAML>
<profile:Profile rdf:about=”#BookSeller1”>
<profile:serviceName>BookSeller1</profile:serviceName>
<profile:textDescription>

 This service sells all types of books
</profile:textDescription>

<securityCapability rdf:resource=”#Capability1”/>
<securityCapability rdf:resource=”#Capability2”/>
<securityRequirement rdf:resource=”#Requirement1”/>

</profile:Profile>

Given this service description and the above query, the matching algorithm would
match the requestor’s capabilities to the provider’s requirements and the requestor’s
requirements to the provider’s capabilities in the following manner (Tables 2 and 3):

Table 2. Matching Requestor’s Capabilities to Provider’s Requirements

Requestor Security Capability Provider Security Requirement Match Level
Authentication via SAML with an
X.509 Certificate signed by
VeriSign

Authentication via SAML with an
X.509 Certificate

Close Match

Table 3. Matching Requestor’s Requirements to Provider’s Capabilities

Requestor Security Requirement Provider Security Capability Match Level
Authorization SOAP Firewall with Common

Criteria level EAL4
Close Match

SSH with DES algorithm in CBC
mode

SSH with DES algorithm Possible Match

1498 A. Kim, J. Luo, and M. Kang

• In Table 2, the requestor’s capability and the provider’s requirement possess the
same concepts, but the capability has more detail. This is Case 2 of the close match
situation.

• In the first row of Table 3, the requestor’s requirement was that a service provides
Authorization. While the security objective of authorization is not explicitly stated
in the OWL-S Profile of the provider, the reasoner was able to deduce that the
SOAP Firewall supports authorization since it has a value of Authorization in its
supportsSecurityObjective property. This is Case 3 of the close match situation.

• In the second row of Table 3, the requestor has a more detailed requirement
regarding SSH than the provider has specified as its capability. This is Case 2 of
the possible match situation. This could mean that either the provider cannot
support the CBC mode of DES or it can support DES in CBC mode but decided
not to provide this additional detail.

Since the lowest level of match in the three sets of requirement-capability pairs is
possible match, the matchmaker will declare the service to be a possible match. The
requester is not certain whether it can use the service. It must obtain additional
information or negotiate with the provider to make that decision.

5 Conclusion and Future Work

Annotating resources with metadata enables them to be machine-understandable and
facilitates automatic discovery and invocation. Most work in the area thus far has
focused on annotation of resources in terms of functionality. However, security is an
important issue especially in a network-centric environment. Most resources on the
network are protected by some sort of security mechanisms. Satisfying functional
requirements alone may not guarantee access to desired resources. As a result,
annotation of resources in terms of security is just as important as annotation in terms
of functionality.

In this paper, we presented the NRL Security Ontology for making security
annotations. It is much more comprehensive than security ontologies previously
available in terms of the number of concepts, the properties of the concepts, and the
type of resources that can be described. Its organization is also more intuitive so that it
is easier to use as well as to extend. New properties and instances can be added
without modifying the overall class hierarchy. We demonstrated how the ontology can
be applied to the context of Web services in a Service Oriented Architecture to
describe security capabilities and requirements. A matchmaking algorithm was
presented to perform requirement-capability matchmaking that takes into account not
just the concepts, but also the properties of the concept. This is important because
security annotations make extensive use of property attributes. The ability to take them
into account makes this matching algorithm much more refined than previous work.

The creation of these ontologies is an iterative process. Additional instances and
properties will always be needed to express new security statements. Classes and
properties may be added and deleted as the security community continues to evaluate
and refine the security ontologies. Additional ontologies are still needed to address
issues such as privacy policies, access control, survivability, and QoS. We hope this
work will serve as a catalyst in the development of standardized security-related
ontologies with contributions from both the security community and the semantic
Web community.

 Security Ontology for Annotating Resources 1499

References

1. IA Architecture and Technical Framework (2004). Executive Summary of the End-to-End
IA Component of the GIG Integrated Architecture, National Security Agency Information
Assurance Directorate.

2. Denker, G., Kagal, L., Finin, T., Paolucci, M., and Sycara, K. (2003). Security for DAML
Web Services: Annotation and Matchmaking. In Proc. of the 2nd International Semantic
Web Conference (ISWC2003): Sanibel Island, Florida.

3. Denker, G., Nguyen, S., and Ton, A. (2004). OWL-S Semantics of Security Web Services:
a Case Study. In 1st European Semantic Web Symposium: Heraklion, Greece.

4. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., and Sycara, K. (2004).
Authorization and Privacy for Semantic Web Services. In AAAI Spring Symposium,
Workshop on Semantic Web Services: Stanford, California.

5. W3C (2001). DAML+OIL (March 2001) Reference Description, http://www.w3.org/
TR/daml+oil-reference.

6. W3C (2004). OWL Web Ontology Language Overview, http://www.w3.org/TR/
owl-features/.

7. IETF and W3C Working Group (2001). XML Encryption, http://www.w3c.org/
Encryption/2001.

8. IETF and W3C Working Group (2003). XML Signature, http://www.w3c.org/Signature.
9. OASIS SSTC (2005). Security Assertion Markup Language (SAML) 2.0 Technical

Overview, Working Draft, http://www.oasis-open.org/committees/download.php/12938/
sstc-saml-tech-overview-2.0-draft-06.pdf.

10. Noy, N.F., and McGuinness, D.L. (2001). Ontology Development 101: A Guide to
Creating Your First Ontology, Stanford Knowledge Systems Laboratory, KSL-01-05.

11. Kim, A., Luo, J., and Kang, M. (2005). Security Ontology for Annotating Resources. pp. 51,
Naval Research Lab, NRL Memorandum Report, NRL/MR/5540-05-641: Washington, D.C.

12. W3C Recommendation (2004). OWL Web Ontology Language Guide, vol. 2005, W3C.
13. DAML Ontology Library. http://www.daml.org/ontologies/.
14. Schneier, B. (1996). Applied Cryptography, 2nd Edition (New York: John Wiley and

Sons, Inc.).
15. Ferraiolo, D.F., Kuhn, D.R., and Chandramouli, R. (2003). Role-Based Access Control

(Norwood, MA: Artech House).
16. Committee on National Security Systems (2003). National Information Assurance (IA)

Glossary. pp. 85, http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf: Ft. Meade, MD.
17. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,

S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K. (2003).
OWL-S: Semantic Markup for Web Services, http://www.daml.org/services/owl-
s/1.1/overview/.

18. Jaeger, M., and Tang, S. (2004). Ranked Matching for Service Descriptions using DAML-
S. In Enterprise Modelling and Ontologies for Interoperability (EMOI), INTEROP 2004:
Riga, Latvia.

19. Srinivasan, N., Paolucci, M., and Sycara, K. (2004). Adding OWL-S to UDDI,
Implementation and Throughput. In First International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004): San Diego, California.

An Ontology for Mobile Agents in the Context
of Formal Verification

Paulo Salem da Silva and Ana Cristina Vieira de Melo

University of São Paulo, Department of Computer Science, São Paulo – Brazil
salem@linux.ime.usp.br, acvm@ime.usp.br

Abstract. The increasing interest of developing and formally studying
mobile agents has taken place in the last decade. Several formalisms
and tools have been created to aid this enterprise. However, tools are
mostly developed in isolation and, therefore, are hard to use together.
The present work is an attempt to make such integration easier, through
the provision of a common ‘language’ – an ontology – for verification
tools reasoning about mobile agents.

1 Introduction

The interest for the development and formal study of mobile agents has grown in
the last decade. With the creation of theories designed for this purpose, such as
π-calculus [2, 21], Distributed Join-Calculus [20, 19] and Ambient Calculus [17],
it has become possible to build software capable of reasoning about properties
related to a given specification. These so called verification tools usually have
a base theory and language, as well as some equivalence definitions and proof
system.

Even for a single theory, verification tools are frequently developed in iso-
lation and, thus, with different capabilities and notations. When users need to
use various verification tools to solve a problem, they have to learn and use
each verification tool individually. Many times, users prefer to partially solve
their problems instead of learning various verification tools. On the other hand,
new verification tools are created from scratch and, then, reimplement services
already available in existing tools, instead of reusing them.

We believe that these problems can be partially solved. Since verification
tools differ only in their conventions, but not in their application domains, it is
reasonable to assume that it is possible to create a common ‘language’ on the
top of the native ‘languages’ of each verification tool. Such common ‘language’,
together with the relation among its elements, is called an ontology [3, 4]. From
a general point of view, an ontology is a language that specifies an application
domain in a way that different tools may exchange information about it. In our
case, an ontology for mobile agents verification tools must describe not only the
domain of these agents, but also the capabilities of the verification tools. In other
words, it must describe the objects being studied (i.e., mobile agents) as well
as what the verification tools can reason about (i.e., the class of properties and
equivalences the verification tools may check).

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1500–1516, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Ontology for Mobile Agents in the Context of Formal Verification 1501

Establishing an ontology for mobile agents can help in integrating existing
verification tools. It can be used to denote the language and capabilities of
verification tools in a mobile agents environment:

– verification tools may be registered into the system using an ontology;
– users1 may find an appropriate verification tool among the registered ones

using ontology based search criteria.

In this paper, we present an ontology for the mobile agents domain, the first
step toward the system described above. The ontology describing the verification
tools capabilities remains as work in progress and, thus, it is not presented here.

Mobile agents and, therefore, mobility itself, may be defined in several ways.
In our work, we use the π-calculus theory and tools as the mobility paradigm.
However, as it will soon become clear, our ontologies are extensible in order to
work with other mobility theories.

At last, we point out that there are other formal approaches to agent mod-
eling, such as the SMART framework [5]. However, as far as we know, these
models have not been used to foster verification tools interoperability.

In the remainder of this paper, we present the notations and tools we used
(Sect. 1.1), the ontology itself (Sect. 2) and an usage example (Sect. 3). We also
discuss our results and the work that remains to be done (Sect. 4).

1.1 Notation and Tools

We have chosen the Web Ontology Language (OWL) [12] as the notation for our
ontologies. We had considered other options, such as UML, but found them to
be very limited. OWL, on the other hand, provides a rich logic language based
on Description Logic [13] as well as supporting tools, since it is becoming a
mainstream industry2 resource.

Among existing tools for OWL, we opted for Protégé-2000 [14]. Protégé not
only supports OWL design, but also provides an API (Application Program-
ming Interface) that allow external software to reuse many of its resources. This
characteristic might be useful at a later stage of our work.

To make easier understanding the ontology, in this paper we present a plain
English description of it, as well as pictures generated using the OntoViz [15]
Protégé plugin. The formal OWL definitions, along with the Protégé project
files, can be obtained in the following URL:

http://www.ime.usp.br/~salem/papers/mobile_agent_ontology.zip

2 The Mobile Agent Ontology

The purpose of our mobile agent ontology is to describe the possible components
of a mobile agent and its environment, and to provide a way to describe actual
formalisms structures, such as those from π-calculus.
1 Both humans and other software systems.
2 OWL is a new W3C recommendation and W3C is mainly industry oriented.

1502 P.S. da Silva and A.C.V. de Melo

Notice that the ontology does not aim to describe the actual structure of
agents, this would be equivalent to create a new theory for mobility analogous
to the π-calculus. Our aim here is to describe the properties of agents structure
(e.g., elements that can be used to build an agent, not the actual blueprint of
the agent).

Tools using this ontology to exchange information about agents are benefited
because:

– They only need to represent the search criteria once, using the ontology.
Without the ontology, it could be necessary to specify several search criteria,
each one designed to match the proprietary notation employed by each tool
it is trying to communicate with;

– They may be developed using other theories rather than π-calculus, as long
as the structures from these theories can be mapped into our ontology;

– They may provide a more user-friendly description of agents, since the on-
tology is designed at a high abstraction level.

The ontology is divided in two subontologies:

– the high level description of the mobile agent domain;
– the description of the formalisms employed by the tools;

A mapping of the first onto the second subontology is also provided (Sect. 2.3).
In the remainder of this section we shall present both subontologies and the

mapping in details.

2.1 Subontology 1: Mobile Agents

This subontology describes the domain of mobile agents. It is based on the
‘agent’ concept found in [1], which, in short, defines an agent as an entity having
sensors, actuators and that exists in an environment.

The scope of our ontology is restricted to the formal methods area and to an
special kind of agent, the mobile one. Therefore, there are two important aspects
which make our ontology unique:

– First, there are several characteristics from the agents domain which are not
useful to us. For instance, it is not of our interest to define ‘rationality’,
since it is not clear if such concept would be useful for formal verification.
We have, thus, excluded concepts that are either irrelevant or obscure;

– On the other hand, the general theory about agents found in [1] lacks several
elements that could be useful for an appropriate representation of mobility.
For example, we crafted the concept of ‘message’ as a perception.

Now we will describe the classes of this ontology. To make the concepts
clearer, we will first consider a cell phone as an example of mobile agent and
show how this device is described by the ontology.

An Ontology for Mobile Agents in the Context of Formal Verification 1503

Example: Cell Phone. Cell phones are classical examples of mobile agents.
To understand why, let us consider the fundamental idea behind them. If you
are already familiar with that, you may wish to skip this section.

In order to enable cell phone operation in a certain region, the region is
divided in several subregions, or cells. Each cell provides a connection point
to the several cell phones inside its area. This access point is usually a station
with several antennas to which the cell phones may connect using ordinary radio
waves. Once connected, the station takes care to establish communication with
the rest of the telecommunication network. See Fig. 1.

Mobility arises when a cell phone changes the cell it is in. When this happens,
the phone must terminate the connection to the previous station and start one
with the station covering the new cell. See Fig. 2

Fig. 1. Cell division of a region. The highlighted cell shows a cell phone connected to
the cell’s station.

Ontology Classes. As we pointed out earlier, the description of the ontology
given in this paper is in plain English.

Fig. 3 depicts the ontology graphically.

Ontology class 1 (Agent). Agents are entities which perceive and act in a
particular environment. In our example, the cell phone itself belongs to this class.
They have the following properties.

hasSensors. Zero or more instances from the Sensor class.
hasActuators. Zero or more instances from the Actuator class.
isReconfigurable. Boolean value. May the agent change its internal state
during its existence? The cell phone, for instance, is reconfigurable, since at
any given time it may be connected to a different antenna and be performing
calls to different phones.

1504 P.S. da Silva and A.C.V. de Melo

Fig. 2. Moving into another cell: (a) the phone moves physically into another region,
preparing the connection with the new station without leaving the old connection; (b)
the transition is complete and the phone is connected only to the new station

isDeterministic. Boolean value. Does the current state of affairs determine
the next action of the agent? The cell phone might be modeled either as a de-
terministic or nondeterministic agent. If we consider the phone as an agent
that answers to its user’s commands, then it is reasonable to consider it de-
terministic, for its behavior would not be random, it wouldn’t, for instance,
call a number unless it was requested to do so. On the other hand, if user
interaction was hidden (i.e., implicit), then the phone could be seen as non-
deterministic, since the user’s behaviors (e.g., making calls) would provide a
source of randomness.
isCloneable. Boolean value. Can the agent produce a copy of itself or of
its internal parts? The cell phone is not cloneable, since it cannot duplicate
itself.
hasEnvironment. One instance from the Environment class.

Ontology class 2 (Percept). A Percept is that which an Agent may sense
through its sensors. The Percept class is abstract, and concrete subclasses must
be defined. In the cell phone example, the percepts are the magnetic waves that
reach the device through its antenna.

Ontology class 3 (Message). Message class is a concrete subclass of the Per-
cept class. A Message is a piece of information that can be transmitted among
agents. In the cell phone, for instance, if the user’s voice is transmitted using
discrete data packets, we could say that such packets belong to Message class. No-
tice, though, that if there are no discrete packets, if data flows continuously, then
Message class could not be used to classify this transmission. Another Percept
subclass would have to be created to account for that.

An Ontology for Mobile Agents in the Context of Formal Verification 1505

Fig. 3. Mobile agents domain ontology

Ontology class 4 (Sensor). A Sensor is that which may receive Percepts. Sen-
sor is an abstract class and concrete subclasses must be defined for each concrete
subclass of Percept that are supposed to be perceived.

Ontology class 5 (MessageSensor). MessageSensor is a concrete subclass
of the Sensor class. A MessageSensor is a Sensor that receives Messages. For
instance, in the cell phone, the subsystem responsible for receiving and decoding
the data packets could belong to MessageSensor class.

Ontology class 6 (Actuator). An Actuator is that which can perform actions
over the Environment or other Agents. Actuator class is abstract and concrete
subclasses must be defined for each action that the Agent may perform.

Ontology class 7 (MessageDispatcher). MessageDispatcher is a concrete
subclass of the Actuator class. A MessageDispatcher is an Actuator that sends
messages. In the cell phone example, the subsystem responsible for packing and
sending data could belong to MessageDispatcher class.

Ontology class 8 (Environment). An Environment is where Agents exist.
Cell phones, for example, exist in an environment of ‘cells’ (thus, the device’s
name). That is, physical space is divided into cells, and in each cell one or more

1506 P.S. da Silva and A.C.V. de Melo

antennas provide a connection point to the phones. From the cell phone stand
point, the environment is nothing more than the antennas that it can connect to.

Environment class has the following properties.

isFullyObservable. Boolean value. Can the Agent always sense the whole
Environment? Cell phones cannot, since they are aware only of the antennas
in the current cell.
isDeterministic. Boolean value. Given the Environment’s current state and
the Agents actions, is the next Environment’s state determined? For cell
phones, since hardware may fail, it is best to assume that the Environment
is not deterministic.
isMultiagent. Boolean value. Can the Environment support more than one
Agent? That’s clearly true for cell phones.
hasMobilityParadigm. An instance from the MobilityParadigm class. How
is mobility defined in this Environment?

Ontology class 9 (MobilityParadigm). A MobilithParadigm defines how
mobility is handled by an Environment. MobilityParadigm class is abstract and
concrete subclasses must be defined.

Ontology class 10 (StaticMobility). StaticMobility is a concrete subclass of
MobilityParadigm. It defines the state of affairs in which no mobility at all takes
place.

Ontology class 11 (LinkMobility). LinkMobility is a concrete subclass of
MobilityParadigm. It defines the state of affairs in which the spatial position
of an agent is given by its links to other agents, without any notion of distance.
That’s precisely the notion of mobility that a cell phone agent has, since links to
antennas are all that such agents know about their position.

2.2 Subontology 2: Formalisms

This subontology aims at describing the actual formalism structures that the ver-
ification tools employ. The description is given considering two different levels of
abstractions. The first one defines abstract elements of any process calculus (e.g.,
operators, actions), while the second one specifies the elements of a particular
agent calculus, the π-calculus. Graphical representations are provided.

Though we focus on the π-calculus, we believe that the ontologies can be
extended to other mobility formalisms. In particular, because many of these
formalisms, such as Join-Calculus [20, 19] and Ambient Calculus [17], can be
proved equivalent to the π-calculus.

Ontology Classes. The main classes of this subontology are the following (see
Fig. 4).

Ontology class 12 (Formalism). Formalism is an abstract class. Actual for-
malisms must be represented by concrete subclasses.

An Ontology for Mobile Agents in the Context of Formal Verification 1507

Fig. 4. Main formalism ontology classes

hasFormalElements.Zero or more instances from the FormalElement class.

Ontology class 13 (PiCalculus). PiCalculus is a concrete subclass of For-
malism class. It represents the π-calculus theory itself.

hasFormalElements. Zero or more instances from the PiCalculusElement
class.

Ontology class 14 (FormalElement). FormalElement is an abstract class.
It represents the syntactic building blocks of formalisms. This class must have
concrete subclasses for each Formalism subclass.

Ontology class 15 (Action). Action is an abstract class. It represents the
elements over which operations can be performed. That is, they are the atomic
units that the process calculus works with.

Ontology class 16 (Message). Message is an abstract class. It defines what
is sent through OutputActions and received by InputActions.

Ontology class 17 (Operator). Operator is an abstract class. Operators per-
form transformations over Actions.

A class to group together all elements from π-calculus is also provided.

Ontology class 18 (PiCalculusElement). PiCalculusElement is an abstract
subclass of FormalElement. It represents the syntactic elements found in the
π-calculus.

Action, Message and Operator classes are the main abstract concepts that
we use to describe a general process calculus. Each of these classes, in turn, have
their own subclasses and, finally, these subclasses have actual concrete classes
that represent an actual process calculus, the π-calculus.

1508 P.S. da Silva and A.C.V. de Melo

Fig. 5. Action subclasses

Ontology class 19 (InputAction). InputAction is an abstract subclass of Ac-
tion. It represents Actions that take some input.

Ontology class 20 (OutputAction). OutputAction is an abstract subclass of
Action. It represents Actions that send some output.

Ontology class 21 (UnobservableAction). UnobservableAction is an
abstract class. It represents Actions that do not affect other Actions.

Ontology class 22 (ChoiceOperator). ChoiceOperator is an abstract class.
ChoiceOperators are Operators that given two expressions, output one of them
in a nondeterministic manner.

Fig. 6. Operator and Message subclasses

An Ontology for Mobile Agents in the Context of Formal Verification 1509

Ontology class 23 (CompositionOperator). CompositionOperator is an
abstract class. CompositionOperators are Operators that allow two expressions
interact.

Ontology class 24 (ReplicationOperator). ReplicationOperator is an
abstract class. ReplicationOperators are Operators that create copies of an ex-
pression.

Ontology class 25 (RestrictionOperator). RestrictionOperator is an
abstract Class. RestrictionOperators are Operators that bind an identifier to a
particular expression.

The other classes are subclasses of PiCalculusElement and of some For-
malElement. Each represents a particular construction from the π-calculus the-
ory. Their names are self-explaining, but we shall list them here for the sake of
completeness.

Fig. 7. π-calculus elements

Ontology class 26 (PiCalculusName). Concrete subclass of Message. De-
fines π-calculus names.

Ontology class 27 (PiCalculusActionPrefix). PiCalculusActionPrefix is
an abstract subclass of Action.

Ontology class 28 (PiCalculusChannelReceiver). PiCalculusChannelRe-
ceiver is a concrete subclass of PiCalculusActionPrefix and InputAction classes.
It represents the π-calculus input channels. It has only one property.

isPolyadic. Boolean value. Can the channels receive messages consisting of
more than one name?

Ontology class 29 (PiCalculusChannelSender). PiCalculusChannelSender
is the concrete subclass of PiCalculusActionPrefix and OutputAction classes. It
represents the π-calculus output channels. It has only one property.

isPolyadic. Boolean value. Can the channels send messages consisting of
more than one name?

1510 P.S. da Silva and A.C.V. de Melo

Fig. 8. π-calculus action prefixes

Ontology class 30 (PiCalculusUnobservableAction). Concrete subclass
of UnobservableAction. The τ action prefix.

Ontology class 31 (PiCalculusComposition). Concrete subclass of Com-
postionOperator. The π-calculus composition (|) operator.

Ontology class 32 (PiCalculusChoice). Concrete subclass of ChoiceOpera-
tor. The π-calculus choice (+) operator.

Ontology class 33 (PiCalculusRestriction). Concrete subclass of Restric-
tionOperator. The π-calculus restriction (new) operator.

Ontology class 34 (PiCalculusReplication). Concrete subclass of Replica-
tionOperator. The π-calculus replication (!) operator.

2.3 Mappings of Agents onto Formalisms

At last, it is necessary to connect the first subontology to the second. We pro-
vide this connection using some rules which assert that the support for some
structures in one subontology exists if, and only if, the support for some other
structures from the second subontology also exists.

These rules, together with the profile3 for a verification tool, make it possible
to find out if the verification tool matches a search criteria. The search criteria
is given using the mobile agent ontology, but the verification tool had been
originally programmed and documented having the particular formalism (e.g.,
the π-calculus) in mind.
3 The profile for a verification tool is the set of elements from both ontologies that

have been registered to be supported.

An Ontology for Mobile Agents in the Context of Formal Verification 1511

Mapping Rules. We shall now state the rules, in a formalism-centric fashion.

Mapping rule 1 (PiCalculus). PiCalculus theory is supported if, and only if,
the Environment’s MobilityParadigm is a LinkMobility.

Mapping rule 2 (PiCalculusName).
PiCalculusName class is supported if, and only if, Message, MessageSensor

or MessageDispatcher classes are supported.

Mapping rule 3 (PiCalculusChannelReceiver). PiCalculusChannelRecei-
ver is supported if, and only if, MessageSensor class is supported.

Mapping rule 4 (PiCalculusChannelSender). PiCalculusChannelSender
is supported if, and only if, MessageDispatcher class is supported.

Mapping rule 5 (PiCalculusUnobservableAction). PiCalculusUnobserv-
ableAction is supported if, and only if, MessageDispatcher, MessageSensor and
PiCalculusComposition classes are supported.

Mapping rule 6 (PiCalculusChoice). PiCalculusChoice is supported if, and
only if, the supported Agents have the property Deterministic set to false.

Mapping rule 7 (PiCalculusRestriction). PiCalculusRestriction is sup-
ported if, and only if, the supported Environment is not fully observable.

Mapping rule 8 (PiCalculusComposition). PiCalculusComposition is sup-
ported if, and only if, the supported Environment has its properties set according
to the following rules.

isDeterministic. Must be set to true.
isMultiagent. Must be set to true.

Mapping rule 9 (PiCalculusReplication). PiCalculusReplication is sup-
ported if, and only if, the supported Agent has its Cloneable property set to true.

3 Usage Example

Let’s now consider an example of how the ontology may be used. For simplicity,
let’s assume we have only two verification tools for the π-calculus, M1 and M2,
which differ in notations employed as well as in the supported fragments of
π-calculus.

We would like to integrate M1 and M2 in a system so that we could:

– query the system to find out if either M1 or M2 give support to a certain
subset of π-calculus that we are interested in;

– write such a query using a language which does not depend on the verifica-
tion tools’ language syntax. For instance, M1 might denote the composition
operator as ‘—’ and M2 as ‘comp’, but we wish the query to be independent
of these syntatic particularities.

1512 P.S. da Silva and A.C.V. de Melo

To achieve these goals, the system could use our ontology. In order to inte-
grate verification tools, the following steps could be carried out for each tool:

1. find out which π-calculus elements the verification tool supports. This could
be done, for example, surveying the verification tool’s documentation or
source code. In the example, let’s say that M1 supports all the basic4 π-
calculus and that M2 supports the same elements, except for the choice
operator.

2. register the supported elements using the formalisms subontology. In the ex-
ample, all we need to do is to tell the system that M1 supports the PiCalcu-
lus formal theory with PiCalculusName, PiCalculusChannelReceiver, PiCal-
culusChannelSender, PiCalculusUnobservableAction, PiCalculusChoice, Pi-
CalculusRestriction, PiCalculusComposition and PiCalculusReplication and
tell that M2 supports all of those too, except for PiCalculusChoice.

Fig. 9. Instances of all π-calculus elements we need

3. use the mapping rules to discover which elements from the mobile agent
ontology are supported by the verification tool. In the example, we would
find out that the only difference between M1 and M2 is that M1 will support
choice of agents, while M2 won’t.

4. make these elements available to a search engine. Notice that now the veri-
fication tool’s particularities do not trouble the search, since they have been
mapped into the ontology.

Now, suppose a user wants a verification tool that supports some elements
from the π-calculus, in particular the choice operator. To locate the desired
verification tools, the following steps could be performed:

1. using the ontology, the user tells the system which elements from the π-
calculus theory are required.

4 The subset of π-calculus which contains action prefixes, choice, composition, repli-
cation and restriction

An Ontology for Mobile Agents in the Context of Formal Verification 1513

Fig. 10. Instances of the π-calculus theory that each verification tool support

2. using the mapping rules, the system transforms these elements into mobile
agent’s elements.

3. the system checks in its data base if there are any registered verification
tools that gives support to the mobile agent elements. We have seen that
only M1 supports PiCalculusChoice. Thus, only M1 will be returned to the
user as a search result.

The point here is that the search is done using a common language, which
does not depend on the underlying formal theory. Although so far we have been
working only with the π-calculus, we believe that other formalisms, such as
Ambient Calculus [7] or Join-Calculus [6], could be used as well.

The example π-calculus tools used in this section are fictitious and were
proposed to illustrate the problem of having tools for a single formalism that are
concerned with different fragments of it. In practice, we also have verification
tools for π-calculus which actually support different subsets of the theory. The
verification tool VTubaina [8], for example, does not support the choice operator,
while another tool, HAL [9, 10, 11], does support choice but not replication. In
fact, these tools can share services although they contemplate different fragments
of π-calculus and their input languages differ.

4 Discussion

This paper presented two main ontologies: one for mobile agents and one on
formalisms of mobile agents. Besides that, the relation between elements of both
ontologies has been provided in order to show how agents can be modeled from
abstract concepts to appropriate mobile agent formalisms. π-calculus has been

1514 P.S. da Silva and A.C.V. de Melo

used as instance of the formalism ontology, and an example involving two pro-
posed tools for π-calculus was presented to give insights on the usage of ontologies
as a framework to register tools and use them in a collaborative way.

The ontologies defined here have a double purpose. From a computational
stand point, it provides a common language for information exchange. This al-
lows tools using different notation to integrate, albeit in a limited fashion. On the
other hand, from the user’s point of view, the ontology defines an understandable
language, from which higher level concepts of the mobile agent domain may be
easily handled.

We have given the cell phone as an example of mobile agent that can be
modeled using our ontologies. Other examples can be easily found among modern
wireless devices (e.g., wireless networks, where computers may connect as they
move into a certain region), which share many of the cell phone’s characteristics.
Furthermore, mobile agency is also present in software systems. An example of
software mobility is the Aglets project [16].

Regarding those features, verification tools can be registered as instances of
the formalism ontology and we can further provide an environment for sharing
services from various tools. For that, a software system must actually be imple-
mented and make use of our ontologies to register verification tools in order to
build a cooperative environment. We believe that Protégé-2000 can be used as
a framework for such implementation, since it is designed as an extensible5 tool
for ontologies.

In this particular work, we have instanced the formalism ontology for π-
calculus. This formalism ontology, however, is not limited to represent π-calculus.
Instances of this ontology for other formalisms, such as Join-Calculus and Am-
bient Calculus, can be produced in the same way. With such new instances of
formalisms, we could register tools based on these other calculus and, better than
this, provide an environment that comprises services from different formalisms.
The ontological relation among all instanced formalisms can be established via
the main formalism ontology and, for certain classes of problems, tools services
from different formalisms can be shared.

The ontology developed in the present work refers only to the representation
of agents. To provide an environment for sharing services from verification tools
for mobile agent systems, we also need, as stated in the introduction, an ontology
to capture the capabilities of the verification tools. This study is in progress and is
first devoted to capabilities of model-checkers and equivalence verification tools.

We don’t have the expectation of solving the whole problem of services-
collaboration among verification tools for mobile agent systems with such on-
tologies. We already known that ontologies are not enough for knowledge shar-
ing [18] because a semantic mapping is necessary for certain pairs of formalisms,
and this problem remains in services-sharing among verification tools for mobile
agents. However, many of the formalisms for mobile agents are comparable and
a great part of them can be mapped without a semantic conversion. The present
work is a step-forward to provide services-sharing among tools for such classes of

5 Through the use of plug-ins.

An Ontology for Mobile Agents in the Context of Formal Verification 1515

problems. For a complete services-sharing, a study on pairwise verification tools
must be conducted and there is no guarantee that a semantic mapping can be
found for each pair of formalisms.

Finally, we note that the ontologies described in this paper have not yet been
implemented in a working software system.

Acknowledgments

This project has been granted by CNPq (Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico - Brazil) and FAPESP (Fundação de Amparo à Pesquisa
do Estado de São Paulo -Brazil), Project 03/00312-0.

References

1. Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2003.

2. Robin Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge
University Press, 1999.

3. Nicola Guarino and Pierdaniele Giaretta. Ontologies and Knowledge Bases: To-
wards a Terminological Clarification. In Towards Very Large Knowledge Bases:
Knowledge Building and Knowledge Sharing, N. Mars (ed.), pp 25-32. IOS Press,
Amsterdam, 1995.

4. Thomas R. Gruber. A translation approach to portable ontologies. In Knowledge
Acquisition, vol. 5, pp. 199-220, 1993.

5. Mark D’Inverno and Michael Luck. Understanding Agent Systems. 2nd ed.
Springer, 2004.

6. The Join-Calculus language. Resources for the Join-calculus. Available at:
<http://join.inria.fr/>. Accessed in: May 23rd, 2005.

7. Luca Cardelli. Mobile Computational Ambients. Introduction
and other resources to the Ambient Calculus. Available at:
<http://www.luca.demon.co.uk/Ambit/Ambit.html>. Accessed in: May 23rd,
2005.

8. Marcelo M. Amorim. VTUBAINA Tool. A Verification Tool for Up-
to Bisimulation and Automata Integration Automatization. Available at:
<http://www.lcpd.ime.usp.br/˜mamorim/vtubaina/>. Accessed in: May, 23rd,
2005.

9. Ferrari, G., Gnesi, S., Montanari, U., Pistore, M. and Ristori, G., Verifying Mobile
Processes in the HAL Environment, in: Alan J. Hu and Moshe Y. Vardi, Eds.,
CAV’98, Springer LNCS 1427, pp.511-515.

10. Montanari, U. and Pistore, M., An Introduction to History Dependent Automata,
in: Andrew Gordon, Andrew Pitts and Carolyn Talcott, Eds, Second Workshop on
Higher-Order Operational Techniques in Semantics (HOOTS II), ENTCS, Vol.
10, 1998

11. History Dependant Automata Laboratory (HAL). Available at:
<http://rep1.iei.pi.cnr.it/projects/JACK/HAL/hal.html>. Accessed in: May,
23rd, 2005.

1516 P.S. da Silva and A.C.V. de Melo

12. Web Ontology Language (OWL). Specifications, articles, tools and other resources
for OWL. Available at: <http://www.w3.org/2004/OWL/>. Accessed in: August
19th, 2004.

13. Description logics. Description logics resources. Available at: <http://dl.kr.org/>.
Accessed in: February 21st, 2005.

14. The Protégé Ontology Editor and Knowledge Acquisition System. Available at:
<http://protege.stanford.edu/>. Accessed in: August 19th, 2004.

15. OntoViz. Information and downloads regarding the OntoViz Protégé plugin. Avail-
able at: <http://protege.stanford.edu/plugins/ontoviz/ontoviz.html>. Accessed
in: February 21st, 2005.

16. Aglets. Information and downloads regarding the Aglets framework, a system for
mobile software agents. Available at: <http://aglets.sourceforge.net>. Accessed in:
August 15th, 2005.

17. L. Cardelli and A. D. Gordon. Mobile ambients. In Maurice Nivat, editor, Foun-
dations of Software Science and Computational Structures, volume 1378 of LNCS,
Springer-Verlag, 1998.

18. Flávio S. C. da Silva, Ana C. V. de Melo, Jaume Agusti, Wamberto Vasconcelos,
David Robertson, Marcelo Finger, and Viǵınia Brilhante. On the insufficiency of
ontologies: Problems on knowledge sharing and alternative solutions. Knowledge-
Based Systems, 15(3):147–167, 2002.

19. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In 23rd ACM Symposium on Principles of Programming Languages.
ACM Press, 1996.

20. C. Fournet, G. Gonthier, JJ Levy, L. Maranget, and D. Remy. A calculus of mobile
agents. In CONCUR’96, volume 1119 of LNCS. Springer–Verlag, 1996.

21. D. Sangiorgi and D. Walker. The Pi-Calculus: A Theory of Mobile Processes.
Cambridge University Press, October 2003.

Evaluating Ontology Criteria for Requirements
in a Geographic Travel Domain

Jonathan Yu, James A. Thom, and Audrey Tam

School of Computer Science and Information Technology,
RMIT University, 124 La Trobe Street, Melbourne, Victoria 3000, Australia

{jyu, jat, amt}@cs.rmit.edu.au

Abstract. An ontology is a model of a domain of knowledge. The knowl-
edge that is captured in an ontology can be used for providing interop-
erability, sharing of information and reduction in semantic ambiguity in
application areas such as Knowledge Management, the Semantic Web
and E-Commerce. Given that each of these application areas may have
differing requirements, how do we assess whether an ontology adequately
addresses the requirements of a given application? In this paper, we con-
sider how existing criteria and measures can be used to evaluate different
aspects of the suitability of ontologies for application areas in the domain
of travel and geography. Specifically, we consider some existing measures
of coverage, as well as propose new ones, and determine whether they
address the application requirement of appropriate granularity.

1 Introduction

Many organisations today possess increasingly large information repositories and
they share common problems in managing their information and reusing it for
other applications. Lonely Planet (LP)1 is an example of such an organisation
with regards to its information on travel. Ontologies can help to manage such
information as they provide a machine processable and sharable model of infor-
mation for various applications. It is especially useful if an ontology is already
available and suitable, as building one is time consuming.

Researchers in the past have proposed design criteria for building ontologies.
However, because of the increasing availability of ontologies, there is a need to
evaluate existing ontologies using evaluation criteria and methodologies. These
evaluation criteria can, in turn, be useful in determining the suitability of an
ontology for a given application.

In this paper, we examine some requirements which arise in managing infor-
mation such as a large corpus of travel information. We then analyse whether
the existing criteria address these requirements when assessing the suitability
of a set of ontologies within the travel and geographic domain. Section 2 will
introduce some requirements in this domain using LP as a case study. In Sec-
tion 3, we discuss some difficulties in ontology modelling and reuse, and we
1 http://www.lonelyplanet.com

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1517–1534, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1518 J. Yu, J.A. Thom, and A. Tam

explore some criteria and measures for evaluating ontologies. In Section 4, we
analyse whether the proposed evaluation criteria satisfies the requirements in
this domain. Lastly, in Section 5, we explore one criteria, that is coverage, in
greater depth and explore existing measures (such as the vector space similarity
measure) and alternative measures (such as the F-Measure).

2 Information Requirements of Lonely Planet

LP has published around 650 books that describe travel information in vari-
ous geographic locations around the world. Each guidebook belongs to one of
the following categories: Travel guides, City guides, “On a shoestring” guides,
“Best of...” guides, Classic Overland Route guides, Maps (road and city), Activ-
ity books, and General reference books. Descriptions of a particular geographic
location may be found in many different books. For example, descriptions about
the city Paris can be found in at least five different series of guidebooks:

– France Travel Guide (January 2003)
– Western Europe Travel Guide (January 2003)
– Paris City Guide (October 2002)
– Europe “On a shoestring” Guide (February 2002)
– Paris Condensed (February 2002)

Also, the content describing a given location in a particular book occasionally
overlaps with content from other books. For example, in each of these books,
descriptions of parts of Paris and even some entries for restaurants were the
same in each book about Paris. In this section, we consider some requirements
that arise out of managing and reusing such a collection of travel information.

2.1 Conflicting Requirements of Print and Digital Services

Guidebooks can contain valuable information. This information can be repack-
aged and customised to be used in other applications. For example, content may
be collected and reorganised into a book on world food encompassing information
on cuisines of the world and restaurant information.

Information can also be repackaged for digital services such as applications
for mobile devices and the web. For such digital services, the expectations of
users intrinsically impose a demand for up-to-date information. For example, if
information about accommodation, restaurants and entertainment venues were
to be delivered to a traveller’s mobile device, it is the expectation that infor-
mation such as the address and the opening hours of the place are current.
Hence, if information from the guidebooks were to drive such digital services, it
is important to ensure information is up-to-date.

Some information in the guidebooks is bound to be outdated as there may
be an 18-month gap between the gathering of updated information to the pub-
lication dates of subsequent updated editions of a particular guidebook. For

Evaluating Ontology Criteria for Requirements 1519

example, restaurant locations. Expectations of users are more lenient as users
may be aware of this.

Nevertheless, there is a conflict here in the requirements of users with re-
gards to print and digital services. Therefore, some information from printed
guidebooks may not be entirely suitable to drive some digital services.

2.2 Consistency Between Updates

Out of LP’s collection of guidebooks, the more popular ones, such as the Paris City
guide, are revised and updated every two years. Generally, each book, as well as
its revised editions, has an asynchronous production schedule. That is, each book
is researched, written (or updated) and may be published on different dates.

Upon an update in one book, there is bound to be conflicts. This is due to
the overlapping content of some of the books and the independent nature of
updates. However, where there are overlapping content between each book, it
must be consistent.

2.3 Accommodating Different Views of the Same Information

Content may also differ between guidebooks. A book may have a different view
of the topic or may be written with different audiences in mind. For example,
the Paris Condensed and the Paris City Guide books have different descriptions
of the Chinatown region in Paris. Also, these books may also categorise sections
differently. For example, the Paris Condensed book categorises the places of
interest in a topical manner (for example, museums and galleries) whereas the
Paris City Guide book describes the different places of interest in order of city
districts and regions. Hence, there is a need to accommodate different views of
the same information.

2.4 Appropriate Granularity

Geographic tools such as Global Positioning Systems (GPS) and maps allow
geographic locations to be mapped with an accuracy of a few metres making
it possible to model an area in great detail. However, such as level of detail
may not be required in the travel domain. Users, that is travellers, may only
be interested in relevant information such as descriptions of airports, reputable
accommodation, places of interest, shopping areas and places to eat.

The problem is then of determining the level of granularity required. If the in-
formation is too coarse grained, relevant information may be omitted. Conversely,
if it is too fine grained , some information may end up unused and effort would have
been wasted in modelling that information. Thus, there is a need here in being able
to capture the appropriate level of granularity in the travel domain.

2.5 Flexibility in Classifying Items

Maps tend to split up a geographic location to distinguish one region from an-
other. For example, the city of Paris in France may be separated from the sur-

1520 J. Yu, J.A. Thom, and A. Tam

La Defense Bastille

Bastille
Place de la

Fig. 1. a) Map of the districts in Paris; b) Close up of the Bastille Region

rounding regions according to the boundaries in the map. However, people may
loosely associate places in the surrounding regions with Paris. For example, La
Défense is often associated with Paris although it is not part of the city of Paris;
it is in a nearby region (see Figure 1). Travellers may be interested in La Défense
during their visits to Paris. Sometimes this does not correspond with the clas-
sification in maps and models of the city. As such, there is a requirement in
this domain for flexibility in classifying places and accommodating these ‘fuzzy
boundaries’.

In summary, we have outlined five requirements describing issues to do with
information management, reuse and modelling in the travel domain. Ontologies
may be used to address some of these requirements and we will discuss this
further in Section 4. In the next section we will briefly describe what ontologies
are and discuss some of the issues related with them.

3 Ontologies

An ontology is an explicit model of a domain of knowledge consisting of a set of
concepts, their definitions and inter-relationships [15]. It supports information
reuse because the information captured can be reused for other applications.

Recently, an ontology specification language called the Web Ontology Lan-
guage (OWL) has been proposed by the W3C as part of the Semantic Web
initiative [12]. OWL is an ontology language for the web, which allows web
documents to be formally described for machine processability and reasoning
tasks [12]. It is built on existing web standards (XML and RDF) and is founded
on Description Logics. Figure 2 shows how a simple and course grained concep-
tual model of Paris in France is specified in OWL. In the example in Figure 2
three classes are defined – Place, Country and City. Constraints are put on these
classes such that City and Country are both subclasses of Place. Additionally,

Evaluating Ontology Criteria for Requirements 1521

<owl:Class rdf:ID="Place"/>

<owl:Class rdf:ID="Country">
<rdfs:subClassOf rdf:resource="#Place"/>

</owl:Class>

<owl:Class rdf:ID="City">
<rdfs:subClassOf rdf:resource="#Place"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="hasCapitalCity">
<rdf:type

rdf:resource="&owl;FunctionalProperty"/>
<rdfs:domain rdf:resource="#Country"/>
<rdfs:range rdf:resource="#City"/>

</owl:ObjectProperty>

<Country rdf:ID="France">
<hasCapitalCity rdf:ID="#Paris"/>

</Country>

<City rdf:ID="Paris"/>

Fig. 2. Model of Paris and France in OWL: a) Schema; and b) Instances

a functional property is specified for the class Country of a capital city called
‘hasCapitalCity’. We can then specify instances of these classes. In our example,
we define the country of France and the city of Paris and specify that France
has Paris as its capital city.

3.1 Difficulties with Ontologies

Much work has been performed on ontology engineering methodologies and re-
searchers have proposed design criteria for building ontologies [6, 7, 8]. Some
criteria have also been proposed for evaluating ontologies for their design to be
improved. We will consider these criteria in greater detail later in this section.
However, we first consider some difficulties faced and draw examples from within
the geographic domain.

The process of building an ontology manually is time consuming and some-
times difficult to specify. It involves acquiring the necessary knowledge and then
specifying it using a language such as OWL. For example, building and imple-
menting a travel ontology at LP involved modelling world information such as
geographic locations, places of interest, cultural information and cuisines of the
world. They found that some information that needed to be modelled often did
not have a clearly defined boundary. For example, information about some re-
gions that were required to be modelled were loosely associated with neighbour-
ing places. This made it difficult to classify information in a strict hierarchy. This
reflects the requirement for flexibility in classifying items as discussed earlier.

Existing ontologies may already be available. In such cases they could be
reused, rather than building an ontology by hand. In the geographic domain,
there are existing off-the-shelf ontologies available such as ESRI2, and Getty3

as well as GIS street level ontologies used by local authorities. However, it was
found that these ontologies either had too much or too little detail.

2 http://www.esri.com
3 http://www.getty.edu/research/conducting research/vocabularies/tgn

1522 J. Yu, J.A. Thom, and A. Tam

The difficulty in using ontologies which are too detailed is that they model
low level details. For example, a particular ontology models street level details
such as road names and the width of the footpath, which are items that lo-
cal council authorities are interested in. On the other hand, travel applications
may not require such details. Rather, what is required is a higher level of ab-
straction to model shopping districts with relevant details such as locations of
boutique shops.

One solution is to model what is required over the low level details. However,
there are instances where this is not possible. For example, a particular GIS
street level ontology, has 42 different classifications of roads. LP already have
their own model where there are 9 classifications of roads and some can not be
mapped to the GIS street level ontology classifications. Hence there is still a
difficulty in conflicting and missing definitions in different models.

In contrast, ontologies that lack the relevant details require a lot of anno-
tation to extend and add in the missing parts. This reflects a requirement for
appropriate levels of granularity, as discussed earlier.

The off-the-shelf ontologies that were considered by LP did not suit the ap-
plication requirements. However how do we decide which ontology is suitable
for the application at hand? We next discuss some evaluation criteria and anal-
yse whether they can be used to evaluate the suitability of an ontology for a
particular application.

3.2 Ontology Evaluation Criteria

With ontologies becoming increasingly available from various resources such as
the Swoogle search engine4 and the SchemaWeb ontology directory site5, it is
getting easier to pick an ontology off-the-shelf and customise it for an applica-
tion. However, it then becomes a challenge to find a suitable ontology among a
set of ontologies that describe the domain for a specific application, as we do
not want to use an ontology for an application to find later that it is not suit-
able. Therefore, a mechanism is needed for evaluating ontologies for use in an
application.

Various criteria have been proposed for the evaluation of ontologies. Upon
analysis, some of the criteria proposed by the different researchers address similar
aspects when evaluating ontologies and overlap. We collate and describe them
below as nine distinct criteria.

1. Clarity
A clear ontology should “effectively communicate the intended meaning
of defined terms” and where possible the definition should be stated for-
mally [6]. Definitions in an ontology should be clearly specified such that
there is no doubt or ambiguity. For example, consider an ontology with a
definition of ‘Paris’. The definition should clearly indicate whether it is re-
garding a person’s name or a place. If it is a place, which country is it

4 http://swoogle.umbc.edu
5 http://www.schemaweb.info

Evaluating Ontology Criteria for Requirements 1523

referring to – a town in North-East Texas, USA named Paris or the capital
city in France?

2. Consistency
Consistency, also called coherence [6], describes the logical consistency of an
ontology [4]. For a given ontology’s set of definitions and axioms (explicit
or inferred), there should be no contradictions. Guarino and Welty went
further in seeking to validate the consistency of the subsumption of enti-
ties and properties with their proposed OntoClean methodology [8]. This
methodology seeks to correct entities that are modelled as subclasses when
they should be consistently modelled as properties, as a subclass of another
entity or even a separate entity on its own. The principles of essence, rigid-
ity, identity and unity are used to determine this [8]. For example, the Paris
Condensed guidebook describes riding bicycles in the city of Paris as dan-
gerous, whereas Paris is described as bicycle-friendly in another guidebook
– the Paris City Guide. Here there is a contradiction within the set of de-
scriptions in information contained in the collection of books about riding
bicycles in Paris.

3. Conciseness
According to Gómez-Pérez an ontology is concise if:

(a) It does not store any unnecessary or useless definition
(b) Explicit redundancies do not exist between definitions
(c) Redundancies cannot be inferred using axioms attached to other definitions
(d) The definition itself is not redundant

That is, an ontology is concise if redundancies do not exist and cannot be
inferred from its definitions and axioms [4]. For example, it would not be
concise if we modelled definitions about Bastille each time for the three
districts that it may be part of. However to be concise, the definition for
Bastille would describe it as being part of the 4th, 11th and 12th districts
of Paris.

4. Expandability
Expandability [4], also called extendibility [6], relates to the ability of the
ontology to be extended further to describe specific application domains
in a way that does not change the current definitions within the ontology.
For example, consider an ontology about travel in Paris that only models
information on places to eat. This ontology would be expandable if it were
possible to include information about accommodation and places to stay
without introducing inconsistent or redundant definitions.

5. Correctness
Correctness refers to whether the representational choice made when enti-
ties and their properties are modelled correlate with entities in the world
being modelled. Gómez-Pérez includes the metaphysical aspect as part of
her description of consistency [4]. We will consider this in our definition of
correctness.
Correctness depends on the frame of reference that the ontology is based
on. One approach to measure correctness is to verify correct modelling of

1524 J. Yu, J.A. Thom, and A. Tam

concepts from real world, such as interviews with domain experts and liter-
ature regarding the domain. For example, in the Methontology [11] design
process, the ontology developers had to verify the correctness correspond-
ing to a frame of reference from interviews with domain experts and other
information sources. However this approach is time consuming and involves
manual inspection.
Extending our previous example, a correct ontology would model La Défense
as being part of a separate region of France rather than being part of the
city of Paris.

6. Completeness
Whether an ontology or its individual definitions are complete cannot be
proven, however we can deduce an incomplete ontology by detecting indi-
vidual definitions that may be incomplete or that at least one definition is
missing from an ontology [4]. More specifically, we refer to a frame of ref-
erence to determining an ontology’s incompleteness by using an ontology’s
set of competency questions [7] or with its reference to the real world itself.
For example, if we modelled Bastille (an area located at the intersection of
the 4th, 11th and 12th district) and we did not include it as being in one
of the districts, say the 4th district, the definition of Bastille would not be
complete. This is because it is considered to be part of the 4th district in
addition to the 11th and 12th district in Paris (see Figure 1 for the map).

7. Coverage
Hovy [9] refers to coverage in two distinct ways: coverage of terms over the
domain from concepts identified in the domain; and coverage or completeness
of instances. We will consider coverage as the coverage of terms over a given
information domain rather than the latter.
Brewster et al. [2] take a slightly different approach. They refer to coverage
as the congruence or fit of an ontology with the domain represented by the
corpus of information. The difference here is that the text corpus is taken to
represent the domain itself.
An example of coverage is if we had the situation as in Figure 3. In ontology 1,
there are three terms that overlap with the defined set of concepts whereas
ontology 2 has only one overlapping term. Hence in this case ontology 1 has
better coverage of the domain than ontology 2.

8. Minimal Ontological Commitment
Ontological commitment refers to the an ontology being able to be agreed
upon by users or ontology adopters. Studer et al. [14] refer to adopters of an
ontology as having agreed to commit to that ontology which describes some
domain knowledge. Gruber defines ontological commitment as “an agree-
ment to use a vocabulary (i.e. ask queries and make assertions) in a way
that is consistent (but not complete) with respect to the theory specified by
an ontology” [5]. Minimal ontological commitment refers to minimising the
ontological commitment of an ontology to allow more freedom in an on-
tology’s usage. It is about not over-defining terms that may impede some
potential users of the ontology. One way to minimise ontological commitment
is to make “as few claims as possible about the world being modelled” [6].

Evaluating Ontology Criteria for Requirements 1525

Domain Concepts:

Place de la
Bastille

Arc de
Triomphe

Eiffel Tower

Notre Dame

Ontology 1:

Paris Arc de
Triomphe

Place de la
Bastille

Eiffel Tower

has Place of Interest

Ontology 2:
Paris Eiffel Tower

La Defense

Disneyland
Paris

has Place of Interest

Fig. 3. Coverage Example Text

Name: string

Country

ID: integer

Fig. 4. Encoding Bias Example

Another way is by breaking an ontology into separate ontologies as Gruber
suggests [6].

9. Minimal Encoding Bias
An encoding bias occurs when “representational choices are made purely
for the convenience of notation or implementation” [6]. This should be min-
imised to prevent an ontology to be specific only to a particular ontology
notation, language specification or implementation. An example of encoding
bias is found in Figure 4 where we have modelled country as having an in-
teger value that is associated as an identifying number for our system. As
ontologies describe aspects of the real world, countries, in general, does not
have ID numbers, hence there is an encoding bias here.

Having described ontologies and the proposed ontology evaluation criteria,
we will match them up to the information requirements in the next section, and
then look at one of these criteria, that is coverage, in more depth in Section 6.

4 Satisfying Requirements in the Domain with Ontology
Evaluation Criteria

Having described the proposed ontology evaluation criteria, we now consider
whether they help in evaluating suitable ontologies meeting the requirements of

1526 J. Yu, J.A. Thom, and A. Tam

applications in the geographic domain. We will describe them by listing which
requirements were addressed and which were not fully met.

4.1 Requirements Addressed

Ensure Information is up to Date. The nature of on-demand digital services
requires information to be current. For example, if we needed the location of a
particular restaurant, it isn’t very useful to return an address of a restaurant
that moved six months ago. The correctness criteria addresses this because by
having an ontology that is correct means that its definitions agree with the world
being modelled. More specifically, instances in an ontology may be required to
be updated more frequently than classes, as they tend to be more volatile.

Appropriate Granularity. Often users are overloaded with information. In this
domain, we may not require our geographic information to come down to the
fine details (that is, to GPS co-ordinates). The only criterion that addresses this
is coverage. The coverage that an ontology has over a given information domain
may determine whether an ontology has a suitable level of granularity. We will
explore this measure in detail in the next section.

4.2 Requirements not Fully Met

Consistency Between Books Upon Updates. Because of the range of different
series of books that cover different some information that overlap, updating one
book will mean that information in other books may become redundant. The
consistency criterion refers to internal consistency of the ontology but does not
capture this usage of consistency. However, an ontology can be utilised to aid
maintaining consistency in overlapping information in books by providing access
to these overlapping aspects of the book content.

Accommodating for Different Views. The requirement for accommodating for dif-
ferent views of the same information arises from having different books describing
information from contrasting perspectives. This requirement is addressed by util-
ising an ontologies to represent each view. An approach to address this require-
ment could be to have a different ontology for each view and an ontology that
map overlapping descriptions. For such a shared ontology, the criteria of minimal
ontological commitment applies.

Flexibility in Classifying Items. The level of ontological commitment can bear
some effects on the flexibility of an ontology in classifying items. The more that
is described in an ontology, the more likely it is that there will be a higher onto-
logical commitment, which may lead to less flexibility. Hence minimal ontological
commitment affects this requirement. However, there is an issue in knowing what
minimal ontological commitment looks like. Certainly it is possible to describe
the weakest theory, but there is a danger here in that the ontology is stripped
down so much that the information contained in an ontology becomes ineffectual
with regards to our application.

Evaluating Ontology Criteria for Requirements 1527

Despite having a minimal ontological commitment and having definitions
clearly specified, a given definition may not meet our requirement of flexibility.
There are cases it can be difficult to define items due to the fuzzy nature of the
definitions themselves. This is especially the case when describing places that
possess fuzzy boundaries. Consider the extent that the region of Paris extends
to. There are strict boundaries drawn in maps that define the tourism region.
However, some places just outside of Paris are associated as being part of the
city as well. For example, the area of La Défense (see Figure 1 for the map of
Paris). Hence, the evaluation criteria, specifically clarity, does not help meet the
requirement for flexibility in classifying items.

Also, being clear and correct about a domain in a strict and rigid manner
does not necessarily address the requirement of flexibility in classifying items
in this domain. For example, consider these definitions: a place can be located
in only one district ; and Bastille is a place in the 4th district. Although, the
definitions may be clear and accurate to a certain extend (as Bastille is a place
in the 4th district), it does not model the world correctly in its entirety as Bastille
is also part of other districts in Paris, namely the 11th and 12th district.

However, an ontology would need to be clear and correct for applications
to be able to process definitions unambiguously, as mentioned in the previous
section. Hence there needs to be some reconciliation between the requirement of
the domain to be modelled and for machines to be able to consume ontologies.

This issue of fuzzy boundaries and what defines part-whole relations has
previously been explored in other areas. For example, Varzi [16, 17] explores the
area of mereotopology and vagueness in the discipline of philosophy; and Klause
& Clark [10] use fuzzy logic to try to deal with fuzzy sets in computer science.

In ontology engineering, Guarino and Welty [8] touch on this aspect of part-
whole relations. In their OntoClean methodology, they aim to assess whether
subsumption (that is is-a relations) are correctly modelled in an ontology by
using some meta-properties. One aspect of this methodology is the assessment
of an incorrectly subsumed relation where it should really be modelled as a
part-whole relation.

We have seen in this section that while there are still some requirements that
have not been fully addressed yet there are other requirements that have been
addressed by the various proposed criteria. Table 1 shows a summary of the
criteria that satisfy the requirements outlined in our application domain.

Some of these criteria can be successfully measured using ontology tools
such as reasoners. Reasoners, such as FaCT and RACER, provide the means to
check for errors in ontologies, such as redundant terms, inconsistencies between
definitions and missing definitions. Additionally, Dong et al. have used existing
software engineering tools and techniques to check for errors in ontologies in the
military domain [3].

Other criteria can be more challenging to evaluate as they may be hard to
quantify. While some criteria are available for assessing the suitability of an
ontology, they would require manually inspecting the ontology. For correctness,
it would require manual inspection to verify that the definitions are correct with

1528 J. Yu, J.A. Thom, and A. Tam

Table 1. Criteria which satisfy requirements in this domain

Requirement Criteria 1-Clarity
1 2 3 4 5 6 7 8 9 2-Consistency

Consistency between books upon updates 3-Conciseness
Ensure information is up-to-date • 4-Expandability
Accommodating for different views ◦ 5-Correctness
Appropriate granularity • 6-Completeness
Flexibility in classifying items ◦ 7-Coverage

8-Minimal O.C.
• - Addresses ◦ - Partially Addresses 9-Minimal Enc. Bias

reference to the real world. This may not be a feasible task for a repository
of ontologies.

5 Coverage Measure

A more quantitative approach is needed to evaluate ontologies based on the
proposed evaluation criteria. Brewster et al. propose a more objective approach
called data-driven ontology evaluation [2]. In this approach, an ontology is eval-
uated for its suitability based on its congruence or coverage with the domain
represented by the corpus of information using various measures. The advantage
of this approach is that it measures an ontology with respect to a corpus of
information in an automated way. It does not rely on manual inspection. In this
section, we will explore existing coverage measures in detail, as well as intro-
duce alternative measures, to identify suitable ontologies and analyse whether
coverage addresses the issue of an ontology having the appropriate granularity.

We now consider some of the measures of coverage proposed by Brewster et
al. [2] and apply them in the travel and geographic domain. Given an applica-
tion and a text corpus that represents the knowledge in that domain, Brewster
et al. [2] aim to identify the most suitable ontology from a given set of ontolo-
gies. They propose four approaches in comparing an ontology with a text corpus:
counting the number of overlapping terms, vector space similarity measure, struc-
tural fit by clustering and mapping terms, and using conditional probability to
evaluate the ‘best fit’ of an ontology. We will only consider the first two measures
as our text corpora are not annotated.

We also consider whether measures used in information retrieval – precision,
recall and the F-Measure – can be adapted to measure coverage.

5.1 Dataset and Ontologies Used

To ascertain whether coverage helps to determine suitable granularity in our
domain, the dataset used should have varying levels of granularity regarding
travel. For this experiment, we considered a sample of travel text on Paris taken
from three books with differing levels of detail:

Evaluating Ontology Criteria for Requirements 1529

– The Paris sections in Western Europe Travel Guide (WE) - least detail
– The Paris sections in France Travel Guide - more detail
– Paris City Guide - most detail

We used LP’s ontology as our base ontology. The original purpose of LP’s
ontology was to maintain a consistent vocabulary for use within the organisation
such as the names of places and activities used in their guidebooks. In particular
it contains names of actual geographic places in the world such as countries,
provinces and cities. This part of the ontology is coarse-grained: it models every
continent and country in the world, but does not model fine details in many of
the countries. For example, it models most of the provinces of France but does
not have city- or town-level details

For measuring coverage, we used this ontology and varied its granularity by
adding increasing levels of detail in France and Paris. We begin with an ontology
that included instances of the regions in France (such as Brittany and Corsica)
and the major cities or towns (such as Paris, Nantes and Marseille). This becomes
OFrance. We then increase the granularity in Paris by adding the city’s major
metro and train stations (such as Bastille and Place d’Italie), as more detailed
instances of Paris locations and refer to it as OParisMajor . We increase the
granularity again by adding all of the Paris metro and train stations (such as Rue
des Boulets and Porte de Versailles), as more detailed instances of places of Paris.
This becomes OParisDetailed, where OFrance ⊂ OParisMajor ⊂ OParisDetailed.

5.2 Method

For each measure, we extract the unique set of terms from our dataset after
first applying stopping and stemming using the Porter stemmer [13]. The same
techniques are applied to the text labels of concepts, instances and properties of
the ontologies.

Number of Overlapping Terms. This involves finding matching terms be-
tween the terms in an ontology and the text corpus. Brewster et al. [2] only
propose to measure the overlap between the extracted terms in the ontology and
the text corpus it is being compared to.

Vector Space Similarity (VSS). Brewster et al. propose a vector space mea-
sure to compare various ontologies to a given corpus [2]. However, they do not
describe the implementation details. We implemented the vector space model
using the cosine angle to obtain a similarity score [1]. We omit the inverse docu-
ment frequency (idf) factor as we are comparing extracted terms from the given
ontology to a single text corpus at a time. Hence the ontologies can be seen as
the queries. We also omit query term weighting, that is the weighting of terms
in the ontology, and just give a binary weight, that is 1 if the term is present or
0 if not.

The measure of counting of overlapping terms presented above does not take
into consideration the size of the corpus or ontology. Brewster et al. [2] compare
a diverse set of ontologies with a single text corpus. However, we compare a set of

1530 J. Yu, J.A. Thom, and A. Tam

three ontologies of increasing granularity to three different text corpora. To allow
a relative comparison among the different corpora, we need to consider the sizes
of both the corpus and ontology. To help address this, we now present additional
measures, adapted from information retrieval, that have not been used before in
ontology evaluation. Specifically, these are precision, recall, and the F-Measure.

Precision. measures the percentage of ontology terms that overlap with the
corpus. This is given by:

precision =
| O ∩ C |

| O |

Recall. measures the percentage of the text corpus terms that overlap with the
ontology. This is given by:

recall =
| O ∩ C |

| C |

F-Measure. is a combined metric of the precision and recall and gives a har-
monic mean that combines both the values of precision and recall [1]. This is
given by:

F (j) =
2

1
recallj

+
1

precisionj

5.3 Results and Discussion

Table 2 shows a count of the set of terms extracted from both the ontology and
the text corpus, the set of overlapping terms and the associated measures. From
this, we observed that the size of the three text corpora differ greatly – the Paris
chapter in the Western Europe Travel Guide being the smallest and the Paris
City Guide having the most terms. When we add the names of the major metro
and train stations to the base ontology (OFrance) to form OParisMajor , there
is a 15% increase in the number of terms (113 terms) compared with OFrance.
When we include the names of all of the metro and train stations in the ontology
in OParisDetailed , there is an increase of nearly 50% (416 terms) in the number
of terms compared with OParisMajor . However, we observe that this does not
necessarily produce an equivalent increase in the number of overlapping terms
extracted from the ontology and the text corpus. Also, in Table 2, the results
highlighted in bold show which is the most suitable ontology for a given corpus
using each coverage measure.

Figure 5a shows the trends for the overlapping measure. When more detail is
added to the ontology, the number of overlapping terms increases. However, there
is no penalty in this measure for including unnecessary terms in the ontology.

Figure 5b shows that as our ontologies increase in granularity, the vector space
similarity score generally increases in each text corpus of our dataset. However,

Evaluating Ontology Criteria for Requirements 1531

Table 2. Results for ontology and corpus size, number of overlapping terms, vector
space similarity, precision, recall and the F-Measure

Corpus | C |Ontology | O || O ∩ C | VSS Precision Recall F-Measure
WE-Paris 2792France 739 265 0.1083 0.3586 0.0949 0.1501

Paris Major 852 360 0.1367 0.4225 0.1289 0.1976
Paris Detailed1268 533 0.1595 0.4204 0.1909 0.2626

France-Paris 7142France 739 448 0.1220 0.6062 0.0627 0.1137
Paris Major 852 559 0.1420 0.6561 0.0783 0.1399
Paris Detailed1268 831 0.1571 0.6554 0.1164 0.1976

Paris City 11953France 739 535 0.1778 0.7240 0.0448 0.0843
Paris Major 852 648 0.1974 0.7606 0.0542 0.1012
Paris Detailed1268 957 0.1958 0.7547 0.0801 0.1448

for the Paris City Guide corpus, adding fine granularity details of places in the
city of Paris to the ontology (that is OParisDetailed), had a slightly negative effect
on its similarity score. This suggests that the level of detail was too much for the
Paris City Guide corpus, but surprisingly not for the other less detailed corpora.

Figures 5c and 5d show trends for recall and precision respectively. We ob-
serve that recall generally improves when more detail is added to the ontology,
and that precision improves when adding the names of the major Paris metro
and train stations. However, when all of the names of the stations were added,
that is in OParisDetailed, precision starts to decrease slightly. This may indicate
that the level of detail was too much for all three text corpora.

Figure 5e show trends for the F-Measure, which combines aspects of both
recall and precision. We observed that the F-Measure score increases as the
granularity of the ontology increases, and seems to be dominated by the recall
component.

An appropriate ontology should contain sufficient but not unnecessary de-
tail to model all instances down to the appropriate level of granularity for the
application. A good coverage measure would capture this. The behaviour of the
vector space similarity measure does not correctly capture the notion of granu-
larity. None of the other measures are able to show that a particular ontology is
more suited for corpora of different levels of granularity.

When determining an appropriate granularity for a given ontology, terms
that appear infrequently may be just as important as terms that appear fre-
quently. The vector space similarity measure may not be applicable for deter-
mining granularity as it places greater weighting for words that appear more
often. A high similarity score tells us that the ontology covers terms that ap-
pear more frequently. This might correlate to an adequate coverage of the upper
(coarse-grained) levels of the ontology (assuming that the higher level concepts
and its instances occur more often in the corpus). For example, the term City
or Paris would occur more often than Chinatown or Buttes aux Cailles. This
may explain why the similarity score for OParisDetailed decreases slightly for the
Paris City Guide corpus. It may be that terms in the lower (fine-grained) levels
of the ontology appear infrequently in the corpus.

1532 J. Yu, J.A. Thom, and A. Tam

W
E -P

ari
s

Fran
ce

 -P
ari

s

Pari
s C

ity
0

100

200

300

400

500

600

700

800

900

1000

N
o.

 O
ve

rl
ap

pi
ng

 T
er

m
s

France

Paris Major

Paris Detailed

W
E -P

ari
s

Fran
ce

 -P
ari

s

Pari
s C

ity
0.00

0.05

0.10

0.15

0.20

0.25

V
ec

to
r

Sp
ac

e
Si

m
ila

ri
ty

France
Paris Major
Paris Detailed

W
E -P

ari
s

Fran
ce

 -P
ari

s

Pari
s C

ity
0.00

0.05

0.10

0.15

0.20

R
ec

al
l

France

Paris Major

Paris Detailed

W
E -P

ari
s

Fran
ce

 -P
ari

s

Pari
s C

ity
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80
Pr

ec
is

io
n

France
Paris Major
Paris Detailed

W
E -P

ari
s

Fran
ce

 -P
ari

s

Pari
s C

ity
0.00

0.05

0.10

0.15

0.20

0.25

F-
M

ea
su

re

France
Paris Major
Paris Detailed

Fig. 5. (a) No. Overlapping Terms, (b) Vector Space Similarity, (c) Recall, (d) Precision
and (e) F-Measure

Evaluating Ontology Criteria for Requirements 1533

6 Conclusion and Future Work

Given the requirements arising from the LP application domain, there are criteria
that can help determine suitable ontologies from a given pool of ontologies –
correctness, coverage and to a certain extent, minimal ontological commitment.
Also, it was found that the clarity criterion that ensures strictness in an ontology
may impede the requirement for flexibility in an ontology’s classification in this
domain. Some of these criteria may be difficult to evaluate because they can be
hard to quantify or there are no measures for their evaluation such as correctness
and completeness. Hence for future work, measures should be explored for these
criteria so that qualitative and quantitative values can determine the extent to
which an ontology can be suited to an application domain.

We have considered two existing measures for coverage (number of overlap-
ping terms and vector space similarity) and proposed new measures for coverage
that we adapted from information retrieval (precision, recall and the F-Measure).
We found that the vector space similarity measure was not suitable for deter-
mining appropriate granularity. Our results were inconclusive regarding the suit-
ability of the other measures. To determine the most appropriate measure for
coverage, further work is required with more examples of both corpora and on-
tologies, as well as other applications. Alternative measures for coverage should
also be considered.

Acknowledgements. Ron Gallagher, Bruce Melendy and colleagues at Lonely
Planet.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press
/ Addison-Wesley, 1999.

[2] C. Brewster, H. Alani, S. Dasmahapatra, and Y. Wilks. Data driven ontology
evaluation. In Proceedings of Int. Conf. on Language Resources and Evaluation,
Lisbon, Portugal, 2004. European Language Resources Association.

[3] J. S. Dong, C. H. Lee, H. B. Lee, Y. F. Li, and H. Wang. A combined approach
to checking web ontologies. In Proceedings of the 13th Int. Conf. on World Wide
Web, pages 714–722. ACM Press, 2004.

[4] A. Gómez-Pérez. Towards a framework to verify knowledge sharing technology.
Expert Systems With Applications, 11(4):519–529, 1996.

[5] T. R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2):199–220, 1993.

[6] T. R. Gruber. Toward principles for the design of ontologies used for knowledge
sharing. International Journal Human-Computer Studies, 43(5-6):907–928, 1995.

[7] M. Grüninger and M. Fox. Methodology for the design and evaluation of ontolo-
gies. In IJCAI’95, Workshop on Basic Ontological Issues in Knowledge Sharing,
April 1995.

[8] N. Guarino and C. Welty. Evaluating ontological decisions with ontoclean. Com-
munications of ACM, 45(2):61–65, 2002.

1534 J. Yu, J.A. Thom, and A. Tam

[9] E. Hovy. Comparing sets of semantic relations in ontologies. In R. Green, C. A.
Bean, and Sung Hyon Myaeng, editors, The Semantics of Relationships, pages
91–110. Kluwer, 2002.

[10] P. Krause and D. Clark. Representing Uncertain Knowledge: An Artificial Intel-
ligence Approach. Intellect, Oxford UK, 1993.

[11] M. F. López, A. Gómez-Pérez, J. P. Sierra, and A. P. Sierra. Building a chem-
ical ontology using methontology and the ontology design environment. IEEE
Intelligent Systems, 14(5):37–45, January 1999.

[12] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Lan-
guage Overview. World Wide Web Consortium (W3C), February 2004.
http://www.w3.org/TR/owl-features/.

[13] M.F. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.
[14] R. Studer, V. Benjamins, and D. Fensel. Knowledge engineering: Principles and

methods. IEEE Trans. on Data and Knowledge Engineering, 25(1–2):161–197,
1998.

[15] M. Uschold and M. Grüninger. Ontologies: Principles, methods and applications.
Knowledge Engineering Review, 11(2):93–155, 1996.

[16] A. Varzi. Basic problems of mereotopology. In N. Guarino, editor, Formal On-
tology in Information Systems, pages 29–38. Amsterdam and Oxford: IOS Press,
1998.

[17] A. Varzi. Vagueness in geography. Philosophy and Geography, 4(1):49–65, 2001.

A Self-monitoring System to Satisfy Data
Quality Requirements

Cinzia Cappiello, Chiara Francalanci, and Barbara Pernici

Politecnico di Milano, Department of Electronics and Information
{cappiell, francala, pernici}@elet.polimi.it

Abstract. Quality of information benefits both on line transactional
processing and on line analytical processing. However, quality assur-
ance processes are mostly human intensive and the literature provides
limited support to their automation. This paper proposes a rule-based
data monitoring and improvement approach as a first step towards self-
management of quality of data. These rules specify when to trigger both
assessment procedures and improvement actions (e.g. data cleaning), on
the basis of the actions performed on the databases and specific quality
requirements associated with queries performed by users. They also cap-
ture all the events occurring as a consequence of data quality problems
and alert the Quality Administrator if human involvement is required.
Rules are classified and formalized in the paper. The overall data quality
monitoring and improvement process is explained with examples.

1 Introduction

Information quality plays a key role both inside organizations and in inter-
organizational relationships. In the former case, information quality reduces
errors, increases process efficiency, and improves decision making efficacy. In
the latter case, it represents a critical component of each company’s trustwor-
thiness. The primary requirement for data quality assurance is the continuous
control of data values stored in the operational databases and, possibly, their
improvement. This impacts both on line transactional processing and analyti-
cal processing. Quality monitoring procedures imply the adoption of algorithms
for measuring data quality and automatic techniques for the improvement of
data when their quality decreases below acceptable values. Note that acceptable
values are dynamically defined as users’ requirements.

It is important to have knowledge about the quality of the data stored and
used in the organizational processes. In our perspective, a company that mainly
provides informational services and receives a large amount of requests, as, for
example, in a multichannel environment, has to pay great attention to the qual-
ity assessment procedure. In the literature, it has been often stated that the
effects of poor data quality can be major if they have an impact on customer
dissatisfaction or obstacle the definition of suitable management decisions [13][6].
Organizations can guarantee the high quality of their data by certifying them
and proving to the users that their quality requirements have been satisfied.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1535–1552, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1536 C. Cappiello, C. Francalanci, and B. Pernici

The importance of the certification of the exchanged data is not only valuable
for the communication between organization and users but also between or-
ganizations, especially, in cooperative environments. With the development of
networked economies, organizations are often involved in cooperative processes
and in a communication process the exchange of data and of data quality in-
formation, helps the creation of trustworthy relationships. These considerations
also suggest the need for tools assessing and certifying data quality.

Clearly, in case of poor quality, improvement initiatives have to be under-
taken. The literature provides a variety of techniques for data improvement. The
most straightforward solution suggests the adoption of data-oriented inspection
and rework techniques, such as data bashing or data cleaning [6]. These tech-
niques focus on data values and can solve problems related to data accuracy
and data consistency quality dimensions [6]. A fundamental limitation of these
techniques is that they do not prevent future errors. They are considered appro-
priate only when data are not modified frequently [6]. On the other hand, a more
frequent use of data bashing and data cleaning algorithms involves high costs
that can be difficult to justify. To overcome these issues, several experts rec-
ommend the use of process-oriented methods [6][13][14][16][18]. These methods
allow the identification of the causes of data errors and their permanent elimina-
tion through a change in data access and update activities. These methods are
more appropriate when data are frequently created and modified. Organizations
can also adopt mixed strategies in which they can decide to adopt a data-oriented
technique or a process-oriented technique depending on data and process types.

The improvement phase always needs an accurate and precise data analysis in
order to select the best improvement techniques, and to manage the adoption of a
process-oriented technique. This suggests the importance of the implementation
of new roles in the organization responsible for data quality management. A data
quality professional figure, such as a Quality Administrator, is required to manage
all the knowledge about data structure, operations, and related processes.

Starting from these observations, this paper proposes a framework to perform
data quality assessment and improvement in order to satisfy specified require-
ments. Indeed, the methodology takes as input the levels of data quality both
required by the users and specified for each data set. The proposed solution
aims at providing a first step towards a self-monitoring system, since the evalu-
ation of quality and consequent improvement activities are triggered based on a
set of predefined monitoring rules. Rules can trigger both process-oriented and
data-oriented improvement actions as described in Section 4. The overall data
quality assessment and improvement methodology is supported by a software
architecture called PoliQual responsible for data quality management inside the
organization.

The paper is organized as follows. Section 2 presents the related work. Section
3 describes the functional model of the proposed architecture. Finally, Section
4 explains the rule-based methodology on which the architecture is based and
Section 5 shows some preliminary results obtained in the implementation and
test phases.

A Self-monitoring System to Satisfy Data Quality Requirements 1537

2 Related Work

Data quality has to be assessed and monitored continuously in order to guar-
antee high quality levels. To improve quality, organizations can adopt either
data-oriented or process-oriented techniques. The former focus on data values
and can solve problems related to data accuracy and consistency [6]. In partic-
ular, these techniques discover anomalies and inaccuracies by comparing values
with benchmarks or by performing local analysis to detect inconsistencies and
duplications. Process-oriented methods allow the identification of the causes of
data errors and their permanent elimination through an observation of the whole
process in which data are involved. Correction activities change data access and
update procedures. These methods are more suitable when data are frequently
created and modified. They require a considerable effort for process analysis
and redesign, but guarantee long-term benefits. The literature provides several
frameworks that allow the representation of the processes that manipulate data
and the identification of the sub-processes in which data quality decreases [16]. It
also describes multiple data quality programs that are based on process-oriented
methodologies, such as TDQM (Total Data Quality Management) and TIQM
(Total Information Quality Management) [6][18]. These data quality programs
are useful, but require a cumbersome personalization effort before application.
For example, the primary goal of the TDQM methodology is to provide users
with a high level of data quality by considering data as a particular type of
manufacturing products. The TDQM methodology cycle consists of four phases
in which data quality dimensions are chosen and measured, quality problems are
analyzed and improvement techniques are defined. The authors provide a series
of guidelines that each organization can customize and apply by developing its
own techniques and algorithms. However, this task requires a noticeable effort
from enterprises and the literature does not provide any specific methodological
support to reduce this effort. In this respect, a fundamental open question is the
association of dependable measures with data quality dimensions. The literature
does not provide an exhaustive set of metrics that organizations can apply. Only
a few algorithms have been developed for a subset of dimensions, such as ac-
curacy, completeness, consistency, and timeliness [1][12][13]. Quality assurance
instead needs objective measures of quality, since most users cannot judge the
quality of data and simply trust data sources.

Note that data quality assessment is always performed on data values con-
tained in the operational databases. It directly impacts on the efficiency of the
organizational processes and it also indirectly increases the efficacy of the pro-
cesses at the decisional level. For example, in the literature, studies on data
warehouses state the importance of the high quality of the data values used in
the decision making process [9].

Data quality is also important in inter-organizational relationships. The def-
inition of criteria, metrics, and methodologies to master and manage the quality
of the data exported by each autonomous system was also addressed in [15]. This
contribution aims at investigating data quality issues in Cooperative Information
Systems. Specifically, all cooperating organizations export data quality dimen-

1538 C. Cappiello, C. Francalanci, and B. Pernici

Information System

DBMS
Internal Data

Quality Management
Architecture

Software
Applications

Organization Infrastructure

Data Quality Broker

Common Data Quality Service
Applications

Request/Response

CIS Data Quality
Repository

Common Data Quality
Databases

Request/
Response

External Infrastructure

Fig. 1. Data Quality Management Architecture in Cooperative Information Systems

sion values evaluated for the application data according to a specific data model.
In the defined data model, each data class is associated with a quality class which
specifies the quality dimensions evaluated for the specific data class. Each field
belonging to each tuple in the data class is associated with its quality value.

In Cooperative Information Systems (CIS), organizations need to share in-
formation, which may have a different level of quality in different organizations.
In order to guarantee a consistent high level of data quality, organizations have
to implement a common architecture to control and improve the quality of their
data. In [4] an architecture composed by an internal infrastructure and an ex-
ternal infrastructure has been proposed (Figure 1).

The external infrastructure is composed of the Data Quality Broker and the
CIS Data Quality Repository [15]. It is accessible from all the organizations
involved in the Cooperative Information System and it has two important func-
tions: it offers a set of data quality services and controls the data exchanged
among organizations. In Figure 1 the information flow in the data quality man-
agement architecture is represented; an organization included in the Cooperative
Information System sends its information request to the Data Quality Broker
that with the collaboration of the CIS Data Quality Repository defines the series
of operations involved to retrieve data. The Data Quality Broker offers also a
set of services for data improvement and recovery. The internal infrastructure is
represented by an internal Data Quality management architecture that has to be
implemented in each organization involved in the Cooperative Information sys-
tem to ensure a good internal data quality management. In this paper a quality
management architecture is presented and is called PoliQual. The design of the
methodologies and tools underlying the PoliQual work is one of the objectives
of this paper and it is discussed in Section 4.

A total data quality management program can be achieved only with con-
tinuous data assessment, monitoring, and improvement. Organizations need self-

A Self-monitoring System to Satisfy Data Quality Requirements 1539

monitoring tools that can help these activities by tracking and identifying anoma-
lies in data management limiting human intervention. Benefits from the imple-
mentation of such tools can be also considered in terms of reputation and trust-
worthiness increase. Indeed, since the assessment procedures should be able to
automatically publish quality metadata, they can be used to produce a qual-
ity certificate that associated with data allows attesting to the quality of an
organization’s data.

The main contribution of this paper is the design of a methodology and tools
that aim at supporting a total data quality management program.

3 Data Quality Evaluation

The PoliQual architecture illustrated in this paper allows managing data asso-
ciating quality information to stored and retrieved data. The basic data and
quality model we adopt in this paper assumes a flat structure for data (as in
the relational model) and that each data object is associated with its quality
dimensions as illustrated in the example in Figure 2 which will be used as main
example in the following. The dimensions that are considered in the present work
and so far implemented in PoliQual are accuracy, completeness, and timeliness.

…..

…..

Completeness

…..

…..

Accuracy

…..…..….....

…..…..…..…..

TimelinessTrading_op #AddressName

Quality MetadataCustomer Data

Fig. 2. Example - data schema and associated quality metadata

The model we adopt for exporting data and quality data is based on the Data
and Data Quality (D2Q) model [15]. This model refers to the model underlying
XML-QL [5], that is a Query Language for XML. In XML-QL data model an
XML document is modeled by an XML graph. An XML Graph consists of a
graph in which each vertex is represented by a unique string called an object
identifier, attributes are associated with nodes, elements are represented by edge
labels, and leaves are labeled with values. In the D2Q model, this model has been
extended by adding quality information, stored in metadata and associating it
with each data value, thus with each leaf. Therefore, data classes are defined as
sets characterized by a name and a series of tuples πi = <namei; typei> and
quality metadata are associated with each tuple.

In our approach, the data quality model is modified and the quality informa-
tion is built through a hierarchy of metadata. Indeed, it is possible to distinguish
first-level metadata MD1 that represent a measure of data quality dimensions
and second-level metadata MD2 (meta-metadata) that allow the evaluation of
data quality dimensions, that is they represent a metric.

1540 C. Cappiello, C. Francalanci, and B. Pernici

Furthermore, from a database perspective, the D2Q data model implies the
storage of quality metadata related to each field defined in a table. In large
databases, the management and especially the analysis of such an amount of
metadata is difficult. Since one of the goal of this research is the definition of an
architecture that allows continuous quality assessment and monitoring, a high
volume of information can be an obstacle to system implementation and effi-
ciency. For this reason, it has been chosen to simplify the model and to perform
analysis and monitoring operations on aggregate quality metadata associated
with a tuple πi = <nameij ; namei(j+1)nameiN>. The risk of this approach
is based on the compensation effects that an aggregation function, e.g. the aver-
age, could introduce. However, in case of very poor quality of a field, the overall
quality of the tuple will decrease and it will be probably lower than admissible
values. Consequently, the intervention of the Quality Administrator will help to
find out where the causes of poor quality are.

As stated before, so far the implemented dimensions are accuracy, complete-
ness, and timeliness that are objective dimensions and, therefore, are suitable for
a quantitative evaluation. These three dimensions constitute a minimal set that
provides sufficient information about the suitability of data along the process in
which they are involved. We assume that quality values can be evaluated on each
property, that is a field contained in a database tuple, on the basis of algorithms
available in the literature as follows:

– Accuracy is defined in [17] as ”the extent to which data are correct, reliable
and certified”. The correctness of data can be defined as a measure of the
proximity of a data value v to some other value v’ that is considered correct
[13]. In our approach, each property is associated with a boolean value that
reveals its correctness. The aggregate evaluation function that we consider for
the accuracy dimension is the ratio between the number of correct values and
the total number of values in a given data set. The value correctness is verified
applying data bashing techniques with respect to available dictionaries, after
applying data normalization (i.e. str. is substituted with street).

– Completeness specifies the degree to which specific values are included in
a data collection[13]. The completeness of each property is evaluated ac-
cording to the presence of its value. The presence or absence of the value
is represented by a boolean value. An aggregate evaluation function of this
dimension is obtained calculating the ratio between the number of complete
fields and the total number of fields in a given data set.

– Timeliness is defined as the property of information to arrive early or at the
right time [7]. Timeliness is usually measured as a function of two elementary
variables, currency and volatility [1][2]. The measure of timeliness, used in
the PoliQual implementation, is defined in [1] as:

T imeliness = max
[(

1 − Currency

V olatility

)
; 0

]s

where the exponent s is a parameter necessary to control the sensitivity of
timeliness to the currency-volatility ratio. With this definition, the value of

A Self-monitoring System to Satisfy Data Quality Requirements 1541

timeliness ranges between 0 and 1. Note that along the hierarchy of meta-
data presented in the data model, currency and volatility dimensions can be
defined as second-level metadata.

The approach can be easily extended to other data quality dimensions and to
more complex data structures. In fact, in Section 4 we will discuss the approach
to quality assessment and improvement in general, assuming to consider a set Q
= {qdj} of data quality dimensions.

In a traditional information system, a user retrieves data by specifying a sim-
ple query. In a data quality oriented approach, and above all with certification
purposes, users have to specify their own quality requirements. In the method-
ology proposed in this paper, the model expects that a generic user (internal or
external or, in some cases, an application) sends a request to retrieve a given
data set together with the specification of quality requirements.

Specifically, a data-quality oriented request is based on the submission of a
regular query to organizational databases along with the specification of user
quality requirements. Since the metadata are organized in a hierarchical struc-
ture, and thus stored in XML files, queries can be expressed in a quality oriented
version of XQuery language [10]. For example:

for $i in input() where customer[avg(completeness(Name),
completeness(Address), completeness(trading_op))> 0.9]
return($i/Name, $i/Address)

The expected result is produced by associating to each tuple the aggregate
values of its quality metadata. In Figure 3 is represented the general structure
of the result while in Figure 4 an example is shown. Note that the generic user
will only receive the aggregate values associated with first-level metadata.

The associated values are those derived from the original tuple. In order
to associate an aggregate value for each data quality dimension, an average
of quality values on all properties computed to evaluate the aggregate quality
value, i.e.:

qdj(tupleik) =

N∑
n=1

qdj(tupleik.propertyn)

N

value1N…..value12value11

valueIN…..valueI2valueI1

…..…..…..…..

value1N…..value12value11

Quality Metadata
MD1

Quality
Meta-Metadata

MD2

Fig. 3. Structure of the result: data objects and related metadata

1542 C. Cappiello, C. Francalanci, and B. Pernici

…..

…..

Completeness

…..

…..

Accuracy

…..….....

…..…..…..

TimelinessAddressName

Fig. 4. Structure of the result: example

The function qdj(tupleik.propertyn) will calculate the first level metadata asso-
ciated the n-th property involved in the k-th tuple included in a database dbi.
The evaluation function will consider second-level metadata along the algorithms
defined for the quality dimension qdj .

A more sophisticated model can associate a weight vector to each schema to
indicate the relevance of each property in the computing the aggregate value, so
that:

qdj(tupleik) =
N∑

n=1

wjn · qdj(tupleik.propertyn)

where
N∑

n=1

wjn = 1

In this case, it is supposed that the weights associated with properties are defined
by the users along their degree of usefulness.

Furthermore, in order to calculate aggregate values, for some dimensions
such as timeliness, the minimum or maximum assessment function can be also
used. Indeed, along a data set, the minimum value of timeliness can be more
significant than an average value in order to understand the updateness of the
whole data set.

Note that we do not consider complex queries that imply, for example, the
join of two or more tables. In the literature, information quality assessment
algorithms to manage these more complex cases have been proposed only for the
completeness dimension [11].

Evaluation of quality of returned tuples can be performed by PoliQual in two
ways:

– On line evaluation: the property quality values and aggregate quality
values are computed along a specific request using the suitable algorithms.

– Off line evaluation: aggregate quality values are precomputed and stored
in a quality repository on the basis of the model shown in Figure 2.

3.1 On Line Evaluation

The on line evaluation approach involves an additional cost to compute the
result of the query, since, differently from generic data, first-level metadata are
not simply retrieved from a local database, but are calculated with an evaluation
algorithm and thus using, where required, second-level metadata. Further, if the

A Self-monitoring System to Satisfy Data Quality Requirements 1543

request involves a large amount of data, response time can be too high. For
requests of large data sets, it could be more appropriate to consider the results
provided by the off line evaluation process, as discussed in the following.

If an organization cannot satisfy a request with its own data, especially in a
cooperative information system, it can request to another organization if it owns
suitable data. Indeed, in some cases, there are public or private organizations
that are certified for the treatment of a specific type of data and their databases
can be used as benchmark values in a quality assessment process. This action is
called on line improvement and it allows an organization to increase the quality
of its own data through the cooperation with other organizations.

3.2 Off Line Evaluation

The off line evaluation differs from the on line evaluation since it is indepen-
dent of the execution of a particular query. The PoliQual architecture calculates
the first-level quality metadata associated with the data belonging to an or-
ganization’s databases. This calculation is triggered by the rules discussed in
Section 4. Rules may trigger the evaluation periodically or as a consequence
of a given internal event. An off line evaluation can be requested also by the
Quality Administrator to analyze a specific situation that has not been de-
tected automatically. The periodic assessment and storage of quality metadata
allow the enterprise to answer users’ queries by accessing both the database con-
taining the requested data and the database containing corresponding quality
metadata. This reduces the response time to the queries of users, but it may
provide out-of-date information about the quality of data. In fact, the stored
quality metadata do not take into account all the changes performed in the
time interval between two periodic assessments. A critical issue is the defini-
tion of the time interval between two periodic assessments in order to maxi-
mize the currency of quality metadata. Another critical issue is the unavail-
ability of data during periodic assessments. Indeed, the evaluation operations
lock data which, consequently, are not available to the user during the execu-
tion of evaluation algorithms. Mechanisms to manage concurrent data access
are required.

3.3 Example

In order to clarify the functional model of PoliQual, let us consider the following
example. PoliQual receives a query requesting the data describing the customers
that did at least a trading operation for which timeliness is greater than 0.8:

for $i in input() where customer[trading_op >=1 and
avg(Timeliness(Name), Timeliness(Address),
Timeliness(trading_op))> 0.8] return($i/Name,$i/Address)

The response to this query is obtained through the following steps:

1544 C. Cappiello, C. Francalanci, and B. Pernici

1. For each customer that satisfies the query and belongs to the requesting
organization’s database, the method associated with the on line evaluation
is invoked. The method returns the evaluation of the degree of timeliness
corresponding to the customer data.

2. If the returned degree of timeliness is greater than 0.8, the corresponding
customer will be included in the result set of the query. On the contrary, if
the customer record does not satisfy quality requirements, the system will
alert the user and store failure details.

4 Quality Monitoring

In the previous section we have discussed how the evaluation of data quality
metadata can be performed. In the present section we discuss the decision rules
for applying the above mentioned evaluation techniques, focusing in particular
on evaluation of quality metadata and improvement actions.

A software architecture, namely PoliQual, has been designed in order to
support the improvement, assessment, and maintenance of data quality in each
organization and, consequently, to ensure a good internal data quality man-
agement. PoliQual is represented in Figure 5. It is composed of four modules:
Quality Analyzer, Quality Assessment, Monitoring, and Quality Certification.
The Quality Analyzer module parsers user requests in order to select informa-
tion taking into consideration users’ requests as formulated in Section 3. In case
on line evaluation is needed, it invokes the Quality Assessment module. The
Quality Certification module associates first-level quality metadata with results.
The Monitoring module supports the Quality Administrator, collecting relevant
events that may require major improvement actions, and activates off line qual-
ity assessment operations. PoliQual supports both automatic evaluation and
improvement operations, but also needs the intervention of a Quality Adminis-
trator, in particular to decide when and how to perform major data cleaning and
improvement operations, involving external resources. In this sense we describe
our approach for the self-management of quality of data as semi-automatic, since
it is supported by rules that trigger both assessment and improvement phases,
but in some cases it requires human intervention.

The rules trigger the interaction among internal modules (Internal rules)
and between PoliQual and the external components, in particular the Qual-
ity Administrator (External rules). Internal rules mostly trigger the assessment
operations and establish the communication among the modules belonging to
PoliQual. The internal rules are completely automatic and human support is
limited to the initialization of a few parameters. External rules are strictly re-
lated to the improvement phase that often requires a human intervention. The
functions performed by PoliQual are discussed in the following.

4.1 Assessment Phase

The assessment phase is composed of on line evaluation and off line evaluation
procedures. As regards the on line evaluation, a query Q is submitted by a user

A Self-monitoring System to Satisfy Data Quality Requirements 1545

Data
Repository

Data Formatting
& Transformation

Quality
Analyzer

Monitoring
Quality

Certification

Quality
Assessment

Data
Presentation

Quality
Repository

Data
Processing

Quality
Administrator

User/System
request

D

D

Requested
Data

D

Trigger-event

Fig. 5. The PoliQual architecture

and processed by the Data Formatting & Transformation module that translates
it into a format that can be understood by the Quality Analyzer. The Quality
Analyzer analyzes the request and retrieves the query result R from the Data
Repository. Then, the Quality Analyzer considers user quality requirements. It
extracts the information required for quality evaluation from the Quality Repos-
itory. The Quality Repository contains both the second-level metadata needed
for the evaluation and the first-level metadata resulting from the latest off line
quality evaluation. Indeed, the retrieval of data quality values can be performed
in two ways, as described in the previous section. Let us consider the data an-
swering that are the result R of a query Q submitted by the user. Corresponding
quality values can be calculated by activating assessment algorithms that are ex-
ecuted by the Quality Assessment module or can be gathered from the result
of the last off line evaluation. An on line evaluation guarantees that the quality
metadata are up-to-date, also in case of updates to the tuple and time-varying
timeliness. On the other hand such evaluations are expensive in computational
terms. Consequently, the discriminating factor between the two approaches is
the Computation Time necessary to perform assessment operations. The sum of
Computation Time and Delivery Time (td), that is the time necessary to send
data to the user, must be lower than the acceptable Service Time (ts) repre-
senting the maximum time interval that the user is willing to wait for. Let us

1546 C. Cappiello, C. Francalanci, and B. Pernici

consider a user performing a query Q extracting K tuples (tuplei1,... tupleiK)
from a database dbi specifying m requirements on corresponding data quality
dimensions qdj . If tcj is the estimated computation time of quality dimension
qdj for a single record, the assessment phase must satisfy the following rule:

∀j ∈ [1, m] ((
m∑

j=1

tcj) ∗ K + td < ts ⇒ ∀k ∈ [1, K] (Assessment(qdj(tupleik))))

where
qdj(tupleik)= value of the quality dimension qdj associated with the tupleik,
Assessment(qdj(tupleik))= activation of the assessment procedure that eval-

uates the value qdj(tupleik).
If the rule is not satisfied, then the quality values have to be retrieved from

the Quality Repository that contains the results of the last off line assessment:

∀j ∈ [1, m] ((
m∑

j=1

tcj) ∗ K + td > ts ⇒ ∀k ∈ [1, K](Retrieve(qdj(tupleik))))

where
Retrieve(qdj(tupleik))= activation of the procedure that retrieves the value

qdj(tupleik).
Using the function Retrieve(qdj(tupleik)), a critical issue can occur in case

a new tuple is created in the database dbi after the latest off line evaluation. In
this case the Quality Repository does not contain the quality value associated
with the tuple and qdj(tupleik) is equal to null for all data quality dimensions.
For this reason, after the retrieval operation another rule is applied in order to
control if these anomalies occur:

∀j ∈ [1, m] ∀k ∈ [1, K] (qdj(tupleik) = null ⇒ Assessment(qdj(tupleik)))

If user requirements are satisfied and thus the values of all quality dimensions
are acceptable, the Quality Assessment notifies the quality values to the Quality
Analyzer and the quality certificate is built and associated with the requested
data by the Quality Certification module. Before data are sent to the user, they
are sent to the Data Processing module, which cooperates with other software
applications that are in charge of preparing the final response to the user. The
Data Presentation module sends the response to the user according to a specific
format.

The results of the Quality Assessment module are used as an input for the
Monitoring module: if the values of one or multiple quality dimensions do not
satisfy user requirements, the Quality Assessment module sends an alert mes-
sage to the Monitoring module, which evaluates whether quality improvement
actions are needed. Alert messages are regulated by a set of rules, classified as
Process rules, that support the verification of user quality requirements by the
Assessment module. As an example, we can consider a user performing a query
Q extracting K tuples (tuplei1,...tupleiK) from a database dbi. Let us suppose

A Self-monitoring System to Satisfy Data Quality Requirements 1547

that the user requires a value associated with the dimension qdj be equal or
greater than 0.8. The Assessment module considers the following rule:

∀k ∈ [1, K](qdj(tupleik) < 0.8

⇒ Send alert(dimension = qdj .name, tupleik, qdj(tupleik), 0.8))

For each tuple that does not satisfy user requirements, an alert message is
sent to the Monitoring module specifying the name of the quality dimension that
has been assessed, the tuple that does not satisfy requirements, the actual and
target values of the quality dimension. The Monitoring module stores all alert
messages in a file that can be used for subsequent aggregate analysis supporting
the improvement process.

With the off line evaluation, as soon as the calculation is triggered, the
Monitoring module must communicate to the Quality Assessment module the
data that have to be controlled and the set of data quality dimensions that have
to be evaluated. The metadata that measure the results of the evaluation are
stored in the Quality Repository. The calculation is triggered by a set of internal
rules that can be classified as Temporal and Functional:

– Temporal Rules are designed to assess data periodically. To define temporal
rules, it is necessary to establish the evaluation period, that is the time
interval between two off line evaluations. The evaluation period should be
defined by considering both the update frequencies of source databases and
the source availability requirements. Indeed, frequent data changes should
be associated with a shorter evaluation period but it is also necessary to
consider that an off line evaluation procedure disables the accesses to the
system for the all the execution period. Let t and ti be the current time and
the time instant in which the last off line evaluation has been performed
on database dbi. The database contains K tuples (tuplei1,...tupleiK), qdj a
quality dimension and ∆tij the evaluation period associated with dbi and
qdj . An example of temporal rule is:

∀t∀i∀j (t = (ti + ∆tij) ⇒ ∀k(Assessment(qdj(tupleik))))

Note that the off line evaluation can be triggered on a subset of a database
by specifying a query in the corresponding temporal rule. It can be also
triggered on a specific set of quality dimensions with different time periods
by defining multiple temporal rules.

– Functional rules are defined to capture events occurring as a consequence
of a modification in a database. These events are captured by monitoring
update, create, and delete operations. Usually, the off line evaluation is not
performed at each modification of a database, due to the high costs of as-
sessment operations and system unavailability. It is more advisable to per-
form the off line evaluation after a predefined number of modifications N.
This number can refer to the number of data updates, creations, and dele-
tions and it is determined by the Quality Administrator along a database
analysis. Alternatively, functional rules can include different thresholds for

1548 C. Cappiello, C. Francalanci, and B. Pernici

different types of modifications. In PoliQual, modifications are associated
with records, as opposed to fields. Therefore, functional rules count a sin-
gle modification even if multiple fields are changed in the same record. Let
us consider Updated(tupleik), as a function that is equal to the number of
times that the tupleik has been updated, and a database dbi an example of
functional rule is:

K∑
k=1

(Updated(tupleik)) > Nupdate ⇒ ∀j∀k(Assessment(qdj(tupleik)))

where Nupdate represents the number of update operations triggering the off
line evaluation. After the assessment of dbi, ∀k Updated(tupleik) is set to 0.

Temporal and functional rules can be combined as follows:

∀t∀i∀j (
K∑

k=1

(Updated(tupleik)) > Nupdate ∨ (t ≥ ti + ∆tij)

⇒ ∀k(Assessment(qdj(tupleik))))

In this case, the count of update operations should start from ti.

4.2 Improvement Phase

The rules that support the improvement phase are particularly relevant. They
trigger the communication between the Monitoring module and the Quality
Administrator to support the improvement phase. Note that the improvement
phase is not completely automatic. PoliQual can suggest the type of improve-
ment actions to undertake and the time period to perform them. The Quality
Administrator should analyze critical situations and perform the most appro-
priate improvement actions. In the previous section, it has been described how
the Monitoring module stores alert messages generated by low quality values.
When the number of user requests that are not satisfied is high, data should be
improved. An overall low quality of data for a high number of users can affect
the quality of business services [13] and the cost of improvement actions can
be justified. When an improvement process is needed, the Monitoring module
sends a request to the Quality Administrator suggesting a thorough analysis of
data. When the user request that extracts K tuples (tuplei1,...tupleiK) from a
database dbi is not satisfied and the alert message is sent to the Monitoring
module, the Monitoring module counts the number of alerts on all the detected
tuples and activates the analysis request message considering the following rule:

∀k ∈ [1, K], ∀j (
∑

(Alert(qdj .name, tupleik)) > Nalert

⇒ Analysis(dimension = qd name, tuple1k))

where Nalert represents the number of alert messages indicating a critical quality
situation that requires a detailed analysis.

A Self-monitoring System to Satisfy Data Quality Requirements 1549

The analysis performed by the Quality Administrator should evaluate whether
the divergence between user requirements and actual quality values is critical. If it
is considered critical, an improvement action is required. As discussed in the pre-
vious section, improvement actions are based on either data-oriented or process-
oriented techniques. The former are appropriate when data are not modified fre-
quently, as they are expensive and have short-term effects. If data are not changed
frequently, they need the application of inspection and rework techniques, such as
data bashing or data cleaning. These techniques focus on data values and can solve
problems related to data accuracy, consistency, and completeness [6]. It is possi-
ble to define rules to support the analysis conducted by the Quality Administrator
in order to identify the most suitable improvement technique and to activate it.
For example, when the Monitoring module sends to the Quality Administrator an
analysis request for a tuple, the Quality Administrator can activate rules to trigger
the data-oriented tools implemented by the organization verifying whether data-
oriented tools are suitable for those data. Since the improvement technique are
in general applied to the whole data set dbi in which the tuple is included, these
rules consider all the tuples in dbi. Let us consider two functions:

- Created(tupleik): function that is equal to 1 if the tupleik has been cre-
ated between the current time instant t and a fixed time ti (ti < t) and 0
otherwise.

- Updated(tupleik): function that is equal to the number of times that the
tupleik has been updated between the current time instant t and a fixed
time ti, (ti < t).

A rule activating improvement tools can be:

K∑
k=1

Updated(tupleik)+
K∑

k=1
Created(tupleik)

t−ti
< F ⇒ Activate(data oriented tool(dbi))

where F measures the threshold number of modifications to dbi in a specific time
interval. If a database contains critical data and is frequently accessed by users,
process-oriented approaches to data improvement are more appropriate, since
they prevent future errors with a long-term effect. If the rule above is not sat-
isfied, that is the frequency of changes is greater than F, then, process-oriented
improvement initiatives should be activated by the Quality Administrator to
identify the causes of data errors and eliminate them permanently. This requires
the observation of the processes in which data are involved. Improvement ac-
tions change data access and update activities through process analysis and
redesign. In our architecture, this type of improvement methods is supported by
the History dimension. This dimension tracks the time evolution of the quality
of a data set in order to identify which operations have improved or worsened
quality values and, thus, build a historical database that can be used for sta-
tistical evaluations and process improvement. The History dimension stores all
the events that have caused a data modification, from creation to deletion. For
each data modification the information that has to be stored in the History
is the name of the user performing the modification, date, hour, and type of

1550 C. Cappiello, C. Francalanci, and B. Pernici

operation (creation, update or deletion) and the percentage of data quality vari-
ation. The analysis of the History file helps the Quality Administrator to identify
the processes that have to be analyzed and redesigned to obtain a permanent
improvement of data quality.

5 Implementation and Test Results

The functionalities of the architecture proposed in this paper have been imple-
mented as Web services. This implementation has a simple Web interface that
allows users to access services through a common Web browser. The architecture
has been implemented with JAVA Server Pages (JSP) and JAVA Servlet. Mi-
crosoft Access and SQL have been used to define the structure of databases and
queries, respectively. In order to provide efficient and scalable Web services, the
system has been designed with independent data, application, and presentation
layers. Not all the quality dimensions listed in the previous sections have been
implemented. So far, the implementation is complete for timeliness, complete-
ness, accuracy, and history.

The algorithms used to assess timeliness, completeness, accuracy, and history
have been tested on sample databases. As discussed in the previous sections, qual-
ity dimensions can be evaluated in on line or off line mode. Testing has pointed out
that the on line evaluation can provide real-time quality values, but if the assess-
ment algorithms are performed on line on large amounts of data, time response can
be excessively high. In this respect, the off line evaluation is preferable, although
it provides quality values valid at the time of the last assessment.

Our analysis have pointed out that for certain quality dimensions, such as
timeliness and completeness, the average response time per record is about 1 s,
the average computation time per record is about 400 ms and the delivery time
that is the average time for the generation of the JSP page is estimated as 600 ms.
As the number of records increases, the average computation time grows linearly,
since the algorithms evaluating quality dimensions are characterized by linear
complexity [3]. Delivery time is almost constant. By applying the rule defined in
Section 4, it is possible to calculate a rough threshold value for the number of
records. If query results involve a number of tuples below the threshold value, it is
suggested to perform the on line assessment, otherwise it is advisable to retrieve
the values stored by the last off line evaluation. On the contrary, for the accuracy
dimension, it is better to perform the off line evaluation, as calculations consider
all the records in the databases and algorithms are exponentially complex [8].
Although tests have been performed on a database of small dimensions (4000
records), in order to obtain the most correct and reliable results, and thus to
find the maximum number of errors, the execution time is 15 minutes. Note that
tests have been performed on a Pentium III 650 Mhz and 192MB RAM.

6 Concluding Remarks

The paper has presented a framework for data quality self-management oriented
to satisfy users’ quality requirements. A number of quality dimensions are sup-

A Self-monitoring System to Satisfy Data Quality Requirements 1551

ported, including assessment and data quality tools, on flat data structures, such
as for instance relational tables. Evaluation of quality has been performed on
tuples, and quality requirements on queries are expressed on single tables.

A number of possible future research directions are possible.
A first direction is towards including in the framework evaluation of quality

of complex data structures and evaluating quality of results of queries which are
derived from more than one base table. Algorithms have been proposed in the
literature for some dimensions, such as completeness [12] while measurement of
other quality dimensions in complex queries needs still further investigations.

Further investigation is needed also for the rule based approach for assess-
ment. While some experimental data provide some evidence on choosing between
on line and off line assessment, further research is needed to relate these evalua-
tions to the evolving nature of data: some data are static, and in general do not
need further evaluation in time, such as names and birth dates, while others are
heavily dependent on underlying processes (e.g. Stock quotes). More elaborated
criteria for deciding whether to perform an on line evaluation should be studied.
In addition, further investigation is needed on the relationships between rules, to
guarantee that a correct answer, i.e. satisfying quality requirements, is given to
users most of the times, and that on line and off line evaluations do not require
a high percentage of rework performing already available assessments.

The proposed framework is a first attempt at providing an integrated set of
tools for a systematic data quality management.

Acknowledgements

This work has been partially supported by the Italian FIRB Project MAIS.

References

1. D.P. Ballou, R.Y. Wang, H.L. Pazer, and G.K. Tayi. Modelling information manu-
facturing systems to determine information product quality. Management Science,
44(4), 1998.

2. M. Bovee, R.P. Srivastava, and B. Mak. A conceptual framework and belief- func-
tion approach to assessing overall information quality. In Proceedings of the Sixth
International Conference on Information Quality. MIT Press, November 2001.

3. C. Cappiello, C. Francalanci, and B. Pernici. Time-related factors of data quality in
multichannel information systems. Journal of Management Information Systems,
20(3):71–91, 2004.

4. C. Cappiello, C. Francalanci, B. Pernici, P. Plebani, and M. Scannapieco. Data
quality assurance in cooperative information systems: a multi-dimension quality
certificate. In Proceedings of the International Workshop on Data Quality in Co-
operative Information Systems (DQCIS 2003), January 2003.

5. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and Suciu D. Xml-ql: A query
language for xml. In Proceedings of the 8th International World Wide Web Con-
ference, 1999.

6. L.P. English. Improving Data Warehouse and Business Information Quality. John
Wiley & Sons, 1999.

1552 C. Cappiello, C. Francalanci, and B. Pernici

7. M.J. Eppler. Managing Information Quality. Springer-Verlag, 2003.
8. M. Hernandez and S. Stolfo. The merge/purge problem for large databases. In

Proceedings ACM SIGMOD International Conference Management of Data, 1995.
9. M. Jarke, M. Lenzerini, Y. Vassiliou, and P. Vassiliadis. Fundamentals of Data

Warehouse. Springer-Verlag, 2000.
10. D. Milano, M. Scannapieco, and T. Catarci. Quality-driven query processing of

xquery queries. In Proceedings of the International Workshop on Data and Infor-
mation Quality (DIQ’04) in conjunction with the CAiSE, pages 78–89, 2004.

11. F. Naumann. Quality-Driven Query Answering for Integrated Information Systems.
LNCS 2261, 2002.

12. F. Naumann, J. C. Freytag, and U. Leser. Completeness of integrated information
sources. Information Systems, 29(7):583–615, 2004.

13. T.C. Redman. Data Quality for the Information Age. Artech House, 1996.
14. M. Scannapieco, E. Pierce, and B. Pernici. Ip-uml: Towards a methodology for

quality improvement based on the ip-map framework. AMIS (Advances in Man-
agement Information Systems) Monograph on Information Quality, 2005.

15. M. Scannapieco, A. Virgillito, M. Marchetti, M. Mecella, and R. Baldoni. The
daquincis architecture: a platform for exchanging and improving data quality in
cooperative information systems. Information Systems, 29(7):551–582, 2004.

16. G. Shankaranarayan, R. Y. Wang, and M. Ziad. Modeling the manufacture of an
information product with ip-map. In Proceedings of the 6th International Confer-
ence on Information Quality, 2000.

17. Y. Wand and R.Y. Wang. Anchoring data quality dimensions in ontological foun-
dations. Communication of the ACM, 39(11), 1996.

18. R.Y. Wang. A product perspective on total data quality management. Communi-
cations of the ACM, 41(2), 1998.

An Ontology- and Resources-Based Approach to
Evolution and Reactivity in the Semantic Web

Wolfgang May1, José Júlio Alferes2, and Ricardo Amador2

1 Institut für Informatik, Universität Göttingen
2 Centro de Inteligência Artificial - CENTRIA, Universidade Nova de Lisboa

Abstract. The Web of today can be seen as an active and heteroge-
neous infrastructure of autonomous systems, where reactivity, evolution
and propagation of information and changes play a central role. In the
same way as the main driving force for XML and the Semantic Web
idea was the heterogeneity of the underlying data, the heterogeneity of
concepts for expressing behavior calls for an appropriate handling on the
semantic level. We present an ontology-based approach for specifying be-
havior in the Semantic Web by Event-Condition-Action (ECA) rules that
models rules as well as their event, condition, and action components,
and languages as resources. The necessary information about semantics
and suitable processors is then associated with the language resources.
The approach makes use of the data integration facilities by URIs that
allow for a seamless integration of information and services physically
located at different places. Additionally, that point of view allows for
sharing and reuse of these resources throughout the Semantic Web.

1 Introduction

The current Web does not only consist of HTML pages, but of nodes, some of
which are still browsing-oriented, but in general also providing behavior (often
summarized as Web services). With this, the perspective shifts more to the
idea of the Web as a network of (autonomous) information systems. Current
portals usually integrate a fixed set of known sources, often using “hard-coded”
integration. A problem when overcoming this restriction is its heterogeneity, both
in the actual data formats, and also semantic heterogeneity. The goal of the
Semantic Web is to bridge this heterogeneity and provide unified view(s) on the
Web. In this scenario, XML (as a format for storing and exchanging data), RDF
(as an abstract data model for states), OWL (as an additional framework for
state theories), and XML-based communication (Web Services, SOAP, WSDL)
provide the natural underlying concepts.

In contrast to the current Web, the Semantic Web should be able not only
to support querying, but also to propagate knowledge and changes in a semantic
way. This evolution and behavior depends on the cooperation of nodes. In the
same way as the main driving force for XML and the Semantic Web idea was the
heterogeneity of the underlying data, the heterogeneity of concepts for express-
ing behavior requires an appropriate handling on the semantic level. Since the
contributing nodes are prospectively based on different concepts such as data

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1553–1570, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

1554 W. May, J.J. Alferes, and R. Amador

models and languages, it is important that frameworks for the Semantic Web
are modular, and that the concepts and the actual languages are independent.

Here, reactivity and its formalization as Event-Condition-Action (ECA) rules
provide a suitable model because they provide a modularization into clean con-
cepts with a well-defined information flow. An important advantage of them is
that the content (event, condition, and action specifications) is separated from
the generic semantics of the rules themselves. They are easy to understand, and
provide a well-understood formal semantics: when an event (atomic event or
composite event) occurs, evaluate a condition, and if the condition is satisfied
then execute an action (or a sequence of actions, a program, a transaction, or
even start a process). ECA rules provide a generic uniform framework for speci-
fying and implementing communication, local evolution, policies and strategies,
and –altogether– global evolution in the Semantic Web.

In the present paper, we develop an ontology-based approach for describing
(reactive) behavior in the Web and evolution of the Web that follows the ECA
paradigm. We propose a modular framework for composing languages for events,
queries, conditions, and actions, as well as application-specific languages and on-
tologies for atomic events and actions. Modularity allows for high flexibility wrt.
the heterogeneity of the potential sublanguages, while exploiting and supporting
their meta-level homogeneity on the way to the Semantic Web.

Structure of the Paper. The remainder of the paper is structured as fol-
lows: In Section 2, we analyze the notion of state in the Semantic Web and the
consequences for the design of the ECA framework for describing behavior in the
Semantic Web. The rule level of the ontology is then presented in Section 3, in-
cluding the coarse level of an XML Markup. Section 4 deals with the integration
of trigger-like ECA rules “below” the semantical level in the homogeneous local
environments of nodes. The Semantic Web level is then refined with a more de-
tailed analysis of the event, query, condition, and action concepts in Section 5;
leading to a refined XML Markup. The architecture of the realization of the
framework in the Semantic Web based on the “actual” resources (e.g., language
processors that are associated with the language resources) of the RDF ontology
is described in Section 6, followed by a short conclusion.

2 Rules in the Semantic Web: Requirements Analysis

2.1 States and Nodes in the Semantic Web

As described above, the Semantic Web can be seen as a network of autonomous
(and autonomously evolving) nodes. Each node holds a local state consisting of
extensional data (facts), metadata (schema, ontology information), optionally a
knowledge base (intensional data), and, again optional, a behavior base. In our
case, the latter is given by the ECA rules under discussion that specify which
actions are to be taken upon which events and conditions.

The state of a node in the Semantic Web is represented in XML, RDF(S),
and/or OWL. Usually, XML serves for the physical level, mapped to an RDF/

An Ontology- and Resources-Based Approach to Evolution and Reactivity 1555

OWL ontology for integration throughout the Web. Here, a framework where the
behavior base (i.e., the ECA rules) is also part of the Semantic Web and repre-
sented in a declarative way (and can be queried, reasoned about, and updated),
will in our view prove useful.

2.2 Behavior of Nodes

Cooperative and reactive behavior is then based on events (e.g., an update at a
data source where possibly others depend on). The depending resources detect
events (either they are delivered explicitly to them, or they poll them via the
communication means of the Semantic Web). Then, conditions are checked (ei-
ther simple data conditions, or e.g. tests if the event is relevant, trustable etc.),
which can include queries to one or several nodes. Finally, an action is taken
(e.g., updating own information accordingly).
The behavior has to take into account the distributed state of knowledge:

1. behavior can be local to a node, i.e., all events are explicitly detectible at the
node, the condition is a query against local data, and the actions are also
local ones;

2. conditions can include queries that may involve other nodes (either explicitly
addressed, or by evaluating a Semantic Web query);

3. actions can also effect other nodes; again either by sending an explicit message
to a certain node, or as an intensional update against “the Web”. Such
updates are expressed and sent as messages, and appropriate nodes will react
upon their receipt by updating their local database;

4. there are also relevant events that are only detectible at other nodes, or
intensional events “on the Web”; also, event combinations (from possibly
different sources) have to be taken into account.

With these extensions, together with the “Semantic” property of the rules, the
ECA concept needs to be more flexible and adapted to the global environment.
Since the Semantic Web is a world-wide living organism, nodes “speaking dif-
ferent languages” should be able to interoperate. So, different “local” languages,
be it the query languages, the action languages or the event languages/event al-
gebras have to be integrated in a common framework. In contrast to “classical”
ECA rules, our approach makes a more succinct separation between event, con-
dition, and action component, which are possibly (i) given in separate languages,
and (ii) possibly evaluated/executed in different places. Since not every node will
provide ECA capabilities, there will also be nodes that provide “ECA services”
(extending the concepts of publish-subscribe and continuous query services), be-
ing able to execute ECA rules (submitted by any Semantic Web participants)
that use arbitrary sublanguages (see Section 6).

The requirement (4) also calls for application-dependent handling and detec-
tion of atomic events. In general, each application ontology must also specify how
derived events can be detected based on actual events (e.g., “account X goes be-
low zero” based on “a debit to account X”, or “flight LH123 on 10.8.2005 is fully
booked” from “person P is booked for seat 5C of flight LH123 on 10.8.2005”).

1556 W. May, J.J. Alferes, and R. Amador

3 Ontology of Rules and Languages

In usual Active Databases in the 1990s, an ECA language consisted of an event
language, a condition language, and an action language. In the Semantic Web,
there is a heterogeneous world of such languages which has to be covered. The
target of the development and definition of languages for (ECA) rules, events,
conditions and actions in the Semantic Web should be a semantic approach, i.e.,
based on an (extendible) ontology for these notions that allows for interoperabil-
ity and also turns the instances of these concepts into objects of the Semantic
Web itself. Thus, in the Semantic Web, we do not have a unique ECA language
that consists of three such languages, but there is the semantic concept of an
ECA rule as shown as an UML diagram in Figure 2. The event, query/test, and
action components are described in appropriate languages, and ECA rules can
use and combine such languages flexibly. The model is accompanied by an XML
ECA rule (markup) language, called ECA-ML.
Components of Active Rules in the Semantic Web. A basic form of
active rules are the well-known database triggers, e.g., in SQL, of the form

ON database-update WHEN condition BEGIN pl/sql-fragment END.
In SQL, condition can only use very restricted information about the immediate
database update. In case that an action should only be executed under certain
conditions which involve a (local) database query, this is done in a procedural
way in the pl/sql-fragment. This has the drawback of not being declarative;
reasoning about the actual effects would require to analyze the program code
of the pl/sql-fragment. Additionally, in the distributed environment of the Web,
the query is probabyl (i) not local, and (ii) heterogeneous in the language –
queries against different nodes may be expressed in different languages. For our
framework, we prefer a declarative approach with a clean, declarative design as
a “Normal Form”: Detecting just the dynamic part of a situation (event), then
check if something has to be done by probably obtaining additional information
by a query and then evaluating a boolean test, and, if “yes”, then actually do
something – as shown in Figure 1.

Event
dynamic

Condition
static

Action
dynamic

event query test action

collect test act

Fig. 1. Components and Phases of Evaluating an ECA Rule

With this further separation of tasks, we obtain the following structure:
– every rule uses an event language, one or more query languages, a test lan-

guage, and an action language for the respective components,
– each of these languages and their constructs are described by metadata and

an ontology, e.g., associating them with a processor,

An Ontology- and Resources-Based Approach to Evolution and Reactivity 1557

– there is a well-defined interface for communication between the E, Q&T, and
A component by variables (e.g., bound to XML or RDF fragments).

Sublanguages and Interoperability. For applying such rules in the Seman-
tic Web, a uniform handling of the event, query, test, and action sublanguages is
required. For this, rules and their components must be objects of the Semantic
Web, i.e., described in XML or RDF/OWL in a generic rule ontology describing
the UML model shown in Figure 2.

The modular structure requires a communication of parameters between the
rule components. We propose to use rule-wide logical variables for a communica-
tion flow according to Figure 1: Variables can be bound in the event component
and in the subsequent query component; previously bound variables can also
be used here. Variables occurring several times are interpreted as join variables,
requiring all occurrences to be bound to the same value. The test and action
components use these variables.

Rule Model ECARule

EventComponent ConditionComponent ActionComponent

Query
Component

Test
Component

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model

Language
Name
URI

Processor
service/plugin
syntax definition

1
0..1

1

* 1

�

�

�

�

↓uses ↓uses ↓uses ↓uses

impl by

Fig. 2. ECA Rule Components and Corresponding Languages

Based on this ontology, we propose the following markup (ECA-ML):

<eca:rule rule-specific attributes>

rule-specific contents, e.g., declaration of logical variables
<eca:event identification of the language >

event specification, probably binding variables; see Section 5.2
</eca:event>

<eca:query identification of the language > <!-- there may be several queries -->

query specification; using variables, binding others; see Section 5.3
</eca:query>

1558 W. May, J.J. Alferes, and R. Amador

<eca:test identification of the language >

condition specification, using variables; see Section 5.3
</eca:test>

<eca:action identification of the language >

action specification, using variables, probably binding local ones; see Section 5.3
</eca:action>

</eca:rule>

The actual languages (and appropriate services etc.) are identified by namespaces
and their declarations in the <eca:...> elements (see Example 2 later).

A similar markup for ECA rules (without separating the query and test
components) has been used in [BCP01] with fixed languages (a basic language
for atomic events on XML data, XQuery as query+test language and SOAP
in the action component). This fixed approach falls short wrt. the language
heterogeneity, and especially the use and integration of languages for composite
events. The XChange approach [BP05] also uses fixed languages for specifying
the event, condition, and action component. In contrast, the approach proposed
here allows for using arbitrary languages. Thus, these other proposals are just
two possible configurations. Our approach even allows to mix components of
both these proposals.

Languages, Rules, and Rule Components as Resources. For the Seman-
tic Web, both the languages, and the instances (i.e., rules, rule components, and
also e.g. subevents) are resources. This allows to reuse rules and to recombine
subparts (e.g., events) in several rules.

For the architecture, we propose to use a completely modular concept: the
framework for the ECA rules must allow to plug in or connect to detection
engines for events (atomic events such as simple data updates or incoming mes-
sages, application-level events and composite events such as “if first A happens
and then B”), processors for queries, and processors for actions (including up-
dates, intensional updates, and transactions): For each rule, the event, query,
test, and action components contain references to the corresponding languages
as resources, given as a URI, similar to XML’s namespaces. These resources in
turn are associated with further resources related to the language, e.g., a DTD
or XML Schema, an ontology description (e.g., in OWL), and a language pro-
cessor (e.g., as a Web Service). We come back to this issue in Section 6 where
we show that in the end, the processing of each contributing sub-ontology can
be associated with separate engines or nodes in the Web, i.e. (anticipating the
analysis of the subsequent sections):

– ECA rule processors
– underlying database engines with local, trigger-like rules,
– detection mechanisms for (application-independent) event algebras,
– for each application ontology, detection mechanisms of application-level events,
– query processors,

An Ontology- and Resources-Based Approach to Evolution and Reactivity 1559

– services for Web transactions, and
– application-level actions (explicit or intensional actions).

ECA Rules in the Semantic Web are required on several abstraction levels (pro-
gramming language/data structure level, logical level, and semantic level), and
with different scope (local or global). In most of the rules on the higher levels
(global, referring to the application ontology), the event, query, test, and action
components are subject to heterogeneity. But, there are also mostly simple local
rules e.g., for maintaining local consistency, mappings to the underlying data
model, and reactions, that work in a homogeneous, local environment, where
the “classical” ECA paradigm is sufficient. We first integrate these trigger-like
rules into the framework and come back to the heterogeneous Semantic Web
case in Section 5.

4 Trigger-Like Rules

The base level is provided by rules on the programming language and data struc-
ture level that react directly on changes of the underlying data. Usually they are
implemented inside the database as triggers, e.g., in SQL, of the form

ON database-update WHEN condition BEGIN pl/sql-fragment END.

In the Semantic Web, the data model level is assumed to be in XML or RDF
format. While the SQL triggers in relational databases are only able to react on
changes of a tuple or an attribute of a tuple, the XML and RDF models call for
more expressive event specifications according to the (tree or graph) structure.
Events on XML Data. Work on triggers for XQuery has e.g. been described
in [BBCC02] with Active XQuery (using the same syntax and switches as SQL,
with XQuery in the action component) and in [BPW02, PPW03], emulating
the trigger definition and execution model of the SQL3 standard that specifies a
syntax and execution model for ECA rules in relational databases. In [ABB+05],
we developed the following proposal for atomic events on XML data:

– ON {DELETE|INSERT|UPDATE}OF xsl-pattern: if a node matching the xsl-pattern
is deleted/inserted/updated,

– ON MODIFICATION OF xsl-pattern: if anything in the subtree rooted in a node
matching the xsl-pattern is modified,

– ON INSERT INTO xsl-pattern: if a node is inserted (directly) into a node match-
ing the xsl-pattern,

– ON {DELETE|INSERT|UPDATE} [SIBLING] [IMMEDIATELY] {BEFORE|AFTER}
xsl-pattern: if a node (optionally: only sibling nodes) is modified (immediately)
before or after a node matching the xsl-pattern.

All triggers should make relevant values accessible, e.g., OLD AS ... and NEW
AS ... (like in SQL), both referencing the node to which the event happened,
additionally INSERTED AS, DELETED AS referencing the inserted or deleted node.

Similar to the SQL STATEMENT and ROW triggers, the granularity has to be
specified for each trigger:

1560 W. May, J.J. Alferes, and R. Amador

– FOR EACH STATEMENT (as in SQL),
– FOR EACH NODE: for each node in the xsl-pattern, the rule is triggered only at

most once (cumulative, if the node is actually concerned by several matching
events) per transaction,

– FOR EACH MODIFICATION: each individual modification (possibly for some
nodes in the xsl-pattern more than one) triggers the rule.

The implementation of such triggers in XML repositories can e.g. be based on
the DOM Level 2/3 Events or on the triggers of relational storage of XML data.
Events on RDF Data. RDF triples describe properties of a resource. In con-
trast to XML, there is no subtree structure (which makes it impossible to express
“deep” modifications in a simple event), but there is metadata. A proposal for
RDF events can be found in RDFTL [PPW03, PPW04]. The following proposal
has been developed in [ABB+05]:

– ON {INSERT|UPDATE|DELETE} OF property [OF class].

If a property is added to/updated/deleted from a resource (optionally: of the
specified class), then the event is raised. Additionally,
– ON {CREATE|UPDATE|DELETE} OF class is raised if a resource of a given class

is created, updated or deleted.
On the RDF/RDFS level, also metadata changes are events:
– ON NEW CLASS is raised if a new class is introduced,
– ON NEW PROPERTY [OF CLASS class] is raised, if a new property (optionally:

to a specified class) is introduced.
Besides the OLD and NEW values mentioned for XML, these events should con-
sider as arguments (to bind variables) Subject, Property, Object, Class, Resource,
referring to the modified items (as URIs), respectively.
Trigger granularity is FOR EACH STATEMENT or FOR EACH TRIPLE.
Integrating Triggers into the ECA Ontology: Opaque Rules. In the
above trigger-like cases, the languages for specifying the event, condition and
action components are the database-level events, and the local query and update
languages. For that, from the implementation point of view, the trigger rule as
a whole does not require an explicit markup but can be expressed in its native
syntax. In our ontology, we embed this as opaque rules, see Figure 3 and the
following XML markup:

<eca:rule>

<eca:opaque xmlns:foo=“uri of the trigger language”>

<foo:trigger>

ON database-update WHEN condition BEGIN action END
</foo:trigger>

</eca:opaque>

</eca:rule>

Since such opaque rules are ontologically “atomic” objects, their event, condition,
and action components cannot be accessed by Semantic Web concepts. Thus,

An Ontology- and Resources-Based Approach to Evolution and Reactivity 1561

Rule Model ecaRule

OpaqueECARule
theRule: text

ECARule

Event
Component

Condition
Component

Action
Component

Query
Component

Test
Component

Trigger
Language

Event
Language

Query
Language

Test
Language

Action
Language

Languages Model

Language
Name
URI

Processor
service/plugin
syntax definition

1
0..1

1

* 1

�

�

� �

�

impl by

�

�

↓uses ↓uses ↓uses ↓uses ↓uses

Fig. 3. ECA Rule Components and corresponding Languages II

there is no reuse, and no support for rule analysis. The database-level events on
XML or RDF data can also be seen as atomic events in the sense of non-opaque
ECA rules; thus, it is also possible to lift the triggers to the ontology level and
represent them as full-fledged ECA rules.

5 Ontologies for the Rule Components

In the subsequent sections, we develop more detailed ontologies for the event,
query, test, and action components, with special emphasis on the event compo-
nent (the others are similar).

5.1 Ontology of Events

The ontological structure of the event component consists of three subclasses
(see explanations below and Figure 4):
– atomic events, that again split into several subtypes:

• data level events as those discussed in Section 4,
• events of a given application domain, e.g., in banking, travel organizing,

administration; such atomic events are described in terms of the ontologies
of the application domain,

• generic parameterized events that instantiate generic event patterns, e.g.,
“receive a message about . . . ”.

– composite events, e.g.: “A or B”, “A and B”, or “A and then B”.

1562 W. May, J.J. Alferes, and R. Amador

Atomic Application Level Events. Atomic application-level events are the
visible happenings in the application domain. Note that in contrast to the above
data-level trigger events on XML or RDF data, there is an important difference
between actions and events : an event is a visible, possibly indirect or derived,
consequence of an action. E.g., the action is to “debit 200E from Alice’s bank
account”, and visible events are “a debit of 200E from Alice’s bank account”,
“a change of Alice’s bank account” (that are immediately detectable from the
update operation), or “the balance of Alice’s bank account becomes below zero”,
which has to be derived from an update. Note that application ontologies have
to describe the relationship between actions and resulting events. Orthogonal
to being derived or not, application-level atomic events can be associated with
a certain node (e.g., “if Springer publishes a textbook on the Semantic Web”)
or can describe happenings on the Web-wide level (e.g., “if a textbook on the
Semantic Web is published”). In the latter case, event detection is even more
complicated since it must also be searched and derived where and how the event
can be detected. This is not the task of the rule execution, but of application-
level reasoning, based on the application ontology. With this, application-level
rules (i.e. reacting on application-level global events) like business rules can be
described.

Generic Parameterized Events. Generic Parameterized Events are patterns
of atomic events that are ontologically independent from the actual application.
The most prominent ones are concerned with communication, i.e., receiving and
sending messages, or transactional events. Note that also sending of a message
can be a relevant event to trigger other rules, e.g., for policies (waiting for an
answer for 10 minutes, then sending it again), or “listening” and deriving other
events. In general, such events are associated with a certain node.

Generic Parameterized Event

receivemessage
at node: URI
contents: Any (XML or RDF description of something)
sender(s): URI(s) or specification of a set of URIs/sender(s)
time: time

The specification of such an event can e.g. be used in a rule like “in case that
I receive a message from my bank with my account statement that contains a
debit of more than 1000E then ...”, where the occurrence of a generic event is
restricted further wrt. its content. The receipt of the message is an event that
can be detected by the communication service of a node, whereas the additional
test must be checked on the application level.

Composite Events: Event Algebras. Event algebras, well-known from the
Active Database area, serve for specifying composite events by defining terms
formed by nested application of operators over atomic events. Each operator

An Ontology- and Resources-Based Approach to Evolution and Reactivity 1563

has a semantics that specifies what the composite event means. Detection of a
composite event means that its “final” atomic subevent is detected, e.g., as in
[CKAK94]: (1) (E1∇E2)(t) :⇔ E1(t) ∨ E2(t) ,

(2) (E1#E2)(t) :⇔ E1(t) ∧ E2(t) ,
(3) (E1; E2)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E2(t).

Event algebras contain not only the aforementioned straightforward basic con-
nectives, but also additional operators. A bunch of event algebras have been
defined that provide also e.g. “negated events” in the style that “when E1 hap-
pened, and then E3 but not E2 in between, then do something”, “periodic” and
“cumulative” events, e.g., in the SNOOP event algebra [CKAK94] of the “Sen-
tinel” active database system. Some preliminary work on composite events in
the Web is presented in [BKK04], but that only considers composition of events
of modification of XML data.

Example 1 (Cumulative Event, [CKAK94]). A “cumulative aperiodic event”

A∗(E1, E2, E3)(t) :⇔ ∃t1 ≤ t : E1(t1) ∧ E3(t)

occurs with E3 and then requires the execution of a given set of actions cor-
responding to the occurrences of E2 in the meantime. Thus, it is not a simple
event, but more an active rule, stating a temporal implication of the form “if E1
occurs, then for each occurrence of an instance of E2, collect its parameters, and
when E3 occurs, report all collected parameters (in order to do something)”.

A cumulative periodic event can be used for “after the end of a month, send
an account statement with all entries of this month”:

E(Acct) :=
A∗(first of month(m), (debit(Acct,Am)∇deposit(Acct,Am)), first of month(m+1))

where the event occurs with first of next month and carries a list of the debit
and deposit actions.

5.2 Ontology of the Event Component

With this ontology, the event component may consist of a combination of one
ore more event algebras, using atomic events of one or more applications, and
possibly atomic data-level events from several data models, and some generic
parameterized events (see Figure 4).

An important matter here is that all components of an event specification can
be associated with the appropriate components of the language using identifiers.
This identification is provided for the XML Markup level by namespaces and
their URIs, and for the RDF level directly by URIs (see also Section 6).

XML Markup for the Event Component. The eca:event elements contain
elements according to an event algebra language (identified by its namespace),
and embedded into this, eca:atomic-event elements are the “leaves” of the event
language level. Inside of eca:atomic-event elements, the namespaces of the appli-
cations are used for the actual atomic event patterns. Whenever an atomic event

1564 W. May, J.J. Alferes, and R. Amador

EventComponent

AtomicEvent CompositeEventSpec

DataLevel
AtomicEvent

Application
AtomicEvent GenParamEvent

Data Model
identifier

Application
identifier

EventOperator
arity =k

Rule Model

Definable Ontologies

EventAlgebra
identifier

Languages Model

EventLanguage

�

�

� �

�

↓from ↓from

k

1..*

1

1..*

0..*

1..*1..*

Fig. 4. Event Component Ontology

matches such a pattern, it (i.e., its XML or RDF representation) is bound to
the temporary variable $event. eca:bind-variable elements inside eca:atomic-event
elements allow for binding rule variables by using $event.

Example 2. Consider the event of Example 1. Atomic events are (i) temporal
events that are assumed to be provided/signalled by some service, e.g. as
<temporal:first-of-month month=“5” year=“2005”/>, and (ii) events of the bank-
ing application, provided as e.g.,

<banking:deposit account=“1234”> <amount>200</amount> </banking:deposit>.

<eca:rule>

<eca:variable name=“account” select=“arguments[1]”/>

<eca:variable name=“list”/>

<eca:variable name=“month”/>

<eca:event xmlns:snoop=“uri of the snoop event algebra”

xmlns:banking=“uri of the banking ontology”

xmlns:temporal=“uri of some web service” >

<snoop:cumulative-event cumulative-result=“list”/>

<snoop:cumulative-start> <eca:atomic-event>

<temporal:first-of-month>

<eca:bind-variable name=“month” select=“$event/@month”/>

</temporal:first-of-month>

</eca:atomic-event> </snoop:cumulative-start>

<snoop:cumulative-collect> <snoop:disjunctive>

An Ontology- and Resources-Based Approach to Evolution and Reactivity 1565

<eca:atomic-event> <banking:debit account=“$account”/>

<eca:bind-variable name=“list” select=“$event”/>

</eca:atomic-event>

<eca:atomic-event> <banking:deposit account=“$account”/>

<eca:bind-variable name=“list” select=“$event”/>

</eca:atomic-event>

</snoop:disjunctive> </snoop:cumulative-collect>

<snoop:cumulative-end> <eca:atomic-event>

<temporal:first-of-month month=“$month+1”/>

</eca:atomic-event> </snoop:cumulative-end>

</snoop:cumulative-event>

</eca:event>

:
</eca:rule>

Note that the cumulative event defines the variable list to be cumulative, i.e.,
for each <eca:bind-variable name=“list” select=“$event”/>, the event (as XML
element) is appended.

5.3 Query, Test, and Action Ontologies

The ontologies for the query, test, and action components follow a similar design.

Queries. Queries can be queries against individual nodes, or against “the
Web”. Here, existing languages like XPath, XQuery, or RDQL that are com-
monly supported can be used. Such languages that are based on a kind of basic
expressions and algebraic operators use a classical tree markup. Since query lan-
guages are in general supported in the Web nodes themselves, there is in general
no need for specific services; often, the query component is opaque.

Tests. Tests in general use boolean operators and quantifiers which are already
covered in Markup Languages like, e.g., FOL-RuleML [BDG+] for formulas in
first-order logic. Instead of first-order atoms, also “atoms” of other data models
can be used, employing identifiers in the same way as for the event component.
Since all relevant information is gathered in the event and query components,
the test is evaluated locally.

Actions. The action component is similar to the event component: we distin-
guish atomic actions on the database level (updates expressed in DOM, XUp-
date, XQuery+Updates, or in an RDF update language), generic actions (send-
ing messages with some content), and execution of composite actions, even as
transactions on the Web. Actions here also include intensional updates on the se-
mantic level (that must be translated into actual updates at certain nodes). The
actual processing of transactions and intensional updates is independent from
this framework. Similar to the definition of composite events, composite actions
and transactions can be defined e.g. in the style of CCS [Mil83], augmented with
transactional commands.

1566 W. May, J.J. Alferes, and R. Amador

6 Rules, Components, Languages and Processors as
Resources

Rules on the semantic level, i.e., RDF or OWL, lift ECA functionality wrt.
two (independent) aspects: first, the events, queries, and actions refer to the
RDF/ontology level. An even higher level regards rules themselves as objects
of the Semantic Web: rules are specified in RDF/OWL using the above rule
ontology and event, query, test, and action subontologies.
Reuse: Rules and Rule Components as Resources. The above ontology
directly leads to a resource-based approach: every rule, rule component, event,
subevent etc. becomes a resource. Every rule is then interpreted as a network of
RDF resources of the contributing ontologies (ECA, event algebras, applications
etc.). By this, e.g. collections of (sub)events as well as complete (application-
specific) rule bases can be designed, published by associating them with a URI,
and reused. Figure 5 shows the rule and the event component given in Example 2,
combining two application-independent language ontologies:

– the ECA ontology (gray, doublelined), and the SNOOP ontology of the event
algebra (incorporating the semantics of the SNOOP operators; gray),

and two application-dependent ontologies:
– the banking application-level ontology: there, the semantics of the atomic

events defined in this ontology must be available (diagonally crosshatched).
– the temporal ontology: there, information about temporal events is available

(crosshatched).

6.1 Information Behind the External Resources

The external resources (SNOOP, banking, and temporal domain) must be as-
sociated with further resources of the respective ontologies that are used when
actually processing rules:

– Sublanguage ontologies (here, SNOOP): URI or a service for processing the
language, e.g., a Web Service where the composite event specification can be
registered, and that, when informed about relevant events, runs the detection
and informs the client about success (transferring the result parameters).
(Similar for languages for composite actions.)

– Temporal domain: URI of a service that provides the relevant atomic events.
– Application ontologies (here, banking domain): in most cases, the “client”

knows which “server” (e.g., the bank where the account is located) provides
the relevant atomic events. For other ontologies such as stocks or travel, the
resource that is “responsible” for the ontology could also provide notification
services for atomic events. In either case, derived events (that can locally
use another event algebra) have to be defined there (since their definition
conceptually also belongs to the ontology, this is not surprising). In the same
way, a service for execution of atomic actions and the definition of composite
actions (using any action language) can be provided.

An Ontology- and Resources-Based Approach to Evolution and Reactivity 1567

//local/rules#monthly-stat //eca#rule
rdf:type

//local/events#raise-monthly-stat //snoop#cumul-ev

has-eventcomp
rdf:type

//eca#event

//eca#compositerdf:subclass

rdf:subclass

//snoop/op#cumul //snoop#disj-ev

//temporal/events#firstofmonth

//eca#ev-op //local/events#booking

snoop:has-operator

rdf:type

snoop:has-start
snoop:has-end

snoop:collect

rdf:type

rdf:subclass

//eca#atomicevent //snoop/op#disj

snoop:has-operatorrdf:type
rdf:type

//banking#atomicevent

//banking/events#debit //banking/events#deposit

snoop:has-disj
snoop:has-disj

rdf:type

rdf:type

rdf:subclass

rdf:subclass

Fig. 5. Example Rule and Event Component as Resources

A Modified Rule Using a Derived Event. The banking ontology could
define a derived booking event as the disjunction of debit and deposit. The rule
could then directly use this derived event. In the ontology diagram, the only
difference would be that the booking node is //banking/events#booking and ap-
pears diagonally crosshatched (and its semantical information must be kept at
the banking resource – but in this case it can also be used in specifications that
do not know the SNOOP language).

6.2 Architecture and Processing: Cooperation Between Resources

Rules can be evaluated locally at the nodes where they are stored, or they can
be registered at a rule evaluation service. The rule evaluation engine manages
the actual handling of rules based on the language URI references. As described
above, every subconcept (i.e., events, queries, tests, and actions) carries the in-
formation of the actual language it uses in its xmlns:namespace URI attribute
(note that this even allows for nested use of operations of different event alge-
bras). Assume the case where the language processors are available at these URIs

1568 W. May, J.J. Alferes, and R. Amador

as a Web Services. For event detection (and analogously, execution of composite
actions), at least two resources (or services) must cooperate: Event detection
splits into the event algebra part (that is detected algorithmically by a resource
representing a language ontology, e.g., SNOOP) and the atomic events of the
application ontology. Thus, the algebra processor must be notified about the
atomic events. This can be done in several ways:

Straightforward: The “straightforward” way is that the client C organizes
the communication between the event generator(s) and the event algebra pro-
cessor (see Figure 6): C registers rules to be “supervised” at a rule execution
service R. For handling the event component, R reads the language URI of the
event component, and registers the event component at the appropriate event
detection service S (note that a rule service that evaluates rules with events in
different languages can employ several event detection mechanisms).

During runtime, the client C forwards all received events to R, that in turn
forwards them to all event detection engines where it has registered event specifi-
cations for C, amongst them, S. S is “application-unaware” and just implements
the semantics of the event combinators for the incoming, non-interpreted events.
In case that a (composite) event is eventually detected by S, it is signalled to-

Client C
wants to
apply rule

E C A

ECA Engine R
http://...
resource associated with
the event algebra;
Event Detection Engine S

registration of rule

E C A a register E component

event-uri

start detection of E
any signaled atomic event e

forward e

process e

... further atomic events forwarding events ...
... detection of E proceeds

any signaled atomic event e
forward e

process e

detection of E finished
E detected with params

... evaluation of C with params

... execution of A with params

Fig. 6. Straightforward Communication (UML-style sequence diagram, temporal axis
downwards)

An Ontology- and Resources-Based Approach to Evolution and Reactivity 1569

gether with its result parameters to R. R takes the variables, and evaluates the
query&test (analogously, based on the respective languages), and finally executes
the action (or submits the execution order to a suitable service).

(Note that this strategy can be extended towards “selecting” and broker-
ing events according to their namespace in a similar way to the architectures
described below.)

Application-centered: The client submits its composite event specification
to a service that is aware of all relevant events in the application domain. This
service then employs an appropriate event detection service by registering the
event specification, and informing it about the atomic events (e.g., “@bank:
please trace the following composite event in language L on my account” (and
employ a suitable event detection service for L)).

Language-centered: When a rule or an event specification is submitted for
registration, this has to be accompanied by information on which resource(s)
provide the atomic events (e.g., “@snoop: my bank is at uri, please supervise
my account and tell me if a composite event ev occurs), or the detection service
even has to find appropriate event sources (by the namespaces of the atomic
events). The detection service then contacts them directly. This proceeding is
e.g. appropriate for booking travels where the client is in general not aware of all
relevant events (e.g., “@snoop: you know better than me who is well-informed
about events relevant for traveling, please detect the event evtravel for me”), as
illustrated in Figure 7: A client registers a rule (in the travel domain) at R (Step
1.1). R again submits the event component to the appropriate event detection
service S ((1.2), here: snoop). Snoop looks at the namespaces of the atomic
events and sees that the travel ontology is relevant. The snoop service contacts a
travel event broker (1.3) who keeps it informed (2.2) about atomic events (e.g.,

Event
Broker
banking:

Event
Detection S
snoop:

ECA
Engine R
eca:

Event
Broker
travel:

Event
Detection
bla:

Lufthansa
travel:

SNCF
travel:

Client C:
Travel
Agency
travel:

1.1: register rule
eca: travel: snoop:

1.2: register event
travel: snoop:

1.3: register me
travel:

2.1a∗: atomic
events
travel:

2.1b∗: atomic
events
travel:

2.2∗: atomic
events
travel:

3: detected
parameters

4.1: updates
(here:
bookings)
travel:

4.2: messages
(here:
confirm)

travel:

Fig. 7. Language-Centered Communication

1570 W. May, J.J. Alferes, and R. Amador

happening at Lufthansa (2.1a) and SNCF (2.1b)). Only after detection of the
registered composite event, S submits the result to R (3) that then evaluates
the Q&C component, and probably executes some actions (4.1, 4.2).

7 Conclusion
We have presented a modular ontology-based framework for ECA rules. The
ontology does not only describe the domain, but by including the processing
resources on the Web also provides the infrastructure for actual implementa-
tion of the framework. Different alternatives allow for service-oriented strate-
gies. More detailed aspects are currently investigated, and an implementation
has been started, stepwise extending from XML-level ECA rules and services
to the above framework. The modularization of the approach allows for dealing
with many research issues separately.

Acknowledgement. This research has been funded by the European Commis-
sion within the 6th Framework Programme project Rewerse, number 506779
(cf. http://rewerse.net).

References
[ABB+05] J. J. Alferes, M. Berndtsson, F. Bry, M. Eckert, W. May, P. L. Pătrânjan,

and M. Schröder. Use Cases in Evolution and Reactivity. Technical Report I5-D2,
REWERSE EU FP6 NoE, 2005. Available at http://www.rewerse.net.

[BBCC02] A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery. In Intl.
Conference on Data Engineering (ICDE), pp. 403–418, San Jose, California, 2002.

[BCP01] A. Bonifati, S. Ceri, and S. Paraboschi. Pushing Reactive Services to XML
Repositories Using Active Rules. In Int. WWW Conference, 2001.

[BDG+] H. Boley, M. Dean, B. Grosof, M. Sintek, B. Spencer, S. Tabet,
and G. Wagner. FOL RuleML: The First-Order Logic Web Language.
http://www.ruleml.org/fol/.

[BKK04] M. Bernauer, G. Kappel, and G. Kramler. Composite Events for XML. In
Int. WWW Conference, 2004.

[BP05] F. Bry and P.-L. Pătrânjan. Reactivity on the Web: Paradigms and Applica-
tions of the Language XChange. 20th ACM Symp. Applied Computing. 2005.

[BPW02] J. Bailey, A. Poulovassilis, and P. T. Wood. An Event-Condition-Action
Language for XML. In Int. WWW Conference, 2002.

[CKAK94] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K. Kim. Composite
Events for Active Databases: Semantics, Contexts and Detection. In Proceedings of
the 20th VLDB, pp. 606–617, 1994.

[Mil83] R. Milner. Calculi for Synchrony and Asynchrony. Theoretical Computer Sci-
ence, pp. 267–310, 1983.

[PPW03] G. Papamarkos, A. Poulovassilis, and P. T. Wood. Event-Condition-Action
Rule Languages for the Semantic Web. In Workshop on Semantic Web and Databases
(SWDB’03), 2003.

[PPW04] G. Papamarkos, A. Poulovassilis, and P. T. Wood. RDFTL: An Event-
Condition-Action Rule Languages for RDF. In Hellenic Data Management Sympo-
sium (HDMS’04), 2004.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1571 – 1587, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automatic Web Service Composition Based on Graph
Network Analysis Metrics

John Gekas and Maria Fasli

University of Essex, Department of Computer Science,
Wivenhoe Park, Colchester CO4 3SQ, UK
{jgekas, mfasli}@essex.ac.uk

Abstract. The web services paradigm has enabled an increasing number of
providers to deploy and host autonomic and remotely accessible services. How-
ever, the true potential of such a distributed infrastructure can only be reached
when such autonomic services can be combined together as parts of a workflow,
in order to collectively achieve combined functionality. In this paper we present
our work in the area of automatic workflow composition among web services
with semantically described functionality capabilities. For that purpose, we are
using a set of heuristics derived from the connectivity structure of the service
repository in order to effectively guide the composition process. The method-
ologies described in this paper have been inspired by research in areas such as
citation analysis and bibliometrics. In addition, we present comparative experi-
mentation results in order to evaluate the presented techniques.

1 Introduction

The web services programming and deployment paradigm has received a lot of atten-
tion recently. Many authors have argued that this will be the dominating paradigm on
the web in the years to come [CASATI et al., 2001], thus changing its structure from
a web of information and manually-accessible applications, to that of a web of auto-
matic services. Although web services can be considered as “…reusable software
components that semantically encapsulate discrete functionality and are distributed
and programmatically accessible over standard Internet protocols” [RICHARDS et
al, 2003], the true potential of a Service-Oriented infrastructure can only be realised
by integrating individual web services as part of a workflow [BERNERS-LEE, 2001].
Many scenarios and architectures based on integrated web service workflows have
been proposed already, such as Virtual Organisations [KHOSHAFIAN, 2002], B2B
(Business to Business) systems [HOGG et al., 2004] and SCM (Supply Chain Man-
agement) scenarios [MIN and BJORNSSON, 2004].

However, the day when effective and ready-to-use systems performing automatic
web service integration can be widely used is yet to come. One main problem is the
lack of a standardised, uniformly accepted format of describing a service’s functional-
ity semantically, so that this information can be used towards a composition request.
To this direction, the semantic web initiative [SEMANTIC WEB, 2001] effort ad-
dresses the problem of providing web-based resources (e.g. static information web
sites, web-based applications) with semantic meaning, so that their content and func-
tionality can be extracted and used by computer systems. A number of formats have

1572 J. Gekas and M. Fasli

been suggested, such as RDF and RDF-S, DAML-S and its successor OWL-S, some
of which gaining growing popularity [ANOKOLEKAR et al., 2002].

In this paper, we present our approach towards automatic service composition. We
assume that workflow generation takes place within a repository-style environment
(the registry or network) upon request. The work presented here is twofold: first, we
present the framework we have developed in order to experiment with service compo-
sition methodologies. The second part refers to the particular methodologies we have
tested in order to address the problem of dynamic service integration, at a typical ser-
vice composition scenario. The two aspects of the work presented in this paper should
not be confused –the service composition problem domain can be divided in a number
of different use cases, each of them with their own requirements and potential solu-
tion approaches. The approach proposed here refers only to one such use case,
whereas different use cases can be examined and tested within our framework.

Our service composition approach focuses on viewing the service composition reg-
istry as a hyperlinked graph network of scalable size, and dynamically analyzing its
structure in order to derive useful heuristics to guide the composition process. We be-
lieve that the structure of the service network (or, in other words, the ecology of the
search space) can provide powerful and useful information, which can then be used in
order to guide the composition process effectively. For this purpose, we present and
assess a set of methodologies/heuristics that attempt to utilize this notion. The heuris-
tics described in this paper fall into the following 3 categories: importance, relative
importance and relatedness among the members of the service repository. The choice
of the particular methodologies has been deliberate: global importance, relative im-
portance and node relatedness are the main methodologies used in graph-based cita-
tion analysis and bibliometrics [ITO et al., 2004]. The rest of this paper is organised
as follows: Section 2 outlines current work in the area. Section 3 presents the architec-
tural framework, while in Section 4 we discuss the methodologies used in our re-
search. In Section 5 we present some experimental results showing the comparative
performance of the methodologies tested, and we conclude this paper by pointing out
some interesting conclusions and further work directions.

2 Literature Review

A number of approaches addressing the problem of automatic web service integration
have been presented recently, both academic and industrial. [PEER, 2003] suggests the
use of existing AI planning systems, even though he does not present a solution proto-
type. [WU et al., 2003] are also geared toward that direction, using SHOP2, an existing
HTN (Hierarchical Task Networks) AI planning system. However, classical planning
systems are not fully applicable in the service composition problem domain. The work-
flow of a business plan may require control structures (e.g. branch and loop structures),
that classical AI planning may not be able to generate. Additionally, data flow control
and performance under very big and scalable search spaces is also an issue.

[TUT and EDMOND, 2002] on the other hand, propose the use of patterns in ser-
vice composition. According to this approach, each composition request is matched
against an appropriate abstract composition template, which is mapped to existing
services at the implementation level. Similar is also the approach followed by
[LIMTHANMAPHON and ZHANG, 2003], where successful past composition re-
quests are stored, so that similar composition structures can be followed in future re-

 Automatic Web Service Composition Based on Graph Network Analysis Metrics 1573

quests as well. Even though these approaches can be effective in many cases, they
suffer from the restrictions posed by the patterns followed at composition time – in
other words, effective solutions that do not follow the applied patterns are not likely
to be found. [MONTEBELLO and ABELA, 2002] follow a different approach: com-
position is performed with the use of a rule-based expert system, JTP (Java Theorem
Prover). This is not the only approach where the use of expert systems is proposed for
use with semantic web services: [KOPENA and REGLI, 2003] use Jess (Java Expert
System Shell) in order to reason about web services capabilities, and the composition
approach followed by [PONNEKANTI and FOX, 2002] is also rule-based.

Finally, we should also note that there are some approaches that view service
composition as a semi-automatic and interactive process, where the system makes
corrections and suggestions based on partially composed workflows. The approaches
proposed by [SIRIN et al., 2004], [AGARWAL et al., 2004] and [JIHIE et al. 2004]
follow this logic.

3 Experimental Framework

Our framework consists of a repository-style registry, where web service semantic de-
scriptions are stored. We have to note here, that no actual web services are hosted at
the registry; however, semantic descriptions of already existing services are stored; this
allows web services from various providers to be integrated within our system. We
also have to add that our research has been focused on two particular kinds of web ser-
vices: informational services (such as a financial news service) and E-Commerce ser-
vices (e.g. Amazon transaction service). This choice was deliberate: Web-based statis-
tical observations led us to believe that these are the dominating types of services
populating today’s web. The overall architecture of our system is illustrated in Fig.1:

Fig. 1. Service Composition Framework Architecture

1574 J. Gekas and M. Fasli

The separate parts of our framework are explained in the following sections:

3.1 Web Service Registration System and Semantic Description Storage

Web services are “registered” with the system through a web-based interface, where
the service’s host provides some basic information about the service’s operations
he/she wishes to register. At the current version of our system, the service’s semantic
description is semi-automatically generated using the DAML-S format, based on the
provided information. However, since the more recent OWL-S format provides simi-
lar functionality to DAML-S with higher expressiveness, a migration to OWL-S is
planned to take place in the immediate future. Some important information that needs
to be provided by the service’s provider is:

• Web Service Category: which general category the service belongs to, i.e. In-
formation Service, E-Commerce Service, Travel Booking etc.

• Operational Domain: Functionality domain for a particular operation – Infor-
mation Query, Transaction Execution, Authentication etc.

• Semantic Data Types (SDT’s) domain and range: Each semantic data type used
by a service is described in terms of domain and range. Domain refers to the
nature of the data type, such as e.g. ProductName, whereas the range refers to
its intended use, e.g. UserName, SearchQuery, TransactionConfirmation etc. A
similar semantic categorisation between web services and data types is also fol-
lowed by [HESS and KUSMERICK, 2005].

A service category (e.g. E-Commerce Service) may consist of operations belong-
ing to different operation domains: for instance, an operation whose purpose is to
carry out a commercial transaction belongs to the TransactionExecution domain,
whereas an operation whose purpose is to query the price for a given product belongs
to the InformationQuery domain. The service categories, operation domains and se-
mantic data type descriptions are defined in the ontologies used by our system, de-
scribed below.

3.2 Ontologies

The semantic descriptions generated for each registered service are based on the
common ontologies used by the system, which serve as a common vocabulary used
by the descriptions. Notions such as web service categories, operational domains, se-
mantic data types etc are defined within the ontologies, with the appropriate mappings
among them. For instance, the data type BookAuthor can be mapped to the data type
PersonName; similarly, ProductProvider can be mapped to CompanyName. Exact
matches is not the only option, of course – i.e. the data type BookISBN is a subtype of
ProductCode. The ontologies used for our research are developed in-house using the
DAML+OIL format. Problems like inter-operability between different ontologies or
automatic semantic description generation without common ontological background
are beyond the scope of this paper. [HESS and KUSMERICK, 2005] have done some
work towards this direction.

 Automatic Web Service Composition Based on Graph Network Analysis Metrics 1575

3.3 Request Matching Engine

Before any attempt for workflow generation takes place, a given request is matched
against the web services registered with our system, in order to check whether a ser-
vice exists that can satisfy the request. Given a request, matching is performed at the
Input/Output parameter level, and the Service Category/Operational Domain level, if
provided by the request. However, subtype matching (e.g. some or all of a service’s
parameters are semantic subtypes of another’s) is attempted as well, as described in
[PAOLUCCI et al., 2002] and [KAWAMURA et al., 2003].

3.4 Knowledge Base

The Knowledge Base (KB) stores information about the registry’s structure and con-
nectivity figures among the registered web services. In particular, for every registered
web service operation, the following information is stored in the KB:

• The number of service operations that point to it, as a percentage of the overall
service category/domain.

• As above, the percentage of web service operations it points to.
• The amount of semantic parameter types the operation is linked to (i.e. its out-

put parameters), again as a percentage of all the semantic parameter types util-
ized by the category/domain.

The above figures are calculated and stored upon registration, as a triggered event.
Alternatively, the above information could be generated and updated by crawling the
search space offline – such an approach however could be computationally demand-
ing, depending on the size of the search space. We also have to note that PR figures
can be associated with semantic data types themselves, showing the percentage of
data types a particular data type is linked to.

Borrowing the terminology presented in [PAGE and BRIN, 1998], the above fig-
ures consist the local PageRank value for a given operation, which gives us an idea of
how “important” an operation is within its Category or Domain – the higher the local
PageRank value, the more popular a particular operation is considered to be. This
way, we know which service categories are better inter-connected than others and
which operations linked together; this information can prove valuable while guiding
the search process at composition time.

We also have to note that PageRank estimation takes place within a given scope,
which can either be a Service Category, an Operational Domain or the overall search
space. If the PageRank figure is calculated as a percentage out of the whole of web
services belonging to a particular Category (such as InformationService), then its
scope is this Service Category. Alternatively, PageRank values could be calculated as
a percentage of an Operational Domain (such as InformationQuery or Transaction-
Execution), or out of the overall search space.

The PageRank algorithm has received some criticism as well, the most important
argument being that PageRank values are not related to specific queries/requests, thus
they are not always an accurate measure of “importance” [BHARAT and MIHAILA,
2000].

1576 J. Gekas and M. Fasli

3.5 Workflow Composer

The workflow composer is a recursive depth-first algorithm, which starts from the ini-
tial state and tries to reach the goal state following the shortest route possible. At the
beginning of the composition process, the algorithm attempts to determine the most
“promising” service categories / operation domains in which the search should be fo-
cused. This is done in the following way: since the provided input parameters are
specified in the request, the algorithm determines which service category or domain is
most promising by examining the local PR values for the given input parameters at
every category / domain. For instance, it is reasonable to expect that the SDT
WeatherTemperature will be used at a considerably higher rate within the Weath-
erService category, than say, E-CommerceService. At every stage of the search proc-
ess, the algorithm decides which node to follow next based on which one is more
“important”, or “relative” to the goal state (depending on the composition heuristic in
use) – the other possible nodes are placed at a “Priority Queue” based on their own
importance (or relativity) figures. In this sense, our algorithm works as a Markov De-
cision Process, where the following step depends on which node looks more “promis-
ing” to lead to the goal state faster. Using an iterative PageRank for higher depths
would probably give us a better idea about how important a web service is, but cannot
be calculated at composition time since it is computationally demanding, and we have
been trying to keep offline processing to a minimum.

Following is the workflow composer algorithm, shown as pseudocode:

Fig. 2. Workflow Composer Algorithm

WF stands for workflow and PQ for Priority Queue. p [PR] refers to a particular
semantic data type p, with local PageRank value equal to PR. The above process con-
tinues until a solution is found, and as long as the maximum depth has not been
reached. We assume that at least one web service operation whose input semantic data

 Automatic Web Service Composition Based on Graph Network Analysis Metrics 1577

types match the request has been found already, and has been added as the first node
to a previously empty workflow.

4 Approach Description

Our approach considers web service integration as a graph search problem, where the
search space consists of all the potential web service operations that can be part of a
workflow. The search space (the service registry) is viewed as a hyperlinked graph
network with no size restrictions. Thus, we are focusing on performing effective
search through a search space of scalable size, by attempting to minimize the path fol-
lowed from the initial state to the goal state. In order to do this, we are using heuris-
tics derived from the repository of semantic descriptions, regarding the connectivity
structure of the repository and how “tightly” various types of web services are linked
together (the ecology of the search space). These heuristics are used in order to gener-
ate the “Priority Queues” used by the composition algorithm. Connectivity structure
figures are estimated automatically by the system and updated as new services are
added. In this sense, we have used a similar methodology to the one used by major
search engines in order to rank individual web resources and estimate the connectivity
graph of sub-parts of the web. In this section, we present a set of heuristic methodolo-
gies we have tested in order to guide the service composition process:

Global Importance: Various approaches [PAGE and BRIN, 1998], [KLEINBERG,
1997] describe ways to rank individual web resources based on their popularity. This
way, a major-scale search engine can reason on how “important” a web resource is, in
terms of how many other resources point to it and how many resources it points to it-
self. Even though most approaches follow a similar pattern, we could say there are
two broad categories: the first estimates the overall “importance” of a web resource,
whereas the second one estimates the importance of a web resource relatively to a
particular area/request (relative importance).

We believe that some aspects of search engines’ ranking methodology can be ap-
plied to our problem domain: [PAGE and BRIN, 1998] describe their algorithm, titled
PageRank (henceforth PR) as follows: “…given a web page A and a web page B, the
PageRank value of A is the probability that a ‘random web surfer’ will visit page B just
by following links initiated from A”. Following a similar train of thought, we can also
define the probability that a certain web service B can be reached at a certain depth,
given that another web service A has been accessed. Web services can also be consid-
ered as web resources that point to other web resources. Assume a web service A that
provides a semantic data type (SDT) X as an output parameter, and a web service B
that accepts data type X as its input parameter. In this case, we assume that there is a
forward link between A and B. Likewise, we can define backward links as well.

Furthermore, we could define similar connectivity measures for semantic data
types themselves: a semantic data type that is being used by X% of the search space
as an input parameter, is considered to have a forward PR equal to X%, whereas a
data type that is being used by Y% of the operations belonging to our search space as
output parameter, is thought to have a backward PR equal to Y%.

Relative Importance: Relative Importance is similar to the metrics of importance
mentioned above, but normalized towards a particular area of request. Approaches

1578 J. Gekas and M. Fasli

such as [KLEINBERG, 1997] and [HAVELIWALA, 2002] follow the notion of rela-
tive importance in order to effectively rank web resources. This normalization can ei-
ther take place offline (sometimes referred to as PageRank with Priors – PR figures
estimated towards some predefined areas of interest), or at runtime. In our experi-
ments, the overall importance PR figures are adjusted towards each particular request
at runtime: the request’s “area of interest” is dynamically determined by the goal
SDT’s of the request (e.g. a request that contains the goal SDT’s BookName and Boo-
kAuthor is directly related to the notion Book described in our ontologies), and the
overall PR values are adjusted so that they show the percentage of web service opera-
tions (or SDT’s) that point towards the particular request area.

SDT Relatedness: Relatedness refers to the process of identifying to what degree two
web resources are related to each other. Since the majority of web-based resources
have textual form, relatedness analysis is closely related to text analysis and matching
methodologies (such as q-grams, Neumann kernels and so on). However, web ser-
vices cannot be considered as textual resources, but rather as functional ones, i.e. ex-
posing functionality features semantically. Web service descriptions, although being
textually understandable, are mainly destined for machine-based processing. In this
context, when we talk about relatedness between two web services, we refer to the
similarity of the data flows generated by their services, estimated as the semantic dis-
tance between the corresponding data types. The idea behind this technique is that the
number of informational web services connecting two different pieces of information
(sdt’s) will be greater, when the pieces of information are more closely (semantically)
related with each other. For instance, it is logical to expect that there will be more
services connecting the SDT’s BookName and BookAuthor, rather than e.g.
BookName and AirportLocation. For the estimation of semantic distance we have
chosen a rather simple metric based on graph based distance between attribute values,
as described in [FOO et al., 1992]. However, alternative (and more complicated)
models, as the ones presented in [RODDICK et al., 2003] can be considered. In more
detail, the semantic distance between two given data attributes within a common on-
tology is estimated as the minimum number of edges that need to be traversed when
the ontology is viewed as a graph. This can be described as following:

Let our ontological data model be represented by graph G , with root node R .
Also, let’s assume that we want to define the semantic distance between semantic data

attributes isdt and jsdt . Then, the sets },...,,{ 21 imii eeeA = and

},...,,{ 21 jnjj eeeB = (with set sizes denoted by || A and || B) contain the edges

that need to be traversed in order to get from R to isdt and jsdt , respectively. The

semantic distance between isdt and jsdt can be given by the size of the set

UBBA)/(, thus being |)/(| UBBA .

The problem of semantically matching attribute values between different ontologi-
cal backgrounds is not being addressed by our research at this point.

Workflow Request Evaluation: Given a specific composition request, we can de-
duce whether it can lead to solutions, and if yes, how many. Such information can be
deduced before any attempt for workflow composition takes place and can be ex-

 Automatic Web Service Composition Based on Graph Network Analysis Metrics 1579

tremely useful, since it allows the composition process to be activated only for those
requests that can lead to solutions and only up to a certain number of solutions, thus
saving computational power and processing time. This process is briefly explained in
the following paragraph:

Let’s assume matrix A, whose rows represent the web services present in our regis-
try, and its columns represent all semantic data types described in our ontologies.
Then, each element in the matrix would show the number of times the corresponding
web service (denoted by the row index) utilizes each particular SDT. By definition,
each element in the matrix would either be 0 or 1, since it is logical to assume that a
particular web service would not provide the same SDT more than once.

A =

44434241

34333231

24232221

14131211

aaaa

aaaa

aaaa

aaaa

Matrix A is represented as orthogonal, but this is not necessary. In fact, it is highly
unlikely that the number of web services supported by a registry will be the same as
the semantic data attributes described by the registry’s ontologies. This is a web ser-
vice – to – semantic data type (ws-sdt) matrix, whose elements can be either 0 or 1.

The transpose of A , TA , calculated by substituting A’s columns with its rows and
vice versa, shows exactly the opposite relationship: how many times (0 or 1, as men-
tioned above) a particular datatype is utilized by each web service in the registry. In
this sense, it can be considered as semantic data type – to –web service matrix (sdt-ws).

By multiplying A with TA we get matrix TAA , which can be considered as the

ws-ws matrix. Similarly, by multiplying TA with A we get AAT , which is the sdt-

sdt matrix. TAA shows how many “links” exist between two particular web services,

whereas AAT shows how many links exist between two given semantic data types.

We have to note here, that both TAA and AAT are diagonal (i.e. the number of

rows equals the number of columns and iia = 0). Thus,
TAA and AAT

 have the fol-
lowing form:

{ TAA , AAT
} =

0

0

0

0

434241

343231

242321

141312

aaa

aaa

aaa

aaa

Matrix 2)(TAA , (TAA multiplied by itself) shows as how many links exist be-

tween two given web services, at depth = 2. Similarly, nTAA)(shows as how many

links exist between two given web services at depth = n. Following a similar train of

thought, if we substitute matrix TAA (ws-ws) with AAT (sdt-sdt), by raising at a
power of n we can see how many links (paths) exist between two given SDT’s at the

1580 J. Gekas and M. Fasli

given depth = n. Since a workflow composition request is primarily represented as
initial and goal states of the data provided by the workflow, the above process can
show us how many solutions a given request can lead to (0, if it has no solutions).

We also have to note that our work concentrates on a typical composition scenario,
where both provided input parameter types and the required output parameter types
are explicitly declared in the request. We also assume that a solution can be given by
an execution combination of a number of web service operations. More business-
oriented scenarios (e.g. Supply Chain Management), along with issues like workflow
control constructs and constraints are addressed by our research, but description of the
corresponding mechanisms is beyond the scope of this paper.

5 Experimental Work

We have performed some initial experiments in order to evaluate our approach. The
experiments operate on the framework we described above, and their main purpose is
to examine the accuracy of the composition algorithm, using the search heuristics de-
scribed earlier. The experiments presented here have been performed within the In-
formationQuery operation domain, with a total of 702 requests and 254 solutions.

5.1 Experiment Setting

The experimental settings are given in the following table:

Table 1. Experiment Setting

The experiment settings can be explained as follows: the first 2 lines (“Search
Space Size” and “Algorithm”) are self-explanatory. Line 3 (“Heuristics Used”) shows
the heuristics that have been used in order to guide the composition process for each
experiment. The first option is the local PageRank values for each web service, which
corresponds with the “importance” of each web service within our search space. The
second option refers to the local PR values, normalized to the topic of each particular
composition request (“relative importance”), and the third option refers to the seman-
tic distance of the data flows generated during the composition process (“related-
ness”). Finally, the last line (labeled “Heuristics Direction”) refers to the direction of
the metrics described above, i.e. forward or backward. The same experiments with the
Heuristic Direction set to backward have not been performed yet.

 Automatic Web Service Composition Based on Graph Network Analysis Metrics 1581

In addition, in the following table we show the semantic data types used in our ex-
periments, along with the alias’s used in the diagrams shown in the next section:

Table 2. Semantic Data Types used in our experiments

5.2 Experiment Results

In order to evaluate the performance of the tested methodologies, we have followed
the following process: for all the SDT’s that are present in the InformationQuery do-
main, we have generated every single combination among them, on a 1-to-1 basis. For
each of these combinations, we have generated an appropriate request using the corre-
sponding SDT’s as the request’s input and output data types (in other words, using the
SDT’s as the request’s initial and goal state, in terms of data attributes). Conse-
quently, we have run our algorithm against all the requests. This process has been fol-
lowed for all the heuristic methodologies described earlier, so that their comparative
performance can be presented. The performance metric used is to compare the num-
ber of “nodes” (web service operations) that were used as part of the solutions, with
the total number of nodes expanded by our search algorithm – this gives us an idea of
how well-guided the search algorithm was during the composition process. A high
ratio of solution nodes to total expanded nodes means that the composer was success-
fully guided, so the higher ratios an approach generates, the more successful is con-
sidered to be. In addition, we have calculated PageRank figures for all the semantic
data types that take part in the experiment, at depth = 3, which gives us an idea of
how “well-linked” the experimental search space is at increasing depths. The above
figures (ratio between solution and expanded nodes) are also compared against the
distribution of the PR values of the semantic data types, so as to spot any potential
trends about whether the performance of a particular methodology is related to the
link structure of the search space at increasing depths. We have to note that the men-
tioned PR distribution at depth = 3 is not in any way used during the composition
process, but only serves for evaluation purposes. As mentioned above, three series of
experiments were performed – one for each composition methodology. We first pre-
sent the performance of each approach separately (in comparison to the distribution of
the PR growth rate of our search space) and then comparatively.

1582 J. Gekas and M. Fasli

0

0.2

0.4

0.6

0.8

1

sdt01 sdt02 sdt03 sdt04 sdt05 sdt06 sdt07 sdt08 sdt09 sdt10 sdt11

semantic data types (sdt's)

Ratio of Solution Nodes and Expanded
Nodes
Forward PR Growth Rate

0

0.2

0.4

0.6

0.8

1

sdt01 sdt02 sdt03 sdt04 sdt05 sdt06 sdt07 sdt08 sdt09 sdt10 sdt11

semantic data types (sdt's)

Ratio of Solution Nodes and Expanded
Nodes
Forward PR Growth Rate

0

0.2

0.4

0.6

0.8

1

sdt01 sdt02 sdt03 sdt04 sdt05 sdt06 sdt07 sdt08 sdt09 sdt10 sdt11

semantic data types (sdt's)

Ratio of Solution Nodes and Expanded
Nodes
Forward PR Growth Rate

0

0.2

0.4

0.6

0.8

1

sdt01 sdt02 sdt03 sdt04 sdt05 sdt06 sdt07 sdt08 sdt09 sdt10 sdt11

semantic data types (sdt's)

Global PageRank
Topic Sensitive PageRank
SDT Semantic Distance

Fig. 3. Comparison of Average ration of Expanded Nodes and Solution Nodes per Semantic
Data Type with Forward PR Growth Rate, using: (a) Global PageRank, (b) Topic-Sensitive
PageRank, (c) SDT Semantic Distance, and (d) comparative figures

Fig.3 shows the comparison of Solution Nodes and total Expanded Nodes for a
successful request, in relation to the Forward PR distribution of the search space, at
depth = 3. The first three diagrams show the performance of the three heuristic meth-
odologies described earlier: (a) corresponds to importance – PageRank, (b) to relative
importance – Topic-Sensitive PageRank, and (c) to relatedness – SDT Semantic Dis-
tance. On the X axis, we can see the semantic data types (SDT’s) present at the ex-
periment. These SDT’s can be considered as the starting state of a successful compo-
sition request (in other words, the provided Input Parameters for a given request). In
all diagrams, the solid line shows the growth rate of the forward PR for the given
SDT’s. The dashed line shows the ratio between the solution nodes and the overall
expanded nodes for the requests that had the given SDT’s as starting state. Both lines
occupy values between 0 and 1 inclusive, which are shown on the Y axis.

Even though the diagrams represent different behaviours, we can see the general
relation between the above figures: both lines (ratio of solution and expanded nodes
and forward PR growth rate) follow similar directions, which leads us to believe that
the heuristic methodologies presented in this paper can work more effectively when
the PR growth rate of the SDT’s present at our search space becomes higher at in-

 Automatic Web Service Composition Based on Graph Network Analysis Metrics 1583

creasing depths – in other words, when the search space is better-linked at increasing
depths.

Even though the lines in all three diagrams follow similar trends, we can see that
the performance of the approaches differ significantly. Keeping in mind that higher
ratios between solution and expanded nodes mean a better-guided and more effective
composition process, we can see that diagram (b) is the one showing the best per-
formance. This means that the Topic-Sensitive PageRank metric as the composer’s
search heuristic led to better results.

5.3 Discussion

The diagrams above show that the relative importance metric (topic-sensitive Pag-
eRank) generates more effective results in our context, during the workflow compo-
sition process. We can maybe justify this behaviour by considering the nature of the
heuristic metrics that were used for our experiments: PageRank is a metric of global
importance within a search domain, showing how big part of the domain each node
is linked to. Keeping this in mind, we can expect that the global nature of PageRank
(independent to each particular request) can sometimes “attract” the composition al-
gorithm towards “powerful” web services within our repository, without them being
directly related to the particular request in question. An example of such behaviour
can be noted in Fig.3 (a) by looking at the corresponding figures for the Loca-
tionZipCode SDT (sdt09); it has a relatively high PR growth rate (=0.58 at depth =
3) but a rather low ratio of solution and expanded nodes (=0.19). Topic-sensitive
PageRank on the other hand, seems to be doing quite well overcoming this side-
effect.

The (rather low) performance of the SDT semantic distance heuristic technique can
also be justified: as it has already been mentioned, the semantic distance heuristic is
based on the hypothesis that the number of informational web services connecting
two different SDT’s will be higher, when the SDT’s are closer-related to each other.
This notion implies that in order for this heuristic to perform effectively, the distribu-
tion of the semantic distance lengths between all SDT pairs within our ontologies has
to be similar with the degree distribution of the same SDT pairs within our search
space. Clearly, this does not have to always be the case.

We have also seen that the PR growth rate of a given data type is related to the per-
formance of the search algorithm used. The ratio of solution and expanded nodes
gives us an idea of how well-guided the search algorithm is during the composition
process, and we saw that the ratio is higher when the PR growth rate of the starting
state data type is higher. In other words, this shows that the better-linked the operation
domain is at increasing depths, the more effective our composition heuristics perform.
Thus, we can assume that our composition approach can lead to more effective results
when they are applied to rather “condense” search spaces. Beyond this elementary in-
tuition, we believe that the degree distribution of the service repository (search do-
main) is a major issue, as it can greatly affect the performance of the composition
mechanisms in use. The SDT degree distribution of our service repository can be
shown in the following diagram:

1584 J. Gekas and M. Fasli

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

SDT's

D
eg

re
e

D
is

tr
ib

ut
io

n

SDT Degree Distribution

Fig. 4. Degree Distribution for the SDT’s present within the web service repository used for our
experiments (InformationQuery domain)

In the above diagram, each bar represents a semantic data type whose degree dis-
tribution can be shown on the Y axis. We can see that our service repository follows a
rather normal (Poisson) distribution. However, many distribution patterns can be ap-
plied to hyperlinked network environments, such as small world networks, random
graph networks, scale-free and power-law distributions [SITGES, 2002]. As a major
future work direction, we intend to apply the methodologies described in this paper, to
simulated service repositories of different topologies and examine how different to-
pologies affect composition performance.

6 Conclusions – Further Work

In this paper we presented our work in the area of semantic web service composition.
The work that has been performed in this area has two aspects: first, we presented the
architectural framework we have built in order to experiment with service composi-
tion methodologies; second, we presented a set of approaches/techniques in order to
tackle the problem at a typical service composition scenario. Our solution approach
regards the service composition problem as a search problem within a scalable, dy-
namic and potentially large search space. In addition, the service repository is re-
garded as a hyperlinked environment consisting of web resources linking to other web
resources. Our work mainly focuses on the heuristics guiding the composition proc-
ess, rather than the composition algorithm itself; our experiments have been per-
formed using a depth-first search algorithm, which works in a best-first fashion.
However, different algorithms can be supported by our platform (see below).

There have been a number of approaches in the service composition problem do-
main, and some of them were discussed earlier in this paper. We believe that our work
is different than the approaches presented and contributes to this particular research area
in a number of ways: we understand that service composition is a problem that can be
formed in a number of different use cases, each of them having its own requirements
and characteristics. Furthermore, we are using the dynamic structure of the search space
itself, in order to generate effective heuristic mechanisms to guide the composition
process – we follow this methodology having been inspired by research done in search

 Automatic Web Service Composition Based on Graph Network Analysis Metrics 1585

engine technologies and hyperlinked environments. This way, we consider our approach
to be highly dynamic and scalable. Finally, to our knowledge, no experimental approach
following these principles has been presented at the time of writing.

The experiments presented in this paper describe three different scenarios on how
we can use the service repository’s link structure in order to guide the workflow com-
position process in an effective way: the first one refers to metrics of global impor-
tance of the web services present in our search domain, denoted by global PageRank
figures; the second approach normalizes the global PageRank figures towards particu-
lar composition requests (topic-sensitive PageRank), whereas the third scenario exam-
ines the use of the ontology-based semantic distance metric between the semantic
data flows generated during the composition process. The results presented in the pre-
vious section give an idea of which approach performs better in our search domain –
furthermore, a justification of our results is also attempted. In more detail, we saw
that the topic-sensitive PageRank metric achieves the best performance in our ex-
periments; this fact can be justified by taking into account the nature of the heuristic
metrics themselves: global PageRank figures are request-independent, and SDT se-
mantic distance to guide the composition process can achieve good performance when
the distribution of the semantic distance lengths between all SDT pairs within our on-
tologies is similar to the degree distribution of the same SDT pairs within our search
space. This relation has not been taken into account within the context of our experi-
ments. No attempt has been yet made to compare our experimental results with those
coming from alternative service discovery and composition approaches: within our
work, we view the service discovery and composition problem mostly as a search
problem, and we measure the performance of our methodologies by examining how
effective the search is, in terms of expanded nodes. To our knowledge, there is no
other service composition approach using search techniques that has published ex-
perimental results, as of this writing; thus, immediate comparisons cannot be made
easily – however, more work will be done in this area in the future.

By comparing composition performance with PR growth rates within our service
repository, we saw that performance is higher when PR growth rates are higher at in-
creasing depths – this means that the composition methodologies examined in this pa-
per are more efficient in condense service repositories, rather than sparse ones. In this
context, a major future work direction would be to apply the heuristic methodologies
presented in this paper in simulated service repositories that follow different degree
distribution and scalability patterns. In addition, the behaviour of different search al-
gorithms can be evaluated as well (such as bi-directional search, or backward chain-
ing, working with backward PR figures) and their performance can be measured, us-
ing the heuristic models we have described. We also have to note that combining
more than one of the above methodologies within a single search algorithm / com-
poser and examining the combined performance is also an interesting option. Finally,
an interesting work direction would be to re-assess each of the above methodologies
in relation to their computational costs: from the three methodologies used in our ex-
perimental setting, global importance PR is the only one that does not require any
composition-time processing, as the PR figures are pre-calculated. Topic-Sensitive
PR and SDT semantic distance require some more processing at composition time, so
it would be interesting to examine their performance benefits in relation to the compu-
tation cost they entail.

1586 J. Gekas and M. Fasli

Furthermore, we need to note that several other issues concerning the service com-
position domain in general have on purpose been left out of this paper. One major is-
sue is of course, workflow control constructs: repetition structures, splits and decision
blocks. We have done some work in this area as well, especially regarding the nature
of use cases that can cause different control structures to appear in the workflow. An
example could be request-specific constraints or dynamic constraints inherent to a
particular composition request resulting in decision blocks within a workflow. How-
ever, such cases have not been discussed in this paper - instead, we have focused on
the core business logic of the workflow.

References

[ANOKOLEKAR et al., 2002] International Semantic Web Conference 2002 (ISWC'02), Sar-
dinia, Italy.

[BERNERS-LEE, 2001]. Keynote presentation on web services and the future of the web.
Software Development Expo 2001 Visionary Keynote,

[BHARAT and MIHAILA, 2000] Hilltop: A Search Engine based on Expert Documents, Ninth
International World Wide Web Conference (WWW9), Amsterdam, 2000.

[CASATI et al., 2001] Fabio Casati, Ming-Chien Shan and D. Georgakopoulos (2001). "E-
Services - Guest editorial." The VLDB Journal 10(1): 1.

[FOO et al., 1992] Norman Foo, Brian J. Garner, Anand Rao, Eric Tsui, Semantic Distance in
Conceptual Graphs, Conceptual structures: current research and practice, pages 149-154,
1992, ISBN no: 0-13-175878-0.

[HAVELIWALA, 2002] Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm
for Web Search, WWW 2002, THE ELEVENTH INTERNATIONAL WORLD WIDE
WEB CONFERENCE.

[HESS and KUSMERICK, 2005] Anderas Hess and Nickolas Kusmerick, Machine learning
techniques for annotating semantic web services, Dagstuhl Seminar, Machine Learning for
the Semantic Web, 13-18 February 2005.

[ITO et al., 2004] Application of Kernels to Link Analysis: First Results, In Proceedings of the
Second Workshop on Mining Graphs, Trees and Sequences (MGTS'04), pp.13-24, Pisa,
September 2004.

[KHOSHAFIAN, 2002] Web Services and Virtual Enterprises. Published by Tect Enterprises.
[KLEINBERG, 1997] J. Kleinberg. Authoritative sources in a hyperlinked environment. Jour-

nal of the ACM, 1999. Also appears as IBM Research Report RJ 10076, May 1997.
http://www.cs.cornell.edu/home/kleinber/auth.ps.

[KOPENA and REGLI, 2003] DAMLJessKB: A Tool For Reasoning With The Semantic Web,
2nd International Semantic Web Conference (ISWC2003), October 2003, Florida, USA.

[HOGG et al., 2004] An Evaluation of Web Services in the Design of a B2B Application. The
27th Australasian Computer Science Conference, The University of Otago, Dunedin, New
Zealand.

[KAWAMURA et al., 2003] Preliminary Report of Public Experiment of Semantic Service
Matchmaker with UDDI Business Registry, ICSOC ’03, 2003.

[LIMTHANMAPHON and ZHANG, 2003] Limthanmaphon, B. and Zhang, Y: Web Service
Composition with Case-Based Reasoning. In Proc. Fourteenth Australasian Database Con-
ference, Adelaide, Australia. Conferences in Research and Practice in Information Technol-
ogy, 2003. Schewe, K.-D. and Zhou, X., (eds). 4 – 7.

 Automatic Web Service Composition Based on Graph Network Analysis Metrics 1587

[MIN and BJORNSSON, 2004] Construction Supply Chain Visualization Through Web Ser-
vices Integration, CIFE Technical Report #149, MAY 2004

STANFORD UNIVERSITY.
[MONTEBELLO and ABELA, 2002] DAML Enabled Web Services and Agents in the Seman-

tic Web. NODe 2002 Web and Database-Related Workshops on the Web, p.46-58, 2002.
[PAGE and BRIN, 1998] S. Brin and L. Page. The anatomy of a large-scale hypertextual web

search engine. In WWW Conference, volume 7, 1998. http://www7.scu.edu.au/
programme/fullpapers/1921/com1921.htm

[PAOLUCCI et al., 2002] Semantic Matching of Web Service Capabilities, ISWC ’02, 2002.
[PEER, 2003] Peer, Joachim: Towards Automatic Web Service Composition Using AI plan-

ning Techniques (first draft), 2003.
[PONNEKANTI and FOX, 2002] SWORD: A Developer Toolkit for Web Service

Composition, WWW2002, THE ELEVENTH INTERNATIONAL WORLD WIDE WEB
CONFERENCE, Honolulu, Hawaii, USA, 7-11 May 2002.

[RICHARDS et al, 2003] Richards, Debbie et al: Composing Web Services Using an Agent
Factory, AAMAS 2003, Workshop on Web Services and Agent-based Engineering, Mel-
bourne, Australia, July 2003, p.1.

[RODDICK et al., 2003] A Unifying Semantic Distance Model for Determining the Similarity
of Attribute Values, 26th Australasian computer science conference on Conference in re-
search and practice in information technology, 2003.

[SEMANTIC WEB, 2001] http://www.w3.org/2001/sw/.
[SITGES, 2002] Statistical Mechanics of Complex Networks, Eds. R. Pastor-Satorras, J. M.

Rubi, and A. Diaz-Guilera (Springer, Berlin, 2003).
[TUT and EDMOND, 2002] The use of Patterns in Service Composition. Revised Papers from

the International Workshop on Web Services, E-Business, and the Semantic Web, 2002,
p.28-40.

[WU et al., 2003] Automating DAML-S Web Services Composition Using SHOP2, 13Th In-
ternational Conference on Automated Planning & Scheduling, Trento (Italy), June 9-13
2003.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1588 – 1595, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Two Reasoning Methods for Extended Fuzzy ALCH*

Dazhou Kang1,2, Jianjiang Lu1,2,3, Baowen Xu1,2,4, Yanhui Li1,2, and Yanxiang He4

1 Department of Computer Science and Engineering, Southeast University,
Nanjing 210096, China

2 Jiangsu Institute of Software Quality, Nanjing 210096, China
3 PLA University of Science and Technology, Nanjing 210007, China

4 State Key Laboratory of Software, Wuhan University, Wuhan 430072, China
bwxu@seu.edu.cn

Abstract. This paper introduces cut sets of fuzzy concepts and fuzzy roles as
atomic concepts and atomic roles to build extended fuzzy

(), a new fuzzy extension of . It talks about two reasoning

methods for . The first one presents a sound and complete

algorithm for reasoning tasks and proves the complexity is

PSPACE-complete. The second one reduces into , which
can be performed in polynomial time and keep the semantic consistency, and
then uses reasoning method to solve reasoning tasks.

1 Introduction

Description logics (DLs) provide a logical reconstruction of object-centric and frame-
based knowledge representation languages [1], with a simple well-established Tarski-
style declarative semantics to capture the meaning of popular features in structured
knowledge representation. Nowadays a lot of knowledge representation systems have
been built by DLs in a variety of applications.

Some DLs applications, such as Web multimedia information retrieval, often need
management of fuzzy information; but DLs are limited to dealing with crisp concepts
and crisp roles. Therefore, it is necessary to extend description logics with fuzzy
capability.

Compared with concepts and roles in classical description logics, fuzzy description
logics [2, 3] contain fuzzy concepts and fuzzy roles that describe fuzzy sets. In fuzzy
set theory, a fuzzy set S w.r.t a universe U is defined as a membership function

: [0,1]S Uµ → , and the λ -cut set of S is defined as [] { | () }sS d U dλ µ λ= ∈ ≥ ,

where 0 1λ< ≤ . Based on the idea of that the cut sets are indeed crisp sets, but

* This work was supported in part by the NSFC (60373066, 60425206, 90412003), National

Grand Fundamental Research 973 Program of China (2002CB312000), National Research
Foundation for the Doctoral Program of Higher Education of China (20020286004),
Excellent Ph.D. Thesis Fund of Southeast University, and Advanced Armament Research
Project (51406020105JB8103).

 Two Reasoning Methods for Extended Fuzzy ALCH 1589

facilitate a normative theory for formalizing fuzzy set theory, our fuzzy extension of
description logics uses cut sets of fuzzy concepts and fuzzy cut roles instead of fuzzy
concepts and fuzzy roles.

Definition 1. Consider three disjoint sets: a set CN of fuzzy concept names (denoted

,A B), a set RN of fuzzy role names (denoted ,R S), and a set IN of individual

names (denoted ,a b). For any CA N∈ , RR N∈ and 0 1λ< ≤ , we call []A λ an

atomic cut concept and []R λ an atomic cut role, where A and R are the prefixes of

λ , and λ is the suffix of A and R .
The semantics of fuzzy concept names and their cut sets are defined in terms of an

interpretation ,=< ∆ ⋅ > . The domain ∆ is a nonempty set and the interpretation

function ⋅ maps every individual name a to an element a ∈ ∆ , every fuzzy

concept name CA N∈ to a membership function : [0,1]A ∆ → , and every fuzzy

role name RR N∈ to a membership function : [0,1]R ∆ × ∆ → . And ⋅ maps

[]A λ and []R λ such that 0 1λ< ≤ to sets over ∆ and ∆ × ∆ :

[]

[]

() { | () };

() {(, ') | , ' (, ') }.

A d d A d

R d d d d R d d

λ

λ

λ

λ

= ∈ ∆ ∧ ≥

= ∈ ∆ ∧ ≥
 (1)

From Equation 1, for any 1 2,λ λ such that 2 10 1λ λ≤ ≤ ≤ , it must be true that

1 2[] []() ()A Aλ λ⊆ and
1 2[] []() ()R Rλ λ⊆ for any interpretation . Generally, a

collection of
1 2[] [] []() , () , , ()

k
A A Aλ λ λL and

1 2[] [] []() , () , , ()
k k n

R R Rλ λ λ+ +
L can

describe the semantics of A and R completely or at an acceptable degree.

2 Extended Fuzzy Description Logic

2.1 Cut Concepts

We propose a fuzzy extension of the description logic [1], called ,
by introducing cut concepts and cut roles. inherits all the concept
constructors from , including negation, conjunction, disjunction, value
restriction, and existential restriction. There is no role constructor in either or

.

Definition 2. The cut concepts in are syntactically defined as

[] [] [], :: | | | | . | .C D A C C D C D R C R Cλ λ λ= ¬ ∀ ∃ (2)

where CA N∈ , RR N∈ , and 0 1λ< ≤ . The semantics of cut concepts are defined in

terms of ,=< ∆ ⋅ > in Definition 1 with the extension of ⋅ to arbitrary cut
concepts, which are inductively defined as following:

1590 D. Kang et al.

[] []

[] []

() \ ; () ; () ;

(.) { | ' , (, ') () ' };

(.) { | ' , (, ') () ' }.

C C C D C D C D C D

R C d d d d R d C

R C d d d d R d C

λ λ

λ λ

¬ = ∆ = =
∃ = ∈ ∆ ∃ ∈ ∆ ∈ ∧ ∈

∀ = ∈ ∆ ∀ ∈ ∆ ∈ → ∈

I U

 (3)

2.2 Axioms and Assertions

An knowledge base contains alterable terminological axioms of concepts
represented in a TBox, alterable role inclusion axioms represented in a role hierarchy,
as well as assertions represented in an ABox.

Definition 3. For any CA N∈ and RR N∈ , [()]f uA ([()]f uR) is an alterable atomic cut

concept (role) decided by u , if u is a variable in a continuous domain V (0,1]⊆ and

f is a function from V to (0,1] . Starting with alterable atomic cut concepts and roles,

alterable cut concepts (denoted ,E F) can be inductively defined as:

[()] [()] [()], :: | | | | . | .f u f u f uE F A E E F E F R C R E= ¬ ∀ ∃ .

Now we make some constraints of alterable cut concept E :

1) All alterable atomic cut concepts and atomic cut roles in E must be decided by
a single variable u with same domain V, then we say E is decided by u (denoted

()uE), and V is the domain of ()uE . Let c be a constant in V, then ()cE is a cut

concept which replaces any suffix ()f u in E with ()f c (denoted |u cE =).

2) For ()uE and its domain V, ()uE is monotonous (either increasing or decreasing)

over V. ()uE is increasing (decreasing) over V if for any 1 2, Vλ λ ∈ , 1 2λ λ≤ and any

interpretation I,
1 2

(|) () (|)I I
u uE Eλ λ= =⊇ ⊆ holds. And the monotony constraint holds

for any alterable atomic cut role.

Definition 4. An TBox is a finite set of terminological axioms of the form

() () ,u uE F u V< ∈ > , where () (),u uE F are alterable cut concepts and have the same

domain V and monotony (() (),u uE F are both increasing or decreasing over V). An

interpretation is a model of a TBox iff , (|) (|)u c u cc V E F= =∀ ∈ ⊆ holds for

every ,E F u V< ∈ > in . A TBox is consistent iff it has a model.

Definition 5. An alterable cut role inclusion axiom is of the following form

[()] [()] ,f u f uR S u V′< ∈ > , where [()] [()],f u f uR S ′ are alterable cut roles and have the

same domain V and monotony ([()]f uR and [()]f uS ′ are both increasing or decreasing

over V. Without loss of generality, we assume ()f u and '()f u are monotone and

increasing). And an role hierarchy is a finite set of cut role inclusion
axioms with the following two restrictions:

1) For any fuzzy role R in , R appears in the left side of cut role inclusion once
at most.

2) does not contain cyclic inclusions, such as
1 21[()] 2[()] 2,f u f uR R u V< ∈ > ,…,

1[()] 1[()] ,kk f u f u kR R u V
+

< ∈ > , which means a fuzzy role is included by itself.

 Two Reasoning Methods for Extended Fuzzy ALCH 1591

An interpretation is a model of a role hierarchy iff ,c V∀ ∈ [()] [()]() ()f c f cR S ′⊆

for every [()] [()] ,f u f uR S u V′< ∈ > in . A role hierarchy is consistent iff it has a

model.
The assertions in is similar to assertions in by replacing crisp

concept and role with cut concept and role.

Definition 6. An ABox is a finite set of assertions of the form :a C (cut
concept assertion) or [](,) :a b R λ (cut role assertion), where C is a cut concept, []R λ a

cut role, and , Ia b N∈ . An interpretation is a model of an ABox iff a C∈

holds for all :a C and [](,) ()a b R λ∈ for all [](,) :a b R λ in . An ABox is

consistent iff it has a model.
An interpretation is a model of (, ,)= , iff is a model of , and

. is consistent iff it has a model.

3 Two Reasoning Methods for

In classical description logics, satisfiability is considered as the main reasoning task,
and reasoning algorithms are usually firstly developed for satisfiability and secondly
extended to solve the other reasoning tasks [1, 4]. Similarly, in case, we
consider satisfiability of cut concept as a basic reasoning task.

Satisfiability: a cut concept C0 is satisfiable w.r.t and iff there is an

interpretation such that 0C ≠ ∅ , and is a model of and .

This section will talk about two reasoning methods for satisfiability w.r.t empty
TBox. The first one gives a tableau algorithm, and the second one reduces
to and reuses the reasoning method.

3.1 The Tableau Algorithm

For , the tableau algorithm for satisfiability starts with the ABox
A0={x0:C0}, then extends A0 by translation rules and tries to create complete and not-
closed ABoxes, which are directly converted into fuzzy interpretations satisfying C0.

Because supports alterable cut role inclusion axioms, we use “ []kkR λ -

successor” to propagate the constraint of alterable cut role inclusion. []kkR λ -successor

is defined as: y is a []kkR λ -successor of x if contains
11[](,) :x y R λ and there are a

cut role sequence
1 21[] 2[] [], , ,

kkR R Rλ λ λL such that for any []iiR λ and
11[]iiR λ ++ , one of the

following two conditions must be satisfied:

1) 1i iR R += and 1i iλ λ +≥ ;

2) [()] 1[()] ,i f u i f uR R u V′+< ∈ > is in . Let 1f − be the inverse function of f (for

the monotony constraints, f is monotone). 1
1'(())i if f λ λ−

+≥ holds.

1592 D. Kang et al.

Now, we express our tableau algorithm as follows. The tableau algorithm starts
with a single ABox A0={x0:C0} and propagates constraints by applying translation
rules (Fig.1.) to ABoxes.

Fig. 1. Translation rules of the tableau algorithm for

New ABox A1 or A2 is called a subsequence of A. By applying some translation
rules, a given ABox A may be translated into two subsequences. Therefore we define
a set of ABoxes S. The tableau algorithm starts with a single set S0={{x0:C0}}. And
the translation rules are applied to a given set S with replacing one alterable ABox by
its subsequences.

Definition 7. An alterable ABox A is complete iff none of the translation rules can be
applied to it. An alterable ABox is not closed if no ¬ -rule announces it is closed. An
alterable ABox is open iff it is complete and not closed. A finite set of alterable
ABoxes S is complete iff any ABox A in S is complete.

Now we refine process of tableau algorithm in the following steps.

1) Let C0 be an cut concept in NNF [1, 4]. The tableau algorithm starts
with a set of a single alterable ABox: S0={{x0:C0}};

2) The tableau algorithm exhaustively applies the translation rules to current Si. We
denote the subsequence of Si by Si+1. So there is a chain of Si by rules application:
S0 S1 … Si …;

3) If the current Si is complete, if there is an ABox A* in Si is open, the tableau
algorithm returns “C0 is satisfiable”, otherwise “C0 is unsatisfiable”.

For any ABox A which is not closed

The -rule
Condition: A contains x: D E , but not both x: D and x: E .

Action: A1=AU {x: D , x: E }.

The -rule
Condition: A contains x: D E but neither x: D nor x: E .

Action: A1=AU {x: D }; A2=AU {x: E }.

The ∃ -rule
Condition: A contains x: [] .R Dλ∃ , but not a []R λ -successor y of x satisfying y: D .

Action: A1 =AU {z: D , (x, z): []R λ }, where z is a new generated individual.

The ∀ -rule
Condition: A contains x: [] .R Dλ∀ and a []R λ -successor y of x without y: D .

Action: A1=AU {y: D }.
The ¬ -rule
Condition: A contains x:

1[]B λ¬ and x:
2[]B λ , where 1 2λ λ≤ .

Action: Announce A is closed.

 Two Reasoning Methods for Extended Fuzzy ALCH 1593

The completeness of the algorithm is guaranteed for any translation rule is based
on constraint propagation. And the soundness is proved by that for any complete and
not-closed ABox A, there exists a model of A. The algorithm could be executed in
polynomial space as a similar consequence of the algorithm for concept
satisfiability w.r.t empty TBox. For concept satisfiability is PSPACE-
complete [1], concept satisfiability w.r.t empty TBox is PSPACE-hard.
We have the following theorem.

Theorem 1. Satisfiability of cut concepts w.r.t. empty TBox is PSPACE-
complete.

3.2 Reducing to

In this subsection, for any cut concept C0 and role hierarchy , we use a
 knowledge base to simulate them. The simulation process consists of the

following steps.

Fig. 2. Steps of simulation process

For C0 contains linear number of atomic cut concepts, step 1 can be performed in
polynomial time. For has two restriction (definition 5), step 2 and 3 can be
performed in polynomial time, and the cardinality of the sets Role(C0,) and H*(C0,

) are also polynomial. Therefore step 4 and 5 can also be accomplished in
polynomial time. Above all, the total time of simulation process is polynomial. Now
we will prove the completeness and soundness of the simulation process.

Theorem 2. An cut concept C0 is satisfiable w.r.t a role hierarchy iff the
 knowledge base (T(C0), H(C0,), {x:C0}) has a model.

Proof.
.) Let IE(EI∆ , EI) be an model of and 0() EIC ≠ ∅ . We create an

 interpretation I(I∆ , I) satisfying (T(C0), H(C0,), {x:C0}) from IE in the

For any cut concept C0 and role hierarchy

1) Let T(C0)=def{
1[]B λ 2[]B λ |

1[]B λ and
2[]B λ are in C0, and 1 2λ λ≥ }.

2) Initialize Role(C0,)={
1[]R λ |

1[]R λ is in C0} and H*(C0,)= ∅ .

3) For any
1[]R λ ∈ Role(C0,), if [()] [()] ,f u f uR S u V′< ∈ > ∈ and

1 inf()Vλ ≥ , then add [()]fS λ′ into Role(C0,) and
1[()] [()]f fR Sλ λ′ into

H*(C0,), where 1min(,sup())Vλ λ= .

4) Initialize H(C0,)=def{
1[]R λ 2[]R λ |

1[]R λ and
2[]R λ are in Role(C0,),

and 1 2λ λ≥ }. Let H(C0,)= H(C0,)UH*(C0,).

5) Construct a knowledge base (T(C0), H(C0,), {x:C0}), where

1[]B λ and
1[]R λ are considered as concept and role.

1594 D. Kang et al.

following steps: 1) I∆ = EI∆ ; 2) for any atomic concept []i
B λ and atomic role []i

R λ in

, ([]i
B λ) I =([]i

B λ) EI , ([]i
R λ) I =([]i

R λ) EI .

Now, we prove I satisfies (T(C0), H(C0,), {x:C0}).

1) For any
1[]B λ 2[]B λ in T(C0): since 1 2λ λ≥ , (

1[]B λ) EI ⊆ (
2[]B λ) EI . For

([]i
B λ) I =([]i

B λ) EI , we can induce that (
1[]B λ) I ⊆ (

2[]B λ) I . So I satisfies T(C0).

2) For any [()] [()]f fR Sλ λ′ in H(C0,): if it is added into H(C0) in step 3,

[()] [()] ,f u f uR S u V′< ∈ >∈ and Vλ ∈ . For IE satisfies , [()] [()]() ()E EI I
f fR Sλ λ′⊆ .

Therefore [()] [()]() ()I I
f fR Sλ λ′⊆ holds. If this inclusion is added into H(C0) in step 4,

the proof is similar to case 1. Above all I satisfies H(C0,).
3) For the semantics of concept constructors are the same as

and for any []i
B λ and []i

R λ , ([]i
B λ) I =([]i

B λ) EI , ([]i
R λ) I =([]i

R λ) EI holds, for any

concept C in , () () EIIC C= . Then 0 0() () EIIC C= ≠ ∅ . Choose one element d in

0()IC and additional define Ix d= . Obviously I satisfies {x:C0}.

⇐ .) Let I(I∆ , I) be a model of (T(C0), H(C0,), {x:C0}). We create an
 model IE of with 0() EIC ≠ ∅ from I in the following steps: 1)

EI∆ = I∆ ; 2) for any atomic fuzzy concept B , atomic fuzzy role R and , ' EId d ∈ ∆ ,

()EIB d = max{{ []| ()
i

I
i d B λλ ∈ } {0}U },

(, ')EIR d d = max{{ []| (, ') ()
i

I
i d d R λλ ∈ } {0}U }.

Now, we prove IE satisfies and C0.

1) IE satisfies [()] [()] ,f u f uR S u V′< ∈ > iff for any pair (, ') E EI Id d ∈ ∆ × ∆ and

u V∈ , (, ') () (, ') '()E EI IR d d f u S d d f u≥ → ≥ . From the definition of EIR , we can

get that [()](, ') () , (, ') () and E

j

I I
j f jR d d f u d d R uλλ λ≥ → ∃ ∈ ≥ . From the definition

of step 3, there should be [()] [()]jf fR Sλ λ′ in H(C0,), where min(,sup())j Vλ λ= .

As a consequence, (, ')EIS d d ≥ '()f λ ≥ '()f u . Therefore IE satisfies any alterable

cut role inclusion axiom [()] [()] ,f u f uR S u V′< ∈ > . And IE is a model of .

2) From EIB , []() E

i

IB λ ={d| ()EI
iB d λ≥ }={d| jλ∃ , []()

j

Id B λ∈ and j iλ λ≥ }. As a

consequence, []() E

i

IB λ = []()
i

IB λ . And []() E

i

IR λ = []()
i

IR λ is similarly proved. Then for

any concept C in C0, () ()EI IC C= . Therefore 0() EIC ≠ ∅ .

4 Related Work

Lots of endeavors have done for extensions of DLs with fuzzy features. Meghini et al
proposed a preliminary fuzzy DL [5], which lacks reasoning algorithm, as a modeling
tool for multimedia information retrieval.

 Two Reasoning Methods for Extended Fuzzy ALCH 1595

Straccia [2] presented fuzzy , which is a fuzzy extension of by
adopting fuzzy interpretation to redefine the semantics and extending the axiom
forms. However, Fuzzy only supports limited and insufficient expressive
power of both assertional and terminological fuzzy knowledge.

For a fuzzy concept .R C∃ and an individual a, fuzzy supports fuzzy
assertion of the form : .a R C λ∃ ≥ , which means , (,)b R a b λ∃ ∈ ∆ ≥ and

()C b λ≥ . However, it cannot describe an individual a such that ,b∃ ∈ ∆

1(,)R a b λ≥ and 2()C b λ≥ , where 1 2λ λ≠ . Generally, fuzzy is not

able to describe different membership degrees of concepts and roles in a single
assertion. Such complex fuzzy assertion information can be described as
a: ∃ R

1[]λ .C
2[]λ in ABox.

Similarly, the same problem happens in the axioms of fuzzy . They can not
express complex inclusions based on various membership degrees. For example, the
axiom C D only means d∀ ∈ ∆ , ()C d λ≥ → ()D d λ≥ . But sometimes, it is

necessary to use 1()C d λ≥ → 2()D d λ≥ , where 1 2λ λ≠ . Such inclusion can be

described as:
1[]C λ 2[]D λ in TBox.

5 Conclusions

This paper talks about two reasoning methods for . The first one presents a
sound and complete algorithm for reasoning tasks and proves the
complexity is PSPACE-complete. The second one reduces into ,
which can be performed in polynomial time and keep the semantic consistency, and
then uses reasoning method to solve reasoning tasks. Further
work includes the extension of with more concept and role constructors.

References

[1] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.(Eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press (2003)

[2] Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence
Research, no.14 (2001): 137-166

[3] Straccia, U.: Transforming fuzzy description logics into classical description logics. In:
Proceedings of JELIA 2004, Lisbon, (2004) 385-399

[4] Baader, F., Sattler, U.: An Overview of Tableau Algorithms for Description Logics. Studia
Logica, Vol. 69, no. 1 (2001): 5-40

[5] Meghini, C., Sebastiani, F., Straccia, U.: Reasoning about the form and content for
multimedia objects. In: Proceedings of AAAI 1997 Spring Symposium on Intelligent
Integration and Use of Text, Image, Video and Audio, California (1997) 89-94

Expressing Preferences in a Viewpoint Ontology

Rallou Thomopoulos

INRA, UMR IATE, Bâtiment 31,
2 place Viala, 34060 Montpellier Cedex 1, France

Rallou.Thomopoulos@ensam.inra.fr

Abstract. This paper proposes a definition of viewpoints in a “kind
of” ontology. The use of viewpoints allows one to simplify user interface
and to facilitate the expression of user preferences on such an ontology.
This work has been applied in the framework of an information system
dedicated to the quality of food products.

1 Introduction

This study has taken place in a French project whose mission is to create a
decision-making tool for the analysis of the nutritional and sanitary quality of
food products. As a first step of the project, scientific data from several hundreds
of publications concerning the impact of technological processes on nutritional
or toxic components have been gathered in a database and a querying system
has been built in order to explore them.

The question we deal with rises from two characteristics of the data: (i) the
data are not abundant enough to answer every query. This characteristic led us to
propose a flexible way of expressing the queries, by allowing the user to indicate
levels of preference in his search. For instance, the user may ask for milk as a
first choice or yoghourt as a second choice; (ii) the data (food products, bacteria,
nutritional components, ...) are organized in ontologies. For instance, milk and
yoghourt (quoted in the example above), as well as the other food products,
are part of a taxonomy of substrates, in which Whole milk is a kind of Milk,
which is a kind of Milk product, etc. For the user, asking for milk as a first choice
and yoghourt as a second choice means associating preference degrees with the
elements of the taxonomy of substrates.

Previous results [1, 2] concerning the expression of preferences in an ontol-
ogy led to two issues: firstly, the need to simplify graphical user interface, and
secondly, the necessity of expressing preferences on domains composed of exclu-
sive and exhaustive elements. Therefore in Section 2 we introduce the notion of
viewpoint in an ontology. Section 3 deals with the expression of preferences in
a viewpoint ontology, in regard to user interface and to the semantics of such
preferences for the querying.

2 Viewpoints in Ontologies

We focus on ontologies defined as sets of elements partially ordered by the “kind
of” relation. An example of such an ontology is given (partially) in Figure 1.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1596–1604, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Expressing Preferences in a Viewpoint Ontology 1597

Fig. 1. Part of an ontology

In this section we give a brief introduction to viewpoints, then we propose a
definition of a viewpoint ontology.

2.1 Introduction to Viewpoints

In the ontology of Figure 1, we can notice that the subelements of Milk, for
instance, do not all have the same “statute”. Any instance of Milk is necessarily
an instance of either Whole milk or Half skim milk or Skim milk. That is, these
three elements are exclusive and, moreover, they cover all cases of Milk. Thus
they form a partition of Milk. This partition corresponds to a “creaming” cri-
terion. Another partition of Milk could be obtained with Pasteurized milk, Raw
milk and Sterilized milk (the latter two are not represented in Figure 1). This
partition corresponds to a “thermization” criterion. On the contrary, an instance
of Milk may be an instance of both Whole milk and Pasteurized milk. These two
elements are not exclusive. Therefore they have a common subelement Whole
pasteurized milk. The “creaming” and “thermization” partitions are complemen-
tary. Any instance of Milk can be represented in both.

For a given domain of knowledge, several criteria can be used to observe an
object. These different perceptions of the world are called viewpoints or perspec-
tives. One of the first references to viewpoints was proposed by [3] with a spacial
connotation. Examples of systems that implement viewpoints in object represen-
tations are [4, 5, 6, 7]. A good overview is given in [8]. [9] introduces viewpoints
in the conceptual graph model, in a “corporate memory” context. In UML (Uni-
fied Modeling Language), the specification of viewpoints is possible through the
use of labels in multiple generalization: a partition can be represented by the
“disjoint” and “complete” generalization constraints.

However viewpoints rely on semantic and subjective notions that are difficult
to formalize. Therefore most previous approaches are unformal or operational
– they focus on a particular implementation of viewpoints. Systems that do
not explicitely deal with viewpoints use multiple inheritance to model them,
as in the ontology of Figure 1 for instance. In Figure 1, the “creaming” and
“thermization” viewpoints do not explicitly appear, although they could help

1598 R. Thomopoulos

the user define querying preferences. Moreover they may have different levels of
importance for the user.

2.2 A Definition of Viewpoints

We propose a definition of a viewpoint ontology that relies on specializations
of the “kind of” relation. A specialization of the “kind of” relation is based on
the criterion used to establish the “kind of” relation between two elements. This
citerion can be general or specific, thus leading to several levels of specialization
of the “kind of” relation. In formalisms from the family of semantic networks,
like description logics [10] or conceptual graphs [11], relations between concepts
can be specialized. However the “kind of” relation plays a particular part in
these models, as specialization is based on it. Here we propose to specialize the
“kind of” relation itself, just as other relations can be specialized.

Definition 1. A specialization of the “kind of” relation is a restriction of
the “kind of” relation obtained by specifiying the criterion used to establish the
“kind of” relation between elements. A particular specialization of the “kind of”
relation, denoted “kind of by conjunction”, is used to indicate that a common
sub-element is obtained by multiple inheritance.

Remark 1. The “kind of by conjunction” relation may itself be specialized.

Example 1. The “kind of, in regard to thermization” relation and the “kind of,
in regard to creaming” relation are specializations of the “kind of, in regard to
process” relation, which is a specialization of the “kind of” relation. They are
used in the ontology of Figure 2. The abbreviations “ko”, “koP”, “koT”, “koC”,
“conj” are respectively used for “kind of”, “kind of, in regard to process”, ‘kind
of, in regard to thermization”, “kind of, in regard to creaming”, “kind of by
conjunction”.

Fig. 2. Examples of specializations of the “kind of” relation in the Milk ontology

Example 2. Figure 3 shows an ontology about fatty acids, in which the following
specializations of the “kind of” relation are used:

Expressing Preferences in a Viewpoint Ontology 1599

– the “kind of, in regard to chemistry” relation (denoted “koCh”), which is itself
specialized into the “kind of, in regard to the presence of double bonds” (denoted
“koPr”) and “kind of, in regard to the number of double bonds” (denoted “koN”)
relations, is used to distinguish the elements Saturated fatty acid, Unsaturated
fatty acid, Mono-unsaturated fatty acid and Poly-unsaturated fatty acid;
– the “kind of, in regard to state at ambient temperature” relation (denoted
“koSt”), is used to distinguish between Solid at ambient temperature fatty acid
and Liquid at ambient temperature fatty acid;
– the “kind of, in regard to origin” relation (denoted “koO”), is used to distin-
guish between Essential fatty acid (which cannot be synthetized by the human
organism) and Synthetized fatty acid (which can be synthetized by the human
organism);
– the “kind of, by conjunction with state at ambient temperature” relation (de-
noted “conjSt”) and the “kind of, by conjunction with presence of double bounds”
relation (denoted “conjPr”) are both specializations of the “kind of by conjunc-
tion” relation. They are used to obtain common subelements of saturated/unsa-
turated fatty acids and solid/liquid fatty acids (multiple inheritance).

Fig. 3. Examples of viewpoints in the Fatty acid ontology

We propose a recursive definition of a viewpoint.

Definition 2. Let Ω be a set of elements partially ordered by the “kind of”
relation and by a set S of its specializations. A viewpoint on Ω is a pair
(elt, s) ∈ Ω × S such that the set of the direct predecessors of elt through s,
denoted P , is either empty or satisfies:

1600 R. Thomopoulos

– P forms a partition of elt;
– ∀p ∈ P , (p, s) is a viewpoint.
The set composed of elt and of its predecessors through s is then called the view
induced by (elt, s).

Remark 2. Knowledge on partition satisfaction is not derived from the ontol-
ogy, but declared as expert knowledge (this point is not developed here).

Example 3. In Figure 2, (Milk,koC) is a viewpoint because the set of direct
predecessors of Milk through koC, that is {Whole milk, Half skim milk, Skim
milk} forms a partition of Milk. Whole milk, Half skim milk and Skim milk
have no predecessors through koC.

On the contrary, (Milk,koT) is not a viewpoint: the set of direct predeces-
sors of Milk through koT, that is {Pasteurized milk}, is not a partition of Milk
because it is not complete, it does not cover all cases of Milk. (Milk,koP) is
not a viewpoint either: the set of direct predecessors of Milk through koP, that
is {Pasteurized milk, Whole milk, Condensed milk, Half skim milk, Sweetened
milk, Skim milk}, is not a partition of Milk as its elements are not exclusive.

Example 4. In Figure 3, all the pairs (elt, s) composed of an element of the
ontology and a relation among the represented specializations of the “kind of”
relation (“koCh”, “koPr”, “koN”, “koSt”, “koO”, “conjSt” and “conjPr”) are
viewpoints. We have the three following cases:
– elt has no predecessors through s. This is the case, for instance, of the pairs
(Essential fatty acid, koSt), (Saturated fatty acid, koN), etc.
– elt has direct predecessors through s (that form a partition of elt) and these
predecessors have no predecessors through s. This is the case, for instance, of
(Fatty acid, koSt), (Fatty acid, koPr), (Unsaturated fatty acid, koCh), (Satu-
rated fatty acid, conjSt), etc.
– elt has direct predecessors through s (that form a partition of elt) and some of
these predecessors also have predecessors through s. This is the case for (Fatty
acid, koCh).

Property 1. There is no multiple inheritance within a given view.

Proof 1. Having multiple inheritance within a given view v would imply that
there exists an element a in v that has two successors b and c through s, such
that b and c are not comparable through s but have a non-empty intersection. This
is excluded by definition 2, as both b and c are obtained by successive partitions
of elt, where non-comparable elements are all exclusive by construction.

Example 5. In Figure 3, the element Saturated solid fatty acid is obtained by
multiple inheritance of both Saturated fatty acid and Solid at ambient temper-
ature fatty acid, which do not belong to the same views.

Saturated fatty acid belongs to the view {Fatty acid, Saturated fatty acid,
Unsaturated fatty acid} induced by the viewpoint (Fatty acid, koPr), to the view
{Fatty acid, Saturated fatty acid, Unsaturated fatty acid, Mono-unsaturated
fatty acid, Poly-unsaturated fatty acid} induced by the viewpoint (Fatty acid,

Expressing Preferences in a Viewpoint Ontology 1601

koCh) and to the view {Saturated fatty acid, Saturated solid fatty acid, Satu-
rated liquid fatty acid} induced by the viewpoint (Saturated fatty acid, conjSt).

Solid at ambient temperature fatty acid belongs to the view {Fatty acid, Solid
at ambient temperature fatty acid, Liquid at ambient temperature fatty acid}
induced by the viewpoint (Fatty acid, koSt) and to the view {Solid at ambient
temperature fatty acid, Saturated solid fatty acid, Unsaturated solid fatty acid}
induced by the viewpoint (Solid at ambient temperature fatty acid, conjPr).

Definition 3. A viewpoint ontology Ωv is a set of elements partially ordered
by a set S of specializations of the “kind of” relation, such that each pair (elt, s) ∈
Ωv × S is a viewpoint.

Example 6. Figure 3 is an example of a viewpoint ontology.

3 Preferences in a Viewpoint Ontology

3.1 Simplifying User Interface

In Figure 3, four elements obtained by multiple inheritance have been repre-
sented: Saturated solid fatty acid, Saturated liquid fatty acid, Unsaturated solid
fatty acid and Saturated liquid fatty acid. Their graphical representation makes
the ontology much more difficult to read, compared to the same ontology without
multiple inheritance being represented, i.e. without conjunction viewpoints.

Moreover Figure 3 is far from being complete. Elements like Essential unsatu-
rated fatty acid, Mono-unsaturated solid fatty acid, Mono-unsaturated liquid syn-
thetized fatty acid, etc., are not represented. Representing all possible conjunction
viewpoints would lead to an unreadable result. Indeed, predecessors of Fatty acid
from different viewpoints on Fatty acid using non comparable specializations of
the “kind of” relation can be combined to create a common subelement. The
viewpoint V1 = (Fatty acid, koCh) provides 4 (strict) predecessors of Fatty acid.
The viewpoint V2 = (Fatty acid, koSt) provides 2. The viewpoint V3 = (Fatty
acid, koO) also provides 2. Thus the number of elements obtained by double in-
heritance is card(V 1)×card(V 2)+card(V 1)×card(V 3)+card(V 2)×card(V 3) =
8 + 8 + 4 = 20 and the number of elements obtained by triple inheritance is
card(V 1) × card(V 2) × card(V 3) = 16. That would lead to 36 common subele-
ments to represent.

Our choice is to simplify the graphical user interface by not visualizing ele-
ments that are obtained by multiple inheritance, as they are simply conjunctions
of other viewpoints. We thus obtain ontologies that have tree structures and may
easily be handled in a browser, as proposed in Figure 4 for instance.

3.2 Clarifying the Semantics of Preferences

Furthur to previous studies [1, 2], expressing preferences using fuzzy sets [12]
in an unambiguous way implies that the definition domains of these fuzzy sets
were exhaustive and composed of exclusive elements. Both properties are char-
acteristics of partitions. The scope of this section is to extend the expression of

1602 R. Thomopoulos

Fig. 4. Viewpoint ontologies without conjunction viewpoints have tree structures that
can easily be handled in a browser

preferences to the case of a viewpoint ontology (thus handling partitions) where
conjunction viewpoints are not represented (thus simplifying user interface as
seen in Section 3.1). We propose a two-step method:

1. Intra-viewpoint preferences. After choosing an element of interest elt in
the ontology (e.g. Fatty acid), the user can visualize its sub-elements through the
different viewpoints and thus, within a partition of the chosen element, indicate
the querying preferences by ordering the elements that compose the partition.
This ordering is computed as a fuzzy set [12]. The left part of Figure 5 gives
an example of intra-viewpoint preferences. They are computed as the fuzzy set
1/Liquid at ambient temperature fatty acid + 0.5/Solid at ambient temperature
fatty acid.

2. Inter-viewpoint preferences. If preferences have been defined on several
viewpoints, the user can specify an order of importance between these view-
points. This ordering is computed as weights associated with the selected view-
points. The right part of Figure 5 gives an example of inter-viewpoint preferences.
They are computed as weights 3, 1 and 1 respectively attributed to viewpoints
(Fatty acid, koCh), (Fatty acid, koSt) and (Fatty acid, koO).

Fig. 5. Intra and inter-viewpoint preferences

Expressing Preferences in a Viewpoint Ontology 1603

Definition 4. An expression of preferences on a viewpoint ontology is a set
{< V1, w1, F1 >, . . . , < Vn, wn, Fn >}, where V1, . . . , Vn are viewpoints on a given
element elt, w1, . . . , wn are weights respectively asociated with these viewpoints
and F1, . . . , Fn are fuzzy sets respectively defined on partitions of elt in the views
induced by V1, . . . , Vn.

Example 7. An example of preferences expressed on the Fatty acid viewpoint
ontology is given by:

{<(Fatty acid, koCh), 3, 0.3/Saturated fatty acid + 0.7/Mono-unsaturated
fatty acid + 1/Poly-unsaturated fatty acid>, <(Fatty acid, koSt), 1, 1/Liquid at
ambient temperature fatty acid + 0.5/Solid at ambient temperature fatty acid>,
<(Fatty acid, koO), 1, 1/Essential fatty acid + 0.5/Synthetized fatty acid>}.

Remark 3. The agregation of the preferences criteria to order the data that are
being queried according to their relevance is not discussed here (see e.g. [13]).

4 Conclusion

This paper has proposed a definition of a viewpoint ontology that relies on spe-
cializations of the “kind of” relation. A viewpoint corresponds to a partition of
an element of the ontology using a given specialization of the “kind of” relation.
Partitions are exploited to clarify the semantics of preferences expressed on an
ontology, by providing exhaustive domains of exclusive values, used as definition
domains of preference fuzzy sets. Moreover within a given viewpoint there is no
multiple inheritance, the latter being the result of a conjunction between several
viewpoints. This property is used to propose a simplification of user interface.
Finally we propose the use of weights – called inter-viewpoint preferences – to
specify levels of importance between viewpoints in which preferences have been
defined as fuzzy sets – called intra-viewpoint preferences.

The proposed methodology is based on the use of specializations of the “kind
of” relation that produce a partition of possible cases. This is not the case for
all of the possible specializations of the “kind of” relation. A future work will
consist in specifying the conditions that lead to the obtention of partitions.

References

1. Thomopoulos, R.: Représentation et interrogation élargie de données imprécises et
faiblement structurées. PhD thesis, INA P-G, Paris, France (2003)

2. Thomopoulos, R., Buche, P., Haemmerlé, O.: Different kinds of comparisons be-
tween fuzzy conceptual graphs. In: ICCS’2003, Dresden, Springer (2003) 54–68

3. Minsky, M.: A framework for representing knowledge. In Winston, P., ed.: The
Psychology of Computer Vision. McGraw Hill, New York (1975)

4. Bobrow, D., Winograd, T.: An overview of KRL, a knowledge representation
language. Cognitive Science 1 (1977) 3–45

5. Stefik, M., Bobrow, D.: Object-oriented programming : Themes and variations.
The A.I. Magazine 6 (1985) 40–62

1604 R. Thomopoulos

6. Carre, B.: Méthodologie orientée objet pour la représentation des connaissances.
PhD thesis, Laboratoire d’Informatique Fondamentale de Lille, France (1989)

7. Davis, H.: VIEWS: Multiple perspectives and structured objects in a knowledge
representation language. Bachelor and Master of Science Thesis, MIT (1987)

8. Marino, O.: Raisonnement classificatoire dans une représentation objets multi-
points de vue. PhD thesis, Université Grenoble 1, France (1993)

9. Ribière, M., Matta, N.: Virtual enterprise and corporate memory. In: ECAI’98
Workshop on Building, Maintaining and Using Organizational Memories. (1998)

10. Brachman, R., Schmolze, J.: An overview of the KL-ONE knowledge representation
system. Cognitive Science 9 (1985) 171–216

11. Sowa, J.: Conceptual structures - Information processing in Mind and Machine.
Addison-Welsey (1984)

12. Zadeh, L.: Fuzzy sets. Information and Control 8 (1965) 338–353
13. Dubois, D., Prade, H.: A review of fuzzy sets aggregation connectives. Information

Sciences (1985) 85–121

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1605 – 1614, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Architecting Ontology for Scalability and Versatility

Gang Zhao and Robert Meersman

Semantic Technology and Applications Research Laboratory,
Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

{gang.zhao, robert.meersman}@vub.ac.be

Abstract. This paper discusses methodological strategies for architecting on-
tologies. The development context is an EC IST project, aimed at the use of on-
tology to help detect and prevent financial frauds. The ontology engineering in
this context faces challenges of the scalability of ontology, its applicability in
multiple applications, its semantic consistency and comprehensiveness, among
others. The paper discusses architecting strategies: layering and modularizing
with design patterns, used in producing topical ontologies of fraud and VAT.

1 Introduction

This paper discusses the strategies of architecting ontologies in the project, FF
POIROT (IST2001-38248). The project seeks to build ontologies and deploy them to
enable intelligent functionalities in the information system for detecting and prevent-
ing financial frauds (www.ffpoirot.org). The ontology development is based on the
ontology conceptualization framework, DOGMA (Developing Ontology Guided Me-
diation Agent) [7], [8]. It is an development activity in the knowledge engineering
lifecycle, preceded by activities such as knowledge resource collection, scoping,
knowledge breakdown and elaboration, in the Application Knowledge Engineering
Methodology (AKEM) [13].

1.1 Approaches and Perspectives in Modeling Ontology

Different approaches and perspectives often cause contention in ontology engineer-
ing. They reflect different sets of needs and assumptions from the stakeholder and are
justifiable in aspects of problem-oriented ontology modeling. This section summa-
rizes those that are encountered in the ontology engineering in FF POIROT.

1.1.1 Conceptual vs. Formal Modeling
Knowledge engineering often faces the contention of purposes in either capturing
domain expertise as it is with understatements, ambiguity, multi-perspective, fuzzi-
ness and inconsistency or representing its application as mathematical objects and
processes, consistent, unambiguous, and rigorous for a dedicated use in a given prob-
lem-solving paradigm. We refer to the former as ‘conceptual modeling’ in the recog-
nition of human cognitive potential and the latter ‘formal’ for its axiomatic emphasis
and computational requirements.

1606 G. Zhao and R. Meersman

The contention is not only an issue of representational languages: either an expres-
sive semiotics for conceptualization or rigorous formalism in the support of inference
and computation. It is also an issue of modeling approaches to knowledge. The former
emphasizes a comprehensive coverage whereas the latter takes a reductionistic stance.
A similar contrast of approaches exists in linguistics. The mathematical approach to
linguistic description promises rigorous neat models of language structure, but fails to
deliver one required for comprehensive linguistic description. The result of a descrip-
tive approach, on the other hand, lacks rigorousness and formalization expected in
natural sciences and software processing. Similar to natural languages, knowledge as
a semiotic system is not a mathematical system, though aspects and perspectives of
relations and operations can be formalized. It is hardly doubtful that a computational
system based on a large-scale knowledge model requires both conceptual and formal
modeling for its production.

1.1.2 Descriptive, Prescriptive or Operative Purposes
Ontology modeling can be performed with three purposes in mind: descriptive, pre-
scriptive and operative. The descriptive purpose seeks to capture and document do-
main expertise of various dimensions and perspectives: a representation of plausible
worlds. The comprehensiveness is an essential goal. The prescriptive purpose aims at
a model of standards, such as that of business processes, meta data of web pages or
web service descriptions. It produces a commonly accepted unambiguous semantic
protocol for interoperation and communication. Ontology modeling can be dedicated
to a particular operative purpose to fulfill an intelligent functionality by a particular
inferencing or computational paradigm. The knowledge model in this case is applica-
tion-specific and applied under the close world assumption. The validity, decidability
and computability are a few of properties of the model to consider. These three pur-
poses are not necessarily mutually exclusive in a knowledge development lifecycle
model, but they provide different methodological motivations.

1.2 Perspectives in FF POIROT

The perspective of ontology development in FF POIROT is essentially an application
semantics perspective. It requires a model of ontological objects, relationships, con-
straints and axioms. The ontology model is not used in data-intensive operations with
database management systems, but for specifying fraud evidences and patterns. A
fraud evidence model consists of entities, processes and inferential links. The ap-
proach to it is both descriptive to capture the knowledge and operative to deploy it to
automate some tasks of fraud detection and prevention. The model created during the
knowledge elicitation is conceptual but the model to deploy for an operative purpose
is formal. The ontology process is therefore characterized with two main contentions:
descriptive vs. operative purposes, conceptual vs. formal conceptualization. The
DOGMA ontology representation framework and AKEM methodology are used to
structure and integrate various needs, perspectives and approaches.

2 Challenges in Ontology Scalability and Versatility

Some challenges in ontology development come from multiple approaches, perspec-
tives and applications. Others come from the development management. This section

 Architecting Ontology for Scalability and Versatility 1607

discusses three main challenges in the process and management of ontology model-
ing: design scalability, model versatility and integration of different approaches.

2.1 Design Scalability

The design scalability is concerned with the size and complication of ontology mod-
els. The size of the model, measured by the number of vertices and arcs, is determined
by the requirement of its comprehensive coverage. The complication of the model is
the complexity of logical relationship among the vertices, arcs and axioms. It grows in
proportion to the size. The formal requirement of logical soundness and validity of the
model has a big impact on the size-complication relation. The question is whether the
model can be extended to cover adequately the subject domain before it reaches a
saturation point when the effect of amendment is unpredictable conceptually due to a
web of subtle logical relationships in the model. In other words, the design scalability
can be restricted when the ontology needs to be consistent logically to support valid
reasoning while a required comprehensive coverage introduces ambiguity, inconsis-
tency and invalid inference. In contrast with the database conceptual model, the uni-
verse of discourse of the ontology for fraud detection and prevention is not so clear-
cut. It turns out to be a combination of conceptions from multiple subject domains:
finance, economics, law, criminology, sociology information technology and common
sense. Its contents are not homogeneous as in database models or logical model in
formal inference systems. In addition, a large set of object and relationship types are
involved as well as a large population of their instances. Since its application is for
the recognition, interpretation and reasoning about fraud evidence, the ontology also
consists of complex networks of relationship. The design scalability is also concerned
with effective consensus building in creating the ontology model in a team develop-
ment context. In FF POIROT, the team is not only multi-disciplinary but also geo-
graphically distributed. The adequate documentation and communication of rich se-
mantics is essential to reach and maintain consensus.

In summary, the challenge is two fold. One is how to compromise between the ne-
cessity for a conceptual model of comprehensive coverage over a heterogeneous se-
mantic space and the requirement of formal semiotic system for valid and consistent
inference. The other is to keep track of the development footprints to make the model
comprehensible at different time and location and by different teams.

2.2 Model Versatility

As the design scalability is an issue of productivity in knowledge engineering, the
model versatility is one of efficiency. The model versatility is concerned with the ques-
tion of whether the ontology model can be adapted (augmented or constrained) to vari-
able perspectives of representation and (re-)used for different application specific proc-
essing tasks, functionalities or systems. It is not the intention to create ontology usable
by any application, but by a family or product line of knowledge systems. In the cur-
rent context, the ontology application can vary from monitoring in (un-)structured data,
to decision support or knowledge management in fraud detection, prevention and
prosecution. The model versatility of ontology is comparable to the creativity of natu-
ral languages. Words and expressions are reused in different linguistic contexts to
convey open-ended possibilities of unique meanings and nuances. In short, the chal-
lenge is thus how to facilitate and maximize ontology reuse.

1608 G. Zhao and R. Meersman

3 Architecting Ontology

Architecting ontology is one of the development activities in AKEM, which features
five sets of methodological strategies: ontology scoping, extraction, abstraction, organi-
zation and deployment strategies [11]. The architectural design is part of the ontology
organization strategies. In this respect, the ontology for fraud detection and prevention is
treated as a semiotic system, similar to computational, social and organizational sys-
tems. It is assumed to be a heterogeneous possibly inconsistent system fulfilling the
multiple (possibly contradictory) needs, rather than a homogeneous single-dimensional
logical system. The layered approach is adopted in architecting such a system to manage
different viewpoints of system requirements and the complexity of the system architec-
ture. The framework of layered architecture also serves a methodology to organize and
manage the role of developers, task of development and work results.

3.1 DOGMA Approach to Ontology

The scalability and versatility are not necessarily complementary requirements that can
be met at the same time and in the single-dimensional approach. In recognition of their
necessity and conflict, the DOGMA approach to ontology is adopted to provide the
first cut of the layered architecture paradigm. It stratifies ontology on two representa-
tional layers to disentangle the needs of design scalability with flexible representation
and rigorous models for versatile applications. It institutionalizes two viewpoints of
ontology conceptualization: lexons of the plausible conceptual world and application
commitments to lexons in the context of specific tasks, systems or solutions.

A lexon is context-specific conceptual relationship. It is a 5-tuple l = < , ti, ri-j, tj,
rj-i>. In this formalization ∈ is the context identifier; ti, tj ∈ T are terms referring
to entities in the conceptual relationship; ri-j, rj-i ∈ R are labels of roles in a concep-
tual relationship and , T and R are strings over an alphabet A+. The context identifier
 refers to the ideational context in which the terms ti, tj and roles ri-j, rj-i are meaning-

ful. It instills the lexon with particular semantic contents. In practice it consists of one
or more knowledge resources such as documents and figures which have been estab-
lished, communicated, documented and agreed upon by a community of ontology
engineers. Intuitively, a lexon l = < , ti, ri-j, tj, rj-i> may be interpreted as follows: in
the ideational context the head term ti plays the role of ri-j with respect to the term tj.
Conversely, the term tj plays the co-role rj-i with respect to the head term ti. Here the
term refers to a semantic type rather than a token. The lexon, therefore, embodies
relationship or fact types instead of instances in an application domain. It is a declara-
tive a statement about relationship, leaving out axiomatic constraints, well-
formedness restrictions and inferential implications. It has a flat structure and makes a
similar argument against premature conceptual packaging as that against the use of
attributes in entity modeling for databases. No assumption is made about the back-
bone structure of ontology being a tree structure.

If lexons address the ‘what’ in the subject domain, commitments depict how the
what is contextualized and rendered in particular applications with well-formed refer-
ence and valid proofs. The interpretation function together with axioms, constraints
and derivation rules are left out of the lexon specification. They are handled as com-
mitments and in commitment processing. A commitment is a particular interpretation

 Architecting Ontology for Scalability and Versatility 1609

of one or more lexons in the light of specific application contexts. Structurally it con-
sists of a subset of lexons from the ontology base. They form a context-specific, ap-
plication-specific semantic network embodying the underlying application logic. In a
commitment, the terms and roles of lexons are qualified with axiomatic constraints,
specific value constraints and instantiations relevant to a given application context of
tasks or systems. It is semantically consistent and unambiguous and well structured in
the application context. If lexons are likened to global variables and structures, the
commitments can be seen to instantiate a subset of global variables and structures.
Their validity is local: in a given semantic network created for a particular applica-
tion task [2], [12]. The lexons and its commitments puts consequently the scalability
and versatility requirements in orthogonal dimensions, advocating achieving the re-
quirements in different contexts of consideration to enable focused development at a
time, reuse and transformation of the deliverables along the two viewpoints.

Table 1. Examples of lexons in the application ontology

Context Term Role Term Role
Decree 58 A1 Definition ReferTo Regulation ReferredToBy
IOSCO-IRRPG Disclaimer Exclude Community ExcludedBy
IOSCO-IRRPG Disseminate_Information ByMeansOf Propaganda
IOSCO-IRRPG FinancialInformation CharacterisedBy Truth Characterise
Decree 58 A1 FinancialInstrument SubtypeOf Product SupertypeOf
Decree 58 A94 FinancialInstrument CharacterisedBy Definition Characterise
Decree 58 A2 Form_BusinessInstitution At Place

3.1.1 Design Scalability with Lexons
The lexon base is an unstructured collection of lexons. It is not necessarily logically
homogeneous coherent collection of semantic relations. In semiotic terms, lexons, as
symbolic resources, carry generic ideational meanings. Their interpretation can be
logically inconsistent and contradictory with each other. Their denotation can overlap
partially or wholly, depending on various possible perspectives and dimensions neces-
sary. The scalability of the ontology base lies in two facts. Firstly it imposes a simple
logical structure on the collection of lexons as a bag of lexons. It enlists the semantic
potentialities and possibilities of application semantics, leaving its particular usage and
associated well-formed semantics to commitments. Similar to natural languages, the
lexical semiotic resources only become specific and constrained in their denotation in
the syntagmatic contexts of sentences and texts. The development of lexons is thus a
monotonic and accumulative process of the ontology base expansion. This facilitates
the descriptive modeling of non-trivial and multi-disciplinary domains and the
achievement of a comprehensive coverage. Secondly, the ontology base is a represen-
tation of commonality (not only generality) of application semantics in a family of
applications and systems. Conceptual specification is factored out to individual local
scopes of consideration in the form of commitment specification, in which a subset of
lexons are grounded for a specific purpose, in a single perspective and dimension,
consistently and unambiguously in view of application semantics. Since the lexons are
used to capture the semantic essence common in diversified contexts, the under-
specifying lexons facilitates reaching consensus on the essential among stakeholders.

1610 G. Zhao and R. Meersman

The ontology base thus constitutes a system of options from which commitments
are created with specific scopes of consideration with no need for complete homoge-
neous instantiation of the whole ontology. The global potential and local instantiation
is good service to the design scalability.

3.1.2 Under-Specification of Lexons and Model Versatility
The natural language, the most effective medium of knowledge representation [4],
uses the mechanism of semantic under-specification to enable the expression of a
maximal number of themes with a minimal number of symbolic resources. Lexons are
a conceptual construct to capture underspecified concepts and relations for the pur-
pose of reusability and flexibility. Discount as a term is under-specified in its defini-
tion: ‘an abatement or reduction made from the gross amount or value of anything’
[3]. What is not specified is whether it is trade or cash discount or for advance pay-
ment or customer loyalty, or under what conditions, in what percentage, where, when
and to who. Notify as a role in lexon can be qualified with specific values of Boolean,
time, aspect or cardinality.

Particular perspectives of an application may need the commitment not only mak-
ing lexons more specific, but also more abstract. The latter is achievable through
lexon reification by ‘masking’ parts of lexons. In the following, γ is the context. t1 and
t2 are the terms and r1 and r2 the roles of lexons.

<γ, t1, r1, t2, ~> or <γ, t1, ~, t2, r2>
<γ, t1, r1, ~, ~> or <γ, ~, ~, t2, r2>
<γ, ~, r1, ~, ~> or <γ, ~, ~, ~, r2>

For example, when lexons express business processes, their masking can be used to
represent views of the process such as action, data, organizational [12]. Representa-
tionally, the reification of lexons is anchored on the role signature of the lexon. It is
an abstraction of an abstraction. While lexons signify abstract fact types, their reifica-
tion encapsulates a type of lexons, similar to interface as compared with class in ob-
ject-oriented programming languages, such as Java and C#. It is found frequently in
natural languages in the form of nominalizations in formal texts such as legislatures.
The number of elements masked indicates explicitly the granularity of abstraction.

3.2 Topical Ontology to Layer Ontologies

The lexon base and commitment layer serve to divide the attention over the problem
space and solution space. The idea of topical ontology as distinguished from the ap-
plication ontology, upper or foundational ontology is to introduce another viewpoint
in the architecture design. The purpose is to identify the lexons necessary to describe
the knowledge structure, assumptions, frameworks, and principles about the central
theme of an application domain, such as intellectual property rights [1], value added
tax [5]. The lexons are not application specific and typically involve multiple subject
domains. They embody the ideational perspectives, the knowledge structure and prin-
ciples in the expertise about the theme.

The experience in FF POIROT illustrates the motivation of the topical ontology. Its
financial fraud ontology is initially built from real-life cases of fraudulent solicitation
of financial instruments and relevant legislations by the techniques of lexon extrac-
tion, abstraction and organization in AKEM [11]. Table 1 shows a few examples of

 Architecting Ontology for Scalability and Versatility 1611

900 lexons. An application ontology is extracted and abstracted bottom-up. The need
is felt to structure these lexons to facilitate further modeling. The case-specific ontol-
ogy modeling does not reveal the conceptualization underlying the knowledge struc-
ture and principles of the theme. In the emphasis on the organization of ontology an
experiment is conducted to organize the lexons with upper-level and domain ontolo-
gies to see if the resulting model provides a conceptual structure to represent the
knowledge structure and principles about frauds. Relevant to the coverage of the lex-
ons, 186 concepts are imported from SUMO base and domain ontologies [9], and 123
lexons specified for alignments between the SUMO and the application ontology. The
conclusion is that the integrated ontology model does not provide a systematic con-
ceptual framework to describe the knowledge structure and principles about a particu-
lar topic. Key conceptions special to the theme but common vocabulary of the com-
munity are not in the application ontology or in the domain and base ontologies.

Fig. 1. Layered architecture of ontology

The general conceptions in the upper-ontology assume denotations and associa-
tions specific to the topic about frauds. Architecturally, there is a missing layer be-
tween application ontologies and upper level/domain ontologies, hence the topical
ontology. The layer is not simply a collection of concepts from domain or base on-
tologies as SUMO MILO, but also is expected to reflect the conceptual framework
essential with the topic. In short, the topical ontology captures the knowledge struc-
ture of the domain expert on a particular set of themes with specific conceptualization
and perspectives of the subject matter (not the application).

3.3 Modularizing Topical Ontology

Modules of the topical ontology componentizes the subsystems into packages of atten-
tion and development. Its motivation is largely two fold. One is the use of components
and packages to manage different conceptualization viewpoints similar to software
system architecting [10]. The other is the use of divide-conquer strategies to manage
the complexity of conceptual modeling. Maximizing the conceptual homogeneity
within components and packages facilitate both the design scalability and versatility.

The architecture of a topical ontology can be structured from a central topic. A pat-
tern of architecting topical ontologies is used in creating fraud ontology and VAT ontol-
ogy in FF POIROT, shown Figure 2. The central theme, Topical Concept, is structured
by semantic Configuration made up of semantic Component. The Configuration instan-
tiates the abstract Schema. The Topical Concept can be categorized by Type from the
perspective of or by the criterion of the Component of its semantic Configuration. The
Topical Concept is involved in the Activity or Process. It is qualified by the Quality.

1612 G. Zhao and R. Meersman

Fig. 2. A design pattern in UML for the architecture of topical ontology

Fig. 3. Schema of a topical concept as an event

Fig. 4. Architecture of the fraud ontology

 Architecting Ontology for Scalability and Versatility 1613

The topical concept in the fraud ontology is fraud. The abstract schema, for exam-
ple, is illustrated in Figure 3. It consists of nine abstract schematic entities and rela-
tions necessary to depict the concept of fraud as an event.

The configuration of the topical concept thus consists of five main packages con-
cerning Participant, Action, Object, Attribute and State. Each consists of modules
specific to fraud domains, as shown in the box Fraud Configuration in Figure 4.

Architecting from the topical concept of fraud, activities and properties are pack-
aged as indicated in Figure 5. The current version of the fraud ontology architecture is
therefore made up of one package about fraud typology, two packages about qualities:
Participant Profile and their Motivation and 4 packages about the activities in the
lifecycle of antifraud activities. Each package consists of sub-packages, thus partition-
ing the conceptual space and modularizing the ontology base for systematic ways to
scale up the ontology model.

4 Conclusion

The team development of a comprehensive ontology of given themes faces three key
challenges: design scalability in multiple perspectives with the necessity of both
model validity and comprehensiveness and model versatility. A key strategy to man-
age the multiple perspectives and uses is the principle of system architecture. Similar
to the art of systems architecture [7], the strategy is a toolset of heuristics concerning
conceptual framework, design patterns and best practices. This paper summarises the
study of three heuristic principles: a layering method to manage viewpoints, the prin-
ciple of topical ontology to manage multiple ontologies and design patterns for modu-
larization. They are based the DOGMA ontology representation framework as archi-
tecting tool to manage viewpoints of the conceptual system. As methodological
strategies, they are set in the pragmatic knowledge engineering methodology: AKEM
for their application and significance in team, methodical engineering lifecycle.

The methodological properties of topical ontology requires further study in practi-
cal and comprehensive ontology development aimed at a family of intelligent system
applications. The design pattern of organizing ontologies as recommendation is an
important methodological instrument to manage team consensus and effectiveness in
ontology model. In order for it to be effective methodically, further study in practical
engineering context need to be conducted.

Acknowledgement

This study is partially funded by the EU 5th framework program, IST 2001-38248.

References

1. Delgado, J., Gallego, I., Garcia, R., and Gil, R. 2002. An Ontology for Intellectual Prop-
erty Rights: IPROnto. In Proceedings of the 1st International Semantic Web Conference
(ISWC2002), Sardinia, Italy, June 9-12th, 2002.

2. Deray T. , P. Verheyden, Towards a Semantic Integration of Medical Relational Databases
by Using Ontologies: a Case Study. On the Move to Meaningful Internet Systems 2003:
OTM 2003 Workshops, Lecture Notes in Computer Science, Vol. 2889/2003. Springer-
Verlag, Heidelberg (2003) 137 – 150

1614 G. Zhao and R. Meersman

3. Gove, P. B. (ed) Webster’s Third New International Dictionary of the English Language
Unabridged, Merriam-Webster Inc, Massachusetts (1986)

4. Iwanska L. , S. Shapiro (eds.): Natural Language Processing and Knowledge Representa-
tion: Language for Knowledge and Knowledge for Language, AAAI Press/MIT Press,
Massachusetts (2000)

5. Kerremans, K., Zhao, G.: Topical Ontology of VAT, FF POIROT Deliverable 2.3, 2005.
6. Maier, M., Rechtin, E.: Art of Systems Architecting, CRC Press, Boca Raton (2000)
7. Meersman, R.: Reusing Certain Database Design Principles, Methods and Techniques for

Ontology Theory, Construction and Methodology, STARLab Technical Report, Vrije
Universiteit Brussel (2000)

8. Meersman, R.: Ontologies and Databases: More than a Fleeting Resemblance?, In D’Atri,
A. and Missikoff, M. (eds.): OES/SEO 2001 Workshop, Rome (2001)

9. Niles, I., Pease, A: Towards a Standard Upper Ontology. In Welty, C. and Smith, B. (eds.):
Proceedings of the 2nd International Conference on Formal Ontology in Information Sys-
tems (FOIS-2001), Ogunquit, Maine (2001)

10. Putman J.: Architecting with RM-ODP, Prentice Hall, New Jersey (2001)
11. Zhao, G.: AKEM: an ontology engineering methodology in FF POIROT, Deliverable 6.8

(2005)
12. Zhao, G., Gao, Y., Meersman, R.: An Ontology-based Approach to Business Modeling, In

Proceedings of the International Conference of Knowledge Engineering and Decision
Support (2004)

13. Zhao, G., Kingston J., Kerremans K., Coppens F., Verlinden R., Temmerman R. &
Meersman R.: Engineering an Ontology of Financial Securities Fraud. In, Meersman R.,
Tari Z. et al.,(eds.), On the Move to Meaningful Internet Systems 2004: OTM 2004 Work-
shops, LNCS 3292, Springer Verlag (2004) 605 – 620

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1615 – 1622, 2005.
© Springer-Verlag Berlin Heidelberg 2005

OWL-Based User Preference and Behavior Routine
Ontology for Ubiquitous System

Kim Anh Pham Ngoc, Young-Koo Lee, and Sung-Young Lee

Department of Computer Engineering, Kyung Hee University, Korea
anhpnk@oslab.khu.ac.kr, yklee@khu.ac.kr, sylee@oslab.khu.ac.kr

Abstract. In ubiquitous computing, behavior routine learning is the process of
mining the context-aware data to find interesting rules on the user’s behavior,
while preference learning tries to utilize the user’s behavior information to infer
user interests, intention and desires. An intelligent environment should be
adaptive, i.e. it is should be able to learn the routine and preference of user, then
provide user with the suitable service. Developing intelligent ubiquitous
environment requires not only good learning algorithms but also appropriate
reusable models of user preference and behavior routine, which are not fully
covered by current projects. In this paper, we propose a formal and
comprehensive ontology-based model of user preference and behavior routine.
The implementation of the ontology using OWL[14] enhances the
expressiveness, support inference, knowledge reuse and knowledge sharing,
which we can not achieve by normal models. The main benefit of this model is
the ability to reason over context data to predict what the user wants the system
to do. Based on our model, we also present a rule learning mechanism to learn
the preference and behavior rules from context data. 1

1 Introduction

Intelligent ubiquitous computing focuses on merging intelligent and agent-based system
with the ubiquitous computing paradigm. An intelligent environment is a space where
ordinary human activities mix seamlessly with computation in a way that enhances the
functions of both system and user. That means when a user enters a smart-space, the
system can recognize who the user is, what he is doing, “guess” what he intends to do,
and how he desires the system to assist him. By other words, the system should be able
to learn about user preference and behavior routine so that it can provide services to the
user seamlessly & invisibly without any explicit user intervention.

There are many methods to learn user preference and user routine. One of them is
association rule mining. User preference and routine learning is considered as
associating different contexts to each other. These associations are derived as IF-
THEN rules, or association rules. Furthermore, we can apply Bayesian net, or Hidden
Markov model for preference and routine learning [7][10]. Many prototyping systems
and architectures have successfully introduces novel algorithms for learning user
routine from GPS location [7]. In those approaches, important places are identified by

1 This work was supported by MIC Korea. Dr. S.Y.Lee is the corresponding author.

1616 K.A. Pham Ngoc, Y.-K. Lee, and S.-Y. Lee

monitoring the user’s travel patterns and learning his frequented locations. Then these
important places will be named by user.

However, a formal model to memorize the routines of user has not been defined; or
by other words, there is no formal model for user routine. Similarly, the term “user
preference” so far is just related to the user interest for some very specific subjects,
such as the web links, music, presentation material, etc, as well as situation
independent [10]. None of current user preference model fully represents the
preferences of user in a ubiquitous environment, where the user interest, desire and
intention vary by time and place. The requirement of having a formal model of user
preference and behavior routine to use in ubiquitous computing systems is obvious.
SOUPA [5] has already defined a user preference model. Nevertheless, this model is
specified only for meeting room scenario, and rather simple to be considered as a
formal and general user preference model.

Recently, many systems model context data using ontology and semantic web
technique [6][12]. Web Ontology Language OWL [14] is preferred due to its ability to
represent explicitly semantics associated with the knowledge, and to provide reasoning
capabilities used by intelligent systems and agents to infer useful contexts. Our CAMUS
middleware follows this ontology-based modeling approach. We have already defined
and used OWL ontologies for basic entities in context-aware systems including agent,
time, location, device and environment, as well as for domain data representing [1].

In this paper, to address the issue of user preference and behavior routine formal
modeling, we propose additional OWL-based user preference ontology includes
modular component vocabularies to represent user beliefs, desires, and intentions
related to different times and places, together with the behavior routine ontology
which is a sequence of location with the expected interval for each location, and
allows developer to express the recurrence of the routine.

The rest of this paper is organized as follows. In section 2, we describe the user
preference and behavior routine model and its ontological structure. Section 3 gives a
detailed description of our idea by discussing the learning and reasoning mechanism
with the support of ontology and OWL. We conclude our paper with a summary and
outlook in section 4.

2 Spatio-Temporal Ontology of User Preference and User Routine

2.1 Using OWL Ontologies for Formal Context Modeling

Within the domain of knowledge representation, the term ontology refers to the
formal, explicit description of concepts, which are often conceived as a set of entities,
relations, instances, functions, and axioms, leading to shared and common
understanding that can be communicated between people and application systems [2].
Traditionally, ontologies are only used to describe domains (as mentioned above) but
in W3C’s OWL (web ontology language) [14], the horizon of ontology has been
broadened to include instance data as well.

There are several potential advantages for developing context models based on
Semantic Web Ontology, such as its expressiveness, the capability of Knowledge
Sharing and Knowledge Reuse; the support to various existing logic inference
mechanisms, and lastly, its extensibility.

 OWL-Based User Preference and Behavior Routine Ontology for Ubiquitous System 1617

2.2 Spatio-Temporal Ontology of User Preference (STOUP)

In many personalized e-applications, the preference model is merely a strict partial
order of a set of attributes, expressing “for attribute A, value y is better than x”.
However, in a ubiquitous system, not only the pure preference of users, but also the
interest, desire and intention of the users should be considered. Besides, situation also
plays an important role, i.e., user preference alternates from time to time and from
place to place. A formal user preference model should cover all these aspects.

Our user preference and routine model is an additional part of an existing context
model for ubiquitous system, Contel, which is already defined by our research group,
and currently used in CAMUS [1]. In Contel, all the entities in a context-aware
system are categorized into agents, devices, environment, location and time. These
categories consist of following main classes (or concepts): Agent, Activity, Devices,
Environment, Location Description, Place, Time (Time Interval and Time Instant) and
Event. There are also many auxiliary classes, generalized and specialized classes to
enrich the semantic capability.

To represent the user preference model, we add a Preference class, which has
relationship with all main classes, and its subclasses as illustrated in Fig.1.

Fig. 1. STOUP structure. Preference class and its subclasses are new classes added to Contel.

An agent (which is a user, group or organization) can have POS or NEG
Preference, which represents the like and dislike, or the best choice and the worst
choice. Each preference is related to a certain time and place. Preference also depends
on what the agent is doing, and/or what it intends to do next. There are 3 sub-classes
of Preference: ResourceInterest, EnvironmentDesire and IntentionalControlCom-
mand. ResourceInterest represents the interest of agent in some Resources, such as
MusicGenre or TVChannel. EnvironmentDesire expresses how an agent wants the
environment to be, for example the desired temperature or the preferred light.
IntentionalControlCommand specifies the operations which an agent wants the
devices to perform, such as turning on the television or rolling down the curtain.

All the properties of Preference class which are related to Agent, Time, Location
and Activity have minimal cardinality 0. The absence of any specified relationship is
understood as “for all kind of this”. For example, if a preference is defined without
any location, it means that this preference can be applied everywhere. Preference
class also has the noAgent property to make it become a general rule which will be
applied whenever there is no user around, such as turning off the light or change the

1618 K.A. Pham Ngoc, Y.-K. Lee, and S.-Y. Lee

software program running on computer into stand-by mode. Similarly, the noActivity
property denotes the idle state of agents.

Another significant property of Preference class is the probability property, which
expresses the importance or the priority of a preference. This property has major
influence on system decision making process. For example, if the probability of a user
giving “Light.TurnOff” control command before going to bed is 99%, the system can
infer that whenever the user is sleeping, the light should be off, i.e. the light intensity
should be Dark. Or that the equal probability of user watching Music channel or Movie
channel at night makes the system ask the user before selecting one of those channel.

2.3 Spatio-Temporal Ontology of User Routine (STOUR)

There are some requirements for a user routine model in ubiquitous computing systems.
First, a routine is recursive. It can be a daily routine, or weekly, or monthly routine, etc.
Second, a user routine includes a sequence of user locations, or user activities, each of
which has expected time interval, i.e. the average time interval user spends doing an
activity at a location. Finally, the routine model should support reasoning, which means
it should help predicting the next location, or the intended activity.

Fig. 2 illustrates the structure of our user routine ontology.

Fig. 2. STOUR structure. Routine, RoutineItem class and Routine’s subclasses are new classes
added to Contel.

An Agent can have one to many Routine. There are 3 types of routine:
DailyRoutine, which is the most common, WeeklyRoutine and MonthlyRoutine. For
WeeklyRoutine, some weekdays are included, for example the user goes to gym every
Tuesday, Thursday and Saturday. Similarly, MonthlyRoutine comes with some days
in the month.

Each Routine has a sequence of RoutineItem. Each item is a state in which user is
located in a certain place or is doing a certain work, in an expected time interval.
RoutineItems go in sequence, so each of them can be before of after another.

Because routine is also an uncertain concept, one routineProbability property is
attached to each RoutineItem.

The following example shows the context ontology that describes a preference and
routine of a user named Bilbo using OWL.

 OWL-Based User Preference and Behavior Routine Ontology for Ubiquitous System 1619

Fig. 3. example of user preference and routine data in OWL

3 OWL-Based Reasoning and Learning Mechanism

In this session, to show the advantage of ontology-based modeling approach using
OWL, we will illustrate the OWL-support reasoning mechanism, and how the system
can learn user routine and preference through the control commands of user and the
history context database.

3.1 OWL-Support Reasoning Mechanism

3.1.1 Ontology Reasoning Mechanisms
High valued ontologies depend heavily on the availability of well-defined semantics
and powerful reasoning modules. The expressive power and the efficiency of
reasoning provided by OWL, (the semantics of OWL can be defined via a
translation into an expressive Description Logics (DL)), make it an ideal candidate
for ontology constructs. The facts gathered from context entities make a factual
world in OWL, consisting of individuals and their relationships asserted through
binary relations.

Ontology reasoning helps us to find subsumption relationships (between
subconcept-superconcept), instance relationships (an individual i is an instance of
concept C), and consistency of context knowledge base. In the design phase of
formalizing the context entities, OWL reasoning services (such as satisfiability and
subsumption) can test whether concepts are non-contradictory and can derive implied
relations between concepts.

Let us take an example to see how ontology reasoning can help deducing implied
context. In preference ontology, the class PianoMusic is a subClassOf ClassicalMusic.
So when knowing that Bilbo is interestedIn ClassicalMusic, and “Hungarian Sonata”
is a song which has type PianoMusic, the system can deduce that Bilbo is interestedIn
“Hungarian Sonata”.

1620 K.A. Pham Ngoc, Y.-K. Lee, and S.-Y. Lee

3.1.2 Context Reasoning Mechanisms
However, many types of contextual information cannot be easily deduced using only
ontology inference. In addition to ontology reasoning, we can also use logic inference.
A set of rules can be defined to assert additional constraints for context entity
instances when certain conditions (represented by a concept term) are met.

Over the concepts and relations defined in our ontologies, we can do a lot of
reasoning based on many types of logics, such as description logic, description
temporal logic, and spatial logic.

There are many reasoning engines work over OWL format data, such as Racer[13],
SWI-Prolog[11], Pellet[9], etc. A list of OWL implementations can be found at [8]. In
our current implementation, we use Jena library [4] to handle OWL format context
data and ontologies. Therefore we exploit the Jena generic rule reasoner [4] to make
inference over our context data.

Following is an example of Jena rule to infer the control command which user
intends to give in a certain situation.

[r1: (?user agt:personName “Bilbo”), (?x time:currentTime ?t),
 (?user act:currentActivity ?curact), (?curact rdf:type act:WatchingTV),
 (?curact act:actionObject ?tv), (?user act:intendedActivity ?intact),
 (?intact rdf:type act:GoingToWork) AND 520 <=?t AND ?t <= 530

 -> [(?cmd dev:cmdObject ?tv), (?cmd dev:cmdTime ?t)
<- (makeInstance(?user,agt:givesCommand, dev:TVTurnOff, ?cmd)]]2 (1)

with agt, time, act, rdf, dev are the aliases for the namespaces of ontologies (agent,
time, activity, RDF, device) which are currently used to define data models in our
system. Details of those ontologies are described in [1]. This rule is matched when
there are OWL markups about user Bilbo watching TV and intending to go to work,
then a new instance of class TVTurnOff command is created and the properties
cmdObject and cmdTime of that instance is assigned with the current watched
television and current time.

However, most developers find building the rules like this the most difficult task in
building ubiquitous computing systems, particularly in intelligent environments such
as smart homes, where the system has to learn a lot about users preference, behavior,
routine, etc. In order to minimize the burden for developer in building context-aware
applications, our middleware architecture provide support to learn the inference rules
from context data and build reasoning engines using those rules, as described in next
section.

3.2 Learning the Rules for Context Reasoning

In this scenario, the user preference is learned through user control commands and
responses to the messages from system. User can control the home devices by remote
controls, or send command messages through some computer software interfaces. The
commands are stored in the history database together with relevant information i.e.

2 This is a temporal rule. In Jena generic reasoner[3], we can infer about time by continuously

updating the currentTime property of Time class with current timestamp. The time value is
converted into minutes (or second, or millisecond, depend on the purpose of system).

 OWL-Based User Preference and Behavior Routine Ontology for Ubiquitous System 1621

user location, timestamp, current activity, intended activity (if this information is
available), environment state. The tuple {user=Bilbo; place=DiningRoom; timestamp
= 2005/04/01 8:40; currentActivity=WatchingTV; intendedActivity= GoingToWork;
command= TV.TurnOff} is an example.

Using this kind of information as the training data, the system can learn rules like:

personName=Bilbo; currenttime=[8:40-8:50];
currentActivity=WatchingTV; intendedActivity=GoingToWork

 command=TV.TurnOff (Utility=0.86)

The rules can then be converted into suitable format for the reasoning engine
which is used. In our prototype system, a rule like (1) is produced.

Moreover, we store the rule into database as a Preference object so that the
knowledge about user preference can be shared and reused.

There are many algorithms to learn a rule from example data set. Currently we
apply two algorithms for two cases:

- Rule learning when knowing the desired output
If the output is defined, we learn the rule from example data set by an approach as

in decision tree learning but by following the branch with best score in terms of
splitting function.

The Utility of a new candidate can be computed using information-theoretic
measures like entropy:

Utility(r) = entropy(the subset of examples covered by r)

- Rule learning without knowing the desired output
If the output is undefined, we can’t use any classification algorithm to learn the

rule sets. In this case, Apriori association rule mining algorithm [3] is more suitable.
Among a large number of learned rules, we select the “right” rules by assigning a
utility function to calculate the value of each rule based on confidence and support.

() () ()rSuprConfrUtility .. βα +=

With Conf(r) is the confidence Sup(r) is the support of the rule.
The α and β coefficients are related to each other by α + β = 1, and define the type

of rule which is more interested. Normally α = 1 and β = 0, showing that a rule which
has high confidence will be chosen even if it rarely happens.

Only the rules with high utility will be selected.

4 Summary and Outlook

In this paper, we have presented a formal Spatio-Temporal Ontology of User
Preference and Behavior Routine. We discussed how it can be used for heterogeneous
ubiquitous computing environment to support knowledge sharing, reuse, and logical
reasoning with the help of Smart Home scenario.

Our next steps include the integration of various machine learning techniques and
reasoning engines into our framework. Different machine learning techniques have
different input and output format, and different use. By implementing the wrapper for
all the techniques and defining a common format for input data, we hope to enable the
system developers to handle the machine learning techniques more easily.

1622 K.A. Pham Ngoc, Y.-K. Lee, and S.-Y. Lee

References

[1] Anjum S., et al.: Formal Modeling in Context Aware Systems. In proceedings: Workshop
on Modeling and Retrieval of Context, CEUR, ISSN 613-0073, Vol-114, 2004.

[2] J. Davies, et al.: Towards the Semantic Web, Ontology-Driven Knowledge Management,
John Wiley & Sons. (Nov. 2002)

[3] Jiawei Han,Micheline Kamber. Data Mining: Concepts and Techniques
[4] Jena: A Semantic Web Framework for Java. http://jena.sourceforge.net/
[5] Harry C., et al.: SOUPA: Standard Ontology for Ubiquitous and Ubiquitous Applications.

In Proceedings of the First Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services (Mobiquitous 2004), Boston, MA, August 22-26,
2004.

[6] Harry Chen et al., "Intelligent Agents Meet the Semantic Web in Smart Spaces", Article,
IEEE Internet Computing, November 2004

[7] Liao L.,et al.: Learning and Inferring Transportation Routines. In Proceedings: AAAI-0,
2004.

[8] OWL Implementations. http://www.w3.org/2001/sw/WebOnt/impls
[9] Pellet OWL Reasoner. http://www.mindswap.org/2003/pellet/index.shtml

[10] Stefan H., et al.: Preference Mining: A Novel Approach on Mining User Preferences for
Personalized Applications. PKDD 2003

[11] SWI-Prolog/XPCE Semantic Web Library.
http://www.swi-prolog.org/packages/semweb. html

[12] T. Gu et. al. An Ontology-based Context Model in Intelligent Environments. In
Proceedings of Communication Networks and Distributed Systems Modeling and
Simulation Conference, pp. 270-275. San Diego, California, USA, January 2004

[13] Volker Haarslev et. al. Querying the Semantic Web with Racer + nRQL. Proceedings of
the KI-2004 International Workshop on Applications of Description Logics (ADL'04),
Ulm, Germany, September 24, 2004.

[14] W3C Web Ontology Working Group: The Web Ontology language: OWL.
http://www.w3.org/2001/sw/WebOnt/

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1623 – 1628, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Reasoning on Dynamically Built Reasoning Space with
Ontology Modules

Fabio Porto

EPFL - Ecole Polytechnique Fédérale de Lausanne,
School of Computer and Communication Sciences,
Database Laboratory, 1015 Lausanne, Switzerland

Fabio.porto@epfl.ch

Abstract. Several applications require reasoning over autonomously developed
ontologies. Initially conceived to make explicit the semantics of a certain domain,
these ontologies become a powerful tool for supporting business interactions,
once heterogeneities have been solved and inconsistencies eliminated.
Unfortunately, a stable coherent logical state is hard to maintain in such an
environment, due to normal evolution carried out independently over individual
ontologies. As a result, reasoning over autonomously developed ontologies has to
face with both heterogeneity and inconsistency, in order to assure correct
answering. In this paper we study the problem arising in these settings. We
propose an incremental reasoning approach based on a virtual reasoning space
that is filled with relevant ontology entities as query answering progresses. We
show how to compute the set of relevant entities with respect to a user query and
present an algorithm for reasoning with dynamically built reasoning spaces.

1 Introduction

Reasoning over distributed and autonomous developed ontologies has to face a
number of new challenges. Firstly, current reasoners [1] consider ontology as forming
a single logical theory. Unfortunately, both distribution and autonomy adversely
contribute to such a view. Therefore in order to use current reasoning software, the set
of autonomous developed ontologies must be aligned and integrated into a single
consistent one. Secondly, as in the context of database integration [2], and to allow
building a single logical theory, definition on different ontologies must be aligned by
the use of correspondence expressions. Thirdly, some ontology definitions represent
quite a voluminous amount of data. As a result, a naïve solution of transferring all
ontologies to a location and then proceed with local reasoning does not scale up.
Finally, autonomously defined ontologies may assert contradictory definitions, which
some authors classify as conflicts in the integration process. Conflicts identification
is, in fact, a tool for fixing correspondence assertions and applying ontology
alignment. So, reasoning under this setting should be capable of identifying such
conflicts and acting appropriately.

In this paper, we present a new strategy for reasoning over a set of autonomously
managed ontologies linked through correspondences. Our approach evaluates an

1624 F. Porto

ontology conjunctive query through an incrementally built reasoning space, including
relevant distributed ontology entities.

The remaining of this paper is structured as follows. Section 2 gives some
introductory definitions. Next, section 3 defines the concepts of an ontology space
and modules, and introduces the query model. Section 4 develops the strategy for
building a reasoning space. In section 5, we comment on relevant related work.
Finally, section 6 gives our conclusions and points to some future work.

2 Preliminaries

In order to simplify the presentation, we assume that ontologies are specified using a
single DL language L, defined according to the dialect. An ontology O is

modeled by an interpretation . The language is built over a signature of distinct sets

of concepts, roles and individuals, as described in [3]. In addition, the symbols ⊥,
are concepts and, if C,B are concepts, then ¬C, (C B), (C B) are also concepts.
The constructors´ semantics are given by the interpretation =(∆ , (·)), where ∆ is

a non-empty domain and a map function (·) associates concepts into subsets of ∆ .

Concept names are interpreted as subsets of ∆ , while complex expressions are
interpreted according to the following equations[3]:

 = ∆ ; ⊥ = ∅; (C B) = (C B); (C B) = (C B);

¬C = ∆ \ C .
Once concepts have been defined, the ontology in enriched by expressing

statements about those concepts. Statements in structure concept hierarchies
through subsumption relationship between concepts and classify individuals as of a
specific concept or role.

Similarly to the interpretation for concept constructors, an interpretation =(∆ ,

(·)) satisfies a subsumption statement (C B) iff (C ⊆ B) and is represented by

 α, where α = (C B).

3 Ontology Space and Modules

We name a set of autonomously specified ontologies over which a hypothetical
reasoner could evaluate an ontology query an ontology space (OS). Giving two
ontologies taking part in a OS, we say that they intersect if there is a known
correspondence assertion associating entities in both ontologies.

The set of entities specified in a ontology together with a set of correspondences
expressed with entities in other ontologies define an ontology module (M). The
underlying ontology of a module is named its base ontology. An ontology entity in a

1 We intentionally omit role expressions. Interested readers may look for further information

at [3].

 Reasoning on Dynamically Built Reasoning Space with Ontology Modules 1625

module is either defined in its base ontology, local entity, or added to it by an
equivalence correspondence with an external entity, specified in a different ontology.
The concept of modules is similar to context in C-OWL [4].

Definition 1: A module is a tuple Mo = <id, D, L, C, Ob, Os>, where id corresponds
to a Unique Resource Identifier (URI) for the module, D is the description of the
module, either expressed in natural language or by means of an ontology language; L
is the ontology language used in Mo2; C is a set of correspondences (defined below)
associating local entities with entities defined in external modules; Ob is the base
ontology and Os is the set of external ontologies to which correspondences with local
entities are specified.

Definition 2: A peer P=<Mo,QL> models a software component capable of
answering ontology queries expressed in QL language over an ontology module Mo.
A peer system is a set PS= ∪i=1,n Pi.

Definition 3: An ontology correspondence is a relation in one of the following forms:

• idi:C idj:D (for concept equivalence)

• idi:C ⊆ idj:D (for subsumption)

• idj:C ⊇ idj:D (for superset)

• idi:R idj:S (for relationship equivalence)

• idi:v idj:t (for instance equivalence)

where (C, R, v) and (D, S, t) are, respectively, local and external entities with
respect to a module. C is of type concept, D is a concept expression of the form
f(t1,...,tn), where the terms ti are either concept names or concept expressions and f is
an n-ary concept builder operator, R and S are ontology roles, and v and t are
instances [4].

3.1 Interpretation with Ontology Modules

Individual modules have their own interpretation =(∆ , (·)), with id being the
corresponding module id. The semantics of symbols is the one presented in section 2
localized by the domains ∆ and function (·). The correspondences in C associate
external symbols (concepts, instances and roles), with respect to a local ontology Oid,
with a local interpretation , in symbols:

(idj :B)= ((idj :B)), where is a correspondence defined in ontology

module i, mapping the external entity idj :B to an ontology entity in Oi and is its
local interpretation.

Finally, we do not rely on the unique name assumption, as in different ontologies
the interpretation function may map distinct names to the same domain entity and,
conversely, the same name to distinct domain entities. The semantic ambiguity must
be solved by asserting correspondences between ontologies.

2 We assume all ontologies expressed in the dialect.

1626 F. Porto

3.2 Ontology Query Model

We consider boolean DL conjunctive queries, whose terms are assertional statements,
similar to [3]. Terms are of the type x:C or x,y :R, where C is a concept expression
and R is a role, and x,y are variables or individual names. An evaluation of a query q
corresponds to mapping values or individuals from C or R into the domain ∆ and

testing for satisfiability of the assignment.

A query = 1 ∧ 2 ∧ … ∧ t , where i , 1 i t, are terms, is satisfied by , iff

i, for 1 i t. In particular, considering an ontology space OS, we want to build a

reasoning space RS with interpretation , and test for satisfiability of .

4 Reasoning Space

We use the term reasoning space (RS) to denote a virtual ontology that is
dynamically built to answer an ontology query over an ontology space. A reasoning
space includes the base ontology and relevant entities gathered from external
ontologies. Entities of a reasoning space share the same ontology language and form a
single ontology.

Definition 4: A Reasoning space RS is defined as: RS ⊆ {OS ∪ C}, where OS is an
ontology space and C is the set of correspondences associating elements in OS.

Definition 5: We also define a reasoning space mapping function f(Q,RS,OS):RS’ that
given: a ontology query Q, a reasoning space RS and a ontology space OS, produces a
new reasoning space RS’.

4.1 Finding Relevant Entities on the Ontology Space

As discussed above, the mapping function identifies relevant entities on the ontology
space to be considered in extending the reasoning space.
Identifying relevant entities is achieved in two steps: in the first step, we check for
relevant correspondences in the current reasoning space; in the second step, relevant
entities from external modules are revealed.

Theorem 1: a relevant ontology entity, with respect to a conjunctive query, holds a
non empty intersection with some of the query terms.

The intuition behind Theorem 1 is that if an entity (concept or role) is relevant to a
conjunctive query, as defined in section 3.2, then its interpretation can not be disjoint
with the union of those from all the query terms.

Thus, relevant entities are revealed by evaluating a new conjunctive query formed
by two terms, in which one is a term from the original query and the second one is a
candidate relevant entity. If the query is satisfied, then the term is relevant.

There are four main query term types to be analyzed, for which relevant queries are
generated:

(a) x:C, where x is a variable and C is a concept expression –queries produced:
qi= x:C x:Bi, 1 i m, where Bi appears in RS as: a:Bi; Bi or C * Bi, for

 Reasoning on Dynamically Built Reasoning Space with Ontology Modules 1627

some value a, * modeling the transitive closure and m is the total number
of entities in OS;

(b) a:C, where a is a value and C is a concept expression - queries produced:
qi= a:C a:Bi, qi= x:C x:Bi, with C * Bi;

(c) x,y :R, where x,y are variables and R is a role – queries produced:
qi= x,y :R x,y :Si, where Si is a role and R * Si;

(d) a,b :R, where a,b are values and R is a role – queries produced: qi= a,b :R
a,b :Si, where Si is a role and R * Si;

4.2 Reasoning Space Algorithm

The reasoningspace algorithm returns the answer for a reasoning conjunctive query q,
submitted to a peer Pi, Figure 1.

reasonspace(query Q,ontology Ob,OS,correspondence C) : answer
{ RS´:= {Ob};RS=∅;

 q:= i=1,t qt ; /* qt terms of query Q */
 answer:={evaluate(q,RS)};
 q:=q – {satisfied(q)};
 While (q ≠∅ and RS ≠ RS’) {
 RS=RS´;
 RS´= f(q,RS,OS);
 answer:= answer {evaluate(q ,RS´)};
 q:=q – {satisfied(q)}; }
 return answer; }

Fig. 1. Algorithm:ReasoningSpace

Initially a reasoner evaluates query q on the base ontology Ob. If the query is
satisfied by the base ontology, then the answer is returned and the algorithm finishes,
otherwise a main loop extends the reasoning space. On each loop, query q is re-
evaluated over the current representation of the reasoningspace. The mapping
function identifies relevant entities in the ontology space OS-RS and produces the
current RS. Satisfied terms are extracted out from the query that is re-evaluated with
the remaining terms. The process terminates when all query terms have been satisfied
or there are no more relevant entities in the ontology space that are not in the
reasoning space.

The algorithm has an upper bound of O(nm), considering the maximum number of
subqueries issued to other peers required to answer an ontology query, in which n is
the number of ontologies in the ontology space and m is the total number of entities.

5 Related Work

An interesting approach [5] proposes a modularization approach where self-contained
modules are cross connected through materialized views expressed as conjunctive
queries. A procedure for managing updates in an external ontology definition is also

1628 F. Porto

proposed. In [6] a proposal for reasoning on distributed ontologies with
correspondences is presented. The goal is to define a theoretical solution for the
problem of global subsumption and to propose a P2P implementation that assesses the
practical adequacy of the proposal. Their main result is to prove that subsumption
between remote ontology entities can be proved using local subsumption relationships
and correspondences between relevant entities on both ontologies. This leads to
global entailment and offers a solution for the problems we investigate in this paper.
The strategy can be seen as based on query rewriting approach, similar to what is
done in database integration, with distributed reasoning applied using distributed local
tableau. Local inconsistencies are treated as holes[4].

6 Conclusion

In this paper, we presented a strategy for reasoning over a set of autonomously
managed ontologies with correspondences defining local interpretations for foreign
defined ontology entities. In our approach, a reasoning space is built including
relevant ontology entities, with respect to an ontology conjunctive query.

The approach presents solutions to all identified problems but also brings to light
new questions. Clearly, a more precise comparison of our approach with other
distributed ontology reasoning based on query rewriting [6] is of primordial
importance to evaluate the benefits of building a reasoning space. This is in our list of
future work. We also plan to implement our approach in a P2P system. Finally, we
want to investigate a cost model for expanding the reasoning space. The main
intuition is that there are innumerous equivalent paths to follow in exploring the
ontology space. A cost model based on previous reasoning tasks and statistics
regarding individual ontology entities should certainly contribute to reduce query
elapsed-time.

References

1. V. Haarslev and R. M. Oller, “Racer: An OWL Reasoning Agent for the Semantic Web”, In
Proc. Int´l Workshop on Applications, Products and Services of Web-based Support
Systems, Halifax, Canada, October 13, pages 91–95, 2003.

2. T. Devogele, C. Parent, S. Spaccapietra, “On spatial database integration”, Int´l. J.
Geographical Information Science, v(12), n(4), pp. 335-352, 1998.

3. I. Horrocks, S. Tessaris, “Querying the Semantic Web: A Formal Approach”, Proc. 1st Int’l
Semantic Web Conference, Sardinia, Italy, 2002.

4. P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini and H. Stuckenschmidt, C-OWL:
Contextualizing Ontologies, Proc. 2nd Int´l. Semantic Web Conference, Sanibel Island,
Florida, USA, pp. 164—179, 2003.

5. H. Stuckenschmidt, M. Klein, “Modularization of Ontologies, WonderWeb: Ontology
Infrastructure for the semantic Web”, Del 21, V.0.6, May 14,2003 .

6. L.Serafini and A.Tamilin. Distributed reasoning services for multiple ontologies. Technical
Report DIT-04-029, University of Trento, 2004.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1629 – 1639, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Branch Query Rewriting Algorithm
for XML Query Optimization*

Hyoseop Shin1 and Minsoo Lee2

1 Department of Internet and Multimedia Engineering, Konkuk University, Seoul, Korea
hsshin@konkuk.ac.kr

2 Department of Computer Science and Engineering, Ewha Womans University, Seoul, Korea
mlee@ewha.ac.kr

Abstract. XML data usually consists of tree-structured hierarchical data, which
affects the storing and searching mechanisms for XML. When storing XML
data into databases the hierarchical relationships among XML nodes need to be
considered. User’s search queries that specify hierarchical relationships among
the nodes also require appropriate processing mechanisms. Structural join
operations provide a solution to this problem by efficiently computing
hierarchical relationships in XML databases based on the node numbering
storage scheme. However, in order to process a branch query containing several
hierarchical relationships on XML data, many structural joins need to be
sequentially carried out and result in a high query execution cost. This paper
proposes mechanisms to reduce the cost of processing branch pattern XML
queries requiring multiple structural joins. We discuss two approaches for
rewriting a query composed of a single branch, and then apply these approaches
to general branch queries. The first approach uses the concept of equivalence
class relationships among regular path expression queries. The second approach
uses a bottom-up approach to reduce the overhead identified in the first scheme.
Experimental results show that the proposed schemes can reduce the query
execution cost by up to an order of magnitude of the original execution cost.

1 Introduction

In general, XML data consists of tree-structured hierarchical data, which affects the
storage and search mechanisms for XML. For example, the XPath query
“Paper[Title=’XML’]/Author/Name” contains as conditions the hierarchical
relationships among ‘Paper’ and ‘Title’, ‘Paper’ and ‘Author’, and ‘Author’ and
‘Name’, etc. Therefore, when XML is stored in databases the hierarchical structure
among the nodes need to be considered, and user queries also need to be processed
with consideration of the hierarchical relationships specified in the query.

When representing XML data as a tree structure, the node numbering scheme can
be used to show the hierarchical relationship among the XML elements. Each XML

* This work was supported by the faculty research fund of Konkuk University in 2005.

1630 H. Shin and M. Lee

node can be represented with <docid, begin_pos, end_pos, level> information
[5,8](see Figure 1.(b)). The docid is the document identifier which is used when more
than one documents exist, and begin_pos and end_pos are the starting and ending
offset of the XML nodes within a document, and level is the depth of the node starting
from the root node. The hierarchical relationship among the nodes can be represented
by ancestor-descendant relationships and parent-child relationships. Structural
joins [7] can calculate node pairs that satisfy a hierarchical relationship using the node

<ProgramTable>
<ProgramInformation>
 <programId>P0001</programId>
 <BasicDescription>
 <Title>Sunrise News</Title>
 <Synopsis>Morning News</Synopsis>
 <Keywords>
 <Keyword>politics</Keyword>
 <Keyword>economy</Keyword>
 </Keywords>
 <Genre>

<Name>News</Name>
</Genre>

 <CastList>
 <CastMember>
 <Role>Reporter</Role>
 <Name>Richard Perry</Name>

<Role>Producer</Role>
 <Name>Richard Perry</Name>
 </CastMember>
 </CastList>
 </BasicDescription>
</ProgramInformation>
<ProgramInformation>
…
</ProgramTable>

(a) Content of XML document

“ ”“ ”

“ ” “ ”“ ”

“ ”“ ”“ ”“ ”

“ ”

(b) Tree representation of XML nodes

Fig. 1. An example XML document

 An Efficient Branch Query Rewriting Algorithm for XML Query Optimization 1631

information. Assuming two XML node sets R and S, the structural join that calculates
the node pairs that satisfy the ancestor-descendant relationship between R and S can
be defined as the following.

StructuralJoin(R, S) = { <r,s> | (r ∈ R) ∧ (s ∈ S) ∧ (r.docid = s.docid) ∧
(r.begin < s.begin) ∧ (r.end > s.end) }

For parent-child relationships, the condition r.level=s.level-1 needs to be added.
Structural joins are different from equi-joins in relational databases in terms of the

existence of multiple predicates and the nonequi-join characteristic. Most recently,
several researches have proposed mechanisms to efficiently process structural
joins[1,7] and also indexing methods[11,12].

Although the proposed structural join method can efficiently process the
hierarchical relationships among XML elements, the XML query processor still needs
to carry out multiple structural joins and experiences a high query execution cost.
This is more severe when branch pattern queries containing many hierarchical
relationships need to be processed.

In this paper, we discuss two approaches for rewriting a query composed of a single
branch, and then apply these approaches to general branch queries. The first approach
uses the concept of equivalence class relationships among regular path expression
queries. The second approach uses a bottom-up approach to reduce the overhead
identified in the first scheme. The proposed XML query rewriting schemes can reduce
the number of joins and thus can contribute to the query optimizer for obtaining a
more efficient query execution plan.

The organization of the paper is as follows. Section 2 sketches a motivating example
of this paper. Section 3 discusses the related research. Section 4 explains the basic data
structure called the XIP tree and describes the XML query reduction algorithms. Section
5 shows the experimental results and section 6 gives the conclusion.

2 Motivating Example

We first explain the concept and the effects of XML query reduction. Assume that we
have stored into the database an XML document that includes several
‘ProgramInformation’ elements and has ‘ProgramTable’ as the root and has the
structure shown in Figure 1-(a). The Figure 1-(b) shows the <docid, (begin_pos,
end_pos), level> information of each node based on the node numbering scheme for
the XML document shown in Figure 1-(a). A user can give the following two different
forms of the same query for “Retrieve all agents of the program of which id is ‘P1234’.

(1) //ProgramInformation[@programId =‘P1234’]/BasicDescription/CastList/CastMember/Name
(2) //ProgramInformation[@programId =‘P1234’]//CastMember/Name

However, if the query processor takes these different inputs, the resulting query
execution plans from these inputs could be totally different. Query (1) needs to
perform 5 structural joins (as shown in Figure 2-(a)), while query (2) only needs to
perform 3 structural joins (as shown in Figure 2-(b)) and obtain the same query
results. Figure 2-(b) definitely is a better query execution plan in terms of the
response time. As shown in this example, the XML query that is specified by the user

1632 H. Shin and M. Lee

could be in any arbitrary form while the query processor prefers a reduced number of
nodes in the query. In this sense, a query reduction stage is necessary when
optimizing user given XML queries.

“ ”

“ ”

(a) Query execution plan for query (1) (b) Query execution plan for query (2)

Fig. 2. Different query execution plans for identical XML queries

3 Related Research

Several node numbering schemes for storing large amounts of XML documents in
relational databases have been proposed. Zhang et al. [8] suggested to use the offsets
of the beginning and ending word of each node to represent the 'containment'
relationship between nodes in an XML document. The node numbering scheme
proposed by Li et al. [5] provides flexibility and efficiency when updating XML
documents. Tatarinov et al. [15] proposed a node numbering scheme to support
querying based on orders between XML nodes.

Srivastava et al. [7] proposed efficient algorithms for structural joins that can be
used to retrieve XML data that is organized using a node numbering scheme. Chien et
al. [1] proposed structural join algorithms for indexed XML documents. Indexing
structures for efficient structural joins[11,12] have been also proposed. However, XML
queries containing paths or branches may cause several consecutive structural joins in
query execution time. Join order selection methods [13] can be used to reduce the cost
caused by several joins. Holistic twig joins[16,17] was proposed to process paths or
branches at a time instead of stitching several structural joins, but the cost of
algorithms are also expected to get higher as the number of nodes involved in XML
queries increases. Other approaches use path indices [3,2] to avoid consecutive
structural joins in processing XML path queries in relational databases. In this respect,
the query reduction algorithms presented in this paper can contribute to reducing the
number of structural joins or the cost of holistic twig joins required for path or branch
pattern XML queries by reducing the number of relevant nodes in XML queries.

As for query rewriting techniques, Fernandez et al. [9] proposed query pruning and
rewriting techniques for regular path expressions using graph schemas which
represent partial knowledge about the structures of the semistructured documents.
Their query rewriting methods are based on state extents over the graph schema,

 An Efficient Branch Query Rewriting Algorithm for XML Query Optimization 1633

while our query reduction is centered into reduction of query itself. Meanwhile, we
use the concept of XIP trees which is similar to strong dataguides introduced by
Goldman et al. [4]. The difference is that the dataguides summarize the schema of the
database for use of query formulation and processing, whereas the XIP tree is created
on an XML document instance base and used for query reduction purpose.

4 XML Query Reduction

4.1 Equivalance Classes Among Paths and XIP Trees

In order to perform query reduction on XML queries, we introduce the equivalence
class concept between regular path expression XML queries. A group of regular path
expressions that are interchangeable among each other (i.e., expressions that yield the
same result) is defined to form an equivalence class. To identify regular path
expressions that belong to the same equivalence class, a structure called the XML
instance path (XIP) tree is used. The XIP tree is dynamically created from the input
XML documents and merges structurally similar paths together by holding only a
single node in the XIP tree for those child nodes that appear multiple times under the
same parent node in the original XML document. Also, the XIP tree differs from the
DTD or XML Schema in that the XIP tree is determined dynamically according to
input XML documents, while the DTD or XML Schema is pre-defined. Fig. 3 shows
the XIP tree generated from the XML document in Fig. 1. Note that nodes like
Keyword appear multiple times in Fig. 1 but appear only once in Fig. 3.

Fig. 3. An example XML Instance Path(XIP) Tree

The size as well as the building cost of the XIP tree can be various depending on
the XML document. However, in many cases a XIP tree is expected to be small
enough to be kept in main memory like the DTD or XML Schema, where similar
analysis has been performed for the dataguide in [4]. The additional overhead of
building XIP trees when loading data into a database is also very small.

We now give preliminary definitions to simplify the formal definition of the
equivalence class among regular path expressions.

1634 H. Shin and M. Lee

Definition 1. Complete path expression
A path expression C is a complete path expression if it is both an absolute path
expression (i.e., starts with the '/' axis) and does not include any '//' axis within the
path expression.

Definition 2. Matching complete path expression
If a complete path expression C results in a path down the XIP tree where the
arbitrary path expression X (which may contain a '//' axis) also represents in the XIP
tree, then C is a 'matching complete path expression' of X.

Definition 3. Expand
An Expand function takes an arbitrary regular path expression as input and returns the
set of all matching complete path expressions of the input path expression. Given an
arbitrary path expression X, Expand(X) = {C1, C2, … , Ck} where Ci (1 <= i <= k) is a
matching complete path expression of X. Every matching complete path expression C of
X is always an element of Expand(X). As an example, assume that a regular path
expression X is given as '/ProgramInformation//Name', then using the XIP tree in Fig. 3,
Expand(X)={/ProgramTable/ProgramInformation/BasicDescription/Genre/Name,
 /ProgramTable/ProgramInformation/BasicDescription/CastList/CastMember/Name}.

The function Expand() can be implemented by an algorithm that traverses the XIP
tree.

A formal definition of equivalence class among regular path expressions is given
below.

Definition 4. Equivalence class
A set of path expressions, Xset = {X1, X2, … , Xm} (where m >= 1), form an
Equivalence class iff there exists a set of complete path expressions, Cset = {C1, C2,…,
Cn } (where n >= 1), such that for all Xi (1 <= i <= m) in Xset, Expand(Xi) = Cset. In
other words, for all Xi (1 <= i <= m) in Xset, Expand(X1) = Expand(X2) = … =
Expand(Xi) = … = Expand(Xm) = Cset.

Conceptually, two regular path expressions form an equivalence class if and only if
both are expanded into the same set of complete expression paths within a XIP tree.
For example, the two regular expressions (1), (2) in section 2 belong to the same
equivalence class because both of them are expanded into
{/ProgramTable/ProgramInformation[@programId=‘P1234’]/BasicDescription/CastL
ist/CastMember/Name }.

4.2 Path Reduction Algorithm: A Top-Down Approach

The basic idea of path reduction is that a chain of parent-child axes can be replaced
with an ancestor-descendant axis, on condition that the resulting regular path
expression belongs to the same equivalence class as the original regular path
expression.

Given a regular path expression, possible expressions within the same equivalence
class are too many to evaluate each expression one by one in order to find the shortest
one (i.e., 2k-1Ck paths for k-length paths). To simplify the path reduction process, at

 An Efficient Branch Query Rewriting Algorithm for XML Query Optimization 1635

first we make use of a greedy algorithm. The algorithm sequentially probes each node
of the given regular path expression from left-to-right(i.e., top-down order in XIP
tree) and determines whether it can be removed or not. When a node is removed, its
preceding axis is replaced with '//' accordingly. A node can be removed only if the
resulting regular path expression where the node is removed still belongs to the
original equivalence class. If an arbitrary node is removed from the regular
expression, the resulting one could represent a path that is not a member of the
equivalence class of the original regular path expression. The proposed path reduction
algorithm is specified in Fig. 4.

TopDownPathReduction()
input: P = A1N1A2N2 … ApNp

Pset Expand(P);
initialize head_expr1 NULL;
for each i from 1 to p-1 do
 cur_node AiNi;
 Ai+1 '//';
 tail_expr Ai+1 Ni+1 ... ApNp;
 candidate_expr head_expr + tail_expr;
 Pset Expand(candidate_expr);
 if Pset ≡ Pset then /* equivalence class */
 Ai+1 '//'; /* remove node */
 end
 else /* non-equivalence class */
 head_expr head_expr + AiNi; /* do not remove node*/
 end
end
head_expr head_expr + ApNp;

return head_expr;

Fig. 4. The Top-down Path Reduction Algorithm

4.3 Path Reduction Algorithm: A Bottom-Up Approach

The top-down approach previously discussed has several problems. One problem is
that the execution time of the algorithm could be significantly large when the path tree
is complex, due to the fact that the Expand() function needs to be called every time a
node is traversed. Another problem is that an efficient shortest path may not be found
because the algorithm considers the nodes in the original path expression in a left-to-
right manner. Eliminating nodes closer to the leaves of the XIP tree (i.e., nodes on the
right side within a path expression) is more effective than eliminating the ones near the
root (i.e., nodes in the left side). We therefore propose an improved algorithm using a
bottom-up approach. Assume that there exists a hash table which uses the node names
in the path tree as the hash key. The buckets of the hash table contain the ID’s of the
nodes that have the name in the path tree. The algorithm is shown in Fig. 5.

The algorithm will consider the elimination of the nodes starting from the right-
most node in the original path expression whereas the top-down algorithm starts with
the left-most node. The algorithm starts by looking up the hash table to find those

1636 H. Shin and M. Lee

path tree nodes that have a matching name to the right-most node in the original path
expression. The nodes found are stored in cur_node_list. Each node in the original
path is considered in a right-to-left order, each repeating the following steps. While
inspecting the nodes in the original path expression from right-to-left, we also
traverse the corresponding nodes in the XIP tree in a bottom-up manner to check if
any nodes in the original path expression could be transformed into ‘//’, resulting in a
shorter path expression. This requires the identification of anchor nodes. When we
move one node from right-to-left in the original expression, we also try to follow up
the corresponding paths in the XIP tree and keep these paths. If any of the paths that
are built so far cannot traverse up the tree corresponding to the left move in the
original path expression, we designate such a node in the original path expression as
the anchor node. In this case, the anchor node should be maintained in the shortened
path expression.

Fig. 5. Algorithm for bottom-up path reduction

BottomUpPathReduction()
input: P = ApNp … A2N2A1N1 , XIPtree, HashTable /* stores node ids for element name */
cur_node_list NULL; shortest_path NULL; has_doublebackslash FALSE;
for each i from 1 to p do
cur_target_node Ni;
if i=p then /* prepend to shortest path and finish */

if i=1 then shortest_path AiNi+shortest_path; end else shortest_path Ai+shortest_path; end
end
else /* not the final node in the path expression */

 if i=1 then /* lookup Ids from hash table for current node list */
 cur_node_list lookupNodes(HashTable, cur_target_node);

shortest_path cur_target_node; end
 else /* process preceding nodes */
 cur_node_list preceding_node_list;
 preceding_target_node Ni+1; /* set preceding node of target node */
 preceding_axis Ai; preceding_node_list NULL; /* preceding nodes of cur_node_list */
 found_anchor_node false; /* reset flag */
 if preceding_axis=’//’ then /* retrieve ancestors with same name as preceding_target_node */

for each id in cur_node_list do
ancestor_set getAncestorsWithName(XIPtree, id, preceding_target_node);

 if ancestor_set={} then found_anchor_node TRUE; end
 else preceding_node_list preceding_node_list U ancestor_set; end end end
 else /* traverse one level up to parent */

for each id in cur_node_list do
parent_node getParent(XIPtree, id);

if parent_node=preceding_target_node then
preceding_node_list preceding_node_list U parent_node; end

 else /* found anchor node */ found_anchor_node TRUE; end end end
 if found_anchor_node=TRUE then /* prepend anchor node */

shortest_path preceding_target_node+ Ai+shortest_path;
 has_doublebackslash FALSE; end
 else /* prepend //, or leave as is */
 if has_doublebackslash=FALSE then

shortest_path ‘//’+ shortest_path;
 has_doublebackslash TRUE; end end
 end
end

end
return shortest_path;

end

 An Efficient Branch Query Rewriting Algorithm for XML Query Optimization 1637

4.4 Branch Query Reduction Algorithm

The branch query reduction algorithm uses the previously discussed path reduction
algorithms to reduce linear paths. The idea behind the branch query reduction is that
the branching node (i.e., ProgramInformation in the query (1)) will divide the branch
query into several sub-paths and each sub-path could be recursively processed via the
branch query reduction algorithm until the sub-path becomes a linear path. Once the
linear path is identified, the previously discussed path reduction algorithms, either
top-down or bottom-up, can be applied. The merging of these individual results from
the paths can be done by comparing the participating node ids.

In some cases, the branching node itself could be eliminated and the branch query
could be reduced to a more optimal form. But semantic correctness cannot be
guaranteed and checking for the deletion of the branching node incurs a significant
amount of overhead.

Fig. 6. Algorithm for branch query reduction

5 Experimental Results

We evaluated the performance of the XML query reduction algorithm presented in
section 4 in terms of the overhead of evaluating the XIP trees for query reduction and
the benefit in query execution time. About 1G bytes of an XML document generated
from the XMark benchmark[6] were populated into the Berkeley DB [10] using the
node numbering scheme proposed by Zhang et al. [8]. For an exhaustive performance
evaluation of the proposed algorithms, we used as many as 312 XML branch queries
that are available from the generated XIP trees. The number of nodes within the
queries varied from 5 to 12. We implemented the branch query reduction and the
structural join algorithm by Srivastava et.al. [7].

BranchQueryReduction()
input: P = ApNp …Aj[Pj] … A2N2A1N1 /* Aj is branching node, Pj is branch path */

XIPtree /* XIPtree data */, HashTable /* stores node ids for each element name */
result_path NULL:
 (branching_node, path_set) getBranchingNodeAndPathSet(P); /* Identify branch node */
 if branching_node=NULL then
 result_path = LinearPathReduction(P, XIPtree, HashTable);

/* either top-down or bottom-up path reduction */
end
else

for each path in path_set
 reduced_path=BranchQueryPathReduction(path, XIPtree, HashTable);
 result_path=Merge(result_path, branching_node, reduced_path);
 end
 end
return result_path;
end

1638 H. Shin and M. Lee

(a) Number of query nodes (b) Number of node
comparisons

(c) Response Time

Fig. 7. Experimental Results of XML Query Reduction Algorithm with Xmark

Fig. 7 summarizes the experimental results. For each query set of the same number
of query nodes that is between 5 and 12, we measured the average number of record
comparisons that have been done during structural joins and the average response
time, against both the original queries and the reduced queries. Fig. 7-(a) shows that
the reduced queries resulting from the path reduction were shortened up to 28 % of
the length of the original queries and in one example queries with length 7 were
shortened to an average of 2. Fig. 7-(b) shows that in the best case the number of
record comparisons during the structural joins also decreased to only 14 % of the
number of record comparisons by the original queries. Accordingly, the response time
was reduced to 8 % of the original query as shown in Fig. 7-(c).

Meanwhile, the average query reduction cost was about 0.04 sec, which was less
than 1 % of the average query execution time. As the result shows, up to 92% of the
original query execution time could be eliminated with only a marginal overhead in
query reduction time. Though the effectiveness of the query reduction algorithm
could vary depending on the structure of the XIP tree and the queries in the domain
area, in most cases, it is expected to improve the query execution time with very little
overhead in query reduction time.

6 Conclusion

This paper proposed two XML path reduction algorithms and an XML branch query
reduction algorithm that can reduce the number of query nodes in a complex XML
query so that an XML query processor exploiting node number schemes and
structural joins can more efficiently execute the query. The schemes use XIP trees,
which reflect the summarized structure of input XML document instances. The
equivalence class concept among regular path expressions is very useful for reducing
path expressions. Experimental results show that the presented branch query reduction
algorithm could eliminate up to 92 % of the original query execution time with only a
little extra cost for query reduction. As a result, the performance of the XML query
execution was enhanced by up to an order of magnitude.

 An Efficient Branch Query Rewriting Algorithm for XML Query Optimization 1639

References

1. S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo. Efficient structural joins
on indexed XML documents. In Proc. of the 28th VLDB conference, pages 263-274, Hong
Kong, China, Aug. 2002.

2. V. Christophides, S. Cluet, and G. Moerkotte. Evaluating queries with generalized path
expressions. In Proc. of the 1996 ACM-SIGMOD conference, pages 413-422, Montreal,
Canada, Jun. 1996.

3. B. Cooper, N. Sample, M. J. Franklin, G. R. Hjaltason, and Moshe Shadmon. A fast index
for semistructured data. In Proc. of the 27th VLDB conference, pages 341-350, Rome,
Italy, Sep. 2001.

4. R. Goldman and J. Widom. Dataguides: Enabling query formulation and optimization in
semistructured databases. In Proc. of the 23rd VLDB conference, pages 436-445, Athens,
Greece, Aug. 1997.

5. Q. Li and B. Moon. Indexing and querying XML data for regular path expressions. In
Proc. of the 27th VLDB conference, Rome, Italy, Sep. 2001.

6. A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, R. Busse. XMark: A
Benchmark for XML Data Management. In Proc. of the 28th VLDB conference, pages
974-985, Hong Kong, China, Aug. 2002.

7. D. Srivastava, S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, and Y. Wu.
Structural joins: A primitive for efficient XML query pattern matching. In Proc. of the
2002 IEEE conference on Data Engineering, Feb. 2002.

8. C. Zhang, J. F. Naughton, Q. Luo, and D. J. DeWitt, and G. M. Lohman. On supporting
containment queries in relational database management systems. In Proc. of the 2001
ACM-SIGMOD conference, May 2001.

9. M. Fernandez and D. Suciu. Optimizing regular path expressions using graph schemas. In
Proc. of the 1998 IEEE Conference on Data Engineering, pages 4-13, Orlando, Florida,
Feb. 1998.

10. Sleepycat Software Inc., http://www.sleepycat.com.
11. H. Jiang, H. Lu, W. Wang, and B. C. Ooi, XR-Tree: Indexing XML Data for Efficient

Structural Joins. In Proc. of the 2003 IEEE conference on Data Engineering, pages 253-
263, Bangalore, India, March 2003.

12. H. Li, M. Lee, W. Hsu, and C. Chen, An Evaluation of XML Indexes for Structural Join.
SIGMOD Record 33(3), pages 28-33, 2004.

13. Y. Wu, J. M. Patel, and H. V. Jagadish, Structural Join Order Selection for XML Query
Optimization. In Proc. of the 2003 IEEE conference on Data Engineering, pages 443-454,
Bangalore, India, March 2003.

14. C.-W. Chung, J.-K. Min, and K. Shim, APEX: an adaptive path index for XML data, In
Proc. of the 2002 ACM-SIGMOD conference, pages 121-132, Madison, Wisconsin, USA,
Jun. 2002.

15. I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang,
Storing and querying ordered XML using a relational database system, In Proc. of the
2002 ACM-SIGMOD conference, Jun. 2002.

16. N. Bruno, N. Koudas, and D. Srivastava, Holistic twig joins: optimal XML pattern
matching, In Proc. of the 2002 ACM-SIGMOD conference, pages 311-321, Madison,
Wisconsin, USA, Jun. 2002.

17. H. Jiang, W. Wang, H. Lu, and J. X. Yu, Holistic Twig Joins on Indexed XML
Documents, In Proc. of the 29th VLDB conference, pages 273-284, Berlin, Germany, Sep.
2003.

R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1640 – 1649, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Automated Migration of Data-Intensive
Web Pages into Ontology-Based Semantic Web:

A Reverse Engineering Approach

Sidi Mohamed Benslimane, Mimoun Malki, and Djamel Amar Bensaber

EEDIS Laboratory, Computer science Department,
University of Sidi Bel Abbes 22000, Algeria

benslimane@univ-sba.dz, Malki_m@yahoo.com, am_wap2003@yahoo.fr

Abstract. The advance of the Web has significantly and rapidly changed the way
of information organization, sharing and distribution. The next generation of the
web, the semantic web, seeks to make information more usable by machines by
introducing a more rigorous structure based on ontologies. In this context we try
to propose a novel and integrated approach for an automated migration of data-
intensive web pages into ontology-based semantic web and thus, make the web
content machine-understandable. Our approach is based on the idea that
semantics can be extracted from the structures and the instances of database
forms which are the most convenient interface to communicate with relational
databases on the current Web. This semantics is exploited to help build ontology.

1 Introduction

The actual web has been moving away from static, fixed web pages to dynamically-
generated at the time of user request. This kind of web site is called data-intensive
web site [1], and usually realized using relational databases (i.e. e-commerce
application). Data-intensive web pages are characterized by an automated update of
the web content and a simplified maintenance of the web design [2]. Nevertheless
they suffer from two limitations. First, they form a hidden web since its content is not
easily accessible to any automatic web content processing tools including the search
engine indexing robots. Second the content of the database-driven web pages
presented by using HTML is not machine-understandable. The next generation of the
web, the semantic web, seeks to make information more usable by machines by
introducing a more rigorous structure based on ontologies. Ontology is a formal,
explicit specification of a shared conceptualization [3]. In this paper we propose a
novel and integrated approach for an automated migration of data-intensive web
pages into semantic web and thus, make the web content machine-understandable.
The best approach seems to rely on reverse engineering [4] rather than on semantic
annotation [5], which is time consuming and error-prone.

This paper is organized as follows: In Section 2, we discuss some of the related
works in reverse engineering relational databases into ontologies. Section 3 explains
the overall reverse-engineering architecture and details our proposed approach,
Whereas Section 4 contains conclusion remarks and futures works.

 Automated Migration of Data-Intensive Web Pages 1641

2 Related Works

Several researches have been done on relational databases reverse engineering,
suggesting methods and rules for extracting entity-relationship and object models from
relational databases [6, 7, 8, 9].However, there are few approaches that consider
ontologies as the target for reverse engineering. These approaches fall roughly into one
of the five categories: 1. Approaches based on an analysis of user queries: E.g.
Kashyap’s approach [10] builds an ontology based on an analysis of relational schema;
the ontology is then refined by user queries. However, this approach does not create
axioms, which are part of the ontology. 2. Approaches based on an analysis of
relational schema: E.g. Stojanovic et al’s approach [2] provides a set of rules for
mapping constructs in the relational database to semantically equivalent constructs in
the ontology. These rules are based on an analysis of relations, keys and inclusion
dependencies. Dogan & Islamaj’s approach [11] provides simple and fully automatic
reverse engineering: relations map to classes, attributes in the relations map to attributes
in the classes and tuples in the relational database map to instances in the ontology.
However, this approach ignores inheritance, thus building the ontology that looks rather
“relational”. 3. Approaches based on an analysis of tuples: E.g. Astrova’s approach
[12] builds an ontology based on an analysis of relational schema. Since the relational
schema often has little explicit semantics [13], this approach also analyzes tuples in the
relational database to discover additional “hidden” semantics (e.g. inheritance).
However, this approach is very time consuming with regard to the number of tuples of
relational database. 4. Approaches based on an analysis of HTML-table: E.g.
Tijerino’s approach [14] based on conceptual modeling extraction technique attempts to
understand a table’s structure and conceptual content, discover the constraints that hold
between concepts extracted from the table, match the recognized concepts with ones
from a more general specification of related concepts, and merge the resulting structure
with other similar knowledge representations. However, this approach requires auxiliary
informations including dictionaries and lexical data (WordNet, Natural language
parsers, and data frames library). 5. Approaches based on an analysis of HTML-
forms: E.g. Astrova’s approach [15] constructs an ontology based on an analysis of
HTML-forms by analyzing the HTML-forms to extract a form model schema,
transforming the form model schema into ontology and creating ontological instances
from data contained in the pages. The drawback of this approach is that this approach
does not offer any way to the identification of inheritance relationship which is a
significant aspect in the ontology construction.

3 Our Approach

Our approach enriches the semantics of the database by providing additional
ontological entities. It uses the information extracted from both HTML forms
structure and instances as a databases reverse engineering input. This can be
supported by the following arguments:

- HTML forms are often the most popular and convenient interfaces for entering,
changing and viewing data in the actual data-intensive web pages and, therefore,
important information can be obtained by analyzing an HTML forms; A form model

1642 S.M. Benslimane, M. Malki, and D.A. Bensaber

is a data model. Studying and analyzing an HTML form and its relationship to other
forms can reveal many data dependencies and mapping; HTML forms are structured
collections of fields formatted to communicate with the relational database.
Therefore, data contained in the forms is usually structured, while the structure of the
relation databases is often unknown in advance [16]; Field names in HTML forms
are usually more explicit and meaningful than the names of corresponding attributes
in the relational databases; Normally the HTML forms are accompanied by
instructions which provide additional information about organisation’s data and their
behavior parts. These instructions are part of the contextual knowledge [17].

A form model schema was originally proposed, suitable for databases reverse
engineering task [18]. The model allows abstracting any database form, that is, to
make explicit its components, fields as well as objects, and their interrelationships.
This model (figure 1) is similar but not identical to the models presented in [16, 19].
Basically, this model consists of: Form type: Is a structured collection of empty fields
formatted to communicate with databases. A particular representation of form type is
called form template. A form template defines the structure, constraints and
presentation of the form fields. It represents the forms intension as perceived by users.
Three basic components of any template are title, captions, and entries. Structural
units: Is a group of homogeneous pieces of information, that is, an object that groups
closely related form fields. Each structural unit is a logical sub-part of a form type. It
generally corresponds with areas on a form layout. Form instance: Is an occurrence of
a form type. This is the extensional part obtained when a form template is filled in
with data. Figure 2 is an instance of the “booking form” and “program of flight”
forms type. Form fields: Is an aggregation of a caption with its associated entry.
Caption is pre-displayed on the form and serves as a clue as what is to be filled in by
the respondent as well as a guide to enter or read it on the form. An entry is the actual
data that is entered by a user or displayed by the form processing system. Notice that
we can identify a form field where there is no caption for an entry or inversely. Each
form field entry is generally linked to an attribute of one table in the underlying
database. That is, the values it display (or receives) are provided by (or store in) this
attribute. We use the concept of linked-attribute to designate this attribute. Some form
fields are computed; others can be simply unlinked with the relational database. We
distinguish three types of fields: Filling fields tag (e.g., TEXT, CHECKBOX, RADIO
etc.) which are an aggregation of name and entry associated to it. Selection fields
(e.g., SELECT tag) which let the user select one, or more than one choice
(MULTIPLE attribute). Link fields which are used to relied tow or more forms
(pages) (HREF tag). Underlying source: this is a structure of the relational database
(i.e. a relational schema), which defines relations and attributes along with their data
types. Relationships: this is a connection between structural units that relates one
structural unit to another (or back to itself). There are two kinds of relationship:
association and inheritance. Constraint: This is a rule that defines what data is valid
for a given form field. A cardinality constraint specifies for an association
relationship the number of instances that a structural unit can participate in.

Our approach articulates around five phases: Analysis the HTML forms to identify
constructs in the form model schema; Construction of hierarchical structure of forms;
Extraction of the domain semantics; Mapping of the global schema into ontology;
Creating ontological instances from data contained in the page.

 Automated Migration of Data-Intensive Web Pages 1643

Title
Title

(1,n)

(1, n) (0,1)
(1,1)

(1, n)
(1,1)Child

(1,n)

Form_Type

Comprises

Form_typeStruclural_Unit

Contains

Form_FieldLinked_to

Linked_Attribute

Undelying_Source

Belongs_to

(0,n)Parent
(1,1)

(1,1)

Caption (0,1) Enrty (1,n)

Name

Represented_ByTemplate

Name

Name

Relat ionship

Title
Title

(1,n)

(1, n) (0,1)
(1,1)

(1, n)
(1,1)Child

(1,n)

Form_Type

Comprises

Form_typeStruclural_Unit

Contains

Form_FieldLinked_to

Linked_Attribute

Undelying_Source

Belongs_to

(0,n)Parent
(1,1)

(1,1)

Caption (0,1) Enrty (1,n)

Name

Represented_ByTemplate

Name

Name

Relat ionship

Fig. 1. Form Model

Fig. 2. Ontology extraction from an HTML forms

3.1 Analysis HTML Pages Structure

The main goal of this phase is to understand the form meaning and explicit its
structure by analyzing HTML forms (both their structure and data they contain) to
identify its components and their interrelationships and extract a form model schema.
The analysis goes through the following steps: 1. Identifying form instances: In order
to clearly distinguish different kinds of information in the document, the web pages
are usually split to multiple areas. Each area is crated using specific tags. For our
approach we consider only the section between the open and closing <form> tag. 2
Identifying linked attributes. Linked attributes are identified by examining the HTML
code for structural tags such as <thead> and <th> [20]. If the linked attributes aren’t

1644 S.M. Benslimane, M. Malki, and D.A. Bensaber

separated with the structural tags (merged data), we can use visual cues [4, 21]. This
approach typically implies that there will be some separators (e.g. blank areas) that
help users split the merged data. 3 Identifying structural units: To determine a logical
structure of HTML page (i.e. the real meaning of the page, as it is understood by
users), we can use visual cues [21] E.g. the users might consider the FirstName,
SecondName, and Age in Fig. 1 as a whole group (passenger), just because they are
specifications too. 4 Identifying relationships: The association can be indicated by the
fact that the two structural units appear at the same page. If the two structural units
come together, they might be logically related to each other. We would also identify
an association relationship between two structural units using hyperlinks. By clicking
on a hyperlink in one structural unit (at some page), we can go to another structural
(possibly at another page). E.g. from Fig. 1.

3.2 Construction of Hierarchical Structure of Forms

In order to have a precise picture of the hierarchical relationships of a form and to
clearly understand its meaning and facilitate the extraction of the domain semantics,
this process, which is automatic and transparent to the designer, constructs the
hierarchical structure in three steps: – Defining the root node whose name is the form’s
title. All fields are attached to the root node; – In the first, transforming all structural
units into a node with level 1, i.e., their parent is the root node; -Identifying the parent-
child relationships among structural units. Because there are several level of fields
(e.g., 0, 1, 2, 3, etc.), this process identify recursively the substructure (Or sub-node)
according to levels of their fields specified in the insertion process of forms.

3.3 Extraction of the Domain Semantics

The goal of this phase of extraction is to derive the relational sub-schema of form
from their hierarchical structure and their instances according to the physical schema
of the underlying database. First, the relation and their primary keys are respectively
identified with regard to both structural units (or nodes) of form and underlying
database, then the functional and inclusion dependencies are extracted through both
their hierarchical structure and instances.

3.3.1 Form Relations Extraction
The forms either permit the updating of relations in underlying database or represent a
view that is a joint of relations. Therefore, each field entry is generally linked to an
attribute of one relation in the underlying database. However, the identification of
form relations and their primary keys respectively, consists of determining the
equivalence and/or the similarity between structural units (nodes) of hierarchical
structure and relations in the underlying database. This is a basis point from a reverse
engineering point of view [18].

A node of a form hierarchical structure may be either: – Equivalent to a relation in
the underlying database, i.e., these two objects (node and relation) have a same set of
attributes; – Similar to a relation, i.e., its set of attributes is a subset of the one of the
relation; – A set of relations, i.e., its set of attributes regroups several relations in
underlying database.

 Automated Migration of Data-Intensive Web Pages 1645

Also, for dependent nodes (or form relation), primary keys are formed by
concatenating the primary key of its parent with its local primary key. This process of
identification is semi-automated because it requires the interaction with the analyst to
identify objects that do not verify proprieties of equivalence and similarity.

While applying this process on the hierarchical structure of “Booking Form” and
the physical relational schema of underlying database, we extract the following
relational sub-schemas:

Passenger (PassengerID, FirstName, FamillyName) City (CityID, Name)
DepartureCity (CityID) ArrivalCity (CityID) Date (DeparatueDate)

From the “program flights” form we identify the following relational sub-schemas:

DepartureHour (Dep_HourID, type) ArrivalHour (Arr_HourID, type)
Plane (PlaneID, Capacity) Flight (ID, DeparatueDate, DepartureCityID,
ArrivalCityID, Dep_HourID, Arr_HourID, PlaneID)

From the relationships among hierarchical structure of “Booking Form” and
“program flight” forms we identify the following relational sub-schemas:

Book (PassengerID, FlightID, DepartureDate) LeavingFrom (FlightID,
DepartureCityID) GoingTo (FlightID, ArrivalCityID)

3.3.2 Functional Dependencies Extraction
The extraction of functional dependencies from the extension of database has received a
great deal of attention [22, 23, 24] In our approach we use the algorithm introduced by
[18] to reduce the time for exacting functional dependencies by replacing database
instances with a more compact representation that is, the form instances. While applying
this algorithm on the sub-schema of “program of flights” and their instances, one finds
the FDs: Flight.ID DepartureCity.CityID ; Flight.ID ArrivalCity.CityID

3.3.3 Inclusion Dependencies Extraction
In our approach, we formulate possible inclusion dependencies (Inds) between
relations’ key of relational sub-schema of form. The time of this process is more
optimized with regard to the other approaches [24, 6] because the possible Inds are
verified by analyzing the form extensions which are more compact representation
with regard to the database extension.

In this algorithm, attributes of dependencies are the primary keys and foreign keys.
Thus, the time complexity is reduced to the test of the inclusion dependency on the
form instances. The set of the Inds extracted is:

Book.FlightID <<Flight.FlightID ; Book.PassengerID <<Passenger.PassengerID

3.3.4 Integration of the Global Schema of Forms
This process performs as follows. First, the schemata are compared for overlaps in
structure. This means looking for structural units and relationships with similar
names, and then looking for similar structures within structural units and
relationships. Second, the schemata are compared for overlaps in meaning. This
means looking for structural units that correspond to the same real-world objects, but

1646 S.M. Benslimane, M. Malki, and D.A. Bensaber

have different names. Third, naming conflicts (i.e. synonyms and homonyms) are
resolved. Conflicts can also be in different constraints on the linked attributes and
different cardinality constraints on the relationships. By performing these three tasks,
the integration process makes the schemata consistent with one another and brings
them together into a single one that makes sense for all pages from a given website.

3.4 Mapping of Conceptual Form Schema into Ontology

The mapping process is a transformation of the form relational schema into ontology;
the transformation is usually a collection of mapping rules that replace constructs in
the form relational schema with (semantically equivalent) ontological entities. Our
rules are similar to those used in [9] to perform a transformation into an object
oriented model. Basically, the process uses as the main input, the constructs generated
from the precedent step. It goes through five steps and is based on the classification of
relations into one of the three categories. Base relation: if a relation is independent of
any other relation in a form relation schema. Example: City (CityId, CityName).
Dependent relation: if a primary key of a relation depends on another relation’s
primary key. Example: Book (PassengerID, FlightID, DepartureDate). Composite
relation: if it is neither base nor dependent. Example: Flight (ID, DepartureCityID,
ArrivalCityID, Dep_HourID, Arr_HourID, FlightDate).

3.4.1 Identification of Object Class
The general assumption is that each base relation is mapped into an object class. These
object classes have the same attributes as those contained in the relations. Example:

Passenger (PassegerId, FirstName, SecondName, Age)

Passenger :: Object.
Passenger [PassengerID =>> Integer, FirstName =>> String, SecondName =>> String,
 Age =>> Integer].

3.4.2 Identification of Roles
For each binary relation containing only a pair of foreign key attributes of class
relation, we create a role attribute in each corresponding class, typed by the other
class. Example:

LeavingFrom (FlightID, DepartureCityID).
Flight.ID DepartureCity.CityID

DepartureCity :: Object Flight :: Object
DepartureCity [CityID =>> Integer, FlightUD =>> Flight].
Flight [FlightUD =>> Integer, CityID =>> Integer].

3.4.3 Identification of Association Class
For every n-airy relation whose primary key is entirely composed of foreign keys, we
create an association class. Example:

Book (PassegerID, FilightID, DepartureDate)

Book :: Object.
Book [PassengerID =>> Integer, FilightID =>> Integer, DepartureDate =>> Integer].

 Automated Migration of Data-Intensive Web Pages 1647

3.4.4 Identification of Inheritance Relationships
Extracting inheritance relation-ship from a relational schema usually requires
behavioral information. Every pair of relations (R1, R2) that have the same primary
key (noted X) and the corresponding Inds (i.e., R1.X < < R2.X) may be involved in an
inheritance relationship, i.e., R1 “is-a” R2. Example: the Relations City and
DepartureCity have the same primary key (CityID) and the corresponding Ind:
DepartureCity.CityID << City.CityID, therefore City is the superclass and
Departure_city is a subclass.

3.4.5 Identification of Axioms
To preserve the semantics embedded within a relational database, we crate an axiom
for each constraint in the form relational schema. (e.g., PRIMARY KEY, NOT
NULL, etc.). Figure 3 gives an example of mapping a constraint PRIMARY KEY. An
attribute is a primary key, if it is unique and total. An attribute is unique, when no two
tuples in the relation have the same value for that attribute, and no tuple in the relation
has two values for that attribute. An attribute is total , if all tuples in the relation
contain values for that attribute.

3.5 Migrating Data

The objective of this task is the creation of ontological instances based on the tuples
of the relational database. The data migration process has to be performed in two
phases. In the first phase the instances are created. To each instance is assigned a
unique identifier. This translates all attributes, except for foreign-key attributes,
which are not needed in the metadata. In the second phase, relations between
instances are established using the information contained in the foreign keys in the
database tuples. This is accomplished using a mapping function that maps keys to
ontological identifiers. Figure 4, illustrates an example result of the data migration
process.

Fig. 3. Mapping constraints

PrimaryKey (City, CityID).
Forall C, P PrimaryKey(C, P) <-
Unique(C, P) and Total(C, P).
Forall C, P Unique(C, P) <-
IdenticalValues(C, P) and SingleValue(C, P).
Forall C, P IdenticalValues(C, P) <-
Forall I1, I2, IP I1:C and I2:C and
I1[P->>IP] and IC[P->>IP] and Equal(I1, I2).
Forall C, P SingleValue(C, P) <-
Forall IC, IP1, IP2 IC:C and
IC[P->>IP1] and IC[P->>IP2] and Equal(IP1, IP2).
Forall C, P Total(C, P) <-
Forall IC Exists IP IC:C and IC[P->>IP].

1648 S.M. Benslimane, M. Malki, and D.A. Bensaber

Relational model

Plane
PlaneID Capacity CompanyID
A330 150 1
B767 200 2
B747 300 1

Company
CompanyID CompanyName
1 Air Algerie
2 Air France

Ontology instances
id1:Plane[PlaneID->>A330, capacity->>150; company->> id4].
id2:Plane[PlaneID->>B767, capacity->> 200; company->> id5].
id3:Plane[PlaneID->>B747, capacity->> 300; company->> id4].
Id4:Company[companyID->>1,companyName->>‘AirAlgerie’].
Id5:Company[companyID->>2,companyName->>‘Air France’].

Fig. 4. Data migration example

4 Conclusion

We have developed a novel, integrated and semi-automated approach for migrating
data-intensive Web applications into the Semantic Web that can be applied to a broad
range of today’s business Web sites. The approach starts with transforming the
relational database model into corresponding ontological structures, which is then
used for mapping the content of the database into an ontology-based knowledge base.
There are two main reasons why further work is still necessary in the area of reverse
engineering of relational databases to ontologies. First, there exist few approaches that
consider ontologies as the target for reverse engineering. Second, applicability of the
existing input information than it is possible to provide in practice and making
unrealistic assumptions about the input. In our opinion, these limitations stem
primarily from the fact that the existing approaches do not take advantage of HTML
forms. Rather, the existing approaches build an ontology based on an analysis of
relational schema, tuples, and user queries. As an attempt to overcome the limitations,
we have proposed a novel approach. In the future, a combination between domain
ontology and HTML-forms analysis technique can be exploited not only to extracted
ontology but also to migrate from the current Web to the semantic Web.

References

1. Fraternali, P., “Tools and approaches for developing data-intensive web applications: a
survey”, ACM Computing Surveys, Vol.31, No.3, pp. 227-263, 1999.

2. L. Stojanovic, N. Stojanovic & R. Volz, “Migrating Data-intensive Web Sites into the
Semantic Web”, Proc. 17th ACM Symposium on Applied Computing , Madrid, Spain, 2002.

3. T.R.Gruber, “Toward principles for the design of ontologies used for knowledge sharing”,
Human Computer Studies, 43 (5-6), 1995, 907-928.

4. J. Wang & F. Lochovsky, “Data Extraction and Label Assignment for Web Databases” ,
Proc. 12th International Conference on World Wide Web , Budapest, Hungary, 2003,
187–196.

5. Hainaut, J. Henrard, J. Hick, D. Roland & V. Englebert, “Database Design Recovery”,
Proc. 8th Conference on Advanced Information Systems Engineering (CAiSE), Heraklion,
Crete, Greece, LNCS, 1080, 1996, 272–300.

 Automated Migration of Data-Intensive Web Pages 1649

6. Chiang, R.H.L., T.M. Barron, V.C. Story. “Reverse engineering of relational databases:
extraction of an EER model from a relational database”.Data and Knowledge Engineering,
1994.

7. Vermeer, M., Apers. P. “Object-oriented views of relational databases incorporation
behaviour”, Proceedings of the 4th International Conference on databases systems for
Advenced Application (DASFAA), Singapore, April 11-13, 1995, pp 26-35

8. Behm A., Geppert A., Dittrich, K. (1997) On the Migration of Relational Schemas and
Data to Object-Oriented Database Systems. In Proceeding of the 5th Int. Conference on
Re-Technologies for Information Systems (Klagenfurt, December 1997), pp. 13-33, 1997.

9. MALKI, M., A. FLORY, M.K. RAHMOUNI “Extraction of Object-oriented Schemas
from Existing Relational Databases: a Form-driven Approach’, INFORMATICA, 2001,
Vol. 12, No. 4, 1.

10. V. Kashyap, “Design and Creation of Ontologies for Environmental Information
Retrieval” , Proc. 12th Workshop on Knowledge Acquisition, Modeling and Management
(KAW), Banff, Alberta, Canada, 1999.

11. G. Dogan & R. Islamaj, “Importing Relational Databases into the Semantic Web”,
http://www.mindswap.org/webai/2002/fall/Importing_20Relational_20Databases_20into_
20the_20Semantic_20Web.html, 2002.

12. I. Astrova, “Reverse Engineering of Relational Databases to Ontologies” , Proc. 1st European
Semantic Web Symposium , Heraklion, Crete, Greece, LNCS, 3053, 2004, 327–341.

13. N.Noy & M.Klein, “Ontology evolution: not the same as schema evolution.” Report
Number: SMI-2002-0926:2002

14. Y.A Tijerino, D.W. Embly, D.W. Lonsdale, Y. Ding, G. Nagy “Towards Ontology
Generation from tables”. Kluwer Academic Publishers 2004

15. I. Astrova, B. Stantic ‘‘An HTML Forms driven Approach to Reverse Engineering of
Relational Databases to Ontologies”, in proceeding of the 23rd IASTED International
Conference on Databases and Applications (DBA), eds. M. H. Hamza, Innsbruck, Austria,
2005, pp. 246- 251

16. Choobineh, J. “A form-based approach for database analysis and design” . Communication
of the ACM, 35(2) 1992.

17. M. Mannino, J. Choobineh and J. Hwang, Acquisition and Use of Contextual Knowledge
in a Form-Driven Database Methodology, In: Proceedings of the 5th International
Conference on the Entity-Relationship Approach (1986) 141---157.

18. M. Malki, M. Ayache, M.K. Rahmouni. “Rétro-ingénierie des Bases de Données
Relationnelles: Approche Basée sur l’Analyse de Formulaires ». In Proc.of Colloque of
INFORSID’99. Toulon, France 1999.

19. Mfourga, N. “Extracting entity-relationship schemas from relational databases: a form-
driven approach.” In Proc. of Working Conf. on Reverse EngineeringWCRE’97 1997.

20. D. Embley, “Toward Semantic Understanding – An Approach Based on Information
Extraction”, Proc. 15th Australasian Database Conference, Dunedin, New Zealand, 2004,
3–12.

21. Y. Yang & H. Zhang, “ HTML Page Analysis Based on Visual Cues”, Proc. 6th
International Conference on Document Analysis & Recognition , Seattle, USA, 2001,
859–864.

22. Anderson, M. “Extracting a E.R. schema from a relational database through reverse
engineering” . In Proc. of the 13th Inter. Conf. on the ERA’94, pp. 403–419, 1994.

23. Mannila, H. et al. The Design of Relational Databases. Addison-Wesley publishing, 1994.
24. Petit, J.M., F. Toumani, J. Kouloumdjian. « Relational database reverse engineering: a

method based on Query analysis”. Inter. Journal of Cooperative Information System, 1995.

Author Index

Abdelmoty, Alia I. II-1466
Aberer, Karl, I-466, II-1243
Ahmad, Khurshid II-1330
Aldred, Lachlan II-1015
Alferes, José Júlio II-1553
Amador, Ricardo II-1553
An, Yuan II-1152

Babaoglu, Ozalp I-612
Bacon, Jean I-366
Baker, Seán I-631
Balasubramaniam, Sasitharan I-846
Balasubramanian, Jaiganesh II-978
Barros, Roberto S.M. II-1381
Batista, Tháıs II-1133
B ↪ebel, Bartosz II-1347
Bender, Matthias I-310
Bensaber, Djamel Amar II-1640
Benslimane, Sidi Mohamed II-1640
Bessani, Alysson Neves, I-662, I-680
Beugnard, Antoine II-997
Bittner, Sven I-148
Blair, Gordon I-732
Blomqvist, Eva II-1314
Bontas, Elena Paslaru II-1296
Borgida, Alex II-1152
Borusch, Daniel I-680
Bosc, Patrick I-256
Briot, Jean-Pierre I-813
Brown, Ross I-94
Buchanan, George I-484

Cacho, Nélio II-1133
Cappiello, Cinzia II-1535
Ceri, Stefano I-20
Cerqueira, Renato II-923
Chatti, Mohamed Amine II-1206
Cheang, Chan Wa II-1416
Chebbi, Issam I-112
Chen, David I-576
Cheong, Taesu I-557
Cinque, Marcello I-882
Conrad, Stefan I-539
Costa, Antonio Theophilo II-923

Cotroneo, Domenico I-882
Coulson, Geoff I-732
Courtenage, Simon I-385

da Silva, Paulo Salem II-1500
da Silva Fraga, Joni, I-662, I-680
de Beer, H.T. I-130
de Melo, Ana Cristina Vieira II-1500
De Meo, Pasquale I-329
Deng, Gan II-978
de Oliveira Valente, Marco Tulio

II-1115
de Rijke, Maarten II-1432
Desai, Siddharth I-780
Deters, Ralph II-1097
Ding, Xiaoning II-1034
Dobson, Simon I-631
dos Santos, Hélio L. II-1381
Dumas, Marlon II-1015

Eder, Johann I-502
Elbaum, Sebastian II-1065
Endler, Markus II-923

Fankhauser, Peter II-1225
Fasli, Maria II-1571
Fekete, Alan I-40
Felber, Pascal II-1083
Ferdean, Corina I-796
Francalanci, Chiara II-1535
Freisleben, Bernd II-1046
Fu, Gaihua II-1466

Gal, Avigdor I-402
Garcia-Haro, J. I-715
Garcia-Sanchez, Antonio-Javier I-715
Garcia-Sanchez, Felipe I-715
Gekas, John II-1571
Gergatsoulis, Manolis II-1188
Gillam, Lee II-1330
Giunchiglia, Fausto I-347
Goebel, Vera II-1365
Gokhale, Aniruddha II-978
Golze, Sebastian I-646
Gong, Zhiguo II-1416

1652 Author Index

Gray, Alasdair J.G. I-420
Greenfield, Paul I-40
Gruszczynski, Pawel II-960

Hadjali, Allel I-256
Häık, Grègory , I-813
Halepovic, Emir II-1097
Hauck, Franz J. I-900
Hauswirth, Manfred, I-466, II-1243
He, Yanxiang II-1588
Heizmann, Jörg II-1261
Henricksen, Karen I-846
Herre, Heinrich II-1398
Hidders, Jan I-220
Hinze, Annika, I-148, I-484
Hou U, Leong II-1416
Huang, Tao II-1034
Huhns, Michael I-453
Hung, Edward I-1

IJzereef, Leonie II-1432
Indulska, Jadwiga I-846
Iyer, Karthik I-453

Jacobsen, Arno I-612
Jaeger, Michael C. I-646
Jang, Julian I-40
Jarke, Matthias II-1206
Jin, Beihong II-1034
Jones, Christopher B. II-1466
Jørgensen, J.B. I-22

Kabilan, Vandana I-77
Kammüller, Reiner II-1046
Kamps, Jaap II-1432
Kangasharju, Jaakko I-274
Kang, Dazhou II-1588
Kang, Myong II-1483
Kapitza, Rüdiger I-900
Katsaros, Panagiotis II-941
Kedad, Zoubida I-166
Kementsietsidis, Anastasios I-292
Kensche, David II-1206
Kiani, Ali I-439
Kim, Anya II-1483
Kim, Youngil I-557
Kiringa, Iluju I-292
Kuo, Dean I-40
Kutvonen, Lea I-593
Kwasnikowska, Natalia I-220

Lassen, K.B. I-22
Leao, Diana Campos II-1115
Lee, Minsoo II-1629
Lee, Sung-Young II-1615
Lee, Young-Koo II-1615
Lehmann, Marek I-502
Lehti, Patrick II-1225
Lilis, Pantelis II-1188
Linnemann, Volker I-613
Li, Yanhui II-1588
Liu, Bixin I-763
Loebe, Frank II-1398
Löser, Alexander II-1261
Loyall, Joe I-612
Lu, Jianjiang II-1588
Lung, Lau Cheuk, I-662, I-680
Luo, Jim II-1483

Maciel, Paulo R.M. II-1381
Mahleko, Bendick I-18
Makpangou, Mesaac I-796
Malki, Mimoun II-1640
Masud, Md. Mehedi I-292
Matougui, Selma II-997
May, Wolfgang II-1553
McFadden, Ted I-846
Meersman, Robert II-1605
Metso, Janne I-593
Michel, Sebastian I-310
Midonnet, Serge I-698
Mühl, Gero I-646
Munthe-Kaas, Ellen II-1365
Mylopoulos, John II-1152

Natarajan, Balachandran II-978
Nepal, Surya I-40
Neuhold, Erich I-18
Ngoc, Kim Anh Pham II-1615
Niederée, Claudia I-18
Nutt, Werner I-420

Oanea, Olivia I-183
Oey, Mulyadi II-1065
Osinski, Stanislaw II-960

Paal, Stefan II-1046
Pahl, Claus II-1170
Paik, Hye-young I-94
Pan, Jeff Z. II-1279
Papadopoulos, Filippos I-864

Author Index 1653

Papapetrou, Odysseas I-310
Parsons, Jeff II-978
Pavon-Mariño, P. I-715
Pernici, Barbara II-1535
Pietzsch, Dominik I-613
Pitoura, Evaggelia I-864
Pivert, Olivier I-256
Popfinger, Christopher I-539
Porto, Fabio II-1623
Puder, Arno I-780

Quattrone, Giovanni I-329
Queinnec, Christian I-813
Quix, Christoph II-1206

Rashkovits, Rami I-402
Reichert, Manfred I-59, I-238
Rinderle, Stefanie I-59, I-238
Risse, Thomas I-18
Rosa, Nelson S. II-1381
Rossi, Pablo I-828
Ruokolainen, Toni I-593
Russo, Stefano I-882
Ryan, Caspar I-828

Sanderson, Norun II-1365
Schiely, Marc II-1083
Schlangen, David II-1296
Schmidt, Douglas C. II-978
Schmidt, Holger I-900
Schrader, Thomas II-1296
Schuhart, Henrike I-613
Schweer, Andrea I-484
Schwering, Angela II-1449
Shi, Dianxi I-763
Shi, Tony I-40
Shin, Hyoseop II-1629
Shiri, Nematollaah I-439
Shvaiko, Pavel I-347
Sidorova, Natalia I-183
Silva, Rodrigo Palhares II-1115
Sivaharan, Thirunavukkarasu I-732
Skobeltsyn, Gleb II-1243
Srisa-an, Witawas II-1065
Sroka, Jacek I-220
Subrahmanian, V.S. I-1
Sun, Chengzheng I-576
Sun, David I-576
Swedrzynski, Andrzej II-960

Tam, Audrey II-1517
Tarkoma, Sasu I-274
Tata, Samir I-112
Tempich, Christoph II-1261
ter Hofstede, Arthur H.M. II-1015
Terracina, Giorgio I-329
Thom, James A. II-1517
Thomopoulos, Rallou II-1596
Tirelo, Fabio II-1115
Traversat, Bernard II-1097
Tyszkiewicz, Jerzy I-220

Udrea, Octavian I-1
Ursino, Domenico I-329

Van den Bussche, Jan I-220
van der Aalst, Wil M.P. I-22,

I-130, II-1015
van Dongen, B.F. I-130
van Hee, Kees I-183
Vassiliadis, Panos I-864
Vignéras, Pierre I-750
Vu, Le-Hung I-466

Wang, Huaimin I-763
Wang, Shenghui II-1279
Wang, Yufeng I-763
Weber, Barbara I-59
Weikum, Gerhard I-310
Wild, Werner I-59
Williams, Steven I-385
Wombacher, Andreas, I-18, I-520
Wrembel, Robert II-1347

Xia, Steven I-576
Xu, Baowen II-1588
Xue, Xiaohui I-166

Yatskevich, Mikalai I-347
Yoneki, Eiko I-366
Yu, Deng I-1
Yu, Jonathan II-1517
Yu, Zhiwei I-202

Zarras, Apostolos I-864
Zdravkovic, Jelena I-77
Zhang, Li I-202
Zhang, Xin II-1034
Zhao, Gang II-1605
Zlatev, Zlatko I-520

	Frontmatter
	Distributed Objects and Applications (DOA) 2005 International Conference (continued)
	Security and Data Persistence
	Evaluation of Three Approaches for CORBA Firewall/NAT Traversal
	On the Design of Access Control to Prevent Sensitive Information Leakage in Distributed Object Systems: A Colored Petri Net Based Model
	Offline Business Objects: Enabling Data Persistence for Distributed Desktop Applications

	Component Middleware
	Middleware Support for Dynamic Component Updating
	Two Ways of Implementing Software Connections Among Distributed Components
	On the Notion of Coupling in Communication Middleware

	Java Environments
	A Task-Type Aware Transaction Scheduling Algorithm in J2EE
	Application Object Isolation in Cross-Platform Operating Environments
	Garbage Collection in the Presence of Remote Objects: An Empirical Study

	Peer-to-Peer Computing Architectures
	Peer-to-Peer Distribution Architectures Providing Uniform Download Rates
	JXTA Messaging: Analysis of Feature-Performance Tradeoffs and Implications for System Design

	Aspect Oriented Middleware
	An Aspect-Oriented Communication Middleware System
	Using AOP to Customize a Reflective Middleware

	Ontologies, Databases and Applications of Semantics (ODBASE) 2005 International Conference
	ODBASE 2005 PC Co-Chairs' Message
	Information Integration and Modeling
	Inferring Complex Semantic Mappings Between Relational Tables and Ontologies from Simple Correspondences
	Ontology Transformation and Reasoning for Model-Driven Architecture
	Multidimensional RDF
	{\itshape GeRoMe}: A Generic Role Based Metamodel for Model Management

	Query Processing
	Probabilistic Iterative Duplicate Detection
	Efficient Processing of XPath Queries with Structured Overlay Networks
	Community Based Ranking in Peer-to-Peer Networks
	Ontology--Based Representation and Query Colour Descriptions from Botanical Documents

	Ontology Construction
	Creating Ontologies for Content Representation---The {\sf OntoSeed} Suite
	Fully Automatic Construction of Enterprise Ontologies Using Design Patterns: Initial Method and First Experiences
	Automatic Ontology Extraction from Unstructured Texts

	Metadata
	Metadata Management in a Multiversion Data Warehouse
	Metadata Management for Ad-Hoc InfoWare -- A Rescue and Emergency Use Case for Mobile Ad-Hoc Scenarios
	Managing Petri Nets in MOF Repositories
	A Meta-ontological Architecture for Foundational Ontologies

	Information Retrieval and Classification
	Web Image Semantic Clustering
	Biomedical Retrieval: How Can a Thesaurus Help?
	Hybrid Model for Semantic Similarity Measurement
	Ontology-Based Spatial Query Expansion in Information Retrieval
	Security Ontology for Annotating Resources

	System Verification and Evaluation
	An Ontology for Mobile Agents in the Context of Formal Verification
	Evaluating Ontology Criteria for Requirements in a Geographic Travel Domain
	A Self-monitoring System to Satisfy Data Quality Requirements

	Active Rules and Web Services
	An Ontology- and Resources-Based Approach to Evolution and Reactivity in the Semantic Web
	Automatic Web Service Composition Based on Graph Network Analysis Metrics

	ODBASE 2005 Short Papers
	Two Reasoning Methods for Extended Fuzzy ALCH
	Expressing Preferences in a Viewpoint Ontology
	Architecting Ontology for Scalability and Versatility
	OWL-Based User Preference and Behavior Routine Ontology for Ubiquitous System
	Reasoning on Dynamically Built Reasoning Space with Ontology Modules
	An Efficient Branch Query Rewriting Algorithm for XML Query Optimization
	Automated Migration of Data-Intensive Web Pages into Ontology-Based Semantic Web: A Reverse Engineering Approach

	Backmatter

